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Abstract

Robustly perceiving the 3D information of a scene is a fundamental task in computer vision
and essential for autonomous systems and many applications ranging from AR/VR, 3D recon-
struction, or robotics. This dissertation addresses the lack of reliable 3D ground truth data,
particularly in outdoor settings or for scenes with photometrically complex objects, through
data-driven learning methods that bypass the need for annotated data for robust learned 3D
perception. It focuses on dense pixel-wise depth estimation and 6D object pose estimation.

A spatial-temporal attention mechanism is introduced to enhance self-supervised depth estima-
tion from monocular image sequences regarding spatial coherence and temporal consistency.
Both are vital for dynamic outdoor environments like autonomous driving, tackling issues
like frame-to-frame drift and scale drift across sequences. By introducing a novel Temporal
Consistency Metric (TCM), depth consistency across consecutive frames can be objectively
quantified. However, the observed artifacts and noisy measurements of the LiDAR sensor
used as ground-truth, questions the reliability and accuracy of active sensors for training and
evaluation.

Novel multi-modal dataset acquisition techniques with di!erent depth sensors and polarimetric
imaging are introduced to systematically analyze sensor characteristics, integrating robotic
forward-kinematics and advanced calibration methods. This leads to highly accurate datasets,
focusing on photometrically challenging objects, and unveils sensor-specific artifacts a!ecting
depth measurements and subsequent 3D vision tasks.

This data acquisition identifies the limitations of current RGB-D-based methods for 6D object
pose estimation, especially under conditions with unreliable depth data for photometrically
challenging objects. Polarimetric imaging, which encodes shape information, is proposed for
robust 6D object pose estimation. The resulting Polarimetric Pose Prediction model, short
PPP-Net, a supervised multi-modal hybrid approach utilizing polarimetric data, significantly
surpasses existing RGB-only and RGB-D methods, especially for photometrically challenging
objects. Additionally, novel network and loss components are proposed, along with neural
rendering and an invertible polarimetric physical model, for self-supervised 6D object pose
estimation using RGB+polarization data. This substantially improves pose estimation robust-
ness and accuracy for challenging objects without relying on annotated real data, thereby
addressing the shortcomings in current self-supervised RGB-D approaches.
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Zusammenfassung

Die robuste Wahrnehmung der 3D-Informationen einer Szene ist eine grundlegende Aufgabe
des maschinellen Sehens und essentiell für autonome Systeme und viele Anwendungen, die
von AR/VR, 3D-Rekonstruktion oder Robotik reichen. Diese Dissertation befasst sich mit dem
Mangel an verlässlichen 3D-Ground-Truth-Daten, insbesondere im Außenbereich oder bei pho-
tometrisch komplexen Objekten, durch datengesteuerte Lernmethoden, die die Notwendigkeit
für annotierte Daten für robuste 3D-Wahrnehmung umgehen. Der Schwerpunkt liegt dabei
auf der pixelweisen Tiefenschätzung und der 6D-Objektposenschätzung.

Es wird ein spatial-temporal-attention-Mechanismus eingeführt, um die selbstüberwachte Tie-
fenschätzung aus monokularen Bildsequenzen hinsichtlich räumlicher Kohärenz und zeitlicher
Konsistenz zu verbessern. Beides ist für dynamische Umgebungen im Freien, wie z.B. auto-
nomes Fahren, von entscheidender Bedeutung, um Probleme wie Frame-to-Frame-Drift und
Skalendrift über Sequenzen hinweg zu bewältigen. Durch die Einführung einer neuartigen tem-
poralen Konsistenzmetrik (TCM) kann die Tiefenkonsistenz zwischen aufeinanderfolgenden
Bildern objektiv quantifiziert werden. Die beobachteten Artefakte und verrauschten Messun-
gen des LiDAR-Sensors, der als Ground-Truth verwendet wird, stellen jedoch die Zuverlässig-
keit und Genauigkeit aktiver Sensoren für Training und Auswertung in Frage.

Neuartige multimodale Datenerfassungstechniken mit verschiedenen Tiefensensoren und po-
larimetrischer Bildgebung werden eingeführt, um die Sensoreigenschaften systematisch zu
analysieren, wobei robotergestützte Vorwärtskinematik und fortschrittliche Kalibrierungsme-
thoden integriert werden. Dies führt zu hochpräzisen Datensätzen, die sich auf photometrisch
schwierige Objekte konzentrieren, und deckt sensorspezifische Artefakte auf, die Tiefenmes-
sungen und nachfolgende 3D-Vision-Aufgaben beeinflussen.

Diese Datenerfassung zeigt die Grenzen aktueller RGB-D-basierter Methoden zur Schätzung
der 6D-Objektpose auf, insbesondere unter Bedingungen mit unzuverlässigen Tiefendaten für
photometrisch schwierige Objekte. Für eine robuste 6D-Objektpositionsschätzung wird die
Integration polarimetrischer Bilder vorgeschlagen, welche Forminformationen kodieren. Das
daraus resultierende Polarimetric Pose Prediction Modell, kurz PPP-Net, ein überwachter mul-
timodaler hybrider Ansatz, der polarimetrische Daten nutzt, übertri!t die bestehenden reinen
RGB- und RGB-D-Methoden deutlich, insbesondere bei photometrisch schwierigen Objekten.
Zusätzlich werden neuartige Netzwerkkomponenten und Verlustfunktionen zusammen mit
neuronalem Rendering und einem invertierbaren polarimetrischen physikalischen Modell für
die selbstüberwachte 6D-Objektposenschätzung unter Verwendung von RGB+Polarisation Da-
ten vorgeschlagen. Dies verbessert die Robustheit und Genauigkeit der Posenschätzung für
schwierige Objekte erheblich, ohne auf annotierte reale Daten angewiesen zu sein, und behebt
so die Unzulänglichkeiten aktueller selbstüberwachter RGB-D-Ansätze.
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1.1 Motivation & Objectives

Robust learned 3D-perception enables machines to see, think, and act.

In a world where autonomous systems seamlessly interact with their surroundings, accurate
and robust 3D perception is essential. Picture a robot navigating a cluttered room, autonomous
vehicles navigating the bustling streets, or a robotic arm delicately grasping a glass from a
table. In all these scenarios, a profound 3-dimensional understanding of the environment is
the key to unlocking the potential of these machines.

Imagine for a moment how humans perceive their surroundings. We use the power of binocular
vision, harnessing stereo cues to transform the images from our two eyes into a rich 3D
representation. Once we estimate the distance, we seamlessly interact with the objects around
us, whether picking up a glass or navigating the world. This fusion of knowing how far
something is away and understanding its precise position and orientation within the 3D space
allows us to interact e!ortlessly. We state that 3D perception in the context of this dissertation is
the combination of depth estimation and where and how objects are positioned and orientated
within the scene. Here, we neglect any other understanding of the scene, such as semantics,
scene graphs, or others.

[51] This dissertation investigates methodologies enabling machines to learn robust 3D per-
ception, essential in challenging scenarios, particularly unbound scenes like outdoor scenarios
in autonomous driving for self-supervised monocular depth prediction [51] and 6D pose esti-
mation [42, 165, 174] for photometrically complex objects with translucency or reflectivity.
Many approaches in machine-based 3D perception involve binocular passive camera systems
or active sensor technologies like LiDAR (Light Detection and Ranging). The binocular sys-
tem, mimicking human stereoscopic vision, computes depth through the disparity between
two camera perspectives [139]. However, this method faces constraints such as the require-
ment for a specific camera baseline, which might not be feasible in compact systems, and the
computational intensity associated with image processing and synchronization. Conversely,
active sensing technologies, which include for instance LiDAR sensors and Time-of-Flight (ToF)
cameras, o!er distance measurements by analyzing the reflection time of emitted light pulses.
While e!ective in certain aspects, these technologies are hindered by limitations in form factor,
energy e"ciency, operational range, data sparsity, artifacts such as multi-path interference
(MPI), and susceptibility to environmental factors like reflective surfaces or translucent ma-
terials. Given these limitations, this dissertation uses data-driven deep learning techniques,
without the reliance on annotated data or active sensors, for robust learned 3D perception in
challenging scenarios, like unbound outdoor scenes or with photometrically complex objects.

In scenarios such as autonomous driving, accurately perceiving and understanding the sur-
rounding 3D environment is essential. In self-supervised monocular depth prediction, con-
secutive images captured by a moving monocular camera are used to enforce photometric
consistency between adjacent frames after projectively transforming them by the regressed
dense depth and relative camera poses. Despite significant advancements in this field [51],
achieving consistency in temporal and geometric depth across frames without losing depth
accuracy remains a significant issue [9].
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?
How can we fully leverage the spatial-temporal relation between consecutive
frames to predict spatially coherent and temporally consistent depth estimates
while maintaining high accuracy? Moreover, how can we objectively quantify
depth consistency?

The reliability and accuracy of active sensors, e.g., as observed for LiDAR [103], are questioned
due to artifacts and noise in measurements. This issue is especially pertinent in outdoor scenes
where obtaining detailed and accurate depth ground truth for sensor comparison is challenging.
Conversely, it is feasible in indoor settings to reconstruct individual objects with high precision
using advanced 3D scanners before they are positioned in the scene, o!ering a more reliable
basis for comparison.

?
How can active depth sensors’ characteristics and associated artifacts be system-
atically analyzed, also considering challenging scenarios?

Polarization of light, a passively observable physical property, o!ers valuable insights where
depth measurements can be noisy. This polarimetric information is particularly advantageous
in environments where photometric challenges limit the e!ectiveness of active sensors, as they
encode shape cues of objects. Leveraging these shape cues can be instrumental in estimating the
6D pose of an object, which includes accurately determining its exact position and orientation
rather than just measuring its distance from the camera.

?
How can we integrate the physical properties of polarized light into a learning
pipeline for robust 3D perception tasks like 6D object pose estimation?

Even though polarization might alleviate specific problems inherent in active depth sensors
for the 6D object pose estimation task of photometrically challenging objects, there is still a
substantial requirement for a large volume of annotated data for supervised training. This
reliance on extensive annotation is impractical, particularly as the process of annotating such
data can be laborious, time-intensive, and prone to introducing errors or inconsistencies in the
annotations.

?
Can we avoid the need for annotated real data - potentially by leveraging polar-
ization for self-supervision?

1.1 Motivation & Objectives 5



1.2 Contributions

We will answer the questions above with the contributions described here.

The first contribution improves the temporal consistency of self-supervised monocular depth
estimation.

1. Spatial-Temporal Constraints for Consistent Monocular Depth Estimation

Patrick Ruhkamp*, Daoyi Gao*, Hanzhi Chen*, Nassir Navab, and Benjamin Busam.
"Attention meets Geometry: Geometry Guided Spatial-Temporal Attention for Consis-
tent Self-Supervised Monocular Depth Estimation". IEEE 3DV 2021. [132] ( *authors
contributed equally)

Patrick Ruhkamp*, Daoyi Gao*, Hanzhi Chen*, Nassir Navab, and Benjamin Busam.
"Spatial-Temporal Attention through Self-Supervised Geometric Guidance". ICCV
2021 Workshop SSLAD. [133] ( *authors contributed equally)

This dissertation introduces a spatial-temporal attention mechanism to enhance self-supervised
depth estimation from monocular image sequences regarding spatial coherence and tempo-
ral consistency. Both are vital for dynamic outdoor environments like autonomous driving,
tackling issues like frame-to-frame drift and scale drift across sequences. Introducing a novel
Temporal Consistency Metric (TCM) can quantify depth consistency across consecutive frames
objectively.

Given the observed artifacts and noisy measurements of the LiDAR sensor used as ground-truth
from before, the second contribution systematically analyzes depth sensor characteristics.

2. Sensor Characteristics and Dense 3D Perception

HyunJun Jung*, Patrick Ruhkamp*, Gunagyao Zhai, Nikolas Brasch, Yitong Li, Yan-
nick Verdie, Jifei Song, Yiren Zhou, Anil Armagan, Slobodan Ilic, Ales Leonardis,
Nassir Navab, and Benjamin Busam. "On the Importance of Accurate Geometry Data
for Dense 3D Vision Tasks". IEEE CVPR 2023. [79] ( *authors contributed equally)

HyunJun Jung*, Patrick Ruhkamp*, Nassir Navab, and Benjamin Busam. "Multi-
Modal Dataset Acquisition for Photometrically Challenging Object". ICCV 2023Work-
shop on Transparent & Reflective Objects in the Wild Challenges. [78] ( *authors
contributed equally)

HyunJun Jung*, Guangyao Zhai*, Shun-Cheng Wu*, Patrick Ruhkamp*, Hannah
Schieber*, Giulia Rizzoli, PengyuanWang, Hongcheng Zhao, Lorenzo Garattoni, Sven
Meier, Daniel Roth, Nassir Navab, and Benjamin Busam. "HouseCat6D – A Large-
Scale Multi-Modal Category Level 6D Object Perception Dataset with Household
Objects in Realistic Scenarios". IEEE CVPR 2024. [80] ( *authors contributed equally)
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Novel multi-modal dataset acquisition techniques are introduced to systematically analyze sen-
sor characteristics, including di!erent depth sensors and polarimetric imaging, by integrating
robotic forward-kinematics and advanced calibration methods. This leads to highly accurate
data acquisitions, focusing on photometrically challenging objects. Due to the sensor artifacts,
depth data show noisy and incorrect measurements as expected, translating to dense 3D vision
tasks when used for supervision.

Given the observations of corrupt depth data, especially for photometrically challenging objects,
from above, multi-modal RGB+polatization is proposed for robust 6D object pose estimation
as the third contribution.

3. Physical Constraints for 6D Object Pose Estimation

Daoyi Gao*, Yitong Li*, Patrick Ruhkamp*, Iuliia Skobleva*, H*, HyunJun Jung,
Pengyuan Wang, Arturo Guridi and Benjamin Busam. "Polarimetric Pose Prediction".
ECCV 2022. [42] ( *authors contributed equally)

Patrick Ruhkamp, Daoyi Gao, HyunJun Jung, Nassir Navab, and Benjamin Busam.
"Polarimetric Information for Multi-Modal 6D Pose Estimation of Photometrically
Challenging Objects with Limited Data". ICCV 2023 Workshop on Transparent &
Reflective Objects in the Wild Challenges. [134] ( *authors contributed equally)

Patrick Ruhkamp*, Daoyi Gao*, Nassir Navab and Benjamin Busam. "S2P3: Self-
Supervised Polarimetric Pose Prediction". IJCV 2024. [135] ( *authors contributed
equally)

The previous data acquisition identifies the limitations of current RGB-D-based methods for 6D
object pose estimation in terms of accuracy and robustness, especially under conditions with
unreliable depth data for photometrically challenging objects. Polarimetric imaging, which
encodes shape information, is proposed for robust 6D object pose estimation. The resulting
Polarimetric Pose Prediction model, short PPP-Net, a supervised multi-modal hybrid approach
utilizing polarimetric data, significantly surpasses existing RGB-only and RGB-D methods,
especially for photometrically challenging objects.

Additionally, novel network and loss components are proposed, alongwith neural rendering and
an invertible polarimetric physical model, for self-supervised 6D object pose estimation using
RGB+polarization data, resulting in the Self-Supervised Polarimetric Pose Prediction pipeline,
short S2P3. This substantially improves pose estimation robustness and accuracy for challenging
objects without relying on annotated real data, thereby addressing the shortcomings in current
self-supervised RGB-D approaches and avoiding the need for accurate ground-truth data.

1.2 Contributions 7





Part II

Spatial-Temporal Constraints for Consistent

Monocular Depth Estimation

How can we fully leverage the spatial-temporal relation between consecutive frames to
predict spatially coherent and temporally consistent depth estimates while maintaining
high accuracy? And how can we objectively quantify depth consistency?
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„“Stand out of my light.”

– Diogenes to Alexander the Great

2.1 Introduction

Depth estimation from a single image is essential in computer vision, forming the basis for
robust 3D perception and numerous downstream applications. The onset of deep learning saw
researchers applying supervised learning to predict dense depth from monocular RGB images,
utilizing datasets annotated with ground truth from active depth sensors [34, 91]. However,
creating these large-scale, accurately annotated datasets is often unfeasible, expensive, and
time-consuming.

In self-supervised learning, a binocular camera setup can mimic human vision, assuming pho-
tometric consistency, where a point seen from one camera should match its appearance in the
other camera’s image. Neural networks regress depth maps by minimizing the photometric
discrepancy after projectively transforming pixels between images using the predicted depth
and camera parameters [50]. When a stereo setup is unavailable, a moving camera can act
as multiple stereo systems with varying poses between consecutive frames. Depth and pose
estimation are coupled problems, as evidenced by structure from motion and SLAM/VO tech-
niques. An additional network can estimate the relative 6D camera pose between frames, with
transformation parameters becoming part of the photometric consistency optimization [51].

Recent advances have improved depth accuracy, but challenges remain in ensuring robust
predictions across consecutive frames regarding temporal consistency and spatial coherence [9].
Issues like drift and scale drift between frames persist. Additional supervision signals like
velocity data or constraints from other sensors could be used. Also, extensive optimization
approaches akin to bundle adjustment in video sequences can enforce consistency, but these
approaches can be computationally expensive.

The question arises: How can we algorithmically enhance consistency and coherence in depth
predictions to achieve robust 3D perception? Drawing parallels with Natural Language Pro-
cessing (NLP), where words in a sentence are akin to multiple consecutive images, we explore
the potential of transformer-like principles in depth estimation. However, integrating trans-
formers into monocular depth prediction is not straightforward, as the scene content changes
between frames, and the attention mechanism may correlate scene content across images that
are spatially not reasonable. Our approach first integrates spatial attention per frame, which
serves as a 3D-positional or spatial encoding for subsequent temporal attention across frames.
We propose epipolar constraints and novel self-supervised loss functions to further guide the
attention.
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2.1.1 Motivation

The enhancement of self-supervised monocular depth prediction accuracy has been a key focus
recently, as highlighted by significant research e!orts [19, 51]. Despite these advances, the chal-
lenge of predicting temporally and geometrically consistent depth across multiple frames still
needs to be explored. Such consistency is crucial for a wide range of 3D vision applications, in-
cluding 3D reconstruction [115], SLAM [179], pose estimation [13], medical applications [16],
AR/MR [105], computational photography [14], and autonomous driving [48].

Inconsistent depth predictions can significantly impair downstream tasks, such as 6D object
pose estimation [35, 168, 188], also in autonomous driving [64, 65] or RGB-D reconstruc-
tion [115]. Classical Structure from Motion (SfM) and visual odometry approaches have tradi-
tionally tackled geometric consistency by employing computationally intensive techniques like
local and global bundle adjustment [113, 114]. Some depth prediction methods have recently
attempted to enforce consistency, either by incorporating additional ground truth signals like
velocity [53] or by considering whole sequences with recurrent units [122].

The standard evaluation of depth accuracy in monocular self-supervised methods often uses
median scaling against depth ground truth [51], a process applied independently per image,
neglecting the consistency of predictions across frames. This approach must be revised for
real-world applications, as it fails to capture pixel-wise variations and overall depth scale
consistency.

Traditional methods enforcing geometric consistency compromise depth accuracy, leading
to blurred edges and smooth depth discontinuities [9]. In response, our proposed spatial-
temporal attention model uniquely correlates geometrically meaningful and spatially coherent
features. This approach maintains temporal aggregations across frames without negatively af-
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Fig. 2.1 Qualitative Depth Results: Strong baselines in self-supervised depth prediction, such as ManyDepth
[171], often manifest noticeable flickering e!ects between consecutive images. In contrast, our method
excels in estimating temporally consistent depth across successive frames. Remarkably, it showcases
proficiency even when confronted with large dynamically moving objects in the scene.
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fecting depth accuracy, providing focused and accurate attention between frames, a significant
advancement over previous methods [9].

We advocate for a greater emphasis on temporal consistency in depth predictions by proposing
a new metric to quantify this aspect. The qualitative 3D reconstruction from consecutive depth
predictions, as shown in Fig. 2.1, underscores this need. Although the recent ManyDepth
approach [171] achieves impressive accuracy, its predictions su!er from inconsistencies, lead-
ing to less reliable scene reconstructions. In contrast, our model achieves elevated accuracy
metrics and ensures highly consistent depth predictions, even for dynamically moving objects
(Fig. 2.1), resulting in improved scene reconstructions.

2.1.2 Contributions

Our primary objective is to robustly predict depth from monocular image sequences that are
accurate, coherent, and temporally consistent despite challenging factors like occlusions, dis-
occlusions, moving objects, and complex camera movements. We integrate scene information
from temporally adjacent frames into ourmethod, achieving this without additional supervision
signals or reliance on complex, non-real-time networks.

In self-supervised monocular depth estimation, the primary focus has historically been im-
proving accuracy on a per-frame basis. While there have been e!orts to enhance temporal
consistency, these often involve additional geometric loss terms applied between consecutive
frames during training. However, implementing these geometric consistency constraints can
lead to diminished depth accuracy, manifesting as blurred edges and smoothed depth dis-
continuities [9]. Additionally, no established metric can e!ectively quantify the temporal
consistency of consecutive depth predictions.

To tackle these challenges, we introduce TC-Depth, our temporally consistent depth estima-
tion pipeline. TC-Depth is designed to balance geometric consistency and depth accuracy. It
leverages an innovative spatial-temporal attention module to explicitly learn temporally con-
sistent features for depth prediction. Combined with our geometric regularization techniques,
our method achieves high accuracy while ensuring unparalleled consistency across frames.

Further validation of our approach is provided through a comprehensive ablation study to
shed light on our novel components’ contributions to consistency and accuracy. Notably, we
demonstrate how the introduction of photometric cycle consistency significantly enhances
the performance of our attention mechanism. Moreover, we have developed the Temporal
Consistency Metric (TCM), specifically designed to quantify the performance of coherent depth
prediction across temporal frames.
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The primary contributions in this chapter are in summary:

!
Contributions

1. A novel spatial attention mechanism that aggregates and utilizes local
geometric information, enhancing the depth prediction.

2. A temporal attention module designed to operate across tuples of monoc-
ular frames, promoting global consistency and coherence.

3. A novel cycle consistency regularization strategy which o!ers geometric
guidance. This guidance aids the fusion of feature embeddings in the
spatial-temporal attention mechanism.

4. The introduction of a Temporal Consistency Metric (TCM) that provides
a quantifiable measure for evaluating the consistency of depth predictions
across frames.
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2.2 Related Work

2.2.1 Self-Supervised Depth Estimation

In computer vision, dense depth prediction is essential in numerous applications and is a fun-
damental building block. The accuracy and consistency of depth predictions can significantly
impact the success of subsequent tasks. For instance, in autonomous vehicles, the reliable esti-
mation of objects in 3D holds paramount importance, especially in safety-critical situations [64,
65]. Similarly, within the domain of RGB-D reconstruction [115], precision and consistency of
depth information are indispensable for generating accurate and visually coherent models of
the surrounding environment. Addressing the challenge of maintaining geometric consistency
in visual data is not a novel pursuit. Classical techniques like Structure from Motion (SfM)
and visual odometry have already approached this challenge. These traditional methods often
rely on bundle adjustment techniques to achieve geometric consistency. The core objective of
bundle adjustment is to refine initial pose and structure estimates by minimizing the reprojec-
tion error across all cameras and 3D points involved [113, 114]. However, it is worth noting
that such strategies, while e!ective, can be computationally demanding and may not meet the
requirements of real-time feedback in specific scenarios. Additionally, such approaches only
provide sparse 3D reconstructions. Modern depth prediction methodologies have endeavored
to incorporate mechanisms that enhance consistency. Some approaches leverage additional
ground truth signals, such as velocity data of a moving camera, to constrain their depth pre-
dictions [53]. Others harness the capabilities of recurrent neural networks (RNNs) to process
sequences of images, thus ensuring temporal consistency across consecutive frames [122].
Additionally, some methods aim to enforce geometric consistency by regularizing depth pre-
dictions by geometric constraints between adjacent frames [9].

The domain of depth estimation has witnessed remarkable advancements in recent years, pri-
marily attributed to the adoption of convolutional neural networks (CNNs) for this task. Early
explorations into CNN-based depth estimation, exemplified by works like Eigen et al. [34],
Laina et al. [91], and Fu et al. [39], have demonstrated the potential of supervised methods in
monocular depth estimation. However, a substantial challenge persists in acquiring accurate
ground-truth depth datasets, particularly in environments such as outdoor spaces or expansive
scenes, where obtaining ground-truth depth data is di"cult [48]. The limitations of extensive
labeled datasets have given rise to self-supervised methods. Pioneering researchers in this
domain, such as Xie et al. [176] and Garg et al. [45], have leveraged stereo imagery dur-
ing training to propose self-supervised learning techniques, notably employing photometric
consistency losses.

Subsequent advancements introduced the concept of left-right consistencies in a fully di!er-
entiable manner through the Monodepth framework [50]. The idea was extended to the
temporal domain in MonoDepth2 [51], where predicting relative camera poses allows for
photo-consistency losses between neighboring frames after projective transformation. While
early attempts at simultaneously estimating depth and camera pose showed promise in terms
of robustness [6, 190, 194], they lagged in accuracy when compared to traditional method-
ologies. Integrating optical flow predictions improved depth accuracy, especially for moving
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objects within scenes, and introduced forward-backward consistency checks. These constraints
introduced a novel mechanism for discerning occlusions, proving crucial for depth accuracy at
depth discontinuities in the scene [73, 169, 182].

2.2.2 Attention for Depth Estimation

Self-attention mechanisms, originating from the domain of natural language processing [160],
have become popular in computer vision tasks [104, 192]. Unlike traditional convolutional
methods that rely on fixed kernels to process image data [88], self-attention o!ers dynamic
operations tailored to individual image and feature inputs. Mathematically, self-attention can
be perceived as a weighted sum of all feature responses, where the weights signify the relevance
of other features to the current one. Taking this concept further, Huynh et al. [70] introduced
a depth-attention volume that accentuates planar structures, optimizing results for interior
environments where such structures are predominant. Sadek et al. [136] leveraged attention
gates during the decoding phase of their depth estimation pipeline. In another perspective,
Lee et al. [92] employed patch-wise attention to pool information from spatially proximal
features in a supervised setting. Yang et al. [178] integrated transformers into an expansive
architecture, achieving superior prediction accuracy. However, their methodology primarily
focuses on supervised learning. Johnston et al. [76] embarked on a transformative journey
by integrating transformers within self-supervised depth estimation, focusing on expansive
outdoor scenes. Their proposed mechanism utilizes a self-attention module after a ResNet-
based encoder [56], decoding the depth information through a discrete disparity volume.
However, a limitation emerged with their approach—their self-attention mechanism, in its
current design, struggles to draw meaningful feature correlations, impairing its e!ectiveness
in 3D scene regression tasks.

2.2.3 Consistent Depth Estimation

Previous research in the domain of depth consistency metrics inadequately addressed both
geometric and temporal consistency. Zhang et al. [190] developed a method to assess the
structural similarity between successive depth maps. However, their approach did not include
spatial alignment, which is crucial for accurate depth interpretation. Luo et al. [105] incor-
porated an optical-flow-based KLT tracker to measure the 3D Euclidean distances between
photometrically corresponding points. This approach is significantly influenced by the accuracy
of the optical flow estimation, which can be a limiting factor in complex scenes.

In self-supervised monocular depth estimation, a predominant focus has been maintaining a
constant overall scale of depth predictions. This focus influences the auxiliary pose network,
making it more suited for odometry applications. Bian et al. [9] proposed a scale-consistent
depth and ego-motion approach by incorporating a depth consistency loss. While this helps
reduce scale drift in poses and depth predictions, it may compromise depth accuracy. Zhao et
al. [193] presented a method that does not directly regress the 6-DOF camera transformation.
Instead, they estimate optical flow between frames to establish correspondences for relative
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pose estimation using epipolar geometry. Ensuring consistency between triangulated points
and the predicted depth is vital to achieving scale consistency. MonoRec [172] also focuses on
visual odometry, achieving impressive results by constructing a photometric error cost volume
to manage static and dynamic elements in a multi-view stereo setup. However, their approach
requires additional supervision on dense stereo depth predictions and a complex training
scheme.

Other studies, like those by Luo et al. [105] and NeuralRGBD [100], concentrate on static,
small-scale indoor scenes. Luo et al. use learning-based priors and test-time training, optimiz-
ing across all pixels in a monocular video for consistent small-scale reconstructions. Neural-
RGBD focuses on consistency by integrating multiple depth estimates from video sequences
into a probability volume, aggregating consistent 3D scene information for indoor scene recon-
struction in a supervised setting. To further exploit input image sequences, Patil et al. [122]
employed recurrent units to enhance depth prediction accuracy over multiple frames in a self-
supervised approach. However, this method requires long sequences during both the training
and testing phases. ManyDepth [171] suggests utilizing adjacent frames from a monocular
video sequence during inference by forming a cost volume that aggregates encoded features
from multiple frames. This method is more e"cient than previous test-time refinement tech-
niques [142] and achieves highly accurate self-supervised depth predictions. However, it also
requires predicting relative poses between frames. Our analysis shows that despite improved
accuracy and the utilization of multiple consecutive test frames, temporal consistency in depth
predictions is not invariably achieved. Our investigations emphasize that high accuracy in
monocular depth estimation does not guarantee temporal consistency, accentuating the need
for further research and refinement in this domain.

2.3 Consistent Self-Supervised Monocular
Depth Estimation from Spatial-Temporal
Constraints

Depth estimation from monocular image sequences remains a pivotal challenge in computer
vision, with the essential issue residing not only in accuracy but also in the consistent prediction
of depth information across temporal sequences. To address this, we propose our Temporally-
Consistent Depth estimation method, short TC-Depth. The goal of TC-Depth is to attain
accurate depth while ensuring temporal consistency, a critical factor in processing sequences
of monocular images. This objective is achieved by leveraging a well-established approach that
regresses depth and relative camera poses concurrently. The core principle involves minimizing
the image reconstruction loss. This minimization is achieved by employing the backwards
warping technique, which projectively transforms adjacent frames into a central view using
the predicted dense depth and relative pose information, as suggested in prior works [51].

We underscore the significance of temporal consistency in depth predictions, recognizing its
critical role in subsequent tasks such as RGB-D reconstruction. To underscore the necessity for
consistent depth estimations, we refer to the qualitative 3D reconstructions derived from con-
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ManyDepth PackNet-SfM [v-GT]
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OursNeuralRGBD [D-GT]

Fig. 2.2 Qualitative 3D Reconstruction Comparison: 3D reconstruction from five consecutive depth predictions
on Kitti [48]. Our method yields a higher quality reconstruction due to geometrically consistent depth
predictions with high accuracy compared against SOTA methods in self-supervised (ManyDepth [171]),
semi-supervised (PackNet-SfM [53] with pose velocity [v-GT]), and supervised (NeuralRGBD [100] with
depth [D-GT]) methods. Twisted boundaries due to pixel-wise misalignment and "flying pixels" are
significantly reduced.

secutive depth predictions, as demonstrated in Fig. 2.2. These reconstructions vividly illustrate
the imperative for consistent depth predictions and justify our motivation. While the recently
introduced ManyDepth [171] currently leads in terms of quantitative depth accuracy, its depth
predictions often exhibit temporal inconsistency, leading to noisy scene reconstructions. Our
model, in contrast, not only attains comparable accuracy metrics but, more crucially, delivers
temporally consistent depth predictions. This is also evident in handling dynamically moving
objects, as shown in Fig. 2.1. The consistency achieved by our model significantly enhances
the quality of scene reconstructions, providing a more coherent and reliable understanding of
the scene’s spatial structure. This emphasis on temporal consistency, especially in the context
of dynamic objects, sets our model apart and highlights its potential applicability in a wide
range of real-world scenarios where accurate and consistent depth perception is paramount.

Common artifacts, such as twisted boundaries arising from pixel-wise misalignment and the
notorious "flying pixels", are markedly reduced. This showcases the geometric and temporal
consistency and the high accuracy of the depth predictions o!ered by our method. A closer
look at the reconstructions in Fig. 2.2 reveals:
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• Self-Supervised Comparison (ManyDepth [171]): When compared against Many-
Depth, a leading method in the self-supervised paradigm, our technique consistently
producdes a more coherent and detailed 3D reconstruction.

• Semi-Supervised Comparison (PackNet-SfM [53]): Even in a semi-supervised setting,
our method demonstrates superior performance. While comparing against PackNet-SfM
(which incorporates ground-truth pose velocity [v-GT]), our method o!ers more precise
and geometrically consistent depth predictions.

• Supervised Comparison (NeuralRGBD [100]): NeuralRGBD, which trains in a super-
vised setting with depth ground truth [D-GT], is known for its high accuracy in depth
estimation. Nevertheless, our method proves to be competitive, o!ering comparable, if
not better, 3D reconstructions.

2.3.1 Enabling Spatial-Temporal Constraints

The architecture of our proposed network is depicted in Fig. 2.3. Regarding the regression of
relative camera poses, our approach adopts established strategies, aligning with methodologies
presented in prior studies [51, 171].

Selecting an appropriate feature encoder is essential to align the resolution of the features for
the attention module in the bottleneck. We capitalize on the benefits of dilated convolutions,
as presented by Yu et al. [184], which provide expanded receptive fields and results in the
desired resolution. The encoder of choice, a DRN-C-26, is similar to the well-known ResNet18
architecture but with dilated strides and the inclusion of de-griding layers. These layers are
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Fig. 2.3 Pipeline Overview: 1. Image features are extracted using a dilated residual network (DRN). 2. An
auxiliary low-resolution depth map is predicted by a single-stage reference decoder. This depth map is
subsequently passed to the spatial attention module to establish local geometric correlation. The temporal
attention module then aggregates these spatially-aware features across frames. 3. Aggregated features
are decoded into the final depth predictions, with the assistance of skip connections derived from the
encoder.
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crucial in reducing the checkerboard artifacts often associated with certain convolutional pat-
terns [184]. As we discuss later in the ablation studies, the influence of the encoder with
dilated convolutions on depth accuracy and consistency is only marginal compared to the
non-dilated counterpart, i.e., a comparable ResNet.

The encoder’s feature embedding fulfills a dual role. Firstly, it contributes to an auxiliary single-
scale depth decoder [52, 76], generating an initial coarse depth prediction. This preliminary
output then serves as input to the subsequent spatial-temporal attention module. Notably,
this attention mechanism is executed at the most reduced resolution level, specifically at a
dimension of 24→ 80, corresponding to an eighth of the original input size.

Our temporal attention module integrates the encoded input features by drawing an analogy
with optical flow techniques. This integration e!ectively consolidates temporally consistent
scene content in conjunction with spatial attention. The combined information from this pro-
cess is then fed into the final depth decoder. This approach ensures that the depth predictions
are accurate and temporally coherent, enhancing the overall performance of TC-Depth in
generating consistent and reliable depth estimations from monocular image sequences.

2.3.1.1 Attention Module

Convolutional Neural Networks (CNNs) have inherent limitations due to their restricted re-
ceptive fields, hindering their ability to correlate features from spatially distant regions of an
input. Transformers, initially conceived for Natural Language Processing (NLP) as described
by Vaswani et al. [160], possess the ability to correlate semantically related words regardless of
their positional distance within a sentence. This concept has been adapted for computer vision
applications, as demonstrated by Dosovitskiy et al. [30], shifting the focus from correlating
words to correlating pixels or specific pixel patches.

In the transformer’s attention mechanism, inputs are categorized as query (Q), key (K), and
value (V). The function of Q is to extract relevant information from V, directed by the attention
weight. This process is encapsulated in the equation:

Attention(Q, K , V ) =↑ (Q, K)V, (2.1)

where ↑ (·) represents a function that calculates a similarity score, serving as the attention
weight for aggregating various feature embeddings.

Recent progress in the field [156] has shown that transformer models, particularly those em-
ploying self- and cross-attention mechanisms, can outperform fully convolutional networks in
tasks that involve finding dense correspondences between image pairs [95]. Inspired by these
advancements, we have incorporated a spatial-temporal attention module in our framework.
This module leverages the transformer’s ability to correlate distant features, thereby enhanc-
ing the capability of our system to consistently and accurately interpret spatial and temporal
information from monocular image sequences.
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Spatial-Attention Layer As proposed in Johnston et al. [76], self-attention enables the es-
tablishment of correlations within the same image, focusing on regions that display visual
similarities. However, a critical aspect to consider in the context of self-attention, especially
when applied to dense depth regression tasks, is the potential limitation of the dot-product
mechanism used within the attention module. This mechanism can inadequately lead to the
aggregation of features from geometrically distant regions of a 3D scene. Such a scenario is of-
ten observed at depth discontinuities, where there is a distinct separation between foreground
and background objects. In these cases, the aggregation of features across these discontinuities
might not be ideal for accurately regressing depth.

This issue arises because the self-attention mechanism, by design, does not inherently ac-
count for the geometric relationships between di!erent parts of an image. It focuses more on
appearance-based similarities, leading to the possibility of correlating features from di!erent
depths within the scene. This characteristic can be a significant drawback for tasks where
understanding the depth and spatial arrangement of objects is crucial. It underscores the need
for careful consideration and additional mechanisms to ensure that depth regression tasks
maintain an awareness of the spatial and geometric properties of the scene, in addition to the
visual similarities identified through self-attention.

We propose a model that explicitly integrates self-attention with 3D spatial awareness, lever-
aging an initially predicted coarse depth estimation. Given the camera intrinsics K and paired
coordinates Ci = (ui , vi) and Cj = (uj , vj), each associated with depths di and dj respectively,
our first step is to back-project these pixel coordinates into the 3D space:

Pi = K↓1(di ·Ci),

P j = K↓1(dj ·C j).
(2.2)

We then explicitly define the spatial-attention as:

Aspatial
i, j = exp

!
↓
↔Pi ↓ P j↔2
ω

"
, (2.3)

where Pi and P j can be understood as the key and query respectively. This formulation can be
interpreted as a 3D positional encoding grounded in 3D spatial correlation.

Temporal-Attention Layer Drawing inspiration from the correlation layer used in optical flow
studies [71] and recent dense matching approaches [156], we introduce an innovative tem-
poral attention mechanism. This mechanism is specifically tailored to leverage the temporal
sequence of images provided by the self-supervised training paradigm.

Given a triplet set of featuremaps derived from successive image inputs, we iteratively designate
one as the query and use the others as key features. Subsequently, we determine the similarities
between these key and query features through the Softmax function. Let Fq

i represent the query
feature and Fk

j signify the key feature. The temporal-attention can be represented as:

Atemporal
i, j = Softmax j(F

q
i
↗Fk

j ). (2.4)
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Spatial-Temporal Attention Our spatial-temporal attention model is distinctively designed to
correlate features that are not only geometrically meaningful but also spatially and temporally
coherent. This model operates in two phases: initially applying spatial attention to capture
geometrically consistent parts of a scene, followed by temporal attention to maintain correla-
tions across successive frames. Fig. 2.4 illustrates this dual attention mechanism, showcasing
how spatial and temporal attentions operate for a specific pixel across di!erent frames. In
the spatial attention phase, the focus is on aggregating features from geometrically consistent
parts of the scene. This is particularly noticeable at the boundaries of objects, where significant
attention gradients are often directed towards the background, thereby enhancing geometric
consistency. Conversely, temporal attention is oriented towards correlating global information
across time. In a naive implementation, this task could introduce challenges and inaccuracies
without adequately representing spatial relations in 3D. However, our spatial-temporal atten-
tion model mitigates these challenges by incorporating geometric constraints and specific loss
formulations, as detailed later and expressed in Eq. 2.13. These additions refine the atten-
tion mechanism, ensuring it remains sharply focused and preserves spatial coherence. This is
particularly beneficial in handling complex scenarios, such as scenes with thin structures or
dynamic objects, where maintaining geometric consistency and temporal correlation is crucial.
The integration of spatial and temporal attention in our proposed model thus facilitates a more
accurate and coherent understanding of the scene, demonstrating the e!ectiveness of our
approach in addressing the intricacies of dense depth regression in dynamic and geometrically
diverse environments.

Spatial Attention Naive Temporal Attention Temporal Attention with 
Geometric Guidance

Fig. 2.4 Attention Visualisation: Spatial and temporal attention for a queried pixel (indicated by a cross)
between frames: The boundary of the spatial attention aligns with the scene’s structure. In contrast, the
appearance-based naive temporal attention appears non-specific. Our spatially-aware temporal attention
centers on visually similar features, guided by geometric reasoning.
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2.3.2 Enforcing Spatial-Temporal Constraints

2.3.2.1 Regularized Geometric Consistency

Scale-invariant Consistent Depth Loss Depth values, when projected into another camera
view, are usually a!ected by the relative pose between the camera views. If the depth or dis-
parity value consistency between these views is directly constrained, the overall scene depth
scale can shrink or enlarge. To address these inconsistencies, several scale-invariant formu-
lations have been proposed [9, 105, 193]. While mitigating scale changes between frames,
these methods tend to yield suboptimal gradients for depth values characterized by minor
alignment discrepancies, especially for close-range depth values. Thus, a more nuanced ap-
proach that provides strong gradients, especially for depth values with minor misalignments,
is needed. Kopf et al. [87] proposed a formulation that bridges this gap. They o!er a method
that retains the benefits of scale-invariant formulations while penalizing depth inconsisten-
cies. By integrating additional regularization, as detailed in Eq. 2.13, our approach ensures
depth predictions are both consistent and accurate across frames. This regularized approach
ensures better depth stability across frames while being depth-scale-agnostic, thus making 3D
reconstructions more reliable and robust.

Cycle-Mask from Photometric Consistency Estimating depth frommonocular images presents
multiple challenges, one is dealing with the inherent ambiguity and inconsistencies arising from
the scene’s structure while the camera is moving. Aggregating geometric loss on a pixel-wise
basis over di!erent views can be problematic due to the dynamics of the camera. For instance,
occlusions can lead to certain regions of the scene being visible in one frame but hidden in
another. When these occluded regions contribute to the loss computation, the resultant depth
maps often su!er from blurred boundaries and a noticeable decrease in depth accuracy [9].

Recognizing the issues arising from directly aggregating the pixel-wise mean geometric loss,
researchers have explored alternative strategies. One such method is computing the pixel-wise
minimum depth error [43, 189], similar to the pixel-wise minimum reprojection error [51].
While this approach addresses the problems posed by occlusions to some extent, it has some
drawbacks. Our quantitative and qualitative evaluations suggest that this strategy can inad-
equately exclude significant parts of the scene. Specifically, regions exhibiting large inconsis-
tencies due to inaccurate transformations between adjacent depth maps can be masked. Such
exclusion is not desired, especially when these regions carry essential information about the
scene structure. When the minimum operator is applied, it can sometimes lead to the inadver-
tent omission of large parts of the scene, which, as visualized in Fig. 2.5, severely harms the
training signal.

Considering these challenges, a more sophisticated approach to handle depth inconsistencies
and occlusions is required. Therefore, our proposition leans towards exploiting images’ in-
herent properties rather than just the depth values. We introduce a novel masking scheme
grounded in the principle of photo-consistency. Leveraging this assumption, we projectively
transform the central target image It to match the perspective of an adjacent source frame,
denoted as It↘s. In a subsequent step, the transformed image is reverted back to the original
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viewpoint, resulting in It↘s↘t . This two-step transformation ensures that the regions that
remain consistent across these transformations are reliable and can be trusted more during
the depth estimation process, thus providing a more robust training signal. By incorporating
this photo-consistency-based masking scheme, our method aims to produce depth maps that
are both accurate and consistent while adequately handling occlusions and scene inconsisten-
cies.

Our cycle-masking approach is concisely formulated as:

≃cycle =
#
Epe(It , It↘s↘t)< ϵ

$
, (2.5)

where [·] is the Iverson bracket. The term Epe represents the photometric error between the
target image It and the image that undergoes a two-step transformation: first, it is projected
to an adjacent frame and then back to the target’s perspective, denoted by It↘s↘t . This photo-
metric error quantifies the visual consistency between these images and is detailed further in
Eq. 2.9.

Rather than setting a static threshold for masking, we employ an adaptive thresholding mecha-
nism. Specifically, the threshold ϵ is defined as the value below which 70% of the photometric
errors fall, known as percentile, when computed among all pixels of Is, and serves for bina-
rization of the mask. This adaptive approach ensures that the threshold is flexible and can be
adjusted based on the scene’s characteristics. It adeptly eliminates occluded regions from con-
tributing to the loss and ensures that a majority of the non-occluded regions remain, thereby

Input Estimated Depth

!"#$ !%&%'(

)*(+ !%&%'( , )*(+
Fig. 2.5 Visualization of Occlusion Handling: We illustrate the proficiency of occlusion handling in ⇐geo using

≃cycle when compared against a pixel-wise minimum approach. It becomes evident that≃min fails to
e!ectively address all occlusions, leading to the erroneous masking of extensive image regions. Conversely,
≃cycle demonstrates a superior capability in handling such scenarios. This proficiency ultimately yields
improved gradient results during training when deploying≃cycle ·⇐geo.
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providing a comprehensive and robust consistency check. This strategy’s e!ectiveness and its
clear distinction from other methods can be visualized in Fig. 2.5.

2.3.2.2 Loss Formulation

We train our model using a combination of loss terms that are derived from image content
reconstruction and the geometric characteristics of our depth map, which can be expressed
as:

⇐ =⇐photo +ϑs⇐s +ϑgeo⇐geo +ϑm⇐m +⇐ref, (2.6)

where⇐photo and⇐s are derived fromwell-establishedmethodologies as presented in [51, 171].
We will only provide a concise overview of these but will elaborate on the other components
in the subsequent sections.

Motion Consistency Loss ⇐m Drawing inspiration from the knowledge distillation approach
described in [125], we concurrently train a streamlined self-supervised depth prediction net-
work, specifically MonoDepth2 [51] as referenced in Table 2.1, to act as a weak teacher. In
alignment with [171], we introduce a mask. This mask highlights significant discrepancies
between our depth prediction Dt and the teacher’s D̂t , potentially signaling moving objects.
This mask is subsequently employed in the photometric loss computation, defined as:

≃m =max
%Dt ↓ D̂t

D̂t
,

D̂t ↓ Dt

Dt

&
< 0.6. (2.7)

This results in our motion consistency loss term, aiding the student in assimilating knowledge
from the weak teacher, expressed as:

⇐m = (1↓≃m) · ↔Dt ↓ D̂t↔1. (2.8)

Photometric Loss ⇐photo The photometric reconstruction error [51, 171] between image Ix

and I y is given by:

Epe(Ix , I y) = ϖ
1↓SSIM(Ix ,I y )

2 + (1↓ϖ)
''Ix ↓ I y

''
1 , (2.9)

and is evaluated between the reference frame It and every associated source frame Is, where
s ⇒ S, subsequently selecting the minimum error at each pixel location. An auto-mask accom-
modates for objects in the scene moving with identical velocity and direction as the camera-ego
motion as:

≃auto =
#

min
s⇒S

Epe(It , Is↘t)<min
s⇒S

Epe(It , Is)
$
. (2.10)

⇐photo is finally defined over S ⇒ {t ↓ 1, t + 1} as

⇐photo =≃m ·≃auto ·min
s⇒S

Epe(It , Is↘t). (2.11)
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Edge-aware Smoothness Loss ⇐s Similar to earlier studies [50, 51], we employ edge-aware
smoothness to promote depth predictions that are smooth in local regions, utilizing the mean-
normalized inverse depth dt , as:

⇐s =
(((ϱx dt

((( e↓|ϱx It | +
(((ϱy dt

((( e↓|ϱy It |. (2.12)

Geometric Loss ⇐geo In light of the discussion and motivation presented before, we propose
a geometric loss that aims to maintain depth prediction consistency between frames. Besides
mitigating the challenges of depth scale penalization, this loss also integrates cycle consistency
(Eq. 2.5) to adeptly address occlusions as:

⇐geo =≃m ·≃auto ·≃cycle ·
%
1↓

min(Ds↘t , D⇑t)
max(Ds↘t , D⇑t)

&
, (2.13)

where Ds↘t represents the depth map transformed from the neighboring source frame to the
target frame, and D⇑t signifies the interpolated depth map of the target as presented in [9,
43].

Reference Loss ⇐ref In order to train the single-stage auxiliary depth decoder Dre f for spatial
attention acquisition, we aim to reduce the discrepancy between it and the (detached) final
depth prediction from our complete pipeline, denoted as Dt :

⇐ref =
''Dt ↓ Dre f

''
1 . (2.14)

2.4 Quantifying Monocular Depth Consistency

In depth prediction from monocular video, particularly in dynamic outdoor driving environ-
ments, a key challenge is maintaining consistency across temporally adjacent frames. To
address and quantify this, we propose a method for directly measuring consistency in the
predicted depth output. This is achieved by aligning a set of k frames in 3D through projective
transformation. This approach ensures a consistent reference scale across all comparisons
rather than a per-frame scale to account for quantifying scale drift.

Our Temporal Consistency Metric (TCM) is designed to measure the discrepancy between
estimated pixel-wise depth and ground truth across multiple frames. A visual representation
of TCM is provided in Fig. 2.6. This metric is beneficial for evaluating the performance of
depth estimation methods in terms of their temporal consistency. Given artifacts by the sensor,
the potential for errors arising from interpolated ground-truth LiDAR data, and the presence
of moving objects, we implement a filtering mechanism to enhance the robustness of our met-
ric [103]. Specifically, we discard the 20% most significant outliers in our analysis. This step
is crucial for ensuring that our comparisons remain fair and unbiased, especially considering
the inherent challenges and noise in the datasets typically used for outdoor driving scenarios.
Applying this filtering mechanism allows us to assess the temporal consistency of depth predic-
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LiDAR ManyDepth Ours

Fig. 2.6 Illustration of Depth Consistency: Successive depth estimations are aligned in a 3D space and assessed
on a pixel-wise basis over several frames. With our approach, the alignment of the car across frames is
markedly improved.

tions more accurately, providing a clearer understanding of the performance of various depth
estimation methods in dynamic environments.

2.4.1 Temporal Consistency Metric (TCM)

The Temporal Consistency Metric (TCM) is designed to assess the consistency of depth predic-
tions across consecutive frames in monocular image sequences. Traditional standard accuracy
metrics, which compare predicted depths against ground truth on a per-frame basis, fail to
capture this aspect of temporal consistency. This is primarily due to their reliance on aligning
and evaluating each frame individually.

To evaluate temporal consistency, we focus on the alignment of multiple consecutive depth
predictions within a sequence in 3D. This alignment is facilitated by warping consecutive
predictions into the same camera view, using the flow generated by the ground truth depth
and pose. Within a short sequence of predictions, we designate the central frame’s depth
as the target depth Dt , and the depths of other frames in the sequence as source depths Ds.
The length of these short sequences is selected to be k = {3,5, 7}. We opt for these specific
sequence lengths based on the observation that longer sequences are generally not suitable
for outdoor driving scenarios. This is due to the reduced visual overlap between images in
such contexts, especially considering the typical forward motion speed and frame rate (e.g.,
10 f ps in the KITTI dataset [48]). By using TCM, we can more e!ectively quantify the degree
of consistency in depth predictions over time, providing a more comprehensive assessment of
performance in dynamic environments. This metric is particularly valuable in scenarios such
as autonomous driving, where understanding the temporal evolution of the scene is crucial for
safe and accurate navigation.

We define a new terminology of track. Conceptually, track signifies the point-wise Euclidean
distance between the depth of a target frame and the depths of its corresponding source frames

28 Chapter 2 3D Perception from Monocular Camera Ego-Motion



in a 3D space, post their alignment within the same camera viewpoint. Mathematically, it can
be represented as:

t rack =
''Tt↓↘sς

↓1(Dt)↓ς↓1(D
⇑

s)
''

2, (2.15)

where:

• Dt stands for the depth originating from the target frame.

• Tt↓↘s denotes the ground-truth pose between the target and source frames.

• D
⇑

s is the depth from the source frame, transformed and aligned through the warping
flow, derived from both ground truth pose and depth.

• ς↓1(·) symbolizes the projective transformation function for 3D lifting.

For both the ground-truth and predicted depths, we compute the term track, leading to t rackGT

and t rackpred . It is crucial to note that for monocular techniques a!ected by scale ambiguity,
every frame in a sequence is uniformly scaled with the same common scaling ratio. This scale is
determined bymedian-aligning the target frame with its respective ground truth. In conclusion,
with the obtained track, we define metrics such as absolute error (T C Mabs), square relative
error (T C Msq), and root mean square error (T C MRMSE) to assess the depth consistency across
inputs:

T C Mabs =
1
H

H∑

j=1

((t rackGT
j ↓ t rackpred

j

((, (2.16)

T C Msq =
1
H

H∑

j=1

*
t rackGT

j ↓ t rackpred
j

+2
, (2.17)

T C MRMSE =

√√√√ 1
H

H∑

j=1

*
t rackGT

j ↓ t rackpred
j

+2
. (2.18)

Here, H represents the total amount of valid tracks in the current input, after filtering out large
outliers, which accounts for 20%. To encapsulate the complete TCM evaluation, we aggregate
these metrics by averaging over every input set presented during testing. In essence, TCM
metrics encapsulate the error derived from comparing the Euclidean distances of sequential
3D predictions against the analogous distances of their corresponding ground truths, all post
the necessary camera view alignment.
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2.5 Experimental Results

Our model’s performance is assessed against recent state-of-the-art methods, both in terms
of our introduced Temporal Consistency Metric (TCM) and well established depth accuracy
benchmarks [51]. Aligning with past self-supervised depth estimation research [51, 171],
our experiments extensively utilize the Eigen split [34] of the Kitti dataset [48], and we also
present findings on Cityscapes [23].

2.5.1 Depth Accuracy

The depth accuracy results are presented in Tab. 2.1. In comparison to notable self-supervised
models like MonoDepth2 [51], our model showcases superior performance. It even surpasses
models with more extensive backbones such as FeatDepth [142], those that incorporate con-
sistency constraints like SC-SfMLearner [9], and semi-supervised strategies like PackNet-
SfM [53]. Incorporating the test time refinement approach (notated as TTR in Table 2.1)
from [109], our method distinctly excels over ManyDepth [171]. Moreover, our technique
registers the highest accuracy scores on the demanding Cityscapes dataset [23].

Tab. 2.1 Depth Accuracy: Performance metrics for self-supervised monocular techniques on the Kitti [48] Eigen
test set [34] are presented. The symbol ⇓ denotes semi-supervised approaches. In the middle section, we
incorporate test time refinement (TTR) [142]. The lower section addresses the Cityscape dataset [23].
The symbols † and ‡ indicate fresh results sourced from GitHub with standard image resolution for fair
comparison. Rankings are emphasized as: best, 2nd best, and .. . .3rd. . . . .best.

Method Abs Rel Sq Rel RMSE ω < 1.25 ω < 1.253

Monodepth2 [51] 0.115 0.903 4.863 0.877 0.981

SC-SfMLearner [9] † 0.119 0.857 4.950 0.863 0.981

TrianFlow [193] 0.113 0.704 4.581 0.871 0.984

PackNet-SfM[53]⇓ 0.111 0.829 4.788 0.864 0.980

FeatDepth[142] ‡ 0.109 0.923 4.819 0.886 0.981

ManyDepth [171] 0.098 . . . . . . .0.770 4.459 0.900 0.983

Ours (DRN-C-26) . . . . . . .0.106 .. . . . . .0.770 .. . . . . .4.558 .. . . . .0.890 0.983

Ours (DRN-D-54) 0.103 0.746 4.483 0.894 0.983

ManyDepth[171]

T
TR

0.090 0.713 4.137 0.914 0.997

Ours (DRN-C-26) 0.082 0.667 4.104 0.921 0.997

Monodepth2 [51] CS .. . . . . .0.129 .. . . . . .1.569 .. . . . . .6.876 .. . . . .0.849 .. . . . . .0.983

ManyDepth [171] CS 0.114 1.193 6.223 0.875 0.989

Ours (DRN-C-26) CS 0.110 0.958 5.820 0.867 0.991
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2.5.2 Depth Consistency

We utilize a subset of Kitti odometry data for our TCM evaluations. Due to the abundance of
moving objects, Cityscapes is not considered in the TCM assessment. In the inference stage, we
process image triplets, as illustrated in Fig. 2.3, mirroring the approach of ManyDepth [171]
that also employs successive images. Unlike ManyDepth [171], our approach does not ne-
cessitate predicting relative camera positions between adjacent frames for depth deduction.
Comprehensive ablation tests reveal that our model’s e!ectiveness is nearly unchanged, regard-
less of whether we employ an encoder with dilated convolutions or a traditional ResNet, as used
in [51]. This is evident in both depth predictions and accuracy evaluations. The qualitative
results further highlight our model’s advantages, especially its capability to deliver temporally
consistent 3D reconstructions using sequential depth estimations as illustrated in Fig. 2.7).

In Tab. 2.2, we summarize the relative TCM results, evaluating depth consistency across an
increasing count of test frames. Notably, TC-Depth excels over prominent self-supervised
benchmarks such as MonoDepth2 [51]. It also surpasses SC-SfMLearner [9], known for em-
phasizing temporal consistency, and ManyDepth [171], which distinctively leverages adjacent
frames during inference. Furthermore, our approach demonstrates superiority over the semi-
supervised technique from PackNet-SfM [53] and even outperforms NeuralRGBD [100], which
operates under full supervision and employs GT poses in its testing phase.

Figs. 2.8 and 2.9 provide additional qualitative insights into 3D reconstructions, complement-
ing those in Fig. 2.7. The significance of having temporally coherent depth predictions becomes
evident in these reconstructions. While a standalone depth map might not reveal inconsisten-
cies, a composite of depth maps viewed from di!erent perspectives showcases them. For
instance, even though ManyDepth [171] sets a high standard in accuracy, it still has issues
with object deformations, ghosting e!ects, and "flying pixels". Similar visual artifacts are
noticeable in the semi-supervised PackNet-SfM⇓ [53]. In contrast, our approach consistently

Fig. 2.7 Qualitative Depth Consistency: Qualitative reconstructions using five sequential depth predictions
reveal distinct di!erences. Both ManyDepth [171] and PackNet-SfM⇓ [53] with velocity semi-supervision,
exhibit artifacts like "flying pixels" in View 1, ghosting e!ects in View 2, and distorted objects in View 3.
These issues stem from temporal inconsistencies. While these may not be evident in single-frame depth
predictions, they become prominent when the viewpoint shifts. Our approach substantially reduces these
visual discrepancies.
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Tab. 2.2 Depth Consistency: Evaluation of the Temporal Consistency Metric (TCM) over an increasing count of
test frames [3, 5, 7]. ⇓: Incorporates semi-supervision with velocity ground-truth. ⇓⇓: Utilizes supervision
with ground-truth depth and conducts inference with ground-truth pose. Our self-supervised approach
enhances TCM by approximately 60% across all metrics when contrasted with powerful benchmarks
utilizing temporal frames [171]. Moreover, it surpasses semi-supervised [53] and fully supervised [100]
methods designed to estimate depth with temporal coherence.

Method Abs Err Sq Err RMSE

# Test Frames 3 5 7 3 5 7 3 5 7

ManyDepth [171] 0.204 0.260 0.307 0.087 0.147 0.206 0.256 0.319 0.373

MonoDepth2 [51] 0.137 0.177 0.215 0.039 0.068 0.104 0.176 0.223 0.268

SC-SfMLearner [9] 0.126 0.170 0.211 0.032 0.062 0.099 0.159 0.210 0.259

PackNet-SfM [53] 0.141 0.196 0.247 0.044 0.090 0.147 0.177 0.240 0.299

PackNet-SfM [53]⇓ 0.118 0.154 0.190 0.030 0.052 0.083 0.154 0.197 0.240

NeuralRGBD [100]⇓⇓ 0.116 0.148 0.179 0.024 0.044 0.066 0.147 0.186 0.222

Ours DRN-C-26 0.079 0.111 0.147 0.011 0.025 0.047 0.099 0.139 0.184

Ours DRN-D-54 0.076 0.106 0.138 0.010 0.022 0.041 0.095 0.131 0.172

o!ers the most accurate reconstructions across sequential temporal depth maps and their 3D
reconstructions.
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Fig. 2.8 Qualitative Depth Consistency 2: Additional qualitative reconstructions using five sequential depth
predictions reveal distinct di!erences (cf. Fig. 2.7).

In-depth statistical analyses of the absolute TCM metric for various sequence lengths k are
available in Figs. 2.10, 2.11, and 2.12 (left). Across all sequence lengths k = {3,5, 7}, our
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Fig. 2.9 Qualitative Depth Consistency 3: Additional qualitative reconstructions using five sequential depth
predictions reveal distinct di!erences (cf. Fig. 2.7).

approach consistently showcases the lowest mean and median absolute TCM errors, along
with fewer outliers.

To ensure fair comparisons between methodologies and taking into account errors from in-
terpolated ground-truth LiDAR and moving objects, we set a threshold to eliminate the top
20% of outliers. Here, we additionally provide TCM results for di!erent outlier sampling rates
for detailed analysis in Figs. 2.10, 2.11, and 2.12 (right). Our method remains consistently
superior across these various sampling rates compared to other methods.

2.5.3 Ablation Studies

For a quantitative assessment of the impact of each component in our pipeline, we conduct
a thorough ablation study, presenting both TCM outcomes and depth accuracy as shown in
Tab. 2.3. The selection of the backbone, whether ResNet18 as in MonoDepth2 (MD2) [51] or
DRN-C-26 in our baseline, exerts only a minimal influence on accuracy and TCM.

Our ablation study o!ers insightful revelations about the impact of spatial-temporal attention
(ST-A) on both accuracy and the Temporal Consistency Metric (TCM) results. It is observed
that while spatial attention (S-A) enhances accuracy, it exhibits negligible influence on TCM, as
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Fig. 2.10 TCM Statistics: Detailed statistical analysis using 3-frame-TCM. On the left, we present the distribu-
tion of absolute errors from a 3-frame TCM test. The right side illustrates the absolute errors of TCM
evaluations, taking into account varying sampling rates for outlier handling.

Fig. 2.11 TCM Statistics: Detailed statistical analysis using 5-frame-TCM. On the left, we present the distribu-
tion of absolute errors from a 5-frame TCM test. The right side illustrates the absolute errors of TCM
evaluations, taking into account varying sampling rates for outlier handling.

indicated in Tab. 2.3. On the other hand, temporal attention (T-A) alone does not improve TCM
and can even detrimentally a!ect accuracy. This is attributed to the potential for highly noisy
and imprecise feature aggregation in the absence of positional information [171]. To address
this, we introduce S-A with correlated 3D information, serving as a form of 3D positional
encoding. This addition ensures that the temporal feature aggregation in T-A is spatially
aware, thereby preventing degradation in accuracy.

The consistency loss⇐m plays a pivotal role in enforcing congruence between theweak teacher’s
predictions and our model’s predictions, particularly in regions with significant deviations (i.e.,
1↓≃m), such as those caused by e.g. moving objects. Employing only⇐m in training (without
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Fig. 2.12 TCM Statistics: Detailed statistical analysis using 7-frame-TCM. On the left, we present the distribu-
tion of absolute errors from a 7-frame TCM test. The right side illustrates the absolute errors of TCM
evaluations, taking into account varying sampling rates for outlier handling.

geometric guidance) already facilitates the identification of regions with large deviations,
thereby improving accuracy. This is in line with the findings of Watson et al. [171].

From the ablation results, we discern that the geometric loss⇐geo is critical for achieving highly
consistent depth predictions. Its e!ectiveness in respecting occlusions is complemented by
the cycle mask ≃cycle, while potential dynamic objects are filtered using ≃m ·≃auto. This
comprehensive masking ensures that dynamic objects, which violate the static assumption
inherent in ⇐geo, are accurately accounted for, thereby enhancing consistency performance.

Interestingly, using ⇐geo with only≃min marginally reduces accuracy for the ω < 1.25 accu-
racy measure, in line with observations from SC-SfMLearner [9]. However, the addition of
≃cycle mitigates this issue by better handling occluded regions through photometric cues. The
combination of ⇐geo and≃cycle significantly improves TCM, with ⇐m further reducing outlier
rates as indicated by the Sq.Rel. error metric.

Integrating spatial-temporal attention with ⇐geo and≃cycle allows the additional loss function
and appropriate regularization to guide the attention module towards more geometrically
consistent aggregation of temporal information. This integration markedly enhances both
TCM and depth accuracy. The complete model, incorporating all these elements, achieves the
best results. Moreover, employing a larger encoder can further improve these outcomes.

Qualitative results in Fig. 2.13 validate our findings. The baseline model, without our contri-
butions, exhibits compromised 3D reconstruction capabilities. In contrast, incorporating our
proposed geometric constraints and the novel spatial-temporal attention module independently
and collectively enhances the quality of 3D reconstructions.
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(b) (d)(c)(a)

Fig. 2.13 Qualitative Ablation Results: The baseline model without our contributions (a) exhibits pronounced
ghosting e!ects resulting from incorrect pixel-wise alignment. By integrating the constraint≃cycle ·⇐geo
(b) or implementing spatial-temporal attention (c), such issues are substantially reduced. Employing
our complete model (d) delivers the most refined output.

2.5.3.1 Static Camera Performance

We feed just a single static image into ourmethodology to simulate a stationary camera scenario
without sequential images and scene content changes. In this case, we exclusively report on
accuracy metrics, as employing TCM metrics would be irrelevant in a scenario with a non-
moving camera. Given that ManyDepth [171] also capitalizes on sequential frame inputs, we
designate this method as our reference. Tab. 2.4 summarizes the accuracy results. Although
our approach with a single static frame input yields slightly suboptimal outcomes in contrast
to those with temporal images, the degradation in accuracy is less pronounced, as observed
with ManyDepth [171].

2.5.3.2 Attention Mechanism

In Fig. 2.14 (top), we can observe that the spatial attention ball-query e!ectively correlates
spatially proximate structures. In contrast, the temporal attention cannot always yield a single
distinct maximum attention value for the queried pixel. This is particularly evident when
multiple non-identical objects with similar appearances are present, resulting in ambiguous
attention patterns, such as when there are multiple similarly-looking pedestrians or cars. Fur-
thermore, it is worth noting that the temporal attention predominantly correlates objects
within a close depth layer while potentially disregarding similar objects located at a greater

Tab. 2.4 Emulating a Stationary Camera Setting: Accuracy outcomes on the Kitti Eigen test split [34] contrasting
standard temporal frame inputs with a singular static frame input.

Method Test-time input Abs Rel Sq Rel RMSE RMSE log ω < 1.25 ω < 1.252 ω < 1.253

ManyDepth [171] Temporal Frames (Standard) 0.098 . . . . . . .0.770 4.459 0.176 0.900 0.965 0.983

Ours (DRN-C-26) Temporal Frames (Standard) . . . . . . .0.106 .. . . . . .0.770 .. . . . . .4.558 .. . . . . .0.182 .. . . . .0.890 0.964 0.983

Ours (DRN-D-54) Temporal Frames (Standard) 0.103 0.746 4.483 0.180 0.894 0.965 0.983

ManyDepth [171] Single Frame (Static) . . . . . . .0.117 .. . . . . .0.886 .. . . . . .4.754 .. . . . . .0.191 .. . . . .0.872 .. . . . . .0.959 0.982

Ours (DRN-C-26) Single Frame (Static) 0.107 0.784 4.596 0.184 0.888 0.963 0.983

Ours (DRN-D-54) Single Frame (Static) 0.104 0.760 4.515 0.181 0.982 0.964 0.983
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Fig. 2.14 Limitations of Attention: Visualization of spatial and temporal attention mechanisms in a challenging
scene containing multiple similar objects.

distance (e.g., cars in the background). This observation aligns with our initial hypothesis that
spatial attention and geometric constraints are crucial in guiding temporal attention toward
geometry-aware feature aggregation for enhanced consistency.

2.6 Conclusion

This chapter introduced TC-Depth, a novel self-supervised monocular depth estimation ap-
proach focusing on accuracy and temporal consistency for robust 3D perception. It features
a spatial-temporal attention mechanism with geometric guidance, enhancing depth predic-
tion robustness and accuracy in challenging environments and achieving superior consistency
of predictions across temporal frames, as validated by the introduced Temporal Consistency
Metric (TCM).

TC-Depth demonstrates remarkable robustness against various camera movements and envi-
ronmental conditions, benefiting from its adaptive aggregation of spatial-temporal features. Ab-
lation studies highlighted the importance of each component, particularly the consistency loss
for geometric guidance and spatial-temporal attention. The results and experiments revealed
TC-Depth’s superior performance in maintaining depth consistency, particularly in dynamic
environments, and its ability to maintain or improve depth accuracy. The spatial-temporal at-
tention mechanism significantly boosts prediction accuracy and temporal coherence. Moreover,
the model’s robustness in stationary camera scenarios and the integration of geometric loss
functions and cycle masks further improve predictions. Qualitative evaluations, particularly in
3D reconstructions from multiple fused predicted depth maps, highlight TC-Depth’s practical
superiority, showcasing reduced artifacts and enhanced depth prediction quality.
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Part III

Sensor Characteristics and Dense 3D

Perception

How can the characteristics of active depth sensors and their associated artifacts be
systematically analyzed, also considering challenging scenarios?





3Sensor Characteristics and Dense 3D

Perception

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Geometry from X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Monocular Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Reconstruction and Novel View Synthesis from Multi-View Consis-
tency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Accurate Data for Evaluation of Sensor Characteristics and 3D Vision Tasks 49

3.3.1 Robotic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 External Tracker Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Sensor Setup & Hardware Description . . . . . . . . . . . . . . . . . . . 55

3.4 Learning 3D Perception in Multi-View Conditions . . . . . . . . . . . . . . . . . 59

3.4.1 Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Implicit 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Error Analysis of Different Sensor Modalities . . . . . . . . . . . . . . 62

3.5.2 Sensor Impact for Dense 3D Vision Tasks . . . . . . . . . . . . . . . . . 66

3.5.3 Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.4 Implicit 3D Reconstruction & View Synthesis . . . . . . . . . . . . . . . 71

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

41



„“Geometry existed before the creation”

– Plato

3.1 Introduction

The previous chapter proposed a novel self-supervised monocular depth estimation technique,
focusing on a temporally consistent depth estimation model and the Temporal Consistency
Metric (TCM). These advancements enhanced the robustness and temporal stability of depth
predictions and allowed objectively quantifying the temporal depth consistency across consecu-
tive frames. However, noisy depth sensor data, used for ground-truth generation in established
benchmarks like the ones used in the previous chapter, forces the mask out of the data with
the largest outliers from the evaluation with TCM due to errors for moving objects or other
artifacts from the sensor [103]. This motivates the research question of how accurate the
depth ground truth data is and which kind of sensor-specific artifacts lead to specific noisy or
corrupt depth measurements, especially when we consider challenging cases with reflections,
textureless surfaces, or transparent material.

In response to the need for high-quality depth data in 3D perception, this section delves into
creating a comprehensive multi-modal dataset. This dataset, integrating a variety of depth
sensors and a polarization camera, is designed to analyze the challenges posed by sensor-
specific artifacts in depth estimation. Later, this will lead to exciting observations for other
3D perception tasks like 6D object pose estimation, where corrupt depth estimates can lead
to noisy and incorrect predictions. However, the passively captured polarization of light yields
valuable properties that can be leveraged and integrated for such 3D perception tasks.

First, we critically examine and provide a comprehensive analysis of di!erent depth sensors,
comparing their performance against dense depth ground truth and discussing their impact
as supervision signals for depth estimation and reconstruction tasks in dense 3D vision. After
analyzing the sensors, we also extend the spatial-temporal conditions in the previous chapter
to a multi-view scenario with abundant camera views for analyzing dense 3D vision tasks, like
depth estimation or novel view synthesis through implicit scene representations. For both tasks,
we can rely only on RGB-only information as before or integrate supervision signals from the
depth sensors. We can then analyze the results in detail, compare them against the sensor
depth itself and accurate ground truth, and thus get an understanding of each sensor. This
detailed understanding of sensor characteristics and how they influence dense 3D vision tasks
is essential for further developing accurate and robust 3D perception methods, especially for
photometrically challenging scenarios.

3.1.1 Motivation

In our three-dimensional world, accurate distance measurements enable machines to under-
stand and interact with the environment spatially. This necessity is particularly pronounced in
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applications like autonomous vehicles [49, 86, 132, 153], robot vision systems for 6D object
pose estimation and manipulation [35, 168, 188], and augmented reality (AR) for enhanced
realism [14, 87]. The field of computer vision benefits from a diverse range of sensor modal-
ities and depth prediction pipelines supported by publicly available datasets [49, 139, 145,
152, 161, 167, 175]. These resources allow for comprehensive evaluation of depth estimation
methods. Each sensor type used for ground truth depth mapping has unique advantages and
limitations. However, often, pipelines are trained without fully considering the characteristics
and confidence levels of these sensors.

Popular passive sensor setups, such as multi-view stereo cameras, rely on photometric or struc-
tural associations to triangulate points within their field of view [139]. However, these methods
falter in low-textured areas or under poor lighting conditions. Active sensing, including active
stereo and Time-of-Flight (ToF) technologies (both D-ToF and I-ToF) [54], addresses these
limitations. Despite their advantages, active sensors can produce artifacts like multi-reflection
errors, especially with reflective and translucent materials. LiDAR sensors, often providing
sparse distance measurements, are another alternative, often used in outdoor driving bench-
marks like KITTI [49]. Radar o!ers a more a!ordable, albeit sparser, solution [47]. Fusing
multiple modalities can enhance distance estimates, but challenges arise in aligning data to a
common reference frame [77, 103]. Multi-modal approaches have improved monocular depth
estimation using self-supervision from stereo and temporal cues [161], yet their performance
analysis is typically limited by the sensors used.

The first part of this chapter details the dataset acquisition process, emphasizing the novel
methods and procedures employed to attain high accuracy in our data. Following this, we
conduct an in-depth analysis of di!erent depth sensors, comparing their performance against
dense depth ground truth. This comparison is crucial in understanding each sensor’s unique
characteristics and limitations. Subsequently, we train depth prediction and view synthesis
methods using di!erent supervision signals. We aim to extract maximum insights into how
these methods perform under varied conditions by focusing on these dense tasks. While our
dataset also supports the analysis of other 3D perception tasks like 6D object pose estimation,
we initially concentrate on dense tasks for a more detailed understanding. Our findings reveal
that depth sensors often exhibit specific artifacts, particularly when dealing with photomet-
rically challenging objects. In the subsequent chapters, we also delve into how polarization
information from our multi-modal dataset can be e!ectively incorporated into other learning-
based 3D perception systems, like 6D object pose estimation, to enhance the accuracy and
robustness, especially in scenarios involving challenging photometric conditions.

3.1.2 Contributions

Our research aims to address key questions regarding the drawbacks of current depth-sensing
modalities and their impact on training pipelines for 3D perception tasks. To facilitate this anal-
ysis, we provide multi-modal sensor data alongside highly accurate annotated depth, enabling
the examination of popular depth estimation, novel view synthesis, and 3D reconstruction
methods on diverse photometric complexities and material properties (see Fig. 3.1).
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Fig. 3.1 Dataset Comparison: While existing datasets for dense 3D vision tasks typically reconstruct scenes in
a single pass, leading to compromised quality and accuracy as highlighted by the red boxes in examples
from Replica [151], ScanNet [27], and Matterport3D [20], our dataset takes a di!erent approach. We
scan each object in the scene and the background separately before accurately annotating them to create
dense, high-quality 3D meshes. Combined with precise camera extrinsics obtained from robotic forward-
kinematics, our dataset provides fully dense rendered depth maps that serve as highly accurate pixel-wise
ground truth. The inclusion of multimodal sensor data, including RGB with polarization, D-ToF, I-ToF,
and Active Stereo, makes our dataset a comprehensive tool for quantifying performance across various
downstream 3D vision tasks, such as monocular depth estimation, novel view synthesis, and 6D object
pose estimation.

The primary contributions in this chapter are in summary:

!
Contributions

1. Analyzing the measurement quality of various depth sensor modalities
and their impact as supervision signals for 3D vision tasks.

2. Investigating the performance on materials with varying textures and pho-
tometrically challenging areas, such as reflective, translucent, and trans-
parent surfaces.

3. Providing a comprehensive indoor dataset that combines multi-modal
sensors (I-ToF, D-ToF, monocular RGB+P, monochrome stereo, and active
light stereo) with highly accurate ground truth, for evaluating and quanti-
fying the impact of di!erent sensor characteristics on 3D perception.
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3.2 Related Work

3.2.1 Geometry from X

A variety of sensor modalities have been utilized to acquire depth maps. Typically, datasets
consist of a single ground truth sensor used consistently for all acquisitions, and it is assumed
to provide accurate enough data for model training, testing, and validation.

3.2.1.1 Stereo Vision

In stereo vision, initial methodologies [139] primarily utilized a pair of passive cameras and
focused on scenes with piecewise planar objects to facilitate triangulation. These early ap-
proaches laid the groundwork for understanding stereo depth perception but were limited
in handling complex scenes. Complex setups involving industrial robots and structured light
have been employed for more precise ground truth depth in stereo images [1]. Additionally,
robots have been used to annotate keypoints on transparent household objects, as explored
KeyPose [102]. These methods, however, face challenges in textureless areas where stereo
matching is less e!ective. To overcome this, active sensors have been used to project patterns
onto scenes, artificially creating structures and enhancing depth retrieval in these challenging
regions. The advent of active stereo sensors has also enabled the acquisition of real indoor
environments [145]. In such setups, depth data at missing pixels is often inpainted to create
a more complete depth map. Structure from Motion (SfM) techniques have been applied to
generate depth maps, such as in the Sun3D dataset by Xiao et al. [175]. In this approach,
a moving camera captures the scenes, and the data is fused post-capture. Furthermore, a
temporally tracked handheld active sensor has been utilized for depth mapping and SLAM
evaluation, notably in the pioneering dataset by Sturm et al. [152]. Despite advancing the field,
the depth maps in this dataset are limited to the active IR pattern used by the RGB-D sensor.
These methods in the stereo literature reflect the evolution and diversification of techniques
for depth perception, each with its specific applications, advantages, and limitations. They
highlight the ongoing pursuit of more accurate, reliable, and comprehensive depth mapping
solutions in various environments.

3.2.1.2 Time-of-Flight Sensors

Recent advancements in active depth sensing have increasingly focused on Time-of-Flight
(ToF) technology. Early explorations in this area concentrated on simulated data [54], and
experiments in controlled environments with minimal ambient noise [148]. The growing pres-
ence of ToF sensors in commercial products, such as the Microsoft Kinect series and modern
smartphones (including the Indirect Time-of-Flight (I-ToF) in Huawei’s P30 Pro and Direct
Time-of-Flight (D-ToF) in Apple’s iPhone 12), has spurred research aimed at addressing com-
mon sensor-related errors. These challenges include multi-path interference (MPI), motion
artifacts, and issues of sparsity and shot noise, as discussed by Jung et al. [77]. Given the
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prevalence and significance of these ToF modalities in contemporary depth sensing, our ex-
perimental framework encompasses both classical active and passive stereo techniques and
D-ToF and I-ToF technologies. This inclusive approach allows for a comprehensive evaluation
and comparison of these modalities, considering their respective strengths and limitations in
various depth-sensing scenarios. The inclusion of these diverse modalities in our experiments
is crucial for understanding the full spectrum of depth-sensing capabilities and challenges in
real-world applications. It also provides insights into how di!erent technologies can be opti-
mized or combined to improve the accuracy and reliability of depth measurements, particularly
in environments where traditional stereo vision approaches may be less e!ective.

3.2.1.3 Polarimetric Cues

In addition to depth sensing, recent research has explored the use of properties of light to
infer surface characteristics of scenes, especially for the estimation of surface normals. This
is achieved by examining the amount of linearly polarized light and its direction of polariza-
tion. Such techniques are particularly informative for surfaces that are highly reflective or
transparent [82]. Early research in shape-from-polarization primarily focused on controlled
environments [4, 44, 146, 185]. Recent advancements have expanded these methods to more
complex scenarios. For instance, sensor fusion methods [81], and applications in environ-
ments with strong ambient light, as explored by Verdie et al. [161], demonstrate the versatility
and potential of polarization-based techniques. Given these developments, our research also
incorporates the acquisition of RGB+Polarization (RGB+P) data for all scenes. This approach
allows us to capture the traditional color information of the scenes and gather additional data
regarding surface properties through polarization analysis. Integrating RGB+P data enriches
our understanding of the scene’s geometry and material characteristics, o!ering a more com-
prehensive and nuanced view of the environment.

3.2.1.4 Synthetic Renderings

To achieve pixel-perfect ground truth for depthmaps, researchers create synthetic scenes [108].
While this approach yields the most precise depth maps possible, it comes with a drawback —
synthetic scenes lack realism. Consequently, pipelines trained on datasets like Sintel [17] or
SceneFlow [108] face challenges arising from the synthetic-to-real domain gap. In contrast
to this purely synthetic approach, our methodology follows a hybrid path. We capitalize on
pixel-perfect synthetic data generated using modern 3D engines and combine it with highly
accurate 3D models adjusted to real-world captures.

3.2.2 Monocular Depth Estimation

When trained with supervision, deep learning networks have demonstrated the capability
to predict depth from single images. This development in monocular depth estimation was
initially pioneered by Eigen et al. [34], who introduced a two-stage network that predicts
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coarse depth maps and then refines them with a second network. Following this, Laina et
al. [91] enhanced the approach by employing a single CNN composed entirely of convolutional
layers, streamlining the depth estimation process.

However, these supervised methods’ dependence on ground truth depth data for training is
a significant limitation. This requirement often confines the applicability of such methods to
outdoor scenarios with available datasets, such as the one provided by Geiger et al. [48]. To
circumvent the need for real-world ground truth data, some approaches have utilized synthetic
data for training [107]. While e!ective, these methods often face a domain gap when applied
to real-world scenarios, though strategies to narrow this gap have been proposed [54].

MiDaS [128] represents a significant stride in generalizing depth estimation to unknown scenes
by leveraging a diverse dataset that includes data from 3D movies. This approach enhances the
model’s ability to adapt to various environments and scenarios. For predicting high-resolution
depth, many methods incorporate multi-scale features or post-processing techniques [110,
181]. While these strategies can improve depth estimation accuracy, they often complicate
the learning process. Furthermore, if not trained on an extensive and varied dataset, these
methods can exhibit limited generalization capabilities, underscoring the need for large and
diverse datasets to train robust depth estimation models. These developments highlight the
evolution of depth estimation techniques, showcasing the balance between model complexity,
data requirements, and the ability to generalize across di!erent environments and scenarios.

Self-supervised monocular methods have been developed to address the limitations of super-
vised depth estimation methods, particularly the reliance on ground truth depth data. Early
self-supervised approaches [45, 176] utilized stereo images to train a network for depth predic-
tion. In these methods, the left image is warped to match the right image, using photometric
consistency as the training signal. Monodepth by Godard et al. [50] introduced a left-right
consistency loss, enhancing depth estimation by leveraging the mutual warping of stereo image
pairs. While this method showed improved depth quality, it still relied on synchronized stereo
image pairs. Monocular training methods were developed to overcome the dependency on
stereo images. These methods utilize single-camera video frames, employing estimated poses
between frames for image warping. This approach is inherently more challenging but has
seen significant advancements. Monodepth2 by Godard et al. [51] narrowed the accuracy gap
between stereo and monocular training through techniques like automasking and a minimum
reprojection loss. Subsequent research has continued to refine these techniques, with a notable
focus on improving accuracy in various scenarios [22, 92, 127, 128, 150, 180]. Additionally,
studies by Luo et al. [105] and Watson et al. [171], have specifically investigated temporal
consistency in depth estimation.

In ourwork, to assess the impact of di!erent training signals, either supervised or self-supervised,
on monocular depth estimation, we utilize the ResNet backbone from the well established Mon-
odepth2 [51] along with its varied training strategies, as detailed later. This approach allows
us to compare and evaluate the e!ectiveness of these di!erent methodologies in achieving
accurate depth predictions from monocular video sequences.
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3.2.3 Reconstruction and Novel View Synthesis from
Multi-View Consistency

The reconstruction of the 3D geometry of a scene from two-dimensional 2D images, optionally
aided by depth maps [115], is a fundamental task in computer vision and 3D modeling. In this
process, scenes can be represented either explicitly or implicitly. Typical explicit representations
include point clouds ormeshes [26], where the scene is represented as a set of discrete points or
vertices connected to form a mesh. This representation o!ers a direct and detailed depiction of
the scene’s geometry. On the other hand, implicit representations, such as distance fields [187],
describe the scene as a level set of a specified mathematical function. Distance fields provide a
more compact and continuous representation of the scene’s geometry, enabling e"cient storage
and processing. A recent advancement in implicit representation involves neural fields, where
the scene is encoded within the weights of the network [177].

3.2.3.1 Neural Radiance Fields

Neural radiance fields (NeRF), particularly since the seminal work by Mildenhall et al. [111],
have seen significant attention due to their ability to synthesize novel photorealistic views of
scenes. In a typical NeRF setup, a neural network is trained on images with known poses to
represent a scene. This method optimizes for predicting volume density and view-dependent
emitted radiance within a volume. Novel views are synthesized by integrating along query
rays, also for deformable scenes, as demonstrated in NeRFies [118].

Recent advancements in this field have further enhanced the capabilities of NeRF. Barron et
al. [7] extended the original NeRF concept to unbounded scenes with Mip-NeRF 360, which
achieves higher-quality scene representations. Chen et al. [21] introduced TensoRF, which
factors the scene representation into low-rank components, allowing for faster and more e"-
cient usage. There have also been developments in improving pose estimates and calibration
robustness, as explored in BARF [99] and in NeRF [170].

While initial NeRF training was computationally demanding, techniques such as Plenoxels [38],
which leverage spherical harmonics within a voxel grid structure, have accelerated processes.
Additionally, interpolation techniques proposed by Sun et al. [155] have further accelerated
training. Incorporating geometric priors, such as sparse and dense depth maps, can further
regularize convergence, enhance quality, and reduce training time [28, 131]. Moreover, recent
research has focused not only on methodological advancements but also on leveraging real-
world data [130], like constructing a dataset for evaluating novel view synthesis and category-
centric 3D reconstruction methods using crowd-sourced videos of real-world objects.

In our work, we incorporate recent advances in NeRF, particularly analyzing the impact of
sensor-specific depth priors as discussed in Roessle et al. [131], for the task of implicit scene
reconstruction. We utilize the ground truth robotic pose data from our dataset to minimize
the influence of pose estimation errors and ensure highly accurate data. This approach allows
us to explore the full potential of NeRF-based reconstruction methods in producing detailed
and accurate 3D representations of scenes.
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3.3 Accurate Data for Evaluation of Sensor
Characteristics and 3D Vision Tasks

The computer vision community heavily relies on publicly available datasets to evaluate 3D
vision tasks. In depth estimation, early datasets [139] predominantly relied on passive multi-
view stereo cameras. However, these datasets exhibited limitations in textureless regions and
constrained scenarios. In response to these limitations, active sensor configurations, such as
active stereo and pattern projection sensors, were introduced to address these challenges by
introducing artificial patterns and extending their utility to unconstrained scenarios [1, 145,
152, 161].

Nevertheless, it is worth noting that these sensors are not devoid of artifacts, which include
bias, jitter [191], blurriness [79], and the inability to accurately estimate depth on certain
surfaces, often necessitating post-processing with human annotation [145, 151]. Additionally,
Time of Flight (ToF) sensors rely on measuring the time light takes to travel for distance
measurement. However, they can introduce artifacts like phase wrapping [77] for I-ToF, multi-
path interference (MPI) [40, 41, 75], and material-dependent artifacts [79]. Despite the
presence of these artifacts, datasets derived from these sensors are frequently utilized in
research without rigorous evaluation of depth quality.

In the domain of 6D pose estimation, several datasets have been developed for research and
evaluation purposes. Notable among these are commonly used datasets such as LineMOD [59],
YCB [174], and NOCS [166], which provide images with annotated object poses. These anno-
tations are typically obtained using checkerboards, RGB-D cameras, or a combination of both.
However, it is essential to acknowledge that the annotation quality of these datasets has been
reported as inaccurate. This inaccuracy can be attributed to the limitations of checkerboard-
based localization and errors introduced by depth sensors [15, 167].

E!orts have been made to improve the accuracy of pose annotation methods. One such
approach involves utilizing multiview keypoints localized by checkerboards [101, 102]. These
methods have demonstrated a significant enhancement in annotation accuracy compared
to depth-based annotation. Notably, they have even succeeded in annotating objects with
complex photometric properties, such as glasses [102]. However, several limitations in the
acquisition pipeline persist. This pipeline involves scene scanning using a robotic arm, while
object annotation relies on 2D keypoint annotation, resulting in notable annotation errors,
with deviations reported as significant as 3.4mm [102].

We have constructed scenes of multiple objects with various shapes and materials. These
scenes were specifically designed to facilitate an in-depth analysis of sensor characteristics.
We acquired 3D models of objects with complex photometric properties, including reflective
or transparent surfaces, with a priori high-quality capturing and then aligned them with the
scenes. We employ a synchronized multi-modal custom sensor configuration mounted at a
robot end-e!ector to capture images for our analysis. This setup ensures precise measurement
of camera poses [167]. Subsequently, we extract high-quality rendered depth information a
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Fig. 3.2 Scanning Process Overview: We have developed a multi-stage acquisition process to achieve highly
accurate scene geometry. Initially, 3D models are obtained using structured light 3D scanners (a). Subse-
quently, a calibration procedure is carried out to align the scene objects (b) and the mounted sensor rig
(c) with the robotic platform, a process facilitated by the use of the PhoCal calibration framework [167].
The acquisition process continues with recording a motion trajectory in gravity compensation mode (d).
This trajectory is repeated to capture synchronized images from all sensors (e). Utilizing this data, we
create a partial digital twin of the 3D scene (f), which is then aligned with both smaller (g) and larger
(h) objects within the scene. This process generates a complete virtual twin to render views from the
perspective of each sensor employed (i). These rendered views provide highly accurate dense depth
maps, enabling detailed investigations of individual sensor components.

posteriori for the viewpoint of each sensor. An overview of the acquisition pipeline is presented
in Fig. 3.2.

In contrast to prior 3D and depth acquisition setups [20, 27, 151], which typically scan the
entire scene as a whole, thus constraining the quality by the capabilities of the utilized sensor,
our approach adopts a di!erent strategy. We opt to independently scan each object, encom-
passing objects such as chairs, background elements, and smaller household items, using two
high-quality structured light object scanners in advance. This methodology significantly en-
hances the annotation quality for the scenes, with the robotic 3D labeling process exhibiting
only a point RMSE of 0.80 mm [167]. For perspective, as a point of comparison, a Kinect
Azure camera introduces a standard deviation of 17 mm within its working range [101]. This
elevated level of accuracy empowers us to methodically investigate depth errors objectively
that originate from sensor noise and related artifacts, as depicted in Fig. 3.3. Simultaneously,
it resolves prevalent issues related to imperfect meshes often encountered in available datasets
(cf. Fig. 3.1, left).

Fig. 3.3 Data Composition: The comprehensive annotation of the scene with a mesh enables the generation of
exact depth maps from any viewpoint. These depth maps serve as ground truth data, facilitating the
analysis of sensor errors under various scene structures. For example, when considering Time of Flight
(ToF) sensors, it becomes evident that transparent objects like glass (highlighted in yellow) remain
undetectable, and reflective objects (highlighted in cyan) introduce errors due to reflection-induced
e!ects inherent to the measurement principle.
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Fig. 3.4 Data Acquisition Pipeline for Free-hand Camera Rig: (a) Pre-scanning 3Dmodels. (b) Pivot calibration
to measure the tip. (c) Object pose annotation using the measuring tip. (d) Hand-Eye-Calibration for
camera center calibration. (e) Recording of camera trajectory. (f) Post-processing steps to minimize
synchronization errors.

To address the limitations of established datasets in the context of 3D vision tasks, we propose
novel paradigms for acquiring high-quality and multi-modal datasets. Our approach includes
a unique multi-modal sensor rig that incorporates a variety of depth modalities. Leveraging
this advanced setup, we achieve precise surface measurements of objects and comprehensive
annotations for objects and scenes, even in scenarios with challenging photometric conditions.
Our solution introduces a robotic setup to annotate 6D object poses and camera poses. By
harnessing the precision of forward kinematics in the robotic arm, we attain exceptionally
accurate annotations for depth and 6D pose datasets. This approach is illustrated in detail in
Fig. 3.2.

While our robotic setup provides precise annotations, its limitations include a restricted work-
ing range (with a maximum radius of 80cm) and inherent joint limitations. These limitations
can a!ect camera pose distribution within a 6D pose dataset. We introduce a freehand data
acquisition procedure to address these challenges, as illustrated in Fig. 3.4. This procedure
ensures accurate data recording by utilizing an infrared tracking system and subsequent post-
processing techniques. These post-processing steps encompass multiple calibrations and trajec-
tory refinements. Our freehand data acquisition method extends the viewpoint coverage and
enhances the accuracy of object pose annotations compared to existing datasets. Importantly,
it achieves this while maintaining superior overall annotation quality.

Both of our proposed dataset annotation methods, robotic and freehand, adhere to a common
underlying principle for obtaining high-quality 3D data, comprising four key steps:

1. Object or scene scanning.

2. Measurement of 20-30 accurate surface points on objects using a tracked tool tip.

3. Annotation of the object pose achieved through point correspondence followed by Itera-
tive Closest Point (ICP) refinement.

4. Recording the scene using a tracked camera.

While these methods share a common principle, each step necessitates distinct calibration and
post-processing procedures to ensure the overall quality of the acquired data.
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3.3.1 Robotic Approach

In our robotic approach, we employ the KUKA LBR iiwa 7 R800 robot, known for its exceptional
position accuracy of ±0.1 mm. We utilize the EinScan-SP table-top scanner to scan smaller
objects, while larger objects are scanned using the Artec Eva hand-held scanner. To overcome
challenges posed by challenging materials, we apply the AESUB Blue 3D scanning spray prior
to scanning.

3.3.1.1 Object Pose Annotation

After acquiring object meshes, we a"x a measuring tool tip to the robot’s End-E!ector (EE)
and calibrate the tool tip. Subsequently, we carefully capture precise surface points on the
objects using the tool tip. These points are the basis for annotating object poses relative to the
robot’s base, accomplished through point correspondence followed by Iterative Closest Point
(ICP) alignment with the scanned object meshes. The pose error for the object pose annotation
step is quantified as 0.20 mm (RMSE) and 0.38⇔ [167]. The procedure is illustrated in Fig. 3.2
(a)-(e).

In the context of our depth dataset, we extend our annotation e!orts to encompass background
elements such as walls and tables, facilitating the rendering of complete scenes (refer to
Fig. 3.5). Due to the constrained working range of the robot, annotating the background with
the robotic arm is impractical. Consequently, we initiate the process by scanning the scene
using the hand-held scanner to acquire a partial mesh representation. Subsequently, we align
this partially scanned mesh with the objects annotated from the robot’s base. Following this
alignment, we adapt the background meshes to correspond with the robot’s base, ensuring a
coherent scene annotation. The additional background annotation step is outlined in Fig. 3.2
(f)-(i).

3.3.1.2 Camera Pose Annotation

Once all the objects and the background are thoroughly annotated, the scene is captured using
the camera rig. In the robotic approach, the camera rig is attached to the robot end-e!ector
(EE), and we perform hand-eye calibration for each sensor to determine the transformation

Fig. 3.5 Data Quality: A complete 3D reconstruction of the RGB scene (left) enables the generating of exact
depth maps from arbitrary viewpoints. These depth maps serve as ground truth data, facilitating an in-
depth exploration of depth errors associated with di!erent sensors and various scene structures (right).
For instance, owing to the measurement principle, translucent glass objects may become invisible to
Time-of-Flight (ToF) sensors.

52 Chapter 3 Sensor Characteristics and Dense 3D Perception



Fig. 3.6 Hand-Eye-Calibration Robot:We employ a closed-form approach for hand-eye calibration in our robotic
approach.

matrix from the EE. For this purpose, we employ a closed-form solution, as depicted in Fig. 3.6
(a). To obtain the transformation TBB↘RB of the checkerboard via the robotic tip and TCB↘BB

when the checkerboard is detected by camera, the hand-eye calibration TMB↘CB can be cal-
culated through matrix multiplication involving TRB↘EE (derived from forward kinematics),
TBB↘RB, and TCB↘BB. To ensure perfect synchronization between the cameras and the robot
during trajectory capture, we pause the robot on each frame before triggering the cameras.
We obtain an average RMSE of 0.86 mm by accumulating all calibration errors. Considering
object and camera pose annotation, the overall error for the entire pipeline is measured as 0.8
mm, as also observed in [167].

3.3.2 External Tracker Approach

To address the limitation of pose coverage posed by the robotic arm-based annotation, we in-
troduce a free-hand approach for acquiring high-quality datasets with more diverse viewpoints
and scene coverage. In this extended approach, we replace the robotic arm with an external
tracking camera (ARTTRACK2), with an accuracy of 0.67 mm/0.12⇔ in static scenarios and
0.92 mm/0.16⇔ in dynamic cases. Remarkably, this approach yields accuracy comparable to
that achieved through the robot-based annotation. The dataset acquisition pipeline for this
approach is detailed in Fig. 3.4.

3.3.2.1 Object Pose Annotation

In the free-hand approach, object pose annotation follows a procedure similar to the robotic
approach, with a notable distinction being replacing the end-e!ector (EE) with an infrared
(IR) tracking body. This IR tracking body is capable of being tracked by the external tracker.
The process remains consistent with measuring sparse surface points on the object using the
calibrated tip and subsequently conducting point correspondence with ICP for annotating the
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Fig. 3.7 Hand-Eye-Calibration Tracker: We employ a trajectory alignment approach specifically suited for the
external tracker approach for hand-eye calibration. This method enhances robustness by mitigating
errors.

object from the tracker base. The tracker error observed in object annotation averages an
RMSE of 0.32 mm in translation and 0.43⇔ in rotation, a level of accuracy on par with the
robotic annotation method.

3.3.2.2 Camera Pose Annotation

Substituting the end-e!ector (EE) with a tracking body attached to the camera and achieving
high-quality pose annotation introduces two noteworthy challenges. Firstly, the hand-eye
calibration process encounters increased error due to using less precise hardware. Additionally,
the camera trajectory involves more rotations, increasing error propagation. Secondly, the
accuracy of the tracking system exhibits a decline in dynamic scenarios due to synchronization
issues.

To achieve a more robust and error-resistant hand-eye calibration method, we employ a
trajectory-based approach, deviating from the reliance on a closed-form solution (as depicted
in Fig. 3.7, (b)). Initially, we determine the pose of the checkerboard using the calibrated
tooltip, denoted as TBB↘T B. Subsequently, the trajectory of the camera can be accurately local-
ized from the tracker system when the checkerboard is detected (TCB↘BB). This is achieved
through the multiplication of TCB↘BB and TBB↘T B. Given that the camera’s tracking marker
trajectory is already localized from the tracker base (TMB↘T B), aligning the camera trajectory
with the marker trajectory provides the o!set pose, constituting the hand-eye calibration ma-
trix (TMB↘CB). We assess the calibration quality by measuring the pose error between the
aligned trajectories, resulting in a measurement of 0.27 mm for translation accuracy and 0.42⇔

for rotation accuracy.

We initiate a preliminary synchronization of all hardware components through a hardware
signal to ensure accurate camera synchronization. Subsequently, we refine the time o!set by
employing the ICP on the hardware trajectory. The refinement process involves visualizing the
trajectory as a 2D distance graph with time on the x-axis and distance on the y-axis, a method-
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Fig. 3.8 Example of SfM-based Refinement: The refinement process based on Structure-from-Motion (SfM)
e!ectively mitigates subtle errors that may persist during abrupt camera movements.

Fig. 3.9 Qualitative Example of External Tracker-based Annotation: The red box highlights the annotation
on glass objects, while the cyan box highlights the annotation on reflective objects.

ology akin to previous works [33, 68]. The ICP is then utilized to align the trajectory points,
and the time o!set is determined by evaluating the displacement along the x-axis. Despite
these refinements, we have observed minor pose o!sets during abrupt camera movements (as
depicted in Fig. 3.8 (a)). To address this challenge, we employ refinement techniques based
on Structure-from-Motion (SfM) principles [140, 141]. This SfM-based refinement enhances
the camera trajectory by incorporating hand-selected fixed poses from a subset of frames. The
results of this refinement are particularly notable during sudden movements, as illustrated in
Fig. 3.8 (b). Quantifying the direct improvement brought about by SfM is a complex task.
Therefore, we evaluate camera pose errors using upper and lower bounds. The upper bound
takes into account dynamic errors introduced by the tracking system. The lower bound assumes
that dynamic errors have been resolved and utilizes tracking errors from static scenarios. To
evaluate the quality of our annotation, we propagate the pose annotation error in conjunction
with the camera pose error. Our assessment yields an annotation quality range from 1.35 mm
to 1.73 mm in terms of RMSE. Fig. 3.9 provides a qualitative evaluation using object mask
rendering, particularly emphasizing the photometrically challenging objects.

3.3.3 Sensor Setup & Hardware Description

The two 3D scanners used in our dataset acquisition serve distinct purposes. The table-top
scanner, EinScan-SP, by SHINING 3D Tech. Co., Ltd., Hangzhou, China, is equipped with a
rotating table primarily designed to scan small objects. In contrast, the hand-held scanner,
Artec Eva by Artec 3D, Luxembourg, is employed for larger objects and background scanning.
For objects and surfaces with challenging materials, we apply a self-vanishing 3D scanning
spray (AESUB Blue). In cases where larger, texture-less areas like tables and walls are encoun-
tered, small markers [46] are temporarily a"xed to the surface. These markers enable the
relocalization of the 3D scanner during scanning sessions. The robotic manipulator utilized
in our setup is the KUKA LBR iiwa 7 R800, manufactured by KUKA Roboter GmbH, Germany.
It achieves a position accuracy of ±0.1 mm. We rigorously validated this accuracy during
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Fig. 3.10 Multi-Modal Camera Rig: The custom multi-modal sensor rig incorporates a range of depth sensors,
including I-ToF (top left), Stereo (lower left), D-ToF (lower right), and RGB-P (Polarization, top right).
This rig is securely a"xed to a robot end-e!ector (top), with a Raspberry Pi (right) serving as the trigger
mechanism for acquisition.

the pivot calibration stage by calculating the 3D location of the tool tip, leveraging forward
kinematics and hand-tip calibration. This validation process revealed positional variations
within the range of [↓0.158,0.125] mm, aligning with the specified accuracy. Our dataset is
distinguished by a unique multi-modal setup comprising four di!erent cameras, each providing
distinct types of input images, namely RGB, polarization, stereo, Indirect Time of Flight (I-ToF)
correlation and depth, Direct Time of Flight (D-ToF) depth, and Active Stereo depth. RGB and
polarization images are acquired with a Phoenix 5.0 MP Polarization camera (PHX050S1-QC)
equipped with a Sony Polarsens sensor (IMX264MYR CMOS, Sony, Japan). For stereo image
acquisition, we employ an Intel RealSense D435 camera from Intel, USA, with the infrared
projector disabled. Depth information is acquired from an Intel RealSense L515 D-ToF sensor,
an Intel RealSense D435 active stereo sensor with infrared pattern projection, and a Lucid
Helios (HLS003S-001) I-ToF sensor by LUCID Vision Labs, Canada. Each camera is triggered
separately by a Raspberry Pi to eliminate interference e!ects arising from the infrared signals
of the depth sensors. For the robotic approach, the hardware is rigidly mounted at the robot’s
end-e!ector (refer to Fig. 3.10), allowing precise frame-by-frame synchronization to acquire
a pre-recorded trajectory.

3.3.3.1 Polarization Camera

Figure 3.11 displays sample images from the polarization camera. The polarization camera
captures images with varying polarization angles, enabling the extraction of surface normals
based on the physical material properties of objects in the scene. The polarization camera
used in our dataset provides polarized images at four di!erent angles (0, 90, 180, and 270
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Fig. 3.11 Polarization Image Example: Examples showcasing the images included for the polarization camera
input (top), complemented by an instance label map and depth measurements from the other sensors
accurately transformed to polarization reference frame.

degrees), which are arranged in a single 2x2 image (Figure 3.11, (a)). A regular RGB image
is generated by averaging these four images (Figure 3.11, (b)).

We have included warped depth images from each depth camera into the polarization camera’s
coordinates to showcase the results of depth maps from di!erent sensors. This transformation
is achieved using the extrinsic parameters between the cameras (Figures 3.11, (d-g)). Addi-
tionally, we provide supplementary information, including an instance map (Figure 3.11, (c)),
and 6D object poses to support the training and validation of pipelines for other tasks. We also
include precise 6D camera pose information in the form of 4x4 matrices obtained from the
robotic arm, extrinsic transformations between cameras as 4x4 matrices, and camera intrinsics
as a 3x3 matrix.

3.3.3.2 D-ToF Camera

The Direct ToF (D-ToF) camera operates by emitting an infrared signal and measuring the
return time of the signal, providing depth information of its surroundings. Signal reflections in-
fluence the quality of this modality. It can be susceptible to specific physical noise sources, such

Fig. 3.12 D-ToF Example: Example of the images provided for the D-ToF camera: its depth map (left), corre-
sponding ground truth depth (center), and an object instance label map (right).
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as Multi-Path Interference (MPI) and material-dependent artifacts (cf. Fig. 3.15 as detailed
later). In our dataset, we o!er both the depth map captured by the D-ToF camera (Fig. 3.12,
(a)) and its corresponding ground truth depth map (Fig. 3.12, (b)). This allows for research
into D-ToF refinement techniques aimed at reducing such errors.

3.3.3.3 I-ToF Camera

Indirect ToF (I-ToF) cameras perceive depth information of their surroundings by emitting a
frequency-modulated signal and measuring the returning signal. Unlike Direct ToF (D-ToF),
I-ToF cameras do not determine depth based on time di!erences; instead, they correlate the
returning signal with phase-shifted emitting signals, resulting in four distinct measurements
known as correlation images. These correlations are represented as sinusoidal functions of dis-
tance ((sin(d), cos(d),↓ sin(d),↓ cos(d)) =

*
c1, c2, c3, c4

+
in Fig. 3.13, (a)). Depth information

can be extracted from the correlation images using the arctangent formula or convolutional
neural networks.

Similar to D-ToF, the I-ToFmodality relies on signal reflections, making it susceptible to artifacts
such as Multi-Path Interference (MPI) and material-dependent e!ects (compare qualitative
results in test scenes in Figs. 3.22, 3.23, and 3.24). In our dataset, we provide raw correlation
images and the depth map captured by the I-ToF camera (see Fig. 3.13, (a, b)), along with
their corresponding ground truth depth map (Fig. 3.13, (c)). This enables researchers to train
depth improvement pipelines for I-ToF, either from raw signals or starting with the initial I-ToF
depth data.

Fig. 3.13 I-ToF Example: Example of the images provided for the I-ToF camera, including raw correlation images,
the computed depth map, depth ground truth, and an object instance label map.
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Fig. 3.14 Active Stereo Example: Example of the images provided for the Active Stereo camera, comprising
left and right images (with/without projection), the computed depth map, depth ground truth and an
instance map.

3.3.3.4 Active Stereo Camera

Stereo depth estimation relies on photometric consistency and geometrical constraints derived
from epipolar geometry to triangulate depth maps from disparities between left and right
cameras. While stereo depth estimation methods are less sensitive to specific materials, they
face challenges related to stereo occlusion and large texture-less regions. Active projection,
such as Active Stereo, is employed to mitigate these issues.

In our dataset, we provide both active and passive stereo left/right images (Fig. 3.14, (a), (b)),
as well as raw depth data from the camera (active, Fig. 3.14, (c)), and their corresponding
ground truth depth maps (Fig. 3.14, (d)). This comprehensive data enables researchers
to enhance stereo methods, whether focused on passive or active stereo, as well as depth
refinement pipelines.

3.4 Learning 3D Perception in Multi-View
Conditions

Due to its unique characteristics, our dataset enables comprehensive and thorough analysis of
various depth sensor modalities. It also o!ers a detailed quantitative assessment of learning-
based dense scene regression techniques when trained with diverse supervision signals and
for 6D object pose estimation. Our primary focus revolves around two widely recognized
tasks to better understand and study the characteristics of the individual sensors: monocular
depth estimation and implicit 3D reconstruction, with a particular emphasis on novel view
synthesis.
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3.4.1 Depth Estimation

We adopt the widely used architecture introduced in [51] to train monocular depth estimation
models. Our approach involves training an encoder-decoder network incorporating a ResNet18
encoder and skip connections to predict dense depth maps. Using di!erent supervision signals
from various depth modalities allows us to investigate the influence and characteristics of
di!erent 3D sensors. Additionally, we explore the potential of leveraging complementary
semi-supervision, using information for the relative pose between monocular acquisitions and
consecutive image data from a moving camera.

Dense Supervision In the fully supervised configuration, we utilize depth modalities from
the dataset as supervision signals to guide the prediction of the four pyramid-level outputs.
These predictions are upsampled to match the original input resolution. The loss function for
this setup is defined as:

⇐supervised =
4∑

i=1

''/Di ↓ D
''

1 . (3.1)

Here, D represents the supervision signal corresponding to valid pixels of the depth map, and
/Di signifies the predicted depth at the i-th pyramid scale.

Self-Supervision Predicting depth and relative pose between consecutive frames captured
by a moving camera can be viewed as a coupled optimization problem. We adopt established
methods that formulate a dense image reconstruction loss through projective geometric warp-
ing [51]. In this process, we projectively transform a temporal image It ⇑ at time t ⇑ to the frame
at time t using the following equation:

It ⇑↘t = It ⇑

proj(Dt , Tt↘t ⇑ , K)


, (3.2)

where Dt represents the predicted depth for frame t, Tt↘t ⇑ is the relative camera pose, and K
denotes the camera intrinsics. The photometric reconstruction error [51, 132, 171] between
images Ix and I y , given by:

Epe(Ix , I y) = ϖ
1↓SSIM(Ix ,I y )

2 + (1↓ϖ)
''Ix ↓ I y

''
1 , (3.3)

is computed between the target frame It and each source frame Is with s ⇒ S. The pixel-wise
minimum error is selected to define ⇐photo over S = [t ↓ F, t + F] as:

⇐photo =min
s⇒S

Epe(It , Is↘t). (3.4)

Edge-aware smoothness, denoted as ⇐s, is applied [51] to encourage locally smooth depth
estimations, with the mean-normalized inverse depth dt defined as:

⇐s =
(((ϱx dt

((( e↓|ϱx It | +
(((ϱy dt

((( e↓|ϱy It |. (3.5)
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The final training loss for the self-supervised setup is composed of both photometric loss (⇐photo)
and edge-aware smoothness loss (⇐s), weighted by ϑs:

⇐self-supervised =⇐photo +ϑs ·⇐s. (3.6)

Semi-Supervision In the case of semi-supervised training, we utilize the ground truth relative
camera pose. The predicted depth estimate is employed to formulate the photometric image
reconstruction loss, and we also incorporate the smoothness loss as previously described.

Implementation Details For all our depth estimation experiments, we utilize the PyTorch
framework [120] and conduct training for 20 epochs to ensure comparability across exper-
iments. We employ the Adam optimizer [85] for optimization. Monocular approaches are
trained using a batch size of 12 on a single NVIDIA RTX-3090 GPU. We set ϑs to 10↓3 and
sample S with T = 10 frames o!set due to the small relative camera movement between frames
and the high frame rate. The RGB inputs are resized to dimensions of 480→320 for supervised
training and 320→ 160 for self-supervised training, respectively. The depth network produces
dense depth predictions across four pyramid levels, each with half the resolution of the previ-
ous level. The pose network and augmentations are consistent with the methodology outlined
in [51]. We initiate training with an initial learning rate of 1→ 10↓4 for 15 epochs, which is
then reduced to 1→10↓5 after 15 epochs in the self-supervised setting. For the supervised case,
we begin with a learning rate of 1→ 10↓3, and every five epochs, we decrease it by a factor of
ten.

3.4.2 Implicit 3D Reconstruction

Recent advancements in implicit 3D scene reconstruction have introduced neural radiance
fields (NeRF) [111]. This technique excels in novel view synthesis, allowing the rendering
of scene geometry or RGB views from unobserved viewpoints. Introducing additional depth
supervision regularizes the problem, reducing the required number of views and improving
training e"ciency [28, 131].

Following the motivation of Roessle et al. [131], we utilize various depth modalities as addi-
tional depth supervision for novel view synthesis. Consistent with NeRF literature [111, 131],
we employ an MLP Fϕ to encode the radiance field for a scene, predicting color C= [r, g, b] and
volume density ω for a 3D position x ⇒ R3 and viewing direction d ⇒ S2. We apply positional
encoding as introduced in [131]. For each pixel, we sample a ray r(t) = o+ td originating from
the camera’s origin o. This ray travels through the volume at locations tk ⇒ [tn, t f ] between
the near and far planes. By querying Fϕ , we obtain color and density information:

Ĉ(r) =
K∑

k=1

wkck with wk = Tk (1↓ exp(↓ωkδk)) , (3.7)
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Tk = exp


↓

k∑

k⇑=1

ωk⇑δk⇑


and δk = tk+1 ↓ tk. (3.8)

The NeRF depth ẑ(r) is computed by:

ẑ(r) =
K∑

k=1

wk tk, (3.9)

and the depth regularization for an image with rays ↖ is:

⇐D =
∑

r⇒↖

|ẑ(r)↓ z(r)|
ẑ(r) + z(r)

, (3.10)

where z(r) is the depth of the sensor. Using the mean squared error (MSE) loss:

⇐color =MSE(Ĉ,C) (3.11)

for synthesized colors, the final training loss is:

⇐NeRF =⇐color +ϑD ·⇐D. (3.12)

Implementation Details We adhere to the NeRF framework of Mildenhall et al. [111] and
extend upon the approach presented in [131], omitting a depth completion network. Instead,
we utilize the depth information from the respective sensors and apply a scale-invariant depth
loss ⇐D. Our image resolutions are set to 640 → 480, and we process batches of 1024 rays.
We configure ϑD as 0.1 and the learning rate as 5→ 10↓4. The optimization process runs for
100,000 iterations using the Adam optimizer [85].

3.5 Experimental Results

3.5.1 Error Analysis of Di!erent Sensor Modalities

This section focuses on analyzing specific errors associated with di!erent depth sensor modal-
ities. Our objective is to highlight how the quality of depth information is a!ected when
a particular modality is used as ground truth for training or evaluation. Additionally, we
emphasize the advantages of employing our rendered depth as the ground truth for various
applications.

3.5.1.1 D-ToF Camera

The D-ToF modality exhibits issues related to its reflection-based nature, including Multi-Path
Interference (MPI) and material-dependent artifacts. When the angle of the surface normal
of the scene closely aligns with the incident angle of the infrared signal, the reflected signal’s

62 Chapter 3 Sensor Characteristics and Dense 3D Perception



strength weakens due to scattering e!ects (Fig. 3.15, (a), blue arrow). Meanwhile, multiple
scattered signals from other surfaces, which have a longer travel distance, are received with
stronger signals (Fig. 3.15, (a), red arrow) and interfere with the original signal, resulting in
MPI. This produces incorrect depth measurements in areas with greater distance, which may
appear as reflections or shadows of the object on the surface (Fig. 3.15, (b), red marker). This
e!ect can be intensified when the surface material is reflective, as it reflects even weaker and
noisier signals with less attenuation (Fig. 3.15, (a,b), yellow arrow and marker). Conversely,
when the surface material is transparent, the emitted infrared signal tends to pass through
the object in both directions (Fig. 3.15, (a), green arrow), e!ectively ignoring the object
and causing the sensor to produce depth values similar to the background (Fig. 3.15, (b),
green marker - material-dependent artifact). The quality of the depth map may degrade
slightly around certain boundaries after warping it into the RGB frame (Fig. 3.16, (b), red).
However, the invalid regions can be advantageous in invalidating more areas with incorrect
depth, especially on reflective objects (Fig. 3.16, (b), green), which can be beneficial when
used in training.

Fig. 3.15 D-ToF Analysis: In-depth analysis of ray paths illustrating the impact of MPI and surface material-
induced errors on the D-ToF modality. While D-ToF provides dense and sharp depth information, its
quality is significantly influenced by surface material properties and incident angles.

Fig. 3.16 D-ToF Analysis after Alignment: Error introduced after projectively transforming the D-ToF depth map
into the RGB view. Minor errors are noticeable along some edges (highlighted in red), but the expansion
of the invalid area contributes to the proper invalidation of depth values on reflective objects (highlighted
in green).
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3.5.1.2 I-ToF Camera

The I-ToF modality faces similar challenges to the D-ToF modality, such as Multi-Path Interfer-
ence (MPI) and material-dependent artifacts (Fig. 3.17). While the quality of the depth itself
may appear to be better, with denser depth maps (less invalid regions) and fewer artifacts, it
is essential to note that I-ToF and D-ToF cameras belong to di!erent price ranges and power
levels. Comparing them directly can be challenging, and their suitability depends on specific
application requirements. Unlike the D-ToF case, having fewer invalid areas but instead having
areas with incorrect depth does not help invalidate depth information (Fig. 3.18). This dif-
ference can potentially lead to artifacts in predictions when using I-ToF data as ground truth
during training.

Fig. 3.17 I-ToF Analysis: Depth quality from the I-ToF camera. The I-ToF modality exhibits similar artifacts to
the D-ToF, but the depth map itself is denser and experiences fewer MPI artifacts on the table surface.

Fig. 3.18 I-ToF Analysis after Alignment: Error after projectively transforming the I-ToF depth map into the RGB
view. Unlike D-ToF, most of the depth errors remain without being invalidated, which could potentially
introduce more errors when used as ground truth during training.
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Fig. 3.19 Active Stereo Analysis: Depth quality from the Active Stereo camera. Although the depth map is less
a!ected by challenging materials, its overall quality falls behind both ToF modalities in various aspects,
including sharpness, variance, and sparsity.

Fig. 3.20 Active Stereo Analysis after Alignment: Error after projectively transforming Active Stereo into RGB
view. It is worth noting that there is not a significant change in the depth quality after the warping
process.

3.5.1.3 Active Stereo Camera

The stereo camera, which relies on left and right matching with photometric cues, tends to
produce depth maps less a!ected by challenging materials. This is because the stereo system
can use the visible projections of the active patter projector on the surfaces and perform
left-right consistency checks to invalidate regions with incorrect depth. As a result, the depth
estimation for materials like glass or reflective surfaces is significantly more accurate compared
to either of the ToF modalities (Fig. 3.19, green arrow).

However, the stereo camera has its limitations. For scenes that are further away, the quality
of the depth map tends to degrade (Fig. 3.19, red arrow). This degradation occurs because
the projection pattern becomes attenuated and spread out in the far distance. Additionally,
the depth map from the stereo camera can be more blurry, jittery, sparse, and may contain
incorrect values in some regions without being invalidated (Fig. 3.19, orange arrow). When
used as ground truth, these issues can introduce negative influences, such as blurriness and
depth jittering. However, the errors introduced by warping are relatively minor (Fig. 3.20)
because the original depth map from the stereo camera is already blurry and sparse.
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3.5.2 Sensor Impact for Dense 3D Vision Tasks

We train a set of neural networks for monocular depth estimation and implicit scene recon-
struction tasks.

3.5.3 Depth Estimation

The results for monocular depth estimation with varying training signals are summarized in
Table 3.1 and visualized in Fig. 3.21. We present average results for entire scenes as well
as separate performance evaluations for background, objects, and materials with di!erent
photometric complexities.

The observed errors vary across di!erent scenes and are influenced by the photometric complex-
ity of the scene components. It is noteworthy that depth estimation with ToF training is mainly
a!ected by reflective and transparent object materials, where the active stereo camera can
project patterns onto di!usely reflective surfaces. Both self-supervised and semi-supervised
setups can recover information in these challenging scenarios. In these cases, they even out-
perform ToF supervision for photometrically complex objects. On the other hand, simpler
structures like the background benefit from ToF supervision. These findings suggest that
sensor-specific noise is learned by the models, emphasizing the importance of critically ana-
lyzing systematic errors in learning approaches. It also highlights that using 3D devices for
ground truth evaluation can lead to incorrect result interpretations, especially when evalu-
ating self-supervised approaches against co-modality sensor data. Furthermore, the results
reveal that accurately predicting inter-frame poses in self-supervised indoor setups can be
challenging, and precise pose labels can significantly impact depth estimation results (Pose vs.
M).

In Table 3.2, we present an extensive quantitative evaluation of supervised training with
di!erent depth modalities as supervision signals for di!erent challenging and unseen test

Tab. 3.1 Depth Prediction Results for Di!erent Training Signals: Top: Dense depth supervision from di!erent
depth modalities. Bottom: Assessment of training with semi-supervised (pose GT) and self-supervised
(mono M and mono+stereo M+S) approaches. The evaluation considers the entire scene (Full), back-
ground (BG), and objects (Obj) separately. Object materials are further categorized into textured,
reflective, and transparent. The best and 2nd best RMSE values in millimeters (mm) are highlighted.

Training Signal Full BG Obj Text. Refl. Transp.

Su
p.

I-ToF 113.29 111.13 119.72 54.45 87.84 207.89

D-ToF 77.97 69.87 112.83 37.88 71.59 207.85

Active Stereo 72.20 71.94 61.13 50.90 52.43 87.24

Se
l/
Se

m Pose 154.87 158.67 65.42 57.22 37.78 61.86

M 180.34 183.65 85.51 84.26 48.80 49.62

M+S 159.80 161.65 82.16 71.24 63.92 66.48
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Fig. 3.21 Fully Supervised Monocular Depth Analysis: Monocular depth estimation models often exhibit over-
fitting to the unique noise characteristics of the training sensor. Predictions derived from Active Stereo
demonstrate robustness regardless of the material but result in somewhat blurred depth maps. Con-
versely, both Indirect Time-of-Flight (I-ToF) and Direct Time-of-Flight (D-ToF) models show pronounced
material-dependent artifacts but maintain better sharpness along edges.

scenes. These test scenes assess the generalization capability of the trained models to unseen
scenarios. We provide an overview of the test scenes and their characteristics:

Test Scene 1: This scene shares similarities with the training scenes in terms of its background
but introduces additional unseen objects. Moreover, it is observed from viewing angles that
are significantly di!erent from the training data.

Test Scene 2: In contrast, this scene’s background is only partially observed in the training
data and primarily includes unseen objects.

Test Scene 3: Test Scene 3 is similar to Test Scene 2 but features a modified object layout and
challenging lighting conditions due to an additional bright light source above the scene.

Additionally, we introduce an extra test set comprising (partly) seen scenes, consisting of the
first 10 frames of each training sequence. These frames have not been utilized during the
training process. For the evaluation, we first assess the depth predictions against the rendered
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Tab. 3.2 Comparison of Depth Predictions: We assess the performance of depth predictions when trained
on various modalities and tested on both unseen (Test 1-3) and familiar scenes (Test Seen). (Top)
Evaluation against ground truth depth predictions on the test set with dense supervision from di!erent
depth modalities. (Bottom) Predictions assessed on the respective modality. Errors are reported as
Squared Relative Error (Sq.Rel.) and Root Mean Square Error (RMSE) in millimeters (mm).

Mask Full Scene Background All Objects Textured Reflective Transparent

Metric Sq.Rel. RMSE Sq.Rel. RMSE Sq.Rel. RMSE Sq.Rel. RMSE Sq.Rel. RMSE Sq.Rel. RMSE

Test1

I-ToF 24.78 148.09 22.25 151.07 29.62 123.19 16.47 99.08 102.79 214.60 44.29 134.44

D-ToF 24.23 151.72 23.74 159.28 22.85 110.88 16.22 101.12 57.14 148.61 30.23 107.23

AS 32.15 173.72 33.84 184.16 22.23 116.57 19.55 114.07 64.27 167.71 12.92 69.49

Test2

I-ToF 27.42 123.79 22.66 116.86 39.85 139.67 48.66 144.92 16.15 99.44 25.15 122.25

D-ToF 23.00 115.40 21.18 113.27 27.89 119.59 30.00 112.92 15.81 90.89 23.73 117.72

AS 25.94 124.17 25.50 126.28 27.18 117.04 32.81 121.24 16.40 101.86 15.73 95.27

Test3

I-ToF 36.82 152.51 35.92 153.26 38.75 147.14 34.09 127.51 20.21 110.85 55.09 183.14

D-ToF 32.99 145.50 35.64 153.07 25.90 120.35 19.92 96.01 21.59 105.41 37.26 149.66

AS 31.63 141.77 35.24 151.37 22.44 110.42 23.47 106.63 14.49 94.51 21.21 109.53

T.
Seen

I-ToF 9.87 77.99 4.62 57.10 33.91 133.46 6.18 60.48 35.65 119.76 91.30 224.27

D-ToF 15.43 93.31 11.62 79.89 31.12 123.97 4.40 51.91 17.42 82.29 89.19 212.55

AS 9.43 88.30 9.28 88.24 9.11 75.21 6.32 65.54 12.98 65.73 16.62 98.75

Tested on Modality:

TestSeen

I-ToF 8.34 52.29 8.57 50.00 7.01 58.85 3.80 43.44 23.28 95.38 13.69 65.41

D-ToF 8.05 50.43 6.82 45.50 13.52 66.34 9.00 54.15 30.91 87.71 27.92 87.32

AS 39.25 101.76 40.87 102.29 30.32 90.00 32.24 90.49 23.36 72.21 37.25 101.23

GT 1.12 28.81 0.71 24.41 2.65 40.41 1.83 34.89 2.16 29.55 5.02 52.43

ground truth (Top) and then separately evaluate the predictions using each respective modality
(Bottom). This approach helps highlight potential issues related to overfitting to invalid ground
truth from individual modalities. Our results reveal that supervision with accurately rendered
ground truth yields the best generalization performance for (mostly) unknown scenes. Notably,
the active stereo approach produces accurate predictions for transparent objects and performs
well with reflective surfaces. In contrast, predictions from I-ToF and D-ToF modalities su!er
from incorrect ground truth values for such objects.

In our evaluation, we observe that the (partly) seen scenes generally exhibit lower overall
errors across all modalities when compared to the (mostly) unseen test scenes 1, 2, and 3.
This suggests that prior exposure to certain scene elements can aid in depth estimation.

Once again, the active stereo approach demonstrates its ability to provide reliable depth su-
pervision for reflective and transparent objects, areas where ToF sensors struggle to provide
valid depth information. However, it is worth noting that the active stereo system performs
less e!ectively when predicting the background of the scene. This performance decline may be
due to the challenges posed by textureless walls, which remain problematic for the sensor.

When evaluating predictions on the respective modalities themselves, we encounter an overfit-
ting issue stemming from incorrect depth values provided by the sensors. Specifically, in cases
where a particular sensor fails to provide accurate depth values (e.g., transparent objects for

68 Chapter 3 Sensor Characteristics and Dense 3D Perception



Fig. 3.22 Qualitative Evaluation on Test Scene 1: This figure presents a qualitative comparison involving
various depth modalities. It showcases the network’s depth predictions trained under the supervision of
each modality, accompanied by a visual representation of the corresponding errors for a comprehensive
evaluation.

I-ToF or reflective objects for D-ToF), we observe significantly lower errors. This phenomenon
suggests that the models tend to overfit to the characteristics of the specific sensor modality.

Figs. 3.22, 3.23, and 3.24 present predictions on exemplary frames from test scenes 1, 2, and
3, respectively. These figures include various sensor modalities and error plots that compare
the predictions against the ground truth. Training with rendered ground truth generally leads
to the best performance. Both ToF sensors exhibit incorrect depth values for reflective or
transparent objects, resulting in inaccurate predictions within these regions (see Fig. 3.22).

In the case of training with active stereo as supervision, the predictions tend to appear blur-
rier and exhibit less distinct edges at depth boundaries when compared to other modalities.
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Fig. 3.23 Qualitative Evaluation on Test Scene 2: This figure presents a qualitative comparison involving
various depth modalities. It showcases the network’s depth predictions trained under the supervision of
each modality, accompanied by a visual representation of the corresponding errors for a comprehensive
evaluation.

This phenomenon may arise from the sensors’ invalidation of many depth pixels near such
boundaries (see Fig. 3.23).

Test scene 3, with its challenging conditions such as bright lighting and numerous unseen ob-
jects, is di"cult to predict for all training setups (see Fig. 3.24). Similar artifacts, as described
previously, are observed. Additionally, the unseen trophy object, which features reflective and
transparent materials, exhibits substantial errors in sensor inputs and predictions. The desk
surface is also inaccurately captured by the D-ToF sensor due to significant reflections and MPI
originating from the background.
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Fig. 3.24 Qualitative Evaluation on Test Scene 3: This figure presents a qualitative comparison involving
various depth modalities. It showcases the network’s depth predictions trained under the supervision of
each modality, accompanied by a visual representation of the corresponding errors for a comprehensive
evaluation.

3.5.4 Implicit 3D Reconstruction & View Synthesis

Our implicit 3D reconstruction method generates novel views for depth, surface normals, and
RGB, each with varying levels of quality. When trained solely on color information, the NeRF
model produces RGB views that are visually convincing and achieve the highest PSNR (cf.
Fig. 3.25 and Tab. 3.3). However, the reconstruction of the 3D scene geometry is suboptimal.
Consistent with existing literature [28, 131], depth regularization improves the reconstruction
quality, particularly in texture-less regions.
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Fig. 3.25 Implicit Scene Reconstruction with Neural Radiance Field (NeRF): The results depict the synthesis
for depth, surface normals, and RGB images for an unseen view. These synthesized images are presented
alongside prediction error visualizations. The columns enable a comparison of di!erent training methods:
the first column illustrates a NeRF [111] trained solely on RGB data, and the other columns shows
results when various depth maps are used for regularization, as proposed in [131], and the last column
demonstrates synthesized results from training with ground truth (GT) depth for comparison. Notable
di!erences are visible, particularly in regions such as the partly reflective table edges, the translucent
bottle, and around depth discontinuities.

The application of regularization using di!erent depth modalities reveals the inherent sensor
noise in I-ToF, Active Stereo (AS), and D-ToF depth data. While RMSE values show a similar
trend to themonocular depth prediction results, with AS performing the best, followed by D-ToF
and I-ToF, the cosine similaritymetrics for surface normal estimates also confirm this trend. The
overall depth and normal reconstructions obtained from AS data appear pretty noisy. However,
the depth error metrics are more sensitive to significant errors in estimating depth, especially
in the case of reflective and translucent objects. Previous artifacts from the respective depth
sensors can influence the NeRF model and result in incorrect scene reconstructions. These
include errors caused by D-ToF and I-ToF for translucent materials, noisy backgrounds, and

Tab. 3.3 Evaluation of Novel View Synthesis from Implicit 3D Reconstruction: Comparison of RGB, depth, and
surface normal estimates using various optimization strategies. These strategies include training with
RGB-only supervision and incorporating respective sensor depth information. The results are evaluated
against ground truth, with the best, 2nd best, and 3rd best performance indicated. Depth metrics are
reported in millimeters (mm).

RGB Depth Normal

Modality PSNR ↙ SSIM ↙ Abs.Rel.∝ Sq.Rel.∝ RMSE ∝ ω < 1.25 ↙ Cos.Sim.∝
RGB Only 32.406 0.889 0.328 111.229 226.187 0.631 0.084

+ AS 17.570 0.656 0.113 16.050 94.520 0.853 0.071

+ I-ToF 18.042 0.653 0.296 91.426 217.334 0.520 0.102

+ D-ToF 31.812 0.888 0.112 24.988 119.455 0.882 0.031

+ Syn. 32.082 0.894 0.001 0.049 3.520 1.000 0.001
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inaccurate depth discontinuities at object edges for AS data. Interestingly, leveraging D-ToF
data as a depth prior can improve the overall scene reconstruction in most parts of the scene
but falls short for the bottle object, where AS provides better depth priors. This di!erence is
also evident in the synthesized depth maps. Many of these issues are mitigated when utilizing
synthetic depth ground truth (as shown in the last row), resulting in improved view synthesis
quality, as indicated by higher SSIM values.

3.6 Conclusion

We introduced an innovative annotation and data acquisition pipeline that significantly en-
hances the precision and realism of 3D vision datasets. This approach involves the integration
of robotic forward-kinematics or external infrared trackers, along with improved calibration
and annotation techniques, resulting in valuable tools for dataset generation. Incorporating
external infrared trackers is especially noteworthy as it expands the coverage of camera poses
and viewpoints. This improvement addresses limitations observed in existing datasets, elim-
inating the requirement for checkerboards or reference objects to be present in the scene.
These principles hold significant promise, particularly when creating datasets that involve
objects with high photometric complexity, such as those made of glass, reflective materials, or
textureless surfaces (as illustrated in Figs. 3.3 and 3.9).

This detailed analysis of sensor artifacts and the findings of 3D vision tasks trained on the data
underscore the importance of questioning and thoroughly investigating commonly used 3D
sensors to gain a deeper understanding of their impact. For the first time, we have created a
framework that enables the systematic study of how sensor characteristics influence the learn-
ing process in these domains, providing objective insights into their e!ects. We have quantified
the impact of various photometric challenges, such as translucency and reflectivity, on tasks
like depth estimation, reconstruction, and novel view synthesis. We have also introduced a
unique dataset that serves as a valuable resource to stimulate further research in this and other
directions. While it may not surprise that sensor noise a!ects these tasks, our dataset allows
for the first quantification of this impact. Notably, we have observed that D-ToF supervision
outperforms AS by a significant margin (13.02 mm) for textured objects, while AS, in turn,
surpasses I-ToF by 3.55 mm RMSE (as shown in Table 3.1). This trend holds even for mostly
texture-less backgrounds, where D-ToF exhibits a 37% higher accuracy than I-ToF.

In addition to our investigations and the evaluation of sensor signals for standard 3D vision
tasks, our dataset has the potential to open up new avenues for exploring cross-modal fusion
pipelines. Specifically for the detailed and robust 3D understanding of scenes with multiple
objects, such data is invaluable for 6D object pose estimation methods.
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Part IV

Polarization Properties for 6D Object Pose

Estimation

How can we integrate the physical properties of polarized light into a learning pipeline
for robust 3D perception tasks like 6D object pose estimation?

Can we avoid the need for annotated real data - potentially by leveraging polarization
for self-supervision?
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„“fiat lux”

– "let there be light"
1. Book of Moses

4.1 Introduction

Besides estimating the pixel-wise depth of a scene, 3D perception also includes accurately de-
termining the position and orientation of specific objects within the scene, known as 6D object
pose estimation, which is essential for applications ranging from AR/VR to robotics. Current
methods usually rely on RGB-only or RGB-D data, which often struggle with photometrically
challenging objects such as those with reflective, transparent, or textureless surfaces due to
artifacts in the depth information, as discussed in the previous chapter.

To address these challenges, we propose the integration of polarimetric imaging as a novel
modality in 6D object pose estimation. Polarimetric images capture the polarization state of
light, which encodes robust surface and shape information. This multi-modal approach can
benefit this task, especially when considering photometrically challenging objects.

4.1.1 Motivation

Current RGB-D and RGB-only 6D object pose estimation techniques show limited accuracy
and robustness when confronted with photometrically challenging objects. RGB-D methods
utilize depth information and often struggle with such objects due to transparent or reflective
surfaces. While avoiding some of these issues, RGB-only methods typically have di"culties in
accurately estimating the pose of textureless objects. We aim to overcome these challenges
by exploring a novel approach that leverages polarization images and robust physical cues,
thereby enhancing the accuracy and robustness of pose estimation for objects that are otherwise
di"cult to handle.

Light has captivated humanity for centuries and has been at the heart of numerous significant
scientific discoveries. In the context of computer vision, typical light sensors measure the
wavelength and energy of light to determine color and intensity within a specific spectrum.
However, these are not the only attributes of an electromagnetic (EM) wave. Polarization,
defined as the oscillation direction of the EM field relative to the direction of the light ray, is
another crucial property of light. Most natural light sources, like the sun or artificial lights,
emit unpolarized light, where the light wave oscillates in multiple directions. When light
reflects o! a surface, it becomes partially or fully polarized. This phenomenon means that
polarization carries valuable information about the surface structure, material properties, and
the angle of reflection [82]. This information is beneficial for dealing with photometrically
challenging objects made of metallic, reflective, or transparent materials. These objects of-
ten pose significant challenges to standard vision pipelines, limiting their e!ectiveness and
robustness in applications that require precise pose estimation. By incorporating polarization
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data into our pipeline, we aim to extract this additional information from scenes and objects,
particularly those involving photometrically challenging surfaces or materials.

4.1.2 Contributions

While several 6D object pose estimation pipelines have been developed [15, 29, 60, 106],
also targeting texture-less objects [31, 62], the challenge of photometrically complex objects,
characterized by high reflectance and partial transparency, has only recently gained attention in
research [101]. These objects present unique challenges to RGB-D sensing [101]. In response,
our approach extends beyond conventional methods that rely on RGB or depth information.
We leverage the polarization properties of light as an additional data source, yielding surface
normal estimations. By doing so, we create a hybrid method that combines a physical model
with a data-driven learning approach, significantly enhancing 6D pose estimation capabilities.
This method proves particularly e!ective not only for photometrically challenging objects but
also in improving pose accuracy and robustness for more traditional object types.

The primary contributions in this chapter are in summary:

!
Contributions

1. We propose the use of polarization as a novel modality for 6D object pose
estimation, exploring its benefits over RGB-only and RGB-D modalities.

2. We design a hybrid pipeline for instance-level 6D pose estimation that
integrates polarization cues. This combination of a physical model with a
learning-based approach shows significant improvements, especially for
photometrically challenging objects with high reflectance and translu-
cency.

3. We have constructed the first polarimetric instance-level 6D object pose
estimation benchmark.
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4.2 Related Work

We review the literature on polarimetric imaging and 6D object pose estimation and cover
datasets to o!er a comprehensive insight into the research domain.

4.2.1 Polarimetric Imaging

Polarization for 2D Polarization cues provide a valuable source of complementary information
in 2D computer vision, particularly for tasks involving photometrically challenging objects, such
as those that are reflective or transparent. This utility has inspired various research e!orts,
including segmentation tasks [82] to handle reflective and transparent objects e!ectively.

Another significant advantage of polarization is its ability to mitigate glare. Lei et al. [93]
demonstrated how specific polarization filters can e!ectively remove reflections from images,
enhancing the clarity and quality of the captured data. While the deployment of a single po-
larization camera can already substantially improve upon traditional photometric acquisition
setups, the integration of multispectral polarimetric light fields, as investigated by Islam et
al. [72], takes this a step further. This advanced approach combines polarization with multi-
spectral imaging and light field technology, leading to even more significant enhancements in
performance.

Polarization for 3D Previous research in shape from polarization (SfP) investigated to ex-
tract surface normals and depth information from polarimetric data, given its intrinsic link
to the object’s surface properties. However, early works in this area faced limitations due to
model ambiguities and often relied on controlled setups. Classical SfP methods typically used
an orthographic camera model and were constrained to lab scenarios with controlled envi-
ronmental conditions [4, 44, 146, 185]. Yu et al. [185] mathematically related polarization
intensity to surface height, optimizing for depth in controlled scenarios. In contrast, Atkinson
et al. [4] focused on recovering surface orientation for fully di!use surfaces. While these
methods predominantly utilized monocular polarization, combining more than one view with
physical models for SfP has been explored as well [3, 24]. This multi-view approach also lends
itself to self-supervised methods, like the one proposed by Verdie et al. [161]. Some studies
have investigated the integration of complementary techniques like photometric stereo [2]
and hybrid RGB+Polarization (RGB+P) methods [196]. These hybrid approaches can provide
metrically accurate depth estimates, especially if the light direction is known. Additionally,
existing depth maps can be refined using polarimetric cues [81]. In scenarios where the scene
is assumed to be fully di!use, the polarimetric sensing model can also aid in estimating the
relative transformation of a moving polarization sensor [25]. Data-driven approaches can miti-
gate assumptions regarding surface properties, light direction, and object shapes. For instance,
Ba et al. [5] developed a method for estimating surface normals by presenting a neural net-
work with a set of plausible cues, enabling SfP even with ambiguous data. Our research draws
inspiration from these various approaches to enhance our object pose estimation pipeline with
physical priors. Unlike previous studies, we focus on object poses in an unconstrained setup
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without making assumptions about reflection properties or lighting conditions. The insights
gained from past research allow us to design a pipeline capable of addressing pose prediction
challenges for photometrically complex objects for the first time.

4.2.2 6D Pose Prediction

Monocular RGB Methods predicting 6D pose from a single image fall into di!erent categories
based on their approach: direct pose optimization, learning a pose embedding, or establishing
correspondences between 3D models and 2D images.

Direct Pose Optimization: Some methods directly regress the 6D pose [90, 96, 106, 174],
or discretize the task into a classification problem [15, 84]. These networks predict pose
parameters as SE(3) elements, reflecting the training parameterization. Implicit learning of
pose parameterization is also explored [195].

Learning Pose Embeddings: This approach involves learning an implicit space that encodes
the pose, from which predictions are decoded [157, 158, 173].

Establishing 2D-3D Correspondences: Contemporary and high-performing methods in this
category typically adopt a two-stage approach. Initially, a network predicts 2D-3D correspon-
dences between the image and the 3D model. These correspondences are then processed
with algorithms like RANSAC/PnP [36, 94], the Umeyama algorithm [159], or direct regres-
sion to determine the 6D object pose. Approaches vary between sparse [67, 123, 126, 149]
and dense correspondences [61, 98, 119, 144, 186], with some aiming for end-to-end learn-
ing [29, 66, 165]. ZebraPose [154] introduces hierarchical feature representations, and there
is growing interest in zero-shot methods for 6D pose estimation [143]. A common challenge in
correspondence-based methods [61, 98, 119, 144, 186] is the computationally intensive post-
processing, typically involving RANSAC-based pose solvers. To address this, GDR-Net [165]
and SO-Pose [29] employ learning-based MLP networks to directly predict the target pose
from dense correspondences, enhancing computational e"ciency.

RGB-D and Refinement Monocular pose estimation from RGB images is inherently challeng-
ing due to its ill-posed nature, where crucial depth information is missing. In this context,
depth maps emerge as a valuable asset, providing essential geometric insights that aid in
identifying point correspondences critical for accurate pose estimation [32]. Integrating RGB
data can further enrich this geometric information [10]. While it is possible to deduce poses
from depth information alone or combined RGB-D datasets, many RGB-focused methods [90,
98, 119, 158] greatly benefit from refining with depth based ICP [8] or leveraging indirect
multi-view cues [90]. The synergistic use of RGB and depth data is particularly evident in pio-
neering works like DenseFusion [162], where encoded features from both modalities are fused.
Furthering this approach, FFB6D [57] tightly couples cross-modal information across multiple
feature layers, enhanced with a keypoint extraction process [58] that utilizes both geometric
and texture-based cues. Other methods, including Uni6D [74], ESA6D [112], FS6D [183],
and DGECN [18], also incorporate depth data into their prediction models. However, a critical
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limitation of these techniques is their reliance on the quality of the input. Depth sensing can
be unreliable in scenarios with photometric challenges, such as reflective surfaces. In such
cases, more robust polarimetric shape cues can o!er a substantial advantage.

Photometric Challenges The field of 6D pose estimation predominantly relies onwell-established
datasets that provide RGB-D input [11, 60, 83, 174]. These datasets have been instrumental in
testing and validating various pose estimation methodologies. Additionally, datasets featuring
photometrically challenging objects, such as texture-less and reflective industrial parts, have
been made publicly available [31, 62]. These datasets typically do not include polarization
data, which could provide valuable additional information for pose estimation tasks.

The challenge posed by transparent objects in the context of pose estimation has already been
addressed in earlier works [138], where robotic grasp points on objects using RGB stereo
images are determined without relying on a 3D model. [124] showed how transparent objects
with rotational symmetry could be reconstructed from two views using edge detection and
contour fitting. Recent developments in this field include the work on KeyPose [102], which
explores instance and category-level pose prediction from RGB stereo. Due to the limitations
of their depth sensor with transparent objects, they used an opaque-transparent object pair
to establish ground truth depth. ClearGrasp [137] is an RGB-D method for transparent ob-
jects. The StereOBJ-1M dataset represents a significant advancement in the field, featuring
transparent, reflective, and translucent objects under varying illumination conditions and sym-
metries. It utilizes a binocular stereo RGB camera for pose estimation, addressing many of
the challenges posed by these objects. However, despite these advancements, none of the
existing datasets include RGBP (RGB + Polarization) data, which could provide richer and
more nuanced information for 6D pose estimation, especially for challenging object surfaces.

4.3 Polarimetric Physical Conditions

Standard sensors emit or receive light to measure parameters such as wavelength and energy
within a specific spectrum. In addition to these fundamental characteristics, the relative
oscillation amplitude of the electromagnetic wave defines its polarization attributes. Natural
light, initially unpolarized, undergoes polarization upon reflection from a surface, thereby
encoding valuable information regarding the surface properties of objects. The use of RGB-D
sensors in pose estimation has gained popularity due to their low cost and adaptability to a
wide range of devices. However, they are susceptible to photometric challenges, including
translucency and reflections, which can lead to inaccuracies in depth estimation.

4.3.1 Photometric Challenges for RGB-D

Commercial depth sensors typically employ photometric measurements for depth estimation
utilizing active illumination techniques such as pattern projection (e.g., Intel RealSense D
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Fig. 4.1 Depth Artifacts: The RealSense L515 depth sensor demonstrates inaccuracies in calculating depth
values for common household objects. Specifically, it encounters issues related to boundaries (1,3) that
lead to the invalidation of pixels and strong reflections (2,3), resulting in depth estimates significantly
di!erent from the actual values. Additionally, the depth sensor struggles to detect semi-transparent
objects such as the vase (4), leading to partial invisibility and inaccurate measurements of the distance
to objects located behind them.

series), or time-of-flight (ToF) measurements (e.g., Kinect v2 / Azure Kinect, Intel RealSense
L series). However, these methods face challenges when reflections artificially extend the
roundtrip time of photons or translucent objects degrade the projected pattern. Fig. 4.1 pro-
vides an illustration using common household objects. In the experiment, the ToF sensor
(RealSense L515) struggles to detect the semi-transparent vase, rendering it almost invisible to
the sensor. Furthermore, reflections on the cutlery can result in depth estimates significantly
deviating from the actual values, and strong reflections at boundaries can invalidate pixel
distances.

Recognizing the potential of polarization in addressing the challenges of object geometry recov-
ery in complex environments, the next logical step in our research is to delve into integrating
shape cues from polarization for enhanced 6D object pose estimation. To embark on this path,
it is essential first to understand the fundamentals of polarimetric image formation.

4.3.2 Polarization Model

Most artificial and natural light is unpolarized, signifying that the electromagnetic wave os-
cillates along all planes perpendicular to the direction of light propagation [37]. When unpo-
larized light interacts with a linear polarizer or is reflected at Brewster’s angle from a surface,
it transforms polarized. The refractive index of a material plays a role in determining the
speed of light propagation through it, the extent of reflection, and the medium’s Brewster’s
angle. When light is reflected at the same angle as the incident ray relative to the surface
normal, it is referred to as specular reflection. The remaining portion penetrates the object
as refracted light, which becomes partially polarized during its passage through the medium.
Eventually, this partially polarized light wave exits the object, leading to what is known as
di!use reflection [37]. To illustrate these concepts, please refer to Fig. 4.2. In the case of real
physical objects, the resulting reflection is typically a combination of both specular and di!use
reflection, with the proportion of each being influenced by factors such as the refractive index

4.3 Polarimetric Physical Conditions 83



P0 DOLPP1 P2 P3

Fig. 4.2 Degree of Polarization: The polarization state of light undergoes alteration upon reflection from a
translucent surface, resulting in discernible distinctions within the polarimetric image quadruplet with
di!erent polarization filter angles. These distinctions are directly linked to the orientation of the surface
normal. More precisely, the degree of polarization (DoP) for both translucent and reflective surfaces
markedly exceeds that observed in other image regions, as evident from the highlighted areas.

and the incident light angle. We propose using surface normals derived from polarization data
to address RGB-D sensors’ photometric challenges. Our proposed method holds applicability
across various domains, including pose estimation, where the precision of 3D information is
paramount.

4.3.3 Image Formation Model

We introduce the foundational polarization image formation model. When incident light with
a specific intensity I and wavelength ϑ reaches the sensor, it traverses the color filter array
(CFA), which separates the light into RGB wavebands. The incoming light also possesses a
degree of polarization (DoP) denoted as ρ and an angle of polarization (AoP) represented
by φ. As the light proceeds through a polarizer array positioned above a pixel unit equipped
with four distinct polarization angles, ϕpol ⇒ {0⇔, 45⇔, 90⇔, 135⇔}, the oscillation state of the
light is recorded alongside its wavelength and energy [82]. The polarization image formation
model, as expressed in Equation 4.1, defines the underlying parameters that contribute to the
recorded polarized intensities as follows:

Iϕpol
= Iun · (1+ρ cos(2(φ ↓ϕpol))), (4.1)

where the unpolarized intensity Iun can be computed by averaging over polarized intensities
Iϕpol

measured at various polarization filter angles ϕpol ⇒ {0⇔, 45⇔, 90⇔, 135⇔}.
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We determine the values of φ and ρ by reformulating the image formation model as follows:

Iϕpol
=

Imax + Imin

2
+

Imax ↓ Imin

2
cos(2(φ ↓ϕpol)) (4.2)

=




1

cos2ϕpol

sin2ϕpol




T 


Imax+Imin
2

Imax↓Imin
2 cos2φ

Imax↓Imin
2 sin2φ




. (4.3)

In this formulation, we define the degree of polarization (DoP) ρ as:

ρ =
Imax ↓ Imin

Imax + Imin
. (4.4)

We express the unpolarized intensity as the average of the maximum and minimum values, as
follows:

Iun =
Imax + Imin

2
. (4.5)

The degree of polarization (DoP) ρ and angle of polarization (AoP) φ can be determined
through an over-determined linear least squares system [69] applied to a collection of polar-
ization images captured under various polarization filter angles, as:




Iϕpol,1

...

Iϕpol,4



=




1 cos2ϕpol,1 sin2ϕpol,1

...

1 cos2ϕpol,4 sin2ϕpol,4







x1

x2

x3




. (4.6)

The unknowns xi are defined as follows: x1 = Iun, x2 = Iunρ cos2φ, and x3 = Iunρ sin2φ.

From Equation 4.6, we can solve for [x1, x2, x3]T , and subsequently retrieve the values of ρ
and φ as follows:





Imax = x1 +


x2
2 + x2

3

Imin = x1 ↓


x2
2 + x2

3

ρ =
′

x2
2+x2

3
x1

φ = 1
2 arctan x3

x2

(4.7)

It is important to note that bothφ andφ+ς can satisfy the polarization image formation model
presented in Equation 4.1. This phenomenon is commonly referred to as the ς-ambiguity.
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4.3.4 Shape Priors from Polarization

With the available polarization information, we can extract object shape details by calculating
the azimuth and zenith angles of the object surface normal for both the di!use and specular
reflection scenarios. The surface normal, by definition, is a vector perpendicular to the tangent
plane at a given point. We conventionally choose the outward-pointing normals, which can be
characterized by the azimuth angle ϖ and the zenith angle ϕ , as defined below:

↓↘n =




nx

ny

nz



=




cosϖ sinϕ

cosϖ cosϕ

cosϕ




, (4.8)

where:

• azimuth angle ϖ ⇒ [0, 2ς]

• zenith angle ϕ ⇒ [0,ς]

We determine the values of ϕ and ρ by solving the over-determined system of linear equations
using the linear least squares method. The calculation of AoP depends on the surface properties
and is performed as follows:




φd[ς] = ϖ for di!use reflection

φs[ς] = ϖ↓ ς2 for specular reflection.
(4.9)

Here, [ς] indicates the ς-ambiguity, and ϖ represents the azimuth angle of the surface normal
n. We can establish a connection between the viewing angle ϕ ⇒ [0,ς/2] and the degree of po-
larization (DoP) by considering Fresnel coe"cients. Consequently, DoP is similarly expressed
as follows [4]:





ρd =
(η↓1/η)2 sin2(ϕ )

2+2η2↓(η+1/η)2 sin2(ϕ )+4 cos(ϕ )
′
η2↓sin2(ϕ )

ρs =
2 sin2(ϕ ) cos(ϕ )

′
η2↓sin2(ϕ )

η2↓sin2(ϕ )↓η2 sin2(ϕ )+2 sin4(ϕ )

(4.10)

with the refractive index of the observed object material denoted as η. The values used for our
objects can be seen in Tab. 4.1.

By solving Equation 4.10 for ϕ , we obtain three solutions: ϕd ,ϕs1,ϕs2, one corresponding to
the di!use case and two to the specular cases. For each of these cases, we can subsequently
determine the 3D orientation of the surface by calculating the surface normals as:

n= (cosϖ sinϕ , sinϖ sinϕ , cosϕ )T . (4.11)
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Tab. 4.1 Refractive Indices: Refractive indices per object with specific material used for the physical model.

Object Material Refractive Index

Teapot ceramic 1.54

Can aluminium composite 1.35

Fork stainless steel 2.75

Knife stainless steel 2.75

Bottle glass 1.52

Cup plastics 1.50

We utilize these plausible normals nd , ns1, ns2 as physical priors per pixel, which are later pro-
vided as inputs to a neural network for 6D object pose estimation of photometrically challenging
objects.

With the assistance of the physical model defined above, we can now deduce physical polari-
metric characteristics that encapsulate shape information in the form of geometric normals.
More precisely, when light is reflected from the surface of an object, the shape details are
encoded in the captured polarization intensities accordingly.

4.4 Polarimetric Physical Conditions for 6D
Object Pose Prediction

This section introduces our Polarimetric Pose Prediction Network, abbreviated as PPP-Net.
Given a set of polarimetric images captured at four di!erent angles, namely I0, I45, I90, I135,
along with the calculated values of AoP φ, DoP ρ, and the normal maps Nd , Ns1, Ns2 used as
physical priors, our objective is to employ a neural network to learn a transformation P = [R|t]
that maps a target object from the object frame to the camera frame, leveraging a 3D CAD
model of the object.

Our pipeline’s physical model unveils the implicitly encoded shape information, o!ering object-
centric priors orthogonal to intensity information. We derive a set of explicit object shape priors
denoted as Ni based on polarimetric intensities Iϕpol

and properties ρ,φ [5, 197]. The inherent
ambiguities within this process can result in non-unique solutions, as discussed in [5]. Never-
theless, we encode these ambiguities on a per-pixel basis to guide the network in distinguishing
between di!erent priors and extracting meaningful geometric features.

4.4.1 Network Architecture

Our network architecture is illustrated in Fig. 4.3. The network is divided into two distinct
encoders in its initial part, each with specific responsibilities. The first encoder processes the
joint polarization information derived from the raw polarimetric images concatenated with the
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Fig. 4.3 PPP-Net: Our Polarimetric Pose Prediction Network harnesses the potential of RGBP images, which
constitute a set of four distinct polarized RGB images. These images facilitate the computation of AoP/DoP
and normal maps via our physical model. Within our hybrid framework, the polarized data and inherent
physical signals are encoded distinctly and subsequently integrated. The decoder is then tasked with
predicting the object mask, the normal map, and the NOCS. The culmination of this process results in
the accurate prediction of the 6D object pose, achieved through Patch-PnP [165].

computed AoP/DoP maps. Meanwhile, the second encoder handles physical priors, specifically
the physical normals calculated from polarimetric images using the physical model. In both
cases, the encoding is focused on a zoomed-in region of interest (ROI) with dimensions of
256→ 256 pixels.

Subsequently, the encoded information from both encoders is combined and passed to a de-
coder. The decoder takes in the jointly encoded information and further enhances it with data
from skip connections originating from various hierarchical levels within the encoders. The
decoder produces an object mask, a normal map, and a 3-channel dense correspondence map
(NOCS). The NOCS map establishes a correspondence between each pixel and its normalized
3D coordinate.

The predicted normal map and NOCS, concatenated with corresponding 2D-pixel coordinates,
are then fed sequentially into a pose estimator, following the approach described in [165]. The
pose estimator comprises convolutional and fully connected layers, ultimately generating the
final estimated 3D rotation and translation.

4.4.1.1 Pose Parametrization

In our approach, inspired by recent advancements in the field [98, 165, 195], we adopt
a continuous 6D representation for rotation, specifically an allocentric representation. For
translation, we utilize a scale-invariant representation [29, 98, 165].

Given a set of polarized images Iϕpol
and a collection of detected objects of interest O = {Oi |i =

1, . . . , N}, together with their bounding box information B = {Bi |Bi = {bwi , bhi , bxi , byi}, i =
1, . . . , N}, our goal is to predict the 6D pose P = [R|t] for each object relative to the camera.
These estimates are derived from the cropped regions corresponding to each object, considering
their respective 3D CAD models denoted as M = {Mi |i = 1, . . . , N}.
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The continuous 6D rotation representation, R6d, is derived from the first two columns of a
standard rotation matrix R [195]. By zooming in on the target object’s ROI, our network
focuses on the most relevant information for pose estimation. The scale-invariant translation is
estimated based on the relative di!erences between the projected centroids of the objects and
the center locations of their detected bounding boxes with respect to their size. This method
o!ers a robust way to estimate the object’s position, considering the variations in the object’s
size and placement within the scene.

Rotation Parametrization The choice of parametrization for tho 6D pose is a critical factor
with significant implications for the learning process of a neural network. In the context of
parametrizing the 3D rotation matrix R, as advocated by [195], it is well-recognized that many
existing methodologies face a challenge in handling a discontinuity within Euclidean space,
especially when constrained to four or fewer dimensions. This challenge arises in commonly
employed parametrization schemes, including unit quaternions [174], log quaternions [117],
and Euler angles. To mitigate the issues associated with these discontinuous training signals,
we represent rotations using a continuous 6D formulation, denoted as R6d , following the works
by Wang et al. [165] and Di et al. [29]. This representation is defined by the first two columns
of the original 3→ 3 rotation matrix.

The transformation from the 6D representation R6d = [r6d
1 |r6d

2 ] to its original matrix represen-
tation R= [r1|r2|r3] is as follows:





r1 = N(r6d
1 )

r1 = N(r1→ r6d
2 )

r2 = r3→ r1

, (4.12)

where r6d
i and ri denote column vectors in R6d and R, respectively, and N(·) signifies the

normalization operation.

Given that our neural network exclusively observes each object’s cropped and zoomed-in ROI,
the representation’s notable viewpoint-independence characteristic becomes particularly ad-
vantageous. As a result, we undertake a further transformation of the continuous 6D represen-
tations, R6d , shifting them from an egocentric to an allocentric perspective. This transformation
is made feasible by considering factors for translation and camera intrinsics [89].

Translation Parametrization In recognition of the constrained global information available
within the zoomed-in ROI, we choose to parameterize object translation regarding relative
di!erences. Specifically, we express the translation as the disparity between projected object
centroids and the bounding box center location, with respect to the bounding box size, as
described in prior works [29, 98, 165]. The resulting translation vector is thus denoted as
t = [δx ,δy ,δz]T , where: 




δx = (ox ↓ bx)/bw

δy = (oy ↓ by)/bh

δz = tz/r

. (4.13)

4.4 Polarimetric Physical Conditions for 6D Object Pose Prediction 89



Here, (ox , oy) and (bx , by) represent the coordinates of the projected object centroids and
bounding box center, respectively. Additionally, the bounding box size, denoted as (bw, bh),
plays a crucial role in computing the zoomed-in ratio, denoted as r = sout/sin, where sin =
max(bw, bh), and sout represents the size of the output. Note that we can recover both the
rotation matrix and translation vector, provided we possess knowledge of the camera intrinsics
denoted as K [89, 98].

The retrieval of the conventional translation vector T = [t x , t y , tz]T is achieved through the
utilization of known camera intrinsics, as follows:





t x =
(δx bw+bx↓cx )tz

fx

t y =
(δy bh+by↓cy )tz

f y

tz = rδz

, (4.14)

where (cx , cy) and ( fx , f y) denote the principal point and the focal length of the camera, re-
spectively.

4.4.1.2 Object Normal Map

The surface normal map, which contains the surface orientation at each discrete pixel coor-
dinate, serves as the encoding of an object’s shape. Drawing inspiration from prior works in
SfP [5], we adopt a data-driven approach to recover the surface normal map. In contrast
to concatenating the input physical normals with the polarized images, as proposed by Ba
et al. [5], we choose to encode them separately using two ResNet encoders. Subsequently,
the decoder is trained to generate the object’s shape, represented by the surface normal map.
Note that the estimated normals are L2-normalized to unit length. As demonstrated later in
Tab. 4.3, leveraging the provided physical normals as shape priors yields high-quality normal
map predictions, resulting in a notable performance enhancement for the pose estimator.

4.4.1.3 Dense Correspondence Map

The NormalizedObject Coordinate Space (NOCS) represents normalized 3D object coordinates
while considering their associated poses. This representation explicitly establishes correspon-
dences between 3D object coordinates and their respective projections onto 2D pixel locations.
As exemplified in the work of Wang et al. [165], this representation has been demonstrated to
enhance the accuracy of consecutive di!erentiable pose estimators when compared to tradi-
tional methods such as RANSAC/PnP.
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4.4.2 Learning Objectives

The comprehensive objective encompasses both the learning of geometrical features and pose
optimization, and it is formulated as ⇐ =⇐pose +⇐geo, with:

⇐pose =⇐R +⇐center +⇐z (4.15)

⇐geo =⇐mask +⇐normals +⇐x yz . (4.16)

Regarding the pose loss ⇐pose, we separate the optimization procedure into two components:
one for the relative displacement with respect to the bounding box, denoted as (δx ,δy), and
another for the relative depth awareness, represented as δz. The optimization of rotation is
facilitated by employing a Point-Matching loss [97]. For symmetric objects, the loss term is de-
termined by selecting the smallest loss value from among all possible ground truth rotations.

To be specific, we utilize distinct loss terms for the given ground truth rotation R and the
translational components (δx ,δy) and δz , which can be expressed as follows:





⇐R = avg
x⇒≃
↔Rx ↓ R̂x↔1

⇐center = ↔(δx ↓ δ̂x ,δy ↓ δ̂y)↔1
⇐z = ↔δz ↓ δ̂z↔1

, (4.17)

where the notation •̂ signifies predictions. In the case of symmetric objects, the rotation loss
is determined by selecting the smallest loss value from the set of all feasible ground-truth
rotations considering the symmetry.

For the learning of intermediate geometrical features, we leverage L1 losses in the context of
the object mask M̂ and dense correspondences map NOCS M̂x yz learning. Additionally, we
employ a cosine similarity loss for the estimation of surface normals n̂:





⇐mask = ↔M ↓ M̂↔1
⇐x yz = M ∞ ↔Mx yz ↓ M̂x yz↔1
⇐normal = 1↓ ∈n, n̂∋

(4.18)

where ∞ indicates the Hadamard product of element-wise multiplication, and ∈•,•∋ denotes
the dot product.

4.5 Experimental Results

The primary motivation behind our proposed pipeline is to demonstrate the advantages of
incorporating pixelwise physical priors derived from polarized light (RGBP) in achieving accu-
rate and robust 6D pose estimation, particularly for objects that present photometric challenges,
where traditional RGB-only and RGB-D methods often fall short. To achieve this objective, we
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train and test PPP-Net using di!erent modalities on objects characterized by di!erent levels
of photometric complexity. Specifically, we consider a simple plastic cup as well as photo-
metrically demanding objects, such as reflective and textureless stainless steel cutlery (fork
and knife). As we elaborate in subsequent sections, our investigations reveal that integrating
polarimetric information results in a substantial performance improvement, particularly for
objects presenting significant photometric challenges.

4.5.1 Polarimetric Data Acquisition

This work introduces an instance-level benchmark dataset for 6D pose estimation, leveraging
physical cues derived from polarimetric images tailored explicitly for objects with significant
photometric challenges. The selection of objects within the dataset includes a wide range
of photometric complexities, ranging from matte to highly reflective and even transparent
surfaces, similar to those in PhoCal [167]. This instance-level benchmark dataset is a subset
of the acquired data, as presented in the previous chapter. For this benchmark, we specifically
select the following objects: cup, teapot, can, fork, knife, and bottle. These objects are chosen
due to their progressively increasing photometric complexity, as visually depicted in Fig. 4.4.
Note that the latter three models lack texture on their surfaces, necessitating the application of
a temporary, vanishing 3D scanning spray to create a temporary opaque surface for scanning.
Tab. 4.2 provides an overview of various dataset characteristics and ours for comparison.

Fig. 4.5 provides an overview of our scene settings and showcases the quality of our pose
annotations. The superimposed 3D meshes of the objects illustrate the high level of accuracy
achieved in our annotations. Our dataset encompasses various backgrounds, lighting con-
ditions, and object settings, making it suitable for comprehensive evaluation. Notably, our

Fig. 4.4 3D Models: Objects with varying degrees of photometric complexity, arranged from left to right. Three
of these objects lack texture due to either reflection (cutlery) or transparency (bottle).

Tab. 4.2 Dataset Comparison.
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T-LESS [23] ! ! ! ! 20

Linemod [21] ! ! ! ! 15

Ours ! ! ! ! ! ! ! ! 20
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Fig. 4.5 Dataset and Annotation Example: The figure displays a single polarimetric image alongside the
rendered 3D models.

pose annotations maintain accuracy even for challenging objects with reflective or transparent
properties. The precision of these annotations is ensured through a dedicated process [167]
detailed in the previous chapter, involving multiple controlled interactions with the object’s
surface using a calibrated tool tip attached to a robotic arm, followed by fine alignment using
ICP with the pre-scanned 3D mesh of the object. While 6D pose annotations are available for
all objects in the scene, we focus here on the subset introduced in Fig. 4.4, representing a
broad spectrum of photometric complexities.

4.5.2 Experiments Setup

Initially, we fine-tune an o!-the-shelf object detector, Mask R-CNN [55], directly on the polar-
ized images I0. This fine-tuning is essential to generate relevant object crops required for our
approach and the RGB-only benchmark. We adopt a training/testing split strategy similar to
what is commonly used for public datasets [12], where △ 10% of the images are allocated for
training, and the remaining 90% are reserved for testing. Our network is trained end-to-end
using the Adam optimizer [85] for 200 epochs. We initiate training with an initial learning
rate of 1→10↓4, which is then halved every 50 epochs. Note that due to di!erences in the field
of view and the camera setup (with the depth sensor located beneath the polarization camera
on our custom rig), the split between training and testing data for the RGB-D benchmark
varies from the RGB-only training/testing split.

To evaluate our novel 6D pose estimation approach, we assess the pose estimation accuracy for
each object using commonly adopted metrics, including the average distance (ADD) and its
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counterpart for symmetrical objects (ADD-S) [60], against di!erent benchmarks. For surface
normal estimation, we compute both mean and median errors (in degrees), along with the
percentage of pixels where the estimated normals deviate by less than 11.25⇔, 22.5⇔, and 30⇔

from the ground truth.

4.5.3 Experiments Evaluation

We conduct experiments to analyse the impact of di!erent input modalities on the accuracy
and robustness of 6D object pose estimation. The quantitative results are presented in Tab. 4.3,
while Fig. 4.6 illustrates the qualitative improvements in the Normalized Object Coordinate
Space (NOCS) representation. To assess the direct impact of polarimetric imaging on accurate
and robust object pose estimation, focusing on photometrically challenging objects, we begin
by establishing an RGB-only baseline. This baseline is set up by omitting the contributions of
our PPP-Net and using unpolarized RGB images as the input. These RGB images are obtained
by averaging over polarimetric images at complementary angles. The comparative analysis, as
detailed in the first two rows of Table 4.3 for each object (comparing RGB with Polar RGB),
reveal that the addition of polarimetric data significantly enhances the pose estimation accuracy
and robustness, particularly for objects with photometrically challenging characteristics. For
instance, the polarisation modality exhibits more substantial accuracy gains for the object
fork, which presents more photometric challenges compared to the object cup. These findings
underscore the valuable contribution of polarimetric imaging in improving the precision and
robustness of pose estimation, especially for objects that pose di"culties to traditional RGB-
based methods due to their surface properties. Incorporating polarimetric data is crucial for
more robust and accurate pose estimation in a broader range of real-world scenarios.

The robustness and accuracy of the pose estimation can be further enhanced when the network
is guided to extract additional shape information implicitly encoded in the polarization images,
as demonstrated in Tab. 4.3 (rows 2nd to 3rd for each object, respectively). However, it is
important to acknowledge that the quality of predicted normals in this setting remains some-
what limited. When the network is furnished with physically-induced normals obtained from
polarization images as input, it gains access to a plausible priors for directly encoding shape
information. Consequently, it yields significantly improved normals predictions, resulting in a
substantial enhancement of pose performance, as evident from Tab. 4.3 (rows 3rd to 4th for
each object, respectively). The comparison of NOCS predictions presented in Fig. 4.6 under-
scores that when provided with polarization and direct shape cues, the network establishes a
more precise and intricate geometrical representation, aligning with the observed quantitative
improvements.

In Figures 4.7 and 4.8, we illustrate the 6D pose by superimposing the image with the corre-
sponding transformed 3D bounding box. To enhance visibility, we cropped the images and
focused on the region of interest.
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Tab. 4.3 PPP-Net Input Modalities Evaluation: Various combinations of input and output modalities are em-
ployed during training to investigate their impact on the accuracy of pose estimation (ADD(-S)) across
objects with di!ering photometric complexity. When applicable, we also present metrics for estimated
normals.

Object Photo.
Chall.

Input Modalities Output Variants Normal Metrics Pose Metric

RGB Polar RGB Physical N Normals NOCS mean∝ med.∝ 11.25⇔ ↙ 22.5⇔↙ 30⇔↙ ADD(-S)

Cup

! ! - - - - - 91.1

! ! - - - - - 91.3

! ! ! 7.3 5.5 86.2 96.1 97.9 91.3

! ! ! ! 4.5 3.5 94.7 99.1 99.6 97.2

Teapot †

! ! - - - - - 97.8

! ! - - - - - 99.5

! ! ! 7.9 5.4 82.5 94.5 97.1 99.2

! ! ! ! 5.3 4.0 91.6 98.7 99.5 99.9

Can †

! ! - - - - - 91.8

! ! - - - - - 93.2

! ! ! 5.7 3.9 90.0 97.0 98.6 96.7

! ! ! ! 6.0 4.5 89.0 97.3 98.9 98.4

Fork ††

! ! - - - - - 85.4

! ! - - - - - 86.1

! ! ! 11.0 7.3 72.6 90.7 93.9 92.9

! ! ! ! 6.5 4.3 87.6 95.9 97.6 95.9

Knife ††

! ! - - - - - 84.1

! ! - - - - - 88.0

! ! ! 12.2 8.0 68.7 88.5 92.4 89.4

! ! ! ! 6.8 5.4 88.2 97.3 98.6 96.4

Bottle † † †

! ! - - - - - 90.5

! ! - - - - - 93.5

! ! ! 5.6 4.7 92.9 99.0 99.6 94.7

! ! ! ! 5.4 4.5 92.1 99.0 99.6 97.5

(a) (b) (c) (d) (e)

Fig. 4.6 Visualization of Ablations on NOCS: The quality of the geometric representations improves when
incorporating physical priors. The NOCS prediction follows the same order as the ablation experiments
in Tab. 4.3: (a) unpolarized RGB input with NOCS output; (b) polarization input with NOCS output; (c)
polarization input with NOCS and normals output; (d) ours: full model with polarization and physical
priors input, NOCS, and normals output; (e) ground truth NOCS.

4.5.4 Comparison with Established Benchmarks

The experiments involving input modalities have already demonstrated the robust capabilities
of polarimetric imaging inputs for PPP-Net. It has proven to successfully learn reliable 6D pose
prediction with high accuracy, especially for photometrically challenging objects. While the
depth map from an RGB-D sensor also o!ers geometric information valuable for 6D object pose
estimation, we compare our method against FFB6D [57]. FFB6D employs a unique design
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Fig. 4.7 Qualitative Results for a Scene: Input images with 2D detections are displayed. The predicted 6D
poses are represented by blue bounding boxes, while the ground truth (GT) poses are indicated by green
bounding boxes.

Fig. 4.8 Qualitative Results for Di!erent Scenes: Predicted and ground truth 6D poses are depicted using blue
and green bounding boxes, respectively.

that learns to integrate appearance and depth information, considering both local and global
aspects from the two distinct modalities.

We train FFB6D on our dataset for each object individually and report the best ADD(-S) metric
for all objects in Tab. 4.4. The degree of the photometric challenge posed by each object is
summarized in Tab. 4.4 and further elaborated based on their properties (refer to Fig. 4.4
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Tab. 4.4 Benchmark Comparisons: We conduct a comparative analysis of our method against recent RGB-D
(FFB6D [57]) and RGB-only (GDR-Net [165]) approaches using a diverse set of objects. These objects
exhibit varying levels of photometric challenges (†) and variations in depth map quality (ranging from
good: + to low: ↓), which serve as input for FFB6D. RGB-D and RGB-only comparisons are trained
and tested on di!erent splits due to the distinct field of view of the depth camera. We evaluate the
performance using the Average Recall of ADD(-S).

Object Photo.
Chall.

Properties Depth
Quality

RGB-D Split RGB Split

Reflective Metallic Textureless Transparent Symmetric FFB6D Ours GDR Ours

Cup (+) 99.4 98.1 96.7 97.2

Teapot † (*) ++ 86.8 94.2 99.0 99.9

Can † * * - 80.4 99.7 96.5 98.4

Fork †† * * * – 37.0 72.4 86.6 95.9

Knife †† * * * — 36.7 87.2 92.6 96.4

Bottle † † † * * * * None 61.5 93.6 94.4 97.5

Mean 67.0 90.9 94.3 97.6

for comparison). The objects are categorized into three classes based on the quality of depth
maps captured by the depth sensor (also refer to Fig. 4.1). Our observations reveal that objects
with good depth maps and minimal photometric challenges tend to achieve high ADD values
when processed by FFB6D [57]. However, as the level of photometric complexity increases
(accompanied by worse depth map quality), we notice a corresponding decrease in ADD for
challenging objects.

Interestingly, the transparent bottle object presents an exception to this trend. Despite hav-
ing an entirely invalid depth map (compare Fig. 4.1), FFB6D still achieves high ADD. We
speculate that the network learns to disregard the depth map input early in training. PPP-Net
demonstrates comparable performance to FFB6D for objects with low complexity and surpasses
this strong benchmark for objects with significant photometric complexity. Our method re-
mains robust in scenarios with noisy or inaccurate depth maps, harnessing orthogonal surface
information extracted from RGBP data.

Given that PPP-Net significantly benefits from including physical priors obtained through polar-
ization imaging, we undertake a comprehensive investigation to assess the extent of improve-
ment in estimated poses, particularly for objects with significant photometric challenges. We
conduct this analysis by comparing the results against the monocular RGB-only method, GDR-
Net [165]. Our observations reveal that utilizing polarimetric information slightly improves
pose estimation accuracy for objects that are not particularly photometrically challenging. We
can achieve superior performance for items exhibiting inconsistent photometric properties
due to factors like reflection or transparency. The degree of accuracy improvement o!ered by
PPP-Net over GDR-Net increases proportional to the photometric complexity of the objects,
highlighting the invaluable role played by our physical priors in enhancing the understanding
of an object’s geometry (as presented in Tab. 4.4).

4.5.4.1 Additional Experiments and Ablation Studies

Ablations on Network Architecture Tab. 4.5 reveals that the simple concatenation of geometric
priors and RGBP images as direct input to the network (as presented for SfP in [5]) results
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Tab. 4.5 Fusion Ablation: Naive concatenation versus our proposed fusion strategy of RGB and physical priors
in PPP-Net.

Object Fusion
Input Modalities Output Variants Normal Metrics Pose Metric

Polar RGB Physical N Normals NOCS mean∝ med.∝ 11.25⇔ ↙ 22.5⇔↙ 30⇔↙ ADD

Cup concat ! ! ! ! 6.0 4.9 91.1 98.1 99.1 93.6

Cup ours ! ! ! ! 4.5 3.5 94.7 99.1 99.6 97.2

Teapot concat ! ! ! ! 7.4 5.7 83.4 96.3 98.4 97.3

Teapot ours ! ! ! ! 5.3 4.0 91.6 98.7 99.5 99.9

Can concat ! ! ! ! 8.5 6.4 81.8 95.1 97.5 92.2

Can ours ! ! ! ! 6.0 4.5 89.0 97.3 98.9 98.4

Fork concat ! ! ! ! 10.7 7.8 70.0 91.8 95.0 87.6

Fork ours ! ! ! ! 6.5 4.3 87.6 95.9 97.6 95.9

Knife concat ! ! ! ! 10.8 8.5 67.1 92.8 96.2 86.1

Knife ours ! ! ! ! 6.8 5.4 88.2 97.3 98.6 96.4

Bottle concat ! ! ! ! 7.6 6.0 86.5 94.8 96.4 93.1

Bottle ours ! ! ! ! 5.4 4.5 92.1 99.0 99.6 97.5

in inferior quality of normal predictions and o!ers limited improvement in pose estimation
performancewhen compared to our approach (concat vs. ours in Tab. 4.5). These observations
are consistent across all objects, with more photometrically challenging objects demonstrating
a relatively more considerable improvement. These findings underscore the significance of our
design choices in PPP-Net, particularly incorporating a dedicated encoder for physics-based
geometric priors. This architectural decision positively impacts the accuracy of 6D object pose
estimation.

We advocate for a careful integration strategy for incorporating physical priors into the es-
tablished principles of 6D object pose estimation, as demonstrated within our novel hybrid
encoder. We intentionally adopt a straightforward and general architecture for PPP-Net to
facilitate meaningful comparisons with state-of-the-art methods. The results highlight that
even such simplified encoders can achieve notable accuracy in 6D pose prediction when using
physical priors derived from polarization as inputs.

Ablations on Output Modality 6D pose estimation heavily relies on accurate correspondence
prediction throughNOCS regression, as evidenced in the ablation analysis presented in Tab. 4.6.
The ADD metric experiences a significant decrease when the model lacks NOCS output (w/o
NOCS) prior to Patch-PnP. In this case, only shape information would be utilized for pose
prediction. Still, the previous experiments demonstrate that the explicit prediction of object-
centric shape information, such as the normals map, benefits 6D pose estimation. This auxiliary
prediction guides the network more e!ectively in extracting physical shape priors from the
input data, ultimately improving pose estimation accuracy.

Tab. 4.6 PPP-Net Output Ablation: Comparison of PPP-Net outputs with and without NOCS output.

Object Pose Metric (ADD)

Teapot w/ 99.9 w/o 72.7

Fork w/ 95.9 w/o 79.3
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Tab. 4.7 Bounding Box Ablations: We evaluate the performance using the Average Recall of ADD(-S)

Configuration Cup Teapot Can Fork Knife Bottle

Train with GT BBox/Test with pred BBox 97.2 99.9 98.4 95.9 96.4 97.5

Train/Test with GT BBox 99.0 99.9 99.0 96.1 97.6 97.5

Tab. 4.8 Refractive Index Ablation: We evaluate the performance using the Average Recall of ADD(-S)

Object Cup Teapot Can Fork Knife Bottle

Actual correct Refractive Index 1.50 1.54 1.35 2.75 2.75 1.52

Train/Test with correct index 97.2 99.9 98.4 95.9 96.4 97.5

Train with correct index,
test with incorrect (1.5) 97.2 99.9 98.3 95.8 96.2 97.5

Train/Test with incorrect index (1.5) 97.2 99.9 98.0 93.5 90.1 97.5

Ablation on Detector We train an object detector using Faster R-CNN without making any
additional modifications to the polarimetric inputs. The performance of this object detector is
not significantly a!ected by the photometric challenges posed by the objects. This is evident
from the comparable results obtained in Tab. 4.7 when we train or test PPP-Net using the
ground truth bounding boxes or the predicted bounding boxes.

Ablation on Refractive Index One limitation of our model is its reliance on prior knowledge
of the refractive index of materials present in the scene. To analyze the impact of incorrect
refractive indices, we present pose accuracy results when the model is trained and tested with
minor deviations (1.54 vs. 1.5) and large deviations (2.75 vs. 1.5) from the correct index
values, as shown in Tab. 4.8. The results in the second row emphasize that ourmodel maintains
good performance even when provided with incorrect refractive indices during inference. This
suggests that the model is robust enough to extract relevant features. However, when we train
and test the model with significantly di!erent indices, a slight decrease in Average Distance
of Discrepancy (ADD) is observed, particularly for the fork and knife objects.

Runtime Analysis On a desktop PC equipped with an Intel i7 4.20GHz CPU and an NVIDIA
2080 GPU, our network processes a single object from a 512→612 pixel image in approximately
64 milliseconds. This time breakdown includes roughly 40 milliseconds for object detection
and 13 milliseconds for calculating the physical priors. Please note that these measurements
are based on our non-optimized implementation.

4.6 Conclusion

We introduced PPP-Net, a pioneering 6D object pose estimation framework that harnesses
geometric insights from polarization images via physical cues. Our approach surpasses the
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current state-of-the-art RGB-D and RGB-only methods, excelling in scenarios involving photo-
metrically challenging objects, while delivering competitive performance for regular objects.
Extensive ablation studies underscore the crucial role of complementary polarization informa-
tion in achieving precise and robust pose estimations, particularly for objects with reflective
or transparent surfaces.

Our results underscore the substantial enhancements that physical priors can bring to 6D pose
estimation for photometrically challenging objects. RGB-only methods, which lack geometric
information, falter in scenarios featuring objects with minimal texture. Methods that attempt
to leverage geometric priors from RGB-D sources [57] often struggle to reliably recover the
6D pose for such objects, given the typically degraded and corrupted nature of depth maps.
In contrast, our PPP-Net, as RGBP 6D object pose estimation approach, e!ectively achieves
precise and robust pose estimations, even for exceptionally challenging objects, by extracting
geometric insights from physical priors. Qualitative results demonstrating this capability can
be found in Figs. 4.3 and 4.7. Moreover, the advantages of using RGBP extend to the sensor
technology itself. RGB-D cameras often necessitate energy-intensive active illumination and
extrinsic calibration, complicating integration and introducing additional uncertainty to the
final RGB-D image. As the polarization filter is seamlessly integrated into the same sensor as the
Bayer filter, both modalities are intrinsically calibrated, allowing for passive image acquisition.
This opens the door to sensor integration on energy-e"cient and mobile devices.
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„“fiat lux
et facta est lux”

– "let there be light, and there was light"
1. Book of Moses

5.1 Introduction

Building upon the insights from the previous chapter, which established the integration of
polarimetric information for 6D object pose estimation, particularly with photometrically chal-
lenging objects, we now address a significant limitation: the requirement for extensive an-
notated real data in our supervised approach. While self-supervised RGB-D methods exist,
they also su!er from noisy and corrupt depth measurements due to sensor noise, as discussed
in previous chapters. On the other hand, as evidenced by the experiments for the proposed
supervised method, polarimetric images provide robust surface and shape information.

We, therefore, delve deeper into the physics of polarization and propose an invertible physical
model, which, together with novel network and loss components, enables self-supervision for
6D object pose estimation. Hence, we avoid the need for annotated real data and address the
issue in current SOTA self-supervised RGB-D methods of corrupt depth information due to
sensor artifacts, especially for photometrically challenging objects, by utilizing more robust
shape priors encoded in polarimetric images.

5.1.1 Motivation

Recent methods in 6D object pose estimation integrate geometric information either directly
as input [57] or use it for self-supervision [163]. While reliable geometric cues from depth
sensors can enhance pose estimation performance, noisy or unreliable depth information can
negatively a!ect the learning process. As discussed in the previous chapter, integrating the ge-
ometric information of polarized light enhances and robustifies 6D object pose estimation. The
presented method learns features from both the estimated normal from polarization and their
polarization characteristics in a supervised manner. Accuracy and robustness are remarkable,
particularly concerning objects lacking distinct textures, exhibiting reflectivity, or possessing
translucency. The results surpass the performance of state-of-the-art RGB-only [165] and
RGB-D [57] methods. However, it is essential to note that an extensive training dataset with
accurately annotated ground-truth data is requisite for these advancements. Obtaining such
a dataset, particularly with high accuracy, may present practical challenges [167]. Leverag-
ing the robust polarization information for self-supervised 6D object pose estimation would
circumvent the necessity for annotated real data and avoid the issues of depth sensors.
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5.1.2 Contributions

In our Self-Supervised Polarimetric Pose Prediction framework, short S2P3, we delve into
how neural networks can e!ectively utilize geometric shape priors derived from polarized light
for the task of 6D object pose estimation and how our approach can eliminate the necessity
for annotated real data. We employ our supervised polarimetric 6D object pose estimation
method from before as a teacher network, initially pre-training it on synthetically rendered
polarimetric images only. Subsequently, its predictions on real data, although noisy, are utilized
as weak labels to guide a student network.

For self-supervision, we employ a di!erentiable renderer, enabling dense geometric cue integra-
tion. We also introduce an invertible formulation of the physical polarization model, allowing
for analytical computation of pixel-wise polarization characteristics from geometric normal
representation. This inversion, post di!erentiable rendering of normals with the student net-
work’s predicted 6D pose, closes the self-supervision loop, facilitating direct comparison with
input polarization data as shown in Fig. 5.1.

Pseudo 
Labels

Teacher

Predictions

Student

Shape Priors 
!!

Polarimetric 
Representations 

", $

Analytical Polarimetric 
Representations  %"!

Physical 
Model

Polarimetric 
Images &!

Inputs

Inverted 
Physical 
Model

'"#$%!&%

'"%'()*

Fig. 5.1 S2P3 Pipeline Overview: In our proposed teacher-student training paradigm, we employ four polar-
ization images acquired at di!erent polarization filter angles alongside polarimetric and geometrical
representations derived from the analytical physical model. These are inputs to the teacher and student
networks in a multi-modal fashion. The student network’s optimization objective extends beyond the
pseudo labels generated by the teacher network, denoted as Lpseudo. It also encompasses Lphysics, which
seeks to minimize the disparity between the polarimetric representations ρ extracted from the input
images post application of the analytical physical model and the corresponding ρ̂ obtained through the
inverted physical model. This derivation relies on the rendered surface normal given the estimated object
pose produced by the student network.
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The primary contributions in this chapter are in summary:

!
Contributions

1. Analytically derived shape priors and polarimetric characteristics from
a physical model are provided to the network to encode neural shape rep-
resentations.

2. A teacher network (pre-trained on rendered synthetic data only) provides
weak pseudo labels on real images (6D pose and geometric representa-
tions) for a student network in a knowledge distillation scheme.

3. A novel self-supervised loss formulation through di!erentiable rendering
and an invertible physical constraint enables trainingwithout annotated
real data by coupling the input polarimetric information with the predicted
6D object pose.
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5.2 Related Work

Building on the related work in 6D object pose estimation discussed in the previous chapter,
we now focus on the most relevant advancements in self-supervised 6D pose estimation. This
approach is beneficial for circumventing the challenges of acquiring accurately labeled data.
An essential technique in this domain is di!erentiable rendering, which generates synthetic
images based on predicted poses for comparison against actual input images [147]. The Self6D
method [164] exemplifies this approach, training a neural network on synthetic RGB data and
then fine-tuning it on real RGB-D data without pose annotations in a self-supervised manner.
Central to Self6D’s success is the use of depth data to synchronize visual and geometric cues.
Enhancing upon Self6D, the Self6D++ framework [163] introduces significant improvements.
It shifts from a one-stage pose regression model to a more advanced two-stage GDR-net back-
bone [165] and employs a teacher-student scheme and a pose refinement layer on top of
the teacher network. This adaptation notably boosts accuracy, especially in scenarios with
occlusions.

Despite these advancements, challenges persist, particularly in handling photometrically chal-
lenging objects due to depth artifacts from the active depth sensors. As discussed earlier,
incorporating polarimetric information significantly boosts robustness and accuracy in super-
vised scenarios. Building on the advancements in self-supervised learning and di!erentiable
renderers in end-to-end learning pipelines, as demonstrated in Self6D++ [163], we apply
these concepts to the multi-modal imaging domain of polarization. Unlike Self6D++, which
uses a renderer to produce a depth map for comparison against a potentially noisy depth map
from an active sensor, we delve into the physical properties of light. We integrate encoded
shape priors into a self-supervised scheme through a di!erentiable analytical derivation of
physical properties from surface normal information. This approach allows us to leverage
the unique attributes of polarized light to improve the accuracy and robustness of 6D object
pose estimation, particularly for photometrically complex objects that pose challenges to depth
sensors.

5.3 Invertible Polarimetric Physical Model

We introduce the inversion of the physical model of polarimetric imaging. Assuming we have
a normal map of an object, which can be generated by a di!erentiable renderer using the 3D
model and an estimated 6D pose, we formulate an invertible solution to analytically derive
the polarimetric representation from this normal map. It translates the information from the
object’s pose, parameterized as a 6D transformation, through the di!erentiable renderer into a
geometric representation. This geometric information is then converted into encoded physical
properties of light reflections. These properties can subsequently be compared against the
original input data within our self-supervised learning framework. This process e!ectively
’closes the loop’ for our network and enables end-to-end training with self-supervision from
passively observed properties of light, namely polarization.
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we can derive the polarization parameters analytically, specifically the Angle of Polarization
(AoP) denoted as φ, and the Degree of Polarization (DoP) represented as ρ.

For the AoP φ, the first step involves solving for the azimuth angle ϖ using the equation:

ϖ= arctan
ny

nx
. (5.2)

The AoP is subsequently correlated with a set of potential solutions under the orthographic
assumption:
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The DoP is impacted by the viewing angle ϕv. Under orthographic projection, the viewing
angle ϕv equals the zenith angle ϕ . However, under perspective projection, we first compute
the viewing vector v and then determine the viewing angle ϕv . The viewing vector v is defined
as follows:
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where n represents the rendered object surface normal map, and the viewing vector v is
defined as: v = ↓ς↓1(u, v, K) Here, ς↓1 serves as the backprojection operation for the pixel
(u, v), utilizing the camera intrinsics K.

The viewing angle ϕv represents the angle between the surface normal n and the viewing
direction v:

cosϕv = n · v. (5.5)

The analytical DoP, denoted as ρ̂, is subsequently derived through formulations for both di!use
and specular reflection scenarios, considering a set of potential ρ̂i:





ρ̂d =
(η↓1/η)2 sin2(ϕv)
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′
η2↓sin2(ϕv)

ρ̂s =
2 sin2(ϕv) cos(ϕv)

′
η2↓sin2(ϕv)

η2↓sin2(ϕv)↓η2 sin2(ϕv)+2sin4(ϕv)

(5.6)

where η represents a constant defined by the refractive index of the object materials.
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The inverted physical model not only enables the optimization of the model but also does so
through the utilization of object shape cues. This approach is more robust in photometrically
challenging scenarios than conventional active depth sensors.

5.4 Physical Conditions for Self-Supervised
Polarimetric Pose Prediction

The primary objective of S2P3 is to achieve instance-level 6D object pose prediction without
the dependency on annotated real data. To realize this goal, we propose a teacher-student
training paradigm that leverages pre-training on synthetic data and incorporates pseudo-labels
generated by the teacher network during self-supervision, as illustrated in Fig. 5.1. Through
the integration of the novel invertible physical model, S2P3 harnesses the complete spectrum
of geometric data encoded within polarimetric images.

5.4.1 Network Architecture

S2P3, comprising a teacher network (cf. Fig. 5.2) characterized by a larger capacity and a
lightweight student network (cf. Fig. 5.3), is presented in Fig. 5.4 as a schematic overview.
Both of these networks undergo pre-training on synthetic data. The teacher network plays
a crucial role in providing pseudo labels for real data, thereby guiding the self-supervised
learning process of the student network.

The detailed architecture of S2P3 shows essential extensions, modifications, and significant
design considerations in contrast to established teacher-student training paradigms within the
area of 6D object pose estimation [163]. These aspects are detailed in the subsequent sections
and are substantiated by experimental ablations discussed in the experiments section.

As depicted in Fig. 5.4, the input polarization images undergo the same forward physical model
employed in PPP-Net in the previous chapter. This process is utilized to derive polarimetric
properties, specifically the AoP φ, the DoP ρ, and a collection of geometrical priors under
varying assumptions regarding the reflection type, which may be di!use or specular.

5.4.1.1 Teacher Network

Inspired by the architectural framework of PPP-Net from the previous chapter, we introduce our
polarimetric network, which features an extended di!erentiable renderer, designed to act as
the teacher network within S2P3 (as illustrated in Fig. 5.2). Within this network, polarimetric
intensity inputs and geometrical shape priors are channeled through distinct input heads,
subsequently processed by an explicit decoder to yield predictions for various components:
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Fig. 5.2 S2P3 Teacher Network: The network takes as input the shape priors and polarimetric representations,
which are derived from the analytical physical model applied to four polarized images. Before retrieving
the 6D object pose, the network makes predictions for intermediate geometrical representations. Subse-
quently, a di!erentiable renderer is employed, utilizing the predicted pose to generate a rendered normal
map and object mask.

an object mask M̃t , an object normal map Ñt , and dense correspondences represented as a
normalized object coordinate map M̃x yzt

.

The spatial and shape correlations between M̃x yzt
and Ñt are then utilized as inputs to an object

pose estimation module [165]. In this module, the predicted rotation vector is parameterized
in the form of allocentric continuous 6D representation [195], while the predicted translation
is encoded as a scale-invariant vector [98]. These parameters are subsequently transformed
into standard forms: a rotation matrix R̃t ⇒ R3→3 and a translation vector t̃ t ⇒ R3. The collective
outcome is denoted as the final pose, P̃t = [R̃t | t̃ t].

We employ a di!erentiable renderer to derive pixel-wise geometrical pseudo labels from the
predicted pose. This renderer takes as input the object’s CAD model and P̃t to generate an
object mask M̃R

t and an object normal map ÑR
t . All the predicted and rendered quantities serve

as weak pseudo labels for the student network.

5.4.1.2 Student Network

We introduce a lightweight student network, di!erent to Self6D++ [163], which does not
feature an explicit geometric decoder. In our approach, the network directly regresses the
predicted pose for the student, denoted as P̂s (as illustrated in Fig. 5.3). This design choice
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Fig. 5.3 S2P3 Student Network: In contrast to the teacher network depicted in Fig. 5.2, the student network,
adopts a more lightweight architecture by omitting the explicit decoding of predicted intermediate
geometric representations.
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not only facilitates faster inference but also maintains a high level of accuracy. Our ablations,
discussed in Table 5.4 later, a"rm the superiority of our student network design.

The teacher network encompasses approximately 5.5 million weights, whereas our lightweight
student does not require an explicit decoder, reducing the network to around 5 million weights.
Although the reduction in the number of parameters may not be significant, the gain in in-
ference speed and pose prediction accuracy is substantial. We compare this design later to
the approach in Self6D++ [163], where the student network mirrors the teacher but omits a
subsequent pose refiner.

Our student network converges towards superior predictions without the redundant explicit
prediction of intermediate geometric representations, due to our proposed self-supervision
mechanism. Consequently, the output exclusively contains the predicted pose of the student,
P̂s. To establish the connection between these predictions and the geometric and polarimetric
properties, we employ a di!erentiable renderer to generate an object normal map N̂s and an
object mask M̂s based on P̂s, analogous to the teacher network. Polarimetric properties are an-
alytically derived from the normal map. We elaborate on how this polarimetric representation
of geometric information is utilized in a self-supervised loss term.

5.4.2 Physics-Induced Self-Supervised Training Scheme

As previously elaborated, polarimetric images encompass valuable information we provide as
explicit representations to the network, allowing it to learn neural geometric encodings. This
section outlines how these representations are leveraged and integrated into our physically
induced self-supervised framework. The self-supervision is integrated through two aspects:
firstly, through the provision of implicit and explicit weak pseudo-labels generated by the
teacher network, and secondly, by establishing a direct coupling, ultimately returning to the
input polarization information of the pipeline.

5.4.2.1 Loss Formulations

Our proposed optimization scheme encompasses two complementary paradigms (cf. Fig. 5.4).
The first paradigm involves the transfer of knowledge from the pre-trained teacher network
to the student network in the form of weak labels for the pose P̃t and associated object shape
information {M̃t , Ñt , M̃R

t , ÑR
t }. We refer to this aspect as the pseudo label loss, denoted as

⇐pseudo. The second paradigm leverages the inverted physical model to optimize the student’s
pose prediction P̂s using raw polarization data within our physical loss term, denoted as⇐physics,
which will be detailed below.

Given our objective of training the student network on real data without access to ground
truth labels, the teacher network assumes the role of a pseudo ground truth provider. The loss
terms provided by the teacher network are collectively denoted as ⇐pseudo, comprising a direct
pose loss denoted as ⇐pose and a geometrical loss denoted as ⇐geo.
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Fig. 5.4 S2P3 Pipeline: Our proposed teacher-student training scheme utilizes four polarization images captured
under varying polarization filter angles and polarimetric and geometrical representations derived from
the physical model as inputs for both the teacher and student networks. During training on real data,
the student network is optimized not only for the pseudo labels generated by the teacher network,
denoted as Lpseudo (consisting of Lpose and Lgeo, but also by including a physics-based loss term, denoted
as Lphysics. This additional loss term minimizes the discrepancy between the DoP ρ calculated by the
physical model and the predicted DoP ρ̂ derived from the inverted physical model. During the inference
stage, the lightweight student network exclusively predicts direct pose estimates, as indicated by the
gray background color.

For the pseudo pose loss ⇐pose, we employ the pose predicted by the teacher network P̃t as
the pseudo ground truth. We apply a Point-Matching loss [97] to quantify the alignment
between:

⇐pose = avg
x⇒≃
↔(R̃t x + t̃ t)↓ (R̂s x + t̂s)↔1. (5.7)

For the geometrical loss term, we choose pseudo labels from two sets of geometrical infor-
mation, namely the predicted geometrical representations {M̃t , Ñt} and the rendered geomet-
rical representations {M̃R

t , ÑR
t }. We make this distinction because the predicted geometrical

representations are more likely to encode the correct pose information, leading to accurate
alignment on the image plane. However, these predictions may not be pixel-perfect in terms of
geometrical meanings. Conversely, the rendered representations exhibit flawless geometrical
meanings but may introduce incorrect underlying pose information if the predicted pose P̃t

deviates from the ground truth pose.

To leverage the accurate underlying pose information from the predictions and the precise
geometrical meanings from the renderings, we introduce a misalignment coe"cient δ. This
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coe"cient is calculated and normalized based on the discrepancy between the predicted mask
M̃t and the rendered mask M̃R

t . Suppose δ falls within a predefined threshold r, indicating that
the teacher’s predicted pose is reliable. In that case, we select the rendered representations
{M̃R

t , ÑR
t } as the geometrical pseudo ground truth to guide the student network. Otherwise,

in cases where the large misalignment suggests a significant deviation of P̃t from the ground
truth pose, we down-weight the pseudo pose loss ⇐pose by a factor of ϑ = (1↓δ).

Finally, the pseudo label loss is defined as follows:

⇐pseudo = ϑ1⇐pose +⇐geo, (5.8)

where the geometrical loss is combined of a mask loss and a normal loss as:

⇐geo =⇐mask +⇐normals, (5.9)

where we take the L2-Loss for ⇐mask, and the cosine-similarity loss for ⇐normal .

Physical Constraints In order to facilitate self-supervision through the invertible physical
model, we utilize the rendered geometric normal map N̂s of the student as an input to compute
analytical di!use and specular DoP, denoted as {ρ̂d , ρ̂s}, in accordance with Equation 5.6. This
approach allows us to derive training signals directly from the raw DoP ρ extracted from real
polarization images.

To leverage the inherent physical processes of polarimetric imaging, our physical loss ⇐physics

incorporates a pixel-wise minimum selection mechanism for di!use and specular solutions,
inspired by the work of Verdie et al. [161]:

⇐physics = min
x⇒{ρ̂d ,ρ̂s}

↔ρ ↓ x↔1. (5.10)

To mitigate the potential domain gap between the analytically derived intensity map and real
polarimetric images, as discussed in [161], we formulate the loss function directly based on
polarimetric properties rather than polarimetric intensities. Consequently, the student’s output
is fine-tuned to align with the raw Degree of Polarization (ρ) obtained from real polarization
images.

The overall loss inlcudes information from both the teacher network and the raw data, defined
as follows:

⇐ =⇐pseudo +⇐physics. (5.11)

5.4.3 Training Procedure

Our training approach for S2P3 is structured into two distinct phases: "Synthetic Pre-Training"
using rendered data and "Self-Supervised Training on Real Data."
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5.4.3.1 Synthetic Data Generation

Given a CAD model of an object, we employ random sampling of camera locations situated
on its upper hemisphere for rendering. To enhance the realism of the rendered images and
minimize domain discrepancies, we incorporate various backgrounds with diverse textures
and lighting positions using the Mitsuba2 renderer [116]. This results in the generation of
200 to 800 sets of polarization images for each object.

We provide visual representations of our synthetic dataset from various viewpoints, as depicted
in Fig. 5.5. These illustrations showcase the diversity of sampled poses, encompassing objects
with varying photometric complexity, and o!er insights into their appearance within the images.
The synthetic dataset is used for pretraining teacher and student networks. In this dataset,
we generate four polarimetric images with distinct polarization filter angles, mirroring the
camera configuration utilized in the real setup.

5.4.3.2 Synthetic Pre-Training

In this phase, the teacher and student models undergo pre-training with supervision based on
6D pose information from synthetic data. This stage employs a dual-component loss function:
an L1 loss for translation and a point matching loss for rotation. Notably, the di!erentiable
renderer is not used in this phase. Pre-training typically spans 4 to 5 hours per object. Following
this, the self-supervised phase, which is more computationally demanding, requires about 10
hours per object.

Fig. 5.5 Synthetic Dataset: We present samples of objects with diverse photometric complexities, depicted from
various viewpoints.
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5.4.3.3 Self-Supervised Training on Real Data

We apply our method to a specific data split from the instance-level 6D pose estimation dataset
described in the previous chapter, featuring objects with diverse photometric characteristics.
For training, we sample approximately 15%↓20% of the total data per object (200-300 sets of
real polarimetric images) and allocate the remainder for testing (1000-2000 image sets). To
minimize domain shift and enhance the e!ectiveness of self-supervision, we ensure that the
pose distribution in the rendered synthetic data closely mirrors that in the real data. During
processing, the predicted bounding box isolates the object of interest and scales it to 256→256
for input into the networks. The predicted object mask is then used in the physical model
to generate object-specific polarimetric parameters and shape priors, which are crucial for
accurate and robust pose estimation.

5.4.3.4 Implementation Details

Our model is implemented using PyTorch [121] and trained on an NVIDIA 2080 GPU. The
training process is conducted with the ADAM optimizer [85] on a standard desktop PC with
an Intel i7 CPU processor and 32GB of RAM. We employ a customized object segmentation
network to avoid reliance on ground truth pose-related information in real data. This network
generates pixel-wise object labels based on polarimetric inputs, allowing us to derive object
bounding boxes without knowledge of the ground truth pose. The segmentation network
is initially trained on synthetic data and subsequently used to predict object masks on real
data, which are further converted into bounding box information. These predicted bounding
boxes enable a dynamic zoom-in strategy for both the teacher and student networks, similar
to the approach used in PPP-Net [42]. Specifically, we crop the image region containing the
target object and resize it to 256→ 256 for network input. The predicted mask helps filter out
irrelevant information when computing physical priors.

Training of the teacher and student networks follows a two-phase process. Initially, both net-
works are trained on synthetic data with full supervision. Subsequently, the teacher-student
training scheme is executed on real data. We employ the di!erentiable renderer from Py-
Torch3D [129] and customized shading functions to generate the required object geometrical
representations. To expedite the render-and-compare training approach, we render objects
on a cropped and zoomed-in image plane of dimensions 256→ 256. The camera intrinsics for
each image are consistent with those used during the dynamic zoom-in operation.

For both the pre-training and self-supervised training stages of the teacher and student net-
works, we set the number of epochs to 100 for each object, individually, for both synthetic and
real data. The initial learning rate is established at 1→ 10↓4 and is halved every 25 epochs.
A batch size of 8 is utilized during pre-training, while a batch size of 4 is employed for self-
supervised training. Regarding the network architecture, we employ ResNet-34 [56] as the
encoder backbone for polarimetric and geometric feature extraction in both networks.
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Fig. 5.6 Real Dataset: Samples of objects are depicted from various viewpoints. The rendered objects utilizing
ground truth pose illustrate the texture rendered in white color.

5.5 Experimental Results

We extensively evaluate and conduct ablations using the instance-level polarimetric 6D pose
dataset introduced in the previous chapters, where our supervised PPP-Net serves as a strong
baseline for comparison outperforming other state-of-the-art supervised methods, including
RGB-only [165] and RGB-D [57] approaches. We provide detailed quantitative results on real
data and perform extensive ablations on di!erent loss terms and modalities. Our experiments
specifically investigate the influence of polarimetric physical cues in a self-supervised scheme
on objects of varying photometric complexity for instance-level 6D pose prediction. Both
polarimetric images and self-supervised schemes are relatively unexplored in 6D pose estima-
tion. Therefore, we consider the supervised PPP-Net and the self-supervised Self6D++ [163],
trained on RGB and RGB-D data respectively, as solid baselines for comparison.

Self6D++ [163] represents the state-of-the-art method in self-supervised 6D object pose
estimation with RGB-D information, consistently outperforming other baselines by a significant
margin [147, 164]. As such, it provides a valid benchmark for evaluating and justifying the
improvements introduced by our method. Similarly, PPP-Net already outperforms state-of-the-
art RGB-only methods, especially on photometrically challenging objects, making it a suitable
representative of RGB-only methods as a strong baseline for our experiments.

In Fig. 5.6, we showcase examples from our real polarimetric dataset with annotated object
poses. These samples illustrate the high quality of our data annotation, as evidenced by the
objects rendered using ground truth pose labels. Additionally, the objects depicted in white
color rendering, indicate their textureless nature. This characteristic of the dataset aligns well
with our motivation, which intentionally omits the requirement for color texture supervision
in the learning process.

For non-symmetrical objects, the results are assessed using the widely adopted Average Dis-
tance of Distinguishable Model Points (ADD) metric [60]. In this metric, a threshold equiv-
alent to 10% of the object’s diameter is employed to determine the average deviation of the
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transformed model points. For symmetric objects, the evaluation employs the Distance of
Indistinguishable Model Points (ADD-S) metric [63], which measures the average deviation
to the closest model points.

On a desktop computer equipped with an Intel i7 CPU at 4.20 GHz and an NVIDIA 2080
GPU, our student network requires approximately 7.3 milliseconds to infer the 6D pose for
a single object from a 512→ 612 image. This represents an improvement in speed of around
30% compared to the teacher model. Furthermore, the preprocessing steps for calculating
the physical priors take 13.0 milliseconds, and the object detection process requires 15.4
milliseconds.

5.5.1 Baseline Comparisons

S2P3 introduces a novel approach for self-supervised 6D object pose estimation by leveraging
polarimetric information. It specifically addresses the challenges posed by photometrically
complex objects where conventional self-supervised RGB-D methods may struggle due to in-
herent sensor data artifacts. Additionally, supervised approaches, whether RGB-only or RGB-P,
such as PPP-Net, would require a substantial amount of annotated real data, making them less
practical.

Our experimental design is intentionally tailored to comprehensively analyze the e!ectiveness
of multi-modal self-supervision using physical constraints, loss functions, and various architec-
tural and design choices within the teacher-student framework. This approach allows us to
gain valuable insights into self-supervised polarimetric 6D pose estimation.

In our evaluation, we compare S2P3 against PPP-Net on our dataset split, serving as an ex-
ceptionally strong supervised baseline. This analysis helps us understand the impact of self-
supervision, considering that PPP-Net has already demonstrated superior performance com-
pared to other state-of-the-art RGB-only methods. Additionally, we evaluate S2P3 against
Self6D++ [163], a state-of-the-art self-supervised RGB-D method widely recognized on stan-
dard benchmark datasets. For visual results and further insights, please refer to Figs. 5.7, 5.8
and Figs. 5.9, 5.10, which showcase qualitative results, including object occlusions.

We demonstrate the e!ectiveness of our self-supervision pipeline through quantitative results
presented in Tab. 5.1. Note that PPP-Net, which is trained on annotated real data, shares
the same network architecture as our teacher model. However, in our full model S2P3, we
refrain from supervised training of the teacher on real data. Instead, we pre-train it exclusively
on synthetic data, after which the teacher’s weights are frozen, and it exclusively provides
weak pseudo-labels for the teacher-student scheme on real data. Our S2P3 model consistently
outperforms the self-supervised Self6D++ RGB-D method [163]. Self6D++ is trained and
tested on our dataset, utilizing RGB-D information from the Realsense L515 sensor. It performs
comparably to the fully supervised upper-bound baseline for objects with high photometric
complexity.
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Fig. 5.7 S2P3 Qualitative Results: Before and after self-supervision. The projected bounding boxes in blue,
red, and green represent the ground-truth 6D object poses, the results before and after applying self-
supervision, respectively.

Fig. 5.8 S2P3 Qualitative Results: Zoomed-in from Fig. 5.7. Before and after self-supervision. The projected
bounding boxes in blue, red, and green represent the ground-truth 6D object poses, the results before
and after applying self-supervision, respectively.

Fig. 5.9 S2P3 Qualitative Results with Occlusions: Before and after self-supervision. The projected bounding
boxes in blue, red, and green represent the ground-truth 6D object poses, the results before and after
applying self-supervision, respectively.

5.5.2 Ablation Studies

Our evaluation includes a series of ablation studies designed to dissect and understand the
various aspects of our model. We analyze each component of our loss function, especially
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Fig. 5.10 S2P3 Qualitative Results with Occlusions: Zoomed-in from Fig. 5.9. Before and after self-supervision.
The projected bounding boxes in blue, red, and green represent the ground-truth 6D object poses, the
results before and after applying self-supervision, respectively.

Tab. 5.1 S2P3 Quantitative Results: The average recall of the ADD(-S) metric is reported for various objects
with increasing photometric complexity. These results are compared with the performance of RGB-D
self-supervised Self6D++ as presented in [163] and fully supervised PPP-Net as presented in the previous
chapter.

Methods Training Cup Fork Knife Bottle Mean

PPP-Net Supervised 91.4 91.7 90.0 89.4 90.6

Self6D++ Self-Supervised (RGB-D) 68.4 14.3 17.8 33.5 34.0

S2P3 (Ours) Self-Supervised (RGB-P) 93.8 72.4 78.4 78.2 80.7

focusing on the role of our physically-induced self-supervised loss. This analysis helps highlight
each loss component’s contributions to the model’s overall performance. We then examine how
well the isolated student and teacher networks alone perform on real data when trained on
synthetic data in a supervised manner. This comparison helps us understand the e!ectiveness
of our S2P3 training, particularly the benefits of combining supervised training on synthetic
data with self-supervision on real data. We further explore whether a lighter-weight network
model can match or surpass the performance of a larger model when employed as student
network when refined with real data. This aspect assesses the necessity of a small or large
student network and whether our approach of directly regressing the 6D pose for the student is
advantageous. We also investigate the relative importance of depth information compared to
polarimetric data to analyze which kind of data contributes more significantly to the model’s
accuracy and robustness in 6D pose estimation.

5.5.2.1 Ablation on Loss Terms

We investigate the influence of various loss terms through a series of experiments where we
exclude specific loss terms during the self-supervision stage, and we summarize the results in
Tab. 5.2. Our findings underscore the critical role of direct geometrical point matching loss in
the self-supervision process, denoted as ⇐pose. Omitting this loss, which enforces alignment
between the student’s predictions and the weak pseudo-labels provided by the teacher, leads
to a notable risk of training divergence. Furthermore, our physically-induced self-supervised
loss, ⇐physics, derived from our invertible physical model, demonstrates a substantial impact
on training outcomes comparable to geometrical supervision signals from the teacher network,
such as ⇐normal and ⇐mask. This indicates that the real polarimetric images capture robust un-
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Tab. 5.2 Ablation on Loss Terms: Average recall of ADD(-S) metric is reported.

Methods Cup Fork Knife Bottle Mean

w/o ⇐pose 6.8 0.2 2.3 0.6 2.5

w/o ⇐physics 71.8 72.1 70.8 74.4 72.3

w/o ⇐normal 87.5 61.0 67.3 74.9 72.7

w/o ⇐mask 89.9 64.9 70.1 72.7 74.4

S2P3 (Ours) 93.8 72.4 78.4 78.2 80.7

derlying object shape information, which seems more beneficial than the output produced by
the di!erentiable renderer. Ultimately, the overall model performance attains the highest accu-
racy metrics across all objects with varying photometric complexity when all loss components
are considered, as indicated in the last row of Tab. 5.2.

These findings underscore the critical role of the teacher network’s weak labels in guiding
the student network’s pose predictions. One possible explanation for this behavior is that
without the inclusion of⇐pose, the di!erentiable renderer lacks essential constraints, potentially
leading to outputs with pose predictions that fall outside the field of view. Introducing dense
supervision for appearance and geometric representations following di!erentiable rendering
further enhances the network’s overall performance. Substantial improvement in pose accuracy
is achieved through our proposed self-supervised physically-induced loss formulation.

The impact of self-supervision is also evident in our qualitative results, as illustrated in Fig. 5.7.
The projected bounding boxes in green exhibit better alignment with the ground truth (blue)
after the application of self-supervision, in contrast to predictions from the pre-trained teacher
(red). Additionally, Fig. 5.9 showcases results for scenarios in which parts of the object, such
as the fork and knife, are occluded.

5.5.2.2 Ablation on Domain Shift - S2P3’s Self-Supervision

Table 5.3 provides insights into the performance of individual student and teacher networks
trained separately, a scenario distinct from our integrated S2P3 training scheme. This training,
conducted without the di!erentiable renderer, focuses on supervised pose estimation similar to
the synthetic pre-training phase (i.e., the synthetically pre-trained networks correspond to the
numbers of the lower part of Tab. 5.3 without self-supervision). The training is di!erentiated
based on whether it occurs on real or synthetic annotated data, with all testing carried out on
real data.

The results reveal that student and teacher networks exhibit decreased performance on real
data when their training is limited to synthetic data. This decline results from the domain
shift between synthetic and real-world environments. Notably, the teacher network, which
includes a dedicated decoder and explicit intermediate geometrical representations (identical
to PPP-Net [42] and marked with † in the table), consistently outperforms the smaller student
network in both training scenarios.
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Tab. 5.3 Domain Shift and S2P3’s Self-Supervision: This table presents the average recall of the ADD(-S)
metric for various objects, showcasing a spectrum of photometric complexities. The performance of both
the student and teacher networks is evaluated when trained separately under supervised conditions on
either real or synthetic data, with all testing conducted on real data. Additionally, the complete S2P3

pipeline, which includes synthetic pre-training followed by self-supervised training of the student on
non-annotated real data, is compared for context. In this table, "Teacher †" represents the performance
benchmark, being equivalent to PPP-Net [42], and "Student -" reflects the S2P3 performance prior to the
implementation of our self-supervision approach.

Configuration Supervised Self-Supervised Tested on Cup Fork Knife Bottle Mean

Student Real - Real 86.4 88.0 91.1 80.4 86.5

Teacher † Real - Real 91.4 91.7 90.0 89.4 90.6

Student - Synthetic - Real 53.7 64.4 46.1 47.5 52.9

Teacher Synthetic - Real 72.3 75.0 67.3 76.2 72.7

S2P3 (Ours) Syn. (Pre-trained) Real Real 93.8 72.4 78.4 78.2 80.7

However, when implementing our full S2P3 pipeline, where the student is now trained in a self-
supervised manner on real data, and the teacher’s weights are fixed, the results are impressive.
Thanks to our self-supervision paradigm, this performance is achieved without training on real
image annotations. Noticably, S2P3 even surpasses the fully supervised training on real data
in some cases and achieves comparable results to the fully supervised PPP-Net.

A notable observation is that the self-supervision in S2P3 enhances the performance compared
to the synthetically pre-trained student network. While this trend is consistent across all objects,
the improvement is less pronounced for the fork, potentially due to significant occlusions in
the majority of its data (cf. Figures 5.9 and 5.10 where the fork is inside the cup).

5.5.2.3 Ablation on Network Architecture - Student Exchange

We explore the potential benefits of using a lightweight student network for faster inference.
To understand the impact of a more complex network architecture, we replace the student
network in S2P3 with the architecture typically used for the teacher network (as depicted
in Fig. 5.2) instead of the one shown in Fig. 5.3. This substitution allows us to analyze
the influence of a larger network for the student, complete with a dedicated decoder and
intermediate geometrical representations.

Our analysis reveals that while the larger student network with intermediate geometrical
outputs shows advantages during pre-training in a supervised setting, these outputs can com-
plicate the optimization process during self-supervised learning of the 6D object pose. Tab. 5.4
indicates that the lightweight student network (Our Student) actually outperforms the larger
student network (Large Student) after fine-tuning on real data with our teacher-student train-
ing scheme and self-supervision through physical constraints ⇐physics. The larger student
network, with its additional parameters and intermediate outputs, faces more challenges in
converging e!ectively. However, the application of physical constraints significantly enhances
its performance after self-supervision (cf. Large student with None and with Self-Supervision).
Overall, the ablation studies demonstrate that a lightweight student network can achieve su-
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Tab. 5.4 Ablation on Network Architecture: A comparative analysis of various student network architectures is
summarized, specifically contrasting our smaller student network design against a larger student archi-
tecture equivalent to that of the teacher. Our self-supervised student network configuration consistently
delivers the best performance across all objects. The comparison is based on the average recall of the
ADD(-S) metric.

Config Self-Sup. Cup Fork Knife Bottle Mean

Our Student None 53.7 64.4 46.1 47.5 52.9

Large Student None 72.3 75.0 67.3 76.2 72.7

Our Student !(S2P3) 93.8 72.4 78.4 78.2 80.7

Large Student ! 88.6 55.9 69.4 77.8 73.0

perior performance compared to a larger network after being fine-tuned on real data within
our self-supervised scheme.

5.5.2.4 Ablation on Modalities

RGB-Texture Supervision The rendered object’s texture remains white for objects that lack
texture or are transparent, as these objects do not possess color information. Consequently,
this simplifies the RGB-texture loss in our pipeline, essentially reducing it to the mask loss. As
a result, we eliminate the necessity for texture rendering and instead leverage the inherent
physical properties of polarized light.

Depth Supervision To assess the significance of precise and dependable geometric represen-
tations in the context of 6D object pose estimation, we train our pipeline using depth maps
obtained from a direct time-of-flight (D-ToF) sensor. We then compare this approach with our
polarimetric S2P3 method, which employs our physically-induced self-supervised loss.

For this purpose, we introduce an additional loss term into our network while keeping almost
all other components unchanged. Specifically, we extend the capabilities of the student net-
work’s di!erentiable renderer to generate depth maps DR based on the predicted pose P̂s. We
then employ a chamfer distance loss ⇐chamf er , which measures the dissimilarity between the
point cloud PR obtained from back-projecting the rendered depth DR and the point cloud P
obtained from back-projecting the depth map in the polarization camera coordinate system.
This additional loss term helps optimize the alignment between the two point clouds without
requiring explicit 3D-3D correspondence registrations. The formulation is as follows:

⇐chamf er = avg
p⇒P

min
pr⇒PR
↔p↓ pr↔2 + avg

pr⇒PR
min
p⇒P
↔p↓ pr↔2. (5.12)

In addition to incorporating ⇐chamf er into the pipeline, we have excluded ⇐physics to ensure
a fair comparison of the e!ectiveness of direct spatial cues from depth and object shape cues
derived from polarimetric physical properties. The results, as summarized in Tab. 5.5, demon-
strate that depth cues can be advantageous when the quality is reliable, e.g., the perfor-
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Tab. 5.5 S2P3 Ablations on Depth Modality: Average recall of ADD(-S) metric is reported.

Methods Cup Fork Knife Bottle Mean

OURS(RGB-D) Chamfer 100.0 11.6 59.1 40.7 52.9

OURS(RGB-D) Pixel-wise 86.8 32.3 62.5 50.3 58.0

OURS(RGB-P) (S2P3) 93.8 72.4 78.4 78.2 80.7

mance for the photometrically simple cup object significantly improves with the introduction
of ⇐chamf er .

We perform additional ablation experiments employing a pixel-wise depth loss instead of the
chamfer distance loss, as presented in Tab. 5.5. These experiments illustrate that, even with
the pixel-wise depth loss, inaccurate depth information can introduce erroneous geometric
guidance into the pipeline, resulting in reduced performance, particularly on photometrically
challenging objects.

The intrinsic limitations of the depth sensor give rise to a significant degradation in depth qual-
ity [79]. Reflective and semi-transparent objects are particularly susceptible to inaccuracies
owing to their materials’ reflective and translucent characteristics. This issue is visually demon-
strated in comprehensive large-scale examples shown in Fig. 5.11. In these instances, the
pronounced signal derived from the depth alignment loss imparts erroneous spatial awareness,
resulting in poor pose prediction performance. Conversely, the shape of the object, encoded
within the polarimetric image modality, o!ers consistent geometric information for objects
with diverse material characteristics. This stability extends across a wide range of photometric
complexities, encompassing matte plastic cups, reflective stainless steel cutlery, and translucent
or transparent colored glass objects. The analytically obtained di!use and specular solutions
following the di!erentiable renderer exhibit stability across all objects under consideration.
These polarization properties are calculated using our invertible model and subsequently em-
ployed in the physically-induced self-supervision framework, as depicted in the top-left image
showing the raw DoP. It is essential to highlight that ⇐physics represents a pixelwise minimum
loss, considering both di!use and specular reflections.

5.6 Conclusion

The conducted experiments underscore the significance of reliable geometric priors in 6D ob-
ject pose estimation. In cases where the depth map’s quality is high and dependable, the
spatial loss term introduced from the source depth map may yield superior performance com-
pared to a purely object-shape-based optimization relying on polarization cues. Notably, the
current model is tailored for instance-level pose estimation and does not extend to generaliza-
tion for unseen objects during training. An intriguing avenue for future exploration involves
incorporating this concept into a category-level pipeline.

This chapter bridges two domains, uniting a hybrid model for polarimetric pose estimation
that seamlessly combines an invertible physical model with neural shape extraction through a
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self-supervised framework. Our approach, denoted as S2P3, tackles the problem of instance-
level 6D object pose estimation from polarimetric images without the need for annotated real
data. In our proposed pipeline, a teacher network, pre-trained on a limited set of synthetic
renderings, facilitates the convergence of a lightweight student network by providing weak
pseudo-labels. Additionally, using a di!erentiable renderer yields appearance and geometric
outputs, enabling e!ective self-supervision.

S2P3 outperforms methods that rely on depth measurements from active sensors, particularly
for challenging photometric objects. We achieve this by carefully integrating various design
choices within the teacher-student architecture and introducing our invertible physical model
for self-supervision, which leverages XoP properties instead of raw polarimetric data as done
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in [161], thereby reducing the domain gap. Our contributions are rigorously validated through
a series of comprehensive ablation studies.

Our experimental findings underscore the crucial role of self-supervision through geometric
and physical cues in the domain of 6D pose estimation, o!ering valuable insights into the
robustness of polarimetric images. These insights are particularly pronounced when dealing
with photometrically challenging objects, such as those lacking texture or exhibiting reflective
or translucent properties.
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6
Conclusion

This dissertation proposed novel paradigms, methodologies, and evaluation procedures for
enhancing robust learned 3D perception in challenging scenarios. A novel method ensuring
temporal consistency in depth estimation for outdoor scenes and a new metric to quantify
depth consistency was proposed. The dissertation also focused on creating accurate datasets
for analyzing depth sensor limitations, whose artifacts a!ect di!erent 3D vision tasks, like
depth estimation, novel view synthesis, or 6D object pose estimation. The study also explored
integrating polarization information, showing its e!ectiveness in challenging scenarios. It
led to a novel 6D object pose estimation approach extended to self-supervision through an
invertible physical polarimetric model.

The first chapter presented TC-Depth, which focused on self-supervised depth estimation from
monocular camera ego-motion in a challenging environment, emphasizing temporal consis-
tency. This method incorporated a spatial-temporal attention mechanismwith robust geometric
loss functions and a novel masking scheme. The approach was validated through experiments
on standard datasets like KITTI and Cityscapes, where it outperformed existing methods in
depth accuracy and temporal consistency. The Temporal Consistency Metric (TCM) was pro-
posed as a new evaluation benchmark for depth consistency. Ablation studies highlighted the
significance of each component, especially the geometric consistency loss and spatial-temporal
attention mechanism, establishing TC-Depth as a significant advancement in self-supervised
monocular depth estimation.

The subsequent chapter delved into creating a comprehensive multi-modal dataset including
di!erent depth sensors and polarization, crucial for analyzing sensor-specific artifacts in depth
estimation, especially in scenarios involving reflective, textureless, or transparent materials.
The first part of this chapter outlined the proposed dataset acquisition process, focusing on
ensuring high accuracy for the depth ground truth data and object pose annotations. The sec-
ond part provided a detailed analysis of various depth sensors, comparing their performances
against dense depth ground truth. This exploration was extended to multi-view scenarios
to study dense 3D vision tasks, including depth estimation and novel scene synthesis, using
RGB-only information or integrating depth sensor data. The chapter aimed to develop more
accurate and robust 3D perception methods for photometrically challenging environments.

The final chapters concentrated on integrating polarimetric data into 3D perception models.
This integration was particularly e!ective for objects that conventional RGB and depth sensors
struggle with due to their photometric properties. The research demonstrated that polarimetric
data could o!er robust shape and surface information, enhancing the ability to learn robust 6D
object pose estimation in the proposed Polarimetric Pose Prediction network, short PPP-Net. A
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significant contribution was the development of a hybrid pipeline that combined polarimetric
images with physical shape cues in a data-driven learning model.

The dissertation then explored leveraging polarimetric information for self-supervision, espe-
cially for 6D object pose estimation. An invertible physical model for polarimetric imaging was
developed, allowing the derivation of polarimetric properties from geometric normal maps.
This led to the creation of the Self-Supervised Polarimetric Pose Prediction pipeline (S2P3),
which utilized polarimetric data to enhance pose estimation accuracy and robustness, particu-
larly for objects with complex photometric characteristics. This approach avoids the need for
annotated real data.

This dissertation marks a significant advancement in robust learned 3D perception, addressing
critical challenges in depth estimation and object pose prediction. It introduces a temporally
consistent monocular depth estimation pipeline, an in-depth analysis of depth sensors, and
the novel integration of polarimetric data for 6D object pose estimation, setting new standards
in accuracy and robustness for learned 3D perception. These breakthroughs open promising
avenues for future applications in autonomous systems, robotics, and augmented reality, and
enables innovative uses of sensor fusion and self-supervision in complex environments.
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