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Abstract

Traditional market design studies rules that lead to efficient allocations of goods to a set of
participants and minimize strategic manipulation. Along with deriving an allocation rule, a
set of prices denotes the monetary transfer agents must submit for this exchange. A funda-
mental challenge is the computation of market equilibria. In the perfect competition model,
with fully divisible items, where bidders are price-takers, Walrasian equilibria constitute a
design concept of choice due to their desirable properties, including maximizing welfare
and being core-stable. Assuming the presence of hard budget limits, such equilibria are
not guaranteed to exist. Ignoring financial constraints has been proven to result in lower
efficiency and instability.

The introduction of exogenous budgets poses additional complications to market analysis:
payoff-maximizing equilibria might be impossible to attain and computation of core-stable,
welfare-maximizing outcomes quickly becomes intractable. Addressing these complexities,
in the first project of this dissertation, we examine a simple market model with restricted
preferences, the assignment market, and design an ascending auction that always converges
in a core-stable outcome while considering each bidder’s budget constraint. Additionally,
under appropriate conditions and decisions made by an auctioneer, the resulting outcome
is simultaneously welfare-maximizing. When these conditions cease to hold, one can no
longer hope for incentive-compatible mechanisms that satisfy the desired properties. Our
research reveals the underlying hardness of combining core stability and welfare maximiza-
tion in the presence of financial constraints: even under complete information and with
access to value queries, determining such an outcome is an NP-hard problem.

While the first project of this dissertation examines the impact of financial constraints on
the side of bidders, the second publication introduces a budget limit for the auctioneer. The
setting can be understood as a reverse auction for conservation: where a principal aims to
purchase land from a set of sellers. Each seller owns private land parcels, and the princi-
pal offers monetary incentives to encourage their participation. In this case, the objective
is maximizing biodiversity gains while implementing an auction, which is measured by
the number of sellers not developing their parcels. Drawing from the literature on budget-
feasible mechanism design, we experimentally demonstrate the power of approximation
algorithms. The proposed mechanism remains within a predefined budget for a slight loss
in efficiency compared to the optimal solution. It reaches a solution in polynomial time
while being incentive-compatible and addressing the challenge of eliciting sellers’ oppor-
tunity costs. Governments or authorities possess fixed funds targeted to conservation, and
thus, as shown in our work, various standard auction mechanisms are deemed unattractive
due to the arbitrarily high budget violation. The budget-feasible clock auction suggested in
this work is an attractive alternative for policymakers in biodiversity conservation.

Shifting the focus to eliciting preference in the complex combinatorial auction domain,
where agents seek to purchase mutually disjoint subsets of items, in further work conducted
in the course of this doctoral degree, we addresse the challenge posed by the exponential
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growth in the number of bundles in these auctions. Recognizing the computational burden
of traditional value queries, we introduce a novel approach that leverages reinforcement
learning techniques for combinatorial optimization. Our parametric randomized algorithm
predicts value queries, optimizing parameters through gradient descent based on estimated
gradients concerning the auction objective of welfare maximization. Experimental valida-
tion on real-world combinatorial auction scenarios demonstrates a significant reduction
in auction runtime while maintaining comparable allocative efficiency to state-of-the-art
mechanisms. Our findings pave the way for the integration of reinforcement learning in
preference elicitation for large combinatorial markets and broader systems using recom-
mendation.
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1 Introduction

1.1 Motivation

In traditional economic theory, market design is characterized by the use of mathematical
optimization, game theory, and mechanism design to facilitate the exchange of goods, ser-
vices, or resources among market participants. The primary goal is to establish rules that
ensure efficient allocations, maximize welfare, and minimize strategic manipulation. Mar-
ket design seeks to enhance market efficiency, promote competition, and achieve desirable
socio-economic outcomes, extending beyond financial markets to include labor, auction,
and resource allocation markets.

Significant contributions in the field of market design have been made by economists who
have addressed various challenges and analyzed market models. The power of market design
has been employed in solving important, real-life problems. Roth and Sotomayor (1989)
applied matching algorithms to address the college admissions problem, as well as the as-
signment of medical graduates to residency programs (NRMP) (Roth, 1984). Following this
work, Roth et al. (2004) developed an algorithm that matched multiple donor-patient pairs in
kidney transplant exchanges, effectively saving human lives. Another notable work by My-
erson (1981) revealed the connection between monetary transfers to agents that incentivize
truthful reporting of their private information and the resulting allocation of the mechanism.
His work focused on designing mechanisms that encourage truthful revelation of partici-
pants’ private information, a crucial property that leads to efficiency and fairness in various
allocation problems. Focusing on auctions, Paul Milgrom and Robert B. Wilson made sig-
nificant contributions to simultaneous, multi-item auctions (SMRA) (Milgrom, 2000) and
introduced innovative auction formats with applications in various real-world scenarios. The
most prominent application is the auctioning of electromagnetic spectrum licenses, where
the Federal Communications Commission (FCC) in the United States used their auction
design to allocate permits to telecommunication companies, resulting in billions of dollars
saved in bidder payments. The Royal Swedish Academy of Sciences has celebrated the im-
portance of these works by awarding the authors the Nobel Prize in Economics Sciences in
2007, 2012, and 2020.

A core challenge in economics is analyzing market equilibria, which represent states where
supply equals demand in an economy. A valuable tool in understanding the functioning of
markets and implications for economic outcomes is a competitive equilibrium. This refers
to a point where, in the context of perfect competition, the quantity demanded by consumers
is equal to the amount supplied by producers. At the resulting equilibrium price, there is no
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1 Introduction

incentive for price changes, and the market is stable because no excess demand or supply
can alter prices. Market participants, either buyers or sellers, have no incentive to deviate
from the competitive equilibrium. Competitive equilibria are often associated with alloca-
tive efficiency, maximizing social welfare among the agents in the market.

The seminal work of Arrow and Debreu (1954) demonstrated that a set of competitive equi-
librium prices always exists given convex preferences, perfect competition and demand in-
dependence. In their model, each participant has an endowment of goods and money, and
utilities are considered cardinal. In this market, participants are price-takers seeking to max-
imize their total value. The Arrow-Debreu model has also been the origin of the important
welfare theorems.

Assuming divisibility of goods simplifies the analysis and allows for the use of continuous
mathematics to derive solutions and insights. Divisibility implies that goods can be split
into any fraction, facilitating the exploration of optimal allocations and equilibria without
the complexity introduced by indivisible items, where allocation might require discrete opti-
mization techniques. A prominent example is that of Fisher markets, where each participant
possesses a monetary budget, while the total quantity of each good available in the market
is also fixed, making them ideal for studying resource allocation under budget constraints.
Considerable progress has been made towards developing algorithms determining alloca-
tions and prices in Fisher markets (Vazirani, 2007; Vazirani and Yannakakis, 2011; Cole
et al., 2016). The objective in these markets is the maximization of the Nash social welfare
function, and a common assumption in this literature is the divisibility of goods.

Contrary to these models, in real-world markets, perfect divisibility of goods ceases to be a
realistic assumption. A significant line of work (Kelso and Crawford, 1982; Bikhchandani
and Mamer, 1997; Gul et al., 2000; Leme, 2017; Baldwin and Klemperer, 2019b) examines
necessary conditions for the existence of competitive equilibria in markets where goods are
indivisible and utilities are quasilinear. Under quasilinear utilities, buyers aim to maximize
their payoff, namely the difference between value and paid price, and have no limit on the
amount they are allowed to spend.

In practical market settings, the assumption of quasilinearity often breaks down due to the
presence of budget constraints, which significantly influence buyer behavior and market dy-
namics. Budget constraints emerge as a critical factor, influencing strategies and outcomes
in various market scenarios, from housing markets to spectrum auctions. This dissertation
delves into the complexities of designing and analyzing mechanisms within these exoge-
nous constraints, challenging the conventional equilibrium models and proposing novel
solutions to ensure core stability and efficiency. Taking a housing market as an example,
buyers seeking to purchase real estate enter the market facing a spending limit. This limit
can dictate how aggressive their offers can be on properties, which defines the final assign-
ment. Bidding strategies of low-budget participants are effectively constrained, while the
ones enjoying higher budgets can easily outbid them. Moving away from quasi-linearity,
an extensive line of research work has examined the effect of private budget constraints
in mechanism design and auctions (Che and Gale, 2000; Benoı̂t and Krishna, 2001; Borgs
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1.2 Contributions

et al., 2005; Dobzinski et al., 2008; Colini-Baldeschi et al., 2011; Dütting et al., 2016). From
a practical perspective, budgets play a prominent role in internet advertising (Borgs et al.,
2007; Conitzer et al., 2019, 2022) and spectrum auctions (Bichler and Goeree, 2017).

1.2 Contributions

Addressing the complexities introduced by financial constraints on the side of market par-
ticipants, this dissertation embarks on a comprehensive exploration of auction mechanisms
that aim at balancing efficiency, stability, and budget feasibility. Central to this investigation
are two pivotal contributions: the design of an auction mechanism that assures core-stability
in assignment markets with financially constrained buyers and the application of budget-
feasible mechanisms in the context of environmental conservation efforts. The existence
of exogenous budget constraints challenges the traditional paradigms of market design and
our research proposes novel frameworks that seek to accommodate the financial limitations
of market participants, while maintaining important mechanisms properties and achieving
high welfare guarantees. The contributions made in this work not only advance our un-
derstanding of market mechanisms in the presence of financial constraints but also offer
practical frameworks that can be applied across a variety of domains, from environmental
conservation to spectrum allocation.

1.2.1 Part I: Core-Stability in Assignment Markets with Financially
Constrained Buyers

One of the most essential notions defining stability in market design is that of the core.
The core comprises the set of outcomes where no subset of participants can increase their
collective payoff by forming a separate coalition and reallocating resources among them-
selves. In markets where agents are subject to binding budget constraints, a core outcome is
not guaranteed to be welfare-maximizing, underscoring the challenges posed by budgets in
auction design. A core outcome is not necessarily equivalent to a competitive equilibrium,
and various outcomes from the core could lead to different levels of social welfare. Cen-
tered around the question of determining core-stable outcomes that simultaneously max-
imize welfare among market participants under binding financial constraints, Bichler and
Waldherr (2022) demonstrate that the problem becomes intractable even for small instances
in combinatorial exchanges. This work poses the natural question of whether there is hope
for polynomial-time algorithms that result in such outcomes in simpler, more restrictive
market models.

In the first contribution of this dissertation (Batziou et al., 2022a), drawing upon this ques-
tion, we shift our focus on assignment markets, with unit-demand bidders that are con-
strained by a hard budget limit. Each bidder is interested in acquiring at most one item in
these markets. Using solely demand queries, we develop an iterative auction algorithm that
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1 Introduction

determines core-stable outcomes without knowing bidders’ true valuations. This ascend-
ing auction extends the well-known DGS algorithm of Demange et al. (1986) under the
influence of budget limits. When the objective involves choosing the welfare-maximizing,
among all core outcomes, the auctioneer faces a challenging problem: excluding the ap-
propriate buyers from expressing demand for items in subsequent rounds. Yet, accessing
only the demand sets of each bidder, the resulting welfare may be arbitrarily low. Given
the restrictive nature of unit-demand valuations, a naturally arising question is whether this
condition is enough to guarantee the existence of a mechanism that satisfies incentive com-
patibility, welfare maximization, and core stability. We answer this question negatively: no
auction mechanism can satisfy these properties simultaneously under budget constraints.
Our result can be seen as an extension of Ausubel (2006) that demonstrates the clash be-
tween incentive compatibility and core stability in general quasilinear utility models.

Under full access to bidders’ private information, contrary to expectations of polynomial
time solutions, our paper reveals a novel result: determining core-stable, welfare-maximizing
outcomes with financially constrained buyers is an NP-complete optimization problem. The
complexity stems from an intricate reduction from the maximum independent set prob-
lem. These results underscore that, even in the most straightforward multi-item assignment
markets, the presence of budgets renders the computation of desirable outcomes quickly
intractable.

1.2.2 Part II: Budget-Feasible Market Design for Biodiversity
Conservation: Considering Incentives and Spatial Coordination

The settings examined in the two publications of this dissertation consist of budget-constrained
agents on either side of a market: in the first work (see Chapter 3), buyers face a financial
limit, while in the second work (see Chapter 4), the constraint lies on the side of the auc-
tioneer.

Prior to the seminal paper of Singer (2010), research on budget-feasible mechanisms had
been scarce: the large majority of work assumed a principal has access to infinite resources
that can be sacrificed in exchange for incentive compatibility. Incentive compatibility is a
fundamental objective in market design, guaranteeing that no agent misreports their values
to the auctioneer with the prospect of receiving higher utility. In a procurement auction,
typically used by governments or organizations, a principal wishes to purchase services
from sellers who submit bids based on their private costs. Budget feasible procurement is
a practically motivated problem, with various applications (Roth and Schoenebeck, 2012;
Singer, 2012; Singer and Mittal, 2013; Horel et al., 2014; Goel et al., 2014), where an
auctioneer seeks to maximize a social value function on subsets of items, and the sum of
payments is constrained by the budget. The problem can be cast as a variant of the famous
knapsack problem: given a budget and set of items with costs and values, what is the optimal
set of items that maximizes value under the budget?
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1.2 Contributions

The work of Singer sparked a line of research around budget feasible auctions, intending
to achieve improved approximations of the optimal solution. Inspired by the well-known
greedy algorithm in submodular maximization, that selects items based on marginal contri-
bution to value and achieves a 1−1/e approximation (Nemhauser et al., 1978), a prominent
stream of research on budget feasible auctions has assumed submodular auctioneer values.
Given the relative hardness in achieving good approximations for non-monotone submod-
ular values (Amanatidis et al., 2019; Bei et al., 2017), several works have introduced the
additional constraint of monotonicity on the valuations (Chen et al., 2011; Anari et al.,
2014; Jalaly and Tardos, 2021), thus achieving more promising, even constant approxima-
tion ratios. Beyond submodular, additive (Chen et al., 2011; Anari et al., 2014; Gravin et al.,
2020) as well as subadditive (Dobzinski et al., 2011; Bei et al., 2017) value functions have
been further examined.

Most work on budget-feasible auctions can be described as sealed-bid auctions, where par-
ticipants’ private information is made known to the auctioneer. A crucial limitation of such
auctions is that, in practice, studies (Kagel et al., 1987) show that participants tend to misre-
port despite the theoretical promise of incentive compatibility. Bypassing this shortcoming,
Milgrom and Segal (2020) introduced clock auctions, a novel family of mechanisms that
progresses over rounds where a gradually decreasing clock price is offered, and bidders
might accept and continue or exit the auction. The process ends when the budget limit
has been reached. Posted price schemes, where an auctioneer broadcasts a fixed take-it-
or-leave-it price, have been employed in budget-feasible mechanism design (Badanidiyuru
et al., 2012; Balkanski and Hartline, 2016) and can be considered as a particular form of
clock auctions. Contrary to prior work, Balkanski et al. (2022) propose a clock auction
mechanism that respects budgets and, for the special case of monotone submodular val-
uations, achieves the best-known approximation of the optimal, a constant factor of 4.75.
The algorithm is based on a backward greedy method for submodular maximization, with
bidders being eliminated in each round while prices offered are scaled to fit the set budget
limit. Being a clock auction at its core, this algorithm has desirable properties, such as resis-
tance to collusion, incentive compatibility, and transparency, while being deterministic with
a polynomial runtime.

In the second contribution of this dissertation (Batziou and Bichler, 2023), we adopt a mech-
anism design perspective to address a relevant environmental emergency: biodiversity con-
servation. With the rapid decline in wildlife populations observed in recent years, the need
to incentivize private landowners to conserve becomes pressing. Thus, the challenge of pro-
viding appropriate incentives to sellers through monetary payments to prevent agricultural
use arises. Governing bodies concerned with modeling such markets are subject to natural
financial limitations: a fraction of public funds is reserved for environmental purposes and
can thus be utilized as payments. In this work, we examine the clock auction algorithm
(Balkanski et al., 2022), which satisfies incentive compatibility and respects budgets while
achieving a close approximation of the optimal solution in practice. Indeed, our experimen-
tal analysis reveals that this approximation algorithm achieves high welfare compared to
the optimal solution while remaining feasible under monetary constraints, thus becoming
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1 Introduction

a promising alternative for policymakers. Our findings indicate that the celebrated VCG
auction algorithm (Vickrey, 1961; Clarke, 1971; Groves, 1973), which has been employed
as the state-of-the-art method in conservation auctions (Polasky et al., 2014), may result in
payments that arbitrarily exceed budget, making it an undesirable option in practice.

1.2.3 Other Contributions

In a market, goods can be traded as single items or combined in bundles. In combinatorial
auctions, bidders can express preferences and place bids on bundles of items, thus allowing
for complex bidding strategies. A crucial challenge in such auctions is preference elicita-
tion: given the exponential number of bundles being auctioned, representing all possible
combinations of individual items into bundles, querying bidders for their true valuations
for each possible combination becomes intractable. To overcome the exponential amount
of communication required, iterative combinatorial auctions (ICAs) (Parkes, 2005) have
emerged as an efficient model where a set of demand queries is sent to the bidders in each
round, and prices can be computed based on the (ascending) clock round (Ausubel et al.,
2004). An auctioneer seeking to generate an optimal outcome requires access to the full
valuation profiles, which could, in turn, prove time-consuming, as bidders enter the auc-
tion with a predetermined set of bundle-value pairs, beyond which they might be unable to
respond accurately to demand queries, as computation can become cumbersome (Scheffel
et al., 2012; Bichler et al., 2013). Considering the inefficiencies present in combinatorial
auctions, a recent stream of work has employed learning algorithms that estimate the valu-
ation functions of bidders using a selected, small set of targeted queries and achieve close
approximation of the optimal solution under full access to preference profiles (Brero et al.,
2018, 2019; Weissteiner and Seuken, 2020; Beyeler et al., 2021; Weissteiner et al., 2022b,a,
2023). Using Support Vector Regressors and neural networks, among others, a candidate
estimate valuation function is built based on bidders’ true values, as responded to in the sent
queries. In each round, the set of queries is determined by solving the winner determination
problem (WDP), traditionally solved by a Mixed Integer Program (MIP). However, even if
the iterative query process significantly decreases the amount of required communication,
the computational bottleneck of solving the MIP remains.

Alleviating the computational burden, in work conducted in the course of this doctoral pro-
gram (Batziou et al., 2022b), we build on the deep learning-inspired algorithm for iterative
combinatorial auctions (Weissteiner and Seuken, 2020), solving the optimization problem
using the well-known Reinforce algorithm (Williams, 1992). Our reinforcement learning
framework computes a randomized allocation in the form of a distribution over queries,
which will constitute the query set of the next round, and the algorithm parameters are opti-
mized following traditional policy gradient methodology. Contributing to a line of research
revolving around using reinforcement learning techniques in combinatorial optimization
(Bello et al., 2016; Kool et al., 2019; Deudon et al., 2018), our work can be seen as a first
step in incorporating reinforcement learning in preference elicitation mechanisms. Experi-
mental results on the spectrum auction test suite (SATS) (Weiss et al., 2017) demonstrate
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1.3 Outline

that our framework achieves comparable efficiency in a fraction of the computation time.
Thus, sacrificing a small fraction of efficiency, our framework can be seen as a promising
alternative for implementing large-scale auctions.

While this dissertation has revolved mainly around auction design, the author has also con-
ducted work in the field of computational complexity, in the context of problems in fair
division (Batziou et al., 2021). Fair division is a study at the intersection of economics and
computer science and is centered around distributing a limited set of goods or resources
among agents in a fair, equitable manner. A notable problem within fair division is the con-
sensus halving where a given set of resources is divided between two groups of agents, such
that every agent values the two resulting parts equally. The resources in question are often
represented as a [0,1] interval, and the existence of a solution can be determined using the
Borsuk-Ulam theorem from algebraic topology. In this work, we prove that computation of
an approximate solution to the consensus halving problem is polynomial time equivalent to
computing an approximate solution to the Borsuk-Ulam search problem, as well as define a
novel complexity class, BBU, that refers to the computational version of the Borsuk-Ulam
theorem, and explore its properties and relation to FIXP.

1.3 Outline

The structure of this dissertation is as follows: First, in Chapter 2, we introduce necessary
definitions and notation with regard to auctions. We explore desiderata for auctions, various
payment rules, and notable auction algorithms, as well as a high-level idea of computational
complexity classes relevant to market design problems. In Chapter 3, the first project that
deals with computing core-stable outcomes in assignment markets, where buyers are con-
strained by a budget, is presented. Chapter 4 includes the work on mechanism design for
biodiversity conservation, where a principal is concerned with remaining budget-feasible.
Finally, Chapter 5 concludes this dissertation and presents directions for further research
work.
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2 Theoretical Background

This chapter forms the foundation of the publications included in the remaining part of this
dissertation. Key notions and theorems are introduced, providing the reader with insight on
core concepts of market design, and aid in understanding the context of this work.

We draw on a multitude of topics, ranging from designing mechanisms to algorithms and
complexity, explaining the main concepts required to understand the diverse topics exam-
ined throughout the course of this dissertation.

The notation employed in this chapter may differ from that used in the included publications.
Nonetheless, we deliberately adjust notation to simplify the comprehension of fundamental
notions.

2.1 Preliminaries

An auction can be described as the process where a set of buyers places competitive bids
for acquiring goods or services provided by a set of sellers. The auction is defined by a set
of n bidders (or buyers) i ∈ I, a set of sellers j ∈ J , with I ∩ J = ∅, and a finite set
of indivisible items k ∈ K. We define the set of bundles S ∈ 2K as the set of all possible
combinations of theK items. Bidders submit bids that a seller can reject or accept, resulting
in a transaction of goods in exchange for a monetary payment.

The final result in an auction is defined as outcome o = (x, p) ∈ O, and consists of an
allocation x = (S1, S2, . . . , Sn) and payment vectors p = (p1, p2, . . . , pn). The allocation
rule determines which bundle is won by each bidder and payments define the monetary
transfer the bidder has to commit to purchase the allocated bundle. A hard budget con-
straint bi ∈ R≥0 is a financial limit that dictates the upper bound on the payments of each
bidder.

Bidders’ preferences are quantified by a valuation function, which indicates how much
agent i values each good or alternative, and is defined as a mapping over the set of all
bundles:

vi : 2K → R≥0

In a similar manner, each seller is characterized by a reserve price for each bundle Z ∈ 2K

with vj(Z) ∈ R≥0. Sellers do not accept bids below their reserve price for any bundle, and
therefore the sale cannot take place.

8



2.1 Preliminaries

Without the presence of appropriate incentives, bidders might misreport in an auction seek-
ing to achieve an individually more profitable outcome. The bidding function of each bidder
is defined as:

bi : 2K → R≥0

Placing bids, agents express their willingness to pay for a certain item or bundle. Under
truthful bidding, bi(S) = vi(S) ∀i ∈ I, S ⊆ 2K, and thus bids correspond to true valua-
tions.

Important properties of the valuation functions of all bidders that are valid throughout this
dissertation are the following:

• Empty bundle: The value of the empty bundle is always 0, vi(0) = 0.

• Monotonicity: For sets S′ ⊆ S, vi(S′) ≤ vi(S), namely the valuation of a bidder for
larger sets is weakly increasing.

• Independent private values: The value of a bidder is private information and de-
pends solely on the received bundle, i.e. does not change even if information on other
bidders’ values or allocation is known.

In simple, non-combinatorial models, such as assignment markets, bidders only express
preferences on single items and are interested in winning solely one item (unit demand). In
such markets, a common assumption is that the set of sellers coincides with the set of items
- namely each seller is selling a single item.

Valuation functions can be subject to various mathematical rules that dictate how combina-
tions of sets are evaluated by bidders. Common types of valuations in auction theory and
mechanism design literature are:

• Additive: For sets S, T ⊆ 2K: v(S) + v(T ) = v(S ∪ T )

• Subadditive: For sets S, T ⊆ 2K: v(S) + v(T ) ≥ v(S ∪ T )

• Submodular: For sets S, T ⊆ 2K: v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T )

• Superadditive: For sets S, T ⊆ 2K: v(S) + v(T ) ≤ v(S ∪ T )

A hierarchy between the first three of the above classes is shown in the diagram of Figure
2.1. Superadditive functions can be seen as the reverse of subadditive ones.
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2 Theoretical Background

Figure 2.1: Value function hierarchy.

A standard assumption in auction theory regarding bidders’ utility function is that of quasi-
linearity. Thus payoff πi is defined as the difference between value and price.

πi(S, p) = vi(S)− pi(S)

Equivalently, the payoff of sellers is defined as πj(Z, p) = pj(Z)− vj(Z).

Quasilinear functions are used to describe games where utility is transferable. An important
observation relative to the underlying topic of this dissertation is that, under the presence of
budget constraints, quasilinearity ceases to hold from some price on: if prices exceed budget
bi for a bidder, utility is non transferable. Payoffs are expressed as the difference between
value and payment, only when prices are feasible given bi.

2.2 Mechanism Design Criteria

Mechanism design is a field in economics that focuses on designing good mechanisms
and rules in settings where self-interested agents, that possess private information about
their preferences, strategically interact. Since mechanism design aims to achieve desirable
system-wide outcomes, it is often viewed as the reverse of game theory, focusing on creat-
ing rules that guide strategic interactions among agents. Auctions are a particular class of
mechanisms where a set of bids are mapped to an outcome.

In the realm of mechanism design, the goal is to construct rules that guide participants
towards outcomes that are beneficial both on an individual level and for the market as a
whole. This balancing involves ensuring that mechanisms are not only efficient and fair but
also robust against strategic manipulation by self-interested parties. The selection criteria
discussed in this section, including Pareto optimality, budget balance, and various forms
of incentive compatibility, serve as essential building blocks in this process. However, the
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key difficulty lies in managing the trade-offs required to satisfy these criteria simultane-
ously. For instance, requiring budget balance might restrict the mechanism’s ability to yield
optimal allocations, whereas prioritising allocative efficiency could encourage strategic bid-
ding, compromising the auction’s integrity. Furthermore, the design of incentive compatible
mechanisms often includes complex rules that can be impractical in real-world applications,
where simplicity and transparency are crucial to assure participants’ trust and engagement.
Thus, the discussion in this section not only highlights the theoretical ideals mechanism de-
signers aim for but also underscores the considerations that must be balanced in developing
mechanisms tailored for the dynamics of actual markets.

Approaching mechanism design from the perspective of auctions, the goal is defined by a
social choice function, that, given agents’ bids, selects an optimal outcome. A social choice
function aggregates individual information among a group of participants to reach a collec-
tive decision, essentially translating individuals’ preferences into a single choice that reflects
the welfare of the group.

Definition 2.1 (SOCIAL CHOICE FUNCTION). A social choice function f : b1×· · ·× bn →
O receives the set of all bid functions bi : 2K → R≥0 for each bidder i ∈ I as input and
selects an outcome among all possible ones in O.

An auction mechanismM is said to implement a social choice function f that results in out-
come o and can be described as a method to select an outcome based on agents preferences
as reported.

To highlight the underlying difficulty of designing good mechanisms, we address the prob-
lem of deciding on an appropriate solution of the social choice function given agents’ prefer-
ence reports. The resulting outcome is selected based on these reported preferences. How-
ever, as agents are payoff-maximizing, the optimal choice of reporting strategy need not
necessarily be equal to their true preference: they might profit from misreporting by placing
lower bids and thus paying less under the same allocation rule. The majority of literature
in mechanism design assumes utilitarian social welfare functions, where social welfare can
be described as the sum of agents’ valuations. In the case where agents report their true
preferences, an auction may indeed reach the outcome that maximizes social welfare. Such
an allocation is considered efficient.

We proceed by outlining important properties of social choice functions and mechanisms
that lead to desirable outcomes.

Pareto optimality (or Pareto efficiency) characterizes an outcome of a social choice func-
tion where no alternative outcome increases one participant’s payoff without reducing that
of another. Formally:

Definition 2.2 (PARETO OPTIMALITY). The outcome o of a social choice function f is
(weakly) Pareto optimal if there is no other outcome o′ ∈ O such that:

• πi(o′) > πi(o) for all i ∈ I, and
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• πj(o′) > πj(o) for some j ∈ I

The Pareto efficiency criterion does not necessarily imply an equitable distribution of re-
sources, but focuses on maximizing the efficiency of resource allocation. A fundamental
benchmark in evaluating economic policies, mechanisms, and market outcomes, it serves as
a guide to understand whether resources in a system are allocated in the most effective way
possible, without explicitly considering the fairness of such allocations.

Since a mechanism implementing a social choice function decides on an allocation of items/
bundles to agents, a measure of quality of the resulting allocation is allocative efficiency. It
represents an economic state that optimizes the allocation of resources in order to maximize
the aggregate valuation across all market participants. This optimization criterion is funda-
mental in welfare economics for evaluating the efficacy of market mechanisms. Deciding on
an efficient allocation in combinatorial auctions given a set of valuations is typically done
by solving the Winner Determination Problem (WDP), introduced in Section 2.3.

Definition 2.3 (ALLOCATIVE EFFICIENCY). Assume x = (S1, . . . , Sn) is an allocation
maximizing social welfare and x′ = (S′1, . . . , S

′
n) is the resulting allocation of the auction

mechanism. Allocative efficiency of allocation x′ is the metric defined by:
∑n

i=1 vi(S
′
i)∑n

i=1 vi(Si)

Allocative efficiency measures the quality of distribution of resources within an economy,
compared to the optimal allocation of goods that maximize overall social welfare based
on consumer preferences. Transitioning from this concept, budget balance takes a comple-
mentary perspective by emphasizing the financial sustainability of economic mechanisms,
ensuring that the total inflows match the outflows to maintain the system’s equilibrium with-
out generating surplus or deficit. This property helps ensure fairness by preventing financial
imbalances, ensuring no net transfers into or out of the system, as such imbalances could
deter buyer participation in the market.

Definition 2.4 (BUDGET BALANCE). A mechanism is budget balanced if the total payments
of buyers equals the amount received by sellers.

An efficient mechanisms that simultaneously satisfies budget balance is considered to also
be Pareto optimal. Pareto optimality is crucial in mechanism design as it guarantees that
resources are allocated in a way that maximizes the overall efficiency of the system without
disadvantaging any participant, promoting equitable and efficient outcomes in economic
interactions.

Since the outcome of a mechanism is decided based on reports of agents’ private informa-
tion, participants may engage in strategic bidding behaviors in order to increase their payoff
and steer the mechanism towards a more favorable result. Misreporting preferences may be
observed in various ways: declaring lower bids to minimize payments, placing additional
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bids to increase competitors’ prices etc. Incentives in a mechanism should be designed in
such a manner that dissuades agents from seeking individual profit by falsely declaring their
private information. This strategic interaction, where individuals act based on private infor-
mation and the asymmetry of knowledge, leads to the concept of a Nash equilibrium - a
state where no participant can improve their payoff by unilaterally changing, assuming oth-
ers’ strategies remain unchanged. Extending this concept to the domain of Bayesian games,
where players have incomplete information but form beliefs about unknown factors, a Bayes
Nash Equilibrium (BNE) represents as a strategy profile in which players, guided by their
beliefs and the strategies of others, select strategies that maximize their expected payoff.
This equilibrium concept is particularly relevant in settings where strategic misreporting of
private information and the resulting impact on mechanism outcomes are considered.

Definition 2.5 (BAYES NASH INCENTIVE COMPATIBILITY). A mechanism is Bayes Nash
incentive compatible if truthful reporting is a Bayes Nash equilibrium in the game produced
by the mechanism.

In mechanisms that adhere to the principle of Bayes Nash incentive compatibility, agents
achieve the highest expected utility by truthfully reporting their preferences.

A primary objective in the design of such mechanisms is to deter strategic bidding by creat-
ing systems that are strategyproof (also known as dominant strategy incentive compatible).
This means that participants are disincentivized from misrepresenting their private informa-
tion. This concept represents a robust form of incentive compatibility, ensuring that truth-
fulness is not only the best policy for maximizing utility but also the most rational course
of action for all agents involved.

Definition 2.6 (STRATEGYPROOFNESS). A mechanism is strategyproof if truthful reporting
of valuations is the optimal strategy for each bidder, namely, for all bidders i ∈ I:

πi(f(vi, v−i)) ≥ πi(f(v′i, v−i))

where vi corresponds to a truthful report for bidder i, v′i is an alternative report, v−i the
reports of all other agents excluding i and πi(f(v)) the utility of the bidder under outcome
f(v) ∈ O of the social choice function.

Strategyproofness is a fundamental property in mechanisms, enabling agents to determine
their optimal strategies without needing to know the strategies and valuations of others,
thereby minimizing computational costs.

This principle is not limited to individual participants: it expands to include groups through
the concept of group-strategyproofness. This broader principle ensures that no group can
gain an advantage by jointly misrepresenting their preferences. This aspect is especially
important because it guards against collusion in auctions, preventing bidders from collabo-
rating in a way that would result in a higher collective payoff and reduced contributions.
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Definition 2.7 (GROUP-STRATEGYPROOFNESS). A mechanism is group-strategyproof if
for all groups of bidders G ⊂ I, there is no v′G such that all agents in G can improve their
payoff by misreporting. Formally, for all G ⊂ I, there exists i ∈ I such that:

πi(f(vi, v−i)) ≥ πi(f(v′G, v−G))

where vi corresponds to a truthful report for bidder i, v′G is an alternative report by group
G, v−G the reports of all other agents excluding G and πi(f(v)) the utility of the bidder
under outcome f(v) ∈ O of the social choice function.

Furthermore, it is essential for designers to create conditions where individuals are moti-
vated to willingly engage in a mechanism. This necessity is captured in the concept of indi-
vidual rationality, which dictates that the outcomes for agents should be at least as favorable
as any alternative outside option, thereby ensuring that participants do not incur loss. This
concept is important in ensuring that every agent’s involvement is not only strategic but also
beneficial, aligning with the broader goals of fair and efficient mechanism design.

Definition 2.8 (INDIVIDUAL RATIONALITY). A mechanism is individually rational if for
any bid profile b = (b1, . . . , bn), the outcome of the mechanism is such that no bidder pays
more than their bid bi(Si) ≥ pi(Si) for their allocated bundle Si for all i ∈ I.

Individually rational mechanisms encourage participation, since agents value expected gains
from partaking higher than abstaining, given their beliefs on others’ preferences.

The previously outlined properties summarize critical goals that mechanism designers strive
to achieve. These objectives include ensuring strategyproofness to prevent manipulation
through strategic bidding, extending strategyproofness to group contexts to avoid collusion,
and maintaining individual rationality to guarantee that participation is voluntarily bene-
ficial based on expected outcomes. However, literature in the field indicates a significant
challenge: it is not always possible to develop mechanisms that simultaneously fulfill these
properties. This limitation stems from the inherent complexities and trade-offs involved in
designing systems that are both efficient and fair under varying conditions and assump-
tions.

The challenge of reconciling these properties is well-documented in economic theory and
game theory literature. A series of impossibility theorems (Gibbard, 1973; Satterthwaite,
1975; Hurwicz et al., 1975; Green and Laffont, 1977; Myerson and Satterthwaite, 1983)
show that for different categories of preferences (restricted or general), one has to give up
on a certain subset of properties in order to design feasible mechanisms.

Further exploration into mechanism design has led to the development of concepts such as
approximate mechanism design, discussed in Chapter 2.8 where the focus shifts to achiev-
ing as close as possible to the desired properties under practical constraints. This line of
work suggests that while the perfect mechanism may be unattainable, significant advance-
ments can be made in understanding the balance between efficiency, fairness, and incentive
compatibility.
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In summary, while the goals of mechanism design are clear and well-defined, the exist-
ing stream of literature acknowledges the complex interplay between these objectives, in-
dicating that the search for mechanisms that simultaneously satisfy all desired properties
remains an ongoing and challenging area of research. A key objective of this dissertation is
to contribute to the understanding of the interplay between incentive compatibility, budget
feasibility, and efficiency in the context of auctions with budget constraints.

2.3 Winner Determination Problem

Building on the foundational criteria for mechanism design, the subsequent discussion
delves into the practical application of these principles within the context of auction de-
sign, focusing particularly on the challenge of allocation. The underlying question is thus
how to efficiently distribute goods or resources among a group of participants. A fundamen-
tal objective in auctions is the maximization of social welfare, quantified by aggregating the
utilities that bidders derive from the items or bundles they are allocated in the final as-
signment, in addition to the utilities sellers obtain from the transactions. This aggregation
assumes a state of budget balance, implying that the payments of bidders are directly re-
flective of the values accrued by sellers, thereby cancelling out these financial exchanges
in the welfare calculation. Consequently, welfare is computed solely based on the valua-
tions of assigned bundles. Within this framework, bidder truthfulness becomes critical; it
is assumed that bids accurately reflect the actual valuations of bidders, i.e., bi(S) = vi(S).
This transition from theoretical principles to their application in addressing the allocation
problem highlights the importance of truthful reporting in achieving optimal social welfare
outcomes.

Finding an allocation that maximizes social welfare, coined as the Winner Determination
Problem (WDP) in literature, is described as a combinatorial optimization problem in the
following manner:

maximize
∑

i∈I

∑

S⊆K
vi(S)xi(S)

subject to
∑

i∈I

∑

k∈S:S⊆K
xi(S) ≤ 1 ∀ k ∈ K

∑

S⊆K
xi(S) ≤ 1 ∀ i ∈ I

xi(S) ∈ {0, 1} ∀ i ∈ I, S ⊆ K

Adopting the above formulation, an efficient outcome can be derived as the optimal solution
to the WDP. A variable xi(S) equals 1 if bundle S is assigned to bidder i in the final
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allocation. The first constraint ensures that each item in a bundle is allocated at most once.
The second constraint places a restriction on the amount of bundles that each bidder can
obtain: at most one. This constraint expresses the XOR bidding language: bidders submit
multiple bids on bundles but may only win one. While this is a common assumption under
certain bid languages, this constraint might be omitted allowing for expressing more general
preferences. Such an example is the OR bidding language, where bidders may win any
combination of bundles if this leads to an increase in utility. The last constraint reflects the
indivisibility of items in the auction.

Lehmann et al. (2005) conclude that no general purpose algorithm exists for efficiently (i.e.
in polynomial time) solving the WDP for every problem instance, due to the exponential size
of the representation in the number of items. Hence, the problem is classified as complete
for the complexity class NP, defined in detail in Section 2.7. Circumventing the negative
complexity result, they provide approximation algorithms as well as identify conditions that
lead to polynomial time solutions. Sandholm (2002) provides a comprehensive overview
of algorithms designed to solve the WDP efficiently, exploring both exact and heuristic
solutions and highlighting the trade-offs involved.

2.4 Competitive Equilibria and the Core

In this section, the discussion transitions to the broader economic framework of competi-
tive markets. A central challenge in such markets lies in determining a balance between the
quantities of goods demanded and supplied in the economy. This state is captured by a com-
petitive equilibrium: an outcome where demand equals supply, ensuring market efficiency
and participant satisfaction. In the idealistic model of perfect competition, Arrow and De-
breu (1954) prove that, when agents’ preferences are convex and there is a universal demand
potential for all goods, every exchange economy admits a competitive equilibrium.

In the landscape of auctions, especially under the presence of financial constraints, the de-
mand set of a bidder becomes a focal point. Defined as the collection of bundles that maxi-
mize a bidder’s utility for a given vector of prices, the demand set is critical in constructing
auction mechanisms that navigate towards competitive equilibria. The significance of this
notion is further magnified when considering auctions within financially constrained envi-
ronments, where the alignment of bidder preferences with feasible budgetary outcomes is
crucial for sustaining market equilibrium. Following, we provide a formal definition of the
concept:

Definition 2.9 (DEMAND SET). For bidder i with utility function πi and price function pi,
the demand set includes all bundles that maximize utility and is defined as:

Di(pi) = {S | πi(S, pi) ≥ max
T⊆2K

πi(T, pi), πi(S, pi) ≥ 0, S ⊆ 2K}
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A bundle S ⊆ 2K is demanded at prices p if T ∈ Di(pi) for at least one bidder i. An out-
come where each bidder is assigned a bundle from their demand set is considered envy-free.
Once all items have been allocated to bidders based on their demand sets, and the market is
cleared, the resulting outcome corresponds to a competitive equilibrium.

Definition 2.10 (COMPETITIVE EQUILIBRIUM). An allocation x = (S1, . . . , Sn) and a set
of nonnegative prices p = (p1, . . . , pn) are a competitive equilibrium if Si ∈ Di(pi) and
∪i∈ISi = K.

In addition to market clearing, a competitive equilibrium defines the prices where prefer-
ences of consumers match costs of producers. From a state of competitive equilibrium, no
agent has incentive to deviate and resources are allocated in an efficient manner. Necessary
conditions for an outcome to be a competitive equilibrium are envy-freeness, individual
rationality as well as budget balance.

The notion of competitive equilibrium is applicable in the general setting where prices can
be personalized, as the price function of each bidder is defined as pi : 2K → R≥0 and
dictates the price to be paid for each bundle. Assuming non-linear and personalized prices,
a competitive equilibrium is maximizing social welfare in a market (Bikhchandani and Os-
troy, 2002).

An equivalent definition has been introduced by Walras (1874) for markets where prices
are linear and anonymous, and therefore guarantee fairness among participants. In this
paradigm, an auctioneer adjusts prices in such a way that all bidders witness the exact
same price for the same bundle, and the bundle price is determined by simply summing
all items within it, i.e. p(S) =

∑
k∈S p(k). This design concept is defined as a Walrasian

equilibrium, and corresponds to the market clearing point under linear and anonymous pric-
ing rules.

Revolving around the notion of Walrasian equilibria are the two fundamental theorems of
welfare economics (Arrow and Debreu, 1954; McKenzie, 1959).

Theorem 2.1 (THE FIRST WELFARE THEOREM). Let allocation x = S1, . . . , Sn and prices
p constitute a Walrasian equilibrium. Then allocation x maximizes welfare over all feasible
allocations.

Blumrosen and Nisan (2007) introduce a stronger version of the aforementioned theorem,
where allocations need not necessarily be fractional, but can be integral, capturing the case
of indivisible items.
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Theorem 2.2 (THE SECOND WELFARE THEOREM). Let allocation x = S1, . . . , Sn be
Pareto efficient. Then there exist a vector of prices p such that the outcome defined by x and
p defines a Walrasian equilibrium.

Due to their attractive properties, Walrasian equilibria have been a prominent solution con-
cept in combinatorial auctions. A long line of research has been involved with determining
conditions that guarantee existence of Walrasian equilibria in auctions (Bikhchandani and
Mamer, 1997; Fujishige and Yang, 2003; Baldwin and Klemperer, 2019a; Leme, 2017; Sh-
ioura and Tamura, 2015). For the restricted case of assignment markets, with quasilinear
utilities and unit-demand preferences, Shapley and Shubik (1971) proved existence of a
Walrasian equilibria, as well as uniqueness of minimum Walrasian prices.

Another measure of stability of an allocation is the core, that is extensively examined in the
course of this dissertation, and which can be defined as the set of feasible allocations that
cannot be improved upon by any coalition of bidders with sellers or the auctioneer. A core
outcome o = (x, p) is one where no coalition of bidders can strictly increase payoff in an
alternative allocation x′ by proposing a counter offer to the seller or auctioneer. The notion
of the core is better understood under the lens of a coalitional game, and a concept in the
definition is that of coalitional value, which encompasses the objective value of the WDP
for a subset M of bidders.

Definition 2.11 (COALITIONAL VALUE). Let I0 = I ∪{0} denote the set of buyers includ-
ing the auctioneer as the 0-th agent, and XC the set of feasible allocations including subset
C ⊆ I0. For coalition C, the coalitional value is defined as:

w(C) =

{
maxx∈XC

∑
i∈C πi(Si) if 0 ∈ C

0 otherwise

The coalitional value corresponds to the maximal utility that the set of coalition agents can
generate working with the auctioneer, and is equal to 0 if the auctioneer does not participate
in the coalition as there are no items remaining to be distributed. Two necessary conditions
for an outcome o = (x, p) to be core stable are the following: first, the payoff of any coali-
tion C ⊆ I0 under allocation x must be at least as high as the social welfare that the agents
inC can generate on their own. The second condition states that the sum of all payoffs under
allocation x cannot exceed the social welfare w(I0) that can be generated by the combina-
tion of all agents.

Definition 2.12 (CORE). A core payoff vector π can be described as:

Core(I0, w) =
{
π ∈ Rn+1

≥0 : π ≥ w(C) and
∑

i∈I0

π = w(I0) for all C ⊆ I0

}

In a core outcome o = (x, p) we refer to x as a core allocation and p as core prices. The
concept of the core is inherently connected to stability and fairness in an allocation, even
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in the face of strategic behavior by participants, and therefore outcomes outside of the core
are considered impractical, as they may lead to lower auctioneer revenue or be prone to
collusion (Day and Raghavan, 2007; Day and Milgrom, 2008).

The seminal work of Shapley and Shubik (1971) pioneered the study of core stability in the
context of assignment markets, a simple market model introduced in the next section of this
dissertation. Reaching core outcomes is an important objective in various auction designs,
including multi-item (Demange et al., 1986) and spectrum auctions (Ausubel and Milgrom,
2002; Ausubel et al., 2004).

In the context of this dissertation, core stability emerges as a critical objective in the design
of auction mechanisms under financial constraints, addressing the complexities that arise
when participants face budget limits.

2.5 Assignment Markets

Having delved into the complexities of achieving optimal allocations and maintaining mar-
ket stability under the constraints of financial limitations and strategic behaviors, we explore
the model of assignment markets, to illustrate a specific, yet profound, application of these
principles. This model will be the key market under consideration in the publication pre-
sented in Chapter 3.

Assignment markets impose a strong restriction on preferences: each bidder is only inter-
ested in winning at most one single item, an assumption known as unit-demand. This market
model simplifies the challenge of allocating bundles of items to bidders by focusing on al-
locating single items. Computing an optimal allocation via the WDP can thus be formulated
as an assignment problem. For this, efficient ascending auction schemes exist, with truth-
ful bidding being an ex-post equilibrium and that are described using the duality theory
of linear programming. Primal-dual algorithms are a particularly strong tool implementing
such auctions, since they do not require prior knowledge of private values of bidders. Start-
ing from these simple ascending models, research has been extended to the more complex,
combinatorial auction setting, allowing for ex-post truthfulness.

The assignment problem can be understood as the problem of finding the maximum weight
matching in a weighted bipartite graph. A graph is weighted if the edges connecting its
vertices have weights (values) and is considered bipartite if it consists of two distinct sets of
nodes (bidders and items) where edges connect nodes from one set to the other, representing
potential matches or allocations. In assignment markets, this translates to matching a set of
bidders to a set of items in a way that maximizes overall welfare or efficiency. The challenge
lies in finding an allocation that optimally aligns the preferences of all participants. Bidders
may place bids on multiple items but are only allowed to win at most one. A matching M
is a subset of edges such that no two edges in M share a common vertex.
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Modifying notation, we denote as vi,k and xi,k the value and assignment of bidder i for
item k respectively, to differentiate from the combinatorial setting where, previously, we
used vi(S), xi(S) to define the value and assignment for bundle S. An illustrative example
of an assignment market with bidders and items defining a bipartite graph is introduced in
Figure 2.2, where the edges represent values of bidders for items and the highlighted ones
constitute the final allocation.

Figure 2.2: A simple assignment market consisting of three bidders and three items.

Casting the allocation problem as an integer program as follows:

maximize
∑

i∈I

∑

k∈K
vi,kxi,k

subject to
∑

i∈I
xi,k = 1 ∀ k ∈ K (p(k))

∑

k∈K
xi,k = 1 ∀ i ∈ I (πi)

xi,k ∈ {0, 1} ∀ i ∈ I, k ∈ K

Similar to the combinatorial version of the WDP introduced in Section 2.3, the first con-
straint requires that every item is assigned to exactly one bidder, while the second ensures
that each bidder is only assigned one item. The variables xi,k can take binary values 0 or 1,
with 1 corresponding to bidder i being allocated item k, and 0 otherwise. On the right, we
define the dual variables p(k), corresponding to the item prices, and πi representing bidder
utilities. Since the constraint matrix in the assignment problem is totally unimodular, its
linear relaxation always admits an integral optimal solution, which can be determined in
polynomial runtime.
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The first analysis of assignment markets by Shapley and Shubik (1971) concluded that the
weak core is non-empty and unique minimum competitive equilibrium prices exist and are
derived as the set of solutions of the dual linear program. Computationally efficient algo-
rithms to derive this set are known under the assumptions that bidders submit sealed bids.
The resulting prices correspond to VCG prices, and therefore guarantee incentive compat-
ibility (Leonard, 1983). Applying the first welfare theorem in the context of assignment
markets guarantees that a Walrasian equilibrium maximizes social welfare.

Based on the well-known Hungarian algorithm of Kuhn (1955), Demange et al. (1986)
introduced a novel ascending auction algorithm that efficiently finds a competitive equilib-
rium. Their algorithm is based on the primal-dual design principle, and a central notion is
that of the demand set of a bidder, as only demands are reported in each round. Each bidder
announces their most desired item and an initial check is performed regarding whether each
item k can be allocated to a bidder i that demands it. If the answer is positive, the allocation
x and prices p correspond to a competitive equilibrium. Otherwise, if no such assignment
exists, a set of items O is overdemanded, namely the number of bidders with demand only
in this set is larger than its cardinality. By definition, a competitive equilibrium must have
no excess demand. The algorithm determines a minimally overdemanded set: an overde-
manded set O ∈ O that has no proper subset of items in O. For all items in the chosen
set O, prices are raised. Bidders report their demand sets based on the updated prices, and
the iterative procedure continues until overdemand is resolved, at which point a competitive
equilibrium has been reached. Given the nature of the valuations and the ascending prices,
the algorithm terminates in a finite number of steps. The proposed mechanism is incentive
compatible and robust against collusion. It is implementable in polynomial time and can be
seen as an ascending implementation of the celebrated VCG auction mechanism.

When the unit-demand assumption in assignment markets is removed, allowing buyers to
demand more than one unit, the beneficial traits typically seen in these markets cease to
exist. The absence of the unit-demand constraint means buyers can seek multiple units,
complicating the balance of supply and demand. This shift can result in challenges in deter-
mining efficient and stable outcomes in the market, as the straightforward dynamics associ-
ated with single-unit demand no longer apply. The section that follows discusses complex
auction formats and their resulting complexities.

To mitigate these complexities, the first publication in this dissertation investigates the im-
pact of financial constraints in the simplistic framework of assignment markets. Examining
auction mechanisms that can achieve efficient allocations in the presence of budget con-
straints, Talman and Yang (2011) developed a dynamic auction that always results in a core
allocation while van der Laan and Yang (2016) introduce an ascending auction resulting in a
rationed equilibrium. Our ascending auction algorithm (Batziou et al., 2022a) always yields
a core stable allocation and, under specific conditions, achieves welfare maximization. Ap-
proaching the issue from a computational complexity standpoint, we prove that the task of
determining outcomes that simultaneously satisfy core stability and welfare maximization
criteria is NP-hard, indicating computational infeasibility. In a predecessor of our complex-
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ity result, Bichler and Waldherr (2022), classified the equivalent problem in combinatorial
auctions as complete for the complexity class Σ2

p, a class that encompasses a broader and
more complex set of problems than NP. This analysis of assignment markets, drawing from
the hardness of the combinatorial setting, particularly in the context of financial constrained
settings, underlines the model’s utility in exploring market outcomes and attributes that are
desirable within constrained environments.

2.6 Auction Formats

Auctions are mechanisms that model transactions between a set of buyers that place bids and
compete for a set of items or services, and an auctioneer or a set of sellers that provide offers.
Bids typically have the form of monetary payments, expressing an agent’s willingness to pay
for an item or bundle. Use cases of auctions range from art houses to real estate, electricity
and environmental conservation. Common objectives used in auctions are maximization of
allocative efficiency (efficient auctions) or auctioneer revenue (optimal auctions).

For the purpose of simplicity in the analysis, we will focus on presenting auction formats
for the case of a single item - where only one item is available in the market and multiple
participants place bids expressing their preferences. The bidding and pricing mechanisms
presented can naturally be extended to multiple items.

2.6.1 Open Auctions

In open auctions, participants publicly announce bid prices, in a competitive setting. Each
bidder has knowledge of the current highest bid and, accounting for competition, can adjust
bids. Since the auction takes place in real-time, it allows for dynamic interactions between
participants, and the process terminates after a specified amount of time, matching buyers
to items. The most notable example is the English auction, where an auctioneer, starting
from the reserve price, receives ascending bids. Participants start with a low opening bid
and progressively increase in each bidding round, until all but one bidders drop out of the
process. The highest bidder is pronounced as winner of the auction and due to its public
nature, the process is transparent. English auctions have been applied in a multitude of
settings, such as art auctions, fundraising events or online platforms such as eBay.

While the English auction is an attractive, dynamic format for single-item settings, scal-
ability becomes an issue when selling multiple items. Due to the need for coordination
and active participation requirement, it can be considered a less attractive format for more
complex settings. In a clock auction, participants observe a clock price, which is gradually
increased in each round, and assess their utility for the current price. If utility is positive,
meaning that value exceeds clock price, bidders have incentive to remain in the auction for
the next round. Unlike the English auction, it does not allow for jump bids, where a bidder
might arbitrarily increase a bid between consecutive rounds. Instead, the bidding power is
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limited - a bidder either has positive utility and remains in the auction, or decides to per-
manently exit. The price is therefore dictated by the auctioneer, and the remaining, winning
bidder must submit the amount indicated by the clock price, which would be the exact value
of the second highest bidder, as the clock ends when only one bidder is left in the auction.
Clock auctions are strategyproof, since it is in the best interest of participants to remain in
the auction, while this remains a rational choice. Perhaps the most notable application of
ascending clock auctions is the use for spectrum allocation by the Federal Communications
Commission of the United States (Ausubel et al., 2004).

Depending on the auction format, clock prices may increase or decrease. The latter case
describes descending auctions, where a high asking price is broadcast to the participants.
Since no bidder can possibly observe a positive payoff under this price, the prices are sys-
tematically reduced in each stage, until one bidder signals that the current offer is accepted.
Dutch auctions, originally designed for the sale of flowers and other perishable goods, use
descending prices to explore participants’ willingness to pay fast. The bidder that first an-
nounces their acceptance of the clock price is allocated the item.

2.6.2 Sealed-Bid Auctions

In contrast to open formats, where prices are publicly announced and known among all par-
ticipants, the model of sealed-bid auctions promotes privacy of bids and preferences. Partic-
ipants independently place bids in a sealed envelope or online platform, and confidentiality
is assured since no bidder has knowledge of others’ bids. The highest bidder is declared
winner, and payments are dictated according to the rule of choice by the auctioneer.

Arguably the most widely used payment rule is the first-price, where the winner’s price is
set equal to the actual winning bid. An obvious limitation of the first-price rule is preserving
strategyproofness: a bidder may strategically misreport preferences based on an estimate of
others’ private values, and submit lower bids and aiming at maximizing utility by paying
less than the full value amount.

Circumventing this shortcoming, Vickrey (Vickrey, 1961) proposed the second-price pay-
ment rule, based on which the winner’s price equals the second highest bid received. This
rule limits the influence of an individual bidder in the final price and allocation. The novelty
of this algorithm lies in the fact that it guarantees truthful reporting while achieving opti-
mal efficiency. Each bidder’s dominant strategy is bidding their exact value, thus a lower bid
does not lead to higher payoff. This pricing rule has led to the development of the celebrated
Vickrey-Clarke-Groves (VCG) auction mechanism (Vickrey, 1961; Clarke, 1971; Groves,
1973), that is proved to be the unique strategyproof and efficient mechanism in settings
with independent private values (Green and Laffont, 1977; Holmström, 1979). Despite the
theoretical guarantees, the VCG mechanism is not extensively used in real-world applica-
tions. The algorithm is prone to collusion, since it does not satisfy group-strategyproofness,
which renders it undesirable in practice. In a combinatorial setting, VCG payments are com-
puted as the marginal contribution of each agent on the total auction welfare, a computation
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that requires exponential time in worst-case. An additional practical limitation is that VCG
does not account for budgets: payments are computed in a strategyproof manner but may
arbitrarily exceed the constraint. Moreover, the resulting allocation is not optimal for the
auctioneer, with respect to the goal of maximizing revenue.

In the context of procurement, the auction process is reversed. A set of sellers compete to
provide services to a single buyer. Unlike the auction models explored above, in a reverse
auction, a buyer (government, principal) announces a need for a certain amount of service
and sellers compete to win by naming prices. Reverse auctions are common in government
procurement, as well as online platforms.

The choice of auction format for a mechanism design problem is a complex task. A multi-
tude of factors need to be accounted for, such as the number of participants, their objectives
in the auction, the amount of information available as well as the budget constraints, to
name but a few.

In the second publication of this dissertation, we explore the performance of different auc-
tion formats, including VCG and clock auction mechanisms, and discuss their guarantees
and performance, in the presence of financial constraints. The VCG algorithm, due to the
intricate payment rule design, may arbitrarily exceed the given budget, while clock prices
offered to participants can be crafted in a manner that respects the constraint. Our work
explores the trade-off in terms of the mechanism properties, and the implications on the
practical environment of biodiversity conservation.

2.7 Complexity Theory

Given the computational hardness of allocation and pricing rules requiring an exponential
amount of information, an important challenge is to understand when a problem becomes
tractable and whether exact solutions can be determined in a time-efficient manner. The
research field of computational complexity not only examines the theoretical limitations of
achieving optimal allocations but also justifies the shift towards approximation mechanisms
as a practical response to these computational barriers, a class of mechanisms examined in
detail in Section 2.8, providing a framework for achieving approximately optimal solutions
in a computationally efficient manner.

Computational complexity theory emerges as a useful tool to analyze the practical impli-
cations of market designs. As an example of the relative hardness of computation of an
outcome, one may consider the following problems. On the one hand, sorting a set of bids,
in a single-item, open auction, and on the other, determining the winning bidder in a com-
binatorial auction. While the first task can be efficiently and exactly performed by a sorting
algorithm of choice, the second requires solving the WDP with an exponential number of
variables.

Based on the nature of the solution, problems may be broadly classified into different cat-
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2.7 Complexity Theory

egories. Decision problems model examples that can be expressed as questions on a set
of (possibly infinite) input values that receive a ’yes’ or ’no’ answer. On the other hand,
optimization problems revolve around the task of determining the best among a set of fea-
sible solutions. An example of a decision version of an allocation problem is framed as ’Is
there an allocation that yields revenue higher than $500?’, while the equivalent optimization
problem would be stated as ’Find a feasible allocation that maximizes revenue’. Computa-
tional complexity theory includes techniques for transforming problems between the two
versions, and thus is focused primarily on analyzing decision variants.

Initiated in the 1960s, computational complexity theory encompasses the study of cost and
resources required to solve a computational problem. The seminal work of Hartmanis and
Stearns (1965) introduced the multi-tape Turing machine, which, to this day, represents
the standard model of efficient computation. The model of a Turing machine is a central
concept in complexity theory, driven by both historical and practical reasons. Its simplicity
facilitates precise definitions and accurately models the behavior of real-world computers.
Turing machines, functioning as finite state machines, possess the ability to access and
modify symbols on tapes based on a set of rules. Tapes consist of infinite strings over a
specified alphabet, and a movable tape head scans symbols within tape cells while moving
left and right. In a deterministic Turing Machine, the transition function, given a state and
symbol scanned by the tape head, dictates the symbols written to the tape, the direction of
the tape head’s movement, and the subsequent state.

Non-deterministic Turing Machines, in contrast to their deterministic counterparts, operate
as non-deterministic finite automata. They constitute a purely theoretical concept, as they
cannot be implemented as a computing device. The key distinction lies in the fact that, for
a given combination of tape symbol and state, the forthcoming state and transition are not
uniquely determined. Instead, there exists a path (or tree) of possibilities.

A computational complexity class is defined as a set encompassing all problems requiring
the same amount of a specific computational resource to reach a solution. The primary cri-
teria for classifying computational problems are time and space requirements for a Turing
Machine to compute a solution. Formally, timeM (x) represents the number of computation
steps that a Turing Machine M performs until halting on input x, while spaceM (x) denotes
the number of cells required until the machine halts. Unlike the standard model of a Turing
machine with an unbounded tape, bounded Turing machines are subject to constraints on
the tape space that can be used for computation and are thus limited in sizes.

Definition 2.13 (BOUNDED TURING MACHINES). Let T : N → N describe a function
with T (n) ≥ n. The machine M is time-bounded if for any input x on the tape alphabet,
it holds that timeM (x) ≤ T (x). An equivalent definition applies to space-bounded Turing
machines.

Worst-case analysis involves determining an upper bound on time or space required for an
algorithm to solve a problem for the most pessimistic input scenario. The big-O notation
O(), the most prominent one in this context, indicates an asymptotic upper bound on the
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growth rate of a function, up to a constant factor, and is used to classify algorithms based
on their runtime.

Definition 2.14 (BIG-O NOTATION). Assume function f(x) receiving input x describing the
time complexity of an algorithm as well as comparison function g. Then f(x) = O(g(x)) if
there exists an input size x0 and a number M ∈ R≥0 such that |f(x)| ≤ M · g(x) for all
x ≥ x0.

The formal definition of a deterministic complexity class, described in terms of determinis-
tic Turing machines, is as follows:

Definition 2.15 (COMPLEXITY CLASS). Let T : N → N describe a function with T (n) ≥
n. The classes of languages computed by an O(T (n)) and O(S(n)) deterministic time- or
space- bounded Turing machine are respectively denoted as DTIME(T (n)) and DSPACE(S(n)).

For the case non-deterministic Turing machines, the same definition applies and the relevant
classes are denoted as NDTIME and NDSPACE.

Arguably the two fundamental classes within the study of computational complexity are the
classes P and NP. The class P consists of computational problems admitting efficient algo-
rithms.

Definition 2.16 (CLASS P). The complexity class P consists of decision problems for which
a deterministic Turing machine can achieve a solution within a polynomial number of com-
putation steps. This class comprises problems considered tractable, implying their efficient
solvability. Employing the formal definition outlined earlier, the class P is defined as:

P =
⋃

k≥0

DTIME(nk)

The class NP contains decision problems whose answers may be verified efficiently, but a
solution cannot be reached in polynomial time.

Definition 2.17 (CLASS NP). The complexity class NP consists of decision problems for
which a non-deterministic Turing machine can achieve a solution within a polynomial num-
ber of computation steps. This class comprises problems whose solutions can be verified by
a deterministic Turing machine in polynomial time, thus solutions are efficiently checked.
Following the formal definition outlined earlier, the class NP is defined as:

NP =
⋃

k≥0

NDTIME(nk)

Deterministic Turing machines are a subclass of non-deterministic, and therefore a natural
inclusion is P⊆ NP. The conjecture P=NP remains one of the biggest open questions in the
computer science community.
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In complexity theory, a reduction is defined as an algorithm that transforms a problem into
another. Efficient reductions, such as those executed in polynomial time, suggest an equiv-
alence in difficulty between two problems.

The inaugural problem of the class NP is the well-known Boolean satisfiability problem
(SAT) (Cook, 1971). In a seminal result, Cook proved that any problem belonging to class
NP can be polynomial time reduced by a deterministic Turing machine to the problem of
determining satisfiability of a Boolean formula. The notions of hardness and completeness
shed light on the hierarchy of difficulty of problems in a class.

Definition 2.18 (NP-HARDNESS). A problem π is NP-hard if every other problem π′ in the
class NP can be transformed into π in polynomial time.

Definition 2.19 (NP-COMPLETENESS). A problem π is NP-complete if it belongs to the
class NP and is NP-hard.

An NP-hard problem is at least as hard as the hardest problems within class NP, while the
class of NP-complete problems includes the hardest problems of the class. Demonstrating
NP-hardness is performed via a polynomial time reduction from a known NP-complete
problem.

The field of computational complexity provides crucial insights into the limits of what can
be computed efficiently, distinguishing tractable problems from those with exponential com-
plexity. This distinction has significant implications for economic systems and algorithmic
design, highlighting the critical balance between theoretical exploration and practical appli-
cation.

2.8 Approximation Mechanisms

Given the intractability of achieving exact solutions for NP-hard problems, researchers turn
to approximation algorithms as a pragmatic approach to finding solutions that are close to
optimal. As discussed in Section 2.3, the WDP is an NP-complete optimization problem,
thus solving the allocation and pricing problems to optimality is intractable. Commercial
solvers might require days or weeks to reach an optimal outcome for problem formulations
with a large number of variables and constraints. Exploring the classes of problem instances
that allow for tractable solutions is a key focus in combinatorial optimization, but an alterna-
tive approach involves designing algorithms that approximate the optimal solution as closely
as possible while remaining computationally efficient. In contrast to heuristic methods that
are commonly employed in combinatorial optimization, approximation algorithms provide
worst-case bounds on the solution quality. Approximation mechanisms draw on algorithms
for NP-hard problems and seek to find near-optimal solutions for markets where admitting
exact ones is computationally infeasible.
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Typically, approximation algorithms are designed for theoretical problem classes such as
knapsack or bin packing, and do not consider incentives. Approximation mechanisms, on
the other hand, are designed with incentive compatibility and computational efficiency in
mind. In fact, the design goal is to accommodate a large number of the properties presented
in Section 2.2, while achieving a close approximation of the optimal solution in polynomial
time.

Problems in (algorithmic) mechanisms design can broadly be classified into two categories.
The first one involves problems where an optimal mechanism is known but computationally
infeasible. Such examples have largely been focused on combinatorial auctions, with the ob-
jective of maximizing social welfare among participants (Dobzinski et al., 2012; Holzman
et al., 2004; Lavi and Swamy, 2011; Lehmann et al., 2005). However, combining computa-
tional tractability with allocative efficiency and incentives for truthful reporting is challeng-
ing: the notable VCG auction mechanism becomes quickly intractable, and approximately
solving the WDP no longer satisfies the truthfulness property (Nisan and Ronen, 2007). A
stream of research addressing this challenge has focused on truthful approximations: de-
signing mechanisms that admit solutions close to the optimal, in a multiplicative manner.
The second class contains optimization problems for which no optimal truthful mechanism
is known, but that also do not possess any proof of intractability. An important problem
in this class is scheduling on unrelated machines, and the goal is to achieve an optimal
approximation ratio, dropping the computational feasibility requirement.

Deterministic approximation schemes result in a fixed outcome when provided with the
same input, and a notable example is the family of greedy algorithms. Aiming at satisfy-
ing truthfulness, a useful allocation rule is the maximal-in-range (MIR), that determines the
allocation that maximizes welfare within a restricted set of allocations, the range. Mecha-
nisms that satisfy MIR are strategyproof. Due to the strong requirement of determinism, one
cannot expect close approximations achievable while maintaining truthfulness (Lavi et al.,
2003; Papadimitriou et al., 2008).

Contrary to the deterministic case, randomized approximation schemes produce outcomes
in expectation, including an element of stochasticity in their nature. An extension of the
MIR principle to the randomized realm is the property of maximal-in-distributional range
(MIDR), where the choice of range is replaced by a set of distributions over allocations.
The allocation rule decides on the outcome that maximizes expected welfare for the bid-
ders, once the distribution is fixed. Lavi and Swamy (2011) and Dobzinski et al. (2012)
introduced a powerful tool for achieving good approximations under randomization: black
box reductions. Based on this technique, a randomized approximation mechanism can be
internally invoked multiple times and achieve truthfulness, while maintaining the same ap-
proximation factor.

A restricted assumption on the bidders in combinatorial auctions that is of interest in this
dissertation is that of single-mindedness. Single-minded bidders are only interested in ac-
quiring a single item or package.
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Definition 2.20 (SINGLE-MINDEDNESS). Let vi : 2K → R≥0 define the valuation function
of bidder i. The bidder is considered single-minded if there exists a bundle T and value
vi(T ) such that vi(Si) = vi(T ) for all Si ⊇ T and vi(Si) = 0 for all other bundles S.

Mechanisms with single-minded bidders fall into the category of single-parameter mecha-
nism design, a class that admits simple, strategyproof approximation designs. The following
theorem, introduced by Nisan (2007), summarizes necessary conditions for strategyproof-
ness in auctions with single-minded bidders.

Theorem 2.3. A mechanismM implementing a social choice function f with single-minded
bidders is strategyproof if and only if the following two conditions are met:

1. Monotonicity of allocation rule: f is monotone in the valuations, namely if a bidder
wins bundle Si by bidding vi(Si), will still remain winner by placing a higher bid
v′i(Si) > vi(Si).

2. Critical payments: the price paid by a winning bidder pi equals the infimum of all
values such that bid vi(Si) remains winner of Si.

Greedy-acceptance algorithms, a class of deterministic approximation mechanisms, under
the single-mindedness assumption, satisfy the aforementioned criteria and can be thus char-
acterized as strategyproof (Lehmann et al., 2002). The underlying principle of greedy al-
gorithms lies in making the locally optimal choice in each step, and in the context of
auctions, accepting at each stage the candidate optimal bid to the solution. However, in
the multi-minded setting, no payment scheme exists that could render greedy mechanisms
strategyproof: the unique truthful mechanism is the VCG. The idea of greedy selection is
the core of deferred acceptance auctions (DAAs), proposed by Milgrom and Segal (2020),
which follows the principle of the deferred acceptance algorithm for the one-to-one stable
marriage problem of Gale and Shapley (1962). Instead of sequentially accepting, DAAs
iteratively reject the lowest value bids in each stage, thus employing a backward greedy
technique. These auctions satisfy numerous desirable properties, such as strategyproofness,
and can be implemented in a multitude of ways: as sealed-bid or in a clock manner.

Definition 2.21 (DEFERRED-ACCEPTANCE AUCTIONS). Deferred-acceptance auctions con-
sist of a series of steps t. We define as Λt ⊆ I the set of bidders that are active in each step,
namely whose bids have not been rejected by the auctioneer, with Λ1 = I. The auction
consists of a set of deterministic scoring rules σΛt

i (bi, bI/ Λt
), non-increasing in bi. At each

step t, a decision is made as follows:

• If Λt is feasible, all bidders in Λt are accepted and each receives their critical pay-
ment pi(bi) = sup{b′i | i ∈ Λ(b′i, b−i)}, where Λ(b′i, b−i) represents the set of bidders
that would have been accepted if the bids reported were b′i instead of bi.

• If Λt is infeasible, remove agents i from the next round, i.e. Λt+1 = Λt/ {i}, with
i ∈ argmax{σΛt

i (bi, bI/ Λt
)} being the active bidder with the lowest scores.
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Any function of the bids can be expressed as a scoring function: from simple versions
returning only the bid of a bidder, to more complex where the ratio of contribution of a bid
to a bundle is computed and beyond. A notable result in DAAs for combinatorial auctions
with single-minded bidders by Dütting et al. (2017) presents aO(

√
m logm) approximation

bound (with m = |K|), and provide additional results for the closely related family of
knapsack auctions.

Resorting to approximation algorithms has long been the goal of mechanism designers con-
cerned with maintaining desirable properties while remaining computationally tractable.
Due to the attractive trade-off offered by such schemes, a central research direction focuses
in improving approximation bounds, constantly decreasing the optimality gap by novel al-
gorithmic techniques.
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We study markets where a set of indivisible items is sold to bidders with unit-demand valuations,
subject to a hard budget limit. Without financial constraints and pure quasilinear bidders, this
assignment model allows for a simple ascending auction format that maximizes welfare and
is incentive-compatible and core-stable. Introducing budget constraints, the ascending auction
requires strong additional conditions on the unit-demand preferences to maintain its properties. We
show that, without these conditions, we cannot hope for an incentive-compatible and core-stable
mechanism. We design an iterative algorithm that depends solely on a trivially verifiable ex-post
condition and demand queries, and with appropriate decisions made by an auctioneer, always
yields a welfare-maximizing and core-stable outcome. If these conditions do not hold, we cannot
hope for incentive-compatibility and computing welfare-maximizing assignments and core-stable
prices is hard: Even in the presence of value queries, where bidders reveal their valuations and
budgets truthfully, we prove that the problem becomes NP-complete for the assignment market
model. The analysis complements complexity results for markets with more complex valuations
and shows that even with simple unit-demand bidders the problem becomes intractable. This raises
doubts on the efficiency of simple auction designs as they are used in high-stakes markets, where
budget constraints typically play a role.

1 INTRODUCTION
The idea of a market exchange automatically channeling self-interest toward welfare maximizing
outcomes is a central theme in neoclassical economics. The initial conjecture of the “invisible
hand” goes back to Adam Smith. Formally, the Arrow–Debreu model showed that under convex
preferences and perfect competition there must be a set of Walrasian equilibrium prices [Arrow
and Debreu, 1954]. In these models, market participants are price-takers, and they sell or buy
divisible goods in order to maximize their total value subject to their budget or initial wealth. The
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quasilinear utility functions, i.e. buyers maximize value minus the price they pay (their payoff) and
there are no budget constraints [Baldwin and Klemperer, 2019, Bikhchandani and Mamer, 1997, Gul
and Stacchetti, 1999, Kelso and Crawford, 1982, Leme and Wong, 2017]. The underlying question is
under which conditions on the preferences markets with indivisible goods can be assumed to be
core-stable1 and welfare-maximizing. This literature focuses on larger markets where bidders are
assumed to be price-takers and it emphasizes core-stability over incentive-compatibility.
For two-sided matching markets where quasilinear buyers have unit-demand, referred to as

assignment markets, welfare-maximization, core-stability and even incentive-compatibility can be
achieved with a polynomial-time auction algorithm [Shapley and Shubik, 1971]. These auctions can
be interpreted as primal-dual algorithms, where the auctioneer specifies a price vector (a demand
query) in each round and the bidders respond with their demand set, i.e. the set of goods that
maximize their payoff for given prices.

Unfortunately, it is well-known that we cannot hope for such positive results with more general
quasilinear preferences. Incentive-compatibility and core-stability are conflicting in general markets
with quasilinear utilities [Ausubel andMilgrom, 2006]. Even if we give up on incentive-compatibility,
only very restricted types of valuations (e.g., substitutes valuations) allow for Walrasian equilibria.2
As discused in Bikhchandani and Ostroy [2002], under general valuations (allowing for substitutes
and complements), competitive equilibrium prices need to be non-linear and personalized and the
core can be empty.
Compared to early utility models in general equilibrium theory such as the Fisher markets for

divisible items [Eisenberg and Gale, 1959, Orlin, 2010], quasilinear utility functions imply that
bidders do not have budget constraints. In many markets, this is too strong an assumption [Che and
Gale, 2000, Dobzinski et al., 2008, Dütting et al., 2016]. Bidders might well maximize payoff, but they
need to respect budget constraints. Spectrum auctions are just one example, where bidders have
general valuations with complements and substitutes and they are typically financially constrained
[Bichler and Goeree, 2017]. Incentive-compatible mechanisms are known to be impossible in
multi-object markets [Dobzinski et al., 2008]. It is interesting to understand how core-stable and
welfare-maximizing prices can be computed in the presence of budget constraints if we assume
bidders to be price-takers. This question was recently analyzed for markets that allow for general
valuations where the auctioneer has complete information about values and budgets [Bichler and
Waldherr, 2022]. The result is a spoiler: Computing the welfare-maximizing core-stable outcome is
a Σ

p
2 -hard optimization problem. Such problems are considered intractable, even for very small

problem instances.
The intuition behind this result is that the allocation and pricing problems cannot be treated

independently anymore. With quasilinear utility functions, the auctioneer first determines the
welfare-maximizing outcome and then a corresponding price vector. If budget constraints are
binding, then these constraints on the prices need to be considered when computing the welfare-
maximizing outcome, which transforms the allocation and pricing problem into a bilevel integer
program for general valuations. Considering that budget constraints are a reality in many markets,
this casts doubts whether simple market institutions based on polynomial-time algorithms (e.g.,
simple ascending auctions as used in selling spectrum nowadays) can find a welfare-maximizing out-
come even if bidders were price-takers. General preferences as allowed in combinatorial exchanges,
might be too much to ask for. A natural question is whether we can at least hope for core-stable

1The core is the set of feasible outcomes that cannot be improved upon by a subset of the economy’s participants.
2A Walrasian equilibrium describes a competitive equilibrium where supply equals demand and prices are linear (i.e., there
is a price for each good) and anonymous (i.e., the price is the same for all participants and there is no price differentiation)
[Baldwin and Klemperer, 2019, Bikhchandani and Mamer, 1997, Leme, 2017].

2



and welfare-maximizing outcomes in markets where bidders have unit-demand valuations, and
seek to maximize payoff subject budget constraints.

1.1 Contributions
We study the properties that can be achieved in assignment markets with unit-demand bidders who
aim to maximize their payoff but have hard budget constraints as illustrated in the previous example.
The aim of this work is to compute welfare-maximizing and core-stable outcomes in the presence of
such financial constraints. If we cannot achieve incentive-compatibility and core-stability with such
simple valuations, also markets with more complex preferences will not satisfy these properties.

We first introduce and analyze an iterative process that always finds a core-stable outcome using
only demand queries based on prices and no direct access to valuations. In contrast to Aggarwal
et al. [2009], where bidders’ valuations are directly queried, a distinguishing part of our algorithm
is that it relies exclusively on demand queries and provides a natural generalization of the auction
by Demange et al. [1986]. Moreover, we place emphasis on the question of when we can expect
the outcome of the auction to not only lie in the core, but also maximize welfare among all core
allocations, as welfare maximization is typically a central goal in market design. During the auction
process, the auctioneer may sometimes have to make decisions on which buyer to exclude from
certain items in subsequent rounds. One of our main results is that, for any market instance, if the
auctioneer would be able to guess the right decisions throughout the auction, we terminate in a
welfare-maximizing core-allocation. In particular, if the auctioneer does not have to make any such
decisions - which is trivial to check ex-post - our result implies that the auction always finds a
welfare-maximizing core-outcome. Unfortunately, we do not know ex-ante whether the condition
holds, and if it does not, welfare can be arbitrarily low.

Now, it is important to understand whether we can hope for an incentive-compatible and welfare-
maximizing core-selecting mechanism without additional conditions beyond the already strong
restriction to unit-demand valuations. Unfortunately, the answer to this question is negative. In
a novel result, we show that no auction mechanism for the assignment market can be incentive-
compatible and core-stable when buyers face budget constraints. If we give up on incentive-
compatibility and assume full access to the true valuations (i.e., via value queries) and buyer
budgets, we can compute a core-stable and welfare-maximizing outcome.

One might expect that the problem admits a polynomial time solution, since, without the presence
of budget constraints, the problem lies in complexity class P. Unfortunately, a main finding of
this paper shows that determining core-stable, welfare-maximizing outcomes with financially
constrained buyers is an NP-complete optimization problem, even for the assignment market with
full access to valuations and budgets. This means, the existence of budget constraints renders the
problem of determining welfare-maximizing, core-stable outcomes NP-hard. The hardness proof
requires an involved reduction from the maximum independent set problem. One aspect that is
making the reduction difficult is that prices need to be considered as continuous variables. These
results show that, even for the simplest type of multi-object markets, those with only unit-demand
bidders, we cannot expect core-stable and welfare-maximizing outcomes unless additional strong
conditions are satisfied that are typically unknown ex-ante.

2 RELATED LITERATURE
Two-sided matching markets describe markets where buyers want to win at most one item (also
known as the unit-demand model) and sellers sell only one item. Buyers and sellers are disjoint sets
of agents and each buyer forms exclusive relationships with a seller. Such markets are central to the
economic sciences. The well-known marriage model of Gale and Shapley [1962] assumes ordinal
preferences and non-transferable utility. Shapley and Shubik [1971] analyzed such markets with
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quasilinear utility functions and showed that the core of this game is nonempty and encompasses
all competitive equilibria. Under the quasilinear utility model, buyers maximize value minus price,
while sellers maximize price minus cost. While their setting assumes access to all valuations,
Demange et al. [1986] showed that an ascending auction with only demand queries results in a
competitive equilibrium at the lowest possible price, i.e. at the competitive equilibrium price vector
that is optimal for buyers. In such an auction, the auctioneer specifies a price vector (the demand
query) in each round, and buyers respond with their demand set, i.e. the set of goods that maximize
payoff at the prices.

The housing market of Shapley and Scarf [1974] is an example of a market without transferable
utility or monetary funds. In this market, each agent is endowed with a good or house, and each
agent is interested in one house only. The goal of this market is to redistribute ownership of the
houses in accordance with the ordinal preferences of the agents. In such housing markets, the core
set is nonempty. If no agent is indifferent between any two houses, then the economy has a unique
competitive allocation, which is also the unique strict core allocation. An allocation belongs to the
strong core, if no coalition of buyers and sellers can make all members as well off and at least one
member better off by trading items among themselves. We assume an allocation belongs to the
weak core if no coalition can lead to all members’ utilities improved when redistributing items
amongst themselves.

Quinzii [1984] generalizes the model of Shapley and Scarf [1974] to one with multiple agents with
unit-demand and transferable but non-quasilinear utility. Buyers derive utility from at most one
good and a transfer of money. Sellers aim at obtaining the highest possible price above a reservation
level. She proved the general existence of the core in her model, and its equivalence to competitive
equilibria. In a closely related model, Gale [1984] shows that a competitive equilibrium always
exists. These models allow for budgets, but differ from hard budget constraints as examined in our
work, where bidders are not permitted to spend more than a certain amount of money. Alaei et al.
[2016] provide a structural characterization of utilities in competitive equilibria and a mechanism
that is group-strategyproof. These non-quasilinear models assume utility functions that are not
necessarily quasilinear, but where small changes of prices do not lead to a discontinuous change of
the bidders’ utilities as is the case with hard budget constraints.

Closer to this paper is another line of research that focuses on assignment markets where buyers
maximize payoff subject to a hard budget constraint. Aggarwal et al. [2009] show that an extension
of the Hungarian algorithm is incentive-compatible and bidder-optimal if the auction is in general
position, a rather specific condition that is usually unknown ex-ante and hard to check. Typically,
ascending auctions use only demand queries, namely the auctioneer specifies a price and the bidders
respond with their demand set. The auction additionally requires value and budget queries, thereby
asking for the value of a specific good to a bidder and their budget during the auction. This is quite
different from the ascending auctions based on price-based demand queries only, as described in
Demange et al. [1986] and the subsequent literature or compared to ascending auctions used in the
field. Fujishige and Tamura [2007] consider two-sided markets with budget-constrained bidders
whose valuation functions are more general than unit-demand. Their results imply that in the
unit-demand setting, there always exists a core allocation. These prior results aim exclusively for
core-stability, but do not attempt to maximize welfare as done in this work.

In contrast to competitive equilibrium theory, Henzinger and Loitzenbauer [2015] and its prede-
cessor Dütting et al. [2013] do not aim for core-stability. Note that with hard budget constraints,
core-stability does not imply envy-freeness. Consider for example a market with two buyers and
one seller selling a single good. If both buyers have the same budget and the same valuation for
the good, which exceeds their budget, the only possibility such that no bidder envies the other
one is that the good remains unsold. Such an outcome is clearly not in the core, because there
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is a coalition of buyer and seller who want to deviate. Note that such types of envy cannot arise
without binding budget constraints, because if the price is at the value of two bidders, they are
indifferent between getting the object or the empty set. It depends on the considered market,
whether envy-freeness and bidder-optimality or core-stability should be preferred. While their
model appears to be reasonable in cases where all items are sold by one large seller, like ad auctions,
it may not seem reasonable for individual sellers to participate in an auction where items remain
unsold for the sake of envy-freeness. Finally, van der Laan and Yang [2016] propose an ascending
auction for the assignment market that results in an equilibrium under allotment, which is in general
not a core-stable outcome.
Core-stability and incentive-compatibility are arguably the most important axioms in market

design. Whether one can design assignment markets that satisfy these axioms in the presence
of hard budget constraints has not yet been answered. We show that, without strong additional
assumptions, this is not possible. Importantly, even with access to all valuations and budgets, the
problem is computationally intractable for large market instances.

3 PRELIMINARIES
A two-sided matching marketM = (B,S,v,b, r ) consists of two disjoint sets of agents B and S,
representing bidders i ∈ B = {1, 2, . . . ,n} and goods j ∈ S = {1, 2, . . . ,m} ∪ {0}. We identify good
j with the seller owning it, i.e. each seller owns one good. The 0-item is a dummy item and does not
have value to any bidder, meaning that receiving good 0 corresponds no real good. Additionally, the
market is defined by each bidder i’s valuation vi : S → Z≥0 with vi (0) = 0 and budget bi ∈ Z>0, as
well as each seller j’s reserve values/ ask price r j ∈ Z≥0.

A price vector is a vector p ∈ RS with p(0) = 0, assigning price p(j) to every good j . Bidders have
quasi-linear utilities, so if bidder i receives item j under prices p, their utility is πi (j,p) = vi (j)−p(j),
if p(j) ≤ bi , and πi (j,p) = −∞, otherwise. An assignment is represented as a map µ : B → S from
bidders to the items they receive, where |µ−1({j})| ≤ 1 for all j , 0, so only the dummy good may
be assigned to more than one bidder. An outcome is a pair (µ,p), where µ is an assignment and p is
a price vector, such that no budget constraint is violated, i.e. p(µ(i)) ≤ bi for all i ∈ B and only sold
items may have a positive price: p(j) > 0 implies that |µ−1({j})| = 1. For our iterative auction in
Section 4,for the sake of simplicity, we assume all reserve prices to be equal to 0. The results can be
easily generalized by starting the auction at the reserve prices, and not at 0.

In neoclassic economics, a (Benthamite) social welfare function is defined as the sum of cardinally
measurable values vi of all market participants. An optimal allocation of resources is one which
maximizes the social welfare in this sense:

max
{

n∑
i=1

vi (µ(i)) : µ is an assignment
}

5



This can be written in LP-form as

max
n∑
i=1

m∑
j=1

xi jvi (j) (1)

s.t.
n∑
i=1

xi j ≤ 1∀j = 1, . . . ,m (pj )
m∑
j=1

xi j ≤ 1∀i = 1, . . . ,n (πi )

x ≥ 0
where the variables in parentheses denote the corresponding duals. This assignment problem is
well-known to have an integral optimal solution and can be solved in O(n4) [Kuhn, 1955]. An
integral solution x corresponds to an assignment µ via xi j = 1 ⇔ µ(i) = j . This notion of utilitarian
welfare maximization, i.e. maximizing the sum of participants’ utilities, is widely used in auction
theory and competitive equilibrium theory.

New welfare economics, in the tradition of Pareto defies the idea of interpersonal utility compar-
isons and stipulates ordinal preferences. Pareto efficiency or Pareto optimality is the key design
desideratum in this literature. A market outcome is Pareto efficient, if no market participant can
be better off without making at least one other participant worse off. With cardinal utilities and
interpersonal comparisons a welfare-maximizing outcome is also Pareto efficient. This is because
any Pareto-improvement would increase welfare, which is not possible by definition of a welfare-
maximizing allocation. It has also been shown that the converse is true [Negishi, 1960]. Another
design desideratum is that of core-stability.

Definition 3.1 (Core outcome). Let (µ,p) be an outcome. A bidder-seller pair (i, j) ∈ B ×S is called
a blocking pair, if πi (j,p) > πi (µ(i),p) and p(j) < bi . (µ,p) is a core outcome, if there are no blocking
pairs. We also say that (µ,p) is core-stable in this case.
The idea of a blocking pair (i, j) is that both bidder i and seller j would strictly increase their

utility, if i received item j instead of µ(i): if i pays p(j)+ε for item j , then still πi (j,p)−ε > πi (µ(i),p),
and at the same time, the profit of seller j is increased by ε .

In the literature, a core outcome is often alternatively defined in the following way: an outcome
(µ,p) is in the core if there are no subsets B ′ ⊆ B and S′ ⊆ S and an outcome (µ ′,p ′) on B ′ × S′

such that πi (µ ′(i),p ′) > πi (µ(i),p) for all i ∈ B ′ and p ′(j) > p(j) for all j ∈ S′ (see for example
[Zhou, 2017]). These definitions can easily be shown to be equivalent: first suppose that such subsets
B ′ and S′ do exist. Then it is easy to see that both sets are nonempty. In particular, let i ∈ B ′ and
j = µ ′(i). Then p ′(j) > p(j), so p(j) < bi . Furthermore, we have πi (j,p) > πi (j,p ′) > πi (µ(i),p), so
(i, j) is a blocking pair. On the other hand, if (i, j) is a blocking pair, then as in the above paragraph,
we can set p ′(j) = p(j) + ε and get πi (j,p ′) > πi (µ(i),p) and p ′(j) > p(j). Thus we can choose
B ′ = {i}, S′ = {j}, µ ′(i) = j and p ′(j) = p(j) + ε in the alternative definition.
We focus on the problem of finding welfare-maximizing core outcomes:

max
{

n∑
i=1

vi (µ(i)) : (µ,p) is a core outcome
}
. (2)

If budgets are not binding, i.e., bi > vi (j) for all bidders i and all goods j, core-stability coincides
with the definition of a competitive equilibrium. For this, let us first define the demand set of bidder
i , which consist of the most preferred, affordable among all items at prices p:

Di (p) =
{
j : p(j) ≤ bi ∧ πi (j,p) ≥ πi (k,p)∀k with p(k) ≤ bi

}
.
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Definition 3.2 (Competitive equilibrium). An outcome (µ,p) is a competitive equilibrium, if µ(i) ∈
Di (p) for all bidders i .

The next proposition summarizes well-known equivalences of the different notions for markets
where budgets are not binding.

Proposition 3.3 (Bikhchandani and Mamer [1997]). Suppose that bi > vi (j) for all i and j , and
let (µ,p) be an outcome. Then the following statements are equivalent.
(1) (µ,p) is a core outcome.
(2) (µ,p) is a competitive equilibrium.
(3) The variables defined by xi j = 1 ⇔ µ(i) = j solve the linear program (1) and pj = p(j) is a

corresponding dual solution.
(4) (µ,p) is a welfare-maximizing core outcome.

This equivalence no longer remains true if bidders have binding budgets: in general, a core
outcome needs not be a competitive equilibrium, and different core outcomes might generate very
different welfare.

Example 3.4. For a very simple example, consider two bidders 1, 2 and one item A. Suppose that
v1(A) = 6 and v2(A) = 10. Both bidders have the same budget b1 = b2 = 1. It is easy to see that
there are two core outcomes: either bidder 1 or 2 receives A for a price of 1, while the other bidder
does not receive an item. Both core outcomes are no competitive equilibria, since the bidder i not
receiving A does not receive an item in Di (p) = {A}. This bidder thus envies the other. Moreover,
one core outcome generates a welfare of 6, while the other generates a welfare of 10. Ignoring
budgets, the above LP-formulation would assign item A to bidder 2 at a price p(A) ∈ [6, 10] - no
such price is feasible when considering the budget constraints.
Besides, as we show, finding a welfare-maximizing core outcome is in general NP-complete,

so we cannot expect a simple LP-formulation as above to exist. Note that efficient algorithms for
determining core outcomes under budget constraints have been discussed in the literature. However,
desirable properties like bidder-optimality and incentive-compatibility are only guaranteed if
additional assumptions on the bidders’ preferences are made. Aggarwal et al. [2009] introduced
the notion of general position, a sufficient condition for ascending auctions to indeed find the
welfare-maximizing core-stable outcome. As this condition has received considerable attention in
the literature, we provide a brief discussion:
Definition 3.5 (Aggarwal et al. [2009]). Consider a directed bipartite graph with edges between

bidders B and goods S (including dummy good 0): For i ∈ B and j ∈ S, there is a
• forward-edge from i to j with weight −vi (j)
• backward-edge from j to i with weight vi (j)
• maximum-price edge from i to j with weight bi −vi (j)
• terminal edge from i to the dummy good 0 with weight 0.

The auction is in general position, if for every bidder i , there are no two alternating walks, following
alternating forward and backward edges and ending with a distinct maximum-price or terminal
edge, having the same total weight.

Example 3.6. Consider an auction with two bidders 1 and 2 with b1 = b2. The number of goods
and bidders’ valuations may be chosen arbitrarily. Assume j ∈ S is any good. Consider the following
path starting from bidder 1: 1 → j → 2 → j, where the last edge is a maximum-price edge, with
total weight −v1(j) +v2(j) + (b2 −v2(j)) = b2 −v1(j). Now consider the path 1 → j , where the only
edge is a maximum-price edge, with weight b1 −v1(j). Since b1 = b2, the total weight of both paths
is equal, so the auction is not in general position.
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As the example shows, the general position condition implies that in an ascending auction, no
two bidders may reach their budget limits at the same time. Henzinger and Loitzenbauer [2015]
claim the general position condition is rather restrictive, as it excludes, for instance, symmetric
bidders. They additionally show that no polynomial-time algorithm can determine whether a set of
valuations is in general position. The general position condition is sufficient but not necessary for
the existence of a unique bidder-optimal stable matching [Aggarwal et al., 2009], which is thus
also welfare-maximizing by our results below. As we will see, there are valuations not in general
position, but where a welfare-maximizing core allocation can still be computed efficiently with our
auction.
Let us now introduce an iterative auction that always finds a core-stable outcome in markets

with budget constrained buyers and, if a simple ex-post condition is satisfied, maximizes welfare
among all core outcomes.

4 AN ITERATIVE AUCTION
Our auction is based on the well-known auction by Demange et al. [1986] (denoted as DGS
auction from now on), which implements the Hungarian algorithm. Contrary to Aggarwal et al.
[2009], where the underlying assumption is that bidders report their valuations and budgets to the
auctioneer, in our auction, they only have to report their demand sets at certain prices, similar to
other ascending auctions [Mishra and Parkes, 2007]. We will provide conditions when reporting
demand sets truthfully is incentive-compatible. Thus, we provide a natural generalization of the
DGS auction to markets where bidders have binding budget constraints. The simple ascending
nature of our auction also naturally motivates an ex-post optimality condition for the returned
allocation. Without loss of generality, we will assume r j = 0 in this section.

In the auction process, we may need to “forbid” some bidder to demand a certain item. We model
this by introducing subsets R1, . . . ,Rn ⊆ S of goods for every bidder and define the restricted
demand set to be

Di (p,Ri ) =
{
j ∈ Ri : p(j) ≤ bi ∧ πi (j,p) ≥ πi (k,p)∀k ∈ Ri with p(k) ≤ bi

}
.

Note that our definition of the restricted demand set coincides with the definition of demand sets
by van der Laan and Yang [2016]. The set consists of all affordable items that generate the highest
utility among all items in Ri . We introduce the well-known notions of over- and underdemanded
sets [Demange et al., 1986, Mishra and Talman, 2006], adjusted to our notion of restricted demand
sets.

Definition 4.1. Let a price vector p and sets R1, . . . ,Rn ⊆ S with Ri , ∅ ∀i be given. A setT ⊆ S
is

• overdemanded, if 0 < T and |{i ∈ B : Di (p,Ri ) ⊆ T }| > |T |, and
• underdemanded, if p(j) > 0 for all j ∈ T and |{i ∈ B : Di (p,Ri ) ∩T , ∅}| < |T |.

T is minimally over-/underdemanded, if it does not contain a proper over-/underdemanded subset.

Finally, we define the strict budget set of bidder i by Bi (p) = {j ∈ S : p(j) < bi }. It consists of
all items with prices strictly less than the bidder’s budget.

4.1 The Auction Algorithm
Algorithm 1 describes our auction. It is based on the following observation.

Lemma 4.2. An outcome (µ,p) is in the core if and only if there are sets R1, . . . ,Rn ⊆ S such that
Bi (p) ⊆ Ri and µ(i) ∈ Di (p,Ri ) for all i .
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Proof. Suppose first that (µ,p) is a core outcome. Set Ri = {j ∈ S : p(j) < bi } ∪ {µ(i)}. Then
µ(i) ∈ Di (p,Ri ), since otherwise there would exist an item j with p(j) < bi generating a higher
utility than µ(i) - this would constitute a blocking pair.

Now let’s assume that there are sets Ri as described with µ(i) ∈ Di (p,Ri ) for all i . Suppose there
is a blocking pair (i, j). Then j costs strictly less than bi , so j ∈ Ri , and j generates a higher utility
than µ(i). This would contradict µ(i) ∈ Di (p,Ri ). Thus, (µ,p) is a core outcome. □

Computing a core outcome can thus also be interpreted as computing a “competitive equilibrium”
with respect to the restricted demand sets Di (p,Ri ). This is quite similar to the definition of an
equilibrium under allotment of van der Laan and Yang [2016]. However, they have other requirements
on the sets Ri , which, in general, cause their equilibria not to lie in the core.
In view of Lemma 4.2, the goal of our auction procedure is to determine prices p together with

sets Ri , such that there are neither over- nor underdemanded sets of items. As observed in Mishra
and Talman [2006], this implies existence of an assignment µ : B → S, such that every bidder
receives an item in their demand set, and every item with positive price gets assigned to some
bidder. The following result is due to the aforementioned work.

Proposition 4.3. Suppose that with respect to the Di (p,Ri ), there is no over- or underdemanded
set of items. Then there is an assignment µ : B → S such that µ(i) ∈ Di (p,Ri ) for all i , and for all
j ∈ S with p(j) > 0, there is some i with µ(i) = j.

Note that they considers markets without budgets and demand sets without restrictions. However,
their proof only uses combinatorial properties of the demand sets, so it can be directly adapted to
our setting. Thus, we omit a proof here.

ALGORITHM 1: Iterative Auction
1 Set p1 = (0, . . . , 0) and R1i = S for all bidders i . Set t = 1, O0 = ∅ and I1 = ∅.
2 Request Di (pt ,Rti ) from all bidders. If t > 1 and the set

I t = {i ∈ B : Di (pt−1,Rt−1i ) ⊆ Ot−1 ∧ Di (pt−1,Rt−1i ) \ Di (pt ,Rti ) , ∅}
is nonempty, go to Step 3. Otherwise, if there is an overdemanded set, go to Step 4. Else, go to Step 5.

3 Choose a bidder i ∈ I t and define J ti = Di (pt−1,Rt−1i ) \ Di (pt ,Rti ). Set Rt+1i = Rti \ J ti , Ot = ∅ and
pt+1 = pt−1. For all other bidders i ′, the sets Rt+1i′ = Rti′ are unchanged. Set t = t + 1 and go to Step 2.

4 Choose a minimally overdemanded set Ot . For all j ∈ Ot , set pt+1(j) = pt (j) + 1. The prices for all other
goods, as well as the sets Rti remain unchanged. Set t = t + 1 and go to Step 2.

5 Compute an assignment µ, such that µ(i) ∈ Di (pt ,Rti ) for all bidders i and µ(B) ⊆ {j ∈ S : pt (j) > 0}.
Set p = pt and return (µ,p).

Step 3 of the auction ensures that we do not end up with underdemanded sets of items. Moreover,
sets Rti always contain at least all items that cost strictly less than the bidder’s budget bi . Our proof
of correctness is similar to the one by van der Laan and Yang [2016]: due to the budget constraints,
underdemanded sets of items may appear. We show that Step 3 of the auction takes care of these
sets.

Lemma 4.4. Let O be minimally overdemanded and T ⊆ O with T , ∅. Let prices p and sets Ri be
given. Then

|{i : Di (p,Ri ) ⊆ O ∧ Di (p,Ri ) ∩T , ∅}| > |T |.
In particular, T is not underdemanded.

The proof of this lemma can be found in the Appendix.
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Lemma 4.5. For all bidders i ∈ B and all iterations t of the algorithm, we have that Bi (p) ⊆ Rti . In
particular, since pt (0) = 0, Rti , ∅.

Proof. Assume to the contrary that there is a minimal iteration t + 1, such that a bidder i∗ and
a good j∗ exist with pt+1(j∗) < bi

∗ , but j∗ < Rt+1i∗ . Then in iteration t , Step 3 was executed, since
otherwise pt ≤ pt+1 and Rti∗ = Rt+1i∗ , so t + 1 would not be minimal. Hence, in iteration t , we have
j∗ ∈ J ti∗ and in particular j∗ ∈ Di∗ (pt−1,Rt−1i∗ ). Because Step 3 is executed, we have Ot−1 , ∅, so in
iteration t − 1 Step 4 was executed and pt (j∗) = pt−1(j∗) + 1 = pt+1(j∗) + 1 ≤ bi

∗ . Thus, since from
iteration t − 1 to t , all prices for all preferred goods of bidder i∗ were raised and i∗ can still afford j∗
at prices pt , j∗ ∈ Di∗ (pt ,Rti∗ ), so j∗ < J ti∗ . This is a contradiction. □

Proposition 4.6. For every iteration t in the auction, it holds:
(1) if there is a minimally underdemanded set of items T , then T ⊆ Ot−1 and Step 3 is executed
(2) if Step 3 is executed, there is no underdemanded set of items with respect to the Di (pt+1,Rt+1i ).
Proof. We prove this by induction on t . For t = 1, there clearly is no underdemanded set of

items, and Step 3 is not executed.
Suppose now that t > 1 and that the statement is true for all 1 ≤ s < t .
First suppose that there exists an underdemanded set of items T . Therefore, by induction, in

iteration t −1, Step 4 must have been executed - otherwise, there would not exist an underdemanded
set. But then, using the same inductive reasoning, there was no underdemanded set in iteration
t − 1. It is thus easy to see that, since in iteration t − 1 only prices for items inOt−1 were raised, only
the demand for those items could decrease, so T must be a subset of Ot−1. By Lemma 4.4, we have

|{i ∈ B : Di (pt−1,Rt−1i ) ⊆ Ot−1 ∩ Di (pt−1,Rt−1i ) ∩T , ∅}| > |T |.
Thus, since |{i ∈ B : Di (pt ,Rti ) ∩T , ∅}| < |T |, there must be a bidder i∗ with Di∗ (pt−1,Rt−1i∗ ) ⊆
Ot−1 and Di∗ (pt−1,Rt−1i∗ ) ∩ T , ∅, but Di∗ (pt ,Rti∗ ) ∩ T = ∅. This implies that i∗ ∈ I t , so Step 3 is
executed in iteration t .
Now suppose that Step 3 is executed in iteration t . Then again, in iteration t − 1, Step 4 was

executed, since otherwise we would have Ot−1 = ∅, which implies I t = ∅. By induction, there was
no underdemanded set of items in iteration t − 1. Note that pt−1 = pt+1, so only the demand of a
single bidder i∗ ∈ I t chosen in Step 3 does change. Since Di∗ (pt−1,Rt−1i∗ ) ⊆ Ot−1, so J ti∗ ⊆ Ot−1, only
the demand for items in Ot−1 can decrease. However, for T ⊆ Ot−1 we have again by Lemma 4.4
that

|{i ∈ B : Di (pt−1,Rt−1i ) ⊆ Ot−1 ∩ Di (pt−1,Rt−1i ) ∩T , ∅}| > |T |,
and, since we only changed Rt−1i∗ , the demand for items in T can at most decrease by 1. Thus, T is
not underdemanded in iteration t + 1. □

Employing the previous lemmata, we can proceed to prove correctness of our proposed auction.
Proposition 4.7. The auction terminates after a finite number of iterations, and an assignment µ

as is described in Step 5 exists whenever this Step is reached. The returned tuple (µ,p) constitutes a
core outcome.

Proof. Whenever Step 3 is executed, at least one item is removed from the set Rti of one bidder.
Hence, Step 3 can only be called a finite number of times. Also, prices can only be increased a finite
number of times in Step 4 - if prices of goods go to infinity, they are clearly not overdemanded
at some point anymore. Thus, in some iteration t∗, Step 5 is executed. By Lemma 4.6, there is no
underdemanded set in iteration t∗, because otherwise Step 3 would have been executed. Similarly,
there is no overdemanded set. Finally, because of Lemma 4.5, no set Rt ∗i is empty, so by Proposition
4.3, an assignment µ as required exists. By Lemma 4.2, (µ,p) is a core outcome. □
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Example 4.8. Consider the example following auction with three bidders 1, 2, 3 and two items A
and B.

vi (A) vi (B) bi

Bidder i = 1 10 0 1
Bidder i = 2 0 10 2
Bidder i = 3 10 10 10

The auction proceeds as follows.

pt D1(pt ,Rt1) D2(pt ,Rt2) D3(pt ,Rt3) Rt1 Rt2 Rt3 Ot I t

t = 1 (0, 0) {A} {B} {A,B} S S S {A,B} ∅
t = 2 (1, 1) {A} {B} {A,B} S S S {A,B} ∅
t = 3 (2, 2) {0} {B} {A,B} S S S ∅ {1}
t = 4 (1, 1) {0} {B} {A,B} {0,B} S S ∅ ∅

In iterations t = 1, 2, there is a unique minimally overdemanded setOt = {A,B}, and I t is empty.
Thus, Step 4 of the auction is executed and the prices for A and B are raised. In iteration t = 3,
the set I t = {1} is nonempty which indicates that bidder 1’s budget was tight for A at prices (1, 1).
Thus, we forbid 1 to receive item A and reset the prices to (1, 1). Now, in iteration t = 4, there is no
overdemanded set and I t is empty. Thus, there exists an assignment µ with µ(i) ∈ Di (p4,R4

i ) for
all i ∈ B, namely µ(1) = 0, µ(2) = B and µ(3) = A. It is easily checked that (µ,p) is indeed a core
outcome.

Example 4.9. Let us now consider an example of an auction where a non-trivial decision has to
be made in Step 3.

vi (A) vi (B) bi

Bidder i = 1 10 0 3
Bidder i = 2 0 11 1
Bidder i = 3 5 3 10

It is easy to see that after 3 iterations through Step 4 of our auction, we reach prices p4 = (3, 1),
where bidder 1 demands {A}, bidder 2 demands {B} and bidder 3 demands {A,B}. Since {A,B}
is minimally overdemanded, we execute Step 4 once again to reach p5 = (4, 2), where due to the
budget constraints, we have D1(p5,R5

1) = {0} and D2(p5,R5
2) = {0}, while bidder 3 still demands

{A,B}. Thus, Step 3 of the auction is executed with I 5 = {1, 2}, so both bidders 1 or 2 would be
valid bidders to choose in Step 3. For the choice i = 1, we have J 5i = {A}, while for the choice i = 2,
we have J 5i = {B}. We could thus either remove A from R5

1, or B from R5
2. Depending on our choice,

we get two different core outcomes, both supported by the prices p = (3, 1): one where bidder 1
receives nothing, bidder 2 receives B and bidder 3 receives A, and one where bidder 1 receives A,
bidder 2 receives nothing and bidder 3 receives B. The total welfare of the former allocation is 16,
while the one of the latter is 13.

4.2 Economic Properties
The output produced by our iterative auction is not uniquely defined - it may depend on which
bidder i ∈ I t is chosen whenever Step 3 is executed. Indeed, we prove the following result.
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Proposition 4.10. Let (ν ,q) be an arbitrary core outcome. Then bidders i ∈ I t in Step 3 can be
chosen in such a way, that for the resulting outcome (µ,p) we have that p ≤ q coefficient-wise, and
πi (µ(i),p) ≥ πi (ν (i),q) for all bidders i .

The proof can be found in the Appendix.
We say that a core outcome is (µ,p) Pareto optimal for the bidders, if for every core outcome (ν ,q)

with πi (ν (i),q) > πi (µ(i),p) for some bidder i , there is a bidder i ′ with πi′(µ(i ′),p) > πi′(ν (i ′),q).
Proposition 4.10 directly implies that for every core outcome which is Pareto optimal for the
bidders, there is an outcome (µ,p) reachable by the auction with πi (µ(i),p) = πi (ν (i),q) for all
i ∈ B. Aggarwal et al. [2009] prove that their algorithm for computing a core-stable outcome always
finds the bidder-optimal core outcome (µ,p), whenever the auction is in general position. Here,
bidder-optimal means that for every other core outcome (ν ,q) we have that πi (µ(i),p) ≥ πi (ν (i),q)
for all i ∈ B. Bidder-optimality thus implies Pareto optimality. We show a similar result for our
auction: if the bidder to choose in Step 3 of our auction is always unique, our auction also finds a
bidder-optimal core outcome.

Corollary 4.11. Suppose that whenever Step 3 is executed, |I t | = 1, i.e., there is a unique bidder to
choose, and let (µ,p) be the uniquely determined outcome of the auction. Then for any core outcome
(ν ,q) we have that p ≤ q and πi (µ(i),p) ≥ πi (ν (i),q) for all bidders i , i.e., (µ,p) is bidder-optimal.

Proof. Since |I t | = 1 in every iteration through Step 3, the outcome (µ,p) of the auction is unique.
Proposition 4.10 now directly implies that for every core outcome (ν ,q), we have πi (µ(i),p) ≥
πi (ν (i),q) and p ≤ q. □

In particular, if the general position condition is satisfied, it can be shown that I t never contains
more than one bidder. Thus, our auction always finds a bidder-optimal outcome like the auction by
Aggarwal et al. [2009] in this case.

Proposition 4.12. Suppose the auction is in general position. Then in every iteration through Step
3 of our iterative auction, we have that |I t | = 1, and for the unique i ∈ I t , we have |J ti | = 1.
Note that in general that our ex-post condition |I t | = 1 whenever Step 3 is reached is less

demanding than the general position condition, since we do not require |J ti | = 1, and it is easy to
construct examples where |J ti | > 1, but the ex-post condition is fulfilled. While our condition is only
ex-post, it is straight-forward to check for the auctioneer when the auction is actually performed.
Let us now consider welfare-maximization properties of our auction. We first observe that a

welfare maximizing core outcome can always be found among the ones which are Pareto optimal
for the bidders.
Proposition 4.13. Let (µ,p) and (ν ,q) be core outcomes. If πi (µ(i),p) ≥ πi (ν (i),q) for all bidders

i , then ∑
i ∈B

vi (µ(i)) ≥
∑
i ∈B

vi (ν (i)).

The proofs of Propositions 4.12 and 4.13 can be found in the Appendix.
As we described above, by Proposition 4.10, we can reach any core outcome which is Pareto

optimal for the bidders with our auction, and Proposition 4.13 says that one of them must be
welfare-maximizing. Now if we always have |I t | = 1, the outcome of our auction is unique which
proves our first main result.
Theorem 4.14. Bidders in I t in Step 3 of the auction can be chosen such that the outcome of the

auction is a welfare-maximizing core outcome.
In particular, if |I t | = 1 whenever Step 3 is reached, the unique outcome of the auction is a welfare-

maximizing core outcome.
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Note that knowledge of the bidders’ demand sets does not suffice in order to always choose the
“correct” bidders in Step 3 to reach a welfare-maximizing outcome. Our hardness result in Section 5
implies that even with perfect knowledge of the bidders’ preferences, choosing the correct bidders
in Step 3 is NP-hard. However, our simple ex-post condition |I t | = 1 at least gives the auctioneer a
simple certificate of optimality.
If the auction is in general position, then the auction is ex post incentive-compatible, which

follows from the original work by Demange et al. [1986] and the paper by Aggarwal et al. [2009].
The question is if this algorithm or any other algorithm where the bidders’ preferences are no
further restricted can be incentive-compatible. Unfortunately, the answer is no because incentive-
compatibility goes against envy-freeness and therefore the core definition as we show next.

Theorem 4.15. In assignment markets with payoff-maximizing but budget constrained bidders
there is no incentive-compatible mechanism terminating in a core-stable solution for every input.

Proof. By the direct revelation principle, we may assume that bidders report their exact val-
uations, as well as their budgets to the auctioneer. Consider a market with three bidders 1, 2, 3
and two items A,B. LetM((v1,b1), . . . , (v3,b3)) = (µ,p) denote a mechanism, mapping the bidders’
reported valuations and budgets to a core-stable outcome with respect to their reports.

We consider instances of the above described market, where all bidders have the same values for
both items: vi (A) = vi (B) = 10 for i = 1, 2, 3. Let us consider two instances, where the bidders vary
their reported budget.
(1) If all bidders report bi = 1 for i = 1, 2, 3, then obviously, since there are only two items, one

bidder does not receive one: for (µ,p) =M((v1, 1), (v2, 1), (v3, 1)), there is an i with µ(i) = 0.
Without loss of generality, we assume that i = 3. It is easy to see that for core-stability to
hold, bidders 1 and 2 both receive an item, and that p(A) = p(B) = 1. Bidders 1 and 2 have
utility 9, while bidder 3 has utility 0.

(2) If bidder 3 reports b3 = 2, and the other bidders report b1 = b2 = 1, then clearly bidder 3
receives an item in any core-stable outcome, and without loss of generality µ(3) = B. Also the
other item A must necessarily be assigned to some bidder. Again, without loss of generality,
we assume that µ(1) = A and µ(2) = 0. It is easy to see that p(A) must be equal to 1 in a core
outcome. Additionally, we must have p(A) = p(B), since otherwise bidder 3 would strictly
prefer item A to item B, which would not be envy-free. Thus, p(A) = p(B) = 1, and bidder 3
has a utility of 9.

This already shows thatM is not incentive-compatible: If all bidders’ true budgets are equal to 1
and they report truthfully, bidder 3 has a utility of 0. However, if bidder 3 misreports b3 = 2, they
would receive an item and have a utility of 9. Note, that p(B) = p(A) = 1 in this case, so bidder 3
can still afford the received item. □

Note that Theorem 4.15 does not preclude an incentive-compatible and welfare-maximizing
auction (that is not core-stable). Overall, these iterative auctions require bidders to reveal that they
are indifferent to not winning the good once the price equals the valuation of a bidder. Only this
allows auctioneers to differentiate between a bidder dropping out due to reaching his valuation or
his budget. In practice, bidders might not always bid the null set when price reaches value even in
an incentive-compatible auction, which can lead to inefficiencies in such iterative auctions.

5 A SEALED-BID AUCTION
If in some iteration of the above algorithm Step 3 is reached with |I t | > 1, the ascending auction
with only demand queries does not necessarily find the welfare-maximizing core-stable outcome.
In such a case, a combination of value and demand queries is required in order to obtain the
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desired assignment. To this end, for the remaining part of this paper, we assume the auctioneer has
unlimited access to all valuations for all objects and the budgets of all bidders. Unfortunately, the
outcome and pricing problem does not only need a different oracle but it also becomes NP-complete
as we will show next. Besides, as we mentioned above, the property of strategyproofness does not
hold.

5.1 A MILP Formulation
First, we show that the problem belongs to complexity class NP by modeling it as a mixed integer
linear program (MILP). Once a problem is modeled as such, there is a polynomial-time non-
deterministic algorithm, where we guess the values of integer variables and solve the resulting
linear program (LP) in polynomial time. Bi-linear terms present in the quadratic formulation (q-BC),
namely products of continuous prices p(j) and binary variables, can easily be linearized to obtain
the resulting MILP.

maximize
∑
i ∈B

πi +
∑
j ∈S

πj

subject to πi =
∑
j ∈S

(vi (j) − p(j))mi (j) ∀i ∈ B (1)
πj =

∑
i ∈B

(p(j) − r j )mi (j) ∀j ∈ S (2)∑
j ∈S

mi (j) ≤ 1 ∀i ∈ B (3)∑
i ∈B

mi (j) ≤ 1 ∀j ∈ S (4)
πi ≥

(
vi (j) − p(j))αi (j) ∀i ∈ B, j ∈ S (5)

πj ≥ min(vi (j),bi )(1 − yi (j)) ∀i ∈ B, j ∈ S (6)
bi ≥ pj (1 − βi (j)) ∀i ∈ B, j ∈ S (7)
pj ≥ biβi (j) ∀i ∈ B, j ∈ S (8)
(1 − αi (j)) + (1 − βi (j)) − 2 ≤ 2(1 − yi (j)) + ϵyi (j) ∀i ∈ B, j ∈ S (9)
r jmi (j) ≤ p(j) ≤ min(vi (j),bi )mi (j) +M(1 −mi (j)) ∀i ∈ B, j ∈ S (10)
mi (j) ∈ {0, 1} ∀i ∈ B, j ∈ S (11)
yi (j) ∈ {0, 1} ∀i ∈ B, j ∈ S (12)
αi (j) ∈ {0, 1} ∀i ∈ B, j ∈ S (13)
βi (j) ∈ {0, 1} ∀i ∈ B, j ∈ S (14)
p(j) ≥ 0 ∀j ∈ S (15)

(q-BC)

In this section, an assignment of buyer i to seller j is denoted as a binary variablemi (j), since solv-
ing the MILP requires variable definitions. If the resulting assignment assigns the aforementioned
pair in this fashion, thenmi (j) = 1, and for all other buyers except i ,m−i (j) = 0. The equivalence
to the previous definitions ismi (j) = 1 ⇔ µ(i) = j. In order to check for the existence of deviating
coalitions, two additional binary variables are introduced. Setting αi (j) = 0 represents the case
where bidder i has a benefit from deviating by trading with seller j, and ai (j) = 1 means that the
bidder is best satisfied under the current assignment. The second helper binary variable is set to
βi (j) = 0 if i possesses a sufficient amount of money to purchase j , and set to βi (j) = 1, if the budget
of bidder i is insufficient to acquire item of seller j , namely the set price of item j exceeds i’s budget
constraint. Variable yi (j) = 0 reflects the case where bidder i prefers to trade with seller j and has
sufficient budget, and the variable is set to 1 if one of the two necessary conditions does not hold.

Utilities of buyers and sellers are defined as previously argued in Section 3. With r j , we describe
the reserve value or ask price of seller j. Constraints (1) and (2) represent the utilities of buyers
and sellers, respectively. Constraints (5) and (6) guarantee core-stability. We examine all possible
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deviating combinations of buyer-seller pairs for a given outcome. Constraint (5) examines whether
the corresponding payoff πi a buyer i receives in the selected assignmentm is higher or equal
to the alternative assignment (i, j) in question. In particular, this constraint checks whether an
assignment (i, j) yields a higher payoff for buyer i , in which case αi (j) = 0. Constraint (6) tests
whether a seller j’s payoff πj on the optimal matchingm is higher or equal to the minimum value
between any buyer i’s budget constraint bi and i’s valuation for the itemvi (j), which represents the
maximum possible payment seller j could receive from any buyer. One or both of these conditions
need to be true. Put differently, if both buyer and seller had a higher payoff under an alternative
assignment (i, j), outcomem is not core-stable. In essence, core-stability can be expressed as logical
or constraint. Constraints (7) and (8) examine whether bidder i has a sufficient budget to obtain
item j under price pj . Constraint (9) is responsible for handling the value of yi (j) in an appropriate
manner, to reflect whether a deviating coalition of (i, j) is indeed profitable and budget-feasible, for
any positive value ϵ < 1. The value of yi (j) depends on binary values αi (j), βi (j), and we verify our
claim by examining the inequalities formed by the different value combinations (the tuple on the
left side represents values αi (j), βi (j),yi (j)):

(0, 0, 0) ⇒ 1 + 1 − 2 ≤ 2 · 1 − ϵ · 0 (1∗)
(0, 0, 1) ⇒ 1 + 1 − 2 ≤ 2 · 0 − ϵ · 1 (2∗)
(0, 1, 1) ⇒ 1 + 0 − 2 ≤ 2 · 0 − ϵ · 1 (3∗)
(1, 0, 1) ⇒ 0 + 1 − 2 ≤ 2 · 0 − ϵ · 1 (4∗)
(1, 1, 1) ⇒ 0 + 0 − 2 ≤ 2 · 0 − ϵ · 1 (5∗)

In cases (1∗) and (2∗), agent i has a sufficient budget and can profit from deviating. However,
inequality (2∗) is infeasible, therefore the value of yi (j) cannot be set to 1 for this combination
of αi (j), βi (j) and is forced to 0. For the remaining cases, either i does not have sufficient budget
(βi (j) = 1), or has no profit from trading with j (αi (j) = 1), or both conditions hold. In all the
aforementioned cases, yi (j) = 1, and thus reflects the case where no deviation is preferable from
the buyer’s side.

Constraint (10) then makes sure that if an item j is assigned to buyer i , then the price is less than
the minimum of the budget of this buyer or his value, and it is higher than the reserve price of
the seller. We can conclude that the above formulation always results in a the welfare-maximizing
core-stable outcome for assignment markets with budget constraints.

5.2 Complexity Analysis
We now proceed to the proof of NP-completeness. The existence of endogenous pricing variables
renders the proof non-trivial: there is no standard method of encoding both continuous and discrete
variables, for prices and assignment, in a problem instance. Therefore, the proof requires a more
complicated structure and special assumptions regarding the handling of item prices. First, we
formally define the decision version of the problem.

MaximumWelfare Budget Constrained Stable Bipartite Matching (MBSBM)
Input: Two disjoint sets S (sellers) and B (buyers) of n agents each, a budget bi for each agent

i ∈ B and a reserve value r j for each seller j ∈ S, a value vi (j) for each pair of agents i ∈ B and
j ∈ S, and a non-negative integer k .
Output: Boolean value
Question:Does there exist a stable outcome µ such that the total value

∑
i ∈B(vi (µ(i))−rµ(i)) ≥ k?
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We have already discussed that the problem is in NP, becauseMBSBM can be modeled as a MILP
where all the reserve values r j of sellers j ∈ S are set to 0, and such problems are contained in
NP [Del Pia et al., 2017]. We know that for the case when all budgets are too high and therefore
non-binding, bi ≥ vi (j) for all i ∈ B and j ∈ S, the problem is equivalent to the maximum-weight
bipartite matching, which admits a polynomial time solution via the Hungarian algorithm [Kuhn,
1955]. Core-stable prices can be derived from the duals of the corresponding linear program [Shapley
and Shubik, 1971]. Therefore, the case of interest that can result in increased computational cost is
when budgets are binding for participating buyers. For our problem, we reduce from the Maximum
Independent Set (MIS) problem, which is known to be APX-hard, thus implying NP-hardness. Chen
et al. [2021] follows a similar approach for fractional matching without transferable utility. However,
an environment with partially transferable utility as in our case, requires special attention and
leads to significant differences.

Maximum Independent Set (MIS)
Input: A graph G = (V ,E), with vertices V and edges E, and a non-negative integer k .
Output: Boolean value
Question: Does there exist an Independent Set (IS) of size at least k , where as IS we define a set

of vertices no two of which are adjacent?

The proof uses a specific construction in which we introduce an individual vertex and an edge
gadget for each vertex and edge of the original MIS problem. In complexity theory, when performing
a reduction from computational problem A to problem B, the term gadget refers to a subset of a
problem instance of problem B, that simulates the behavior of certain units of problem A. Drawing
from graph theory, the vertex and edge gadgets are bipartite graphs where each edge gadget is
connected to two vertex gadgets, corresponding to the two endpoints of the original edge. Each
vertex has a degree of three and thus each vertex gadget is connected to three edge gadgets. The
edge gadget allows for two matchings between buyer and seller nodes, which all lead to the same
welfare. The vertex gadgets also allow for two feasible stable matchings, where the welfare differs
by one. The edges between an edge and a vertex gadget are such that it is not possible to select
the welfare-maximizing matching in two consecutive vertex gadgets of two neighboring vertices,
because it would generate pairs of blocking agents in the edge gadget of the connecting edge, i.e. a
matching in the edge gadget would not be core-stable. Similar to the original MIS problem, where
there cannot be two adjacent vertices in an IS, in our construction, there cannot be two adjacent
vertex gadgets with a high welfare matching. While in the MIS problem, we need to find the IS
that is maximal, in the MBSBM problem we need to determine the stable matching of the overall
bipartite graph that maximizes welfare. Note that both the vertex and edge gadgets contain a pair
of buyers that admit the same budget constraint, thus leading to a violation of the general position
condition. Let us now discuss the construction and proof in detail.

5.2.1 Construction. Assume an instance of MIS defined on a cubic graphG = ((V ,E),k). A cubic
graph is a graph in which all vertices have degree three. We define the transformed instance as a
bipartite graphG ′ = (V ′,E ′), with V ′ = B ∪ S, and functions πi : S → R≥0 for each buyer i ∈ S,
and πj : B → R≥0 for each seller j ∈ S that represents agents’ payoffs.

• V ′ represents the total set of agents
• B and S denote the sets of buyers and sellers respectively
• E ′ represents the potential transactions between buyers and sellers
• πi specifies the difference between the true valuation of buyer i ∈ B for the item of seller
j ∈ S and her total budget bi , namely vi (j) − bi
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• πj specifies difference between the budget of buyer i ∈ B and the reserve value of seller
s ∈ S, namely bi − r j

Since we assume that all assigned buyers pay prices for items equal to their budgets, we omit
prices from the payoff formulae πi ,πj . In Lemma 5.2 we show that this restriction of the prices to
be at the budgets is without loss of generality for the construction. Observe that in our construction
multiple buyers share the same budget constraint, which violates the general position condition
from Definition 3.5.
An assignment µ : B → S in G ′ assigns each edge e ∈ E ′ according to the condition∑
j ∈S |µ(i) = j | ≤ 1 for any agent i ∈ B. The utility of agent i ∈ B under assignment µ of (G ′,πi ,πj )

is defined as πi (µ) := πi (µ(i)) and similarly for agent j ∈ S it holds that πj (µ) := πj (µ−1(j)). Given
an assignment µ, an edge (i, j) ∈ E ′ is a blocking pair/ edge if πi (µ(i)) < πi (j) and πj (µ−1(j)) < πj (i).
An assignment µ is stable if it does not contain any blocking pair of agents.

Edge Gadget. Starting from an edge e ∈ E of the original graph G, we construct the edge gadget
G ′
e = Be ∪ Se as a bipartite graph, with preferences for the subgraph defined as mentioned above

and noted as πi : Se → R≥0 and πj : Be → R≥0 for each of the two sets respectively. The vertices
represent participating aдents .

For each edge e = (u,u ′) ∈ E, we proceed to the following construction:
• Add to Be three agents βe ,γe ,δe
• Add to Se three agents ηe ,αue ,αu

′
e

• Add to Be two extra agents ϵu and ϵu′ , if not present already. These represent the connection
from edge gadget to vertex gadget.

Vertices αue and αu′
e represent the gates to the vertex gadgets, which are connected to the vertices

ϵu , ϵu′ of the vertex gadgets of u,u ′ of the original graph.
For each edge e ∈ E of the original graphG , the corresponding edge gadget consists of subgraph

that agents {βe ,γe ,δe } ∪ {ηe ,αue ,αu
′

e } induce. The detailed construction is depicted in Figure 1.
Any edge not present in the figure is assigned a value of zero.

Fig. 1. The edge gadget, with corresponding buyer and seller preferences πi ,πj . If u belongs to the
independent set IS(G), then we integrally match the pairs corresponding to the solid edges, otherwise

we match the dashed edges.

An important observation is, that any edge gadgetG ′
e should contain two feasible stable assign-

ments, with an equal total social welfare. In every stable assignment µ, at least one of {αue ,αu
′

e } is
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αue ηe αu
′

e bi

βe 0 2|E |2 + 12 2|E |2 + 11 9
γe 2|E |2 + 12 0 2|E |2 + 13 7
δe 2|E |2 + 16 2|E |2 + 18 0 9
ϵu 3 0 0 8
ϵu′ 0 0 7 8
r j 5 8 1

Table 1. Valuation table representing valuations vi (j) where i ∈ {βe ,γe ,δe , ϵu , ϵu′} and j ∈ {αue ,ηe ,αu
′

e }. bi
corresponds to the budget of each buyer and r j to the reserve value of each seller.

unsatisfied under µ, namely agents αue or αu′
e have a preference towards ϵu or ϵu′ respectively.

Vertex Gadget. In a similar manner, we construct the vertex gadget corresponding to vertex u ∈ V .

Fig. 2. The vertex gadget, with corresponding buyer and seller preferences. If u belongs to the independent set
IS(G), then we integrally match the pairs corresponding to the solid edges, otherwise, we match the dashed
edges.

κu λu ξu N (ϵu ) bi

ϵu 0 |V | + 17 |V | + 13 n + 16 8
ζu |V | + 9 0 |V | + 10 0 6
θu |V | + 9 |V | + 15 0 0 8
r j 2 7 1 5/1

Table 2. Valuation table representing valuations vi (j) where i ∈ {ϵu , ζu ,θu } and j ∈ {κu , λu , ξu ,N (ϵu )}.
N (ϵu ) consists of the neighboring vertices of ϵu in the edge gadgets of αuϵ1 ,α

u
ϵ2 ,α

u
ϵ3 , since each vertex u has a

degree of 3. bi corresponds to the budget of each buyer and r j to the reserve value of each seller in the vertex
gadget.
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Figure 2 illustrates the vertex gadget G ′
u corresponding to a vertex u ∈ V , along with the

preferences of buyers and sellers. Agents colored in gray belong to set Bu , and agents in white
belong to Su , defined in an analogous manner to Be ,Se . Two feasible stable outcomes exist in G ′

u ,
resulting in welfare that differs by 1: in case an assignment indicated by the solid edges is chosen,
induced welfare equals |V | + 27, while for an assignment of the dashed edges, welfare has a value
of |V | + 26. The set N (ϵu ) represents the neighborhood of ϵ , and consists of three vertices from
three distinct edge gadgets.
The following lemma provides a useful bound for the achieved social welfare of an optimal

assignment in an edge gadget.
Lemma 5.1. Let µ be a stable assignment for edge gadget G ′

e . The total welfare SW achieved by
µ is at most |E | · (6|E |2 + 27). If there is an edge (u,u ′) ∈ E, where for the gadgets it holds that
πϵu (µ(ϵu )) < πϵu (αue ) and πϵu′ (µ(ϵu′)) < πϵu′ (αu

′
e ), then SW < |E | · (6|E |2 + 27) − |V |.

This lemma implies that, in any welfare-maximizing assignment, edges between {αue , ϵu } and
{αu′

e , ϵu′} are never chosen. Furthermore, at most one of the conditions πϵu (µ(ϵu )) < πϵu (αue ) and
πϵu′ (µ(ϵu′)) < πϵu′ (αu

′
e ) must hold, otherwise assignment µ is not maximizing welfare.

In our construction, we fix the price for each matching to the budget constraint of the buyer
to whom a seller is matched. Next, we show that this restriction is without loss of generality. We
show in each bipartite graph, regardless of whether it belongs to the vertex or edge gadget, the
current scheme yields all possible welfare-maximizing, core-stable outcomes.

Lemma 5.2. Assuming that all buyers pay a price equal to their budget for their assigned items does
not impact generality, namely there does not exist a welfare-maximizing, core-stable outcome that is
not reachable through this pricing scheme.

Finally, we build the main complexity result for MBSBM. The proof uses no assumption on
specific properties (such as general position) to hold.

Theorem 5.3. MBSBM is NP-complete.

The proofs of Lemmata 5.1, 5.2 and of Theorem 5.3 can be found in the Appendix.

6 CONCLUSIONS
In this work, we showed that there is no incentive-compatible mechanism that selects an outcome
in the core for bidders with unit-demand valuations. However, it is possible to expand the auction
algorithm by Demange et al. [1986], based on demand queries, which terminates with a core
allocation if bidders truthfully reveal their demand set in each round. With an additional condition
on the unit-demand valuations, this mechanism is incentive-compatible and maximizes welfare. It
is typically unknown ex-ante whether this condition holds.
Overall, the analysis of markets with unit-demand bidders is important as it aids our under-

standing about how restrictive the assumptions need to be for a market to be efficient. In his
seminal paper, Vickrey [1961] showed that markets can be designed such that it is a dominant
strategy for participants to reveal their preferences truthfully. He allows for general valuations
(including substitutes and complements) and only poses a seemingly innocuous assumption of
payoff-maximizing bidders. Budget constraints are wide-spread and violate the assumptions of the
VCGmechanism. We prove that, even in the simplest markets where bidders only have unit-demand
valuations, incentive-compatibility and core-stability are conflicting. In fact, even if all unit-demand
valuations and budgets were known to the auctioneer, computing a core-stable and efficient out-
come is NP-complete. As a result, claims about the efficiency of simple (polynomial-time) market
designs need to be considered with care in the many markets where financial constraints of bidders
play a role.
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A APPENDIX
A.1 Proof of Lemma 4.4

Proof. Since O \T ⊆ O and O is minimally overdemanded, O \T is not overdemanded, so
|O | − |T | = |O \T | ≥ |{i : Di (p,Ri ) ⊆ O \T }|.

Now
{i : Di (p,Ri ) ⊆ O \T } = {i : Di (p,Ri ) ⊆ O} \ {i : Di (p,Ri ) ⊆ O ∧ Di (p,Ri ) ∩T , ∅}

so
|O | − |T | ≥ |{i : Di (p,Ri ) ⊆ O}| − |{i : Di (p,Ri ) ⊆ O ∧ Di (p,Ri ) ∩T , ∅}|.

By rearranging terms we get
|{i : Di (p,Ri ) ⊆ O ∧ Di (p,Ri ) ∩T , ∅}| ≥ |{i : Di (p,Ri ) ⊆ O}| − |O | + |T |

and since O is overdemanded, this implies
|{i : Di (p,Ri ) ⊆ O ∧ Di (p,Ri ) ∩T , ∅}| > |T |.

□

In the following we need a simple auxiliary lemma.

Lemma A.1. Let (ν ,q) be an arbitrary outcome, and let O ⊆ S be a minimally overdemanded
set with respect to the demand sets Di (q,Ri ). Let ∅ , J ⊊ O . Then there exists a bidder i∗ with
Di∗ (q,Ri∗ ) ⊂ O , Di∗ (q,Ri∗ ) ∩ J , ∅ and ν (i∗) < J .

A.2 Proof of Proposition 4.10
Proof. We prove the following statements by induction on the iteration t , which imply Proposi-

tion 4.10.
• If in iteration t Step 4 or 5 is executed, then pt ≤ q.
• If in iteration t Step 3 is executed, then pt+1 ≤ q and we can choose bidder i ∈ I t such that
ν (i) < J ti , and consequently, by choosing this bidder, we have ν (i) ∈ Rt+1i for all i .

For iteration t = 1 this is obviously true, since only Step 4 or Step 5 can be executed, and
p1 = (0, . . . , 0) ≤ q.

Now suppose that t > 1. First assume that in iteration t Step 4 or 5 is executed. If in Step t−1 Step 3
was executed, we have thatpt = pt−2, and since Step 3 cannot be executed twice in a row, we have by
induction pt = pt−2 ≤ q. Now assume that Step 4 was executed in iteration t − 1. Then by induction
we have pt−1 ≤ q. Towards a contradiction, assume that the set J = {j ∈ Ot−1 : pt (j) > q(j)}
is not empty. Note that for all j ∈ J we must have q(j) = pt−1(j). By Lemma A.1 there exists
a bidder i∗ with Di∗ (pt−1,Rt−1i∗ ) ⊂ Ot−1, Di∗ (pt−1,Rt−1i∗ ) ∩ J , ∅ and ν (i∗) < J . Thus, we have
ν (i∗) < Ot−1 or pt (j) ≤ q(j). Since ν (i∗) ∈ Rt−1i∗ , we have for every j ∈ Di∗ (pt−1,Rt−1i∗ ) ∩ J that
πi∗ (ν (i∗),q) < πi∗ (j,q). Consequently, since (ν ,q) is a core outcome, so (i∗, j) is no blocking pair, we
must have that q(j) = bi∗ . But since q(j) = pt−1(j) and j ∈ Ot−1, it would follow that j < Di∗ (pt ,Rti ),
so I t , ∅ and Step 3 is executed in iteration t . This contradicts our assumption that Step 4 is
executed.
Now consider the case where Step 3 is executed in iteration t . Since Step 3 cannot be executed

twice in a row, we have by induction that pt+1 = pt−1 ≤ q. It remains to show that there is
some bidder i ∈ I t with ν (i) < J ti . Again, towards a contradiction, assume that for all i ∈ I t we
have ν (i) ∈ J ti . Hence, pt−1(ν (i)) = bi for all i ∈ I t , and since q ≥ pt−1 by induction, we have
q(ν (i)) = bi for all i ∈ I t . Our argument is now very similar to the one above: Consider the set
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J = {j ∈ Ot−1 : q(j) = pt−1(j)}. Then ν (I t ) ⊆ J , and in particular J t is nonempty. Hence there is
a bidder i∗ with Di∗ (q,Ri∗ ) ⊂ O , Di∗ (q,Ri∗ ) ∩ J , ∅ and ν (i∗) < J . Again, we have ν (i∗) < Ot−1, or
q(ν (i∗)) > pt−1(ν (i∗)). In both cases, i∗ would prefer any good j in the intersectionDi∗ (q,Ri∗ )∩ J , ∅
to ν (i∗) at prices q. But since i∗ < I t , bi∗ > q(j), so (i∗, j) would form a blocking pair.

I = {i ∈ B : Di (pt−1,Ot−1) ⊆ Ot−1 ∧ ν (i) ∈ Ot−1 ∧ pt−1(ν (i)) = qt−1(ν (i))}.
Then I t ⊆ I , so I is not empty. By Lemma A.1, there is a bidder i∗ < I withDi∗ (pt−1,Rt−1i∗ ) ⊆ Ot−1 and
ν (I ) ∩ Di∗ (pt−1,Rt−1i∗ ) , ∅. The ν (i∗) < Ot−1, or q(ν (i∗)) > pt−1(ν (i∗)). Since by induction we have
ν (i∗) ∈ Rt−1i∗ , we have that πi∗ (ν (i∗),q) < πi∗ (j,q) for all j ∈ ν (I ) ∩Di∗ (pt−1,Rt−1i∗ ). But since (ν ,q) is
a core outcome, for no such j , (i∗, j) can be a blocking pair - implying that bi∗ = q(j) = pt−1(j). This
is a contradiction, since it would follow that i∗ ∈ I .

□

A.3 Proof of Proposition 4.12
Proof. Consider the undirected bipartite graph G with vertex set I Û∪Ot−1, where I = {i ∈ B :

Di (pt−1,Rt−1i ) ⊆ Ot−1}, containing the edge {i, j} if and only if j ∈ Di (pt−1,Rt−1i ). Since Ot−1 is
minimally overdemanded, this graph is connected by Lemma A.1. For the sake of clarity, we denote
the bidders in I by 1, . . . , r , and the goods in Ot−1 by 1′, . . . , s ′, where r = |I | and s = |Ot−1 |.

Let J = {j ′ ∈ Ot−1 : ∃i ∈ I : j ′ ∈ Di (pt−1,Rt−1i ) ∧ p(j ′) = bi } be the set of all goods j ′ demanded
by some bidder in I with tight budget for j ′. We show that |J | = 1. To that goal, assume that this is
not the case. Then, after a possible re-indexing, there exists a path

j1 → i1 → j2 → · · · → im−1 → jm

alternating between goods and bids in G, where j1 and jm are distinct goods contained in J . Then
by following the corresponding forward- and backward edges according to Definition 3.5, the total
weight of this walk is

m−1∑
k=1

vik (jk ) −vik (jk+1).

For allk ∈ {1, . . . ,m−1}, we have that πik (jk ,pt−1) = πik (jk+1,pt−1), which is equivalent tovik (jk )−
vik (jk+1) = pt−1(jk ) − pt−1(jk+1). Thus, the weight of the above walk is equal to pt−1(j1) − pt−1(jm).
Now let i0, im ∈ I be bidders demanding j1, respectively jm with bi0 = p(j1) and bim = p(jm). Let us
consider two walks starting from i0: the first one consists of a single maximum-price edge i0 → j1
and has weight bi0 −vi0 (j1). The second one is

i0 → j1 → i1 → j2 → · · · → im−1 → jm → im → jm

where the last edge is a maximum-price edge. This walk has weight
−vi0 (j1) + (pt−1(j1) − pt−1(jm)) +vim (jm) + (b jm −vim (jm)).

Since bi0 = p(j1) and bim = p(jm), this is equal to bi0 − vi0 (j1). Thus, we found two distinct paths
with the same total weight, so the auction is not in general position. It follows that |J | = 1.

It remains to show that |I t | = 1. To that goal, assume that |I t | > 1 and let i1, i2 ∈ I t be distinct.
Since |J | = 1, there is a good j ∈ Ot−1, demanded by both i1 and i2 with p(j) = bi1 = bi2 . The walk
i1 → j consisting of a single maximum-price edge has weight bi1 −vi1 (j), and the walk i1 → j →
i2 → j ending with a maximum-price edge, also has weight−vi1 (j)+vi2 (j)+(bi2−vi2 (j)) = bi1−vi1 (j).
Thus, the auction is not in general position, a contradiction. Hence, |I t | = 1, and since J = |1|, the
good j ∈ Di (pt−1,Rt−1i ) with p(j) = bi for the bidder i ∈ I t is unique. □
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A.4 Proof of Proposition 4.13
Proof. We have that∑

i ∈B
vi (µ(i)) =

∑
i ∈B

πi (µ(i),p) +
∑
j ∈S

p(j) ≥
∑
i ∈B

πi (µ(i),p) + p(ν (i))

and ∑
i ∈B

vi (ν (i)) =
∑
i ∈B

πi (ν (i),q) +
∑
j ∈S

q(j) =
∑
i ∈B

πi (ν (i),q) + q(ν (i))

since each good j with q(j) > 0 is assigned to some bidder by ν . Thus, it suffices to show that∑
i ∈B

πi (µ(i),p) − πi (ν (i),q) + p(ν (i)) − q(ν (i)) ≥ 0.

We show that each summand is non-negative by distinguishing two cases:
Case 1: p(ν (i)) = bi . Then, since bidder i receives ν (i) in the outcome (ν ,q), q(ν (i)) ≤ bi = p(ν (i)).

Since by assumption πi (µ(i),p) ≥ πi (ν (i),q), it follows that πi (µ(i),p)−πi (ν (i),q)+p(ν (i))−q(ν (i)) ≥
0.
Case 2: p(ν (i)) < bi . Then πi (µ(i),p) ≥ πi (ν (i),p) - otherwise, (i,ν (i)) would be a blocking

pair with respect to prices p. Since πi (ν (i),p) = πi (ν (i),q) + q(ν (i)) − p(ν (i)), we again get that
πi (µ(i),p) − πi (ν (i),q) + p(ν (i)) − q(ν (i)) ≥ 0. □

A.5 Proof of Lemma 5.1
Proof. We examine the edge gadget G ′

e of edge e = (u,u ′) ∈ E, and define Be := {βe ,γe ,δe } as
the set of buyers and Se := {αue ,ηe ,αu

′
e } as the set of sellers. The total social welfare that can be

achieved by agents in G ′
e under assignment µ is SWe =

∑
i ∈Be πi (µ(i)) +

∑
j ∈Se πj (µ−1(j)).

For each individual edge gadgetG ′
e , we prove that the maximum total achieved welfare is bound

by
SWe ≤ 3 · 2|E |2 + 27

We prove the claim as follows:

SWe =
∑

(i, j)∈Be×Se
(i, j)∈E(Ge )

(
|µ(i) = j | · (πi (j) + πj (i))

)
+
(
|µ(ϵu ) = αue | · παue (ϵu )

)
+
(
|µ(ϵu′) = αu

′
e | · παu′e (ϵu′)

)

=
∑

i ∈{γe ,δe }

(
|µ(i) = αue | · (πi (αue ) + παue (i))

)
+

∑
i ∈{βe ,γe }

(
|µ(i) = αu

′
e | · (πi (αu′

e ) + παu′e (i))
)

+
∑

i ∈{βe ,δe }

(
|µ(i) = ηe | · (πi (ηe ) + πηe (i))

)
+
(
|µ(ϵu ) = αue | · παue (ϵu )

)
+
(
|µ(ϵu′) = αu

′
e | · παu′e (ϵu′)

)

≤ 3 · 2|E |2 + 27
We observe that each seller ηe is connected to two buyer nodes inside the edge gadget G ′

e ,
therefore, under assignment µ, strictly one of conditions |µ(βe ) = ηe | and |µ(δe ) = ηe | returns a
value of 1, while the other is set to 0. Sellers αue and αu′

e can be potentially matched to 3 different
buyers: two of them within G ′

e , and one belonging to the vertex gadget, u or u ′ respectively. We
compute the upper bound on the total sum of valuations of sellers and buyers, on any possible
assignment µ, maintaining that every time, one pair is matched, and the remaining conditions
output 0 for all other edges connected to the pair. The resulting social welfare SWe is equal to
3 · 2|E |2 + 27 only for the case where assignment µ does not satisfy neither condition |µ(ϵu ) = αue |
nor |µ(ϵu′) = αu

′
e |.
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We now proceed to bound the total welfare achieved under the condition that πϵu (µ(ϵu )) <
πϵu (αue ) and πϵu′ (µ(ϵu′)) < πϵu′ (αu

′
e ) hold simultaneously. Since µ is a stable outcome, from the first

condition, we derive that
παue (µ−1(αue )) ≥ παue (ϵu ) = 3 (3)

Similarly, from the second condition, we get that

παu′e (µ−1(αu′
e )) ≥ παu′e (ϵu′) = 7 (4)

In order to ensure that Equation (3) holds, assignment µ needs to force node αue to be matched
with δe , as παue (δe ) = 4 > 3 in this case. If the pair {γe ,αue } was matched instead, it would hold that
παue (γe ) = 2 < 3, thus contradicting condition (3).

In a similar manner, for Equation (4), µ matches pair {βe ,αu′
e }, achieving utility παu′e (βe ) = 8 > 7.

The total welfare of assignment µ is therefore:

SWe =
∑

(i, j)∈Be×Se
(i, j)∈E(Ge )

(
|µ(i) = j | · (πi (j) + πj (i))

)
+
(
|µ(ϵu ) = αue | · παue (ϵu )

)
+
(
|µ(ϵu′) = αu

′
e | · παu′e (ϵu′)

)

= |µ(δe ) = αue | · (πδe (αue ) + παue (δe )) + |µ(βe ) = αu
′

e | · (πβe (αu
′

e ) + παu′e (βe ))
≤ 2|E |2 + 11 + 2|E |2 + 10
≤ 4|E |2 + 22
< 6|E |2 + 27 − |V |

since, without loss of generality, we can assume that 2|E |2 − |V | + 5 > 0, as we are referring to
cubic graphs, where 3|V | = 2|E | and as a result the claim trivially holds. □

In order to prove NP-hardness forMBSBM, we need to provide an intermediate result concerning
the existence of blocking pairs under certain assignments.

Lemma A.2. Consider edge e = (u,u ′) of G, and let µ be an assignment for edge gadget G ′
e . The

following two statements hold:
(1) If assignment µ satisfies µ(βe ) = ηe , µ(γe ) = αu

′
e and µ(δe ) = αue (solid edges in Figure 1), then

no blocking pair of µ involves any agent from {βe ,γe ,δe ,αue ,ηe }.
(2) If assignment µ satisfies µ(βe ) = αu

′
e , µ(γe ) = αue and µ(δe ) = ηe (dashed edges in Figure 1),

then no blocking pair of µ involves any agent from {βe ,γe ,δe ,αu′
e ,ηe }.

Proof. For statement (1), we assume outcome µ sets values as suggested. Computing the utilities
under µ for each agent, we get:

πβe (ηe ) = 2|E |2 + 3, πγe (αu
′

e ) = 2|E |2 + 6, πδe (αue ) = 2|E |2 + 7
παue (δe ) = 4, πηe (βe ) = 1

One can easily verify that agents βe ,γe ,αue are maximizing their utility under µ, and since agent ηe
is indifferent between agents δe and βe , they have no incentive to deviate by forming a blocking pair
with agent δe . Therefore, there does not exist a blocking pair that includes agents {βe ,γe ,δe ,αue ,ηe }.
For statement (2), we assume outcome µ sets values as suggested. Computing the utilities under µ
for each agent, we get:

πβe (αu
′

e ) = 2|E |2 + 2, πγe (αue ) = 2|E |2 + 5, πδe (ηe ) = 2|E |2 + 9
παu′e (βe ) = 8, πηe (δe ) = 1
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One can easily verify that agents δe ,αu
′

e are maximizing their utility under µ, and since agent ηe is
indifferent between agents δe and βe , they have no incentive to deviate by forming a blocking pair
with agent βe . Given that agent αu′

e is assigned to agent βe , and is maximizing their utility, agent
γe is assigned to agent αue , as this constitutes their best available choice. Therefore, there does not
exist a blocking pair that includes agents {βe ,γe ,δe ,αu′

e ,ηe }. □

A.6 Proof of Lemma 5.2
Proof. We examine the edge and vertex gadgets separately, and argue that, in both cases, setting

prices equal to the winning bidders’ budgets yields all feasible welfare-maximizing, core-stable
outcomes. Formally, the set of all welfare-maximizing, core-stable assignments coincides with the
set of optimal assignments when prices are set at the budget limit.
In a two-sided matching the welfare is defined as the gains from trade, the value of the buyers

minus that of the sellers. This means, for each match between buyer i and seller j , the corresponding
welfare is computed as the sum of buyer πi (j) = vi (j) −pj and seller payoff πj (i) = pj − r j , therefore
prices are not included in the final sum, which is the result of the difference between assigned
items’ valuations and seller reserve values.

We begin by analyzing the edge gadget, as seen in Figure 1. The values depicted in Table 1 rep-
resent the true valuation of each buyer among {βe ,γe ,δe } for the item of each seller among
{αue ,ηe ,αu

′
e }. One can trivially observe that there exist 6 feasible assignments between buy-

ers and sellers in the bipartite graph. As stated above, prices do not participate in the wel-
fare computation, and thus we can calculate the welfare-maximizing assignment based on the
buyer valuation table. Since valuations vβe (αue ) = vγe (ηe ) = vδe (αu

′
e ) = 0, only 2 among 6 as-

signments are stable, and simultaneously welfare-maximizing. The two assignments µ1, µ2 are
µ1(βe ) = ηe , µ1(γe ) = αu

′
e , µ1(δe ) = αue and µ2(βe ) = αu

′
e , µ2(γe ) = eij , µ2(δe ) = ηe . The total welfare

admitted by assignments µ1, µ2 is equal to 6|E |2 + 27, while the remaining feasible assignments
yield a strictly lower welfare. Additionally, according to Lemma A.2, assignments µ1, µ2 (grey,
dotted) with seller payoffs set as παue (δe ) = bδe − rαue = 9 − 5 = 4, πηe (βe ) = bβe − rηe = 9 − 8 = 1,
παu′e (γe ) = bγe − rαu′e = 7 − 1 = 6 under assignment µ1, and παue (γe ) = bγe − rαue = 7 − 5 = 2,
πηe (δe ) = bδe − rηe = 9 − 8 = 1, παu′e (βe ) = bβe − rαu′e = 9 − 1 = 8 under assignment µ2, do not
generate any blocking pairs. This argument leads to the conclusion that, for the edge gadget and
corresponding valuation table, setting prices for winning buyers equal to their budgets produces
every feasible core-stable, welfare-maximizing assignment, namely setting prices to lower values
cannot yield different stable assignments of higher or equal welfare.

In a similar analysis, we observe that, for the vertex gadget of Figure 2, the welfare-maximizing
assignment µ3, based on valuations described on Table 2, is µ3(ϵu ) = N (ϵu ), µ3(ζu ) = ξu , µ3(θu ) = λu .
However, as suggested in Lemma 5.1, assignment µ0(ϵu ) results in sub-optimal welfare for the overall
subgraph including vertex and edge gadget. Therefore, the welfare-maximizing assignment µ4 is a
result of an assignment between the vertices within the gadget. The aforementioned assignment
is µ4(ϵu ) = ξu , µ3(ζu ) = κu , µ3(θu ) = λu (solid assignment in Figure 2), admitting welfare equal to
3|V | + 27. In Theorem 5.3, we have shown that assignment µ4, for winning buyer prices equal to
their budgets is core-stable. Thus, the initial claim is true for each vertex gadget, concluding the
proof of the lemma. □

A.7 Proof of Theorem 5.3
Proof. Let G = (V ,E) be a cubic graph, with sizes of vertex and edge sets defined as |V | and |E |

respectively. Since G is assumed to be cubic, it does not possess any isolated vertices. An instance
of MIS is defined by G and an integer k .
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A key property of cubic graphs is that all nodes must have a degree of 3. According to the
Handshaking lemma, it holds that

∑
u ∈V deд(u) = 2|E |, namely the sum of degrees of all vertices of

the graph is twice as large as than the size of the edge set.
We construct an instance < G ′,πi ,πj , SW > of MBSBM, whereG ′ = (V ′,E ′) is a bipartite graph,

with SW = |V | · (3|V | + 26) + k + |E | · (6|E |2 + 27). For each edge e ∈ E, buyer and seller sets of
the corresponding edge gadget are defined as Be ,Se . For each vertex u ∈ V , the respective sets
for the corresponding vertex gadget are defined as Bu ,Su . Unifying for all edge gadgets in G ′, we
define BE =

⋃
e ∈E

Be , SE =
⋃
e ∈E

Se , and for all vertex gadgets, sets SV =
⋃
u ∈V

Su and BV =
⋃
u ∈V

Bu .

Vertex set V ′ consists of the union over all vertex and edge gadgets, and therefore B = BE ∪ BV
and S = SE ∪ SV represent the total number of buyers and sellers respectively. Each edge
gadget corresponding to edge e ∈ E consists of vertices Be = {βe ,γe ,δe } and Se = {αue ,ηe ,αu

′
e }.

Similarly, the vertex gadget corresponding to vertex u ∈ V consists of two disjoint sets of vertices
defined as Bu = {ϵu , ζu ,θu } and Su = {κu , λu , ξu }. The vertex and edge gadgets are defined for
each vertex u ∈ V and each edge e ∈ E of the original graph G. The total size of each set is
|B| = |S| = 6|E | + 6|V |.
Formally, the following claim should be proven:G has an independent set IS(G) of size at least k

if and only if G ′ admits a stable outcome with welfare at least SW .
The transformation from an instance of MIS to an instance of MBSBM is performed in polynomial

time. An important aspect of our construction is the assumption that, both in edge and vertex
gadgets, there exist pairs of buyers with equal budgets. From Tables 1 and 2, one can observe that
pairs of agents {βe ,δe } and {ϵu ,θu } verify the claim. Thus, the instance is not in general position,
and therefore the hardness proof holds for cases where the property is violated.

We now proceed to the forward part of the proof, namely prove that, given an independent set
IS(G) of size at least k , we construct an assignment µ as follows:

• For each u ∈ V , if u ∈ IS(G), set µ(ϵu ) = ξu , µ(ζu ) = κu , µ(θu ) = λu .
• For each u ∈ |V |, if u < IS(G), set µ(ϵu ) = λu , µ(ζu ) = ξu , µ(θu ) = κu .
• For each edge e = {u,u ′} ∈ E do:
– Ifu ∈ IS(G), set µ(βe ) = ηe , µ(γe ) = αu

′
e , µ(δe ) = αue , which matches condition (1) of Lemma

A.2.
– Ifu < IS(G), set µ(βe ) = αu

′
e , µ(γe ) = αue , µ(δe ) = ηe , which matches condition (2) of Lemma

A.2.
• For any pair of agents (i, j) ∈ G ′ not assigned above, set µ(i) = 0, µ−1(j) = 0.

Since the size of the independent set is at least k , we can trivially verify that, according to
the aforementioned rules, the welfare attained by the agents of all vertex gadgets is equal to
|V | · (3|V | + 26)+ k and of all edge gadgets is |E | · (6|E |2 + 27), thus achieving a total welfare of SW .
In what follows, we prove that outcome µ is indeed stable.

Edge Gadget. Examining the edge gadget of edge e = {u,u ′} ∈ E, we need to prove that there does
not exist any blocking pair of agents. There are two distinct cases, as mentioned previously.

(1) If u ∈ IS(G), then µ corresponds to condition (1) of Lemma A.2. Therefore, no blocking pair
involving agents {βe ,γe ,δe ,αue ,ηe } exists. In this case, assigning αu

′
e to ϵu′ would yield a

higher utility for agent αu′
e . However, since u ′ < IS(G), by definition µ(ϵu′) = λu and ϵu′ is

assigned to her most preferred agent, with no incentive to deviate. We conclude that no
blocking pair involving agents {αu′

e , ϵu
′}, guaranteeing stability for µ.

(2) If u < IS(G), then µ corresponds to condition (2) of Lemma A.2. Therefore, no blocking pair
involving agents {βe ,γe ,δe ,αu′

e ,ηe } exists. In this case, assigning αue to ϵu would yield a
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higher utility for agent αue . However, since u < IS(G), by definition µ(ϵu ) = λu and ϵu is
integrally matched to her most preferred agent, with no incentive to deviate. We conclude
that no blocking pair involving agents {αue , ϵu }, guaranteeing stability for µ.

We prove a similar result for the vertex gadgets of G ′.

Vertex Gadget. Examining the vertex gadget of vertex u ∈ V , we again detect two cases.
(1) If u ∈ IS(G), then no blocking pair of µ involves agents {ξu ,θu , λu }, as µ assigns them to

their most preferred agents. Therefore, no blocking pair involves agents {ζu ,κu }, since no
possible combination can yield improved payoff for all participants. As previously argued, no
agent from the edge gadget participates in a blocking pair, and thus ϵu is also not involved in
a blocking pair.

(2) If u < IS(G), then no blocking pair of µ involves agents {κu , ζu , λu }, as µ assigns them to their
most preferred agents. The same holds for agent ϵu . Therefore, no blocking pair involves
agents {θu , ξu }, since no possible combination can yield improved payoff for all participants.

We conclude that neither the edge nor vertex gadget contain agents involved in blocking pairs
under µ. Thus, µ is stable and achieves a welfare of SW .

For the reverse direction, assume µ is a stable outcome for< G ′,πi ,πj >withwelfarewel f are(µ) ≥
SW . Defining a subset of the vertices as IS(G) = {u ∈ V | µ(ϵu ) = ξu }, we prove that IS(G) is an
independent set of G of size at least k .

Firstly, we prove the desired lower bound on |IS(G)|. We define µ(ϵu ) = N (ϵu ) as the assignment
between vertex ϵu and any of the neighboring vertices from the edge gadgets. Summing up for all
|V | vertices of G, we get:
∑
u ∈V

( ∑
i ∈{ϵu ,ζu ,θu }

πi (µ(i)) +
∑

j ∈{κu ,λu ,ξu }
πj (µ−1(j))

)

=
∑
u ∈V

(|V | + 10) · |µ(ϵu ) = λu | + (|V | + 12) · |µ(ϵu ) = ξu | + (|V | + 8) · |µ(ϵu ) = N (ϵu )|+

(|V | + 7) · |µ(ζu ) = κu | + (|V | + 9) · |µ(ζu ) = ξu | + (|V | + 7) · |µ(θu ) = κu | + (|V | + 8) · |µ(θu ) = λu |

≤
∑
u ∈V

(|V | + 10)|µ(ϵu ) = λu | + |µ(ϵu ) = ξu | + |µ(ϵu ) = N (ϵu )| + (|V | + 8) · |µ(ζu ) = κu | + |µ(ζu ) = ξu |+

(|V | + 8) · |µ(θu ) = κu | + |µ(θu ) = λu | +
∑
u ∈V

|µ(ϵu ) = λu |

≤ |V | · (3|V | + 26) +
∑
u ∈V

|µ(ϵu ) = λu |

Since µ corresponds to a binary assignment, only one condition holds true for each of ϵu , ζu ,θu ,
and examining all possible outcomes, we use the mean of values to provide an upper bound on
utilities. The sum of values for each vertex κu , λu , ξu is at most 1, which is also taken into account
when computing the upper bound. We can trivially verify that, the total welfare of µ is maximized
if and only if pair ϵu , ξu is integrally matched.
We now need to show that |IS(G)| ≥ k . Set IS(G) has been defined as the set of vertices ϵu for

u ∈ V , that are integrally matched to ξu . This can be expressed as |IS(G)| = ∑
u ∈V |µ(ϵu ) = ξu |. It

then suffices to prove inequality
∑
u ∈V |µ(ϵu ) = ξu | ≥ k , to prove the lower bound on the size of

the independent set. Since the induced welfare from all |E | edge gadgets is at mostwel f are(µ) ≤
|E | · (6|E |2+27). At least |V | · (3|V |+26)+∑u ∈V |µ(ϵu ) = ξu | must be derived from the vertex gadgets.
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Using the upper bound provided above, we conclude that
∑
u ∈V |µ(ϵu ) = ξu | ≥ k , as required, thus

proving the lower bound on the size of IS(G).
Finally, we need to prove that IS(G) is in fact an independent set of G. We prove the claim by

contradiction. Suppose there is an edge e = {u,u ′} ∈ V and {u,u ′} ⊆ IS(G). Then, for both nodes
u,u ′ under assignment µ, it must hold that πϵu (µ(ϵu )) < |V | + 8 = πϵu (αue ) and πϵu′ (µ(ϵu′)) <
|V | + 8 = πϵu′ (αu

′
e ), as IS(G) is defined as the set of nodes u that are integrally matched to ξu . From

Lemma 5.1, the induced welfare from agents of the edge gadgets is at most 6|E |2 + 27 − |V |, and
using the previously shown bound, the welfare induced from agents of the vertex gadgets is at most
3|V | + 26 + |V |. Therefore, the total welfare of G ′ under µ is lower than the original assumption,
which is a contradiction. Note that the restriction of our prices to be at the budget constraint bi of
the buyers i ∈ B in the edge and vertex gadgets is without loss of generality as shown in Lemma
5.2. Concluding, we have proven that indeed IS(G) is an independent set of G.

□
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Abstract. How to best incentivize farmers to conserve biodiversity on private
land is an important policy question. Conservation auctions provide a mechanism
to elicit farmers’ opportunity costs, but their design is challenging and often suffer
from low participation due to strategic complexity. Conservation auctions should
ideally be incentive-compatible, address spatial synergies that maximize biodiver-
sity gains, and respect the predefined budget of the government. Recent advances
in mechanism design suggest budget-feasible auctions, but little is known about
average-case efficiency. Based on this line of research, we introduce an incentive-
compatible conservation auction mechanism that considers the bid taker’s spatial
synergies and respects budget. The results are compared against the celebrated
Vickrey-Clarke-Groves mechanism. Our numerical results estimate the efficiency
loss that can be expected for different assumptions on the synergistic values of the
government. They provide evidence that budget-feasible mechanisms provide a
new tool for policymakers in this domain.
Keywords: Conservation auction, incentive compatibility, budget feasibility, mech-
anism design

1 Introduction

Wildlife populations have declined by more than two-thirds in less than 50 years accord-
ing to the World Wildlife Foundation.1 As in many studies, it is shown that biodiversity
is being destroyed at a rate unprecedented in history. Given the prominent role of private
land use in achieving improvements to biodiversity, changing the behavior of those who
manage private land in a manner that benefits biodiversity is a key objective (Armsworth
et al. 2012). Incentive-based agri-environmental schemes (AES) that encourage landown-
ers to undertake costly ecosystem services or conservation activities for biodiversity
have been globally growing in popularity. AES combine information systems and market
design to coordinate relevant stakeholders (Gholami et al. 2016). So far, incentives
have largely been offered as simple posted-price schemes. In most of these schemes,
landholders are paid a fixed price for a service, such as price per hectare for a land
piece converted from agricultural use to grassland by a farmer. Prices can be too high

1 https://www.bbc.com/news/science-environment-54091048
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leading to over-provisioning or too low such that they do not provide enough incentive
to participate. Information asymmetries between farmers render the implementation of
biodiversity goals in an efficient way challenging (Gómez-Limón et al. 2019), or create
an adverse selection problem (Lundberg et al. 2018).

Conservation auctions have been promoted as an alternative to such posted-price
schemes. These auctions are a specific type of payment for ecosystem service mecha-
nisms where a single buyer (government or regulatory body) elicits bids from private
producers to enter into contracts regulating how land is to be managed. Through com-
petition between farmers, the government hopes to reduce the information rents which
farmers earn, and thus improve the cost-effectiveness of the budget spent on biodiversity
measures. Conservation Reserve Program in the US is arguably the world’s largest
payments-for-ecosystem services program. It has been in operation since 1985 and uses
pay-as-bid auctions (Cramton et al. 2021). The benefits of a switch to conservation
auctions have been estimated within range of 24% to 33% for Australian conservation
programs (Windle & Rolfe 2008). Rousseau & Moons (2007) argue that the adoption of
an auction mechanism can increase social welfare by 22% compared to the fixed-price
scheme being employed under the afforestation program in Belgium.

Running an auction is not common in the EU even though it is permitted (Article
49.3 of Regulation (EU) No 1305/2013) (Grohe, 2009; Allen et al. (2014); Latacz-
Lohmann & Breustedt (2019)). One reason is the difficulty in designing appropriate
market mechanisms (Schilizzi 2017). Some questions are similar to those in other market
design problems. For example, one needs to decide the product being auctioned, i.e.,
whether payments are based on the performance or actions of bidders. The payment rule
matters, and so do the bid selection criteria, and the bidding format (single-round or
multiple-round). However, a few aspects of conservation auctions are specific:

(1) To be environmentally effective for biodiversity conservation, there is a need
for an auction design that encourages spatial coordination of conservation actions,
since the successful realization of many biodiversity objectives depends on conservation
actions occurring on neighboring sites or along wildlife corridors. A wildlife corridor is
a habitat area connecting wildlife populations separated by human activities or structures.
The absence of spatial coordination of conservation efforts leads to far from optimal
results. This problem constitutes a major source of AES ineffectiveness (Nguyen et al.
2022). In the past, conservation auctions did not promote landscape-level coordination
of conservation efforts across landholders but focused on outcomes on a farm level
(Nguyen et al. (2022), Hanley et al. (2022), Iftekhar & Latacz-Lohmann (2017a), Lamb
et al. (2016)). The conservation of several patches of land that are adjacent might lead to
a wildlife corridor and be preferable to the conservation of two non-adjacent patches of
the same size. The switch from a farm-scale and fragmented conservation approach to a
landscape-scale approach has been argued to be an important change for AES to meet
their environmental goals more effectively (Westerink et al. 2017). In summary, spatial
and temporal dependencies among ecosystem services need to be considered (Wätzold
et al. 2016), requiring non-standard auction formats to get to optimal land-use patterns.

(2) Participation in conservation auctions has long been a concern (Rolfe et al.
2018). Participants in such auctions are laymen and simplicity and transparency are
key. The complexity of auctions was raised as a central reason for low participation in



conservation auctions (Palm-Forster et al. 2015). To address this concern, a version of
the Vickrey-Clarke-Groves (VCG) mechanism was proposed to implement a welfare-
maximizing outcome (Polasky et al. 2014). Maximizing welfare implies minimizing
costs for governments in conservation auctions. The VCG mechanism is the unique
strategyproof mechanism (i.e., dominant strategy incentive-compatible) for general valu-
ations that achieves this goal, a significant advantage over alternative auctions. However,
the underlying assumption is that buyers and sellers have no financial constraints.

(3) Instead of cost-minimization governments typically want to maximize the level
of conservation of endangered species and habitats at a given budget. In other words,
the government wants to minimize cost subject to a hard budget constraint. Incentive
compatibility and budget feasibility are incompatible in general, which follows from
the fact that the VCG mechanism is unique. As a result, the VCG mechanism does not
provide a viable option to governments.

Conservation auctions used today violate one or more of these properties (Nguyen
et al. 2022). While incentive compatibility and budget feasibility clash for general
valuations, one can hope for auction designs that address these properties for restricted
valuations. Indeed, progress is made on this front in the mechanism design literature.

This work adds to the literature on procurement auctions. While industrial procure-
ment auctions focus on cost minimization (Dasgupta & Spulber 1989, Bichler et al.
2006, Anton & Yao 1992, Kokott et al. 2019), the main difference of conservation
auctions is the presence of budget constraints. A small theoretical literature exists on
such budget-feasible auctions, but applications in the field have not yet been explored.

A number of authors proposed strategyproof budget-feasible procurement auctions
for single-minded bidders, i.e. bidders who are only interested in selling a particular set of
goods or services and not multiple combinations. In conservation auctions, this is usually
satisfied. Farmers own land parcels that they can either develop and profit or conserve
for agri-environmental purposes such as wildlife protection. However, until recently the
proposed mechanisms were randomized sealed-bid mechanisms (Singer 2010). Balkanski
et al. (2022) proposed a deterministic clock auction that respects budgets. Budget-feasible
auction mechanisms have not yet been explored for conservation auctions.

Collusion can be a particular challenge in mechanism design, since it can lead to
lower income for the principal. The VCG algorithm is prone to collusion, which may
lead to arbitrarily low auctioneer revenue, as argued in Polasky et al. (2014). On the
contrary, BFA satisfies weak group-strategyproofness, namely no coalition of sellers
can misreport such that they all profit. This property guarantees collusion-resistance.
This argument strengthens our claim that the BFA poses as an attractive alternative for
policymakers, as it eliminates the risk of spatial synergies.

The price to be paid for such strong incentive properties and budget feasibility is effi-
ciency. The clock auction by Balkanski et al. (2022) but also the sealed-bid predecessors
are approximation mechanisms and do not implement the welfare-maximizing outcome.
For monotone submodular valuations, the worst-case approximation ratio of BFA is 4.75.
Thus, welfare could be almost five times worse than the maximum welfare solution. For
non-monotone submodular valuations, the worst-case ratio is 64. For submodular and
subadditive valuations, the auction matches the bounds of the best randomized budget-
feasible auctions. While such bounds are interesting from an algorithmic perspective,



the worst-case might be too pessimistic. A recent stream of work in theoretical computer
science seeks insights beyond a purely worst-case analysis (Roughgarden 2019).

In this paper, we study the average-case efficiency of incentive-compatible and
budget-feasible conservation auctions, in particular, the clock auction by Balkanski
et al. (2022), which provides the most recent realization and is deterministic and group-
strategyproof. For these reasons, we focus on this auction among the set of budget-
feasible auctions. The strong incentive properties of this auction allow us to focus on
numerical experiments as we can expect bidders to follow their dominant strategy.

In standard combinatorial auctions, synergies are on the bidders’ side and are typ-
ically unknown to the auctioneer. In conservation auctions, the synergistic valuations
are on the bid taker’s side and thus known in advance to the auctioneer. Based on our
analysis and knowledge about complementarities, a government can decide whether the
expected efficiency loss due to budget-feasible auctions is acceptable for a particular
application. This sheds light on the question of whether budget-feasible auctions can
provide a practical policy tool to implement agri-environmental services.

We show that efficiency loss due to BFA in the case of submodular values is at around
25% on average. For additive or superadditive valuations, the efficiency loss is between
36% and 51% with very high levels of superadditivity. Domain-specific value models
for wildlife corridors achieve similar relative welfare gains, but the budget violation
with VCG is even worse. We argue that with or without hard budget constraints, such
variations in the payment will be unacceptable for most policymakers.

Auction mechanisms used in some countries are neither incentive-compatible nor
consider landscape-level complementarities for the government. The complexity of
conservation auction mechanisms is the key reason behind low participation rates of
farmers. Indeed, a major shortcoming of sealed-bid auctions is the lack of transparency,
as participants must trust the auctioneer to correctly implement the auction algorithm and
not mishandle their private information. By design, clock auctions, and as such the BFA,
are simple, meaning that participants only see the price offered to them and need not
understand the intrinsic details of the mechanism implemented. Against this background,
we argue that BFA provides a powerful new tool for policymakers in this field.

2 Related Work

There is extensive literature on conservation auctions to incentivize biodiversity measures
(Nguyen et al. 2022). One line of research concerns combinatorial auctions. Such
auctions play a role when farmers have significant synergies across services ((Nemes et al.
2008, Saïd & Thoyer 2007, Iftekhar et al. 2009)). We focus on farmland conservation,
where individual landowners can decide to develop or conserve a patch of land. Synergies
may arise on the side of the government and on a landscape level across multiple land
patches. The goals of such auctions include enhancing the population of farmland birds,
protecting native vegetation, or restoring wetlands on farms. On a landscape level, it
can be useful to conserve adjacent patches of land (e.g., wildlife corridors) or other
combinations across the landscape, which all promise different biodiversity gains to the
government. Polasky et al. (2014) focused on this widespread scenario and proposed
a VCG mechanism. The VCG mechanism is strategyproof if the regulator aims for a



particular conservation target and does not have budget constraints. We refer to such
auctions as target-constrained auctions.

Typically, governments do not decide on a biodiversity target, but on a budget
devoted to biodiversity (Hellerstein 2017). In the US Conservation Reserve Program,
each potential supplier can make a bid detailing how much they will accept for agreeing
to the contract terms. The buyer then orders the bids in terms of either bid price alone, or
bid price weighted by some environmental metric, and selects the most cost-effective bids
until budget is exhausted, some quantitative program target is achieved (e.g., cumulative
hectares enrolled), or a reserve price is reached for bids (Hellerstein 2017). However,
such auction formats neither consider spatial coordination nor are incentive-compatible.

Nguyen et al. (2022) provide a thorough review of economic mechanisms built
with the purpose of generating incentives for spatial coordination. In traditional AES,
landowners usually operate in isolation, which leads to suboptimal outcomes when it
comes to ecosystem preservation, given the scattered nature of preserved parcels, or even
failure to meet preservation targets. Hence, spatial coordination arises as a significant
property, exceeding the capabilities of conventional design models. The existing auction
formats to address the problem determine a bonus added on top of individual payments
in case of coordination.

Budget-feasible but incentive-compatible mechanisms have been developed in the
literature on algorithmic mechanism design but received little attention outside. In
particular, they have not been explored in the context of conservation auctions, even
though they address central design desiderata as discussed earlier. A few sealed-bid
(randomized), incentive-compatible and budget-constrained auctions were proposed for
restricted types (e.g., additive or submodular) of buyer preferences (e.g., Singer (2010)
or Gravin et al. (2020)). However, randomized mechanisms, while elegant algorithmi-
cally, are rarely used in practice. In recent work, Balkanski et al. (2022) introduced
deterministic auctions that are also budget-feasible and incentive-compatible and match
or even improve on the best-known randomized approximation ratio. These auctions
are run as clock auctions and match the best-known worst-case approximation bounds
by any other polynomial-time strategyproof auctions for restricted types of valuations
such as submodular and subadditive. These worst-case approximation ratios might not
be appealing to decision-makers, but also not appropriate for decision-making. In this
article, we aim to understand the average-case efficiency of budget-feasible auctions and
whether they provide a viable option for policymakers.

3 Preliminaries

3.1 Notation

Our analysis is inspired by Polasky et al. (2014), who consider a grid of land parcels
each belonging to one farmer N = {1, 2, . . . , n}. An auctioneer (buyer or government)
seeks to acquire land parcels, in the form of bundles of parcels, and we thus define a
set of combinations or packages of parcels as S ⊆ N . The landowner of each parcel
i ∈ N (seller or farmer) has two possible courses of action: conserve, translated to no
income for the owner but positive effect on biodiversity, or develop, leading to little or



no ecosystem value but profit for the individual. The action is represented as a binary
variable yi, where yi = 0 denotes the case where the items in bundle S are developed
(and thus bring no benefit to the auctioneer), and yi = 1 in case of preservation.

For each individual land parcel i, the corresponding owner has an opportunity cost
(ci) for developing the parcel, which remains private information. She would only accept
to preserve parcel i if price pi ≥ ci. The price or payment vector p = (p1, p2, . . . , pn) is
determined by an auction mechanism. The auctioneer is subject to a hard budget limit
of B, and thus the sum of individual payments should not exceed this constraint. In
addition, the auctioneer has a publicly known value function v : S → R≥0 for each
combination of parcels. We examine three different families of valuation functions:
additive, submodular, and superadditive to cover a broad range of possible valuations.
These are the types of set functions that are widely analyzed in the algorithmic literature:

– Additive: ∀S, T ⊆ {N} : v(S) + v(T ) = v(S ∪ T )− v(S ∩ T )
– Superadditive: ∀S, T ⊆ {N} : v(S) + v(T ) ≤ v(S ∪ T )
– Submodular: ∀S, T ⊆ {N} : v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T )

3.2 Optimal Allocation

We introduce a model to compute the optimal allocation (OPT), which serves as a
baseline to compare against incentive-compatible auction mechanisms. This integer
program does not generate prices but guarantees that at least the total cost of the farmers
is within budget. This does not mean that the result of an auction mechanism where prices
might be higher than costs will still be within budget. However, this constrained welfare
maximization provides a useful baseline to compare outcomes of auction mechanisms.

max
∑

S⊆N v(S)x(S)−∑
i∈N ciyi

s.t.
∑

S⊆N x(S) ≤ 1∑
S:i∈S x(S) ≤ yi ∀i ∈ N∑
i∈N ciyi ≤ B

x(S) ∈ {0, 1} ∀S ⊆ N
yi ∈ {0, 1} ∀i ∈ N

(OPT)

The objective function maximizes gains from trade. The first constraint makes sure
that only one package of the government is selected, and the second enforces that a
package that is bought also has farmers selling their corresponding pieces of land. The
third constraint guarantees that the final allocation respects budget. The last constraints
enforce the integrality of the solution. V B(X) is defined as the objective function value of
OPT for a feasible allocation X = {x(S)}S⊆N , and V (X) the objective function value
of OPT for a feasible allocation X without the budget constraint. The welfare maximizing
allocation, ignoring the budget constraint, is then given by X∗ = argmaxX [V (X)].

3.3 The VCG Mechanism

Based on the above notation, it is straightforward to define the VCG mechanism. In this
sealed-bid mechanism, sellers i report their costs ci to the auctioneer. The auctioneer
then computes the maximum welfare V (X∗). In order to determine the payments for



each winning seller i, the auctioneer computes the optimal allocation X∗
−i without the

winning seller i. The difference ∆Vi = Vi(X
∗
i )−Vi(X

∗
−i) defines the VCG payment pi

for a winning farmer i. In single-sided (conservation) auctions, these payments are such
that the auctioneer does not make a loss. However, if the auctioneer has an additional
exogenous and binding budget B, they might make a loss with respect to this budget.

4 Budget-Feasible Auctions

The core of the algorithm by Balkanski et al. (2022) is a backward greedy technique
designed for submodular function maximization. In this auction, the auctioneer with
budget B proposes a price pi,t to each seller (or landowner) i in phase t, that is non-
increasing such that pi,t ≤ pi,t−1, and is computed using the available public information.
The sellers have the option to either reject the price and permanently exit the auction,
or continue by accepting this lower price. In the latter case, they are included in the set
At of active sellers at round t. Since in every iteration, we expect more sellers to reject,
naturally it holds that At ⊆ At−1 ⊆ · · · ⊆ A1 ⊆ N . At phase t̂, the auction terminates,
a subset of At̂ is chosen as the winning set W , and each seller receives a price equal to
the last accepted offer. The auction is budget-feasible if

∑
i∈W pi,t̂ ≤ B.

The auction outcome is compared against the resulting welfare of OPT , which
produces the optimal allocation for the case when all private costs are known, with a
price pi = ci paid to each seller. The approximation ratio is measured as the factor
ρ = OPT

BFA , where BFA describes the welfare achieved with the BFA algorithm. The
theoretical guarantee provided in this work is that, for monotone submodular value
functions, the approximation ratio for BFA is 4.75.

The clock auction is described as a two-stage process. During the first stage, for
each phase t, an estimate of the value of the optimal solution, ˜OPT , is updated. ˜OPT is
initiated with a pessimistic estimation, equal to the maximum value single item. In each
phase, we seek to determine a set of sellers St, such that the total value of their union
exceeds ˜OPT . The seller with the highest marginal contribution v({i}|St) to set St is
considered in each iteration and is offered a price equal to pi,t = min{pi,t, v({i}|St) ·

B
OPT }. This price pi,t corresponds to the marginal contribution of i to St scaled to reach
˜OPT within budget B. If the price is accepted by i, the auctioneer adds i to set St, or i

is removed from A otherwise. When v(St) ≥ ˜OPT or there are no active sellers left to
be offered a price, phase t comes to an end.

As a new phase t > 1 begins, the estimate is updated to ˜OPT t = 2 · ˜OPT t−1, and
set St−1 represents the selected sellers of the previous phase. If the union St−1 ∪ St

contains all active sellers at the end of phase t, the mechanism terminates.
At the second stage of the process, once the clock auction has terminated, sets St−1

and St are fed to a routine for submodular function maximization: a bidder is removed
from the set of phase t− 1 and added to phase t, to maintain budget feasibility. Finally,
the maximum value budget-feasible set is selected, as a combination of the elements
belonging to sets St−1 and St. A detailed pseudo-code is provided in the appendix.



5 Research Design

In our numerical experiments, we compare OPT with the VCG and BFA mechanisms.
Farmers grow a range of crops and employ different production technology, hence
we assume a standard private-value model, where valuations are drawn from a certain
distribution. The treatment variables of our numerical experiments include the value
model, budget constraint, and grid size. The opportunity costs ci of the landowners are
drawn i.i.d from a uniform distribution in the range [0, 50]. Results are reported on a 3x3
grid. We conduct experiments with larger grid sizes, up to sizes 7x7, but the impact of
grid size on the results was negligible.

The auctioneer’s value function, v(S), for packages of parcels S ⊆ N is divided
into several classes of set functions: additive, submodular, superadditive valuations, and
domain-specific functions. This is a central treatment variable in our experiments. The
first three classes are typical in the auction design literature, while the latter is motivated
by the domain of conservation auctions. Note that additive ⊂ submodular functions.

First, we report purely additive functions, adopting Polasky et al. (2014). Each item
is assigned a value vi drawn i.i.d. from the uniform distribution within range [0, 100].
Here, the value of a set of parcels is the sum of their individual values to the auctioneer.

Superadditive value functions capture general complementarities that result from
aggregating pieces of land. If the auctioneer can gather multiple parcels, the added value
is more beneficial to ecosystem preservation. For the case of superadditive functions, for
each package, the sum of values is incremented by a multiplier in the range (1, 2].

We generate all packages or combinations of items S ⊆ N , regardless of their
position on the grid, and assign a value for each subset by adding the individual values
vi in a bottom-up manner and multiplying with the multiplier.

Submodular functions are generated following the rule: v(S ∪ T ) ≤ v(S) + v(T )−
v(S ∩ T ). For the generation of submodular valuations, we define the maximum value
resulting from adding any two subsets S, T and subtracting the value of their intersection.
This value provides an upper bound on the value that S ∪ T is allowed to take. The
minimum allowed value for S ∪ T is the maximum value of S, T . Additive, submodular,
and superadditive set functions are widely used in discrete mathematics and algorithm
design, but do not always adequately capture the specifics of conservation auctions.

Iftekhar & Tisdell (2014) emphasize wildlife corridors as a landscape pattern with
significant biodiversity benefits. Such corridors can be seen as rows on a grid (see Figure
1). Once a wildlife corridors is achieved, the value of conserving parcels in this row
becomes superadditive. However, the value of preserving multiple corridors satisfies
submodularity, thus although beneficial to conserve a corridor, as more are added, the
marginal contribution of each new one to the conservation pattern diminishes. All other
combinations of parcels have additive values. Landowners need to coordinate their
bids to form valid corridors and compete with other valid corridors to be successful
(Iftekhar & Latacz-Lohmann 2017a). Other conservation targets aim at reducing soil
erosion or water pollution, where the auctioneer has preferences for specific patterns
as well. We focus on the goal of wildlife corridors as a particularly illustrative and
widespread conservation target that has received significant attention (Iftekhar & Tisdell



2014, Iftekhar & Latacz-Lohmann 2017b, Dijk et al. 2017). An interesting application is
the auction program to create habitat corridors in Australia (Nguyen et al. 2022).

The choice of landscape corridors as a specific type of value model is due to its
relevance to biodiversity and conservation auctions. The literature on biodiversity-based
value models on a landscape scale is scarce and differs from application to application
(e.g., protecting turtle doves is different from landscape level patterns that help bees).
Knowledge about beneficial patterns is currently emerging.

A motivating argument for studying submodular functions is the fact that BFA
achieves the highest efficiency for this family of functions, yielding a close approximation
of the optimal solution. Bordewich & Semple (2011) model phylogenetic diversity, a
measure of biodiversity of a species collection, under the assumption of submodularity.
Similar to additive and superadditive, which can be intuitively perceived as natural
candidate classes, submodularity is an interesting property to examine.

Figure 1. Corridors on the landscape grid allowing for wildlife movement between regions A and
B highlighted in different colors.

Budgets can be binding or non-binding. The case of non-binding budgets is trivial:
the OPT and VCG outcomes are equivalent, and all items can be purchased for a certain
price. For the more interesting case of binding budgets, we draw values at random in the
range from which costs are drawn, so that the auctioneer can only afford a strict subset
of items. In particular, since costs are drawn i.i.d. from a uniform distribution in [0,50],
we draw budget values i.i.d. from a uniform distribution in [50, 150]: in this way, the
auctioneer has the power to purchase at least one single land item.

To the best of our knowledge, conservation auction data is not made publicly avail-
able, as principal values and land owner opportunity costs are documented by government
bodies. We thus resort to synthetic data generation to support and confirm our claims.

6 Results

6.1 Relative Efficiency

We first compute the welfare of BFA relative to OPT (BFA/OPT) and then relative to
VCG (BFA/VCG). The welfare of the latter does not consider the budget constraint and
as such describes unconstrained (and higher) welfare. We report average values and
standard deviations for 50 auction instances with randomly generated valuations. In
Tables 1-6 we include the statistical measure of p-values. We define symbolic notations
that represent the significance level of each reported result. 2

2 P-value ranges symbolically: [10−60, 10−40] :∗∗∗, [10−40, 10−20] :∗∗, [10−20, 10−01] :∗



Result 1 The average efficiency of BFA relative to OPT is 0.64 or 0.76 respectively (see
table 1). With general superadditive valuations, the average efficiency (BFA/OPT) can
be as low as 0.491 for high levels of superadditivity (see table 2).

The worst-case theoretical approximation ratio for submodular valuations is 4.75,
which translates to a welfare of 0.21% in the maximization problem. Taking OPT as
a baseline, the group-strategyproof BFA achieves high levels of efficiency of 0.64 for
additive and 0.77 for submodular valuations (see table 1).

Table 1. Additive and submodular valuations: mean and standard deviation of relative efficiency.

additive submodular
BFA/VCG (mean) 0.454** 0.757*
BFA/ VCG (std) 0.106 0.149

BFA/OPT (mean) 0.640* 0.763*
BFA/ OPT (std) 0.129 0.130

We report superadditive valuations in detail since average efficiency depends heavily
on the level of superadditivity. Table 2 shows the average efficiency values for different
multipliers. A multiplier of 2 (rightmost column) means that the value of the package is
twice the value of the individual parcels, and indicates a high level of superadditivity.

Table 2. Superadditive valuations: mean and standard deviation of relative efficiency for varying
value of superadditivity multiplier.

1.1 1.2 1.3 1.4 1.5 1.7 2.0
BFA/VCG (mean) 0.459** 0.430** 0.423*** 0.394*** 0.408*** 0.376*** 0.332***

BFA/VCG (std) 0.123 0.140 0.136 0.130 0.118 0.136 0.132
BFA/OPT (mean) 0.638* 0.610* 0.599* 0.569* 0.599* 0.542* 0.491*

BFA/OPT (std) 0.131 0.141 0.146 0.156 0.126 0.162 0.164

Result 2 The value model with superadditive corridors combines superadditive and
submodular valuations. The level of superadditivity within corridors determines the
overall auction efficiency. The values for BFA/OPT do not significantly differ from those
for superadditive valuations, while for BFA/VCG are significantly lower (see table 3).

The slightly lower efficiency values for BFA/VCG deserve some discussion. The
reason behind this discrepancy lies in the nature of the BFA algorithm. Starting from
the maximum single item value, the algorithm adds to a current set St the item with
the largest marginal contribution. This item can be anywhere on the grid, as the greedy
algorithm has no spatial understanding or knowledge that completing a corridor increases
value, while all other packages are additive. If the auctioneer has acquired one parcel in
every row, the algorithm simply selects the item with highest marginal contribution to
the current set welfare, which might lie in another corridor. With binding budgets, no
corridor might be established in cases where it would have been possible.



Table 3. Submodular corridors: mean and standard deviation of relative efficiency for varying
values of superadditivity within a corridor.

1.1 1.2 1.3 1.4 1.5 1.7 2.0
BFA/VCG (mean) 0.384*** 0.342*** 0.301*** 0.275*** 0.252*** 0.225*** 0.183***

BFA/VCG (std) 0.108 0.097 0.073 0.073 0.076 0.075 0.074
BFA/OPT (mean) 0.615* 0.63* 0.601* 0.588* 0.573* 0.545* 0.479*

BFA/OPT (std) 0.129 0.152 0.126 0.128 0.168 0.191 0.178

6.2 Payments

Next, we study how much the VCG mechanism exceeds the budget on average, and how
much budget is left over with BFA.

Result 3 The VCG payments for submodular valuations do not significantly exceed the
budgets constraint. However, with superadditive valuations, the payments are even 12.9
times higher than the budget with a superadditivity multiplier of 2 (see tables 4 and 5).
For submodular corridors, this ratio goes up to 68 for a multiplier of 2 (see table 6). In
contrast, the payments with the BFA algorithm are always significantly below budget.
For superadditive valuations, the payments are always more than 20% below budget.

Table 4. Relative payments for additive and submodular valuations compared to given budget
constraint.

additive submodular
VCG/ Budget (mean) 6.6*** 1.7*
VCG / Budget (std) 2.0 0.6

BFA/ Budget (mean) 0.8* 0.8*
BFA/ Budget (std) 0.1 0.1

Table 5. Relative payments for superadditive valuations compared to given budget constraints, for
varying value of superadditivity multiplier.

1.1 1.2 1.3 1.4 1.5 1.7 2.0
VCG/ Budget (mean) 7.2*** 7.9*** 8.5*** 9.2*** 9.9*** 11.1*** 12.9***

VCG/ Budget (std) 2.2 2.4 2.8 3.0 3.3 3.5 3.9
BFA/ Budget (mean) 0.8* 0.8* 0.8* 0.8* 0.8* 0.8* 0.8*

BFA/Budget (std) 0.1 0.1 0.1 0.2 0.2 0.2 0.2

Budget violation in submodular corridors is significantly higher than in superadditive
valuations (see table 6). This is due to the structure of the VCG payment rule and the
value model specifics. Once a corridor is achieved, the marginal welfare contribution of
a single item is very high, since this addition leads to a high value corridor in the welfare.
As the multiplier value increases, so do the gains from preserving a corridor. This high
marginal contribution of a single seller is reflected in the VCG payment. In the case of
superadditive valuations, many packages with high superadditive valuations exist and
the effect is much reduced. BFA payments are slightly higher but largely unaffected.



Table 6. Relative payments for submodular corridor dataset compared to given budget constraints,
for varying value of superadditivity multiplier.

1.1 1.2 1.3 1.4 1.5 1.7 2.0
VCG/ Budget (mean) 29.7*** 36.0*** 41.8*** 44.3*** 49.2*** 55.9*** 68.4***

VCG/ Budget (std) 10.0 12.7 13.3 14.3 15.1 19.5 23.0
BFA/ Budget (mean) 0.8* 0.8* 0.8* 0.8* 0.8* 0.8* 0.8*

BFA/Budget (std) 0.1 0.1 0.1 0.1 0.1 0.1 0.1

7 Conclusions

Conservation auctions have received significant attention worldwide. Recent insights
from natural sciences show that agri-environmental services need to be coordinated on a
landscape level to maximize biodiversity gains. Conservation of wildlife corridors in a
landscape is a standard example with many applications. Policymakers aim at designing
auctions that are incentive-compatible, respect governments’ budget constraints, and
account for complementarities of agri-environmental services. Recent results in algorith-
mic mechanism design propose auction formats that satisfy these goals at the expense of
efficiency. The contribution by Balkanski et al. (2022) is remarkable as it is a transparent
clock auction that is robust against collusion and runs in polynomial time.

Worst-case bounds for specific and stylized value functions might not provide suf-
ficient guidance for policymakers when selecting a mechanism. We analyze standard
value models motivated by the application domain and compute the average-case ef-
ficiency loss a regulator can expect. Our experiments confirm that, primarily for the
case of submodular, but, to some degree, for additive functions, the BFA achieves high
efficiency, verifying that, in practice, the approximation observed is much closer than
the theoretical worst-case bound. We show that, with modest levels of superadditivity in
conservation auctions, the welfare loss is still reasonable. At the same time, the auction
guarantees budget feasibility, accommodates the value function of the government, and
is strategyproof even with respect to coalitions of farmers. In contrast, payments by
the government render the VCG mechanism unsuitable for most applications in this
domain where the government has budget restrictions. Therefore, even though the BFA
is designed as a submodular maximization algorithm, one could argue that, since it
maintains important properties and stays within budget, it can be considered as a promis-
ing alternative for policymakers, when budget and truthfulness are strict constraints. In
future research, laboratory experiments would be useful to understand the difference to
non-truthful auction formats.
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A Appendix

A.1 BFA Algorithm Details

We provide the detailed pseudo-code of the two-stage BFA algorithm, adopting the
notation of Balkanski et al. (2022). Starting from Mechanism 1, the set of active sellers
A initially contains the entire set N , and whoever rejects the offered price is removed in
each iteration, leading to a gradually shrinking active set. The OPT estimate is initiated
with the value maximizing item to the auctioneer and is refined as the auction proceeds.
Set St of currently considered sellers in phase t initially contains the index of the value
maximizing seller. Given St, we update an index i that contains the seller whose value,
when aggregated with the set St, offers the maximum marginal contribution. To this
seller i, a price offering equal to the minimum between the previous price and marginal
contribution scaled by a factor B

˜OPT
that guarantees budget feasibility is made. If this

offer pi is accepted by the seller, set St is updated to include i, otherwise i is removed
from A and permanently exits the auction. While the value of set St is smaller than
the current estimate ˜OPT and the set of remaining sellers that can be considered is
not empty, the algorithm proceeds in considering the next best addition to St, until the
condition on the value of St is met. If the value of St exceeds this estimate, a new phase
begins: ˜OPT is doubled, and St is initialized as an empty set for the new phase. When
the set of remaining sellers, that are active but do not belong to either St or St−1 - the
two sets of accepted sellers of the last two phases, is empty, the auction terminates.
We examine sets St−1 and St, now denoted as W1 and W̄2. Starting from W1, if the
sum of prices of all sellers belonging to W1 exceeds the given budget B, then the last
added seller is removed from W1, and is instead offered a price equal to the marginal
contribution to the set St. In this way, the algorithm aims at moving the seller from one
set, where the budget is exceeded for the current price, to another set, with the hope of
achieving a budget-feasible payment scheme. If the updated price is accepted by the
seller, the set St, denoted as W̄2 is updated to include this seller. If the sum of prices
of sellers in W1 is within budget, the swap of the last added seller does not take place
and the algorithm proceeds to the final stage: invoking a routine for value maximization
subject to a knapsack constraint (the budget).

Algorithm 2 examines the two sets, W1 and W̄2. As a first step, the longest budget-
feasible sequence of agents is picked from W̄2, since the sets are built in a manner that
supports retrieval of the order of insertion, and is denoted as W2. The two sets W1 and
W2 are now both within budget: a final set W3 is defined as the union between W2

and the longest sequence of sellers from W1 such that budget-feasibility of the union is
maintained. The algorithm chooses the set among W1 and W3 that yields the highest
value, which corresponds to the final set of sellers that are chosen in the allocation.



MECHANISM 1: ITERATIVE-PRUNING, a deterministic budget-feasible
clock auction for monotone submodular valuation functions

Input :Budget B, valuation function v : 2N → R
1 initialize A← N , S0 ← ∅, S1 ←

{
argmaxi∈N v({i})

}
, ˜OPT← v(S1), t← 1,

pi ← B for all i ∈ N
2 while A \ (St−1 ∪ St) ̸= ∅ do
3 update t← t+ 1, ˜OPT← 2 ˜OPT and initialize St ← ∅ ; // start a

new phase

4 while v(St) < ˜OPT and A \ (St−1 ∪ St) ̸= ∅ do
5 let i← argmaxi∈A\(St−1∪St)

v({i} | St) ;
6 update pi ← min

{
pi, v({i} | St) · B

˜OPT

}

7 if seller i accepts price pi then
8 update St ← St ∪ {i} ; // add seller i to current

solution

9 else
10 update A← A \ {i} ; // permanently eliminate

seller i

11 Let W1 ← St−1 and W 2 ← St

12 if
∑

i∈W1
pi > B then // enforce budget feasibility of W1

13 let j∗ ← the last seller added to St−1

14 update pj∗ ← min{pj∗ , v({j∗} | St) · B
˜OPTt
}

15 update W1 ←W1 \ {j∗}
16 if seller j∗ accepts price pj∗ then
17 update W 2 ←W 2 ∪ {j∗} ; // move the last seller j∗ to

W 2

18 return MAXIMIZE-VALUE(W1,W 2, p)

MECHANISM 2: MAXIMIZE-VALUE, an algorithm for maximizing value
subject to knapsack constraint

Input :W1, W 2 and the prices pi for all i ∈W1 ∪W 2

1 let W2 ← the longest budget-feasible prefix of W 2

2 let W3 ←W2 ∪ T , where T is the longest prefix of W1 such that W2 ∪ T is
budget-feasible

3 Let W ∈ {W1,W3} be the set with the largest value v(W )

4 return W and the corresponding prices



5 Conclusion

The study of budget constraints in auctions is an important and practically motivated prob-
lem, focusing on the design of market mechanisms that achieve social objectives while
respecting financial limits. Budgets serve as a foundational tool in managing resources,
controlling costs, and mitigating risks while providing a financial framework for decision-
making. Domains such as display advertising and spectrum auctions are common examples
where such constraints play a prominent role. The existence of budget constraints poses a
challenge in the design of auction mechanisms: crucial properties such as incentive com-
patibility, core stability, and welfare maximization clash for general valuations. Our work
addresses the problems posed by such constraints and concentrates on the design and anal-
ysis of algorithmic schemes that overcome these limitations.

Competitive equilibria constitute an important tool in market analysis due to their property
of matching the supply and demand of participants. The existence of competitive equilibria
serves as a guarantee of stability in a market, as no participant has an incentive to deviate
from the outcome while also being welfare-maximizing. Another important solution con-
cept describing stability is the core, which consists of a set of outcomes from which no
participant has an incentive to deviate and collude with others in the market to achieve fa-
vorable alternative outcomes. In the presence of budget constraints, a core outcome is not
guaranteed to maximize welfare.

The fulfillment of conditions necessary to ensure the existence of a competitive equilibrium
is frequently unmet in real-world markets. Therefore, it becomes imperative to devise more
generalized notions of stability to address such market scenarios. This challenge is linked
to the development of novel iterative auctions designed to compute outcomes in these situ-
ations.

The quasi-linear utility model stands as a robust standard assumption in competitive equi-
librium theory but is often not realized in practical scenarios. Under quasi-linear utilities,
bidders are assumed to face no financial constraints; irrespective of the price, they can al-
ways afford their preferred bundle. However, deviating from this model and considering
scenarios where bidders encounter strict upper limits on spending can lead to instances
where a competitive equilibrium does not exist. In this context, utility is no longer transfer-
able in the form of payments: an agent can only transfer up to the spending limit and fails
to express preferences from that point on.

Recent findings indicate that computing outcomes satisfying a subset of competitive equi-
libria properties, specifically core stability and welfare maximization, is computationally

79



5 Conclusion

intractable. In the more general setting of combinatorial exchanges, Bichler and Waldherr
(2022) demonstrate that, when bidders are allowed arbitrary valuation functions, the prob-
lem becomes Σp

2-hard.

In the first publication included in this dissertation (Batziou et al., 2022a), we address this
computational challenge. Restricting preferences to the simplest market model, the assign-
ment market with unit-demand and budget-constrained bidders, we prove that finding core-
stable welfare-maximizing outcomes is hard for the complexity class NP, even with full
access to participants’ private information.

In an assignment market, each bidder aims to acquire, at most, a single item. Employing
only demand queries, we introduce an iterative auction algorithm, an extension of the DGS
auction (Demange et al., 1986), that establishes core-stable outcomes without knowledge of
bidders’ true valuations, accounting for budget limits. Our auction process terminates in a
core allocation if bidders truthfully reveal their demand set in each round. This mechanism,
when subject to an additional condition on unit-demand valuations, proves to be incentive-
compatible and welfare-maximizing, though the ex-ante determination of this condition
remains uncertain. In an additional interesting finding of this work, we demonstrate that
there is no incentive-compatible mechanism selecting a core outcome for bidders with unit-
demand valuations.

While Vickrey’s groundbreaking study (Vickrey, 1961) illustrated that markets could be
structured to induce truthful preferences as a dominant strategy, the widespread prevalence
of budget constraints poses a challenge to these assumptions, undermining the conditions
of the VCG mechanism. We demonstrate that, even in the most basic markets with unit-
demand valuations, achieving both incentive compatibility and core stability becomes a
conflicting objective.

We conclude that assertions regarding the efficiency of polynomial-time market designs
should be approached cautiously in markets where the financial constraints of bidders come
into play. An interesting research direction arising from this work revolves around analyzing
the computational complexity of the multi-unit-demand setting. In this context, bidders re-
main constrained by a budget but seek to acquire multiple items. Lying in the realm between
unit-demand and combinatorial exchanges, the problem of determining welfare-maximizing
core outcomes in such markets might belong to a complexity class in between NP and Σp

2.
While one may show that the problem is intuitively harder than NP, the exact class inclusion
remains an open question.

While the aforementioned work involves scenarios where buyers are subject to financial
limitations, the second contribution included in this dissertation (Batziou and Bichler, 2023)
explores settings where the constraint is imposed on the auctioneer.

Before the influential paper of Singer (2010), research on budget-feasible mechanisms
was limited and mainly operated under the assumption of access to infinite resources for
incentive-compatibility. In mechanism design, incentive compatibility is a crucial prop-
erty, ensuring agents do not misreport private values to the auctioneer for higher utility.
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Budget-feasible procurement, common in government auctions, aims to maximize social
value within budget constraints, resembling the knapsack problem. Singer’s work sparked
research on budget-feasible auctions, with the assumption of submodularity and monotonic-
ity yielding improved approximations.

The majority of work on budget-feasible mechanism design involves sealed-bid auctions,
where participants often misreport in practice, as shown in (Kagel et al., 1987). Milgrom and
Segal (2020) introduced clock auctions, progressing through rounds with decreasing prices
until the budget limit, offering benefits over sealed-bid auctions. Unlike previous work,
Balkanski et al. (2022) proposed a clock auction respecting budgets and achieving a constant
factor of 4.75 approximation for monotone submodular valuations. This algorithm, based
on a backward greedy method, ensures properties like resistance to collusion, incentive
compatibility, and transparency with deterministic polynomial runtime.

In the second work of this dissertation (Batziou and Bichler, 2023), we approach biodiver-
sity conservation from a mechanism design standpoint, addressing an urgent environmental
concern. With a notable decline in wildlife populations, motivating private landowners to
engage in conservation becomes imperative. Appropriate incentives, typically in the form
of monetary payments, should devised to dissuade agricultural use. The governing bodies
overseeing such markets encounter financial constraints, reserving only a fraction of funds
for environmental purposes, which are then utilized for payments.

In this study, we empirically assess the clock auction algorithm introduced by Balkanski
et al. (2022). Our experimental findings reveal that this approximation algorithm achieves
substantial welfare compared to the optimal solution and is incentive-compatible and budget-
respecting, thus making it a promising alternative for policymakers. Notably, our results
caution against the use of the widely employed VCG auction algorithm (Vickrey, 1961;
Clarke, 1971; Groves, 1973), considered the state-of-the-art method in conservation auc-
tions (Polasky et al., 2014). This traditional approach may lead to payments that arbitrarily
exceed the budget, rendering it undesirable in practical conservation scenarios.

Recent discoveries in natural sciences underscore the imperative need for coordinated agri-
environmental services at a landscape level to optimize biodiversity gains. Exploring al-
gorithmic frameworks derived from mechanism design and auction literature represents a
main avenue for future research, enhancing current methods to advance environmental con-
servation efforts. Another objective involves developing appropriate scoring rules aligned
with practical considerations and developed in collaboration with environmental scientists
to accurately assess the overall value of auction outcomes. This approach aims to amplify
biodiversity gains and bolster conservation impact.

An extension of the research presented in this dissertation seeks to narrow the divide be-
tween experimental findings and practical implementation. This involves formulating real-
istic scoring rules to evaluate proposed auction designs. The collaboration between envi-
ronmental scientists and economists focusing in market design emerges as a critical factor,
holding the potential for research that significantly influences ecosystem preservation.
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