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Abstract
SeisSol is an earthquake simulation software targeted to be used on large supercomput-
ers. It solves the elastic wave equation using the ADER-DG framework. This thesis
describes how the functionality of SeisSol was extended to incorporate more advanced
physical models. A particular focus is given to models, which enable the simulation of
small-scale earthquakes induced by human activity.
We consider anisotropic linear elastic materials. In such materials, the wave speed

depends on the direction in which the wave travels. While analytical Riemann solvers
exist for isotropic elastic materials, a numerical eigensolver has to be used in the
anisotropic case. The resulting numerical scheme is thoroughly validated against sev-
eral reference solutions. A realistic scenario from the Bavarian Alps and a scenario
using the anisotropic PREM model highlight the relevance of anisotropic materials.
In addition, we analyze poroelastic materials, where a solid and a fluid phase inter-

act. The coupling introduces a stiff algebraic source term. For efficient time integra-
tion, a locally implicit space-time predictor is used. For the predictor, a medium-sized
linear system of equations has to be solved for every element at every time step. A spe-
cialized block-wise back substitution algorithm reduces computational requirements in
comparison to employing a standard LU factorization. The correctness of the imple-
mentation is validated by comparing the numerical solution to analytical and numerical
reference solutions. In a layer over half-space scenario, the accuracy of the scheme with
respect to the resolution of the slow P wave is analyzed. We find an unexpected pres-
sure discontinuity at material interfaces, which is present in the SeisSol solutions as
well as in references obtained with a 2D finite difference code. This discontinuity is
an inherent feature of the poroelastic wave equation. A carbon capture and storage
scenario is used to study the difference between proper poroelastic materials and their
elastic equivalents. Scaling studies up to 8192 nodes of the TACC’s Frontera show that
the poroelastic version of SeisSol is suited to be used on the largest supercomputers.
Finally, we review the realistic dynamic rupture source mechanism. The Riemann

solver required for the computation of states at the fault interface is extended to con-
sider poroelastic materials. The fluid pressure acts as a weakening (or strengthening)
mechanism on the fault, thus promoting (or preventing) the rupture of certain faults.
When considering branching faults, the poroelastic variant shows different rupture
characteristics in comparison to the elastic equivalent. The effect changes with the
Biot coefficient of the material. In a fault zone scenario, the effect of poroelastic
materials on the rupture style is studied.
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1. Introduction
Earthquakes are devastating and enigmatic events including length scales and time
scales hard to imagine for humans. Fault zones can extend over several thousand
kilometers, while frictional failure occurs on the length scale of a few meters. Although
an actual earthquake only lasts for a few minutes, the driving forces of plate tectonics
happen over thousands of years [19]. Because large earthquakes have a recurrence
time of over a hundred years [224], we do not have a lot of high-quality recordings.
In addition, since earthquakes happen within the solid earth, direct measurements at
depth are hard to accomplish. All knowledge about them has to be inferred from their
effects on the surface. These facts render it hard to learn about earthquakes from
experiments or observations.
Since the early days of computing, simulations have been a great tool to gain knowl-

edge about earthquakes from in-silico experiments. These simulations include the plate
tectonics [e.g. 164] on a time scale of millions of years, the seismic cycle [e.g. 216] on
a time scale of thousands of years and the coseismic wave propagation [e.g. 182] on
a time scale of several minutes. In combination with high-performance computing
(HPC), simulation codes allow researchers to verify hypotheses about the interactions
of earthquakes with each other [201], to solve inverse problems [94] or to conduct prob-
abilistic seismic hazard analysis [153]. Growing computational power allows the linking
of several simulation codes. For example, a seismic cycle simulation of a subduction
zone provides the initial stress field to an earthquake simulation code. The result of
the earthquake simulation is the seafloor displacement. It is subsequently used as an
input for a third simulation code, which solves the shallow water equations to compute
tsunami waves [231].
In this thesis, we will focus on the coseismic phase. The task ahead is to simu-

late earthquake sources and the propagation of emerging seismic waves. The distinct
contribution of this thesis is the inclusion of more complicated material models in
the simulation toolbox SeisSol with a particular focus on computational efficiency and
parallel scalability.
The simulation of earthquakes revolves around the elastic wave equation – a hyper-

bolic partial differential equation (PDE). Complexity arises from realistic geometries
(i.e. topography, material interfaces, fault networks) or more realistic material models
(e.g. viscoelasticity, plasticity). If source physics are incorporated, a friction model,
which simulates the spontaneous release of energy along prescribed fault planes, is
required. In a dynamic rupture simulation wave propagation and source physics are
tightly coupled and interact with each other.
There exist a bunch of simulation tools for earthquake phenomena using every dis-

cretization method available. Finite difference approximations are suitable for sce-
narios consisting solely of wave propagation [e.g. 59, 104, 142, 171, 228], but also for

1



1. Introduction

earthquake models including dynamic rupture sources [e.g. 49, 50, 52, 53, 82, 82, 220].
The regular structure of finite difference discretizations is an advantage when it comes
to the efficient implementation of supercomputers. At the same time, it is compli-
cated but not impossible to include realistic geometries with rough topography and
non-regular material interfaces. Mesh-based methods like the finite element method or
the spectral element method facilitate the simulation of waves on complicated geome-
tries. The spectral element method is used for the simulation of pure wave propagation
problems [e.g. 4, 11, 165] and also for coupled dynamic rupture simulations [e.g. 1,
15, 156, 161]. Of particular importance is the open-source software SPECFEM, which
implements the spectral element method including dynamic rupture sources [96, 127,
137, 136, 175]. The Discontinuous Galerkin (DG) method is particularly suited for
wave propagation problems, especially for seismological applications [e.g. 85, 84, 89,
169, 190, 194, 200, 226, 229, 240].
This thesis revolves around SeisSol. SeisSol [218] solves wave propagation and earth-

quake source problems using the DG method [186, 43, 115], which is a hybrid between
finite volume and finite element discretizations. The solution is expressed with polyno-
mial basis functions on tetrahedral grids, combining high-order accuracy and geometric
flexibility. While the solution is allowed to be discontinuous across element boundaries,
numerical fluxes transport information from one element to its neighbors. The spatial
discretization is accompanied by Arbitrary DERivative (ADER) time stepping [205,
77, 99], an efficient one-step scheme, which uses the structure of the PDE to achieve
the same convergence order in time as in space.
SeisSol is capable of solving wave propagation through elastic [75], viscoelastic [131,

214], anisotropic [60, 232] and poroelastic [61, 233] materials. Furthermore, these ma-
terial models can be combined with plastic deformation [234]. The DG discretization
allows the easy combination of different rheologies, thus enabling the coupling between
the solid earth and the ocean or the atmosphere [3, 140, 141]. Since the solution is al-
ways discontinuous between different elements, it is straightforward to include dynamic
rupture sources by imposing the solution of the friction problem as an intermediate
state at element interfaces [58, 182, 180]. To resolve high-frequency waves, which
travel over long distances, large computational meshes with several billions of degrees
of freedom are necessary. The explicit ADER time stepping scheme includes efficient
local stepping [76, 29], which reduces the required amount of work substantially. To
obtain simulation results within a reasonable time, high-performance computing has
to be used. SeisSol is extensively optimized for CPU-based and GPU-based clusters
and scales up to petascale on various recent supercomputers [69, 110, 140, 187, 217].
In this thesis, I will describe how I have extended the open-source software SeisSol

to include anisotropic (chapter 4) and poroelastic (chapter 5) material models. I have
also derived a way to combine the poroelastic material model with the dynamic rupture
source framework (chapter 6). The thesis is structured as follows:
In chapter 2, we revisit the physical laws governing earthquakes. First, we focus

on the elastic wave equation, which is the basis for all advanced material models.
We study a simple plane wave solution and describe the types of waves, which can be
observed in elastic materials: the transversally polarized S wave and the longitudinally
polarized P wave. Then, we summarize earthquake source mechanisms and distinguish

2



1. Introduction

between point sources and dynamic rupture sources.
In chapter 3, we explain the ADER-DG discretization. We carefully summarize

how the elastic wave equation is discretized in space using tetrahedral elements for
computational domains Ω ⊆ R3. Special care is given to the choice of numerical
fluxes, which are also used to accommodate boundary conditions. We recapitulate
the Cauchy-Kovalevskaya procedure, which is used in the element-local predictor step
of the ADER scheme. This predicted solution is then corrected with data from sur-
rounding elements using the numerical flux. The chapter also contains an overview of
the parallelization and performance optimizations, which are implemented in SeisSol.
We account for the mesh partitioning scheme for inter-node parallelism and the code
generator YATeTo, which is used to achieve high node-level performance.
Chapter 4 focuses on anisotropic materials, i.e. materials, where the wave speeds

differ depending on the direction in which they propagate. We distinguish anisotropic
elastic materials from isotropic materials and present scenarios, where these materials
are relevant for earthquake simulations. We highlight necessary changes to the exist-
ing code required for the extension from isotropic materials to anisotropic ones. We
comment on aspects related to the numerical fluxes and the computational efficiency.
A suite of verification tests and application examples concludes the chapter about
anisotropy and emphasizes differences between isotropic and anisotropic materials. A
scenario concerning the Bavarian Alps shows anisotropic effects together with scatter-
ing at rough topography. The anisotropic version of the preliminary reference earth
model (PREM) gives rise to larger vertical particle displacements and velocities.
Afterwards, in chapter 5, the topic is the poroelastic material model, which occurs

when a fluid fills an elastic porous skeleton. The interaction of both phases intro-
duces additional physical effects, e.g. the existence of a new type of wave: the slow P
wave. Since the coupling term renders the underlying equations stiff, a locally implicit
space-time predictor is required as a replacement for the Cauchy-Kovalevskaya pro-
cedure. The implicit nature of the scheme requires that a linear system with several
hundred unknowns has to be solved. We develop a novel specialized back substitution
algorithm, which employs the specific sparsity structure of the involved linear systems.
This algorithm reduces the number of required floating-point operations in comparison
to a standard LU decomposition by a factor of up to 25. We carefully evaluate the cor-
rectness of the implementation of the numerical scheme in an extensive benchmarking
suite. The study of a layer over half-space scenario shows effects due to the presence
of the slow P wave close to material interfaces and the free surface. The SeisSol solu-
tions as well as the reference solution show an apparent discontinuity of the pressure
field across material interfaces. We highlight the capabilities of the code, by simu-
lating waves in a geometrically complex application example from a carbon capture
and storage site. We benchmark the node-level performance and parallel efficiency
of the newly developed solver. The scheme is very well suited for high-performance
computing: a scaling study up to 8192 nodes of the supercomputer Frontera shows a
parallel efficiency of up to 83 % running at a sustained performance of 7.71 PFLOP/s.
Finally, in chapter 6, physically motivated dynamic rupture source model are stud-

ied. First, the physical model of frictional failure along earthquake faults is described.
We summarize the different friction models, which are available in SeisSol. Further-

3



1. Introduction

more, we explain how dynamic rupture sources are incorporated into the framework of
an ADER-DG discretization. Then, we develop a novel algorithm to extend dynamic
rupture sources from purely elastic material models to the poroelastic model. Here, the
pore pressure acts as a weakening mechanism on the fault. After a convergence test,
we investigate the difference in qualitative rupture behavior between the poroelastic
and the elastic model. In a fault branching scenario, the poroelastic material facilitates
rupture on the branch. The poroelastic fault zone changes the rupture characteristics,
such that the fault arrests earlier in comparison to an elastic fault zone.

4



2. Physical Background
Physics-based simulations of earthquake events require two ingredients: The propaga-
tion of waves within a medium and the excitation of waves by seismic sources. The
waves propagate and might scatter at material interfaces or are reflected at the free
surface. In this chapter, we will revise the elastic wave equation, which is the basic
tool to model wave propagation in the solid earth. Later, we will have a look at seismic
sources, in particular kinematic point sources and dynamic rupture models.

2.1. The Elastic Wave Equation
Here, we review the basic equations of continuum mechanics, which govern wave prop-
agation in elastic media. We loosely follow the textbooks on seismology by Aki and
Richards [5] and Stein and Wysession [195] as well as the textbook on numerical meth-
ods for hyperbolic PDEs by LeVeque [152]. We omit most of the derivations and
concentrate on the results, which will be the building block for the upcoming chapters.
We consider a domain Ω ⊆ R3. This domain represents a part of the Earth, where

we want to study an earthquake scenario. On Ω, we observe the displacement field
u : Ω× [0, T ]→ R3, which describes how a certain point is dislocated at a given time.
We follow the Lagrangian point of view of continuum mechanics. By deformation,
the point, which is originally located at x, will be at position x + u(x, t) at time t.
We observe the strain tensor εij = 1

2

(
∂ui

∂x
j

+ ∂uj

∂x
i

)
and the stress tensor σ = G(ε),

which depends on the strain tensor through some function G, which we will define in
more detail later. The strain tensor is a quantity without unit, which describes the
geometric deformation of the body. The stress tensor describes the force field in the
medium, which is a result of the deformation. We note that the stress tensor as well as
the strain tensor are symmetric 3× 3 tensors. We now plug everything into Newton’s
second law of motions F = m · a and obtain:

ρ
∂2ui
∂t2

=
3∑
j=1

∂σij
∂xj

+ fi, (2.1)

where ρ denotes the density of the material and fi external forces. The density ρ
takes the role of the mass. The second derivative of the displacement field u is the
acceleration. The forces driven by elastic deformation are decoded in the stress tensor
via the spatial derivatives.
Now, to close the equations, we need to have a deeper look into the function G,

which relates stress and strain. For linear elastic materials, the stress-strain relation

5



2. Physical Background

takes the form
σij = Cijklεkl (2.2)

with i, j = 1, 2, 3. This equation is written down in Einstein sum convention, i.e.
an implicit sum over repeating indices (kl in this case) is assumed. We will use this
convention throughout the thesis to shorten the notational clutter of multiple sums.
By symmetry considerations, we can reduce the number of independent parameters
from 81 to only 21 independent values [5]. Also, it is sufficient, to consider the 6
independent components of the symmetric stress tensor σ11,σ22,σ33,σ12,σ23 and
σ13. Since Equation (2.2) is a linear function, we can write it down in a matrix-vector
formulation using the Voigt notation.

σ11
σ22
σ33
σ23
σ13
σ12

 =


C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66


︸ ︷︷ ︸

=:H


ε11
ε22
ε33
2ε23
2ε13
2ε12

 . (2.3)

Note that we will use the notation Cijkl and Cij interchangeably. With four indices
(Cijkl), we denote the entries of the fourth order tensor as in Equation (2.2). With
two indices (Cij), we denote the 21 independent entries of the symmetric matrix H as
in Equation (2.3). We will call the fourth order tensor Hooke tensor and the matrix
H Hooke matrix.
To be physically well-defined, Equation (2.1) has to be closed with initial and bound-

ary conditions. Typically, the earth is at rest initially, which means that u = 0 and
∂u
∂t = 0. While, there is a plethora of boundary conditions, in our case, there are two
relevant ones: At the free surface, external forces are absent and waves are entirely
reflected. This can be achieved by setting σijnj = 0, where n is the outward pointing
unit normal of Ω [120]. At absorbing boundaries, waves are allowed to leave the com-
putational domain without obstruction. This type of boundary condition can not be
easily described in a mathematical model. How absorbing boundaries work, is closely
related to the numerical method and is a field of research on its own [152, 174, 35, 85].
We will come back to that problem in section 3.3 and leave this vague description of
absorbing boundaries for now.

2.1.1. First-Order Hyperbolic System of PDEs
Equations (2.1) and (2.2) together define the wave equation for linear elastic materials.
At this moment, we have one equation, which contains second-order time derivatives,
and one equation, which contains no time derivatives. For the analysis and numerical
solution of hyperbolic PDEs, it is desirable to write down all equations with first-
order derivatives only. Instead of the displacements, we now consider the velocity field

6



2. Physical Background

vi := ∂ui

∂t and write

ρ
∂vi
∂t

=
3∑
j=1

∂σij
∂xj

. (2.4)

In addition, we take the derivative on both sides of Equation (2.2) to obtain:

∂σij
∂t

= Cijkl
∂εkl
∂t

= Cijkl
1
2

(
∂vk
∂xl

+ ∂vl
∂xk

)
. (2.5)

With Equations (2.4) and (2.5), we have a set of nine PDEs, which only contain
first-order derivatives with respect to t and xi. We define the vector of quantities
Q :=

(
σ11, σ22, σ33, σ12, σ23, σ13, v1, v2, v3

)T . Now we combine both
equations in one unified formulation:

∂Qp

∂t
+A1

pq

∂Qq

∂x1
+A2

pq

∂Qq

∂x2
+A3

pq

∂Qq

∂x3
= 0, (2.6)

with the flux matrices Ad. The term Ad
pq
∂Qq

∂x
d

denotes the flux in direction of the dth

coordinate axis. All three flux matrices have a similar form. The matrix A1 is defined
as

A1 =



0 0 0 0 0 0 −C11 −C16 −C15
0 0 0 0 0 0 −C12 −C26 −C25
0 0 0 0 0 0 −C13 −C36 −C35
0 0 0 0 0 0 −C16 −C66 −C56
0 0 0 0 0 0 −C14 −C46 −C45
0 0 0 0 0 0 −C15 −C56 −C55
− 1
ρ 0 0 0 0 0 0 0 0

0 0 0 − 1
ρ 0 0 0 0 0

0 0 0 0 0 − 1
ρ 0 0 0


. (2.7)

For the other two flux matrices A2 and A3, which have similar structure, see de la
Puente et al. [61, p. 80 f.]. The sparsity pattern of the matrices A1, A2 and A3

is depicted in Figure 2.1. The flux matrices Ad encode the material properties of
the elastic material. Of course, these materials can vary through space, e.g. when
we consider layered media. Therefore, the flux matrices Ad = Ad(x) depend on the
spatial variable, but do not change over time. The vector of quantities Q = Q(x, t)
varies with space and time. For better readability, the dependence on space of Ad and
the dependence on space and time of Qp has been dropped in Equation (2.6).

2.1.2. Wave Modes and Velocities
Following Hesthaven [114] and LeVeque [152], Equation (2.6) is a system of hyperbolic
equations if the matrix Ã = k1A

1+k2A
2+k3A

3 is diagonalizable with real eigenvalues,
for any normal vector k. In particular, this means, we can decompose the matrix

7



2. Physical Background
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0
1
2
3
4
5
6
7
8

sparsity pattern of A1 +A2 +A3

Figure 2.1.: Sparsity pattern of the flux matrices in Equation (2.6).

Ã = RΛR−1, where Λ is a diagonal matrix, with the eigenvalues of Ã as diagonal
entries and

R =

 | |
r1 · · · rn
| |

 (2.8)

consists of the corresponding eigenvectors. This decomposition can be used to derive
a solution to the wave equation in a simple scenario.
Consider any hyperbolic wave equation, which can be written in the same form as

Equation (2.6). The computational domain is the unbounded space Ω = R3. Assume
the solution can be written as

Q(x, t) = Q0 exp (i (ωt− k · x)) (2.9)

with angular frequency ω ∈ R and a wave number k ∈ R3. Note that we allow a
complex-valued solution for now. If the function defined in Equation (2.9) is a solution
to Equation (2.6), then

iωQp(x, t) = ik1A
1
pqQq(x, t) + ik2A

2
pqQq(x, t) + ik3A

3
pqQq(x, t). (2.10)

We divide both sides by i exp (i (ωt− k · x)) and realize that the vector Q0 and the
angular frequency ω are an eigenpair of Ã:

ωQ0
p =

(
k1A

1
pq + k2A

2
pq + k3A

3
pq

)︸ ︷︷ ︸
=Ã

Q0
q. (2.11)

Since the system is hyperbolic, all eigenvalues are real and all eigenvectors exist. Thus,
for a given wave number k, we can now compute all eigenvalues λi and the respective
eigenvectors ri. Based on k and λi, we can compute the wave speed of the wave mode
ri. Plugging any of the pairs into Equation (2.9), we have found a k-periodic solution

8



2. Physical Background

of Equation (2.6). The vector ri describes the wave mode, i.e. the polarization of a
wave. Since Equation (2.6) is linear, all linear combinations of solutions or the complex
conjugate of a solution are solutions again. Hence

<(Q) = 1
2
(Q + Q) (2.12)

is a real-valued solution of Equation (2.6). The linearity also allows adding different
wave modes to superimpose wave motion.

2.1.3. Isotropic Materials
Up to now, the considerations were as general as possible. A lot of materials are
isotropic, which means that they are rotationally invariant. In particular, the wave
speeds do not depend on the direction, in which the wave propagates. With that
assumption, one can further reduce the number of independent material parameters.
In isotropic materials, we observe C11 = C22 = C33 = λ+2µ, C12 = C13 = C23 = λ,
C44 = C55 = C66 = µ and all other parameters are zero [5, eq. 2.33]. The two
parameters λ and µ are the first and second Lamé parameters.

In the isotropic case, the matrix Ã has the following eigenvalues {−vp, −vs, −vs, 0,
0, 0, vs, vs, vp}. We observe three propagating wave modes: the P wave with velocity
vp =

√
λ+2µ
ρ and the S wave with velocity vs =

√
µ
ρ . Both waves can travel either

in the positive direction or the negative direction. The P wave is a compressional
wave, where the material is deformed along the axis of wave propagation. This mode
is characterized by the two eigenvectors r1 and r9. The S wave is a transversal wave,
which is polarized orthogonally to the axis of wave propagation. The two modes r2
and r3 or r7 and r8 denote purely horizontally or purely vertically polarized waves
respectively. Figure 2.2 demonstrates the typical configurations of a P and an S wave
in a 2D medium. If we observe any wave field, it can be decomposed into a P wave
field and an S wave field using the Helmholtz decomposition. The divergence free part
of the wave field contains horizontally and vertically polarized S waves. The curl free
part contains the compressional P wave [195, p. 54].

2.2. Earthquake Sources
Typically, earthquakes nucleate by frictional failure along two-dimensional fault sur-
faces. These earthquake sources are modeled in two different flavors. For a kinematic
source, the slip rate on a fault or forces acting at specific points are predefined and no
interaction between wave field and source is possible. This model is frequently used
due to its simplicity. In addition, kinematic source models are easily available through
inversion databases [162]. Take, for example, the 2023 Mw7.8/Mw7.6 earthquake se-
quence on the Eastern Anatolian Fault. The earthquake occurred on February 6, 2023.
Only 13 days later, on February 19, the first kinematic source model was submitted
to Seismica for review [168]. Once a kinematic model is available, one can use SeisSol

9



2. Physical Background

P wave

S wave

Figure 2.2.: Schematic display of P and S wave modes in 2D. The wave travels in the
horizontal direction. For the P wave, the particles move left and right. For
the S wave, the particles move up and down. Figure adapted from [195].

to compute ground motion maps. Researchers can use kinematic sources in SeisSol to
study the effect of material parameters or topography on the wave field.
Dynamic sources, on the other hand, are more complicated, but also give more

insight into the rupture process itself. Instead of the slip distribution or forces, a
dynamic source requires the friction parameters and tectonic pre-stress along the fault.
The propagation of seismic waves and the frictional failure process are tightly coupled.
If the shear traction exceeds the fault stress, slip starts and seismic waves are radiated.
These waves interact with other parts of the fault, and might also start slip there.
Dynamic source models are harder to set up. It takes considerably longer until a
dynamic model is published in comparison to a kinematic model. At the same time,
they give insight not only into the ground motion, but also into the frictional failure
process on the fault [185].

2.2.1. Kinematic Sources
In a kinematic source model, slip rates or forces are defined on a fault. Typically
fault inversion will give these values on a set of distinct points. Then any kinematic
model is a combination of a (possibly large) number of point sources. Since point
sources suffice to accurately represent kinematic sources in seismic simulations, we
only consider these. Point sources can be further distinguished into two classes: force
and moment tensor sources.
An external force is the simplest case. Forces are already part of Newton’s second

law (fi in Equation (2.1)). In that formulation, the force can either be a body force

10
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Figure 2.3.: Overview over possible double-couples, adapted from [195].

(e.g. gravity) or a point force. Point forces take the form

fi(x, t) = s(t)diδ(x− x0). (2.13)

Here s defines a source time function or source wavelet, the vector di defines the
direction, in which the force acts, x0 is the location of the source and δ denotes
the Dirac delta function. Point forces are a very important tool for benchmarking the
implementation of a numerical method. For some problems, which contain point forces,
analytical solutions exist, e.g. for Lamb’s problem, where a vertical force is applied at
the free surface [e.g. 129, 120, 202], or for forces applied within a medium [37, 35].
Force sources are rarely observed in natural earthquakes, but play an important role
in exploration surveys.
Explosions and faulting events are typical earthquake sources [195]. Explosions are

characterized by a uniform dilation of the material around the source point. Simi-
larly, implosions happen, e.g. when underground structures collapse. Faulting sources
describe a shear displacement at the source point. Both types of sources fit in the
framework of moment tensor sources [5, 195]. These can be modeled to be the result
of force couples, i.e. two forces acting on the same point, in opposite directions. In
total, there are nine such force couples. Figure 2.3 shows an overview of all possible
combinations. These force couples can be written down in a 3 × 3 matrix M . The
couples on the diagonal describe volume changes, and the off-diagonal couples describe
shearing motion. An explosion is modeled by
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2. Physical Background

M expl =

M0 0 0
0 M0 0
0 0 M0

 , (2.14)

whereas a faulting source is described by a symmetric tensor with zero entries on the
diagonal. For example, a vertical strike-slip earthquake is defined by

M fault =

 0 M0 0
M0 0 0

0 0 0

 . (2.15)

The moment tensor describes the stress at the point position x0: σij(x0, t) = s(t)M .
Again, s is the source time function and M is the moment tensor.
Forces act as a source term on the velocity component and moment tensors act as

a source on the stress components. Therefore, this can be put into Equation (2.6) by
adding the vector (

ṡM , sd
)T
δ(x− x0) (2.16)

as source term on the right-hand side.
For more realistic scenarios, single point sources are not sufficient, as earthquakes are

caused by frictional failure on 2D faults. To model these faults, kinematic inversion
usually gives the slip (rate) distribution on a grid with a moment tensor for each
grid point. Thus, a kinematic source with a more complicated fault geometry can be
modeled as a cloud of point sources [120]. If the point cloud is too sparse, spurious
oscillations are introduced into the wave field. The slip distribution can be interpolated
on a finer grid of point sources to diminish these oscillations.

2.2.2. Dynamic Rupture
In contrast to kinematic rupture, more complicated dynamic rupture models give more
insight into the frictional failure process. Initially, only the pre-stress and friction
parameters on the fault are given. In a dynamic rupture simulation, the slip (rate) on
the fault is an intermediate result.
In our model [58, 182, 213], faults are 2D subsets Γ ⊆ Ω. Mathematically speaking,

a fault is the union of several 2D manifolds. In particular, this means that fault
intersection is allowed. At each point x0 ∈ Γ on the fault, the behavior is governed by
Coulomb friction. We assume that the point x0 does not lie on a fault junction, such
that the fault Γ divides the domain Ω locally in two subspaces Ω+ and Ω−. Figure 2.4
gives an overview of the fault geometry. These two spaces can be either in locked
contact or sliding against each other. As long as the traction in tangential direction
τ does not exceed the fault strength τS , the fault remains locked. Here, the fault
strength is the product of the friction coefficient µf and the normal traction σn. If
the shear traction grows, it will reach the point, where it equals the fault strength. At
this point, the two subspaces Ω+ and Ω− will start to slide against each other. The
slip rate s is antiparallel to the traction on the fault:

‖τ‖ ≤ τS = µfσn

τSs = τ‖s‖. (2.17)
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Γ

x0
Ω+

Ω−

τ

σn

Figure 2.4.: Sketch of a fault embedded in the computational domain Ω. The fault can
have an arbitrary 2D geometry, including branches and kinks.

Once the slip rate is known on the fault Γ, it can be imposed as an internal boundary
condition

JvK = s on Γ (2.18)

on the elastic wave equation.
The friction coefficient µf is not constant. During rupture the fault weakens, and

the friction parameter is reduced. There are various friction laws, e.g. linear slip-
weakening friction [10] or rate-and-state friction [66, 65, 191, 67]. We will consider the
details of dynamic rupture models in Discontinuous Galerkin simulations in chapter 6.
With a kinematic model, it is possible to compute the ground motion based on

the slip distribution. A dynamic model allows studying the detailed failure process
on the fault. For example, rupture can jump from one fault element to the next
one, thus generating complex radiation patterns [212]. Also, an earthquake causes
dislocation in the surrounding material and thus changes the stress distribution, which
can facilitate aftershocks. Dynamic rupture simulations are a valuable tool to simulate
such sequences of earthquakes [201].

2.2.3. Fault Geometry and Radiation Patterns
Planar faults are typically described by three angles. Since faults can have arbitrary
geometry, we use the same angles to describe the local geometry of curved faults. The
strike angle φs is the angle between the northward pointing vector tangential to the
free surface and the trace of the fault at the free surface. The dip angle describes the
angle between the free surface and the fault. The slip vector s lies in the fault plane
Γ. The in-plane angle between the vector pointing in the strike direction and the slip
vector is the rake λr. Figure 2.5 gives an overview of the three angles on a simple
fault. By convention, the direction of the vector s describes the slip of the hanging
wall (left out in Figure 2.5), relative to the footwall (the part of the volume visible in
Figure 2.5).
Moczo et al. [174] give an overview, of how the fault geometry can be translated to

a moment tensor. For example, consider a fault, with φs = 0°, δ = 90° and λr = 0°.
Then the corresponding slip vector on the fault is

(
1 0 0

)T and the moment tensor
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φs

δ λr
s

North

Figure 2.5.: Geometry of a simplified planar fault with the angles φs, δ and λr and the
slip vector s. Adapted from [174].
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Figure 2.6.: Left: Fault with φs = 0°, δ = 90°, λr = 0°, right: φ′s = 90°, δ′ = 90°, λ′r =
180°. F and H denote the footwall and the hanging wall. Areas, where
the material is compressed are marked with C. Areas where the material
expands are marked with D. Although the direction of the slip is different,
the apparent effect in the far field is similar.

is given by

M =

0 1 0
1 0 0
0 0 0

 . (2.19)

Now, consider another fault with φ′s = 90°, δ′ = 90° and λ′r = 180°. On this fault, the
slip vector is

(
0 −1 0

)T , but the rupture is represented by the same moment tensor.
At first, this might seem counterintuitive. But, when we look at the effect of the slip
on the surrounding material, indeed both faults have the same effect. Faulting results
in compression in parts of the surrounding region and expansion in other parts. In
Figure 2.6, we see a comparison of the fault geometry for both faults and the resulting
compression-dilation pattern. In this regard, both faults have the same effect on the
surrounding material and thus radiate the same waves. Moment tensor point sources
model slip on an infinitesimally small fault. In consequence, the displacement directly
at the fault is irrelevant in this context.
To sum this chapter up, we would like to point out that analytical solutions exist

for the wave field excited by a moment tensor source in a homogeneous full-space [5,
195, 120]. The wave field excited by a moment tensor source consists of several fields.
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For a vertical fault, the displacement field can be computed as

u(x, t) = 1
4πρA

near 1
r4

∫ r/vs

r/vp

τs(t− τ)dτ

+ 1
4πρv2

p

API 1
r2 s(t− r/vp) + 1

4πρv2
s

ASI 1
r2 s(t− r/vs)

+ 1
4πρv3

p

APF 1
r
s(t− r/vp) + 1

4πρv3
s

ASF 1
r
s(t− r/vs). (2.20)

The amplitudes A = A(φ, θ) describe the radiation pattern depending on the direction
of propagation. Here, (r, φ, θ) are polar coordinates to describe the point x. The near
field term is only present close to the source. Its amplitude decays with 1

r4 , where r
is the distance between the source and the receiver. The intermediate field consists
of an intermediate field S wave (SI) and an intermediate field P (PI) wave. Both
decay with 1

r2 . In the far field, again, we see an S wave (SF) and a P (PF) wave,
now decaying with 1

r . So, depending on where the wave field is observed, one of the
three wave fields dominates. For seismological applications, the far field is the most
important one. Figure 2.7 shows the far field radiation pattern excited by the moment
tensor M . The radius of the lobes indicates the amplitude of the wave traveling in
that direction. S waves travel in the direction of the coordinate axes. P waves have
reduced amplitude and travel along the diagonal directions. In general, each mode
has the relative amplitude 1

v3 depending on its wavespeed. For this plot, we assume
vp = 1.73vs, thus the amplitude of the P and the S wave differ by a factor of 5.20.
The S wave is the wave mode with larger amplitudes.
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P wave
S wave

Figure 2.7.: P and S wave radiation pattern in the x1 − x2 plane for a double-couple
point source with φs = 0°, δ = 90°, λr = 0°. The radius of the lobes
describes the relative angle-dependent amplitude of the waves.
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3. Numerical Solution of the Elastic
Wave Equation using ADER-DG

SeisSol is a well-established code for the coupled simulation of earthquake source dy-
namics and seismic wave propagation. It solves the equations presented in chapter 2.
The underlying numerical scheme for the wave propagation part is the Discontinuous
Galerkin method combined with Arbitrary DERivative time stepping (ADER-DG).
The method was developed in a series of papers starting with isotropic materials in
2D [129] and 3D [75]. Subsequently, the scheme was extended to viscoelastic mate-
rials [131] and anisotropic materials [60]. Finally, a local time stepping scheme was
developed to reduce the time to solution [76]. Here, we want to summarize, how this
numerical scheme works.
First, we will describe the DG discretization in the spatial domain. Then, the fol-

lowing section is devoted to the introduction of numerical fluxes. The next section
considers boundary conditions. Afterwards, the ADER time stepping method is pre-
sented. The discussion of the numerical scheme concludes with the treatment of source
terms. In addition, we explain how the discrete update scheme can be efficiently im-
plemented on parallel computers.

3.1. Spatial Discretization
To solve Equation (2.6), we follow the DG ansatz [75]. The underlying geometry Ω
is approximated by a mesh of conforming tetrahedral elements Em. We further define
the reference tetrahedron, Eref, which is spanned by the zero vector and the three
unit vectors in R3: Eref := {ξ ∈ R3 : ξi ≥ 0,

∑3
i=1 ξi ≤ 1}. We denote coordinates in

physical space with x and coordinates in reference space as ξ. The function Ξm : Em →
Eref is an affine linear coordinate transformation, which maps from a tetrahedron Em
in physical space to the reference element. Figure 3.1 shows the reference tetrahedron
and one tetrahedron in physical space as well as the transformation Ξ. On the reference
tetrahedron, we define polynomial ansatz functions Φl : Eref → R. On each element
Em, the numerical solution Qm

p is expanded in terms of the basis functions:

Qm
p (x, t) = Q̂m

pl(t)Ψm
l (x) = Q̂m

pl(t)Φl(Ξm(x)). (3.1)

By Ψm
l := Φl ◦ Ξm we denote the lth basis function transformed to the mth element

in physical space. Q̂m

pl = Q̂m

pl(t) is now the time-dependent vector of degrees of
freedom, the spatial variation of the function Qm

p is completely taken care of by the
basis functions. By stitching together these local solutions Qm

p , we obtain the global
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Figure 3.1.: Coordinate transform Ξ from the physical tetrahedron Em (right) to the
reference tetrahedron Eref (left). Figure adapted from [75].

numerical solution. Note that the formulation is strictly element-local, so in particular
no assumptions about continuity across element boundaries can be made. We will
use the Dubiner polynomials, a set of orthogonal polynomials [43] as basis functions
Φl. The orthogonality implies that the mass matrix is diagonal and the stiffness
matrices contain large blocks of zeros, both of which are desirable features in a finite
element discretization. Any polynomial p can be written as p(x) =

∑
i

(
αiΠd

k=1x
ik
k

)
,

where i is a d-dimensional multi-index. The degree of a polynomial is defined as
deg(p) = maxai 6=0

∑d
k=1 ik. According to this definition, the polynomial 1 has degree

zero, the polynomial x2
1x2 has degree three and the polynomial x1x2x

4
3 has degree

six. Now, we can assess the dimensionality of the space polynomials of a given degree
N : In two space dimensions, there are N independent polynomials of degree N and
B2
N :=

(
N+2

2
)
independent polynomials of degree less or equal than N . In three

space dimensions there are b3N :=
(
N+2

2
)
independent polynomials of degree N and

B3
N :=

(
N+3

3
)
independent polynomials of degree less or equal than N .

To start with the DG discretization, we consider one element Em individually. We
multiply Equation (2.6) by a test function Ψm

l and integrate over the element.∫
Em

∂Q̂m

plΨm
k

∂t
Ψm
l dV +

3∑
d=1

∫
Em

Ad
pq

∂Qm
qlΨm

k

∂xd
Ψ̂m
l dV = 0. (3.2)

Integration by parts leads to a semi-discrete formulation:

∫
Em

Ψm
k

∂Q̂m

pl

∂t
Ψm
l dV +

∫
∂Em

Ψm
k (ndAd

pqQq)∗dS

−
3∑
d=1

∫
Em

∂Ψm
k

∂xd
Ad
pqQ̂

m

qlΨm
l dV = 0. (3.3)

Here n denotes the outward pointing normal on the boundary of the element Em. The
quantity Fp := (ndAd

pqQq)∗ is the flux across the element boundary in the normal
direction. Since the solution inside of the element Em is completely independent of the
solution on the neighboring elements, it is hard to assign a unique value to the flux
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function on the boundary. We will soon replace this formulation with a numerical flux,
which is an important ingredient of DG schemes. We assume that the flux matrices
Ad
pq are element-wise constant. By definition, Q̂ and its time derivative do not depend

on spatial variables, which allows us to pull these terms out of the integrals:

∂Q̂m

pl

∂t

∫
Em

Ψm
k Ψm

l dV +
∫
∂Em

Ψm
k FpdS −

3∑
d=1

Ad
pqQ̂

m

ql

∫
Em

∂Ψm
k

∂xd
Ψm
l dV = 0. (3.4)

We apply a change of variables to replace the integrals over Em with integrals over
Eref. The inverse of Ξ maps from the reference tetrahedron to the physical space, so we
define the determinant of the Jacobian: Jm = det (DΞm)−1. We also have to express
derivatives with respect to x by derivatives with respect to ξ: ∂Ψ

∂x
d

=
∑3
e=1

∂Φ
∂ξe

∂ξe

∂x
d
:

∂Q̂m

pl

∂t

∫
Eref

ΦkΦl|Jm|dV +
∫
∂Em

Ψm
k FpdS

−
3∑
d=1

Ad
pqQ̂

m

ql

∫
Eref

3∑
e=1

∂Φk
∂ξe

∂ξe
∂xd

Φl|Jm|dV = 0. (3.5)

Since Ξm is an affine linear transformation, the derivatives ∂ξe

∂x
d
are constant, and we

can pull these out of the integrals:

∂Q̂m

pl

∂t
|Jm|

∫
Eref

ΦkΦldV +
∫
∂Em

Ψm
k FpdS

−
3∑
e=1

3∑
d=1

∂ξe
∂xd

Ad
pqQ̂

m

ql |Jm|
∫
Eref

∂Φk
∂ξe

ΦldV = 0. (3.6)

We define the transformed flux matrices as

Â
e

pq =
3∑
d=1

∂ξe
∂xd

Ad
pq. (3.7)

In addition, we define the mass matrix and the stiffness matrices

Mkl =
∫
Eref

ΦkΦldV

Ke
kl =

∫
Eref

∂Φk
∂ξe

ΦldV .
(3.8)

Now, we can express our scheme in short notation:

∂Q̂m

pl

∂t
|Jm|Mkl +

∫
∂Em

Ψm
k FpdS −

3∑
e=1

Â
e

pqQ̂
m

ql |Jm|Ke
kl = 0. (3.9)

19



3. Numerical Solution of the Elastic Wave Equation using ADER-DG

Up to now, we have only worked on element-local values. Of course, for a reasonable
scheme, information has to be exchanged between elements, when waves travel across
the domain. This is where the numerical flux comes into play: First, let us note that
the boundary of an element consists of four triangles: ∂Em =

⋃4
f=1 Emf . Behind each

face, there lies another element, which we will denote by Emf . On this element, the
solution is expressed as Qmf

p = Q̂mf

pl Ψmf

l . As we have already noted earlier, the global
solution is not continuous across ∂Em. In particular, this means that no unique value
can be assigned to Qp on the interface, we just have a solution at the interior and
one at the exterior. For now, we will assume there is a flux function F (Qm,Qmf ),
which computes the flux across the face Emf based on the solution in the interior and
the solution at the exterior. In section 3.2, we will review this flux function in more
detail and show how a reasonable flux function can be obtained. Furthermore, we will
consider boundary conditions in section 3.3.
Now, if we have the values of Fp, we still need to evaluate the integrals

∫
Em

f
Ψm
k FpdS.

We assume that we can write the flux as

Fp(Qm,Qmf ) = Ĝ−pqQ̂
m

qlΨm
l + Ĝ+

pqQ̂
mf

ql Ψmf

l , (3.10)

with matrices Ĝ− and Ĝ+. Then, we have to compute the integral∫
Em

f

Ψm
k FpdS = Ĝ−pqQ̂

m

ql

∫
Em

f

Ψm
k Ψm

l dS + Ĝ+
pqQ̂

mf

ql

∫
Em

f

Ψm
k Ψmf

l dS. (3.11)

Again, we want to compute the integrals on the reference triangle, this time, it is
a bit more complicated than in the 3D case. First, we define the reference triangle
T ref ⊆ R2 spanned by the zero vector and the two unit vectors with coordinates
χ: Eref := {χ ∈ R3 : χi ≥ 0,

∑
χi ≤ 1} In addition, we denote the four sides of

the reference tetrahedron with Eref
f . The numbering of the four triangles is given in

Figure 3.2. For each side, we define the map Xf : Eref
f → Eref from the f th side of the

reference tetrahedron to the reference triangle. The inverse functions X−f :=
(
Xf
)−1

mapping from the local 2D coordinates to the 3D coordinates are given as:

X−1(χ) =

0 1
1 0
0 0

χ, X−2(χ) =

1 0
0 0
0 1

χ

X−3(χ) =

0 0
0 1
1 0

χ, X−4(χ) =

1
0
0

+

−1 −1
1 0
0 1

χ.

(3.12)

The map from the faces Emf in physical space to the reference triangle is given by
χ = Xf (Ξm(x)). We define the matrix

F−,fkl =
∫
Eref

Φk(X−f (χ))Φl(X−f (χ))dS(χ). (3.13)

Note that there are four different instances of this matrix, depending on which face we
consider. The matrix F−,f considers the contribution of the element-local solution to
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ξ1

ξ2

ξ3

1

2 3

4

Figure 3.2.: Index convention of the four faces of the reference tetrahedron: Eref
1 lies

in the ξ1 − ξ2 plane. Eref
2 lies in the ξ1 − ξ3 plane. Eref

3 lies in the ξ2 − ξ3
plane. The triangle Eref

4 is not axis-aligned.

the flux function. The second integral is a bit harder to evaluate. If the tetrahedron
with index mf is behind the f th face of tetrahedron m, the numbering of faces in
tetrahedron mf differs, depending on how the mesh was generated. Let g denote the
index of the face of tetrahedron mf , behind which the tetrahedron m lies, such that
the f th face of m coincides with the gth face of mf : Emf = Emf

g . In addition, the faces
might be rotated against each other, so we need another index h to indicate the three
different possibilities of how Emf and Emf

g can be rotated against each other. Here, we
omit the detailed explanation and just define the function X̃h, which takes care of this
rotation. For a detailed definition of this function consult Uphoff [213]. We define the
matrix

F+,fgh
kl =

∫
Eref

Φk(X−f (χ))Φl(X−g(X̃h(χ)))dS(χ). (3.14)

This matrix computes the contribution of the neighboring solution to the flux function.
Again, we can substitute the integrals in physical space with integrals in reference

space. From the substitution, we obtain a factor |Smf |, which denotes the surface of
the element Emf . Now, we can write down the final semi-discrete form of Equation (2.6):

∂Q̂m

pl

∂t
|Jm|Mkl +

4∑
f=1

Ĝ−pqQ̂
m

ql |Smf |F−,fkl

+
4∑

f=1
Ĝ+
pqQ̂

mf

ql |Smf |F+,fgh
kl −

3∑
e=1

Â
e

pqQ̂
m

ql |Jm|Ke
kl = 0. (3.15)

Note that we only sum over the index f for the local flux contribution as well as for
the neighboring flux contribution. For each element Em, the indices g and h in F+,fgh

are fixed, depending on the mesh characteristics.
For efficiency reasons, the matrices M , Ke, F−,f and F+,fgh should be kept in

caches and only the element local components (Q̂m
, Â

e
, Ĝ+, Ĝ−, Jm and Smf )

should be loaded from memory, when needed. Note that the matrices M,K and F
have the size B3

N × B3
N , while the matrices A and G have size 9 × 9. In total, there

21



3. Numerical Solution of the Elastic Wave Equation using ADER-DG

are 48 different matrices F−,fgh, which can be reduced to 16, if we order the element
indices beneficially. This already reduces the memory consumption by a factor of
three. The flux matrices can be decomposed into smaller matrices in order to enable
an efficient implementation [213, 217]. The idea behind the decomposition is to realize
that the functions Φl restricted to one of the sides Eref

f are polynomials of degree N ,
in two variables. So, there are only B2

N instead of B3
N . The flux matrices can now be

decomposed as
F−,fkl = RfkuR

f
lvM̃uv

F+,fgh
kl = RfkuR

g
lvF̃

h
uv.

(3.16)

The matrices Rf denote the transformation from the two-dimensional polynomial basis
to the three-dimensional polynomial basis. The matrix M̃ is the mass matrix in 2D,
and the matrices F̃h are mass matrices in 2D which take the coordinate transform
X̃h into account. For all choices of N , we see a decrease in memory consumption and
floating-point operations for N ≥ 4, we see an improvement in terms of floating-point
operations if we use the decomposed matrices.

3.2. Numerical Flux and Riemann Problems
In DG schemes continuity of the solution across element boundaries is only enforced
in a weak sense, via the flux term Fp = (ndAd

pqQq)∗ in Equation (3.3). This flux term
describes how much of a quantity is transported across the element interface. Hence, a
proper numerical flux, which also takes the underlying physics into account, is essential
for the convergence of DG schemes. Since the global solution is not continuous, we
can not easily assign a unique value to Qq directly at the boundary. We consider the
element Em and the flux across its f th face Emf . We only have the local solution Qm on
the element m and the solution Qmf on the neighboring element mf . For simplicity,
we will only consider single faces in the following. We will denote the solution on the
local side of the face as Q− and the solution on the neighboring element as Q+. The
upcoming task is now to compute a numerical flux F (Q−,Q+), which captures all
essential properties of the underlying physics.
The Godunov flux approximates the solution at the element boundary by solving a

Riemann problem across the element interfaces. We shortly summarize the idea behind
the Godunov flux and some of its basic properties from Hesthaven and Warburton
[115]. For any hyperbolic PDE in one spatial dimension in the form

∂q

∂t
(s, t) + ∂f(q)

∂s
(s, t) = 0, (3.17)

the Riemann problem is defined as the initial value problem on the entire real axis by
imposing a piecewise constant initial condition with only one discontinuity at x = 0.
If the PDE is linear, exact solvers for the Riemann problem exist, and we can compute
the limit q∗ = limt→0 q(0, t). To use the Riemann problem for the flux computation,
we impose the states Q− and Q+ as initial conditions for s < 0 and s > 0 respectively.
Once, we have computed the value Q∗ = Q∗(Q−,Q+) at the interface, we compute
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the numerical flux as F (Q−,Q+) = f(Q∗). The Godunov flux is also called the
upwind flux. This flux decomposes the wave field and takes into account, which wave
modes travel in which direction. In particular, it is less dissipative in comparison to
simpler fluxes such as the Lax-Friedrich or the Rusanov flux. At the same time, its
computation is not too complicated, as we will see in the next section.
To make the Godunov flux work in our specific case, we have to consider fluxes across

triangles in three-dimensional space: Consider that the plane defined by extending the
face Emf linearly cuts R3 in two half-spaces. On the side of the local element, we impose
Q− as the initial condition and on the neighboring side, we impose Q+ as the initial
condition. The initial condition is constant in directions tangential to the face Emf ,
hence the solution only varies in the normal direction. Therefore, we rotate the PDE
and the solution into a face-aligned coordinate system: The problem is reduced to one
spatial dimension now. Recall that the flux matrices are element-wise constant, but
might attain different values on the inner and the outer element, respectively. Define
A− to be the flux matrix A1 on element m and A+ to be the flux matrix on the
neighboring element mf .

∂qp
∂t

(s, t) + Ãpq(s)
∂qq
∂s

(s, t) = 0

Ã(s) =
{
A− s < 0
A+ s > 0

,

qp(s, 0) =
{

Q̃−p := T̃pqQ−q s < 0
Q̃+
p := T̃pqQ+

q s > 0
,

(3.18)

where T̃ is the rotation matrix, which transforms Q to the face aligned coordinate
system. Assume that the face-aligned basis is given by three vectors n, s and t. Then
the transformation matrix reads

n2
1 s2

1 t21 2n1s1 2s1t1 2n1t1 0 0 0
n2

2 s2
2 t22 2n2s2 2s2t2 2n2t2 0 0 0

n2
3 s2

3 t23 2n3s3 2s3t3 2n3t3 0 0 0
n1n2 s1s2 t1t2 n1s2 + n2s1 s1t2 + s2t1 n1t2 + n2t1 0 0 0
n2n3 s2s3 t2t3 n2s3 + n3s2 s2t3 + s3t2 n2t3 + n3t2 0 0 0
n1n3 s1s3 t1t3 n1s3 + n3s1 s1t3 + s3t1 n1t3 + n3t1 0 0 0

0 0 0 0 0 0 n1 s1 t1
0 0 0 0 0 0 n2 s2 t2
0 0 0 0 0 0 n3 s3 t3


, (3.19)

where the upper left block rotates the tensor σ and the lower right block the vector
v [75]. Without loss of generality, we choose that the coordinate transformation maps
the x1 axis to the normal vector n. The variable s defines the coordinate along this
face-normal direction.
The solution structure of the Riemann problem for the elastic wave equation is

depicted in Figure 3.3. It consists of piecewise constant solutions laid out in a fan-like
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Q̃−

Qa

Qb Qc

Qd

Q̃+

−v−
p

−v−
s v+

s v+
p

x

t

Figure 3.3.: Solution structure of the elastic Riemann problem, adapted from [213, p.
39]. We observe left and right-hand states (Q̃−, Q̃+) and four intermediate
states Qa,Qb,Qc,Qd, separated by the P and the S waves. Within each
fan-like segment, the solution is constant.

geometry in the space-time plane. On the very left and the very right, we see the
initial states Q̃− and Q̃+. In addition, we see four additional intermediate states
denoted with a, b, c, d. The jump between the solutions in each segment has to follow
the Rankine-Hugoniot condition [64]:

ÃJQK = vJQK, (3.20)

where v denotes the wave speeds, with which the discontinuity travels. In addition, we
know that the jump across such a discontinuity has to be a linear combination of the
respective eigenvectors. We recall the eigenvalue decomposition of the flux matrix.

A1 = RΛR−1. (3.21)

Here, R stores the eigenvectors ri column-wise and Λ = diag (−vp,−vs,−vs, 0, 0, 0, vs,
vs, vp). We further distinguish between R− and R+ for the local and neighboring
eigenvectors as well as v− and v+ for the wavespeeds taking the different material
parameters on both sides into account. For our case, we can write down the jump
conditions:

A−
(

Qa − Q̃−
)

= −v−p
(

Qa − Q̃−
)

A−
(

Qb −Qa
)

= −v−s
(

Qb −Qa
)

A+
(

Qd −Qc
)

= v+
s

(
Qd −Qc

)
A+

(
Q̃+ −Qc

)
= v+

p

(
Q̃+ −Qd

)
.

(3.22)

Here, the wave speeds are the speeds of the S and P waves respectively. In addition,
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we know that the jumps can be expanded in terms of the eigenvectors of A:(
Qa − Q̃−

)
= α1r

−
1(

Qb −Qa
)

= α2r
−
2 + α3r

−
3(

Qd −Qc
)

= α7r
+
7 + α8r

+
8(

Q̃+ −Qd
)

= α9r
+
9 .

(3.23)

The jump conditions only hold for the regions s < 0 and s > 0. For the interface
at s = 0, we define continuity conditions. The conditions are mechanically motivated:
The medium has to be continuous, and no gaps should open at the interface, so we
set all velocity components to be continuous across the interface: vb1 = vc1, vb2 = vc2
and vb3 = vc3. In addition, the tractions in normal direction t = σ · n are continuous
across the interface tb = tc. Since we have transformed the normal to the x1 axis, this
translates to: σb11 = σc11, σb12 = σc12 and σb13 = σc13.
Now, we have all ingredients together to compute the states Qb and Qc. In the

end, we want to obtain a solution Q∗, which is the solution of the Riemann problem
at t = 0, s = 0. Unfortunately, we have an interface at s = 0 with a possible jump
between solutions, which – at first sight – renders it impossible to assign a value to
Q∗. To solve this issue, we note that all solution components are continuous across the
interface, except for σ22, σ33 and σ23. Since these three stress components are in the
null space of A1, their value is irrelevant to the evaluation of the flux at the interface.
Hence, we ignore these three solution components and define Q∗ = Qb = Qc, wherever
the both coincide.
Similar to Uphoff [213], we define the matrix

R =

 | | | | | | | | |
r−1 r−2 r−3 e2 e3 e5 r+

7 r+
8 r+

9
| | | | | | | | |

 , (3.24)

where ei is the ith unit vector. Now we can compute the vector α containing the
parameters αi by summing over all equations in Equation (3.23) and solving the linear
system.

α = R−1
(

Q̃+ − Q̃−
)
. (3.25)

We define indicator matrices χ− and χ+, which cut out the first three or the last three
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entries of α respectively. Now, we can compute

Qb = Q̃− + α1r
−
1 + α2r

−
2 + α3r

−
3

= Q̃− +Rχ−α
= Q̃− +Rχ−R−1

(
Q̃+ − Q̃−

)
=
(
I −Rχ−R−1) Q̃− +Rχ−R−1Q̃+

= R
(
I − χ−

)
R−1Q̃− +Rχ−R−1Q̃+

= Rχ+R−1Q̃− +Rχ−R−1Q̃+
.

(3.26)

In the last step, we have used χ+ = I −χ−, which is not correct at first sight. But, as
noted earlier, the non-propagating modes associated with the eigenvectors e3, e4 and
e5 do not contribute to the flux, so it does not matter if we select one of these modes
here as well. The same procedure allows to compute the state Qc. To obtain the state
in the Cartesian coordinate system, we use the inverse of the transformation matrix
T̃ . Finally, we can set the flux function F to

F−(Qm,Qmf )p = T̃−1
pq A

−
qrRrsχ+

skR−1
kl T̃lo︸ ︷︷ ︸

:=Ĝ−
po

Q̂m

onΨm
n

+ T̃−1
pq A

−
qrRrsχ−skR−1

kl T̃lo︸ ︷︷ ︸
:=Ĝ+

po

Q̂mf

on Ψmf
n . (3.27)

where we find the structure, which we have originally required in Equation (3.10). We
can compute the flux for the other side if we exchange A+ with A−.

3.3. Boundary Conditions
We have seen, how to exchange data at element interfaces through numerical fluxes.
The open question remains, what to do at the outer boundaries of the computational
domain? From a mathematical point of view, proper boundary conditions have to
be imposed. There are two possibilities relevant to our application: A free-surface
boundary, where incoming waves are reflected into the computational domain and
absorbing boundaries, where waves are allowed to leave the domain undisturbed. The
free-surface boundary condition is imposed at the earth’s surface. While there is an
interaction between the earth and the atmosphere [e.g. 141], for most applications,
it is sufficient to model a vacuum outside the computational domain. An absorbing
boundary condition is used at all other parts of the boundary. At such a boundary, we
assume that waves leave the domain without any reflection. This boundary condition
is used to truncate the computational domain, such that not always the entire earth
has to be considered. In addition, we shortly revisit periodic boundary conditions,
which only play a role in verification scenarios.
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3.3.1. Free Surface Boundary Condition
At a free surface, no external forces are applied. In our setting, this corresponds
to σijnj = 0, where n is the outward pointing normal vector [120]. As we have
done in section 3.2, we can rotate the quantities into a surface-aligned coordinate
system, such that the free surface condition boils down to σ11 = σ12 = σ13 = 0. In
the discontinuous Galerkin framework, the idea is to impose an artificial flux at the
interface. This is done by computing a state Qb fulfilling the no-traction condition.
The state has to be consistent with the interior state Q̃− and obey the Rankine-
Hugoniot condition. If we omit the states Qc, Qd and Q̃+ from Equations (3.22)
and (3.23), we find (

Qb − Q̃−
)

= α1r
−
1 + α2r

−
2 + α3r

−
3 . (3.28)

The three coefficients αi can be then determined from the three conditions on the
stress components σ11, σ12, σ13.
We can decompose the matrix R in the following way:

R =



1 2 3 4 5 6 7 8 9

σ11 ∗ ∗
σ22 ∗ ∗ ∗
σ33 ∗ ∗ ∗
σ13 ∗ ∗
σ23 ∗
σ13 ∗ ∗
v1 ∗ ∗
v2 ∗ ∗
v3 ∗ ∗


, (3.29)

where ∗ denotes a non-zero entry. With purple and orange, we highlight the parts of
the matrix, which correspond to the traction. Turquoise and yellow highlight velocity
components. We denote the traction parts of the state as T and the velocity part of
the state as V. In the upper left, we identify the 3× 3 matrix RT ,−, in the lower left,
we identify the matrix RV,−. The coefficients α1,2,3 can now be computed by solving

RT ,−α = T b − T − = −T −. (3.30)

The velocities at the boundary are computed as

Vb = −RV,−α+ V− = −RV,− (RT ,−)−1 T − + V−. (3.31)

Together with T b = 0, we have computed the relevant entries of Qb necessary for the
evaluation of the flux at a free-surface boundary. We define the matrix

S =
(

0 0
−RV,− (RT ,−)−1

I

)
, (3.32)

and compute
F free(Qm)p = T̃−1

pq A
−
qrSrlT̃loQ̂

m

onΨm
n . (3.33)
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While this formulation might seem too complicated, it facilitates the extension to
anisotropic and poroelastic materials later.

3.3.2. Absorbing Boundary Condition
At an absorbing boundary, waves should be allowed to leave the domain uninhibited. In
particular, no additional information should enter the domain through the boundary.
By multiplying with R−1 we decompose an arbitrary wave in its different modes.
In particular by the selection matrices χ+ and χ−, we can select the outgoing and
incoming waves respectively. This means, the term Ĝ−poQ̂

m

onΨm
n from Equation (3.27)

denotes the outgoing waves and the term Ĝ+
poQ̂

mf

on Ψmf
n denotes the incoming waves.

Knowing this, we can just omit the second term and set

F absorbing(Qm)p = Ĝ−poQ̂
m

onΨm
n . (3.34)

Thus, the flux only contains the outgoing waves and draws energy from the element
Em. As already noted by Dumbser and Käser [75], these boundary conditions are
not perfectly absorbing. The use of perfectly matched layers (PML), would be the
better choice here. But, in particular, in combination with ADER time stepping,
PML has its disadvantages, as it might render the numerical scheme unstable [113].
Recently, Duru et al. [85] have combined PML with ADER time stepping, but the
implementation of PML in SeisSol is beyond the scope of this work. To be able
to work with non-perfectly absorbing boundary conditions, users usually define an
area of interest and fix the final time of the simulation. Then, the computational
domain is artificially enlarged such that waves, which are reflected from the non-
perfectly absorbing boundary condition, do not reflect into the area of interest during
the simulation time. By using unstructured tetrahedral meshes, we can aggressively
coarsen the mesh towards the boundary, such that only a relatively small number of
elements is added. Since the time-to-solution depends on the number of elements, this
procedure has only a small impact on the overall runtime.

3.3.3. Periodic Boundaries
While not motivated by real-world observations, periodic boundary conditions play
an important role in simulation codes. As the name suggests, periodic boundaries
imply that a wave, which leaves the computational domain at one boundary, enters
the computational domain at the opposite boundary. Of course, this only makes sense
in regular geometries like cuboids, where terms such as opposite boundary are properly
defined. Suppose, we consider the domain [xl, xr] × [yl, yr] × [zl, zr]. If a structured
mesh is generated, we can identify a triangle T , which lies on one boundary of the
domain, with a triangle T̂ on the opposite boundary, such that both triangles only
differ by translation. Then the periodic boundaries are reflected in the connectivity
of the mesh. We identify the element adjacent to T̂ to be the neighbor of the element
adjacent to T . From a computational point, the periodic boundary is not different
from an internal boundary condition. We will see how periodic boundaries can be
used for the verification of our implementation in sections 4.4.1 and 5.5.1.
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3.4. Time Discretization
With fluxes and boundary conditions in place, Equation (3.15) is an ordinary differ-
ential equation, with the degrees of freedom Q̂m

ql as the solution vector. So any inte-
gration method for ODEs, such as e.g. Runge-Kutta schemes, would suffice from here
on. In this work, we will focus on the ADER time stepping method. ADER is a time
stepping scheme explicitly constructed for hyperbolic PDEs. Originally, ADER was in-
troduced as time stepping scheme in the context of finite volume methods [207]. Later,
the scheme was adapted for discontinuous Galerkin schemes [e.g. 99, 77]. Together,
both methods comprise the ADER-DG framework. The scheme has some advantages
in comparison to the more widely known Runge-Kutta methods: The Runge-Kutta
methods are restricted by the Butcher barriers [31]. This means that to construct
Runge-Kutta methods of order s ≥ 5, typically more than s stages are required. As
a consequence, the computational demand grows faster than the increase in accuracy.
On the contrary, ADER-DG schemes attain the same convergence order in time as
they do in space without the superlinear growth in computational demand. Secondly,
ADER-DG schemes are one-step methods. For Runge-Kutta schemes, the values of all
previous stages have to be known to compute the next stage. If we want to use parallel
computing, this means that stage values have to be communicated several times for
one time step update. For the ADER-DG method, values have to be communicated
only once per time step between different nodes of a parallel computer.
The goal of time stepping is to compute the solution on a grid (ti)i=0,... in time,

which does not have to be uniform. Typically, we assume t0 = 0. In this section, we will
give a short introduction to the ADER-DG method based on the Cauchy-Kovalevskaya
procedure.

3.4.1. Time Stepping Using the Cauchy-Kovalevskaya Procedure
The Cauchy-Kovalevskaya theorem is an existence and uniqueness theorem for a par-
ticular set of quasilinear partial differential equations [38, 222, 64]1. As a part of the
proof of this theorem, a Taylor series of the solution is constructed recursively. Later,
the convergence of this Taylor series is proven, which yields the existence and the
uniqueness of the solution of the PDE. Here, we are only interested in the construc-
tion of the Taylor series, which allows us to predict the element-local evolution of the
solution.

Theorem 1 (Cauchy-Kovalevskaya procedure). Consider the PDE

∂Qp

∂t
+A1

pq

∂Qq

∂x1
+A2

pq

∂Qq

∂x2
+A3

pq

∂Qq

∂x3
= 0 (3.35)

on Ω = R3. Assume that the solution Q : R3 × [0,∞] → Rd is sufficiently smooth
with respect to the time and space variables. Then, we can evaluate higher-order time

1Note that Sofya Kovalevskaya published the article using the German transcription Sophie von
Kowalevsky. In the main text, we use the English transcription Kovalevskaya.
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derivatives of Q as:

∂nQp

∂tn
= −

(
A1
pq

∂

∂x1
+A2

pq

∂

∂x2
+A3

pq

∂

∂x3

)
∂n−1Qq

∂tn−1 . (3.36)

Proof. We prove this theorem by induction. For n = 1, we find Equation (3.36) by
rearranging Equation (3.35). Suppose, we know that Equation (3.36) holds for some
number n > 1. Then we compute:

∂n+1Qp

∂tn+1 = ∂

∂t

∂nQp

∂tn

= ∂

∂t

[
−
(
A1
pq

∂

∂x1
+A2

pq

∂

∂x2
+A3

pq

∂

∂x3

)
∂n−1Qq

∂tn−1

]
= −

(
A1
pq

∂

∂x1
+A2

pq

∂

∂x2
+A3

pq

∂

∂x3

)
∂nQq

∂tn
.

(3.37)

Here, we have used the fact that the equation is linear and that we can exchange
spatial and temporal derivatives.

The Cauchy-Kovalevskaya procedure gives us an iterative scheme to compute arbi-
trary temporal derivatives of the solution Q, by taking the derivative with respect to
the spatial variables. On a given element, the solution is described using a set of basis
functions: Qm

p = Q̂m

plΨm
l . Likewise, the time derivatives are also expanded in terms

of the basis functions ∂n

∂tn Qm
p = D̂nQm

plΨm
l . The coefficients D̂nQm

pl are obtained in a
recursive manner, by an L2 projection:

D̂0Qm

pl = Q̂m

pl ,

D̂n+1Qm

pl

∫
Em

Ψm
k Ψm

l dV = −
∫
Em

Ψm
k

( 3∑
e=1

Ae
pq

∂Ψm
l

∂xe

)
dV · D̂nQm

pl .
(3.38)

All integrals over the element Em can be computed over Eref, as we have seen earlier, to
avoid element-specific quadrature. Using the definition of mass and stiffness matrices,
the last equation can be expressed as

D̂n+1Qm

pm = −
3∑
e=1

Ae
pqK

e
lkM

−1
mk · D̂nQm

pl . (3.39)

Since the spatial basis functions are polynomials up to degree N , all derivatives of
order higher than N will be zero.
Given the solution at time ti, we can evaluate the solution at time ti + δt, by using

a truncated Taylor series

Q(x, ti + δt) = Q(x, ti) +
N∑
n=1

δtn

n!
∂nQ
∂tn

(x, ti). (3.40)
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Here we have truncated the Taylor series at N , which is the maximal degree of the
spatial basis functions. The same carries on to the discrete level:

Q̂m

pl(ti + δt) =
N∑
n=0

δtn

n! D̂nQm

pl . (3.41)

Note that the sum starts at n = 0, and D̂0Q = Q̂(ti). This expansion can be seen
as a local predictor of the solution at the upcoming time, which is later corrected to
obtain the final solution at ti+1. It is straightforward to integrate in time:

Impl (ti, ti+1) :=
∫ ti+1

ti

Q̂m

pl(t)dt =
N∑
n=0

∆tn+1

(n+ 1)!D̂nQm

pl . (3.42)

Now, almost everything lies at hand and only has to be put together. We recall
Equation (3.15) and integrate the equation in time from ti to ti+1.

(
Q̂m

pl(ti+1)− Q̂m

pl(ti)
)
|Jm|Mkl +

4∑
f=1

Ĝ−pqI
m
ql |Smf |F−,fkl

+
4∑

f=1
Ĝ+
pqI

mf

ql |Smf |F+,fgh
kl −

3∑
e=1

Â
e

pqI
m
pl |Jm|Ke

kl = 0. (3.43)

Here, we have implicitly dropped the dependence of Impl on the time steps ti and ti+1.
The solution vector Q̂m

pl(ti+1) is readily available from that equation and solely depends
on the solution at time t. Only the element-local predictor IMpl and the predictors from
the four neighboring elements Imf

pl have to be known for an element update. To obtain
the first solution vector Q̂m

pl(t0), we project the initial condition onto the function
space spanned by the basis functions. Then at each time step ti, we can compute the
solution vector at the upcoming time ti+1 by Equation (3.43).

3.4.2. Local Time Stepping
We have introduced an efficient updating scheme, which allows us to compute the time-
dependent solution of linear hyperbolic PDEs in the form Equation (2.6). By design,
it is local, which makes it a good candidate for parallel computing. Nonetheless, we
still see room for improvement. The scheme is explicit in time, hence the time step
∆t = ti+1 − ti is subject to the CFL condition [47]. In our case, this condition reads
explicitly

∆t ≤ 1
2N + 1 ·

hmin

vmax
, (3.44)

where N is the maximal degree of polynomials used as basis functions, hmin is the
minimal insphere radius of tetrahedrons in the mesh and vmax is the largest wave
speed found within the domain of interest [76].
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Subduction zone events are an important type of scenario for seismologists [e.g. 217,
211, 22]. In these scenarios, a fault intersects the topography of the free surface at
a shallow angle. Since the fault has to be explicitly meshed, even good automatic
meshing tools, will introduce sliver elements with small angles and long edges. These
sliver elements reduce the global insphere diameter hmin drastically. At the same time,
users prefer to use mesh coarsening towards the boundary to reduce the number of
elements (c.f. section 3.3.2). Naturally, these elements have a much larger insphere
radius. Also, the materials in the domain are not required to be homogeneous, so
the maximal wave speed vmax varies in space. Therefore, hmin and vmax might vary
significantly across the computational domain.
Since the CFL condition only has to hold locally to ensure the stability of the

numerical scheme, a global time step, as given by Equation (3.44) is a restriction
harsher than necessary. Consequently, a local time stepping scheme, where every
element is updated at its individually required pace reduces the amount of work. The
original derivation of the local time stepping algorithm in SeisSol goes back to Dumbser
et al. [76], an efficient hardware-aware implementation was first introduced by Breuer
et al. [29]. Later the local time stepping algorithm was extended to dynamic rupture
source by Uphoff et al. [217]. Here, it is necessary to ensure the same time step
for both elements, which share a common face with a dynamic rupture source. A
large number of time step clusters reduces the computational efficiency, thus Breuer
and Heinecke [30] introduced two additional features. First, they observed that the
clusters associated with large time steps typically contain fewer elements than the
clusters associated with small time steps. Therefore, it might be beneficial to merge
the clusters with the largest time steps. In addition, a clustering with respect to the
smallest time step ∆tmin might assign a time step, which is too small for the majority
of the elements. When the clustering is based on a slightly altered time step λ ·∆tmin,
a more efficient clustering might be found. Both of these features have recently been
added to SeisSol and their impact on performance has been thoroughly investigated
by Krenz [139].
Local time stepping is not unique to the ADER-DG method. Similar methods can

be derived for finite difference simulations of seismic problems [238] or Runge-Kutta
DG methods for the Maxwell equation [105].
The main idea behind local time stepping is that for each element a maximal allow-

able time step ∆tm is calculated by Equation (3.44), but now with h and v evaluated
only on the local element. If every element was updated exactly at that individual rate,
the scheduling and synchronization would become an unfeasible complicated problem.
Hence, we use a cluster-based local time stepping scheme in a multi-rate manner [29].
First, we search for the smallest time step in the mesh: ∆tmin = minm ∆tm. Then,
the elements are clustered, such that ∃k ∈ N : rk∆tmin ≤ ∆tm ≤ rk+1∆tmin. Here
r ∈ N is a predefined rate, typically r = 2 or 3. In addition, the time steps are chosen,
such that neighboring elements’ time steps are either identical or differ by a factor
of r. If the time steps differ more the larger time step has to be reduced to meet
the requirements. Now, each element is updated with the time step ∆̂tm = rk∆tmin

instead of the optimal time step ∆tm.
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As we have seen earlier, the ADER-DG update scheme is a predictor-corrector
method, where the quantity Impl (ti, ti+1) is the integral over a cell-local predictor and
the volume and face integrals act as a corrector. We focus on one element Em and one
of its neighbors Emf . For simplicity, we assume that Em is updated with time step ∆t
and the neighboring element Emf is updated with time step 2∆t. All other configu-
rations follow analogously. The update scheme is shown in Figure 3.4. Updating one
element only requires the predicted values from the neighboring elements and the local
contribution. Equation (3.41) can be evaluated for any time step once the derivatives
D̂nQm

pl are known. The update procedure is done in four consecutive steps: First,
both elements compute the time derivatives D̂nQm

pl and D̂nQmf

pl independently. For
element Em, we evaluate the local time-integrated predictor Impl (ti, ti + ∆t) and the
neighboring time-integrated predictor Imf

pl (ti, ti + ∆t) with the same time step. Now,
everything is in place to correct element Em and compute a solution for ti+∆t. Using
that solution, we can compute the derivatives on element Em at time ti + ∆t. With
these derivatives, a predictor for element Em at time ti + 2∆t is computed. Also, the
element Emf can evaluate its predictor at time ti + 2∆t using the derivatives from
time t. At this point, both predictors up to time ti + 2∆t are in place, so we can use
the information to correct both elements and obtain a solution at time ti + 2∆t. The
elements are synchronized, and the scheme can start again. Note that the neighboring
element Emf requires the integral on Em over the time interval [ti, ti + 2∆t], so we
require the predictor values of element Em for both time steps. Since the flux term is
linear with respect to the neighboring element’s predictor, we can compute:∫ ti+2∆t

ti

ĜpqQ̂ql(t)|S|F+,fgh
kl dt = Ĝpq|S|F+,fgh

kl

∫ ti+2∆t

ti

Q̂ql(t)dt

= Ĝ+
pq|S|F+,fgh

kl

∫ ti+∆t

ti

Q̂ql(t)dt︸ ︷︷ ︸+
∫ ti+2∆t

ti+∆t
Q̂ql(t)dt︸ ︷︷ ︸

 .

(3.45)

We identify the last two terms as time-integrated predictors from time ti to ti+∆t and
from ti + ∆t to ti + 2∆t respectively. Thus, there is no need to store both predictors
independently, but it is enough to store the sum of the time-integrated predictor values.

3.5. Source Terms
In a typical earthquake scenario, the earth is initially at rest until some source excites
waves. Up to now, we have neglected source terms, i.e. wave motion is only a conse-
quence of the initial condition. A source term S(x, t) replaces the 0 on the right-hand
side of Equation (2.6). In this case, S only depends on time and space, but not on
the solution Q. The physical details of force and double-couple sources are given in
section 2.2.1. Here, we explain how these sources can be introduced in the ADER-DG
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Em Emf

ti + ∆t

ti + 2∆t

ti

(a) Both elements compute the
derivatives at time ti.

Em Emf

ti + ∆t

ti + 2∆t

ti

(b) Element Em uses the predictor
from its neighbor Emf with time
step ∆t to correct its own state
at time ti + ∆t.

Em Emf

ti + ∆t

ti + 2∆t

ti

(c) Element Em computes the
derivates at time ti + ∆t.

Em Emf

ti + ∆t

ti + 2∆t

ti

(d) With both predictors available
up to time ti +2∆t both element
can correct their state.

Figure 3.4.: LTS sequence with two elements, adapted from [29].
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context. The point forces take the form

Sp(x, t) = sp(t)δ(x− x0). (3.46)

The proper treatment of the source term would require it to be integrated into the pre-
dictor, which is cumbersome [129]. Instead, we employ an operator-splitting approach.
This means that in order to incorporate a source term, we only have to add∫ ti+1

ti

∫
Em

Ψm
l (x)Sp(x, t)dxdt = Ψm

l (x0)
∫ ti+1

ti

sp(t)dt (3.47)

to Q̂m

pl after the correction step. Typically, the time history sp(t) is given by a sequence
of samples, which can be integrated with some quadrature rule. Special care has to be
taken if the point x0 lies on the boundary of an element. Then the source term must
only be added to one of the elements, which are adjacent to x0.
With point sources, we can simulate all kinematic rupture models. Even complicated

kinematic rupture models can be well approximated with a collection of point sources.
Dynamic Rupture sources are conceptually more complex and require more compu-

tational power for the numerical solution. At the same time, they allow researchers
to simulate more realistic scenarios and gain deeper insights. The entire chapter 6 is
dedicated to the discussion of this source type and how numerical fluxes can be used
to include it in the ADER-DG discretization.

3.6. High-Performance Computing
The accuracy of an earthquake simulation depends on the mesh resolution. Here, we
have to consider the accuracy of the wave propagation part in the volume and the
proper treatment of frictional failure along faults (c.f. chapter 6). For the accurate
simulation of waves, two elements per wavelength are required when using SeisSol
with basis functions up to degree five [130]. As the wavelength scales with the inverse
of the frequency of the wave, high-frequency simulations require finer meshes. For
the frictional failure, the cohesive zone has to be resolved [185, 234]. The width of
the cohesive zone is harder to obtain than the wavelength, but it is generally smaller.
These two length scales dictate the mesh resolution. For production scenarios, meshes
meeting these requirements grow up to several hundred million elements with over 200
billion degrees of freedom [140, 217]. In order to obtain results in a reasonable time,
an efficient parallelization is required and the available compute resources have to be
used optimally. In the following, we will discuss how the computations are parallelized
in SeisSol and which techniques are used to achieve high node-level performance.

3.6.1. Parallelization Strategy
The ADER-DG scheme is local – to update one element, only information from the
directly adjacent neighbors is required. Consequently, it is easy to parallelize by mesh
decomposition. First, the computational mesh is decomposed into a set of partitions.
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Each partition is assigned to one compute unit. Depending on the hardware, a compute
unit can be for example a CPU socket or a single accelerator device. Information
only has to be exchanged across partition boundaries using one-to-one communication.
Elements at partition interfaces are replicated on the other rank.
To balance the load between the different compute nodes, each element is assigned

a workload estimator. The main driving factor is the LTS configuration, i.e. elements,
which need to be updated more often and get a higher workload estimate. The solu-
tion of friction problems at dynamic rupture interfaces requires additional work. Also,
the solution of the adjusted free-surface boundary condition for tsunami simulation
is added as additional cost. As a result, the computational cost of an element is
a combination of the baseline cost with additional customizable components for dy-
namic rupture and free-surface boundary condition [140]. With the workload estimate
in place, the dual graph of the mesh is constructed, where each node represents an
element and edges decode the mesh connectivity. Graph partitioning libraries (e.g.
ParMETIS [148], PT-Scotch [42] or ParHIP [170]) find partitions, which minimize the
edge-cut and balance the node weights, which in our case corresponds to the commu-
nication effort and the load imbalance.
Typically, not all compute nodes operate at the same nominal speed, but node

performance can differ significantly [213, 235, 166]. If all nodes are given the same
workload, this difference in compute speed seriously impacts the load imbalance be-
tween nodes. To circumvent this, at the beginning of each SeisSol invocation, the
performance of each node is evaluated. The workload is not distributed equally among
nodes, but slower nodes are given less work than faster nodes [213, 140].
On CPU clusters, there is plenty of main memory, so the size of the partitions is

irrelevant, as long as the workload is evenly distributed. When using a GPU cluster, the
picture is quite different. Since GPU memory is smaller, we need to restrict the size of
each partition to fit into the GPU memory. The condition size(partition) ≤ threshold
is another constraint for the mesh partitioner2.
After mesh partitioning, the remaining task is to compute as fast as possible on

each node. For that, we employ a hybrid MPI+X parallelization strategy. For CPU
clusters, we assign one MPI rank to each NUMA domain of the compute node and
use OpenMP parallelism for intra-node parallelization. When using accelerators, one
rank is assigned to each accelerator. The accelerators are instrumented with SYCL
and CUDA.

3.6.2. Node-Level Performance
In this section, we will consider performance optimization techniques used in SeisSol
for CPU machines. Typically, each MPI rank is assigned to an entire NUMA domain
within the node. This implies that every MPI rank combines several physical CPU
cores. Within the node, we employ OpenMP [51] to parallelize the compute kernels
among the different processor cores. OpenMP allows programmers to instrument their
code for parallel execution. It is targeted to scientific workflows and thus mostly

2Private communication with R. Dorozhinksii, to be published in his disseration
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revolves around the parallel execution of for loops.
The numerical method is structured in a predictor and a corrector phase. Both

of these phases require loops over all rank-local elements with no data dependencies
between the different loop instances. We use #pragma omp parallel for to paral-
lelize these loops. For NUMA-aware computations, we use the first-touch principle.
It ensures that the data resides in memory as close as possible to the compute core.
With static scheduling of the OpenMP loops, one core will always handle the same
elements.
All but one core are reserved for computation, the remaining core is used for com-

munication and asynchronous I/O. The communication thread is implemented us-
ing PThreads and orchestrates asynchronous MPI communication between different
ranks [29]. The same core can be used for asynchronous I/O [188]. Compute and
communication or I/O threads have to be carefully pinned to physical cores. First,
compute threads are pinned to all but one core. Then, the last remaining core within
the same NUMA domain is searched for. The communication and I/O threads are
pinned to this core [140].
Despite OpenMP parallelism, it is crucial to optimize the compute kernels, which run

on the worker cores. The numerical scheme is mostly expressed through matrix-matrix
multiplications or, more generally speaking, tensor contractions, such as e.g. Equa-
tions (3.39) and (3.43). For these operations, we use the code generator YATeTo [215].
The code generator allows expressing the compute kernel in a domain-specific language
(DSL) embedded in Python, which is close to the mathematical formula:

Listing 3.1: Example of a compute kernel expressed in the YATeTo DSL. This kernel
reflects the volume integration Equation (3.39).

derivative_sum = Add ()
for e in range (3):

derivative_sum -= kDivMT [e][’ml’] * derivatives [n][’pl’] *
flux_matrix [e][’pq’]

ck_kernel = ( derivatives [n+1][ ’pm’] <= derivative_sum )

Here, flux_matrix[e] stores Ae and kDivMT[e][’ml’] stores the matrix M−1
mkK

e
lk,

which can be precomputed. The matrix derivatives stores time derivatives of the
solution. The DSL resembles the Einstein sum convention, where summation over
repeated indices is implicitly assumed.
YATeTo builds an abstract syntax tree (AST) based on the mathematical operation.

Several optimizations are done to reduce the computational demand.

Equivalent Sparsity pattern Matrices in SeisSol contain larges blocks of zeros (e.g.
the stiffness matrices). Thus, not all intermediate results are always required,
since they would be multiplied with zero later on. If these intermediate results
are not computed in the first place, a lot of unnecessary floating-point opera-
tions can be omitted. An equivalent sparsity pattern replaces all sections, that
do not contribute to the final result with zeros, and omits the non-necessary
computations.
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Strength reduction Tensor contractions are associative, so they can be computed in
arbitrary order. There exist better and worse orders. The idea is best understood
with a simple example. Consider two matrices A,B ∈ RN×N and a vector v ∈
RN . The task is to compute wi = AijBjkvk. One could either first multiply the
two matrices A and B and then multiply v with the result or one could multiply
v with B first and then multiply the result with A. In the first case, we have
to compute a matrix-matrix multiplication and a matrix-vector multiplication,
which is of complexity O(N3). In the second case, we have to compute two
matrix-vector multiplications each of complexity O(N2). The second variant is
superior. The idea can be extended to tensors of arbitrary shapes. While the
problem of finding the perfect order of execution is NP-hard. If the number of
operands is small enough, an exhaustive search is possible.

Loop over GEMM General matrix multiplication (GEMM) is a mathematical opera-
tion in the form C = αAB+βC with matrices C ∈ Rm×n, A ∈ Rm×k, B ∈ Rk×n
and scalars α, β ∈ R. GEMMs are a part of the BLAS level three operations
and several efficient implementations exist [e.g. 112, 102, 225]. Therefore, it is
desirable to map the more general tensor contractions to the subsequent exe-
cution of GEMMs. YATeTo extracts sub-tensors from the principal tensors to
generate a sequence of GEMMs on tensor slices. In addition, sparsity patterns
of the tensors are considered to decide whether a sparse (e.g. Compressed Sparse
Column, CSC) or a dense implementation of the GEMM is optimal.

Prefetching Under certain circumstances, it is beneficial to prefetch data from the
main memory to the caches to access it faster later on. YATeTo assesses whether
prefetching is possible and adds the required instructions, if necessary.

After the optimizations, the tensor operation has been boiled down to a sequence
of GEMMs. Now, YATeTo uses architecture-specific backends, in order to generate
optimized codes for GEMMs. This way, it is relatively easy to adapt SeisSol to a
new compute architecture. One only needs a library, which implements GEMMs. By
adding this library as backend to YATeTo, the new architecture is supported. Since
GEMMs are a part of the BLAS instructions, all vendors distribute optimized libraries.
For x86 architectures, we use libsxmm [112], which can generate dense and sparse
GEMM kernels and is particularly optimized for small matrix sizes. It also supports
ARM instructions with the NEON vectorization extension [111]. For sparse GEMMs,
PSpaMM [28] generates optimized code targeted to x86 architectures with the AVX-
512 vector extension. As a fallback with non-optimal, but good support for almost all
existing architectures, we use the general-purpose linear algebra library eigen3 [106].
By using a backend for GPUs, SeisSol can be used on heterogeneous clusters. We

use the special tools GEMMForge3 and ChainForge4 as GPU backends [69, 70]. Since
this thesis shall not go into the detail of GPU computing, we refer the reader to the
published work [69, 70] and the parallel dissertation of R. Dorozhinksii.

3https://github.com/seissol/gemmforge, accessed October 2, 2023
4https://github.com/seissol/chainforge, accessed October 2, 2023

38

https://github.com/seissol/gemmforge
https://github.com/seissol/chainforge


4. Anisotropic Materials
In section 2.1, we have already seen the linear elastic wave equation in its most general
form. Later, we restricted ourselves to the isotropic case, where wave speeds are
independent of the direction in which the wave propagates. In this chapter, we will
come back to the most general case, where the Hooke tensor Cijkl is allowed to have
21 independent entries. First, we will give a short motivation, why it is relevant to
study waves in anisotropic materials. Then, we will dive into theory, about how seismic
waves behave in anisotropic materials. We will further derive, how the existing scheme
from chapter 3 needs to be adapted to accurately simulate earthquakes in anisotropic
media. The remainder of this chapter is devoted to extensive verification.
This chapter is an enhanced version of the article “Optimization and Local Time

Stepping of an ADER-DG Scheme for Fully Anisotropic Wave Propagation in Complex
Geometries” by S. Wolf, A.-A. Gabriel, and M. Bader [232].

4.1. Motivation and Related Work
Anisotropic materials occur everywhere on Earth. One of the most prominent examples
– crystals – are inherently anisotropic due to their internal grid structure. In crystals,
atoms are aligned along regular grids. These grids can have various configurations,
each one with a specific type of anisotropic macroscopic behavior. It is possible to
derive the elastic constants from the grid structure computationally [e.g. 56, 45, 184].
While large and aligned crystals are rarely found on Earth, there are many other

sources of anisotropy relevant to seismologists. Often, rocks are vertically cracked [e.g.
206, 149] or sediments are composed of horizontally layered materials [13]. While
the layered material may be complicated at a small scale, it can be described as
a homogeneous anisotropic material by homogenization techniques [171]. In polar
regions, the anisotropic ice layer on top of the earth affects seismic waves [68]. Also
on Mars, an anisotropic crust is observed, see [e.g. 16]. In particular, the overview of
the possible origins of seismic anisotropy on Earth in that article is recommended.
For several regions, subsurface material models include anisotropy. The Prelimi-

nary Reference Earth Model (PREM) by Dziewonski and Anderson [86] is a radial
velocity model for the whole earth, including core, mantle and crust. In the upper-
most layer of the mantle, it includes anisotropic effects. While the PREM and many
subsequently published material models try to give an estimate for the entire earth,
various regional studies focus on anisotropy effects. The Alps are densely covered by
a net of seismic instruments [116], which enables the study of P wave [117] and S
wave [109] anisotropy under the Alps. Also, on the very local scale, inversion results
for anisotropic parameters are available, e.g. from Sweden [132].
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Anisotropic materials can be characterized by their symmetry properties [26]: The
most general form of an anisotropic medium is a triclinic medium. In such a medium all
21 entries of C are independent of each other. A monoclinic material is symmetric with
respect to one symmetry plane. Such a material can be described by 13 independent
elasticity parameters. If the material is symmetric to a second axis, we classify it
as orthorhombic, which can then be described by 9 independent parameters. Instead
of symmetry with respect to a symmetry plane, we can also consider symmetry with
respect to rotations. If the material is rotationally invariant for rotations around one
specific axis, we classify it as transversally isotropic. It can then be represented by
five independent parameters. The most restricted material is an isotropic material.
Here, the material is symmetric with respect to all axes and planes. The material
behavior has no directional dependence at all. Such a material can be described by
two independent parameters, e.g. any two combinations of the two Lamé parameters,
Young’s modulus, Poisson number or the bulk modulus. If we characterize the different
classes of anisotropy as sets, we have the following relation:

Isotropic ⊆ Transversally Isotropic ⊆ Orthorombic ⊆ Monoclinic ⊆ Triclinic.

As we have seen, anisotropy is a relevant feature of subsurface rocks. This im-
portance fosters the need for reliable simulation tools, which incorporate anisotropic
effects. The scheme by Igel et al. [121] includes anisotropic effects in a Finite Difference
discretization. Here, the authors decided to use a staggered grid, where different parts
of the solution vector are stored at different grid points. Special interpolation and
differential operators are defined, in particular, targeted towards a triclinic material.
The study focuses on error analysis. Irregular or curved grids pose a natural challenge
to Finite Difference methods. The work of Zhang et al. [239] overcomes this problem,
by reformulating the elastic wave equation in spherical coordinates. This ansatz is
particularly useful for global seismology, where the focus lies on the entire earth. To
circumvent the interpolation, which is needed for staggered grids, this scheme uses col-
located grids, where all quantities are stored at all grid points. The authors verify their
scheme using the isotropic and the anisotropic version of the PREM. Sun et al. [199]
use the first-order formulation of the seismic wave equation (c.f. Equation (2.6)) and
a coordinate transformation to be able to simulate seismic waves in arbitrary geome-
tries. Just as the scheme mentioned earlier, they use a collocated grid. The authors
demonstrate that their scheme is capable of simulating waves through heterogeneous
media with realistic free-surface topography.
Another relevant family of numerical methods is the spectral element method. Early

work in that regard has been done by Carcione et al. [37]. First, a spectral method
is used to approximate the spatial derivatives of the PDE. Then, the authors use the
rapid expansion method to approximate the solution directly at the final time. Unlike
in other methods, no solution at intermediate time steps is available, but only the final
state. The accuracy is not controlled by the time step width, but rather by the number
of summands, which is used to approximate an infinite sum. The study includes several
three-dimensional benchmarks, with a pseudo-analytical solution, which we will also
partly use in section 4.4. The work by Komatitsch et al. [136] is more connected to
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classical finite elements. Here, the solution is expanded in terms of high-order basis
functions on a rectangular grid to obtain a second-order ODE. This ODE is then
integrated in time with a Newmark scheme. The authors develop a 2D and a 3D
version of their scheme, suited for triclinic materials. The study concludes with a
variety of benchmark cases.
The Discontinuous Galerkin (DG) method is a widely used numerical scheme par-

ticularly suited for wave-like problems. Of course, the DG method has been used to
simulate seismic waves through anisotropic media. De la Puente et al. [60] have applied
the ADER-DG method on unstructured tetrahedral meshes to simulate waves through
anisotropic media. The scheme is geometrically flexible and has desirable high-order
convergence properties. Since we will further extend this work in the following, we
do not give more details about this scheme yet. Numerical fluxes and the solution of
Riemann problems are important building blocks of DG schemes, as we have seen in
section 3.1. Tie et al. [204] investigate different options to construct accurate numeri-
cal fluxes for anisotropic elastic media. The main focus of the work is to compare the
different numerical fluxes on small 2D scenarios.

4.2. Physical Details
If we consider anisotropic materials, properties change with direction. So, in particular,
changes of coordinate systems have to be considered in detail. Let us consider two
orthogonal coordinate systems x and x̂. Bos et al. [26] give a detailed explanation of
how the different quantities transform. The change of coordinates can be expressed
by an orthogonal matrix Q ∈ R3×3, such that x̂ = Qx. Then the displacements
and particle velocities in the new coordinate system can be expressed as û = Qu
and v̂ = Qv respectively. The stress and strain are second-order tensors, so they
are transformed as σ̂ = QσQT and ε̂ = QεQT respectively. For the Hooke tensor
Cijkl, things become more complicated, since this tensor encodes a mapping from the
second-order tensor ε to the second-order tensor σ. If we write down the Hooke matrix
H though, we can compute the matrix Ĥ = NHN T , with the Bond matrix defined as

N =


n2

1 n2
2 n2

3 2n2n3 2n1n3 2n1n2
s2

1 s2
2 s2

3 2s2s3 2s1s3 2s1s2
t21 t22 t23 2t2t3 2t1t3 2t1t2
s1t1 s2t2 s3t3 s2t3 + s3t2 s1t3 + s3t1 s1t2 + s2t1
n1t1 n2t2 n3t3 n2t3 + n3t2 n1t3 + n3t1 n1t2 + n2t1
n1s1 n2s2 n3s3 n2s3 + n3s2 n1s3 + n3s1 n1s2 + n2s1

 , (4.1)

where the rotated coordinate system is defined by the vectors n, s and t [60].
We have already mentioned quite often that the wave speeds depend on the direction,

in which the wave propagates. So, it is about time to analyze this in more detail. The
software christoffel [124] is built to evaluate direction-dependent wave speeds. Consider
the direction of the wave k and define the Christoffel matrix Mij(k) = klClijmkm.
Then the eigenvalues of this matrix are the wave speeds and the eigenvectors denote
the polarization of the wave. In an isotropic medium, we will observe a P wave and an
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S wave. The two eigenvalues of the S wave coincide. The associated modes travel with
the same speed, but the modes describe different polarization. In a truly anisotropic
medium, we do not observe pure P and S waves anymore, but quasi-P and quasi-S
waves. This means that the polarization vector is almost parallel (for P waves) or
almost orthogonal (for S waves) to k. In the anisotropic case, the eigenvalues for
the quasi-S waves can be distinct, which means that waves travel at different speeds
depending on their polarization.
As we have just discussed, in an anisotropic medium shear waves have two distinct

S wave velocities. This leads to an effect called shear wave splitting [5]. Consider a
shear wave traveling in direction k. From the matrix M(k), we can compute the quasi
S wave velocities v1

s and v2
s , with polarization vectors p1, p2. At a given point x0, we

observe the displacement caused by the S wave as

u(x0, t) = f(t) ·
(
αp1 + βp2) , (4.2)

where α, β describe the polarization of the wave and f(t) encodes the time history of
the wave. If we observe the wave at another point x1 = x0 + ∆x · k, the parts of the
wave polarized in the p1 direction have traveled with a different speed than the parts
polarized in the p2 direction:

u(x1, t) = αf

(
t− ∆x

v1
s

)
p1 + βf

(
t− ∆x

v2
s

)
p2. (4.3)

In consequence, we observe the subsequent arrival of two waves. Shear wave split-
ting can be used to infer information about the subsurface on the local [48] to the
global [158] scale.

4.3. Numerical Solution and High-Performance
Computing Aspects

In this chapter, we describe the adaptations, which are necessary to extend the ADER-
DG scheme presented in chapter 3 to include anisotropic materials. In general, we
follow the work of de la Puente et al. [60] and highlight the aspects, where we deviate
from that. The ADER-DG scheme for the isotropic wave equation can be used for the
anisotropic wave equation as well. Figure 4.1 shows the sparsity pattern of the flux
matrices in the anisotropic case. We see slightly more non-zero entries in comparison
to Figure 2.1. The volume integration and Cauchy-Kovalevskaya procedure work the
same way as in the elastic case. In the anisotropic case, we have to give more attention
to the flux computation though.
As we have seen in section 3.2, the flux computation is done in a coordinate system

aligned with the element’s face. This requires a rotation of the quantities Q to that
coordinate system (c.f. Equation (3.18)). In the anisotropic case, the wave speeds are
direction dependent, thus not only Q has to be rotated to the face-aligned coordinate
system, but also the flux matrices A. Thus, when solving the Riemann problem, we do
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sparsity pattern of A+B + C

Figure 4.1.: Sparsity pattern of the flux matrices for the linear wave equation in the
anisotropic case.

not only have to rotate the initial conditions, but we also have to consider the matrices
Â, which contain the transformed elastic moduli from Ĥ.

To solve the Riemann problem, the eigenvalue decomposition of the flux matrices
Â has to be available. In the isotropic case, analytical expressions exist to express the
eigenvalues and eigenvectors [e.g. 213]. When considering the anisotropic case, these
analytical expressions do not hold anymore and equivalent formulae are hard to obtain.
Thus, we use a numerical eigenvalue solver to compute this decomposition. Once the
eigenvalues and eigenvectors are known, we can proceed with Equation (3.27). While
the original scheme only contained a one-sided flux [60], the scheme derived here uses
a two-sided flux, which is generally more accurate. In addition, two-sided fluxes allow
for the easier integration of coupling between different rheologies [229, 140].
It is also crucial to carefully take care of the free surface boundary condition in the

anisotropic case. The idea behind the free surface boundary condition is to compute
velocities at the interface, which are consistent with the condition σ11 = σ12 = σ13 =
0. In section 3.3.1, we have established a way to compute the velocity at the interface
using the matrices RT and RV (c.f. Equations (3.29) and (3.31)). In the isotropic
case, these matrices were diagonal. Now in the anisotropic case, we realize that the
matrices are not diagonal anymore but fully populated. The scheme itself still works
in the same way.
The time stepping just works as in the isotropic case, because the Cauchy-Kovalevskaya

procedure is applicable for any PDE in the form of Equation (2.6). To include local
time stepping one needs to know the element-local wave speeds. In an anisotropic
medium, the wave speeds of a wave traveling in a certain direction k can be com-
puted using the Christoffel matrix M(k). In SeisSol, we establish an estimate for
the element-local wave speed by sampling in 200 different directions and taking the
maximum. In SeisSol, the user can add a safety margin to the CFL condition, i.e.
require that ∆t ≤ C 1

2N+1 · hmin
vmax

. Thus, if the user slightly reduces the factor C, this
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circumvents stability problems, which arise if the sampled wave speed estimate is not
good enough.
The anisotropic scheme is a natural extension of the isotropic scheme, so the question

is how the computation cost increases when considering an anisotropic material instead
of an isotropic one. First, the number of material parameters rises from 3 to 22, so the
storage requirements increase. But this increase is almost negligible, if one takes into
account that there are 504 degrees of freedom per element when using polynomials up
to degree 5 as basis functions. In terms of floating-point operations, the requirements
theoretically grow, since the number of non-zero entries in the flux matrices grows
(compare Figures 2.1 and 4.1). The number of floating-point operations increases by
less than a percent, when using polynomials up to degree 5.
The code generator YATeTo takes block sparsity patterns into account but does

not necessarily make use of the exact sparsity structure of the matrix. Block-wise
operations are easier to vectorize, but at the cost that non-necessary operations are
carried out. So a balance between the number of floating-point operations and the
possibility for an efficient implementation (e.g. with SIMD instructions) has to be
found. This leads to the fact that some multiplications with a zero are computed,
although the result is known ahead. The number of floating-point operations carried
out by the processor is always larger than the number of floating-point operations that
were required if the sparsity pattern was exploited perfectly. The ratio between the
floating-point operations on the hardware and the non-zero floating-point operations
is an indicator of the efficiency of the scheme.
When changing from an isotropic to an anisotropic material, we introduce more

densely populated matrices. Since the flux matrix is rather small, we observe that the
block sparsity pattern considered by YATeTo does not change. In the anisotropic as
well as in the isotropic case, the number of floating-point operations carried out by
the hardware is the same. The efficiency, i.e. the ratio between hardware FLOP and
non-zero FLOP, improves. In consequence, the introduction of anisotropy does not
add additional computational costs.

4.4. Verification and Application Examples
After the successful extension of the numerical scheme to anisotropic materials, we re-
quire a thorough investigation of the correctness. First, we use a planar wave scenario
to assess the convergence order of the scheme. Then, we compare the numerical results
to an analytical reference solution. We additionally consider the AHSP community
benchmark test, which targets anisotropic materials. Two application examples con-
clude this section. We consider the mountain range around the Zugspitze to showcase
the interplay of anisotropic materials and realistic topography. Furthermore, we study
the differences between the anisotropic and the isotropic PREM model.
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4.4.1. Convergence Test
As we have seen in section 2.1.2, simple analytical plane wave solutions to equations
of the form Equation (2.6) can be derived. In the case of anisotropic materials, we
find nine different solutions, one for each eigenpair of the matrix Ã. We observe that
the matrix Ã has three positive eigenvalues and three negative eigenvalues. Further-
more, it has three zero eigenvalues. The non-zero eigenvalues coincide with the three
propagating wave modes in an anisotropic medium (P wave, slow and fast S wave).
For the convergence test, we use a computational domain with size 1 m × 1 m ×

1 m. On all six faces, we impose periodic boundary conditions, and consequently, we
model a homogeneous full-space with a periodic solution. We generate meshes with
characteristic edge lengths of 0.500 m, 0.250 m, 0.125 m, 0.0625 m and 0.313 m. In
anisotropic materials, the wave speeds depend on the direction of wave propagation. To
also check this behavior, we superimpose three planar waves traveling into the direction
of the three coordinate axes k1 =

(
π 0 0

)T , k2 =
(
0 π 0

)T and k3 =
(
0 0 π

)T .
For each direction ki, we impose a P wave traveling into the direction of ki and a fast S
wave traveling in the opposite direction. As the initial condition, we set the analytical
solution at time t = 0, then we let the simulation run until t = 0.100 s. The L2 error
between numerical and analytical solution is considered as a quality indicator.
We use the following material parameters:

ρ = 1 kg/m3,H =


192.0 66.0 60.0 0.0 0.0 0.0
66.0 160.0 56.0 0.0 0.0 0.0
60.0 56.0 272.0 0.0 0.0 0.0
0.0 0.0 0.0 60.0 0.0 0.0
0.0 0.0 0.0 0.0 62.0 0.0
0.0 0.0 0.0 0.0 0.0 49.6

Pa (4.4)

The results of the convergence analysis for the particle velocities can be seen in
Figures 4.2 and 4.3 for double precision and single precision respectively. When using
polynomials up to degree N , we expect convergence of order N + 1. The colored lines
show the resulting errors when using polynomials up to degree N . The dashed lines
show the expected error decay of order error ∼ hN+1. In the plot for double precision,
we see that all SeisSol versions achieve the expected convergence order. For O7, we see
that the solution is as accurate as the machine precision on the finest mesh, such that
the error does not shrink any further. For single precision, we still see the expected
convergence behavior for O3 up to O5, but already for these convergence orders, the
convergence speed deteriorates. When we consider O6 and O7, we see no improvement
in the error, if we go to finer meshes, since already on the coarsest mesh, the error is
in the range of the machine precision. The detailed convergence analysis can be found
in appendix C.1. There, all errors for all quantities are tabulated. We conclude that
SeisSol solves plane wave problems in anisotropic media with the expected high-order
convergence rates.
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Figure 4.2.: Convergence result for the L2 norm of the particle velocities in double
precision.
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Figure 4.3.: Convergence result for the L2 norm of the particle velocities in single
precision.
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4.4.2. Point source in transversally isotropic media
In general, plane-wave problems are not relevant in computational seismology. The
more interesting case consists of a source buried in the material, which excites waves in
a previously undisturbed medium. Carcione et al. [37] give the analytical solution for
such a use case. In transversally isotropic materials, we observe that wave speeds are
symmetric with respect to one axis of symmetry, see e.g. Figure 4.4. We can evaluate
the wave field analytically along the axis of symmetry if it was excited by a force acting
either in the same direction as the axis of symmetry or perpendicular to the axis of
symmetry.
The geometry is described by a cuboidal mesh of the domain [−5000, 5000]3 with

9 850 000 cells. We use SeisSol with polynomials up to degree 5. The minimal wave
length in the model is 100 m, so according to Käser et al. [130], we set the characteristic
edge length to 50 m to achieve an accurate result. The mesh is centered at the origin,
where we also place the source. The source time function is a Ricker wavelet with base
frequency f0 = 16 Hz and time delay t0 = 0.0700 s:

s(t) =
(
1− 2(πf0(t− t0))2) · exp

(
−(πf0(t− t0))2) . (4.5)

The material has a density of ρ = 2590 kg/m3 and the anisotropic Hooke tensor reads

H =


66.60 19.70 39.40 0.00 0.00 0.00
19.70 66.60 39.40 0.00 0.00 0.00
39.40 39.40 39.90 0.00 0.00 0.00
0.00 0.00 0.00 10.90 0.00 0.00
0.00 0.00 0.00 0.00 10.90 0.00
0.00 0.00 0.00 0.00 0.00 23.45

GPa. (4.6)

The axis of symmetry is the x3 axis. We record the waves at
(
0 0 −728.9 0

)T . The
force acts in the x2 direction for the horizontal configuration and in the x3 direction
for the vertical direction. As suggested by de la Puente et al. [60] and Komatitsch
et al. [136], we rotate the whole setup by 30° around the x1-axis to generate a second
slightly more complicated scenario. The direction of the horizontal and vertical forces
and the receiver position are also rotated by 30°. Now the Hooke tensor contains more
non-zero entries:

Hr =


66.60 34.48 24.63 8.53 0.00 0.00
34.48 49.56 36.42 −7.50 0.00 0.00
24.63 36.42 62.91 −4.06 0.00 0.00
8.53 −7.50 −4.06 7.92 0.00 0.00
0.00 0.00 0.00 0.00 20.31 −5.43
0.00 0.00 0.00 0.00 −5.43 14.04

GPa. (4.7)

Figure 4.4 shows the wave speeds depending on the direction. We can clearly dis-
tinguish the axis of symmetry from these plots. In total, we consider four different
scenarios {Axis-aligned,Rotated} × {vertical, horizontal}.
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(a) Axis-aligned material (H)

(b) Rotated material (Hr)

Figure 4.4.: Phase velocities for all three wave modes of the materials used for the
comparison against an analytical solution.

We consider envelope and phase misfits of solution and reference to assess the qual-
ity of the simulated result [143, 144]. We observe very good agreement between the
reference solution and the numerical simulations. The misfit values for all four scenar-
ios are reported in Table 4.1. We see that all values are below or slightly above 3 %.
In Figure 4.5, we see a detailed comparison between the reference solution and the
simulation result for the rotated vertical setup. We observe that the most prominent
wave arrives between 0.400 s and 0.500 s. Also, the largest misfits are localized in that
time frame. This benchmark scenario shows that the treatment of point sources in
anisotropic media is correctly done.

4.4.3. Anisotropic Homogeneous Full-Space
The AHSP (Anisotropic Homogeneous full-SPace) scenario is a benchmark scenario
published by SISMOWINE [173]. The purpose is to test how seismic wave propaga-
tion is changed by incorporating anisotropic materials. The scenario contains a more
realistic double-couple source, which models slip on an infinitesimally small fault (c.f.
section 2.2.1). The source is located at the origin. The source time function is given
by

s(t) = t

t20
· exp

(
− t

t0

)
, (4.8)

with t0 = 0.100 s. The moment tensor contains only one non-zero entry M12, while
all other entries are zero. We consider a material with density ρ = 2700 kg/m3 and
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Table 4.1.: Envelope and phase misfits for the test case using the transversally isotropic
medium. For the axis-aligned test case, vi are in the velocities in xi direc-
tion respectively. In the rotated case, v1 is the particle velocity in the x1
direction, v2 points in the direction of the axis of symmetry and v3 is the
particle velocity perpendicular to both other velocities.

Orientation Direction EM v1 PM v1 EM v2 PM v2 EM v3 PM v3

Axis-aligned vertical 1.10 0.00 1.11 0.00 0.13 0.21
Rotated vertical 1.37 0.00 3.03 0.00 1.79 0.26
Axis-aligned horizontal 2.83 0.00 1.13 0.16 0.70 0.00
Rotated horizontal 0.60 0.00 1.13 0.20 0.21 0.00
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Figure 4.5.: Detailed misfit plot for v3 of the rotated vertical setup.
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receiver x1 x2 x3

1 0 693 0
2 0 5540 0
3 0 10 400 0
4 490 490 0
5 3920 3920 0
6 7350 7350 0

receiver x1 x2 x3

7 400 400 400
8 3200 3200 3200
9 6000 6000 6000
10 555 370 185
11 4440 2960 1480
12 8330 5550 2780

Table 4.2.: Receiver positions for the AHSP test case.

Hooke tensor

H =


97.2 10.0 30.0 0.0 0.0 0.0
10.0 97.2 30.0 0.0 0.0 0.0
30.0 30.0 70.0 0.0 0.0 0.0
0.0 0.0 0.0 32.4 0.0 0.0
0.0 0.0 0.0 0.0 32.4 0.0
0.0 0.0 0.0 0.0 0.0 43.6

GPa. (4.9)

The material has a similar axis-aligned velocity structure as the material from the
previous benchmark depicted in Figure 4.4a. We observe that the shortest wavelength
is around 620 m, so we set the characteristic edge length in the mesh to 310 m. We
record the wave field at 12 different receivers up to 5 s. The positions of the receivers
can be found in Table 4.2.
For this scenario no analytical solution exists, so we have to rely on code comparison.

The idea is that a lot of participants simulate the same scenario independently. If the
solutions coincide, a joint view of the underlying truth can be found. Unfortunately,
only one reference solution has been uploaded so far. In Figure 4.6, we show the
reference solution and our simulation results at receiver 6. At first sight, the results
do not look promising, as we see a major difference after 3 s. By computing the wave
speeds for waves traveling from the origin to the receiver, we can deduce theoretical
arrival times for the different wave modes, because the material is homogeneous. In
Figure 4.6, three distinct wave peaks are clearly visible in the SeisSol solution. The
first and second arrivals coincide with the reference solution. The last wave after
roughly 3 s is only present in the SeisSol solutions, but not in the reference. All three
peaks of the SeisSol solution, in particular the third one, arrive at the analytically
deducted times. As shear wave splitting is a well-known phenomenon in anisotropic
media [e.g. 5, Box 5.9] we suspect that the reference solution is not perfect. After
contacting the maintainers of the benchmark suite, the SeisSol solution presented here
has been accepted as the new reference.

4.4.4. Zugspitze Example
Finally, we want to highlight what a realistic scenario with an anisotropic material
looks like. We focus on a 90 km× 90 km region around the Zugspitze mountain at the
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Figure 4.6.: Comparison between the reference and the SeisSol solution for the AHSP
scenario at Receiver 6. Grey lines show the expected arrival times of the
P wave, the fast S wave and the slow S wave respectively.

German-Austrian border. This region has been used for verifying different earthquake
simulation tools recently [e.g. 84].
We use the elevation data from the Copernicus Land Monitoring service for the to-

pography of the free surface [90]. The elevation data originally has a spatial resolution
of 25 m. We interpolate this data onto a grid with 200 m resolution and intersect this
grid with a cube of 90 km edge length to generate the computational domain. We use
the commercial mesh generation tools by Simmetrix1 to generate a tetrahedral mesh
of the domain with a characteristic edge length of 500 m at the free surface. The mesh
size is gradually coarsened to 2000 m around the source and 5000 m at the bottom of
the cube. As a material, we choose forsterite, a mineral with orthorhombic symmetry.
We use the material parameters as reported by Jacobsen et al. [123]. Additionally, we
rotate the axes of symmetry, to obtain a Hooke tensor without zero entries:

H =


231.7 84.6 74.0 −2.3 −3.3 −24.0
84.6 268.1 71.3 −1.6 −1.9 −34.7
74.0 71.3 221.2 −6.1 −8.2 4.4
−2.3 −1.6 −6.1 77.8 −4.6 −1.5
−3.3 −1.9 −8.2 −4.6 74.9 −1.9
−24.0 −34.7 4.4 −1.5 −1.9 98.3

GPa. (4.10)

The density is ρ = 3230 kg/m3. The velocity structure of the material can be found
1https://simmetrix.com/
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Figure 4.7.: Phase velocities for all three wave modes of the materials used for the
Zugspitze test case.

in Figure 4.7. Here, we see a more complicated structure as in the previous examples.
Particularly, the S wave speeds show symmetry structure with more variation. For
a comparison, we use an isotropic material with the same density and the averaged
isotropic wave velocities vs = 5070 m/s and vp = 8660 m/s. As a source, we use the
same source as for the AHSP example, but this time located at 47.4° north and 11.0°
east at a depth of 10 000 m. We record the wave field up to 5 s. In Figure 4.8, we
can see the vertical velocity at the free surface after 2 s and 4 s respectively. These
times are shortly after the arrival of the P wave and the S wave respectively at the
free surface. After 2 s, the P wave arrives at the free surface. The anisotropic wave
is slightly more stretched in the direction from southwest to northeast, while the
isotropic P wave is almost perfectly circular. The S wave arrival after 4 s is certainly
more interesting. In the anisotropic case, we see very strong vertical motion at the
northernmost, easternmost, southernmost and westernmost tips of the wave. Such
large amplitudes are not found in the isotropic case. While the isotropic case shows
a mostly circular shape, the anisotropic case, is more complicated. We observe two
distinct features. First, we note an elliptic shape with the major axis in the SW-NE
direction in blue (i.e. negative velocity). In red and yellow (i.e. positive velocities), we
observe two bow-like shapes. One bow spans the lower left quadrant from the south to
the west. The other one spans the upper right quadrant, from the north to the east.
The elliptic shape and the bows are two differently polarized S waves traveling at
different speeds. In the isotropic case, we always observe circular shapes. In addition,
we observe scattering effects, when the wave hits mountain ridges or valleys.

4.4.5. Anisotropic Preliminary Reference Earth Model
In the previous examples, the anisotropy effect was very pronounced. The P wave
velocity deviated up to 10 % from the isotropic mean. While these examples were very
interesting in verifying the correctness of the SeisSol implementation and highlighting
possible effects, in realistic earthquake scenarios, anisotropy effects are weaker.
The Preliminary Reference Earth Model (PREM) [86] is a one-dimensional velocity

model for the whole earth. It starts with the ocean in the uppermost 3 km and then
features elastic crust and mantle, the fluid outer core and as the innermost layer the
solid inner core. The PREM is often used as initial model for more detailed seismic
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(a) Anisotropic - 2.00 s (b) Anisotropic - 4.00 s

(c) Isotropic - 2.00 s (d) Isotropic - 4.00 s

Figure 4.8.: Comparison of the vertical velocity field at the free surface. The top row
shows the wave in anisotropic material, and the lower row shows the same
scenario in the isotropic material. The left column shows the wave field
after 2 s, the P wave is dominant. In the right column, after 4 s, the S
wave dominates.
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tomography [91] or travel-time source inversion [147]. It can also be used to compute
teleseismic synthetic seismograms from regional scale dynamic rupture models [212,
210]. One key aspect is the anisotropy in the uppermost 220 km. The model assumes
transversally anisotropic materials with a vertical symmetry axis. The model describes
the anisotropy by five parameters: The vertical and horizontal P wave velocities vpv
and vph, as well as the vertical and horizontal S wave velocities vsv and vsh. The fifth
parameter η is a dimensionless parameter, which quantifies how much the velocities
deviate with the incidence angle [133]. In addition, the material density is given. From
the four velocities, the parameter η and the density, we can compute the five elastic
parameters defined by Love [160].

A = ρv2
ph,

C = ρv2
pv,

N = ρv2
sh,

L = ρv2
sv,

F = η(A− 2L).

(4.11)

These values transfer directly to the Hooke matrix [133]:

H =


A A− 2N F

A− 2N A F
F F C

L
L

N

 . (4.12)

In addition to the anisotropic parameters, the model also contains an isotropic ap-
proximation. In the following section, we want to analyze, how the more realistic
anisotropic parameters influence the wave field and ground motion.
The model consists of several layers. For this study only the four uppermost layers

are important. We omit the acoustic ocean, as we want to focus on the effects of
anisotropy on the elastic wave field. The crust is divided into two homogeneous parts,
the first one from 3 km down to 15 km depth and the second one from 15 km down to
25 km. In the outer mantle down to a depth of 220 km the model is linearly depth-
dependent.
For our test scenario, we consider a cuboid with size 300 km× 300 km× 217 km. We

explicitly mesh the material boundaries at 15 km and 25 km depth. The mesh size is
set to 500 m within an area of size 100 km × 100 km × 97 km and coarsened towards
the boundaries. No realistic topography is added since we want to study the effects of
anisotropy alone without any secondary effects.
We place the source below the origin at 50 km depth. The source time function and

the focal mechanism are the same as in section 4.4.4. We let the simulation run for
25 s until all waves have left the area of interest.
We record the wave field at a receiver positioned at

(
40000 40000 3000

)T , which is
placed at the free surface. The arrival of the P wave is negligible because the amplitude
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is so small in comparison to the S wave amplitude. The S wave arrives between 18 s
and 19 s at the receiver. The synthetic seismograms of the S wave arrival can be
found in Figure 4.9. We note two things: First, in the anisotropic material, the wave
arrives later than in the isotropic medium, which is expected, since in the isotropic
PREM, the S wave speed is larger than the anisotropic vertical S wave speed and lower
than the anisotropic horizontal S wave speed. Second, the v1 and v2 waveforms look
very much alike except for the difference in arrival times, but there is a significant
difference in the v3 component. In the anisotropic case, the maximal vertical velocity
component v3 is 0.245 m/s, while in the isotropic case, the maximum value of the
vertical velocity is 0.198 m/s. So, the vertical velocity is 24.1 % higher. The horizontal
displacements u1 and u2 do not differ except for the arrival times. If we consider
the vertical displacement, we see a similar pattern: the maximal vertical displacement
u3 is 0.0147 m in the anisotropic case and 0.0127 m in the isotropic case. Here, the
value for the anisotropic case is 15.9 % larger. Equation (2.6) is linear, so the absolute
value of the velocities and the displacements only depends on the source strength. An
increase of the moment tensor M0 by a constant factor leads to an increase of the
solution by the same factor. In particular, the ratio between the anisotropic and the
isotropic variation is independent of the source strength, unless we include nonlinear
effects, such as plastic yielding.
While most hazard analysis focuses on the horizontal displacement, velocity or accel-

eration respectively, the vertical component of the velocity field can not be neglected.
This is reflected in some of the codes for designing earthquake-proof buildings. The
California Department of Transportation includes vertical ground motion in their rec-
ommendations about how bridges should be designed in an earthquake-compatible
way [145]. Also for tall buildings, it is crucial to consider the vertical motion, in
particular at the upper levels. Both the European and the American codes for design-
ing buildings, which withstand seismic hazards, include considerations about vertical
ground motion [176].
In addition, for tsunamigenesis, the vertical seafloor displacement is crucial. Abra-

hams et al. [3] compare various methods to couple tsunamis and earthquakes. In
particular, for the most common approaches, when the earthquake and the tsunami
simulation are done separately, the seafloor uplift is relevant. First, an earthquake
simulation is performed, where the seafloor is treated as a free surface. Then either
the final seafloor displacement is imposed as the initial condition for a shallow water
tsunami model, or the time-dependent seafloor uplift is used as a forcing term of the
shallow water model. Also, Lotto et al. [159] argue that the seafloor displacement is
the only relevant quantity to model tsunamigenesis.
In all these scenarios, the vertical ground motion is crucial. Since the anisotropic

and the isotropic PREM differ in this regard, the proper treatment of anisotropy in
seismic simulations is justified.
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Figure 4.9.: Displacement and velocity at
(
40000 40000 3000

)T during the arrival
of the S wave comparing the anisotropic and isotropic PREM model.
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4.5. Discussion
In this chapter, we have summarized how wave propagation in anisotropic linear elastic
materials can be simulated using the ADER-DG framework. The extension from
the isotropic to the anisotropic version was straightforward. We have established a
two-sided upwind flux for anisotropic materials. To do so, a numerical eigenvalue
solver is required, since analytical schemes come to their limits. In addition, the
anisotropic material model was integrated into the local time stepping algorithm of
SeisSol. To obtain an estimate of the wave speeds, we are required to sample the
wave speeds in different directions. The numerical scheme is implemented with high-
performance computing in mind. The extension to anisotropy comes without any
overhead compared to the isotropic material model.
The scheme is thoroughly validated. A convergence test shows that the theoretically

expected high-order convergence rate is also observed in practice. By comparing with
an analytical reference solution, we make sure that the source description is correct.
Using a community benchmark, we compare the SeisSol solution to the solution ob-
tained with other simulation codes. Since our proposed solution included the effect of
shear wave splitting, it was so convincing that the benchmark maintainers decided to
choose our solution as the new reference. We conclude the chapter with two examples
from the real world. A scenario from the Bavarian Alps shows the effects of anisotropic
materials and demonstrates the capability of SeisSol to accommodate complex topog-
raphy. The anisotropic wave field follows an elliptic shape, while the isotropic wave
field is circular. The PREM model is a widely accepted material model for the entire
earth, which comes in an isotropic and an anisotropic version. The anisotropic ver-
sion results in larger vertical velocities and displacements. These quantities play an
important role in the design of buildings.

58
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Up to now, we have considered elastic materials, which can be used to model rocks,
crystals or sediments. For certain applications, these material models can not capture
the behavior of the material correctly, for example in the case of viscoelastic attenua-
tion [131] or to account for plastic deformation [234]. When a solid porous matrix is
filled with a fluid, both phases interact and give rise to new physical phenomena. If
the pore space is too small to model solid and fluid phases individually, the combined
material can be described with the theory of poroelasticity [24, 25, 23]. Since poroe-
lastic materials can be found in a lot of seismological active sites, our goal is to study
earthquakes in poroelastic materials. To do so, we need two ingredients, a solver for
wave propagation and a source mechanism, preferably in the dynamic rupture frame-
work. In this chapter, we will deal with the wave propagation part. The dynamic
rupture part is taken care of in section 6.5.
This chapter starts with motivation and highlights the relevance of poroelastic mate-

rials. An overview of the different numerical solvers for the poroelastic wave equation
is presented. Then, we will revise the poroelastic wave equation. In particular, the
coupling between the solid and the fluid phase introduces a stiff source term. The next
part of this chapter deals with the numerical treatment of this source term with a lo-
cally implicit space-time predictor. We will derive a novel back substitution algorithm
to compute this predictor efficiently. Finally, we thoroughly verify our implementation.
Furthermore, we show application examples with realistic geometries and compare the
poroelastic material model to its elastic approximation. Roofline and scaling experi-
ments give an insight into how well the implementation of our scheme is working on
current supercomputers up to petascale.
This chapter is an enhanced version of the article “An Efficient ADER-DG Local

Time Stepping Scheme for 3D HPC Simulation of Seismic Waves in Poroelastic Me-
dia” by S. Wolf, M. Galis, C. Uphoff, A.-A. Gabriel, P. Moczo, D. Gregor, and M.
Bader [233].

5.1. Motivation and Related Work
The poroelastic material model [24, 25, 23] is the correct framework to study the
mechanics of a porous medium filled with fluids. Poroelastic materials appear in many
natural sciences. They range from biomaterials like bones or cartilage to engineered
materials like foam made from metal or polymers. Most relevant for this thesis are
poroelastic materials in the solid earth. They can, for example, stem from volcanic
stones, where pores have formed during cooling. Sediments are another possibility,
where grains are compacted, but still, some open pore space remains. Additionally,
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initially non-porous rock can become porous over time by fracturing and weathering.
No matter, how the pore space has been created, if the pores are filled with a fluid,
the interaction between solid and fluid phases is described by the same framework.
Poroelastic effects play an important role in seismic exploration [157], monitoring

of geological reservoirs [151] and human-induced earthquakes [193, 39]. They are
happening at different time and length scales. At low frequencies and short distances
between source and receiver, the dominating behavior is diffusive. At high frequencies
or large distances, dispersion is dominating. In the frequency band from 0.100 Hz
to 100 Hz and at a distance from 1 m to 100 000 m, a poroelastic medium behaves
approximately like an elastic medium and we observe wave-like phenomena [154]. This
is exactly the range of seismic applications. Here, several phenomena are observed:
Fluid extraction or injection (e.g. oil and gas extraction, geothermal energy production,
Carbon Capture and Storage) changes the pressure field of the underground fluid.
Thus, it affects the stability of preexisting faults, which then can lead to induced
earthquakes [236, 32, 40, 27]. Additionally, at a longer time scale, fluid migration
sets in, leading to additional strengthening or weakening [155, 41, 209, 6]. While
often modeled as 2D geometrical structures, faults actually have some volume and
are accompanied by a fault zone of damaged rock [5]. In these fault zones, coseismic
poroelastic effects can be observed [80]. Pore pressure effects also play a role directly
at the fault, where the pore pressure perturbation at the rupture tip facilitates the
transition to supershear rupture [179, 154]. Here, we focus on the simulation of wave
propagation through poroelastic media. The time scale in the coseismic phase is in
the range of seconds to minutes. Poroelastic effects are more relevant on a local scale,
thus the spatial scale is in the order of up to a hundred kilometers.
One of the most prominent features of poroelastic materials is the slow P wave. In

elastic materials, two wave modes can be observed (c.f. Figure 2.2). By analysis of the
equations of poroelasticity, a second P wave with a speed of roughly 25 % of the regular
P wave is predicted [24]. The slow P wave is of almost diffusive type and attenuates
fast. The existence of the slow P wave is not just a theoretical result but it can also
be measured in experiments [183].
Waves in poroelastic media can be simulated with all numerical methods suitable for

hyperbolic PDEs. An overview of the different methods used is given by Carcione et al.
[36]. The most challenging part for all discretization methods is that the coupling of the
fluid and the solid phase introduces a stiff source term. Carcione and Quiroga-Goode
[34] analyze the stiffness of the PDE and use a pseudospectral method together with
a splitting method in time to discretize the underlying equations. Another version of
spectral element methods is presented by Morency and Tromp [175]. Here, the second-
order form of the hyperbolic PDE using the solid displacement and the relative fluid
displacements as principal quantities is discretized in time using a Newmark scheme.
While the scheme is restricted to 2D domains, the article collects several benchmark
scenarios of the high and the low-frequency cases. In addition, the authors examine
how to couple the poroelastic material to an acoustic material.
The finite difference method has been applied to poroelastic media since the 1970s [97].

Moczo et al. [172] provide a good literature review of all relevant work in this context.
Most recently, Gregor et al. [104] have worked on the proper representation of subcell
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material heterogeneities, thus enabling arbitrary geometries, which is always a chal-
lenging task for finite difference methods. In addition, they have established a method
for the coupling of poroelastic and elastic media by defining sufficient interface condi-
tions [103]. Their work also focuses on the low and the high-frequency case. Zhang
et al. [238] combine a finite difference approximation in space with non-uniform time
stepping. The resulting scheme allows local time stepping, similar to the one presented
in section 3.4.2. This allows them to locally refine the grid in the vicinity of material
interfaces.
Finally, we would like to comment on the Discontinuous Galerkin framework, which

we will also use later on. De la Puente et al. [61] combined the DG method with ADER
time stepping. They compare two methods to overcome the problem of stability due to
the stiff source term. A splitting approach suffers from a reduction of the convergence
order. The space-time approach, which we will also use later on, shows the expected
high-order convergence rates and is stable. Only the CFL condition restricts the time
step. Zhang et al. [241] also use the same ADER-DG method, but it is not clear, which
version of time stepping they use. They extend the scheme to coupled poroelastic-
elastic materials. While both methods above employ modal basis functions, Shukla
et al. [194] use a DG scheme with nodal basis functions. The stiff source term is
accommodated with an operator-splitting approach. A particular focus of this work is
on anisotropic poroelastic media i.e. the elastic matrix is anisotropic (c.f. chapter 4).
Also, the permeability and the tortuosity depend on the direction of the fluid flow.
Zhan et al. [237] also incorporate anisotropy in their model. In the spatial domain,
they use non-conforming elements, which allow the simple representation of complex
material interfaces. They use Runge-Kutta methods for time stepping, but in all their
experiments, they consider an inviscid fluid. In this case, the problems with stiffness
are not present, because the stiff source term only applies in the viscous case. Ward
et al. [227, 226] use an implicit-explicit (IMEX) scheme to accommodate the stiff
source term. This approach is suitable for the low and the high-frequency case. The
latter publication also introduces a coupling scheme between elastic and poroelastic
subdomains. Furthermore, the adjoint of the poroelastic wave equation, which is
relevant for inversion algorithms, is derived.
We would like to note, that most of the schemes presented here are restricted to

the computationally less expensive 2D case, while only some ([61, 237, 226]) consider
three space dimensions.

5.2. Poroelastic Wave Equation
We start with revisiting the poroelastic wave equations. We loosely follow the review
articles by Carcione [35] and Cheng [41] and the article on numerics by de la Puente
[57]. The basis of a poroelastic material is a solid matrix (also called skeleton or frame,
depending on the literature), which is made of some solid grain and contains the pore
space. The porosity φ defines the volume ratio of space that is occupied by the pores.
The fluid filling the pore space is characterized individually. All in all, we will consider
four different materials [98]:

61



5. Poroelastic Materials

• the solid grain

• the elastic matrix, which consists of the solid grain, and considers the particular
configuration of pore space

• the fluid, which fills the pore space

• the entire, coupled system combining the three materials above.

The coupled system is the poroelastic material, which is the focus of this chapter. To
accurately describe wave propagation through poroelastic materials with a first-order
hyperbolic PDE, we use thirteen unknowns. First, we have the six stress components
σij and three velocity components vi of the elastic matrix. Like in the elastic case,
the velocity is the time derivative of the displacement. In this case, we consider the
displacement u to be the displacement of the elastic matrix. In addition to the quan-
tities of the matrix, we observe the fluid pressure p and three relative fluid velocities
qi. While stresses, solid velocities and pressure have an easy definition, the relative
fluid velocity is a bit more complicated to understand. For each point, we observe the
displacement field ui of the matrix and the displacement field of the fluid uF . The
relative fluid velocity describes fluid motion relative to the surrounding matrix

qi = φ
∂

∂t

(
uFi − ui

)
. (5.1)

The total stress σij = σMij − φpδij is now the difference between the stress sustained
by the solid matrix and the fluid pressure. In real-world measurements, the stress σ
and the fluid pressure can be observed, where the stress of the solid matrix σM is
hidden. Additionally, we define the variation of fluid content

ζ = − div
(
φ(uF − u)

)
, (5.2)

which is a quantity similar to the elastic strain, but for the fluid [41]. In comparison
to the elastic wave equation, we have the enlarged vector of quantities:(

σ11 σ22 σ33 σ12 σ23 σ13 v1 v2 v3 p q1 q2 q3
)T
. (5.3)

It is important to note that the poroelastic material is the homogenized model of
the solid matrix and the pore fluid. If the resolution was fine enough, each point x ∈ Ω
would be either entirely within the solid matrix, within the fluid or on the boundary
between matrix and fluid. Depending on this characterization, the stress observed
at point x is either the stress of the matrix σM or the fluid pressure p. For our
applications, it is not necessary and also not possible to distinguish between matrix
and fluid on such a fine level. Instead, the poroelastic model combines matrix and
fluid in a homogenized model, such that at each point x, we observe the stress of the
matrix and the fluid pressure at the same time [41].
Going back to the ingredients, we characterize the solid grain that builds the elastic

matrix by its bulk modulus KS and its density ρS . These quantities define the grain
on its own without the pore space. The solid grain is the building block of the matrix,
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which reacts differently to deformation than a homogeneous block made of the grain
material because the pore configuration changes the rigidity. We can study the matrix
in a drained state. In this state, the fluid does not add to the elastic behavior. More
figuratively, one can consider the pore space to be empty or filled with a vacuum. The
matrix responds to loads like an elastic body, so we can assign the two Lamé parameters
λM and µM to it [41]. The bulk modulus of the matrix can be computed from the
Lamé parameters as KM = λM + 2

3µ
M . We measure how much the elastic matrix

differs from the grain by analyzing the effective stress modulus or Biot parameter

α = 1− KM

KS
. (5.4)

When the fluid flows through the pore space, it can not move freely, but it has to
follow the path dictated by the pores. The difference in comparison to free flow is
described by two parameters. First, the permeability of the matrix κ describes how
well fluids can travel through the pore space. Even though the porosity might be
large, the permeability can still be low, since the geometry of the pores hinders the
fluid from migrating. The second parameter is the tortuosity. If the fluid flows from
a point x ∈ Ω to a point y ∈ Ω, usually it can not follow the direct path, because the
solid matrix blocks the way. The tortuosity describes how much longer the path along
the pore space is in comparison to the direct path.
The fluid on the other hand can also be characterized on its own without the matrix

surrounding it. Like the solid, it has a bulk modulus KF and a density ρF . Addition-
ally, the fluid has a viscosity ν. The viscosity is a measure of internal friction in the
fluid. It describes how well the fluid withstands shearing motion.
Together, the fluid and the solid form the bulk. The combined density is the average

of solid and fluid density weighed by the porosity:

ρ = (1− φ)ρS + φρF . (5.5)

With all quantities in place, we can compute the fluid-solid coupling modulus M
via [35]

1
M

= α− φ
KS

+ φ

KF
. (5.6)

The inverse of the coupling modulus S = 1/M defines the storativity, i.e. the ability
of the matrix to store fluids [41]. We summarize all parameters together with their
units in Table 5.1.
To model seismic waves, we have to combine two things, constitutive behavior and

equations of motion. The constitutive behavior computes the stress and the fluid
pressure from the strain and the variation of fluid content, so it extends Equation (2.2).
Poroelastic materials can have anisotropic behavior. The elastic matrix can behave
anisotropic, similar to the materials studied in chapter 4. One could also imagine that
permeability or tortuosity are anisotropic, e.g. when the pore space is made of aligned
cracks. De la Puente et al. [61] consider an anisotropic poroelastic material. Here, we
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Table 5.1.: Material parameters used to characterize poroelastic materials and their
units.

Parameter Symbol Unit
Solid Bulk modulus KS Pa
Solid density ρS kg/m3

Matrix 1st Lamé parameter λM Pa
Matrix 2nd Lamé parameter µM Pa
Matrix porosity φ
Matrix permeability κ m2

Matrix tortuosity T
Fluid bulk modulus KF Pa
Fluid density ρF kg/m3

Fluid viscosity ν Pa s
Bulk density ρ kg/m3

Effective stress modulus α
Fluid-Solid coupling modulus M Pa

restrict ourselves to the isotropic version. The extended stress-strain relation reads

σ11
σ22
σ33
σ23
σ13
σ12
−p


=



CP
11 CP

12 CP
13 Mα

CP
12 CP

22 CP
23 Mα

CP
13 CP

23 CP
33 Mα

CP
44

CP
55

CP
66

Mα Mα Mα M





ε11
ε22
ε33
ε23
ε13
ε12
−ζ


, (5.7)

where CP
11 = CP

22 = CP
33 = λM + 2µM + Mα2, CP

12 = CP
23 = CP

13 = λM + Mα2

and CP
44 = CP

55 = CP
66 = 2µM . In the anisotropic case, the poroelastic Hooke matrix

CP
ij would contain more non-zero entries. Additionally, the effective stress modulus α

would depend on the direction.
Again, we can take the time derivative of the stress vector and replace the strain

vector on the right with the vector

∂v1
∂x1
∂v2
∂x2
∂v3
∂x3

1
2

(
∂v2
∂x3

+ ∂v3
∂x2

)
1
2

(
∂v1
∂x3

+ ∂v3
∂x1

)
1
2

(
∂v1
∂x2

+ ∂v2
∂x1

)
∂q1
∂x1

+ ∂q2
∂x2

+ ∂q3
∂x3


. (5.8)
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This describes the time derivatives of the stress components, but we still lack the
time derivatives of the solid and fluid velocities. We combine the equations of motion
and Darcy’s law [33]:

3∑
j=1

∂σij
∂xj

= ρ
∂vi
∂t

+ ρF
∂qi
∂t

,

− ∂p

∂xi
= ρF

∂vi
∂t

+ ρFT

φ

∂qi
∂t

+ ν

κ
qi.

(5.9)

This system can be solved for the time derivative of vi and qi.(
ρ− φρF

T

)
∂vi
∂t

=
3∑
j=1

∂σij
∂xj

+ φ

T

∂p

∂xi
+ φ

T

ν

κ
qi,

(
ρF − ρT

φ

)
∂qi
∂t

=
3∑
j=1

∂σij
∂xj

+ ρ

ρF
∂p

∂xi
+ ρ

ρF
ν

κ
qi.

(5.10)

Here, we note the occurrence of qi on the right-hand side, so the coupling between
the solid and the fluid phase introduces an algebraic source term. With all time
derivatives in place, we can write down the poroelastic wave equation as a linear PDE
in the first-order form:

∂Qp

∂t
+A1

pq

∂Qq

∂x1
+A2

pq

∂Qq

∂x2
+A3

pq

∂Qq

∂x3
= EpqQq, (5.11)

where the matrix E contains the source term. The detailed entries of the matrices A1,
A2, A3 and E can be found in the thesis of de la Puente [57]. Here, we only show the
sparsity patterns in Figure 5.1. In the upper left 9 × 9 sub-matrix, we see the same
pattern as in the elastic case. The lowest three rows consider the fluid velocities, here
we see a repetition of the pattern for the solid velocities. The rightmost four columns
of the flux matrix as well as the source matrix decode the coupling between the solid
and the fluid phase.
We have already mentioned earlier that poroelastic materials show wave-like behav-

ior for a specific range of frequency and source-receiver distance. To be more specific,
the equations shown here are only valid in the low-frequency case. Biot’s characteristic
frequency

fc = 1
2π

νφ

TκρF
(5.12)

distinguishes between the high- and the low-frequency case. At high frequencies, the
flow through the pores is not laminar anymore. Then a more complicated form of
Darcy’s law is required [163, 198, 104]. For typical materials in geo-reservoirs, the
permeability lies in the range of 1× 10−4 mD to 1× 102 mD and the porosity between
0 % to 25 % [62, 192]. This leads to a cutoff frequency well above 100 Hz. Seismic wave
phenomena happen in a frequency band of only a few Hertz, so the low-frequency case
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Figure 5.1.: Sparsity pattern of the flux matrices and the source term in Equa-
tion (5.11).

is sufficient for our applications. For inviscid fluid (i.e. ν = 0, for example, gases),
the cutoff frequency is zero. Nonetheless, the equations above are still valid in this
case [61].
Just as in the elastic case, Equation (5.11) has to be closed with sufficient initial and

boundary conditions. Typically, the Earth is at rest initially, so we set the solution
vector to zero. Later, in the case of dynamic rupture experiments, we will study
scenarios, where an initial pressure perturbation weakens a fault and thus initiates
rupture on the fault. The treatment of boundary conditions is similar to the elastic
case. We note that at a free surface, we have the additional condition p = 0. Absorbing
boundaries can be treated the same way as in the elastic case.

5.3. Space-Time ADER-DG Discretization
We use the same spatial discretization as in chapter 3. Due to the stiff source term
EpqQq, we need another time stepping scheme instead of the Cauchy-Kovalevskaya
procedure. De la Puente et al. [61] examined two different methods to integrate the
stiff source term in time. The fractional step method was restricted to first-order
convergence, whereas the space-time approach achieved the same high order in space
and time. In this section, we will recapitulate how a space-time predictor can replace
the Cauchy-Kovalevskaya procedure in the ADER-DG framework.
The space-time predictor of de la Puente et al. [61] is a specialization of the scheme

by Gassner et al. [99] for linear PDEs. The basic idea behind the space-time predictor
is to expand the solution in time and space using polynomial basis functions:

Qm
p (x, t) = Q̂mi

plsΨm
l (x)θis(t). (5.13)

Again m denotes the element index and Ψm
l is a collection of basis functions Em →

R. The basis functions on each element Em are defined via basis functions on a
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reference element, see section 3.1 for details. In contrast to the scheme in chapter 3,
the coefficients Q̂mipls are not time dependent anymore, but constant on the space-time
element Em× [ti, ti+1] ⊆ R3× [0,∞). The time dependence of the solution is modeled
by the temporal basis functions θis. Although we model the time dependence with
the basis functions, we still consider a time stepping algorithm. At each time step
ti, the solution is only expanded in the spatial domain. Then, we use the space-time
approach to compute a solution for the time ti+1. Again, this solution only consists
of spatial degrees of freedom. Like the spatial basis functions, the temporal basis
functions on the time interval [ti, ti+1] can be defined via a set of basis functions on a
reference element. We chose the reference time interval to be [0, 1] and choose Jacobi
polynomials χs as basis [43]. In comparison to the spatial elements, the 1D coordinate
transform is rather easy:

Ξi : [0, 1]→ [ti, ti+1], Ξi(τ) = ti + (ti+1 − ti) · τ. (5.14)

The temporal basis functions are defined As

θis(t) = χs

((
Ξi
)−1 (t)

)
. (5.15)

To get a weak formulation, we multiply Equation (5.11) with a spatial test function
Ψm
k and a temporal test function θir. Then, we integrate over the space-time element
Em × [ti, ti+1]:∫ ti+1

ti

∫
Em

Q̂mi

plsΨm
l

∂θis
∂t

Ψm
k θ

i
rdV dt

+
3∑
d=1

∫ ti+1

ti

∫
Em

Ad
pqQ̂

mi

qls

∂Ψm
l

∂xd
θisΨm

k θ
i
rdV dt

=
∫ ti+1

ti

∫
Em

EpqQ̂
mi

qlsΨm
l θ

i
sΨm

k θ
i
rdV dt. (5.16)

To make notation easier, we define two scalar products on the spatial reference element
and on the space-time reference element:

〈f, g〉 =
∫
Eref

f(ξ)g(ξ)dV (ξ)

[f, g] =
∫ 1

0

∫
Eref

f(ξ, τ)g(ξ, τ)dV (ξ)dτ .
(5.17)

Then, by transforming Equation (5.16) to the reference element, we get

[
Φl
∂χs
∂τ

,Φkχr
]

Q̂mi

pls +
3∑
d=1

[
∂Φl
∂xd

, χsΦkχr
]
Â
d

pqQ̂
mi

qls

= [Φlχs,Φkχr] ÊpqQ̂
mi

qls. (5.18)
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We note that we have to transform the flux matrices and the source matrix with
∆t = ti+1 − ti to accommodate the change in variables from t to τ .

Â
e

pq = ∆t
3∑
d=1

∂ξe
∂xd

Ad
pq, Êpq = ∆tEpq. (5.19)

We apply integration by parts in the time variable on the first term of Equation (5.18),
which contains the time derivative, to obtain

〈Φlχs(1),Φkχr(1)〉 Q̂mi

pls − 〈Φl,Φkχr(0)〉 Q̂mi,0
pl −

[
Φlχs,Φk

∂χr
∂τ

]
Q̂mi

pls

+
3∑
d=1

[
∂Φl
∂xd

χsΦkχr
]
Â
d

pqQ̂
mi

qls = [ΦlχsΦkχr] ÊpqQ̂
mi

qls. (5.20)

Here the term χs(0)Q̂mi

pls was replaced with the term Q̂mi,0
pl , which collects the spatial

degrees of freedom at time ti. Thus, the space-time predictor takes the solution from
the last time step as an initial condition [99]. This can also be seen as a strict upwinding
DG scheme in time. Since the basis functions depend on either the temporal variable
or the spatial variable, we can decompose the inner products:

[Φlχs,Φkχr] =
∫ 1

0
χsχrdτ

∫
E

ΦlΦkdV . (5.21)

Let us define mass and stiffness matrices in time
Wrs = χr(1)χs(1),
wr = χr(0),

Srs =
∫ 1

0
χrχsdτ ,

Kτ
rs =

∫ 1

0

∂χr
∂τ

χsdτ ,

(5.22)

and recall the definition of the spatial mass and stiffness matrices from Equation (3.8)

Mkl =
∫
Eref

ΦkΦldV

Ke
kl =

∫
Eref

∂Φk
∂ξe

ΦldV .
(5.23)

Using all that notation, we can write Equation (5.20) as

WrsMklQ̂
mi

pls − wrMklQ̂
mi,0
pl −Kτ

rsMklQ̂
mi

pls

+
3∑
d=1

SrsK
d
lkÂ

d

pqQ̂
mi

pls = SrsMklÊQ̂mi

pls. (5.24)
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When all terms involving Q̂mi

qls are gathered on the left-hand side and all other terms on
the right-hand side, it becomes obvious that the degrees of freedom of the space-time
predictor Q̂mi

qls can be obtained by solving a linear system in the form(
δpqWrsMkl − δpqKτ

rsMkl +
3∑
d=1

SrsK
d
lkÂ

d

pq − SrsMklÊpq

)
Q̂mi

qls

= wrMklQ̂
mi,0
pl . (5.25)

We shorten the notation by introducing a 6D tensor Y and a 3D tensor R, which can
be identified from Equation (5.25):

YpkrqlsQ̂qls = Rpkr. (5.26)

Once this linear system is solved, we have a predictor to evaluate Q̂pl(ti + δt), com-
parable to the predictor based on the Taylor series with derivatives from the Cauchy-
Kovalevskaya predictor (c.f. Equation (3.41)). It is straightforward to integrate the
predictor in time since we just need to know the integrals of the temporal basis func-
tions, which are polynomials. From here on, we can continue to compute the solution
at the upcoming time with Equation (3.43).

5.4. Efficient Linear Solver for the Space-Time Predictor
In section 5.3 we have laid out the numerical scheme to deal with the stiff source term in
Equation (5.11). The remaining part is to solve a linear system in the particular form
of Equation (5.25). Of course, the simplest idea is to unroll the multi-indices pkr → i
and qls→ j. The linear system is now in matrix-vector form Aijxj = bi, which can be
solved by any numerical algebra library (e.g. [106, 9, 14] or vendor-specific implemen-
tations like Intel’s MKL). De la Puente et al. [61] use a Gauss-Jordan approach to solve
the linear system. While details are missing, we assume they precomputed the LU de-
composition of the matrix and stored it for every element. During the simulation, at
each time step a forward and backward substitution using the LU decomposition are
performed. We think, this ansatz is not suitable for large-scale simulations: Material
information is encoded in the flux matrices Ae and element geometry is encoded in
the altered flux matrices Â

e
. In consequence, a matrix decomposition has to be stored

for every element, since the operator Y differs from element to element. When using
polynomials of degree 5 as basis functions, the tensor of unknowns Q̂pls contains 4368
unknowns. Even if the matrix is sparse, the LU decomposition can be fully populated.
To store one LU decomposition in double precision 146 MiB are required. Even on
large clusters, this will soon pose a restriction on the model size.
In this section, we will derive a new solution procedure, which makes use of the

particular matrix structure. This algorithm does not need any explicit unrolling of the
multi-indices, instead, it directly works on the tensor structure of the solution. We will
see later that our algorithm outperforms an LU decomposition approach in terms of
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Figure 5.2.: Sparsity pattern of the unrolled operator Y from Equation (5.26) for basis
functions up to degree 1 and 2 respectively. Black squares denote non-zero
entries. White, light-blue and light-green blocks only contain zeros. We
identify two recurring sparsity patterns, in dark blue and green areas.

memory requirements as well as the number of floating-point operations. Our scheme
decomposes the solution process into a chain of tensor operations. We will use the
code generator YATeTo [215] to map these tensor operations to small matrix-matrix
multiplication (GEMMs). With the use of architecture-specific backends, YATeTo
generates highly optimized code to achieve high performance on the node level (c.f.
section 3.6.2).
To motivate the algorithm, we analyze the structure of the operator Ypkrqls. This

operator defines a linear mapping from one third-order tensor to another third-order
tensor. If we unroll the multi-indices, the operator Y becomes a matrix. By choosing
k/l as the slowest and r/s as the fastest-running indices, we obtain matrices with the
sparsity patterns depicted in Figure 5.2. We note that the diagonal is filled with small
blocks. Below that block diagonal only zeros occur, while we find more entries above
the diagonal. This structure is not purely upper triangular, which would allow row-
wise back substitution (e.g. TRSV from level 2 BLAS [219]), but close to it, which allows
us to derive a similar algorithm later. To understand the structure better, we have to
revise the structure of the spatial basis functions. Polynomials in three dimensions up
to degree N form a vector space of dimension B3

N =
(
N+3

3
)
. The space of polynomials

of exactly degree N has dimension b3N =
(
N+2

2
)
.

Lemma 1. Consider a set of orthogonal basis functions Φl : R3 → R, which is ordered
by the degree: k ≤ l ⇒ deg(Φk) ≤ deg(Φl). Then the stiffness matrix Ke is lower
triangular. In particular, larger zero blocks can be identified:

∀n ∈ [1, N + 1] : Ke
ij = 0 ∀i ∈ [1, B3

n], j ∈ (B3
n−1, B

3
n]. (5.27)

Proof. There are exactly b3n basis functions of each degree n: B3
n+1 = B3

n + b3n+1.
Let i ∈ [1, B3

n] and j ∈ (B3
n−1, B

3
n]. Then deg(Φi) ≤ n and deg(Φj) = n Taking the
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derivative of Φi, reduces the degree by one, thus we know that deg
(
∂Φi

∂ξe

)
< n. The

derivative of Φi is again a polynomial, so we can expand it using basis functions up to
degree n− 1:

∂Φi
∂ξe

=
B3

n−1∑
k=1

akΦk. (5.28)

The entries of the stiffness matrix are given by a scalar product.

Ke
ij =

〈
∂Φi
∂ξe

,Φj
〉

=
B3

n−1∑
k=1

ak 〈Φk,Φj〉 . (5.29)

Since the basis is orthogonal, all entries in the sum evaluate to zero, and we conclude
Ke
ij = 0.

Now coming back to the analysis of the sparsity pattern, we find N + 1 light blue
blocks on the diagonal, each further divided into b3i blocks of size Q(N+1)×Q(N+1).
Here Q = 13 denotes the number of unknowns in the vector Q. In total, we see B3

N

dark blue blocks on the diagonal. The smallest black blocks directly on the diagonal
have size (N+1)×(N+1). The blue blocks correspond to the term (δpqWrs−δpqKτ

rs−
ÊpqSrs)Mkl. Above the diagonal, we see larger green blocks. The overall shape of the
green blocks stems from the sparsity pattern of the stiffness matrices. Again light
green visualizes blocks, which only contain zeros. Within each Q(N + 1)×Q(N + 1)
block, we observe patterns, which resemble the sparsity pattern of the flux matrices
Â
d
(c.f. Figure 5.1). The green blocks resemble the terms

∑3
d=1 SrsK

d
lkÂ

d

pq. Note that
we use the transpose of the stiffness matrix here (Klk instead of Kkl), so the overall
shape of the matrix in Figure 5.2 is upper triangular, while the stiffness matrix itself
is lower triangular.
How the block-wise back substitution can be done is apparent now: Iterate over

B3
N blocks of size Q(N + 1) × Q(N + 1) and perform a back substitution similar to

a triangular matrix. Instead of dividing by the diagonal element, one would need to
multiply with the inverse of a Q(N + 1)×Q(N + 1) matrix. Nonetheless, we can omit
the unrolling of the tensor indices and derive an algorithm, which directly works on
the tensor structure of the operator Y . For better readability, we drop the index mi of
Q̂mi

qls and Q̂mi,0
pl . We continue, by multiplying Equation (5.25) with the inverse mass

matrices M−1
ok S

−1
ur :(

δpqS
−1
ur Wrsδol − δpqS−1

ur K
τ
rsδol +

3∑
d=1

δusM
−1
ok K

d
lkÂ

d

pq − δusδolÊpq

)
Q̂qls

= S−1
ur wrQ̂

0
po. (5.30)

Since the stiffness matrices Ke contain large zero blocks, we move the part containing
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them to the right.(
δpqS

−1
ur Wrsδol − δpqS−1

ur K
τ
rsδol − δusδolÊpq

)
Q̂qls

= S−1
ur wrQ̂

0
po −

( 3∑
d=1

δusM
−1
ok K

d
lkÂ

d

pq

)
Q̂qls. (5.31)

To remove notational clutter, we introduce the transposed stiffness matrix multiplied
with the inverse mass matrix: K̃d

ol = M−1
ok K

d
lk. This altered stiffness matrix has

the same sparsity pattern as the original stiffness matrix because the mass matrix is
diagonal. In addition, we remove some delta functions:(

δpqS
−1
ur Wrs − δpqS−1

ur K
τ
rs − δusÊpq

)
Q̂qos

= S−1
ur wrQ̂

0
po −

( 3∑
d=1

K̃d
olÂ

d

pq

)
Q̂qlu. (5.32)

Now comes the crucial part, we identify that the (implicit) sum on the right-hand side
over the index l contains a lot of zero entries due to the sparsity pattern of K̃d. First,
we only use the fact that the matrices K̃d are upper triangular, so we can neglect all
terms with l ≤ o. Define

bpou = S−1
ur wrQ̂

0
po −

B3
N∑

l=o+1

(
K̃1
olÂ

1
pq + K̃2

olÂ
2
pq + K̃3

olÂ
3
pq

)
Q̂qlu. (5.33)

Thus, the right-hand side b only depends on Q̂:l: for l > o. To simplify the notation,
set B := B3

N . If we consider o = B, the dependence on Q̂qlu is missing entirely. Thus,
starting with o = B, we can compute Q̂qBs with(

δpqS
−1
ur Wrs − δpqS−1

ur K
τ
rs − δusÊpq

)
Q̂qBs = S−1

ur wrQ̂
0
pB . (5.34)

Afterward, we can iteratively update the right-hand side b with the already known
values of Q̂ and subsequently solve for Q̂:o: for o = B, . . . , 1. A detailed explanation
can be found in Algorithm 1. This algorithm iterates over the dark blue squares. In
each iteration of the loop, a linear system of size Q(N+1)×Q(N+1) has to be solved.
This algorithm can be further improved by taking the sparsity pattern of Ê into

account, which is upper triangular (c.f. Figure 5.1). We split Ê in a diagonal and a
strictly upper triangular part: Ê = F +G, where F = diag(Ê) and G = Ê −F . Now,
we move the part containing G to the right-hand side.δpq S−1

ur (Wrs −Kτ
rs)︸ ︷︷ ︸

=:Zus

−δusFpq

 Q̂qos = bpou +GpqQ̂qou =: b̃pou. (5.35)
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1 bpBu ← S−1
ur wrQ̂

0
pB ;

2 for o← B downto 1 do
3 // dark-blue blocks

4 Solve
(
δpqS

−1
ur Wrs − δpqS−1

ur K
τ
rs − δusÊpq

)
Qqos = bpou;

5 // green blocks
6 Update bp(o−1)u using Equation (5.33);
7 end
Algorithm 1: First block-wise back substitution algorithm. The loop iterates
over the index corresponding to the spatial basis functions. This algorithm
requires solving B linear systems of size Q(N + 1)×Q(N + 1).

Using the structure of F , the implicit sum GpqQ̂qou, contains non-zero summands only
for q > p. Hence, for o = Q, the right-hand side b̃pou is independent of Q̂. So, we
can add a second loop over q in the algorithm to reduce the size of the linear system,
which has to be solved. Additionally, we employ that F is diagonal, so Fpq = ÊPP δpq.
Here, the upper case P and the lower case p have the same value, but there is no
implicit sum. Then, the δpq can be pulled out the left-hand side of Equation (5.35).
Combining these results, we have to solve the system(

Zus − δusÊPP
)

Q̂pos = b̃pou (5.36)

for all p and o. The resulting Algorithm 2 now requires QB multiplications with the
inverse matrix (Z− ÊPP I)−1, where each linear system has the size (N +1)× (N +1).
Since the matrix Z − ÊPP I is small (typically N ≤ 10) and well-behaved, we can
precompute its inverse. Thus, the solution of a linear system reduces to a matrix-
matrix multiplication. This algorithm works on the scale of the small black matrices.

Up to now, we have only considered the sparsity structure of the blue blocks, but
have not considered the large blocks of zeros in the light blue parts. In particular,
for any o ≤ B3

n, the right-hand side b̃pou only depends on the solution tensor Q̂:l: for
l > B3

n (c.f. Lemma 1). Thus, instead of looping from B down to 1 in single steps, we
can compute b3i steps simultaneously. This merging step is done in Algorithm 3. Now,
we operate on the structure of the large light blue blocks in Figure 5.2. For each step,
the number of required floating-point operations is given.
If we sum over all contributions, we find the upper bound for the number of floating-

point operations in each iteration of the outermost loop:

2Q(N + 1)2b3n︸ ︷︷ ︸
line 6

+ 3(N + 1)b3n︸ ︷︷ ︸
line 8

+

3(N + 1)QB + 6(N + 1)Q2b33 + 6(N + 1)QBb3n︸ ︷︷ ︸
line 13

. (5.37)
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1 b̃QBu ← S−1
ur wrQ̂

0
QB ;

2 for o← B downto 1 do
3 // dark-blue blocks
4 for p← Q downto 1 do
5 Q̂po: ← (Z − ÊPP I)−1 · b̃po:;
6 for r ← 1 to p− 1 do
7 b̃rou ← b̃rou +GrpQ̂pou;
8 end
9 end

10 // green blocks
11 for m← 1 to o− 1 do
12 b̃pmu ← b̃pmu −

(∑3
d=1 K̃

d
moÂ

d

pq

)
Q̂qou;

13 end
14 end

Algorithm 2: Improved back substitution algorithm, unrolled over the spatial
basis functions and the quantities. This algorithm requires the solution of QB
linear systems, each of size (N + 1) × (N + 1) Here, · denotes a matrix-vector
product.

Here, we have used the fact that the matrix G has only three non-zero entries, such
that line 8 only has to be executed three times. We can sum over all n now and use
the fact that

∑N
n=0 b

3
n = B3

N = B, we find

2Q(N + 1)2B + 3(N + 1)B + 3(N + 1)2QB + 6(N + 1)Q2B + 6(N + 1)QB2 (5.38)

as an upper bound of the required floating-point operations for the entire algorithm.
If we unroll the indices and use an LU factorization instead of our improved algo-
rithm, we would need to solve a linear system of size QB(N + 1) × QB(N + 1).
With a precomputed LU decomposition, only the forward and backward substitu-
tions need 2Q2B2(N + 1)2 floating-point operations. The computational demand is
considerably higher. The block-wise back substitution algorithm also excels the LU
decomposition in terms of memory requirements. Instead of a (QB(N + 1))2 values,
Algorithm 3 only requires the storage of the matrices (Z − ÊPP )−1 (thirteen matrices
of size (N + 1) × (N + 1), Âd, (three matrices of size Q × Q) and Ê (six non-zero
entries). We also need to store the matrices K̃d (three matrices of size B × B), but
these do not depend on the specific element. They can be stored once and thus are
ignored in our computation. Table 5.2 compares the computational effort and the
storage requirements for the LU decomposition and our newly proposed algorithm.
In terms of floating-point operations, we see a speedup, which grows linearly with
N . The reduction in memory requirements is even more astonishing. In large-scale
production runs, we typically aim for ≈ 100 000 elements per compute node. Since
the operator Y contains material information for the individual cell, we need to store
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1 b̃QBu ← S−1
ur wrQ̂

0
QB ;

2 for n← N downto 0 do
3 // dark and light blue blocks fused
4 o← (B3

n−1, B
3
n];

5 for p← Q downto 1 do
6 Q̂po: ← b̃po: · (Z − ÊPP I)−T ; // 2b3n(N + 1)2 flop
7 for r ← 1 to p− 1 do
8 b̃rou ← b̃rou +GrpQ̂pou ; // 2b3n(N + 1) flop
9 end

10 end
11 // green blocks
12 if n > 1 then
13 b̃pmu ← b̃pmu −

∑3
d=1 Â

d

pqQ̂qouK̃
d
mo;

14 // 3QB(N + 1) + 6(N + 1)Q2b3n + 6(N + 1)Qb3nB flop
15 end
16 end

Algorithm 3: Final back substitution algorithm with loops over the spatial
basis functions and the quantities. The loop over the spatial basis functions
considers polynomials of the same degree simultaneously to better match the
sparsity pattern of the operator Y . For a detailed analysis of the required
floating-point operations, we count the number of floating-point operations for
each tensor contraction. The operator · denotes a matrix-matrix product. In
line 13, o is a vector of indices (defined in line 4). The implicit sum does not run
from 1 to B, but only along the entries of o. The tensor contraction in line 13 has
naive runtime 4Q2B(N + 1)b3n. By strength reduction, the number of required
floating-point operations can be reduced to 2(N+1)Q2b3n+2(N+1)QBb3n [215].
In addition, there is a factor of 3, because, we compute the contraction for all
K̃d
mo.

N 2 3 4 5 6
#unknowns 3.90× 102 1.04× 103 2.28× 103 4.37× 103 7.64× 103

#FLOP LU 3.04× 105 2.16× 106 1.04× 107 3.82× 107 1.17× 108

#FLOP STP 5.98× 104 2.27× 105 7.13× 105 1.94× 106 4.72× 106

reduction 5.09 9.53 1.45× 101 1.97× 101 2.48× 101

storage LU [MB] 1.16 8.25 3.95× 101 1.46× 102 4.46× 102

storage STP [MB] 4.51× 10−3 4.71× 10−3 4.91× 10−3 5.10× 10−3 5.50× 10−3

reduction 2.57× 102 1.75× 103 8.05× 103 2.85× 104 8.41× 104

Table 5.2.: Comparison of the computational effort for one solution of the linear system
(absolute count of floating-point operations) and memory requirements for
the standard LU decomposition and our newly proposed approach (Algo-
rithm 3).
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the LU decomposition for each cell independently. With polynomials up to degree 3,
which is the lower limit for production runs, the LU decompositions would require
more than 380 GB of memory. This already poses severe requirements on the cluster.
For example SuperMUC-NG installed at the LRZ has 6340 thin nodes with 96 GB of
memory each and 144 fat nodes with 768 GB of memory each [150]. Thus, only fat
nodes, so 2.22 % of the machine, could be used, when the solution of Equation (5.26)
would be implemented with a naive LU decomposition.

5.5. Verification and Application Examples
We have derived an efficient algorithm to solve the poroelastic wave equation with the
space-time variant of ADER-DG. Now, we verify the correctness of our implementation
in a series of benchmarks ranging from simple to more complex:

1. We first consider a planar wave solution. The planar wave is an analytical
solution of the poroelastic wave equation. This benchmark aims to ensure that
the actual implementation achieves the expected convergence rates.

2. We test the correct treatment of explosive and double-couple point sources in a
homogeneous full-space. The previous test only focused on the wave propagation
part. With this test, we also include source effects. We use the method of
Karpfinger et al. [128] to compute the reference solution.

3. We verify that our implementation can work correctly with heterogeneous ma-
terials. At an internal interface, waves are partially transmissed and partially
reflected. The software Gar6More3D [63] is used to compute reference solutions.

4. Free surfaces play an important role in realistic wave field simulations. Again
Gar6More3D provides reference solutions.

5. A layer over half-space scenario brings all previous features together. A point
source excites waves in a half-space. A thin layer of a different material lies
on top of the half-space. At the top of the layer, a free surface reflects waves.
Consequently, waves are trapped in the layer. We compare the SeisSol solutions
with references computed with a 2D Finite Difference code [172, 104].

6. A realistic benchmark scenario from a carbon capture and storage (CCS) site
shows that our approach is capable of solving wave propagation problems in
complex media.

5.5.1. Convergence Test
We do a similar convergence test as for anisotropic materials (c.f. section 4.4.1), but
now we have to account for the source term EpqQq. Again, the angular frequency ω
and the vector Q0 form an eigenpair, but this time the system matrix also involves
contributions from E.

ωQ0
p =

(
k1A

1
pq + k2A

2
pq + k3A

3
pq − iEpq

)Q0
q. (5.39)
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Table 5.3.: Material parameters used for the planar wave convergence analysis.
Parameter Value
Solid Bulk modulus KS 4.00× 1010 Pa
Solid density ρS 2.50× 103 kg/m3

Matrix 1st Lamé parameter λM 1.20× 1010 Pa
Matrix 2nd Lamé parameter µM 1.00× 1010 Pa
Matrix porosity φ 0.200
Matrix permeability κ 6.00× 10−13 m2

Matrix tortuosity T 3.00
Fluid bulk modulus KF 2.50× 109 Pa
Fluid density ρF 1.04× 103 kg/m3

Fluid viscosity ν 1.00× 10−3 Pa s

If we solve for ω and Q0, we can find a plane wave solution for the poroelastic wave
equation. The angular frequency ω is now complex-valued, so the amplitude of the
solution decays over time.
For the convergence test, we use the material parameters as described in Table 5.3.

While for the anisotropic case, the material parameters were artificial, we use real
material parameters here. We use the same domain [−1, 1]3 as before, but the domain
is filled with a material, which has much larger wave speeds. Hence, the final time is
set to t = 1× 10−4 s.

Figures 5.3 and 5.4 show the error decay for the elastic velocities v and the fluid
pressure p. We observe a very similar behavior as for the anisotropic equations. When
using SeisSol with polynomials up to degree N , the expected order is O= N + 1. The
dashed lines show the expected error decay. All variants of SeisSol show the expected
convergence order. Using the highest order on the finest grid with double precision
results in errors close to the machine precision, so that the error does not decay any
further. With single precision, this saturation is obtained earlier. O6 and O7 give
results up to machine precision even on the coarser meshes.
For the detailed convergence analysis including all quantities, see appendix C.2.

5.5.2. Homogeneous Full-Space
The homogeneous full-space is the simplest earthquake scenario one could imagine. A
point source emits seismic waves, which travel outwards. Analytically, no boundaries
are present, and the waves are allowed to travel infinitely far away. This allows the
easy derivation of analytical solutions. Karpfinger et al. [128] derive an analytical
solution based on the Green’s function approach. Their approach includes explosive
and double-couple sources. We will use Karpfinger’s solutions as a reference to which
we compare the solutions obtained with SeisSol.
To mimic the full-space, we generate a mesh of the cuboidal domain [−3000, 3000]3,

with absorbing boundary conditions on all six surfaces. The characteristic edge length
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Figure 5.3.: Convergence result for the L2 norm of the particle velocities and the fluid
pressure in double precision.
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Figure 5.4.: Convergence result for the L2 norm of the particle velocities and the fluid
pressure in single precision.

79



5. Poroelastic Materials

Table 5.4.: Material parameters used for the homogeneous full-space test.
Parameter Value
KS 2.00× 1010 Pa
ρS 2.08× 103 kg/m3

λM 5.28× 109 Pa
µM 6.40× 109 Pa
φ 0.400
κ 6.00× 10−13 m2

T 2.00
KF 2.50× 109 Pa
ρF 1.04× 103 kg/m3

ν 1.00× 10−3 Pa s

x1 x2 x3 x4 d1 d2 d3 d4
x1 −1000 −600 600 1000 −575 −345 345 575
x2 0 0 0 0 −575 −345 345 575
x3 0 0 0 0 −575 −345 345 575

Table 5.5.: Receiver positions for the homogeneous full-space test case.

is 30 m within the cube [−1500, 1500]3. Additionally, we refine the mesh around the
origin. In a sphere with radius 20 m, we set the characteristic edge length to 3 m and
gradually coarsen it to 30 m at a radius of 800 m. We further coarsen towards the
boundary up to an edge length of 240 m. The mesh contains 8 060 000 elements. The
source is placed at the origin. The source time function is a Ricker wavelet with base
frequency f0 = 16 Hz and time delay t0 = 0.0700 s:

s(t) =
(
1− 2(πf0(t− t0))2) · exp

(
−(πf0(t− t0))2) . (5.40)

We consider two sources. First, an explosive source acts on the diagonal of the stress
tensor (σ11,σ22,σ33) and the pore pressure p. Furthermore, we consider a double-
couple source with moment tensor M12 = 1. All other entries are zero. The material
values are given in Table 5.4. Additionally, we distinguish between the viscous case
(ν = 1.00× 10−3 Pa s) and the inviscid case (ν = 0 Pa s). In total, we have four
simulation cases: {explosive,double-couple} × {viscous, inviscid}.
We record the wave field at 8 receivers along two lines. The positions can be found

in Table 5.5. Note that the receivers are symmetric with respect to the origin. We can
analytically compute the wave speeds to be vslow

p = 1060 m/s, vs = 2100 m/s, vfast
p =

3590 m/s. The farthest source-receiver distance is 1000 m, so the slow P wave is ex-
pected to arrive after 0.947 s. To let all waves entirely pass through all receivers, the
final time is set to 1.50 s.
As in chapter 4, we use envelope and phase misfits for the comparison of reference
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and simulation [143, 144]. Figure 5.5 shows the comparison of the synthetic seismogram
(red) with the reference solution (dashed) for the explosive source at receiver d4. With
an overall misfit of below 1 %, we find excellent agreement. An explosive source only
excites P waves. If the poroelastic medium is filled with an inviscid fluid, the slow
P wave becomes a propagating mode, and we see two waves arriving at the receiver
after 0.200 s and 0.900 s. In the viscous case, the slow P wave is a diffusive mode,
and we only observe the fast P wave as expected. Next, we analyze the double-couple
source, with detailed misfit plots in Figure 5.6. Also for this source type, the agreement
between numerical solution and reference is excellent. As expected, in this case, the S
wave is the dominant wave mode. In the inviscid case, we can observe all three modes,
the fast P wave, the S wave and the slow P wave. When the fluid is viscous, the slow
P wave is not visible anymore.
Up to now, we have only focused on the receiver d4. Figures 5.7 and 5.8 show a

summary of the envelope and phase misfits at all receivers for the explosive source
and the double-couple source respectively. First, we note that the phase misfits are
considerably smaller in comparison to the envelope misfits. The same observation can
be made in the elastic case [130]. Except for one quantity (EM of q1 at receiver x4 is
1.08 %), all misfits are below 1 %. In conclusion, the agreement between simulation and
reference is excellent. Note that the misfits in the x2 and x3 direction are considerably
smaller for the receivers along the x1 axis, because these solution components are zero
in this case.

5.5.3. Contact of Two Half-Spaces
Now, we have established that SeisSol is capable of generating high-quality synthetic
wave fields in an unbounded space. This scenario hardly counts as realistic, as the earth
usually consists of heterogeneous materials. At material interfaces, incoming waves are
partially transmissed and partially reflected. Additionally, at an interface, wave modes
can be converted. For example, when a pure P wave impinges a material interface, it
generates a reflected P and a reflected S wave on the same side. In addition, it excites a
transmissed P wave and a transmissed S wave on the other side [195]. Diaz and Ezziani
[63] derive an analytical solution for the contact of two half-spaces based on the Green’s
function approach. Their method is implemented in the software Gar6More3D1, which
allows us to compute reference solutions. The implementation is limited to explosive
sources in poroelastic media filled with inviscid fluids. Also, the solution only contains
the solid velocities vi and omits the relative fluid velocities qi or the pressure p.
In order to verify our solver, we use a 3D version of the heterogeneous benchmark

proposed by de la Puente et al. [61]. We consider an unbounded space, which is
divided into two half-spaces by the plane x3 = 0. The explosive source is placed at(
0 0 500

)T . Just as in section 5.5.2, the source time function is a Ricker wavelet
with f0 = 16 Hz and t0 = 0.0700 s. On each side of the interface, one receiver records
the wave field at

(
500 400 −500

)T and
(
500 400 500

)T . The receiver R lies
on the same side as the source and the receiver T on the opposite side. The mesh

1http://www.spice-rtn.org/library/software/Gar6more3D/
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Figure 5.5.: Detailed misfit plot for the homogeneous full-space test case. The source
is an explosive point source. We plot the v1 component at receiver d3.
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Figure 5.6.: Detailed misfit plot for the homogeneous full-space test case. The source
is a double-couple point source. We plot the v1 component at receiver d3.
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Figure 5.7.: Summary of envelope and phase misfits for the explosive source cases of
the homogeneous full-space scenario.
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Figure 5.8.: Summary of envelope and phase misfits for double-couple source cases of
the homogeneous full-space scenario.
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Table 5.6.: Material parameters used for the contact of two half-spaces test case.
Parameter x3 < 0 x3 > 0
KS 7.60× 109 4.00× 1010 Pa
ρS 2.21× 103 2.50× 103 kg/m3

λM 3.96× 109 1.20× 1010 Pa
µM 3.96× 109 1.20× 1010 Pa
φ 0.160 0.200
κ 1.00× 10−13 6.00× 10−13 m2

T 2 2
KF 2.50× 109 2.50× 109 Pa
ρF 1.04× 103 1.04× 103 kg/m3

ν 0 0 Pa s

Table 5.7.: Envelope and phase misfits in percent for both receivers in the contact of
two half-spaces test case.

Receiver EM v1 PM v1 EM v2 PM v2 EM v3 PM v3

R 0.260 0.0465 0.220 0.0365 0.175 0.0192
T 1.41 0.202 1.12 0.161 1.54 0.277

covers the region [−5000, 5000]3 with absorbing boundary conditions at all six surfaces.
Within the cube [−1000, 1000]3, the characteristic edge length is set to 40 m. The mesh
contains 3 430 000 elements. As before, we additionally refine the mesh in the vicinity
of the source and coarsen towards the boundary. The interface at x3 = 0 is explicitly
meshed. The material of both half-spaces is given in Table 5.6.
The detailed misfit plots in Figure 5.9 show a very good agreement between the ref-

erence and the simulation at both receivers. If we analyze all misfit values in Table 5.7,
we see that the misfits at receiver T are considerably larger than for the receiver R.
The wavelength in relation to the characteristic edge length governs the accuracy of
the solution [130]. On the side x3 < 0, the fast P wave has a wavelength of 155 m
and on the x3 > 0 side, it is 265 m. The characteristic edge length is equal on both
sides of the interface. Thus, the relative resolution at receiver T, with respect to the
wavelength, is worse than at receiver R, which explains the higher misfits at receiver T.
In conclusion, with all misfits below ≈ 1.50 %, we can conclude that SeisSol is capable
of accurately simulating material interfaces in poroelastic media.

5.5.4. Free Surface
Equally important as material interfaces are free surfaces because the Earth’s surface
is modeled as such a boundary condition. At a free surface, all impinging waves are
reflected into the volume. Physically speaking, a free surface is traction-free, which
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Figure 5.9.: Detailed misfit plot for the contact of two half-spaces test case. We show
the velocity component v1.
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Table 5.8.: Envelope and phase misfits in percent for both receivers in the free surface
test case.

Receiver depth EM v1 PM v1 EM v2 PM v2 EM v3 PM v3

0.5m 0.271 0.804 0.217 0.643 0.401 1.22
500m 0.350 0.124 0.281 0.0989 0.295 0.0836

means σ · n = 0, where n is the outward pointing normal, and additionally p = 0.
Gregor et al. [104] describe a 2D test case for the free surface, which inspired us to
create the following 3D version. Again, we use the software Gar6More3D to compute
a reference solution.
We consider a poroelastic half-space, which is entirely filled with the material for

x3 > 0 from Table 5.6. We place an explosive source at
(
0 0 500

)T . Again, we use
a Ricker wavelet as the source time function, but this time with f0 = 5 Hz and t0 =
0.250 s. Two receivers at

(
500 400 0.5

)T and
(
500 400 500

)T record the wave
field. Note that we were not able to place a receiver more closely to the free surface.
Gar6More3D requires numerical quadrature to evaluate the convolutions arising from
the Green’s function solution. The convergence speed of the algorithm depends on the
distance between the receiver and the free surface, which made it practically impossible
to compute reference solutions for receivers closer to the free surface. The mesh covers
the region [−5000, 5000] × [−5000, 5000] × [0, 5000]. We employ a similar refinement
strategy as before: Within the cuboid [−1000, 1000]× [−1000, 1000]× [0, 1000], we set
the characteristic edge length to 30 m. Additionally, we refine towards the source and
coarsen towards the boundary. In total, the mesh contains 2 170 000 elements.
As apparent from Figure 5.10, simulation and reference solution coincide perfectly.

If we analyze the misfit values in Table 5.8, we see that the free surface is correctly
simulated by SeisSol.
We conclude for now that SeisSol is capable of solving the poroelastic wave equation

including point sources, material interfaces and free surfaces.

5.5.5. Layer Over Half-Space
All basic features are verified now, so we can start to bring everything together. The
Layer Over Half-Space (LOH) scenario is a widespread benchmark for the numerical
solution of earthquake scenarios. The elastic version dates back to Day et al. [55].
Since then, this scenario has been used by several modelers [e.g. 122, 173, 95, 75, 84]
to test the accuracy of their simulation codes. In this work, we will present a slightly
modified version of the LOH scenario, including poroelastic materials, which we will
abbreviate with LOHp. A first study of the LOHp scenario was presented in [233].
Here, we extend the problem to a double-couple source. As a reference, we use a
Finite Difference code [172, 104]. This code only allows 2D geometries. To make a fair
comparison between SeisSol and the 2D reference, we will compute a 2.5D scenario in
SeisSol with a line source and only compare solutions along a given 2D slice.
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Figure 5.10.: Detailed misfit plot for the free surface test case. We show the velocity
component v1.
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We consider the cuboid [−10000, 10000]×[−10000, 10000]×[0, 7000]. At x3 = 500 m,
an explicitly meshed interface separates the half-space from the layer. For x3 = 0, we
impose a free-surface boundary condition. All other boundaries are absorbing. Within
the layer, we impose the material given in Table 5.6 for x3 < 0, within the half-space,
we impose the material for x3 > 0. To get a more realistic scenario, the fluid viscosity
is set to 1× 10−3 Pa s. In addition, the permeabilities are changed to 6× 10−12 m2

and 1× 10−12 m2, respectively. We study an explosive and a double-couple source,
as in section 5.5.2. While the explosive source is identical to the one used in the
homogeneous full-space test case, the double-couple point source has the orientation
φs = −90°, δ = 22.5° and λr = 90°. Thus, the radiation pattern is not axis-aligned,
but slightly tilted. We choose a Gabor wavelet

s(t) = cos(ω(t− t0)) · exp(−(ω(t− t0)/γ)2), (5.41)

with ω = 2π · f0, f0 = 0.5, γ = 0.25, t0 = 0.25 as source time function. With these
parameters, the source time function contains frequencies up to ≈ 15 Hz.

To mimic the line source, we replicate the point source along the line x1 = 0,
x2 = −10000, . . . , 10000, and x3 = 1010. We use 401 point sources in SeisSol, with a
grid spacing of ∆x2 = 50 m. Such a line source in 3D gives the same results along any
slice perpendicular to the line as a point source in 2D. Thus, we compare the SeisSol
solutions along the plane x2 = 0 with the 2D FD solutions. We record the wave field
at four strings of receivers. The strings are placed at x1 = 0 m, 250 m, 500 m and
1000 m; x2 = 0 m; x3 = 0 m, 0.500 m, 1.25 m, 2.50 m, 3.75 m, 5.00 m, 10.0 m, 15.0 m,
20.0 m, 25.0 m, 30.0 m, 35.0 m, 250 m, 480 m, 490 m, 520 m, 530 m and 1200 m. We let
the simulation run for 2 s.

Based on the wavelengths, a mesh resolution of 50 m should be sufficient to compute
an accurate solution when using polynomials up to degree 5 [130]. With a similar
argument, we deduce that 20 m grid spacing should be used for the 2D FD reference
solution. If we compare the results of both simulations with these grid sizes, the
solutions do not coincide. For example, Figure 5.11 shows the receiver at

(
500 0 0

)T
when using an explosive source. Visually, we have a good match for the solid velocities.
The horizontal relative fluid velocity q1 still matches quite well, but for the vertical
relative fluid velocity q3, the mismatch is very obvious. One does not even have
to compute misfits to see that the goodness of fit is not satisfactory. While this is
only exemplary, we observe a similar pattern at all receivers close to the free surface.
Figure 5.12 shows the misfits between the SeisSol solution with a characteristics edge
length of 50 m and the 2D FD solution with 20 m resolution. The vertical relative fluid
velocity at the free surface is troubled, while all other quantities are well resolved. At
the interface, we also observe elevated misfits for the vertical relative fluid velocity, but
not with such alarming magnitudes as at the free surface. Within the bulk volume,
the relative fluid velocities are resolved accurately. We realize that this mismatch of
q3 is because the numerical solutions computed by SeisSol or by the 2D FD code have
not yet converged qualitatively. Figure 5.13 shows the vertical relative fluid velocity
for x1 = 500 m at the free surface and at 5 m depth for different grid resolutions. We
realize that for a characteristic edge length of 5 m (for SeisSol) and a grid spacing of
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500 0 0

)T for the explosive source.
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Figure 5.12.: Overview over the envelope misfit at selected receivers for the explosive
source. The columns correspond to the x1 coordinate (0, 250, 500, 1000),
and the row to the x3 component (0, 250, 480, 530, 1200). The misfits
compare the SeisSol solution obtained with a characteristic edge length
of50 m and the 2D FD solutions obtained with a grid size of 20 m.
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Figure 5.13.: Convergence of SeisSol and 2D FD solutions at x1 = 500 m for different
mesh resolutions.

0.625 m (for the 2D FD code) both solutions coincide qualitatively. For the receiver
directly at the free surface, the solutions obtained with fine and coarse resolution
drastically differ. At 5 m depth, the fine and coarse solutions still differ substantially,
but at least the overall waveform is similar.
We choose the 2D FD solutions with 0.625 m grid resolution as a reference. Fig-

ure 5.14 shows the depth-dependent misfits between for SeisSol solutions obtained
with a characteristic edge length of 50 m and 5 m respectively. We concentrate on the
string of receivers at x1 = 500 m. We observe a good fit between the SeisSol solution
and the 2D FD solution when using the refined resolutions for both codes. The solid
velocities match perfectly regardless of the resolution: . 2.40 % for 50 m character-
istic edge length and . 0.700 % for 5 m resolution. For the relative fluid velocities,
we observe that even for the coarse resolution the misfits are quite satisfactory away
from the interface. Only directly at the free surface, we find a mismatch. Even for the
fine resolution, we find misfits as large as 7.60 % (for q1) and 13.4 % (for q3). Here,
we suspect that the reference solution is still too far away from the exact solution.
Unfortunately, it was computationally infeasible to obtain a reference solution on a
smaller grid.
This experiment has shown that it is a tough problem to accurately resolve the

relative fluid velocities at the free surface. With refined meshes, we find a match
between the SeisSol solutions and the 2D FD reference. We suspect that processes
connected to the slow P wave increase the requirements on the mesh resolution. We
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Figure 5.14.: Depth dependent misfits at x1 = 500 m. This plot compares the SeisSol
solution obtained with 50 m and 5 m resolution to the 2D FD solutions
with 0.625 m resolution. The values in the boxes denote the maximum
misfit per quantity. Note that the vertical axis is not evenly spaced to
put an emphasis on the region x3 ∈ [0, 250].

note that this result does not inflict the results from section 5.5.4 because we considered
an inviscid fluid there. In this case, the slow P wave is a propagating mode and diffusive
effects do not occur.
The relative fluid velocities are important quantities, but hard to measure in real-

world applications. Therefore, we want to focus on the solid velocities and the pressure
field from now on. In particular, we hope to get more insight into what happens phys-
ically at interfaces (free-surface or material inhomogeneity). We create a mesh, where
the characteristic edge length is set to 5 m in the cuboid [−200, 2200]× [−500, 500]×
[0, 550]. Additionally, we refine around the source at

(
0 0 1000

)T . As we have seen
before, a much finer resolution is necessary at interfaces, but in areas, where the ma-
terial is homogeneous, we do not need such a fine edge length. Thus, the resolution in
this scenario is sufficient to capture all slow P wave-induced effects. Overall, the mesh
contains 47 500 000 elements.

We compare the 2D FD solution to the SeisSol solution, using envelope and phase
misfits. According to Table 5.9, we find a good match for the solid velocities and a
satisfactory match for the fluid pressure. Since both numerical solutions coincide, we
trust that our simulations are accurate. Figure 5.15 shows the solid velocities and
the pressure field for the explosive source after 1.20 s in the x2 = 0 plane. While
the wave fields for the solid velocities are continuous across the interface, we observe
an apparent discontinuity in the pressure field. We impose continuity in the weak
sense across material interfaces using numerical fluxes, (c.f. section 3.2). In the DG
context, the solution is allowed to be discontinuous across element interfaces, but the
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Table 5.9.: Maximal envelope misfits in percent for the solid velocities and the fluid
pressure in the LOHp scenario. The maximum considers all receivers along
all strings.

Source type v1 v3 p

double-couple 1.01 1.06 8.23
Explosive 1.24 0.582 8.52

numerical flux minimizes the discontinuity, wherever the underlying PDE requires a
continuous solution. For the construction of the Godunov flux, we assume continuity
of the solid velocities (v1,v2,v3), stresses in the normal direction (σijnj), the relative
fluid velocity in the normal direction (qini), and fluid pressure (p). The pressure
discontinuity is not a discretization artifact. If we zoom into the pressure field at the
interface, it is actually continuous, but the pressure gradient in the direction orthogonal
to the interface is comparatively large. Since the solution changes rapidly, it appears
discontinuous from far away.
This also explains the mismatch in relative fluid velocities directly at the free surface,

when using a mesh resolution of 50 m. The pressure field changes drastically within
a few meters away from the free surface. A mesh, which should resolve seismic waves
accurately, is not capable of resolving these sudden changes. We conclude that the
almost immediate change of fluid-related quantities at interfaces is a characteristic
feature of the poroelastic wave equation and not a numerical artifact. Any numerical
method (we have investigated the case of DG and FD methods) requires a much finer
resolution than anticipated to precisely resolve the poroelastic wave equation close to
interfaces.
This example highlights the importance of meshes with non-uniform grid spacing.

These meshes allow refinement in more sensitive areas, e.g. material interfaces in poroe-
lastic media. When the insphere diameter of the elements varies, local time stepping
becomes an important optimization technique to reduce the time to solution.

5.6. Realistic Scenario: Sleipner CO2 Storage
We have seen that we can accurately simulate wave propagation phenomena in poroe-
lastic media with SeisSol. Now, we want to demonstrate the full capability of SeisSol
with a realistic benchmark scenario. The carbon capture and storage technology (CCS)
makes use of underground reservoirs to permanently store CO2. As the CO2 occupies
the pore space, it is a natural choice to model the rock as poroelastic. Whenever
one operates in the subsurface (either oil/gas extraction, mining, geothermal energy
production or CCS), induced earthquakes pose a threat. Here, we do not want to in-
vestigate the source mechanisms of induced earthquakes but concentrate on the wave
propagation phenomena.
The CO2 DataShare project gathers various datasets of CCS projects. We focus
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(a) v1

(b) v3

(c) p

Figure 5.15.: Wave fields of the LOHp scenario in the x2 = 0 plane for t = 1.20 s. The
horizontal black line visualizes the material interface, and the vertical
lines show the positions of the strings of receivers. The upper end of the
plot coincides with the free surface. The triangular facets on the left are
artifacts from mesh coarsening outside of the area of interest. The black
circle indicates the source position.
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on the Sleipner 2019 Benchmark Model [88]. This model contains several sandstone
layers, which are intended for CO2 storage. Thin shale layers separate the sandstone
layers and act as impermeable barriers. With geometric complexity and heterogeneous
material parameters, this scenario poses a challenging benchmark. We want to analyze,
how much a poroelastic material model differs from an elastic equivalent.
Based on the model description, we extract 14 different layers. The interface between

these layers is given on a rasterized grid. The thickness of the sandstone layers varies,
while the intra shale layers are always 5 m thick. Figure 5.16 shows a coarse resolution
mesh. We see the large Above Caprock and the bedrock formations. In between these
layers, there lies the storage formation built from the caprock, sandstones and shales.
In total, the scenario gathers six different materials. Since the benchmark description
does not contain an upper interface for the Above Caprock layer, we extend this layer
up to x3 = 0. At the top, we impose a free-surface boundary condition. Below the
caprock, there is the first sandstone layer. In total, there are six sandstone layers,
intersected by five shale layers. At the bottom, there is the bedrock layer, which ex-
tends down to 3000 m. The interesting formation, comprised of alternating sandstones
and shales, lies between 600 m and 1200 m depth. The material parameters for the
different layers can be found in Table D.1. We highlight a few aspects here: The only
actually permeable material is the sandstone with a permeability of κ = 2× 10−12 m2.
The other layers have a considerably smaller permeability of κ = 1.47× 10−17 m2 and
the Above caprock layer is virtually impermeable with κ = 1.00× 10−21 m2. We want
to analyze the effect of the poroelastic material in comparison to an elastic material,
so we additionally prepare an equivalent elastic parameter set. For every poroelastic
material, the Gassmann equivalent [98, 35] can be computed with

KM = λM + 2
3µ

M

KG = KM + α2M

µG = µM

λG = Km − 2
3µ

M

ρG = φρS + (1− φ)ρS .

(5.42)

This material approximates the poroelastic material. It shows the same P wave and S
wave speed, but the slow P wave is neglected.
We place a double-couple point source with φs = 90°, δ = 90° and λr = 0° at(

1500 3000 1500
)T . The source time function is a Ricker wavelet with f0 = 16 Hz

and t0 = 0.0700 s. In order to study the wave propagation effects in the sandstone
layers, the source lies well below the layers within the bedrock layer. We record
the wave field along a string of receivers at x1 = 1750 m, x2 = 3750 m and x3 =
0 m, 5 m, . . . , 2000 m.
We use the mesh generation tools by Simmetrix2 to create a tetrahedral mesh in-

cluding the interfaces of the layers. The mesh contains the area of interest [0, 3200]×
2https://simmetrix.com/

96

https://simmetrix.com/


5. Poroelastic Materials

Figure 5.16.: Coarse mesh for the Sleipner benchmark. The figure shows the five shale
layers in detail. For better visibility, the caprock and Above Caprock
layers are cropped. The sandstone layers are removed. They lie in the
empty space between the shale layers.
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Figure 5.17.: Comparison of the elastic and the poroelastic version of the Sleip-
ner CO2 storage scenario. We show the envelope misfit between both
versions at a line of receivers with x1 = 1750 m, x2 = 3750 m and
x3 = 0 m, 5 m, . . . , 2000 m. We focus on the depth band x3 ∈ [600, 1200].
The background color denotes the material structure.

[0, 5900] × [0, 3000] as defined by the benchmark In this area, the layer interfaces
are explicitly meshed. We embed the area of interest in a larger cuboid of size
[−5000, 8000]× [−5000, 11000]× [0, 6500]. There, the layers are not explicitly meshed
anymore, since we lack the information about their geometry to do so. Within the
area of interest, we set the characteristic edge length to 50 m and further refine up to
a resolution of 10 m in the area [1000, 2000]× [1500, 4500]× [0, 2000]. In the remaining
part, the mesh is coarsened towards the boundary up to a characteristic edge length
of 200 m. The final mesh contains 65 000 000 tetrahedral elements.
Within the area of interest, we apply the material properties as described in the

benchmark. In the remaining part of the mesh, we use a simplified depth-dependent
material model. Since this part of the mesh is not interesting in the sense that we want
to analyze the wave field there, but it is required to accommodate the non-perfectly
absorbing boundary conditions, the intra shale layers are removed there.
We suspect a difference between the poroelastic material and the Gassmann equiva-

lent, in particular close to material interfaces. The difference between the poroelastic
and the elastic version of the Sleipner benchmark can be seen in Figure 5.17. We show
the envelope misfits between the poroelastic case and the elastic equivalent along the
string of receivers comparing the solid velocities. The difference between both variants
is not very prominent. With a maximal envelope misfit of 0.816 % and a maximal
phase misfit of 0.0879 %, both versions of the scenario yield virtually the same solu-
tion. Even in the depth region 600 m to 1200 m, where there are a lot of material
interfaces, the match between both versions is surprisingly good.
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This scenario yields two results: First, we have demonstrated that SeisSol is capable
of solving the poroelastic wave equation on complicated geometries. Second, this
scenario shows that the elastic equivalent is a good approximation of the poroelastic
material in this use case. In the poroelastic case, motion is driven by the total stress,
which is the sum of the stress in the elastic matrix and the fluid pressure. The elastic
equivalent only computes the total stress. Since the deformation of the elastic material
is the result of the total stress, both models coincide in terms of the solid velocities. The
elastic equivalent can not distinguish how much of the total stress is sustained by the
fluid pressure and how much is sustained by the elastic matrix, but just considers the
apparent effect. We will see in section 6.5 that the fluid pressure acts as a weakening
mechanism in dynamic rupture simulations. In this case, the elastic equivalent is not
good enough anymore to capture all physical phenomena associated with poroelasticity.

5.7. High-Performance Computing Aspects
The goal of SeisSol is to be an open-source software for earthquake simulations on high-
performance computing hardware. Thus, we need to make sure that each new model
achieves good node-level performance and scales well on a large number of nodes.
We tested the implementation of the poroelastic material model on two recent su-

percomputers.

SuperMUC-NG is installed at the Leibniz-Rechenzentrum in Garching close to Mu-
nich. It features 6480 compute nodes, each with two Intel Xeon Platinum 8174
(Skylake architecture) CPUs, leading to a total of 311 000 cores. Each node is
equipped with at least 96 GB RAM [150]. As of November 2023, SuperMUC-NG
is number 40 in the TOP500 list [196].

Frontera is installed at the Texas Advanced Computing Center in Austin, Texas. It
features 8370 compute nodes, each with two Intel Xeon Platinum 8280 (Cascade
Lake architecture) CPUs, leading to a total of 459 000 cores. Each node is
equipped with 192 GB RAM [203]. As of November 2023, Frontera is number 29
in the TOP500 list [196].

5.7.1. Implementation Details
Mathematically speaking, Algorithm 3 is a collection of tensor contractions. This
perfectly fits the design choice of SeisSol, which uses YATeTo (c.f. section 3.6.2) as a
generator for the high-performance kernels. Listing 5.1 shows how a part of the back
substitution algorithm can be implemented with YATeTo. The tensor stp stores the
values Q̂, and the tensor stpRhs stores the values of b̃. The matrices selectModes(n)
extract all modal basis functions of degree n, and the matrix selectQuantity(p)
extracts the quantity with index p. The matrix Zinv(p) stores the precomputed
inverse of the matrix Z − ÊPP I.

99



5. Poroelastic Materials

Listing 5.1: Extract from the python code used to implement the block-wise back sub-
stitution procedure from Algorithm 3. This snippet corresponds to lines
2 to 6 of the algorithm.

for n in range(maxDegree ,-1,-1):
for p in range( numberOfQuantities -1,-1,-1):

kernels . append ( stp[’kpt ’] <= stp[’kpt ’] + selectModes (n)[’
kl’] * selectQuantity (p)[’pq’] * stpRhs [’lqu ’] * Zinv(p)
[’ut’] )

The implementation with YATeTo closely resembles the algorithm description in Ein-
stein notation. Based on this description YATeTo selects the best way to map this
tensor operation to a sequence of matrix-matrix multiplications. See section 3.6.2 for
details on the code generator.
The flux computation works similarly to the one outlined in section 3.2. Just as in

the anisotropic case, a numerical eigenvalue solver is required in order to compute the
matrix R. In the poroelastic case, there are higher requirements on the accuracy of
the solver. The flux matrices A are more challenging to decompose in the poroelastic
case, in comparison to the elastic case. In particular, the numerical linear algebra
library eigen3 [106] does not show sufficient accuracy, while LAPACK [9] works as
expected3. We do not want to dive into the details of numerical linear algebra but
just want to emphasize that the numerical solver for the eigenvalue problem has to be
chosen carefully. As a quality metric, the residual

‖λr −Ar‖ (5.43)

has to be as small as possible.

5.7.2. Roofline Model
The roofline model [230] is a powerful tool to assess how well a certain implementation
of an algorithm uses the available compute resources. Each algorithm has a compu-
tational intensity I, which denotes the amount of work W (floating-point operations)
per amount of data D (floating-point numbers). According to the roofline model, the
performance P of a specific implementation of an algorithm is restricted by two val-
ues. If the arithmetic intensity is low, the performance is restricted by the memory
bandwidth M : P ≤ IM . If the arithmetic intensity exceeds a certain threshold, the
performance is restricted by the theoretically attainable peak performance: P ≤ Ppeak.
The point, where both upper bounds meet (Ibalance = Ppeak/M) is called the machine
balance. Algorithms with an arithmetic intensity smaller than the machine balance
are memory-bound, whereas algorithms with an arithmetic intensity higher than the
machine balance are compute-bound. If we want to implement a certain algorithm for

3We have opened an issue regarding this problem. The maintainers of the eigen3 library can re-
produce the error, but have not yet found a solution. https://gitlab.com/libeigen/eigen/-/
issues/2305, accessed November 8, 2023
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Table 5.10.: Node-level peak performance and peak memory bandwidth for
SuperMUC-NG and Frontera. Results measured with likwid.
Computer Peak performance Memory bandwidth
SuperMUC-NG 3490 GFLOP/s 228 GB/s
Frontera 4220 GFLOP/s 247 GB/s

a specific machine, the roofline model gives us an upper bound for the maximal possi-
ble performance. Based on the characterization as memory-bound or compute-bound
different optimization strategies are required.
To assess the quality of the generated kernels for the poroelastic version of SeisSol we

perform a roofline analysis on the supercomputers SuperMUC-NG and Frontera. To
do so, we use the software likwid [208] to measure the peak performance and memory
bandwidth. The results can be found in Table 5.10. These allow us to compute the
rooflines for both machines. We measure the performance of the SeisSol proxy [217,
215]. The proxy executes the compute kernels on random data. The performance proxy
mimics the global time stepping scheme of SeisSol and omits I/O and communication.
It is a valuable tool to assess the node-level performance of SeisSol because it returns
results fast and does not take other effects into account. Therefore, the proxy gives us
an upper bound of the node-level performance, which SeisSol can achieve in production
runs.
We execute the SeisSol proxy with 100 000 elements for 10 time steps. Since per-

formance measurements are subject to statistical fluctuations, the measurement is
repeated 10 times until we reach a confident bound of 2.50 %. The result for different
polynomial degrees is given in Figure 5.18. First, we notice that the picture for both
supercomputers does not differ significantly. In both cases, the kernels for polynomial
degrees 2 to 4 are memory bound and the degrees 5 to 6 are compute bound. On both
computers, the kernels follow the 40 % roofline.
Unfortunately, the poroelastic version of SeisSol does not achieve such a good per-

formance as the kernels in the elastic version. If using polynomials up to degree 6, the
elastic kernels achieve a node-level performance of up to 2290 GFLOP/s on SuperMUC-
NG, compared to 1320 GFLOP/s in the poroelastic case. We use architecture-specific
backends for small matrix-matrix multiplications, in particular, libxsmm [112] for x86
architectures. In the poroelastic case, we need GEMMs of the form C = αA ·B, where
α = ∆t. Since libxsmm only supports α = 1, we have to fall back to nested for
loops to compute the multiplication with α. These loops are not as performant as the
optimized libxsmm kernels.
Only achieving 40 % of the possible peak performance sounds unsatisfactory at first,

but we would like to point out, that even the LINPACK benchmark on SuperMUC-NG
only achieves 72 % of the theoretical peak performance [150]. In addition, we have seen
from Table 5.2 that the STP approach outperforms an LU decomposition in terms of
the required absolute number of floating-point operations. If we compare our STP
scheme with an optimally performing LU decomposition approach, we still see a major
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Figure 5.18.: Roofline results for the poroelastic version of the SeisSol proxy on
SuperMUC-NG and Frontera. The number denotes the maximal degree
of polynomials used. We show the 100 % and the 40 % roofline.
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advantage. The time needed to solve the linear system with the STP approach can
be computed as the fraction of the number of floating-point operations divided by the
actual performance.

TSTP = #operationsSTP
#performanceSTP

= 0.04 ·#operationsLU
0.4 ·#performanceLU

= 1
10TLU. (5.44)

This means that the time to solution using the STP approach, implemented to achieve
40 % of the peak performance, is 10 times faster than an LU decomposition, which
perfectly uses the hardware. We conclude that our newly derived solution algorithm
(Algorithm 3) together with the implementation in YATeTo (section 5.7.1) is a valuable
tool to speed up simulations with poroelastic materials in SeisSol.

5.7.3. Parallel Efficiency
Parallel efficiency is a key component to successfully simulate large realistic scenarios
on the latest supercomputers. It is a quantity to measure the success of strong scaling
studies. When adding more compute units, the available compute power scales lin-
early. The attained performance can not scale accordingly due to theoretical bounds
(e.g. Amdahl’s law [8]) or implementation details (e.g. load imbalance, communication
overhead). The parallel efficiency measures the average per-node performance in a
strong scaling study. If the value stays constant, the available resources are used effi-
ciently and the software scales well. Here, we will investigate how well the poroelastic
material model in SeisSol scales on different supercomputers. In addition, we want to
compare the effects of global and local time stepping.
We begin with the LOHp setting (c.f. section 5.5.5) and focus on a mesh with

7.33× 106 elements. The results of a scaling study from 12 to 400 nodes on SuperMUC-
NG can be seen in Figure 5.19. In this figure, we plot the performance per node, so
perfect scaling corresponds to horizontal lines. No matter how many nodes are used,
they should always operate at the same performance. For global time stepping, we
observe nearly perfect scaling behavior. The per-node performance is at par with the
results from the performance proxy application. When using local time stepping, the
performance starts with a lower value and deteriorates with increasing node count.
The overall drop in performance is due to the more complicated update scheme. If we
use 400 nodes, there are roughly 18 300 elements per node. The time step is allowed to
vary up to a factor of 128 with clusters as small as 2170 elements. Since these elements
are distributed to several nodes, the smallest cluster on each node might become very
small. The resulting short for loops pose a challenge to the OpenMP parallelization.
In this case, the originally good performance of the compute kernel is deteriorated by
synchronization barriers and context switching.
If we directly compare GTS and LTS the performance of polynomial degree 5 on 400

nodes, we see a reduction from 1170 GFLOP/s to 606 GFLOP/s. So, the LTS scheme
achieves 51.8 % of the performance of the GTS scheme. More relevant than bare-metal
performance is time-to-solution, where the GTS scheme requires 203 s to reach the final
time and the LTS scheme only requires 31.9 s. So, despite lower performance, the LTS
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Figure 5.19.: Parallel efficiency study of the LOHp scenario on SuperMUC-NG. We
distinguish between global and local time stepping and different polyno-
mial degrees.

scheme outperforms the GTS scheme by a factor of 6.36, since it requires substantially
less work to be done.
In addition to the LOHp setup on SuperMUC-NG, we benchmark the Sleipner setup

on Frontera. Here, we distinguish between three different mesh sizes: S, M , L with
10.6× 106, 25.7× 106 and 65.0× 106 elements respectively. The meshes are created
with a characteristic edge length of 25 m, 17 m and 10 m. In Figure 5.20, we present
parallel efficiency plots for the three meshes. We observe a similar pattern as for the
LOHp scenario on SuperMUC-NG. In the case of global time stepping, the performance
reaches the same performance as predicted by the proxy application. Nonetheless, we
see a reduction in performance at higher scale, in particular for lower polynomial
degrees on mesh S. For polynomial degree 2, the performance drops between 100 and
200 nodes, and the performance of degrees 3 and 4 starts to deteriorate starting at 200
nodes. The highest degrees 5 and 6 also show a slight decrease, but not as prominent
as the other degrees. For the meshes M and L, the performance stays almost constant
across node count, in particular, when using high-degree polynomials on mesh L.
The more interesting part is the local time stepping variant. On the mesh S, we

see very good scaling from 25 to 800 nodes. The performance is reduced significantly
in comparison to the global time stepping scheme, but once again, the overall time to
solution is lower due to the reduced amount of work. The mesh M shows very good
scaling behavior from 100 to 3000 nodes, with a performance drop afterward, when
approaching the full machine. On the mesh L we see the best scaling behavior. When
using polynomial degrees 4 or 5, we observe almost perfect scaling from 100 to 8192
nodes. Using the polynomial up to degree 6, the number of degrees of freedom is too
large to be accommodated by 100 nodes, so the scaling starts at 200 nodes. For the
highest polynomial degree, the scaling curve shows a slight decrease from 3000 to 6000
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Figure 5.20.: Parallel efficiency study of the Sleipner scenario on Frontera. Again, we
distinguish between global and local time stepping, but this time, we also
consider three differently sized meshes.
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nodes, but it increases again to the full machine. Using polynomials up to degree 6 on
8192 nodes, we reach a sustained performance of 7.71 PFLOP/s. The reported theo-
retical peak performance of Frontera is 38.8 PFLOP/s and its LINPACK performance
is 23.5 PFLOP/s. Thus, the best SeisSol run achieves 19.9 % of the theoretical peak
performance and 32.8 % of the LINPACK performance. Comparing the performance
on 8192 and 200 nodes, we observe a parallel efficiency of 83.0 %.

For a fair comparison between local and global time stepping, we consider the Mesh L
using a discretization with polynomials up to degree 6 on 1600 nodes. The LTS version
achieves an overall performance of 1.72 PFLOP/s, while the GTS version achieves
2.71 PFLOP/s. So, the performance is reduced to 63.7 % by changing from GTS to
LTS. When we consider the time to solution, the LTS version is finished after 2700 s,
while the GTS version needs 8040 s. Here, the LTS version is 2.98 times faster in
comparison to the GTS version, despite the reduced nominal performance.

5.8. Discussion
In this chapter, we have reviewed the equations governing wave propagation through
poroelastic media. The coupling term renders the equation stiff, such that the Cauchy-
Kovalevskaya procedure is not able to integrate the equations with a reasonable time
step. Therefore, the space-time variant of ADER-DG is used. This method is lo-
cally implicit and thus able to integrate the stiff equations with a moderate time step
restriction only given by the CFL condition.
In order to compute the space-time predictor, a medium-sized linear system has to

be solved. We have exploited the particular structure of the linear system to derive
a specialized back substitution algorithm. This algorithm considerably reduces the
computational demands in comparison to an LU decomposition. Furthermore, the al-
gorithm is expressed through tensor contractions and thus the code generator YATeTo
is the perfect fit to generate optimized compute kernels.
We have thoroughly benchmarked the algorithm in a series of test cases. A con-

vergence test ensures that the space-time version of ADER-DG achieves the expected
high-order convergence. The scenario concerning the homogeneous full-space tests the
correct implementation of double-couple and explosive point sources. The proper treat-
ment of material interfaces and of a free surface boundary condition are also verified.
In a more realistic layer over half-space configuration, we put all features together. A
comparison with a 2D FD code shows agreement of both numerical solutions. Here,
we have seen that the presence of the slow P wave close to interfaces requires a much
finer mesh resolution than initially anticipated. In particular, we have shown that the
fluid pressure is subject to sudden changes across interfaces, which appear almost dis-
continuous when considering the length scale of the seismic wavelengths. Furthermore,
we apply the solver to a carbon capture and storage scenario, where thin impermeable
layers divide permeable layers. We compare the true poroelastic model with its elastic
equivalent and see that regarding the matrix displacements, the elastic equivalent is a
sufficient approximation.
The computational efficiency of the newly derived back substitution algorithm is
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tested using the roofline model. The algorithm achieves roughly 40 % of the available
node-level performance on SuperMUC-NG and Frontera. A parallel scalability test
shows excellent scaling up to 8192 nodes of Frontera. With over 7 PFLOP/s, we reach
20 % of the theoretical peak performance of the entire machine using the LTS scheme.
This corresponds to a parallel efficiency of 83.0 %.
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6. Dynamic Rupture
Up to now, we have focused on the wave propagation aspect of earthquake simula-
tions. We have considered explosive and double-couple point sources to excite waves.
Dynamic rupture sources are the more realistic case and thus more relevant. In sec-
tion 2.2.2, we have already discussed their physical properties. In particular, dynamic
rupture sources are required to realistically model earthquake scenarios, if the wave
field interacts with the source dynamics. For example, this happens, when several
faults are present and the seismic waves weaken a formerly stable fault such that it
starts to break, [e.g. 212, 210, 201].
First, we motivate the relevance of dynamic rupture models and review related work.

Then, we summarize the physical fundamentals of dynamic rupture simulations and
give an overview of existing friction models. Next, the realization of dynamic rupture
sources in the ADER-DG framework through numerical fluxes is described. In order
to maintain a flexible code base, a refactorization of the dynamic rupture routines
in SeisSol was necessary. Then, we present implementation details and performance
results of the refactored C++ code. In the next section, we extend the computational
framework from elastic materials to poroelastic materials. A new Riemann solver,
which allows us to use dynamic rupture sources together with poroelastic materials,
is derived. We verify the correctness of the scheme with a convergence test. Finally,
we conclude with two application examples. We show that the poroelastic material
facilitates the rupture of a fault branch. Additionally, we study the behavior of a
poroelastic fault zone.

6.1. Motivation and Related Work
The dynamic rupture model adds new levels of complexity to the computational prob-
lem of earthquake simulations. The wave equation together with kinematic (point)
sources is linear. For the simplest configurations, i.e. layered models, there even are
analytical solvers based on Green’s functions [46]. The dynamic rupture source adds
nonlinearity to the problem. Due to the complexity, analytical solutions even for sim-
ple dynamic rupture models are not known. The SCEC/USGS Spontaneous Rupture
Code Verification Project [108] is a community effort to verify numerical solutions of
certain benchmark cases. In total, there are roughly forty different scenarios, dealing
with various geometries, friction models and material models. Using a web interface1,
each participant can upload their numerical solution and compare it to the solutions
of others. When enough people participate, a unified view of the ground truth can be

1https://strike.scec.org/cvws/cgi-bin/cvws.cgi, accessed August 11, 2023
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formed. In addition to the nonlinearity, the dynamic rupture models require a finer res-
olution. For example, the ADER-DG method used by SeisSol requires approximately
two elements per wavelength to accurately simulate wave fields when using polynomi-
als up to degree 5 as basis functions [130]. If we add a dynamic rupture source, we not
only have to resolve the waves but also the transition from the static to the dynamic
friction parameter. The width of this cohesive zone is typically much smaller than the
wavelength [185]. Thus, finer meshes are required. The added nonlinearity and higher
demands on the mesh resolution make dynamic rupture simulations more expensive in
terms of compute time in comparison to scenarios with kinematic sources.
Dynamic rupture models have been included in various numerical solvers for earth-

quake simulations. We give a broad overview of codes, which have participated in the
SCEC/USGS Code Verification Project.
The Finite Difference (FD) method was one of the first methods, used to simulate

dynamic rupture problems [53, 220]. The idea is to use split nodes at fault inter-
faces [54]. At a split node, the displacement field is duplicated. The difference in the
displacement corresponds to the slip on the fault, which is subject to the friction law.
Non-planar fault interfaces are a challenge for FD methods, but there is a variety of
methods to deal with curved geometries [50, 52, 87, 242, 243] With the summation by
parts (SBP) variant of the FD method, high-order convergence rates are attained [138,
82].
The Finite Element (FE) method can be used for dynamic rupture sources, similarly

to the FD method by using grid doubling techniques. As we have seen earlier, a
finer resolution along the fault is required in comparison to the parts of the mesh,
where only the wave propagation takes place. Non-conforming hexahedral meshes can
be used to easily deal with different resolutions and complex resolutions [15]. The
software EQdyna [74, 73, 72, 71], makes use of the grid doubling technique similar to
the FD methods. It features hexahedral meshes, with additional wedge elements to
accommodate more complex fault geometries. Furthermore, viscoelastic and plastic
materials are supported. Another approach to deal with the discontinuity across the
fault is to use Lagrangian multipliers. The open-source software PyLith implements
this scheme optimized for parallel computing [1, 2]
Spectral Element (SE) methods are a natural extension of FE methods with high-

order basis functions. Fault interfaces can be embedded in SE methods using split
nodes techniques, similar to the FD and FE schemes [127]. The open-source software
SPECFEM3D implements a parallel version of the SE method including dynamic
rupture [96].
The Finite Volume (FV) method discretizes the elastic wave equation by exchanging

flux information between mesh elements. If the interfaces of mesh elements represent
the fault, the numerical flux incorporates the dynamic rupture computations [21, 20].
Using triangular/tetrahedral elements instead of quadrilateral/hexahedral elements
facilitates the treatment of geometrically complex faults even more.
The Discontinuous Galerkin (DG) method is a hybrid of high-order SE methods

and FV methods. On each element, the solution is represented with high-order poly-
nomial basis functions. Across elements, the solution is allowed to be discontinuous
and numerical fluxes are used to approximate the exchange of information between
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elements. First, we want to focus on SeisSol, which uses the ADER-DG method for
dynamic rupture simulations. The methodological research towards dynamic rupture
simulations with the ADER-DG was done by de la Puente et al. [58] and Pelties et al.
[182]. Based on the wave field at both sides of the fault and the slip history, an im-
posed state at the fault interface is computed, which is consistent with the wave field
and the friction law. The imposed state replaces the state Q∗ at the interface, which
is typically the solution of the Riemann problem (c.f. section 3.2). This imposed state
is used to compute a flux term at the fault. Later, dynamic rupture routines were
optimized for parallel scalability by Heinecke et al. [110] and Uphoff [213].
Discontinuous Galerkin methods are also used by other codes to simulate dynamic

rupture problems. ExaHyPE is based on the same ADER-DG scheme but on hexahe-
dral meshes with a focus on adaptive mesh refinement. The treatment of dynamic rup-
ture interfaces is conceptually equivalent to the method used by SeisSol [83]. DGCrack
uses tetrahedral meshes in combination with Runge-Kutta time stepping. With hp-
adaptivity, the method can react flexibly to different accuracy requirements in different
regions [200]. While the previous methods solved the first-order elastic wave equation,
Zhang et al. [240] solve the second-order elastic wave equation with the Discontinu-
ous Galerkin method. Their approach includes a novel mixed-flux formulation, which
reduces nonphysical oscillatory artifacts in the solution.
All methods presented so far discretize the computational domain by some kind

of grid or mesh. The boundary integral (BI) method takes a different approach. It
just considers the faulting process, i.e. the dimension of the computational domain is
reduced from three to two. The wave field in the bulk is computed from the traction at
the fault using analytical solutions for wave propagation in the elastic half-space [100,
146]. Boundary integral methods are computationally cheaper, as they reduce the
dimension of the computational domain, but they are restricted to homogeneous half-
space geometries. On the other hand, mesh-based methods are geometrically flexible
and can deal with heterogeneous materials. The coupling of both methods combines
both advantages: the complicated fault interface is embedded in an FE mesh. Further
away from the fault, the FE domain is coupled to the BI domain, which takes care of
the wave propagation [161, 7].
Dynamic rupture modelers have been interested in elastic materials, with possible

viscoelastic or elastoplastic extension. The interaction of a solid and a fluid phase in
the framework of poroelastic materials as described in chapter 5 has been neglected
this far. Very recently, the influence of fluid-induced weakening has gained more
interest. BI methods [154] and FE methods [178, 179] are being used to study the
weakening effects of pore-pressure perturbations on dynamic rupture scenarios. While
the first method is geometrically restricted to simple geometries, the second method
only considers two-dimensional scenarios. One of the main objectives of this thesis is
to introduce dynamic rupture sources within poroelastic materials. The ADER-DG
method allows us to consider complicated geometries in 3D.
All the methods provided above consider the frictional failure of a prescribed fault.

This means that a domain scientist has to gather knowledge about pre-existing faults
from a plethora of different sources. See e.g. the method section by Taufiqurrahman et
al. [201] for a detailed overview of the workflow required to obtain a dynamic rupture
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model for a real-world earthquake.
Another approach is to model the fault by a damage variable in the bulk [156, 92].

Here, the fault is not infinitesimally small, but volumetric. It can have an arbitrary
shape, e.g. cut through elements freely or grow coseismically. While these methods are
a good choice for studying crack propagation or fault gouges, the majority of dynamic
rupture modelers focus on methods with prescribed fault structures.

6.2. Physical Principles of Dynamic Rupture
In this chapter, we will revisit the physical equations, which are the foundation of
dynamic rupture earthquake models. There is a lot of literature on dynamic rupture
modeling, here we follow the recent work of Ramos et al. [185], which compiles all
scattered information in one summary. Recall Figure 2.4, which demonstrates the
fault geometry. The fault Γ is the union of several 2D manifolds embedded in the
3D computational domain Ω. Hence, almost everywhere except for intersections and
kinks, we can define a unit normal n. The fault is embedded in the volume, where
stress σ and velocities v are known. At a given point x0 ∈ Γ, the stress field exerts the
force t = σ · n on the fault. This traction can be further decomposed into a normal
component σn = t·n and a tangential component τ = t−σnn. Note that σn is a scalar,
denoting the magnitude of the normal stress, but neglecting the direction, whereas τ
is a vectorial quantity, which includes the direction. The fault locally divides the
surrounding space into two subspaces. In the following, we will denote the quantities
on one side with a + superscript and quantities on the other side with a − superscript.
The fault can be either locked or sliding. In the locked state, the velocity field

is continuous across the fault: v+ = v−. If the fault slides, the velocity field is not
continuous anymore. We denote the difference of the velocity field across the fault with
JvK = v+ − v−. Fault opening is prohibited in this model, so the normal component
of the slip rate vanishes: JvK · n = 0. In other words, the normal component of the
velocity is always continuous across the fault: v+ ·n = v− ·n. Therefore, the jump of
the velocities across the fault is tangential to the fault, and we denote the tangential
slip rate as s := JvK− (n · JvK)n = JvK.
The friction law relates normal stress, traction and slip rate. The fault strength is

given as
τS = max (0,−µfσn − C) . (6.1)

Here µf is a dimensionless friction coefficient. In some scenarios, the constant cohesion
C adds to the fault strength. By convention a negative normal stress denotes com-
pression. The shear traction is bounded by the fault strength: ‖τ‖ ≤ τS . If the shear
traction is smaller than the fault strength, the fault is locked. If the shear traction
equals the fault strength, the fault is sliding, where the slip rate can be obtained from:

τSs− τ‖s‖ = 0. (6.2)

Typically, the friction coefficient µf is not constant in time. It is subject to a rate-
and-state friction law, which can be expressed as a system of differential-algebraic
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equations:
µf = f (‖s‖, ψ) ,
∂ψ

∂t
= g (‖s‖, ψ) .

(6.3)

Here, we have introduced the state variable ψ. The most simple case is linear slip-
weakening friction [10], where the state variable denotes the slip path length. The
friction coefficient is initially at a static value µs, which linearly drops to the dynamic
friction coefficient µd. The critical slip distance Dc describes how far the fault has to
slip before the dynamic friction coefficient is attained:

µf = f(‖s‖, ψ) = µs −min (ψ/Dc, 1) (µs − µd),
∂ψ

∂t
= g(‖s‖, ψ) = ‖s‖.

(6.4)

Other common friction laws are the velocity weakening friction laws, where the slip
velocity drives the friction parameter: These friction laws are based on laboratory
experiments and theoretical considerations [66, 65, 191, 67]. In SeisSol, we support
three different cases.

Ageing Law

f (‖s‖, ψ) = a sinh−1
(‖s‖

2V0
exp

(
f0 + b ln(V0ψ/L)

a

))
g (‖s‖, ψ) = 1− ‖s‖ψ

L
.

(6.5)

Here, a is the direct and b is the evolution effect. In addition, we observe the
characteristic slip scale L, the reference slip velocity V0 and the reference friction
parameter f0.

Slip Law

f (‖s‖, ψ) = a sinh−1
(‖s‖

2V0
exp

(
f0 + b ln(V0ψ/L)

a

))
g (‖s‖, ψ) = −‖s‖ψ

L
ln
(‖s‖ψ

L

)
.

(6.6)

The slip law has the same parameters a, b, L, V0 and f0 as the ageing law. It only
differs in the evolution function g. For the slip and the aging law, one often sees
the alternative formula f (‖s‖, ψ) = f0 + a ln

(
‖s‖
V0

)
+ b ln

(
V0ψ
L

)
[e.g. 127, 180].

For large x, the logarithm ln(x) can be approximated with sinh−1(x/2), while
for small x, the logarithm has a singularity. It is common to use the regularized
version with sinh−1 instead of the logarithm [146, 189, 18]. Since the benchmark
description for TPV101 and TPV102 from the SCEC/USGS code verification
project use the regularized versions [108], we follow this convention.
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Strong velocity weakening

f (‖s‖, ψ) = a sinh−1
(‖s‖

2V0
exp

(
ψ)
a

))
g (‖s‖, ψ) = −‖s‖

L

(
ψ − a ln

(
2V0

‖s‖ sinh
(
µss(‖s‖)

a

)))
.

(6.7)

The steady-state friction coefficient µss is given by

µss(‖s‖) = µw +
f0 − (b− a) ln

(
‖s‖
V0

)
− µw(

1 +
(
‖s‖
Vw

)8
)1/8 . (6.8)

The parameters a, b, L, V0 and f0 have the same meaning as for the aging and
the slip law. In addition, we require a weakening friction coefficient µw and a
weakening slip velocity Vw.

In all these three friction laws, weakening and strengthening of the fault is controlled
by the parameters a and b: If a− b < 0, the fault is velocity weakening, for a = b it is
neutral and for a− b > 0 the fault is velocity strengthening [185].
Typically, linear slip-weakening friction gives rise to crack-like behavior, i.e. after

the first wave has passed through the point, the fault remains in a sliding state. The
velocity-weakening friction laws support pulse-like behavior. The fault is allowed to
heal after being weakened by the first wavefront and rupture completely arrests [185].
But also in the velocity weakening friction law, crack-like behavior is observed de-
pending on the background stress level and the size of the nucleation patch [93]. The
strong velocity weakening friction law shows crack or pulse-like behavior depending
on the background stress level [81]. The framework of velocity weakening friction
laws is compatible with seismic cycling scenarios on the time scale of several hundred
years [125].
In reality, faults are not infinitesimally thin, but have a finite length and form

a fault gouge, which is filled with damaged rock and fluids. During earthquakes,
friction heats the surrounding rock and the fluid pressure in the fault gouge rises. The
thermal pressurization process takes these effects into account and acts as an additional
weakening process on infinitesimally thin faults. In SeisSol, we use the same diffusion
solver as in the BIEM solver [177, 223].

6.3. Dynamic Rupture and the ADER-DG Method
The Discontinuous Galerkin method allows discontinuities in the numerical solution
across element interfaces. Thus, it is a natural choice to integrate dynamic rupture
computations through numerical fluxes. The original research of combining ADER-
DG and dynamic rupture goes back to de la Puente et al. [58] and was later extended
by Pelties et al. [182]. The approach of Duru et al. [83] is similar to the one used in
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SeisSol but with a focus on hexahedral meshes. Uphoff [213] collects a good summary
of dynamic rupture simulations in SeisSol.
In the following, we focus on the interface between two elements, which we will

denote as E+ and E−. The solution is given as Q+ and Q− respectively. Recall from
sections 3.1 and 3.4.1 that we take care of the flux by computing the integral∫ ti+1

ti

∫
∂E

Ψm
k (s)Fp(s, t)dsdt, (6.9)

where Fp(s, t) = Fp(Q+(s, t),Q−(s, t)) is a proper numerical flux term. If we use
Godonuv’s method (c.f. section 3.2), the flux is A±Q∗. Here Q∗ is the solution of
the Riemann problem with initial states Q+ and Q−. The trick behind the dynamic
rupture computations is to replace Q∗ by an imposed state QDR, which is consistent
with the friction law and the states Q+ and Q−. The integrals in Equation (6.9) are
computed numerically with a quadrature rule. In the first step, we use the predictor
(based on the Cauchy-Kovalevskaya expansion or the space-time predictor) to evaluate
the numerical solutions at the temporal and spatial integration points. Based on these
nodal values, we compute the interface state Q∗ for all spatiotemporal quadrature
points consistent with the Riemann problem as if there was no fault. This value is
used to evaluate the friction law. If the fault is sliding, we compute the slip rate and
evaluate the imposed state QDR. If the fault is locked, we set QDR = Q∗. With the
imposed states in place, we can evaluate the numerical flux across the interface at all
spatiotemporal quadrature points and compute the integral Equation (6.9)
The remaining open task is computing a slip rate, which is consistent with the

friction law and the surrounding states. We loosely follow Uphoff [213] and Duru et al.
[83]. As in section 3.2, we assume that the solution is already rotated into a fault-
aligned coordinate system with the first coordinate axis pointing in the same direction
as the fault normal. The rotated states on either side of the fault are then Q̃+ and
Q̃−. These values are used as initial conditions in the Riemann problem. Now, we
want to compute states Qb and Qc (c.f. Figure 3.3), which are the solution of the
Riemann problem at the interface for t > 0. The traction across the interface has to
be continuous, so we set

tbi = tci =: t∗i . (6.10)
We know the jump of the velocities between the initial conditions

JṽiK := ṽ+
i − ṽ−i , (6.11)

but actually, we are interested in the jump of the velocities directly at the interface.

Jv∗i K := vci − vbi , (6.12)

because this is the slip rate s.
We can employ the Rankine-Hugoniot jump conditions to relate the jump Jv∗i K with

the jump JviK and the tractions t̃i and t∗i :

Jv∗i K = JṽiK + t̃
+
i

Z+
i

+ t̃
−
i

Z−i
− t
∗
i

ηi
(6.13)
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with ηi = Z+
i
Z−

i

Z+
i

+Z−
i

(c.f. [213, eq. 4.51]). The Zi = ρvi denote the wave impedances,
where the first wave speed is the P wave speed and the second and third wave speed
are the S wave speed. We can reorder Equation (6.13) such that the terms at the
interface and the terms from within the elements are separated:

ηiJv∗i K + t∗i = ηiJṽiK + ηi

(
t̃
+
i

Z+
i

+ t̃
−
i

Z−i

)
︸ ︷︷ ︸

=:θi

. (6.14)

The θi are determined from the surrounding wave field. This equation gives conditions,
which slip rate and traction at the fault interface have to fulfill in order to be consistent
with the surrounding wave field. It remains to compute values tDR

i and
q
vDR
i

y
, which

solve Equations (6.2) and (6.14). First, we note that fault opening is not allowed,
hence

q
vDR

1
y

= 0 and therefore tDR
1 = θ1. Now, we are left with the following four

equations:
τS

q
vDR

2
y

= tDR
2 ‖s‖, η2

q
vDR

2
y

+ tDR
2 = θ2,

τS
q
vDR

3
y

= tDR
3 ‖s‖, η3

q
vDR

3
y

+ tDR
3 = θ3,

(6.15)

where τS = τS(‖s‖, ψ) depends on the tangential slip rate at the interface and on the
state variable (c.f. Equations (6.1) and (6.3)). We combine the equations in each line
of Equation (6.15) to eliminate tDR

i :

(τS + η2‖s‖)
q
vDR

2
y

= θ2‖s‖,
(τS + η3‖s‖)

q
vDR

3
y

= θ3‖s‖.
(6.16)

Since
q
vDR

1
y

= 0, we conclude ‖s‖ =
√q

vDR
2

y2 +
q
vDR

3
y2. Plugging Equation (6.16)

into this formula yields:

‖s‖ =
√q

vDR
2

y2 +
q
vDR

3
y2

=
√

(τS + η2‖s‖)−2 ‖s‖2θ2
2 + (τS + η3‖s‖)−2 ‖s‖2θ2

3

= ‖s‖ (τS + η‖s‖)−1
√
θ2

2 + θ2
3.

(6.17)

Note that Equation (6.17) only holds in the isotropic case, when η = η2 = η3. Equa-
tion (6.17) has two solutions: either s = 0 or τS + η‖s‖ =

√
θ2

2 + θ2
3 (c.f. [213, p.49]

or [82, eq. 41]). If ‖s‖ = 0, the fault is locked, and we obtain tDR
i = θi. Otherwise, the

fault is sliding, and we need to solve a nonlinear system of equations. As τS depends
on ‖s‖, obtain a nonlinear equation:

τS(‖s‖, ψ) + η‖s‖ =
√
θ2

2 + θ2
3 (6.18)

for the slip rate. Once we have computed the absolute value of the slip rate ‖s‖ at
the interface, we can compute the slip rates

q
vDR

2
y
and

q
vDR

3
y
using Equation (6.16).
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Finally, we compute the traction values tDR
2 and tDR

3 with Equation (6.15). The
traction tDR

i = tbi = tci is continuous. The velocities are not continuous, since s =
vci − vbi . We can compute the velocities at either side of the fault with (c.f. [213, eq.
4.60])

vbi = ṽ−i + (tDR
i − t̃−i )/Z−i

vci = ṽ+
i − (tDR

i − t̃+i )/Z+
i .

(6.19)

The imposed states are Qb or Qc depending on the side of the fault. In order to
compute the flux term at every spatiotemporal quadrature point, we multiply the state
at the interface with the flux matrix A1 and rotate back into the global coordinate
system. Note that Equation (6.9) contains an integral in time and the friction pa-
rameters change over time. We compute the integral by quadrature, so we evaluate
the slip rate and traction values at several sub-time steps. After the friction law has
been evaluated at one sub-time step, we update the friction parameter µf and the
state variable ψ according to the evolution equation before we continue with the next
quadrature point in time. If that is done, the numerical quadrature rule allows us to
evaluate the integral in Equation (6.9).

6.4. Implementation Details
SeisSol was originally a pure Fortran code. Over time, more and more parts of the code
have been translated to C++. The dynamic rupture routines have been one of the last
remaining Fortran parts of the code. The source code has not been touched in a few
years except for a few bug fixes. In order to enable a GPU port2 and the extension to
poroelastic models, a refactorization of the code was necessary. While the refactoring
techniques have been summarized by Knoll [135], the reimplementation of the friction
solver has been done by myself together with R. Dorozhinskii. In this chapter, we will
revisit the techniques used while refactoring and give first performance results.
We can categorize the different friction laws from section 2.2.2 as in Figure 6.1, which

is the basis of the implementation in SeisSol. The first one is linear slip-weakening
friction, where Equation (6.18) can be solved analytically. The second class is rate-
and-state friction. This contains all friction laws where the friction coefficient depends
on the slip rate. Thus, a Newton-Raphson solver is required for Equation (6.18). The
third class has not been discussed so far, since it technically is not a friction law. As
the name suggests the imposed slip rate friction law computes the slip rate analytically
regardless of the surrounding wave field.
To reduce code duplication we use an object-oriented programming model with the

class BaseFrictionLaw at the top of the class hierarchy. All three major subclasses
implement the function calcSlipRate(), which computes the slip rate based on the
friction law. In the case of linear slip-weakening friction and imposed slip rates, this
can be done directly. The rate-and-state friction law requires the newtonSolver()
function, which calls the functions f() and g(). These are implemented in the sub-
classes.

2See the parallel dissertation of R. Dorozhinskii
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friction laws

BaseFrictionLaw

calcSlipRate()

LinearSlipWeakening

calcSlipRate()

RateAndState

calcSlipRate()
newtonSolver()
f()
g()

ImposedSlipRates

calcSliprate()

SlowVelocityWeakening

f()

StrongVelocityWeakening

f()
g()

AgeingLaw

g()

SlipLaw

g()

Figure 6.1.: UML diagram of all supported friction laws in SeisSol. In the case of
linear slip-weakening friction, we can solve for the slip rate analytically.
For rate-and-state friction, the slip rate is calculated numerically with a
Newton-Raphson solver. If imposed slip rates are used, no friction law is
evaluated, but the slip rate is directly computed using analytical formulas.
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Listing 6.1: Example of the CRTP technique applied to a simple root finding problem
using a Newton-Raphson algorithm.

template <class Function >
struct NewtonSolver {

double findRoot ( double initialValue ) {
for (int step = 0; step < 1000; step ++) {

double f = static_cast < Function *>( this)->f( initialValue );
double df = static_cast < Function *>( this)->df( initialValue );
initialValue = initialValue - f / df;

}
return initialValue ;

}
};

struct Parabola : NewtonSolver <Parabola > {
double f( double x) { return x * x - 2 * x - 3; }
double df( double x) { return 2*x - 2; }

};

// use as
Parabola * p = new Parabola ();
double root = p-> findRoot (0.0);

Typically, object-oriented programming generates some overhead in C++, since the
correct implementation has to be found in the virtual function table for every function
call. With static polymorphism, this problem is resolved, since the correct implemen-
tation is already chosen at compile time. We use the Curiously Recurring Template
Pattern (CRTP) [44] to omit code redundancy and increase performance. We explain
the idea behind the CRTP using a simple example. Assume the task is to write a
Newton-Raphson solver, which can be used with several target functions. The code
example is given in Listing 6.1. First, we define a class NewtonSolver, which gets a
Function as a class template parameter. The algorithm is implemented using that
template parameter. Later, we define a class Parabola, which inherits from the class
NewtonSolver, thus it has the function findRoot as a member. But by using tem-
plates, we completely omit the keyword virtual, which would imply the use of vir-
tual function tables. When writing p->findRoot(0.0), the target function is already
known at compile time. At runtime, no indirect lookup has to be performed. A second
target function F could be implemented in the same wave as the parabola by extending
NewtonSolver<F> and implementing the function f and df.
The friction law requires the solution of nonlinear equations, so unfortunately the

code generator YATeTo is not suitable for all computations in the dynamic rupture
kernels. In order to achieve a good node-level performance, the usage of vector registers
using the Single Instruction Multiple Data (SIMD) paradigm is crucial. On each
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interface, the friction law has to be evaluated at a certain number of quadrature
points. They depend on the degree of the spatial basis functions, which are used
for the DG approximation. We can only vectorize in space because there is a data
dependency between subsequent time steps. There are several ways to enable SIMD
parallelism in code. We refrain from using SIMD intrinsics itself (e.g. _mm256_add_pd
for the addition of two vectors each containing four double precision floating-point
numbers), since they are not portable between architectures. Instead, we rely on the
auto-vectorization features of the compiler. In order to facilitate SIMD parallelism,
we add dummy quadrature points until total the number of quadrature points is a
multiple of the vector register width. To guide the auto-vectorization of the compiler,
we add #pragma omp simd to for loops, whenever we want the compiler to optimize
this loop with SIMD instructions. This tells the compiler that SIMD parallelism is
applicable to the loop, i.e. there are no data dependencies between the individual
iterations. There are a lot of function calls involved, e.g. to the functions f and g,
which define the friction law. If a function is called inside such a SIMD loop, it
has to be marked with #pragma omp declare simd. This indicates that the function
body can be vectorized. For example, this implies that a function double f(double
a, double b) can be transformed to a function __vec f(__vec a, __vec b), which
evaluates f componentwise on the vectors. Using these instructions in the right place,
the compiler can generate vectorized code [134]. With this technique applied, over
99 % of the arithmetic instructions in the dynamic rupture kernels are vectorized.
In order to compute the numerical fluxes, we apply numerical quadrature on the

element interfaces. The slip rate is first computed on all quadrature points and then
aggregated. Therefore, we need a quadrature rule for triangles. There are several
ways to choose the locations of the quadrature points. Originally, SeisSol used the
quadrature rules by Stroud [197]. To construct these rules, we consider a product rule
on a square first and then collapse two vertices of the square to obtain a triangle. This
means that quadrature points are clustered in the collapsed corner. There exists a
variety of different quadrature rules, which achieve the same accuracy, but with fewer
points, e.g. the ones by Dunavant [78]. Figure 6.2 shows a comparison of the Stroud
and Dunavant rules of the same accuracy. We observe that the Dunavant rule can
compute the same integral with fewer points and hence less computational demand.
Since the compute-heavy friction law has to be solved at every quadrature point, using
the Dunavant rule, reduces the computational load of the dynamic rupture kernels.
We test the efficiency of the new pure C++ implementation of the dynamic rupture

routines on an earthquake-tsunami setup [140]. The setup features strong velocity-
weakening rate-and-state friction on a complicated fault geometry and a fully-coupled
tsunami solver [139]. We consider three different meshes with different resolutions. The
mesh L contains 89 500 000 elements, the mesh XL contains 271 000 000 elements and
the mesh XXL contains 518 000 000 elements. In Figure 6.3, we see scaling results for
the different versions of the dynamic rupture implementation up to the full machine of
SuperMUC-NG. On the mesh L, the Dunavant rule outperforms the other two versions.
The Fortran and C++ versions of the Stroud quadrature rule show almost the same
performance curve, which is expected as the workload is identical. For this mesh, the
strong scaling limit is reached quite early, as the relatively small mesh is not large
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Figure 6.2.: Comparison of the Stroud and the Dunavant quadrature rule on the unit
triangle. The diameter indicates the quadrature weight at that point.
Both rules integrate polynomials up to degree 6 exactly.

800 1584 3168 6336

Nodes

0

200

400

600

800

1000

1200

G
F

L
O

P
/
s

p
e
r

n
o
d
e

Mesh L

800 1584 3168 6336

Nodes

Mesh XL

800 1584 3168 6336

Nodes

Mesh XXL

Stroud / Fortran Dunavant / C++ Stroud / C++

Figure 6.3.: Parallel efficiency of the different dynamic rupture implementations on
meshes of different sizes.
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Figure 6.4.: Speedup and parallel efficiency of the small scale dynamic rupture bench-
mark case.

enough to saturate the whole machine of SuperMUC-NG. On the two larger meshes,
the effect of the dynamic rupture simulation is not visible that clearly anymore. We
suspect that at this point of the block operation other effects, such as power capping
and dynamic clock frequency changes, have taken place, which hide the effect of the
dynamic rupture kernels.
To benchmark the dynamic rupture simulation further, we have taken a scenario

with fewer elements into account. Since this setup can run on a smaller scale, we
expect that no other HPC pitfalls interact with the performance measurements, and
we will see a clearer picture. We use the same scenario as above but without the
water layer [210]. The mesh now only contains 7 710 000 elements, and we scale from
12 to 800 nodes of SuperMUC-NG. The speedup and parallel efficiency of this scaling
experiment are shown in Figure 6.4. In this case, the difference between C++ and
Fortran is larger than the difference between the quadrature rules. Still, we see a
slight advantage of using the Dunavant rule over using the Stroud rule. The C++
implementation with the Dunavant rule yields the shortest runtimes.
The results show that the refactoring of the dynamic rupture routines has improved

the performance of the friction solver in general. In addition, the C++ version is
more versatile and makes further optimization (GPU port) and feature extensions
(poroelasticity) possible.

6.5. Dynamic Rupture in Poroelastic Materials
Now, we want to draw attention to poroelastic materials, which have been introduced
in chapter 5. The crucial part is that the fluid pressure weakens the fault. Numerical
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Figure 6.5.: Solution structure of the poroelastic Riemann problem. In addition to the
P and S waves, we also observe the slow P wave (subscript b for Biot). We
observe left and right-hand states (Q̃−, Q̃+) and six intermediate states
Qa,Qb,Qc,Qd,Qe,Qf , separated by the slow and fast P and the S waves.

examples have shown that this weakening mechanism leads to facilitated supershear
transition [178, 179, 154]. Pampillón et al. [178] employ the commercial software
COMSOL to solve the poroelastic wave equation with a dynamic rupture source in
2D, while Li and Zhang [154] use a boundary integral method in 3D. We aim to enable
dynamic rupture simulations in complicated 3D geometries with poroelastic materials
in SeisSol. In this chapter, we will derive how to include dynamic rupture sources in
poroelastic media using the same approach as in section 6.3 for elastic materials.
Again, the task is to compute the state at the interface based on a Riemann problem.

Without loss of generality, we consider a coordinate system that is aligned with the
interface, such that the axis x1 points in the same direction as the fault normal. If
we examine the Riemann problem for poroelastic materials, we obtain the solution
structure as presented in Figure 6.5. For poroelastic materials, the flux matrix A has
eight non-zero eigenvalues: ±vp,±vs,±vb, which are the speed of the P wave, the S
wave (appears twice) and the slow P wave (with a subscript b for Biot). Hence, eight
conditions at the interface need to be specified to properly define the Riemann problem.
At an interface in the locked state, traction, solid particle velocity, fluid pressure and
relative fluid particle velocity in the normal direction have to be continuous [172, eq.
3.1]:

σc11 = σd11, σc12 = σd12, σc13 = σd13, pc = pd,

vc1 = vd1, vc2 = vd2, vc3 = vd3, qc1 = qd1.
(6.20)

Let R be the matrix of eigenvectors of A, such that the eigenvectors are sorted by
their respective eigenvalues. Unlike in the elastic case, to the best knowledge of the
author, an analytical expression for the eigenvectors is not available. So a numerical
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eigenvalue solver is required. Analogous to Equation (3.23), we infer:

Qc − Q̃− = α1r
−
1 + α2r

−
2 + α3r

−
3 + α4r

−
4

Q̃+ −Qd = α10r
+
10 + α11r

+
11 + α12r

+
12 + α13r

+
13.

(6.21)

The eigenvectors r5, r6, r7, r8 and r9 do not contribute to the solution of the Riemann
problem, since their respective eigenvalues are all 0. We now slice out four 4 × 4
matrices:

R =



1 2 3 4 5 6 7 8 9 10 11 12 13

σ11 ∗ ∗ ∗ ∗
σ22 ∗ ∗ ∗ ∗ ∗
σ33 ∗ ∗ ∗ ∗ ∗
σ13 ∗ ∗
σ23 ∗
σ13 ∗ ∗
v1 ∗ ∗ ∗ ∗
v2 ∗ ∗
v3 ∗ ∗
p ∗ ∗ ∗ ∗
q1 ∗ ∗ ∗ ∗
q2 ∗ ∗ ∗
q3 ∗ ∗ ∗



. (6.22)

Here a ∗ denotes a non-zero entry. The matrices R−T and R+
T correspond to the

traction values T =
(
σ11 σ12 σ13 p

)T , whereas the matrices R−V and R+
V

correspond to the velocity values V =
(
v1 v2 v3 q1

)T . In addition, we define
α− =

(
α1 α2 α3 α4

)T and α+ =
(
α10 α11 α12 α13

)T . Now, we can write
Equation (6.21) as:

T c − T̃ − = R−T α
−, Vc − Ṽ− = R−Vα

−,

T̃ + − T d = R+
T α

+, Ṽ+ − Vd = R+
Vα

+.
(6.23)

Note, that at a dynamic boundary interface, we have continuity of the traction parts
(T ∗ = T c = T d), but the tangential velocities are allowed to be discontinuous (c.f. sec-
tion 6.3). Since we do not allow for fault opening, we set v∗1 = vc1 = vd1 and
q∗1 = qc1 = qd1. In Equation (6.13), we have established the relation between the
traction at the interface and the initial values of the Riemann problem. Following the
derivation for elastic materials ([213, eq. 4.50]), but now for a poroelastic material, we
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find:

JV∗K = Vd − Vc

=
(
Ṽ+ −R+

Vα
+)− (Ṽ− +R−Vα

−)
= Ṽ+ − Ṽ− −R+

V
(
R+
T
)−1 (T̃ + − T d

)
−R−V

(
R−T
)−1 (T c − T̃ −)

= Ṽ+ − Ṽ− −R+
V
(
R+
T
)−1 T̃ + +R−V

(
R−T
)−1 T̃ −

+
(
R+
V
(
R+
T
)−1 −R−V

(
R−T
)−1
)
T ∗.

(6.24)

We define (Z±)−1 := R±V
(
R±T
)−1 and η−1 := R−V

(
R−T
)−1 − R+

V
(
R+
T
)−1. In analogy

to Equation (6.13), we write:

JV∗K =
q
Ṽ

y
−
(
Z+)−1 T̃ + +

(
Z−
)−1 T̃ − + η−1T ∗. (6.25)

If we apply the same procedure to the elastic case, with the matrix R scaled correctly,
we observe that all involved matrices are diagonal:

R±T =

1
1

1


R−V =

1/Z−p
1/Z−s

1/Z−s


R+
V =

−1/Z+
p

−1/Z+
s

−1/Z+
s

 .

(6.26)

This allows us to write Equation (6.13) component-wise and circumvent the quite com-
plicated matrix structure of Equation (6.25). For the poroelastic case, unfortunately,
the matrices are not diagonal. We can derive analytically that the matrices Z± and η
and their inverse have the form

M =


a 0 0 d
0 b 0 0
0 0 b 0
e 0 0 c

 . (6.27)

Hence, the more complicated matrix structure of Equation (6.25) is indeed necessary.

Example 1. We consider a poroelastic material with the same parameters as
given in Table 5.4 and its Gassmann equivalent with parameters: µ = 6.40× 109 Pa,
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λ = 6.92× 109 Pa, ρ = 1660 kg/m3. In the poroelastic case, we find:

(
Z−
)−1 =


1.85 0 0 −0.10
0 3.28 0 0
0 0 3.28 0
−0.11 0 0 −1.87

× 10−7,

η =


2.69 0 0 −0.15
0 1.53 0 0
0 0 1.53 0
−0.16 0 0 −2.66

× 106.

(6.28)

Since there are four distinct waves, the matrices have size 4× 4. In elastic materials,
the slow P wave is not present, so the waves only have size 3 × 3. For the elastic
equivalent, we find

(
Z−
)−1 =

 1.75 0 0
0 3.06 0
0 0 3.06

× 10−7,

η =

 2.86 0 0
0 1.63 0
0 0 1.63

× 106.

(6.29)

Here, we note that the upper left 3×3 submatrices in the poroelastic case are substan-
tially similar to the matrices in the elastic equivalent. A slight difference is expected
nonetheless, since the elastic equivalent does not accommodate the slow P wave per-
fectly.

The structure of the matrix only couples v1 and q1, but the tangential velocity
components v2 and v3 are still independent as in the elastic case. Similar to the
elastic case, we define

Θ := η
(q
Ṽ

y
−
(
Z+)−1 T̃ + +

(
Z−
)−1 T̃ −

)
. (6.30)

The tractions and velocities at the fault now have to be consistent with the stress
transfer functionals:

ηJV∗K + T ∗ = Θ. (6.31)

This is a vector-valued equivalent of Equation (6.14). Again, we have to find values
VDR and T DR, which are consistent with the friction law and Equation (6.31). We do
not allow fault opening and additionally, we assume that the fault does not alter the
flow of fluid across the fault:

q
vDR

1
y

= 0 and
q
qDR

1
y

= 0. As a direct consequence, we
obtain tDR

1 = Θ1 and pDR = Θ4. For the tangential parts of the traction, we have to
solve a system of linear equations similar to Equation (6.15):

τS
q
vDR

2
y

= tDR
2 ‖s‖, η22

q
vDR

2
y

+ tDR
2 = Θ2,

τS
q
vDR

3
y

= tDR
3 ‖s‖, η33

q
vDR

3
y

+ tDR
3 = Θ3,

(6.32)
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where η22 and η33 are coefficients of the matrix η. This equation is scalar and equivalent
to Equation (6.15). If η := η22 = η33, we can continue as in the elastic case and solve
Equation (6.18) to obtain the slip rate on the interface. In the isotropic poroelastic
case, the values η22 and η33 coincide. We recall that the fluid pressure has a weakening
effect on the fault: When computing the fault strength τS = max (0,−µfσn − C), we
have to consider the augmented normal stress σ̃n = t1 − p. We can apply the same
Newton-Raphson solver as in the elastic case to calculate the slip rate. Once we have
computed the magnitude of the slip rate ‖s‖, we can compute the individual compo-
nents

q
vDR

2
y
and

q
vDRy

3 from Equation (6.16). Then continue with Equation (6.15)
to compute the missing traction values tDR

2 and tDR
3 .

From the friction solver, we obtain traction T DR and slip rates
q
VDRy

at the fault,
which we then have to pass through the Riemann problem to compute the states at the
interface. We already established T c = T d = T DR, but the scheme for the velocities is
a bit more complicated. From Equation (6.23), we conclude that we can compute Vc
and Vd from V−, V+ and α±. The coefficients α± can be computed from the traction
values T c, T d, T − and T + similarly as in Equation (6.19):

Vc = V− +R−Vα
−

= V− +R−V
(
R−T
)−1 (T c − T −)

= V− +
(
Z−
)−1

(
T̂ − T −

)
Vd = V+ −R+

Vα
+

= V+ −R+
V
(
R+
T
)−1 (T + − T d

)
= V+ −

(
Z+)−1

(
T + − T̂

)
.

(6.33)

Now, the states Qc and Qd consistent with the friction law and surrounding wave field
are given at every spatiotemporal quadrature point. We use numerical quadrature to
evaluate the flux term, just as in the elastic case.
Here, we have established a numerical scheme to include dynamic rupture sources

in poroelastic media. The poroelastic version closely resembles the elastic version. In
the elastic case, the matrices involved are diagonal such that scalar multiplications are
sufficient, while in the poroelastic case, matrix multiplications are necessary. Since
matrix multiplications are the main ingredient of the performance optimizations in
SeisSol (c.f. section 3.6.2), the poroelastic variant can easily be integrated into SeisSol.
This is achieved by translating Equation (6.33) to a YATeTo kernel.

6.6. Verification and Application Examples
In the last section, we have established an algorithm to include dynamic rupture
sources in poroelastic media, in a way such that the pressure at the interface is prop-
erly accounted for. Now, we verify that the implementation works as expected. Since
dynamic rupture simulations in poroelastic media are still very rare, there is not a
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Table 6.1.: Material parameters used for poroelastic dynamic rupture convergence test.
Parameter Value
KS 2.67× 1011 Pa
ρS 2.50× 103 kg/m3

λM 8.00× 109 Pa
µM 8.00× 109 Pa
φ 0.100
κ 1.00× 10−14 m2

T 1.00
KF 5.00× 108 Pa
ρF 1.00× 103 kg/m3

ν 1.00× 10−3 Pa s

preferred benchmark for verification yet. We will first use a convergence test, where
we simulate the same scenario on a sequence of differently refined meshes. Once this is
done, we investigate two more realistic scenarios to show how the dynamic rupture si-
mulations in poroelastic media differ from their elastic counterparts. First, we consider
a fault branching experiment, where we suspect that pore-pressure weakening effects
might facilitate the rupture of the branching fault. Second, we study a poroelastic
fault zone and study the changes in rupture characteristics between the poroelastic
version and the elastic equivalent.

6.6.1. Convergence Test
First, we ensure the numerical convergence of our implementation. We consider a
homogeneous half-space filled with the material, which is also used by Pampillón et
al. [179, Supplementary material, Table S2]. Here, we choose the intermediate value
for the compressibility of the fluid. The material parameters converted to the units
preferred for the use with SeisSol can be found in Table 6.1. We would like to note
that the Biot parameter α = 0.95 is relatively high here, which leads to a high bulk
modulus of the solid grain. We consider a vertical fault with 4 km length and 2 km
width. On the fault, we consider linear slip-weakening friction with µs = 0.4, µd = 0.3
andDc = 0.100 m. The fault is pre-stressed with 10× 106 Pa in the strike direction and
25.5× 106 Pa in the normal direction. We want to particularly focus on the interplay of
fluid pressure and rupture dynamics, so we initiate the rupture by a fluid overpressure
in the volume. To achieve this, we set

p(x, 0) = 5 MPa · exp
(
−2.77× 10−5 · ‖x− x0‖2

)
. (6.34)

This is a simple model for a fluid injection at the point x0 =
(
0 −200 −1000

)T .
The initial condition along a slice parallel to the free surface at hypocentral depth can
be seen in Figure 6.6a.
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1 2 3 4
x1 3000 3000 −3000 −3000
x2 3000 −3000 3000 −3000
x3 0 0 0 0

(a) Receivers at the free surface.

1 2 3 4 5 6
x1 1200 1200 1200 −1200 −1200 −1200
x2 0 0 0 0 0 0
x3 −1000 −700 −1300 −1000 −700 −1300

(b) Receivers on the fault.

Table 6.2.: Positions of the receivers for the convergence test of poroelastic dynamic
rupture. Free surface receivers record the wave field (σ, v, p, q), while
fault receivers record µf , ψ, s and t.

The seismic ratio
S = µsσn − ‖t‖

‖t‖ − µdσn
(6.35)

characterizes how likely the fault will break. On a fault with a smaller seismic ratio,
failure will become more likely. Below a value of 1.19, supershear transition has to
be expected [79]. In this scenario, we compute S = 0.0851, which is rather low and
facilitates supershear rupture. We have chosen such a weak fault here to demonstrate
that our numerical scheme can also work under challenging circumstances.
We record the wave field at four receivers at the free surface and at six receivers

at the fault. The positions of the receivers can be found in Table 6.2. The surface
receivers collect the solid particle velocities and the fluid pressure. The fault receivers
record the friction coefficient, the state variable, the traction and the slip rate. The
computational domain is the cuboid [−12000, 12000] × [−10000, 10000] × [−12000, 0].
We impose a free surface boundary condition on the top and absorbing boundaries
on all other surfaces. Since no analytical solution is available, we are restricted to a
numerical convergence study. To do so, we create meshes with 200 m, 100 m, 50 m,
25 m and 10 m resolution. We select the finest mesh as a reference.
We observe a right-lateral strike-slip event. The fault breaks entirely within the

first 1.40 s. Afterward, we observe wave propagation in the bulk volume. Figure 6.6b
shows the pressure field at the final time t = 5 s. The slip on the fault has perma-
nently changed the stress field in the medium, so, in particular, the pressure. Pressure
diffusion happens on a much longer time scale than the coseismic phase, so the initial
pressure perturbation is still a prominent feature and has not vanished. Addition-
ally, we observe a significant pressure perturbation at the end of the fault and in the
volume. As the rupture is right-lateral the lower left and upper right quadrants in
Figure 6.6 are the compressional lobes, while the lower right and upper left quadrants
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(a) Initial state (t = 0 s).

(b) Final state (t = 5 s).

Figure 6.6.: Pressure field at x3 = −1000 m for the convergence test of poroelastic
dynamic rupture on the finest mesh. The black line denotes the fault
trace. The first picture shows the overpressure at the initial time, which
nucleates the rupture. The second graphic shows the final time when the
entire fault has broken. The rupture has caused a permanent change in
the fluid pressure field.
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are extensional. Accordingly, we observe a positive pressure perturbation (i.e. a rela-
tive increase in pore pressure) within the compressional lobes and a relative decrease
in pore pressure within the extensional lobes.
The result is geophysically plausible, but we also want to assess the convergence

properties. The root mean square error between the reference solution (at 10 m edge
length) and the respective other meshes is shown in Figure 6.7. For the on-fault
receivers (Figure 6.7a), we concentrate on the quantities in the strike direction. Since
the rupture occurs on a strike-slip fault, the quantities in the dip direction can be
neglected. We see the expected error decay for all receivers. For the receivers at the
free surface (Figure 6.7b), we concentrate on the solid particle velocities. The fluid
pressure at the free surface has to be zero, thus it is not relevant here. The correct
treatment of free surface boundary conditions has been established in section 5.5.4.
Also for the surface receivers, we see the expected convergence rates. Note, that the
positions of the receiver are symmetric with respect to the fault. Since we also use a
symmetric mesh, the results for receivers on opposite sides are virtually identical.
These results indicate that our numerical solver is correctly implemented to properly

account for dynamic rupture sources in poroelastic media.

6.6.2. Fault Branching
With the convergence of the scheme established, we want to study how the poroelastic
material affects the rupture dynamics. As we have seen in the previous section, the
fluid pressure increases in compressional areas and decreases in extensional lobes. As
the fluid pressure weakens the fault, we suspect that it influences branching faults. The
following benchmark is inspired by the TPV24/25 benchmark from the SCEC/USGS
benchmark suite but differs mostly in the branching angle and the nucleation mecha-
nism. We consider a vertical planar fault of size 28 km× 15 km. This fault lies in the
x2 = 0 plane. The upper boundary of the fault coincides with the free surface. At a
distance of 16 km from the left end of the main fault, another fault intersects. The
second fault is of size 12 km× 15 km and branches at an angle of 15°. A detailed plot
of the fault configuration can be found in Figure 6.8. Rupture is nucleated in the same
way as in the convergence test. We consider an initial Gaussian pressure field centered
at x0 =

(
−8000 −500 −10000

)T :
p(x, 0) = 8 MPa · exp

(
−1× 10−6 · ‖x− x0‖2

)
. (6.36)

The pre-stress on the fault is

σ =

−17.00 4.50 0.00
4.50 −10.00 0.00
0.00 0.00 −10.00

MPa. (6.37)

The fault is governed by a linear slip-weakening friction law with µs = 0.7, µd =
0.3, Dc = 0.100 m. A cohesion layer at the free surface prevents the transition to
supershear rupture [126]. Below a depth of 1 km, the cohesion is zero. Above, the
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(a) Fault receivers. Analysis shows the relative error of the slip rate in strike direction
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Figure 6.7.: Convergence results for the convergence test of poroelastic dynamic rup-
ture.
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Figure 6.8.: Sketch of the fault geometry for the fault branching experiment. The
circles denote the location of the overpressured hypocenter.

cohesion increases linearly, until it reaches a value of 3× 106 MPa at the free surface.
In this scenario, the seismic ratio is S = 1.67, so well above the threshold of supershear
transition, such that subshear rupture is to be expected. We have chosen a subshear
rupture scenario here to study the effects of poroelasticity alone and omit other side
effects.
We study a wide range of materials, which can be found in Table E.1. The first four

materials, Pecos sandstone, Ruhr sandstone, Charcoal granite and Westerly granite,
are real-world materials [62, 154]. In addition, we consider artificial materials where
the Biot coefficient ranges from α = 0.300 to 0.900 [179]. In all cases, the medium
is homogeneous and we do not study bimaterial effects. Note that all the artificial
materials are identical, despite the solid bulk modulus. From Equation (5.4), we
obtain

KS = KM

1− α =
λM + 2

3µ
M

1− α . (6.38)

Since we want to distinguish the effect of poroelastic materials on rupture character-
istics, we compare the truly poroelastic materials as reported in Table E.1 with their
elastic equivalents (c.f. Equation (5.42)). For purely, elastic materials, the nucleation
method using fluid overpressure is not available. To achieve nucleation as close as pos-
sible to the poroelastic variant, we add the fluid pressure p(x, 0) (from Equation (6.36))
to the stress component σ22 from Equation (6.37).
For the simulation, we embed the fault in the cuboid [−26 000, 22 000] × [−10 000,

13 100] × [−25 000, 0]. On the top, we impose a free surface boundary condition,
at all other boundaries, the waves are allowed to leave the domain. The domain of
interest, is chosen, such that each point on the fault system is at least 10 km away
from an absorbing boundary. We chose a mesh resolution of 100 m, which has proven
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Material Charcoal Pecos Ruhr Westerly
poroelastic main branch branch branch
elastic equivalent main main main main

Table 6.3.: Rupture characteristics after the junction for the poroelastic fault branch-
ing experiment. In all scenarios, the fault breaks between the hypocenter
and the junction. Depending on the material and its representation, either
only the main fault, only the branch or both can break.

to be sufficiently accurate in the convergence test. The scenario does not contain any
material interfaces, so we do not expect pressure discontinuities as in section 5.5.5.
The final mesh contains 2 300 000 elements. The simulation time is set to 20 s, which
is enough time for the rupture front to propagate across the entire fault.
Depending on the material, we observe different outcomes. The most prominent

example is shown in Figure 6.9. Here, we present the artificial materials for α = 0.300
and α = 0.900. In the first case, we observe that the poroelastic and the elastic variants
produce similar results. In both cases, only the main fault breaks and the branch does
not. Additionally, the rupture characteristics on the fault coincide. If we consider the
material with α = 0.900, the picture is quite different. In the poroelastic variant, the
branch breaks. Using the elastic equivalent, the branch does not break. We attribute
this to the pressure-weakening effect in the poroelastic material. The Gassmann equiv-
alent properly captures wave speeds (as also demonstrated in section 5.6), but it does
not properly account for fluid pressure variations. In realistic materials, as reported by
Detournay and Cheng [62], the Biot coefficient α ranges from 0.190 to 0.850. In this
regard, the artificial material covers a realistic range of the parameter space. We con-
ducted the same simulations with α increasing from 0.300 to 0.900 in steps of 0.0500.
Here, we observe that until a value of α = 0.700, the Gassmann equivalent is a good
approximation for the poroelastic material model. In both variants, only the main
branch breaks. Starting with α ≥ 0.750, the results deviate: In the poroelastic vari-
ant, the main fault and the branch break, whereas in the respective elastic equivalent,
only the main branch breaks.
We consider the energy, which is released during an earthquake. Figure 6.10 shows

the moment release rate for the artificial materials with α = 0.3 and α = 0.9. In the
case of a low Biot coefficient, we see that the poroelastic and the elastic variants release
the same energy. With a high Biot coefficient, we have seen that in the poroelastic
variant the branch and the main fault break, whereas in the elastic equivalent, only
the main fault breaks. The moment release rate exhibits a similar behavior. When
only the main branch breaks (α = 0.300 and α = 0.900, elastic), the release rate is
constant between 5 s and 12 s. The breaking of the branch releases more energy, thus
we see a rise of the moment release rate between 5 s and 12 s for the poroelastic version
with α = 0.900.
At this point, we conclude that concerning rupture dynamics, the Gassmann equiv-

alent is only a viable approximation for low values of α . 0.700.
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(a) α = 0.3, poroelastic

(b) α = 0.3, elastic

(c) α = 0.9, poroelastic

(d) α = 0.9, elastic

Figure 6.9.: Velocity magnitude and friction coefficient at t = 10 s for the fault branch-
ing scenario. Comparison of the poroelastic material with its elastic equiv-
alent for the artificial material with α = 0.3 and α = 0.9. The top part of
the branch is cropped to see the main fault behind the branch. A yellow
color indicates areas, where the fault is broken. In the purple areas, the
fault is yet intact.
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Figure 6.10.: Moment release rate for the branching scenario using the artificial mate-
rial with different Biot coefficients.

When we consider the more realistic materials Charcoal granite, Pecos sandstone,
Ruhr sandstone and Westerly granite, we see a slightly different picture. In the case of
Charcoal granite, only the main fault breaks. The results for the poroelastic variant
and the elastic equivalent coincide. For the other three materials, in the poroelastic
case, the main branch breaks from the hypocenter up to the junction. After the
rupture tip has arrived at the junction, only the branch breaks and the remaining part
of the main fault stays locked. For all three materials, the elastic equivalent behaves
differently from the poroelastic variant. In the elastic equivalent, only the main branch
breaks. An overview of the rupture characteristics for the different materials can be
found in Table 6.3. So the elastic variant coincides with the poroelastic variant only
in the charcoal granite case. With a value of α = 0.222, this material has the lowest
Biot coefficient of all materials under consideration. For the Westerly granite, with
α = 0.444, the approximation of the elastic equivalent is not good enough, although
the Biot coefficient is much lower than the threshold derived from the artificial test
case. Also, in the case of the Ruhr sandstone, the Biot coefficient α = 0.639 is below
the threshold, and only in the case of Pecos sandstone, the Biot coefficient is well above
the threshold. This leads to the conclusion that the Biot coefficient is an indicator to
decide whether the elastic equivalent is sufficient. However, these experiments do not
suffice to derive a definite threshold.
Pampillón et al. [179] have studied how poroelastic material behavior facilitates

the supershear transition. They conclude that the stiffness of the rock (in their case,
characterized by Young’s modulus E) and the Biot coefficient (α) allow for a distinction
between sub- and supershear rupture. In our study, the effective stress component α
is a relevant quantity to distinguish rupture characteristics for poroelastic materials.
Nonetheless, it is not a sufficient indicator to distinguish whether or not the elastic
method will produce accurate results. A more detailed parameter study might reveal,
which combination of parameters governs the branching behavior in poroelastic media.
At this point, we would like to conclude that the proper treatment of poroelastic
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materials has a non-negligible influence on the rupture properties.

6.6.3. Poroelastic Fault Zone
In our simulation setting, a fault is an infinitesimally thin subset of the computational
domain. This is a simplification of the reality since often faults are not fault planes,
but rather fault zones [17]. These zones are made of damaged rock, which typically
has a lower wave speed in comparison to the surrounding host rock. Numerical simu-
lations show that the proper treatment of fault zones has a significant influence on the
qualitative rupture behavior on the fault. In particular, it features the transition from
crack-like behavior to pulse-like behavior [181, 118] depending on the velocity contrast
between the fault zone and the host rock.
There are two competing views on fault zones in numerical simulations. The first

one is to still consider an infinitesimally thin fault plane, but replace the material in
close vicinity to the fault with a modified material [181, 118]. In this case, the same
numerical scheme is used as in the case without any fault zone. The modeler only has
to take care to properly select material values for the damaged zone and its geometry.
The fault zone effects are then a result of reflection and transmission at material
interfaces, where the fault zone meets the host rock. The other option is to consider
a material model, which accommodates directly for the damage [92]. Now, the fault
plane is not prescribed explicitly anymore and depending on a damage variable the
material withstands shearing motion better or worse. The volumetric damaged rock
acts similarly to an infinitesimally thin fault plane, but more complicated physical
phenomena can be observed. For example, stresses accumulate towards the boundary
of the fault plane. This will lead to failure of the surrounding rock and additional
secondary cracks form.
In this study, we focus on the first approach and study how a poroelastic fault zone

changes the rupture dynamics. We do not want to repeat the detailed studies by Pelties
et al. [181] but rather assess how the dynamics of an earthquake change, depending
on whether we use proper poroelastic materials or an elastic equivalent. To do so, we
consider a homogeneous half-space with an embedded fault zone. The vertical fault is
of size 4 km × 2 km and lies in the x1 − x3 plane at x2 = 0. It is embedded in a fault
zone, which is 200 m wide at the bottom of the fault and 1 km wide at the free surface.
The geometry of the fault and the surrounding fault zone are described in Figure 6.11.
The hypocenter is placed at the center of the fault at 1 km depth.
Just as in the fault branching example, we nucleate the earthquake by fluid over-

pressure in the form

p(x, 0) = 8 MPa · exp
(
−5× 10−6 · ‖x− x0‖2

)
(6.39)

with x0 =
(
0 0 −1000

)T . The fault is pre-stressed with

σ =

−17.00 4.50 0.00
4.50 −10.00 0.00
0.00 0.00 −10.00

MPa. (6.40)
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x1
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Figure 6.11.: Sketch of the fault geometry and the surrounding fault zone. The circles
denote the location of the overpressured hypocenter. At the free surface,
the fault zone is 1 km wide and at the bottom its width is 200 m.

Table 6.4.: Material parameters for the fault zone scenario.

Parameter Basement Fault zone
KS 41.7 × 109 80.0 × 109 Pa
ρS 2.75 × 103 2.50× 103 kg/m3

λM 16.7 × 109 4.00× 109 Pa
µM 25.0 × 109 6.00× 109 Pa
φ 0.0400 0.0200
κ 2.00 × 10−17 1.00× 10−13 m2

T 2 2
KF 2.50 × 109 2.50× 109 Pa
ρF 1.00 × 103 1.00× 103 kg/m3

ν 1.00 × 10−3 1.00× 10−3 Pa s
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Under this stress regime, right-lateral strike-slip faulting is observed. The fault is
governed by linear slip-weakening friction with µs = 0.700, µd = 0.300 and Dc =
0.100 m. When using the elastic equivalent, the initial stress in the fault normal
direction is altered: σ̃22 = σ22 + p(x, 0). In this scenario, we do not consider any
cohesion. The friction parameters are identical to the fault branching setup. With a
seismic ratio of S = 1.67, we do not expect supershear transition.
The material values are taken from Chang and Segall [39], which study the long-

time behavior of a fault in poroelastic materials. The fault zone material has a P wave
speed of vp = 4870 m/s and an S wave speed of vs = 1560 m/s. Its Biot coefficient
is α = 0.900. The basement material has a P wave speed of vp = 5060 m/s and an S
wave speed of vs = 3050 m/s. Its Biot coefficient is α = 0.200. Within the fault zone,
the S wave speed is reduced by 48.9 %, which is at par with the reported reduction of
20 % to 60 % [118]. Also, with a high Biot coefficient, the material in the fault zone
shows large poroelastic effects, while the host rock has a rather low Biot coefficient,
so it behaves less poroelastic. In addition to the poroelastic materials described in
Table 6.4, we consider the elastic equivalent, which is given by the Gassmann relations
(c.f. Equation (5.42)).
We create a cuboidal mesh of size [−12000, 12000]× [−10000, 10000]× [−12000, 0].

The fault surface and the boundaries of the fault zone are explicitly meshed. Within
the fault zone, the characteristic edge length is set to 25 m, with gradual coarsening
towards the boundary outside the fault zone. The mesh contains 2 420 000 elements,
and the final time of the simulation is 5 s.

Figure 6.12.: Slip rate magnitude ‖s‖ on the fault after 1.30 s. The left half shows the
rupture dynamics using poroelastic materials and the right half shows
the elastic equivalent. There are two rupture fronts visible, the initial
wave and the one reflected from the free surface.

The current slip rate ‖s‖ on the fault after 1.30 s is depicted in Figure 6.12. As in
the fault branching example, the difference between the poroelastic material and the
elastic equivalent is quite apparent. In the poroelastic case, a significant portion of the
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fault is at rest. Using the elastic equivalent, the same area of the fault is still slipping,
but at reduced slip rates in comparison to the first arrival of slip.
In order to study this phenomenon in more detail, we place 861 receivers in a 100 m×

100 m grid on the fault to collect the time histories of the slip rate ‖s‖ and the friction
coefficient µf . Figure 6.13 shows space-time plots of the slip rate at 600 m and 1300 m
depth at varying positions along the strike direction. In the poroelastic case, at a close
hypocentral distance, the rupture is pulse-like and the fault arrests immediately after
the first wave has passed. Conversely, for the elastic equivalent, the rupture is crack-
like and the fault only arrests after the entire fault has broken after approximately 2 s.
A more detailed view can be seen in Figure 6.14. Here, we focus on two receivers at
x1 = 400 m, x2 = 0 m and x3 = −600 m or x3 = −1300 m respectively. We see that the
weakening of the friction coefficient is identical, regardless of which material model is
used. The slip accumulated during the passing of the initial wave is enough to reduce
the friction coefficient from the static value to the dynamic value. The major difference
is found in the slip rate plots. As the space-time plots have already suggested, we see
that in the poroelastic variant, the slip rate tends to zero more rapidly after the initial
impulse. Also, the peak slip rate is significantly higher in the elastic case. In the elastic
case, we observe a lot of reflected waves, e.g. after 1.00 s, 1.20 s, 1.80 s, 2.50 s, 2.80 s and
3.20 s for the receiver at

(
400 0 −600

)T . If the proper poroelastic material is used,
most of these waves are not present. Only the first two reflected waves after 1.00 s and
1.20 s are visible, but at smaller amplitude in comparison to the elastic case. Other
than the simulations of Pelties et al. [181] and Huang and Ampuero [118], the friction
law does not account for instantaneous healing in our case. If healing was considered,
the friction parameter would be reset to the static value after the arrest and thus later
on slip would be reduced even more.
These results complement the results found in the literature on fault zone effects [181,

118]. In the poroelastic case, we observe the transformation from crack-like to pulse-
like rupture. The elastic equivalent does not show this behavior and crack-like rupture
dominates. The poroelastic version tends to slip less than the elastic version. While
this study proved that poroelastic effects do play a role when simulating fault zone
effects, a subsequent study could explore the interplay between fault zones and poroe-
lastic effects even further.

6.7. Discussion
In this chapter, we have revised how dynamic rupture sources can be included in earth-
quake simulations using the Discontinuous Galerkin approach. We shortly revisited
the programming model, which is used to implement the dynamic rupture routines.
In particular, we have derived the solution of a poroelastic Riemann problem, in

order to include pore pressure weakening effects into dynamic rupture simulations.
This allows us to study earthquakes in poroelastic media with complicated geometries.
After a convergence test, we have presented two scenarios, where the proper treatment
of poroelastic materials captures physical effects, which are not found with the elastic
equivalents. In a fault branching experiment, the branch was more likely to break
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(a) Receivers at 600 m depth. The upper graphic shows the poroelastic version. The bottom
graphic shows the elastic equivalent.
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(b) Receivers at 1300 m depth. The upper graphic shows the poroelastic version. The bottom
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Figure 6.13.: Space-time plots of the slip rate in the fault zone example comparing the
poroelastic material and the elastic equivalent along two horizontal lines
across the fault.
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Figure 6.14.: Detailed comparison of the slip rate and the friction parameter at two
fault receivers comparing the elastic and the poroelastic version of the
fault zone example.
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when using the poroelastic versions of the same material. Using the elastic versions
only the main branch broke, and the branch was unaffected. We gathered evidence
that the Biot parameter α might be used to distinguish whether the elastic equivalent
is sufficient. When considering fault zone effects, we have seen that proper treatment
of poroelastic materials has an influence on the rupture style. In certain areas, the
fault arrests more easily when using the poroelastic material, while the slip duration is
considerably longer in the elastic case. In conclusion, we have extended the capability
of SeisSol to solve dynamic rupture problems in poroelastic media and have shown that
the elastic equivalent is often insufficient to capture all aspects of rupture dynamics.
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After a thorough review of the governing equations and the ADER-DG discretization,
the extension of SeisSol to include anisotropic and poroelastic material models has
been described. The dynamic rupture routines have been extended in order to include
poroelastic materials. Several numerical experiments highlight the recently added pos-
sibilities. All new features of SeisSol have been designed with high-performance com-
puting in mind. Performance and scaling tests prove that the latest supercomputers
can be efficiently used to simulate earthquake scenarios at large scales.
In chapter 2, we have revisited the governing equations of earthquake simulations.

The elastic wave equation (Equation (2.6)) is the basis for all subsequent more com-
plicated material models. The mechanisms of earthquake sources have been discussed.
We have studied kinematic point sources and dynamic rupture models.
Next, in chapter 3, an overview of the numerical discretization with the ADER-

DG method has been presented. With high-order accuracy and geometric flexibility,
the scheme is well-suited for the simulation of earthquakes. For the numerical fluxes,
Godunov’s method based on the solution of Riemann problems is used. We have
presented the parallelization strategy in SeisSol, which builds on mesh partitioning.
Since the update scheme consists solely of tensor contractions, we have summarized the
characteristics of the code generator YATeTo. It is used to generate efficient machine
code for the compute kernels.
Chapter 4 evolves around anisotropic materials. First, we have summarized where

the anisotropic materials occur in the solid earth. Then, we have presented the re-
quired adaptations to the ADER-DG scheme in order to simulate waves in anisotropic
media. By applying the scheme to a suite of benchmark scenarios, we have ensured
the correctness of the implementation. An application example focusing on a moun-
tain range demonstrates the capability to combine complex geometry with anisotropic
materials. In addition, we have compared the elastic and the anisotropic PREM model
and have highlighted differences and possible implications.
The poroelastic material model has been introduced in chapter 5. The stiff source

term renders the Cauchy-Kovalevskaya procedure inefficient, thus it has been replaced
by a space-time predictor. We have derived a novel, efficient solver for the specific
type of linear systems, which occur in this context. We have thoroughly verified the
correctness of the implementation with a series of test cases. The layer over half-
space scenario reveals that the slow P wave increases the requirements on the mesh
resolution close to material interfaces. We have shown an apparent discontinuity in the
pressure field across material interfaces. In a realistic scenario from a carbon capture
and storage site, which includes several permeable and impermeable layers, we have
discovered that regarding the solid particle velocities, the Gassmann equivalent is a
suitable approximation to the poroelastic model. The same scenario has been used
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to assess the scalability of the poroelastic version of SeisSol. On the supercomputer
Frontera, we have observed scaling from 200 to 8192 compute nodes with 83 % parallel
efficiency, achieving a sustained performance of more than 7 PFLOP/s.
In the last chapter, we have shifted the focus to dynamic rupture sources. After

a summary of the governing equations, we revisit how dynamic rupture sources are
included in the ADER-DG scheme. We have derived an algorithm for the combination
of poroelastic materials and dynamic rupture sources. The fluid pressure acts as a
weakening mechanism on the fault. After a convergence study, we have analyzed two
different application examples of poroelastic dynamic rupture and have compared them
to the elastic equivalent. When a fault branches, poroelastic effects have an influence
on which one of the branches breaks. If the fault is embedded in a poroelastic fault
zone, the rupture stops earlier in the poroelastic case in comparison to the elastic
equivalent.
We have added three new features (anisotropic material model, poroelastic material

model, dynamic rupture source in poroelastic material) to SeisSol and have carefully
benchmarked them. All of these features are suitable to be run on supercomputers at
large scale. With the new features, SeisSol is now capable of simulating a more varied
set of scenarios. In particular, we see future applications in the context of geother-
mal energy production, where fluid is pumped into the subsurface and might induce
earthquakes. The scenarios in section 6.6 itself are academic because we wanted to
study the interplay of poroelasticity and dynamic rupture in a controlled environment.
Therefore, additional complexity, such as topography or heterogeneous materials, has
been omitted. Nonetheless, these models can be used as a building block for upcoming
more realistic scenarios. With SeisSol’s focus on HPC, researchers can study more
complex and finer resolved scenarios.
I would like to conclude this thesis with the following quote from 1967.

For over a decade prophets have voiced the contention that the organization
of a single computer has reached its limits and that truly significant ad-
vances can be made only by interconnection of a multiplicity of computers
in such a manner as to permit cooperative solution. (Amdahl [8])

This quote highlights two aspects. Parallel computing – as also used in this thesis
– has been a crucial part of computer science since shortly after the invention of
the computer. In addition, the age of the quote together with the fact that I am still
working on parallel computing over 50 years later highlights that research is an ongoing
and never-ending endeavor. I am grateful that I could make a small contribution.
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A. Notes on Reproducability
The configuration files for setting up the simulations in order to reproduce these results
are published on zenodo. They can be accessed under this link: https://doi.org/
10.5281/zenodo.10089716. Here, we summarize the respective SeisSol version, which
was used in the experiments. If not noted otherwise, we use polynomials up to degree
5 as basis functions. Despite small changes in the parameter file e.g. renaming of
parameters, all setups are expected to work with SeisSol version 1.1.1. The latest
version of SeisSol can be found on github, while the stable releases are permanentely
archived, e.g. https://zenodo.org/records/10021462.

Simulation setup SeisSol version
Anisotropic convergence test 703d36c0
Tilted anisotropic material 703d36c0
AHSP 703d36c0
Zugspitze 703d36c0
PREM 703d36c0
Poroelastic convergence test 703d36c0
Poroelastic homogeneous full-space f88c6652
Poroelastic Contact of two half-spaces 19811c23
Poroelastic Free surface 0ddc42ab
Poroelastic LOH 5518f03b
Sleipner CO2 storage d53c24fd
Dynamic Rupture convergence test d53c24fd
Dynamic Rupture fault branch d53c24fd
Dynamic rupture fault zone d53c24fd
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B. Software
Without using a lot of open source software, it would not have been possible to create
this thesis. I thank all developers, who have chosen to make their work available to
the public.

• To create plots like Figure 4.4, I used the software package christoffel [124].

• To analyze and visualize simulation results, I heavily relied on numpy [107],
scipy [221], pandas [167] and matplotlib [119].

• For the visualization of 2D and 3D simulation results, I used the visualization
working horse paraview [12].

• Most of the meshes, used in the simulations, where generated with gmsh [101],
the best and most versatile open source meshing tool.
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C. Convergence Results
In this chapter, we collect the convergence results for the anisotropic and poroelastic
material model, which were presented in chapters 4 and 5.

C.1. Anisotropic Materials

Table C.1.: Convergence results for the anisotropic planar wave in double precision
using polynomials up to degree 2 as basis functions in the L2-norm.

Quantity 0.5 0.25 0.125 0.0625 0.03125
σ11 3.38× 10−2 4.73× 10−3 6.86× 10−4 1.17× 10−4 2.47× 10−5

σ22 2.95× 10−2 4.22× 10−3 6.38× 10−4 1.16× 10−4 2.53× 10−5

σ33 4.18× 10−2 6.02× 10−3 9.90× 10−4 2.00× 10−4 4.66× 10−5

σ12 1.21× 10−2 1.71× 10−3 2.88× 10−4 5.92× 10−5 1.38× 10−5

σ23 2.65× 10−2 3.35× 10−3 4.70× 10−4 7.95× 10−5 1.67× 10−5

σ13 3.54× 10−2 4.37× 10−3 5.93× 10−4 9.49× 10−5 1.90× 10−5

v1 2.39× 10−3 2.97× 10−4 3.68× 10−5 4.85× 10−6 7.08× 10−7

v2 1.35× 10−3 1.55× 10−4 2.00× 10−5 2.97× 10−6 5.62× 10−7

v3 3.12× 10−3 3.89× 10−4 4.70× 10−5 5.87× 10−6 7.43× 10−7

Table C.2.: Convergence results for the anisotropic planar wave in double precision
using polynomials up to degree 3 as basis functions in the L2-norm.

Quantity 0.5 0.25 0.125 0.0625 0.03125
σ11 3.44× 10−3 2.51× 10−4 2.04× 10−5 2.06× 10−6 2.39× 10−7

σ22 3.00× 10−3 2.20× 10−4 1.78× 10−5 1.79× 10−6 2.08× 10−7

σ33 4.48× 10−3 3.36× 10−4 2.98× 10−5 3.25× 10−6 3.91× 10−7

σ12 1.26× 10−3 1.05× 10−4 1.02× 10−5 1.16× 10−6 1.41× 10−7

σ23 2.69× 10−3 1.82× 10−4 1.47× 10−5 1.45× 10−6 1.66× 10−7

σ13 3.52× 10−3 2.30× 10−4 1.79× 10−5 1.68× 10−6 1.88× 10−7

v1 2.27× 10−4 1.43× 10−5 8.94× 10−7 5.52× 10−8 3.75× 10−9

v2 1.21× 10−4 7.47× 10−6 4.78× 10−7 3.27× 10−8 2.71× 10−9

v3 3.02× 10−4 1.89× 10−5 1.18× 10−6 7.14× 10−8 4.58× 10−9
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C. Convergence Results

Table C.3.: Convergence results for the anisotropic planar wave in double precision
using polynomials up to degree 4 as basis functions in the L2-norm.

Quantity 0.5 0.25 0.125 0.0625 0.03125
σ11 2.78× 10−4 1.04× 10−5 4.46× 10−7 2.34× 10−8 1.38× 10−9

σ22 2.39× 10−4 8.92× 10−6 4.01× 10−7 2.19× 10−8 1.32× 10−9

σ33 3.54× 10−4 1.45× 10−5 7.14× 10−7 4.12× 10−8 2.53× 10−9

σ12 1.04× 10−4 4.38× 10−6 2.21× 10−7 1.27× 10−8 7.77× 10−10

σ23 2.10× 10−4 7.18× 10−6 3.00× 10−7 1.56× 10−8 9.18× 10−10

σ13 2.77× 10−4 9.09× 10−6 3.58× 10−7 1.76× 10−8 1.01× 10−9

v1 1.82× 10−5 5.44× 10−7 1.73× 10−8 5.56× 10−10 1.94× 10−11

v2 9.39× 10−6 2.84× 10−7 9.19× 10−9 3.31× 10−10 1.48× 10−11

v3 2.43× 10−5 7.12× 10−7 2.24× 10−8 7.00× 10−10 2.19× 10−11

Table C.4.: Convergence results for the anisotropic planar wave in double precision
using polynomials up to degree 5 as basis functions in the L2-norm.

Quantity 0.5 0.25 0.125 0.0625 0.03125
σ11 1.88× 10−5 3.74× 10−7 9.13× 10−9 2.60× 10−10 7.90× 10−12

σ22 1.64× 10−5 3.26× 10−7 7.87× 10−9 2.24× 10−10 6.87× 10−12

σ33 2.51× 10−5 5.23× 10−7 1.35× 10−8 3.97× 10−10 1.22× 10−11

σ12 7.20× 10−6 1.67× 10−7 4.63× 10−9 1.40× 10−10 4.32× 10−12

σ23 1.42× 10−5 2.73× 10−7 6.30× 10−9 1.75× 10−10 5.33× 10−12

σ13 1.84× 10−5 3.38× 10−7 7.37× 10−9 1.98× 10−10 5.92× 10−12

v1 1.16× 10−6 1.76× 10−8 2.76× 10−10 4.41× 10−12 8.69× 10−14

v2 6.03× 10−7 9.37× 10−9 1.48× 10−10 2.50× 10−12 5.73× 10−14

v3 1.53× 10−6 2.31× 10−8 3.61× 10−10 5.69× 10−12 1.08× 10−13

Table C.5.: Convergence results for the anisotropic planar wave in double precision
using polynomials up to degree 6 as basis functions in the L2-norm.

Quantity 0.5 0.25 0.125 0.0625 0.03125
σ11 1.10× 10−6 1.12× 10−8 1.40× 10−10 2.02× 10−12 5.60× 10−13

σ22 9.36× 10−7 9.85× 10−9 1.27× 10−10 1.89× 10−12 5.61× 10−13

σ33 1.45× 10−6 1.69× 10−8 2.37× 10−10 3.60× 10−12 6.69× 10−13

σ12 4.35× 10−7 5.27× 10−9 7.41× 10−11 1.13× 10−12 2.33× 10−13

σ23 8.17× 10−7 7.85× 10−9 9.42× 10−11 1.34× 10−12 3.78× 10−13

σ13 1.06× 10−6 9.70× 10−9 1.08× 10−10 1.49× 10−12 4.18× 10−13

v1 6.40× 10−8 4.99× 10−10 3.86× 10−12 3.29× 10−14 3.51× 10−14

v2 3.34× 10−8 2.63× 10−10 2.08× 10−12 1.86× 10−14 2.31× 10−14

v3 8.38× 10−8 6.59× 10−10 5.03× 10−12 4.21× 10−14 4.47× 10−14
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C. Convergence Results

C.2. Poroelastic Materials

Table C.6.: Convergence results for the poroelastic planar wave in double precision
using polynomials up to degree 2 as basis functions in the L2-norm.

Quantity 0.5 0.25 0.125 0.0625 0.03125
σ11 8.81× 10−2 1.58× 10−2 2.05× 10−3 2.67× 10−4 3.39× 10−5

σ22 1.05× 10−1 1.40× 10−2 1.89× 10−3 2.45× 10−4 3.06× 10−5

σ33 1.00× 10−1 1.37× 10−2 1.80× 10−3 2.32× 10−4 2.90× 10−5

σ12 6.06× 10−2 8.37× 10−3 1.10× 10−3 1.41× 10−4 1.78× 10−5

σ23 8.88× 10−2 1.19× 10−2 1.56× 10−3 1.97× 10−4 2.46× 10−5

σ13 5.68× 10−2 7.84× 10−3 1.05× 10−3 1.34× 10−4 1.69× 10−5

v1 2.04× 10−8 2.15× 10−9 2.72× 10−10 3.38× 10−11 4.21× 10−12

v2 6.32× 10−9 5.98× 10−10 7.13× 10−11 7.21× 10−12 9.06× 10−13

v3 6.29× 10−9 5.93× 10−10 7.09× 10−11 7.18× 10−12 9.05× 10−13

p 1.78× 10−2 2.20× 10−3 2.66× 10−4 3.19× 10−5 3.72× 10−6

q1 2.50× 10−10 4.29× 10−11 7.23× 10−12 1.23× 10−12 1.94× 10−13

q2 1.72× 10−10 3.09× 10−11 4.67× 10−12 7.90× 10−13 1.21× 10−13

q3 1.73× 10−10 3.06× 10−11 4.63× 10−12 7.90× 10−13 1.22× 10−13

Table C.7.: Convergence results for the poroelastic planar wave in double precision
using polynomials up to degree 3 as basis functions in the L2-norm.

Quantity 0.5 0.25 0.125 0.0625 0.03125
σ11 2.32× 10−2 1.53× 10−3 9.67× 10−5 6.04× 10−6 3.75× 10−7

σ22 1.53× 10−2 1.31× 10−3 8.78× 10−5 5.61× 10−6 3.50× 10−7

σ33 1.57× 10−2 1.30× 10−3 8.67× 10−5 5.54× 10−6 3.45× 10−7

σ12 1.20× 10−2 8.37× 10−4 5.42× 10−5 3.40× 10−6 2.12× 10−7

σ23 1.65× 10−2 1.10× 10−3 7.20× 10−5 4.50× 10−6 2.83× 10−7

σ13 1.03× 10−2 7.70× 10−4 5.10× 10−5 3.19× 10−6 1.99× 10−7

v1 2.29× 10−9 1.96× 10−10 1.25× 10−11 7.83× 10−13 4.88× 10−14

v2 1.07× 10−9 6.85× 10−11 3.77× 10−12 1.83× 10−13 1.05× 10−14

v3 9.95× 10−10 6.89× 10−11 3.76× 10−12 1.84× 10−13 1.05× 10−14

p 2.28× 10−3 2.09× 10−4 1.19× 10−5 7.24× 10−7 4.21× 10−8

q1 4.65× 10−11 4.38× 10−12 3.86× 10−13 3.11× 10−14 2.35× 10−15

q2 3.35× 10−11 2.88× 10−12 2.45× 10−13 2.09× 10−14 1.58× 10−15

q3 3.39× 10−11 2.86× 10−12 2.46× 10−13 2.08× 10−14 1.58× 10−15
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C. Convergence Results

Table C.8.: Convergence results for the poroelastic planar wave in double precision
using polynomials up to degree 4 as basis functions in the L2-norm.

Quantity 0.5 0.25 0.125 0.0625 0.03125
σ11 3.24× 10−3 1.15× 10−4 3.66× 10−6 1.15× 10−7 3.57× 10−9

σ22 3.12× 10−3 9.72× 10−5 3.18× 10−6 1.00× 10−7 3.13× 10−9

σ33 3.01× 10−3 9.63× 10−5 3.10× 10−6 9.74× 10−8 3.03× 10−9

σ12 1.88× 10−3 6.16× 10−5 1.96× 10−6 6.14× 10−8 1.92× 10−9

σ23 2.48× 10−3 8.11× 10−5 2.59× 10−6 8.09× 10−8 2.53× 10−9

σ13 1.81× 10−3 5.82× 10−5 1.86× 10−6 5.81× 10−8 1.82× 10−9

v1 5.77× 10−10 1.49× 10−11 4.67× 10−13 1.46× 10−14 4.55× 10−16

v2 1.96× 10−10 5.08× 10−12 1.22× 10−13 3.39× 10−15 1.04× 10−16

v3 1.96× 10−10 5.09× 10−12 1.22× 10−13 3.39× 10−15 1.04× 10−16

p 5.60× 10−4 1.53× 10−5 4.44× 10−7 1.31× 10−8 3.87× 10−10

q1 8.29× 10−12 3.46× 10−13 1.54× 10−14 5.95× 10−16 2.19× 10−17

q2 5.99× 10−12 2.38× 10−13 9.99× 10−15 4.01× 10−16 1.50× 10−17

q3 6.00× 10−12 2.38× 10−1310.00× 10−15 4.01× 10−16 1.50× 10−17

Table C.9.: Convergence results for the poroelastic planar wave in double precision
using polynomials up to degree 5 as basis functions in the L2-norm.

Quantity 0.5 0.25 0.125 0.0625 0.03125
σ11 4.28× 10−4 7.31× 10−6 1.16× 10−7 1.81× 10−9 1.44× 10−10

σ22 2.92× 10−4 6.14× 10−6 9.96× 10−8 1.56× 10−9 1.41× 10−10

σ33 3.12× 10−4 6.10× 10−6 9.86× 10−8 1.54× 10−9 1.49× 10−10

σ12 2.22× 10−4 3.91× 10−6 6.28× 10−8 9.83× 10−10 8.04× 10−11

σ23 2.89× 10−4 5.11× 10−6 8.12× 10−8 1.28× 10−9 9.39× 10−11

σ13 1.91× 10−4 3.65× 10−6 5.86× 10−8 9.21× 10−10 8.03× 10−11

v1 4.12× 10−11 9.42× 10−13 1.48× 10−14 2.30× 10−16 4.03× 10−18

v2 1.92× 10−11 2.95× 10−13 3.73× 10−15 5.57× 10−17 1.15× 10−18

v3 1.84× 10−11 2.94× 10−13 3.73× 10−15 5.55× 10−17 4.46× 10−18

p 4.91× 10−5 9.44× 10−7 1.40× 10−8 2.03× 10−10 4.15× 10−12

q1 1.07× 10−12 2.41× 10−14 5.00× 10−16 9.53× 10−18 1.79× 10−19

q2 6.79× 10−13 1.64× 10−14 3.46× 10−16 6.67× 10−18 1.36× 10−19

q3 6.83× 10−13 1.63× 10−14 3.46× 10−16 6.67× 10−18 1.39× 10−19

170



C. Convergence Results

Table C.10.: Convergence results for the poroelastic planar wave in double precision
using polynomials up to degree 6 as basis functions in the L2-norm.

Quantity 0.5 0.25 0.125 0.0625 0.03125
σ11 5.23× 10−5 4.03× 10−7 3.20× 10−9 7.74× 10−11 1.47× 10−10

σ22 4.48× 10−5 3.31× 10−7 2.64× 10−9 7.60× 10−11 1.46× 10−10

σ33 4.33× 10−5 3.27× 10−7 2.60× 10−9 8.15× 10−11 1.57× 10−10

σ12 2.73× 10−5 2.09× 10−7 1.66× 10−9 4.39× 10−11 8.35× 10−11

σ23 3.49× 10−5 2.76× 10−7 2.16× 10−9 5.13× 10−11 9.64× 10−11

σ13 2.64× 10−5 1.97× 10−7 1.56× 10−9 4.32× 10−11 8.33× 10−11

v1 7.79× 10−12 5.16× 10−14 4.04× 10−16 3.34× 10−18 1.83× 10−18

v2 2.49× 10−12 1.51× 10−14 1.04× 10−16 9.70× 10−19 7.94× 10−19

v3 2.49× 10−12 1.50× 10−14 1.05× 10−16 2.35× 10−18 4.41× 10−18

p 7.89× 10−6 5.03× 10−8 3.79× 10−10 3.25× 10−12 2.65× 10−12

q1 1.35× 10−13 1.40× 10−15 1.41× 10−17 1.40× 10−19 4.74× 10−20

q2 9.72× 10−14 9.52× 10−16 9.85× 10−18 1.12× 10−19 6.06× 10−20

q3 9.72× 10−14 9.56× 10−16 9.83× 10−18 1.08× 10−19 6.69× 10−20
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D. Sleipner Material Parameters

Table D.1.: Material parameters for the Sleipner scenario.
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E. Dynamic Rupture Branch Material
Parameters

Table E.1.: Material parameters for the rupture branch scenario. The first ten rows
show the principal material parameters, which are necessary as input to
SeisSol. The following rows show derived quantities, which will be relevant
for the analysis later on.
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