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Abstract
We make use of the DGX A100 platform for solving a 3D, fully-coupled Earth-Air wave propagation model
using the open-source software SeisSol. Each A100 GPU is managed by a single MPI process with 2
dedicated threads: for control and progressing non-blocking MPI communication. In this work, we apply our
new GPU code generation approach for batched GEMM computations. We also use CUDA graphs and
capturing for reducing kernel launch overheads while working with our Local Time Stepping scheme.
Additionally, we show that Singularity containerization leads to a negligible performance loss of ≈ 1.5%
compared to a bare-metal installation of SeisSol for our scenario.

Model

Elastic & Acoustic Wave Propagation

We model the Earth with the elastic wave equation and the air above with the
acoustic wave equation. Between both parts, we ensure that the physical interface
conditions hold (continuity of normal velocity and traction). With this we are able to
capture the entire physics in one fully-coupled model [3]. Both equations can be
written in standard linear hyperbolic form:
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where q is a vector of unknowns and A(x),B(x),C(x) are flux matrices that depend on
position x but not on time t .
The source term S(q) models the earthquake using a kinematic point source model.

ADER-DG
An application of Cauchy-Kovalewski procedure and Taylor expansion allows us to
obtain an arbitrary order time-integration predictor, which can be evaluated in the
reference element coordinate system as follows:
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Then, DG machinery is applied to obtain an element-local update scheme which
includes evaluations of local, neighbor flux integrals as well as the volume integral. The
scheme mainly consist of small and dense matrix multiplication chains.

Local Time Stepping (LTS)

LTS aims at improving time-to-solution by reducing the total amount of floating point
operations. We cluster elements such that they get updated as seldom as possible
ensuring that the stability limit is valid. In each cluster, all elements have the same
timestep size: In the smallest cluster, all elements have a timestep size of ∆tmin, in the
nth cluster all elements have a stepsize of Rn∆tmin, where R is the so-called LTS-rate.
For our scenario with 9.8 million elements, the distribution for R = 3 looks like:
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Here, LTS resulted in a speed-up factor of ≈ 9.75 compared to global time stepping (i.e.,
using a single cluster). We parallelize over all elements that are in a cluster. The LTS
scheme needs to ensure that dependencies resulting from flux contributions from
neighboring elements are resolved. Hence, we update clusters sequentially.

Code Generation
YATeTo [4] is a source code generator for tensor expressions which implements the expressions as sequences
of loops over GEMMs. The figure below illustrates the generation process of Eq. 3 written using Einstein
notation as an example.

Qlm = Alm + Bli · Cik · Dkp · Epm (3)

SeisSol expresses wave propagation numerical schemes with YATeTo’s DSL. YATeTo:
- gets invoked during SeisSol compilation with specific:

wave propagation model, order of convergence, host and device architectures
- solves the matrix chain ordering problem
- generates code using:

BLAS operations for CPUs, i.e., element-wise evaluations
batched BLAS operations for GPUs

- can make use of external, architecture specific GEMM generators

ChainForge

Idea: unlike GemmForge [1], the ChainForge generator is designed to the improve arithmetic intensity of
batched DG-like computations by fusing several consecutive GPU GEMM kernels into a single one.
ChainForge has a language front-end but the main interaction is intended to be through its high-level
intermediate representation (IR), i.e., lists of GEMM descriptions. The generation process starts by extracting
intermediate results from its IR, which reside in shared memory together with the right-hand sides of each
individual GEMM operation. ChainForge solves a graph coloring problem (similar to register allocation) to
reduce shared memory usage per block. Additionally, block-level synchronizations are resolved by a data flow
analysis performed at a low-level IR.

Integration: a new analysis phase was added to YATeTo which uses a 2-state deterministic Finite
Automata (FA) applied to YATeTo’s linearized IR to recognize subsequent GEMM operations. Whenever the
FA comes back to the initial state, a Fused-GEMM operation is generated and a sequence of GEMM
operations is substituted with a Fused-GEMM operation which stores the sequence. During code generation,
the operation invokes ChainForge and passes the sequence and GPU architecture as parameters.

CUDA Graphs

Problem: Clusters with the highest update frequency tend to be extremely small and thus introduce significant overheads of launching the corresponding
GPU kernels.
Solution: Capturing CUDA Graphs for all time clusters and macro-kernels i.e., volume, local and neighbour integrals, as well as ader scheme.
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Because of code generation, SeisSol is able to accurately estimate the total number of floating point operations for a simulation. The left figure demonstrates
strong scaling of a single time cluster using a performance proxy compiled with Double Precision (DP). Fused-GEMM operators resulted in an ≈ 770
DP-TFLOP/s increase of average GPU performance. Application of CUDA Graphs helped to significantly increase performance within the [512,4096] LTS
range and thus resulted in an average ≈ 630 DP-TFLOP/s of additional performance.
The right figure demonstrates the performance difference between a single A100 GPU and a single compute-node of LRZ SuperMUC-NG. On average, an
A100 GPU outperformed 2 Intel Skylake Xeon Platinum 8174 CPUs by factors of ≈ 1.75 and ≈ 1.55 with respect to DP-TFLOP/s and time-to-solution,
respectively.

Results
The overall computational domain is 12× 12× 15 km3. The solid Earth domain extends 13 km downwards, the atmospheric layer is 2 km thick. We use an
unstructured tetrahedral mesh to enable realistic topography. The mesh consists of 9.8 million elements and a local refinement region along the zone of
interest. The point source at 6.5 km depth has the same mechanism and size as the largest ML1.8 earthquake that was induced by a geothermal stimulation
below Helsinki [2] in 2018.

Achievements
1. fully-coupled simulation in Air and Earth
2. setup with a realistic topography [2]
3. obtained ≈ 26.2 and ≈ 25.8 DP-TFLOP/s on a single DGX A100 node (i.e., 8x GPUs) with a bare-metal installation and Singularity container,

respectively.
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