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Zusammenfassung

Mit dem Aufstieg kommertieller Raumfahrt und den jüngsten Erfolgen bei Erkundungs-
missionen auf Asteroiden kam in den letzten Jahren vermehrt die Frage nach der En-
twicklung eines Erkundungsroboters auf, der speziell für Fortbewegung in der Mikro-
gravitation und auf rauem Terrain optimiert ist. Mehrbeinige autonome Roboter mit
mehrgliedrige Spike-Greifern haben hierbei einen entscheidenden Vorteil gegenüber
klassischen, beräderten Rovern. Die immer leichter werdenden und präziseren Sen-
soren für die Tiefenerfassung auf dem Markt können zudem das Potenzial eines solchen
Rovers erheblich steigern um geeignete Punkte im Terrain in Echtzeit für die Fortbe-
wegung und Fixierung zu detektieren.

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Implementierung eines
Algorithmus zur Erkennung greifbarer Ziele für den Hexapod-Rover SCAR-E für ter-
restrischen Anwendungen sowie für planetare Exploration. Der Prototyp des Rovers
wurde vom Space Robotics Laboratory (SRL) an der Tohoku University in Zusamme-
narbeit mit der Asteroid Mining Corporation Ltd. (AMC) entwickelt und verwendet ein
visuelles Sensorsystem, das aus sechs Tiefenkameras besteht, um seine Umgebung
wahrzunehmen. Der erste Entwicklungsschritt ist die Erstellung einer hochauflösenden
virtuellen 3D-Umgebung für Simulationen. Mit Hilfe der Kinect v2 RGB-D Kamera
wird in Verbindung mit der Real-Time Appearance-Based Mapping (RTAB-Map) Tech-
nologie eine detaillierte 3D-Karte eines repräsentativen felsigen Geländes erstellt, die
durch Optimierungs- und Post-Processing-Algorithmen verfeinert wird.

Anschließend werden die gewonnenen Geländedaten verwendet, um einen Algorith-
mus zur Erkennung von greifbaren Zielen in der Umgebung des Roboters zu entwickeln
und zu testen. Mit Hilfe von Tiefenbildern konzipiert der Algorithmus eine Rundum-
Punktwolke für das Terrain in der Umgebung des Rovers. Im nächsten Schritt wird
das Bezugssystem der Punktwolke nach dem Normalenvektor ihrer Regressionsebene
ausgerichtet. Im Schatten liegende, fehlende Anteile werden in einer Delaunay-Triangu-
lation ergänzt und die Geländedaten in ein diskretes Voxelgitter umgewandelt. Auf
der Grundlage der Geometrie des Greifers wird eine dreidimensionale Maske angefer-
tigt, die das Ausmaß des Greifumfangs des Greifers repräsentiert und dazu dient, je-
den Punkt des voxelisierten Geländes auf seine Wahrscheinlichkeit hin, ein greifbares
Ziel zu sein, zu bewerten. Parallel dazu werden im Gelände alle konvexen Bereiche
mithilfe einer Krümmungsanalyse ermittelt und die Schnittmenge der beiden Methoden
gebildet. Der Algorithmus nutzt das für SCAR-E angepasste ClimbLab-Konzept und ist
für die Echtzeitausführung innerhalb eines ROS/ROS2-Frameworks konzipiert.

Simulationsergebnisse in verschiedenen Szenarien zeigen die Wirksamkeit des Algo-
rithmus bei der Erkennung greifbarer Oberflächen unter Berücksichtigung der Gelän-
dekomplexität. Die Ergebnisse bestätigen die Eignung des Algorithmus an den mehr-
gliedrigen Greifer und den Multi-Sensor des optischen Aufbaus des SCAR-E und legen
eine hohe Zuverlässigkeit der Voraussagen bezüglich der Greifbarkeit im felsigen Ge-
lände nahe. Zukünftige Verbesserungen zielen darauf ab, die Geschwindigkeit zu opti-
mieren, die Integration der Greifer-Funktionalität zu verfeinern und die Erkennung von
steilem Gelände zu verbessern.
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Abstract

With the rise of commercial spaceflight and the success of recent asteroid exploration
missions, the need for an exploration robot designed to operate in microgravity and
rugged terrain has emerged in recent years. Multi-legged autonomous robots with
multi-section spike grippers have a decisive advantage over classic, wheeled rovers in
terms of mobility in microgravity. In addition, the increasingly lighter and more precise
depth imaging sensors on the market have the potential to significantly increase the
rover’s ability to detect graspable targets in real time.

The study deals with the development and implementation of an algorithm for the detec-
tion of graspable targets for the fixation and locomotion of the hexapod rover SCAR-E
for terrestrial applications and for planetary exploration. The prototype rover, developed
by the Space Robotics Laboratory (SRL) at Tohoku University in collaboration with As-
teroid Mining Corporation Ltd. (AMC), utilizes a visual sensor system consisting of six
depth cameras to perceive its surroundings. The first development step is to create a
high-resolution virtual 3D environment for simulations. By using the Kinect v2 RGB-D
camera in conjunction with Real-Time Appearance-Based Mapping (RTAB-Map) tech-
nology, a detailed 3D map of a representative rocky terrain is created, which is refined
using optimization and post-processing algorithms .

Subsequently, the terrain data obtained is utilized to test the algorithm for detecting
graspable targets in the robot’s vicinity. Using depth images, the algorithm creates
a panoramic point cloud for the terrain surrounding the rover. In the next step, the
reference frame of the point cloud is aligned according to the normal of its regression
plane, missing parts are added in a Delaunay interpolation and the terrain data is
converted into a discrete voxel grid. Based on the geometry of the gripper, a three-
dimensional mask is created which represents the gripping extent of the gripper and is
used to evaluate each point of the voxelized terrain for its probability to be a graspable
target. In parallel, convex areas in the terrain are determined using a curvature analysis
and the intersection of the two methods is formed. The algorithm is inspired by the
SRL-ClimbLab concept, adapted for SCAR-E and is designed for real-time execution
within a ROS/ROS2 framework.

The test results in various scenarios demonstrate the effectiveness of the algorithm in
detecting surfaces that can be grasped while taking into account the terrain complex-
ity. The findings confirm the adaptability of the algorithm to the panoramic perception
and gripper requirements of SCAR-E and suggest a high reliability and accuracy of the
predictions regarding accessibility in rocky terrain. Future improvements aim to opti-
mize speed, enhance the integration of gripper’s complete functionality, and improve
the detection of steep terrain.
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Introduction

1 Introduction

The emergence of commercial spaceflight and the sustained enthusiasm in asteroid
exploration have paved new ways and opportunities for the advancement of space re-
source utilization, and have also brought a new impetus to the development of robotic
exploration rovers. The Hayabusa 2 mission, featuring its pioneering hopping rover
MINERVA-II [3], offered unprecedented insights into the asteroid 162173 Ryugu [4],
despite mobility limitations arising from its uncontrolled motion system [5]. This suc-
cess has sparked interest in the viability of near-Earth asteroid resources and laid the
groundwork for new potential markets in the future. However, the in-situ exploitation of
planetary resources can in many cases only take place in difficult-to-access terrains,
such as in Permanent Shadowed Regions (PSR) on the Moon or in heavily rugged
terrain on asteroids. Thus, in addition to the classic design of wheeled exploration
rover, the development of non-wheeled, multi-limbed approaches appears particularly
promising.

Multi-limbed robots would not only be able to navigate complex and rocky terrain, but
they would also be capable of performing missions in cavities and overhangs. How-
ever, designing such a rover poses not only major challenges to the gripping arms,
but also to the pathfinding system. The design of the gripper only allows the rover
to find stable footing on certain types of terrain, such as rocks or icy ground. Thus,
each step of the rover must be carefully chosen before it is set. The visual sensor of
a multi-limbed robot must include real-time recognition of the properties of the surface
and the detection of graspable target. By adapting existing technologies from Simul-
taneous Localization and Mapping (SLAM) technologies and geometry-based salient
shape recognition algorithm, it may be possible to obtain accurate information about
the terrain in the vicinity of the rover.

The Space Robotics Laboratory (SRL) of Tohoku University, led by Professor Kazuya
Yoshida, is dedicated to the research and development of robotic systems for space sci-
ence and exploration missions. Several teams are currently working on rover projects
at the SRL with the aim of developing and optimizing robotic explorers. These include
the Space Capable Asteroid Robotic Explorers (SCAR-E) rover project, a cooperation
between the SRL and the British company Asteroid Mining Corporation Ltd. (AMC). As
of July 2023, the mechanical design of the rover is finalized, and a prototype EM1 has
been assembled. The integration of sensors and the mapping and pathfinding system
are currently under development.

1.1 Limbed Robots of SRL

The Limb Robotics Team and the Asteroid Mining Team are two experienced teams
in SRL dedicated in the development of climbing capable robots. The Limb Robotics
Team specializes, among other topics, in optimizing the technology around the four-
legged climbing robot HubRobo and developing solutions for challenging pathfinding
in complex climbing terrain. The Asteroid Mining Team on the other hand works on
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(a) With spine-type passive grippers (b) With new re-dimensioned grippers

Fig. 1–1: HubRobo is a quadrupedal climbing robot prototype with a full mass of 3
kg[6].

approaches for exploration in unknown planetary environments and for terrestrial ap-
plications, including rescue missions and the commercial exploitation of resources.

1.1.1 HubRobo

The quadruped robot HubRobo with a symmetric insect-type configuration (as shown
in Fig. 1–1a) has three degrees of freedom (3-DOF) actuated joints in each limb, a
passive compliant spine gripper at each foot, and an actuator to open/close the grip-
per. The spine-type grippers have been developed considering a natural rocky surface,
where the roughness of the object to be grasped is high [6]. Following the initial idea,
several optimizations were subsequently made to the grippers, including the integration
of a multi-axis force/torque sensor into the palm and an increasing of the dimensions
and opening/closing range of the grippers, as shown in Fig. 1–1b.

HubRobo is equipped with an Inertial Measurement Unit (IMU) to estimate the base
linear and angular displacement and a depth camera used for 3D terrain sensing. Both
sensors are utilized for SLAM-purposes. The gait planner ClimbLab [7] includes a
grasping location selection algorithm based on salient shape detection, along with a
non-periodic swing limb selection which is able to select a limb that has the most gras-
pable options in the direction of the target location. This study will utilize and adapt
ClimbLab’s salient shape detection algorithm as part of SCAR-E’s proposed gait plan-
ning system.

1.1.2 SCAR-E

The SCAR-E rover, a hexapod robot designed for asteroid mining, planetary exploration
and terrestrial missions, has 3-DOF gear actuated joints in each modular assembled
robot leg. Fig. 1–2 shows a render of the robot’s design. SCAR-E employs a soft
gripping solution with segmented spined finger joints to conform to uneven shapes and
apply even gripping force. Based on the action of a ball screw and the pulling of tether,
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Fig. 1–2: Render of the SCAR-E robot.

(a) Proposed gripper design. (b) Prototype of SCAR-E’s gripper.

Fig. 1–3: Soft gripping solution of SCAR-E [8].

soft gripping fingers are actuated to match different target shapes, and pressure is then
applied onto the surface of the target to secure the gripping action [8]. The design of
the gripper is shown in Fig. 1–3a and the assembled prototype made for testing in Fig.
1–3b.

An unique feature of SCAR-E is the conscious omission of a defined front, back, top or
bottom. This circumstance gives the robot greater flexibility with regard to, for example,
movement in narrow cavities. The visual system consisting of six Color-depth camera
(RGB-D) vision sensors provides a 360 degree environmental perception, which can
be further supplemented with lidars on the top and the bottom of the main body.

An agile motion-planning has been deveploped for motion through a map of potential
footholds, achieved through efficient inverse kinematics and neural network approxi-
mation [9]. Furthermore, an A* algorithm was utilized for an adaptive-gait navigation

3
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in rough terrains with minimal footholds, which enables a motion acting in under one
minute [9].

1.2 Project Outline

The proposed SRL Graspable Target Detection Algorithm (SRL-GTD) analyzes depth
images obtained from six Intel RealSense RGB-D cameras to identify suitable gripping
locations and accessible footholds in the robot’s immediate vicinity and mid-range.

Within the scope of this work, the objective is to determine whether the proposed al-
gorithm is suitable for detecting correct graspable points in a rocky terrain and whether
the requirements placed on the rover SCAR-E in terms of the geometry of the gripper,
the constellation of sensors and the range of applications can be met. In addition, the
scope and limitations of the algorithm will be established through tests in terrains of
varying complexity.

As SCAR-E is still under development, the algorithm is tested by simulations. For this
purpose, a replica of a representative rocky terrain test side is used as the simula-
tion environment, which is created using SLAM and graph optimisation methods. An
adaptation and extension of the ClimbLab concept is carried out with the aim of de-
tecting salient shapes suitable for grasping (graspable targets) based on the gripper’s
geometry in real time within a Robot Operating System (ROS) / ROS2 framework using
C++. The prospective algorithm SRL-GTD should comprise several key steps, includ-
ing perceiving the representative simulation environment, processing depth images into
panoramic point clouds, base transformation for terrain alignment, implementing De-
launay Triangulation for accurate occluded area compensation, and voxelization. Es-
sentially, the algorithm incorporates enhanced novel criteria to identify positions within
the terrain matrix suitable for gripping.

In order to evaluate the results, the study develops metrics to compare the results of
a field test with the predictions made by the algorithm. Parts of the study have been
conducted in Sendai at Tohoku University, as the SRL teams have extensive expertise
in the fields of limb robotics and terramechanics.
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2 State of the Art

This chapter provides a kick-off by first introducing the surface characteristics of as-
teroids, which is relevant to the design of the testing environment, followed by the
fundamentals of depth imaging and point clouds generation. Finally, The vision sensor
technology intended for the SCAR-E rover, as well as the proposed algorithm for terrain
mapping and graspable target detection is presented.

2.1 Surface Characteristics of Asteroids

To develop a system for in-situ exploration of asteroids, it is important to understand
the surface characteristics of asteroids rock composition. Therefore, the classification
of asteroids and the potential significance for asteroid mining is discussed briefly in the
following sections.

2.1.1 Asteroid Classification

Asteroids exhibit diverse surface features that vary in size and shape. They can be
broadly classified into different categories based on their spectra, albedo, and surface
texture. Common classifications include S-type (stony), C-type (carbonaceous) and
M-type (metallic), among others[10].

Fig. 2–1: M-type asteroid 21 Lutetia [1]. Fig. 2–2: S-type asteroid 433 Eros[2].

The surface texture of asteroids is often influenced by impact cratering, regolith for-
mation and space weathering. The compositional variations of asteroids are linked
to their formation distances from the Sun [11]. Observations from spacecraft mis-
sions and ground-based telescopes have revealed a diverse range of features, such
as impact craters, boulders, ridges, and grooves. Spectral analysis of asteroids pro-
vided valuable information about the mineral composition of the rocks present. For

5
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Tab. 2–1: Main asteroid compositional types and their number of objects larger than
30 km in the main asteroid belt (2.3 AU - 3.2 AU) [15, 16]. Other spectral types such as V-,
D- or E-type asteroids make up about 26 % of objects in the asteroid belt.

Type Visual geometric
albedo

Spectral reflectivity (0.3 µm to
1.1 µm )

No. Percentage

C <0.07 Neutral, slight absorption blueward
of 0.4 µm

505 49 %

S 0.07 - 0.23 Reddened, typically an absorption
band ∼0.9 µm to 1.0 µm

175 17 %

M 0.07 - 0.23 Featureless, sloping up into red 85 8 %

instance, C-type, the most common asteroid type in our solar system, are often rich
in organic compounds. They probably consist of clay and silicate rocks, and are dark
in appearance [12]. M-type asteroids are characterized by high metal content. Some
of them underwent high temperatures post-formation, causing partial melting, wherein
iron sank to their centers, while basaltic (volcanic) lava was forced to the surface [13].
S-type asteroids on the other hand are moderately bright and consist mainly of iron-
and magnesium-silicates. Due to their volatile-poor composition, S-type asteroids have
relatively high density compared to C-type asteroids [14].

The asteroid classification system usually categorizes asteroids according to their spec-
tra, an overview of which is given in [11]. The criterions and the abundance of the three
main types of asteroids in the main belt are shown in tab. 2–1.

2.1.2 Significance for Exploration

The exploration of asteroid resources holds commercial significance that have captured
the attention of space agencies and private companies. With about 80 objects larger
than 30 km, M-type asteroids are the rarest of the major asteroid types in the Main
Asteroid Belt. In particular, the presence of higher density compositions such as iron-
nickel are detected by radar observations and can make up well over 90 % of the total
mass[15]. Precious metals such as platinum-group metals (PGM) are believed to be
in abundance on M-type asteroids. Although PGM contents in asteroids likely do not
reach as high as previously thought, as the data that come along with these claims
are decades old, incomplete, and of questionable quality [17]. Nevertheless, most
iron meteorites has higher combined PGM concentrations than almost any terrestrial
deposit [17].

C-type asteroids on the other hand are rich in volatile compounds and are believed
to contain significant amounts of water in the form of hydrated minerals and water ice
[18]. C-type asteroids may also contain organic materials, which can potentially serve
as the basis for sustaining human life in space habitats. For instance, samples from
the near-Earth C-type asteroid 162173 Ryugu (Fig. 2–3a) collected by the Hayabusa2
mission showed the presence of organic compounds, such as uracil (one of the four
components in ribonucleic acid (RNA)) and Vitamin B3 [19]. Furthermore, while car-
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(a) 162173 Ryugu during approach
[21].

(b) Surface taken by the MASCOT lander
[22].

Fig. 2–3: Images of the C-type asteroid 162173 Ryugu take by the Hayabusa 2 mission
2018.

bonaceous asteroids are not typically as rich in metals as metallic asteroids, some may
still contain valuable metals such as platinum [20].

The surface of C-type asteroids typically exhibits distinctive features that are shaped by
various geological processes and are significantly more rugged than their M- or S-type
counterparts. The surface of C-type asteroids is most likely covered by a thin layer of
regolith, which is composed of fine dust, small rocks, and debris [23]. Furthermore, C-
type asteroids may exhibit grooves and ridges in large scale, with boulders and rocky
outcrops scattered across the surface. The photographs taken by the Hayabusa 2
lander Mobile Asteroid Surface Scout (MASCOT) show mainly dark, decimeter to meter
sized angular boulders with a more irregular and crumbly surface, but sometimes also
smooth boulders [24], as shown in Fig. 2–3b. The abundance of regolith is however not
as large as expected [24]. The design of SCAR-E is particularly well suited to this type
of terrain, with the spiked gripper arms designed to cling to particularly rough surfaces.
At the same time, these circumstances also place greater demands on the pathfinding
system, as the graspable points and the most efficient route to the destination must be
carefully chosen so that the rover’s limbs do not become entangled along the way.
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2.2 Depth Imaging

Depth imaging using stereo cameras involves capturing scenes from two or more view-
points to extract the 3D structure of objects. Stereo vision relies on the principle of
triangulation, where the depth of a point in the scene can be estimated based on the
disparity between its projections on the two camera sensors.

2.2.1 Camera Matrix

This section will use several coordinate frames defined as followed:

• Terrain based coordinate system ΣT = (xT , yT , zT ), which is fixed to the ground.

• Camera based coordinate system ΣC = (xC , yC , zC), placed on the camera opti-
cal center.

• Pixel coordinate system ΣP = (xP , yP ), being the coordinates on the 2D image
plane of the camera.

The camera extrinsic matrix T in Eq. 2–1 defines a transformation matrix from the ter-
rain coordinate system ΣT to the camera coordinate system ΣC . It can be decomposed
into a rotation R and a translation t.

T =
[
R | t

]
=


r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3

 . (2–1)

The elements of Eq. 2–1 are derived from the physical location or orientation of the
camera. Eq. 2–2 depicts the transformation of a point (XT , YT , ZT ) from the terrain
reference frame to the camera reference frame.


XC

YC

ZC

1

 =

[
R3×3 t3×1

01×3 11×1

]
XT

YT

ZT

1

 (2–2)

The operation of rotation and translation of terrain coordinates can be represented as
a 4× 4 matrix.

The intrinsic matrix is defined in Eq. 2–3. K denotes a transformation matrix that
converts points from the 3D camera coordinate system ΣC to a 2D homogeneous pixel
coordinate system ΣP .
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K =


f 0 cx

0 f cy

0 0 1

 (2–3)

f is the focal length, cx, cy the horizontal and vertical offset. The intrinsic matrix de-
pends only on camera characteristics and requires inner values for the camera such as
focal length or optical center. The perspective projection of an image can be modeled
by the ideal pinhole camera.

As shown in Fig. 2–4, in the pinhole camera model, a point in space with coordinates
P = (Xc, Yc, Zc) is mapped to the point on the image plane where a line joining the
point P to the centre of projection meeting the image plane [25].

yc
yc

zc

xc
P(Xc,Yc,Zc)

p(Xp,Yp)

xp

yp

zc

f yc/zc

Fig. 2–4: Pinhole camera geometry. C is the camera center and p the principal point.
The camera centre is here placed at the coordinate origin [25].

By projecting the xC and yC coordinates of the points onto the 2D plane, the 2D plane
is at focal length f distance away from the camera. Eq. 2–4 shows the projection xP ,
yP on the image plane, which can be found by the law of similar triangles.

xP = f
xC

zC

yP = f
yC
zC

(2–4)

In digital imaging, the pixel coordinates (u, v) represents the integer values by discretiz-
ing the points in the image coordinate system, defined in Eq. 2–5. Pixel coordinates
of an image are discrete values within a range that can be achieved by dividing the im-
age coordinates by pixel width and height. Furthermore, the pixel coordinates system
has the origin at the left-top corner, hence the camera offsets cx, cy are also required
alongside the discretization.
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u =
1

ρu
f
xc

zc
+ cx

1

ρu

v =
1

ρv
f
yc
zc

+ cy
1

ρv

(2–5)

Whereof ρu and ρv are the meter per pixel ratio in the respective image dimension.
Thereof, we can merge the focal length and offset in discrete pixels as stated in Eq.
2–6.

fu =
f

ρu

fv =
f

ρv

cu =
cx
ρu

cv =
cy
ρv

(2–6)

Consequently the discrete intrinsics matrix Kuv can be represented with Eq. 2–7.

Kuv =


fu 0 cu

0 fu cv

0 0 1

 (2–7)

In case of pinhole camera model, if the resolution of the camera is known, i.e. the
height h and width w of the resulting image in pixels, and the horizontal and vertical
angles of view αu, αv are also known, the focal length can be easily specified as Eq.
2–8 states.

fu =
w

2 tan(αu/2)

fv =
h

2 tan(αv/2)

(2–8)

In real stereo vision systems, the location and optical parameters of each separate
camera must be calibrated to remove the distortions in the image so that triangulation
methods can be used to determine the correspondence between pixels in each image.
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2.2.2 Depth Calculation

Depth can be calculated using triangulation. Given corresponding points P1 = (u1, v1)
in the left image and P2 = (u2, v2) in the right image, the disparity d can be calculated
as shown in Eq. 2–9.

d = u1 − u2 (2–9)

The depth D can be calculated using the equation in Eq. 2–10

D =
B · f
d

, (2–10)

where B is the baseline, the distance between the two cameras.

2.2.3 Point Cloud Generation

Once the depth D is calculated, we can generate a 3D point cloud by converting the
image coordinates to terrain coordinates ΣT :


xT

yT

zT

 = K−1
uv ·


u

v

1

 ·D (2–11)

zT = D

xT =
(u− cu) ·D

fu

yT =
(v − cv) ·D

fv
.

(2–12)

This process is repeated for each pixel in the depth image to create a complete point
cloud representation of the scene.

2.3 Depth Cameras

Depth cameras are vision systems that manipulate the properties of their environment,
primarily visually, to capture 3D scene data from their field of view [26]. A common way
to generate depth images with an RGBD camera is the active stereoscopic camera
method, of which the Intel RealSense Depth Module D430 or the Kinect for Xbox One
are the prominent representatives. More sophisticated systems, such as the Kinect
v2, use the Time-of-Flight technique (ToF) technique, in which the return time of the
light pulse after reflection from an object in the scene provides depth information of the
scene of interest [27].
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2.3.1 Active Stereoscopy

Active stereo vision is a method of stereo vision that actively uses a light source, such
as a laser or structured light, to simplify the process of matching stereo images. The
scene is textured by projecting infrared light or another light source on it, reducing the
need for an external light source. Thus, this approach is particularly useful in areas
with poor lighting or lack of texture.

Fig. 2–5: Structured light 3D scanning in a stereo camera system.

Fig. 2–5 shows a schematic of this approach. The infrared (IR) projector emits a series
of structured light patterns onto the scene. These patterns are modulated in a way that
allows the depth camera to infer the displacement of each pixel in the scene from one
frame to the next. Next, the IR camera within the depth module captures the reflected
IR patterns from the scene. The shifts in the patterns provide information about the dis-
parities between corresponding points in the stereo image pair. The depth processor
analyzes the disparities between the projected and observed IR patterns, using trian-
gulation principles to calculate the distances between the camera and various points
in the scene. These distances are converted into depth values and represented in a
depth map.

However, there are drawbacks to this approach. The effectiveness of active stereo is
reduced in direct sunlight and in places where there is a lot of the same external light
source.

2.3.2 RGB-D Camera

The lightweight Intel RealSense D435i depth camera was used to test the SCAR-E
rover prototype. It is designed for a variety of applications including robotics, virtual
reality and 3D scanning. The main components of the camera are shown in Fig. 2–6:

• Infrared projector: Projects non-visible static IR pattern to improve depth accu-
racy in scenes with low texture
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Fig. 2–6: Main components of the Intel RealSense D435i RGB-D camera [28].

• Stereo cameras: The D435i features two synchronized global shutter cameras
that capture the visual data of the scene. These cameras provide the input for
depth calculations using stereo vision techniques.

• Inertial Measurement Unit (IMU): The IMU consists of sensors (such as ac-
celerometers and gyroscopes) that provide information about the camera’s mo-
tion and orientation. This data can be used to enhance the accuracy of motion
tracking, especially in dynamic environments.

• RGB Sensors: The D435i is equipped with RGB sensors that capture color in-
formation of the scene. These sensors work alongside the depth data to provide
a complete visual representation.[28]

2.4 Real-Time Appearance Based Mapping

Accurate terrain mapping is a crucial technology for autonomous field robots, espe-
cially for climbing robots navigating in challenging terrain. SCAR-E employs six RGB-
D sensors placed on its main body to scan the terrain and generate a panoramic view
of the surroundings and utilizes Real-Time Appearance-Based Mapping (Real-Time
Appearance-Based Mapping (RTAB-Map)) technique for simultaneous localization and
mapping (SLAM) and for the generation of a representative simulation environment for
testing the graspable target detection algorithm.
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Fig. 2–7: Terrain sensing and mapping by the limbed climbing robot HubRobo [6].

2.4.1 Development

SLAM using real-time appearance-based loop closure detection was gradually devel-
oped by M. Labbé and F. Michaud., who introduced a memory management strat-
egy to efficiently handle large-scale maps [29], enhancing the loop closure detection
process. The proposed approach optimizes memory usage, ensuring the system’s
real-time performance. Subsequently, a technique for online appearance-based loop
closure detection in SLAM applications was presented in [30]. It emphasizes scalabil-
ity and long-term operation by enabling loop closure detection in real-time. The scope
of loop closure detection was extended in [31] to multi-session scenarios, facilitating
large-scale SLAM across time and spatially divided scanning sessions.

Experimental validation of the multi-session SLAM framework involves an autonomous
robot with laser rangefinder and RGB-D camera navigating successfully 10.5 km across
11 sessions in an indoor setting, encountering over one hundred people [32]. Finally,
RTAB-Map as an open-source software with full ROS integration was introduced 2019
in [33], and a technique to enhance the system’s ability to robustly re-localize even un-
der varying lighting conditions by leveraging multi-session information was presented
in [34].

2.4.2 Operation

RTAB-Map takes in data from sensors like RGB-D cameras or Lidar, which provide in-
formation about the robot’s surroundings, including visual images and depth measure-
ments. The algorithm then extracts and saves features from the sensor data, which
could include keypoints in images or distinctive points in point clouds. These features
help the system to identify unique points in the environment.

Loop closure detection is the identification of previously explored areas when the robot
revisits them. The detection of loop closures allows the system to correct accumulated
errors in its position estimate in the process of recognition and improve the overall
accuracy of the map. In addition to loop closure, RTAB-Map can recognize places it
has been to even when the environment has changed slightly.

During the scanning procedure, RTAB-Map constructs a graph that represents the
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robot’s trajectory and the relationships between different places it has visited. This
graph is then optimized using integrated robust graph optimization approaches such as
TORO [35], g2o [36] or GTSAM [37] to improve the accuracy of the robot’s estimated
trajectory and the map. Using the optimized trajectory and loop closure information,
RTAB-Map builds a detailed map of the encountered environment.[33] The operation
of RTAB-Map is shown in Fig. 2–7 with HubRobo as an example.

2.4.3 Post Processing

RTAB-Map includes several graph refinement post processing measures such as Sparse
Bundle Adjustment (SBA) and Iterative Closest Point (ICP) to improve the result. SBA
works by iteratively optimizing the positions and orientations of the cameras along with
the 3D coordinates of the observed points in the scene. It minimizes the discrepan-
cies between the observed image points and their corresponding projections in the 3D
space. These discrepancies, also known as reprojection errors, are the differences
between the actual positions of the image points and their predicted positions based
on the camera poses and scene structure. The term "sparse" refers to the fact that it
operates on a subset of the available data, in contrast to "dense" methods that work
with every pixel in the images.[38, 39]

The ICP algorithm, first introduced by Chen and Medioni [40], and Besl and McKay[41],
is used to align two 3D point clouds by iteratively refining a transformation that mini-
mizes the error between corresponding points. It operates with a fixed reference point
cloud and transforms the source point cloud to best match the reference. The trans-
formation is adjusted through iterations, aiming to minimize the sum of squared differ-
ences between the coordinates of matched points. In RTAB-Map, due to the overlap-
ping point clouds of each frame, ICP can be used to refine misaligned neighboring links
[33]. The algorithm’s steps are described in [42].

2.5 Graspable Target Detection

Methods for the detection of salient shapes are commonly used in robotics for tasks
like object recognition in robot hand manipulation. In order to enhance the efficiency
of a spine-type gripper designed for safe climbing movement, it is crucial to identify
viable shapes that can be securely grasped from the surveyed terrain. These graspable
shapes can serve as distinct options for algorithms controlling both locomotion and
gripper actions.This chapter introduces a technique to extract these information from
sensor data collected by the robot.

2.5.1 Previous Works

Point cloud based grasping point detection and collision prevention has been used
in industry for over ten years, for instance in garbage collection robots [43]. Grasp
planning by topological object segmentation and categorization using Reeb graphs
has been discussed in [44]. For robot grasping in partly occluded areas, a prediction
method was developed using Gaussian mixture model in [45]. In recent years there has
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been a move towards relying more on neural networks for the detection of graspable
targets [46, 47, 48, 49].

The main source for the implementation of the salient shape detection algorithm for
application on SCAR-E robots comes from ClimbLab [50], which introduces the MAT-
LAB simulation platform, the associated GitHub repository, and published papers for
the IEEE about non-periodic gait planning [7] and the robot HubRobo[6]. Furthermore,
internal SRL presentations and other SRL documentations serve as a reference for
understanding and implementation.

While RGB image-based techniques have been successful utilized for salient shape
detection[51, 52], the effectiveness of color data is limited in natural rocky terrains. A
previous study focused on detecting salient features in 3D meshes [53]. In this context,
the challenge is not only identifying salient features but also ensuring they are suitable
in size and shape for gripper manipulation, especially for a spine-type gripper like the
one in HubRobo [54] or in SCAR-E [8]. The preferred shape is convex, rather than a
flat or concave shape [7].

The process of the algorithm used is detailed in Dr. Uno’s dissertation [55] and is
summarized here for a deeper understanding.

2.5.2 Regression Plane Transformation

The original RGB-D sensor’s raw point cloud is defined in relation to the camera im-
ager’s frame. To ensure the terrain map’s independence from the camera’s relative
pose, the point cloud’s reference coordinate system is transformed from a camera-
oriented frame to a terrain-oriented frame.

This is accomplished by computing a regression plane using the least-squares method
from the point cloud data. The resulting coordinate system on the regression plane
aligns the z-axis with the plane’s normal direction.

The aim is to compute the centroid of N points on a plane that minimizes the squared
distance rCP ,

rCP = [xCP yCP zCP ]
T (2–13)

from the camera to the points. This plane is associated with the camera frame ΣC ,
and CP subscripts denote the reference from the camera to the point. The centroid
becomes the origin of the regression plane based on local terrain information ΣT , where
T represents terrain. The vector from camera-based frame to terrain-based frame is
rCT and is calculated as the average of all (rCP )i vectors, as Eq. 2–14 states.

rCT =
1

N

N∑
i=1

(rCP )i (2–14)
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A deviation matrix X ∈ R3×N is then formed to capture the error between rCT and each
point, shown in Eq. 2–15.

X = [(rCP )1 − rCT (rCP )2 − rCT ... (rCP )N − rCT ] (2–15)

The eigenvector of XXT corresponding to the smallest eigenvalue defines the unitary
normal vector nT which is perpendicular to the regression plane, originating from the
centroid of N points.

The local frame of the regression plane in the terrain ΣT is determined by selecting unit
vectors from the centroid of the regression plane. The unit z-axis of ΣT , zT , aligns with
the normal vector of the regression plane. The normal vector nT points either from the
plane to the sky or sub-ground. The direction of nT is chosen based on the camera
position, leading to the definition of zT as:

zT =

{
nT if rCT · nT < 0

−nT if rCT · nT ≥ 0
(2–16)

Additionally, unit vectors yT and xT in the local terrain frame are defined as shown
in Eq. 2–17 and Eq. 2–18. This ensures the alignment of the robot’s back-to-front
direction with the x-direction.

yT =
rCT × zT
∥rCT × zT∥

(2–17)

xT = zT × yT (2–18)

The transformation matrix TCT is constructed using xT , yT , and zT , depicted in Eq.
2–19.

TCT =
[
xT yT zT

]
(2–19)

Using rCT and TCT , a transformation can be established to convert the point cloud
from the camera frame ΣC to the terrain frame ΣT . This transformation is represented
by the equation 2–20.

[
PT

1⊤

]
= T−1

CT

[
PC

1⊤

]

=

[
T⊤

CT −T⊤
CT rCT

0 0 0 1

][
PC

1⊤

] (2–20)

Here, 1 denotes a vector of ones. This transformation results in Eq. 2–21, which
presents the transformed terrain point cloud PT .
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PT = T⊤
CTPC −T⊤

CT rCT1
⊤ (2–21)

2.5.3 Interpolation of Occlusion Zones and Homogenization

Certain parts of the terrain that cannot be seen by the robot’s camera, which are known
as occluded areas. These areas are behind the convex sections of the terrain, hidden
from the camera’s view. To enhance accuracy in detecting convex shapes and to create
a more uniform point cloud density, the algorithm interpolates the terrain shape within
these occluded regions.

(a) Delaunay triangulated point cloud. (b) Linearly interpolated point cloud.

Fig. 2–8: The point cloud is processed into the Delaunay triangles (a) and the occluded
areas are compensated (b) [55].

A Delaunay triangulation mesh [56, 57]is generated based on the transformed point
cloud, as shown in Fig. 2–8a. This mesh effectively divides the point cloud into smaller
triangles formed by connecting nearby points. Each of these triangles allows the cre-
ation of an approximate surface that passes through all the points within it.

Subsequently, the xT − yT plane in the terrain based frame is subdivided into a grid. At
each intersection point (XT , YT ) of the grid, the corresponding zT coordinate is deter-
mined by interpolating within the polygon formed by the Delaunay triangulation. This
step ensures that the point cloud’s coordinates (XT , YT ) align with the grid, and the
grid size is adjusted to maintain a similar point density to the original point cloud. The
compensated and homogenized point cloud is shown in Fig. 2–8b.

This transformation through grid meshing results in thinning out densely populated
areas of the point cloud and complementing sparser regions. This process achieves a
uniform point cloud density, improving the overall representation of the terrain.

As the robot moves closer to convex sections of the terrain, the backside of these
convex areas gradually becomes visible to the camera. When this happens, linear
interpolation is again applied to estimate the shape accurately. If the occluded region
does not become visible as the robot approaches, it suggests that the convexity is too
large, and the convex section can be treated as an obstacle to avoid.
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2.5.4 Voxelization

Voxelization is the process of converting a continuous three-dimensional space into
discrete cubic units called voxels. Each voxel represents a specific volume within the
space. In the context of terrain analysis, this involves dividing the terrain into small,
regularly sized cubes. The conception of terrain array is illustrated in Fig. 2–9.

Fig. 2–9: Schematic representation of the generation of the voxelized terrain array [7].

Labeling, in this context, refers to assigning a value or characteristic to each voxel
based on certain criteria. When voxelizing a terrain, the labeling process involves
determining whether each voxel contains terrain surface points or not.

In simpler terms, voxelization involves making a grid of small cubes over a region, and
then for each cube, we decide if it contains part of the ground or not. If it does, we
label it as solid, and if it doesn’t, we label it as empty. This way, we create a structured
representation of the terrain’s surface in terms of these labeled cubes.

2.5.5 Gripper Mask

The gripper mask plays a crucial role in the graspable target detection method. It’s
a 3D array aligned with the terrain array’s dimensions. Its purpose is to define the
specific positions that the gripper’s spine tip can reach. Within the mask, a value of
"1" is assigned to locations reachable by the gripper, while "0" is assigned to non-
reachable areas. Fig. 2–10 shows the concept of gripper mask designing, where the
cross-section of the dark-colored region represents the range that the gripper spine tip
can reach from the maximum opening state to the minimum closing state [55].

Fig. 2–10: Illustration of the design of the gripper mask[7].
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Creating an effective gripper mask involves accounting for various factors. For instance,
the pitch of the voxelized mask, i.e. the distance between every two elements, should
match the pitch of the voxelized terrain array. For an axisymmetric gripper, like one with
circularly arranged fingers, the mask takes a truncated conical shape based on finger
motion range.

Regarding the graspable terrain it can be said, while convex shapes are generally
preferable, overly flat or sharp conical shapes are suboptimal for grasping, as con-
firmed through grip and pull tests. A suitable mask considers both geometrical design
and gripper performance evaluation.

2.5.6 Voxel Matching

The finished gripper mask is utilized in the final step for scanning the terrain array to
identify correspondences. Once a solid voxel in the terrain array has been identified,
the algorithm pivots it to the top center of the mask, and extracts a partial array match-
ing the mask’s size. By checking if all solid terrain voxels align with the gripper mask’s
solid regions, the algorithm determines the graspable convex summit. This process is
repeated for all solid voxels throughout the entire terrain array.

Fig. 2–11 elaborates on how the algorithm identifies graspable points while excluding
overly sharp or flat convex regions. In successful cases (Fig. 2–11(a)), all solid voxels
within the extracted terrain array conform to the gripper mask’s solid volume. In cases
of excessively sharp or flat terrain shapes (Fig. 2–11(b) and Fig. 2–11(c)), certain solid
voxels fall outside the gripper mask, indicated in red. The gripper mask’s Λ-shaped
design detects such mismatches, offering tunable customization of allowable convexity
sharpness by adjusting void voxel arrangements.

For complex cases (Fig. 2–11(d) and Fig. 2–11(e)) with solid voxels matching the
mask’s region but unsuitable for gripping due to inclines or concavities, a threshold
helps discard cases with a lower number of solid voxels in the extracted array compared
to the successful case (Fig. 2–11(a)). This selective thresholding prevents erroneous
selections.
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(a) Appropriate convex shape terrain.

(b) Too sharp convex terrain. (c) Too flat convex terrain.

(d) Slope shaped terrain. (e) Concave shaped terrain.

Fig. 2–11: Case study of the convex region detection principle over various terrain.
Part of the terrain array and the gripper mask are illustrated from the horizontal cross-
sectional view [7].
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3 Methodology and Setup

This chapter deals with the process of implementation of the Graspable Target Detec-
tion Algorithm for SCAR-E, along with the design and construction of the simulation
environment and the field test area. The focus here is on the implementation and
adaptation of ClimbLab for panoramic environment scanning in a multi-camera setting.

Environment setup
ROS 
Integration

Point Cloud
Conversion

Point Cloud 
Concatenation

Base 
Transformation

Interpolation & 
Voxelization

Voxel 
Matching

Fig. 3–1: Schematic chart of the workflow.

Fig. 3–1 illustrates the workflow of the process. After setting up the test environment,
scanning and refining the data using RTAB-Map, and building a simulation in Cop-
peliaSim, integration with ROS is achieved using C++. The depth images from the six
sensors in the CoppeliaSim scene are individually transformed into 3D point clouds
and combined into a panoramic view. The base transformation is the transition from a
camera-centred to a terrain-centred image. Occluded areas are interpolated and the
point cloud is voxelised to create a terrain array. The generation of the gripper mask
and the crucial step of voxel matching, which includes several criteria for the identifica-
tion of a graspable point. The final step is the visualisation of the results to make them
accessible for evaluation.

3.1 Simulation Setup

The initial preparatory measures include the setup of the test environment. Using a
hand held Kinect v2 device, the 3 m×3 m test area consisting of fake rocks is scanned
through RTAB-Map, followed by a refinement process to enhance the quality of the
collected data.

3.1.1 Test Area Setup

The test area (shown in Fig. 3–2a) consists of 10 handmade polystyrene rock models
(artificial rocks) coated with acrylic paints in different shades of gray, which gives the
surface a rock-like appearance and also increases the hardness of the surface. The
vertical height of the largest rock is approx. 67 cm and the one of smallest is about
20 cm. In addition, two real river cobbles, both about 15 cm high, are added to the
setting. These are included in the collection only because of their similar shape and
texture to the fake rocks, and play no particular role in the evaluation. The distribution
of the rocks can be seen in Fig. 3–2b.
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(a) Photo of the test area.

a

b

c

d

(b) Distribution of the rocks.

Fig. 3–2: Design of the test area. The border of the area is marked with white band,
while each rock is assigned a number.

The 12 rocks delimit a flat and empty area of about 1.5 m×1.5 m, which is intended for
the placement of the SCAR-E robot, i.e. the model of the robot in the simulation. All
rocks are placed in such a way that a certain part be "seen" by the robot.

3.1.2 Kinect Scanning of Test Side

The Kinect v2 is larger and heavier compared to other ToF-sensors, but has a higher
depth camera resolution of 512 pixels × 424 pixels. It operates using a ToF mea-
surement principle, with infrared light illuminating the scene and reflecting off obsta-
cles. The device estimates distances via wave modulation and phase detection. Its
depth measurement method is detailed in [58].

Integrating the sensor into a robotic system requires understanding its coordinate sys-
tem. The IR camera axis is assumed to be perpendicular to the Kinect v2’s front plate.
The open-source Kinect v2 driver libfreenect2 [59] and associated ROS packages [60]
were used, with contributions for easy installation on Ubuntu 20.04 LTS. This integra-
tion supports accelerated depth processing through Open Graphics Library (OpenGL)
and Open Computing Language (OpenCL), in addition to the standard CPU-based
method.[61]

The intrinsic parameters of the IR camera are calibrated with the help of a checkerboard
and the software by Wiedemeyer [60], which uses the Open Source Computer Vision
Library (OpenCV) calibration. According to [61], the average reprojection error after
calibration is below 0.5 px.

3.1.3 RTAB-Map Parameter Adjustment

The rtabmap_ros package for the ROS version Noetic is used as an interface for the
mapping. All parameters can be entered via the command line when starting the RTAB-
Map software. Alternatively, ROS launch files are available in which the desired pa-
rameters can be set. For Kinect v2, a default launch file is conveniently available in
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Fig. 3–3: Live footage of the RTAB-Map scanning procedure. Pictures on the left are
the RGB images. The resulting point cloud and the camera trajectory (blue line) can be
seen in the right half.

the Github repository of rtabmap_ros1. Additionally, the g2o 2 algorithm is used for
minimization non-linear errors.

During the scanning process, RTAB-map automatically recognizes the loop closures
in the RGB images of the sensor, shown as green dots in the image above left in Fig.
3–3, and uses those as reference points to estimate the odometry, i.e. the position
and orientation of the sensor and the trajectory of the movement (blue line on the
right image). If the movement is too fast, or in case of featureless environments or
misalignment between the RGB and depth images, the odometry can no longer be
calculated and the mapping aborts, which is indicated by a red screen. To recover from
this situation, the camera has to be replaced where it failed to compute the odometry.
Alternatively, more texture or objects can be added to the scene to add more visual
features to track.

3.1.4 Post Processing and Meshing

The resulting raw point cloud can be exported in Point Cloud Data (PCD) or Polygon
File Format (PLY) formats. The whole mapping procedure including the odometry and
every image taken by the sensor can also be stored as a database, which can be re-
played as input source to test different mapping and loop closure detection parameters.

Some misalignments can be clearly seen in the raw point cloud, as shown in Fig. 3–
4a. Subsequently, postprocessing measures such as SBA and ICP are undertaken
to refine the result. Furthermore, five iterations of detecting more loop closures are
carried out in order to find more distinctive points in the cloud within a cluster radius
of 50 cm (which is the approximate range of the largest misalignment). In case of
visible orientation error, enabling ICP will increase precision of the loop closure and
the visual odometry. However, in case of correctly aligned clouds, ICP can decrease

1https://github.com/introlab/rtabmap_ros
2https://github.com/RainerKuemmerle/g2o.git
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the precision, which is why ICP was not enabled. As shown in Fig. 3–4a, there are
minor alignment errors in the resulting raw point cloud. Using the refinement steps, Fig.
3–4b shows a overall better alignment, even though the errors could not be eliminated
completely.

(a) Raw point cloud before post processing.

(b) After post processing.

Fig. 3–4: Post processing using SBA and loope closure detection results in an overall
better alignment of the point cloud.

For the export of the refined point cloud as a textured mesh, the pictures taken by the
RGB camera need to be first stored separately in Bundler format [62]. Bundler is a
Structure-from-Motion (SfM) system and uses a modified version of the SBA package,
taking a set of images, image features, and image matches as input, and produces
a 3D reconstruction of camera and (sparse) scene geometry as output. To limit the
number of cameras, we will first conduct the pose filtering by comparing the poses
in the same area and only export one picture in a fixed range of 30° and a radius of
50 cm, which results in a cluster of RGB pictures (Bundler cluster) ready to use for the
texturing of the mesh.

Next, we can export the 3D cloud. The meshing algorithm using Poisson surface re-
construction [63] is an integrated part of RTAB-Map. The maximum depth is set to 4 m
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to filter out points that are further away. The voxel size is set to 1 cm. When meshes are
assembled, voxel size is the range in which the vertices of the polygons are merged.
This measure also removes outliers and homogenizes the cloud. Finally, the resulting
3D mesh can be imported into MeshLab [64], and the aforementioned Bundler cluster
can be applied on the raw mesh using the "Parametrization + texturing from registered
rasters" tool in MeshLab. The edges are cropped to the size of the test area, and the
result is shown in Fig. 3–5.

Fig. 3–5: Resulting 3D mesh. Cropped and textured using Bundler cluster.

3.1.5 CoppeliaSim Simulation

The 3D mesh obtained by the Kinect mapping can be imported as terrain in Cop-
peliaSim. CoppeliaSim [65] is a open source robot simulator built around a distributed
control architecture having Python or Lua scripts acting as individual, synchronous
controllers. The ROS interface plugin enables full integration into ROS. The SCAR-E
model and its inverse kinematics are described in [9] and for ease of use, we use the
ROS package Keystroke to control the motion of the robot with the keyboard. The
hexapod model of SCAR-E is shown in Fig. 3–6.

Six perspective vision sensor models are attached to the main body of SCAR-E model
and equipped with the same specifications as the RealSense D435i cameras, as shown
in Tab. 3–1. Due to the large size of the concatenated point cloud in the later course,
the resolution of the depth image is limited to 640 pixels×360 pixels.

The controller of the depth sensor is written in Lua and is shown in Appx. A.7. It
generates the depth image and publishes it in ROS2 in sensor_msgs/msg/Image format
using the simVision and simROS2 APIs, as shown in Appendix A.7. The terrain mesh
model is set to detectable and respondable so that the robot can interact with it. The
RGB output of the vision sensor is not needed to generate the point clouds, so it is
initially neglected in the ROS integration. Similarly, the terrain texture is omitted as
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Tab. 3–1: Specifications of the RealSense camera model used in CoppeliaSim.

Specification Depth RGB

Resolution 640 pixels × 360 pixels 1280 pixels × 720 pixels

Field of view 87° × 58° 69° × 42°

Minimum distance 0.28 m -

Maximum distance 1.50 m -

Fig. 3–6: CoppeliaSim scene with the SCAR-E model, equipped with six RGB-D cam-
eras and standing on the terrain mesh model generated using the Kinect device.

it slows down the simulation, but kept in reserve as these may be needed for other
applications in the simulation.

3.1.6 ROS Integration

The ROS is a set of open source framework for robotic software libraries and tools. A
detailed description of ROS can be found in [66]. One of the key aspects of ROS is its
message-passing architecture, which enables communication between different pro-
cesses in a distributed system. This messaging system is crucial for building modular
and scalable robotic applications.

In ROS, software components are called "nodes". Each node represents a distinct
process that performs a specific task or computation. Nodes can communicate with
each other by exchanging messages. Messages are structured data types used to
transmit information between nodes. ROS provides a variety of predefined message
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types (e.g., integers, strings, poses, images) that we can use. Nodes communicate
by publishing and subscribing to "topics." A topic is a named message channel where
nodes can send and receive messages. A node that produces messages on a topic
is called a "publisher", while a node that consumes those messages is called a "sub-
scriber". Nodes that generate data (publishers) do not need to know which nodes will
use that data. Subscribing nodes express interest in specific topics and receive mes-
sages when publishers publish on those topics. This decoupling promotes modularity
and flexibility in the system design.

The key advantage of ROS2 over ROS is, among others, it’s real-time capabilities. It
includes features to better support hard real-time and soft real-time systems, making it
more suitable for robotics applications that require precise timing and responsiveness.
The inverse kinematics of SCAR-E are programed within a ROS2 framework. However,
ROS2 is still under development and some libraries and applications such as RTAB-
Map or Point Cloud Library (PCL), which are crucial for this study, are not available in a
ROS2 framework, or the compatibility is not sufficient. In these cases, a ROS-ROS2-
bridge will be used, which "translates" ROS messages and makes them subscribable
for ROS2 applications and vice versa.

The following sections all describe the implementation of applications within a ROS/ROS2
framework in C++ language. The first step involves synchronising incoming raw depth
images with camera intrinsic parameters using a message filter. For this purpose, a
node is built that bundles the camera intrinsics into an array and publishes them as a
message. On the other hand, it filters incoming depth image messages from the six
RGB-D cameras in CoppeliaSim, which arrive with different time delays due to differ-
ent sizes, with the package image_filter/time_synchronizer. Subsequently, the node
re-publishes the messages with a frequency of 1 Hz.

3.1.7 Point Cloud Conversion

Next, the point cloud conversion node subscribes to the synchronized depth images
and camera intrinsic information and performs the conversion, as shown in Listing 3.1.

u and v are the horizontal and vertical pixel coordinates within an image. The maximum
and minimum detection distance are set according to Tab. 3–1. The value of depth is
given in uint16 color code, where the color ranges from 0 to 65535. The final calculation
of the world coordinates of the point cloud requires the center coordinates of the image
c_x and c_y and the focal lengths f_x and f_y, taken from the camera intrinsics. The
resulting point cloud from a depth image is shown in Fig. 3–7.

3.1.8 Multi Point Clouds Concatenation

Fig. 3–8 shows the arrangement of the six RGB-D cameras on the main body of SCAR-
E. The six cameras are offset by 60 degrees and positioned 20 cm from the center. With
a horizontal field of view of 87°, there is an overlap of 27° between two cameras. The
origin of the reference frame for each camera is set to the center of the camera, with
the z-axis pointing up perpendicular to the ground and the y-axis pointing forward. This
camera-based reference frame ΣC is to be transferred to a common reference frame
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Listing 3.1: Point cloud conversion from depth image using C++.

...
// define maximum and minimum detection distance
float max_dist = 1.5;
float min_dist = 0.28;
// define maximum and minimum depth in uint16 color code
int min_depth = 0;
int max_depth = 65535;
// calculation of the depth to meter ratio
float depth_to_meter_ratio = (max_dist - min_dist)/(

↪→ max_depth - min_depth);
static float toMeters(uint16_t depth) {return depth *

↪→ depth_to_meter_ratio ;}
// conversion of pixel coordinates in world coordinates
x = (u - c_x) * depth * f_x;
y = (v - c_y) * depth * f_y;
z = toMeters(depth);

...

Fig. 3–7: Resulting point cloud (left) from the subscribed depth image (right) message.

with the origin in the center of the body, which we will call subsequently robot-based
reference frame ΣR.

The new reference frame is set to the center of the body, with the y-axis pointing down
perpendicular to the ground and the z-axis pointing forward. In case of camera no. 2,
for instance, the Euler angle of rotation around x is set to α = −π, β = 0 and γ = π/3.
Furthermore, the translation in x is t1 = −0.173 and t2 = 0.1 in y direction. Translation
in z is t3 = 0.

Eq. 3–1 depicts the resulting rotation matrix R.
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Fig. 3–8: Arrangement of the six RGB-D cameras on the main body of SCAR-E.

R = Rz(γ)Ry(β)Rx(α)

=
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sin γ cos γ 0

0 0 1
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− sin β sinα cos β cosα cos β


(3–1)

and Eq. 3–2 shows the translation vector t

t =


t1

t2

0

 (3–2)

set into the extrinsic matrix T = [R|t] (see Eq. 2–1), we obtain the transformed point
cloud PR stated in Eq. 3–3.

PR,i = PC,i ·Ti, i = 1, ..., 6, (3–3)

where i is the indexing of the camera. The concatenation of the six individual point
clouds is the addition of the transformed point clouds in Eq. 3–4.
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Pconcatenated =
6∑

i=1

PR,i (3–4)

The resulting concatenated point cloud is shown in Fig. 3–9 and is published under the
topic /merged_pcd.

Fig. 3–9: The panoramic point cloud after transformation and concatenation.

3.2 Implementation of Target Detection Algorithm in C++

The following section covers the implementation of the Graspable Target Detection
algorithm in C++. Since some essential libraries for processing point clouds are not
available or not mature in Robot Operating System 2 (ROS2), such as the Point Cloud
Library (PCL), the algorithm is developed in a ROS Noetic environment.

First, we need to introduce some terminologies in order to prevent confusion:

• Raw Cloud: Input point cloud of the terrain which is in PCD file format.

• Transformed Cloud: Coordinate transformed point cloud aligned with the normal
of the regression plane.

• Interpolated Cloud: Point cloud with occluded areas compensated by the inter-
polation and homogenization step.

• Solid Voxel: Voxel denoted with 1 which represents a solid space

• Void Voxel: Voxel denoted with 0 which represents an empty space.

• Voxelized Terrain Array: Voxel array which is the point cloud transformed into
discrete equally sized cubes.

• Gripper Mask: Voxel array which represents the gripping extent of the gripper
prototype.
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• Subset: A portion of the Voxelized Terrain Array that has the same dimensions
as the Gripper Mask.

• Threshold of Solid Voxels, denoted as TSV: Threshold of the minimum number
of solid terrain voxels that is required to be in a Subset to prevent erroneous
predictions like in Fig. 2–11(d) and Fig. 2–11(e).

The ROS node detect_graspable_points is initialized in the main() function by the
ros::init() function and the interface for creating subscribers and publishers is cre-
ated with ros::NodeHandle. The node subscribes to a single topic, namely the afore-
mentioned concatenated point cloud /merged_pcd. The node runs in a loop by using
ros::spin() in the end of the node.

A header file .hpp adds all necessary libraries to the code and initializes and explains
all functions and required variables. Furthermore, it predefines all ROS topics to be
published.

The constructor of the node calls all necessary functions to process and analyze the
raw point cloud based on the original concept of ClimbLab, which was described in
Chapter 2.5, adding some improvements. These functions are presented in detail be-
low.

3.2.1 Coordinate Transformation

The coordinate transformation is divided into two functions.

• pcd_least_squares_plane() computes the centroid and normal axis of the raw
point cloud’s regression plane.

• pcd_transform() aligns the axes of the new terrain-based reference frame using
the normal vector of the regression plane.

The quintessence of the function pcd_least_squares_plane() is shown in Listing A.1
corresponding to the following steps:

1. Compute the Centroid c using pcl::compute3DCentroid.

2. Substract the each element of the centroid vector from each column of the cloud
matrix. Deviation Matrix X(i, j) = P(i, j)− c(i).

3. Compute the product of Deviation Matrix.

4. Compute the eigenvectors and eigenvalues of PD.

5. Take only the real part of the eigenvalues and eigenvectors.

6. Find the smallest eigenvalues and its corresponding eigenvector.

7. Normal Vector of the Regression Plane is the Eigenvector corresponding to the
smallest eigenvalue.

We first compute the centroid of the raw point cloud using a PCL library, which returns
a vector pointing to the centroid. The subsequent for loop corresponds to Eq. 2–15
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and derives the deviation matrix X. We will then calculate the eigenvalues of XXT .
For symmetric matrices, we have a basis of eigenvectors, and every eigenvalue is real.
Subsequently, the algorithm takes the real part of the eigenvalues and eigenvector, and
the eigenvector corresponding of the smallest eigenvalue is assigned to the normal
vector nT , which is also the z-axis of the new reference frame.

Listing A.2 shows the function for the coordinate transformation pcd_transform(). y-
and x-axis of the new reference frame are computed following the Equations 2–17 and
2–18. The elements of the rotation matrix are then assigned to the coordinates of
the new frame. Finally, the frame transformation according to Eq. 2–21 is performed,
resulting in the new, Transformed Cloud.

3.2.2 Point Cloud Interpolation

The function pcd_interpolate() compensates the occluded areas and is presented in
simplified pseudocode in Listing A.3. The function first calculates a suitable grid size,
based on the size of the input cloud. This grid size GS is crucial for creating a uniform
grid structure for interpolation.

GS =
1√
N

wx·wy
· 5
3

(3–5)

Here, the point cloud size N represents the number of points in the input point cloud,
wx and wy denote the dimensions of the point cloud area in the x and y directions,
respectively. The coefficient of 5/3 is chosen to maintain a comparable point density in
the interpolated data, akin to the input point cloud.

Next, the function generates grid vectors for both the x and y dimensions. These
vectors define the coordinates of the grid points where interpolation will be performed.

Finally, a linear Delaunay triangle interpolator from the C++ library LibInterpolate is
utilized to perform the interpolation.

The code performs the interpolation on the grid points, yielding interpolated values for
the z-coordinate. It filters out any points interpolated to z = 0, as they are considered
outside the original range of data. The resulting interpolated grid vector, denoted in the
code as x_grid_vector, y_grid_vector and interp_z are then transformed back into
a 3-column matrix format, which is the finished Interpolated Cloud.
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3.2.3 Voxelization

The function pcd_voxelize() takes an input point cloud and the voxel cube size cs
(which is set to 0.01 m by default) as parameters. The main steps of the function
involve data preparation, calculating the grid size, applying voxel grid filtering, and
determining voxel occupancy based on the cube size and point coordinates. It utilizes
the pcl::VoxelGrid library and voxelizes the input point cloud by dividing it into equally
sized cubes and retaining only the centroids of the cubes that contain points. The
resulting voxelized data is stored in a 3D matrix.

Listing A.4 demonstrates the voxelization of the input point cloud by marking the corre-
sponding voxel as occupied based on the cube size and the coordinates of each point
in the filtered point cloud. Next, the voxel indices are assigned to the current point.
These indices determine which voxel in the 3D grid the point belongs to. The calcula-
tion involves dividing the difference between the point’s coordinates and the minimum
coordinates by the cube size. The addition of cs/4 helps ensure that the point is as-
signed to the voxel with its centroid, reducing the likelihood of a point falling on the
edge of a voxel.

The corresponding voxel in the 3D grid is marked as solid by setting its value to 1. This
indicates that there is at least one point within that voxel.

3.2.4 Gripper Mask

The dimensions of the gripper model used to design the gripper mask is shown in
Fig. 3–10. This is a simplification of the soft grip solution for the SCAR-E rover. The
number of segments per finger has been limited to two and only the foremost segment
has a spine. Although the capability to grip and adapt to the terrain increases with
the number of finger segments and spines, the basic operation and functionality of the
gripper remains consistent. This simplification is intended to ensure the reliability of
the concept. All parameters and their corresponding values are listed in Tab. 3–2.

The C++ function creategrippermask() generates a 3D mask representing a gripper’s
geometry within a voxelized space. It calculates and sets the elements of the mask to 1
or 0 to represent solid and void regions, respectively, based on the gripper’s parameters
and voxel size.

The side length of the gripper mask LGM , denoted as gripper_mask_size, is computed
by adding the radius of the gripper palm between the first finger joints and the sum of
the lengths of the finger segments:

LGM = (
�FJ

2
+ LF + LS) · 2. (3–6)

The maximum height of the gripper mask HGM is equal to the vertical distance between
the tip of the spine and the bottom of the palm when the gripper is closed:

HGM = Hc. (3–7)
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Fig. 3–10: Geometrical parameters of the gripper which are relevant for the creation of
the gripper mask.

Tab. 3–2: Parameters of the gripper model and their value.

No. Variable Denoted as Explanation Value

1 Palm diameter �P Diameter of gripper’s palm 71 mm

2 Palm diameter
of finger joints

�FJ Distance between two opposite
first finger joints

92 mm

3 Finger length LF Length of the first finger seg-
ment

40 mm

4 Spine length LS Length of the last finger seg-
ment

41 mm

5 Spine depth DS Length of the spine itself 5 mm

6 Opening angle θo Maximum opening angle 85 deg

7 Closing angle θc Maximum closing angle 10 deg

8 Opening spine
radius

Ros Distance from the center of palm
to the tip of the furthest spine

136 mm

9 Opening spine
depth

Dos Distance from the horizontal
plane to the tip of the spine when
opened

5 mm

10 Closing height Hc Vertical distance between the tip
of the spine and the bottom of
the palm when closed

90 mm
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Additional parameters are required to determine the solid and void areas of the gripper
mask. These parameters include the top solid radius, clearance, and bottom void
radius. The top solid radius RT of the gripper mask is half of the palm’s diameter:

RT =
�P

2
. (3–8)

The maximum height of the void space Hcl in the upper part of the gripper mask,
denoted as gripper_mask_clearance is computed as follows:

Hcl =
LGM −�P

2
· tan(90◦ − θo). (3–9)

The radius of the void space RB in the lower part of the gripper mask, denoted as
gripper_mask_bottom_void_radius, is computed as follows:

RB =
�P

2
+ (HGM · tan(θc)). (3–10)

The creation of the gripper mask as an array is done by the loop in Listing A.5. The
radius of the grippable area Rg changes as the z-value changes and is computed by
the equation in Eq. 3–11:

Rg = RT + (
LGM

2
−RT )

z

Hcl

. (3–11)

The Inner Unreachable Radius Ru,i is formed following the formula for half chord length
of a circle 3.

Ru,i =
√
2 ·RB(RB − (HGM − z))− (RB(HGM − z))2 (3–12)

The radius of the top unreachable area Ru,t is optional, it is only necessary if the grip-
per’s maximum opening angle is larger than 90°

Ru,t =
LGM

2
− (

LGM

2
− (Ros +DS)) ·

z

Dos

. (3–13)

The distance of each voxel from the centers of the respective layer is computed by:

DC =

√
(
LGM

2
− x)2 + (

LGM

2
− y)2. (3–14)

In order to convert the parameters specified in mm into discrete parameters Pvoxel in
voxel, all continuous parameters Eq. 3–6 - Eq. 3–14 Pfloat are multiplied by a voxel
ratio Rvoxel that depends on the voxel cube size cs.

3Chord length of a circle: 2
√
2Rh− h2
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Rvoxel =
1

cs · 1000
(3–15)

Pvoxel = ⌊Pfloat ·Rvoxel⌉ (3–16)

The loop in Listing A.5 iterates through the voxels within the gripper mask and for
each voxel, it calculates the distance from the center of the mask layer and determines
whether it falls within the grippable, unreachable, solid, or void region based on the
calculated radii and clearances. Voxels that belong to the solid regions are marked as
1 in the Gripper Mask, while others remain 0.

The dimensions of the finalized gripper mask is shown in Fig. 3–11.To prevent erro-
neous predictions in the areas of depressions or steep side walls, a feature in the form
of an additional void layer Hadd, denoted as extra_sheet is added to the Gripper Mask.
The auxiliary top area will penalize the assessment of the graspability in the case that
terrain voxels are detected in this area.

Fig. 3–11: Resulting Gripper Mask and dimensions.

3.2.5 Voxel Matching

The final step in graspable target detection is the voxel matching function, which is
divided into several steps and sub-functions:
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1. Voxel_Clip() prevents the gripper mask from protruding from the Voxelized Ter-
rain Array (VTA) during the matching algorithm. It crops the VTA at all sides by
the half size of Gripper Mask and sets the values to zero.

2. Find Solid Voxels: find all "ones" (solid voxels) in the search voxel array and
change indices to subscripts of solid voxels.

3. Pivot Point Transformation Transforms the Pivot Point of the Gripper Mask to
the upper center of the array.

4. Voxel_Extract() extracts a Subset Psubset array of voxels of the same size as the
Gripper Mask from the larger VTA.

5. Voxel_Compare() compares the number of Solid Voxels within the Subset ("Sub-
set Solid Voxels", denoted as SSV ) with the number of intersections of SSV and
Solid Voxels within the Gripper Mask PGM which corresponds to the gripping
extent of the gripper. This intersection is called in the following "Gripper Solid
Voxels", denoted as GSV . It outputs the probability of Graspability score4 G
which is defined as:

G =
Psubset ·PGM

SSV
=

GSV

SSV
(3–17)

The Graspability score thus represents the proportion of the intersection between
the Subset and the Gripper Mask within the total set of Solid Terrain Voxels within
the Subset.

6. Thresholding: Subsets that have a lower number of Solid Voxels than the Thresh-
old of Solid Voxels TSV are penalized so that the Penalized Graspability value
GP of the Pivot Voxel is reduced according to the difference between SSP and
threshold value TSV . For initial testing, TSV is set to 120, which is an empirical
value.

GP = G− TSV − SSV

TSV
(3–18)

7. Output: The function return a four columns array called Voxel Coordinates of
Graspable Points where column 1, 2 and 3 denote the x, y and z coordinates
of the point and the fourth column the corresponding Graspability value ranging
from 0.0 to 1.0.

Listing A.6 demonstrates the function using a simplified pseudocode. The value of
Graspability is therefore formed from the ratio of the intersection of the grippable extent
of the Gripper Mask with the terrain and the total terrain voxels present in the Subset.

4In the following we refer to the variable G when Graspability is written with a capital letter. Otherwise,
graspability means the general suitability of the terrain for grasping with the gripper.
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3.2.6 Convex Shape Detection

In order to limit the range of graspable areas to only convex surfaces and to limit the
false positive rate, a combined measure was taken to find optimally graspable surfaces.
It is assumed that the intersection of graspable areas found using the gripper mask and
the peaks of the convex surfaces provides optimal graspability:

Optimum graspability = Graspability score maxima × peaks of convex surfaces

The implementation of convex surface detection using the principal curvature will be
explained in the following briefly. A more detailed view on differential geometry and in
particular, curvature of surfaces is provided by Kühnel [67].

3.2.6.1 Principal Curvature

Consider a differentiable surface in 3-dimensional Euclidean space. At each point P
on this surface, it is possible to define a unit surface normal vector n, which is perpen-
dicular to it. The normal curvature is the curvature of a plane curve that results from a
normal section, i.e. from an intersection of the given surface with the plane determined
by the surface normal vector and the given tangential direction.

The normal curvature is assigned to each tangential direction, i.e. each direction in that
a tangential vector can be assumed at this point on the surface. The normal curvature
can be seen as a continuous periodic function of the angle between a fixed tangential
vector and the direction. The minimum and maximum values of these curvatures are
called principal curvatures k1 and k2.

The Gaussian curvature (K) is the product of the principal curvatures:

K = k1 · k2 (3–19)

If both principal curvatures are of the same sign, K will be positive: K > 0, then
corresponding point is called an elliptic point. At such points, the surface will be dome
shaped.

The implementation of the curvature estimation is shown in Listings 3.2 in pseudocode.

The searching radius for curvature is set to 0.09 m, which is roughly the mean radius of
the gripper’s gripping extent. In a point cloud of a terrain surface, a uniform orientation
of the normal vectors is not defined, e.g. it is not clear to the algorithm which is the
"air side" and which is the "rock side" of the surface. This problem is only partly solved
by sorting out those points with minus z oriented normal vectors, which eliminates
erroneous concave shapes, but would also lead to some incompleteness in practice,
as shown later in Fig. A2–2.
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Listing 3.2: Function for the detection of convex shapes. In simplified pseudocode.

In {voxelized_terrain_array , searching_radius}
Out {convex_peak_cloud}

curvature1 =// compute the maximum normal curvature within the
↪→ searching radius;

curvature2 =// compute the minimum normal curvature analogously
↪→ ;

normal_z =// compute the normal vector of the surface and take
↪→ the z;

for (all points p in the voxelized_terrain_array) {
//the normal z value should point outward , so in order to

↪→ find convex shaped peaks and avoid concave areas , we
↪→ require points whose normal z value is positive.

if (( curvature1 * curvature2) > 0 && normal_z > 0.0) {
convex_peak_cloud.push_back(p);

}
}

3.2.6.2 Intersection Criterion

The implementation of the intersection of graspable areas and convex shapes maxima
is shown in Listings 3.3. It takes those points with a higher Graspability score

Listing 3.3: Function for the intersection of convex shapes and graspable areas.

In {voxel_coordinates_of_graspable_points , convex_peak_cloud ,
↪→ graspability_threshold , distance_threshold}

Out {intersection_cloud}

for (all points p in voxel_coordinates_of_graspable_points) {
if (graspability >= graspability_threshold){

cloud1.push_back(p);
}

}
for (all points p in cloud1) {

for (all points q in cloud2) {
distance = pcl:: euclideanDistance(p, q);
if (distance < distance_threshold) {

intersection.push_back(p);
intersection.push_back(q);

}
}

}
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The Graspability Threshold is set according to the analysis in Chapter 5.2.1.5. For the
initial testing, it is set to 0.8.

3.2.7 Visualization

The resulting Voxel Coordinates of Graspable Points is published as a ROS point cloud
message, where the ranges of the Graspability score represent a variety of colors
ranging from red (non-graspable) to dark green (fully graspable). The color white is
chosen for the ground below a certain z value (Ground Threshold). The flat ground is
defined to be parallel to the computed regression plane of the point cloud. This colored
point cloud is called subsequently "Graspability Map".

The results of the convex shape detection and the intersection criterion are visualized
in a separate visualization as blue and dark green points on top of the raw point cloud.
This map is called subsequently "Curvature Map".

The visualization is carried out with RVIZ, which is a visualization program within the
ROS framework.
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4 Results

This chapter presents the results of the development of the graspable target detection
algorithm and the test results on several test scenarios. The aim is to present the ability
of the algorithm to recognize graspable targets in different terrains, both on a previously
scanned map and for in-situ cases, especially using the setup for the SCAR-E robot in
CoppeliaSim described in Chapter 3.1.5.

A simple field test is carried out to verify the statements about the graspability of the
target and to derive the accuracy of the algorithm. The running time of the algorithm
is then briefly presented. The comparison of the results between the individual cases
and the inclusion of the field test in the evaluation of the performance of SRL-GTD is
conducted in the Discussion Chapter 5.

4.1 Test Scenarios

For lunar and planetary exploration, as well as for terrestrial applications in difficult
terrain, there are two ways to process the terrain information to be examined. In case
of previously known terrain, the 3D model can be converted into a suitable point cloud,
which can then be examined in its entirety by the graspable target detection algorithm.

However, terrain information obtained by remote sensing often has the problem of low
resolution rates. Thus, once the robot enters unknown terrain, the rover must decide
in situ where to go next. To evaluate the algorithm, two different cases are considered:
pre-scan and in-situ (or real-time) application. This is illustrated using two different
point clouds from the same scenario as the input point cloud for the algorithm, as
shown in Fig. 4–1.

(a) Pre-scanned point cloud from re-
mote sensing.

(b) Real-time point cloud from in-situ
exploration.

Fig. 4–1: Input point clouds obtained from different sensing methods.

Four distinct test scenarios are conducted to evaluate the algorithm’s performance, as
shown in Fig. 4–2. The first scenario represents a simple plane with three different
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geometries, each in five different sizes. This primitive scenario is intended to test the
basic function of the gripper mask, as well as the function of calculating the regression
plane. The second scenario involves a simple simulated terrain created in CoppeliaSim
with slopes and minor bumps. The point cloud shown in 4–1b will be used as input.
The aim of this scenario is to test the occlusion compensation step of the algorithm.
In the third scenario, a scan of a bouldering wall with climbing holds of different sizes
placed close to each other is used. The terrain in such constellation does not represent
a difficult obstacle for a hexapod robot to overcome, but each step must still be taken
carefully so that the gripper arm can fix itself on one of the climbing holds and does not
get stuck between two of them.

(a) Primitive shapes (b) Simple slopes and bumps

(c) Bouldering wall (d) Artificial rocks

Fig. 4–2: Four scenarios of different terrain on which the algorithm is tested.

In the last scenario, the Kinect pre-scanned map consisting of artificial rocks, as pre-
sented in Chapter 3.1.1, is analyzed using the algorithm, as well as the in-situ case
of the same scenario for comparison. This scenario represents a difficult terrain with
some high and almost insurmountable obstacles in the form of vertical rocks. In order
to find a way over it, the algorithm should be capable to show the graspable targets
on the rocks so that the robot can climb over them. Tab. 4–1 briefly sums up the four
scenarios and their purposes.

The algorithm’s parameters used for the respective scenarios differ only minimally from
each other and are listed in Tab. 2–1.
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Tab. 4–1: Test scenarios and their source and purposes.

Test scenario Pre-scan In-situ Purpose

1. Primitive shapes Test the basic function and con-
straints of the algorithm.

2. Slopes and bumps Test the occluded area compen-
sation in real-time.

3. Bouldering wall Test the algorithm in a low ob-
stacle terrain.

4. Artificial rocks Test the algorithm in a high ob-
stacle terrain.

4.2 Algorithm Results

4.2.1 Primitive Shapes

Scenario No. 1 with primitive geometric shapes, as shown in Fig. 4–2a, consists of five
hemispheres, capsules and cones, which are of different sizes and lie in three rows:

• First row: Hemispheres with varying radii from 0.05 m to 0.25 m.

• Second row: Half capsules with varying dimensions from 0.1 m×0.2 m to 0.3 m×0.6 m.

• Third row: Cones with the same radii of 0.15 m and varying heights from 0.05 m
to 0.2 m.

The intuitively expected Graspability Map of scenario no. 1 is shown in Fig. 4–3.
The smallest geometries would hardly be marked as graspable, since they take up a
fraction of the volume of the gripper mask. In the case of the largest hemisphere, the
surface of the peak would be considered as graspable in reality, but due to its flatness
it is suboptimal for fixation. This fact should be reflected in the Graspability Map. For
the medium sized and large half-capsules, the graspability maxima should be at both
ends, while the ridge of the capsules would also be marked green.

The resulting Graspability Map is shown in fig 4–4. The ground level is manually set
to 0.01 m. The regression plane has been calculated correctly, since all relevant eleva-
tions are above the zero plane. The area below the zero plane is marked in white and
the z-axis corresponds to the normal vector of the regression plane.

The distribution of the calculated graspable targets largely corresponds to the expected
distribution. In the case of a hemisphere with a smooth and homogeneous surface, the
distribution of graspability emanates symmetrically from the center. The graspability
maxima on the surfaces of the larger hemispheres are slightly offset. For the largest
half-capsule, the expected maxima should be at the both ends of the geometry, which
corresponds with the resulting Graspability Map. In case of some geometries, the
cutting edges with the base are declared as graspable as well, which is an error caused
by the high density of solid points at those sharp edges.
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Fig. 4–3: Expected Graspability Map of the primitive geometries.

For hemisphere no. 2, 3 and 4, all capsules and cone no. 3, the result mostly agree
with the expectations. the graspability maxima are placed at the top center of the
geometry. The highest cone is expected to be not graspable, since the peak appears
to be too pointed for the gripper. But apparently this cone fits perfectly into the shape
of the mask.

A look at the area of the maximum curvature and its intersection with the maximum
graspability reveals some misalignments, as shown in Fig. 2–2. The distribution of
curvature, shown here in blue, should be symmetrical about the centre of a geometry,
but the distribution appears to be truncated towards the coordinate centre, so that only
half of the semicircles and cones are ever declared as curvature. This also has an
effect on the intersection of curvature and graspability, shown in dark green, which is
more in line with expectations for geometries closer to the coordinate centre.

4.2.2 Slopes and Bumps

Scenario 2 corresponds to a terrain with slight slopes and some bumps. The concate-
nated point cloud composed of six individual point clouds from the RGB-D cameras is
shown in Fig. 4–5a. The robot stands in the center of a depression and can recognize
the shape of the terrain on all sides, but the view of shadowed areas is hidden behind
the bumbs, as well as the immediate area where the robot is located. This occluded
area and the hexagonal hole in the middle of the terrain are compensated by the inter-
polation function. The resulting connected terrain is shown in Fig. 4–5b. At the same
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Fig. 4–4: Resulting Graspability Map of scenario no. 1.

time, the distribution of points in the interpolated point cloud is homogenized by the
algorithm, which in total corresponds to the original number of points in the raw point
cloud.

The results of the non-interpolated point cloud are shown in Fig. 4–6. All bumps are
recognized as such and marked in green, in contrast to the "vales" between the bumps,
which are marked in yellow and red. A large part of the slopes are marked as graspable
at those positions with a slightly convex shape. Most of the terrain behind the slopes,
which can only be partially captured by the cameras, is marked in red because there
are not enough points available for an assessment. While isolated hills are largely
recognized as such and declared as graspable.

The compensation of the occluded areas does not change the result of the Graspability
Map very much. In some areas, interpolation makes the assessment of graspability
more accurate and limits the extent of the green area. Larger areas that lay in shadow
and that are compensated by the algorithm should not be considered for the robot’s
movement or fixation anyway.

4.2.3 Bouldering Wall

In the third scenario, we primarily compare the performance of the algorithm between
a pre-scanned point cloud and real-time exploration in a terrain of climbing rocks. The
results of the algorithm on the two point clouds are presented below. The significance
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(a) Input raw point cloud of scenario 2. (b) Point cloud after interpolation.

Fig. 4–5: Occluded zone compensation and homogenization of the terrain to be exam-
ined.

Fig. 4–6: Graspability Map of scenario 2 without occlusion compensation.

of the test results is assessed in the Discussion chapter.

4.2.3.1 Pre-scanned Map

The 58 climbing holds can be clearly seen in the Graspability Map in Fig. 4–8a. The
tops of the boulders are largely marked as graspability maxima and the "vales" around
the boulders are marked in red as inaccessible terrain.

A problem that has already been noticed in previous scenarios also exists here in
the area of the cutting edge of the climbing holds with the ground. These areas are
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Fig. 4–7: Graspability Map of scenario 2 after interpolation of occluded areas.

declared as graspable because the number of solid voxels that fit into the grippable
area of the gripper mask is greater here than in the area of the side walls higher up.
This error can be hidden by setting a correct z-limit for the zero plane, see Figure 4–8b.

The Curvature Map of the scenario is shown in 4–8c. The intersection of the convex
areas and the maxima of graspability should be at the top of each cliff that is declared
graspable. The resulting intersection area is largely consistent with the result of the
Graspability Map. While it cannot be said with certainty whether a region is graspable
to the gripper or not without conducting a field test in the climbing gym with the gripper
prototype, each climbing hold can be intuitively understood as a convex region with high
curvature. However, since the curvature recognition algorithm leaves out those parts
of the climbing holds whose surface normal vectors point toward the center, some of
the summits of the climbing stones are not recognized as peaks.

4.2.3.2 Real-time Map

For the real-time case, The terrain to be examined only includes a part of the boulder
field. Since the robot stands outside of the formation of climbing holds and the visibility
of the cameras is limited to 1.5 m, the relevant part of the point cloud to be examined
only includes the field of view of three of the six cameras. In contrast to the previous
scenario, the cameras are located at an elevated point in relation to the climbing holds
and therefore have a good overview of the stones, so that only a small part of the
occluded areas need to be compensated.
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(a) Graspability Map of pre-scanned point cloud of scenario 3.

(b) Graspability Map of pre-scanned point cloud with z-threshold set.

(c) Curvature Map and intersections with graspability maxima. Notice the left-
out area whose surface normal vectors point toward the center.

Fig. 4–8: Resulting Graspability and Curvature Map of scenario 3.50
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The resulting Graspability Map of the raw input cloud is shown in 4–9a, which differs not
much from the result of the interpolated map, shown in 4–9b. The graspable areas are
largely congruent with the pre-scanned map. At the edges of the map, the interpolation
has caused deformations in the terrain that are incorrect. However, these would have
little influence on the evaluation.

It should also be noted that due to the uneven distribution of elevations on the map,
the regression plane does not run perfectly parallel to the flat ground, but as seen from
the robot, the ground slopes slightly towards the direction of the boulder field. The zero
plane cuts some distant climbing stones horizontally in the middle. However, this also
has only a minor influence on the evaluation, since the terrain below the zero plane is
also considered for the computation of the graspability.

4.2.4 Artificial Rocks

The formation of artificial rocks described in Chapter 3.1.1 is examined below using the
algorithm, whereby a distinction is also made here between the pre-scanned and the
in-situ case as input.

4.2.4.1 Pre-scanned Map

In this scenario, several rocks are significantly higher than the previously examined el-
evations and have steeper walls. The input point cloud should therefore also take these
walls into account and map them in detail. Consequently, there is no interpolation and
homogenization of the terrain, as the interpolation algorithm redistributes the points on
an x-y grid map and thus, the vertical wall surfaces would be "thinned out". Instead,
the point cloud is derived directly from the surface mesh (as shown in Fig. 3–5) using
the Poisson-disk sampling method [68].

Fig. 4–10a shows the resulting Graspability Map. Flat surfaces on the top of the rocks
are marked as non-graspable areas, but the edges of the high plateaus usually are
marked green. The very pointed peaks of rocks no. 2 and 3 are marked orange to
yellow. Concave surfaces are usually marked as red, although this only applies to
the vertical depressions whose normal vector points in the z direction. The concave
surfaces on the vertical surfaces are rarely recognized as such.

Again, due to the uneven distribution of rocks in the terrain, the regression plane was
computed with a slight offset angle of < 5 degrees, so that the upper part of the map (in
the image) is tilted towards -z. This can be seen in the red marked corner at the bottom
right of the image, which protrudes from the zero plane, although the flat ground should
be in theory perpendicular to the z-axis.

The curvature map in Fig. 4–10b shows most of the convex surfaces in the terrain,
with some limitations: First, not all parts of a convex surface are visualised due to
the previously mentioned error in the curvature estimation algorithm. This error arises
because surface normal vectors do not have an unique orientation, as the algorithm
cannot tell which is the "rock side" and which is the "air side" of a surface. Second,
due to the fixed search radius of normals and curvature, which is ∼1/2 the side length
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(a) Graspability Map on raw point cloud.

(b) Graspability Map on interpolated point cloud.

(c) Curvature Map and intersections with graspability maxima.

Fig. 4–9: Results of the in-situ approach of scenario 3.
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(a) Graspability Map of pre-scanned point cloud of scenario 4.

(b) Curvature Map and intersections with Graspability maxima.

Fig. 4–10: Resulting graspability and curvature map of scenario 4.
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of the gripper mask, curvatures with too large or too small a radius are not displayed.
The convex surfaces located on vertical rock faces are made visible by the algorithm,
which is a clear advantage over the gripper mask. The intersections with the tangibility
maxima are all at prominent convex points in the map, and the grouping of the points
also appears reasonable.

4.2.4.2 Real-time Map

The analysis of the real-time case encounters more challenges than in the previous
scenarios. First, due to the height of some of the rocks and the proximity of the ob-
stacles to the robot, it is not possible to see behind them. High rocks faces with the
vertical faces are not an optimal target for the gripper mask as it cannot tilt or conform
to the shape of the terrain. The results of the Graspability Map on the vertical surfaces
should therefore be viewed with caution.

The Graspability Map of the non-interpolated point cloud is shown in Fig. 4–11(a). The
flat areas on top of the high rocks no. 1, 12, 6 and 7 are hardly visible from the robot;
these are only partially imaged and should not be considered for the evaluation, even
if the algorithm predicts full graspability for these areas. The only surfaces that are
relevant are the transition area from the vertical walls to the top area of those rocks.

For the interpolated map, shown in Fig. 4–11(b), the Graspability of the areas that
were previously marked dark green has been severely restricted. This limitation stems
from two primary factors. Firstly, the overall density of points within the relevant regions
was reduced due to the grid-based homogenization process. Secondly, the correction
of concealed areas behind rocks resulted in complete surface elevations connected to
the ground. The modified geometries of the rocks have also exerted an influence on
the resultant Graspability.

The interpolation has a positive effect on the lower rocks no. 4, 5, 8, 9 and 10, most of
which were already largely visible without the interpolation. The interpolation estimates
the trailing edge of these rocks quite adequately, so that the Graspability Map for these
rocks is quite similar to the results of the pre-scanned map.

Finally, let’s take a look at the curvature map, shown in Fig. 4–11(c). Here, the convex
surfaces (blue) are first computed on the interpolated real-time map in order to then
visualize the intersection of the convex surfaces with the Graspability maxima (shown
in dark green). The distribution of the intersection areas is surprisingly clean, as the
grouping of the intersections is well-arranged. These are often located at the front
edges of the rocks (as seen by the robot), which is definitely a desirable result.
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Fig. 4–11: Graspability Map of real-time raw (a), interpolated (b) and curvature com-
bined (c) point cloud of scenario 4.
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4.3 Field Test

For scenario 4, a small-scale field test was carried out. 30 points on the rocks were
selected, as shown in 4–12a. The following criteria played a role in selecting the points:

• The set includes points on different parts of the artificial rocks, such as flat sur-
faces, edges, corners, and irregular surfaces.

• Points that are too close to the ground have been avoided.

• The set includes points that vary in terms of the difficulty of grasping. Some points
appear to be easy to grasp, while others could be more challenging.

• A point that can be used by the robot for locomotion or for fixation in a microgravity
environment is considered graspable.

The field test was carried out by a lab colleague. A set of 30 images where the positions
of the points to be examined are precisely marked is provided for analysis. The results
are listed in Tab. 2–3. The positions of the examined points are marked on Fig. 4–12a
and highlighted in green (graspable) and red (non-graspable) on the textured mesh of
the test area, as shown in Fig. 4–12b.

4.4 Running Time

SRL-GTD was developed based on the existing climbing robot simulator ClimbLab,
which was written in MATLAB. In terms of temporal resource utilization, it is anticipated
that C++ would deliver superior performance in comparison to Matlab.

In the MATLAB algorithm, a notable delay is encountered during the Voxel Matching
segment, whereby this phase exceeds around one second in duration. As shown in
Tab. 4–2, this extended duration is attributed to the slower execution of the two sub-
routines, namely voxel extraction and voxel comparison, nested within the search loop.
These subroutines handle extensive data variables and exhibit diminished swiftness in
the MATLAB implementation. Given that the loop iterates roughly 50,000 times, analo-
gous to the quantity of solid voxels within the map, the protracted duration materializes.

The C++ implementation on the other hand consistently shows significantly lower exe-
cution times for each core function compared to MATLAB. The most significant differ-
ence in runtime is observed in the most crucial Voxel matching function, with the C++
implementation being substantially faster. The total time for the C++ implementation
of graspable target detection is 3.90 seconds or approximately one-third of the time
taken by the MATLAB implementation.

The entire process of a cycle from the creation of the depth images to the conversion
into a point cloud to the detection of the graspable targets and their visualization in
RVIZ takes approximately 4.5 seconds, as shown in Tab. 4–3 using the example of
scenario 4. The running time generally also depends heavily on the performance of
the CPU. In the case of the point cloud conversion step, the frequency of receiving the
depth images is deliberately limited to one second per image in order not to overload
the computer.
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(a) Numbering of the rocks and the numbered positions of the
points to be tested.

(b) Results of the field test. Points which are graspable are
marked green, the non-graspable ones are marked red.

Fig. 4–12: Positions of the positions on the artificial rocks to be tested and the test
results visualized on the textured mesh of the test field.
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Tab. 4–2: Comparison of the time consumption for each core function of SRL-GTD in
µs. Input is a pre-scanned point cloud with ∼65 000 points.

Function MATLAB C++

Coordinate transformation 3866 µs 3132 µs

Interpolation 298 211 µs 87 564 µs

Voxelization 40 992 µs 15 388 µs

Gripper mask 378 µs 66 µs

Voxel matching (subfunctions):

Voxel clip 95 386 µs 20 696 µs

Voxel extract 12 µs 12 µs

Voxel compare 10 µs 1 µs

Voxel matching overall 1 525 386 µs 865 696 µs

Total time ∼11.4 s ∼3.90 s

Tab. 4–3: Running time of one cycle of target detection in a real-time scenario (∼37 000
points), starting from the depth image generation in CoppeliaSim until the visualization
of the Graspability Map.

Operation Time elapsed

Depth image generation & publication 0.25 s

Point cloud conversion 1.69 s

Graspable target detection 2.54 s

Total time 4.48 s
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5 Discussion

In this chapter, among the various aspects of the Graspable Target Detection algorithm,
we extendedly provide an analysis to the core component, the gripper mask and the
performance of the algorithm. The chapter is structured into several sub-chapters,
each addressing specific elements of SRL-GTD’s design and functionality.

5.1 Geometry of the Gripper Mask

The geometry of the gripper mask is crucial in determining the ability to detect gras-
pable targets. An alternative geometric design is proposed and compared with the
chosen design, highlighting both strengths and limitations.

5.1.1 Alternative proposal

In order to better represent the gripping extent of the gripper, an alternative concept
for the geometry of the Gripper Mask was developed, which is shown in Fig. 5–1.
The SCAR-E gripper has up to eight segmented fingers. Therefore, the corresponding
mask should be rotationally symmetrical, with the region between the maximum and
minimum gripping extent represented as solid voxels. This extent is limited by the
maximum and minimum gripping angles θo (opening angle) and θc (closing angle).

In addition to the already known side lengths and height of the gripper mask, the ge-
ometry is represented by three crucial radii.

The Grippable Radius Rg is formed, analogous to the current design, from the top solid
radius RT and increases in z-direction.

Rg = RT +
z

tan(90◦ − θo)
(5–1)

The Outer Unreachable Radius Ru,o describes the outermost extent of the fingers and
is formed following the formula for half chord length of a circle 1 and takes the minimal
gripping angle θc into account.

Ru,o = RT +

√
2 · HGM

cos(θc)
(HGM − z)− (HGM − z)2 (5–2)

5.1.2 Comparison with Current Design

The alternative concept is a more accurate representation of the gripper and reflects
the reach of the fingers well and omits those areas that do not represent the gripper
extent. In the current algorithm, however, the alternative mask has some drawbacks

1Chord length of a circle: 2
√
2Rh− h2
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Fig. 5–1: Alternative concept of the Gripper Mask’s design.

Fig. 5–2: Comparison of the alternative gripper mask with the current design in case
of an ideal graspable cone shaped terrain. With the alternative mask, this shape would
not be declared as fully graspable.
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in detecting the actual graspability. As Fig. 5–2 shows, parts of shapes that could
actually be perfectly gripped by the gripper would be considered outliers due to the non-
matching area outside the Outer Unreachable Radius Ru,o. These void areas are of no
relevance for the actual graspability of the pivot point, but influence the Graspability
score. Since the Subset is a cuboid, terrain voxels within the newly emerged non-
matching area would penalize the Graspability score. But in reality, these areas do not
pose any obstacles to grasping.

A small change to the algorithm could potentially solve this problem: by excluding
the previously mentioned non-matching void area outside Ru,o when calculating the
Subset Solid Voxels (SSV) and the Gripper Solid Voxels Gripper Solid Voxels (GSV)
(see Chapter 3.2.5), the influence of this non-matching region on the result would be
minimized. This would probably lead to promising results, but was no longer tested
within the scope of this work. The current design is square in plan, and the nominal
graspable area includes the area beyond the reach of the fingers. It is not clear from
the available results whether this actually represents a disadvantage.

5.2 Performance of the Graspable Target Detection

The following sections encompass the utilization of a binary classifier and the Receiver
Operating Characteristic (ROC) curve for assessing of the discriminative performance
of the test, focusing scenario 4, which was the most comprehensive. Subsequently, we
will analyze the accuracy of the findings, incorporating the bouldering wall scenario in
our evaluation.

5.2.1 Receiver Operating Characteristics

The outcomes of the field test hold significance, as they establish a reference for the
subsequent assessment of the algorithm. In Fig. 5–3a, the points examined in the
field test are marked on the Graspability Map of the pre-scanned map of scenario 4.
Fig. 5–3b and Fig. 5–3c show the real-time point clouds in their raw state and in their
interpolated state. Here, all points are marked here whose Graspability score is clearly
visible. Thus, the border of the visible area for the real-time case is highlighted in red.
The corresponding Graspability score read from the map are listed in Tab. 2–3.
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(a) Pre-scanned map. (b) Real-time map raw.

(c) Real-time map interpolated. (d) Real-time map combined.

Fig. 5–3: Points examined in the field test marked in the graspability maps of scenario
4. The red line marks the limited area examined for the real-time cases.
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5.2.1.1 Sensitivity and Specificity

To assess how well a logistic regression model fits a dataset, we can look at the follow-
ing metrics:

• Sensitivity (True Positive Rate (TPR)): The probability that the algorithm predicts
a positive outcome for a testing point when indeed the outcome is positive.

TPR =
TP

TP + FN
(5–3)

• Specificity (True Negative Rate (TNR)): The probability that the algorithm pre-
dicts a negative outcome for a testing point when indeed the outcome is negative.

TNR =
TN

TN + FP
(5–4)

• Fall-out (False Positive Rate (FPR)): The probability that the algorithm incorrectly
predicts a positive outcome for a testing point when the outcome is negative.

FPR = 1− TNR (5–5)

• Miss Rate (False Negative Rate (FNR)): The probability that the algorithm in-
correctly predicts a negative outcome for a testing point when the outcome is
positive.

FNR = 1− TPR (5–6)

Which includes the following terminology:

• True Positives (TP): Entirely of results of the algorithm which indicates the pres-
ence of a graspable point.

• True Negatives (TN): Entirely of results of the algorithm which indicates the ab-
sence of a graspable point.

• False Positives (FP): Entirely of results of the algorithm which wrongly indicates
that a graspable point is present.

• False Negatives (FN): Entirely of results of the algorithm which wrongly indicates
that a graspable point is absent.

5.2.1.2 ROC curve

The Receiver Operating Characteristic (ROC) [69] is a graphical representation of a bi-
nary classification model’s performance across various discrimination thresholds. It
plots the sensitivity against the false positive rate (1 - specificity) as the threshold
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for classifying instances is varied. The ROC curve helps visualize the trade-off be-
tween sensitivity and specificity and assesses the model’s performance across different
threshold settings.

5.2.1.3 Area under the Curve

The Area Under the Curve (AUC) is a single scalar value that quantifies the overall
performance of a binary classification model. AUC measures the ability of the model
to discriminate between positive and negative instances across all possible threshold
settings. A model with an AUC of 1.0 is perfect, while random guessing yields an AUC
of 0.5. An AUC between 0.5 and 1.0 indicates the model’s discrimination ability, with
higher values indicating better discrimination.

5.2.1.4 Discriminative Power

Tab. 5–1 - Tab. 5–3 shows ten threshold ranges and the respective sum of positive
and negative points and the correspondent TPR and FPR for the three different cases
of scenario 4. This is followed by the corresponding sensitivity and specificity values
for the threshold ranges.

Fig. 5–4: ROC curve of the field test. Optimum graspability threshold is highlighted in
yellow in Tab. 5–1 - 5–3. The pre-scanned case (blue) has the largest area under the
curve AUC.

The ROC curve for the three cases is illustrated in Fig. 5–4. A high value in AUC
signifies that the model has a high true positive rate (sensitivity) while maintaining a
low false positive rate, indicating strong discrimination. Based on the AUC value of
0.84 in the pre-scanned case, which demonstrates high discriminatory power, we can
clearly see that this test scenario is superior to the others. This is not surprising since
the case provides Grapability score for all 30 the points tested in the field test. On the
contrary, the real-time interpolated case provides the least discriminative power.
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5.2.1.5 Graspability Threshold

The Graspability score represents a probability of how likely a point is to be graspable.
In order to define an exact threshold value, from which one can safely assume a gras-
pability, we take another look at the ROC analysis.

The choice of an operating point on the ROC curve depends on individual priorities.
The optimum threshold represents a trade-off between sensitivity and specificity. In
the case of identifying graping points on rocks, false positive results can lead to much
more severe errors, including disastrous accidents. Therefore, a high true positive
rate is selected with a prioritized low false positive rate. Therefore, the Graspability
Threshold is set to 0.8 in general.

ROC and AUC may not provide a complete picture when dealing with imbalanced
datasets. ROC and AUC do not reflect changes in the TPR and FPR if the class
distribution changes, or if one class greatly outnumbers the other. This was the case
when only part of the terrain is visible, as in the real-time cases where the proportion
of negative field test values is lower. ROC and AUC do not reveal how well a model
generalizes to new data.

Tab. 5–1: ROC table and AUC of scenario 4, pre-scanned case.

Cutoff Predicted
positives

Predicted
negatives

True Positive
Rate

False Positive
Rate

AUC

0.1 30 0 1.00 1.00 0.00

0.2 30 0 1.00 1.00 0.00

0.3 30 0 1.00 1.00 0.08

0.4 28 2 0.94 0.92 0.24

0.5 24 6 0.89 0.67 0.15

0.6 20 10 0.78 0.50 0.13

0.7 17 13 0.72 0.33 0.06

0.8 16 14 0.72 0.25 0.18

0.9 3 27 0.17 0.00 0.00

1 0 30 0.00 0.00 0.00

Total 0.84
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Tab. 5–2: ROC table and AUC value of scenario 4, real-time raw case.

Cutoff predicted
positives

Predicted
negatives

True Positive
Rate

False Positive
Rate

AUC

0.1 16 0 1.00 1.00 0.00

0.2 16 0 1.00 1.00 0.00

0.3 16 0 1.00 1.00 0.00

0.4 16 0 1.00 1.00 0.00

0.5 16 0 1.00 1.00 0.00

0.6 16 0 1.00 1.00 0.17

0.7 12 4 0.70 0.83 0.35

0.8 9 7 0.70 0.33 0.23

0.9 2 14 0.20 0.00 0.00

1 0 16 0.00 0.00 0.00

Total 0.75

Tab. 5–3: ROC table and AUC of scenario 4, real-time interpolated case.

Cutoff predicted
positives

Predicted
negatives

True Positive
Rate

False Positive
Rate

AUC

0.1 16 0 1.00 1.00 0.00

0.2 16 0 1.00 1.00 0.00

0.3 16 0 1.00 1.00 0.33

0.4 13 3 0.90 0.67 0.15

0.5 11 5 0.80 0.50 0.13

0.6 9 7 0.70 0.33 0.00

0.7 9 7 0.70 0.33 0.00

0.8 5 11 0.30 0.33 0.10

0.9 1 15 0.10 0.00 0.00

1 0 16 0.00 0.00 0.00

Total 0.72
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5.2.2 Accuracy of the Results

To evaluate the accuracy of the statements that SRL-GTD provides, two additional
metrics are introduced: Positive Predictive Value (Precision) and Accuracy.

• Positive Predictive Value (PPV), also called Precision, measures the ability
of a binary classifier to correctly identify positive instances from all instances it
classifies as positive. ("Of all the points that the model predicted as graspable,
how many were actually graspable?")

PPV =
TP

TP + FP
(5–7)

• Accuracy (ACC) is how close a given set of measurements are to their true
value. It measures the overall correctness of a binary classifier, considering both
positive and negative classifications. ("Of all points in the dataset, how many
were correctly classified?")

ACC =
TP + TN

TP + TN + FP + FN
(5–8)

The sensitivity and specificity of the cases in the 4th scenario can be read directly
from Tab. 5–1 - Tab. 5–3 The resulting accuracy is around 70% for every case, which
is satisfactory. The result of the pre-scanned map clearly shows the best predictive
power among all cases. The pre-scanned cases include all 30 testing points. It is
noticeable that in case of the combined analysis of curvature and graspability, the false
positive rate is significantly lower, which is in favor of this method.

In the real-time cases, the true positive rate is moderately high, but with a high false
positive rate of 1/3. However, the available data set of 16 points is small due to limited
visibility.

For scenario no. 3, no field test results are available. However, this is also a fairly easily
accessible area, and it can be assumed that all climbing holds are within the robot’s
gripping capability. The peaks of all climbing holds have a Graspability score of more
than 0.8. It’s more a matter of finding the ideal points for locomotion. Therefore, the
pre-scanned case is used as a reference because it provides the most comprehensive
information about the graspability. The Graspability threshold is set to 0.9, which is a
stricter criterion than in scenario 4. Fig. 2–1 shows the numbering of the holds and
the results for each case. Positions with graspability above the threshold are marked
in dark green. In addition, the visible range for real-time cases is highlighted with a red
line. The results of the five examined cases are shown in Tab. 2–4.

The evaluation of the five examined cases reveals that the method using combined
criterion of the pre-scanned map has the overall lowest false positive rate and a high
accuracy.

In the real-time cases, 30 of 58 points were examined. The rate of false positive results
here is very high, which is due to the strict Graspability threshold of 0.9, but also to the
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very low number of only 9 negative points in the reference map. The results here are
therefore only of limited significance.

Overall, the evaluation shows a satisfactory result in terms of the accuracy of the algo-
rithm

Tab. 5–4: Accuracy analysis across the investigated cases for scenario 3 and 4. Ter-
minology: TPR: True Positive Rate (Sensibility); TNR: True Negative Rate (Specificity);
FPR: False Positive Rate (Fall-out); FNR: False Negative Rate; PPV: Positive Predictive
Value (Precision); ACC: Accuracy.

Scenario Case TPR TNR FPR FNR PPV ACC

Bouldering
wall

Pre-
scanned
curvature

80.00% 88.89% 11.11% 20.00% 94.12% 71.14%

Real-time
raw

90.48% 22.22% 77.78% 9.52% 73.08% 70.00%

Real-time
interpolated

100.00% 44.44% 55.56% 0.00% 80.77% 83.33%

Real-time
curvature

90.48% 33.33% 66.67% 9.52% 76.00% 73.33%

Artificial
rocks

Pre-
scanned
raw

72.22% 75.00% 25.00% 27.78% 81.25% 73.33%

Pre-
scanned
curvature

66.67% 83.33% 16.67% 33.33% 85.71% 73.33%

Real-time
raw

70.00% 66.67% 33.33% 30.00% 77.78% 68.75%

Real-time
interpolated

70.00% 66.67% 33.33% 30.00% 77.78% 68.75%

Real-time
curvature

70.00% 66.67% 33.33% 30.00% 77.78% 68.75%

5.2.3 Robot in a Different Pose

So far, we have only examined one pose of the robot in the real-time scenario. The
robot always stands on a flat surface from where it can overlook a large part of the
terrain. One question that can be asked is how the target detection results change if
the robot is in a different pose.

This is demonstrated in Fig. 5–5. Here the main body of the robot is in an approx.
25 degree inclined position to the ground. From this position, only 15 of 30 points
examined in the field test are visible. The evaluation of the results, shown in Tab.
5–5 provides moderate accuracy. Two thirds of the predictions are correct. Despite
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the crooked position of the robot, the regression plane was calculated approximately
correctly and is parallel to the flat ground. The error angle is less than 5°.

Fig. 5–5: Graspability Map of scenario 4 with the robot in a crooked pose.

Tab. 5–5: Evaluation of the graspable points examined in a different pose of the robot.

Scenario Case TPR TNR FPR FNR PPV ACC

Artificial
Rocks

Real-time,
different
pose

66.67% 66.67% 33.33% 33.33% 75.00% 66.67%

5.2.4 Thresholding

Two different measures were taken to minimize incorrect assessments in the areas of
depressions and side walls:

• Threshold of Solid Voxels (TSV), which leads to a penalty of the Graspability
score for those voxels whose subsets contain too few solid terrain voxels.

• Additional Void Gripper Mask Layers Hadd, which adds void voxel layers above
the pivot point.

Both thresholds counteract the erroneous predictions to a certain extent. For the pre-
vious tests, an empirical value of TSV = 120 and H1 were used, which deliver the best
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results for the dimensions of the SCAR-E gripper and eliminates most false positive
results.

To explore the impact of these two threshold values on the distribution of graspability,
we conducted a total of 12 tests on the pre-scanned, interpolated map in scenario 3,
as shown in Tab. 5–6. This scenario has been chosen, since all climbing holds are
considered graspable and the ideal climbing point can be assumed to be on the peak
of each hold.

Tab. 5–6: Study of distribution of graspability with varying Threshold of Solid Voxels
TSV and Additional Void Gripper Mask Layers Hadd

Hadd = 0 Hadd = 1 Hadd = 5

TSV = 0

TSV = 120

TSV = 250

TSV = 350

5.2.4.1 Discussion of Thresholding

In the case of no threshold, large parts of the side walls of the rocks are declared
graspable and no clear marker for the peak is visible. As the Threshold of Solid Vox-
els (TSV) value increases, the peaks become more prominent, but the edges of the
rocks and the actually inconspicuous trench on the ground (groove between two boul-
dering wall panels) are still visible. With increasing Hadd value, the result becomes
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more specific, as the Graspability maxima are assigned to the peaks, which is desir-
able. However, the peak surfaces of larger size rocks are completely excluded from the
accessible range.

Judging from the graphic, the threshold optimum is between TSV = 120 ∼ 250 and
Hadd = 1 ∼ 5. Results with threshold values that go beyond those described are not
listed here as they tend to lead to worse results.

This is only a rough estimation of the threshold values, especially since only one sce-
nario was used for testing. For a more precise estimate, a ROC analysis is required on
standardized forms, such as those in scenario 1. The Graspability score obtained in
defined areas can then be compared with expected values in order to find the optimum.
This could not be addressed within the scope of this work.

5.2.5 Conclusion about the performance of the algorithm

Based on the results of the evaluation of the ROC analysis, the following statements
can be made:

• From the ROC analysis of Scenario No. 4, using the field test results as a refer-
ence, it can be determined that in difficult terrain a Graspability Threshold of 0.8
provides the best discriminatory power.

• Pre-scanned maps provide better reliability in terms of accuracy and higher sen-
sitivity with low fall-out compared to real-time explorations.

• The combined criterion of convex shapes and Graspability maxima provides a
more conservative, but in terms of low fall-out rate, reliable method to find se-
curely graspable terrain and avoid non-graspable areas.

• Regarding real-time cases, no significant differences can be found between the
three methods used, due to the small number of samples. However, the accuracy
of these methods are all in an acceptable range, although with significant higher
false positive rates.

• In scenario 3, a terrain that is easily surveyed by robots from an elevated position
and free of very tall rocks, the algorithm provides reliable results in terms of the
position and graspability of the elevated points. Here, the Graspability threshold
must be increased to 0.9 for any difference between the cases to be noticeable.

• However, in the case of the bouldering wall, no field tests were carried out, but the
ROC analysis was carried out with the most complete result (pre-scanned case)
as a reference. This reduces the comparability of the two scenarios.

• The algorithm also provides acceptable results even when the main body of the
robot is in an inclined position that is not parallel to the ground. Also in this case
the zero level is calculated correctly.

• The values for the Threshold of Solid Voxels and Additional Void Gripper Mask
Layers lay between TSV = 120 ∼ 250 and Hadd = 1 ∼ 5.
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Overall, a sufficient metric was found to adequately evaluate the test points given a
comparatively small amount of reference data.

5.3 Data Set Accuracy

Within the scope of this study, there were no metrics developed to determine the ac-
curacy of the field test itself. The field test is also a singular test that would need
to be repeated for a more meaningful result, the algorithm would need to be tested
extensively in other scenarios.

Accuracy with respect to the data set means the difference of the input raw terrain point
cloud used for the algorithm’s input compared to the ground truth of the actual test side.
Regarding the 3 m × 3 m map of the artificial rocks data set, the following information
are known for the accuracy. The terrain was scanned using the Kinect v2 device, which
has a constant accuracy in the form of an offset of 18 mm [70] and a sensor accuracy
of ± 0.5 px [61].

The SLAM method used is RTAB-Map, which in itself has a low accuracy, with Root
Mean Square Error (RMSE) between estimated and ground truth trajectories in indoor
environments hit sometimes several meters [71]. In large-scale outdoor tests, con-
ducted by the SRL, the RMSE reaches an average value of 12 cm in the xy plane [72].
These errors can be reduced significantly with the combination of graph optimisation
algorithms (see Chapter 3.1.4). The resulting colored and textured mesh of the test
site, as shown in Fig. 3–5, shows a high degree of correspondence with the photos
taken of the artificial rocks. Although the resulting simulation environment have not
been systematically evaluated, an approximate error can be estimated. A spotcheck
comparison along the four edge lengths of the resulting simulation test site with the
ground truth of field test site shows that the average absolute error in z is 40 mm, as
shown in Tab. B2–2.

When creating the surface mesh of the optimised point cloud, it is subsequently filtered
with a grid that has a voxel size of 0.01 m. The inaccuracy of the RGB-D camera Re-
alSense D435i used for the robot’s prototype was not implemented in the subsequent
CoppeliaSim simulation when creating the depth camera model, thus, the input data
set for the real-time scenarios has the same accuracy as the terrain mesh used in the
simulation.

Obtaining the necessary size of data for the significance of a binary classification eval-
uation typically requires a in-depth statistical power analysis, which is to be done for a
more systematic testing of the algorithm.
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6 Conclusion and Outlook

This work introduced the SRL Graspable Target Detection Algorithm (SRL-GTD), de-
veloped for use with hexapod climbing and exploration robots, with a particular focus on
its application to the SCAR-E robot, designed for planetary and terrestrial exploration
tasks. SRL-GTD is a geometry-based salient shape recognition algorithm that pro-
cesses depth information perceived by the robot’s depth sensors and predicts terrain
accessibility using a gripper-based geometric mask.

6.1 Results Roundup

To establish a representative testing environment for simulating conditions approxi-
mating the rugged nature of an asteroid, and to subsequently conduct tests on this
environment to validate the performance of SRL-GTD, we constructed a 3 m × 3 m test
area comprised of artificial rocks. This terrain is scanned with a Kinect v2 device in
combination with the SLAM method RTAB-Map. Further map refinement was accom-
plished using Robust Graph Optimization algorithms g2o and SBA, which results in a
highly accurate emulation of the test side with an estimated mean error of ∼0.04 m.
Subsequently, a simulation environment is created in CoppeliaSim, which included a
controllable model of SCAR-E. Furthermore, a small-scale field test was carried out,
involving the deployment of the prototype of the gripper at 30 locations on the artifi-
cial rock formation, the result of which is used as a reference in the evaluation of the
algorithm.

This elaborate replica of the test site was examined for graspable points employing the
SRL-GTD methodology. This analysis showed that the algorithm can provide us de-
tailed information about the probability of being suitable for gripping throughout the field
test. The Receiver Operating Characteristic (ROC) analysis shows a robust discrimi-
native performance for this test scenario. Simultaneously, we devised other scenarios
with better accessibility. The examination of primitive geometric shapes with the algo-
rithm shows an extensive agreement with the expected result. In a terrain with gentle
slopes and elevations, the algorithm demonstrates the capability to compensate oc-
cluded areas behind obstacles, thereby meaningfully limiting the accessible area. On
a bouldering wall with 58 climbing holds, all elevations could be easily localized. All de-
pressions and the smooth, flat ground were successfully excluded from the graspable
region.

Compared to the original ClimbLab concept, SRL-GTD brings several innovations.
First, it introduces a new criterion that computes the probability of graspability of the
terrain. This criterion assigns a Graspability score to each point and subsequently pro-
vides a visual representation. Secondly, the algorithm examines each point’s principal
curvature in the terrain, identifying convex regions. The overlap of the maxima of Gras-
pability score and the peaks of convex regions is considered as safe graspable points.
This method achieves a accuracy rate of 73% in difficult terrain with a low false positive
rate of 17%.
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When comparing pre-scanned terrain maps, typically derived from remote sensing,
with simulation-generated in-situ scenarios, it becomes evident that the pre-scanned
scenarios exhibit a notably high weighted arithmetic mean of accuracy, exceeding 70%.
These scenarios also demonstrate a remarkable mean precision rate of 83%, at very
low mean false positive rate of 16%. In contrast, the real-time cases yield similarly
high values regarding accuracy, but they are accompanied by a comparatively higher
weighted mean of false positive rate of ∼50%.

Regardless of the pose of the robot in the terrain, the algorithm aligns the depth infor-
mation processed into the point cloud according to its regression level. Furthermore,
in easy accessible terrain, the algorithm exhibits its ability of compensating occluded
areas through interpolation. In this case, the result for the interpolated real-time point
cloud has an accuracy of over 80 percent, while in difficult terrain this value drops to
69%.

Furthermore, SRL-GTD is designed to work seamlessly in a multi-sensor environ-
ment, processing and evaluating data from individual depth images into a coherent,
panoramic point cloud. Its integration with ROS facilitates high connectivity and adapt-
ability, while also significantly improving its runtime by using C++.

6.2 Possible Optimization Approaches

The future development aspect of SRL-GTD includes the improvement of the algorithm
in steeper elevated terrain, the integration of an enhanced gripper mask design, which
superiorly represents the gripper’s extent, and further runtime acceleration

High rocks with vertical walls are a comparatively major obstacle for the algorithm, be-
cause the steep surface leads to erroneous results due to the geometry of the Gripper
Mask. Therefore, high obstacles that are difficult to overcome should be detected and
marked in the next step so that they can be bypassed by the robot.

In case of limited accessibility of high rocks, or if climbing steep walls is explicitly de-
sired, the orientation of the Gripper Mask should be adjusted accordingly so that it
adapts to the slope of a surface. A more enhanced cylindrical design of the gripper
mask could also improve the specificity of the algorithm, and therefore needs to be
intensively tested.

The algorithm’s capacity for real-time operation is notably facilitated by its minimal data
requirements, limited to the depth images from the cameras for point cloud generation
and parameter provision for the gripper mask. In this aspect, it could potentially out-
perform contemporary deep learning approaches by eliminating the need for extensive
datasets in graspable target detection. Despite these advantages, significant poten-
tial for enhancing the algorithm’s runtime remains untapped. The extensive utiliza-
tion of pointers stands as a promising way for substantial runtime improvements. Fur-
thermore, the incorporation of multiprocessing strategies, such as CUDA or OpenMP,
should be explored. These parallel processing frameworks have the potential to dra-
matically accelerate computation, particularly for computationally intensive sections of
the algorithm.
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As of November 2023, SCAR-E has successfully reached significant milestones in
its development, including the establishment of a comprehensive Inverse Kinematics
system and the completion of the prototype assembly, inclusive of all electronic compo-
nents. The forthcoming critical phase entails the seamless integration of the SRL-GTD
algorithm with the robot’s inverse kinematics, marking a pivotal step towards the in-
corporation of the algorithm within the SCAR-E system. This integration represents
a crucial convergence of advanced robotic capabilities, contributing to the continued
advancement of SCAR-E’s functionality and mission readiness.
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A Appendix: Listings

Listing A.1: Function least_square_plane() computes the centroid and normal vectors
of the point cloud’s regression plane.

In {raw_cloud}
Out {normal_vector_of_regression_plane , centroid_vector}

// compute the centroid
centroid_vector_of_plane = pcl:: compute3DCentroid(raw_cloud);
// substracting the centroid (vector) to each column of the

↪→ matrix , one column being a point
for(int i=0; i< raw_cloud.size(); i++)
{
deviation_matrix (0,i)=( raw_cloud(0,i) -

↪→ centroid_vector_of_plane (0));
deviation_matrix (1,i)=( raw_cloud(1,i) -

↪→ centroid_vector_of_plane (1));
deviation_matrix (2,i)=( raw_cloud(2,i) -

↪→ centroid_vector_of_plane (2));
}

// compute the product of deviation matrix
deviation_matrix_transposed = deviation_matrix.transpose ();
product_deviation_matrix=deviation_matrix*

↪→ deviation_matrix_transposed;

// EigenSolver computes the eigen vectors and eigen values
Eigen:: EigenSolver <Eigen::MatrixXf > es(

↪→ product_deviation_matrix);
Eigen:: Vector3cf X_eigen_values = es.eigenvalues ();

...

//sort the smallest eigenvalues and its corresponding index
float a = X_eigen_values (0);
int index =0;
if (X_eigen_values (1) < a) {

index = 1;
a=X_eigen_values (1);

}
if (X_eigen_values (2) < a) {

index = 2;
}

// choose vector corresponding to the smallest eigenvalue
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Eigen:: Vector3cf normal_vector_of_plane = es.eigenvectors ().
↪→ col(index);

...

Listing A.2: Function pcd_transform() transforms coordinate of pointcloud from camera
based to terrain based frame.

In {raw_cloud , centroid_vector ,
↪→ normal_vector_of_regression_plane}

Out {transformed_cloud}

// cross product of normal and centroid vector
y_vector_of_plane = centroid_vector.cross(

↪→ normal_vector_of_regression_plane);
// x - axis : cross product of y and normal vector
x_vector_of_plane = normal_vector_of_regression_plane.cross

↪→ (y_vector_of_plane);
// z axis is the normal vector
z_vecor_of_plane = normal_vector_of_regression_plane;
rotation_matrix = [x, y, z];
// Frame transformation
transformed_cloud = rotation_matrix_transposed * raw_cloud

↪→ - rotation_matrix_transposed * centroid_vector;

Listing A.3: Execution of the interpolation on the meshgrid.

In {transformed_cloud}
Out {interpolated_cloud}

std::vector <double > x,y,z;
pcl:: PointXYZ point;

// assign points into vectors for interpolation
for (all indices i in raw_cloud)
{

point = raw_cloud.points[i];
x.push_back(point.x);
y.push_back(point.y);
z.push_back(point.z);

}
...
// Compute the grid size using the width of raw cloud in x and

↪→ y
// multiply and devide 10000 is for the suitable decimal places

↪→ !
double grid_size = 1/( round(sqrt(raw_pcd.size() / (x_width *
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↪→ y_width)*(5/3) ) * 10000) / 10000);
// create grid vectors
for (double i = min_y; i < max_y; i+= grid_size)

{
y_grid_vector.push_back(i);

}

for (double i = min_x; i < max_x; i+= grid_size)
{

x_grid_vector.push_back(i);
}

// Create a Delaunay triangle interpolator and add known data
_2D:: LinearDelaunayTriangleInterpolator <double >

↪→ delaunay_interpolator;

// Interpolate values based on x and y vectors like a grid
for (all indices i in x_grid_vector)
{

for (all indices j in y_grid_vector)
{

interp_z = delaunay_interpolator(x_grid_vector[i],
↪→ y_grid_vector[j]);

if (interp_z != 0)
{

interpolated_point_cloud.push_back(pcl::
↪→ PointXYZ(x[i], y_grid_vector[j], interp_z
↪→ ));

}
}

}

Listing A.4: Key loop for the creation of the voxelized terrain array in pcd_voxelize().

In {transformed_cloud}
Out {voxelized_terrain_array}
...
// First , create a voxel grid filter
pcl::VoxelGrid <pcl:: PCLPointCloud2 > voxel_grid;
voxel_grid.setInputCloud(transformed_cloud); // set input into

↪→ the grid
voxel_grid.setLeafSize(cube_size ,cube_size ,cube_size); // set

↪→ leaf size
pcl_after_filtering = voxel_grid.filter

min_x = transformed_cloud.x.min();
min_y = transformed_cloud.y.min();
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min_z = transformed_cloud.z.min();

int voxel_index_x , voxel_index_y , voxel_index_z;

// Iterate through the filtered point cloud to determine voxel
↪→ occupancy.

for (all indices i inside the voxel grid filter)
{

point = pcl_after_filtering.points[i];

// Calculate voxel indices for the current point.
voxel_index_x = trunc((point.x - min_x) / cube_size +

↪→ cube_size / 4);
voxel_index_y = trunc((point.y - min_y) / cube_size +

↪→ cube_size / 4);
voxel_index_z = trunc((point.z - min_z) / cube_size +

↪→ cube_size / 4);

// Mark the corresponding voxel as occupied.
voxelized_terrain_array[voxel_index_x ][ voxel_index_y ][

↪→ voxel_index_z] = 1;
}
...

Listing A.5: Key loop for the creation of the gripper mask array in function creategrip-
permask().

In {gripper_parameters}
Out {gripper_mask}
// first , compute the voxel ratio and multiply & round all

↪→ inputs with it...
...
for (all z subscripts in gripper_mask_height) {

grippable_radius = (Eq. 3-11)
inner_unreachable_radius = (Eq. 3-12)

for (all y in gripper_mask_size) {
for (all x in gripper mask size) {

distance_from_center_of_layer = (Eq. 3-14)

if (( z_subscript <= gripper_mask_clearance
&& distance_from_center_of_layer <=

↪→ grippable_radius) ||
(z_subscript > gripper_mask_clearance
&& z_subscript <= (gripper_mask_height -
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↪→ gripper_mask_bottom_void_radius))
||
(z_subscript > (gripper_mask_height -

↪→ gripper_mask_bottom_void_radius)
&& z_subscript != gripper_mask_height
&& distance_from_center_of_layer >

↪→ inner_unreachable_radius)
||
(z_subscript == gripper_mask_height
&& distance_from_center_of_layer >

↪→ gripper_mask_bottom_void_radius))
{
// flip in z
gripper_mask[x][y][ gripper_mask_height - z]

↪→ = 1;
}

}
}

}

for (all indices i in gripper_mask_size) {
for (all indices j gripper_mask_size) {

gripper_mask[i][j]. insert(gripper_mask[i][j].end(),
↪→ extra_sheet , 0);

}
}

Listing A.6: Function voxel_matching(). In simplified pseudocode.

In {voxelized_terrain_array , gripper_mask}
Out {voxel_coordinates_of_graspable_points}

// Voxel Clip
clip_x = size_of_gripper_mask [0] / 2;
clip_y = size_of_gripper_mask [1] / 2;

// Crop in x-direction}
for (all points p in voxelized_terrain_array != clip_x :

↪→ voxelized_terrain_array.size [0] - clip_x)
{

p = 0;
}

// Analogue in y-direction
...

//Find solid voxels
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for (all indices i,j,k in voxelized_terrain_array)
{

if(voxelized_terrain_array[i][j][k] != 0){
subscripts_of_solids.x = i;
subscripts_of_solids.y = j;
subscripts_of_solids.z = k;

}
}

// Pivot point transformation
subscripts_of_solids.x = subscripts_of_solids.x - clip_x;
subscripts_of_solids.y = subscripts_of_solids.y - clip_y;

// Great loop
for(all indices i in subscripts_of_solids.x){

// Voxel Extract
pos_x = subscripts_of_solids.x[i];
pos_y = subscripts_of_solids.y[i];
pos_z = subscripts_of_solids.z[i];

for(all indices x,y,z in size_of_gripper_mask){
extracted_voxel_array[x][y][z] =

↪→ voxelized_terrain_array[pos_x + x][pos_y + y][
↪→ pos_z + z];

}

// Voxel Compare
// Count the number of Solid Voxels within the Subset
subset_solid_voxels = 0;
for (all points p in extracted_voxel_array) {

subset_solid_voxels += p;
}
for (all indices x,y,z in extracted_voxel_array) {

gripper_solid_voxels += extracted_voxel_array[x][y][z]
↪→ * gripper_mask[x][y][z];

}
graspability = gripper_solid_voxels / subset_solid_voxels;

// Build outout array
voxelized_coordinates_of_graspable_points [0][i] =

↪→ subscripts_of_solids.x;
voxelized_coordinates_of_graspable_points [1][i] =

↪→ subscripts_of_solids.y;
voxelized_coordinates_of_graspable_points [2][i] =
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↪→ subscripts_of_solids.z;

// Thresholding
if (subset_solid_voxels > solid_voxels_threshold) {

voxelized_coordinates_of_graspable_points [3][i] =
↪→ graspability;

}
// if Subset Solid Voxels less than threshold AND

↪→ graspability too high , then penalize. otherwise no
↪→ need to do that.

else if (subset_solid_voxels <= solid_voxels_threshold &&
↪→ graspability >= 60) {
voxelized_coordinates_of_graspable_points [3][i] =

↪→ graspability - (solid_voxels_threshold -
↪→ number_of_matching_voxels)/solid_voxels_threshold
↪→ ;

}
else {

voxelized_coordinates_of_graspable_points [3][i] =
↪→ graspability;

}

}

Listing A.7: Depth sensor controller in Lua. Depth image generation and ROS2 integra-
tion.

-- Generation of the depth image.
function sysCall_vision(inData)

local retVal ={}
retVal.trigger=false
retVal.packedPackets ={}
simVision.sensorDepthMapToWorkImg(inData.handle)
-- Transforms the work image into an intensity

↪→ representation.
-- start: the value representing the minimum intensity. end

↪→ : the value representing the maximum intensity.
simVision.intensityScaleOnWorkImg(inData.handle ,0.000000 ,1

↪→ .000000 ,true)
simVision.workImgToSensorImg(inData.handle)
return retVal

end

-- ROS2 interface initialization
function sysCall_init ()

if simROS2 then
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sim.addLog(sim.verbosity_scriptinfos ,"ROS interface was
↪→ found.")

-- Create a topic publisher.
depthPub=simROS2.createPublisher('spherical2/depth', '

↪→ sensor_msgs/msg/Image ')
-- treat uint8 arrays as strings (much faster , tables/

↪→ arrays are slow in Lua)
simROS2.publisherTreatUInt8ArrayAsString(depthPub)

else
sim.addLog(sim.verbosity_scripterrors ,"ROS interface

↪→ was not found. Cannot run.")
end

end

-- ROS2 message specification and publishing
function sysCall_sensing ()

if simROS2 then
-- Publish the image of the active depth sensor:
local data ,w,h=sim.getVisionSensorCharImage(depthCam)
sim.transformImage(data ,{w,h},4)
d={}
d.header ={stamp=simROS2.getTime (), frame_id='depth_mert

↪→ '}
d.height=h
d.width=w
d.encoding='rgb8'
d.is_bigendian =1
d.step=w*3
d.data=data
simROS2.publish(depthPub ,d)

end

end
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B Appendix: Figures and Tables

Tab. 2–1: Paramter setting used for the scenarios tested with the algorithm. Hadd: Ad-
ditional Void Gripper Mask Layers; TSV: Threshold of Solid Voxels

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Parameters pre-scan real-time pre-scan real-time

Interpolation yes yes no yes no yes

Zero-plane threshold [m] 0.00 -0.07 0.02 0.02 -0.05 -0.05

Voxel size 0.005 0.01 0.01 0.01 0.01 0.01

Hadd 5 1 1 1 1 1

TSV 120 120 120 120 120 120

Tab. 2–2: A spotcheck of z-offset along the four edge length a, b, c and d of the Kinect
scanned and refined point cloud of the test side shows the difference to the ground
truth (0.00 m).

Edge Error [m]

a 0.031 0.023 0.029 0.023 0.028 0.042 0.029

b 0.043 0.018 0.013 0.014 0.005 0.006 0.006

c 0.093 0.068 0.067 0.066 0.077 0.065 0.041

d 0.045 0.050 0.041 0.044 0.052 0.055 0.052

Average 0.040
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Fig. 2–1: Positions investigated in scenario 3 and corresponding results of the five
cases. The area visible in the real-time cases is highlighted in red.

Fig. 2–2: Curvature map (blue) and intersections (green) with regions of high graspa-
bility. The erroneous convex shape detection can be noticed, since the convex point’s
normal vector never points toward the center.
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Tab. 2–3: Graspability values read from the map at the corresponding points examined
in the field test. 1 denotes full graspabiliy. 0 indicates that it cannot be grasped.

Point no. Field test Pre-scaned
map

Real-time
map raw

Real-time map
interpolated

Realtime map
combined

1 0 0.4

2 0 0.8

3 1 0.8 0.8 0.7 1

4 1 0.5

5 1 0.9

6 1 0.8

7 0 0.7

8 1 0.3

9 1 0.4

10 0 0.8

11 1 0.9 0.9 0.9 1

12 1 0.8 0.8 0.7 1

13 0 0.6 0.6 0.8 0

14 1 0.8 0.6 0.3 0

15 0 0.8 0.7 0.3 1

16 0 0.3

17 1 0.8

18 0 0.5

19 0 0.4 0.7 0.5 0

20 0 0.4 0.8 0.3 0

21 1 0.6 0.8 0.5 1

22 1 0.9 0.9 0.8 1

23 0 0.6 0.8 0.8 0

24 1 0.8 0.6 0.7 1

25 1 0.5 0.6 0.7 0

26 1 0.8 0.8 0.8 0

27 1 0.8

28 1 0.8

29 0 0.5 0.7 0.4 1

30 1 0.8 0.8 0.4 1
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Tab. 2–4: Results of the five cases in scenario 3. I: Pre-scanned raw map (reference);
II: Pre-scanned curvature map; III: Real-time raw map; IV: Real-time interpolated map;
V: Real-time curvature map. 1 denotes full graspabiliy. 0 indicates that it cannot be
grasped.

Hold
no.

I II III IV V Hold
no.

I II III IV V

1 1 0 30 1 1 0 1 0

2 0 0 31 1 1 1 1 1

3 1 0 32 1 1 1 1 0

4 1 0 33 1 1 1 1 1

5 0 0 34 1 1 1 1 1

6 0 0 35 1 1 1 1 1

7 1 0 36 1 1

8 1 1 37 1 1

9 1 1 38 1 1

10 1 1 39 0 1

11 0 0 1 0 0 40 1 1 1 1 1

12 1 1 41 1 1 1 1 1

13 1 1 42 1 1 1 1 1

14 0 0 43 0 0 1 1 1

15 1 0 44 1 1 1 1 1

16 1 0 45 1 1 1 1 1

17 1 0 46 1 1 1 1 1

18 0 0 47 1 1 1 1 1

19 1 1 1 1 1 48 1 1 1 1 1

20 0 0 1 1 1 49 0 0 1 0 0

21 1 1 50 0 0

22 1 1 1 1 1 51 0 0 1 1 1

23 1 1 1 1 1 52 1 1 0 1 1

24 0 0 53 0 1 1 1 1

25 1 0 54 0 0 0 0 0

26 1 1 55 1 1 1 1 1

27 0 0 56 1 1 1 1 1

28 0 0 1 0 1 57 1 1 1 1 1

29 0 0 0 1 1 58 1 1
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