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A B S T R A C T   

Sunlight is the primary source of energy in forest ecosystems and subcanopy light regimes largely determine the 
establishment, growth and dispersal of plants and thus forest floor plant communities. Subcanopy light regimes 
are highly variable in both space and time, which makes monitoring them challenging. In this study, we assess 
the potential of Sentinel-1 and Sentinel-2 time series for predicting subcanopy light regimes in temperate 
mountain forests. We trained different random forest regression models predicting field-measured total site 
factor (TSF, proportion of potential direct and diffuse solar radiation reaching the forest floor, here defined as the 
transition zone between belowground and aboveground biomass) from a set of metrics derived from Sentinel-1 
and Sentinel-2 time series. Model performance was benchmarked against a model based on structural metrics 
derived from Airborne Laser Scanning (ALS) data, serving as an empirical gold-standard in modelling subcanopy 
light regimes. We found that Sentinel-1 and Sentinel-2 time series performed nearly as good as the model based 
on high-resolution ALS data (R2/RMSE of 0.80/0.11 for Sentinel-1/2 compared to R2/RMSE of 0.90/0.08 for 
ALS). We furthermore tested the generalizability of the trained models to two new sites not used for training for 
which field data was available for validation. Prediction accuracy for the ALS model decreased substantially for 
the two independent test sites due to variable ALS data quality and acquisition date (ΔR2/ΔRMSE of 0.29/0.05 
and 0.11/0.03 for both independent test sites). The prediction accuracy of the Sentinel-1/2 model, however, 
remained more stable (ΔR2/ΔRMSE of 0.13/0.02 and 0.13/0.04). We therefore conclude that a combination of 
Sentinel-1 and Sentinel-2 time series has the potential to map subcanopy light conditions spatially and tempo
rally independent of the availability of high-resolution ALS data. This has important implications for the oper
ational monitoring of forest ecosystems across large scales, which is often limited by the challenges related to 
acquiring airborne datasets.   

1. Introduction 

Forest ecosystems cover about 31% of the earth’s surface and pro
vide important ecosystem services to humanity (FAO, 2022). These 
ecosystem services include climate regulation and carbon sequestration, 
watershed protection, the production of timber, as well as various other 
non-timber forest products (Forest Europe, 2020). To safeguard the 
provision of these manifold ecosystem services for future generations, it 
is of utmost importance to understand and monitor the key components 
and dynamics of forest ecosystems and their interactions with the biotic 
and abiotic environment. One central characteristic of forest ecosystems 
is that they modulate the subcanopy light availability. Light is the source 

of energy for photosynthetic activity of autotrophic organisms and – 
together with water, nutrients and appropriate thermal conditions – one 
of the four basic requirements for plant growth (Kimmins, 2004; Nemani 
et al., 2003; Oliver and Larson, 1996). Light also largely determines 
forest microclimate (Hardwick et al., 2015; Heithecker and Halpern, 
2006; Ritter et al., 2005; Schmidt et al., 2017; Thom et al., 2020), which 
is closely related to the water cycle (Giuggiola et al., 2016), biodiversity 
(Dormann et al., 2020; Lettenmaier et al., 2022), as well as local 
decomposition processes and nutrient cycles (Seibold et al., 2016, 
2021). Furthermore, the availability of light is a strong determinant of 
the establishment and growth of trees in the regeneration layer (Su et al., 
2019). For that reason, the local light regime can be a decisive factor in 
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shaping future development trajectories of forests (Seidl and Turner, 
2022). Predicting local light regimes is hence indispensable, especially 
as recent increases in forest disturbances are changing forest structure 
and demography (McDowell et al., 2020; Senf et al., 2021), likely 
leading to altered subcanopy light regimes in many forest ecosystems in 
the future. 

Measuring light within forests is a challenging task, especially as the 
light availability in the understory of forests can be highly heteroge
neous at a small spatial scale (Canham et al., 1990; Helbach et al., 2022). 
Direct approaches such as using handheld or stationary quantum sensors 
allow for measuring the amount of the incident solar radiation (Akitsu 
et al., 2017; Kutschera and Lamb, 2018), which is often quantified as the 
photosynthetically active part of the overall incident radiation (wave
lengths from ~400 to ~700 nm), although other wavelengths in both 
the ionizing (Braga et al., 2015; Vanhaelewyn et al., 2020) as well as 
non-ionizing (Cserta et al., 2011; Kreye et al., 2018) domains can also 
have a considerable impact on forest ecosystems. While direct ap
proaches yield an accurate representation of the light availability at a 
specific location and point in time, acquiring long-term datasets across 
large extents is costly. In contrast to direct methods, indirect approaches 
use models of various complexity to estimate the light availability in the 
understory of forests. Process-based or physical models, for instance, 
precisely describe the incident solar radiation and its interaction with 
the vegetation by physical functions (Brunner, 1998; Courbaud et al., 
2003; Ligot et al., 2014). Those models, however, are difficult to 
parameterize and demanding regarding the computational resources 
needed in their application, which limits their utility for predicting 
subcanopy light regimes across large spatial extents. Empirical models, 
in turn, use statistical relationships between observed on-site conditions 
and the measured subcanopy light availability. The subcanopy light 
availability is thereby often described as the direct sunlight and diffuse 
illumination at the measurement location in proportion to a completely 
unshaded site (Behling, 2022; Canham, 1988; Canham et al., 1990). Yet, 
many variables describing on-site conditions being used as predictors in 
statistical models to predict the subcanopy light regime are often not 
available across large spatial extents (e.g., stand information derived 
from forest inventories) or over extended periods of time (e.g., to make 
inferences on the effects of changes in land cover). Estimating the sub
canopy light regime across large spatial extents and monitoring it’s 
change over time thus remains a challenging task. 

Remote sensing offers novel ways forward in mapping, monitoring 
and understanding forest light regimes, as it enables cost-efficient, 
repeatable and large scale analyses. With respect to light regimes, 
Light Detection and Ranging (LiDAR) data is especially useful, because 
of its capability to characterize forest structures in great detail (Donager 
et al., 2021; Lim et al., 2003; Seidel et al., 2020). In fact, several studies 
have used LiDAR to map light regimes in the understory of forests 
(Seidel et al., 2012; Webster et al., 2020; Zellweger et al., 2019). While 
ALS can be considered the gold standard for mapping forest light re
gimes, it also has several drawbacks: First, ALS data is costly to acquire 
and many regions thus lack adequate coverage. Second, ALS data quality 
can vary widely and many ALS acquisitions are flown leaf-off to facili
tate the computation of digital terrain models. Many locally calibrated 
or trained ALS based light models thus lack generality and are not 
transferable to other regions. Third, repeated ALS acquisitions are rare, 
limiting the ability to track changes in light availability over time using 
ALS. 

To overcome these limitations of ALS data, novel spaceborne sensor 
systems, such as offered by the Copernicus Program of the European 
Space Agency, hold considerable potential. Data from the Sentinel-1 and 
Sentinel-2 satellite missions, for instance, might provide information on 
forest structure from space and thus enable a seamless monitoring of 
subcanopy forest light regimes across space and time. Sentinel-1 is 
operating in the microwave domain (wavelength center at ~ 5.55 cm) 
at ~ 10 m spatial resolution for different polarizations (dual HH + HV, 
VV + VH or single HH, VV), with a theoretical revisit time of six days for 

Sentinel-1 A and B for the ground range detected interferometric wide 
swath product (European Space Agency, 2022a). We note, however, that 
Sentinel-1 B quit service end of 2021, doubling the revisit time beyond 
that date (European Space Agency, 2022b). Microwave data can deliver 
information related to the dielectric properties and structural compo
nents of vegetation (Bae et al., 2019; Bruggisser et al., 2021; Dostálová 
et al., 2016), which is known to be highly correlated to the light regime 
(Lieffers et al., 1999; Messier et al., 1998; Montgomery and Chazdon, 
2001). Sentinel-2 in turn, is a multispectral sensor system operating 
from the visible (VIS) to the shortwave-infrared (SWIR) wavelength 
domain. It provides a spatial resolution from ~10 m to ~20 m (~60 m 
for three atmospheric bands) with a theoretical revisit time of five days 
when combining Sentinel-2 A and B (European Space Agency, 2012, 
2022c). While single images at a medium spatial resolution in the optical 
wavelength domain are limited in their ability to characterize forest 
structure (Camarretta et al., 2020; Cohen and Spies, 1992), an 
increasing number of images provide opportunities to glean information 
on structural properties, e.g., via photogrammetry (Pearse et al., 2018) 
or time series analysis (Pflugmacher et al., 2012). Sentinel-2 has the 
advantage of a relatively high temporal resolution that allows for 
characterizing intra-annual variability in spectral reflectance properties, 
often called spectral-temporal metrics or phenometrics. Those 
spectral-temporal metrics can be used to identify forest communities 
(Grabska et al., 2019; Hemmerling et al., 2021), which are linked to 
characteristic forest structural properties that in turn determine light 
regimes. The high temporal resolution of Sentinel-2 might thus 
compensate for sensor saturation and a lack of penetration depth in the 
optical wavelength domain. Furthermore, Sentinel-2 offers a higher 
spatial resolution than similar sensor systems in the optical wavelength 
domain (e.g., Landsat, MODIS), which allows for a more precise char
acterization of local crown structures and forest gaps (e.g., ~10 m is the 
typical crown width of a single adult tree in Central Europe). Yet, there is 
no study to date that tested the usability of Sentinel-1 and Sentinel-2 for 
mapping subcanopy light regimes of forest ecosystems, especially in 
comparison to the gold standard of ALS. 

Here, our aim was to test the performance of spaceborne satellite 
data from Sentinel-1 and Sentinel-2 for mapping and monitoring sub
canopy light regimes during leaf-on conditions in mountain forest 
landscapes of Central Europe, a challenging environment where light 
regimes vary significantly with changing forest communities along the 
elevation gradient. More specifically, our objectives were to: (1) 
compare Sentinel-1/2 time series against ALS data in their ability to 
predict the local subcanopy light regime during leaf-on conditions (as 
represented by the total site factor [TSF], a variable combining direct 
and diffuse light close to the forest floor); and to (2) test whether 
Sentinel-1/2 time series are better suited for making generalized pre
dictions across study regions than local ALS data, evaluating their 
applicability for monitoring subcanopy light regimes in forest ecosys
tems across large spatial extents. 

2. Data and methods 

2.1. Study sites and plots 

In our study we focused on mountain landscapes, because the inci
dent solar radiation (and associated microclimatic warming effects) are 
of particular importance for vegetation under the harsh, temperature- 
limited conditions in mountain areas. We selected three different 
study sites in the Bavarian Alps in Germany: (A) Berchtesgaden, with 
~92 km2 of forest, (B) Karwendel with ~48 km2 of forest and (C) 
Chiemgau with ~61 km2 of forest (Fig. 1). While the first study site was 
used for model calibration and validation, the latter two study sites were 
used for testing the ability of our models to generalize and make pre
dictions at realistic conditions in terms of data availability and quality. 
These study sites were thus not used for model calibration. All study sites 
are characterized by a high topographic complexity and a large 
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elevation gradient, ranging from 535 m to 2713 m a.s.l. (with the tree 
line approximately at 1700 m a.s.l.). The average annual precipitation 
ranges from ~1100 to >2000 mm (Bayerisches Landesamt für Wasser
wirtschaft, 1998) and the average annual temperature ranges from ~0 
to 10 ◦C (Bayrisches Landesamt für Umwelt, 2020). Both temperature 
and precipitation vary considerably along elevational gradients. Soils 
range from bare, calcareous bedrock over weakly developed soils (Lithic 
Leptosol and Rendzic Leptosol) to mature soils (Cambisols) (Landesamt 
für Umwelt Bayern, 2022). Mixed forest communities prevail at lower 
elevations and are primarily composed of European beech (Fagus syl
vatica L.) and to smaller parts of silver fir (Abies alba MILL.) and Norway 
spruce (Picea abies (L.) H. KARST.) (submontane forests, 500–850 m a.s.l.). 
With increasing elevation, the composition first shifts towards a stronger 
dominance of Norway spruce (montane forests, 850–1400 m a.s.l.), with 
subalpine forests (1400–1800 m a.s.l.) being characterized by a mix of 
Norway spruce, European larch (Larix decidua MILL.) and Swiss stone 
pine (Pinus cembra L.). The abundance of Norway spruce was increased 
by past forest management practices. Dwarf mountain pine (Pinus mugo 
TURRA) is a shrub species occurring at the tree line (~1700–1800 m a.s. 
l.). While management has been ceased on 75% of the area for the 
calibration site Berchtesgaden (IUCN category II; national park), the 
study sites Karwendel and Chiemgau are actively managed with the 
main goal of multi-purpose forest management and a particular focus on 
sustaining the protective function of forests against natural hazards. 

2.2. Light measurements for model calibration and validation 

For model calibration and validation, we established a total of 150 
plots of 500 m2 (~12.6 m radius) at the calibration site Berchtesgaden. 
To adequately represent the highly variable site conditions, plot loca
tions were stratified over five forest development stages (Gap, Estab
lishment, Optimum, Plenter, Decay; cf. (Zenner et al., 2016); identified 
using existing forest inventory data) and three altitudinal belts (sub
montane, montane, subalpine). For each of the 3 × 5 = 15 combinations, 

10 plots were established. These plot locations were geolocated with a 
state-of-the-art R12i global navigation satellite system of Trimble Inc 
(precision <1 m for 67 % of the plots, <2 m for all plots). To measure the 
local subcanopy light regime at each plot, we used a Solariscope SOL300 
(Behling, 2022), which takes hemispherical photos and sets automati
cally applied thresholds along a gradient of brightness levels (seven 
thresholds in total) in order to distinguish vegetation from clear sky. The 
total site factor (TSF) is calculated from a hemispherical photo, as a 
user-defined ratio of the direct site factor (DSF; the direct sunlight 
reaching the measurement point) and the indirect site factor (ISF; the 
diffuse illumination at the measurement point). In our case, the TSF was 
calculated with a 60:40 ratio of DSF:ISF and the TSF indicates the per
centage of light availability relative to a completely open site (e.g. open 
space or above canopy) (Anderson, 1964). The DSF time span was set to 
the vegetation period for the temperate climate zone (01.04.-30.09.) and 
an angle of view of 60◦ was chosen to determine the opening (Behling, 
2022). A total of five measurements were conducted at a fixed height of 
2 m above ground at each plot location: the first measurement was taken 
at the central plot coordinate and the other four measurements were 
taken in each cardinal direction from the central coordinate in a fixed 
distance of 10 m (Appendix 1). We decided for a measurement height of 
2 m to capture the subcanopy light regime without the often dense un
derstory vegetation layer. Following these measurements, three 
different interpreters evaluated all Solariscope measurements indepen
dently and selected the most appropriate of the seven available bright
ness thresholds for each hemispherical photo (Appendix 1). For this 
selection process, a threshold can be considered as ideal when 
sky-covering objects (e.g. leaves, branches, stems, etc.) can be perfectly 
discriminated from the open sky on the hemispherical photo (Behling, 
2022). The TSF of the most frequently selected threshold was taken as 
final measurement. In cases of substantial deviation (≥0.03) between 
interpreters, a re-evaluation of the hemispherical photo was carried out 
(27% of all cases). As the final response variable used in our analyses, an 
averaged TSF was calculated over the five measurements for each plot 

Fig. 1. Overview of the study sites along the Northern Alps in Bavaria, Germany.  
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location. Light measurements were sampled July/August 2021 for the 
calibration site Berchtesgaden, June 2022 for the test site Karwendel 
and May 2022 for the test site Chiemgau. 

2.3. Airborne laser scanning data and processing 

A variety of continuously improving ALS sensor systems are avail
able today, gathering three-dimensional information on forest ecosys
tems. Based on the availability across our study sites, we used ALS data 
of different topicality and quality for the three study sites. The ALS data 
for Berchtesgaden originated from an aerial survey flown with a Riegl 
VQ-780i scanner in September 2021 that was contracted by the national 
park authorities. The minimal point cloud resolution of this data is 30 
points/m2, it is already pre-classified (ground, non-ground and erro
neous), and comes with intensity values. The ALS data for the inde
pendent test sites Karwendel and Chiemgau were provided by the 
Bavarian State Office for Survey and Geoinformation and have a mini
mal point density of 4 points/m2. The datasets were acquired during 
several aerial surveys; for the test site Karwendel in August 2016 with a 
Riegl LMS-Q780 scanner and for the test site Chiemgau from August 
2015 to January 2017 with a Riegl LMS-Q1560 scanner. Also these 
datasets were pre-classified (ground, non-ground, erroneous and build- 
up), but came without intensity values (Landesamt für Digitalisierung, 
Breitband und Vermessung, 2022). 

For model calibration and validation we used a binary forest mask at 
10 m spatial resolution available for the calibration site Berchtesgaden 
(Mandl, 2020) to calculate a set of metrics from the ALS data for all 
pixels classified as forest. For doing so, we retrieved the central pixel 
coordinates of each cell of the 10 m forest mask to subset the ALS point 
cloud with a radius of 15 m around this central pixel coordinate (slightly 
larger than the actual plot size to avoid edge effects in the following 
processing steps). After filtering for valid points using an isolated voxel 
filter, we took advantage of the point cloud classification and filtered 
point clouds to more than 5% not classified as water or ground. Subse
quently, we normalized the point cloud based on ground classified 
points and a triangulated irregular network interpolation and subset it to 
the final plot size (i.e., 500 m2, with a radius ~ 12.56 m). From the 
subset normalized point cloud we calculated a canopy height model 
using the pit-free algorithm (Khosravipour et al., 2014). Furthermore, 
we voxelized the normalized point cloud to a spatial resolution of 0.1 m. 
These two datasets, the canopy height model and the voxelized and 
normalized point cloud, were then used to calculate the final ALS met
rics. In total, we calculated 52 different metrics (Appendix 2). These 
metrics describe the vegetation structure at the plot locations in terms of 
overall density, height of the canopy, vertical and horizontal canopy 
distribution, as well as gap structure. To calculate the ALS based metrics, 
we relied on the R packages lidR, ForestGapR, spatstat. core and mgcv 
(Baddeley et al., 2022; Roussel, 2023; Roussel et al., 2020; Silva, 2023; 
Silva et al., 2019; Wood, 2017. 

2.4. Sentinel-1 data and processing 

We acquired all available Sentinel-1 Ground Range Detected data 
from 2021 via Google Earth Engine (European Space Agency, 2023; 
Gorelick et al., 2017). This data is already pre-processed based on ESA’s 
Sentinel-1 Toolbox, including the following processing steps: an appli
cation of the orbit file, border- and thermal-noise removal as well as 
radiometric calibration and range doppler terrain correction with the 
digital elevation model of the Shuttle Radar Topography Mission (Eu
ropean Space Agency, 2022d; Farr et al., 2007). The data was further 
filtered for vertical-vertical (VV) and vertical-horizontal (VH) 
transmitter-receiver polarization in interferometric wide mode in both, 
ascending and descending orbits for the year 2021. The data represents 
the backscatter coefficient (sigma nought or σ0) in decibels of the target 
backscattering area (normalized radar cross-section) with a spatial res
olution of ~10 m. After downloading and filtering the Sentinel-1 data, 

we applied a routine for angular-based, radiometric slope correction, 
optimized for volume scattering on the Sentinel-1 timeseries, to account 
for the distinct topography of our study sites (Vollrath et al., 2020). As 
digital elevation model, we used the Shuttle Radar Topographic Mission 
dataset, which is available on Google Earth Engine with a spatial reso
lution of ca. 30 m and an extent stretching from − 60◦ to +60◦, not 
limiting the applicability of our developed approach to a specific region 
(Farr et al., 2007). For some pixels, no statistics could be calculated 
because of the sensor geometry of Sentinel-1 resulting in layover and 
shadow effects, thus leading to invalid pixel values. We did not use any 
buffer to mask further potentially invalid pixels in the border areas of 
layover and shadow effects. To reduce speckle without losing spatial 
resolution, we aggregated the pre-processed Sentinel-1 timeseries per 
pixel and built a median and mean composite for the summer season 
(July, August, September), winter season (December, January, 
February) as well as for the whole year for both, VV and VH polarization, 
as proposed in a previous study (Bae et al., 2019). We did not convert 
logarithmic transformed values (10 × log10(x)) into original values 
beforehand and the pixel values thus do not represent information in any 
physically unit. As our aim was at predicting using a machine learning 
tool, this does not affect downstream analysis. After converting the 
temporal composites to the desired coordinate reference system, we 
resampled them with our master raster layer for the respective study site 
using a nearest neighbor interpolation. Finally, we calculated 38 pixel
wise metrics based on the different composites (Appendix 2). Those 
metrics comprised of standard metrics, e.g. mean, median, difference, 
sum and ratio of the different polarizations for the temporal composites, 
as well as the Canopy Development Index (CDI), Radar Vegetation Index 
(RVI) and modified Radar Forest Degradation Index (mRFDI). In previ
ous studies, the CDI and variations of it have proven useful to capture 
phenological information on deciduous forests (Bae et al., 2022; Frison 
et al., 2018). We calculated the CDI defined as σ0VV – σ0VH for all our 
temporal composites. Several variations exist also for the RVI. Origi
nally, the quad-polarized RVI was introduced to estimate the level of 
biomass for agricultural applications (Kim and van Zyl, 2009; Yihyun 
Kim et al., 2012). Later, the RVI was first adapted for dual-polarization 
(Trudel et al., 2012) and then also used for forestry applications (Schulz 
et al., 2022). We here defined the RVI as 4σ0VH/(σ0VV + σ0VH) and 
calculated it for all our temporal composites. The Radar Forest Degra
dation Index (RFDI) was developed to discriminate different vegetation 
types (Mitchard et al., 2012). Originally, it requires a HH and VH po
larization. However, since Sentinel-1 does only provide a VV and VH 
polarization, it was modified based on the assumption that the HH po
larization corresponds to the VV polarization and hence can be used 
instead (Nasirzadehdizaji et al., 2019; Nicolau et al., 2021). We thus 
calculated the mRFDI for all our temporal composites defined as (σ0VV – 
σ0VH)/(σ0VV + σ0VH). 

2.5. Sentinel-2 data and processing 

We acquired all available Sentinel-2, Level-1C data from the years 
2019–2021 via the Google Cloud service. We used three years instead of 
just one year to account for high cloud cover at the study sites, which 
would result in unreliable estimates with only few, non-randomly 
distributed observations within one year. The downloaded data repre
sents top-of-atmosphere reflectance with a spatial resolution from ~10 
m to ~20 m, depending on the spectral band. Following the download, 
we processed the data using the Framework for Operational Radiometric 
Correction for Environmental monitoring (FORCE), including atmo
spheric correction to bottom-of-atmosphere, topographic- and 
radiometric-correction, as well as cloud masking (Frantz, 2019). Using 
all cloud-free pixels, we calculated a set of commonly used spectral 
indices: the Normalized Difference Vegetation Index (NDVI) (Lange 
et al., 2017; Tucker, 1979), the Enhanced Vegetation Index (EVI) (Hui 
Qing Liu and Huete, 1995), the Normalized Burn Ratio (NBR) (Key and 
Benson, 2006), the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988), 
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the Tasseled Cap Greenness (TC-Green), Wetness (TC-Wet), and 
Brightness (TC-Bright) components (Crist and Cicone, 1984; Kauth and 
Thomas, 1976), the Normalized Difference Water Index (NDWI) (Gao, 
1996), and the Normalized Difference Moisture Index (NDMI) (Hardisky 
et al., 1983; Vogelmann and Rock, 1988). From these indices, various 
pixelwise statistics (i.e., mean, standard deviation, minimum, 
maximum, range, various quantiles, interquartile range, skewness, 
kurtosis) for the entire years of 2019–2021 were calculated, resulting in 
a total of 108 metrics (Appendix 2). As a last step, also this data was 
converted into the desired coordinate reference system and resampled 
with our master raster layer for the respective study site using a nearest 
neighbor interpolation just like we did for the Sentinel-1 data. 

2.6. Predicting light regimes 

We used the above-described metrics from ALS, Sentinel-1, Sentinel- 
2 and a combination of Sentinel-1/2 to model the observed TSF at the 
150 plot locations of the calibration site Berchtesgaden. To identify the 
most important predictor variables from the overall large number of 
metrics for each model, we used a stepwise variable selection approach 
implemented in the R package VSURF that builds upon permutation of 
the random forest variable importance measure (Genuer et al., 2015). 
After variable selection, we used the random forest algorithm with the R 
package caret to set up the final models. We set the final number of trees 
to 10,000 and used a 10-fold cross-validation to evaluate the model 
performance using the root mean squared error (RMSE) and squared 
Pearson correlation coefficient (R2) as measures of model performance. 
The number of variables used for each split was selected using the 
approach implemented in the R package caret (i.e., two for the ALS and 
the Sentinel-2 based model, and five for the Sentinel-1 and Sentinel-1/2 
based model) (Kuhn, 2008). Subsequently, we used the calibrated 
models to predict the TSF across the full forest area at 10 m spatial 
resolution. 

2.7. Comparing model performance and testing model generalizability 

We compared the produced maps for the calibration site Berchtes
gaden with one another by calculating differences between the best 
spaceborne prediction and the prediction based on ALS data (i.e., our 
gold standard reference). Non-available pixels, resulting from cloud 
cover, layover- and shadow-effects were masked for all predictions. We 
further compared the maps across topographic gradients, investigating 
whether the strong topography (in terms of both, elevation and slope) of 
our study site influences spatial predictions of the TSF. 

To test the generalization performance of our fitted models to new 
sites, we investigated their performance at the independent test sites 
Karwendel and Chiemgau, which were not used for model calibration 
before. To that end we sampled 50 additional plots in each of these two 
study sites. Since no forest inventories for these study sites were avail
able to reproduce the stratification applied for the calibration site 
Berchtesgaden, a random forest model was trained on the calibration 
site Berchtesgaden to predict the five forest development stages also for 
the test sites Karwendel and Chiemgau. As input for this model, we used 
the standard metrics from the R package lidR (Roussel et al., 2020) and 
the ALS data as described in Section 2.3. Using a road-/trail-map to 
guarantee accessibility, we selected plot locations accessible in the field 
but spanning a wide gradient of elevation zones. Despite careful plan
ning, five plot locations remained inaccessible at the test site Karwendel 
and were thus dropped from the sample. For each of the remaining 95 
plot locations we recorded the TSF in the field as described above with 
hemispherical photography. We calculated the same metrics for the ALS 
data as well as for the Sentinel-1/2 data as for the calibration site 
Berchtesgaden. In a next step, we used the models fitted for the cali
bration site Berchtesgaden and the calculated metrics to predict the TSF 
for the test sites Karwendel and Chiemgau. We then compared the pre
dictions with the TSF measurements at the plot locations for these two 

test sites. To account for the possibility of forest disturbances occurring 
between light measurements and ALS acquisition, we used an existing 
disturbance map (Senf and Seidl, 2021) to filter out plot locations that 
were disturbed between ALS acquisitions and light measurements. 

3. Results 

The best performing model for the calibration site Berchtesgaden 
was the model based on ALS variables with a R2 of 0.90 and a RMSE/ 
MAE of 0.08/0.06. The performances of the Sentinel-1 model (R2 of 0.39 
and a RMSE/MAE of 0.20/0.17) as well as the Sentinel-2 model (R2 of 
0.72 and a RMSE/MAE of 0.13/0.11) were lower. However, the model 
based on a combination of Sentinel-1/2 variables also performed well, 
with a R2 of 0.80 and a RMSE/MAE of 0.11/0.09. The lower accuracy of 
the Sentinel-based models is visible in the scatterplots shown in the left 
column of Fig. 2. The ALS model has the narrowest spread around the 
1:1 line, followed by the combined Sentinel-1/2 model. Comparing the 
cross-validated model residuals over elevation and slope did not reveal 
any distinct trends, suggesting that the accuracy of the predicted TSF is 
consistent over the reference sample (Fig. 2, columns 2, 3). 

3.1. Predictor variables 

Among all models, the ALS model used the lowest number of pre
dictor variables: only four out of 52 predictor variables were sufficient 
for modelling the TSF from ALS (Table 1). The most important predictor 
variable was the ratio between the percentage of returns above 2 m (i.e., 
the height at which the Solariscope measurements were conducted) to 
the total number of returns, representing the overall canopy density at 
the plot locations. Further important predictor variables for the ALS 
model were the 0.25 and the 0.5 quantile of the canopy height model 
(CHM), describing the vertical characteristics of the canopy. Lastly, the 
averaged area of gaps within the CHM at 5 m height emerged as 
important predictor variable, describing the horizontal heterogeneity at 
a plot location. 

A total of eight predictor variables were important for the Sentinel-1 
model (Table 1). These predictor variables were mainly incorporating 
different combinations of the VV and VH polarization and were com
plemented by mean and median composites of the VV polarization for 
the entire year. Regarding the seasonality of the composites, we could 
not identify any trend: both, the summer and the winter composites 
were of importance for predicting the TSF. 

The Sentinel-2 model was also based on eight predictor variables 
(Table 1), which without exception included the NIR band at 842 nm 
and almost always the Shortwave Infrared (SWIR) bands at 940 nm and 
1375 nm. Furthermore, nearly all selected predictor variables were 
based on the median (0.5 quantile), whereas high or low quantiles 
contained little additional information of value for the model. 

For the model combining predictor variables of Sentinel-1/2, nine 
predictor variables were selected as important. Although the perfor
mance of the model based on Sentinel-1 solely was rather low, two 
predictor variables of Sentinel-1 were included into the joint model, 
enhancing the prediction accuracy over the model solely based on 
Sentinel-2 metrics. Yet, Sentinel-2 predictor variables were overall more 
important in the joint model. 

3.2. Predicted subcanopy light availability for the calibration site 
berchtesgaden 

The spatial predictions of the TSF for the calibration site Berchtes
gaden from the two best performing models (i.e., ALS and Sentinel-1/2) 
showed similar patterns overall (Fig. 3), while some important differ
ences remained (Figs. 4 and 5). For both sets of predictions, the light 
availability increased with elevation, confirming the general expecta
tion for mountain forests that forest cover and canopy density decreases 
with increasing elevation. On average, predicted TSF values increased 
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Fig. 2. First column: Total Site Factor (TSF) measured versus predicted based on a 10-fold cross validation for the calibration site Berchtesgaden. The solid line 
represents the 1:1 line (TSF measured = TSF predicted). Second column: Elevation a.s.l. Versus cross-validated model-residuals. Third column: Slope versus cross- 
validated model-residuals. The density of all points is illustrated by the intensity of the color code selected for the specific models. (For interpretation of the ref
erences to color in this figure legend, the reader is referred to the Web version of this article.) 
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by 0.03 per 100 m elevation gain for both the ALS model and the 
Sentinel-1/2 model, suggesting that both models well represent the 
overall elevation gradient in subcanopy light availability. 

Across all forests of the calibration site Berchtesgaden, we predicted 
an averaged TSF of 0.32 and 0.34 with the ALS model and Sentinel-1/2 
model, respectively. For the ALS model, the 5% and 95% quantiles of the 
predicted TSF were 0.06 and 0.72, whereas they were 0.07 and 0.68 for 
the Sentinel-1/2 model. This information confirms the visual impression 
(Fig. 3) that the range of the predicted TSF values from the ALS model is 
slightly larger than the range of the predicted TSF values from the 
Sentinel-1/2 model, leading to a somewhat finer graduation in predicted 
TSF values for the ALS model. A direct comparison of the spatial TSF 
predictions from the ALS and Sentinel-1/2 models showed a high cor
relation (r = 0.69) between both maps. Yet, the model based on Sentinel- 
1/2 predicts on average 2% higher TSF values than the ALS model. This 
overestimation of the TSF can be mainly attributed to areas with steep 
slopes (i.e., >45◦ in slope angle, such as at the western banks of lake 
Königssee in the center of Fig. 5). Such slopes are beyond the range of 
values contained in our 150 training plots (cf. Fig. 2). However, only 
11.36% of all pixels with TSF predictions had a slope ≥45◦, rendering 
overestimation in steep slopes a relatively minor problem across the 
landscape. Comparing the spatial predictions of the TSF to high reso
lution true color imagery (Landesamt für Digitalisierung, 2023), we 
found that fine structured forest patches and pixels bordering non-forest 
landcover types were less accurately represented by the Sentinel-1/2 
model compared to the ALS model (Fig. 5). Small features below or 
close to the spatial resolution of the spaceborne systems (i.e., very small 
gaps, narrow gulleys, skid trails) were also represented insufficiently 
and thus deviated from the ALS based prediction (Figs. 4 and 5). 

3.3. Predicted subcanopy light availability for the study sites Karwendel 
and Chiemgau 

For the test sites Karwendel and Chiemgau the performance of the 
fitted models was more variable. Both sites were not used for model 
calibration and the resolution of the ALS data was much lower than for 
the calibration site Berchtesgaden. For the test site Karwendel, the 
Sentinel-1/2-model outperformed the ALS model, with a R2 of 0.67 (and 
a RMSE/MAE of 0.13/0.08), compared to a R2 of 0.61 (and a RMSE/ 
MAE of 0.13/0.11) (Fig. 6). That is, model accuracies for the ALS model 
decreased by 0.29 points when generalizing the model to a new site, 
combined with a decrease in point cloud resolution by a factor of ~ 7. 
For the test site Chiemgau, the ALS model performed better than the 
Sentinel-1/2 model, with a R2 of 0.79 (and a RMSE/MAE of 0.11/0.08) 
compared to a R2 of 0.67 (and a RMSE/MAE of 0.15/0.09). Yet, also here 
the accuracy of the ALS model was considerably lower than at the 
calibration site Berchtesgaden. In contrast, generalization performance 
for the Sentinel-1/2 model was consistent across study sites, with similar 
accuracies for both independent test sites and a constant decrease of 
0.14 points in R2 when applying the model to a new site. 

4. Discussion 

Here, we present a first benchmark of spaceborne remote sensing for 
mapping subcanopy light regimes in temperate mountain forests, by 
comparing it to ALS data as the gold standard for mapping forest light. 
Our results confirm the notion that subcanopy light regimes can be 
mapped from ALS data with high accuracies. The good performance of 
ALS for predicting subcanopy light regimes can be explained by the 
potential of ALS to quantify forest structural information (Donager et al., 
2021; Lim et al., 2003; Seidel et al., 2020), which is tightly linked to the 
subcanopy light regime of forests (Alexander et al., 2013; Seidel et al., 
2012; Webster et al., 2020; Zellweger et al., 2019). The most important 

Table 1 
Predictor variables, their importance and model performance for the four models predicting the Total Site Factor (TSF) from Airborne Laser Scanning (ALS), Sentinel-1, 
Sentinel-2 and a combination of Sentinel-1/2 data. The ranking indicates the scaled predictor variable importance of the random forest models as defined in the R 
package randomForest (Breiman, 2001). Details on predictor variables can be found in Appendix 2.  

Model: Predictor variables: Scaled variable importance: R2 RMSE MAE 

ALS PtsAbove2m 100.00 0.90 0.08 0.06 
CHM_Q025 83.39    
CHMGapArea5m_Mean 19.68    
CHM_Q050 0.00    

Sentinel-1 S1_mRFDI_Winter_Mean 100.00 0.39 0.20 0.17 
S1_VV_VH_Ratio_Winter_Mean 96.04    
S1_VV_Summer_Median 42.09    
S1_VV_Year_Mean 39.93    
S1_VV_VH_Sum_Year_Mean 28.07    
S1_VV_VH_Sum_Summer_Median 21.80    
S1_CDI_Summer_Mean 12.58    
S1_VV_Year_Median 0.00    

Sentinel-2 S2_NDWI_Q050 100.00 0.72 0.13 0.11 
S2_NDVI_Q075 83.20    
S2_NBR_Q050 66.43    
S2_TCW_Q050 56.69    
S2_NDWI_Q010 31.49    
S2_TCW_Mean 6.42    
S2_NDMI_Q050 0.8    
S2_TCW_Q050 0.00    

Sentinel-1/2 S2_NBR_Q050 100 0.80 0.11 0.09 
S2_NDWI_Q050 81.01    
S2_TCW_Q050 49.23    
S2_NDVI_Q075 34.48    
S1_VV_VH_Sum_Year_Median 14.85    
S2_NDWI_Q010 9.54    
S2_TCW_Mean 8.80    
S1_VV_VH_Sum_Year_Mean 7.99    
S2_NDMI_Q050 0.00     
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predictor variable in the ALS model was overall canopy cover (i.e., 
PtsAbove2m), calculated as the ratio between the percentage of returns 
above 2 m to the total number of returns, and thus indicative of the 
amount of sun shading leaves, branches and stems. Being calculated as a 
ratio, the PtsAbove2m variable was robust to the resolution of the point 
cloud. In contrast, predictor variables describing the horizontal char
acteristics/heterogeneity of the forest canopy (i.e., CHMGapAr
ea5m_Mean) are likely to be more sensitive to the resolution of the point 
cloud. The gap structure of the canopy is, however, also identified as an 
important predictor variable, with small gaps leading to more light 
reaching the forest floor locally, even when the overall canopy cover is 
moderate or high. Finally, we found the 25% and 50% quantiles of the 
CHM to be relevant in predicting subcanopy light regimes with ALS. 
Based on previous studies, both variables can be seen as a proxy for 
forest development stages (Falkowski et al., 2009), which are strong 
determinants of the subcanopy light regime. Overall, our study confirms 

that ALS data is well-suited for modelling subcanopy light regimes, with 
parsimonious models of relatively few predictor variables (four in our 
case) allowing for accurate models. 

Our results also demonstrate the potential of spaceborne data from 
the optical- and micro-wavelength domain (i.e., Sentinel-1/2) to map 
subcanopy light regimes. However, Sentinel-2 performed better than 
Sentinel-1 alone. The most important predictor variables derived from 
Sentinel-2 characterized the average conditions in vegetation incorpo
rating the SWIR reflectance (i.e., S2_NBR_Q050, S2_TCW_Q050, 
S2_NDMI_Q050). Spectral indices based on the SWIR are sensitive to leaf 
water content and leaf structure (Ceccato et al., 2001), leaf area (Cohen 
and Goward, 2004; Lee et al., 2004), to the structure of forest canopies 
and to forest age (Cohen et al., 1995; Horler and Ahern, 1986) as well as 
above ground biomass in general (Chen et al., 2018; Chrysafis et al., 
2017; Grabska and Socha, 2021). The importance of a range of SWIR 
based indices might thus be first and foremost related to their ability to 

Fig. 3. Predicted Total Site Factor (TSF) values for the study site Berchtesgaden for all forest pixels for the ALS model (upper panel) and the Sentinel-1/2 model 
(lower panel). The white boxes denote the subsets reported in Fig. 6. 
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characterize tree canopy structures better than indices based on NIR or 
visible bands (Cohen et al., 1995; Cohen and Goward, 2004). The 
informative value of SWIR-based indices for characterizing the tree 
canopy is also reflected in their widespread use for detecting forest 
disturbances, where SWIR-based indices are significantly better in 
detecting canopy gaps than indices based on visible and NIR bands 
(Cohen et al., 2018; Healey et al., 2005, 2006). SWIR-based indices – 
especially at a 10 m spatial resolution as provided by Sentinel-2 – are 
thus likely also indicative of canopy gaps leading to a higher subcanopy 
light availability. Interestingly, predictor variables describing the 
intra-annual variation in spectral reflectance (i.e., the standard devia
tion or lower and upper quantiles) were not among the most important 
predictor variables. This might be attributed back to the fact that we 
trained our models based on measurements of the local light regime at 
peak growing season and the related phenological information, despite 
its ability to discriminate forest communities (Grabska et al., 2019; 
Hemmerling et al., 2021; Sheeren et al., 2016), seems to be less 
important. That said, we found both, the 10 % quantile of NDVI and the 
75 % quantile of NDVI to be important predictor variables, which might 
indicate their ability to discriminate between coniferous and broad
leaved stands and their different subcanopy light regimes. 

Including radar data further improved the prediction of subcanopy 
light regimes. The predictor variables selected for the final models 
presented the sum of the mean and median backscatter signal per pixel 
for the VV and VH polarization from Sentinel-1 over the entire year (i.e., 
S1_VV_VH_Sum_Year_Mean and S1_VV_VH_Sum_Year_Median). The 
backscatter signal depends on sensor-specific properties (e.g., local 
incidence angle, wavelength, polarization etc.) as well as on ground 
specific properties, comprising topography (slope and aspect) and land 
cover with its dielectric and structural properties. Previous studies found 
a high correlation between NDVI and the ratio of VV and VH polariza
tion for both croplands (Veloso et al., 2017) and forests (Frison et al., 
2018). Consequently, the sum of the backscatter signal from the VV and 
VH polarization could increase with higher biomass, due to seasonality 
at varying rates however for different forest communities, for which we 
also expect diverging subcanopy light regimes. Overall, we found that 
the fusion of Sentinel-1 and Sentinel-2 was best able to predict sub
canopy forest light regimes from space, suggesting that the information 

of both sensor systems is complementary. 
Despite the overall good performance of the Sentinel-1/2 model 

methodological challenges remain. First, we observed that the light 
values predicted by the Sentinel-1/2 model had a smaller range than the 
values predicted by the ALS model. This suggests that data from 
Sentinel-1/2 do not represent extreme cases well, compared to ALS data. 
A further reason for a lower range of predicted light values is the well- 
known saturation effects for both, Sentinel-1/2, and the lower spatial 
resolution of spaceborne data compared to the airborne data. Radar 
sensor systems like Sentinel-1, working with shorter micro-wavelengths 
e.g., X-band or C-band, saturate faster than sensor systems operating at 
longer micro-wavelengths e.g., L-band or P-band, due to their limited 
penetration depth (Huang et al., 2018; Imhoff, 1995). Similar effects are 
documented for data of the optical-wavelength domain recorded by 
Sentinel-2, which also saturates with increasing vegetation density 
(Carlson and Ripley, 1997; Chen et al., 2018; Gamon et al., 1995; Lu 
et al., 2016; Meyer et al., 2019). Likewise, open areas might have dense 
understory vegetation that is difficult to separate spectrally from trees. 
This can lead to an underestimation of the local light availability by 
optical data compared to ALS data, which allows the separation of un
derstory vegetation and overstory trees by means of height information. 

A methodological point of consideration is the compositing of 
Sentinel-1 data, for which images from both ascending and descending 
orbits have been used. By aggregating many images over time, speckle 
effects could be reduced without losing spatial resolution. Yet, the in
formation contained in the aggregated backscatter signal is blurred due 
to the effects of different orbit parameters (e.g., diverging local inci
dence angles), in combination with the complex topography of our study 
sites. This might also partly explain the lower predictive performance of 
Sentinel-1 in our study. First attempts to provide normalized Sentinel-1 
data from different orbits exist, but availability of this data is still limited 
to specific regions or periods of time (Bauer-Marschallinger et al., 2021). 
Finally, the lower spatial resolution of Sentinel-1/2 likely also adds to 
the lower predictive performance of spaceborne systems. While the 10 m 
resolution of Sentinel-1/2 is already high compared to other spaceborne 
sensor systems (e.g., Landsat, MODIS), canopy gaps below the spatial 
resolution will remain difficult to detect from space, while they are re
flected in ALS point clouds. This became especially evident when 

Fig. 4. Difference of the predicted Total Site Factor (TSF) values for the Sentinel-1/2 model and the ALS model. Red pixels represent an underestimation, blue pixels 
an overestimation of the predicted TSF values by the Sentinel-1/2 model compared to the ALS model. The black boxes illustrate the subsets used in Fig. 5. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. Predicted Total Site Factor (TSF) values and the difference for the ALS model and the Sentinel-1/2 model for two subsets of the calibration site Berchtesgaden, 
selected for their heterogeneous forest cover. Predictions and differences are only shown for forested pixels. Note that a temporal offset of approximately one and a 
half years exists between the datasets used to predict light availability and the high-resolution, true color digital orthophoto (DOP) commissioned by the Agency for 
Digitisation, High-Speed Internet and Surveying of the federal state Bavaria (Landesamt für Digitalisierung, Breitband und Vermessung, 2023). (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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comparing our maps with high resolution true color imagery (Fig. 5), 
where small gaps, narrow gullies and skid trails were often not well 
represented in Sentinel-1/2 model predictions. This effect might be 
further exaggerated by geolocation inaccuracies of ~12.5 m for 
Sentinel-2 (Clerc et al., 2021; Gascon et al., 2017) and of ~ 2.4 m for 
Sentinel-1 (Charles, 2021), which were likely amplified by 
pre-processing of the data. A recent study, for instance, highlights the 
offset between vegetation height and digital terrain model used for 
pre-processing, leading to an inaccurate topographic and radiometric 
correction of the backscatter signal for Sentinel-1 (Zehner et al., 2023) 
This might also explain the stronger disagreement between the 
ALS-based and Sentinel-1/2-based predictions for very steep slopes 
(>45◦) (Appendix 3). Furthermore, the topographic correction applied 
to Sentinel-1 only represents a simplified, angular relationship between 
acquired radar images and topography (Hoekman and Reiche, 2015; 
Small, 2011; Vollrath et al., 2020). The digital elevation model itself 
used for topographic correction (Shuttle Radar Topography Mission) 
might also introduce possible errors due to a temporal offset of several 

years and a relatively lower spatial resolution (Farr et al., 2007). 
The ALS model performed better than the Sentinel-1/2 model for the 

calibration site Berchtesgaden, for which we had up-to-date, high- 
quality ALS data. However, when considering a realistic application 
scenario (i.e., here represented by the two independent test sites Kar
wendel and Chiemgau), the superiority of ALS over Sentinel-1/2 was less 
clear. ALS data for the test sites Karwendel and Chiemgau were both 
older, of lower quality and partly recorded in a different season (leaf-off 
season for test site Chiemgau), which led to a substantially lower per
formance of the ALS model for both test sites compared to the calibra
tion site Berchtesgaden (it should be however mentioned that for our 
two test sites Karwendel and Chiemgau plot locations with a high 
measured TSF are rare and the validation for this range of values thus 
has limited explanatory power). Previous studies found that different 
measurement conditions (e.g., seasonality, wind, fog, etc.) can drasti
cally influence calculated ALS metrics, especially when point cloud 
resolution decreases (Côté et al., 2011; Liang et al., 2016; Mathes et al., 
2023). For the Sentinel-1/2 model, however, model performance 

Fig. 6. Total Site Factor (TSF) measured versus TSF predicted for the test sites Karwendel by the ALS model (A) and by the Sentinel-1/2 model (B) and for the test site 
Chiemgau by the ALS model (C) and by the Sentinel-1/2 model (D). The density of all points is illustrated by the intensity of the respective color code. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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remained more or less constant when applying the model trained on the 
calibration site to the two test sites. We attribute the higher general
ization power of Sentinel-1/2 to two aspects already mentioned above: 
First, the temporal offset between ALS and field data acquisition, which 
can lead to differences in areas when forest characteristics changes (i.e., 
for both application sites, for instance, we had to remove ten plots that 
had been disturbed between ALS acquisition and the field measurement 
campaign). Second, the point cloud resolution of the data is much lower 
for our test sites, which – as discussed above – will increase the uncer
tainty in prominent ALS based metrics (e.g., gap fraction). For the 
Sentinel-1/2 model, we benefitted from freely available data which is 
consistent in terms of both actuality and quality. This allows to gener
alize models trained in one site to new sites, as we show here. Using free 
and open archives of spaceborne data thus opens up the possibility for 
mapping subcanopy light regimes over long temporal and large spatial 
extents, such as the temporal monitoring of changes in leaf-on sub
canopy light regimes in response to natural disturbances and forest 
management (Frolking et al., 2009; Hilker et al., 2009; Senf and Seidl, 
2021), or large-scale spatial prediction at national or even continental 
scales for parameterizing and/or evaluating ecosystem models (De 
Bruijn et al., 2014; Lischke et al., 2006; Rammer and Seidl, 2019; 
Schumacher et al., 2004). Future research could also investigate the 
possibility of spaceborne data to assess within-year changes in sub
canopy light regimes, that is differences in light regimes between leaf-on 
and leaf-off conditions. 

5. Conclusion 

Monitoring subcanopy forest light – which is a major driver of plant 
growth and vegetation composition at the forest floor – is a crucial task 
for better understanding forest ecosystems. In this study, we compared 
the potential of Sentinel-1/2 to predict the subcanopy light regimes to 
ALS data – the current gold standard in assessing forest structure and 
biophysical processes. We show that up-to-date high-resolution ALS data 
yields highest accuracies in predicting subcanopy light regimes, but that 
Sentinel-1 and Sentinel-2 time series perform almost equally well. The 
limited availability of up-to-date and high-quality ALS data hinders 
generalizability and application to new regions, which is possible with 
Sentinel-1/2. Our results thus demonstrate the feasibility to use 
Sentinel-1 and Sentinel-2 for monitoring the subcanopy light regime 
across large spatial and long temporal extents. This has important im
plications for the operational monitoring of forest ecosystems, which 
often relies on challenging to acquire airborne datasets. 
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Serebryanyk, A., Nauss, T., Krzystek, P., Gossner, M.M., Schall, P., Heibl, C., 
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Côté, J.-F., Fournier, R.A., Egli, R., 2011. An architectural model of trees to estimate 
forest structural attributes using terrestrial LiDAR. Environ. Model. Software 26, 
761–777. https://doi.org/10.1016/j.envsoft.2010.12.008. 

Courbaud, B., de Coligny, F., Cordonnier, T., 2003. Simulating radiation distribution in a 
heterogeneous Norway spruce forest on a slope. Agric. For. Meteorol. 116, 1–18. 
https://doi.org/10.1016/S0168-1923(02)00254-X. 

Crist, E.P., Cicone, R.C., 1984. A physically-based transformation of thematic mapper 
data—the TM tasseled Cap. IEEE Trans. Geosci. Rem. Sens. GE-22, 256–263. https:// 
doi.org/10.1109/TGRS.1984.350619. 
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Villard, L., Mougin, E., Rudant, J.-P., 2018. Potential of sentinel-1 data for 
monitoring temperate mixed forest phenology. Rem. Sens. 10, 2049. https://doi.org/ 
10.3390/rs10122049. 

Frolking, S., Palace, M.W., Clark, D.B., Chambers, J.Q., Shugart, H.H., Hurtt, G.C., 2009. 
Forest disturbance and recovery: a general review in the context of spaceborne 
remote sensing of impacts on aboveground biomass and canopy structure. 
J. Geophys. Res. Biogeosciences 114. https://doi.org/10.1029/2008JG000911. 

Gamon, J.A., Field, C.B., Goulden, M.L., Griffin, K.L., Hartley, A.E., Joel, G., Penuelas, J., 
Valentini, R., 1995. Relationships between NDVI, canopy structure, and 
photosynthesis in three californian vegetation types. Ecol. Appl. 5, 28–41. https:// 
doi.org/10.2307/1942049. 

Gao, B., 1996. NDWI—a normalized difference water index for remote sensing of 
vegetation liquid water from space. Remote Sens. Environ. 58, 257–266. https://doi. 
org/10.1016/S0034-4257(96)00067-3. 

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., 
Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., 
Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., De 
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