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Abstract: Forests create unique microclimates that have the potential to serve as microrefugia 14 

for species under climate change. Yet, our understanding of the heterogenous thermal 15 

patterns at the forest floor of complex landscapes (e.g., in mountain forests) remains 16 

incomplete. We here used Light Detection and Ranging (LiDAR) for predicting summer 17 

temperature offsets in a mountain forest landscape in the European Alps. We calibrated 18 

models on a network of 150 microclimate loggers that were combined with data from 15 19 

meteorological stations to estimate the maximum, mean, and minimum temperature offsets, 20 

using LiDAR-derived metrics of forest structure and topography as predictors. Models 21 

predicted summer temperature offsets with an R²/RMSE of 0.50/3.15 °C for maximum 22 

temperature, 0.51/0.41 °C for mean temperature and 0.55/0.57 °C for minimum temperature. 23 

Forest canopy openness and elevation were most important for predicting temperature offsets. 24 

The mean offset ranged from – 1.9 °C to 2.7 °C (mean of - 0.3 °C), but both minimum and 25 

maximum offsets varied considerably, with some forests even having warmer maximum and 26 

colder minimum temperatures than open areas. This was particularly prominent in forests of 27 

the subalpine zone, which are characterized by open canopies and a considerable presence of 28 

coniferous shrubs. In contrast, submontane forests with largely closed canopies had mostly 29 

colder maximum and warmer minimum temperatures within forests compared to open areas. 30 

Analysing the development of temperature offsets with time since disturbance, we found that 31 

recently disturbed forests had higher maximum temperatures compared to open areas, but 32 

they recovered to closed forest conditions within two decades. We conclude that mountain 33 

forests exhibit complex microclimate patterns that vary strongly with forest type and canopy 34 

openness. We further highlight that disturbances are an important driver of spatiotemporal 35 

dynamics in forest microclimate. Finally, temperature offset maps such as the ones generated 36 

here have strong potential to improve the robustness of species distribution models and to 37 

assess climate risks for biodiversity.  38 

Keywords: Temperature offset, forest floor climate, climate extremes, remote sensing, forest 39 

disturbance 40 
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Introduction 42 

Climate change has profound impacts on terrestrial ecosystems globally (Sheridan and 43 

Bickford 2011; Roulin 2014; Visser and Both 2005; Walther et al. 2002; Scheffers et al. 2016). 44 

One possible response of many mobile species is to shift their locations towards the poles and 45 

higher elevations to stay within their climatic niche (Lenoir et al. 2020; Chen et al. 2011; Chen 46 

et al. 2009). Climate change will thus likely lead to a redistribution of life on Earth and the 47 

emergence of novel biological communities (Lenoir et al. 2020; Pecl et al. 2017). Yet, not all 48 

taxa shift their distribution proportionally to climatic change, with some taxa – particularly 49 

endothermic organisms and plants – lagging behind macroclimatic warming trends, while 50 

others respond more strongly than what can be expected from changes in temperature alone 51 

(Bässler et al. 2013; Lenoir et al. 2020). Consequently, the transformation of species 52 

assemblages towards thermophile taxa, as well as the general shift of species towards the poles 53 

and higher elevations is often more complex than changes in temperature predict (Devictor et 54 

al. 2012; Bertrand et al. 2011; Dullinger et al. 2012; Scheffers et al. 2014; Ash, Givnish, and 55 

Waller 2017). One of the potential reasons for this divergence is the local climate regulating 56 

function of vegetation, which is particularly pronounced in forest ecosystems, creating distinct 57 

local microclimates that determine the climatic conditions perceived by many species (De 58 

Frenne et al. 2021; Lembrechts, Nijs, and Lenoir 2019). 59 

Forests cover nearly one third of the global terrestrial land surface and play a crucial 60 

role in modulating species’ responses to climate warming (FAO 2020; De Frenne et al. 2021). 61 

For instance, forests buffer temperature maxima on average by 4 °C compared to open lands 62 

(De Frenne et al. 2019). The microclimate in forests thus differs from macroclimate, mainly 63 

due to vegetation increasing evapotranspiration and air mixing, as well as intercepting solar 64 

radiation (Geiger, Aron, and Todhunter 2009; De Frenne et al. 2021). In addition, many 65 

forested areas have complex structural (e.g., downed deadwood, snags) and micro-66 

topographical features (e.g., pit-and-mound structures) that further can modulate 67 

microclimatic conditions (Jucker et al. 2018; Dobrowski 2011). The distinct thermal 68 
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environments in forests can further serve as microrefugia under climate change, because 69 

microclimates in forests tend to change at a slower rate than in open lands (De Frenne et al. 70 

2013; De Frenne et al. 2019; Scheffers, Phillips, and Shoo 2014). The absolute difference 71 

between within-stand and open-land temperatures is termed temperature offset, and serves as 72 

a measure of how well forests buffer open-land temperatures and especially macroscale climate 73 

extremes (De Frenne et al. 2021; De Frenne et al. 2019; Zellweger, Coomes, et al. 2019). While 74 

other measures of microclimatic buffering exist (Gril et al. 2022), we here adopt this simple 75 

definition and refer to temperature offset in the following when addressing the absolute 76 

difference between within-stand and open-land temperatures. 77 

Despite the growing body of research supporting the significance of forests for 78 

offsetting temperature extremes, ecological research assessing biotic responses to increasing 79 

temperatures has largely relied on low-resolution climate data representing open conditions 80 

(Bramer et al. 2018). This data is typically derived from standardized meteorological weather 81 

stations, which record temperatures in open areas at 1.2 m to 2 m above ground in order to 82 

represent macroclimatic conditions (WMO 2008). However, these conditions differ from the 83 

microclimatic conditions in forests; they are thus often not representative for the thermal 84 

environment that forest-dwelling species experience (Potter, Arthur Woods, and Pincebourde 85 

2013; De Frenne et al. 2021). This discrepancy might partly explain why the observed 86 

response of many biotic systems differs from expectations derived from models driven with 87 

macroclimate data (Abbass et al. 2022; De Frenne et al. 2019; Willis and Bhagwat 2009; 88 

Lembrechts, Nijs, and Lenoir 2019; Moritz and Agudo 2013). Hence, to better understand 89 

biotic responses to increasing temperatures and to improve projections of climate change 90 

effects, a better understanding of the spatial variability in forest microclimate is needed. 91 

Forest structure, that is the horizontal and vertical distribution of vegetation, plays a 92 

crucial role for modulating forest microclimate. Numerous studies have shown that a decrease 93 

in canopy cover causes temperature offsets to decrease, which highlights the importance of 94 

canopy cover in modulating forest microclimate (De Lombaerde et al. 2022; Frey et al. 2016; 95 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 
 

De Frenne et al. 2019; Zellweger, Coomes, et al. 2019). Similarly, other structural features – 96 

such as multiple tree layers or downed and standing deadwood – might influence forest 97 

microclimates, but their effects are less well understood (Thom et al. 2020; Kovács, Tinya, and 98 

Ódor 2017; De Frenne et al. 2021). Forest structure is often contingent on the prevailing 99 

forest type, which can thus serve as proxy of forest microclimatic temperature offsets. A study 100 

by Renaud et al. (2011), for instance, found that the temperature offsets of mountain forests 101 

were lowest for pine forests, which are open in structure, and highest for deciduous forests 102 

with closed canopies. Furthermore, forest disturbances can temporally alter forest structure 103 

by opening up the canopy and altering the prevalence of open and closed forest developmental 104 

stages at the landscape scale (Senf et al. 2020; Senf, Sebald, and Seidl 2021). Yet, both the 105 

effects of forest type and disturbance on microclimate are not fully understood (Schwartz et 106 

al. 2022; Ewers and Banks-Leite 2013; Gavito et al. 2021; Sánchez-Reyes et al. 2021; Thom et 107 

al. 2020; Aragón et al. 2015; Renaud et al. 2011). Focusing on the effects of forest type and 108 

disturbance is important, as climate change could cause substantial shifts in both tree species 109 

distribution and disturbance regimes (Thom et al. 2022; Thom and Seidl 2022; Albrich et al. 110 

2022). If disturbances increase under climate change, for instance, this could create negative 111 

feedbacks between climate change and temperature offsets in forests, potentially rendering 112 

future forests unsuitable as microclimate refugia (De Frenne et al. 2021). Those negative 113 

feedbacks might include the loss of intact tree canopy following stand-replacing disturbances 114 

(Senf and Seidl 2021) or more subtle changes in forest structure such as shorter and more 115 

open forests under increasing disturbances (Stritih et al. 2023). Understanding the feedback 116 

processes between microclimates, changing forest types and disturbance regimes requires the 117 

consideration of spatial and temporal variability in forest microclimates at the landscape scale. 118 

However, there is still a lack of microclimate studies that go beyond the plot or stand scale, 119 

considering variability in microclimate in relation to landscape-scale variation in forest type 120 

and disturbance.  121 
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Remote sensing offers a way forward in understanding landscape-level variation in 122 

microclimate by means of upscaling local in-situ measurements to the landscape scale (Senf 123 

2022; Zellweger, De Frenne, et al. 2019). While measurements from in-situ microclimate 124 

loggers are the gold standard for capturing microclimatic conditions on the ground, they only 125 

record conditions for a single point in space and – depending on the sampling design – their 126 

measurements might not be representative of the full landscape (e.g., when plot locations were 127 

stratified along an elevation gradient). Observations from microclimate loggers alone might 128 

thus give biased estimates of the thermal characteristics of a full landscape. Remote sensing 129 

provides spatially continuous information on vegetation properties that can be used to infer 130 

microclimatic conditions in a spatially explicit manner, thus complementing networks of 131 

microclimate loggers (Zellweger, De Frenne, et al. 2019). Light detection and ranging 132 

(LiDAR) is of particular use for quantifying temperature offsets across forest landscapes, due 133 

to its ability to represent vertical and horizontal forest structure as well as local topographic 134 

features (Jucker et al. 2018). In fact, several studies have shown great potential for mapping 135 

forest microclimate from LiDAR (Zellweger, Coomes, et al. 2019; Frey et al. 2016; Kašpar et 136 

al. 2021; Lenoir, Hattab, and Pierre 2017; Davis et al. 2019), but those studies either used 137 

drone-based data with limited spatial extent or limited the analysis to relatively few simple 138 

metrics of canopy cover. Furthermore, most previous works have focused on topographically 139 

simple landscapes. It thus remains unclear whether using LiDAR data to map temperature 140 

offsets in topographically more complex forest landscapes, such as found in the European Alps, 141 

is also feasible. 142 

The aim of this study is to quantify the spatial patterns of temperature offsets in mountain 143 

forests using airborne LiDAR data in combination with a large network of microclimate 144 

loggers and weather stations, focussing in particular on temperature offsets during summer. 145 

We approach this aim by addressing four specific objectives: (1) Testing whether summer 146 

temperature offsets in mountain forests can be mapped from airborne LiDAR data. (2) 147 

Quantifying the relative importance of forest structural and topographic variables for 148 
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predicting summer temperature offsets. (3) Characterizing the effect of forest types on summer 149 

temperature offsets at the landscape scale. (4) Assessing the effect of past forest disturbances 150 

on summer temperature offsets at the landscape scale. We expect high resolution LiDAR data 151 

to be well-suited for mapping temperature offsets in complex terrain, with forest structure 152 

being more important than topography, because forest structure is the main determinant of 153 

how much incoming solar radiation reaches the forest floor. Yet, topographic variability in 154 

mountain forests is high, which might increase the importance of local topographic features. 155 

We further expect that the temperature offsets are most pronounced in submontane forests 156 

characterized by high canopy cover and less pronounced in subalpine forests that are naturally 157 

open (Renaud et al. 2011). Finally, we anticipate that temperature offsets are reduced in 158 

recently disturbed sites and increase with forest development due to increasing canopy closure 159 

over the successional trajectory (Zenner et al. 2016).  160 

 161 

Methods 162 

Study area 163 

The study was carried out at Berchtesgaden National Park, a 20’808 ha landscape in the 164 

German Alps with 8’645 ha of forests. The area has a long history of intense forest 165 

management, which ceased in 1978 with the establishment of the national park. Since then, 166 

there has been no forest management in 75 % of the area, allowing for the analysis of natural 167 

forest dynamics without human influence. The study area is topographically complex, 168 

spanning an elevation gradient from 603 m a.s.l. (Lake Königssee) to 2713 m a.s.l. (mount 169 

Watzmann). In the submontane zone (below 850 m a.s.l.) natural vegetation is dominated by 170 

European beech (Fagus sylvatica L.). The montane zone between 850 m and 1400 m a.s.l. is 171 

naturally covered by mixed forests, which typically contain Norway spruce (Picea abies (L.) 172 

Karst.), European beech and silver fir (Abies alba Mill.). Due to the long history of forest use 173 

in the area, Norway spruce is currently dominating large parts of the submontane and 174 
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montane zones. In the subalpine zone between 1400 m a.s.l. and the treeline at approximately 175 

1700 m a.s.l., Norway spruce forests as well as European larch (Larix decidua Mill.) and Swiss 176 

stone pine (Pinus cembra L.) forests prevail. Finally, the timberline ecotone is dominated by 177 

dwarf mountain pine (Pinus mugo ssp. mugo Turra) (Thom et al. 2022; Thom and Seidl 2022) 178 

(Figure 1). 179 

 180 

 181 

Figure 1: The location of Berchtesgaden National Park with (a) the locations of 182 

microclimate loggers (white dots with black circles) and weather stations (black stars), and 183 

(b) the current distribution of forest types according to Thom et al. (2022). 184 

 185 

Temperature measurements and offset estimation 186 

We calculated temperature offsets from a network of microclimate loggers and macroclimate 187 

weather stations distributed throughout Berchtesgaden National Park (Figure 1a). 188 

Microclimatic temperature was recorded from July 8th until August 31st 2021 using 150 189 

Tomst TMS-4 loggers. The loggers recorded the temperature at -6, 2 and 15 cm height above 190 
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ground every 15 minutes (Wild et al. 2019). Here, we used the temperature measured at 15 191 

cm above ground to characterize forest microclimate (Haesen et al. 2021). Microclimate 192 

loggers were installed at the centre of 500 m2 circular forest inventory plots stratified along 193 

three elevation zones (submontane, montane, subalpine) and five forest developmental stages, 194 

with ten replica per combination (resulting in 150 loggers in total). Forest development stages 195 

were classified according to Zenner et al. (2016), distinguishing gap/regeneration, 196 

establishment, optimum, plenter, and terminal/decay stages. This stratification allowed for a 197 

broad representation of all forest types and forest development stages in the landscape. 198 

Macroclimate temperature at a minimum of 2 m height above ground was recorded in 10-199 

minute intervals at 15 weather stations operated by the national park and the Bavarian 200 

Avalanche Service. These weather stations cover the entire elevation gradient of the landscape 201 

and are evenly distributed over the national park area (including nearby locations outside of 202 

the national park boundaries, Figure 1a). 203 

To calculate temperature offsets, we first averaged the temperature data from 204 

microclimate loggers and weather stations to hourly values as the arithmetic mean. Second, 205 

to obtain macroclimatic temperatures for the location of each microclimate logger, we 206 

interpolated hourly macroclimatic temperatures using adiabatic lapse rates. This was achieved 207 

with linear regression models based on elevation and temperature records from the 15 208 

macroclimate weather stations (Figure 1). We calculated individual lapse rates for each hour 209 

of the observation period (a total of 99’000 models). These models were robust, except for a 210 

few points in time, with a median R² of 0.93 (range: 0.11 – 1.00) and an average root mean 211 

square error (RMSE) of 0.95 °C (range: 0.26 – 3.79 °C). The average adiabatic lapse rate 212 

was 0.56 °C/100 m with a standard deviation of 0.16 °C/100 m. From these models the we 213 

interpolated macroclimatic temperatures for each microclimate sensor location based on its 214 

elevation. Third, we calculated the minimum, mean and maximum temperature for both the 215 

micro- and macroclimate record over the full observation period (July 8th until August 31st 216 

2021). We finally calculated the temperature offset as the difference between the minimum, 217 
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mean, and maximum microclimatic and interpolated macroclimatic temperature, respectively. 218 

Negative temperature offset values signify colder within-stand than open-land temperatures.  219 

LiDAR-based predictor variables 220 

Two groups of predictor variables – one representing forest structure and the other 221 

representing topography – were derived from airborne LiDAR data. The data were acquired 222 

during early September 2021 using a helicopter-mounted Riegel VQ-780i sensor with average 223 

point density of ~50 points m-2. Forest structure predictors were calculated from the LiDAR 224 

point cloud, which was extracted around the location of each microclimate logger using a 225 

12.6 m buffer, corresponding to a 500 m2 plot area. We calculated a set of 36 potential metrics 226 

summarizing the distribution and intensity of LiDAR returns using the lidR package in R 227 

version 4.2.2 (Roussel et al. 2020; R Core Team 2019). From those 36 potential predictors, we 228 

selected three candidate predictors based on a-priori ecological hypotheses and bivariate 229 

correlation analysis (Table 1): the percent of lidar returns reaching the ground (hereafter 230 

referred to as canopy openness), the average height of returns (hereafter referred to as height), 231 

and the cumulative percentage of returns from the ground layer (i.e., the first of ten equally 232 

spaced horizontal layers; see Table 1 and Roussel et al. 2020; hereafter referred to as ground 233 

vegetation density). Canopy openness quantifies the amount of light reaching the forest floor, and 234 

we hypothesize it to be positively correlated with mean and maximum temperature offsets and 235 

negatively with minimum temperature offsets (Zellweger et al. 2019). Height indicates the 236 

average height of trees and thus serves as a proxy for forest age and potential structural 237 

complexity (with taller stands having a higher variability in individual tree heights; Atkins et 238 

al. 2021). We expected this variable to correlate negatively with mean and maximum 239 

temperature offsets and positively with minimum temperature offsets. Ground vegetation density 240 

indicates the density and cover of forest floor vegetation. Here we had contrasting 241 

expectations, with dense ground vegetation providing additional shadowing and evaporative 242 

cooling (Stickley and Fraterigo 2021), but open layers of coniferous shrubs still allowing high 243 
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solar radiation to reach the ground while simultaneously reducing wind speeds. We thus did 244 

not have a clear hypothesis on the direction of the correlation with temperature offsets.  245 

We used a digital elevation model with 1 m spatial resolution derived from LiDAR 246 

data for topography predictors. Potential topography predictors included seven metrics 247 

defined by Frey et al. (2016) for estimating microclimatic temperatures in mountainous 248 

regions. However, we found substantial multi-collinearity between those predictors and 249 

decided to only include the average slope and topographic index into our final model (see 250 

Table 1 for details). We calculated both metrics for each logger location using a 50 m circular 251 

extraction buffer. We used a larger buffer to account for surrounding topography features, 252 

such as local depressions. We tested different buffers in a preliminary analysis and found 50 253 

m to be best suited to capture local topographic conditions. We further obtained two 254 

additional predictor variables characterizing potential solar irradiance from the solar 255 

irradiance and irradiation model r.sun implemented in Grass GIS (Geographic Resources 256 

Analysis and Support System) (Hofierka and Suri 2002; Neteler et al. 2012). We ran the model 257 

on the same LiDAR-based DEM, but with a coarser resolution of 10 m x 10 m, to derive solar 258 

irradiation patterns for 12:00 and 16:00 on the 15th of July 2021, representing north-south and 259 

east-west gradients. As global, direct and diffuse incoming solar radiation were highly 260 

correlated, we decided to only use diffuse incoming solar radiation in the final model based on 261 

higher correlations with temperature offsets in a-priori bivariate correlation analyses. Finally, 262 

elevation was used as a control variable to account for its influence on overall climatic 263 

conditions that could modulate microclimate in mountainous terrain, such as wind speeds, but 264 

are unrelated to local factors (Dobrowski 2011; Meineri and Hylander 2017). We further 265 

included elevation as cofounder for both the structure and topographic variables, which show 266 

strong elevational patterns (i.e., shorter and more open forests in higher elevation areas; 267 

steeper and more rugged terrain in higher elevation areas). 268 

For creating temperature-offset maps for the entire forested landscape of 269 

Berchtesgaden National Park, we calculated the same predictors outlined above not only for 270 
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the individual plots, but also for a regular 20 m x 20 m grid. While the size of the grid cells is 271 

slightly below the plot size, we assume this difference to be negligible. We only predicted 272 

offset values for forested grid cells, which we identified with an existing forest mask at 10 m 273 

x 10 m resolution provided by the national park administration (see Figure 1 and Mandl 274 

(2020)). 275 

Table 1:  Overview of the forest structure and the topographic predictor variables used to 276 

model temperature offsets. 277 

Predictor Definition 

Structure  

 Height Mean absolute height of all LiDAR returns. 

 Canopy openness Proportion of LiDAR returns classified as ground. Higher 

values thus indicate a sparser canopy with more returns 

reaching the forest floor. 

 Ground vegetation 

density 

Cumulative percentage of returns in the 1st of ten equally 

spaced horizontal layers. Higher values thus means a 

higher proportion of all returns returned by the lowest 

vegetation layer. 

Topography  

 Elevation Elevation at the centre point of a plot 

 Topographic index Difference between the elevation of the centre point and 

the average elevation of a plot (negative values: local low 

point/ positive values: local high point) 

 Slope Average slope of a plot 
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 Diffuse incoming solar 

radiation at 12:00 

Amount of solar energy falling on a surface that is 

scattered by atmospheric particles; representing conditions 

at 12:00. 

 Diffuse incoming solar 

radiation at 16:00 

Amount of solar energy falling on a surface that is 

scattered by atmospheric particles; representing conditions 

at 16:00. 

 278 

 279 

Modelling temperature offset 280 

We modelled the average (TOmean), minimum (TOmin), and maximum (TOmax) temperature 281 

offsets based on the forest structure and topography predictors described above using linear 282 

models in the R software environment (R Core Team 2019). We specifically used the following 283 

packages: lidR, raster, rgdal, exactextractr, sf, and ggplot2  (Hijmans 2020; Keitt 2010; Baston 284 

2020; Pebesma 2018; Wickham 2009). We also tested more complex models that can deal with 285 

non-linearities and potential interactions between variables (i.e., boosted regression trees, 286 

generalized additive models), but found linear models to outperform those more complex 287 

models. That said, we included elevation as second-order polynomial due to some non-linear 288 

patterns in the residuals. We assessed model performance by means of RMSE and R² using 289 

spatial block cross validation with plots clustered into ten spatial clusters based on their 290 

location (Valavi et al. 2019). Additionally, we extracted the standardized regression coefficient 291 

for each predictor variable as well as partial eta-squared values to assess the importance of 292 

each variable for predicting temperature offsets. We note here that our intention was to build 293 

a robust and accurate predictive model of temperature offsets and not to perform causal 294 

inference of underlying drivers. We thus recommend being cautious in applying causal 295 

interpretation to our model estimates. Finally, we used the calibrated linear models to make 296 

spatial predictions of the temperature offsets for the forested area of the national park. 297 
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Influence of disturbance and forest type 298 

We compared the mapped temperature offset across past disturbances and forest types. 299 

Specifically, we analysed our spatial predictions of temperature offset by overlaying a forest 300 

disturbance map created by Senf and Seidl (2021), who used satellite data to map forest 301 

disturbance for all of continental Europe at 30 m spatial resolution. The map contains the year 302 

of the most severe forest disturbance from 1986 until 2020, which we extracted for all 20 m 303 

grid cells where the centre point intersected a disturbance patch. We reclassified the 304 

disturbance years from year of disturbance to time since disturbance (i.e., 2021 minus the 305 

disturbance year) to obtain a chronosequence of temperature offset over post-disturbance 306 

development (i.e. one to 35 years after disturbance). For statistical analyses, we grouped the 307 

chronosequence in five-year bins. Similarly, we assessed the influence of forest type on the 308 

temperature offset using a forest type map with a resolution of 1 ha created by Thom et al. 309 

(2022) (Figure 1b). To exclude interacting effects between forest type and disturbance, we 310 

only considered areas with restored forest canopies (i.e. without disturbance for the last 25 311 

years) in the analysis of forest type effects (Senf, Müller, and Seidl 2019). Finally, we tested 312 

what proportion of the overall spatial variation in temperate offsets can be explained by forest 313 

type and time since disturbance, respectively, using analysis of variance. 314 

 315 

Results 316 

Temperature offset models and predictions 317 

The linear models predicted temperature offset with an R²/RSME of 0.50/3.15 °C for 318 

maximum temperature, 0.51/0.41 °C for mean temperature and 0.55/0.57 °C for minimum 319 

temperature (Figure 2). The temperature offset maps predicted by the models revealed a high 320 

spatial variability in forest microclimate (Figure 3). Mean and maximum temperature offsets 321 

were smaller or even reversed (warmer temperatures in forests compared to open lands) in 322 

the subalpine zone, whereas forests in the montane and submontane zone showed overall 323 

negative offsets for mean and maximum temperature (i.e., colder temperatures within stands 324 
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compared to macroclimatic temperatures). For the offset of minimum temperature, we found 325 

that minimum temperatures were warmer in submontane forests and colder in sub-alpine 326 

forests compared to open lands. Overall, landscape-scale maximum temperature offset ranged 327 

from - 7.5 to + 16.6 °C with a median of + 1.4 °C and a mean of + 1.6 °C. Mean temperature 328 

offsets ranged from - 1.9 to + 2.7 °C with a median of - 0.3 °C and a mean of - 0.3 °C. Minimum 329 

temperature offsets ranged from - 2.6 to + 1.2 °C with a median of - 0.5 °C and a mean of 330 

- 0.5 °C. Less than half of the forests in our study landscape showed negative summer 331 

maximum temperature offsets (36%) (i.e., colder temperatures in forests than in open land), 332 

whereas three quarters did show negative mean temperature offsets (75%). For minimum 333 

temperatures, 76 % of temperature offsets were negative (i.e., colder minimum temperatures 334 

in forests than in open lands), with 24% of the forests showing warmer minimum temperatures 335 

in forests than open lands. 336 

 337 

Figure 2:   Observed versus predicted daytime temperature offsets for maximum, mean and 338 

minimum summer temperatures. The grey lines represent the 1:1 lines. 339 

 340 
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 341 

 342 

Figure 3:   Maps of the maximum (a), the mean (b), and the minimum (c) of temperature 343 

offset for Berchtesgaden national park. For improved visualisation we cantered the colour 344 

gradient and left out the ~1.2 % of the most extreme values. 345 

 346 

Canopy openness and elevation were the two most important variables for predicting 347 

temperature offsets in our landscape, with higher importance of elevation for the extremes 348 

(minimum and maximum) but higher importance of openness for the mean offset (Figure 4). 349 

Canopy openness was positively correlated with maximum and mean temperature offset, but 350 

negatively correlated with minimum temperature offset. It explained 13.6%, 29.1% and 6.3% 351 

of the variance in the maximum, mean and minimum temperature offsets, respectively. 352 
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Ground vegetation density and canopy height did not have a measurable influence on 353 

maximum and minimum temperature offsets, and only a weak positive association with mean 354 

temperature offset. Besides elevation, which explained 24.6%, 9.1% and 42.7% of the variance 355 

in maximum, mean and minimum temperature offsets, the influences of topographic effects 356 

were less clear. Diffuse incoming solar radiation at 16:00 correlated positively with the 357 

maximum and mean offsets, whereas diffuse incoming solar radiation at 12:00 correlated 358 

negatively with mean and minimum offsets. The topographic index had only a weak positive 359 

correlation with mean temperature offset. 360 

 361 

Figure  4: Model coefficients with 95% confidence intervals (standardized estimate) and 362 

relative influence, measured in terms of partial eta2 values (the proportion of the total 363 

variance that is attributed to an individual predictor). 364 

Influence of forest type and disturbance on temperature offsets  365 

There was considerable variation in temperature offsets between – but also within – forest 366 

types (Figure 5). Beech forests –  found mostly in submontane areas –  had the lowest 367 

maximum and mean temperature offsets and the  highest minimum temperature offsets. 368 

Nevertheless, beech forests also had a considerable fraction of forests with positive mean 369 

(11 %) and maximum (24 %) temperature offsets and negative minimum temperature offsets 370 

(30%). Spruce-fir-beech and spruce forests – which span a wide range of elevations – also 371 

showed high variability, with largely negative mean temperature offsets (84% and 89%, 372 
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respectively), but more variable maximum temperature offsets (30% and 45% of spruce-fir-373 

beech and spruce forests had positive maximum temperature offsets; Figure 5). Larch-Swiss 374 

stone pine and dwarf mountain pine forests showed overall mixed mean temperature offsets, 375 

with mostly warmer maximum temperatures and colder minimum temperatures within 376 

forests than in open lands. Overall, our results show that forest type is an important proxy 377 

of local forest microclimate, with forest type explaining 24% of the spatial variability in 378 

mean temperature offset and 45% and 46% of maximum and minimum temperature offsets 379 

(all for recently undisturbed forests). 380 

 381 

Figure 5: Distribution of maximum, mean and minimum temperature offsets across forest 382 

types. We only show forest cells without disturbance in the past 25 years. The red 383 

horizontal line shows where temperature offset is 0. 384 

 385 

Forest disturbances and subsequent post-disturbance forest development also had 386 

substantial influence on the variability in forest temperature offsets (Figure 5). While average 387 

temperature offsets stayed rather consistent over post-disturbance development, maximum 388 

temperature offset increased > 5 years after disturbance, whereas minimum temperature offset 389 

decreased. That is, between 6 and 20 years after disturbance, forests tend to have warmer 390 

maximum and cooler minimum temperatures compared to open lands. During canopy closure 391 
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(21-25 years after disturbance), both maximum and minimum temperature offsets shifted back 392 

towards negative/positive offset values. Overall, disturbance and post-disturbance recovery 393 

was an important driver of temperate offsets. In disturbed sites, time since disturbance 394 

explained 12% of the variance in maximum and mean temperate offsets and 6 % of minimum 395 

temperature offset. Across all forests, however, disturbances explained less than 2% of the 396 

spatial variation in temperature offsets. 397 

 398 

Figure 6:   Distribution of maximum, mean and minimum temperature offsets over 399 

time since disturbance. The red horizontal line shows where temperature offset is 0. 400 

 401 

Discussion 402 

We here present an application of LiDAR data for mapping temperature offsets across a 403 

topographically complex landscape with more than 8,000 ha of forest area. Overall, we show 404 

that summer temperature offsets were highly variable, with both colder and warmer 405 

temperatures within forests compared to open lands. Canopy openness and a second-order 406 

polynomial term of elevation were the most important predictors of temperature offsets. 407 

Canopy openness determines the amount of incoming solar radiation that reaches the forest 408 

floor and thus the direct energy available at the forest floor. The strong influence of canopy 409 

openness is in line with previous studies (De Frenne et al. 2021; Zellweger et al. 2019). 410 

Elevation does not directly influence temperature offsets, but serves as proxy for climatic 411 
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conditions, which affect local microclimates, such as wind speeds (Dobrowski 2011; Meineri 412 

and Hylander 2017). Elevation further serves as a proxy for turnover in forest composition 413 

and thus different temperature offsets we observed for the different forest types in our study 414 

landscape (Figure 5). Yet, by controlling for elevation in our model, we also show that even 415 

within the same forest type (i.e., the same elevation zone) canopy density plays a crucial role 416 

for determining temperature offsets, highlighting the overall important role of the forest 417 

canopy in regulating microclimate. Local topography played only a minor role for 418 

temperature offsets in our study, except for the potential solar radiation in the afternoon. 419 

Comparing our models to those of previous studies, e.g., of Haesen et al. (2021) and Davis et 420 

al. (2019), revealed that the performance of our models in terms of R² was slightly lower. 421 

However, important differences in study design make a direct comparison challenging: 422 

Davis et al. (2019), modelled daily variation in absolute microclimatic temperature, and 423 

Haesen et al. (2021) included additional predictors such as mean annual cloud cover and 424 

long-term average macroclimatic conditions. Considering the high topographic complexity 425 

and high variability in forest types in our landscape, it can be concluded that the 426 

performance of our models was overall satisfactory, and that LiDAR data is well suited for 427 

consistently predicting temperature offsets, even in topographically complex terrain. 428 

Average and maximum temperature offset predictions reported in our study tended to 429 

be low but within range of previous studies (De Frenne et al. 2019; Haesen et al. 2021). De 430 

Frenne et al. (2019) reported temperature offsets to vary substantially within and among 431 

biomes, with boreal biomes exhibiting lower offsets than temperate and tropical biomes. In 432 

terms of microclimatic buffering our conifer-dominated temperate mountain forests thus 433 

behave similarly to boreal forests. Our results also highlight that forests not always cool 434 

temperatures in summer, but that the influence of structure, composition and disturbance 435 

history can also lead to warmer microclimates compared to open lands. This might be 436 

especially true for mountain forests in high elevations close to the timber line, which are often 437 

open in structure and are generally underrepresented in continental-scale assessments of 438 
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microclimate (e.g., Haesen et al. 2021). We found that less than half of the forests in our 439 

mountain landscape did, in fact, not buffer temperature extremes (i.e., positive maximum and 440 

negative minimum offsets). While counterintuitive, the low or even reversed temperature 441 

offsets found in our study are plausible and can be explained by at least two factors: First, the 442 

difference in height of measurement between microclimate loggers and weather stations. 443 

Microclimate measurements were taken near the ground surface, which tends to be warmer 444 

than air temperatures on summer days (García-García et al. 2019) and likely colder than air 445 

temperatures during the night. Macroclimatic readings, on the other hand, were taken at a 446 

minimum height of two meters above ground. The temperature offset metrics derived here 447 

thus reflect the difference between air temperatures, which are widely used when assessing 448 

the biotic response to climate change, and the microclimatic temperatures that forest dwelling 449 

species experience at the forest floor (e.g., forest floor plants, ground-dwelling insects). 450 

Second, in open forests such as the sub-alpine forests in our landscape, microclimate loggers 451 

might be directly exposed to the sun. The temperature recorded at the loggers might thus be 452 

influenced by relatively short periods of time with direct incoming solar radiation heating up 453 

the logger (Maclean et al. 2021). The absolute temperature offsets found in our study 454 

landscape thus need to be interpreted with caution. Future work should study temperatures 455 

inside and outside of forests at comparable heights to isolate the effects of forest structure, 456 

forest type and disturbance on microclimatic temperatures more stringently. Recoding 457 

additional climate parameters (i.e., humidity, incoming solar radiation and wind speed) might 458 

further aid the interpretation of the offsets recorded in our study. 459 

The observed influence of forest type on temperature offset was in line with our 460 

expectations. Subalpine larch-Swiss stone pine and dwarf mountain pine forests had 461 

considerably warmer maximum and mean temperatures as well as colder minimum 462 

temperatures compared to open lands, which are likely caused by a high abundance of 463 

coniferous shrubs at the forest floor and sparse forest cover typical for subalpine forests. These 464 

particular structures cause the forest floor to be exposed to high incoming solar irradiation 465 
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and stronger outgoing longwave radiation, while the sparse tree cover still shields from wind. 466 

This results in microclimates that have warmer maximum and colder minimum temperatures 467 

than open lands, as has already been reported in previous studies (von Arx, Dobbertin, and 468 

Rebetez 2012; Renaud et al. 2011). The often shallow soils in sub-alpine forests might further 469 

lead to low evaporative cooling in the summer, which can further contribute to the high 470 

maximum temperatures in those systems reported in our study. Mountain forests are also 471 

more complex in spatial configuration, with more openings and edges allowing solar radiation 472 

to reach the forest floor even in closed canopy stands (Meeussen et al. 2021). In general, the 473 

open forest structures leading to positive temperature offsets can be seen as an adaptation of 474 

plants to the harsh conditions at the tree line, where plant life is mostly limited by low 475 

temperatures (Körner 2012). In contrast, mostly closed canopy conditions with fewer 476 

openings and edges are likely responsible for the generally cooler maximum temperatures and 477 

warmer minimum temperatures found in beech, spruce, and spruce-fir-beech forests. Yet, we 478 

observed significant variation within each group (Figure 4). This effect can partly result from 479 

a decrease in canopy cover with increasing elevation even within the same forest type (Gómez-480 

Hernández et al. 2012; Ehbrecht et al. 2019; von Arx, Dobbertin, and Rebetez 2012).  481 

 The influence of disturbance on temperature offset largely supported our hypothesis, 482 

with disturbances generally decreasing minimum temperatures and increasing maximum 483 

temperatures in the short term, but microclimatic temperatures recover as the canopy closes. 484 

After a high severity disturbance, large parts of the forest canopy are lost, leading to 485 

temporarily open forest stands with an increased amount of solar radiation reaching the forest 486 

floor (Hardwick et al. 2015; Jucker et al. 2018; Smith-Tripp et al. 2022; Thom et al. 2020). 487 

Interestingly, the most positive maximum offset was found more than five years after 488 

disturbances, which might be explained by more gradual disturbances typical for mountain 489 

landscapes (interacting wind and bark beetle disturbances; Seidl and Rammer (2017); Stritih, 490 

Seidl, and Senf (2023)). Further, residual structures, such as surviving trees, standing 491 

deadwood and snags likely contribute to a complex thermal regime shortly after the 492 
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disturbance. We note, however, that there is also uncertainty in the attribution of the onset of 493 

disturbance in the disturbance map used herein (Senf and Seidl 2021). Interestingly, the 494 

temperature offset values after disturbance were similar to those found in the subalpine zone, 495 

confirming the importance of forest structure and especially canopy openness in determining 496 

microclimates. Furthermore, our findings highlight the potential of forest disturbances to 497 

significantly alter microclimatic conditions in closed canopy forests. After disturbance, forests 498 

close their canopy in the course of forest development. The resultant reduction in solar 499 

irradiation causes temperature offsets to recover towards closed canopy conditions (Schwartz 500 

et al. 2022; Zenner et al. 2016). We here show that it takes up to two decades for temperature 501 

offsets to recover to values similar to closed canopy conditions, underlining that disturbances 502 

can have a long-lasting impact on the climate regulating function of forests.   503 

 504 

Conclusion and outlook 505 

We here present a novel approach for the landscape-scale mapping of microclimatic 506 

temperature from airborne LiDAR data. Our results demonstrate the ability of LiDAR to 507 

capture forest structure and topographic features relevant for predicting microclimatic 508 

conditions, even in a complex mountain landscapes. Given the growing availability of LiDAR 509 

data, our approach can be readily applied to other regions where similar datasets are available. 510 

Our results highlight the importance of forest structure – in particular canopy openness – for 511 

microclimate regulation, and demonstrate that forest disturbances can significantly alter those 512 

structures and thus microclimate for several decades. This finding has potential implications 513 

for the future distribution of microrefugia under climate change, as the frequency and severity 514 

of disturbances is likely to increase in the Alps under climate change (Thom, Rammer, and 515 

Seidl 2017; Seidl et al. 2017; Albrich et al. 2022). Future research should therefore assess how 516 

the interaction between climate-driven shifts in forest types and amplified disturbances 517 

influences microclimate in mountain forests. The spatially explicit maps of temperature offsets 518 

provided here can be used to improve the assessment of climate risks for biodiversity, i.e., 519 
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through incorporating microclimatic temperature offsets into species distribution models. A 520 

better quantification of forest microclimate will allow for a more process-based understanding 521 

of the effects of climate change on forest-dependent communities. 522 
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