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Abstract
Mitigating future forest risks, safeguarding timber revenues and improving biodiversity are key considerations for current 
boreal forest management. Alternatives to rotation forestry likely have an important role, but how they will perform under 
a changing climate remains unclear. We used a boreal forest growth simulator to explore how variations on traditional 
clear-cutting, in rotation length, thinning intensity, and increasing number of remaining trees after final harvest (green tree 
retention), and on extent of continuous cover forestry will affect stand-level probability of wind damage, timber production, 
deadwood volume, and habitats for forest species. We used business-as-usual rotation forestry as a baseline and compared 
alternative management adaptations under the reference and two climate change scenarios. Climate change increased overall 
timber production and had lower impacts on biodiversity compared to management adaptations. Shortening the rotation 
length reduced the probability of wind damage compared to business-as-usual, but also decreased both deadwood volume 
and suitable habitats for our focal species. Continuous cover forestry, and management with refraining from thinnings, and 
extension of rotation length represent complementary approaches benefiting biodiversity, with respective effects of improv-
ing timber revenues, reducing wind damage risk, and benefiting old-growth forest structures. However, extensive application 
of rotation length shortening to mitigate wind damage risk may be detrimental for forest biodiversity. To safeguard forest 
biodiversity over the landscape, shortening of the rotation length could be complemented with widespread application of 
regimes promoting old-growth forest structures.

Keywords  Boreal forests · Continuous cover forestry · Climate change · Forest management planning · Forest modeling · 
Habitat suitability index · Rotation forestry
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Introduction

Boreal forest management faces uncertainties caused by 
the complex impacts and interactions of climate change 
(Daniel et al. 2017), increasing biotic and abiotic distur-
bances (Seidl et al. 2017; Venäläinen et al. 2020; Knoke 
et al. 2021) and a continuous decline of forest biodiver-
sity due to intensive forest exploitation over past decades 
(Kuuluvainen 2002; Felton et al. 2020). Boreal forests are 
the world’s largest forest biome, covering about 29% of 
global forest area, and producing 33% of global lumber 
and 25% of global paper (Kayes and Mallik 2020), but 
are also predicted to experience the highest rate of warm-
ing under climate change over the next century (Gauthier 
et al. 2015; Kellomäki 2017). Adaptation of forest man-
agement is thus beneficial to address changing dynamics 
of boreal forest ecosystems under climate change, includ-
ing an increase in tree growth rates (Matala et al. 2005; 
Kellomäki et al. 2008; Kellomäki 2017) and an increase 
in disturbance risk (Venäläinen et al. 2020). On the other 
hand, management that increases forest structural diversity 
and restores deadwood would improve biological diversity 
of boreal forests. Climate change, however, can compli-
cate these goals and may reinforce the existing conflicts 
between economic and ecological objectives within com-
mercial forests (Angelstam et al. 2018).

The main objective of boreal forest management over 
recent decades has been to obtain economic benefits 
(Kuuluvainen 2002), causing habitat loss and fragmenta-
tion that have led to a continuous decline of biodiversity 
(Kayes and Mallik 2020). Commercial forestry prioritizes 
rotation forest management, dominated by even-aged and 
monospecific stands (Huuskonen et al. 2021) of Norway 
spruce (Picea abies) and Scots pine (Pinus sylvestris), lim-
iting the presence of less economically important tree spe-
cies including many deciduous species. Moreover, faster 
growing trees under climate change are harvested at a 
younger age, which further reduces the forest structural 
diversity and presence of the old-growth forest structures, 
e.g., deadwood and large and old living trees (Henttonen 
et al. 2019). Yet these habitats provide critical substrates 
and resources for several endangered species (Timonen 
et al. 2010; Stokland et al. 2012; Jacobsen et al. 2020). 
In Finland, 20–25% of the forest-dwelling species are 
dependent on deadwood resources, including 60% of red-
listed species (Tikkanen et al. 2006). Intensive rotation 
forestry has reduced the amount and diversity of deadwood 
in these forests to a small fraction of its levels in natural 
and unmanaged forests (Siitonen 2001; Kuuluvainen and 
Gauthier 2018).

To increase the structural variability and the presence 
of old-growth structures in commercial forests, retention 

forestry, i.e., retaining living standing trees after the final 
harvest, has become widely accepted (Ezquerro et  al. 
2018; Felton et al. 2020; Gustafsson et al. 2020). Yet, this 
management practice remains insufficient for creating 
adequate amounts and diversity of deadwood and lacks 
clear species-specific conservation objectives to safeguard 
biodiversity (Kuuluvainen et al. 2019). Rotation length, 
the amount of time between consecutive final fellings, is 
the defining variable of commercial rotation forestry and 
depends on species-specific growth potential and local 
site conditions (e.g., fertility, Seidl and Blennow 2012). 
Modification of the rotation length provides opportuni-
ties to diversify forest structures in commercial forests 
(Ranius and Roberge 2011; Roberge et al. 2016, 2018). 
Extending the rotation length (Roberge et al. 2018), com-
bined with retention forestry (Ezquerro et al. 2018) and 
growing stands unthinned, e.g., promoting stand-capacity 
to self-thin to build up deadwood (Tikkanen et al. 2012), 
facilitates the creation of deadwood and forest structure 
resembling old-growth forest even within commercial for-
est landscapes.

Boreal forest management, however, requires considera-
tion of the whole forest ecosystem context, focusing not only 
on economic objectives, but on safeguarding biodiversity 
while improving the provisioning of non-woody ecosystem 
services (Angelstam et al. 2018; Felton et al. 2020). Recent 
studies have shown that improving the multifunctionality of 
boreal forests would be helped by a change of current for-
est management approaches (Eyvindson et al. 2021; Blattert 
et al. 2022). Several adaptations of forest management, such 
as transitioning from rotation to continuous cover forestry 
(Pukkala 2016; Peura et al. 2018), seem to be viable tools 
to simultaneously improve timber- and non-timber-oriented 
forest ecosystem services. A diversification of forest man-
agement regimes (Duflot et al. 2021) based on landscape-
level planning can allow for an efficient balance between 
economic and ecological objectives within the landscape 
(Pohjanmies et al. 2017b; Triviño et al. 2017; Eyvindson 
et al. 2021).

Climate change-induced disturbances introduce unex-
pected challenges and may limit the efficiency of planned 
management actions for biodiversity conservation and forest 
multifunctionality (Roberge et al. 2018; Zimová et al. 2020). 
Thus, these uncertainties warrant consideration while devel-
oping new forest management approaches that safeguard 
biodiversity (Arneth et al. 2020). Climate change is expected 
to produce major changes in boreal forest ecosystems in the 
next decades (Gauthier et al. 2015; Kellomäki 2017). The 
productivity of forests will benefit from increasing levels of 
carbon dioxide (CO2) and higher temperatures (Kellomäki 
et al. 2008). However, more frequent and intense natural 
disturbances can cancel out this increased forest productivity 
(Reyer et al. 2017). Rising temperatures, for example, are 
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expected to shorten the soil frost period, which, along with 
increasing timber stock, could increase the likelihood and 
intensity of windthrow damage (Peltola et al. 2010; Seidl 
et al. 2011). Shortening the rotation length can be used to 
adapt to future climatic conditions and reduce risks of wind 
damage in the forests, while simultaneously allowing for 
the harvest of high-quality timber (Roberge et al. 2016; 
Kellomäki 2017). A shorter rotation length, however, bears 
the risk of further threatening the habitats of many species 
(Ranius and Roberge 2011; Roberge et al. 2018). Thus, 
novel climate-adaptive forest management strategies would 
be beneficial to sustain timber provision, halt biodiversity 
decline, and minimize climate-induced disturbance risks.

To address these challenges, we have performed a simula-
tion study to understand how potential adaptations of forest 
management would affect timber revenues, probability of 
wind damage, and forest biodiversity over long-term plan-
ning horizon. Specifically, we used SIMO, an open-access, 
boreal forest growth simulator (Kangas et al. 2008; Rasin-
mäki et al. 2009) and a wind damage risk model (Suvanto 
et al. 2019), both developed and parametrized on Finnish 
forest conditions. We simulated the alternative developments 
of forest stands over 100 years under a reference and two 
climate change scenarios using the Representative Con-
centration Pathways (RCP4.5 and RCP8.5). RCP scenarios 
represent diverging trajectories of climate change based on 
level of emissions, concentration and land-use over next 
century, where RCP8.5 represents a more severe climate 
change scenario then RCP 4.5 (van Vuuren et al. 2011). For 
each climate scenario, we compared the effects of manage-
ment adaptations to the currently applied rotation forestry 
(business-as-usual, BAU), a dominant management style in 
Finnish boreal forests (Äijälä et al. 2014). Specifically, we 
evaluated changes in economic and ecological indicators, 
such as harvested timber volume, wind damage probabil-
ity, net present value and two complementary biodiversity 
indicators: deadwood volume and habitats availability for 
selected vertebrate species covering a wide range of habitat 
types. Our management adaptations included variation in 
rotation length, refraining from thinnings, increasing green 
tree retention, and adoption of continuous cover forestry. 
We hypothesized that (1) shortening rotation lengths would 
reduce wind damage probability, but at the same time would 
reduce deadwood volumes and the habitats of forest dwell-
ing species. Opposingly, we predicted that (2) the exten-
sion of the rotation length, and regimes promoting diverse 
stand structure (e.g., continuous cover forestry, increased 
green tree retention), would benefit biodiversity (specifi-
cally deadwood diversity, limiting resource for species in 
Finnish boreal forests Vanha-Majamaa et al. (2007)), while 
increasing wind damage risk due to tree senescence and 
increasing height. For climate change, we further expected 
that (3) higher severity of climate change would reduce the 

effectiveness of shorter rotation length on reducing wind 
damage probability, but that (4) would benefit biodiversity 
through increased tree growth and tree mortality (Mazziotta 
et al. 2016).

Methods

Study region

Our study area represents the entire area of Finland (Fig. 1). 
Finnish boreal forests are dominated by Scots pine (50%, 
Pinus sylvestris), followed by Norway spruce (30%, Picea 
abies), birch (17%, Betula pendula, B. pubescens), and other 
broadleaved species (3%, e.g., Betula sp., Populus sp.). The 
total annual increment of growing stock is 103 Mm3, with a 
mean of 6.9 m3 ha−1 in southern and 2.9 m3 ha−1 in Northern 
Finland (Niinistö et al. 2021). Two-thirds of the forestry land 
is on mineral soil, with the remaining part on peatlands. 
Figure 1 illustrates our study flow.

Input data for forest development simulation

For initial forest conditions in our simulations, we used the 
open-access Multi-Source National Forest Inventory (MS-
NFI) data of 2013 available from the National Resources 
Institute Finland (Luke) (http://​kartta.​luke.​fi/​index-​en.​html). 
MS-NFI represents the forest landscape in a raster format 
(resolution 16 m), containing basic environmental informa-
tion (e.g., location, soil type) and detailed information about 
forest structure (e.g., tree species, age, density, height, basal 
area). MS-NFI combines georeferenced field data of the NFI 
(National Forest Inventory) with satellite images and digital 
map data (Makisara et al. 2019). To accurately represent 
Finnish forest conditions while allowing a reasonable simu-
lation and computation time, we sampled the forest data-
sets along the systematic sampling grid of the 11th National 
Forest Inventory (http://​www.​metla.​fi/​ohjel​ma/​vmi/​vmi11-​
otanta-​en.​htm). Here, one sample point represents a forest 
stand condition as a mean of 3 × 3 (Southern Finland, aver-
age size of 0.2 ha) and 4 × 4 grid cells (Northern Finland, 
average size of 0.4 ha), corresponding to a lower density of 
sample points in the north (where forests are less variable) 
compared to the south. From the total of 48,015 collected 
forest stands, we have selected only stands for which initial 
structural characteristics (e.g., growth increment, basal area, 
height, age, and dominant tree species) allowed simulation 
of all forest management across all climate scenarios (e.g., 
we excluded stands with reduced growths that may not meet 
the threshold conditions for thinning or harvests, or stands 
that are currently unproductive but become productive only 
under more severe climate change). This resulted in a total 
of 25,394 stands to use for all forest management adaptation 

http://kartta.luke.fi/index-en.html
http://www.metla.fi/ohjelma/vmi/vmi11-otanta-en.htm
http://www.metla.fi/ohjelma/vmi/vmi11-otanta-en.htm
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regimes and simulated climate change scenarios. Deadwood 
volume ranged from 1.6 to 4.4 m3/ha, depending on the dom-
inant tree species. Table 1 provides an overview of the forest 
stand input characteristics for our first simulation year.

Simulation of forest management regimes

We used SIMO (SIMulation and Optimization for forest 
management planning, https://​www.​simo-​proje​ct.​org/), 
an open-source forest growth simulator (Rasinmäki et al. 
2009) to predict the development of the forest stands under 

various forest management regimes and climate change sce-
narios. SIMO is an empirical forest growth and yield model, 
allowing high versatility in developing forest management 
scenarios and comparing their outcomes using what-if sce-
narios (Kangas et al. 2008). SIMO is written in Python, 
C and XML languages. We used SIMO in a deterministic 
way to simulate tree growth, mortality, and regeneration for 
even-aged (Hynynen et al. 2002) and uneven-aged boreal 
forests (Pukkala et al. 2013). The deadwood volume was 
calculated based on (Mäkinen et al. 2006) models. The input 
dataset must contain information about the stand location, 

Fig. 1   Study workflow. Input data were acquired from the Multi-
Source  National Forest Inventory data (MSI-NFI) collected over 
Finland and were used to initiate forest growth simulations under 
respective climate scenarios and forest management regimes. Output 
indicators (representing forest structural characteristics) were used 
to further calculate wind damage risk and economic and biodiversity 
indicators per each stand. Climate scenarios represent a reference 
climate (REF), and two alternative greenhouse forcing scenarios as 

Representative Concentration Pathways (RCP4.5 and RCP8.5), rep-
resenting moderate and high levels of warming, respectively. CCF—
Continuous Cover Forestry, GTR—Green Tree Retention, ext_30 
and ext_10 are extension of rotation length by 30 or 10 years, respec-
tively, noThin—no thinning, short_10 and short_30  are shortening 
of rotation length by 10 and 30  years, respectively. For full regime 
descriptions, refer to Table 2

Table 1   Initial forest stand characteristics (in 2013) used as an input for forest simulations for 2013–2113. Each stand originates from monospe-
cific rotation forestry and therefore is dominated by a single tree species

Dominant tree species are relevant for the wind damage probability model (Table S1). The values represent stand counts by dominant tree spe-
cies, their share of total stands (%), and mean values over stands ± standard deviation for a total of 25,394 stands

Dominant tree species Counts (%) Height (m) Age (years) Volume (m3/ha) Deadwood (m3/ha)

Scots pine (Pinus sylvestris) 19,001 [74.8] 16.2 ± 3.6 65.1 ± 17.4 135.5 ± 50.1 3.3 ± 2
Norway spruce (Picea abies) 2922 [11.5] 13.8 ± 3.6 37 ± 13.7 92.6 ± 40.7 1.6 ± 1.3
Other 3471 [13.7] 18.2 ± 4.5 56.9 ± 21.3 171 ± 74.3 4.4 ± 2.8

https://www.simo-project.org/
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and information about the tree layers of the specific forest 
stand. The model makes predictions on the single tree-level 
that are then summarized for stand-level outputs. The out-
put datasets represent forest stand characteristics resulting 
from individual forest management actions (e.g., thinning, 
harvesting, planting) implemented within the respective 
management regime. Construction of specific management 
regimes depends on the specific rules placed on harvesting.

From earlier work (Eyvindson et al. 2018) we have 
selected a set of eight distinct regimes to allow their com-
parison across multiple climate scenarios (Table 2). The 
BAU scenario follows the national forest legislation and 
therefore represents the benchmark to evaluate the impact 
of alternative forest management regimes. The average 
current rotation length under BAU is 70–90 years (range of 
60–120 years, Roberge et al. (2016, 2018), and varies 
across Finland, with relatively shorter rotation lengths in 
southern and longer rotation lengths in Northern Finland. 
Rotation length also differs with site-specific character-
istics such as dominant tree species and soil fertility and 
type. The alternative management regimes seek to promote 
biodiversity as well as climate change mitigation, as they 
could increase the size of the trees or promote a more 
natural self-thinning mortality of trees, which results in 
higher accumulation of deadwood and of higher carbon 
sequestration in trees. For example, the regime excluding 
thinnings (no Thin) is expected to improve the habitat of 

species dependent on deadwood and dense forests (Tik-
kanen et al. 2012), and increase the number of retained 
green trees after the final harvest (green tree retention, 
GTR, e.g., Vanha-Majamaa and Jalonen 2001), and con-
tinuous cover forestry (CCF) aims for uneven-aged and 
more diversely structured forests (Pukkala 2016). We used 
the percentage increase or decrease in rotation length (by 
10% and 30%) to account for the stand-specific benchmark 
rotation length. The minimal harvest age was not allowed 
to be shorter than 60 years old (e.g., rotation length). The 
regeneration of the stands was either by planting (for BAU, 
the planting density is between 1600 and 2000 stems/ha, 
with spruce and pine being 2000 stems for fertile site 
types, lowering to 1600 stems/ha for less fertile sites), 
or relied on natural regeneration (CCF). The variation of 
the rotation length within the time period 2013–2113 was 
possible as the initial stand age varied on average from 
37 to 57 years (Table 1) and a modification of the forest 
management schedule was implemented within this period.

For each stand and for each climate scenario, we sim-
ulated in total eight management regimes over 100 years 
(2013–2113) in twenty 5-years time steps (Table 2). The 
outputs of simulations for each time step, regime and cli-
mate change scenario were translated into estimates of wind 
damage risk, harvested timber volume, and biodiversity 
indicators (Table 3). The simulation length of 100 years 
allows representation of the full rotation length of standard, 

Table 2   Management regimes applied during a 100-years simulation period in forest stands distributed across Finland (n = 25,394). Effect on 
biodiversity describes the most likely structural changes that are known to be important to forest biodiversity, compared with the BAU regime

All management regimes except CCF utilize clear-cut harvesting to extract timber resources. Adapted from Mönkkönen et al. (2014). Symbols 
represent positive (+), negative (−) or neutral (0) hypothesized effect on biodiversity compared to BAU. BA = basal area

Management regime Acronym Description Effects on forest structure (biodiversity impact)

Business as usual BAU Recommended even-aged rotation forestry 
(Äijälä et al. 2014) management: rotation length 
70–90 years; site preparation, planting or seeding 
trees, 1–3 thinnings, final harvest with green tree 
retention level 10 trees/ha, replanting after final 
harvest

Benchmark (0)

Extended rotation ext_10
ext_30

BAU with final harvesting postponed by 10% and 
30% of rotation length

Postponing final harvest increases tree mortality 
(more deadwood) between the last thinning and 
final harvest, and allows older trees (+)

Shortened rotation short_10
short_30

BAU with rotation length shortened by 10% and 
30%

Trees are cut at younger age and smaller dimension 
(−)

No Thinning noThin BAU without thinning; therefore, forests grow 
slower and final harvest is consequently delayed

Denser forest structures and self-thinning with more 
deadwood ( +)

Green tree retention GTR​ BAU with 30 green trees retained/ha at final har-
vest; planting or seedling trees

Enhanced structural diversity at final harvest; larger 
trees are present (+)

Continuous cover forestry CCF Continuous cover forestry targeting non-even 
aged structure, following Pukkala et al. (2013). 
Thinnings from above, e.g., trees with BA range 
16–22 depending on soil fertility (more fertile 
has higher BA). Minimal return time between 
two thinnings is 15 years. Natural regeneration 
of stand

Continuous forest cover, enhanced structural diver-
sity (+)
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BAU scenario, and rotation forestry dominant in Finland 
(Äijälä et al. 2014).

Climate scenarios

We used climate scenarios to modulate tree development 
under contrasted climatic conditions. Climatic variables 
such as temperature, precipitation, and CO2 concentration 
drive soil development and subsequent tree growth, which 
affects the timing of the final harvest based on the target 
basal area for specific management regimes (Äijälä et al. 
2014). The impacts of climate variables on forest growth 
dynamics were modeled in SIMO using climate-sensitive 
statistical growth and yield models that were developed by 
Matala et al. (2005, 2006). We conducted simulations for 
different forest management approaches under three distinct 
climate scenarios. The first scenario, referred to as the refer-
ence scenario, assumes that the mean climatic conditions 
for the period 1996–2014 will be held constant over the 
100-years simulation period. The other two scenarios are 
based on alternative greenhouse forcing scenarios, termed 
Representative Concentration Pathways (RCPs): RCP4.5 
and RCP8.5. These represent moderate and high levels of 
warming, respectively. To incorporate the RCP scenarios 
into SIMO we used regionally downscaled estimations for 
temperature, precipitation, and CO2 concentration.

For the reference scenario, we used 5-years mean val-
ues over the time frame 1996–2014 (Lehtonen et al. 2016). 
For the two future climate change scenarios (RCP4.5 and 
RCP8.5), we used 5-years mean values obtained from a 
General Circulation Model, specifically the Canadian Earth 
system model CanESM (Von Salzen et al. 2013). Further 
details are in Triviño et al. (2023). As climate affected all 
regimes, our BAU benchmark was climate-specific for each 
climate change scenario.

Analyzed indicators

We considered both economic and biodiversity indicators 
to capture the complex effects of changes in forest manage-
ment and climate on forest ecosystems (Table 3). Economic 
indicators included the probability of wind damage, the net 
present value of the forest and the amount of harvested mar-
ketable log and pulp timber. For biodiversity indicators, we 
considered deadwood volume as a critical resource for red-
listed species, as well as separate and combined habitat suit-
ability indices (HSI) of six key vertebrate species in boreal 
forests (Table 4).

Wind damage probability

We used a statistical wind damage risk model (a binomial 
generalized linear model with logit-link function) to pre-
dict the wind damage probability [0–100%] for each stand 
and time step (see full list of variables in Supplementary 
material Table S2, according to Suvanto et al. (2019)). The 
wind damage probability model was developed using MS-
NFI inventory data (Tomppo et al. 2011; Korhonen 2016), 
covering a broad spectrum of forest stand conditions found 
throughout Finland. However, the model predominantly 
reflects stands that are managed under rotation forestry, 
which is the prevailing forest management approach in Fin-
land. Utilization of the wind damage risk model using SIMO 
framework was previously tested in Potterf et al. (2022).

We collected respective variables for forest stand (tree 
species, dominant tree height), forest management (time 
since thinning) and soil conditions (type, depth and fer-
tility) from SIMO outputs. Wind speed (Venäläinen et al. 
2017) and temperature datasets (Aalto et al. 2016) were 
derived from the open-access geospatial information. We 
extracted the predicted 10-years return levels of wind speed 

Table 3   Indicators used to study 
the effect of changes in forest 
management on boreal forest 
ecosystems. All indicators were 
calculated as landscape-level 
averages across the 100-years 
simulation period, and changes 
are relative to a ‘business as 
usual’ benchmark (Äijälä et al. 
2014)

Ecosystem service Indicator Unit/Range

Economic Wind damage probability %
Net present value (NPV, sum)
Discounted productive value (PV)

€/ha
€/ha

Discounted Income €/ha
Harvested log timber (sum) m3/ha
Harvested pulp timber (sum) m3/ha

Biodiversity Deadwood volume m3/ha
Combined Habitat Suitability Index (HSI) 0–1
HSI Capercaillie (Tetrao urogallus) 0–1
HSI Hazel grouse (Tetrastes bonasia) 0–1
HSI Three-toed woodpecker (Picoides tridactylus) 0–1
HSI Lesser-spotted woodpecker (Dryobates minor) 0–1
HSI Long-tailed tit (Aegithalos caudatus) 0–1
HSI Siberian flying squirrel (Pteromys volans) 0–1
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values [provided at a resolution of 20 m, mean 10.9 m/s, 
(Venäläinen et al. 2017)], which represents the level of maxi-
mum wind speed (m/s) expected to be reached on average 
once every 10 years (for full details, refer to Venäläinen 
et al. (2017)). From daily temperature data (at a resolution of 
10 km) we calculated a sum of the mean daily temperatures 
for the first 100 days warmer than 5 °C from 1990 to 2020 
(mean 1219.7). The wind speed and temperature datasets 
are based on spatially explicit observed daily values over 
past decades. Given the challenges of accurately predicting 
where and when strong winds will happen in the future, and 
considering the substantial temperature variations within 
a year, we chose to maintain these values constant in our 
wind risk model throughout the 100-year simulation period. 
The increase in wind damages in the future is linked to the 
increased timber growth and increasing temperatures, rather 
than changes in strong winds incidence (Venäläinen et al. 
2020). Increased timber growth rates due to increased tem-
perature and precipitation under climate change are imple-
mented in SIMO following formulas of Matala et al. (2005). 
To streamline our simulation process and address the patchy 
landscape in Finland, we assumed that all stands had at least 
one open edge during the entire simulation period, as indi-
cated by earlier research (Potterf et al. 2022). We used model 
estimates to predict wind damage probability risk for indi-
vidual forest stands at every time step, management regime 
and climate scenario.

All calculations were performed using ArcGIS  10.6 
(ESRI 2021), R 4.1.1 software (R Development Core Team 
2021), and packages sf (Pebesma 2018), raster (Hijmans 
2021), and rgdal (Pebesma et al. 2014). dplyr (Wickham 
et al. 2022) and data.table (Dowle and Srinivasan 2021).

Net present value

The overall economic value of each forest management 
alternative was evaluated as the net present value (NPV) 
of the forest. This indicator aggregates the overall income 
and costs of forest management actions throughout the plan-
ning horizon per each stand, and productive value (PV) of 
the remaining standing trees at the end of the simulation 
period, using formulas from Pukkala (2005). PV estimates 
the maximum yield value of a forest stand, factoring in tree 
species, dimensions, age, interest rates, timber prices and 
growth locations (i.e., fertility). The NPV represents the sum 
of the discounted value of all future incomes, costs, and PV. 
The discount rate indicated the preference for money. We 
applied a discount rate of 3%, which is often used in long-
term forest planning studies in boreal forestry (Peura et al. 
2016; Pohjanmies et al. 2017a; Heinonen et al. 2020).

Harvested timber volume

Harvested timber volume represents the timber harvested at 
final felling and during the intermediate silvicultural treat-
ments. We recorded two timber qualities. Log timber rep-
resents large diameter trees (pine > 15 cm, spruce > 16 cm, 
birch > 18 cm), used predominantly in the building industry. 
The pulp timber represents lower diameter timber (> 6 cm 
for pine, spruce and birch), mainly used in pulp and paper 
industries or as a source of bioenergy. The overall mean 
harvested timber volume (m3/ha) represents a mean sum of 
total harvested timber volume per site over 100 years.

Biodiversity indicators

Combined habitat suitability index (HSI, Triviño et  al. 
(2017) (Eq. 1) represents habitat availability for six key 
vertebrate species in boreal forests: capercaillie (Tetrao 
urogallus), Siberian flying squirrel (Pteromys volans), 
hazel grouse (Tetrastes bonasia), long-tailed tit (Aegithalos 
caudatus), lesser-spotted woodpecker (Dryobates minor) 
and three-toed woodpecker (Picoides tridactylus, 4, (GBIF 
Secretariat 2022), Table 4). These are considered umbrella 
species covering a wide range of habitat associations and 
providing social and recreational value for bird watchers and 
hunters. Our habitat suitability calculations originate from 
Mönkkönen et al. (2014) and are based on both literature and 
expert knowledge. The habitat suitability index (HSI) for a 
species varies between 0 (unsuitable habitat) and 1 (most 
suitable habitat) and relates to the probability of the presence 
of the species in a stand. Our combined HSI (Eq. 1) for six 
species therefore represents the probability that at least one 
of the species is present (e.g., 0 is unsuitable habitat for all 
species, 1 is suitable habitat for at least one of the six indi-
cator species). To calculate the exact extent of the suitable 
areas for combined HSI and for each species, we considered 
suitable habitats at two thresholds: HSI > 0.0 and HSI > 0.7 
(Duflot et al. 2021). The lower threshold (HSI > 0.0) indi-
cates a wider range of suitable habitats, whereas a stricter 
threshold (HSI > 0.7) represents only the best quality stands 
for particular species across regimes adaptations and climate 
change scenarios. The forest area estimation was derived 
from the MS-NFI sampling design, accounting for increas-
ing sampling size of MS-NFI grid from South to North 
(from 3 × 3 to 4 × 4 pixels of 16 m resolution, refer to 3.1 
for full details).

Equation 1: A combined habitat suitability index (HSI) 
based on individual species requirements, where 0 represents 
unsuitable habitat and 1 represents habitat benefiting at least 
one of the species.
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We calculated the deadwood volume and the combined 
HSI for each forest stand at every time step and for each 
management regime and climate change scenario and 
summarized them as mean values across the 100-years 
period. We used average time scale for transparency and 
allowing for a holistic study of management and climate 
impacts on wind damage risk, economy and biodiversity. 
To determine if our combined HSI values were driven by 
one or more individual species in a given management and 
climate scenario, we also investigated the HSI for each 
species individually.

Results

Economic indicators

Probability of wind damage

Under the BAU regime, the mean probability of wind dam-
age occurring in a stand at least once during the 100-year 
time window was 2% (sd = 0.2). This risk was consider-
ably affected by altering the forest management regime. 
On average, CCF produced the largest increase in mean 
wind damage risk (+ 150%) compared to BAU regime, 
whereas shortening of rotation length and exclusion of 
thinning reduced mean wind damage probability by 28% 
and 17%, respectively (Table S2, Fig. 2). These changes in 
wind damage risk were present regardless of which climate 
change scenario was used. Extension of the rotation length 
by 10 or 30% and GTR had little or no effect on wind dam-
age risk (Fig. 2).

Financial revenues

The average NPV in a stand under BAU is approximately 
5200 €/ha (Table S2). The CCF and shortening of rotation 
length (both alternatives) increased the NPV by 60% and 
10%, respectively, while both extensions of rotation length 
reduced the NPV by 10% and 30% (ext_30 and ext_10, 
respectively, Fig. 2). NoThin and GTR remain in NPV simi-
lar to BAU. Relatively low reduction of the NPV for noThin 
compared to BAU links to an increased PV of the standing 
trees at the end of the simulation period for noThin (Figs. 2 
and S4, S5). Average discounted income for BAU was 4800 
€/ha per stand over 100 years, whereas values were higher 
for short_30 and CCF, but lowest for ext_30.

(1)

Combined Habitat Suitability Index = 1 −

6
∏

i=1

(1 − HSI
i
)

Harvested timber volume

The average harvested timber volume under the BAU regime 
was 394 m3/ha across a 100-years time window, of which 
207 (52%) m3/ha was log wood and 187 (48%) m3/ha was 
pulp wood (Fig. S6). Adaptation of forest management 
strongly affected the harvested timber volume of both log 
and pulp wood (Fig. 2, Table S2). Irrespective of the climate 
change scenario, CCF increased the harvested volume of log 
timber compared to BAU by more than 50%, while reduc-
ing pulp wood production by one third. Pulp wood produc-
tion increased under both types of shortened rotation length 
but decreased under CCF, extension of rotation length, and 
noThin.

Biodiversity

Deadwood volume and the combined habitat suitability 
index

The BAU scenario resulted in an average deadwood vol-
ume of ca 13 m3/ha across our 100-years study period, with 
mean deadwood volume increasing considerably through 
time (Fig. S1). The highest increase in deadwood volume 
compared to BAU was recorded with the ext_30 regime 
(Table S2), followed by CCF, GTR, and ext_10 strate-
gies (Table S2, Fig. 3). Both versions of rotation shorten-
ing reduced deadwood volume. Refraining from thinning 
(noThin) had relatively low effects on deadwood volume 
creation relative to BAU.

Combined HSI for the BAU scenario was 0.3, indicating 
that only 20% (1 800 ha) of the forest area was suitable for 
at least one forest species (HSI > 0.7, Fig. S2). CCF, noThin 
and ext_30 adaptations resulted in the highest increases in 
the combined HSI and doubled the extent of suitable areas 
relative to BAU. Shortening the rotation length by 30% 
reduced combined HSI the most (Figs. 3, S2).

Species‑specific habitat suitability indices

Increases in the combined HSI were driven by the most 
abundant species; not all species contributed equally to the 
combined HSI across scenarios. Species-specific HSIs dif-
fered largely between management adaptations, both in the 
direction and the magnitude of the responses (Fig. 4) and 
remained relatively consistent across climate change scenar-
ios (Fig. S7). Therefore, we present here only results under 
the reference climate change scenario (Fig. 4).

There is no management strategy that would result both 
in consistently higher habitat suitability for all species and in 
reduced wind risk damage. Extended rotations (ext_10 and 
ext_30) had consistently positive effects on species habi-
tat suitability (Figs. 4, S2) but resulted in small increases 
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in wind risk. The opposite was true of shortened rotation 
regimes. Refraining from thinning reduced wind damage 
risk but had inconsistent effects across six focal species. 
CCF also had inconsistent biodiversity effects among spe-
cies but large increases in wind damage risk. Finally, green 
tree retention had negligible impacts on species habitat suit-
ability and on wind risk.

Although the relative increase in species-specific HSIs 
is large under different management adaptations, the 

average predicted HSI values remained overall relatively 
low (maximum of 0.5) for all species under all climate 
scenarios (Online Table S2). In terms of suitable areas per 
species, three-toed woodpecker and lesser-spotted wood-
pecker benefited from CCF and noThin (Fig. S3), with 
their respective habitats extending up to 30% of all forest 
stands (HSI > 0.7, Fig. S8). The least prevalent species 
remained capercaillie and Siberian flying squirrel, both 
benefiting considerably from ext_30 (Fig. S3) compared 

Fig. 2   Effects of forest management adaptation on stand wind dam-
age risk [%], mean net present value (NPV), discounted productive 
value (PV), discounted income, and the mean volume (m3/ha) of har-
vested log and pulp timber over a 100-years simulation period and 
across climate change scenarios. Values are expressed as a percentage 
difference (x-axis) relative to the baseline rotation forestry (business 
as usual, BAU) for each climate change scenario (defined by color 
bars). Individual forest management adaptations are on y-axis. The 

whiskers represent 95% confidence intervals. GTR did not show dif-
ferences compared to BAU reference scenario. REF – reference cli-
mate, RCP – Representative Concentration Pathway, CCF—Continu-
ous Cover Forestry, GTR—Green Tree Retention, ext_30 and ext_10 
extension of rotation length by 30 or 10 years, respectively, noThin—
no thinning, short_10 and short_30 shortening of rotation length by 
10 and 30  years, respectively. For full regime descriptions, refer to 
Table 2
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to BAU. Yet, even under these beneficial scenarios suitable 
habitat for these least common species increased only from 
1 to 3% of total forest cover, implying that these species 
would remain rare (and likely at risk) under any plausible 
scenario.

Effects of climate change

The effects of climate change were smaller than the effects 
of forest management on forest economics and biodiversity 
indicators. In general, climate change amplified both nega-
tive (e.g., from shortening rotations) and positive (e.g., 
from CCF and no-thinning) effects of individual forest 
management adaptations on economic and biodiversity 
indicators (Figs. 2 and 3). Climate change also reduced 
the effectiveness of shortening of rotation length to lower 
wind damage risk (Fig. 2) and increased overall timber 
productivity of each stand, specifically increasing NPV 
and harvested log timber (Table S1).

In terms of biodiversity indicators, climate change 
severity slightly affected deadwood volume, but had a 
strong effect on combined HSI (Fig. 3). Severe climate 
change combined with CCF, noThin and ext_30 benefited 
species habitat availability the most, while shortening rota-
tion together with severe climate change strongly reduced 
species habitat availability.

Discussion

Changing climate increases the risk of natural disturbances 
(Senf et al. 2018; Seidl et al. 2020) and intensifying manage-
ment in boreal forest threatens habitats loss for endangered 
species (Siitonen 2001; Roberge et al. 2018; Määttänen et al. 
2022). Our findings support the scientific value of adapting 
forest management actions to improve the balance between 
ecological and economical objectives in commercial forests. 
Here, we examined the impacts of several potential adapta-
tions of forest management on the probability of wind dam-
age, timber revenues, and forest biodiversity under differ-
ent climate scenarios. We quantified the trade-offs between 
economic and biodiversity objectives. We also identified 
the adaptation regimes providing opportunities to simulta-
neously reduce risks of forest damage and maintain high 
timber revenues while promoting diverse habitats for forest 
dwelling species. However, we also show how specific forest 
adaptations under more severe climate change can amplify 
conflicts between forest economics and biodiversity.

Effects of shortening the rotation length

We found that shortening of rotation length by 30% 
reduced the probability of future forest disturbance (by 

Fig. 3   Effects of alternate forest management adaptations on dead-
wood volume (m3/ha) and a combined habitat suitability index (HSI) 
over 100-year simulations, expressed as percentage difference relative 
to the default rotation forestry (business as usual, BAU) for each cli-
mate change scenario. Columns show differences between averaged 
values under BAU and the alternative regime. The whiskers represent 
a 95% confidence interval. BAU values are specific to each climate 

change scenario. REF – reference climate, RCP – Representative 
Concentration Pathway.  CCF—Continuous Cover Forestry, GTR—
Green Tree Retention, ext_30 and ext_10 extension of rotation length 
by 30 or 10  years, respectively, noThin—no thinning, short_10 and 
short_30 shortening of rotation length by 10 and 30  years, respec-
tively. For full regime descriptions, refer to Table 2
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28%), increased the overall harvested timber volume (by 
20%), and the raised mean net present value (by 25%) com-
paring to BAU (Figs. 2, S4 and S5). Our results correspond 
to previous findings that shortening of rotation lengths can 
be one of the main adaptations to rising temperatures and 
increased tree growth under climate change in boreal for-
ests (Kellomäki et al. 2008; Kellomäki 2017), a strategy 
that has also been shown to improve carbon sequestra-
tion (Liski et al. 2001; Triviño et al. 2015). Therefore, its 
application can be attractive to forest owners aiming to 
maximize their timber yields, minimize their losses from 
wind damage, and mitigate climate change. However, our 
results showed that the widespread use of shortened rota-
tion length over the landscape reduces habitats of diverse 
forest dwelling species (Figs. 2 and 3, S2). Shortening 
the rotation length can also be detrimental for deadwood 
dependent species (Ranius and Roberge 2011), many of 
which are red-listed and likely at risk of extinction. It also 

alters age structure towards younger trees (Henttonen et al. 
2019), and reduces tree height (Henttonen et al. 2020; Pot-
terf et al. 2022). Therefore, shortening the rotation length 
could be used as a tool to adapt forests to climate change 
(Kellomäki 2017). However, careful planning of its land-
scape level application as a complementary management 
tool would be beneficial along a diverse set of management 
regimes targeting balance between timber, non-timber for-
est ecosystem services, and species habitats (Eyvindson 
et al. 2021; Pohjanmies et al. 2021). This technique of for-
est management intensification could be compensated for 
using extensive and protective management approaches to 
balance its negative effects on biodiversity and old-growth 
forest structures over the landscape, which might further 
distribute the risk of the wind damage over the landscape. 
Specifically, the spatial segregation of these regimes could 
reduce the risk in areas where forest management is inten-
sified, characterized by shorter rotation lengths and other 

Fig. 4   Effects of forest management adaptations on habitat suitabil-
ity indices (HSI) for individual vertebrate species under the reference 
climate change scenario Each dot represents the difference rela-
tive to the default business as usual (BAU) management adaptation 
for wind damage probability and species-specific HSI. Dashed grey 
lines represent no difference from BAU. Note different ranges of 

x-axes. REF – reference climate, RCP – Representative Concentra-
tion Pathway. CCF—Continuous Cover Forestry, GTR—Green Tree 
Retention, ext_30 and ext_10 extension of rotation length by 30 or 
10  years, respectively, noThin—no thinning, short_10 and short_30 
shortening of rotation length by 10 and 30 years, respectively. For full 
regimes description, refer to Table 2
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practices. Conversely, it may heighten the risk in forests 
with uneven age structure. This distinction would subse-
quently influence the approach to mitigating wind dam-
age: prompt removal of affected timber in highly managed 
areas, while fostering biodiversity-enhancing deadwood in 
stands that prioritize biodiversity conservation.

Effects of forest management adaptations 
to promote biodiversity

Continuous cover forestry, green tree retention, extensions 
of rotation length, and refraining from thinning consistently 
increased deadwood volume and habitats of forest vertebrate 
species (Fig. 3). Among these, only continuous cover for-
estry simultaneously increased the probability of incidence 
of wind damage (Fig. 2), whereas other biodiversity-pro-
moting adaptations had little effect or even reduced the wind 
damage probability compared to BAU (e.g., no thinning, 
Fig. 2). The increasing wind damage probability in continu-
ous cover forestry likely stems from on average higher tree 
height and higher thinning frequency compared to BAU 
(Potterf et al. 2022). We emphasize that the wind damage 
probability represents the likelihood of damage rather than 
its severity (Suvanto et al. 2019). However, due to uneven 
and less-dense forest structure of stands under continuous 
cover forestry compared to BAU, fewer trees are actually 
exposed to wind damage, lowering the expected volume of 
damaged timber (Pukkala et al. 2016; Hahn et al. 2021; Pot-
terf et al. 2022). The estimation of the damaged timber vol-
ume is highly dependent on the occurrence and spatial pat-
tern of the strong winds in the future, which remain highly 
uncertain (Nikulin et al. 2011). Therefore, refraining from 
forest management techniques that increase wind damage 
risk [e.g., creating forest edges, forest fragmentation Zeng 
2006; Zeng et al. 2009)] and promoting uneven-aged for-
estry to reduce exposed timber volume compared to rota-
tion forestry provide viable ways to reduce overall effects of 
wind damage (Pukkala et al. 2016). The wind damage risk 
could be reduced by applying alternative CCF practices, for 
example by reducing the basal area threshold at which trees 
are harvested, as this would result in fewer number of large 
trees.

Our simulations indicated, that adaptations of the forest 
management regimes targeting biodiversity slightly reduced 
the harvested log timber volume (0 to -10%, Fig. 2) while 
substantially reducing harvested pulp timber volume com-
pared to BAU (from − 10 to − 40%, Fig. 2). These reductions 
of harvested timber volume partly reduced overall income, 
compensated by the higher present values of trees remain-
ing on the stand at the end of simulation period (Discounted 
PV, Fig. 2). We suggest that study period of 100 years, as 
done here, allowed only single rotation period for extended 
rotation length, leading to the reduction of the harvested log 

timber. (Fig. 2). Comparing to BAU, CCF lower competi-
tions in the less densely populated stands in combination 
with more frequent thinnings lead to development of the 
larger trees, and consequently to higher log timber (Fig. 2).

Refraining from thinnings and increasing green tree 
retention are considered to be cost effective strategies to 
increase old-growth forest structures and deadwood volume 
in commercial forests (Mielikäinen and Hynynen 2003; Fel-
ton et al. 2020; Gustafsson et al. 2020). Refraining from 
thinnings promotes ‘self-thinning’, e.g., mortality among 
young and densely growing coniferous tree species (Tik-
kanen et al. 2012) while green tree retention retains mature 
trees to increase structural diversity of the stands. Both 
approaches are expected to reduce the NPV by 20% (Tik-
kanen et al. 2012). Accounting for the value of the standing 
trees at the end of simulation period (as done here, Dis-
counted PV, Fig. 2) further indicated that the refraining of 
thinnings is a cost efficient strategy to improve biodiversity 
(in terms of deadwood) in managed forests (Tikkanen et al. 
2012) (Figs. 2, S5).

For green tree retention, our simulation results do not, 
however, benefit in the same way economic value, over-
all biodiversity or selected vertebrate species (Figs. 2 and 
3). This finding corresponds well with recent critiques of 
green tree retention, that currently applied retention vol-
umes and diversity of retained trees are often not sufficient 
to assure suitable habitats for diverse threatened species in 
Finland (Vanha-Majamaa and Jalonen 2001; Kuuluvainen 
et al. 2019). Our adaptation of green tree retention doubled 
the number of retained trees [30 retained trees/ha, Table 2, 
compared to currently retained 15 trees/ha, Niinistö et al. 
(2021)], but was still outperformed by CCF and extension 
of rotation length (by 30%) in terms of deadwood volume 
and diverse species habitats (Fig. 3). Therefore, to safeguard 
specific threatened species, retention levels would need to 
be increased to meet species-specific habitat requirements 
(Kuuluvainen et al. 2019).

As different adaptations benefited distinct species, and are 
known to create deadwood of different quality, a diversifi-
cation of regimes would be beneficial to meet a wide range 
of habitat requirements in commercial stands. We highlight 
the potential of continuous cover forestry, refraining from 
thinnings, and extension of rotation length to benefit several 
vertebrate species at once (Fig. 4) and at increased forest 
revenues (Fig. 2) compared to BAU. The relatively low cur-
rent levels of diverse forest habitats in Finnish boreal forests 
(Table S2) indicate that relatively small changes in manage-
ment can largely improve the habitats for particular species. 
We found that economically low performing regimes such 
as extended rotation length greatly benefited the threatened 
species such as capercaillie and Siberian flying squirrel, with 
suitable habitats currently covering only 1 to 3%, respec-
tively [Fig. S3, Duflot et al. 2021)]. Therefore, extending 
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the rotation length is particularly important to secure the 
continuation of endangered species habitats (i.e., Siberian 
flying squirrel).

Effects of climate change

Agreeing with previous studies, climate change had weaker 
effects than forest management on timber production and 
biodiversity (Mazziotta et al. 2015; Morán-Ordóñez et al. 
2020). On the other hand, adaptation methods aiming to 
cope with increasing timber growth by shortening of rotation 
length showed severe trade-offs with biodiversity (Ranius 
and Roberge 2011; Roberge et al. 2016), and had a limited 
effect on reducing wind damage probability under more 
severe changing climate (e.g., in central Europe, Zimová 
et al. 2020; Dobor et al. 2020a). Therefore, while consid-
ering the wide-scale application of the shortening of the 
rotation length to reduce future risks, one could account 
for its uncertain effectiveness under changing climate. Our 
simulation results indicate that more severe climate change 
reduced expected log (e.g., for CCF, Fig. 2) or pulp timber 
volume (e.g., short_30, Fig. 2) relative to the rotation for-
estry (Table S2, Fig. 2). Yet, climate change is expected to 
increase the absolute net present value and the total vol-
ume of harvested timber (Table S2, Fig. 2), while allowing 
currently unproductive forests in the north to become more 
productive. Because climate change is expected to increase 
the potential to harvest timber in boreal forests (Kellomäki 
2017; Brecka et al. 2018), forest management could rather 
focus on improving biodiversity (Mazziotta et al. 2015) and 
securing ecosystem functioning.

Study limitations and future perspectives

Our results are derived from simulation studies, offering a 
comprehensive examination of how different management 
strategies and changing climates might affect wind dam-
age risk, economic factors, and biodiversity indicators. We 
focus on the likelihood of wind damage occurrence rather 
than its extent. Thus, we did not dynamically simulated 
wind disturbances and excluded wind-damaged trees, which 
would affect future timber availability and related ecologi-
cal benefits. To quantify wind damage, one could use exist-
ing process-based models like iLand (Seidl et al. 2014) or 
mechanistic models like HWIND (Peltola et al. 1999) under 
varying wind patterns and extreme events. However, this 
would require consideration of several changing processes 
that are interlinked, such as increasing timber growth, espe-
cially in Northern Finland and shortening of the frozen soil 
periods in Southern Finland, which both lead to increased 
wind disturbance. Additionally, the higher likelihood of 
the cascading disturbances warrant consideration, such as 

bark beetle outbreak triggered by windthrow or drought 
(Venäläinen et al. 2020).

Another limitation is our reliance on predictive models 
based on dominant rotation forestry in Finland. However, 
models for uneven-age continuous cover forestry are con-
tinuously improving, reflecting a growing focus on this man-
agement approach due to its ecosystem benefits (Pukkala 
2016) and landscape multifunctionality (Peura et al. 2018; 
Eyvindson et al. 2021).

Additionally, our economic evaluation of timber values 
is sensitive to market fluctuations. We utilize average timber 
prices based on volume and tree attributes while overlook-
ing specific characteristics like branching and nodes, which 
affect timber qualities and as such the final timber prices. 
Finally, individual owner preferences, such as the choice to 
harvest earlier or later than the optimal age, can substantially 
affect estimated economic and ecological benefits.

Implications for forest practice

Forest management offers many opportunities to foster for-
est diversity while providing reliable timber revenues under 
changing climate. We found that refraining from thinning 
provides a beneficial solution lowering wind damage proba-
bility, maintaining high harvest yields and net present value, 
and improving individual species habitats compared to cur-
rently applied rotation forestry [Figs. 2, 4, (Tikkanen et al. 
2012)]. Yet, our results highlight the conflicting outcomes 
between forest economic and forest diversity within indi-
vidual adaptations, amplified by more severe climate change.

We found that different management adaptations ben-
efited different species (Fig. 4). Therefore, the diversifica-
tion of the management regimes across the landscape is key 
in promoting landscape multifunctionality (Eyvindson et al. 
2021), diversity of species habitats (Duflot et al. 2021), and 
restoration of natural forest structures in commercial for-
ests (Savilaakso et al. 2021). Recent evidence from Finland 
indicated that fulfilling societal demands for multiple con-
flicting objectives—economic benefits, non-economic forest 
goods, and safeguarding biodiversity– would benefit from a 
shift from currently dominating rotation forestry to a higher 
prevalence of continuous cover forestry, complemented with 
set asides as well as areas for more intensive forest manage-
ment (Eyvindson et al. 2021; Blattert et al. 2022). However, 
to improve climate resilience of forests, additional adapta-
tions measures would be needed, including promoting mixed 
and more diverse stands (Dobor et al. 2020b), reducing the 
dominance of Norway spruce, the most vulnerable species 
to wind storms and bark beetles (Venäläinen et al. 2020), 
using artificial regeneration (Ikonen et al. 2020), and using 
climate change adapted tree species in stand regeneration 
(Torssonen et al. 2015). To promote a diversity of habitats, 
it may also be beneficial to increase the share of adaptations 
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like extension of rotations length, which although economi-
cally costly was the most effective at promoting habitat for 
endangered species dependent on mature forest structures 
such as capercaillie and Siberian flying squirrel.

Conclusions

Adaptations of forest management strategies affect timber 
revenues, risk of wind disturbance, and biodiversity under 
various future climate scenarios. Overall, climate change 
increased timber revenues but had relatively less impact on 
selected forest and biodiversity indicators than did man-
agement adaptations. Shortening of the rotation lengths 
provides high economic revenues and reduces wind dam-
age probability, but also reduces deadwood volume and 
the habitats of a diverse group of forest vertebrate species 
in commercial boreal forests. Therefore, the execution of 
shorter rotation periods within the landscape could be care-
fully planned, compensating for potential negative effects on 
biodiversity by diversification of forest management benefit-
ing heterogeneous and old-growth forest structures, such as 
refraining from thinnings, extension of rotation length, and 
implementing continuous cover forestry. Refraining from 
thinning represents a solution that could simultaneously 
reduce wind damage risk, keep high timber revenues and 
improve biodiversity under a changing climate.
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