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Abstract

This thesis explores the multi-GPU implementation of a patch-based hyperbolic finite
volume solver in ExaHyPE 2, a versatile numerical simulation framework for solving
hyperbolic partial differential equations. We investigate two approaches to offload
patches to the GPU: one utilizing OpenMP and the other employing a hybrid approach
involving MPI with OpenMP. These approaches are analyzed and compared to deter-
mine their respective benefits and limitations. We then apply one of these methods to
benchmark the finite volume Rusanov solver and extend our analysis to simulate the 3D
Euler equations using a patch-based enclave solver. All implementations are rigorously
benchmarked and tested. Our goal is to provide a comprehensive understanding of
the potential of multi-GPU acceleration within the ExaHyPE 2 framework, enabling
scientists and engineers to perform simulations more efficiently on large scale machines
and gain deeper insights into complex phenomena.
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1 Introduction

In the ever-expanding realm of scientific and engineering simulations, the pursuit of
computational accuracy and efficiency remains a driving force. From weather fore-
casting to astrophysical modeling, from fluid dynamics to seismic wave propagation,
numerical simulations have become indispensable tools for understanding and predict-
ing complex physical phenomena. As computational demands grow, HPC technologies
must evolve to meet the challenge.

This thesis delves into the exciting domain of ExaHyPE 2, a cutting-edge, highly
scalable and adaptable numerical simulation framework designed to address a wide
range of problems in science and engineering. At the heart of ExaHyPE 2 lies its hyper-
bolic finite volume solver, a numerical method capable of solving hyperbolic partial
differential equations with high precision. Hyperbolic equations, which govern the
propagation of waves and shock waves in various fields, are of paramount importance
in many scientific and engineering applications.

In this paper, we explore a critical enhancement to the ExaHyPE 2 framework – the
implementation of a multi-GPU approach to accelerate simulations involving the hy-
perbolic finite volume solver. The integration of multiple GPUs into the computational
pipeline represents a groundbreaking development, enabling researchers to harness the
immense parallel processing power of modern GPU architectures for solving complex
hyperbolic problems.

The motivation behind this research stems from the pressing need for faster and more
efficient simulations. Scientists and engineers are increasingly tasked with simulating
larger and more intricate systems, necessitating computational power that traditional
CPU-based approaches alone can no longer provide. Multi-GPU implementations have
emerged as a potent solution to this challenge, offering the prospect of reducing simula-
tion times from weeks or months to mere hours or minutes, while also accommodating
greater complexity.

In this paper, we embark on a comprehensive exploration of the multi-GPU imple-
mentation within ExaHyPE 2, addressing the challenges, benefits, and implications
of this innovative approach. We will investigate two distinct approaches to efficiently
benefit from multiple GPUs: one utilizing OpenMP and the other employing a hy-
brid approach involving MPI with OpenMP. These approaches will be compared and
analyzed to determine their respective advantages and limitations.

Furthermore, we will apply one of these methods to benchmark the finite volume
Rusanov solver, a critical component in the hyperbolic finite volume solver. We will
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1 Introduction

also extend our analysis to apply the selected method to the Euler equations using
a patch-based enclave solver, offering a holistic assessment of its performance across
different simulation scenarios. All implementations will be rigorously benchmarked
and tested, ensuring a thorough evaluation of their effectiveness and efficiency.

Our goal is to provide researchers and practitioners with a comprehensive under-
standing of the potential of multi-GPU acceleration in the ExaHyPE 2 framework and
to offer insights into the advantages and trade-offs of different multi-GPU approaches.
By achieving this, we hope to catalyze advancements in computational simulations,
enabling scientists and engineers to gain deeper insights into complex phenomena
and solve real-world problems more efficiently. Through this research, we aim to
demonstrate that the multi-GPU implementation of the hyperbolic finite volume solver
in ExaHyPE 2 is a transformative step towards unlocking new frontiers in numeri-
cal simulation, offering unparalleled computational power and paving the way for
breakthroughs in various scientific and engineering disciplines.

In Chapter 2, we delve into an in-depth exploration of related work, focusing on the
architecture of ExaHyPE 2 and the GPU offloading mechanisms it employs. Chapter 3
presents our comprehensive methodology, which encompasses the implementation of
the STREAM triad and Matrix-Matrix multiplication benchmarks using two distinct
approaches: a pure OpenMP implementation and a hybrid approach combining MPI
with OpenMP. We thoroughly analyze and compare their respective performance.

Chapter 5 delves into the intricate details of our multi-GPU offloading implemen-
tation within ExaHyPE 2, specifically applied to a Rusanov kernel benchmark suite.
Chapter 6 extends this implementation to encompass the Euler equations, demon-
strating its versatility and applicability. Finally, in Chapter 7, we draw our work to a
close, offering a comprehensive conclusion and discussing potential avenues for future
enhancements and improvements.
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2 Related Work

2.1 ExaHyPE 2

ExaHyPE 2, referred to as the Exascale Hyperbolic PDE Engine, stands as a robust
computational solution tailored for the intricate task of solving strictly hyperbolic
partial differential equations (PDEs) within the context of large-scale simulations
[1]. This versatile software harnesses the combined power of MPI and OpenMP for
parallelization and is further enhanced with GPU offloading capabilities using the
OpenMP target directive [2] , [3]. The orchestration of the computational mesh and
dynamic adaptive mesh refinement (AMR) [4] is effectively managed through the Peano
framework [5], a sophisticated tool designed to partition Cartesian grids into spacetrees
based on the Peano curve. This close integration between Peano and ExaHyPE 2
ensures that it can efficiently scale to meet the demands of the forthcoming exascale
computing era.

ExaHyPE 2 is primarily focused on the numerical solution of first-order hyperbolic
PDEs, which are fundamental in capturing the dynamics of complex systems. The core
equation governing these PDEs is expressed as

∂

∂t
Q +∇ · F(Q,∇Q) + B(Q) · ∇Q = S(Q) +

nps

∑
i=1

δi. (2.1)

In this equation, Q represents the state variable, F(Q,∇Q) encapsulates the intricate
fluxes, B(Q) ·∇Q accommodates the non-conservative products, and S(Q) characterizes
the source terms. Additionally, the introduction of point sources δi adds further
complexity to the system. To address diverse application scenarios, users are offered
the flexibility to incorporate custom solvers. Properly specified boundary and initial
conditions, along with maximum eigenvalues for adaptive time-stepping methods,
complete the system’s requirements.

For the accurate and efficient solution of these PDEs, ExaHyPE 2 relies on a finite
volume (FV) scheme. This discretization technique partitions the system into discrete
volumes, enabling updates at each discrete time step. The utilization of a first-order
Godunov scheme for this purpose is detailed as

Qn+1
i = Qn

i −
∆t
∆x

(
Fn

i+ 1
2
− Fn

i− 1
2

)
. (2.2)

When dealing with the Riemann problem at volume interfaces, the fluxes Fn
j+ 1

2
are
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determined through dedicated solvers. A typical example is the local Lax-Friedrichs
(Rusanov) solver, outlined as
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j+ 1

2
=

F
(

Qn
j

)
+ F

(
Qn

j+1

)
2

+
S
(

Qn
j

)
+ S

(
Qn

j+1

)
2

−max
(∣∣∣λmax

j

∣∣∣ ,
∣∣∣λmax

j+1

∣∣∣) Qn
j+1 −Qn

j

2
.

(2.3)
The judicious selection of solvers and schemes is a critical aspect of achieving the

right balance between computational efficiency and solution accuracy. Advanced time
integration schemes, such as Runge-Kutta [6], have the potential to enhance precision
but require multiple evaluations of the system at various intermediate stages.

In summary, ExaHyPE 2 emerges as an indispensable computational ally for unrav-
eling the dynamics of complex systems governed by hyperbolic PDEs. Its powerful
capabilities, adaptable solvers, and effective use of adaptive mesh refinement make it
a valuable asset across a wide spectrum of scientific domains, offering a refined and
nuanced approach to modeling and simulation.

2.2 Code Architecture

The ExaHyPE 2 software framework operates with dynamically adaptive Cartesian
grids, generated through a modified Peano octree method [5]. This process involves
iterative subdivision of a cube within the computational domain. To strike a balance
between computational workload and grid management, ExaHyPE 2 combines a tree
structure with patches, creating an adaptive Cartesian grid. During each time step, the
software conducts grid traversals, updating patches through a callback mechanism that
abstracts the underlying program logic, data storage, and parallelization details.

ExaHyPE 2’s approach to parallelism is tri-fold. It initiates by partitioning the spatial
domain into non-overlapping segments, one for each MPI rank. These MPI segments
are further divided into subdomains using a space-filling curve (SFC) [7] and then
assigned to CPU threads, establishing a hierarchical MPI+X parallel structure. Mesh
traversals adhere to a bulk-synchronous processing (BSP) model, with parallelization
managed through MPI and OpenMP [8]. It is important to note that the efficiency of
this approach can be challenged when dealing with rapidly changing adaptive mesh
refinement.

To address load imbalances, each thread identifies patches within its designated
subdomain, treating them as individual tasks. Critical patches and those requiring
adaptive mesh refinement are integrated into the mesh traversal, while other patches
are managed as separate tasks following the enclave tasking concept [9]. This strategy
ensures equitable distribution of computational workload among threads during bulk-
synchronous processing (BSP) phases, thus addressing load imbalances.

Concerning GPU offloading, enclave tasks are accumulated in a queue until a pre-
determined threshold of enclave tasks is reached. At this point, all the patches within
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the queue are offloaded to the GPU simultaneously, enabling the execution of high-
concurrency GPU compute kernels. These tasks within a batch are termed ready tasks,
allowing for concurrent processing and enhancing internal concurrency. The flexibility
to dynamically combine enclave segments ensures efficient GPU offloading, even in
cases involving small geometric enclaves distributed across thread subregions.

The choice of the threshold value ∥PGPU∥ significantly impacts the optimization of
GPU parallel potential. Opting for a smaller ∥PGPU∥ is preferable to effectively utilize
the GPU, as it enables multiple threads to concurrently offload to the GPU, thereby
leveraging multiple cores [10].

In summary, ExaHyPE 2’s software architecture integrates adaptive Cartesian grids
with a tree and patch combination. It employs multi-layer parallelism, including MPI+X,
and utilizes GPU offloading strategies to maximize GPU performance while addressing
load balancing challenges.

2.3 Implementation of GPU Offloading Using target map

In our research, we place significant emphasis on the role played by the compute kernels
denoted as KEuler,2D

p and KEuler,3D
p . These kernels are instrumental in our computational

framework, as they are responsible for advancing the solution over a patch of p× p
or p× p× p finite volumes to the subsequent timestep. The entire patch update cycle
involves intricate data transfer operations, as elegantly described by Wille et al. in their
work on efficient GPU offloading with OpenMP for a hyperbolic finite volume solver
on dynamically adaptive meshes [11].

The data transfer process can be concisely represented by the composition of various
operators:

(R ◦ F ◦ K ◦ A ◦ P)Q(t)

In this framework, the operator P is responsible for transmitting the solution Q(t) to
the GPU, while R retrieves it from the GPU back to the user’s memory. Additionally,
the operator A manages all the temporary variables residing on the GPU that are
required by K, and F handles the deallocation of these temporary memory blocks. The
ExaHyPE 2 framework orchestrates these operations across a set of patches as follows:

{(R ◦ F ◦ K ◦ A ◦ P)Qc(t)}c∈[1,∥PGPU∥]

The practical procedure for implementing GPU offloading using OpenMP, as eluci-
dated by Wille et al. in their research, follows a systematic approach:

1. Initially, data originating from patches is organized into a comprehensive array
on the host in an Array of Structures (AoS) format. Although this data is initially
stored in the main memory, it is meticulously moved to the GPU. This transfer
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predominantly encompasses a substantial, contiguous array consisting of double-
precision values. Following this, a systematic process on the GPU involves
the creation and population of a list of pointers with device pointers. While
OpenMP’s declare mapper constructs are capable of managing this operation, it
is recommended to utilize omp_get_mapped_ptr for improved efficiency.

2. The computational kernel efficiently allocates all the temporary data required
for patch handling into a single, large memory block. This allocation process is
seamlessly performed using the map(alloc:...) construct.

3. A kernel’s execution becomes more straightforward when you incorporate an omp
target block alongside a distribute directive.

4. Once the kernel finishes its execution, all the temporary data is released collec-
tively.

5. Using OpenMP’s map clauses, the results obtained from the GPU are methodically
moved back into the host’s memory. This process is carried out iteratively, man-
aging each patch and timestep using the omp target exit data map(from:...)
construct.

This methodical process, as outlined by Wille et al., offers a comprehensive approach
to GPU offloading with OpenMP, ensuring efficient data transfer and parallel execution
of computational kernels.

2.4 An Examination of Multi-GPU Configurations

The deployment of multiple GPUs in numerical simulations within the realm of high-
performance computing represents a transformative leap in the capabilities of modern
research endeavors. This innovation revolutionizes the way we conduct numerical
simulations and computations, addressing some of the most pressing challenges faced
by scientists and engineers. Multi-GPU usage is particularly instrumental in accelerating
research processes, as it enables parallel processing on a grand scale. This means that
computations can be divided into smaller, manageable tasks and distributed across
multiple GPUs, each working concurrently on its portion of the problem. The result is a
remarkable reduction in simulation runtimes, transforming problems that would have
taken weeks or even months into tasks that can be completed in a fraction of the time.

In addition to speed, the introduction of multi-GPU configurations broadens the scope
and depth of scientific exploration. Complex problems, such as climate modeling, high-
energy physics, molecular dynamics, and quantum chemistry, often require immense
computational resources to simulate real-world scenarios accurately. The collective
power of multiple GPUs makes it feasible to simulate more extensive and detailed
models, leading to a better understanding of intricate phenomena. Researchers can now
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delve deeper into simulations with finer spatial and temporal resolutions, providing
a more faithful representation of the physical world. This enhanced fidelity equips
scientists with the means to make more precise predictions, uncover hidden patterns,
and gain valuable insights into various fields of study.

Furthermore, as the demand for high-performance computing continues to grow
across academic, industrial, and governmental sectors, multi-GPU setups are becoming
increasingly indispensable. They offer a cost-effective solution to meet the escalating
computational requirements of modern research, allowing institutions to achieve their
scientific goals without incurring prohibitive infrastructure costs. In essence, the
use of multiple GPUs in numerical simulations empowers researchers to push the
frontiers of scientific discovery and innovation, fostering breakthroughs that were
once considered unattainable. It is a pivotal tool in the arsenal of high-performance
computing, propelling us towards a new era of computational science.

In [12], a novel approach is introduced for harnessing the collective power of multiple
GPUs in large-scale scientific computations. Central to this approach is the implementa-
tion of an advanced domain decomposition technique designed to efficiently distribute
computational workloads across multiple GPUs. To address the challenges associated
with communication overhead in multi-GPU configurations, the authors utilize a combi-
nation of MPI and OpenACC, ensuring effective inter-GPU communication. Benchmark
tests conducted across various computational scenarios demonstrate the efficacy of this
approach. Notably, for the three-dimensional wave equation, the multi-GPU implemen-
tation achieved a remarkable speedup of up to 3.5 times compared to a single GPU
setup, and for the Lattice Boltzmann Method, a substantial speedup of approximately 4
times was observed. In real-world applications spanning fluid dynamics and quantum
mechanics, the proposed approach consistently outperformed traditional single-GPU
solutions, especially in computationally intensive scenarios. These results underscore
the transformative potential of multi-GPU configurations in scientific computing and
emphasize the critical importance of optimized communication and workload distri-
bution strategies to unlock the full capabilities of multiple GPUs, paving the way for
future advancements in high-performance computing.

In [13], the authors introduce a dynamic strategy known as the hybrid approach,
which combines the collaborative utilization of both CPUs and multiple GPUs to tackle
large-scale scientific computations. This approach recognizes the diverse computational
requirements of various tasks, optimizing the use of GPUs for parallelizable operations,
such as matrix multiplications and Fourier transforms, which multiple GPUs can
efficiently handle. In situations where tasks demand sequential processing or intricate
branching, the flexible architecture of CPUs takes the lead to ensure effective execution.
The hybrid approach maximizes the strengths of each component while mitigating their
respective weaknesses, ultimately enhancing computational efficiency and enabling
high-performance computing for a wide range of scientific simulations.

This versatile approach not only involves the synergistic use of CPUs and GPUs but
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also extends to the deployment of multiple GPUs, creating a multifaceted solution to
address the complexities of large-scale scientific computations. Task delegation within
the hybrid model optimally leverages the parallel processing capabilities of multiple
GPUs for tasks requiring parallel execution, thereby reducing simulation runtimes and
enabling the exploration of more extensive and intricate scientific questions. However,
the architecture of GPUs, optimized for parallelism, may introduce bottlenecks for tasks
demanding sequential processing or complex branching. In such scenarios, CPUs with
their adaptable architecture seamlessly manage these tasks, ensuring efficient execution
without the constraints of GPU parallelism. This holistic approach recognizes that
different computational tasks possess unique requirements and allocates them optimally
to the appropriate computing resources. By harnessing the raw computational power
of multiple GPUs and the algorithmic prowess of CPUs, the hybrid approach emerges
as a balanced, efficient, and scalable solution that addresses the diverse computational
needs of scientific simulations. To facilitate efficient communication between CPUs and
multiple GPUs within the hybrid system, the paper presents advanced data transfer
protocols designed to streamline information flow among these components, ensuring
seamless collaboration. These protocols prioritize data transfers, maintain data integrity,
and dynamically allocate communication bandwidth, reducing potential bottlenecks.
This robust CPU-GPU communication, combined with multi-GPU usage, paves the
way for a new era in high-performance computing, providing an optimal solution to
meet the increasing demands of large-scale scientific simulations.

The research paper [14] introduces a novel approach to leverage both CPUs and
GPUs for large-scale scientific computations, with a specific focus on the Navier-Stokes
equations in fluid dynamics. At its core, the study emphasizes the concept of multi-
level parallelism, effectively harnessing fine-grained parallelism within GPU cores and
coarse-grained parallelism across multiple GPU cores.

To implement this intricate architecture, the researchers employed a trio of advanced
technologies: OpenMP, MPI, and CUDA. OpenMP was utilized to tap into the multi-
core capabilities of CPUs, ensuring efficient load distribution across CPU cores. MPI
played a vital role in managing inter-node communication in simulations spanning mul-
tiple compute nodes, optimizing data decomposition and result aggregation. Crucially,
the GPU computations were driven by CUDA, offering a platform to design and execute
parallel algorithms tailored to GPU architectures. The researchers intricately integrated
CUDA kernels into their methodology, optimizing tasks like matrix operations and
exploiting CUDA’s memory hierarchy for peak performance.

The study’s findings, derived from an array of benchmark tests and real-world
scenarios, highlight the prowess of the hybrid system, underpinned by OpenMP,
MPI, and CUDA. Results show a substantial reduction in computation times for fluid
dynamics simulations, with the proposed method achieving up to an eightfold speedup
when compared to conventional GPU-based approaches.

In essence, this research bridges advanced parallel computing techniques with the
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specific requirements of the Navier-Stokes equations, capitalizing on the capabilities
of OpenMP,PI, and CUDA. It marks a transformative path within the realm of high-
performance computing for fluid dynamics.

The research paper [15], authored by Schive et al. delves into the development and
optimization of hydrodynamic algorithms tailored for AMR simulations. Recognizing
the computational challenges posed by hydrodynamic AMR simulations, the authors in-
troduce a directionally unsplit hydrodynamic scheme, aiming to enhance both accuracy
and efficiency.

Central to the research’s implementation is a harmonious blend of parallel comput-
ing technologies: MPI, OpenMP, and CUDA. MPI is employed to manage inter-node
communication, ensuring efficient data decomposition and distribution across mul-
tiple computer nodes in large-scale simulations. OpenMP, with its shared-memory
parallel programming capabilities, optimizes task distribution across multi-core CPUs,
enhancing the efficiency of operations best suited for CPU execution. NVIDIA’s CUDA
platform emerges as the linchpin for GPU-related computations. Using CUDA, the
authors developed parallel algorithms optimized for tasks inherent to hydrodynamic
computations, such as flux evaluations and data reconstruction.

The results from the study are illuminating. The introduced hydrodynamic scheme,
fortified by the hybrid MPI-OpenMP-GPU parallelization approach, showcases a sig-
nificant improvement in computational performance. Benchmark tests reveal that the
proposed methodology not only reduces computational times but also enhances the
accuracy of AMR simulations. Specifically, when compared to traditional methods, the
hybrid approach achieves speedups of several magnitudes, underscoring its potential
to revolutionize hydrodynamic AMR simulations.

In conclusion, [15] stands as a testament to the transformative power of blending
advanced hydrodynamic schemes with cutting-edge parallel computing techniques.
By integrating the strengths of MPI, OpenMP, and CUDA, the study paves the way
for faster, more accurate, and efficient hydrodynamic AMR simulations, setting a new
benchmark in the realm of computational fluid dynamics.

The previously referenced studies underscore the significance of adopting a multi-
GPU approach for large-scale simulations. Given that many of these studies employ
a hybrid methodology, we will conduct a detailed investigation and analysis of two
distinct approaches. The first is a pure OpenMP offloading approach, which leverages
OpenMP for data offloading, data distribution, and kernel computations. The second
approach involves a hybrid MPI with OpenMP strategy, where MPI is employed for
data distribution, and OpenMP is utilized for offloading and kernel computations.
Both approaches will undergo a comprehensive comparative analysis to determine the
superior strategy for implementation in ExaHyPE 2.
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In this section, we investigate two prospective methodologies for GPU offloading: a
pure OpenMP approach and a hybrid approach that integrates OpenMP and MPI. We
employ these methodologies to assess their performance on two benchmark types: a
memory-bound benchmark, namely, STREAM triad, and a compute-bound benchmark,
which involves matrix-matrix multiplication. The primary aim of this investigation is
to determine the most suitable approach for implementation within ExaHyPE 2.

3.1 Compute-Bound and Memory-Bound Problems in
High-Performance Computing

Compute-bound and memory-bound problems are two fundamental categories in
high-performance computing, each with its unique characteristics.

Compute-bound problems are characterized by a situation where the primary bottle-
neck in performance lies in the processing power of the CPU or GPU. In such cases,
the processor is predominantly engaged in intensive calculations and computations.
Memory access is not the limiting factor, and optimization strategies for compute-bound
problems typically focus on enhancing algorithm and code efficiency to maximize the
utilization of available computational resources.

On the other hand, memory-bound problems are those in which the principal
performance constraint arises from the time required to fetch data from memory. This
leads to extended periods of processor idleness as it waits for data to be loaded. In
memory-bound scenarios, optimization strategies are aimed at improving memory
access patterns and reducing data transfer to enhance overall application efficiency.

Subsequent sections will deliver a more in-depth analysis of both problem types,
encompassing the execution of the STREAM triad and matrix-matrix multiplicaiton
benchmarks. These sections will provide intricate insights into their implementation,
multi-GPU integration, and performance scalability.

3.2 The Roofline Model and Arithmetic Intensity

The Roofline model is a valuable framework used to assess and compare the perfor-
mance capabilities of compute-bound and memory-bound problems. It features two
key components:
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1. Arithmetic Intensity: This is a fundamental metric within the Roofline model that
quantifies the relationship between arithmetic operations (such as additions and
multiplications) and memory accesses in a workload. High arithmetic intensity
indicates a scenario where computation dominates memory access, while low
arithmetic intensity signifies a disproportionate emphasis on data retrieval and
the resulting underutilization of computational resources. Equation 3.1 represents
a general formula used to compute arithmetic intensity.

Arithmetic Intensity (AI) =
Number of Arithmetic Operations

Number of Memory Accesses
(3.1)

2. Roofline Graph: The Roofline model includes a roofline graph that represents the
upper bound of achievable performance. This graph serves as a visual reference
for the performance capabilities of a given hardware configuration. It helps
identify the maximum performance attainable and any performance bottlenecks
that might exist.

To compare compute-bound and memory-bound problems using the Roofline model
and arithmetic intensity, one can analyze how these problems perform in relation to the
roofline graph. Compute-bound problems will tend to have higher arithmetic intensity,
indicating that computation dominates memory access. Memory-bound problems, on
the other hand, will exhibit lower arithmetic intensity, highlighting the importance of
memory access.

In the context of the problem at hand, we compute the arithmetic intensity of the
triad operation as

Arithmetic Intensity (AI) =
1
12

, (3.2)

since there are 2 flops per iteration and 24 bytes of memory transfers for every itera-
tion [16]. Similarly, we calculate the arithmetic intensity of matrix-matrix multiplicaiton
as

Arithmetic Intensity (AI) =
M · N · K

M · K + N · K + M · N , (3.3)

since the product of B and C has M x N values, each of which is a dot-product of
K-element vectors [17].

The utilized GPU is the RTX3080 Turbo, featuring a theoretical peak memory band-
width of 760.3 GB/s and a theoretical peak double-precision performance of 465.1
GFLOPS. Leveraging this information, we construct the Roofline model depicted in
Figure 3.1, employing matrices with identical dimensions (N=M=K=214). This visual
representation reveals that the STREAM triad operation is memory-bound, while the
matrix-matrix multiplication operation is compute-bound.
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Figure 3.1: Empirical Roofline model for the STREAM triad and the matrix-matrix
multiplication benchmark on a RTX3080.
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3.3 STREAM Benchmark

The STREAM benchmark’s [18] triad operation serves as the foundation for evaluating
two distinct multi-GPU implementation methods. The triad operation encompasses
three arrays: A, B, and C. It executes the element-wise operation for each array element
as shown in Equation 3.4:

A[i] = B[i] + scalar · C[i] (3.4)

Primarily a memory-bound arithmetic operation, the triad benchmark gauges the
system’s bandwidth. We plotted the roofline model of the triad benchmark in Figure
3.1, and it can be seen that it is indeed a memory-bound problem. Within our code, the
array size was altered from 26 to 227, subsequently determining the MFLOPS for each
size through Equation 3.5:

MFLOPS = 2.0 · STREAM_ARRAY_SIZE ·NTIMES · 1.0× 10−6

duration
(3.5)

Here, STREAM_ARRAY_SIZE represents the array’s size, NTIMES the computation
repetition count, and duration the time interval between the triad computation’s com-
mencement and conclusion. The bandwidth is computed by multiplying the MFLOPS
by 12, accounting for the memory usage of the three double arrays.

Arrays B and C were initialized using their respective indices, and the output array
A was validated by comparing its sum against the sequential triad operation’s results.
The benchmark’s first implementation approach solely utilized OpenMP for data
distribution and kernel offloading. In contrast, the second method combined MPI for
data distribution with OpenMP for kernel offloading. Both methods underwent testing
for strong and weak scaling across four GPUs.

3.3.1 OpenMP target Offloading

In our first approach, we leverage OpenMP offloading for both kernel execution and
data distribution. Our process begins with the allocation of the uninitialized arrays
A, B, and C, each of size CHUNK_SIZE, on the GPUs. Subsequently, we proceed to
initialize B and C on the GPUs using their respective indices. Algorithm 1 illustrates the
allocation and initialization. In our specific case, STREAM_TYPE is of double precision,
OFFSET is utilized for padding and is set to zero within the code, while CHUNK_SIZE
is responsible for computing the appropriate chunk size for the arrays, taking into
consideration the number of GPUs in use (GPU_COUNT). It also accounts for situations
where the array size is not evenly divisible by the number of GPUs. To ensure accurate
initialization across the various GPUs, we iterate through the devices, establish distinct
sections, and offload the initialization to a dedicated team of threads.

Once the GPU arrays are initialized, Algorithm 2 outlines the procedure for perform-
ing the triad operation, all while monitoring the execution time based on wall time
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Algorithm 1 OpenMP target triad allocation and initialization

Require: STREAM_ARRAY_SIZE, NTIMES
1: a← new STREAM_TYPE[STREAM_ARRAY_SIZE + OFFSET]
2: b← new STREAM_TYPE[CHUNK_SIZE + OFFSET]
3: c← new STREAM_TYPE[CHUNK_SIZE + OFFSET]
4: scalar← 2.0
5: CHUNK_SIZE← (STREAM_ARRAY_SIZE + GPU_COUNT - 1) / GPU_COUNT
6: for i from 0 to GPU_COUNT do
7: Target enter data map(alloc:a[0:CHUNK_SIZE],b[0:CHUNK_SIZE],c[0:CHUNK_SIZE])

device(i)
8: end for
9: Parallel NUM_THREADS(GPU_COUNT)

10: Sections
11: for j from 0 to GPU_COUNT do
12: Section
13: if GPU_COUNT == 1 then
14: Target device(j)
15: else
16: Target device(j) nowait
17: end if
18: Teams
19: Distribute parallel for
20: for i from 0 to CHUNK_SIZE do
21: b[i]← c[i]← i + j × CHUNK_SIZE
22: end for
23: end for
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measurements. Following the computation, the resultant array A is transferred back to
the CPU, and the GPU memory resources are freed for arrays B and C. Subsequently, for
each GPU, the elements of array A are aggregated through the calculateResult function
to validate the results. Finally, the MFLOPS are computed using the calculateMFLOPS
function.

Algorithm 2 OpenMP target triad kernel

Require: STREAM_ARRAY_SIZE, NTIMES
1: start← omp_get_wtime()
2: Parallel NUM_THREADS(GPU_COUNT)
3: Sections
4: for k from 0 to GPU_COUNT do
5: Section
6: if GPU_COUNT == 1 then
7: Target device(k)
8: else
9: Target device(k) nowait

10: end if
11: Teams
12: for j from 0 to NTIMES do
13: Distribute parallel for
14: for i from 0 to CHUNK_SIZE do
15: a[i]← b[i] + scalar × c[i]
16: end for
17: end for
18: end for
19: stop← omp_get_wtime()
20: duration← stop - start
21: triad_result← 0
22: for i from 0 to GPU_COUNT do
23: Target exit data
24: map(from:a[0:CHUNK_SIZE]) map(release:b[0:CHUNK_SIZE],c[0:CHUNK_SIZE])

device(i)
25: triad_result← triad_result + calculateResult(CHUNK_SIZE, a)
26: end for
27: triad_mflops← calculateMFLOPS(STREAM_ARRAY_SIZE, duration, NTIMES)
28: Delete[] a, b, c

Observation 1 Using OpenMP sections improves performance: The sections construct
is a non-repetitive work-sharing feature that encompasses a collection of organized
blocks. These blocks are meant to be distributed among the threads in a team and
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executed. Within this construct, each structured block is executed exactly once by one
of the threads in the team, within the context of its implicit task. This construct can
enhance performance through the facilitation of concurrent execution of code blocks,
maintenance of equitable thread workload distribution, provision of execution order
flexibility, scalability with the number of accessible processor cores, and streamlining
the creation of parallel code.

Observation 2 Using nowait with one GPU leads to incorrect and random results: In
OpenMP, using the nowait clause with a single GPU target construct can lead to
incorrect and random results because it allows for asynchronous execution, enabling
the CPU to continue processing without waiting for the GPU to finish its tasks. This
can result in synchronization issues and data race conditions, as the CPU and GPU
may operate on the same data simultaneously, leading to unpredictable and incorrect
outcomes. To ensure correct synchronization when using a single GPU in OpenMP, you
should avoid nowait and rely on the implicit synchronization provided by the target
construct to guarantee that the GPU operations complete before continuing with CPU
code that depends on the results.

3.3.2 Hybrid MPI with OpenMP target Offloading

The second approach involves utilizing MPI for data distribution and OpenMP for
kernel offloading. As shown in Algorithm 3, the central concept is to designate distinct
MPI ranks as GPU identifiers, with each rank corresponding to a specific GPU. For
instance, rank 0 corresponds to GPU 0. In contrast to the pure OpenMP approach,
the arrays B and C are initially instantiated on the CPU (specifically, on rank 0) with
their associated indices. Subsequently, employing the MPI_Scatter directive, the arrays
are distributed to local arrays within each rank, with each local array having a size
of CHUNK_SIZE. The value of CHUNK_SIZE is calculated based on the overall array
size and the number of GPUs employed. Following this distribution, OpenMP is
employed to map the local arrays onto the GPUs, and the triad kernel is offloaded for
computation.

Once the computation is completed, the local arrays B and C are released from
GPU memory, and the local array A is remapped back to the CPU, where each chunk
is gathered into the global array A. Similar to the OpenMP implementation, the
verification and MFLOP calculation processes are executed within their respective
functions.

3.4 Matrix-Matrix Multiplication

Consider the problem of matrix-matrix multiplicaiton, where we have two input
matrices, B of size (M× K) and C of size (K× N). We aim to compute the resulting
matrix A of size (M×N) as shown in Equation 3.6 using the block (column) distribution
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Algorithm 3 Hybrid MPI with OpenMP target triad kernel

Require: STREAM_ARRAY_SIZE, NTIMES, rank, NUM_PROCESSES
1: Initialize MPI
2: Parse STREAM_ARRAY_SIZE
3: Calculate CHUNK_SIZE based on STREAM_ARRAY_SIZE and NUM_PROCESSES
4: Initialize scalar
5: Allocate memory for a, b, and c (rank 0)
6: Initialize b and c (rank 0)
7: Scatter b and c to local_b and local_c (all ranks)
8: Target data
9: map(tofrom: local_a[0:CHUNK_SIZE]) map (to:local_b[0:CHUNK_SIZE],local_c[0:CHUNK_SIZE])

device(rank)
10: Target device(rank)
11: Teams
12: for j = 0 to NTIMES do
13: Distribute parallel for
14: for i = 0 to CHUNK_SIZE do
15: Compute local_a[i] = local_b[i] + scalar · local_c[i]
16: end for
17: end for
18: Gather local_a to a (rank 0)
19: Target exit data
20: map(from:a[0:CHUNK_SIZE]) map(release:b[0:CHUNK_SIZE],c[0:CHUNK_SIZE])

device(rank)
21: if rank = 0 then
22: triad_result← calculateResult(CHUNK_SIZE, a)
23: triad_mflops← calculateMFLOPS(STREAM_ARRAY_SIZE, duration, NTIMES)
24: Delete[] a, b, c
25: end if
26: Release memory for local_a, local_b, and local_c
27: Finalize MPI
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method.

A[i, j] = ∑
k

B[i, k] · C[k, j] (3.6)

The block (column) distribution method is designed for efficient parallel computation
of the matrix product (Equation 3.6). This technique involves dividing the input
matrices and distributing the computation across multiple processors, as described
below:

1. Input Matrices: We have two input matrices, B and C, with dimensions as
described above.

2. Processor Assignment: We have GPU_COUNT GPUs available, where GPU_COUNT
is typically less than or equal to the number of columns in matrix C (i.e., N).

3. Data Partitioning:

• Matrix B remains intact on all GPUs, and each GPU stores a full copy of
matrix B.

• Matrix C is divided into GPU_COUNT vertical columns. Each GPU is
assigned a specific subset of columns from matrix C, according to Equation
3.7, where j is the column.

GPU_ID =
j · GPU_COUNT

N
(3.7)

4. Computation:

• Each GPU is responsible for calculating a portion of the resulting matrix A.

• Specifically, each GPU computes one or more columns of A, corresponding
to the columns of C it owns.

• The multiplication is performed for the full matrix B but only against the
columns of B that the GPU has.

5. Communication and Aggregation:

• Once all GPUs have completed their individual calculations, the partial
results need to be aggregated to form the final matrix A.

3.4.1 OpenMP target Offloading

To implement OpenMP target offloading for utilizing multi-GPUs in the matrix-matrix
multiplication benchmark, we employ a process analogous to that employed for the triad
operation. Initially, we allocate and initialize the matrices local_a, b, and c on the GPUs,
as demonstrated in Algorithm 4. The sizes of local_a and c are determined based on
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the dimensions of the matrix N and the number of GPU devices GPU_COUNT. Matrix
b is entirely distributed to each device.

The kernel for matrix-matrix multiplication is depicted in Algorithm 5, where we
iterate over the devices and compute a segment of the resulting matrix in each itera-
tion. The complete resultant matrix a is subsequently reconstructed by mapping the
segmented portions of a back to the CPU and aggregating them into a.

Algorithm 4 OpenMP target matrix-matrix multiplication allocation and initialization

Require: N
1: a← new double[N]
2: b← new double[CHUNK_SIZE]
3: c← new double[CHUNK_SIZE]
4: local_a← new double[CHUNK_SIZE]
5: CHUNK_SIZE← (N + GPU_COUNT - 1) / GPU_COUNT
6: for k from 0 to GPU_COUNT do
7: Target enter data map(alloc:local_a[0:CHUNK_SIZE*N],b[0:N*N],c[0:CHUNK_SIZE*N])

device(k)
8: end for
9: Parallel NUM_THREADS(GPU_COUNT)

10: Sections
11: for k from 0 to GPU_COUNT do
12: Section
13: if GPU_COUNT == 1 then
14: Target device(k)
15: else
16: Target device(k) nowait
17: end if
18: Teams
19: Distribute parallel for
20: for i from 0 to N do
21: for j from 0 to N do
22: b[i * N + j]← 2.0
23: end for
24: for j from 0 to N do
25: c[j * N + i]← 4.0
26: end for
27: end for
28: end for
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Algorithm 5 OpenMP target matrix-matrix multiplication kernel

Require: N
1: start← omp_get_wtime()
2: Parallel NUM_THREADS(GPU_COUNT)
3: Sections
4: for l from 0 to GPU_COUNT do
5: Section
6: if GPU_COUNT == 1 then
7: Target device(l)
8: else
9: Target device(l) nowait

10: end if
11: Teams Distribute parallel for
12: for i = 0 to N do
13: for j = 0 to chunk_size do
14: for k = 0 to N do
15: local_a[j · N + i]+ = b[i · N + k] · c[j · N + k]
16: end for
17: end for
18: end for
19: end for
20: stop← omp_get_wtime()
21: duration← stop - start
22: triad_result← 0
23: for i from 0 to GPU_COUNT do
24: Target exit data
25: map(from:local_a[0:CHUNK_SIZE]) map(release:b[0:CHUNK_SIZE],c[0:CHUNK_SIZE])

device(i)
26: triad_result← triad_result + calculateResult(CHUNK_SIZE, a)
27: end for
28: Parallel for
29: for i from 0 to N − 1 do
30: for j from 0 to chunk_size− 1 do
31: a[(j + start_col) · N + i] += local_a[j · N + i]
32: end for
33: end for
34: matmul_mflops← calculateMFLOPS(N, duration)
35: Delete[] a, b, c, local_a
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3.4.2 Hybrid MPI with OpenMP target Offloading

In emulation of the triad operation, we have embraced methodologies for the multi-
GPU offloading of matrix-matrix multiplication, employing a hybrid MPI with OpenMP
target offloading. To realize this, we establish a uniform mapping of each rank to a
designated target device. The pseudo-code of the hybrid MPI with OpenMP target
offloading is shown in Algorithm 6. Notably, its structure closely mirrors the implemen-
tation of the triad operation, while adopting the algorithm details of the block (column)
distribution method mentioned above.

Algorithm 6 Hybrid MPI with OpenMP target matrix-matrix multiplication kernel

Require: N, rank, NUM_PROCESSES
1: Initialize MPI
2: Parse N
3: Calculate CHUNK_SIZE based on N and NUM_PROCESSES
4: Define a, b, c, local_a
5: Target enter data map(alloc: local_a[0 : CHUNK_SIZE ∗ N], b[0 : N ∗ N], c[0 :

CHUNK_SIZE ∗ N]) device(rank)
6: Initialize a, b, c on GPU
7: Target device(rank)
8: Teams
9: Distribute parallel for

10: for i = 0 to N do
11: for j = 0 to chunk_size do
12: for k = 0 to N do
13: local_a[j · N + i]+ = b[i · N + k] · c[j · N + k]
14: end for
15: end for
16: end for
17: Target data map(from: local_a[0 : CHUNK_SIZE ∗ N]) map(release: b[: N ∗ N],

c[0 : CHUNK_SIZE ∗ N]) device(rank)
18: Gather local_a to a (rank 0)
19: if rank = 0 then
20: matmul_mflops← calculateMFLOPS(N, duration)
21: end if
22: Delete[] a, b, c, local_a
23: Finalize MPI
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4.1 Evaluation of the Implementations

Taking the above benchmarks into consideration, when transitioning from single GPU
utilization to a multi-GPU configuration, the process can become quite intricate, par-
ticularly when relying on pure OpenMP offloading. Several critical factors come into
play:

• A for loop must be constructed to iterate through the GPU devices for the precise
implementation of device(GPU_ID).

• For a more optimized approach, it is recommended to use sections, which necessi-
tates the addition of extra lines of code.

• To accommodate single GPU usage, conditions need to be added for the nowait
construct, which can potentially impact overall performance.

• Diligent attention is required for data synchronization and distribution to and
from the GPUs.

In contrast, when employing a hybrid MPI and OpenMP approach, there is no need
for explicit device ID specification within for loops. Moreover, data distribution and
synchronization are significantly streamlined through the utilization of built-in MPI
features such as scatter and gather.

4.2 Benchmarking

The benchmarks were run on the Home One cluster. The compute node is powered by
a single AMD EPYC 7402 CPU, offering 24 cores and 2-way hyper-threading, alongside
256 GB of RAM. It has four RTX 3080 Turbo GPUs, each providing 10 GB of video
RAM, and a 512 GB NVMe PCIe Gen4 SSD. Both nodes operate on the Ubuntu 20.04.2
LTS operating system with kernel version 5.4.0-81. Each GPU has a theoretical peak
bandwidth of 760.3 GB/s and a theoretical peak performance of 465.1 GFLOP/s for
double precision. We tested weak scaling and strong scaling scenarios.
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4.2.1 STREAM Triad

Performance Evaluation

To assess the performance of various computational approaches, we conducted a
comprehensive analysis by manipulating the array size, ranging from 26 to 227, for
different GPU configurations, including 1, 2, 3, and 4 GPUs. In Figures 4.1 and 4.2, we
present the results, depicting GFLOP/s and bandwidth (GB/s) as functions of data size
for each GPU configuration.

For smaller array sizes within the range of 102 to 105 on a logarithmic scale, the
bandwidth exhibited a consistent trend across all GPU configurations, with minimal
variations. However, as the array size increased, a conspicuous divergence emerged
among the different GPU setups, with the four-GPU configuration achieving the highest
bandwidth. This observation aligns with expectations, as larger data sizes mitigate
communication overhead, allowing GPUs to leverage their computational power more
effectively.

Comparing the performance of MPI and OpenMP, we note a discernible distinction.
OpenMP outperformed MPI, reaching a peak bandwidth of 2400 GB/s, while MPI
attained a maximum of 1950 GB/s for an array size of 227. This contrast underscores the
importance of selecting the appropriate parallelization strategy, as it can significantly
impact the computational efficiency of the system.

Weak Scaling

In the realm of high-performance computing, weak scaling serves as a pivotal metric for
assessing the performance and efficiency of parallel computing systems. It evaluates
how well a system can handle an increase in both the problem size and the number of
processing units in a proportional manner. In essence, weak scaling is about maintaining
a consistent workload per processing unit as computational demands and resources
expand. The goal is to ensure that the system’s performance remains stable and efficient
throughout this scalability process.

This metric is often quantified as a ratio comparing the execution time required to
complete a fixed amount of work, like a specific problem size, on a single processing
unit to the execution time when both the problem size and the number of processing
units are increased in a proportional fashion. In our particular case, this concept was
put into action by progressively increasing the array size from 224 to 227, all the while
adding one GPU for each doubling of the array size. The outcome, as illustrated in 4.3
and 4.4, portrays a nearly ideal manifestation of weak scaling, characterized by a linear
increase in bandwidth.
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Figure 4.1: Variation in the performance (GFLOP/s) and bandwidth (GB/s) of the
OpenMP target implementation of the triad benchmark (GB/s) with respect
to the data size, tested across an increasing number of GPUs (1 to 4).
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Figure 4.2: Variation in tghe performance (GFLOP/s) and bandwidth (GB/s) of the
Hybrid MPI with OpenMP target implementation of the triad benchmark,
as a function of the data size. The evaluation includes tests on an increasing
number of GPUs (1 to 4).
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Figure 4.3: Near-linear weak scaling of the OpenMP target implementation of the triad
benchmark, plotted as performance (GFLOP/s) and bandwidth (GB/s) in
relation to the number of GPUs.
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Figure 4.4: Near-linear weak scaling of the hybrid MPI with OpenMP target imple-
mentation of the triad benchmark, plotted as performance (GFLOP/s) and
bandwidth (GB/s) in relation to the number of GPUs.
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Strong Scaling

Strong scaling stands as a pivotal performance metric within parallel computing, offering
a nuanced evaluation of how efficiently a parallel algorithm or application can manage
a fixed-size problem as the number of processors or computational resources expands.
It maintains a constant problem size while concurrently diminishing the time required
to resolve it as additional resources are integrated. In essence, strong scaling quantifies
the competence of a parallel system in the equitable distribution of workloads across
multiple processors, with the ultimate goal of diminishing execution time as the number
of processors multiplies, all the while preserving the problem size in stasis.

The gold standard is an ideal scenario where a linear or near-linear speedup is
achieved, symbolizing the utmost efficiency in resource utilization. For instance, in
our specific case, we selected an array size of 227 and held this number in place,
incrementally increasing the number of GPUs used from 1 to 4.

The visual representation of this phenomenon, as illustrated in Figures 4.5 and 4.6
for strong scaling employing the OpenMP and hybrid MPI approaches, serves as an
exemplar of this captivating concept. Just as we observed in the case of weak scaling,
these unveil an instance of near-ideal scaling, with a linear increase in bandwidth
directly corresponding to the increasing number of GPUs while the data size remains
constant.

4.2.2 Matrix-Matrix Multiplication

Performance Evaluation

To evaluate the performance of diverse computational methodologies, a comprehensive
analysis was conducted, involving the manipulation of the matrix size (N) across a
range spanning from 22 to 214. This analysis was performed across varying GPU
configurations, encompassing 1, 2, 3, and 4 GPUs. In Figures 4.7 and 4.8, the results
are presented, showcasing GFLOP/s and bandwidth (GB/s) as functions of matrix size
for each GPU configuration. Both OpenMP and MPI methodologies yielded closely
aligned results. As depicted in the graphs, it becomes evident from the bandwidth data
that matrix-matrix multiplication is predominantly compute-bound. This is evidenced
by the decline in bandwidth as the matrix size increases, concurrent with a rapid
upsurge in performance for larger matrix sizes. However, as the matrix size grows to a
substantial scale, the rate of performance improvement begins to decelerate, owing to
the inherent simplicity of the matrix multiplication algorithm employed. This method,
outlined in Algorithms 5 and 6 lack the exploitation of cache locality and fails to
implement optimization techniques such as loop interchange or cache blocking [19].
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Figure 4.5: Near-linear strong scaling of the OpenMP target implementation of the triad
benchmark, plotted as performance (GFLOP/s) and bandwidth (GB/s) in
relation to the number of GPUs.
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Figure 4.6: Near-linear strong scaling of the hybrid MPI with OpenMP target imple-
mentation of the triad benchmark, plotted as performance (GFLOP/s) and
bandwidth (GB/s) in relation to the number of GPUs - Data Size: 227.
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Figure 4.7: Variation in the performance (GFLOP/s) and bandwidth (GB/s) of the
OpenMP target implementation of the matrix-matrix multiplication bench-
mark, as a function of data size. The evaluation includes tests on an
increasing number of GPUs (1 to 4).
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Figure 4.8: Variation in the performance (GFLOP/s) and bandwidth (GB/s) of the
Hybrid MPI with OpenMP target implementation of the matrix-matrix
multiplication benchmark, as a function of data size. The evaluation includes
tests on an increasing number of GPUs (1 to 4).
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Figure 4.9: Near-linear weak scaling of the OpenMP target implementation of the matrix-
matrix multiplication benchmark, plotted as performance (GFLOP/s) and
bandwidth (GB/s) in relation to the number of GPUs.

Weak Scaling

Weak scaling was implemented by progressively increasing the matrix size from 211 to
214, all the while adding one GPU for each doubling of the matrix size. The outcomes,
as illustrated in Figures 4.9 and 4.10, portray a nearly ideal weak scaling, characterized
by a linear increase in performance.

Strong Scaling

Strong scaling was implemented by selecting an array size of 214 and incrementally
increasing the number of GPUs used from 1 to 4. The resulting graphs are shown in
Figures 4.11 and 4.12, where both implementations show ideal strong scaling.

4.3 Chosen Approach for ExaHyPE 2

Upon a thorough examination of various implementation strategies and a rigorous
performance comparison, we have decisively opted for the hybrid approach, specifi-
cally combining MPI with OpenMP offloading. This choice stems from the inherent
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Figure 4.10: Near-linear weak scaling of the hybrid MPI with OpenMP target imple-
mentation of the matrix-matrix multiplication benchmark, plotted as per-
formance (GFLOP/s) and bandwidth (GB/s) in relation to the number of
GPUs.
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Figure 4.11: Linear strong scaling of the OpenMP target implementation of the matrix-
matrix multiplication benchmark, plotted as performance (GFLOP/s) and
bandwidth (GB/s) in relation to the number of GPUs - Data Size: 214.
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Figure 4.12: Linear strong scaling of the hybrid MPI with OpenMP target implementa-
tion of the matrix-matrix multiplication benchmark, plotted as performance
(GFLOP/s) and bandwidth (GB/s) in relation to the number of GPUs -
Data Size: 214.
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advantages of the hybrid approach, notably its seamless integration of built-in MPI
functions that are explicitly designed for data distribution and synchronization, all
while maintaining an impressive level of performance efficiency. Given the complexity
of the ExaHyPE 2 codebase we are addressing, the hybrid approach emerges as the
pragmatic choice. It not only simplifies the implementation process but also assures
the attainment of more precise results through a less labor-intensive methodology. This
hybrid approach of MPI and OpenMP not only streamlines the development process
but also promises to yield reliable and robust results in a highly efficient manner.
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5.1 Rusanov Kernel Benchmarks in ExaHyPE 2

The implementation of the Euler equations within ExaHyPE 2 is accompanied by a
mini-app which evaluates the performance of the respective Rusanov kernels. This
benchmark is designed to evaluate the computational speed of the core compute ker-
nels. It exclusively measures throughput on a single node or GPU, providing valuable
insights into the inherent efficiency of these essential computational components within
the system. Notably, this benchmark does not consider extraneous factors such as
multithreading coordination overhead, MPI data exchange, grid management, time-
stepping behavior, or halo data exchange. While its relevance may be limited for
extensive, large-scale simulations, wherein scalability, input/output overheads, and
other variables take precedence, it provides an essential theoretical understanding of
the capabilities of these core compute routines.

The experiments produce sets of results for various combinations of the number of
threads responsible for launching compute tasks and the number of patches processed
in each launch. In the case of a single thread, thread 0 within a multithreaded envi-
ronment is assigned to execute various kernel implementations for a specific number
of patches. Some of these kernels incorporate internal parallelization, while others do
not. Subsequently, following the completion of these single-thread tests, two threads
are introduced to simultaneously execute the same type of kernel. This approach is
designed to stress-test the system.

For each realization, six distinct measurements are obtained:

1. The first measurement records the total time taken for a single kernel execution.

2. The second measurement quantifies the update per degree of freedom within a
single kernel.

3. The third measurement focuses on the overall runtime of parallel launching,
encompassing the setup and release of temporary data structures. It also accounts
for the duration until all threads have completed their tasks. Consequently, this
value is expected to be greater than the first measurement.
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4. The fourth measurement provides the time required for a degree of freedom
update when launching multiple kernels in parallel.

5. The fifth and sixth measurements furnish the raw data, enabling the assessment
of the standard deviation of the measurements. It is noteworthy that each value
is typically sampled multiple times to reduce potential noise.

For our evaluation, we will only utilize the first measurement, which is the total time
taken for a single kernel execution.

The expected outcomes of the experiments depend on the system’s ability to fully
utilize available processing cores. When a single kernel invocation for multiple patches
by one thread already optimally utilizes the available cores, launching multiple kernels
should yield either identical throughput or potentially a degradation in performance
due to inherent overhead. Conversely, if a single kernel launch for multiple patches
cannot effectively engage all available threads, launching multiple kernels in parallel is
expected to enhance overall throughput.

5.2 Hybrid MPI OpenMP

In this section, we describe how we transformed the Rusanov benchmark to accommo-
date the multiple GPU. This was achieved by enabling the utilization of MPI for data
distribution and synchronization, and utilizing the rank as the device ID (GPU_ID)
for offloading of kernels to the GPU through OpenMP’s target clause. The adaptation
process comprises three main stages: domain decomposition, reduction, and barrier
synchronization. Once the MPI implementation is integrated, the GPU kernels are
invoked with their respective (GPU_ID). It is worth noting that this MPI implementa-
tion also extends parallelization to the host benchmark. The pseudo code for the MPI
implementation is shown in Algorithm 7.

5.2.1 Domain Decomposition

Each instance of the kernel procedure is invoked with ∥PGPU∥, representing the quantity
of patches to be utilized. In the single GPU implementation, this kernel is subsequently
offloaded to a specific GPU in accordance with (GPU_ID) through OpenMP offloading.
In the context of a multi-GPU implementation, the initial step involves partitioning the
number of total patches (PATCHES) based on the desired number of GPUs, necessitating
adjustments to loop boundaries. The quantity of GPUs employed equals the number
of MPI ranks, meaning that if four GPUs are intended for use, the benchmark must
execute with four MPI ranks, with each rank’s id (rank) corresponding to a device ID
(GPU_ID).

To facilitate this, we calculate the number of patches allocated to each MPI rank
(LOCAL_PATCHES). Its determination takes into account the rank’s id (rank), the total
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number of ranks (NUM_PROCESSES), and whether the total number of patches is
evenly divisible by the total number of ranks. The calculation for LOCAL_PATCHES
for the last MPI rank, accounting for any remainder (REMAINDER) resulting from an
uneven division of patches among ranks, is presented in Equation 5.1. For all other
ranks, except the final one, the calculation for LOCAL_PATCHES is simply the number
of patches divided by the number of MPI ranks, as depicted in Equation 5.2.

LOCAL_PATCHES =
PATCHES

NUM_PROCESSES
+ PATCHES % NUM_PROCESSES (5.1)

LOCAL_PATCHES =
PATCHES

NUM_PROCESSES
(5.2)

5.2.2 Reduction

The kernel benchmark is invoked once per MPI rank, resulting in the offloading of the
kernel on a per-rank basis. Subsequently, each kernel execution yields a corresponding
output, from which we compute the error and maximum deviation relative to a
reference case. As each rank maintains its local error and local maximum difference,
we incorporate an MPI reduction operation to sum these values, thereby computing
the total error and maximum deviation specific to the given number of patches.

5.2.3 Barrier Synchronization

Within the main function, the kernel benchmark is invoked with varying numbers
of patches, starting with a minimum value equal to the number of MPI ranks and
progressively increasing up to a maximum number of patches by doubling the patch
count in each iteration. The choice of the minimum value is strategically made to
maintain the correctness of the domain decomposition.

Given that one MPI rank might complete its computations faster than others, this
rank can return to the main function and start a new call to kernel. This situation
can introduce a race condition regarding the values of local error and local maximum
difference. To solve this issue, a barrier is introduced following the function call to
ensure that all ranks collectively wait until each of them completes the execution of the
kernel.

5.3 Validation

To verify the execution of this benchmark on the designated number of GPUs, we
continuously monitored the number of GPUs in use, the fluctuating GPU utilization
for each individual GPU, and the GPU memory consumption in Mebibytes (MiB). The
testing encompassed configurations involving 1 to 4 GPUs, representing the maximum
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Algorithm 7 ExaHyPE 2 Rusanov kernel benchmark multi-GPU implementation

Require: PATCHES, LAUNCHING_THREADS
Create a GridTraversalEvent event
Create a CellMarker marker with event
procedure assessKernel(kernel, markerName, LAUNCHING_THREADS, GPU_ID,
PATCHES)

NUM_PROCESSES = number of MPI ranks
patchesPerProcess = PATCHES / NUM_PROCESSES
REMAINDER = PATCHES % NUM_PROCESSES
startPatch = rank · patchesPerProcess
endPatch = startPatch + patchesPerProcess + (rank == NUM_PROCESSES - 1 ?

REMAINDER : 0)
LOCAL_PATCHES = endPatch - startPatch
for reduceMaxTimeStep in [0, 1] do

for j in [0, NumberOfSamples - 1] do
Create a CellData patchData with size LOCAL_PATCHES
for i in [0, LOCAL_PATCHES - 1] do

Initialize patchData attributes
Call initInputData on patchData.QIn[i]

end for
Call one kernel for each MPI rank
if Accuracy > 0.0 then

Store outcome
Compute local errors and local max difference on each rank
Reduce localErrors and localMaxDifference with MPI
if errors > 0 then

Log error and abort if necessary
end if

end if
for i in [0, LOCAL_PATCHES - 1] do

Free memory for patchData.QIn[i] and patchData.QOut[i]
end for

end for
end for

end procedure
if GPU offloading with OpenMP is enabled then

Assess kernels with OpenMP using GPU_ID as current MPI rank
end if
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available on a single cluster node, and varying numbers of patches. The examination
yielded the following insights:

• The observed count of GPUs in use precisely matched the intended number of
GPUs.

• A uniform distribution of volatile GPU utilization was evident across all GPUs,
indicating effective load balancing.

• The memory allocation across GPUs demonstrated uniformity, affirming the
expected outcome of the domain decomposition.

• A synchronized barrier operation following the function call exhibited the desired
behavior. At the start of a new patch configuration, GPU utilization across all
GPUs uniformly reduced to zero, and memory was offloaded simultaneously.
This was verified by monitoring the GPU memory usage.

• We also conducted a comparative analysis of the multi-GPU benchmark results
against single-GPU, parallel, and sequential host (CPU) kernel calls. The outcomes
were found to be consistent, thereby validating the computational correctness.

These observations validate the functionality of the hybrid MPI with OpenMP
offloading implementation.

5.4 Benchmarking

5.4.1 Performance Evaluation

We conducted a comprehensive performance analysis using 1, 2, 3, and 4 GPUs to
evaluate a specific 3D kernel benchmark with patch sizes of 8. The number of patches
(PATCHES) spanned from 22 to 215, with each step doubling the patch count. The
graphical representation of our findings is illustrated in 5.1 Our analysis unveiled an
interesting pattern: up to 214 patches the temporal differences among the various GPU
configurations were negligible. In some instances, a single GPU even exhibited superior
performance over multiple GPUs. This intriguing phenomenon can be attributed to
communication overhead.

Communication overhead represents the delays and inefficiencies introduced when
data needs to be transferred between different processing units. In scenarios with
relatively small problem sizes, communication overhead plays a significant role. The
additional time spent on data transfers and synchronization processes can offset the
potential benefits of parallelism.

However, as the problem size increased, we observed a remarkable improvement
in performance when using multiple GPUs. This underscores the pivotal role of the
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Figure 5.1: Performance of the ExaHyPE 2 Rusanov kernel benchmark multi-GPU
implementation, measured in time per Finite Volume (FV) update (s), as a
function of the number of patches per kernel call. Testing conducted on an
increasing number of GPUs (1 to 4).

multi-GPU approach, particularly for applications like ExaHyPE 2, tailored to manage
millions of patches. In such cases, the utilization of multiple GPUs offers the potential
for substantial overall performance gains. It is important to note that the upper limit of
the number of patches was set to 215 due to the limited memory available on one GPU.

5.4.2 Weak Scaling

Weak scaling was performed by varying the number of patches (PATCHES) for the
same problem as above from 213 to 216 while adding one GPU as the number of patches
doubled. The resulting graph is show in Figure 5.2.

5.4.3 Strong Scaling

The third aspect of performance analysis undertaken is strong scaling. In this evaluation,
the same problem as above was used, with the number of patches (PATCHES) set to
216. The selection of the number of patches took into consideration the available
GPU memory capacity, limited to 10 GB of RAM, as well as the desire to minimize
communication overhead among multiple GPUs.
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Figure 5.2: Weak scaling performance of the ExaHyPE 2 Rusanov kernel benchmark
multi-GPU implementation, represented as time per Finite Volume (FV)
update (s), with respect to the number of patches per kernel call.
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Figure 5.3: Strong scaling performance of the ExaHyPE 2 Rusanov kernel benchmark
multi-GPU implementation, illustrated as time per Finite Volume (FV) up-
date (s), with respect to the number of patches per kernel call. Data size:
216.

As depicted in Figure 5.3, the results of the strong scaling analysis reveal several
key insights. It is evident from the graph that, for this specific number of patches, the
optimal configuration involves employing three GPUs. This choice is attributed to the
problem size being sufficiently substantial to fully exploit the capabilities of all three
GPUs, rendering communication overhead negligible. When employing four GPUs, the
kernel execution time is marginally longer compared to three GPUs, with an additional
2 seconds attributable to the problem size being insufficient to mitigate the impact of
communication overhead.

Conversely, utilizing only two GPUs results in a fourfold decrease in performance
compared to the three-GPU setup, taking 8 seconds. It is important to note that this
problem size is not amenable to execution on a single GPU. To provide a basis for
comparison, we have interpolated the expected execution time on a single GPU, which
is represented by the dotted line.

In light of the foregoing findings, it is evident that as the number of patches increases,
the utilization of multiple GPUs will undoubtedly lead to substantial performance
improvements.
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6 Case Study

In this section, we simulate the 3D Euler equations using a patch-based enclave solver
in ExaHyPE 2, incorporating the multi-GPU approach using hybrid MPI with OpenMP
target offloading. The implementation is subjected to validation and benchmarking.

6.1 The Euler Equations

The Euler equations are fundamental in fluid dynamics, describing the motion of an
ideal fluid in the absence of energy losses due to friction or heat conduction. In their
first order conservative form for two dimensions, assuming no external forces, these
equations are given by

∂

∂t


ρ

ρu1

ρu2

Et

+∇


ρu1 ρu2

ρu2
1 + p ρu1u2

ρu2u1 ρu2
2 + p

(Et + p)u1 (Et + p)u2

 = 0⃗. (6.1)

These equations govern the conservation of mass, momentum, and energy in a
two-dimensional fluid flow. They can also be expressed more concisely as

∂

∂t

ρ

j
E

+∇ ·

 j
1
ρ j⊗ j + pI
1
ρ j (E + p)

 = 0⃗. (6.2)

Here, ρ represents density, u1 and u2 are velocity components, Et is total energy, and
p is pressure. To implement these equations effectively, specifying appropriate initial
conditions, boundary conditions, eigenvalues, and a flux function is essential. The
eigenvalues for the 2D Euler equations are key to understanding wave propagation in
the fluid, depending on fluid velocity and the wave speed, influenced by the adiabatic
index γ and the energy. In practice, initial conditions should define the fluid’s starting
state, boundary conditions are imposed at domain boundaries, and eigenvalues play
a crucial role in numerical solutions. The eigenvalues of the two-dimensional Euler
equations are given by λ1

λ2

λ3

 =

u− c
u

u + c

 . (6.3)
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where c is the wave propagation speed. For dry air, which can be approximated as
an ideal gas, c depends on the pressure as

γ

p
c

 =

 1.4
(γ− 1)(Et − 1

2ρ (ρu)2)√
γp
ρ

 . (6.4)

For the three-dimensional Euler equations, an extension of the 2D equations to three
dimensions, the equations follow a similar structure, accounting for fluid motion in
three spatial dimensions. The eigenvalues and pressure-wave speed relationship are
analogous to the 2D case.

The three-dimensional Euler equations are very similar to the two-dimensional
equations and can be represented as

∂

∂t


ρ

ρu1

ρu2

ρu3

Et

+∇


ρu1 ρu2 ρu3

ρu2
1 + p ρu1u2 ρu1u3

ρu2u1 ρu2
2 + p ρu2u3

ρu3u1 ρu3u2 + p ρu2
3 + p

(Et + p)u1 (Et + p)u2 (Et + p)u3

 = 0⃗. (6.5)

The PDE is:

∂ρ(x)
∂t

+∇ ·
[

j0
j1

]
= S0, (6.6)

∂j0(x)
∂t

+∇ ·

0.4E +
j20
ρ − 0.4

(
0.5j20+0.5j21

ρ

)
j0 j1
ρ

 = S1, (6.7)

∂j1(x)
∂t

+∇ ·

 j0 j1
ρ

0.4E +
j21
ρ − 0.4

(
0.5j20+0.5j21

ρ

) = S2, (6.8)

∂E(x)
∂t

+∇ ·


j0(1.4E−0.4

(
0.5j20+0.5j21

ρ

)
)

ρ

j1(1.4E−0.4
(

0.5j20+0.5j21
ρ

)
)

ρ

 = S3. (6.9)

The eigenvalues are:

λmax,0(x) =


j0
ρ − γ

√
E−

(
0.5j20+0.5j21

ρ

)
ρ

j1
ρ − γ

√
E−

(
0.5j20+0.5j21

ρ

)
ρ

 , (6.10)
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λmax,1(x) =

[ j0
ρ
j1
ρ

]
, (6.11)

λmax,2(x) =

[ j0
ρ
j1
ρ

]
, (6.12)

λmax,3(x) =


j0
ρ + γ

√
E−

(
0.5j20+0.5j21

ρ

)
ρ

j1
ρ + γ

√
E−

(
0.5j20+0.5j21

ρ

)
ρ

 , (6.13)

where γ is 0.748331477354788.

6.2 Enclave Tasking

As described in [8], enclave tasking introduces a novel approach distinct from traditional
domain decomposition strategies. Each time-step involves a dual traversal of the mesh,
classifying cells into two categories: skeleton cells, situated near partition boundaries
or AMR resolution transitions, and enclave cells, encompassing the remainder. The
primary traversal, upon encountering a skeleton cell, initiates updates, determining the
new local solution, permissible time-step size, and the required values for adjacent cells
in the subsequent time-step. Handling data from skeleton cells involves interpolation,
restriction, MPI transmission, or local copying to another logical subpartition.

Conversely, when the primary traversal engages with an enclave cell, the local update
is mapped onto a task within the thread-local traversal. Post the primary grid sweep,
there is an exchange of partition boundary data. The secondary grid traversal patiently
awaits task completion, integrating the task outcome into the solution representation,
and reducing the permissible time-step size per rank. The final serial phase orchestrates
global time-step size reduction and concludes all MPI data exchanges.

The realization of enclave tasking unfolds as a sequence of two taskloop constructs
per time-step [8]. In contrast to conventional implementations, the initial taskloop
serves as a task producer without synchronization with spawned enclave tasks. Despite
the removal of implicit barriers, it is still termed as a task group. The local domain
decomposition, though consistent, generates a multitude of small enclave tasks per
primary sweep.

In the secondary traversals, busy waits are embedded to incorporate simulation
outcomes into the computational mesh. This integration is pivotal for updating the
patch halo and synchronizing patches with their neighbors [8]. In the baseline OpenMP
implementation, busy waiting unfolds as the code repetitively polls the hashmap.
While the required task outcome is not yet in the hashmap, the polling code releases
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the semaphore, issues a taskyield, and then polls again. This approach reflects a
straightforward implementation of the consumer in a producer-consumer pattern.

6.3 Implementation

To facilitate the execution of the Euler equations on multiple GPUs, a minimal adapta-
tion of the task orchestration is required to establish the mapping between MPI ranks
and GPU device IDs. This adaptation entails modifying the tasking strategy instantia-
tion by including parameters for the MPI communicator’s size and rank. Subsequently,
the rank is utilized as the target device identifier (GPU_ID) during the creation of the
tasking pattern, specifically employing a fuse all tasking orchestration. This tasking
pattern enhances task execution by opportunistically fusing tasks, thereby optimizing
processing efficiency. The degree of task fusion depends on specific conditions; tasks
are either fused immediately upon creation or temporarily stored in a local queue for
subsequent fusion when processing threads become available. This deferred fusion
mechanism does not impede task production threads, ultimately facilitating efficient
task processing. Additionally, the strategy designates the target execution device,
which, in this context, corresponds to the MPI rank.

6.4 Validation

We conducted a two-dimensional Euler point explosion simulation utilizing two MPI
ranks. We visualized the outcomes in ParaView. Figure 6.1a exhibits the density
variation, and Figure 6.1b presents the velocity variation. The visualization exhibits
physical behavior. Figure 6.1c demonstrates the energy. We can conclude from those
results that for the two-dimensional case, utilizing multiple GPUs yields expected
results.

Subsequently, we conducted a three-dimensional Euler point explosion simulation
utilizing two MPI ranks, using patch size 8, 19683 total patches, and the fuse all tasking
orchestration. We visualized the outcomes in ParaView. Figure 6.2a exhibits the density
variation, and Figure 6.2b presents the velocity variation. The visualization also reveals
characteristic physical behavior. Figure 6.2c demonstrates the energy. Therefore, our
multi-GPU implementation’s results are valid.

6.5 Benchmarking

The three-dimensional Euler point explosion simulation was rigorously benchmarked,
employing a patch size of 8, 19683 total patches, and the fuse all tasking orchestration.
The experiment encompassed a variation of MPI ranks, specifically 1, 2, 3, and 4.
Consistent with these parameters, we conducted multiple runs by adjusting the number
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(a) Density

(b) J0 Velocity

(c) Energy

Figure 6.1: Two-dimensional Euler point explosion density, velocity and energy respec-
tively using two MPI ranks (two GPUs).
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(a) Density

(b) YY Velocity Component

(c) Energy

Figure 6.2: Three-dimensional Euler point explosion density, velocity and energy re-
spectively using two MPI ranks (two GPUs).
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of tasks to fuse—specifically, 1, 1024, 1024*2, and 1024*4. The comprehensive results
are detailed in Figure 6.3.

Key observations focused on GPU memory usage, percentage of GPU utilization,
and the time taken to complete the simulation. Figure 6.3 illustrates the superior
performance achieved by utilizing either 1 GPU or 2 GPUs, attributed to the relatively
small domain size causing communication overhead.

In analyzing simulation time in relation to the number of tasks to fuse, a noteworthy
finding was the optimal choice of 1024 tasks to fuse, resulting in a minimum time
of 11 seconds with 1 GPU. Importantly, a significant difference in simulation times
emerged when using a small number of tasks to fuse (1 in our case) compared to larger
numbers. Increasing the number of tasks led to a remarkable reduction in simulation
time, by a factor of 6 for 1 GPU and 3 for 2 GPUs. This behavior is explained by
the frequent movement of tasks between the CPU and GPU, leading to substantial
overhead when using a small number of tasks to fuse. Moreover, utilizing a very large
number of tasks on a small domain may result in underutilization of GPUs, as there
may not be enough tasks to offload. The superiority of 1 GPU or 2 GPUs depends on
the number of tasks to fuse, with 2 GPUs outperforming 1 GPU by a factor of two for 1
task to fuse. However, this relationship fluctuates with varying numbers of tasks to fuse.
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Figure 6.3: Euler 3D point explosion simulation time as a function of the number of
GPUs and the number of tasks to fuse.

Considering the percentage of GPU utilization, we observed that the lower the
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number of tasks to fuse, the more the GPUs are utilized. Regarding GPU memory
usage, an inverse relationship was noted, with higher numbers of tasks leading to
increased memory consumption. Figure 6.3 visually represents the unpredictable
behavior resulting from manipulating these parameters.

It is paramount to note that these results are contingent on a relatively small domain
utilizing only one node. The outcomes may significantly differ when using a smaller cell
size (finer domain) with more than one node. Additionally, the bandwidth limitation of
the MPI backend communication plays a pivotal role in performance [8] and warrants
in-depth investigation, as discussed further in Chapters 7 and 8. It is not correct
to assume that to get the best performance, the number of tasks to fuse must be
increased as much as possible, since the bandwidth limitations can severely affect
the performance, especially when using multiple ranks. This is discussed further in
Chapters 7 and 8.

Given the complexities of the codebase and enclave tasking, determining the optimal
choice of MPI ranks is inherently non-deterministic. This underscores the imperative
need for an autotuner, a subject to be explored in greater detail in Chapters 7 and 8.
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7 Conclusion

In conclusion, our exploration into the realm of multi-GPU programming within the
ExaHyPE 2 framework has yielded valuable insights and promising results. Through a
meticulous investigation of two distinct approaches, namely OpenMP target and hybrid
MPI with OpenMP target offloading, we have discovered that the latter stands out as
the optimal way to harness the parallel processing power of multiple GPUs effectively.

Our benchmarking efforts, particularly focusing on the Rusanov kernel benchmark
suite in ExaHyPE 2, have demonstrated the potential of our multi-GPU implementation,
showcasing promising results that indicate a substantial reduction in simulation times.
It is noteworthy that the scalability of this approach is contingent upon the problem
size, emphasizing the importance of ensuring a sufficiently large computational domain
to minimize communication overhead when scaling the number of GPUs.

However, despite the promising strides in our multi-GPU implementation, we en-
countered limitations when attempting to scale up the problem size in the context of
the Euler equations using a patch-based enclave solver in ExaHyPE 2 with multiple
MPI ranks. The constraint of utilizing only one node led to a notable challenge: a flurry
of MPI activity [8]. This term encapsulates the intensified communication between
processes, resulting in a saturation of network bandwidth. In our case study, we observe
this when using a cell size smaller than 0.0025, which leads to MPI communication
hanging when using multiple MPI ranks on one node.

In the intricate landscape of parallel computing, particularly when dealing with
complex or large-scale computations, the necessity for frequent data exchange between
processes is inherent. In our scenario, the elevated volume and frequency of MPI
communication proved to be a bottleneck, hindering the seamless scalability of our
implementation. This limitation underscores the importance of not only optimizing
algorithms and parallelization strategies but also considering the interplay of network
communication in the overall performance.

Additionally, the non-deterministic challenges in determining the optimal number
of MPI ranks for the Euler equations using enclave tasking and task orchestration for
fusion highlight the need for an autotuner. An autotuner would dynamically adjust the
configuration (number of enclave tasks to be fused and number of total patches/tasks)
to optimize performance, addressing the unpredictability introduced by the code base
and tasking complexity.

As we reflect on the outcomes of our research, this challenge serves as a reminder of
the intricacies involved in achieving optimal scalability in multi-GPU implementations.

54



7 Conclusion

Addressing such limitations and delving into the intricacies of MPI activity will be
crucial for further advancements, highlighting the ongoing need for innovative solutions
and optimizations to fully unleash the potential of multi-GPU programming in the
realm of how ExaHyPE 2 wants to fully exploit heterogeneous hardware architectures.

Our goal, articulated in the introduction, was to provide researchers and practitioners
with a comprehensive understanding of the potential of multi-GPU acceleration in
the ExaHyPE 2 framework. By achieving this, we hope to catalyze advancements in
computational simulations, enabling scientists and engineers to gain deeper insights
into complex phenomena and solve real-world problems more efficiently.
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8 Discussion and Future Work

Looking forward, our current research paves the way for crucial advancements within
the ExaHyPE 2 framework, suggesting several avenues for future work. Foremost
among these is the imperative need for the development of an autotuner. Such an
autotuner would not only optimize configurations but also dynamically adapt to the
intricacies of different scenarios. Of particular significance is the exploration of methods
to determine the optimal number of MPI ranks for the Euler equations using enclave
tasking and task orchestration for fusion in a non-deterministic environment, ensuring
adaptability to varying computational workloads. This autotuner should also take into
consideration the cell size, patch size, and the available hardware at hand to solve the
Euler equations using enclave tasking and task orchestration for fusion more efficiently.

The development of a dedicated profiler for enclave tasking represents another key
future initiative. A task-specific profiler would provide granular insights into enclave
tasking performance, enabling a more nuanced understanding that, in turn, can inform
dynamic adjustments by the autotuner.

The dynamic adaptability of the autotuner itself is a crucial frontier. Future efforts
should focus on enabling the autotuner to adjust configurations (number of enclave
tasks to be fused and number of total patches/tasks) dynamically, responding to evolv-
ing runtime conditions. This adaptability is fundamental for optimizing performance
across varying workloads and system states.

Addressing potential floating-point errors within the multi-GPU implementation is
paramount to ensure the accuracy and stability of simulation results. A comprehensive
examination and mitigation strategy for these errors would contribute significantly to
the robustness of the framework.

Documentation improvement stands out as an essential aspect of future work, en-
suring that researchers and practitioners have clear, comprehensive, and user-friendly
guidance for leveraging the multi-GPU capabilities within ExaHyPE 2.

Further optimization opportunities lie in exploring the balance between asynchronous
and synchronous MPI communication methods, resolving any syntax inconsistencies for
enhanced code maintainability, implementing computation and communication overlap,
and ensuring a robust reliance on MPI itself, independent of backend intricacies.

Finally, investigating and resolving anomalies or inefficiencies in GPU offloading
when employing multiple MPI ranks represents a critical area for refinement. Un-
derstanding and addressing these challenges will contribute to the reliability and
performance of the multi-GPU approach.
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8 Discussion and Future Work

In essence, these future directions collectively aim to propel ExaHyPE 2 into new fron-
tiers of efficiency and adaptability, establishing it as a robust framework for addressing
complex simulations across diverse scientific and engineering domains.
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Appendix

1 STREAM Benchmark

This section provides the C++ codes used for the STREAM triad benchmark using
OpenMP target in Listing 8.1 and Hybrid MPI with OpenMP target in Listing 8.2.

1.1 OpenMP target Offloading

1 #include <cstdio>
2 #include <cstdlib>
3 #include <cerrno>
4 #include <chrono>
5 #include <algorithm>
6 #include <omp.h>
7

8 #ifndef STREAM_TYPE
9 #define STREAM_TYPE double

10 #endif
11

12 #ifndef OFFSET
13 #define OFFSET 0
14 #endif
15

16 #ifndef gpu_count
17 #define gpu_count 4
18 #endif
19

20 #ifndef POINTS
21 #define POINTS 1000
22 #endif
23

24 #ifndef GPU_CHECK_ID
25 #define GPU_CHECK_ID 0
26 #endif
27

28 double calculateMFLOPS(long STREAM_ARRAY_SIZE, double duration, long NTIMES) {
29 return 2.0 * (double) STREAM_ARRAY_SIZE * (double) NTIMES * 1.0e-6 / duration;
30 }
31

32 double calculateResult(long STREAM_ARRAY_SIZE, double* vector) {
33 double sum = 0;
34 for (int i = 0; i < STREAM_ARRAY_SIZE; i++) {
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35 sum += vector[i];
36 }
37 return sum;
38 }
39

40 void checkOffload() {
41 #pragma omp target device(GPU_CHECK_ID)
42 {
43 if (omp_is_initial_device()) {
44 printf("OFFLOAD UNSUCCESSFUL\n");
45 }
46 }
47 }
48

49 void runBenchmarks(long STREAM_ARRAY_SIZE, long NTIMES) {
50 STREAM_TYPE *a = new STREAM_TYPE[STREAM_ARRAY_SIZE+OFFSET];
51 STREAM_TYPE *b = new STREAM_TYPE[STREAM_ARRAY_SIZE+OFFSET];
52 STREAM_TYPE *c = new STREAM_TYPE[STREAM_ARRAY_SIZE+OFFSET];
53 STREAM_TYPE scalar = 2.0;
54 long CHUNK_SIZE = (STREAM_ARRAY_SIZE + gpu_count - 1) / gpu_count;
55 for(int i=0; i<gpu_count; i++) {
56 #pragma omp target enter data map(alloc:a[0:CHUNK_SIZE],b[0:CHUNK_SIZE],c[0:

CHUNK_SIZE]) device(i)
57 }
58

59 #pragma omp parallel num_threads(gpu_count)
60 #pragma omp sections
61 {
62 for(int j=0; j<gpu_count; j++) {
63 #pragma omp section
64 {
65 #pragma omp target device(j) nowait
66 #pragma omp teams
67 #pragma omp distribute parallel for
68 for (long i = 0; i < CHUNK_SIZE; ++i) {
69 b[i] = c[i] = i + j*CHUNK_SIZE;
70 }
71 }
72 }
73 }
74 double start = omp_get_wtime();
75

76 #pragma omp parallel num_threads(gpu_count)
77 {
78 #pragma omp sections
79 {
80 for(int k=0;k<gpu_count;k++) {
81 #pragma omp section
82 {
83 #if gpu_count == 1
84 #pragma omp target device(k)
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85 #else
86 #pragma omp target device(k) nowait
87 #endif
88 #pragma omp teams
89 for (unsigned long j = 0; j < NTIMES; ++j)
90 {
91 #pragma omp distribute parallel for
92 for (long i = 0; i <CHUNK_SIZE; ++i) {
93 a[i] = b[i]+scalar*c[i];
94 }
95 }
96 }
97 }
98 }
99 }

100 double stop = omp_get_wtime();
101 double duration= stop - start;
102 double triad_result = 0;
103

104 for(int i=0;i<gpu_count;i++) {
105 #pragma omp target exit data map(from: a[0:CHUNK_SIZE]) map(release:b[0:

CHUNK_SIZE],c[0:CHUNK_SIZE]) device(i)
106 triad_result += calculateResult(CHUNK_SIZE, a);
107 }
108

109 double triad_mflops = calculateMFLOPS(STREAM_ARRAY_SIZE, duration, NTIMES);
110

111 delete[] a;
112 delete[] b;
113 delete[] c;
114

115 printf("| %10ld | %8.2f | %8ld | %.4e |\n", STREAM_ARRAY_SIZE, triad_mflops, NTIMES,
triad_result);

116 }
117

118 int main(int argc, char *argv[]) {
119

120 if (argc < 1) {
121 printf("The two parameter STREAM_ARRAY_SIZE needs to be provided.\n");
122 exit(1);
123 }
124

125 char *pEnd;
126 long STREAM_ARRAY_SIZE = strtol(argv[1], &pEnd, 10);
127 long NTIMES = std::clamp(POINTS / STREAM_ARRAY_SIZE, 8l, 65536l);
128

129 checkOffload();
130

131 runBenchmarks(STREAM_ARRAY_SIZE, NTIMES);
132

133 return 0;
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134 }

Listing 8.1: Triad benchmark with OpenMP target

1.2 Hybrid MPI with OpenMP target Offloading

1 #include <cstdio>
2 #include <cstdlib>
3 #include <cerrno>
4 #include <chrono>
5 #include <algorithm>
6 #include <omp.h>
7 #include <mpi.h>
8

9 #ifndef STREAM_TYPE
10 #define STREAM_TYPE double
11 #endif
12

13 #ifndef OFFSET
14 #define OFFSET 0
15 #endif
16

17 #ifndef POINTS
18 #define POINTS 1000
19 #endif
20

21 double calculateMFLOPS(long STREAM_ARRAY_SIZE, double duration, long NTIMES) {
22 return 2.0 * (double) STREAM_ARRAY_SIZE * (double) NTIMES * 1.0e-6 / duration;
23 }
24

25 double calculateResult(long STREAM_ARRAY_SIZE, double* vector) {
26 double sum = 0;
27 for (int i = 0; i < STREAM_ARRAY_SIZE; i++) {
28 sum += vector[i];
29 }
30 return sum;
31 }
32

33 int main(int argc, char* argv[]) {
34

35 MPI_Init(&argc, &argv);
36 int numProcesses, rank;
37 MPI_Comm_size(MPI_COMM_WORLD, &numProcesses);
38 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
39

40 if (argc < 2) {
41 if (rank == 0) {
42 printf("The STREAM_ARRAY_SIZE parameter needs to be provided.\n");
43 }
44 MPI_Finalize();
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45 exit(1);
46 }
47

48 char* pEnd;
49 long STREAM_ARRAY_SIZE = strtol(argv[1], &pEnd, 10);
50 long CHUNK = STREAM_ARRAY_SIZE / numProcesses;
51 long NTIMES = 1;
52 STREAM_TYPE scalar = 2.0;
53

54 #pragma omp target device(rank)
55 {
56 if (omp_is_initial_device()) {
57 printf("OFFLOAD UNSUCCESSFUL on GPU %d in process %d\n", rank, rank);
58 }
59 }
60

61 MPI_Barrier(MPI_COMM_WORLD);
62 STREAM_TYPE* a = nullptr;
63 STREAM_TYPE* b = nullptr;
64 STREAM_TYPE* c = nullptr;
65

66 if (rank == 0) {
67 a = new STREAM_TYPE[STREAM_ARRAY_SIZE + OFFSET];
68 b = new STREAM_TYPE[STREAM_ARRAY_SIZE + OFFSET];
69 c = new STREAM_TYPE[STREAM_ARRAY_SIZE + OFFSET];
70

71 #pragma omp parallel for
72 for (long i = 0; i < STREAM_ARRAY_SIZE; ++i) {
73 b[i] = c[i] = i;
74 }
75 }
76

77 STREAM_TYPE* local_a = new STREAM_TYPE[CHUNK + OFFSET];
78 STREAM_TYPE* local_b = new STREAM_TYPE[CHUNK + OFFSET];
79 STREAM_TYPE* local_c = new STREAM_TYPE[CHUNK + OFFSET];
80 MPI_Scatter(b, CHUNK, MPI_DOUBLE, local_b, CHUNK, MPI_DOUBLE, 0, MPI_COMM_WORLD);
81 MPI_Scatter(c, CHUNK, MPI_DOUBLE, local_c, CHUNK, MPI_DOUBLE, 0, MPI_COMM_WORLD);
82

83 std::chrono::system_clock::time_point start, stop;
84

85 #pragma omp target data map(tofrom: local_a[0:CHUNK]) map(to:local_b[0:CHUNK],
local_c[0:CHUNK]) device(rank)

86 {
87 start = std::chrono::high_resolution_clock::now();
88 #pragma omp target device(rank)
89 #pragma omp teams
90 for (unsigned long j = 0; j < NTIMES; ++j) {
91 #pragma omp distribute parallel for
92 for (long i = 0; i < CHUNK; ++i) {
93 local_a[i] = local_b[i] + scalar * local_c[i];
94 }
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95 }
96 stop = std::chrono::high_resolution_clock::now();
97 }
98 auto duration = std::chrono::duration<double>(stop - start).count();
99

100 MPI_Gather(local_a, CHUNK, MPI_DOUBLE, a, CHUNK, MPI_DOUBLE, 0, MPI_COMM_WORLD);
101

102 #pragma omp target exit data map(release: local_a[0:CHUNK]) map(release: local_b[0:
CHUNK], local_c[0:CHUNK]) device(rank)

103

104 if (rank == 0) {
105 double triad_result = 0;
106 triad_result = calculateResult(STREAM_ARRAY_SIZE, a);
107 double triad_mflops = calculateMFLOPS(STREAM_ARRAY_SIZE, duration, NTIMES);
108 delete[] a;
109 delete[] b;
110 delete[] c;
111

112 printf("| %10ld | %8.2f | %8ld | %.4e |\n", STREAM_ARRAY_SIZE, triad_mflops,
NTIMES, triad_result);

113 }
114

115 delete[] local_a;
116 delete[] local_b;
117 delete[] local_c;
118

119 MPI_Finalize();
120

121 return 0;
122 }

Listing 8.2: Triad benchmark with hybrid MPI and OpenMP target

2 Matrix-Matrix Multiplication Benchmark

This section provides the C++ codes used for the Matrix-Matrix multiplication bench-
mark using OpenMP target in Listing 8.4 and Hybrid MPI with OpenMP target in
Listing 8.2.

2.1 OpenMP target Offloading

1 #include <iostream>
2 #include <omp.h>
3 #include <cstdlib>
4 #include <chrono>
5

6 #ifndef num_devices
7 #define num_devices 4
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8 #endif
9

10 int main(int argc, char** argv) {
11 if (argc < 2) {
12 printf("The N parameter needs to be provided.\n");
13 exit(1);
14 }
15 char* pEnd;
16 int N = strtol(argv[1], &pEnd, 10);
17

18 double* A = new double[N * N];
19 double* B = new double[N * N];
20 double* C = new double[N * N]();
21 double* temp_C = new double[N * N]();
22

23 int chunk_size = (N / num_devices);
24

25 for (int dev = 0; dev < num_devices; dev++) {
26 #pragma omp target enter data map(alloc: temp_C[0: chunk_size * N], A[:N * N], B

[0: chunk_size * N]) device(dev)
27 }
28

29 #pragma omp parallel num_threads(num_devices)
30 #pragma omp sections
31 {
32 for (int dev = 0; dev < num_devices; dev++) {
33 #pragma omp section
34 {
35 #pragma omp target device(dev)
36 #pragma omp teams distribute parallel for
37 for (int i = 0; i < N; i++) {
38 for (int j = 0; j < N; j++) {
39 A[i * N + j] = 4.0;
40 }
41 for (int j = 0; j < chunk_size; j++) {
42 B[j * N + i] = 2.0;
43 }
44 }
45 }
46 }
47 }
48

49 std::chrono::system_clock::time_point start, stop;
50

51 start = std::chrono::high_resolution_clock::now();
52

53 #pragma omp parallel num_threads(num_devices)
54 #pragma omp sections
55 {
56 for (int dev = 0; dev < num_devices; dev++) {
57 #pragma omp section
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58 {
59 #if gpu_count == 1
60 #pragma omp target device(dev)
61 #else
62 #pragma omp target device(dev) nowait
63 #endif
64 #pragma omp teams distribute parallel for
65 for (int i = 0; i < N; i++) {
66 for (int j = 0; j < chunk_size; j++) {
67 for (int k = 0; k < N; k++) {
68 temp_C[j * N + i] += A[i * N + k] * B[j * N + k];
69 }
70 }
71 }
72 }
73 }
74 }
75

76 stop = std::chrono::high_resolution_clock::now();
77

78 auto duration = std::chrono::duration<double>(stop - start).count();
79

80 for (int dev = 0; dev < num_devices; dev++) {
81 int start_col = dev * chunk_size;
82

83 #pragma omp target exit data map(from: temp_C[0: chunk_size * N]) map(release: A
[:N * N], B[0: chunk_size * N]) device(dev)

84

85 #pragma omp parallel for
86 for (int i = 0; i < N; i++) {
87 for (int j = 0; j < chunk_size; j++) {
88 C[(j + start_col) * N + i] += temp_C[j * N + i];
89 }
90 }
91 }
92

93 double mflops = (2.0 * (double)N * (double)N * (double)N * 1.0e-9) / duration;
94 double bw = (mflops) / N;
95

96 printf("| %10ld | %8.2f | %8.2f |\n", N, mflops, bw);
97

98 delete[] A;
99 delete[] B;

100 delete[] C;
101 delete[] temp_C;
102

103 return 0;
104 }

Listing 8.3: Matrix-matrix multiplication with OpenMP target
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2.2 Hybrid MPI with OpenMP target Offloading

1 #include <iostream>
2 #include <omp.h>
3 #include <cstdlib>
4 #include <mpi.h>
5 #include <chrono>
6

7 int main(int argc, char* argv[]) {
8 MPI_Init(&argc, &argv);
9 int numProcesses, rank;

10 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
11 MPI_Comm_size(MPI_COMM_WORLD, &numProcesses);
12

13 if (argc < 2) {
14 if (rank == 0) {
15 printf("The N parameter needs to be provided.\n");
16 }
17 MPI_Finalize();
18 exit(1);
19 }
20

21 char* pEnd;
22 int N = strtol(argv[1], &pEnd, 10);
23

24 int chunk_size = (N / numProcesses);
25 double* A = new double[N * N];
26 double* B = new double[N * N];
27 double* C = new double[N * N]();
28

29 double* temp_C = new double[chunk_size * N]();
30

31 #pragma omp target enter data map(alloc: temp_C[0: chunk_size * N], A[:N * N], B[0:
chunk_size * N]) device(rank)

32

33 #pragma omp target device(rank)
34 #pragma omp teams distribute parallel for
35 for (int i = 0; i < N; i++) {
36 for (int j = 0; j < N; j++) {
37 A[i * N + j] = 4.0;
38 }
39 for (int j = 0; j < chunk_size; j++) {
40 B[j * N + i] = 2.0;
41 }
42 }
43

44 std::chrono::system_clock::time_point start, stop;
45

46 start = std::chrono::high_resolution_clock::now();
47 #pragma omp target device(rank)
48 #pragma omp teams distribute parallel for
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49 for (int i = 0; i < N; i++) {
50 for (int j = 0; j < chunk_size; j++) {
51 for (int k = 0; k < N; k++) {
52 temp_C[j * N + i] += A[i * N + k] * B[j * N + k];
53 }
54 }
55 }
56 stop = std::chrono::high_resolution_clock::now();
57

58 auto duration = std::chrono::duration<double>(stop - start).count();
59

60 #pragma omp target exit data map(from: temp_C[0: chunk_size * N]) map(release: A[:N
* N], B[0: chunk_size * N]) device(rank)

61

62 MPI_Gather(temp_C, chunk_size * N, MPI_DOUBLE, C, chunk_size * N, MPI_DOUBLE, 0,
MPI_COMM_WORLD);

63

64 double mflops = (2.0 * (double)N * (double)N * (double)N * 1.0e-6) / duration;
65 double bw = mflops / N;
66

67 delete[] A;
68 delete[] B;
69 delete[] C;
70 delete[] temp_C;
71

72 if(rank == 0) {
73 printf("| %10d | %8.2f | %8.2f |\n", N, mflops, bw);
74 }
75

76 MPI_Finalize();
77

78 return 0;
79 }

Listing 8.4: Matrix-matrix multiplication with hybrid MPI and OpenMP target
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