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A B S T R A C T

Robot learning is a powerful paradigm for skill acquisition in robotics.
Learning such skills based on data can be very expensive in terms of
interactions with the environment, especially when learning via rein-
forcement. This is mainly due to the complexity of processing robotic
observations and the challenges in identifying dynamics and control-
ling the system. These challenges rendered robot learning inefficient
and impeded its practical application in the real world.

This thesis addresses this problem from the perspectives of per-
ception and control. In the context of reinforcement learning, the pri-
mary emphasis is on the choice of state and action spaces. The state
space defines the information on which a control policy bases its deci-
sion. Since robotic tasks often involve complex and high-dimensional
observations, it is crucial to reduce these into a compact state repre-
sentation that is beneficial for control. The action space defines the
level of abstraction at which the policy commands the robot. Robot
actuators typically expect smooth control commands adhering to cer-
tain embodiment constraints. An ideal action space for robot learning
should strike the right balance between abstracting difficult aspects
of the action generation process and allowing the policy to have full
control over the robot’s behavior.

The first part of this thesis proposes methods for devising state
spaces suitable for robot manipulation learning. These methods in-
volve either designing or learning the state representations. Design-
ing state representations constitutes a choice of information deemed
necessary for the tasks at hand, such as objects’ positions and meth-
ods for obtaining this information from the available observations.
For learning state representations, we use methods from self-super-
vised machine learning to identify different factors of variations in
robot interaction data.

In the second part of the thesis, we propose methods for building
and learning action representations for robot manipulation learning.
We first study the role of the action space in learning manipulation
policies and transferring them from simulation to the real world. We
build action spaces based on inductive biases, with the aim of ab-
stracting general concepts from the policy based on well-established
principles from robot motion planning and control. Furthermore, we
further learn action representations using self-supervised machine
learning methods, thereby extending the applicability of robot learn-
ing to even more challenging multi-robot tasks.
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Z U S A M M E N FA S S U N G

Roboterlernen ist ein leistungsfähiges Paradigma für den Erwerb von
Fähigkeiten in der Robotik. Das Erlernen von Fähigkeiten auf der
Grundlage von Daten kann in Bezug auf die Interaktion mit der Um-
gebung sehr kostspielig sein, insbesondere wenn das Lernen über
Verstärkung erfolgt. Dies ist vor allem auf die Komplexität der Verar-
beitung von Roboterbeobachtungen und die Herausforderungen bei
der Identifizierung der Dynamik und der Steuerung des Systems zu-
rückzuführen. Diese Herausforderungen machen das Roboterlernen
ineffizient und erschweren die praktische Anwendung in der realen
Welt.

In dieser Arbeit wird diese Problemstellung aus der Perspektive
der Perzeption und Steuerung behandelt mit dem Schwerpunkt auf
der Wahl der Zustands- und Aktionsräume. Der Zustandsraum de-
finiert die Informationen, auf deren Grundlage eine Policy ihre Ent-
scheidung trifft. Da Roboteraufgaben oft komplexe und hochdimen-
sionale Beobachtungen beinhalten, ist es entscheidend, diese in eine
kompakte Zustandsrepräsentation zu reduzieren, die für die Steue-
rung von Vorteil ist. Der Aktionsraum definiert die Abstraktionsebe-
ne, auf der die Policy den Roboter steuert. Roboteraktuatoren erwar-
ten in der Regel glatte Steuerbefehle, die bestimmte Beschränkungen
während der Ausführung einhalten. Ein idealer Aktionsraum für das
Lernen von Robotern sollte das richtige Gleichgewicht zwischen der
Abstraktion schwieriger Aspekte des Aktionsgenerierungsprozesses
und der vollen Kontrolle der Policy über das Verhalten des Roboters
herstellen.

Im ersten Teil dieser Arbeit werden Methoden zur Ableitung von
Zustandsräumen vorgeschlagen, die für das Lernen von Roboterma-
nipulation geeignet sind. Diese Methoden beinhalten entweder den
manuellen Entwurf oder das Lernen von Zustandsrepräsentationen.
Der Entwurf von Zustandsrepräsentationen besteht aus einer Aus-
wahl von Informationen, die für die jeweilige Aufgabe als notwendig
erachtet werden. Des Weiteren beinhalten sie Methoden, um diese In-
formationen aus den verfügbaren Beobachtungen zu erhalten. Zum
Erlernen der Zustandsrepräsentation verwenden wir Methoden des
Selbstüberwachten maschinellen Lernens, um verschiedene Faktoren
in den Roboterinteraktionsdaten zu identifizieren.

Im zweiten Teil der Arbeit werden Methoden für den Aufbau und
das Lernen von Handlungsrepräsentationen für das Manipulations-
lernen von Robotern vorgeschlagen. Zunächst wird die Rolle des
Aktionsraums beim Erlernen von Manipulationsaufgaben und deren
Übertragung von der Simulation in die reale Welt untersucht. Die Ak-
tionsräume werden auf der Grundlage induktiver Verzerrungen auf-
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gebaut, mit dem Ziel, allgemeine Konzepte aus der Policy zu abstra-
hieren, die auf gut etablierten Prinzipien der Bewegungsplanung und
-steuerung von Robotern basieren. Darüber hinaus erlernen wir Ak-
tionsräume mit Methoden des Selbstüberwachten maschinellen Ler-
nens, wodurch die Anwendbarkeit des Roboterlernens auf noch an-
spruchsvollere Multi-Roboter-Aufgaben erweitert wird.
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1
I N T R O D U C T I O N
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Figure 1.1: Moving away from the sense-plan-act paradigm towards a more
learning-centric sense-plan-act-learn approach.

1.1 from robotics to robot learning

One of the main challenges in robotics is to bring advanced robots
outside of structured environments, such as research labs and facto-
ries, into more human-like environments, ultimately integrating them
into our daily lives. For this to happen, robots should be capable
of properly understanding their surroundings, planning, reasoning
about their actions, and making optimal decisions. These different
capabilities form the sense-plan-act cycle. While this paradigm can
be considered outdated, most of today’s architectures include these
same components.

This architecture is implemented using modular pipelines with
parts, separately, handling different aspects of the problem. Mod-
ules usually include sensor data acquisition, perception, task/motion
planning, and low-level control. However, one major drawback of this
modularity is that small errors occurring in one module could signifi-
cantly disadvantage the functioning of others. Without a way to learn
from these errors, they are bound to happen again during the robot’s
lifetime. These errors are in many cases the result of a bad system
design, unrealistic assumptions, mis-tuned parameters, or simply an
edge case that was never accounted for. All of which can be traced
down to engineering faults.

For many years now, researchers have been developing smart al-
gorithms with the goal of reducing these errors to a tolerable and
practical threshold. All of these advances made robots safer and more
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4 introduction

capable, and enabled new applications. Yet, with some minor excep-
tions, most robots deployed in the real world still function in well-
structured environments and have a limited set of skills.

Simultaneously, artificial intelligence has recently seen tremendous
progress, mainly in machine learning (ML). ML algorithms have led to
state-of-the-art performance in computer vision [49, 58, 103] and nat-
ural language processing [46, 129, 153, 180, 194] benchmarks but still
struggle to perform well on some very simple robotic applications.
However, learning offers the means of eliminating the errors result-
ing from engineering faults and also reduces the effect of these er-
rors since different modules could benefit from each other’s learning
objectives. Additionally, learning reduces the cost of programming
robotic skills, and hence the need of a human in the loop. In contrast
to the traditional approach of engineering every component needed
for a certain new skill, a robot could learn it based on a simple specifi-
cation such as a reward or cost function. This has led to greater inter-
est and efforts in robot learning as a field that leverages ML methods
to tackle complex robotics problems. This paradigm shift is illustrated
in Figure 1.1.

1.2 challenges in robot learning

Far from being a solved problem, robot learning presents multiple
challenges. For starters, there are multiple ways to learn control poli-
cies for robots. For instance, imitation learning relies on trajectories
of human demonstrations to obtain a policy. These trajectories vary
in size and type depending on the method. Due to the passive nature
of these methods, their performance is highly dependent on the pro-
vided dataset i.e., agents learned with imitation learning have no way
of actively seeking information beyond the support of the dataset. On
the other hand, an agent could learn a control policy via direct interac-
tion with its environment using reinforcement learning (RL). RL meth-
ods do not require pre-recorded datasets of action-observation pairs,
but instead learn to associate such pairs by maximizing the cumu-
lative reward of the environment. This process requires in practice a
well-defined reward or cost function for the environment and the task
at hand. This aspect makes RL less accessible than imitation learning
methods since defining a proper reward function arguably requires
more engineering knowledge than providing demonstrations. This
problem can be alleviated by a mere combination of these paradigms,
where the reward function is learned from demonstrations and the
policy is then learned via interaction using RL. This paradigm is re-
ferred to as inverse RL [1, 135]. Nonetheless, robot learning still suffers
to find its way into real-world applications. This is due to multiple
challenges, some of which I’ll discuss next.

Sample Efficiency. Common to all these paradigms is the prob-
lem of sample inefficiency, i.e., requiring a large amount of data to
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obtain good policies. This problem can be tolerated in virtual (simu-
lated) environments. However, it can be quite expensive in real-world
robotics scenarios, such as the ones relevant to this thesis. This ineffi-
ciency is due to multiple factors. The most popular one is related to
the large state and action spaces encountered in such environments.
Modern-day robots have high degrees of freedom (DoF) and are capa-
ble of high-frequency actuation. In addition, the states of such envi-
ronments are deduced based on measurements from different sensors,
such as joint encoders, force-torque sensors, and cameras. Learning to
process such observations is itself a very inefficient problem. On top
of all that, observations and actions are usually noisy and continuous,
making the training of such policy harder due to the resulting vari-
ance in the training gradients. Furthermore, robotics environments
have very complex dynamics due to physical components, such as
friction and contact. Capturing this complexity with function approx-
imators requires a lot of samples.

Exploration. Large amounts of interaction samples can still lead to
bad policies if they mostly contain redundant and irrelevant informa-
tion. Quantity and quality of data are both required in robot learn-
ing [33]. Hence, another challenge is exploration. An agent’s actions
are considered exploratory, if its pure purpose is to seek novelty and
not to solve the task at hand. Designing mechanisms to choose such
actions is itself a hard problem, especially when dealing with large
state and action spaces. Another challenge is to integrate such ex-
ploratory mechanisms in the policy learning process. When only tak-
ing exploratory actions, learning a policy becomes harder since useful
actions become very rare. This problem constitutes the exploration-
exploitation dilemma.

Generalization & Robustness. Related to the last two challenges
are generalization and robustness. Trained with finite data, the pol-
icy could struggle to generalize beyond the support of the dataset.
It would also struggle to deal with unseen disturbances. Exposing
the policy to large and diverse state-action pairs is the naive yet not
guaranteed way, since there are no metrics yet to assess whether a
certain amount of data is enough or contains diverse enough samples
to capture the dynamics of a task. Instead, one could aim to embed
inductive biases into the policy structure and training method. The
challenge in this case is to define these inductive biases in a way that
does not affect the applicability of robot learning algorithms to a wide
variety of tasks and applications.

Autonomous Randomized Experiments. Furthermore, beyond be-
ing expensive, collecting data in the real world could be challenging.
First, the robot should be able to try out random actions in its environ-
ment without harming itself or its surroundings. This aspect usually
requires well-engineered safety features to be embedded in the envi-
ronment controllers, reward functions, and reset mechanisms. These
design decisions should also account for task feasibility. To illustrate
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that, let us assume a robot is learning an object-pushing skill. Dur-
ing an arbitrary episode, the object could be kicked outside of the
robots’ workspace, and hence made unreachable. Resetting such an
environment would require human intervention. Alternatively, physi-
cal constraints could be built into the environment, as to prevent such
a thing from happening. Such mechanisms could reduce the need for
a human in the loop, but come with a large engineering cost.

Interpretability. Another challenge is interpretability. Most learn-
ing-based approaches rely on function approximators such as neural
networks for policy representation. These models offer little trans-
parency as why and how a given input was mapped to a certain out-
put, which is why they are usually criticized as being black-box mod-
els. This problem becomes more critical for decision-making prob-
lems, since the outputs, in this case, correspond to actions that will
affect the environment. It is then desirable to be able to reason about
these actions and their generation process. Imagine a robot manipu-
lator collaborating with a human on a handover task. Without proper
care, the robot could end up harming the human. In such scenarios,
an understanding of the action generation mechanism becomes nec-
essary.

Reproducability. Recently, it has been shown that experimental re-
sults in RL are hard to reproduce. Simple hyperparameters or imple-
mentation differences could lead to significant discrepancies in per-
formance by the same algorithm [72, 155]. In practice, these findings
could hint that deploying RL algorithms is itself a different problem
than tuning the methods offline or in a test environment. Addition-
ally, many RL algorithms tend to lead to high variance in performance
even under the same configuration. This makes deployment even
trickier. All of these aspects motivate the development of novel robot
learning methods that are reliable in real-world scenarios.

1.3 thesis contributions

With these challenges in mind, the goal of this thesis is to devise
robot learning approaches that are suitable and applicable for real-
world robotic manipulation. Before going into the contributions of
this thesis, we will illustrate the details of the studied problem with
an example. Let’s consider a robot arm that is learning to push a
cube to a target position. To achieve this goal, the robot should have
access to its own state as well as the state of the cube. The cube’ state
would ideally contain positional information about the cube, poten-
tially with higher-order-derivative variables such as velocity and ac-
celeration. In a real-world scenario, this information can be obtained
based on remote sensing, e.g., vision. Hence, a robot learning to per-
form this task would first need to learn to understand and process its
visual sense. Equipped with this skill, the robot then needs to act on
its environment, in a way that serves the task at hand. Modern robot
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manipulators are typically torque-controlled. Hence, to actuate the
robot, the agent would need to determine the right torques to apply
to the robot joints based on the previously inferred state. Such a map-
ping would at least require some implicit notion of the inverse kine-
matics and dynamics of the robot. In the classical RL sense, an agent
would need to learn these perception and action problems based on
a very weak reward signal. To alleviate this problem, this thesis looks
into inductive biases that can be embedded into different components
of robot manipulation learning. For instance, for perception, this the-
sis presents methods for supervised and self-supervised training of
visual processing modules. These methods learn a state space rep-
resentation based on visual observations. These representations can
either be learned jointly or separately from the policy training. The
main goal of these methods is to reduce the sample requirements of
robot learning, and improve exploration. Similarly, the thesis presents
approaches to design and learn action space representations, that sim-
plify the control aspect of learning a task. These methods simplify the
action space in which the policies need to act, making it either less
complex, more abstract, or at least more directly suitable for certain
families of tasks. In addition, this thesis presents methods to leverage
and extend these concepts to multi-agent settings as a way to scale
robot learning to multi-robot learning. Finally, this work includes sim-
ulated and real-world evaluation of these methods.

1.4 thesis structure

The next part of this thesis introduces the theoretical foundations
upon which the main thesis work is built. Chapter 2 formally intro-
duces reinforcement learning and some of the RL methods used in
this thesis. Part ii and Part iii contain the main contributions of this
thesis. Part ii discusses state representations for robotics. Chapter 3 in-
troduces some background on state representation learning, and the
theory and notation behind methods used in the following chapters.
Chapter 4 presents a supervised learning method for visual track-
ing. The approach augments recent advances in object tracking with
an elegant mathematical memory selection mechanism for gathering
pseudo-ground truth templates at inference time. Chapter 5 proposes
an approach for perception-driven exploration in RL. The proposed
method is simple yet effective. It encourages agents to take actions
that lead to observations which its own perception module still strug-
gles to process. Part iii discusses action representations for robotics.
Chapter 6 introduces popular action spaces in the literature, and
presents a study on the performance of different action space choices
on exploration, policy capability, and sim-to-real transfer. Chapter 7

proposes a novel motion-centric action space for robotic manipulation.
The proposed space embeds concepts from robot motion generation
and differential geometry to abstract general features of motion that



8 introduction

the policy does not necessarily need to handle in most manipulation
tasks. Chapter 8 introduces an approach for learning centralized la-
tent action spaces for decentralized control. These central latent action
spaces are trained to contain information related to the task and not
to the individual robots, which is beneficial for scaling multi-robot
manipulation control. Finally, the last part of the thesis contains a dis-
cussion on the topic of robot learning, a conclusion of the thesis, open
challenges, and potential future research directions.



2
P R E L I M I N A R I E S

In recent years, RL has seen many successes in multiple domains such
as games [131, 171], chip design [130], and robotics [13, 81]. In this
thesis, reinforcement learning is the primary method used to learn
control policies for robot manipulation. Hence, to ensure the self-
contained comprehensiveness of this thesis, we will introduce the ba-
sics of reinforcement learning and the theory behind the algorithms
used throughout the different chapters. Most of the material is based
on textbooks [25, 181] and online resources [2]. Throughout the text,
there are references to the original publications. Readers who are fa-
miliar with state-of-the-art RL methods can safely move on to the next
chapter. Nevertheless, a quick look at the notation remains beneficial
for all types of readers.

2.1 introduction to reinforcement learning

RL methods constitute a subfamily of machine learning approaches
in which an agent learns to make sequential decisions by engaging
with its environment. The goal is to maximize a cumulative reward
signal through a trial-and-error process. At each time step, the agent
receives an observation or state of the environment and takes a con-
trol action according to this data. The agent then receives feedback
in the form of a reward or penalty. Over time, the agent adjusts its
behavior in a way that maximizes its total reward. Repeating this be-
havior enables the agent to reach effective decision-making strategies
for the task it is optimizing.

2.1.1 Formalism

The most central part of each RL agent is its policy. In fact, the terms
agent and policy are often used interchangeably in the RL literature.
The policy is tasked with outputting a control action given a state
or observation of the environment. We typically use the symbol π to
refer to an RL policy. There are multiple characteristics of the policies
used in this paradigm.

For example, a policy could either be deterministic or stochastic. In
the deterministic case, the policy outputs an action given a state st
or observation ot: at = π(st). In contrast, a stochastic policy outputs
a distribution of actions from which the actual control action can be
sampled: at ∼ π(.|st). Here, a common choice is the Gaussian distri-
bution. Thus, the policy could output a mean and a variance to fully
parameterize the distribution.

9



10 preliminaries

Furthermore, a policy could either be parameterized or non-param-
eterized. The latter typically means maintaining a look-up table that
contains the optimal actions for each possible state of the system. A
parameterized policy is a parameterized function that receives as in-
put the state or observation of the environment and outputs a suit-
able action. In deep RL, this function is a deep neural network. How-
ever, there are other options. In robotics, motion primitives are com-
mon. Such primitives usually embed some useful inductive bias in the
representation of the policy. For example, dynamic movement prim-
itives (DMP) are inspired by dynamical systems and model the pol-
icy using attractor dynamics and a forcing function [82, 162]. Other
approaches, such as probabilistic movement primitives [145] and Rie-
mannian motion policies [157] use concepts from probability theory
and differential geometry, respectively. We use the following notation
for a parameterized policy πϕ, where ϕ refers to the parameters that
define this policy according to the chosen representation. In the case
of a neural network, ϕ corresponds to the weights of the network.

Furthermore, a policy can either be recurrent or not. The recurrence
itself could be with respect to either the state or action. The Markov
property assumed in the RL context can relax the requirements for
recurrent policies. Nevertheless, recurrence can put more emphasis
on certain information from the previous states or help enforce prop-
erties such as smoothness in the cases of state and action recurrence,
respectively. Of course, this comes at the cost of making the training
less stable [21] and introducing additional hyperparameters.

Each RL task comes with a distinct state space S. The state of the
environment consists of all variables needed to describe it. In the RL

case, we define the state to contain all information needed to control
the system. However, in real-world scenarios, the state of an environ-
ment is not directly accessible. Instead, we could observe the state of
the system through various sensory measurements. If we have direct
access to the state or it is possible to fully infer the state from the
observations, we refer to the system as fully observable. This condi-
tion is, in practice, not easy to meet. Real-world sensors are limited
in terms of resolution, perspective, precision, and what they can di-
rectly measure. For instance, high-order derivatives of variables such
as acceleration or jerk are difficult to measure directly with a sensor.
Such environments are called partially observable. In robotics, we typ-
ically (partially) observe the state through various sensors that mea-
sure data about the robot itself (via proprioceptive sensors) and the
environment (via exteroceptive sensors). Both states and observations
can be either discrete or continuous depending on the environment
and sensors used.

In addition to the state space, each task defines its own action space
A. The action is nothing but a control command that the system ex-
pects at each time step. Similarly to states, actions can also be de-
terministic or continuous. This depends on the actuation mechanism
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of the environment. For example, video games typically expect dis-
crete commands that describe some movement or atomic actions. In
physical systems such as robots, most native control commands typi-
cally have continuous values. For example, the lowest level of control
available for most commercial robot arms is either a vector of torques
or electric currents that are distributed to the different joints of the
arm. A policy that acts in such a low-level action space would need
to (at least intuitively) understand the dynamics of the system. Alter-
natively, the action space can be simplified by embedding manually
designed controllers as part of the environment. If we again consider
robot manipulation, we could make the actions be desired joint posi-
tions or velocities, and use a well-established robot control algorithm
to output torque that would lead to these desired variables. This sim-
plifies and even limits the role of the policy, which in the latter case
would only need to understand the kinematics of the robot and some
high-level intuitive physical properties. This comes at the cost of the
policy losing control over the low-level behavior.

Another central part of RL is the reward function. The reward is
a function of the state and action. It outputs a value that describes
how good it is to be at that state and the cost incurred by taking that
action. In RL, the reward is the main way to describe a desired task or
behavior. It can be sparse or dense. An example of a sparse reward
is one that only incentivizes distinct states that enable the task such
as the success state. A dense reward typically describes the objective
in a more continuous way. For example, for a goal-reaching task, a
dense reward could be defined as the negative distance to the goal.

Given the state, action, and reward, we can now define the Markov
decision process (MDP). It is the main formalism to mathematically
describe control systems in the RL literature. A finite-horizon, dis-
counted MDP is characterized by the tuple M = (S,A,P, r, ρ0,γ, T).
The state and action spaces are denoted respectively by S and A.
P : S×A → S denotes the transition dynamics and r : S×A → R

is the reward. In addition to these terms, we have an initial state dis-
tribution ρ0, a discount factor γ ∈ [0, 1], and a horizon of length T .
The optimal policy π : S → A, maximizes the expected discounted
reward

J(π) = Eτ∼pτ

[
T−1∑
t=0

γtr(st,at)

]
(2.1)

= Eτ∼pτ [R(τ)], (2.2)

where τ refers to trajectories of the form (s0, a0, s1, a1, . . . sT−1, aT−1),
sampled from a trajectory distribution pτ, and R(τ) is cumulative
trajectory reward, also called the return.

As the name suggests, MDPs adhere to the Markov property. The
Markov property states that the future state of a system or process is
only determined by its current state, and the action taken at that point
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in time, but is not affected by the sequence of events that preceded
it. This means that the system has no recollection of past states apart
from its current one. This property can be characterized by

p(st+1 | s0:t, a0:t) = p(st+1 | st, at). (2.3)

While the reward function describes how good it is to be in a given
state in the short-term perspective, it is of interest to know the value
of being in that state in the long-term perspective. For this reason,
RL algorithms define a value function. This function defines the ex-
pected cumulative reward when starting at a given state and follow-
ing some policy,

Vπ(st) = Eτ∼pτ

[
T−1∑
t=i

r(st, at)

]
. (2.4)

The optimal policy π∗ satisfies

∀s ∈ S; Vπ
∗
(s) = max

π
Vπ(s). (2.5)

We can now introduce the Bellman equation,

Vπ(st) = Eτ∼pτ [r(st, at) + γVπ(st+1)]. (2.6)

When written in this form, we can clearly see the recurrent nature of
the algorithm induced by this equation. This equation is the backbone
of RL algorithms.

For certain RL algorithms — namely, model-based RL — it is essen-
tial to maintain a sequential model describing the dynamics of the
environment. These models can be given in rare cases. However, in
most cases, if needed, such a model needs to be learned using data
collected from the system. Once this model is available, it can be used
to plan optimal actions or help to learn the optimal policy. The latter
is either done by using the model to sample additional states, actions,
and rewards to train the policy, or by backpropagating the policy gra-
dients through this model.

2.1.2 Paradigms and Methods

With these components in mind, we can now classify RL methods
into families of methods. First, we can differentiate between value
and policy-based methods. Value-based methods focus on deriving
the value function. The optimal policy is then simply the one that
selects the actions that lead to the highest value. Due to this selec-
tion process, value-based methods are only feasible for environments
with discrete state and action spaces. On the contrary, policy-based
methods directly learn the optimal policy itself, without explicitly es-
timating state values. These methods are applicable to environments
with discrete and continuous state and action spaces. Another major
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theoretical advantage of policy-based methods is that they directly op-
timize the RL objective from equation (2.1). A sub-category of policy-
based methods learns a policy with the help of a learned value func-
tion. These methods are called actor-critic methods. In this context,
the actor refers to the policy, and the critic is the value function. Since
the focus of this thesis is on robotics, it only uses policy-based meth-
ods as well as actor-critic since they can handle the continuous action
spaces usually encountered in such environments. Another important
distinction is based on the access to a sequential dynamics model.
Model-free approaches do not assume access to such a model, while
model-based methods either assume the model is available or learn
it using data. In this thesis, we exclusively used model-free methods.
The main reason for this is that the dynamics of robot manipulation
tasks are very complex and include a lot of discontinuities, especially
at contact. This makes learning a good sequential model quite chal-
lenging and learning a downstream policy even more challenging
with such a low-quality model. We can further distinguish RL meth-
ods based on multiple other features (exact vs. approximate methods,
on-policy vs off-policy algorithms). However, this section only dis-
cusses the two distinctions that were actively considered when choos-
ing the methods used in this thesis. A comprehensive overview and
taxonomy of RL methods can be found in [2, 181].

2.2 value-based methods

The fundamental principle that guides these methods is the Bellman
equation introduced in equation (2.6). With this equation, we can de-
rive the value iteration (VI) algorithm that inspired most value-based
RL algorithms. We first assume discrete state and action spaces. As
its name suggests, VI involves an iterative process. Specifically, given
an arbitrary policy π we iteratively update the value function Vπ as
follows. We start with an arbitrary initial value function Vπ0 . We then
iterate a process, where at each iteration i, we update the value func-
tion,

Vπi+1(st) =
∑

at∈A

π(at | st)
∑

st+1∈S

p(st+1 | st, at)[r(st, at) + γVπi (st+1)].

(2.7)

This process is repeated until convergence. Similarly, we can find the
optimal value function V∗ = Vπ

∗
by instead iterative updating the

optimal value function,

V∗
i+1(st) = max

at∈A

 ∑
st+1∈S

p(st+1 | st, at)[r(st, at) + γV∗
i (st+1)]

. (2.8)

Note that this process does not require any access to the optimal
policy π∗. This process can be updated for continuous state and action
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spaces, by using a parametrized value function Vδ and updating the
parameters δ of the value function at each iteration using the error
between the newly computed value estimates V∗

i+1 and the old ones
V∗
i ,

δi+1 = δi +α∇δi(V∗
i+1(st, δi) − V

∗
i (st, δi)), (2.9)

where α is a learning rate, and V∗
i+1(st, δi) is computed as shown in

equation (2.8), while using V∗
i (st, δi).

2.2.1 Q-Learning

While VI can converge to the (optimal) value function [25, 181], it does
not directly yield the optimal policy. Given the optimal value function
V∗, acting optimally would correspond to picking actions according
to the following objective,

argmax
at∈A

(
Est+1∼p(.|st,at)[r(st, at) + γV∗(st+1)]

)
. (2.10)

However, in practice, this is only feasible if we have access to the en-
vironment dynamics p(st+1 | st, at), and if the state and action space
dimensions are sufficiently small for this objective to be tractable.

However, in Q-learning, a similar process is proposed, using a
value called the action value. The action value Q(s, a) defines the ex-
pected value of being at state s and taking action a. Mathematically,
it can be formulated as follows,

Q(st, at) = Est+1∼p(.|st,at)[r(st, at) + γV(st+1)]. (2.11)

Given this definition, Q-learning introduces an iterative process sim-
ilar to VI, to obtain the action value function or table using interac-
tions with the environment. Similarly to VI, to learn the action value,
we start with an arbitrary initial action value Q0. At each step, we
sample an action according to the current estimate Qi. This typically
corresponds to using an ϵ-greedy policy, which is a policy that se-
lects random actions with probability ϵ, or otherwise selects optimal
actions based on Qi. With the resulting (st, at, st+1) data, we can up-
date the estimate of Q based on the following objective,

Qi+1(st, at) =Qi(st, at) +α[r(st, at)

+ γ max
at+1∈A

Qi(st+1, at+1) −Qi(st, at)].
(2.12)

Intuitively, this update moves the Q values slightly in the direction
of a VI-style estimate that benefits from the new information gained
about the reward r(st, at). This process is repeated until convergence,
or for a fixed number of iterations. After convergence, acting opti-
mally would correspond to choosing actions as

argmax
a∈A

Q(s, a). (2.13)
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Unlike VI, this algorithm does not require access to the dynamics of
the environment p(st+1 | st, at). Nevertheless, it is only tractable for
environments that have discrete state and action spaces.

2.2.2 Deep Q-Learning

Many real-world environments have continuous or high-dimensional
state spaces. For instance, any robot manipulation task requires posi-
tion-like information in the state. To handle such requirements, deep
Q-learning uses function approximators, such as deep neural net-
works, to approximate the action-value function [131]. The action-
value function is then defined as a neural network, called the deep
Q-network, or in short-form DQN. We can now write the action-value
function with its parameters as Qω(s,a). We can then update the pa-
rametersω of the network using a mean-squared-error loss between a
target Q-value and the current estimate. The target Q-value, referred
to as Y, is computed based on the Bellman equation,

Y = r(st, at) + γ max
at+1∈A

Qω(st+1, at+1). (2.14)

As before, we can now interact with the environment to collect data.
This interaction can again be based on an ϵ-greedy policy. We store
the resulting state, action and reward information in an experience re-
play buffer. We can then update the DQN weights with the following
loss,

L(ω) = Est,at∼D
[
(Y −Qω(st, at))2

]
, (2.15)

where the expectation in equation (2.15) is using samples from some
dataset D. One problem in this loss is that the targets are also de-
pendent on the parameters ω, which could make the optimization
unstable. As a solution, we can maintain another target Q-function
Qωtarg that is very close to Qω but lags behind it. The parameters of
this network are updated using Polyak averaging [150],

ωtarg ← ρωtarg + (1− ρ)ω. (2.16)

The DQN algorithm can be used successfully for continuous and
large-dimensional state spaces. However, it cannot handle continu-
ous or large-dimensional action spaces, since the policy still needs to
select actions based on equation (2.13).

2.3 policy-based methods

Unlike value-based methods, policy-based RL approaches directly at-
tempt to find the optimal policy instead of deriving it based on the
value function. Policy-based RL methods share many similarities with
the dynamic programming policy iteration (PI) algorithm. PI is an it-
erative algorithm that is guaranteed to converge to the optimal policy
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for finite MDPs. Starting from arbitrary initial value estimates and (de-
terministic) policy, PI iterates two steps until the policy converges. The
first step is policy evaluation. In this step, we iteratively update the
values of each state,

V(st)←
∑

st+1∈S

p(st+1 | st,π(st))[r(st,π(st)) + γV(st+1)]. (2.17)

This step is repeated until the maximum state value divergence is
below a predefined threshold. Given the results of policy evaluation,
a PI iteration proceeds with to the policy improvement (second step).
This step updates the policy for each state,

π(st)← argmax
at∈A

∑
st+1∈S

p(st+1 | st, at)[r(st, at) + γV(st+1)]. (2.18)

2.3.1 Policy Gradient

For non-finite MDPs, we can use a parametrized policy. At the cen-
ter of the policy-based RL methods for parametrized policies is the
policy gradient (PG) algorithm. This algorithm optimizes policy pa-
rameters with respect to the RL objective from equation (2.1). This is
done by computing the gradient of this object with respect to those
parameters. This value ∇δJ(π) is referred to as the policy gradient.
Following [205], we can derive a tractable estimator of this value,

∇δJ(π) = ∇δEτ∼πδ [R(τ)] (2.19)

= ∇δ
∫
p(τ | δ)R(τ)dτ (2.20)

=

∫
∇δp(τ | δ)R(τ)dτ. (2.21)

Based on the log-derivative and the chain rule, one could show that

∇δp(τ | δ) = p(τ | δ)∇δ logp(τ | δ). (2.22)

Plugging this into equation (2.21), we obtain

∇δJ(π) =
∫
p(τ | δ)∇δ logp(τ | δ)R(τ)dτ (2.23)

= Eτ∼πδ [∇δ logp(τ | δ)R(τ)]. (2.24)
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The trajectory distribution can be fully captured using the initial state
distribution, the transition dynamics, and the policy. We can rewrite
∇δ logp(τ | δ),

∇δ logp(τ | δ) = ∇δ log

[
ρ0(s0)

T∏
t=0

p(st+1 | st, at)πδ(at | st)

]

(2.25)

= ∇δ log ρ0(s0) +
T∑
t=0

[∇δ logp(st+1 | st, at)

+∇δ logπδ(at | st)].
(2.26)

Since the initial state distribution and environment dynamics do not
directly influence δ, we can finally write

∇δ logp(τ | δ) =
T∑
t=0

∇δ logπδ(at | st). (2.27)

If we plug this into equation (2.24), we obtain

∇δJ(π) = Eτ∼πδ

[
T∑
t=0

∇δ logπδ(at | st)R(τ)

]
. (2.28)

In practice, we can use a mean estimator to compute this gradient
using trajectories collected by following the policy. This algorithm can
suffer from high variance, making it less stable and sample-inefficient.
We can significantly reduce this effect by replacing the returns with
the advantage function defined as

Aπδ(s, a) = Qπδ(s, a) − Vπδ(s). (2.29)

This function measures how good it is to take action a in state s,
compared to an action obtained by random sampling of the policy
πδ. We can replace the returns with the advantages A,

∇δJ(π) = Eτ∼πδ

[
T∑
t=0

∇δ logπδ(at | st)Aπδ(st, at)

]
. (2.30)

This modification removes the effect of rewards from previous steps
(when using returns) and reduces variance while keeping the expec-
tation unbiased [181, 182]. In practice, we estimate the advantages by
learning Qπδ and Vπδ using the methods introduced in section 2.2.
In fact, learning Vπδ is sufficient for estimating the advantages since
Qπδ , can be replaced by the reward-to-go. This is an implementation
detail that differs from one implementation to another. The PG algo-
rithm laid the foundation for a family of other policy-based methods.
These methods attempt to alleviate some of the disadvantages of this
method such as its large variance and being on-policy. Despite its
shortcomings, this algorithm has also been used for robotics manipu-
lation [148].
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2.3.2 Trust Region Policy Optimization

Large policy updates could destabilize policy optimization. There-
fore, there is a clear need to limit those updates without hindering
the learning process. Schulman et al. [165] proposed an approach to
achieve this by framing the problem as a constraint optimization. This
method establishes a trust region around the old policy during pol-
icy updates. Hence, it is called trust region policy optimization (TRPO).
TRPO proposes a surrogate objective to approximate the PG objective.
This objective extends the lower bound on the expected discounted
reward, introduced in [88], to stochastic policies.

L(δold, δ) = Eτ∼πδold

[
πδ(a | s)
πδold(a | s)

Aπδold (s, a)
]

, (2.31)

where πδold is the (fixed) current policy before the update. Notice that
this expression uses importance sampling to weigh the past actions
under the old policy based on how likely they are to be taken under
the new policy. Furthermore, TRPO imposes a constraint on the policy
change using the average Kullback-Leibler divergence (KL) between
the policies. We can now write the optimization problem,

argmax
δ

L(δold, δ) (2.32)

s.t. Es∼πδold
[KL(πδ(. | s) || πδold(. | s))] ⩽ ζ,

where ζ is a scalar hyperparameter. In TRPO, this optimization prob-
lem is approximately solved using the conjugate gradient method fol-
lowed by a backtracking line search. The conjugate gradient method
alleviates the need to directly compute and store the fisher informa-
tion matrix of the KL, which is needed for the solution of the Taylor-
expansion-based approximation of the optimization problem in equa-
tion (2.32). More details can be found in the original publication [165].
Due to the complexity of this optimization problem, TRPO updates
can be expensive in practice. TRPO is a very popular algorithm and
has been used in the past for robotics use cases [81].

2.3.3 Proximal Policy Optimization

Although TRPO successfully illustrates the benefits of limiting policy
updates for policy gradient methods, it increases computational com-
plexity by means of trust region optimization. The computational cost
can be reduced by limiting the number of conjugate gradient itera-
tions. However, this comes at the cost of increasing the approximation
gap. Schulman et al. [166] propose some tricks to achieve the same
goal while reducing the computational cost. They propose an algo-
rithm called proximal policy optimization (PPO). Instead of imposing
a trust region on the objective in equation (2.31), PPO proposes a sim-
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ple modification of the objective. It reduces large policy updates by
clipping the objective function,

L(δold, δ, ϵ) = Eτ∼πδold

[
min

(
r(δ)Aπδold (s, a),

clip(r(δ), 1− ϵ, 1+ ϵ)Aπδold (s, a)
)]

,
(2.33)

where r(δ) = πδ(a | s)/πδold(a | s) and ϵ is a hyperparameter. This
simple change removes the incentive for the rate of policy change,
as quantified by r(δ), to be outside of the interval [1− ϵ, 1+ ϵ]. The
clipping effectively removes any gradients that push in that direction.
This makes the degree of policy change controllable at the cost of in-
troducing a new hyperparameter. More importantly, this change does
not introduce any additional computational complexity to vanilla PG.
PPO is a very popular algorithm in robotics, specifically for transfer-
ring policies from simulation to the real world [3, 38, 69, 183, 184].

2.3.4 Twin-Delayed Deep Deterministic Policy Gradients

So far, we have only looked at policy-based methods which can learn
using trajectories collected using the agent’s own policy. Methods
of this sort are called on-policy RL algorithms. In contrast, some of
the value-based approaches we have examined, such as (deep) Q-
learning, could benefit from data collected using another policy. Meth-
ods that have this capability are called off-policy RL algorithms. In
practice, this property means that these methods could also bene-
fit from environment interactions that were performed by older it-
erations of the agent’s policy or even another agent’s policy (e.g.,
data collected by a human demonstrator). Due to the high sample
requirements of RL methods, this property is very desirable. This is
especially the case for real-world robotics, where the environment dy-
namics and control can be very complex. Hence, there is a clear need
for off-policy algorithms that can handle continuous action spaces.
In section 2.2.2 we discarded the usage of DQN for continuous ac-
tion spaces due to the intractability of the maximum operation in
equation (2.13). However, it is possible to use the learned Q-function
to optimize a parametrized policy. deep deterministic policy gradi-
ent (DDPG) [116] is an algorithm that follows this paradigm. Given a
deterministic policy πδ(s), and a Q-function Qω learned using a ver-
sion of the loss in equation (2.15) that uses the parametrized policy
when computing the DQN targets,

Y = r(st, at) + γQω(st+1,πδ(st+1)), (2.34)

DDPG learns a policy by maximizing the expected Q-values,

max
δ

Es∼D[Qω(s,πδ(s))], (2.35)
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where D is a dataset of experiences collected by the agent using all
the policy versions it has learned up until now. This dataset is also
known as the experience replay buffer. Hence, DDPG is considered an
off-policy algorithm, benefiting from old experiences to improve its
sample efficiency. However, in practice, DDPG can suffer from the over-
estimation of the Q-values, which is then negatively exploited during
policy optimization [54]. To address this issue, Fujimoto, Hoof, and
Meger [54] proposed a couple of remedies. First, they add noise to the
policy actions in equation (2.35), to discourage the policy optimiza-
tion from exploiting these overestimations. This modified policy is
noted π ′

δ(s). Second, they propose maintaining two Q-functions Qω1
and Qω2 that are each learned as shown in equation (2.15). When
forming the target, they use the minimum Q-value ,

Y = r(st, at) + γ min
i=1,2

Qωi(st+1,π ′
δ(st+1)). (2.36)

Lastly, Fujimoto, Hoof, and Meger [54] recommends updating the
Q-functions more frequently than the policy itself. The resulting algo-
rithm is called twin delayed deep deterministic policy gradient (TD3).
Both DDPG and TD3 are very popular algorithms in the RL literature,
and have also been used for robotic manipulation tasks [127, 152].

2.3.5 Soft Actor-Critic

Real-world robot control suffers from noisy sensors and actuators,
dynamic environments, communication delays, modeling inaccura-
cies, and many other factors that contribute to the presence of un-
certainty. This motivates the development of algorithms for learning
stochastic policies for such systems. Haarnoja et al. [64] proposed an
off-policy RL algorithm for learning stochastic policies. The algorithm
is called soft actor-critic (SAC). SAC augments the RL objective from
equation (2.1) with an entropy maximization term [222],

J(π) = Eτ∼π

[
T−1∑
t=0

γtr(st, at) + κH(π(. | st))

]
, (2.37)

where κ is hyperparameter that controls the effect of the entropy term
H on the total reward. This modification to the objective encourages
stochastic policy and increases exploration. In practice this is imple-
mented by integrating entropy maximization into the action-value
function, to form the soft Q-function,

Q(st, at) = Est+1∼p(.|st,at)
[
r(st, at)

+ γEat+1∼π(.|st+1)[Q(st+1, at+1) +H(st+1)]
]
.

(2.38)

Learning this Q-function is done by modifying the targets,

Y = r(st, at) + γ
(

min
i=1,2

Qωi(st+1,π ′
δ(st+1)) +H(st+1)

)
. (2.39)
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Notice that SAC also uses two Q-function approximators as in [54].
The policy update step in SAC pushes the policy towards the expo-
nential of the soft Q-functions. This can be done with the following
policy loss,

L(δ) = Es∼D

[
KL
(
πδ(. | s)

∣∣∣∣∣∣∣∣ Qω(s, .)
Zω(s)

)]
, (2.40)

where Zω(s) is the partition function that normalizes the distribution.
Practical implementations of SAC use the reparametrization trick to
sample from πδ, the loss can then be written as

L(δ) = Es∼D,ϵ∼N[logπδ(fδ(ϵ, s) | s) −Qω(s, fδ(ϵ, s))], (2.41)

where ϵ is a random noise variable sampled from a Gaussian distribu-
tion N, and fδ(ϵ, s) is the reparametrized policy. This reparametriza-
tion reduces the variance in the loss estimation. SAC is a relatively
sample-efficient algorithm and has been used over the years for mul-
tiple robot control applications [10, 64, 84].
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3
S U P E RV I S E D A N D S E L F - S U P E RV I S E D L E A R N I N G
O F S TAT E R E P R E S E N TAT I O N S

To manipulate their environments, robots need first to understand
their state and the state of their surroundings. This is the robot per-
ception problem. Specifically, robots are equipped with sensors that
provide them with observations as feedback about their state and
the state of their world. Understanding these observations is crucial
to planning their actions and controlling their bodies. This is a chal-
lenging problem since sensor measurements can be very complex to
process, high-dimensional, and noisy. In this part of the thesis, we
will propose supervised and self-supervised approaches to learning
state representations that are beneficial for robotics. This chapter will
first introduce the problem and some background on the available
methodology and state-of-the-art.

3.1 problem definition

At each time step t, the agent receives observations ot from its differ-
ent sensors. To use these measurements for control, the agent must
extract a state st that describes its configuration, as well as the state of
the environment. This corresponds to extracting all control-relevant
information from o and representing them in a format suitable for
downstream planning and control. The representation problem is
common in multiple aspects of robotics. For example, for robot con-
trol, different control representations (e.g., configuration or task space)
exist for achieving the same goal. These different control representa-
tions also affect perception. Depending on the selected control space,
different state representations can be beneficial. For instance, configu-
ration space control requires joint-level feedback from the robots but
does not necessarily require feedback about the Cartesian positions
of the different links. In addition, the same control space could re-
quire different state representations depending on the task at hand.
For example, if the robot is performing a 6-dimensional manipula-
tion task, all dimensions of the robot’s and the environment states
are required. The same does not necessarily apply to a planar task.
One could possibly include all available information in all its differ-
ent representations in the state representations. However, such an ap-
proach would result in a large state space and would eventually com-
plicate the process of policy search needed to derive the downstream
planners and controllers with reinforcement learning. Therefore, we
could define the problem as follows: Given the observations ot ex-
tract the most compact state representation st that contains the neces-
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Figure 3.1: Given measurements from proprioceptive and exteroceptive sen-
sors, a perception module should extract a compact state repre-
sentation that can be used for downstream control. The state rep-
resentation can contain explicit physical values, but can also have
implicit information useful for control in a non-interpretable for-
mat.

sary and sufficient information for downstream planning and control.
This is illustrated in Figure 3.1. This illustration does not consider the
sequential nature of real-world observations. Instead, it depicts the
most simplified and naive inference process that considers each state
to be fully recoverable based on the current observation of the envi-
ronment and independent of previous states, observations, or actions.
In addition to compactness, a state representation is desired to have
other properties, such as sparsity, being Markovian, smoothness, nat-
ural clustering, temporal and spatial coherence, as well as simplicity,
and disentanglement of latent factors [20, 110].

3.2 inferring states from observations

In the classical approach to robotics, the state of the system can be
inferred on the basis of elaborate perception pipelines designed for
each task and each robot. For example, to push an object around a
table, a robot needs access to the pose and velocity of that object in
some predefined coordinate system. Such information can be inferred
from camera observations via a combination of object tracking and
filtering methods. Different components of such a pipeline (in our
running example: tracking and filtering algorithms) can be designed
using established principles of multiple-view geometry as well as fil-
tering techniques [122]. Alternatively, such components could also be
learned using supervised machine learning methods.

More recently, in RL-centric approaches to robotics, state represen-
tations can be learned in a self-supervised manner that relies only on
data containing variables that can be observed by the agent and no
additional labels. This paradigm brings forward the promise of hav-
ing one single algorithm that could be applied to different tasks and
different robots. It does so by reducing the algorithmic assumptions
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regarding the availability and robustness of perception components
or labeled datasets to obtain them. Instead, these methods solely rely
on the data collected by the RL agent while exploring its environ-
ment.

It is important to note that in certain cases the exact state of the
environment is not recoverable from the available sensory measure-
ments. The environment is then said to be partially observable. In
such a case, the goal of perception is to extract the most valuable in-
formation for control and represent it in a way that facilitates learning
the downstream tasks.

3.3 perception modalities

Depending on the task at hand, different sensor modalities can be
used for perception. However, one modality, vision, has been shown
to be central to the interaction of humans and various animals with
their environments. In artificial agents, vision can be implemented
using cameras and algorithms to process images. This problem is
very challenging since camera images can be very high-dimensional,
blurry, and complex to process. However, the information contained
in images is necessary for most robot manipulation tasks. Replacing
vision would require a costly combination of multiple other sensing
modalities. Hence, this part of the thesis mostly focuses on visual per-
ception and introduces supervised and self-supervised methods for
obtaining state representation based on vision-centric observations.
Some of the discussed methods — especially when based on unsuper-
vised learning — can also be used for extracting state representations
from other sensory inputs.

3.4 supervised learning of state representations

3.4.1 Template-matching

In certain cases, datasets of sensor measurements and corresponding
state-related labels can be available or collected for a certain task. In
such a case, one could use supervised learning methods to learn a
direct mapping from observations to states. For a robot to manipu-
late objects in the world, it would first need to locate those objects
at each step. This defines the visual object tracking problem. More
explicitly, tracking starts with initial object detections which are used
to assign different identifiers for separate objects. From there on, in
each new camera frame, a tracker looks for the position of a given
object (associated with an identifier) in that new frame.

Numerous methods have been proposed to address the challenge
of visual tracking. The next chapter will present a method devel-
oped during this thesis for constructing holistic multi-template mod-
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Figure 3.2: An illustration of template matching: Given an input image and
an image template, template matching returns a map of the oc-
currences of the template object in the input image. The map is
usually given at multiple resolutions to enable more accurate re-
sults. This figure illustrates the concept with a single resolution
for the sake of simplicity.

ules. Hence, this section will provide a brief overview of template-
matching techniques for tracking. Additionally, it will discuss Siamese
network-based methods, which were also leveraged in the proposed
method.

Template matching methods are very popular methods in visual
tracking due to their notable advantages in terms of speed and accu-
racy. In essence, these methods involve using a template image of the
target object and attempting to locate the object by matching the tem-
plate to regions within the given image and finding the most similar
patches. The process is illustrated in Figure 3.2. More formally, tem-
plate matching computes a similarity matrix where each entry Si,j
corresponds to the similarity score of the corresponding image patch
Ii,j to the template image It,

Si,j = k(Φtp(It),Φtg(Ii,j)), (3.1)

where k is an arbitrary similarity measure,Φtp, andΦtg are a feature
extractors. The actual functions used depend on the specific applica-
tion. Given this matrix, it is straightforward to extract patches that
mostly resemble the target object and then choose which actually cor-
respond to it based on some predefined confidence requirement. To
account for the object having different scales in the target and tem-
plate images, multiple scales of the template images are processed.
The matching technique can be used to compare image intensities
(using metrics such as normalized cross-correlation or the sum of
squared differences), gradient features [132], or any other applicable
features for the tracking task [77, 138, 174].
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3.4.2 Siamese trackers

Computing similarity measures in the pixel space of images could
lead to a non-representative metric. Therefore, there is a clear need for
image feature extractors on which template matching can be applied.
In recent years, convolutional Siamese neural networks have become
very popular feature extractors for tracking [24, 113, 114, 185]. As
their name suggests, Siamese networks use the same network (param-
eters and weights) to process different inputs representing different
entities. For example, when used as feature extractors during tem-
plate matching, they would correspond to setting Φtp = Φtg in equa-
tion (3.1). Siamese Instance Search Tracking [185] trains a Siamese net-
work with the margin contrastive loss to extract features. These fea-
tures are then used to compare the target image with patches taken
from the area around the previously detected image location. The
patch with the highest score is then identified as the match. Unlike
the work in [185], Bertinetto et al. [24] propose "fully convolutional
Siamese networks", a method that employs fully convolutional net-
works to eliminate the bias towards the middle part of the image.
In addition, their method utilizes the embedding of the template as
the correlation filter for the search image, enabling real-time perfor-
mance. Li et al. [114] proposed an extension of this technique, which
uses region proposal networks [159] to extract proposals from the
correlation feature maps. In addition to the architecture in [24], they
also incorporate a bounding box regression branch similar to the one
used in [185]. In order to tackle the discrepancy between the amount
of positive and negative samples during training, Zhu et al. [221] sug-
gests the use of distractor objects from previous patches as negative
samples for current ones. This augmentation enhances the feature rep-
resentation to more accurately differentiate target objects from similar
distractors. In contrast to the methods mentioned above, Held, Thrun,
and Savarese [71] proposed an approach that does not require patch
sampling and only needs the search image and a patch of the current
image (centered around the old detection) to predict the position of
the bounding box. This approach is faster and can handle changes in
aspect ratio and scale; however, its accuracy is not as good as that of
contemporary methods.

3.4.3 Recent trends in object tracking

Recent approaches to visual object tracking have shifted away from
Siamese template matching and have increasingly adopted concepts
from generative machine learning. With the success of transformers
as sequence models, their application to tracking was natural. For in-
stance, Cui et al. [43] proposes an end-to-end tracking method that
uses an iterative mixed attention mechanism to capture both spatial
and temporal information. Wei et al. [201] proposes a novel autore-
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gressive approach for visual tracking that uses a transformer-based ar-
chitecture. Similarly, Chen et al. [40] propose a sequence-to-sequence
learning approach for visual object tracking that uses a transformer-
based architecture. Gao et al. [57] propose an attention-in-attention
module to improve the attention mechanism for transformers used
in visual tracking. The proposed module can effectively enhance the
appropriate correlations and suppress erroneous ones by seeking con-
sensus among all correlation vectors. In addition to transformers,
masked autoencoding has also been used in recent methods [39, 207].
The work in [39] proposes a simplified architecture for visual object
tracking that uses masked autoencoders. Furthermore, Wu et al. [207]
propose a simple extension of masked autoencoders pretraining on
videos for matching-based downstream tasks, including visual ob-
ject tracking and video object segmentation. Finally, recent work has
shown that language can also be beneficial for tracking [52, 210]. For
instance, Feng et al. [52] argue that conditioning on the natural lan-
guage description of a target provides information for longer-term
invariance and thus helps cope with typical tracking challenges. The
paper proposes a novel deep tracking-by-detection formulation that
can take advantage of language descriptions. Similarly, Yan et al. [210]
propose UNINEXT, a model that can perform diverse instance percep-
tion tasks by reformulating them into a unified object discovery and
retrieval paradigm. UNINEXT can handle different types of objects
by changing the input prompts, and can exploit data from different
tasks and label vocabularies for joint training of general instance-level
representations

3.5 self-supervised learning of state representations

In many scenarios, it is not possible to obtain a dataset of sensor ob-
servation and the corresponding state-related labels. Collecting such
datasets is a very expensive and time-consuming process since state-
of-the-art perception methods tend to rely on very large amounts
of data to be trained. Simultaneously, it is very accessible to obtain
unlabeled sensory measurements such as images just from the Inter-
net. Furthermore, while learning to perform a task by trial and error,
a robot can easily collect a dataset of sensory measurements (with-
out state labels). Such datasets could contain observations that have
a distribution similar to the ones seen at inference time. Therefore,
being able to learn mappings from observations to state representa-
tions from such unlabeled data would greatly benefit robot percep-
tion. However, this lack of labels makes the learning process more
complex and inefficient. On the positive side, it removes the human
bias from the data since human-labeled data often follow some ex-
plicit state-space design. For example, when designing the state space
of some task, a human would typically focus on the positional infor-
mation of the agent and objects and omit information about its shape,
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object type, or other physical properties. The latter are hard to label,
but potentially inferrable from the observations and beneficial to the
task.

Self-supervised state representation learning (SRL) approaches can
either be discriminative or generative. Each class of methods offers
distinct strategies for feature extraction without the need for explicit
annotations or labels. The key distinction between discriminative and
generative self-supervised representation learning methods lies in
their learning objectives. Discriminative methods aim to capture dis-
criminative features that are directly relevant to a specified task, while
generative methods focus on capturing the data distribution and un-
derlying data manifold.

3.5.1 Discriminative approaches

One of the most popular approaches to state representation learn-
ing is the autoencoder (AE) [16]. AEs are neural networks designed
to learn compact representations of data by mapping it into a latent
space (typically with lower dimension) and then reconstructing the
original data from this compressed representation. The network con-
sists of an encoder fψ that maps the input data o to a latent represen-
tation z, and a decoder gθ that reconstructs the data from the encoded
representation. Mathematically, an autoencoder can be represented as

z = fψ(o), (3.2)

ô = gθ(z), (3.3)

where o represents the raw input observation, z is the latent state
representation, and ô is the reconstructed input: AEs are trained using
a mean squared error (MSE) loss between the input and reconstructed
data based on a dataset D, using the following loss function,

LAE(D, θ,ψ) = Eo∼D
[
MSE(o,gθ(fψ(o))

]
. (3.4)

Lange and Riedmiller [104] proposed one of the first methods to in-
tegrate AEs in batch-RL. Later work explored the use of regularized
autoencoder (RAE) [212]. RAEs are trained using a very similar loss to
traditional autoencoders,

LRAE(D, θ,ψ) = Eo∼D
[
MSE(o,gθ(fψ(o)) + λz

∣∣ |z||2 + λθ||θ||2]. (3.5)

In addition to input reconstruction, this loss explicitly penalizes the
learned representation z = fψ(o) and the decoder weights θ. λz and
λθ are scalar terms that weigh the effect of the previously mentioned
regularizers. AEs could either be trained simultaneously with the pol-
icy [35, 212], or in certain cases, separately pretrained before the RL

phase begins [4, 74, 108] or in an alternating fashion [104]. A simi-
lar class of methods simultaneously learns feature encoders and pre-
dictive models [14, 59]. For example, [14] learns a low-dimensional
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feature embedding of images jointly with a forward dynamics model
in this low-dimensional feature space. This approach is efficient and
enables end-to-end learning from pixels to torques. Similarly, inverse
dynamics prediction [214] and reward prediction [134] can be used
as auxiliary tasks for learning state representations.

Another popular paradigm for SRL is contrastive learning (CL). CL

is a technique that aims to learn low-dimensional representations of
data by contrasting similar and dissimilar samples. Specifically, it
tries to bring similar samples close to each other in the representa-
tion space and push dissimilar samples far apart using some similar-
ity metric, such as the Euclidean distance. Popular methods for con-
trastive learning include Siamese networks [42, 99], triplet losses [76,
198], and noise-contrastive estimation [139]. One popular CL objective
LCL is the InfoNCE loss [139], computed as

Eq,k+,{ki}K∼D

[
log

exp fψ(q) TW fψ(k+)

exp fψ(qT )W fψ(k+) +
∑K−1
i=0 fψ(q)

T W fψ(ki)

]
,

(3.6)

where q is the anchor, k+ is the positive sample, {ki}K are the neg-
atives samples, and W is a matrix used for the bilinear product op-
eration. When used in an RL framework, the choice of negative and
positive sample should be made based on the data in the replay buffer.
Laskin, Srinivas, and Abbeel [105] use data augmentations as positive
samples and all other samples in the batch, as well as their augmen-
tations as negative ones. Similarly, the work in [175] uses contrastive
learning to associate pairs of observations separated by a short time
difference, hence uses (near) future observations as positive queries
and all other samples in the batch as negative ones.

Both AE-based methods and contrastive learning focus on com-
pression of observation as the main goal for SRL. Besides autoen-
coding and contrastive methods, it is possible to integrate any other
self-supervised or unsupervised objective for SRL, such as predictive
modeling [108], clustering [6, 66], or masked reconstruction [70]. For
example, Jonschkowski and Brock [86] presented an approach for
SRL based on enforcing physical properties such as proportionality,
causality, repeatability, and temporal coherence. These properties are
formulated as objectives on the latent representations and are called
robotic priors.

3.5.2 Generative Approaches

By modeling data distributions, generative approaches can learn la-
tent state representations that are fit for generating new data but
also for downstream tasks such as control. variational autoencoders
(VAE) [98, 160] have been shown to be very useful for this purpose.
VAEs differ from traditional autoencoders in several key ways. Firstly,
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VAEs introduce a probabilistic approach to encoding and decoding,
modeling the latent space as a probability distribution, whereas tra-
ditional AEs focus solely on deterministic mappings. Secondly, VAEs
enable sampling from the latent space, allowing for the generation
of novel data points. Additionally, VAEs incorporate a regularization
term in their loss function, promoting the learning of structured and
continuous latent representations. This probabilistic nature and reg-
ularization make VAEs more adept at data generation, representation
learning, and tasks involving uncertainty.

The VAE framework is based on the concept of maximizing the
evidence lower bound (ELBO), also known as the variational lower
bound. The ELBO is a fundamental equation in variational inference
and, in the context of VAEs, it serves as the objective function for train-
ing. Next, we will show how the ELBO is derived in the original publi-
cations [98, 160]. First, we assume that the observed data points o are
generated based on a latent variable z. This means that z encapsulate
the fundamental nature and meaning of data. The joint distribution
of o and z can be written as

p(o, z) = p(o | z)p(z)), (3.7)

where p(z) and p(o | z) are the prior and likelihood distributions, re-
spectively. While the prior defines the structure of the latent vari-
ables, the likelihood distribution captures the process by which the
latent variable is mapped into an observation. We can obtain p(o) by
marginalizing the joint distribution,

p(o) =
∫
p(o, z)dz =

∫
p(z)p(o | z)dz. (3.8)

Assuming we have a process by which we can sample from p(z),
using Monte Carlo Integration to estimate this value becomes in-
tractable for continuous latent spaces (or discrete ones with a large
dimension). Alternatively, we can then express p(o) as follows:

p(o) =
p(o | z)p(z)
p(z | o)

. (3.9)

However, p(z | o) is typically not accessible and hence this expression
cannot be evaluated. Variational inference offers us the means to ap-
proximate the true posterior p(z | o) with a variational distribution
q(z | o). In the case of VAEs, we use a density network to represent
this distribution as qψ(z | o). The latter is often referred to as a recog-
nition model. From the classical AE perspective, this network is the



34 supervised and self-supervised learning of state representations

encoder. We will now examine the KL between the approximate and
the true posterior,

KL
(
qψ(z | o)

∣∣∣∣ p(z | o)
)
= Ez∼qψ(z|o)

[
logqψ(z

∣∣ o) − logp(z | o)
]
(3.10)

= Ez∼qψ(z|o)

[
logqψ(z | o) − log

p(o | z)p(z)
p(o)

]
(3.11)

= Ez∼qψ(z|o)[logqψ(z | o) − logp(z)

− logp(o | z)] + logp(o).
(3.12)

By rearranging the terms, we obtain

logp(o) = Ez∼qψ(z|o)[ logp(o | z) + logp(z) − logqψ(z | o)]

+ KL
(
qψ(z | o)

∣∣∣∣ p(z | o)
)
.

(3.13)

Since the KL is always positive, the expectation on the right-hand side
of equation (3.13) is a lower bound to logp(o). This term is the vari-
ational lower bound. Also, since logp(o) is referred to as evidence,
the variational lower bound is more commonly referred to as the
evidence lower bound. Hence, VAEs also parameterize a generative
model pθ(o | z) and can be trained using the objective

argmax
θ,ψ

(
Ez∼qψ(z|o)[logpθ(o | z)] − KL

(
qψ(z | o)

∣∣∣∣ p(z))). (3.14)

The first term in equation (3.14) is a data reconstruction term, and
the second one is the KL between the prior and the posterior, effec-
tively acting as a regularizer. Optimizing with respect to ψ involves
computing a gradient of the form

∇ψEz∼qψ [f(z)], (3.15)

which can be estimated using algorithms such as REINFORCE [205].
Such an optimization scheme would suffer due to the large variance
in the gradient estimation. Instead, VAEs are typically trained using
the reparametrization trick, where the sampling process is expressed
as a deterministic function of the distribution parameters and a ran-
dom sample ϵ drawn from some base distribution p(ϵ). Conveniently,
VAEs employ Gaussian distributions for both recognition and genera-
tive models. In practice, this is implemented using a neural network
that outputs a mean and standard deviation. For instance, qψ(z | o)
would look like

[µz,σz] = NNψ(o), (3.16)

qψ(z | o) = N
(
z;µz,σ2z

)
. (3.17)
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In the RL literature, VAEs are commonly integrated in the learning
process as a way to learn perception based on data collected from
the same RL environment. Higgins et al. [74] introduced one of the
earliest methods to follow this paradigm. Such methods [4, 192] often
employ a variation of variational autoencoders called β-VAE [73]. The
main difference between the two methods is a that β-VAEs introduce
a scaling factor to the KL term in equation (3.14),

argmax
θ,ψ

(
Ez∼qψ(z|o)

[
logpθ(o | z)

]
−βKL

(
qψ(z | o)

∣∣∣∣ p(z))). (3.18)

Increasing β encourages stronger regularization in the latent space
and hence improves disentanglement, i. e. the latent space is more
likely to have different dimensions corresponding to different and
meaningful factors of variation from the data.

Due to the sequential nature of perception data, later models in-
troduced a dynamics component into a VAE [67, 91, 106, 199]. This
change enforces that the latent space encodes the right factors of vari-
ation needed to predict the future states or observations, which is a
desirable property in a control system’ state. In addition, imposing a
structure on latent dynamics, such as linear transitions [91, 198], leads
to state representations that simplify downstream control.





4
S U P E RV I S E D S TAT E R E P R E S E N TAT I O N V I A
R O B U S T T R A C K I N G

When a robot manipulator is in interaction with an object, the latter’s
appearance in a fixed camera tends to change due to several factors
such as illumination, object pose, occlusion, and even motion blur.
When using a template-matching approach to track the object, we
typically have access to a single template image of that object. This
template is either pre-selected by the system designer, or in scenarios
where the robot is expected to interact with previously unseen objects,
this template would correspond to a snapshot taken from the initial
object detection.

As a consequence, the more an object’s appearance is different from
its initial appearance, the more challenging it is that such a tracker
would correctly identify the 2D position of the object in the image.
One could attempt to use, build, or train feature extractors that cap-
ture features that are invariant to the typical appearance changes ex-
perienced in such tasks. Hand-crafted features are typically tailored
to particular tasks and do not transfer well to different contexts and
environmental conditions. Recently, neural networks have been used
as feature extractors. Siamese networks, in particular, are used to
learn an embedding space for template matching [24]. At the time
of this work, Siamese network-based methods were the most success-
ful on most tracking benchmarks [101, 208]. However, regardless of
the choice of features, it is possible that the initial template is not
sufficient to extract features that would still be representative of the
object after its appearance drastically changes.

This problem can be addressed by continuously updating the tem-
plate to reflect the latest appearance of the object [71, 136, 191] or by
constructing a representation of the template that implicitly handles
this problem. As an example, Black and Jepson [27] used template
matching in the eigenspace representation of the template, which is a
compact way to encode a large collection of images with a few orthog-
onal basis images. A similar approach was also adopted in a different
work [87]. Recently, Yang and Chan [211] proposed a method to con-
struct dynamic memory networks that can adjust the template to the
changing appearance of the target during tracking. This approach
uses an long short-term memory network (LSTM) [75] as a memory
controller to read and write templates to template memory based on
memory neural networks [177, 202]. Reading in this context is select-
ing the right template, while writing is deciding whether to save an
image as a template or not. Through this approach, their system cre-
ates a multi-template representation of the object. Lee, Choi, and Kim

37
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[107] proposed a method that stores feature templates of the object
and then creates a weighted combination of those templates to be
later used for matching. Despite this, a mathematical combination of
features may only be logical when we assume that all the stored tem-
plates are of the originally tracked object (and not a falsely tracked
object due to drift).

What these methods all have in common is that they try to tackle
the issue of change in appearance by altering the templates used
for tracking. Similarly, in this chapter, we will introduce a method
that builds template memory modules based on a neat mathemati-
cal property of the similarity metric used by Siamese trackers. Unlike
the work in [211], the template memory module in this work is fully
interpretable and is built based on an analytical mathematical frame-
work, rather than using LSTMs. As a consequence, the method can be
directly used on top of any Siamese-based tracker without any fur-
ther training. Furthermore, extending a tracker with this framework
barely affects speed. The primary reason behind these advantages is
that we store templates that are distinct enough to represent the ob-
ject and similar enough to the base template to prevent drifting to
objects that are not relevant. To achieve this, the proposed framework
relies on a measure of the diversity of the stored templates, as well
as a lower bound on the similarity between the candidate and base
templates.

4.1 building diverse template modules

In a dynamic environment, an object can be subject to several con-
dition changes, such as rotation (of the object or the camera), illu-
mination, occlusions, motion blur and even changes in the shape of
the object (e. g. due to a deformation). The main goal of this work
is to present a framework, which enables building template modules
accounting for all these problems and any other variations that the
object could endure during tracking. The presented approach can
be considered an extension to any template matching-based tracker
which uses an inner product operation for similarity computation.
The main idea is to find templates that are the farthest from each
other in the feature space, as illustrated in Figure 4.1. By doing so,
the framework builds a holistic representation of the object that is
suitable for tracking. Hence, the method is called Tracking Holistic
Object Representations (THOR).

The framework builds a memory composed of a long-term module
(LTM) and a short-term module (STM). Each of these modules stores
templates that will later be used by the Siamese tracker. Each serves a
different purpose. The LTM stores template images in a way that rep-
resents the tracked objects under diverse conditions (lighting, shape,
etc.). Intuitively, if we assume a certain object has a fixed number
of factors that affect its appearance in the image, this module aims to



4.1 building diverse template modules 39

LTM 

at Frame 1

LTM 

at Frame 150

LTM 

at Frame 700

Figure 4.1: Tracking Holistic Object Representations (THOR). The task in
the sequence gym, of the tracking benchmark OTB100 [208], is to
track the gymnast. The goal of THOR is to maximize the diversity
of the tracked object’s representation while tracking. For explana-
tory purposes, we illustrate this representation, accumulated in
the long-term module (LTM), in 2D. In reality, the representation
occupies a high-dimensional space. Over time, the total volume
of the parallelotope spanned by the templates increases. The base
template T1 always stays in the LTM and can be thought of as a
fixed point of the parallelotope. Taken from [161].
A similar figure has previously been introduced in one of the author’s
previous publications [161].

store template images that sparsely represent different values of these
factors. The LTM is used to track and re-detect the object in the long
term. The STM stores templates that represent short-term variations
of the object’s appearance. The full system is shown in Figure 4.2. The
idea of using long-term and short-term features for tracking has been
exploited previously [78, 107]. However, THOR can be distinguished
from previous methods based on the technique it uses to select the
feature templates that are stored in memory. In the following, we ex-
plain the individual components of the architecture in detail.

4.1.1 Long-term Module

As mentioned previously, this module is responsible for finding and
storing templates (in memory) that represent the diverse appearances
that the tracked object could have. Therefore, its objective is to to store
templates that maximize the diversity of information about the object.
A naïve approach would be to store all tracked crops of an object.
However, this approach has two main limitations. First, storing crops
from all the tracking results quickly becomes infeasible memory-wise.
This problem might be negligible when testing the algorithm on some
fixed datasets. However, in real-world scenarios, such as robot ma-
nipulation, the length of a sequence is as long as the task execution.
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Figure 4.2: System Overview. The tracker and THOR can be considered
separate components that exchange information. The input im-
age and the initial template image are passed through an encoder
(the template image only at the beginning of the sequence), trans-
forming both into feature vectors in an inner product space.
The activation maps are then computed with a dot product. For
Siamese trackers, the encoder is a Siamese network and the dot
product is a convolution. Over time, THOR accumulates long-
term (LT) and short-term (ST) templates. Convolving the accu-
mulated templates with the input image yields two sets of activa-
tions maps (corresponding to LT and ST templates). The modula-
tion module calculates a weighted spatial average and multiplies
it with all activation maps. Based on these activation maps, the
tracker computes the bounding boxes. The box with the highest
score in each set is fed into the ST-LT switch which determines
which bounding box to use for the prediction. The final predic-
tion is then fed back to the STM and LTM modules to decide
whether to keep it or not. The STM also passes the diversity mea-
sure γ to the LTM.
This figure has previously been introduced in one of the author’s previ-
ous publications [161].
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Second, the batch size of the input to the Siamese trackers is lim-
ited by the GPU memory and number of cores. Hence, when dealing
with long real-world sequences, the number of templates quickly ex-
plodes and a single pass with all templates becomes intractable. Con-
sequently, it becomes feasible to maintain only a restricted set of tem-
plates, denoted as Klt. As a result, a crop ought to be designated as a
template solely if it provides supplementary object-specific tracking-
relevant information beyond what has already been amassed by the
existing templates.

In the real world, an object’s state is affected by several object-
specific properties such as material type, colour, shape and the dy-
namics of the object, but also by environmental properties such as illu-
mination, temperature, etc. Only a certain amount of this information
is recoverable from a 2D image of an object, which makes an exhaus-
tive object description impossible. A practical alternative to this prob-
lem is to describe the object’s state with visual features. Siamese track-
ers represent objects using visual features extracted from Siamese net-
works. Specifically, the template and target images are embedded into
a feature space using the same network f. Given a target image Ti,
the features are computed as follows: zi = f(Ti). Template-matching
approaches proceed by using the features of the template as a con-
volutional kernel. During tracking, the template kernel z1 is applied
to the features of the input image to get the location of the highest
similarity. Given two arbitrary templates Tj and Tk, the inner product
of the corresponding feature vectors zj ⋆ zk is treated as a similarity
measure of those two templates [24]. We notice that the space of n-
dimensional visual features together with the convolution operator
form an inner product space. Given a set of n feature vectors, we can
construct a Gram matrix of the form

G(z1, · · · , zn) =


z1 ⋆ z1 z1 ⋆ z2 · · · z1 ⋆ zn

...
...

. . .
...

zn ⋆ z1 zn ⋆ z2 · · · zn ⋆ zn

. (4.1)

G is a square n×n matrix, where n is typically much smaller than
the dimensionality of the feature space. Conveniently, the determi-
nant of G, called the Gram determinant, possesses a property that
is useful for the LTM. Namely, this Gram determinant corresponds
to the square volume of the n-dimensional parallelotope spanned by
z1, z2, . . . , zn. Hence, the LTM uses this determinant as a measure of
template diversity, when it selects which templates to store in mem-
ory. We can write the objective as follows,

max
z1,z2,...,zn

Γ(z1, . . . , zn) ∝ max
z1,z2,...,zn

|G(z1, z2, . . . , zn)|, (4.2)

where Γ(z1, . . . , zn) is the volume of the parallelotope formed by the
feature vectors zi of the template Ti. The vectors zi can be seen as the
basis vectors of the feature space, which represent the manifold of the
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tracked object in this embedded representation. One could also build
a similar diversity measure by stacking all the features as columns in
a matrix and computing the determinant of that matrix. However, the
dimensions of such a matrix would grow with the size of the feature
space — which tends in practice to be quite large — and the number
of templates. This is in contrast to the size of G which is a square ma-
trix with a dimension equal to the number of templates. The number
of templates is a hyperparameter of THOR and hence can be set to
feasible values. Given the objective in equation (4.2), THOR stores a
template in the LTM if that new template increases the Gram deter-
minant when replacing one of the templates already in memory. This
means that we compute all the possible matrices with dimension n
given the n stored templates and the one still under consideration.
The templates corresponding to the highest Gram determinant would
be in the LTM in the next step. The maximum number of templates in
this framework is the dimensionality of the feature space D (ignoring
memory restrictions). If n > D, the determinant would be zero. In
reality, we set n≪ D.

So far, we have assumed that all the candidate templates do indeed
correspond to the object. However, in practice, these candidates are
the bounding boxes given by our tracker. Since the tracker is not per-
fect, it is highly likely that we will encounter candidate templates
that correspond to completely different objects or perhaps just a part
of the background. While being useless for tracking the target object,
such templates would yield a high diversity in the template mem-
ory. As a consequence, they would be selected to be stored in the
LTM. This could lead to the LTM becoming fully corrupted with false
templates. To avoid this problem, we need a way to reliably detect
such templates. One solution would be to set an upper bound on |G|.
Such a value would be a hyperparameter of the method. However,
tuning this value is not intuitive or straight-forward. Instead, THOR
sets a lower bound on the similarity between the candidate template
Tc and the original/base template T1. The latter is the only ground
truth available about the object. Hence, a template is only considered
to be in the LTM if it satisfies zc ⋆ z1 > ℓ ·G11. ℓ is a hyperparameter
that can be tuned for each task or dataset. It can be set differently to
trade-off tracking performance against robustness to drift.

Setting such a static boundary would mean that the templates are
restricted by a hypersphere in the feature space. In many cases, such
a constraint would be too conservative. As it is unclear how to de-
rive a proper lower bound in a way that ensures that we avoid drift
while keeping diversity of object templates at a maximum, THOR is
equipped with two various heuristics to handle this problem:

• dynamic lower bound: To account for the possible short-term
changes in the object’s appearance. This bound benefits from a
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diversity measure of the templates in the short-term memory
and subtracts it from the static bound

zc ⋆ z1 > ℓ ·G11 − γ. (4.3)

The faster the object’s appearance is changing in the short-term
— captured by γ being higher — the less conservative the bound
should be.

• ensemble lower bound: This heuristic uses the same static bound,
however requires it to be satisfied with respect to all the tem-
plates in the LTM instead of only looking at the base template.
The condition becomes

∀i ∈ {1, . . . n}; zc ⋆ zi > ℓ ·Gii. (4.4)

This heuristic enables much lower values for ℓ while still being
robust against drift. This condition makes the LTM conservative
at first but slowly allows for more diverse templates.

As per Bolme et al. [29], before computing the similarities between
templates, the LTM multiplies the feature vector zi with a tapered co-
sine window. This operation reduces the effect of the background of a
template. This transformation alters the space in which the Gram de-
terminant for the LTM is calculated. Nevertheless, the same mask is
applied to all templates. Therefore, all LTM computations remain con-
sistent in this new space. That is true regardless of the background-
foreground ratio.

4.1.2 Short-term Module

When faced with abrupt movements or partial occlusion, the LTM is
most likely to reject the candidate templates for being too dissimilar
from its current template memory state. Hence, THOR relies on the
STM to handle these scenarios. The STM has a fixed number of slots
Kst. Without any precondition, the STM stores all detections in its
memory in a first-in, first-out manner.

As mentioned in section 4.1.1, the long-term module expects a mea-
sure of short-term detections diversity. The STM calculates this mea-
sure γ using its own object templates. In fact, γ can be calculated
using the Gram determinant as done in the LTM. However, the tem-
plates in the STM can be largely different from each other or even very
similar in the early stages. Hence, the Gram determinant strongly fluc-
tuates and as a consequence is hard to use by the LTM. In addition,
since there are no bounds on the similarity of such templates, it is not
possible to normalize this value. Instead, we calculate the diversity
measure

γ = 1−
2

N(N+ 1)Gst, max

N∑
i<j

Gst, ij. (4.5)
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In words, we sum up the upper triangle of the Gram matrix and
normalize the sum by the maximum value in the Gram matrix. This
puts γ in the range of [0− 1], the closer γ to 1, the more diverse the
templates in the STM.

4.1.3 Inference Strategy‡

To get a predicted bounding box, we apply two methods during
inference. Modulation aims to leverage all of the information that
is contained in both STM and LTM. The ST-LT Switch determines
which template yields the current best prediction and outputs the
final bounding box.

At every frame, we get the activation maps of every template in
both STM and LTM. To use the predictions of all templates, we com-
pute a weighted spatial average over all activation maps. The weights
correspond to the maximum scores for each template, i.e., if a tem-
plate is more certain, it contributes more to the average. Every ac-
tivation map is then multiplied by this average activation map and
re-normalized.

By default, we always use the predicted bounding box of the STM,
since it can handle short term challenges well. However, since no
template stays in the STM permanently, it is prone to tracking drift.
In visual tracking, drift is determined by calculating the intersection
over union (IoU) of a predicted bounding box and the ground-truth
[102]. We leverage this measure of drift and calculate the IoU between
the two bounding boxes of the STM and LTM with highest scores. In
this case, we treat the prediction of the LTM as ground truth since
it is more robust against drift. If the IoU(STM,LTM) is lower than a
threshold thiou, we use the prediction of the LTM and reinitialize the
STM.

4.1.4 Implementation Details‡

To keep the memory updates and the forward pass efficient, we use
two strategies: parallelization and dilation. For the memory updates,
we need to compute the similarities between the template candidate
and all templates in memory. The same also applies for a forward
pass, where we need to compute the activation maps for all templates.
The operation to compute the similarities is a 2D convolution, this
means that we can calculate all similarities in parallel. Therefore, if
the GPU memory is large enough, these operations slow down the
tracker only slightly, see Section 4.2.2. Moreover, since consecutive
frames are very similar in appearance, only every other frame is con-
sidered as a template. We set a constant dilation value of 10, i.e., every
tenth frame is fed into the STM and LTM.
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4.2 experiments
‡

We build experiments to answer the following questions:

(Q1) Does the determinant increase throughout a tracking sequence
and does it converge?

(Q2) What is the effect of THOR on the speed of the used trackers?

(Q3) Does THOR improve the performance of state-of-the-art track-
ers?

(Q4) What is the effect of each introduced concept (modulation, mask-
ing, lower bound, and short-term module) on the performance
of the presented method?

Generally, THOR’s underlying principle can be applied to any tem-
plate matching tracker. We compare the following Siamese network-
based trackers: SiamFC [24], SiamRPN [114], and SiamMask [197].
The tunable parameters of THOR are the number of memory slots in
STM Kst and LTM Klt, the IoU threshold of the ST-LT switch thiou,
the lower bound ℓ and α of the tapered cosine window. We use Py-
Torch for the implementation and the experiments were done on a PC
with an Intel i9 and an Nvidia RTX 2080 GPU. In the following, we
give a proof of concept, report the performance of on VOT2018 [102]
and OTB2015 [208], and conduct an ablation study.

4.2.1 Proof of Concept

To validate that the Gram determinant of the feature templates truly
represents the diversity of information about the object, we build
the following experiment. We run a tracker (SiamRPN) together with
THOR on sequences from OTB2015 and observe the normalized Gram
determinant |Gnorm| during the tracking. G is normalized against G11
to avoid numerical problems when calculating the determinant. At
the end of a sequence, the final obtained templates are saved. We
re-run the tracker while loading the previously saved templates and
record the determinant again. We keep repeating this last step un-
til the determinant converges. Surprisingly, the determinant does not
stay constant after first reloading the templates. However, because the
tracker yields different results with reloaded templates, the determi-
nant keeps growing since it’s exploring previously unseen candidate
templates. Figure 4.3 illustrates this behavior. The convergence of the
determinant represents the saturation of possible accumulated infor-
mation from saved templates. Besides, we can observe that re-running
the tracker with improved templates can also improve the AUC. The
convergence of the determinant together with the improved AUC
show that this measure truly enables the collection of good templates
for tracking.
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R1 R5

|Gnorm| AUC |Gnorm| AUC

surfer 0.0812 0.6169 0.1441 0.6562

car24 0.5983 0.8299 0.6258 0.8312

blurCar 0.2680 0.8125 0.4273 0.8141

box 0.8377 0.5837 1.0286 0.7542

Figure 4.3: Proof of Concept. Left: Convergence of the Gram determinant
after repetitively re-running the tracker with THOR. Right: Gram
determinant and area under curve (AUC) evaluated at the end
of the first and last runs (R1 and R5) of the experiment.
This figure has previously been introduced in one of the author’s previ-
ous publications [161].

4.2.2 State-of-the-Art Comparisons

In this section, we determine the general performance regarding speed
and the performance on the established visual tracking benchmarks
VOT2018 and OTB2015.

Performance on VOT2018. On VOT2018, performance is measured
in terms of accuracy, robustness, and expected average overlap (EAO),
where EAO is used to rank trackers. Table 4.1 shows that THOR is
able to improve all state-of-the-art trackers in terms of EAO. THOR-
SiamRPN even pushes the performance back to current SotA results
of trackers with much more sophisticated network architectures such
as SiamRPN++ [112]. SiamRPN++ achieves an EAO of 0.414 while
running at 35 FPS (on a NVIDIA Titan X). THOR-SiamRPN (dynamic)
achieves an EAO of 0.416 while running at 112 FPS. The same strong
improvements can be seen for robustness, which means that THOR
mitigates tracking drift. Generally, the THOR-enhanced trackers per-
form slighly worse on accuracy. In some sequences, the tracker puts
up with a loss in accuracy in order to keep the object tracked, by
predicting a larger bounding box. A second reason is THOR’s dis-
position to track the entirety of an object (which it does by design),
therefore in sequence with e.g., face-tracking only, THOR can start to
track the entire head, not only the face.

Performance on OTB2015. On OTB2015, performance is measured
with the area under curve (AUC) and the mean distance precision.
As shown in Table 4.1, THOR improves all trackers on both metrics.
Especially precision is improved by adding THOR to the trackers.
Generally, both dynamic and ensemble lower bound yield similar re-
sults.

Speed. Table 4.1 shows that THOR slows the trackers down, which
is to be expected of a multi-template tracker since there are necessar-
ily additional computations. The general bigger decline for SiamFC
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Figure 4.4: Ablation Study. Left: The effect on THOR’s perfomance on
VOT2018 when disabling modulation, masking, and the short-
term module, or a static lower bound. Right: Comparison of the
proposed strategies for the lower bound evaluated on OTB2015.
This figure has previously been introduced in one of the author’s previ-
ous publications [161].

can be explained with the expensive up-sizing operation in SiamFC,
which is hard to parallelize in the given implementation. With a
smaller and faster model, SiamRPN can reach speeds of 325 FPS,
whereas THOR-SiamRPN can run at a respectable speed of 244 FPS.
The experiments demonstrate that THOR still runs at a reasonable
speed, especially in comparison to other multi-template matching ap-
proaches [107, 211]. It also shows that if a tracker is using a faster
model, THOR can also be run at higher speeds.

Table 4.1: Tracking benchmarks. The attained performances of the trackers
on VOT2018 and OTB2015. The main metric for ranking trackers
is EAO (expected average overlay) on VOT2018, and AUC (area
under curve) on OTB2015.
This table has previously been introduced in one of the author’s previous
publications [161].

VOT2018 OTB2015

Tracker Lower Bound Accuracy ⇑ Robustness ⇓ EAO ⇑ Speed (FPS) ⇑ AUC ⇑ Precision ⇑ Speed (FPS) ⇑

SiamFC − 0.5194 0.6696 0.1955 219 0.5736 0.6962 214

THOR-SiamFC dynamic 0.4977 0.4448 0.2562 99 0.5990 0.7347 97

THOR-SiamFC ensemble 0.4846 0.3746 0.2672 69 0.5971 0.7291 80

SiamRPN − 0.5858 0.3371 0.3223 133 0.6335 0.7674 137

THOR-SiamRPN dynamic 0.5818 0.2341 0.4160 112 0.6477 0.7906 106

THOR-SiamRPN ensemble 0.5563 0.2248 0.3971 105 0.6407 0.7867 110

SiamMask − 0.6096 0.2810 0.3804 95 0.6204 0.7683 97

THOR-SiamMask dynamic 0.5891 0.2388 0.3846 60 0.6397 0.7900 78

THOR-SiamMask ensemble 0.5903 0.2013 0.4104 70 0.6319 0.7929 66

4.2.3 Ablation study

We introduced several concepts to enhance THOR’s functionality. The
LTM is improved by template masking and a dynamic or ensemble lower
bound. The STM handles sequences with abrupt changes. We leverage
the information of all templates through modulation. In the following,
we conduct experiments to determine the influence of these concepts.
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Tracking Performance. To measure the impact of the concepts on
the tracking performance, we conduct an ablation study on VOT2018.
We compare the performance of all trackers with THOR and without
("vanilla"). Then we disable one of the concepts to determine their
influence on the final performance. Figure 4.4 (left) shows, that for
all trackers the best performance (determined by EAO) can only be
reached when all concepts are utilized. Turning off the modulation
or the STM has the biggest negative impact on the final performance,
which shows the importance of the respective concept.

Dynamic vs. Ensemble Lower Bound. To compare both proposed
strategies for the lower bound, we record the normalized Gram de-
terminant |Gnorm| at the end of every sequence in OTB2015. We then
visually inspect the templates accumulated in the LTM and determine
the number of drifted templates, i.e., when the tracked object is not
in the center of the template. The relative drift is equal to the ratio
of the number of drifted templates and the total number of updates.
Figure 4.4 (right) shows that both strategies are effective in keeping
the amount of drift low. However, the ensemble strategy manages to
achieve a much higher mean of |Gnorm|, indicating its ability to accu-
mulate more diverse object representations (see also the qualitative
comparison in Appendix A.1).

4.3 discussions

This work proposed a framework for building holistic visual object
representations for tracking. The presented approach, THOR, can be
used together with any other template-matching tracker that uses
a similarity measure based on inner products. In summary, THOR
builds a memory that accumulates short- and long-term object tem-
plates. The short-term templates are used to represent abrupt changes
in object appearances, while the long-term templates are used to rep-
resent the diversity an object’s appearance could have when the ob-
ject is active. The main idea behind the method is to leverage certain
detections during tracking as a way to accumulate more knowledge
and pseudo-ground truth about the object. This comes in contrast to
methods from the same family which only rely on the initial detection
as the information about the object. To bypass memory and compu-
tational constraints, THOR selects this additional information based
on a novel and efficient diversity measure. This diversity measure
successfully enables THOR to collect useful object templates during
tracking, as shown empirically in the experiments. Experiments fur-
ther demonstrate that this framework can be used to augment multi-
ple state-of-the-art trackers without the need for additional training
or adaptation. This comes at an almost negligible speed cost. These
two properties make this method very applicable to future works on
Siamese tracking.
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Although the presented framework demonstrates strong empirical
performance, some aspects of it can still be improved. For instance,
THOR’s improvement over short sequences is not as great as for long
ones. This is expected since short sequences do not allow for accu-
mulating enough templates. A possible solution would be to make
better use of the information from all the available templates rather
than just using the prediction with the highest score. Such a strat-
egy could also benefit long sequences. Furthermore, we only tested
THOR on short-term tracking benchmarks. It would be interesting to
observe how much improvement can be obtained for long-term track-
ing (for instance on OxUvA [190] or VOT-LT [102]). THOR could have
even more impact on long-term tracking. However, there is a higher
risk of drift in long-term tracking, which needs to be addressed by a
properly chosen lower bound. Moreover, Siamese trackers are usually
sensitive to the choice of hyperparameters which makes THOR simi-
larly sensitive since it builds on top of them. This issue concerns the
whole field of Siamese trackers and should be addressed. Finally, the
current version of THOR does not require any additional training in
addition to the training of the tracker itself. Hence, a possible future
direction would be to train the tracker to also optimize the THOR
objective.

In the grand scheme of things and following the overall topic of
this thesis, the tracking results provide the robot learning pipeline
with a state representation that captures information about the ob-
jects concerned in a given task. This information, together with the
proprioceptive measurements from the robot, constitute the full-state
information needed for many manipulation tasks. This combined in-
formation can then be used by any downstream task and motion plan-
ner to complete the given task. Alternatively, it can be used as an in-
put to a reinforcement learning policy, which would then be trained
to output actions that solve the given task. The choice of the RL algo-
rithm should, in theory, not be affected by this state representation,
making such an approach broadly applicable. Such a representation
can surely be achieved with of-the-shelf object detection or tracking
methods. However, at the time of this work, such methods were not
robust enough to be used in an RL setup with requirements such as
the Markov property that need to be satisfied. The author contributed
to the integration of this tracker into multiple robotic manipulation
demonstrators. Furthermore, the author contributed to an exhibition
at a modern art museum (Pinakothek der Moderne) in Munich, Ger-
many, where this work was showcased as part of a bigger robotics
demonstrator.





5
E X P L O R AT I O N F O R S TAT E - R E P R E S E N TAT I O N
L E A R N I N G

Chapter 4 introduced a method for building state representations
based on visual object tracking. This representation can then be used
by a designed or learned planner to perform any given task. Although
such a representation can be sufficient for many robot manipulation
tasks, such an approach presents multiple disadvantages.

First, while it is possible to design states that are suitable for a
single given task, the feasibility of designed states is questionable
for the multi-task setup. Different tasks require different kinds of
feedback. This is especially true when we think about the state of
the robot’s environment (excluding the robot state). When a robot
is tasked with pushing objects on the table, the state of the environ-
ment can be characterized by the pose and velocity of the objects,
as well as higher-order derivatives, depending on the requirements
of the task. If we consider the task of sorting objects according to
shape, the previous state needs to be augmented by additional shape-
related information. In contrast, it is possible to learn state representa-
tions that can be leveraged by large families of tasks. This is possible
since state representation learning methods typically attempt to re-
cover the different factors of variation in the observation data (as dis-
cussed in chapter 3). Furthermore, by manually designing the state
of the system, it is possible to unintentionally miss the information
needed by the task planner to optimally infer successful task plans.
For instance, in the pushing example, a system designer can choose
to omit some nth-order derivative of the object’s pose, assuming it
is irrelevant to the pushing itself. However, the lack of this informa-
tion could deny the planner the right information to estimate the
effects of certain dynamics such as friction. This would in turn lead
to suboptimal behaviors such as overpushing the object beyond its
target. In contrast, if a state representation is learned together with
the control, the state representation learning process can benefit from
control signals to select the right information needed. In addition, de-
signing the perception pipeline using a supervised learning method
would in practice mean that the perception algorithm is trained using
some already available (public) dataset. Therefore, the generalization
of the learned perception components to the downstream task is not
guaranteed. One could attempt to collect a dataset that contains data
from the same environment as the downstream task. However, the
labeling cost for such a dataset is very high and in many cases unfea-
sible. Hence, it is desirable to be able to learn the state representation
mapping (perception) using the same data used for policy training.

51
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Such data do not contain any state-related labels and usually con-
tain sequences of raw observations, actions, and reward signals en-
countered when exploring the task. Of course, it is possible to learn
the perception modules together with the policy using only reinforce-
ment learning gradient signals [111]. Such an end-to-end approach is
advantageous in the sense that the perception module also benefits
from the reward signals and can hence pick the information needed
to solve the downstream task. This type of process is typically very
inefficient and requires millions of samples [17]. This in turn limits
its applicability to real-world physical systems, where samples are ex-
pensive to acquire. Alternatively, we can use self-supervised learning
methods to learn state representation mappings using the data from
the same RL environment.

5.1 self-supervised state representation learning

This integration of SRL methods in the RL pipeline can be done in
multiple ways. Such an integration typically involves several design
decisions. For example, the SRL component can be trained in an ini-
tial phase using data collected by a random policy. This phase would
precede the classical RL training phase. Another approach is to alter-
nate between the SRL training phase and the policy training phase
using some user-set frequency. Alternatively, the SRL can be trained
simultaneously with the policy and using the exact same data. It is
important to note that this choice affects the diversity and quality of
the data used to train the SRL. The more synchronized the SRL and pol-
icy updates, the less diverse the data. Bruin et al. [35] investigated the
effectiveness of these different approaches on overall RL performance.

Another choice concerns the backpropagation of the policy gradi-
ents to the SRL modules. Although this detail is very simple to im-
plement, it can have significant implications. First, if the policy gra-
dients are indeed used to update the perception components, the lat-
ter’s learned state representation would be biased to focus on state
information that is relevant to the task the policy is trained on. As
a consequence, the transferability of the learned representations to
other tasks would be questionable. Laskin, Srinivas, and Abbeel [105]
studied the impact of this choice on their method. Their experiments
showed a clear advantage to letting the gradients flow back to the
feature encoders. However, these experiments only considered the
single-task scenario. Furthermore, it is unclear how the policy gra-
dients can interfere with the SRL objective. For example, if a VAE is
used for SRL, backpropagating the policy gradients through the en-
coder makes it uncertain whether the final state representation still
adheres to the evidence lower bound of the original VAE objective. In
contrast, if policy gradients are not used to update perception compo-
nents, there is a risk that the learned state representation may not be
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aligned with the goals of the policy and may not capture the relevant
information for successful task execution.

Another important aspect is that the choice of using single-task or
multitask data can have a significant impact. Single-task data refers to
data collected specifically for the task at hand, while multi-task data
refers to data collected from multiple tasks. Training with data from
single tasks provides the advantage of being able to learn state repre-
sentations that are suitable for the specific task. This allows for fine-
tuning the state representation to capture the necessary information
relevant to the task. However, this approach can be challenging and
less feasible in a multi-task setup, where different tasks require differ-
ent kinds of feedback. For example, the state representation needed
for pushing objects on a table may differ from the state representa-
tion needed to sort objects according to shape. On the other hand,
training with multitask data can leverage the power of state represen-
tation learning methods to capture the different factors of variation
in observation data. By learning representations that can be used by
a wide range of tasks, these methods have the potential to generalize
well to new tasks. Additionally, by learning the state representation
together with the control, the perception modules can benefit from
control signals to select the relevant information needed for success-
ful task execution.

Furthermore, the choice of the SRL method itself is important. Chap-
ter 3 introduced multiple methods for self-supervised SRL. Each of
these methods has its strengths and weaknesses, and the choice de-
pends on the specific requirements of the task and the available data.
For example, AEs can learn compact representations but may struggle
with high-dimensional data, while generative models can capture the
underlying distribution of the data but may be computationally ex-
pensive. Therefore, it is important to carefully select the SRL method
that best suits the task at hand.

However, regardless of the SRL algorithm used, due to the rela-
tively small size of the datasets used in this setup, the quality of the
data samples plays a crucial role. Especially in methods that simul-
taneously learn the policy and SRL, the data distribution is typically
very narrow. This is due to the repetitive and exploitative trial-and-
error-based nature of RL training. The more successful the policy be-
comes, the less diverse the data samples contained in the trajectories
collected by sampling this policy. As a direct consequence, the per-
ception modules learned with such data can yield suboptimal state
representations. Furthermore, due to the lack of diversity in the re-
sulting datasets, the robustness and generalization of the learned SRL

are questionable. In turn, reinforcement learning would suffer to con-
sistently and robustly learn proper policies capable of performing the
task. Methods that benefit from the policy gradient to update the per-
ception modules can still recover from such suboptimal SRL but could
require a substantially larger amount of interactions to achieve this.
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Therefore, we notice the importance of having diverse datasets to
train the perception components of agents. This chapter proposes an
approach to training exploration agents that are only concerned with
improving SRL. The aim is to build a method that can be used with a
large array of SRL approaches, even future ones.

5.2 perception-driven exploration

The majority of environments used for benchmarking deep RL algo-
rithms provide dense reward functions. This means that the agent is
almost always receiving some kind of reward signal to improve its
policy. Once the reward is scarce and high-reward areas are harder to
reach, these algorithms tend to struggle or even fail [36]. This argu-
ment is one of the main motivations behind research on exploration
for deep RL. Popular paradigms for exploration include counts and
pseudo-counts [18, 141], learning distributions over value functions
or policies [140], and information gain based methods [79, 147, 164].
The main objective for all these methods is to improve the state-action
distribution during training in a way that benefits RL. While this can
positively affect the data used to train SRL, its effect is only indirect.
Instead, the goal of this chapter is to provide a method that influ-
ences the agent-environment interaction in a way that directly bene-
fits SRL. The goal here is to build an agent that is Curious about state
Representation. Therefore, the proposed approach is referred to as
CuRe for brevity. The emphasis in CuRe is on encouraging the explo-
ration of states where the perception module struggles. Put simply,
if the agent is bad at processing certain types of images, CuRe aims
at increasing the change of reaching states where such images are ob-
served. The hope here is that increasing the number of such images in
the dataset would help the SRL module to learn how to process/un-
derstand them properly. For example, consider a robot arm that is
tasked with picking up and manipulating objects. At some point dur-
ing training, the perception module yields a state representation that
only includes the positions of the objects in its environment. How-
ever, it struggles to accurately represent the orientation or shape of
the objects, which can be crucial for successful manipulation. CuRe’s
role would then be to encourage the agent to explore and interact
more frequently with objects that have varied orientations or unusual
shapes. This increased exposure to challenging object configurations
enhances the robot’s perception and understanding of these proper-
ties through learning. As a result, the agent’s SRL module can better
encode and utilize this information, improving its grasp planning and
manipulation capabilities.

The work presented in [167] is closely related to CuRe. The pro-
posed method aims to optimize state entropy by employing random
convolutional encoders. The technique incorporates a k-nearest-neigh-
bor entropy estimator within the representation space, acting as an
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inherent reward supplement for reinforcement learning. Analogous
to CuRe, their approach eliminates the need for dynamic models dur-
ing training. However, the utilization of a k-nearest neighbor entropy
estimator could potentially lead to computational overhead if embed-
dings for all observations must be computed at each step. Alterna-
tively, storing these embeddings in the replay buffer might impose
significant memory requirements. Furthermore, a random encoder
does not guarantee any notion of meaningful similarity between ob-
servations. In fact, in certain degenerate cases, the similarity in the
representation space of a random encoder could be a measure of the
dissimilarity of the states. Shelhamer et al. [169] proposed a method
similar in principle to CuRe. Their approach also benefits from self-
supervised losses to guide the SRL training. In the paper, the authors
mention the possibility of using self-supervised losses as intrinsic
rewards. Such an approach can be beneficial in the classical deep
RL benchmarks such as Atari. However, for physical system control,
learning a policy that is augmented by an intrinsic reward can be
harmful to the stability and robustness of the final learned controller.
CuRe proposes a simple remedy to this problem. Instead of augment-
ing the reward with an intrinsic one, CuRe leverages off-policy RL

and learns an exploration-only policy in addition to the control pol-
icy used with the task reward only.

5.2.1 Problem Formulation

With a finite amount of data, it is not always possible to collect enough
samples to learn a representation that is valid across the state sub-
space relevant to the task at hand. For instance, in environments with
sparse rewards, the SRL training rarely encounters observations corre-
sponding to high-reward regions and their surroundings. To improve
the quality of the feature extraction and learned representations, it is
important to encourage collecting data in states outside of the com-
fort zone of the SRL model.

Since SRL is trained with the data in the replay buffer D. The goal
should be to have more data points in the replay buffer where the
current perception module struggles. In other words, we want more
samples where the SRL loss is maximized. The replay buffer contains
multiple trajectories of the form τ = {o0:H, a0:H}, where H is the hori-
zon length. We omit the rewards here since they are irrelevant to the
considered SRL methods. The joint distribution of the corresponding
trajectory is the following:

p(o0:H, s0:H, a0:H) = p(s0)
H∏
t=0

[p(ot | st)p(st | st−1, at−1)πc(at−1 | st−1)],

(5.1)
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where st is the underlying state, p(s0) is the initial state distribution,
p(ot | st) is the generative process of the observations, p(st | st−1, at−1)
refer to the environment dynamics, and πc is the policy used for col-
lecting the data. The goal of CuRe can then loosely be written as

max Epτ [LSRL(τ)], (5.2)

where pτ is the distribution of the trajectories in the replay buffer
and LSRL(τ) is the SRL error of the trajectory τ. The latter’s distribu-
tion is according to equation (5.1). Therefore, it is evident that this
loss function has the potential to influence four distinct distributions:
the generative model, initial state distribution, dynamics, and pol-
icy. While some SRL methods — such as VAE — do have access to
the generative model, optimizing this objective with respect to this
model obviously defies the purpose of such models. Hence, SRL al-
gorithms which have access to this model should keep it fixed in
the optimization in equation (5.2). In fact, many SRL methods such
as methods based on constrastive learning do not even consider data
generation. As for the dynamics of the environment, they are typically
imposed by the choice of embodiment and task. Hence, they cannot
be changed. Which leaves the initial state distribution and data col-
lection policy. The initial state distribution is typically fixed by the
environment and is dependent on the environment resetting mecha-
nism. Nonetheless, one could parameterize such a distribution with
a neural network and optimize its parameters with this exploration
objective. Although this may be an interesting avenue for future re-
search, the current version of CuRe ignores this aspect.

Instead, in CuRe, the focus is on optimizing this objective with
respect to πc. Notice that the objective in equation (5.2) is very similar
to the classical RL objective. Hence, we can simply train πc with any
RL algorithm if we compute the reward at each step by calculating the
SRL error of the given observations. In practice, we could compute this
reward directly at optimization time.

5.2.2 Exploration during Task Policy Search

The process described above can be easily used on its own to collect
data to train the SRL. However, in many scenarios, it is desirable to
simultaneously train the SRL and the actual RL task policy. Previous
work on intrinsic motivation relied mainly on a weighted combina-
tion of extrinsic (task) and intrinsic rewards [147, 169]. While this
can help improve exploration, the resulting policies would not be op-
timal for the task loss. Instead, CuRe uses two separate policies. One
policy is trained using the task reward defined by the environment.
Another policy is trained with the SRL loss as explained above. By
doing so, we ensure that the task policy is purely optimizing the task
reward, and additionally obtain a representation-curious agent capa-
ble of exploration for similar tasks in the same environment. More
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Figure 5.1: System Overview: our architecture is similar to the classical ones
used for simultaneous state representation (SRL) and reinforce-
ment learning (RL). Namely, an encoder is used to extract fea-
tures from images and is trained together with an SRL model
(e.g., decoder) to minimize the SRL loss. Simultaneously a task
policy is trained to maximize the task reward, with the policy
gradients flowing back to the encoder. In addition to the classical
components, our method introduces a novel curious agent/pol-
icy, which is trained based on the SRL loss as an intrinsic reward.
This creates an interplay between the SRL and the exhibited cu-
rious exploration behavior. The SRL guides the updates of the
curiosity component, while the latter takes actions that lead to
problematic and error-prone states. This in turn increases the di-
versity of observations.
This figure has previously been introduced in one of the author’s previ-
ous publications [8, 9].

Algorithm 1

for each timestep t = 1...T do
ϵ ∼ U(0, 1)
if ϵ < pc then

at ∼ πc(.|ot)
else

at ∼ πt(.|ot)

ot+1 ∼ p(.|ot, at)
D← D∪ (ot, at, rt(ot, at), ot+1)
B← SampleBatch(D)

rc ← UpdateSRL(B)

UpdateTaskAC(B)

UpdateCuriousAC(B, rc)
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importantly, this choice allows our method to be used with both si-
multaneous and alternating approaches to SRL integration in RL. In
addition, early experiments indicate that a separate curious policy
leads to substantially higher reward areas, while the single policy ap-
proach could deteriorate the results in comparison to the baselines.
Furthermore, adding the rewards together usually introduces extra
hyperparameters to weigh the different terms [143]. It is important
to note that having a separate policy is only possible when using off-
policy RL algorithms such as soft-actor-critic (SAC) [64], which is why
we use this method in this work.

Figure 5.1 illustrates the overall model and system in CuRe. A key
strength of CuRe lies in its algorithmic flexibility, remaining inde-
pendent of the chosen state representation learning algorithm. Our
architecture encompasses not only the encoder and two policies but
also an SRL model. The specific nature of this SRL model varies based
on the adopted SRL methodology. For instance, in the case of an
autoencoder-based approach, it functions as a decoder. Alternatively,
it can embody a dynamics model, an identity transformation, or any
computational element employed by representation learning methods
to confine the latent space. It is important to note that the updates of
both policies influence the encoder parameters ϕ, while only the SRL

update affects the parameters of the SRL model θ.
During trial and error, if we only sample from the curious policy,

the replay buffer would have great data for the training of the percep-
tion module. However, the policy training would suffer, since states
with high SRL-error do not necessarily have high rewards. Sampling
from task policy only would have the opposite effect. This problem
embodies the classic exploration-exploitation dilemma encountered
in reinforcement learning. It is slightly different than the classical
problem, in the sense that exploration here is tailored towards per-
ception and not control. Nonetheless, they are two problems with a
very similar flavor. As a compromise, in CuRe, at each step, we draw
actions from either the primary policy or the curious policy. The de-
cision on which policy to employ hinges on the hyperparameter pc,
dictating the proportion of instances where exploratory actions are
chosen. An alternative strategy involves drawing entire episodes via
the curiosity policy. However, this method could produce vastly dif-
ferent samples, potentially unrelated to those encountered during the
task, raising concerns about relevance. Moreover, a purely curious
policy applied to complete episodes might compromise safety in real-
world systems. Consequently, we restrict CuRe to exclusively sample
steps (and not full episodes) via the curious policy, a design choice
that mitigates these concerns.

More intuitively, after each training, the curious policy would sam-
ple actions that lead to states with a relatively high SRL error (under
the current SRL model). Even a single action sampled from this policy
would lead to a trajectory that is more likely to have states where
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the perception module struggles. By sampling more often from it, the
replay buffer gets filled with more such states. In the next update
session, the SRL would encounter such states and, hopefully, learn
how to handle them. If that is not the case, the SRL error for such
states would remain high, and the policy would be rewarded again to
visit them. Eventually, with repeated exposure to problematic states,
the SRL/perception module should improve in representing them. By
reducing perception errors, control and planning can only improve.
This interaction between the curious policy and the SRL model/loss
results in an interplay similar to the one observed in generative ad-
versarial networks [58], as both modules are mutually beneficial to
each other, and are trained in an adversarial setting. This interplay
is illustrated in Figure 5.1. The overall approach is summarized in
algorithm 1.

5.3 experiments
‡

We design experiments to answer the following questions:

(Q1) Can we train a curious policy to increase the visitation of high
SRL error states?

(Q2) How does CuRe affect the performance, sample efficiency, and
training stability of vision-based RL methods? Can CuRe be suc-
cessfully integrated with multiple SRL methods?

(Q3) Does CuRe-driven SRL pretraining improve the performance of
vision-based RL on downstream tasks?

5.3.1 Setup & Baselines

To answer these questions, we experimentally evaluate our method
on 6 continuous control tasks from the Deepmind Control Suite [186].
The chosen tasks aim to cover a wide range of common RL chal-
lenges, such as contact dynamics and sparse rewards. The tasks we
use are reacher_easy, cartpole_swingup, ball_in_cup, finger_spin,
finger_turn, and reacher_hard. As deep learning models could be
energy inefficient [176], we use only subsets of these tasks for minor
experiments that are only aimed at validating simple aspects of our
method.

The main goal of our experiments is to validate the effectiveness of
CuRe on improving the performance of already existing SRL-based ap-
proaches to vision-based RL. To do so we use two such algorithms as
baselines and compare their performance with and without CuRe. To
validate, that the method is agnostic to the choice of SRL algorithms,
we experiment with two different methods. Namely, we use a combi-
nation of SAC with RAEs as in sac_ae [212] and a combination of SAC
with contrastive learning based on curl [105]. We chose those two SRL
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Figure 5.2: State representation learning (SRL) error encountered in trajec-
tories sampled with three different policies: random, sac_ae, and
our curious policy (cure). The bars represent the mean error per
step. The error bars represent the minimum and maximum en-
countered errors. Our method leads to the visitation of high SRL
error states, around two orders of magnitudes more than the ran-
dom and task policies (sac_ae).
This figure has previously been introduced in one of the author’s previ-
ous publications [9].

methods since their integration in RL is fairly recent while also being
well-established in robotics applications. We refrain from comparing
our approach to classical exploration methods since the two have dif-
ferent goals: classical exploration in RL is concerned with improving
the sample diversity for RL while our method is aimed at encourag-
ing the visitation of SRL-problematic states (discomfort zones). Hence
comparing methods from these two categories could be misleading.
Both baselines and our method are implemented using PyTorch [146].
For simplicity, we use the same hyperparameters for all experiments
except for the action repeat value which changes per task, according
to [68]. The actor and critic networks for the RL agent and the curious
agent are trained using the Adam optimizer [97], using default pa-
rameters. For implementing SAC, we follow the training procedure
detailed in [212].

5.3.2 Results

In the next three sections, we attempt to empirically answer Q1, Q2,
and Q3, respectively. For each question, we design a fitting experi-
ment and examine the data for corresponding answers.

5.3.2.1 Visiting High SRL Error Regions

Figure 5.2 shows the SRL error encountered when sampling actions
from three different policies. The first policy generates random actions
within the action space of the environment. The second one is trained
with sac_ae, and the last one is a CuRe-based curious policy that max-
imizes the SRL error without a task reward. While random and sac_ae
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Figure 5.3: Training curves on six continuous control tasks from the Deep-
mind Control Suite [186]. The plots show the mean episode re-
wards of two algorithms. The first one is a baseline (sac_ae). The
second method combines the same baseline with CuRe (sac_-
ae+cure). In all environments, our method exceeds the perfor-
mance of the baseline. For easier tasks, the curious exploration
either stabilizes the training or improves the maximum achieved
reward. For the more difficult tasks, such as finger_spin,
finger_turn, and reacher_hard, the additional curiosity objec-
tive allows to improve the average reward, where the baseline
fails to reach high-reward areas.
This figure has previously been introduced in one of the author’s previ-
ous publications [9].
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have similar mean errors per step, our method leads to the visitation
of states which have on average an SRL error that is around two or-
ders of magnitude higher. This confirms that CuRe fulfills its goal of
increasing the probability of visiting high SRL error states.

5.3.2.2 CuRe-based Exploration During RL

To answer (Q2), we study the effect of integrating CuRe into two
different baselines, namely sac_ae and curl. The integration is based
on algorithm 1. Figure 5.3 shows the task reward for sac_ae with
and without CuRe. In all environments, our method exceeds the per-
formance of the baseline. Specifically, for tasks where the baseline
does not show any signs of improvement, such as reacher_hard and
finger_turn, CuRe leads to exploring high-reward areas, as can be
seen when looking at the maximum rewards achieved in those envi-
ronments. For simpler tasks such as reacher_easy and finger_spin,
our method approaches the maximum environment rewards, while
sac_ae converges to 80%. In addition, CuRe stabilizes the training and
seems to reduce the reward variance significantly. This last feature
is not given enough attention in RL research. However, in real-world
scenarios, when deploying RL agents, there could be cases where only
one training run is possible. An algorithm with lower reward vari-
ance could guarantee a sufficiently good policy, while it’s hard to
say the same when this condition fails. This effect can also be seen
for cartpole_swingup and ball_in_cup. We observe that CuRe has a
minor effect on the maximum reached reward for these last two envi-
ronments. This could be attributed to the already good performance
of the baseline on these tasks. In fact, in these environments, sac_ae
already approaches the performance achieved by SAC trained with
the true states [212]. Nonetheless, the additional curious exploration
objective accelerates the convergence of all evaluation tasks, thus im-
proving the sample efficiency, which is one key limitation of state-
of-the-art model-free algorithms. Our experiments show that CuRe
becomes more effective when the task complexity increases.

To study the effect of CuRe on curl [105], we run experiments on
the four environments where CuRe had the most influence on sac_ae.
Figure 5.4 shows the reward plots for curl with and without CuRe.
Similar to our previous results, CuRe has a positive impact on the
overall performance, sample efficiency, reward variance and stability
of training. This improvement is not as big as the one observed in
our sac_ae experiments. However, this difference is understandable,
since curl is a more recent algorithm and has previously shown better
results on similar deepmind control suite tasks [105]. Despite that,
when looking at results on finger_turn (Figures 5.3 and 5.4), CuRe
applied to sac_ae reaches a higher final episode reward than vanilla
curl. Additionally, we observe that sac_ae+cure has a better sample
efficiency than curl in the finger_spin environment.
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Figure 5.4: Training curves on four continuous control tasks from the Deep-
mind Control Suite [186]. The plots show the episode rewards
of two algorithms. The first one is a baseline (curl). The sec-
ond method combines the same baseline with our curious policy
(curl+cure). In all environments, our method improves the overall
performance, sample efficiency, or reward variance.
This figure has previously been introduced in one of the author’s previ-
ous publications [9].

5.3.2.3 Effect of Pretraining

In addition to our main results, to assess the quality of the learned
representation with CuRe, and to answer (Q3), we study the effect of
two different pretraining procedures on sac_ae. Namely, we look at
pretraining the RAE using samples collected either using a random
policy (random-pretraining) or using a policy trained with CuRe only,
without any task reward (CuRe-pretraining). For both options, we
perform the pretraining for half a million steps. We also compare the
performance of those two variants to the case where no pretraining is
performed at all (vanilla). The results are shown in Table 5.1. For all
six environments, the best results are obtained when using one of the
two pretraining mechanisms. In most cases, CuRe-based pretraining
leads to better performance than random-pretraining. This become es-
pecially apparent for tasks where the vanilla method struggles, such
as reacher_hard and finger_turn. However, for the ball_in_cup en-
vironment, CuRe-pretraining seems to deteriorate the performance
when compared to both vanilla and random-pretraining. This could
be attributed to the simplicity of the task, which reduces the need for
SRL and SRL-tailored exploration. In general, although CuRe is benefi-
cial for both SRL pretraining (Table 5.1) and RL (Figure 5.3), we observe
that it is more effective during task learning than in the pretraining
phase.

5.4 discussions

In vision-based reinforcement learning, SRL plays an important role
in learning. This is valid whether SRL is learned only through task
reward or also using supervised or self-supervised learning methods.
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Table 5.1: Comparison of performance (in terms of episode reward) of dif-
ferent versions of sac_ae: vanilla is the original algorithm [212],
random-pretraining and CuRe-pretraining refer to the cases
where the vanilla procedure is preceded by an RAE pretraining
phase using data collected with a random policy and a CuRe-
based policy respectively.
This table has previously been introduced in one of the author’s previous
publications [9].

methods cartpole_swingup ball_in_cup finger_spin reacher_easy reacher_hard finger_turn

vanilla 833± 27 953 ± 4 820 ± 144 714 ± 113 169 ± 179 229 ± 135

random-pretraining 784 ± 12 955 ± 10 975 ± 3 615 ± 129 84 ± 33 256 ± 40

CuRe-pretraining 846 ± 25 504 ± 187 981 ± 7 804 ± 52 431 ± 40 402 ± 58

In the latter case, the data used for training the perception models are
typically collected using some policy trained on the downstream task.
This results in narrow data distributions, which make the learned per-
ception modules less robust and generalizable for real-world require-
ments. Hence, this work examined perception-centric exploration in
vision-based reinforcement learning. This chapter introduced CuRe,
a method for learning policies that are curious about state represen-
tation. These policies aim to take actions that would lead to states
outside of the comfort zone of the current perception module. CuRe
learns this curious policy separately from the task policy, and bene-
fits from the ability of off-policy RL algorithms to be trained with data
sampled by a different policy. As a result, the curious policy can be
used to pretrain the SRL component or can also be used during the
policy search to improve the sample diversity in the replay buffer in
a way that benefits perception. Experiments with CuRe showed an
improvement in the visitation rate of the SRL-problematic states, and
as a result, an improvement in the RL performance and sample effi-
ciency. One major advantage of this method is its applicability to a
wide array of SRL methods without any constraints, besides access to
the SRL loss. In addition, the implementation of this method is very
simple and requires minor modifications to preexisting RL pipelines.

5.4.1 Limitations

CuRe introduces the hyperparameter pc, which determines the sam-
pling rate from the exploration policy. In other words, this hyperpa-
rameter controls the exploration-exploitation dilemma as conveyed
throughout this chapter. Although tuning this hyperparameter is not
difficult, it does play an important role in the performance of CuRe.
However, this is a common problem in RL. Nevertheless, a more natu-
ral integration of the curious policy sampling or a way for tuning this
hyperparameter remain needed for the algorithm to be more widely
used. Furthermore, despite being theoretically applicable to any SRL
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method, the effectiveness of CuRe on methods beyond the ones stud-
ied in this work remains open.

5.4.2 Outlook

The current version of CuRe only looked at visual perception. In the-
ory, the method should also be applicable to other perception modal-
ities or even a multimodal application. The latter presents an oppor-
tunity to test whether this perception-driven exploration could facili-
tate sensor fusion by the means of seeking states for which the com-
bined multimodal observations are hard to process. The reason why
we picked visual perception for this first work is due to its impor-
tance for robotic manipulation, as well as the difficulty of building
and learning visual perception modules for robotics. Another inter-
esting modality would be tactile perception. In most manipulation
tasks, high-reward regions are encountered when the robot is in con-
tact with or in the vicinity of objects. Using a method like CuRe for
exploration could incentivize reaching and interacting with objects
since the effect of contacts would not be immediately captured by the
SRL module. Hence, such states would be labeled as problematic and
sought out by CuRe’s exploration policy.

Another interesting avenue for future work is transfer learning.
Perception-driven exploration can play a role in learning perception
components that can be positively transferred to other tasks. In con-
trast, typical RL exploration that is not tailored towards perception
does improve the state exploration of the system but does not neces-
sarily optimize for having a more robust visual system. Studying the
effects of transferring CuRe-based learned SRL/perception modules
has great potential.

Similarly, multi-task RL can benefit from this paradigm. In fact, one
of the components that can be easily shared across tasks is perception.
Different tasks may require different task and motion planner as well
as low-level controllers. Perception, on the other hand, if it yields a
task-agnostic state representation, can easily be shared across multi-
ple tasks. This is at least true for environments that share the same em-
bodiment and some task similarities. In a multi-task scenario, CuRe
can be used for collecting data by sampling actions across multiple
tasks. The perception modules can then be trained using the resulting
mixed dataset.

Furthermore, it would be interesting to look at information-theoretic
formulations of perception-driven exploration. Such a formulation
could take advantage of well-established principles from information
theory such as entropy maximization, information gain, or empower-
ment.

Finally, real-world robot learning is potentially the most interest-
ing future avenue of extensions for this work. While access to in-
teractions is cheap in simulation, real-world experiments are very
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expensive. Any improvement to sample efficiency can bring robot
learning a step closer to being more feasible. In addition, real-world
sensors are a lot more noisy, and their measurements are typically
harder to capture by SRL methods compared to simulated observa-
tions. Perception-driven exploration and the promise of more robust
perception modules become more valuable in such a setting. How-
ever, like any exploration work, applying such an approach in the
real world comes with safety concerns. It is unclear what those explo-
ration actions could look like on a real system. This itself might be
the motivation for another line of research combining these methods
with robot safety measures or safe exploration techniques.
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6
T H E R O L E O F T H E A C T I O N S PA C E

Despite RL being primarily focused on control, recent deep RL liter-
ature has shown an overwhelming larger interest in the state and
observation space aspect of the problem. For benchmark problems
such as games, the action space is predefined by the task and envi-
ronment and alternatives often do not exist. In robotics, particularly
in robotic manipulation, multiple options are possible. For instance,
the control of a robot manipulator can either be framed in the task or
configuration space. Task space control defines the problem with re-
spect to a frame attached to a rigid body part of the manipulator such
as the end-effector of the robot. Control is then typically defined in a
Cartesian space relative to this frame. Hence, it offers an intuitive and
interpretable interface for humans and an easy integration with task
objectives which often involve Cartesian-space variables or goals. On
the other hand, configuration space control directly dictates the mo-
tion of the robot’s joints. Such an interface is less intuitive to humans
but more native to the robot’s embodiment. In addition, configuration
space control is more readily suitable for defining control constraints
related to the robot’s motion and interaction behaviors. Besides the
task/configuration distinction, a manipulator’s controller can be de-
fined with respect to different orders of derivative of positions. For
instance, one could define a position, velocity, or acceleration control
law, or even go beyond pure motion control via force or impedance
control. The choice of controller is central to the success of a task.
For instance, motion control is simple and suitable for reaching-like
tasks, while force control can be more suitable for tasks involving
interaction with the environment.

Similarly, in RL, the choice of the action space completely alters
the problem’s definition conceptually, theoretically, and in practice.
Changing the action space would result in a different MDP and hence
different complexity, sample requirement, exploration behavior, and
even system capability. Complexity-wise, a good action space could
abstract challenging control aspects that the policy would otherwise
need to handle. For instance, using a position-control action space
can abstract the joint torque computation aspect from the policy. This
would effectively reduce the policy’s complexity, as well as that of the
environment dynamics from the perspective of this high-level action
space. As a result, an RL agent exploring an environment equipped
with such an action space could more easily focus on the task goals
without having to understand the connection between torques ap-
plied to its joints and the resulting motion. Hence, such an abstrac-
tion could be beneficial for exploration and the resulting sample re-
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quirement. However, abstraction could also limit the policy’s flexibil-
ity and control over the robot. For instance, a position-based policy
could only indirectly apply a force on the environment, while the
less abstract torque or force action spaces could natively enable that.
In addition, when attempting to transfer policies trained in simula-
tion to the real world, the choice of action space could play a role in
the sim-to-real gap and help or impede a positive transfer.

These aspects of action space design create a trade-off between
high-abstraction spaces which reduce complexity and data require-
ments, and low-level spaces which give the policy full control, yet
make it harder to learn in low-data regimes. It becomes clear that
the choice of action space is central to the robot learning problem,
and that the field requires novel methods that are more suitable for
learning-based control. An ideal action space should strike the right
balance between abstracting irrelevant control aspects from the policy
and giving it the right amount of control to achieve the task. One mo-
tivation for learning-based robot control is to be able to learn a large
set of tasks with one or a limited set of algorithms, with minimal
human supervision. This brings forward the question of whether we
could design action spaces that are suitable for learning the largest
possible set of robotic tasks. This chapter aims to provide a better un-
derstanding of the action space in manipulation. It also aims to prove
that this choice is of high importance to the field, and to identify
characteristics that are favorable in the design of such methods.

In the literature, recent work has explored the choice of action space
in manipulation [10, 126], flying [92], and locomotion [51, 149] poli-
cies. The corresponding findings sparked the development of novel
action spaces suitable for different families of tasks. For instance, for
manipulation, the force exerted by the robot on its environment plays
a crucial role. Multiple proposed action spaces for manipulation al-
low the policy to control this aspect, either by some direct means of
force application [19, 89, 189] or implicitly via impedance control [28,
121, 126]. Furthermore, several methods explored the use of move-
ment primitives in the action space [4, 15]. Another important choice
is between configuration or task-space control. Robot learning litera-
ture includes methods with both configuration [4, 81, 173, 209] and
task space [51, 121, 126] action spaces. Ganapathi et al. [56] propose
an approach to implicitly combine these two modes using a differ-
entiable forward kinematics model. Interestingly, it seems like the
majority of sim-to-real works use some kind of configuration space
action spaces [3, 69, 81, 184, 209]. The reason behind this is yet unclear.
More recently, several approaches have been proposed for learning la-
tent action spaces that can either help reduce the dimensionality of
the policy’s control to the task manifold [11, 219] or serve a different
purpose such as coordinating multi-robot tasks [7].

To better understand this aspect of robot learning, there have been
multiple studies concerning the action space in robotics [92, 149, 193].
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Figure 6.1: The policy outputs an action a, which is then transformed into
joint torques τ using a select controller fas. The policy and con-
troller receive feedback from the environment. Each action space
is defined by the choice of the controller and the way the action
is treated in the controller. The policy runs at a 60Hz frequency
and the controller runs at a frequency of 120Hz and 1KHz in the
simulation and the real world respectively.
This figure has previously been introduced in one of the author’s previ-
ous publications [5].

These studies span robotic applications including locomotion [149],
manipulation [193], and flying robots [92]. However, the majority of
these studies focus on a very limited set of action spaces or tasks.
Multiple of them, study this problem in simulation only [149, 193].
In contrast, Kaufmann, Bauersfeld, and Scaramuzza [92] study the
transfer of flying policies from simulation to real under three different
types of action spaces. This chapter presents a study on the role of the
action space in exploration, learning capability, emerging properties,
and sim-to-real transfer. The study includes 13 different action spaces
and 2 different manipulation tasks.

6.1 action spaces for manipulation
‡

For arm manipulation, one of the most native RL action spaces is one
that expects joint torque (JT) commands. This corresponds to τ = a,
where τ is the vector of joint torques. Such an action space gives the
policy full control over the robot. When given the right observations,
such a policy can internally learn to control the motion and forces
exerted by the robot. This action space was popular in early works
using deep RL [116, 196]. However, learning a policy with this action
space can be very complicated since the policy would need to either
understand or implicitly handle both the kinematics and dynamics of
the robot to fulfill the task. This is due to the fact that the reward is
typically expressed using task space properties.

Alternatively, a low-level controller fas : A 7−→ T can be integrated
in the action space to convert higher-level policy actions into the space
of joint torques T of the robot. This concept is illustrated in Figure 6.1.
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6.1.1 Configuration action spaces

Configuration action spaces consist of all action spaces that expect a
configuration-space action from the policy. At the center of all these
action spaces is the same controller, namely a joint impedance con-
troller (JIC). JIC regulates the behavior of a robot manipulator’s joints
and allows specifying desired stiffness, damping, and inertia charac-
teristics for each joint. This allows the robot to be compliant with its
environment. The JIC control law is

τ = fJIC(a) (6.1)

τ = K(qd − q) + D(q̇d − q̇), (6.2)

where τ denotes the commanded joint torque, qd and q̇d denote the
desired joint positions and velocities respectively, and q and q̇ de-
note the actual joint positions and velocities of the robot given as
feedback. K and D are the stiffness and damping matrices. Note that
we omit the gravity vector from our controller equations for clarity
and simplicity. In practice, we use isotropic gains, i.e., these matrices
are diagonal. Given this control law, we can define two different base
configuration action spaces:

• Joint Velocities (JV): sets fJV ← fJIC, and q̇d = s(a) and qd is a
first-order integration of q̇d;

• Joint Position (JP): sets fJP ← fJIC, and qd = s(a) and q̇d is a
first-order differentiation of qd.

s(a) is a function that scales the action vector to the limits of the cor-
responding output vector. The differentiation and integration steps
are often ignored in RL action space implementations, despite being
present in the most common robot control libraries. Not including
these steps in the simulation would create an additional sim-to-real
gap.

6.1.2 Task action spaces

Task action spaces are defined using variables that are in the task/-
Cartesian space of the robot. In the absence of accurate system iden-
tification, we can use the following Cartesian impedance controller,

τ = J(q)T
(
K(xd − x) + D(ẋd − ẋ)

)
, (6.3)

where J(q) is the Jacobian matrix for the current robot configuration
q, relating joint velocities to Cartesian velocities, xd and ẋd are the de-
sired Cartesian poses and velocities, x and ẋ are the current Cartesian
poses and velocities respectively. However, this formulation can be
tricky to use when the xd and ẋd are generated by an RL policy. This
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is due to the non-smooth nature of RL action trajectories. Of course,
this problem can be handled by introducing interpolators or cubic
spline fitting. But such solutions involve multiple design choices and
hyperparameters, meaning that an ideal solution is task-specific. In-
stead, we transform the Cartesian actions into joint velocities, and
then use a joint impedance controller. We found this approach to be
very good at handling the non-smooth policy actions, without intro-
ducing any additional sim-to-real gap. We have two base task action
spaces:

• Cartesian Velocities (CV): sets ẋd ← s(a), transforms ẋd into q̇d
using inverse kinematics (IK), and then uses the fJIC in the same
fashion as in the joint velocities action space;

• Cartesian Position (CP): sets xd ← s(a), and then uses a propor-
tional control to obtain ẋd from xd. This step naturally results in
smooth ẋd. Given ẋd, this action space proceeds as in the CV action
space.

We use the pseudoinverse IK method with a null-space controller that
pushes the joints toward their default positions.

6.1.3 Delta action spaces

Delta action spaces are based on the base action spaces defined previ-
ously. In contrast to the base action spaces, delta action spaces set the
control targets vd relative to the current system feedback or to the
control targets of the previous policy step. This distinction creates
two classes of delta action spaces:

• One-step Integrator (OI∆): uses the robot feedback v to set vd ←
v + c · a · dt;

• Multi-step Integrator (MI∆): recurrently sets vd ← vd + c · a · dt.

Depending on the choice of base action space, vd is a control target
vector, and can correspond to qd, q̇d, xd, or ẋd. Similarly, v is a con-
trol feedback vector, and can correspond to q, q̇, x, or ẋ. dt is the
step duration and c is a positive constant hyperparameter. Instead
of the scaling performed in non-delta base action spaces, we clip the
target vd to the limits of the corresponding output space after updat-
ing it. This means that each base (configuration or task) action space
has two additional variants, resulting in 12 action spaces, not includ-
ing the joint torques action space. Despite relying on the base action
spaces, the delta variants have their unique properties. For instance,
due to the relative changes in the control targets, the magnitude of
the target change in one step is bound by c · dt given that a ∈ [−1, 1].
This property can be helpful in imposing smoothness constraints on
control target trajectories, even if the policy output is unconstrained.
Additionally, if we set c to be the positive bound of the derivative of
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Figure 6.2: A simple 1D task with a single prismatic joint and an object. The
task is to move the joint to push the object into a target position.

the corresponding control feedback variable v, each delta action space
would approximately be equivalent to an action space of a higher-
order derivative than its base action space. For instance, a delta joint
velocity action space would be approximately similar to a joint ac-
celeration action space. However, when sampling actions a from a
uniform distribution, the resulting distribution of control targets can
differ between a delta action space and the base action space it ap-
proximates (e.g., ∆JP and JV). The clipping can also lead to more
probability mass on the borders of the vd space.

6.2 task-action-space suitability

The aim of this section is to illustrate that the choice of action space
matters for robotic manipulation. We will illustrate that, by showing
that some action spaces are not suitable for all tasks. Hence, we con-
sider a simple 1D pushing example with one prismatic joint, as shown
in Figure 6.2. The goal of this task is to push the blue cube into a tar-
get position. For the sake of the example, we assume a (non-delta)
joint position action space as defined in the previous section. We fur-
ther assume that moving the cube requires applying a force with a
magnitude higher than 40N. Without loss of generality, we assume
that D = 0, and that the joint is physically capable of applying forces
higher than 40N.

Following equation (6.2), we can show that these task requirements
impose a constraint of the form

K >=
40

qmax − qmin
, (6.4)

where qmin = −1 and qmax = 1 as shown in Figure 6.2. Hence, the
task imposes a constraint K >= 20 on the action space. While this
constraint is not very hard to fulfill for the current task, it becomes
problematic when the task requires the robot to be compliant with its
environment or when a human is in the loop. Hence, we notice that
if a task by definition requires different stiffness values (at least for
some time), this requirement would be in conflict with the previous
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constraint, making the task non-solvable with this choice of control
space.

The main reason behind the appearance of this constraint is that the
action space is not explicitly built for force control. Instead, the pol-
icy influences applied forces by outputting motion commands. This
illustrates how the choice of action space can easily hinder task com-
pletion. While this example is intentionally simplified, similar results
can be shown for more general settings with more DoF. The reason
why such action spaces remain popular in the literature lies in the
fact that most current robot learning tasks involve very light objects,
smooth surfaces (low friction), and no human interaction. Such tasks
can get away with almost any choice of action space. However, scal-
ing robot learning to more dynamic tasks would require more careful
considerations.

Furthermore, we notice that choosing an action space that controls
a higher-order derivative might relax the constraint in equation (6.4).
This is true for robots where the joint velocity limits are larger than
the joint position limits, which would help increase the denominator
of a constraint similar to the one in equation (6.4). As a result, such
an action space might in many more cases be sufficient, despite it not
explicitly allowing for force application as required by the task. This
is another example of how changing the action space can influence
the policy’s capability of performing the given task.

6.3 evaluation metrics
‡

For each action space, we aim to assess its training performance, re-
sulting sample efficiency, emerging properties such as usability in the
real-world environment, and the sim-to-real gap it creates. Therefore,
we propose multiple metrics to quantify these different aspects. For
assessing training performance, we look at the episodic rewards (ER)
in simulation. This metric can also show us the sample efficiency of
the different action spaces.

To assess the emerging properties of each policy, we look at the
number of times it violates robot constraints, such as the joint accel-
eration and jerk constraints. This is especially important since simu-
lated environments rarely have any mechanisms for enforcing these
constraints. In contrast, real-world robot control implementations can
include rate limiters, which ensure that the control targets would not
result in violations of these constraints. Hence, a policy trained in sim-
ulation without such mechanisms could learn to violate them for the
sake of exploration. Implementing these mechanisms in simulation,
on the other hand, can also hinder the policy training since these
mechanisms typically break the Markov assumption. To quantify this
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property, we use the expected constraints violations (ECV) defined
as

ECV(π) = Es,a∼π

[
1

(∑
c∈C

c(s, a) > 0

)]
, (6.5)

where 1 is an indicator function, C is the set of all constraints, and
each constraint function c(s, a) returns 1 for violated constrained and
0 otherwise. Furthermore, to measure the feasibility of the policy’s
actions in the environment, we report the normalized tracking er-
ror (NTE),

NTE(π) = Es,a∼π

[
|vd,t − vt+1|
vmax − vmin

]
, (6.6)

where vmin and vmax are respectively the lower and upper bounds of
the control variable v. NTE is useful for analysing why certain action
spaces result in better transfer. A high value means that the policy
outputs actions that are hard to achieve in one control step. This could
create an additional sim-to-real gap since control targets that are not
fulfilled in one step can be tracked differently in simulated and real
environments due to the gap in dynamics. We also report the task
accuracy (ACC) measured by the Euclidean distance to the goal. This
metric gives a more detailed view of the performance of a policy than
just the success rate.

To assess the sim-to-real gap of each action space we report the
offline trajectory error (OTE) in configuration and task spaces. This
metric measures the joint trajectory error when replaying, in simu-
lation, the actions produced by the policy when queried in the real
world,

OTE(π) = Ea,qreal∼Dreal |qsim − qreal|, (6.7)

where a and qreal are actions and joint configurations that are sam-
pled from the dataset Dreal. The latter is collected by playing a policy
π in the real world and qsim is the joint configuration obtained when
executing a in simulation in an open-loop fashion, i.e., without a pol-
icy.

6.4 experiments
‡

We design experiments to understand the role of different charac-
teristics of the action space on learning efficiency, sim-to-real gap,
emerging properties, and sim-to-real transfer. Namely, we design ex-
periments to answer the following questions:

(Q1) Does the choice of action space affect the exploration behavior
during training in simulation?

(Q2) What properties naturally emerge due to the choice of action
space?
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Figure 6.3: We show our real-world robot setup for the reaching (left) and
the pushing (right) tasks.
This figure has previously been introduced in one of the author’s previ-
ous publications [5].

(Q3) Does the action space affect the sim-to-real gap?

(Q4) Which action space characteristics are good for sim-to-real trans-
fer?

(Q5) Is there a consistently best-performing action space?

To answer these questions we evaluate all action spaces on two arm
manipulation tasks, using the 7-DoF Franka Emika Panda robot. The
first task is goal reaching. At the beginning of each episode, a Carte-
sian goal is sampled in the workspace of the robot, and the policy
needs to move the end-effector towards that goal. This task is ideal
for studying the behavior of policies from all action spaces in the ab-
sence of force interactions with the robot’s environment. The second
task is object pushing. At the beginning of each episode, a goal posi-
tion is sampled in a predefined area on the table. The policy needs
to push a wooden box towards that goal. This task involves moving
an external object. Unlike the reaching task, pushing requires physi-
cal interaction with the environment. It allows us to understand the
reactive capabilities of each action space and whether it creates any
sim-to-real gap that hinders the transfer of the interaction behavior.
During policy training for pushing in simulation, we perform domain
randomization on the box’s friction and mass parameters. The real-
world setup for both tasks is shown in Figure 6.3. In both tasks, the
observation space of the policy consists of joint positions, joint veloc-
ities, end-effector Cartesian position, and the goal position. Addition-
ally, in the pushing task the policy has access to the object’s position
and orientation. We train PPO policies in a simulated environment,
using NVIDIA’s Isaac Sim simulator [124].

The results discussed in this paper are based on 250 agents with
different action spaces and different tasks. However, prior to the fi-
nal training runs (of the 250 agents) we spent considerable time op-
timizing other hyperparameters, such as learning rates or different
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Table 6.1: We compare the episodic reward (ER) obtained during training in
simulation for all the studied action spaces. These include joint
(J) and Cartesian (C) action spaces for position (P), velocity (V)
and torque (T) control. They also include delta (∆) spaces, with
one-step (OI) and multi-step (MI) target integration schemes. The
rewards are shown for reaching and pushing at multiple stages of
the training process.
This table has previously been introduced in one of the author’s previous
publications [5].

Action Reaching (Epochs) Pushing (Epochs)

space 25 50 75 25 50 75

JP 470± 7 478± 3 481± 3 15± 5 122± 82 208± 116
OI∆JP 474± 1 472± 1 464± 3 338± 35 376± 17 388± 21

MI∆JP 387± 14 425± 11 436± 6 155± 114 175± 150 114± 133

JV 438± 13 459± 4 455± 7 381± 17 400± 9 379± 39

OI∆JV 453± 3 457± 2 461± 3 332± 74 385± 27 359± 42

MI∆JV 455± 4 465± 3 465± 1 243± 157 383± 43 381± 16

JT 479± 2 476± 3 474± 3 71± 158 116± 182 187± 257

CP 456± 7 467± 2 465± 4 300± 157 322± 167 379± 34

OI∆CP 470± 2 467± 3 466± 3 365± 26 387± 13 395± 5

MI∆CP 409± 9 441± 2 442± 3 283± 29 311± 7 307± 21

CV 478± 2 476± 2 470± 2 410± 8 416± 8 423± 5

OI∆CV 471± 3 468± 4 464± 5 396± 15 422± 8 415± 13

MI∆CV 467± 2 467± 2 462± 3 393± 29 417± 12 414± 7
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reward scales and terms, to guarantee consistency and a fair compar-
ison over all action spaces. We matched the simulation to the real
environment to the best of our knowledge, eliminating sim-to-real
gaps where possible. This includes, for example, matching the stiff-
ness of the impedance controllers, sharing implementations for each
action space across both environments, and finding good velocity lim-
its that allow for safe transfer of policies. This tuning process required
training more than 20,000 agents in simulation and testing more than
a 1500 agents in the real world.

After training, we evaluate the learned policies in both tasks, in
simulation and in the real world. For reaching, we use a fixed grid of
target goals that span the feasible workspace of the robot. For push-
ing, we randomly sample goal positions and use the object position
from the previous episode as the initial one from the new run. We
only manually reset the object’s position whenever it gets outside of
the predefined area it was trained to operate in or when the policy
fails to push the object away from its starting location once. We in-
troduced the latter intervention to avoid heavily skewing the data
by randomly sampling a difficult-to-handle initial object position. In
both training and evaluation, we run the simulation at 120 Hz and
we use action repeat to work with the policy output at 60 Hz. On the
real robot, we need an additional low-level safety controller running
at 1 kHz, which also repeats the actions from the policy. In all action
spaces except torque we additionally use a 5 Hz low-pass filter and a
rate limiter to conform to motion limits given by the robot. We tried
implementing the rate limiter in simulation as well, however, the pol-
icy learning deteriorated massively, which we attribute to the rate
limiter breaking the Markov property. For the policy network, we use
a 4-layer feed-forward neural network for all action spaces.

Does the choice of action space affect the exploration behavior dur-
ing training in simulation?
We first examine the training performance in simulation. The results
can be seen in the Table 6.1. The episodic rewards are not directly rep-
resentative of the success rate of the policies. This can be seen when
comparing the rewards from Table 6.1 to the success rates shown
in Table 6.2 and Table 6.3. Therefore, we mostly focus on sample
efficiency in the current analysis. Since different action spaces have
different characteristics, we aim to understand the global effect of
these characteristics on the sample efficiency during training. First,
we compare Cartesian and joint action spaces. In the reaching task,
both action space groups behave almost identically. However, in the
pushing task, Cartesian action spaces seem to have an advantage in
terms of sample efficiency and maximum reached reward, as can be
seen in the top plot in Figure 6.4. This result is most likely due to
the spatial nature of the pushing task, which gives Cartesian action
spaces a natural advantage in exploration.
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We next compare the order of derivative of the action space, i.e.,
positions vs. velocities vs. torques. Among joint action spaces, joint
velocity and its derivatives have the overall best performance in both
tasks. These action spaces show better sample efficiency and converge
to higher reward regions than their counterparts in the joint action
space group as can be seen in the bottom plot in Figure 6.4. JP reaches
the highest reward in reaching but struggles massively in pushing.
The same tendency can be observed for Cartesian action spaces, i.e.,
velocity action spaces perform better in terms of sample efficiency
and final rewards. The joint torque action space is the fastest one to
converge in the reaching task. However, it fails to solve the pushing
task reliably within the same data budget.
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Figure 6.4: We show learning
curves for the
pushing task and
aggregate action
spaces according
to some of the
characteristics
named above.
This figure has
previously been
introduced in one of
the author’s previous
publications [5].

We also compare base action spaces
with the two different kinds of delta
action spaces. We observe that multi-
step integration delta action spaces con-
sistently perform the worst, while one-
step methods seem to have a slight
advantage. This tendency is less pro-
nounced in the velocity action spaces,
with MI∆JV being consistently one of
the best-performing joint action spaces
in both tasks in simulation. Hence, the
current simulation data does not con-
clusively favor any of these characteris-
tics (non-delta, OI and MI).

Overall, we note that Cartesian veloc-
ity (CV) is the best-performing action
space in simulation. The worst one is
multi-step-integration joint position ac-
tion space.

What properties naturally emerge due
to the choice of action space?
After training the policies in simula-
tion we evaluate them on a real robotic
setup. For the pushing task, we were
not able to obtain joint torque policies
that are safe to run in the real world
without damaging the robot. We made
multiple attempts to produce safely de-
ployable joint torque policies, for instance, by introducing different
penalties or increasing the policy’s control frequency. Despite all ef-
forts, all joint torque policies were very jerky or aggressive when de-
ployed on the real robot. The main difficulty was to obtain policies
that are safe to deploy in a task where the end-effector needs to re-
main in close proximity to a rigid surface, e.g., the table. Therefore,
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Table 6.2: Sim-to-real transfer evaluation for the reaching task. We evalu-
ate the success rate (SR) in simulation and the real-world envi-
ronment, the task accuracy (ACC), the expected constraints viola-
tions (ECV), and the offline trajectory error (OTE).
This table has previously been introduced in one of the author’s previous
publications [5].

SR (sim) ↑ SR (real) ↑ ACC [cm] ↓ ECV ↓ OTE [rad] ↓

JP 100 ± 0 6 ± 6 1.76 ± 0.14 100 ± 0 0.22 ± 0.01

OI∆JP 100 ± 0 86 ± 9 1.59 ± 0.16 14 ± 1 0.45 ± 0.01

MI∆JP 100 ± 0 69 ± 2 2.14 ± 0.13 0± 0 0.03± 0.00

JV 100 ± 0 100 ± 0 1.17± 0.11 0 ± 0 0.03± 0.00

OI∆JV 100 ± 0 97 ± 5 1.35 ± 0.13 13 ± 11 0.18 ± 0.01

MI∆JV 100 ± 0 93 ± 9 1.98 ± 0.08 37 ± 37 0.03± 0.00

JT 100 ± 0 64 ± 27 1.97 ± 0.25 22 ± 6 0.52 ± 0.03

CP 99 ± 2 25 ± 4 1.71 ± 0.29 26 ± 9 0.16 ± 0.01

OI∆CP 89 ± 2 44 ± 17 2.02 ± 0.32 21 ± 1 0.27 ± 0.01

MI∆CP 100 ± 0 68 ± 2 1.85 ± 0.08 13 ± 4 0.28 ± 0.01

CV 100 ± 0 43 ± 13 1.76 ± 0.41 12 ± 2 0.35 ± 0.02

OI∆CV 97 ± 2 24 ± 2 2.13 ± 0.13 17 ± 3 0.40 ± 0.01

MI∆CV 99 ± 2 58 ± 8 1.82 ± 0.08 4 ± 0 0.13 ± 0.01



82 the role of the action space

Table 6.3: Sim-to-real transfer evaluation for the pushing task. We evaluate
the success rate (SR) in simulation and the real-world environ-
ment, the task accuracy (ACC), the expected constraints viola-
tions (ECV), and the offline trajectory error (OTE).
This table has previously been introduced in one of the author’s previous
publications [5].

Action space SR (sim) ↑ SR (real) ↑ ACC [cm] ↓ ECV ↓

JP 87 ± 12 4 ± 0 4.23 ± 0.66 100 ± 0

OI∆JP 99 ± 3 48 ± 12 3.16 ± 0.46 98 ± 2

MI∆JP 90 ± 7 36 ± 3 3.52 ± 0.36 3± 1

JV 97 ± 5 90 ± 5 2.04 ± 0.32 66 ± 9

OI∆JV 99 ± 3 88 ± 13 1.56± 0.13 75 ± 4

MI∆JV 100 ± 0 96 ± 4 1.66 ± 0.11 55 ± 25

JT 40 ± 49 - ± - - ± - 89 ± 21

CP 100 ± 0 57 ± 9 2.34 ± 0.39 92 ± 3

OI∆CP 99 ± 3 55 ± 17 2.86 ± 0.49 35 ± 16
MI∆CP 100 ± 0 73 ± 7 2.36 ± 0.14 99 ± 0

CV 99 ± 3 73 ± 9 2.69 ± 0.58 93 ± 10
OI∆CV 99 ± 3 61 ± 19 2.67 ± 0.30 99 ± 0

MI∆CV 86 ± 5 74 ± 4 2.84 ± 0.45 6 ± 2
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Figure 6.5: We show the the robustness of delta action spaces to the velocity
limit hyperparameter in the pushing task on our real setup. We
compare one-step and multi-step integration. The errorbars indi-
cate one standard deviation of the respective variables.
This figure has previously been introduced in one of the author’s previ-
ous publications [5].

we exclude the joint toque action space from our real-world push-
ing experiments. The reaching task was less safety-critical. Hence,
we managed to evaluate torque policies on real-world reaching. For
all other action spaces, we look at their sim-to-real transfer capabili-
ties. In Table 6.2 and Table 6.3, we report the metrics introduced in
Section 6.3 to quantify the sim-to-real gap and the performance in
the real world. One common challenge when learning manipulation
skills is to obtain smooth policies that do not violate the velocity, ac-
celeration, and jerk constraints of the robot. Based on the results in
Table 6.2 and Table 6.3, we observe that different action spaces yield
different ECV metrics. JV and its derivatives (OI∆JV and MI∆JV) have
on average the lowest ECV score in both tasks. Vanilla JP results in
the highest possible ECV. This means that deploying this action space
in the real world would always result in some form of constraint vio-
lation. In the absence of safety mechanisms (such as rate limiters and
low-pass filters) these violations can be very harmful. If such mecha-
nisms are implemented, this behavior would increase the sim-to-real
gap further because of how these violations trigger the safety mecha-
nisms. In contrast, MI∆JP, seems to have the lowest ECV, which was
also evident when evaluating this action space in the real world.

Does the action space affect the sim-to-real gap?
First, we look at the offline trajectory error in the reaching task, which
gives us a proxy measure of the sim-to-real gap. We observe that the
OTE varies tremendously from one action space to another, despite
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the fact that the data used to compute this measure are based on the
same starting and goal positions in all action spaces. This confirms
that the choice of action space does indeed contribute to the sim-to-real gap.
Looking closer at the results, we observe that JT exhibits the highest
OTE. This is due to the behavior of this action space being dictated
solely by the dynamics of the robot, which is different in simulation
and in the real world. Unlike all the other action spaces, JT does not
include any feedback loops outside of the policy. Based on this result,
one would expect that more feedback loops should help reduce the
sim-to-real gap. However, the opposite can be seen in the data. For
instance, Cartesian action spaces have on average one additional feed-
back loop compared to the joint action spaces. Their OTE is, however,
higher on average. This is due to the fact that feedback loops have dif-
ferent effects in simulation than in the real world. In turn, this means
that a good, highly-reactive feedback loop is beneficial to overcome
the dynamics gap, but adding more could potentially contribute fur-
ther to the sim-to-real gap. Comparing OI∆ and MI∆ action spaces we
notice that the latter consistently have a smaller OTE. Their OTE is
even smaller than the corresponding base action spaces. This effect is
potentially due to the integral term embedded in these action spaces.
Executing the same actions results in the same final goal given to the
lower-level feedback loops, which is unique compared to all other ac-
tion spaces.

Which action space characteristics are good for sim-to-real trans-
fer?
We compare the success rates in simulation and the real world. We
observe that the success rate in simulation is not directly reflected in the
real world. This is clear when comparing the ordering of success rates
in both domains. Furthermore, we notice that certain action space
characteristics are clearly advantageous for sim-to-real transfer. For
instance, velocity-based action spaces tend to keep a high success rate
when transferred to the real world. In contrast, position-based action
spaces do not typically transfer well. This is especially the case for
JP, which loses almost all of its performance when transferred. These
results are consistent across both studied tasks. In addition, velocity-
based action spaces are on average more accurate in fulfilling the task
as can be seen when comparing the ACC score in Table 6.2 and Ta-
ble 6.3.

Additionally, we can see that delta action spaces transfer better
than their corresponding base spaces. The difference between OI and
MI delta action spaces depends on the task and the exact variants
of the action space. However, OI∆ action spaces required less tuning
than MI∆ spaces and have shown to be more robust to the choice of
hyperparameters. This can be seen in Figure 6.5. When varying the
velocity limits for ∆JV action spaces, OI∆JV showed to be less sensi-
tive to the chosen value. We attribute this to the lower tracking error
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Figure 6.6: We compare joint position-based action spaces in the pushing
task and show their influence on the normalized tracking error
and the resulting effect on success rate in the real robot setup.
This figure has previously been introduced in one of the author’s previ-
ous publications [5].

of this action space as shown in the bottom plot in Figure 6.5. In gen-
eral, OI∆ action spaces naturally lead to a lower tracking error since
they integrate the policy actions into control targets based on the cur-
rent feedback of the system. In contrast, MI∆ action spaces integrate
the policy actions into control targets based on the previous control
target. This in turn leads to a bigger gap between the control target
and the state of the system, and hence a larger tracking error. While a
lower NTE helps make JV action spaces more robust to hyperparam-
eters, it has an even larger effect on the best possible transfer perfor-
mance in JP action spaces, as shown in Figure 6.6. This tendency is
also evident when comparing the base spaces, as shown in Figure 6.7.
Finally, joint velocity spaces show better transfer than Cartesian veloc-
ity action spaces, while the opposite is true for position-based action
spaces.

In summary, our data shows that two characteristics mostly influ-
ence the transfer capability of an action space. The first one is the
order of the derivative of the control variables. With the exception of
joint torque control, which is problematic for other reasons, an action
space that controls a higher order derivative transfers better. The second
characteristic is the emerging tracking error of the action space’s con-
trol variable(s). Our data strongly indicates that an action space which
yields or naturally limits the tracking error transfers better. This last prop-
erty can be enforced by the action space design, for instance, by re-
ducing the magnitude of jumps of the corresponding control targets.
The latter can be controlled by the scaling of the actions in delta ac-
tion space, or by increasing the stiffness if the task allows. For action
spaces that do not naturally allow for controlling this property, one
could attempt to enforce a smaller NTE by means of rewards/penal-
ties on the actions’ magnitude and smoothness. However, based on
our experience, the tuning process for the resulting additional hyper-
parameters (of such reward terms) can be very difficult.
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Figure 6.7: We show the influence of the normalized tracking error on sim-
to-real transfer in terms of success rate for non-delta action
spaces in the reaching task.
This figure has previously been introduced in one of the author’s previ-
ous publications [5].

Is there a consistently best-performing action space?
Overall, we notice that joint velocity action spaces seem to have the best
performance in sim-to-real transfer. These action spaces have on average
the lowest OTE, ACC and ECV and transfer the best to the real world.
They also required the least tuning to work, making them the most
suited action spaces for manipulation learning (among the studied
options). This result is consistent with our previous findings concern-
ing favorable characteristics, i.e., JV-based action space benefits from
a higher-quality feedback loop due to their configuration-space con-
trol, and can more easily generate high forces for interaction than
position-based action space due to controlling a higher-order deriva-
tive.

6.5 discussions

Learning manipulation skills can be a very challenging process. A ma-
nipulation system needs to perceive its environment and act in it. In
learning-based manipulation systems, the action interface is defined
by the action space of the policy. By embedding well-established con-
trol principles from the robotics literature, we could construct a large
variety of action spaces for this domain. However, the choice of action
space fundamentally changes the learning problem and can hence
make or break the manipulation system. Besides the effect this choice
has on learning performance, it strongly influences the capabilities of
the learned policies. In addition, this choice can completely change
the course of sim-to-real transfer.



6.5 discussions 87

This chapter discussed the most popular choices in the literature
and studied their performance empirically. At its center is an em-
pirical analysis of manipulation action spaces, their characteristics,
and emerging properties. Additionally, our analysis attempts to build
a deeper understanding of the relationships between characteristics
and emerging properties, with the aim to provide clear recommen-
dations for future methods. This analysis is based on a carefully de-
signed study with 13 different action spaces and 2 manipulation tasks.
The data strongly indicates that certain action space characteristics
are very favorable for the overall behavior and performance of manip-
ulation policies. Namely, we show that velocity-based action spaces
are substantially better for learning and sim-to-real transfer in com-
parison to torque or position-based methods. Furthermore, we show
that keeping a low tracking error can improve the transfer of policies
from simulation to the real world. More generally, our results indicate
that implementation details and tuning of controllers also play a big
role in learning and transferring robotic policies.

6.5.1 Limitations

This study and the resulting analysis are limited to the considered
action spaces and tasks. We chose these two in a way that would
represent a large variety of options, but in no way do we claim to
have answers that are general enough for robotics or even manipula-
tion. In addition, the study only considered one robotic manipulator.
While this choice should not be very limiting to the general truth
of our findings, it might still slightly bias the analysis. Besides the
hardware difference, different robots have different software stacks,
communication protocols, and safety mechanisms. All of these as-
pects could affect the analysis. However, the current study setup was
already quite expensive in terms of training costs, robot damage, hu-
man effort, and time. A larger study with more robots, more tasks,
and different control implementations is only feasible in the context
of a larger collaboration.

6.5.2 Outlook

The aim of this study was to better understand different aspects of
action space design and how they influence manipulation learning.
However, besides scientific curiosity, this gained knowledge can be
useful for future applications and future research efforts in robot
learning. Another important goal of this work was to shed more light
on the often ignored action aspect of robot learning and its impor-
tant role. Future methods can build on our findings to build novel
action spaces, perhaps ones that are more suitable for manipulation
or maybe more generally applicable. We focused on the sim-to-real
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transferability of policies not only due to the emerging popularity of
this paradigm, but also because it presents a wider framework to un-
derstand different aspects of the problem. With simulations becoming
more powerful and more affordable, the role of this paradigm could
become more important in the coming years. This is especially true
with the emergence of foundational robotics models. The latter typi-
cally rely on large datasets for training or assume access to robotics
skills. Sim-to-real transfer could cater, to some (limited) extent, to
both the data and skills requirements. Future work on sim-to-real
transfer can readily apply our findings or build on top of it.
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I N D U C T I V E B I A S E S I N T H E A C T I O N S S PA C E

The previous chapter introduced action spaces that use task and con-
figuration-space controllers to translate policy actions into robot joint
torques. While such action spaces can be very effective for learning
manipulation skills, it is still possible to abstract more properties of a
manipulation skill. When building such abstractions, we should aim
at offloading complexity from the policy to the action space. How-
ever, to avoid over-specifying an action space (i.e., making it specific
for some tasks), such abstractions should handle variables that are
common to all manipulation tasks.

For example, a manipulation policy typically handles the motion
of the robot and its interaction with the environment. The robot’s mo-
tion can be defined in either a task or configuration space. It typically
also adheres to constraints in either space. Therefore, a good manipu-
lation policy should be able to fully control these variables to enable
the robot to perform any given task. The action spaces presented in
the previous chapter fulfill these requirements. However, they still re-
quire the policy to control some unnecessary variables. For example,
if the robot is supposed to reach some object before manipulating it,
the policy does not necessarily need to control each robot configu-
ration or end-effector position along the way of reaching the object.
This added complexity makes the training of such a policy sample in-
efficient. Instead, the policy could only define a single target position
and some parameters that define the trajectory to reach this position
in a way that respects the task constraints.

However, complexity can also be added by means of under-specifi-
cation of the action space, not just its over-specifications. For example,
imagine a task that involves the robot interacting with its environ-
ment or any kind of external force acting on its links. For the sake of
argument, we can explicitly consider the task of lifting a heavy object.
A policy trained to only output motion targets (e.g., joint position tar-
gets) has no direct means of reacting to the resulting gravity forces
acting on the object. Such a policy would then need to output motion
targets that would lead the underlying controllers to compensate for
these external forces. Learning such a behavior is quite complex. It
would require the policy not only to understand the interaction but
also to find a way to leverage the low-level controllers to interact with
its environment. In this case, extending the action space to include a
desired output force or stiffness can reduce the complexity of the pol-
icy despite the fact that it increases the action’s dimensionality.

The choice of action space is important not only for reducing the
policy complexity but also for ensuring its feasibility. If we once again

89
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consider the previous example, one could argue that certain reaction
forces needed to achieve certain tasks cannot be achieved simply by
specifying distant motion targets. In the lifting example, the object
could be too heavy and could require a large force at the hands. A
policy acting only in motion space would need to produce very far-
away motion targets to force the robot to apply such forces. In most
cases, the motion targets are bounded on the basis of the robots’ kine-
matics and its workspace reach. The only way to allow such a policy
to perform the task would be to allow it to output motion targets
beyond its actual capabilities. Hence, the only way to make use of
such an action space in this case would require relaxing the motion
constraints beyond the robot’s actual limits. Such a solution would
allow the policy to successfully complete the task. However, it poses
safety concerns. The ideal action space for robot manipulation is nei-
ther under nor over-specified. It should allow the policy to control
just the right variables. This problem is very challenging, especially
when attempting to design an action space that is suitable for all or
at least a wide range of manipulation tasks. Using the right inductive
biases, we can build such action spaces and simplify policy learning.

7.1 obstacle-free motion generation

In this chapter, the focus is on the motion aspect of an action space.
While interacting with its environment, a robot should be able to
move its body in a way that enables the execution of the task, re-
spects the task constraint, and does not harm the robot or its envi-
ronment. In practice, the task makes certain states more favorable
for success and imposes constraints on the robot’s motion. One of
the biggest challenges in robot motion generation is to avoid colli-
sions. In a well-structured environment, collision avoidance can be
ensured by carefully designing collision-free trajectories, or simplify-
ing the motion generation process by leveraging knowledge about
the obstacles’ shapes and positions. Obstacle avoidance is a funda-
mental challenge in robotic manipulation for which many solutions
have been proposed over the years. These can be categorized into lo-
cal and global methods [93]. Local algorithms only adapt the manip-
ulator’s behavior in the presence of obstacles. Potential fields [94] are
a famous example of such methods. Local solutions typically employ
reactive closed-loop control to generate local motion. These methods
usually have a low complexity and can hence be run in the inner low-
level control loop of the manipulator [65]. This ensures a level of re-
sponsiveness that is needed for critical scenarios, such as safe human-
robot interaction. However, these approaches assume Euclidean ge-
ometry in the task space of the manipulator [95] and only use in-
ternal geometry of the kinematic chain [41]. Despite their simplicity
and versatility, purely reactive methods often culminate in undesir-
able behaviors such as instability or oscillation [157]. On the other
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hand, global planning-based, differential geometric approaches aim
to model the intrinsically non-euclidean task space of the robot [158].
This thread of research has seen significant progress recently and
primarily uses optimization to generate nonlinear trajectories [200].
Nonetheless, planning-based methods are notoriously computation-
ally expensive and lack the reactiveness of local methods. To avoid
obstacles, these methods require knowledge about obstacles (e.g., key-
points) which is crucial for autonomous applications in unstructured,
dynamic environments. This need for semantic understanding of the
environment has sprouted a variety of research on vision-based obsta-
cle avoidance, which is especially prominent in mobile robotics [63].

On the other hand, motion planning or generation in unstructured
environments can be very challenging. In such environments, the
robot should be capable of reacting to unknown and previously un-
seen obstacles in real-time. An important aspect when approaching
such systems is to have a robust perception pipeline. This means that
the action space should be designed in a way that ensures that the
actions can be inferred given the perception system’s output. In addi-
tion, the action space can handle trivial aspects of motion generation
such as reaching a target in the absence of obstacles. When the pol-
icy encounters a novel obstacle for the first time during training, it
needs to react directly and alter the robot’s motion to avoid a colli-
sion. Obstacles can be numerous and potentially dynamic. Therefore,
a manipulation action space should be designed in a way that allows
the policy to handle such occurrences.

7.2 abstracting motion

The most salient attributes of robotic manipulators are best expressed
in terms of differential geometry [96]. More specifically, motion gener-
ation and control can be seen as the problem of transforming desired
behavior from one or multiple smooth manifolds — representing the
task space T — to another smooth manifold C, the configuration space.
These manifolds are related by a differential map ϕ : C→ T, called the
task map. By equipping these manifolds with a Riemannian metric M,
we can elegantly relate notions like angles and distances to design a
curve q(t) ∈ C which implements the desired behavior of T. The met-
ric tensor captures the notion of distances and angles between points
in the configuration space. Its representation can encode constraints
in the environment. The choice of this metric can significantly impact
how the robot navigates through the C-space. For instance, one could
modify the Riemannian metric in such a way that it reflects the in-
fluence of obstacles. This often involves shaping the metric in a way
that increases distances in regions close to obstacles, effectively mak-
ing those regions more costly to traverse. This means that the metric
tensor is adjusted to reflect the local curvature and distances based
on the presence of obstacles. When planning the robot’s motion, the
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modified Riemannian metric is used to guide the planner. As the met-
ric encodes the obstacle information, the planner will naturally try to
find paths that avoid the high-cost regions associated with obstacles.
This approach is particularly useful when dealing with complex and
dynamic environments. A motion-focused action space could lever-
age this metric to encapsulate motion-information in a single entity
(i.e., the Riemannian metric). The explicit way to achieve this goal is to
define the action space to be the parameters ζ of a parametrized Rie-
mannian metric Mζ(x, ẋ). In that case, the policy would need to learn
to map its observations into these parameters. Given these parame-
ters, we can plan the robot’s motion based on the resulting metric.
Depending on the frequency of the policy, we can control the reac-
tivity of the robot. The proposed action space seems great in theory.
However, in practice, due to the large number of parameters in ζ,
training such as mapping based on RL would require a lot of samples,
especially when using image observations. We can reduce the number
of parameters needed to present the metric by using a Cholesky de-
composition parameterization. However, the number of parameters
to properly represent motion in dynamic environments remains high
and hence the action space would have a problematically high ac-
tion dimensionality. Additionally, such an action space can make the
policy search very inefficient for static environments. This is because
static environments would require one single metric for each obstacle
configuration. Hence, in practice, the policy would need to output a
single action for the whole episode. This would exacerbate the sample
complexity of the task despite being simpler than dynamic obstacle
avoidance.

Instead, we could build an action space that implicitly leads to
similar behavior. For that, in this work, we propose a framework to
learn reactive motion policies with an action space constructed using
Riemannian motion policies (RMP) [157] and RMPflow [41]. An RMP

is a framework for motion control, grounded in the geometry of a
Riemannian manifold. The generation of these policies is an intricate
process that hinges not only on the potential field within the space but
also on the underlying curvature of the space itself [157]. Consider an
arbitrary m-dimensional manifold M with generalized coordinates
x ∈ Rm. In its canonical form, an RMP is defined as (a, M)M, where
a : x, ẋ 7→ ẍd ∈ Rm represents a second-order dynamical system map-
ping x and ẋ to desired accelerations ẍd, and M = M(x, ẋ) ∈ Rm×m is
a Riemannian metric which varies smoothly with the state (x, ẋ). We
can interpret M as an inertial matrix which also defines the weight
of the RMP when combined with others. In its natural form, an RMP

is defined as (f, M)M, where f indicates the map from position and
velocity to the desired force. The force map f in the natural form and
the acceleration map in the canonical form has the relation f = Ma.
The natural form of an RMP is commonly used when space transfor-
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mations are to be applied, due to the lower computational complexity
of such operations using this form.

The RMP framework also provides push, pull, and add operators.
push and pull can transform an RMP defined in a certain task space
into another, based on the task map ϕ and its Jacobian J. For example,
when transforming the robot’s joint positions q and velocities q̇ into
the end-effector poses p and velocities ṗ respectively, ϕ would then
correspond to the forward kinematics and J to the Jacobian of the
manipulator. As for add, it is used to compose RMPs defined in the
same task space into one policy.

RMPflow is a policy synthesis framework [41]. In this method,
RMP-tree is introduced as a tree structured computational graph.
Each node in such a tree represents a Riemannian manifold and is
equipped with an RMP. The root node of the tree describes the con-
figuration space C of the robot where the global joint space policy is
defined. The leaf nodes represent task spaces, where the designed or
learned local policies are defined.

The RMPs in this framework are characterized by a set of geometric
dynamical systems (GDSs). Consider a manifold M with generalized
coordinate x ∈ Rm, a GDS defined on such manifold can be expressed
as

(G(x, ẋ) + ΞG(x, ẋ))ẍ + ξG(x, ẋ) = −∇Φ(x) − B(x, ẋ)ẋ, (7.1)

where G : Rm ×Rm → Rm×m
+ is referred to as the metric matrix,

B : Rm ×Rm → Rm×m
+ as the damping matrix and Φ : Rm → R as

the potential function. Additionally, ΞG := 1
2

∑m
i=1 ẋi∂ẋgi and ξG :=

x
Gẋ − 1

2∇x(ẋGẋ) are curvature terms induced by the metric G, where

gi denotes the i-th column of G and
x
G := [∂xgiẋ]

m
i=1. Based on the

GDS formulation, the RMP metric term M is defined as M := G + ΞG.
The forcing term of RMP can be calculated by moving the curvature
term ξG to the right hand side of equation (7.1), we then obtain

f = (Mẍ) = −ξG −∇Φ− Bẋ. (7.2)

RMP-algebra introduces the pushforward, pullback and resolve op-
erators used to construct the policy generation process. The goal of
this process is to generate the desired accelerations q̈d in the root
node of the tree (robot configuration space) based on q and q̇. The
pushforward operator is applied to transform the current joint state
(qt, q̇t) into states in all leaf nodes, namely {(xit, ẋit)}Ni=1, where i
is the number of the leaf nodes. After the state information is ob-
tained at the leaf nodes, the value of the desired leaf nodes’ forces and
metrics {(fdit, Md

it)}
N
i=1 can be calculated according to equation (7.1).

The obtained values are then transformed into the desired force and
metric (fdt , Md

t ) in the root node using the pullback operator. Conse-
quently, the resolve operator is used to convert the desired force fdt
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Figure 7.1: System Overview: At a certain time step, the system receives a
visual input o, joint angle measurements q and joint velocities q̇.
The image o is then encoded using a β-VAE encoder to produce
the visual latent z. Using the robot kinematics ϕ and jacobian J,
we obtain the end-effector position x and velocity ẋ from q and
q̇ respectively. Subsequently q and q̇ are fed into a baseline pol-
icy to produce a user-defined behavior. Simultaneously, we feed
all available information sr into a reactive policy πδ. The latter
produces a reactive behavior dependent on the objects in the en-
vironment. Both outputs are then composed together based on
the RMPflow framework, to produce a desired joint acceleration
q̈d. This acceleration is then fed into the robot controller.
This figure has previously been introduced in one of the author’s previ-
ous publications [4].

into the desired joint acceleration q̈dt . For further information about
this framework, we refer the readers to the original paper [41].

Using these two frameworks, we propose an action space that sim-
plifies learning motion policies for manipulation. The framework can
be shown in Figure 7.1. Generally, the action space consists of two
internal policies. The first is a hand-crafted baseline policy. The aim
of this part is to guide the robot’s motion generation towards its tar-
get. This policy can be as simple as a point attractor. The second is
a reactive policy which can correct the baseline behavior depending
on the perceived situation. This policy reacts to obstacles based on
its knowledge of the end-effector position, current robot configura-
tion, and visual input. These two policies are not learned but instead
hand-designed and embedded in the action space. The learned RL pol-
icy outputs control variables that guide the behavior of those policies.
The next two sections explain the details of the baseline and reactive
policies, and what they expect from the learned RL policy.

7.2.1 Baseline policy‡

As previously mentioned, our primary task is goal reaching. For this
purpose, we define a simple baseline RMP Rb = (fb, Mb)Ωb for goal
reaching based on [41, 157], where Ωb is a 3-dimensional manifold in
which the baseline policy is defined. Namely, for d ∈ Ωb, d measures
the distance between the end-effector and the goal along the x,y and
z axes. Specifically, we use a GDS to define the RMP in Ωb. We first
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Figure 7.2: Structure of our RMP tree for combining multiple policies.
This figure has previously been introduced in one of the author’s previ-
ous publications [4].

define the metric Gb to be an identity matrix, which eliminates the
curvature terms in the GDS to Mb := I (based on the definitions in
section 7.2), where I is the identity matrix. To ensure stability, we
define the damping matrix as Bb := wI, where w is a vector that
consists of positive constants close in value to zero. Moreover, we
define the gradient of the potential field ∇Φ(d) := d. Substituting
these values in equation (7.2), we obtain the GDS with the form

Id̈ = −d −wIḋ. (7.3)

This would result in the forcing term fb = −d −wIḋ according to
equation (7.2).

7.2.2 Reactive policy‡

To enable the obstacle avoidance behavior, we define a reactive RMP

Rr = (fr, Mr)Ωr in a 7-dimensional manifold Ωr. For dq ∈ R7 in Ωr,
dq measures the distance between the current joint configuration q
and the desired joint configuration qg. We set the metric, the damping
matrix and the potential field of this RMP similar to the ones in the
previous section. According to equation (7.2), the resulting forcing
term is

fr = −dq −wIḋq. (7.4)

We are then concerned in learning a mapping πδ from an input state
sr = [q, q̇, x, ẋ, z] to an output action a = dq, where x corresponds to
the end-effector position, and is obtained from q using the kinematics
ϕ1 of the manipulator, and ẋ is obtained from q̇ via the Jacobian
J1. As for z, it is the latent representation of a given image o (as in
section 7.2.3). We model πδ as a multilayer perceptron (MLP) with
two hidden layers. It is then trained via residual RL [85] with the
baseline policy from section 7.2.1. For this purpose we use the Twin
Delayed Deep Deterministic policy gradient algorithm [54]. Given the
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end-effector position x, the goal position xg, and the action a per step,
the reward is defined as

r := rcollide + rgoal + rdist + rcontrol, (7.5)

where rcollide is a negative reward of −10, which punishes the robot
when colliding with an obstacle, rgoal is a positive incentive of 5
given only when the robot’s end-effector reaches the goal, rdist =

−1.6∥x − xg∥+ 0.75 is the distance reward which rises linearly when
the distance between the end-effector and the goal decreases, and
rcontrol = −0.05∥a∥ which punishes large actions. This last term en-
courages the policy to diverge from the baseline policy only in cases
of possible collision. The framework is not sensitive to changes in the
values used in the reward function as long as the general relation
between the terms is preserved. Namely, the distance reward is an
important signal for training. When its magnitude is large, it leads
to a local solution where the collision reward is neglected. Addition-
ally, we aim to ensure that the episode rewards for goal-reaching and
collision avoidance are not dominated by the control reward, hence
the small weight 0.05. This combination of rewards encourages the
resulting policy to move along the geodesic of the corresponding Rie-
mannian Manifold. Furthermore, our MDP has a finite horizon with
episodes ending at a specified maximum number of steps or when-
ever the robot collides with an obstacle. During early exploration
stages, most episodes are unsuccessful and end up with collision.
Consequently, only few successful trials are recorded. We use Prior-
itized Experience Replay [163] in order to use data from such trials
more efficiently.

7.2.3 Overall System

In addition to the baseline and reactive policies defined in the previ-
ous sections, we use an additional RMP Rl = (fl, Ml)Ωl for joint limit
avoidance similar to the one in [157]. More information concerning
this policy can be found in Appendix B.2.1. All three policies are
then combined together based on the tree in Figure 7.2. The node l1
uses the RMP Rr from section 7.2.2, l2 uses the Rb from section 7.2.1,
and l3 uses the joint limit avoidance RMP Rl. Consequently, RMP-
algebra is applied to compute the desired joint acceleration q̈d. We
treat the motion trajectories given by the RMP as desired trajectories,
and track them using an impedance control with suitable collision
handling algorithms guaranteeing contact force and torque thresh-
olds. At the policy level, when a collision takes place during task ex-
ploration and execution, it is detected safely, the episode terminates,
and the environment returns a penalty (i.e., negative reward) in or-
der to discourage such behavior in future runs. One main goal of
this work is to design an action space that allows to effectively close
the perception-motion loop. Since motion generation is highly depen-
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dent on the perception system, our experiments are performed in a
vision-based environment. We learn visual perception based on self-
supervised representation learning. We first sample actions based on
Brownian motion [188] to collect images from our environment. The
ideal latent representation for motion generation should encode envi-
ronment information such as object poses, and shape. More generally,
it can contain any geometric information concerning the objects in the
environment. Hence, for a self-supervised approach to capture that,
the image data it is trained on should contain samples that represent
a lot of variations of these variables. Therefore, during data collection,
we use a smaller episode duration. Since obstacle types and poses are
random at different episodes, having shorter episodes would result in
more episodes for the same amount of data and hence more diverse
obstacles and obstacle poses in the collected samples. Given a dataset
of images, we use a (β-VAE) [73] to train a perception system that
maps images o into latent representations z. We use the β-scheduler
proposed in [32] to improve the quality of the latent representation
and its disentanglement while ensuring the final representation is
based on the true evidence lower bound of the data likelihood.

7.3 experiments
‡

We conduct experiments to answer the following questions:

(Q1) Is our method capable of learning successful obstacle avoidance
strategies?

(Q2) How does the baseline policy contribute to the overall sample-
efficiency?

(Q3) Is our approach capable of simultaneously avoiding multiple
obstacles?

7.3.1 Setup

All of our experiments share the same setup. Namely, we use a seven
DoF Franka Emika Panda robot in a Gazebo-based simulation envi-
ronment [100]. We place a static RGB camera in front of the robot
(green block in Figure 7.3). We use three different obstacle shapes:
cuboids, spheres, and cylinders. Each obstacle has a distinct texture.
In our experiments, we sample the object positions to be true obsta-
cles with respect to the goal. The environment setup is illustrated
in Figure 7.3. Furthermore, we use an NVIDIA GeForce RTX 2080

GPU to train our vision module, and reactive policy. For all of our ex-
periments, we downsample the RGB images to 128 × 128. All of our
results are averaged over 5 training trials with different random seeds.
We look at the success rate and the average episode return (AER). For
improved visibility, we smoothen the AER plots using running means
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Figure 7.3: Illustration of our task setup in simulation. Single or multiple ob-
stacles can be sampled in each environment instance. The robot
is supposed to reach a given goal position without colliding with
any obstacle. Obstacles can have distinct shapes, sizes and visual
textures.
This figure has previously been introduced in one of the author’s previ-
ous publications [4].

with a window size of 20 episodes. For measuring the success rate, we
label a trial as successful, when the end-effector reaches the desired
goal with no collision and manages to stay there for 5 seconds.

7.3.2 Results

Experiment A. In our first experiment, we want to evaluate the pro-
posed method on a single obstacle avoidance task. Additionally, we
want to see the effect of the baseline policy on the overall performance.
We refer to the case without a baseline policy as Vanilla Learning
(VL) and the one with baseline policy as Residual Policy Learning
(RPL). VL would then correspond to a standard Deep RL approach for
obstacle avoidance with the addition of the latent model and the RMP

handling of a = dq. In Figure 7.4, we compare the average episode
reward over time (left) and success rate (right) of both possibilities.
After approximately 80 minutes, both policies converge and the aver-
age reward as well as the success rates remain more or less the same.
The total reward accumulated using RPL is substantially higher than
that of VL. The latter manages to avoid the obstacle in few trials, how-
ever, it fails in most cases to also reach the goal, or even get close to
it. This behavior can be shown by looking at the individual reward
terms from equation (7.5). We provide a plot of these values in Ap-
pendix B.2.3.1. Furthermore, vanilla learning requires at least twice
the amount of samples to reach the same success rate as our method.
This is mainly due to two factors. First, for our use case, VL attempts
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Figure 7.4: Experiment A. Effect of the baseline policy on the single obsta-
cle avoidance performance. (Left) Normalized average episode
reward (AER) over time. (Right) Success rate over time.
This figure has previously been introduced in one of the author’s previ-
ous publications [4].

to learn both obstacle avoidance and goal reaching. However, in RPL,
goal reaching is taken care of by the baseline policy. One could argue
that providing a baseline policy limits the flexibility of the model,
which usually leads to declined performance. However, our experi-
ments show a different tendency. Even after convergence, our method
achieves more than twice the success rate (84 ± 6% ) than the vanilla
method (39 ± 27%), which seems to often get stuck in a local solu-
tion (it reaches a lower average reward even after convergence). The
second reason for this difference in sample-efficiency is exploration.
In its early stages, our method already tries to reach the goal, as it
is guided to do so by the baseline policy. While trying to do this, it
also encounters the obstacles more frequently and receives negative
reward. However, in the absence of a baseline, the exploration is ran-
dom, and results mostly in low-reward trajectories for training.

Experiment B. In the second experiment, we aim to test the capabil-
ity of our method to learn to avoid multiple obstacles simultaneously.
The only difference is that we train the policy in an environment
containing 3 obstacles at all times (as shown in Figure 7.3). As ex-
pected, the amount of interactions needed for this task to be learned
is substantially higher than that of the single obstacle case. The policy
converges after 10000 episodes, which is approximately equivalent to
3 hours of data collection with a single robot. The success rate after
convergence is 72%. We show the evolution of the AER over time
in Figure 7.5 (left). Furthermore, we test the obtained policy on en-
vironments containing one and two obstacles to check whether the
learned reactive behavior can generalize to different scenarios or just
memorizes sequences of actions depending on the obstacles config-
uration. We evaluate our policy for 50 trials per scenario. We report
success as previously defined, near goal reaching which corresponds
to avoiding the obstacle and getting to the close proximity of the goal
(approximately 7cm) but not exactly reaching it, and failure which
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Figure 7.5: Experiment B Multiple obstacle avoidance. (Left) Normalized av-
erage episode reward (AER). (Right) Generalization of a policy
trained for 3 obstacles in environments with 1 and 2 obstacles.
This figure has previously been introduced in one of the author’s previ-
ous publications [4].

corresponds to all other cases. The results are shown in Figure 7.5
(right). Interestingly, even when only trained in 3 obstacles environ-
ments, the obtained policy still manages to succeed in reaching the
goal or its near proximity at a high rate, even when tested on envi-
ronments with 1 and 2 obstacles. These results strongly support our
claim for generalization.

7.4 discussions

This chapter proposed an action space for handling the motion gen-
eration aspect of robotic manipulation tasks. The proposed action
space is built on top of Riemannian motion policies to abstract cer-
tain basic aspects of motion generation from the policy. Mainly, goal-
reaching, constraint satisfaction, and obstacle avoidance are formu-
lated as RMPs. The RL policy is left with the task of inferring the task-
space goal and in real time inferring configuration-space displace-
ment vectors to avoid the obstacles. The task-space goal can in prac-
tice be the action of a high-level policy in a hierarchical RL framework.
The low-level policy should then run at a higher frequency, and out-
put the joint space displacement vectors for obstacle avoidance. We
tested this approach in a simple reacher environment, which is why
we could fix the goal in the current experiments and did not need the
high-level policy. In this way, we could assess the benefits of this ac-
tion representation in isolation from the hierarchical policy training
process. Nevertheless, the experiments clearly show the advantages
of factorizing the motion generation process as proposed. Learning
a reaching policy using the proposed action space proved to be very
sample-efficient. Experiments also showed that this action space can
be used successfully in environments with multiple obstacles, which
is a challenging problem in robotics, especially for high-DoF manipu-
lator applications. These findings prove the usefulness of this action
space and its suitability for manipulation tasks in unstructured and
potentially cluttered environments.
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However, as previously mentioned, motion is only one part of ma-
nipulation. The current action space does not explicitly include any
mechanism for the policy to control the physical interaction of the
robot with its environment. Of course, an RL policy can learn to abuse
obstacle avoidance displacement vectors to push the low-level con-
trollers to exert a force on the environment, but such a behavior can
be unsafe and in some cases unfeasible, as described at the beginning
of this chapter. The aspect of environmental interaction has already
been explored in the literature on action representations, with pub-
lications suggesting the use of variable impedance control or force
impedance control as action spaces for manipulation [126, 189]. These
methods nicely complement our work and can be integrated into our
framework to create an action space that properly handles both mo-
tion generation and physical interaction.

Finally, the main takeaway from this chapter is that the action space
plays a very important role in learning robotic manipulation skills.
Carefully building elaborate action spaces can simplify or even en-
able learning various skills. Future work should further explore this
area and more efforts are needed to design good action spaces for
manipulation. The recent trend in robot learning is to have one agent
or at least one algorithm that is capable of simultaneously learning
multiple tasks. This creates a need for action spaces that are suitable
for multiple or perhaps all tasks. This work is one step towards this
goal.
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C E N T R A L L AT E N T A C T I O N S PA C E S

The two previous chapters discussed methods for building action
spaces suitable for manipulation. Such action spaces employ well-
established control and motion generation methods as inductive bi-
ases. As a result, the complexity of the policy is reduced, and the
training process should become more sample efficient as a conse-
quence. However, the design of an action space typically lies on cer-
tain assumptions about what should be abstracted from the policy
and what it should have full control over. These assumptions can be
specified on the basis of the current knowledge of classical manipu-
lation methods. It is possible to find assumptions that are common
to most manipulation tasks, but this process is challenging and error-
prone.

Alternatively, and similar to the state space, we can learn action
representations for manipulation. The motive behind this approach
is to eliminate designer bias from the action representations. In other
words, the main goal is to reduce the effect of the assumptions made
when designing the action space. Ideally, a learned action space could
represent the actions in a lower-dimensional action manifold. It can
also combine features from different control principles. For instance,
an abstract latent action representation could represent variables that
control both the joints of the robot and its end-effector. A latent ac-
tion space could also be robot-agnostic, allowing policies to be used
in different embodiments. More importantly, a learned action space
could be made simultaneously suitable for multiple tasks without
relying on assumptions of what is common against them. However,
the paradigm of learning action representations introduces its own
assumptions. The first assumption is that a latent action space useful
for manipulation exists and has certain advantages over existing ac-
tions spaces. Another very important assumption is that there exists
a valid mapping between the latent action space and an action space
which the robot already supports, effectively allowing the latent com-
mand to be executed on the robot. Besides these assumptions, it is
also important to note that the learned representations are as good as
the data used to train the corresponding models. This is one of the
main challenges of this paradigm. Despite the state and action space
representing fundamentally different problems (perception and con-
trol, respectively), some methodology for learning their representa-
tions can in practice be shared. Therefore, we can draw inspiration
from the more explored topic of state representation learning.

Unlike state representations, building action spaces remains more
appealing than learning them. This is due to the fact that low-level

103
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robot control is a long-standing problem with many well-established
methods. As a result, most robot learning applications still rely on
designed and not learned action representations with low-level con-
trollers. This motivates the need for further research on learning ac-
tion representations, but also the need to combine both paradigms.

8.1 learning action representations

In principle, we could use various representation learning algorithms
to learn action representations. However, due to the need to be able
to map latent actions into normal actions, we can only use methods
that result in some generative process. In contrast, in state represen-
tation learning, we are mainly interested in the latent state inference
process. The generative process is only needed during training by
some methods like AE. This makes the usage of certain representa-
tion learning methods (such as contrastive learning) more difficult or
even impossible.

Zhou, Bajracharya, and Held [219] proposed an approach to learn
a latent action space using a conditional VAE. Their approach is de-
signed for offline RL, where the latent action space is meant as a
mechanism to inform the policy to output actions within the sup-
port of the dataset. Later a similar version of this work was proposed
in [11]. This approach works in online RL and its main motivation is
to learn a compact action manifold to simplify the policy search. Pol-
icy search is typically performed in the latent action representation.
During inference, the decoder part of the AE is used to transform the
latent action back into the original action space. Zhang et al. [218]
extend the concept of latent actions to encode full action trajectories
using transformers [194]. The main advantage of this approach is that
it eases planning. However, it comes at the cost of reducing feedback
in the overall system. Karamcheti et al. [90] propose an approach to
learn language-informed latent action spaces using language embed-
dings from a pre-trained language models. A policy learned in this
latent action space can later be influenced by human text commands
to alter its behavior. Mehta, Parekh, and Losey [128] learn a latent ac-
tion space that encodes different manipulation behaviors. The train-
ing data is collected autonomously based on an RL agent that learns to
maximize the state entropy of the objects and the robot’s interaction
with the objects in the scene.

8.2 decentralized cooperative control

One motivation for learning latent action spaces is to reduce the di-
mensionality of the action space used in policy training. In multi-
robot manipulation tasks, the state and action spaces grow with the
number of robots, making this problem even more challenging. As
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a consequence, single-agent approaches seem unsuitable for these
environments. Alternatively, in a multi-agent reinforcement learning
(MARL) approach, each agent is responsible for actuating a part of the
environment. Individual agents could have access to either all obser-
vations or just a subset. This simplifies the exploration and sample
requirement for each individual agent. However, multi-agent meth-
ods suffer from the lack of information present to each agent, which
results in multiple problems [37, 60]. Most notably, from the perspec-
tive of each agent, the environment is no longer stationary, as the
other agents are now part of the environment and regularly update
their policies and behavior [60]. This increases the difficulty of policy
search. Furthermore, the lack of information about the other agents’
actions makes coordination and estimation of interaction dynamics
even harder than usual. Hence, in the literature, multiple solutions
have been proposed to approach these problems.

Many MARL methods attempt to establish either an explicit com-
munication channels such as in [44, 61, 137, 151, 172, 178], or an
implicit information exchange as part of the policy architecture or
the learning algorithm [62, 109, 120]. For instance, multiple methods
are based on modeling the other agents’ policies [118, 154, 213]. This,
however, comes with the burden of training and tuning N×N poli-
cies for N agents. This kind of method is usually based on the cen-
tralized training decentralized execution (CTDE) paradigm, where at
training time, each policy can benefit from the information that is
usually exclusive to the other agents at execution time. Others have
proposed using CTDE to learn a central dynamics model and use
the model to train decentralized policies [203, 217]. Similarly, Lowe
et al. [120] and Foerster et al. [53] propose training decentralized ac-
tors using a centralized critic. Another common approach is to de-
compose the value function to the different agents [156, 179]. Beyond
CTDE, multiple other solutions have been proposed to alleviate the
non-stationarity of MARL tasks. For instance, Liu et al. [117] propose
engineering the reward function to punish competitive actions taken
by individual agents. Others proposed designing learning curricula
that enforce a similar tendency [31, 133]. Gupta, Egorov, and Kochen-
derfer [62] relied on policy parameter sharing across agents, which
allows multiple agents to use the same policy network while pass-
ing an agent index as part of the observation. Furthermore, MARL

solutions could be simplified using custom policy parameterizations
such as finite state controllers [12, 22] or transforming the problem to
enable tractable planning and search [47, 48]. However, decentralized
MARL methods fail to achieve the level of coordination, which is nec-
essary for the control of physical systems. A more extensive overview
of MARL methods can be found in [216].

Another challenge for multi-agent systems is the decentralized ac-
tion generation. This problem could also occur when each agent has
access to the full state, but is only actuating a part of the overall sys-
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tem. This aspect can be ignored for the classical application domains
examined by previous MARL research, such as games and particle en-
vironments. However, it becomes critical when dealing with physical
tasks, such as dual-arm manipulation, where decoupled actions could
lead to instabilities and even damage the robots. Lee, Yang, and Lim
[109] tackle this problem by first learning robot-specific skills and
then learning a meta-policy that selects the skills each agent should
execute.

Decentralized cooperative control tasks can be studied as decen-
tralized partially-observable Markov decision processes. The latter is
a special type of partially observed stochastic games. It is defined by
the set ⟨N, S, {Ai}i∈{1,...,N},P, {ri}i∈{1,...,N},γ, {Oi}i∈{1,...,N}, ρ⟩, where
N is number of agents (N = 1 corresponds to the single-agent prob-
lem), S is the state space across all agents, Ai is the action space for the
ith agent, P represents the environment dynamics, ri is the reward
function for the ith agent, γ is the discount factor, Oi is the observa-
tion space of the ith agent, and ρ is the initial state distribution. In co-
operative tasks, all agents share the same reward r1 = r2 = · · · = rN.
Optimally solving partially-observable Markov decision processes is
a challenging combinatorial problem that is NEXP-complete [23] in
contrast to MDPs, which are P-complete [144].

F

τ

Figure 8.1: Two robot arms cooperating on an object lifting task. The red
cube indicates the target pose. Traditionally, two agents would
control the separate robot arms in a control space of the robot
such as joint torque control. We explore the option of learning la-
tent central actions spaces which are robot-agnostic and central
to the task. In our example, a possible action space would corre-
spond to the force F and torque τ acting on the center of mass of
the cube.
This figure has previously been introduced in one of the author’s previ-
ous publications [7].

8.3 central latent action spaces for multi-robot ma-
nipulation

Single and multi-agent approaches to multi-robot manipulation de-
fine a different action space for each robot. However, for many MARL
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tasks and especially for multi-robot manipulation, the task is defined
with respect to certain task variables such as the position of an object.
Let’s consider a simple example of dual-arm lifting as shown in Fig-
ure 8.1. In this task, two robots cooperate to lift an arbitary object to a
defined goal pose. Independent of the choice of method, performing
this task would require commanding each robot in a way that ful-
fills the task goals. Control can be framed in the task or configuration
space and using either position, velocity, acceleration, or force/torque
targets. However, what matters to fulfill this task is the trajectory of
the object itself. This trajectory can be characterized using the object’s
position, velocity, acceleration, or the forces and torques acting on the
object. Controlling one of these variables can successfully lead to ful-
filling the task. If we ignore the robots for a second and assume that
we have an environment where we could directly control one of these
variables, we can then define an action space that is acting directly on
the object. An ideal example would be to define the action space to be
a force and torque acting on the center of mass of the object. Training
an agent to perform actions in this space could successfully solve the
task. More importantly, this action space does not grow with the num-
ber of robots since it assumes actions on the object directly. Any other
action space that is robot-agnostic would fulfill these same properties,
even if it does not have a physical meaning or if it represents a purely
semantic entity.

However, if we have an agent that is capable of controlling the
object in isolation, it is not straightforward to map these actions into
control commands that the robot can execute in a way to cause these
object actions to happen in a real embodied world. In other words, it
is very difficult to compute joint torques (or any other control) that
each robot needs to apply to cause a given force (or any other control)
to act on the object. This becomes even harder if the action acting on
the object does not have a strictly physically interpretable meaning.
In this work, we postulate that there exists a latent action space that
resembles the one just described, and we aim to learn a generative
model that can generate actions in the original control space of the
robot based on actions in this new space. Unlike previous work on
learning action representations, we require the generative process to
be decentralized to still allow for each robot to have its own policy
and autonomy. The main motivation behind this is that such a central
action space does not grow with the number of robots. If we can still
generate a raw action for each robot using this latent action, we would
keep all the nice properties of decentralized agents while achieving
coordination based on the central action.

To learn a latent central action space, we use Stochastic Gradient
Variational Bayes [98] to overcome the intractable inference distribu-
tions involved in learning mappings to this space. First, we look at
the case where each agent receives full observations o ∈ O1 × O2 ×
· · · × ON. For that, we introduce the models in Figure 8.2 (left). The
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Figure 8.2: System overview under full agent observability. (Left) we use
a conditional autoencoder for learning the central latent action
space. The encoder receives all observations and actions from
all agents and produces a latent action vc. This latent action to-
gether with the full observation is given to the agent-specific de-
coders together with the observation. Each decoder outputs an
action that is in the original action space of the corresponding
agent. (Right) All agents share the same policy acting in the la-
tent action space. The learned decoders map the latent action
into the original action space.
This figure has previously been introduced in one of the author’s previ-
ous publications [7].

generative process (encoding) of each agent’s original action ai is con-
ditioned on the latent central action v and the observation o. The lat-
ter is also used during the inference process (decoding), as shown
in Figure 8.2 (left). Additionally, we encode latent actions based on
the actions from all agents a = [a1, . . . , aN]. This is possible since the
inference/encoder network will not be used at execution time, and
will instead be replaced by the policy as shown in Figure 8.2 (right).
Based on this model, all agents could share a copy of the same policy,
which outputs a latent central action v based on the full observation
o. However, they would each have a different decoder to translate the
latent action v into their original action space. This is illustrated in
Figure 8.2 (right). Having a shared policy is feasible in this scenario
since the latent action space is supposed to have a lower dimensional-
ity than the aggregated action space of all control agents. To illustrate
this, we go back to the lifting example. Controlling the joint velocity
of two robots with six DoF would result in an action space with a
dimension of twelve. Instead, controlling the wrench applied to the
object only requires an action space with six dimensions. Note that
this number does not grow dramatically with the number of agents
or robots. We derive a lower bound to the marginal likelihood

p(a | o) =
∫
pθ(a | o, v)pψ(v | o)dv

lnp(a | o) = ln
∫
pθ(a | o, v)pψ(v | o)

qϕ(v | o, a)
qϕ(v | o, a)

dv

⩾
∫
qϕ(v | o, a) ln(pθ(a | o, v))

pψ(v | o)
qϕ(v | o, a)

dv
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= Eqϕ(v|o,a)[lnpθ(a | o, v)]

− KL
(
qϕ(v | o, a)

∣∣∣∣ pψ(v | o)
)

(8.1)

= L(a, θ,ϕ,ψ |o), (8.2)

where KL(||) is the Kullback-Leibler divergence, q(v | o, a) is the ap-
proximate posterior distribution

qϕ(v | o, a) = N
(
v;µv,σ2v

)
,

[µv,σv] = gϕ(o, a). (8.3)

Since the generative process of each agent’s action is distributed,
the likelihood is composed of multiple terms.

pθ(a | o, v) = [pθ1(a1 | o, v), . . . ,pθN(aN | o, v)], (8.4)

where θi refers to decoder parameters for agent i, and θ = {θi}i∈N.
Note that the prior is conditioned on the observations. It is parame-
terized by ψ and has a policy-like form pψ(v | o). We train it simul-
taneously to the encoder and decoders using the same loss function
from equation (8.2).

As previously mentioned, agents in a partially-observable Markov
decision processes have only access to a subset of the observations.
However, we notice that in most environments, a certain part of the
observations is shared across all agents, and that is usually related
to either objects in the scene or any kind of other task-specific obser-
vations; but not to the agent’s embodiment. Even when this condi-
tion fails, it could be enforced in the learning process. For instance,
in [119], the latent space is designed to contain information about the
object relevant to the task.

We introduce a new set of models, as seen in Figure 8.3 (left). In
this new model, the latent action space is partitioned into N+ 1 parts.
The first N correspond to latent actions vi, which are specific to each
agent. The last part vc is central and shared with all agents. The gen-
erative process of each agent’s action (in the original action space)
is now conditioned on the agent’s observation oi, the latent agent-
specific action vi, and the latent central action vc. As for inference,
the whole latent action variable is conditioned on the full observa-
tion o and the full action a. As in the previous case, using the full
observation and action for inference is possible because the encoder
would not be used during control. Instead, each agent has a set of
two policies: one policy producing the latent agent-specific action vi
based on oi; and another policy that is shared across all agents, and
which generates the latent central action based on the shared observa-
tion oc. These two latent actions are then concatenated and decoded
into the original action space of the agent. We show the architecture
of the policy in Figure 8.3 (right). Note that the policy updates also
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Figure 8.3: System overview under partial agent observability. (Left) We use
a conditional autoencoder to learn the central latent action space.
The encoder receives all the observations and actions of all agents
and produces a latent action v. The latent action contains agent-
specific actions vi as well as a central latent action vc. This latent
action together with each agent’s observation are given to the
agent-specific decoders together with the observation. Each de-
coder outputs an action that is in the original action space of the
corresponding agent. (Right) All agents share the same policy
acting on the object in the latent action space. Each has a sep-
arate policy acting in the latent agent-specific action space. We
use the learned decoders to map the latent action into its origi-
nal action space(s).
This figure has previously been introduced in one of the author’s previ-
ous publications [7].

affect the decoder. The new lower bound is very similar to the one in
equation (8.2), with the minor difference of

pθ(a | o, v) = [pθ1(a1 | o1, oc, v1, vc), . . . ,pθN(aN | oN, oc, vN, vc)].

(8.5)

The encoders, decoders, prior distributions, and policies involved
in this method are implemented as multi-layer neural networks us-
ing PyTorch [146]. All distributions are transformed Gaussian distri-
butions using a hyperbolic tangent function (tanh). Actor, critic, and
prior networks have two hidden layers. Encoders and decoders have
three hidden layers. For training, we use the Adam optimizer [97].
Each policy is optimized using soft-actor-critic (SAC) [64]. All mod-
ules are trained using randomly sampled data from the replay buffer.
The latter contains trajectories sampled from the previously described
multi-agent policy. At the beginning of training, we only update the
latent action model using random actions in a warm-up phase that
lasts for a hundred thousand steps. We found this step to help the
training performance and stability. For a fair comparison, we also im-
plement this step for all the considered baselines.

8.4 experiments
‡

We designed our experiments to investigate the following questions:
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Figure 8.4: Close-up screenshots from the simulation environments used
in our experiments. The environments are provided by robo-
suite [220]. (left) dual-arm-peg-in-hole environment (middle)
dual-arm-lift and (right) four-arm-lift environment with modi-
fied gripper structure.
This figure has previously been introduced in one of the author’s previ-
ous publications [7].

(Q1) Can central latent action spaces help coordinate action genera-
tion in decentralized cooperative robotic manipulation?

(Q2) Does our method improve sample efficiency with respect to the
selected baselines?

(Q3) Can our method reach or exceed the performance of single-
agent approaches with full-state information?

(Q4) Is our method scalable to more than two-arm manipulation
tasks?

(Q5) How robust is our method to external disturbances?

8.4.1 Environments

We evaluated our method in three simulated environments based
on robosuite [220]. The environments are selected/built such that
they require cooperation between multiple robot arms. Due to the
lack of standardized environments that are suitable for our use case
(i. e.multi-robot manipulation), we use existing environments from
public benchmarks when suitable and build alternatives when needed.
Due to the nature of our problem, we select environments that have
continuous state and action spaces. In all of the environments, each
agent’s observations are the corresponding robot’s joint position and
velocity, as well as its end-effector pose.

dual-arm-peg-in-hole . In the first environment, 2 robot arms
cooperate in the peg-in-hole task. A close-up view of the scene and
the objects can be seen on the left in Figure 8.4. We are using the orig-
inal reward from robosuite, which is composed of a reaching and ori-
entation reward. The shared observation oc corresponds to the poses
of the peg and hole and the distance between them.
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dual-arm-lift. For the second environment, we decided to use
the dual-arm-lift environment. In this environment, a rectangular pot
with two handles is placed on a surface between two robot arms. The
task for each robot is to reach and grip the handle before coopera-
tively lifting the pot off the surface. During initial experiments, we
noticed that the provided reward does not promote cooperation and
can be easily tricked, i.e., the maximum reward per time step can
be reached by controlling a single robot to tilt and lift the pot only
slightly off the table. This is due to the generous maximum tilt angle
of 30

◦ and the successful lift height of 0.10. The other major com-
ponent of the reward measures the ability to reach and grasp the pot
handles. However, we are not interested in assessing the reaching and
gripping capabilities but want to rather reward cooperative lifting be-
havior. Therefore we are considering the following modifications to
the reward of the environment. At the start of an episode, we move
each robot’s end-effector close to its handle and weld the pot handle
to the end-effector with a distance constraint in the MuJoCo ([187])
simulator. We chose a distance constraint because it constrains the
position but leaves rotational coordinates free. We remove the grip-
per fingers to avoid unwanted collisions. We visualize the resulting
starting condition in the middle of Figure 8.4. We also modify the
reward function to enforce success only during high lifts. Addition-
ally, the maximum tilt angle is reduced such that both robots must
cooperate to keep the pot level at all times. The shared observation
oc corresponds to the pose of the pot.

four-arm-lift. The third environment is an extension of the dual-
arm-lift environment and uses two additional robot arms to lift the
pot (i. e.total of four robot arms). Here the pot weight is increased
to keep the coordination requirement. We build this environment for
the sole purpose of testing the scalability to more than two robots/a-
gents. The pot with four handles and the robot arms’ placement can
be seen on the right in Figure 8.4.

The changes to the lifting environments were evaluated with man-
ual human control to ensure that tricking the system or solving the
task with a single robot arm is not possible. Keeping a high reward
was only possible when the pot is lifted vertically for a long period of
steps. All environments use a joint velocity controller which receives
desired joint velocities from the policy.

8.4.2 Baselines:

To validate our method, we compare it to well-established baselines
that have been previously applied to continuous control. Our experi-
ments include the following baselines:
• SINGLE: refers to having a single agent controlling all robots.
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(a) dual-arm-peg-in-
hole

(b) dual-arm-lift (c) four-arm-lift

Figure 8.5: Performance in simulated multi-robot manipulation tasks under
Partial-observability. We compare our method (CLAS) to central-
ized single-agent and decentralized multi-agent approaches. Our
approach outperforms the considered decentralized multi-agent
approaches in all environments. It also manages to solve the four-
arm-lift task in which all the considered baselines fail.
This figure has previously been introduced in one of the author’s previ-
ous publications [7].

• LASER: uses a latent action space on top of a single agent controlling
all robots. This is based on the work in [11].

• FULL_DEC: refers to having all agents trained with the exact obser-
vations and actions they will have access to during execution. The
agents are not provided with a communication channel.

• SHARED_Q: similar architecture to FULL_DEC, but all agents are trained
using a central critic. This baseline is based on the work in [120].

• CLAS: refers to our method and abbreviates “central latent action
spaces”.

The first two single-agent approaches are included as strong baselines
and references. They serve us to better understand the different en-
vironments and to elaborately analyze our results. Finally, to make
the comparison more reliable, we use SAC for training the different
agents in all baselines.

8.4.3 Results

Task Performance. Figure 8.5 shows the episodic reward obtained
by our method and the baselines in the three environments consid-
ered. Looking at the single-agent approaches, we observe that both
baselines reach high-reward areas for the dual-arm tasks. However,
both fail to solve the four-arm-lift task. At the end of training, the
best mean episode reward achieved by a single agent is substan-
tially smaller than the maximum possible reward and has a very
large variance. This illustrates the problem of learning multi-robot
manipulation tasks with large action and observation spaces with a
single-agent RL approach. In contrast to the dual-arm tasks, the four-
arm-lift environment features state and action spaces twice the size.
Next, we analyze the results from MARL-based methods. FULL_DEC
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Success rates over 10 evalua-
tion runs under external distur-
bances.

FULL_DEC SHARED_Q CLAS

none 70% 100% 100%

[0, 50] 30% 80% 100%

[50, 100] 20% 60% 100%

[100, 150] 10% 70% 100%

[150, 200] 20% 40% 100%

[200, 250] 0% 40% 100%

[250, 300] 0% 30% 90%

[300, 350] 0% 20% 60%

Figure 8.6: Effect of applying disturbances (forces) at the center of mass of
the pot in the four-arm-lift environment. (left) Episode reward
(right) success rate under different ranges of disturbances. The re-
sults are based on 10 evaluation runs. Our method demonstrates
robustness against different ranges of disturbances in compari-
son to the other decentralized baselines, which success rate de-
creases dramatically as we increase the disturbance.
This figure has previously been introduced in one of the author’s previ-
ous publications [7].

and SHARED_Q struggle to keep up with single-agent RL methods. Both
methods do not explicitly encourage coordination. Hence, this result
might indicate that our environments are well-suited for studying
partially-observable Markov decision processes, since they require a
certain degree of coordination to be solved. The two approaches man-
age to solve the peg-in-hole task but struggle in the two other environ-
ments. They also lead to very similar results. In contrast, our method
(CLAS) successfully solves all tasks even under partial observability.
In the dual-arm-peg-in-hole environment, it reaches a high episode
reward after only 250 thousand environment interaction steps, while
the two other MARL approaches fail to do so in triple the number of
steps. Furthermore, it achieves a final performance very close to the
one achieved by single-agent methods. In the dual-arm-lift environ-
ment, our approach outperforms both MARL-based baselines. Addi-
tionally, it surpasses the final performance of the two other MARL ap-
proaches after only half the amount of steps. More importantly, CLAS
slightly outperforms the single-agent methods. In the four-arm-lift
environment, CLAS is the only studied method that manages to solve
the task and achieve a high reward. Even the single-agent baselines
which have access to full state information fail in this task. This indi-
cates that acting in the latent central action space enables coordinated
control even under partial observability and action decentralization.
Finally, we notice that our method leads to significantly lower per-
formance variance, which makes deploying it in real-world scenarios
more reliable.
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Robustness analysis. We aim to evaluate the coordination capa-
bility of our method by quantifying its robustness to external distur-
bances. We perform this experiment on the four-arm-lift environment
and compare the different decentralized baselines to our method. For
each method, we pick the model from the training run with the best-
achieved performance. We then evaluate the corresponding agents in
the same environment as before, however, when additionally apply-
ing an external force to the pot. Force is applied during the steps in
the interval [10, 100], and force vector values are uniformly sampled
at each step to be in a certain range. We experimented with multiple
ranges. The results can be seen in Figure 8.6. Under no disturbances
("none"), all methods achieve a high reward and a decent success rate.
After applying disturbances in the range [200-250], FULL_DEC fails in
all evaluation runs to solve the task. The success rate of SHARED_-

Q goes down to 40%, but its reward remains relatively high as the
agent manages to lift the pot a bit, but not always to the target height.
On the other hand, our method CLAS is almost not affected by this
level of disturbance. As expected, when increasing the magnitude of
the forces, all methods start to fail more often at solving the task, but
CLAS appears to remain reasonably robust.

We perform additional ablations and experiments to validate the
coordination behavior of our method, and study its performance un-
der full agent observability and asymmetric action spaces with differ-
ent robots per agent. We also attempt to interpret the learned actions
spaces. The results can be seen in Appendix B.3.

8.5 discussions

This chapter introduced a method for learning central latent action
spaces for coordinating multi-robot manipulation tasks. The proposed
approach simultaneously addresses two important problems in learn-
ing multi-robot manipulation. The first problem is that the action
space grows with the number of robots, making exploration and pol-
icy training very expensive and in many cases not feasible. The sec-
ond problem is the lack of coordination in decentralized multi-agent
approaches. The proposed method combines good properties from
single-agent methods (through the central latent action space) and
decentralized multi-agent methods through the decentralized gener-
ation of raw actions. The experiments demonstrate the suitability of
this method in various multi-robot manipulation tasks and its supe-
riority over a selection of single-agent and multi-agent baselines. The
scalability of the method to multiple robots and its robustness to ex-
ternal disturbances are clearly supported by the experiments. More
importantly, the proposed method enables learning a four-arm lifting
task that all considered baselines fail to solve. This shows that the
method strikes a good balance between multi-agent coordination and
sample efficiency.
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One main disadvantage of this method is that it encourages policies
to be task-specific. This reduces the usability of this method in multi-
task domains. However, the concept of central latent action spaces
and the proposed training method can be used for different multi-
task purposes. For instance, future work could explore learning cen-
tral latent action spaces that encode the constraints of the physical
interaction between the different robots. Such an action space can
be used with either multi-task or single-task data and later be used
in any of those domains. Learning policies in such an action space
would then ensure that these constraints are not violated. The cen-
tral latent action space could also encode different properties that
are not task-specific. For instance, for multiple tasks, an action that
defines the distance between the different end-effectors and a given
object can be sufficient for solving the task. Both ideas can theoret-
ically work with minor adaptations to the current method. Another
important limitation of this work is that it does not strictly enforce a
physically meaningful action to emerge. This can be seen as a disad-
vantage since policies typically output interpretable actions directly
usable with the environment’s robots. In the proposed method, the
policies actions can only be interpreted after they get decoded into
the original action space. Future work can explore the imposing of
physical constraints on the latent action space and ensuring that it is
interpretable. This can be done, for instance, by introducing a latent
dynamics model that follows the structure of rigid body dynamics
equations.

Both disadvantages are common to all learned action representa-
tions. Recently, large-scale open-source datasets with data spanning
multiple robots and multiple action spaces started to emerge [142].
This is very promising for learning task-agnostic and physically in-
terpretable latent action spaces. The latter can be very useful for re-
ducing the requirements for robot learning research and potentially
enable new tasks to be solved. As mentioned above, a very promis-
ing direction for latent action spaces is to encode embodiement con-
straints. In addition to sample efficiency and exploration, such action
spaces could improve the safety of RL methods. This can be true both
for the execution and training phases. The latter being very important
since it might simplify collecting real-world robotics data to train fu-
ture models and policies.
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D I S C U S S I O N S

The motivation behind this thesis was to improve and build on top
of state-of-the-art learning-based robotics manipulation. The aim was
to bring the field of robot learning at least one step closer to mak-
ing a real-world impact. However, the topic is very complex and has
been researched for a very long time now, while still leaving much
room for scientific curiosity and improvements. Its theoretical com-
plexity stems from the inter-disciplinary nature of the problem be-
ing situated at the intersection of robotics, control theory, machine
learning, and computer vision. In practice, the field moves slower
than other ML-related topics due to multiple technical challenges.
One major hurdle is data acquisition. While it is possible and rather
easy to crawl the Internet for image and textual data, physical inter-
action is not really available in that context. In contrast, collecting
robotics data can be very challenging and expensive and requires
well-maintained software-hardware infrastructures. Recent progress
in simulation technology [124, 187] alleviates some of those data chal-
lenges. However, even if we ignore the sim-to-real gap (which we
should not), simulation environments are typically not readily avail-
able for each new task and instead require considerable engineering
efforts. Recent work has also benefited from teleoperation and kines-
thetic teaching data for training control policies via supervised imita-
tion learning [125, 142, 168, 170]. However, such data is a lot harder to
obtain than simply browsing the internet. Finally, unlike other fields
in ML, robot learning still lacks a common real-world benchmark.
This has meant that different laboratories can use completely different
hardware setups and software implementations, making any compar-
ison of results biased or in some cases unfeasible. However, this lack
of benchmarks is also understandable, since robotic hardware quickly
evolves and the field has not yet converged to a single platform that
fulfills all research requirements.

Throughout this thesis, the field of robot learning has seen multiple
trends, paradigm shifts, and changes in narrative. Some of the con-
tributions in this thesis (especially the earlier ones) were influenced
or inspired by these changes. Hence, before concluding the thesis
and giving an outlook for future work, we will briefly revise and de-
scribe some of the major paradigm shifts and trends. The aim of this
overview is to provide context and better place the contributions of
this thesis.

119
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9.1 paradigm shifts and trends

One big decision required for designing a robot learning pipeline con-
cerns the definition of what exactly is to be learned and how to learn
it. Let us first assume that the answer to what is "everything" and
how is in question. Early works in deep RL advocated for end-to-end
learning of robotics policies [111, 196]. Under this paradigm, all as-
pects of the control policy such as perception, planning, and control
should be learned with the same method and the same objective func-
tion. Whether through RL or imitation learning, all these components
would be trained simultaneously. The advantage of such an approach
is that all of these components would have some kind of mutual un-
derstanding of one another. For example, if the perception parts of
the policy are erroneous, the downstream modules would know how
to compensate for that, since they were trained together. This might at
least be true under the training data distribution. Another advantage
is that the earlier modules such as perception and planning would be
targeted to the task at hand, since they are all trained with data from
this task and potentially an objective related to it. The latter might
only be true for RL-based methods.

However, being task-specific can become a disadvantage when con-
sidering more general robots. Additionally, learning all components
using only an RL objective can be very challenging and expensive.
Maximizing task reward does not directly provide any signals for
learning perception. This might then lead the policy to learn some
shortcuts or heuristics for control from high-level observations. This
challenge led to the emergence of a different paradigm, where dif-
ferent parts of the pipeline can be learned separately, with differ-
ent objectives, potentially different data, and even at different times.
These methods relied mainly on SRL for learning perception, sequen-
tial models for planning [26, 45, 204] and learned action spaces for
control [7, 11, 219]. Besides the gains in sample efficiency, an advan-
tage of this paradigm is that different modules can be more easily
reused for new tasks.

Another paradigm shift was related to the question of what should
be learned. As previously hinted, early deep RL methods favored
learning as much as possible [111, 215]. However, recent methods
have seen an increased usage of non-learned components in the de-
cision-making pipeline. These methods assume access to perception,
planning, or skill library modules [34, 80, 115, 123, 195, 206]. However,
it is unclear whether this tendency is indeed a paradigm shift, or just
a simplification needed for making progress with large foundation
models for robotics [30, 50].

Finally, in recent years, there has been a change from RL directly
in the real world, to either RL in simulation combined with sim-to-
real transfer [3, 38, 69, 183, 184], or imitation learning based on real-
world demonstrations [125, 142, 168, 170]. This change was probably
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sparked by the difficulty and expense of training data-hungry deep
RL methods on expensive robots. However, while sim-to-real transfer
and imitation learning alleviate the data problem, they do not offer
a direct alternative to RL in the long term. This is simply due to the
inability of these methods to directly query new data in the real world
environment to overcome the distribution shift they might encounter
at deployment time.

This is to hint, that some of these changes might be there to stay
and indeed be classified as paradigm shifts, while others might be
only short-term solutions to enable progress in the field. Robot learn-
ing is a very complex subject to a point where finding one common
solution might not be possible like in other ML-centric fields. Instead,
different methods, paradigms, and combinations are needed for dif-
ferent tasks. Even if a common solution does exist, it might be a com-
bination of already existing paradigms or completely different ones.
This thesis experimented with different paradigms and combinations
in the search for a better understanding of the problem, and perhaps
of the optimal approach (if it exists).

9.2 conclusion

This thesis approached robot learning from the perspective of state
and action space representations. The main contributions were split
between the state and action aspects of the problem. Thus, it proposed
ideas and concepts at the intersection of robotics, control, machine
learning, and computer vision. The first part of the thesis deals with
perception, and the state space. It first proposed a method for build-
ing suitable representations based on supervised object tracking. The
proposed approach was tailored for robotics as it aimed to improve
the tracking robustness in the presence of appearance changes. In
addition, this thesis introduced a method for improving agent explo-
ration in a way that targets state representation learning for model-
free RL, or more generally, in the absence of a sequence model of the
dynamics. The proposed method leverages different SRL objectives to
train policies that can explore areas of the state-action space where
the perception module struggles.

The second part was focused on the action and control aspects of
robot learning. Unlike the state space, the action space perspective
of robot learning received way less interest and research from the re-
search community. Hence, to provide a better understanding of this
problem, we first performed a study to understand the role of the
action space in robotic manipulation learning. The study analyzes
the role of different action space characteristics in exploration, task
performance, and sim-to-real transfer of manipulation policies. As a
result, the study provides explanations for the role of different de-
sign components in manipulation learning. Furthermore, it provides
recommendations for research on building control spaces and appli-
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cations in robotic manipulation. Similar to the state space part of the
thesis, this part also experiments with building and learning repre-
sentations, in this case, for the action space. Since manipulation is
concerned with motion and interaction, we first propose a method
for learning motion-centric action spaces that embed principles from
differential geometry and motion primitives as inductive biases. The
proposed space simplifies motion generation by abstracting some of
its components from the policy. This abstraction reduces the task com-
plexity from the policy’s perspective. As a result, learning collision-
free reaching skills can be done in a very short time. In addition, the
thesis proposes an approach for learning latent action spaces based
on variational inference. The method is tailored for multi-robot ma-
nipulation problems. It assumes the existence of a central latent ac-
tion space which dimensionality does not grow with the number of
robots. The method then learns inference and generative models that
enable learning policies to act in this latent action space, while map-
ping these latent actions back into the robot’s native control space in
a decentralized fashion. This method enables scaling robot learning
to multi-robot scenarios in an efficient manner.

In summary, the thesis tackled multiple challenges in the field by
building and learning state and action representations. While sample
efficiency is the common objective among all individual contributions,
some also improved the exploration, robustness, and scalability of the
learned controllers.
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F U T U R E W O R K

This thesis proposed methods for obtaining state and action repre-
sentations for learning manipulation. State representations have at-
tracted a lot more research interest than actions. The ideas proposed
here are only steps towards obtaining better action spaces. Future
work should focus on finding more generally applicable action spaces
that enable efficient manipulation learning. Ideally, these future ac-
tion spaces would strike a better balance between complexity abstrac-
tion and policy flexibility. Classical robotics and control theory offer
a lot of ideas for building such action spaces. Furthermore, learning
latent action representation is also a very promising direction. Future
work could investigate the efficacy of more recent generative ML meth-
ods such as transformers on this task. Additionally, it would be inter-
esting to enforce constraints on these latent spaces to ensure some
behavioral properties, such as smoothness or compliance. Another
interesting avenue of research is on learning object-centric action rep-
resentations, potentially using differentiable implementations of rigid
body dynamics.

While the state and action space are very important aspects of the
robot learning problem, they only constitute a small part of it. For
example, looking back at the MDP definition, we immediately notice
that two major components are not considered in this work. That is,
the reward and dynamics models can play a major role in improving
the efficiency and usability of robot learning. For dynamics, one could
learn a sequential model and potentially integrate the state and action
space representation objectives in the learning process. Although the
latter is, to our knowledge, not well studied, integrating state space
models in model-based RL is a well-researched topic [67, 91]. With the
success of state-space sequential models, action space representation
in sequential models seem like a promising avenue for future work.
Such models could simplify learning dynamics, for instance, by ab-
stracting complex dynamics with higher-level actions. However, the
complexity of real-world dynamics stood in the way of using model-
based RL in robotic manipulation, making such action abstractions
even more applicable and promising in this domain. Furthermore,
learning reward models can help overcome the reward shaping prob-
lem and alleviate some of the challenges in sparse rewards environ-
ments.

Beyond the MDP definition, robot learning still faces multiple chal-
lenges. For instance, scaling state-of-the-art methods to multi-robot
tasks can be very challenging, as discussed in Chapter 8. The same
is true for multi-task learning and more generalist approaches. Hi-

123
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erarchical policies offer a promising framework for addressing some
of these challenges, particularly when incorporating diverse sources
of information. Additionally, embodied general agents could benefit
from combining multiple levels of information such as semantic, af-
fordance and physical knowledge. Recent work has shown that we
can leverage high-level semantic knowledge in foundation models
for high-level robot task planning [34, 80, 206]. These models can
comprehend and generate human-like language, enabling the robot
to understand complex instructions and abstract concepts.

To enhance mid-level planning, affordances can be integrated into
the hierarchical policies. Affordances provide information about the
interactions between objects and the environment, guiding the robot
in understanding how its actions can affect the surroundings. This
helps bridge the gap between high-level semantic knowledge and
concrete actions, enabling more effective task planning.

Moving down to low-level motor control, incorporating physical
inductive biases becomes crucial. These biases help the robot exploit
its knowledge of the physical world, such as gravity, conservation of
energy, object properties, and spatial relationships, to efficiently learn
to perform precise motor control tasks. By combining hierarchical
policies with representations from foundation models for semantic
understanding (top level), affordances for task planning (mid level),
and physical inductive biases for motor control (bottom), we might
be able to build agents capable of learning and executing multiple
novel tasks in unstructured environments.

In addition, despite the limitations of the sim-to-real paradigm,
these methods offer a cheap alternative to generating massive datasets
for training generalist robotics models. Using simulation, we could ef-
ficiently train a large set of robotic skills using well-designed rewards
and simulation environments. These policies can be used for collect-
ing large amounts of expert datasets in simulation and the real world.
These data can ideally include multiple hardware platforms with the
hope of building a multi-embodiement model for low-level control.

In summary, despite all the recent progress in robot learning, sub-
stantial efforts are yet required to deploy these methods on a large
scale in the real world. At the moment, it seems like the two main
axes for making progress in this field are scaling data acquisition and
finding general inductive biases. Both aspects can be very beneficial
for tackling the complexity of the problem, and their combination can
potentially be even more powerful.
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A P P E N D I X





A
R O B O T S TAT E R E P R E S E N TAT I O N S

a.1 supervised state representation via robust track-
ing

From left to right: template at the beginning, in the middle and at the
end of the sequence. The sequences are from OTB2015 (Girl, Singer1,
Toy, Vase) and we use SiamRPN for tracking. A.1.0.1 shows the tem-
plates using the dynamic lower bound, A.1.0.2 the ensemble lower
bound.

a.1.0.1 Dynamic Lower Bound
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a.1.0.2 Ensemble-based Lower Bound
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a.2 exploration for state representation learning

a.2.1 Implementation Details & Hyperparameters

For the encoder and decoder, we employ the architecture from [212].
Both consist of four convolutional layers with 3× 3 kernels and 32

channels and use ReLU activations, except of the final deconvolution
layer. Both networks use a stride of 1 for each layer except of the first
of the encoder and the last of the decoder, which use stride 2.

For all shown experiments, we train with multiple seeds for each
task. At the beginning of each seed, we pretrain the models with 1000

samples which we collect by rolling out random actions. Afterwards,
we evaluate the model every 10 thousand environment steps over 10

episodes and report the average reward. The total number of episodes
depends on the complexity of the task. All hyperparameters used in
our experiments are summarized in Table A.1.

Table A.1: The hyperparameters used in our experiments.

Parameter Setting

Batch size 128

Replay buffer capacity 80000

Discount γ 0.99

Hidden dimension 1024

Curious exploration probability pc 0.2

Observation size 84× 84× 3
Frames stacked 3

Critic learning rate 10−3

Critic target update frequency 2

Critic soft target update rate τ 0.01

Actor learning rate 10−3

Actor update frequency 2

Actor log std bounds [-10, 2]

Autoencoder learning rate 10−3

Decoder update frequency 1

Temperature learning rate 10−4

Init temperature 0.1
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a.2.2 Additional Results

Here we show the exact values obtained for the SRL error visitation
experiment in section 5.3.2. These values were roughly illustrated in
figure 5.2 and exactly shown in Table A.2.

Table A.2: Mean, minimum and maximum SRL error encountered per step
when using three different agents on six deepmind control suite
tasks.

method/env Vals random sac_ae cure

reacher_easy
Min 0.0001 0.0001 0.0390

Mean 0.0002 0.0004 0.0399

Max 0.0003 0.0007 0.0424

ball_in_cup
Min 0.0005 0.0003 0.0762

Mean 0.0006 0.0005 0.0774

Max 0.0008 0.0007 0.0783

cartpole_swingup
Min 0.0002 0.0002 0.0531

Mean 0.0002 0.0002 0.0540

Max 0.0003 0.0003 0.0548

finger_spin
Min 0.0002 0.0004 0.0755

Mean 0.0003 0.0012 0.0766

Max 0.0004 0.0015 0.0774

finger_turn_easy
Min 0.0003 0.0003 0.0749

Mean 0.0004 0.0005 0.0759

Max 0.0006 0.0008 0.0769

reacher_hard
Min 0.0002 0.0002 0.0393

Mean 0.0003 0.0004 0.0397

Max 0.0008 0.0006 0.0404



B
R O B O T A C T I O N R E P R E S E N TAT I O N S

b.1 the role of the action space

We provide more details concerning our environments. For the reach-
ing task, we define the reward function

rreach(st,at) = rewreach(st,at) − penreach(st,at)

rewreach = rdist + rexact

penreach = rvel + rsmooth + rneutral + rlimit

rdist(st,at) = λr ·
1

1+ ∥st − g∥22

rexact(st,at) = 1(∥st − g∥2 < ϵ)(λϵ +
1

1+ 100q̇2
)

rvel(st,at) = λq · ∥q̇t∥22
rneutral(st,at) = λn · ∥qdef − q∥2
rlimit(st,at) = λl · e−30(q−qlim)2

rsmooth(st,at) = λs · ∥at − at−1∥2,

where we use the Euclidean norm as a distance metric. g is the end-
effector goal position, qdef is the default joint positions vector, ϵ is
a small positive constant, λr and λϵ scale the reach and exact reach
reward, λq and λs are positive scalars for the penalties on the velocity
magnitude and smoothness of the action respectively and 1 is an
indicator function, lamdan is a scalar for the penalties on divergence
from the default joint position, and λl is a scalar for the joint limit
avoidance penalty. For pushing we have a different reward,

rpush(st,at) = rewpush(st,at) − penpush(st,at)

rewpush = rdist + rexact + rpush

penpush = rvel + rsmooth + rneutral + rlimit + rcol

rcol(st,at) = λc · 1(zee < 0.02),

where λc is a scalar for the table collision penalty, zee is the end-
effector’s z-position, rdist and rexact use the object position as goal, and
rpush is defined exactly as rdist, but measures the distance between the
object’s position and the pushing goal position.
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b.2 inductive biases in the action space

b.2.1 Joint Limit Avoidance

Here we provide more information concerning the joint limit avoid-
ance RMP policy. The metric matrix of the policy is defined as Gl :=
diag(b1,b2, ...b7), where bi = (s(αud+ (1−αu)) + (1− s)(αld+ (1−

αl)))
−2 is the joint limit avoidance metric for the i-th joint q. In this

formulation, s = q−ll
lu−ll

, d = 4s(1 − s), αu = 1 − exp(−q̇2+/2σ
2) for

σ > 0 and αl = 1− exp(−q̇2−/2σ
2). In this notation, q̇+ = q̇ for q̇ > 0

and q̇− = q̇ for q̇ < 0. The intuition behind this is the following: if
the joint position is close to the limit lu or ll and the joint velocity
heads to its limit, the metric goes to infinity; otherwise, the metric
becomes 1. The definition of the damping matrix Bl is similar to the
definitions in sections 7.2.1 and 7.2.2. Furthermore, since the curva-
ture force near the joint limit is large enough, we define the potential
field Φl := 0. With the above-mentioned definitions, we can finally
obtain fl and Ml according to the GDS of Rl.

b.2.2 Implementation Details

Previous work has shown that the performance of reinforcement learn-
ing algorithms is dependent on the implementation details [72, 155].
Thus, we provide further details about our method’s models and
training procedures for both representation (section B.2.2.1) and re-
inforcement learning (section B.2.2.2) for the sake of reproducibility.

b.2.2.1 Representation Learning

Our β-VAE encoder is a convolutional neural network (CNN) with
five convolutional layers having in order 6, 32, 64, 128 and 256 chan-
nels. Each layer uses a rectified linear unit (ReLU) for activation and is
followed by a batch normalization layer [83]. The mean and log stan-
dard deviation layers of the latent are linear and are also followed by
a batch normalization layer. The mean layer uses a hyperbolic tangent
(Tanh) activation.

For training, we use the Adam optimizer [97] with a learning rate
of 0.001 and batches of size 128.

b.2.2.2 Reinforcement Learning

TD3 is an actor-critic method [55]. We use an actor with two hidden
layers, each containing 100 neurons. The activation function of all lay-
ers is Tanh. The critic has two hidden layers, with 500 neurons each.
For the critic, we use ReLU activations for hidden layers and no activa-
tion for the output. We use Adam to optimize both sets of parameters.
The training hyperparameters are listed in the table below.



B.2 inductive biases in the action space 133

Table B.1: The hyperparameters used for RL.

Hyperparameter Value

TD3 Policy noise 0.2

Max episode steps 400

Exploration noise 0.5→ 0.3

Memory Size 300000

Batch size 64

Learning rate 1e− 3

b.2.3 Additional results

In this section we show some additional results related to experi-
ments A and B (section B.2.3.1 and B.2.3.2) as well as to the latent
model (section B.2.3.4).

b.2.3.1 Experiment A

In addition to the previously shown total reward plot, here we show
plots of the individual reward terms: rcollide, rgoal, rdist, rcontrol.
These values are especially interesting when comparing the policy
learning with the baseline and without it. As before, we refer to those
cases as Residual Policy Learning (RPL) and Vanilla Learning (VL)
respectively. The results can be seen in figure B.1. As expected the
goal reward for RPL is substantially higher than that of VL at all
times. At the beginning of training, RPL leads to more collisions with
the obstacle as the baseline policy guides it towards the goal. Sub-
sequently, RPL starts with more negative reward rcollide than VL.
However, it manages after training to reach a similar level as VL. In
contrast, the latter depending mostly on random actions barely hits
the obstacle at these stages as it’s not even directed towards the goal.
This can be seen in the rgoal and rdist plots. As for the control re-
ward rctrl, it behaves similarly for both methods. However, it gets
higher for vanilla learning after a while. This could be explained by
the following: RPL based exploration leads at all times to higher goal
reward than VL. The latter, barely reaching the goal, prefers to take
smaller actions to increase rctrl.

b.2.3.2 Experiment B

In addition to the provided video here we show image sequences for
our multiple obstacle avoidance results. We show a successful trial in
figure B.2 and an unsuccessful trial in figure B.3.
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Figure B.1: Individual rewards for the policy training with a baseline (RPL)
and without (VL).

Figure B.2: Multiple Obstacle Avoidance: Successful trial. The red circle is
the goal.
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Figure B.3: Multiple Obstacle Avoidance: Unsuccessful Trial. The red circle
is the goal. The robot collides with the cylinder at the end of the
execution.

Figure B.4: Single obstacle avoidance: cube. The red circle is the goal.

b.2.3.3 Experiment C

Although experiment B supports our claim of generalization, we con-
duct a further experiment to double-check our method’s generaliza-
tion ability. This experiment tests if the trained policy can generalize
to unseen obstacles. We train our policy in single obstacle avoidance
scenarios, with two types of obstacles: cuboid and sphere. After the
training, we test the trained policy in scenarios with a cylinder ob-
stacle. We evaluate the policy for 50 trials in the scenarios containing
the unseen obstacle. We report that the success rate is 72%, which
is similar to the success rate when evaluating the policy using the
previously-seen obstacles. Besides the training curve, we also provide
an image sequence of the execution. Figure B.4 and B.5 are evalua-
tions of the policy on trained obstacles (cube and sphere). Figure B.6
shows a policy execution in the scenario with previously unseen ob-
stacle (cylinder). The result of this experiment provides another evi-
dence of the generalization ability of our method.
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Figure B.5: Single obstacle avoidance: sphere. The red circle is the goal.

Figure B.6: Single obstacle avoidance: cylinder. The red circle is the goal.
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Figure B.7: Images Sampled from latent z0 and z1. First two rows: z1 < 0

and z0 ∈ [−1, 1] ; Last two rows, z1 > 0 and z0 ∈ [−1, 1]. z0 and
z1 control together the y-position of the sphere.

b.2.3.4 Visualizing the latent space

Here we illustrate images sampled from our VAE’s latent as to show
the importance of such variables to the obstacle avoidance task. The
samples are shown in figure B.7. Note that the sampled images are
only blurry because of the down-sampling of the inputs images to
the VAE.

b.3 central latent action spaces

b.3.1 Further Details

b.3.1.1 Models

We provide further figures illustrating the computational architecture
and graphical models related to the different components of the algo-
rithm. Figure B.8 shows the grahical models of the policies involved
in our method under full and partial observability.
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Figure B.8: Graphical models of the policies used by CLAS for the cases of
partial (a) and full observability (b).

b.3.1.2 Derivations

Here we go over the derivation of equation (8.1) and provide more
steps and explanations on how the derivation is performed:

p(u | o) =
∫
pθ(u | o, v)pψ(v | o)dv

lnp(u | o) = ln
∫
pθ(u | o, v)pψ(v | o)dv

lnp(u | o) = ln
∫
pθ(u | o, v)pψ(v | o)

qϕ(v | o, u)
qϕ(v | o, u)

dv

⩾
∫
qϕ(v | o, u) ln

(
pθ(u | o, v)

pψ(v | o)
qϕ(v | o, u)

)
dv

= Eqϕ(v|o,u)

[
ln
(
pθ(u | o, v)

pψ(v | o)
qϕ(v | o, u)

)]
= Eqϕ(v|o,u)

[
lnpθ(u | o, v) − lnqϕ(v | o, u) + lnpψ(v | o)

]
= Eqϕ(v|o,u)[lnpθ(u | o, v)] − KL

(
qϕ(v | o, u)

∣∣∣∣ pψ(v | o)
)

= L(u, θ,ϕ,ψ |o).

The inequality step is based on Jensen’s inequality, the pre-last step
is due to the product and quotient rules of logarithms, and the last
step is based on the definition of the KL divergence. The derivation
is in line with the original lower bound derivation for variational
autoencoders [98].

b.3.2 Experiments

b.3.2.1 Setup

Here we provide further details concerning our setup and experimen-
tal design, as to enable easy reproduction of our work.

The environments we used are based on joint velocity control ac-
tion spaces. Each agent receives the corresponding robot’s propriocep-
tive measurements, and the shared observation corresponds to object
observations. For evaluation, we run each episode for 500 steps lead-
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Figure B.9: Graphical models under full access to observations for all agents.
(a) action generation, (b) latent action inference. During genera-
tion of actions ui each agent i requires input from global ob-
servations o and central latent actions v. In order to infer latent
actions v information from all agents and the global observation
is needed.
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Figure B.10: Graphical models under partial agent observability. (a) action
generation, (b) latent action inference. During generation of ac-
tion ui the input observation excludes all the other agents ob-
servations o−i and latent actions v−i. Inference is done based
on observations and actions from all agents.
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Figure B.11: Results under full agent observability.

ing to maximal reward of 500. We run all evaluation experiments 10

times with different random seeds.
The reward used in the Lift environment is the following:

rlift = max(d− 0.05, 0)

rdir =

{
1, for cos(α) ⩾ cos(10◦)

0, for cos(α) < cos(10◦)

r =
1

3

{
3 rdir, for d > 0.35

10 rdir + rlift, for d ⩽ 0.35,
(B.1)

where d represents the distance between the surface and the pot, α
the tilt angle of the pot.

b.3.2.2 Results under full observability

Here we study the performance of our method in the case where
all agents have access to the full observation. We again compare to
the same baselines. Similar to the results in section 8.4, our methods
outperforms all MARL baselines in terms of final reward and sample
efficiency. It also approaches the performance of the centralized single
agents, and even outperforms them in four-arm-lift.

b.3.2.3 Ablations

In section 8.4, we showed that the shared latent actions are active
during control. To make sure that the shared latent actions are not
ignored during execution we perform the following experiment. We
replace the shared latent actions with zeros during inference, and
compare the achieved episodic reward to the standard case using our
method. The results are in figure B.14. For the peg-in-hole environ-
ment, the difference in performance is minor. This is mainly due to
the fact that this task does not necessarily involve objects that are
independent of the robots. Instead the peg and hole are attached to
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Figure B.12: Reward plots in the dual-arm-lift environments when using
two different robots with different action spaces.

the corresponding robot. The improvement in results shown by our
method in figure 8.5 is mainly due to the centralized training of the la-
tent action space model. However, for the lifting environments, where
a robots-independent object is to be manipulated, masking the shared
latent action makes a huge difference. Namely, masking the shared la-
tent actions with zeros leads to very low rewards. These two results
indicate that our action space model maps robot actions into actions
acting on the objects in some space.

b.3.2.4 Results under Asymmetry of action spaces

To check whether our approach is capable of handling asymmetric
action spaces and multiple robots, we compare its performance to
the baselines again in the dual-arm-lift environments. However, this
time we use two different robots in the environment, namely we use
a Panda and a Sawyer robot. The panda is equipped with a joint ve-
locity action space and Sawyer with an operational space controller.
The results are in figure B.12. CLAS is the only decentralized method
that finds policies capable of lifting the pot, while the other two de-
centralized baselines as well as SINGLE struggle to do so.

b.3.2.5 Coordination

To demonstrate the coordination achieved by both agents we plot the
desired joint velocity generated by the policy and the achieved joint
velocity for both agents. This can be seen in figure B.15 and B.16. We
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(a) (b)

Figure B.13: Central latent action trajectories for the lifting task. (a) Trajecto-
ries of all latent action dimensions. (b) Correlation between one
shared latent action and the z position of the pot. The z-position
trajectory of the pot (blue curve) follows the latent action trajec-
tory (red curve).

notice that the dominant pattern across all plots is the diagonal. This
shows that the policy outputs are used by both robots as opposed to
having one robot being controlled by a policy, while the other being
purely reactive and ignoring its policy outputs. The fourth joint is the
only exception, where some policy outputs are ignored (mapped to
zeros). However, also in this case, the most values fall on the diagonal.

b.3.2.6 Qualitative Results

Analyzing the central latent action space. To further validate our
method, we examine the shared latent actions produced during eval-
uation. Figure B.13 shows trajectories of the shared latent actions pro-
duced by our model for the dual-arm-lift task. We observe that most
shared latent action dimensions are active during control. One of the
latent actions is constant during execution which illustrates that our
approach could successfully recover a lower-dimension action space
even when configured differently. Furthermore, we notice that the se-
quence of actions from the most varying latent action (in red) highly
correlates with the z-position trajectory of the pot (figure B.13). The
z-position follows the mentioned latent action with a slight time de-
lay. In this case, this latent action represents desired z-positions of
the pot needed to lift it. This is an interesting finding since our ap-
proach does not explicitly enforce any physical form or structure on
the latent action space. The emergence of this property is purely due
to the compression capabilities of variational autoencoders. Note that
the plots in figure B.13 are qualitative results only meant to illustrate
emergent latent actions spaces, and do not mean that our approach
is interpretable.
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Figure B.14: Effect of masking the shared latent action on the achieved total
reward.
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Figure B.15: Plots of the achieved joint velocity based on the commanded
joint velocity for the two agents involved in the Lifting task.
Each row indicates a joint [1-4].
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Figure B.16: Plots of the achieved joint velocity based on the commanded
joint velocity for the two agents involved in the Lifting task.
Each row indicates a joint [5-7].
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