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Abstract
Federated computing (FC) is an emerging privacy-preserving computingmodel. It consists
of federated analytics and federated learning. Besides privacy enhancement, FC also
helps reduce network traffic compared to a centralized approach because the raw data
stays locally on each remote device. To mimic realistic conditions, we built a testbed of
physically distributed devices to investigate the resource requirements and scalability
challenges of FC systems. More devices participating in the process increase the systems’
total energy consumption. This increase is especially the case when combining FC with
methods such as differential privacy to boost privacy protection further. This work
highlights the challenges of applying FC concepts and techniques to energy informatics.
We conduct FC experiments on a high-frequency dataset capturing electrical signals
in an office environment, prediction of coolant temperature in battery electric vehicles
to protect semiconductor components from damage, and quantify trade-offs between
energy consumption and privacy in experiments conducted on our edge device testbed
consisting of 60 devices. Additionally, we offer a thorough analysis of the state-of-the-art
of FC systems.

This thesis aims to improve FC use cases in the context of energy informatics, quantifying
an FC system’s energy consumption and providing a taxonomy for FC systems to identify
trends and research gaps. Our findings highlight the potential of privacy-preserving ma-
chine learning (ML) for building management systems in an office environment. However,
working with unevenly distributed labels on remote devices increases complexity, and
three out of four ML architectures yield worse results when compared to a centralized
approach. We obtain similar results for a dataset coming from battery electric vehicles.
Additionally, we quantified the energy consumption of different FC systems. Their energy
demand increases linearly with the number of clients and quickly out scales the energy
consumption of a centralized ML pipeline when neglecting network traffic. All our
findings emphasize trade-offs between privacy and resource consumption. An increase in
privacy by leveraging FC and other privacy-enhancing, such as differential privacy, comes
at the cost of higher system complexity, resource allocations, and energy consumption.
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Zusammenfassung
Federated Computing (FC) nutzt Daten auf verteilten Systemen ohne direkt auf diese
zuzugreifen. Es besteht aus Federated Analytics und Federated Learning. Neben der
Verbesserung des Datenschutzes hilft es auch dabei den Netzwerkverkehr im Vergleich zu
einem zentralisierten Ansatz zu reduzieren. Die meisten FC-Experimente laufen auf einem
Gerät mit simuliertem Server und Clients. Wir haben eine Testumgebung mit physisch
verteilten Geräten aufgebaut, um die Ressourcenanforderungen und Skalierbarkeit von
FC-Systemen zu untersuchen. Je mehr Geräte an dem Prozess beteiligt sind, desto
höher ist der Gesamtenergieverbrauch des Systems. Dies ist insbesondere dann der
Fall, wenn FC mit Methoden wie Differential Privacy kombiniert wird, um den Schutz
der Privatsphäre weiter zu erhöhen. In dieser Arbeit zeigen wir die Herausforderungen
von FC im Kontext der Energieinformatik. Dazu gehören FC-Experimente mit einem
hochfrequenten Datensatz, der elektrische Signale in einer Büroumgebung erfasst, die
Vorhersage der Kühlmitteltemperatur in batteriebetriebenen Elektrofahrzeugen, um
Halbleiterteile vor Beschädigung zu schützen, und die Quantifizierung von Kompromissen
zwischen Energieverbrauch und Datenschutz in Experimenten, die in unserem Edge-
Device-Testbed, bestehend aus 60 Geräten, durchgeführt wurden. Darüber hinaus erstellen
wir in einem Survey eine Taxonomie für FC-Systeme, um Trends und Forschungslücken
zu identifizieren.

Unsere Ergebnisse zeigen das Potenzial von datenschutzfreundlichem maschinellem
Lernen (ML) für Gebäudemanagementsysteme in einer Büroumgebung. Allerdings erhöht
die Arbeit mit ungleichmäßig verteilten Labeln die Komplexität, und drei von vier
ML-Architekturen liefern im Vergleich zu einem zentralisierten Ansatz schlechtere
Ergebnisse. Ähnliche Ergebnisse erhalten wir für einen Datensatz über batteriebetriebe-
ne Elektroautos. Darüber hinaus haben wir den Energieverbrauch von verschiedenen
FC-Systemen quantifiziert. Ihr Energiebedarf steigt linear mit der Anzahl der Clients
und übertrifft schnell den Energieverbrauch einer zentralisierten ML-Pipeline, wenn
man den Netzwerkverkehr vernachlässigt. Alle unsere Ergebnisse zeigen, dass es einen
Kompromiss zwischen Datenschutz und Ressourcenverbrauch gibt. Eine Erhöhung der
Privatsphäre durch den Einsatz von FC und anderen Methoden zur Verbesserung der
Privatsphäre, wie z. B. Differential Privacy, geht mit einer höheren Systemkomplexität,
Ressourcenverbrauch und Energieverbrauch einher.
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1

Introduction

Businesses and public institutions are motivated to enhance their productivity, with
potential boosts manifesting in improved and expedited service offerings or the more
cost-effective manufacturing of goods. Innovation stands out as a key means to achieve
this goal. Every technology undergoes an innovation cycle; initially, the trade-offs
between research and development aimed at enhancing these technologies for generated
benefits are significant, but they gradually reach a plateau. Therefore, to heighten societal
productivity, it becomes crucial to fine-tune the performance of existing technologies
and introduce or develop new ones. A data-driven approach empowers stakeholders
across all fields to accomplish this. Harnessing data to refine design and decision-making
processes enhances the efficiency of existing methods or facilitates the creation of new
business models.

Generating, gathering, and processing data is necessary to fully utilize the potential of
data-driven business models. Many such business models depend on distributed Internet-
of-Things (IoT) devices, which monitor machines or offer connectivity (e.g., mobile
phones). Recently, the number of non-IoT devices has stayed more or less constant at
around 10.3 billion devices [1]. On the other hand, the proliferation of IoT devices is
projected to grow from 0.8 billion in 2010 to 30.9 billion in 2025 [1]. These remote and
distributed devices generate data and send it to a central server. This process stresses
central processing entities and the network due to a permanent increase in data volume

1



1.1. MOTIVATION

and complexity in pre-processing and evaluation.

Additionally, privacy concerns of policy-makers, customers, and business partners intro-
duce another level of complexity. Complying with legal constraints in such a fast-paced
and distributed environment is challenging. Therefore, this work focuses on leveraging
distributed data sources in a privacy-preserving fashion and decreasing its network and
energy footprint to reduce the increasing greenhouse gas (GHG) emissions of Information
and Communication Technologies (ICT). The increase in energy demand for data centers
rose by about 3 % from 2014 to 2020. Data centers consume about 200 TWh of electricity
or constitute about 0.8 % of global electricity demand. [2, 3]

This work addresses this fundamental shift towards increasingly data-driven business
models. We develop and benchmark privacy-preserving algorithms in public utilities and
mobility applications. In particular, this work focuses on deploying systems on physically
distributed devices to capture the real-world behavior of our algorithms concerning their
energy footprint and hardware utilization.

1.1 Motivation

Artificial intelligence and data-driven business models are reliant on data for their
functioning. Prominent data sources encompass machines (e.g., robots, engines, medical
equipment), IoT devices, and wearable or mobile phones. As of 2023, the proliferation of
IoT devices has reached approximately 20 billion, while global mobile phone numbers
are anticipated to rise from 14.02 billion in 2020 to 18.22 billion in 2025 [4]. These
devices actively monitor machinery, capture user interactions, and track service usage,
continuously collecting data on temperature, pressure, humidity, vibrations, current,
and various other physical properties. The escalating availability of sensors, log files,
images, and text contributes to an increase in infrastructure overhead for handling and
maintaining larger datasets. The datasets for training language and computer vision
models exhibit a linear increase over time, expanding from approximately 100 data points
in 1988 to a staggering 10 trillion in 2022 [5]. The transfer of all available data to a central
server or data center places significant stress on network resources. Figure 1.1.1 provides
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Figure 1.1.1: Average emissions for 13 natural language processing models on a logarithmic scale. [6, 7, 8]

a comprehensive overview of estimated GHG emissions associated with training large
language models on diverse datasets, contextualizing them with everyday activities. This
visualization underscores the burgeoning energy demand attributed to machine learning
(ML).

In addition to considerations of data generation, transportation, and evaluation, it is
imperative to comprehensively quantify the energy footprint encompassing the en-
tire data life cycle. The energy consumption induced by network activities has risen
significantly from 220 TWh in 2015 to 340 TWh in 2021 [9]. While video streaming
constitutes a predominant share of internet traffic, mitigating the ecological footprint
involves strategies such as reducing the transmission of images, text, or time series data
over the network. ICT span compute and peripheral equipment, encompassing local
area networks, telecommunication devices, networks, and data centers. Its contribution
to global GHG emissions and the world’s electrical energy consumption stood at 2 %
(2009) [10] and 4.7 % (2012) [11], respectively. The handling and processing of data are
becoming increasingly intricate due to the sheer volume of data and the prevailing trend
toward distributed data sources. The energy expended in moving data from its point
of origin to a database or processing unit is nontrivial. Simultaneously, computational
capabilities within IoT devices are on a consistent upward trajectory. For instance, the
first Raspberry Pi model 1b boasted a CPU frequency of 700 MHz, while the latest model
400 features a CPU frequency of 1.8 GHz and 8 times more memory [12]. The iPhone
series has witnessed a notable surge in CPU clock speed, progressing from 612 MHz
(iPhone 1, 2007) to 3.46 GHz (iPhone 14 Pro, 2022). Consequently, from both an economic
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and latency perspective, it becomes increasingly viable to leverage local resources rather
than transmitting data to more centralized and remote data processing facilities, such as
data centers.

Various entities can undertake the tasks of data generation and evaluation. A business,
for instance, may choose to sell its data to a broker or enlist the expertise of an external
data scientist to derive insights. A prevalent strategy involves the execution of a non-
disclosure agreement among all participating entities or the anonymization of data
before its dissemination to external parties. Nonetheless, the efficacy of such measures is
context-dependent. Certain scenarios necessitate a level of trust between stakeholders,
and there exists a potential risk of de-anonymization, especially when combining an
anonymous dataset with publicly available ones. For instance, Netflix movie ratings, even
when anonymized, could be partially de-anonymized by cross-referencing rankings and
timestamps with publicly accessible information in the Internet Movie Database [13].
Other instances involve the exploitation of anonymized internet usage patterns [14] or
location data [15, 16] to infer sensitive information about individuals.

Notable examples of legislation safeguarding sensitive information on a national level
include the General Data Protection Regulation (GDPR) in the European Union [17] and
the Personal Data Protection (Amendment) Act in Singapore [18]. In the United States,
various state-specific data protection laws, such as the Californian Consumer Privacy
Act [19], Colorado Privacy Act [20], Connecticut Data Privacy Act [21], and Virginia
Consumer Data Protection Act [22], exemplify regional efforts to regulate the handling of
personal data. While the degree of protection and the definition of sensitivity may vary
across these frameworks, they collectively share the goal of curtailing the uncontrolled
aggregation of data within a few entities.

Privacy concerns and regulatory constraints make it more challenging to deploy cen-
tralized pipelines due to legal risks, compliance efforts [23, 24], and a higher consumer
sensitivity. Governments worldwide have implemented regulatory constraints of varying
intricacy to address these challenges. Privacy-preserving techniques, such as Federated
Computing (FC), can help to tackle privacy concerns and simultaneously decrease network
traffic by shifting computational workloads to the devices that generate the data in the
first place. With FC, data scientists and other stakeholders try to unravel the contradiction
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80 %. [25]

between using distributed, privacy-sensitive data, adhering to regulatory frameworks,
achieving consumer needs, and reducing the ICT energy footprint. Figure 1.1.2 illustrates
the abstract idea of FC. It shows the trade-offs between privacy and transparency. Those
two metrics currently contradict each other. Increasing privacy subsequently reduces
transparency or the amount of generated insights. With privacy-preserving techniques
such as FC, it is possible to keep privacy levels high without interfering with transparency.

When distributing a copy of a dataset, the risk of losing control over it gives rise to a critical
concern referred to as the copy problem, situated within the domain of input privacy.
There is a risk of an uncontrolled creation of data copies when giving somebody a copy
of your data. Potential solutions include FC, encryption, legal frameworks, and secure-
multi-party computation. Employing data encryption ensures that access is restricted
to individuals possessing the corresponding key, thereby preventing the uncontrolled
dissemination of information. Legal frameworks play a crucial role in defining data usage
practices; however, enforcing these constraints poses significant challenges.

To further improve the privacy level of FC systems, it is possible to combine them with
other privacy-enhancing techniques from neighboring domains. The bundling problem
arises from potential information leakages that unintentionally reveal more information
than necessary due to the interconnectedness of data sources. For instance, checking
the age on an ID card also makes it apparent where that person lives. Therefore, it is
possible to get additional information, which is unnecessary to solve a given task, or to do
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backward inference to the input data based on the output. Differential Privacy (DP) stands
out as a widely adopted technique to address these concerns. This approach artificially
adds noise to a dataset without changing its statistical properties. This algorithm falls
into the output privacy domain and mitigates the bundling problems.

FC is not domain-specific and it is applicable in a wide range of use cases. This research,
however, concentrates on applications within the energy domain, encompassing areas
such as building, public utilities, and mobility. A broader term to encapsulate these
applications is energy informatics. It is a multidisciplinary field that leverages methods
from computer science, data analysis, energy technology, and energy economics to
address challenges in the design of energy systems. The overarching objectives of energy
informatics are centered on sustainability, affordability, and security in the operation and
optimization of energy systems.

Energy informatics encompasses awide array of applications, spanning energy generation,
transportation, storage, efficiency, and system optimization. Notably, the scope of energy
is not confined to electricity; it extends to various forms of energy, including thermal or
chemical energy. As both energy and IT systems undergo a transition towards increased
decentralization (with energy systems incorporating decentralized renewable resources
and IT systems evolving towards IoT scenarios), they share analogous characteristics in
terms of resource management and allocation.

1.2 Problem Statement

Working with data on distributed systems introduces challenges related to managing
devices, communication, and aggregating results. In such a system, each device may
observe different aspects, even when measuring the same metrics. Consider the example
of measuring vehicle velocity to identify driving patterns: one vehicle predominantly
operates in a city, while another primarily travels on highways. This discrepancy results
in biased datasets per client. Within FC, each device processes its data, and the number of
devices in an FC system varies widely, ranging from a few clients to multiple thousands.
Eventually, a server aggregates updates from all clients. However, each client’s data can
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exhibit a significant bias toward a specific label or event, creating a non-independent and
non-identically distributed (non-IID) scenario.

Merging client-specific models into a central model increases complexity due to potential
biases in the models. Combining biased models often leads to a less effective model
compared to a centralized approach. To address a decrease in model accuracy, two
strategies are commonly employed: selecting clients with similar label distributions or
adjusting the aggregation strategy on the server side. The subsequent sections delve
into the intricacies of accuracy issues in models trained on energy data and how the
distributed training of models impacts the overall energy consumption of the system.

1.2.1 Accuracy of Federated Computing

Currently, the majority of ML use cases deploy a centralized architecture. All clients
send their data to a central server, where data scientists pre-process and evaluate them.
Consequently, this architecture serves as the baseline for all published experiments. We
are among the first to investigate the impact of FA and FL on model accuracy for use
cases from the energy and mobility domain on physically distributed hardware. The
latter captures battery electric vehicles.

In general, model accuracy-related issues emerge from either an uneven distribution
of labels on the client side or the server aggregating the clients’ updates poorly. Other
potential causes for a decrease in model accuracy are FC systems enhancements. Those
are privacy-preserving techniques, such as DP or compression. However, in this work,
we limit the experiments to investigate the effect of non-IID data on model accuracy
mainly with pure FC systems, which consist of the minimum number of components,
such as client selection, aggregation, and communication. The experiments capturing
an FC system’s energy consumption also incorporate extensions such as DP, which is
computationally heavy.

FC use cases frequently encounter non-IID challenges. In our experiments, we draw
on datasets from the building and mobility sector, both characterized by highly biased
clients. The first dataset captures electrical signatures from various appliances and devices
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within an office environment. Offices consist of diverse devices, with personal computers,
lights, and USB chargers being prevalent. Meeting rooms, on the other hand, may have
additional equipment such as projectors or a designated space for printing. Training an FL
model in this office environment at the room level introduces highly biased models, and
merging them into a single model poses significant challenges. The dataset is inherently
non-IID.

The second dataset records multiple temperature metrics (e.g., ambient, inverter, and oil),
battery metrics (e.g., state-of-charge, current, and voltage of the high voltage system), and
movement-related metrics (torque, velocity) of battery electric vehicles. Each customer
operates a vehicle differently, resulting in a non-IID label distribution due to varied
driving styles and environments. Some vehicles may exclusively operate in regions with
constant ambient temperatures, while others traverse a broader range of temperature
conditions.

1.2.2 Energy Demand for Federated Computing

Privacy-preserving ML on distributed systems poses challenges concerning network
traffic and energy consumption. Such systems can have a heterogeneous pool of devices,
which might not be optimal for ML-specific tasks. Centralized servers in data centers
have an optimized cooling strategy and customized hardware for heavy workloads.
Additionally, workingwithmultiple devices instead of one increases the total management
overhead. Each device runs an operating systems, maintains its memory, and uses CPU
resources for other background tasks. Therefore, an FC system might consume more
energy for specific tasks than a central device. However, depending on the data set size, FC
requires less network traffic, reducing its associated energy consumption. It is challenging
to quantify network-related energy consumption due to its diverse architectures. The
number of hops a package takes to reach its final destination or the type of network
transmission (e.g., cable or mobile network with 2G, 3G, 4G, or 5G) affect data transfer’s
energy consumption. For example, 2G, 3G, and 4G mobile networks require about
15 kWh/GB, 1 kWh/GB, and 0.7 kWh/GB, respectively, whereas a fixed cable connection
requires about 0.08 kWh/GB [2].
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In our work, we neglect this energy footprint. Nowadays, new technologies should
quantify their energy footprint to avoid any long-term adverse effects. A higher energy
demand is neglectable when deploying and testing in a lab environment. When a new
approach finds its way into applications and its usage scales up, adjusting it to be more
energy efficient might be challenging. Therefore, it is paramount to know the energy
footprint of FC systems as early as possible to improve the FC framework’s underlying
architecture.

Knowing the energy footprint of services throughout the value chain of a product
becomes crucial to comply with frameworks such as the Environmental, Societal, and
Governmental framework [26]. It captures the impact of businesses on those three areas.
It helps customers and investors assess the level of responsibilities a company is taking,
and increases transparency. GHG emission is one part of this framework, consisting of
scope 1 to 3 emissions. Knowing how much a deployed FC system consumes helps to
comply with such a framework. The following list describes Scope 1 to 3 emissions and
provides an example. FC systems contribute to Scope 1 (server) and Scope 3 (clients)
emissions.

• Scope 1 emissions are GHG emissions released directly from a business (e.g., on-
premise servers consuming electricity).

• Scope 2 emissions are indirect GHG emissions released from the energy purchased
by an organization (e.g., power plant generating electricity for the server).

• Scope 3 emissions are indirect GHG emissions, accounting for upstream and
downstream emissions of a product or service, and emissions across a business’s
value chain (e.g., resources required to build the server).

1.3 Approach

FC requires a server and client architecture. It is possible to emulate such an environment
on one device. This approach is feasible when optimizing model accuracy. However, there
needs to be more attention on potential bottlenecks concerning network or throughput
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as well. Deploying an entire FC system on one machine lets the server and clients
communicate with each other via internal memory, which is faster than going over the
network. Such a mismatch between the execution speed on one device and the network
traffic between multiple devices is especially the case when using wireless connections.
To simulate more real-world scenarios, we built an IoT testbed. Given the growing
prominence of IoT devices, we identify suitable IoT devices, which are experiencing an
increasing market share, to establish a robust testbed. We constructed an initial testbed
comprising 48 Raspberry Pis and an expansion using 12 Jetson Nanos and 10 Orins. A
power-over-Ethernet (PoE) switch powers all devices in the testbed. This architecture
provides continuous power readings. We additionally emulate different networks settings
on those devices with netem. This tool allows to artificially change network throughput
and package losses.

The following sections describe in more detail how we tackle the problem of emulated
FC systems, how to cope with non-IID scenarios in the energy and mobility domain, and
how we measure the electricity consumption of FC systems.

1.3.1 Accuracy of Federated Computing

To improve the accuracy of FC models, we first implement a centralized reference that
achieves a desired performance metric. Second, we deploy multiple FC use cases with
different label distributions to identify the impact of aggregation algorithms on themodels’
performance. Those use cases are twofold. The first one assumes evenly distributed labels
over all participating clients. This results in similar models per client if the training runs
for enough rounds. The second FC use case runs with the actual distribution of the labels
without artificially altering it.

The initial step involves deploying a Federated Learning (FL) use case within the Non-
Intrusive Load Monitoring (NILM) domain, aimed at acquainting oneself with its inherent
characteristics and distinctive features. An essential part of this endeavor is the identifi-
cation of challenges inherent to FL, including instances where experiments primarily run
on a single device, which mimics an FL system. While this approach aims to enhance
ML performance, it introduces complexities in comprehending network and energy
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1. INTRODUCTION

consumption patterns, particularly when the system scales up with a more significant
number of clients. These challenges extend to client selection strategies, ML optimization,
and aggregation strategies.

1.3.2 Energy Demand for Federated Computing

In general, there are two approaches to measuring the electricity consumption of a piece
of hardware. Those are either hardware- or software-based. Figure 1.3.1 provides an
overview of their respective subcategories.

System monitoring strategies leverage external hardware such as power meters (mea-
suring the power supply unit) to measure an entire device’s energy consumption. This
approach needs to scale better due to the manual labor required to install those power
meters. Load disaggregation also leverages an external power meter. However, it tries to
identify unique patterns in the energy consumption profile that belong to a given task or
component (e.g., CPU and memory). For instance, instead of measuring all appliances in
a household individually, it is also possible to measure the power drawn at the main and
then disaggregate those measurements to an appliance level. Such an approach works
well for households or other use cases with distinct patterns. There are approaches to
applying this strategy to obtain energy readings of specific software artifacts. However,
they yield inaccurate results, so this strategy is not widely adopted. Another approach
to measuring the energy consumption of entire systems or specific software artifacts
is software-driven. The software runs in the background and tries to estimate energy
consumption instead of installing physical power meters. This strategy’s disadvantage is
lower accuracies compared to its physical counterpart. The error can be up to 40 % on a

System

Load Disaggregation

Energy Monitoring

Hardware Software

Profiling

Performance Counter

Figure 1.3.1: Strategies to measure the energy consumption of software.
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device level [27], whereas software-based power meters achieve an accuracy of up to 95 %
on a CPU or GPU level [28]. Software-based power meters indirectly measure energy
consumption via profiling, performance counters or by using on device hardware, such as
Running Average Power Limit (RAPL) for x86 architectures [29] or NVIDIA Management
Library physical (NVML) for GPUs [30]. Different profiling approaches exist to estimate
a device’s energy consumption [29]:

• Software-based prediction models leveraging for example CPU or GPU cycles in
combination or without readings from RAPL or NVML sensors,

• Device datasheet: Assuming full hardware utilization and getting the respective
maximum power drawn from the data sheet

Raspberry Pis have an ARM architecture, which currently does not support sensors
such as RAPL, and load disaggregation is not feasible. Therefore, we use external power
meters measuring the entire device’s energy consumption. Even though it is impossible
to identify the energy consumption of specific components (e.g., CPU, memory, network)
or processes with that approach. To get closer to the FC-induced energy consumption,
we first measure the energy consumption of an IoT device in idle mode and then subtract
it from the measurements during the experiments.

A crucial aspect of the research involves quantifying the combined impact of energy
and network consumption and assessing the scalability of FL both with and without DP
mechanisms. The insights garnered from this comprehensive study will be harnessed to
refine the FL use case, particularly its applicability in an automotive scenario. Additionally,
we aim to consolidate the findings of a literature research into a taxonomy describing
the fundamentals of FC systems. This summary will encompass the core building blocks
of such systems while addressing potential extensions and enhancements.

1.4 Contributions

The main contributions of our work about FC in the context of energy informatics are:
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1. INTRODUCTION

i. We investigate the effect of training data distributions and variations of model
training (early stopping, learning rate scheduler and aggregation strategy) on model
metrics. The dataset contains power readings (voltage and current), which come
from individual offices. Our results show that it is possible to train ML models on
non-IID data while achieving a model performance that can compete with a centrally
trained model.

ii. We investigate the impact of two FC approaches (FA and FL) on model transfer-
ability and hardware metrics for multiple vehicles with different engine types. The
computational power in vehicles is increasing, but with it the number of services
competing for them. We identified trade-offs between privacy, energy consumption,
and hardware metrics (CPU utilization, memory, storage, and network) by training
models of different complexities (linear regression and ML) on an IoT testbed to
emulate a vehicles’ available computational resources.

iii. We quantify the impact of different emulated networks (5 Mbit/s, 8 Mbit/s and 4G)
and privacy-enhancing techniques like DP on the energy consumption of an FL
system. We address deviations between a centralized ML approach and FL to get
a better understanding of potential trade-offs between energy consumption and
privacy. All experiments run from two clients with up to 47 clients, which shows
scalability issues with respect to an increasing energy consumption of the entire
systems due to an increase in client overhead and total training time, when using
the FL framework Flower.

iv. We evaluate the network on physically distributed edge devices and virtual machines
(VM) in the context of FC to highlight differences. Building and maintaining an IoT
testbed is time consuming. Therefore, we investigate if the network traffic of an FL
system deployed on virtual machines with respect to network traffic (package size
and number) is comparable to the measurements coming from an IoT testbed. Using
the Ethernet interface to measure network traffic between VMs gives a good estimate
of the expected network bandwidth consumption, but underpredicts the number of
messages by 94 %. Using the local loopback interface to measure network traffic on
one machine hosting multiple simulated clients does not give a good estimate for
the actual network traffic.
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1.5. ORGANIZATION

Parts of the content and contributions of this work have been published in:

• R. Schwermer, J. Buchberger, R. Mayer, and H.-A. Jacobsen. “Federated Office
Plug-Load Identification for Building Management Systems.” In: e-Energy ’22.
Virtual Event: Association for Computing Machinery, 2022, pp. 114–126. isbn:
9781450393973. doi: 10.1145/3538637.3538845

• R. Schwermer, R. Mayer, and H.-A. Jacobsen. “Energy vs Privacy: Estimating
the Ecological Impact of Federated Learning.” In: Proceedings of the 14th ACM
International Conference on Future Energy Systems. e-Energy ’23. Orlando, FL, USA:
Association for Computing Machinery, 2023, pp. 347–352. doi: 10.1145/3575813.
3597344

• R. Schwermer, E.-A. Bicer, P. Schirmer, R. Mayer, and H.-A. Jacobsen. “Federated
Computing in Electric Vehicles to Predict Coolant Temperature.” In: Proceedings of
the 24th International Middleware Conference Industrial Track. Middleware Industrial
Track ’23. Bologna, Italy: Association for Computing Machinery, 2023, pp. 8–14.
isbn: 9798400704277. doi: 10.1145/3626562.3626829. url: https://doi.org/10.1145/
3626562.3626829

1.5 Organization

The rest of the document is organized as follows. Chapter 2 presents our methodology
for building and deploying FC systems. It describes how FC works and highlights the
importance of knowing how much energy a distributed system consumes compared to
a centralized approach. We summarize the key achievements of each publication and
highlight the author’s contributions in Chapter 3. Chapter 4 discusses the results by
comparing our findings with the literature. Chapter 5 presents the conclusion and an
outlook for future work. Finally, Appendix A, B, and C show our published papers.
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2

Methodology

This chapter provides an overview of the relevant background information and presents
our methodology for developing FC systems in the context of energy informatics. Sec-
tion 2.1 describes all components of FC systems and how they work together. Additionally,
it provides information about the need to compare the energy footprint of FC systems
to currently adopted centralized approaches. Section 2.2 presents our methodology for
building and monitoring FC systems. It describes our testing infrastructure used for our
experiments.

All published work deals either with describing FC frameworks and quantifying their
energy footprint or how to apply them to the energy and mobility domain. The following
list gives a first overview of all publications and works:

• Paper I (see 3.1): FL on a dataset capturing electrical signals (current and voltage)
of devices in an office environment,

• Paper II (see 3.2): Quantifying the energy footprint of FL systems with its different
aggregation strategies and privacy-enhancing techniques, such as DP,

• Paper III (see 3.3): FL and FA deployed on simulated battery electrical vehicles to
predict its average coolant temperature while also quantifying its hardware and
energy utilization.
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2.1. BACKGROUND

2.1 Background

This thesis focuses on FC in the context of energy and mobility. Mechanical, electrical,
and process engineers continuously improve the performance and cost-efficiency of
components. However, some technologies (e.g., wind turbines and electric motors) reach a
state where such incremental improvements plateau. Therefore, more and more engineers
are trying to optimize the operations of such components. Those optimization efforts
require data to build value-added models, which can be private or company-sensitive. FC
builds the basis for such business models. Section 2.1.1 explains FC in more detail, and
Section 2.1.2 provides information about the broader context of the connections between
ICT, energy, and policies.

2.1.1 Federated Computing Systems

FC belongs to the domain of privacy-preserving computations. Its goal is to extract
information from distributed data sources without compromising the raw data. In the
process, no client sends private data to a central location. Instead, the server sends
computing tasks to each participating client, which executes them and then only sends
the respective update to the requesting server. An FC round consists of the following
steps:

1. Server selects participating clients,

2. Server sends computation task to all clients,

3. Clients execute the computation task and send their individual update to the server,

4. Server aggregates all clients’ results and distributes the aggregated result back to
each client.

FC includes FL and FA. Bonawitz et al. introduced the concept of FL in 2016 with the next
word prediction of Google’s Android keyboard Gboard [34]. The difference between FL
and FA is the type of executed computing tasks and the number of aggregation rounds. FL
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2. METHODOLOGY

focuses onML, mainly consisting of multiple aggregation rounds. The goal is to iteratively
reduce a loss function and subsequently increase model performance. On the other hand,
FA leverages statistical instructions, such as averages or sums, which are only executed
once on each client and focus on concluding data [35]. Some example use cases for FA
include model evaluation or debugging [36, 37]. FL consists of a combination of multiple
FA steps [38]. Another way to divide FC is by system focus. It can focus on reasoning
or learning, translating to FA and FL. Another term for the former is deductive systems,
and for the latter, inductive systems [39]. Deductive systems are also called "Good old-
fashioned AI" and typically rely on rule-based or logical agents [40, 41]. Conversely,
inductive systems try to learn based on the input data and are less prone to changes in
the observed environment. In this work, we do not cover federated databases. They also
have a client-server architecture, which connects distributed databases to one another.
The end user only sees one database, even though it consists of multiple ones.

The number of publications in the area of FL increased since 2016 steadily. Farooq et al. [42]
and Lo et al. [43] present in their quantitative analysis existing FL research papers without
considering FA. They highlight the recent increase in publications starting in 2017. The
yearly documents increased from 25 in 2017 to 280 in 2020. Additionally, they cluster
papers into different categories to distill focus areas. Most papers investigate the impact
of training settings on ML model performance. The main reason to adopt FL is data
privacy (62 % of papers), followed by communication efficiency (23 %). In general, their
research emphasizes the increasing interest in FL. Multiple tutorial-like surveys exist as
a reaction, which describe individual components of an FL pipeline together with some
application examples.

Depending on the FC system architecture, either a central server aggregates all results
(central) or all or some clients act as a server as well (hierarchical or peer-to-peer).
Figure 2.1.1 gives an overview of three architectures. The first architecture in the
figure shows a centralized FC approach. A server aggregates all results from the clients.
The hierarchical architecture has an intermediate layer between clients and servers to
increase redundancy. The devices in this intermediate layer act as servers and clients
simultaneously. A fully decentralized FC system peerages in a peer-to-peer fashion
without a central server. Another term for this architecture is galaxy FC [45, 46]. All
those architectures work for FA and FL. All FC systems consist of three basic building
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2.1. BACKGROUND

Client

Centralized Hierarchical Peer-To-Peer / Galaxy

Server Client & Server

Figure 2.1.1: Three FC architectures (centralized, hierarchical and peer-to-peer) with different aggregation
server locations. Illustration inspired by [44]. A node can be a client, a server or both, which is indicated
by the circle filling.

modules:

• Client selection strategies decide if all or a subset of available clients will participate
in a training round. The selected set of clients can change after each round.

• An aggregation algorithm merges all client updates into a central model. One of
the first and simplest algorithms is FedAvg. It averages all client updates.

• A pre-defined communication and serialization protocol is necessary to enable
communication between servers and clients. A widely used combination in FC
frameworks is gRPC (protocol) with Protobuf (serialization) [34, 47, 48, 49, 50].

A challenge for FC systems is an uneven distribution of features and labels on the clients.
The server has no data access on the client side. It only knows some meta information,
such as image resolution or, for time series, the respective units of each column. In an
ideal FC system, all clients’ datasets have similar statistical attributes and yield identical
results to the executed computation tasks. However, some clients’ datasets might be
biased towards specific labels. Therefore, the same execution task can deliver different
results per client. Aggregating results based on non-IID data is challenging due to its
impact on the final result on the server side.

In some cases, aggregating individual client updates can result in worse results than a
traditional centralized ML approach. Choosing a subset of available clients or a suitable
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2. METHODOLOGY

aggregation strategy can improve the generated insights. Another issue in this context is
clients dropping out during an FC process. Such instances can also result in a non-IID
scenario even though the initial client selection ensures an even distribution of labels,
or the entire run gets delayed because the server is waiting for all clients to finish their
execution tasks.

2.1.2 Federated Computing in Energy Informatics

FC is application-independent. However, its architecture captures well the shift from
centralized energy generation to a more decentralized renewable energy system. Energy
informatics looks at the ecological impact of ICT and how to improve energy systems as
a whole, going from generation to distribution and consumption. Using new algorithms
is paramount to avoid an increase in GHG emissions. Therefore, this work looks at the
efficiency of one FL framework in combination with DP and how to apply FC to different
applications.

The term energy productivity or energy intensity gives us a first indicator in which
direction an economy is going. It describes the relationship between a country’s gross
domestic product and its energy consumption. The energy productivity of Germany
is increasing since 1990 (see Figure 2.1.2). Since 2005 the final energy consumption is
decreasing indicating a decoupling of economic growth and energy consumption [51,
52]. Financial, political or healthcare crises interrupt this upwards trend. A similar trend
applies to other European Unionmember states, partly due to a shift from industry-related
business to service-driven economies [52]. It is crucial to quantify the energy consumption
of software and subsequently try to reduce it by keeping its performance constant or
increasing it. There is the risk of over-compensating efficiency gains with additional
usage. An explanation for those scenarios is the Jevons paradox or rebound effect. It
occurs when technological progress or government policy increase the efficiency of a
resource. Still, the falling cost of using those resources increases its demand, increasing,
rather than reducing, resource use [53]. Jevons investigated the impact of more efficient
coal usage, leading to broader adoption of this resource and higher energy consumption.
There are multiple examples of such rebound effects. For example, combustion engines
in cars have become more and more efficient, but a car’s weight has increased, resulting
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2.2. IMPLEMENTATION OF EXPERIMENTS
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Figure 2.1.2: Energy productivity of Germany from 1990 till 2020 including time spans of financial crises
responsible for a recession [56]. Data coming from the Federal Environment Agency of Germany. [51].

in constant or higher energy consumption per kilometer. A similar pattern applies to
software development. Hardware resources become computationally more powerful and
accessible. Therefore, it is feasible to compensate for inefficient software by using more
hardware resources. Studies show that this effect impacts energy-efficiency policies, but
to which extent depends on the specific use case [54, 55].

2.2 Implementation of Experiments

Our experiments run on our IoT testbed and VMs. All devices and VMs run on Ubuntu
20.04 LTS. The deployment of software and required files happens via Ansible. In addition
to Ansible, we use Terraform to deploy multiple VMs simultaneously.

The testbed consists of multiple hardware components. Depending on the application,
the cluster can be scaled up or down to match the overall costs to the available budget.
48 Raspberry Pi 4B (called modules) with a PoE HAT perform the computations. Half of
the modules have 2 GB of memory, and the other half has 4 GB. The switch powers all
modules via PoE. Figure 2.2.1 shows the data flow in the testbed and the connectivity
between all components. The monitoring strategy comprises the Python package psutil
(CPU, memory, disk storage), Wireshark (network), external powers (energy), and the
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Figure 2.2.1: Our testbed used for the FC experiments. We built it from scratch including hardware and
software (monitoring and deployment) setups.

PoE readings (energy) from the switch. A PostgreSQL database stores all measurements
for later evaluations. The external power meters measure the electricity consumption
of three Raspberry Pis and the PoE switch. Those measurements serve as a reference to
validate the energy readings from the PoE switch.
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3

Summary of Publications

This chapter summarizes all published papers for this publication-based dissertation
individually. Overall, this dissertation is based on three accepted peer-reviewed publica-
tions. Additionally, there is a fourth paper currently under submission (see Appendix D).
We highlight each publication’s key idea, outline the achievements, and summarize the
author’s contributions.

Section 3.1 outlines our publication on FL in the context of NILM and building man-
agement systems. We leverage the publicly available building-level office environment
dataset (BLOND). Section 3.2 provides findings of our experiments about the energy
footprint of FL with and without DP as an extension. The experiments run on a testbed
of 48 Raspberry Pis and we measure their electricity consumption with an external power
meter. Section 3.3 compares an FL (LSTM) and an FA (linear regression) approach with
each other by using real-world data from battery electric vehicles. Additionally, we
capture their hardware and energy utilization to identify trade-offs between privacy,
hardware and energy constraints.
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3.1. FEDERATED OFFICE PLUG-LOAD IDENTIFICATION FOR BUILDING MANAGEMENT
SYSTEMS

3.1 FederatedOfficePlug-Load Identification For Build-
ing Management Systems

Reference: R. Schwermer, J. Buchberger, R. Mayer, and H.-A. Jacobsen. “Federated Office
Plug-Load Identification for Building Management Systems.” In: e-Energy ’22. Virtual
Event: Association for Computing Machinery, 2022, pp. 114–126. isbn: 9781450393973.
doi: 10.1145/3538637.3538845

Full-text version enclosed: Appendix A

Summary:

Energy usagewithin buildings contributes to 40 % of the overall energy consumption in the
European Union and the United States. In addition to thermal energy, buildings also rely
on electricity. One consumer of electricity are office devices (e.g., monitor and projectors)
and unregulated plug-in devices, like mobile phones and USB chargers. Especially the
latter is steadily on the rise. In 2018, electricity consumption for European households
accounted for 25 % of the total EUs energy footprint. FL offers a solution to harness this
data to improve energy efficiency while complying with regulatory frameworks, such as
the GDPR.

This paper uses a high-frequency energy dataset of office appliances (BLOND) to train
four appliance classifiers (CNN, LSTM, ResNet, and DenseNet). We chose those ML
architectures as a basis because they are widely adopted. Knowing which device is
running in the offices helps to improve energy management systems. At the time of
submission, we were the first one to leverage this dataset in an FL context. We investigate
the effect of different data distributions (entire dataset, IID, and non-IID) and training
methods on four performance metrics (accuracy, F1 score, precision, and recall). Our
findings reveal that a non-IID setup leads to a decrease of up to 44 % in all performance
metrics for specific model architectures. However, the LSTM model, trained with non-IID
labels, can attain F1 scores similar to those achieved through central training.

Author’s contributions: Conceived and developed the approach. Devised optimisations.
Conducted analysis and experimental evaluation. Wrote the paper.
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3. SUMMARY OF PUBLICATIONS

3.2 Energy vs Privacy: Estimating the Ecological Im-
pact of Federated Learning

Reference: R. Schwermer, R. Mayer, and H.-A. Jacobsen. “Energy vs Privacy: Estimating
the Ecological Impact of Federated Learning.” In: Proceedings of the 14th ACM International
Conference on Future Energy Systems. e-Energy ’23. Orlando, FL, USA: Association for
Computing Machinery, 2023, pp. 347–352. doi: 10.1145/3575813.3597344

Full-text version enclosed: Appendix B

Summary:

More and more stakeholders are concerned about the ecological impact of ML and its
associated network traffic. The current research in FL focuses on improving ML accuracy,
and experiments run on VMs or on one machine with simulated clients. We quantified the
network traffic and energy consumption of FL clients under different network constraints
and privacy-enhancing techniques, such as DP.

At the time of submission, we were the first to build a testbed consisting of 48 Raspberry
Pis, which we used to measure more real-world-like network and energy readings. We
evaluated a convolutional neural network trained on the MNIST dataset under different
network constraints, with DP and with an increasing amount of participating clients. We
compared network and energy estimations with actual measurements.

We quantify the network traffic, energy consumption, and training time for each ex-
periment. The results show the importance of experiments on physically separated
nodes and the need to improve software-based power monitoring. The estimated energy
consumption deviates up to 35 % from the measured ones. Also, the total energy
consumption of an FL system scales linearly with its number of clients and with DP-
enabled a clients energy consumption increases by up to 300 %.

Author’s contributions: Conceived, developed, and implemented the approach. Devised
optimisations. Conducted analysis and experimental evaluation. Wrote the paper.
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3.3. FEDERATED COMPUTING IN ELECTRIC VEHICLES TO PREDICT COOLANT
TEMPERATURE

3.3 Federated Computing in Electric Vehicles to Pre-
dict Coolant Temperature

Reference: R. Schwermer, E.-A. Bicer, P. Schirmer, R. Mayer, and H.-A. Jacobsen. “Fed-
erated Computing in Electric Vehicles to Predict Coolant Temperature.” In: Proceedings
of the 24th International Middleware Conference Industrial Track. Middleware Industrial
Track ’23. Bologna, Italy: Association for Computing Machinery, 2023, pp. 8–14. isbn:
9798400704277. doi: 10.1145/3626562.3626829. url: https://doi.org/10.1145/3626562.
3626829

Full-text version enclosed: Appendix C

Summary:

Reducing greenhouse gas emissions in mobility is paramount to achieving a carbon-
neutral society. However, battery-electrical vehicles (BEV) introduce unique engineering
challenges to protect expensive electrical components from overheating. A centralized
architecture for model-driven predictions of coolant temperatures poses privacy and
legal issues. Another challenge is the competition of resources between the on-board
applications in a vehicle.

Therefore, we introduce FC to help transform the mobility sector. We evaluate the
performance of two FC approaches (linear regression and ML) on hardware and privacy
metrics by leveraging a real-world dataset from BEVs. It contains measurements from 35
BEVs from a Bavarian car manufacturer.

Our findings show trade-offs between hardware utilization andmodel accuracy. The linear
regression model yields the best performance and prediction metrics. FC with ML shows
up to 761 % variances when comparing vehicle-specific models with models trained with
the entire fleet. Clustering the data into velocity profiles based theWorldwide Harmonised
Light Vehicles Test Procedure framework partly improves prediction performance.

Author’s contributions: Conceived, developed, and implemented the approach. Devised
optimisations. Conducted analysis and experimental evaluation. Wrote the paper.
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4

Discussion

This chapter discusses our results in the larger context of the applicability of FC in the
energy domain and its effect on the environment. Specifically, we look at the building
and mobility sector as two use cases for distributed entities. Both domains get smarter
by incorporating more sensors and connectivity, which makes them suitable for data-
driven applications and business models. Also, they contribute about 33 % to the EU
energy consumption in the building and mobility sectors. The EU requires the reduction
of its share of GHG emissions, and adding more functionalities might oppose those
goals. We conclude the chapter by highlighting that deploying FC in environments with
higher complexity and energy costs is possible. Additionally, we point out the energy
consumption of FL systems and compare it with centralized approaches, which leads to
trade-offs between privacy level and energy consumption.

A building can either have residential or commercial use. For both scenarios, it is possible
to improve a wide range of specific tasks, which focus on the entire building as a system
(e.g., load forecast), on the occupants (e.g., demand forecast), all appliances and devices
in a building (e.g., NILM) or on a concrete machine (e.g., heating, ventilation or air
conditioning). Other works used FL to investigate its usability in the building sector.
Wang et al. combines FL and NILM [57, 58]. Other authors combine FL and electricity
measurements to develop load forecasting models [59, 60] or demand forecasting for
private households [61]. Some prior art investigates the impact of heating, ventilation,
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and air conditioning [62]) or multiple private households with smart meters on a local
or global energy management system [63, 64]. All of those works focus on improving
the prediction performance of their respective ML models. They especially capture the
effect of unevenly distributed labels on the systems’ ML accuracy metrics. However, they
lack an actual implementation on multiple devices to track the hardware and network
requirements of the FL system. We capture those challenges in the context of building
management systems and deploy a use case by leveraging the BLOND dataset. To the best
of our knowledge, we are the first to combine FL with a high-frequency measurement
dataset capturing the energy consumption of office appliances. Our findings highlight
the impact of non-IID data on the performance of four different ML architectures (CNN,
LSTM, ResNet, and DenseNet). Even an IID of data results in an average F1 score reduction
of 0.14 points or 15 percentage points. Strategies to decrease the difference between
centralized and FL training include no stopping (the training does not stop when the
validation loss does not decrease for five consecutive epochs.), a cosine adjustment of the
learning rate over time and changing the number of local rounds before aggregating the
updates on the server side. Only the LSTM achieves in a non-IID setup an F1 score close
to the reference of the centralized approach.

FC aims to improve input privacy, solving the copy problem. Awidely adopted approach to
further increase privacy levels is the combination of FC with DP. DP artificially adds noise
to a dataset without changing its statistical properties. However, DP is computationally
expensive, and FL increases the total overhead of the system due to its distributed nature.

FL experiments mainly run on simulated systems with one device hosting the server and
all clients. Table 4.0.1 provides an overview of multiple FL use cases and their respective
experiment environment. Prior art quantified the required energy consumption of an FL
system, achieving a given accuracy threshold. Their system consists of multiple GPUs [65,
66]. Additionally, they calculated the generated GHG emissions of the entire training
process. However, their testbed is limited to a few devices, neglects network traffic,
and does not incorporate additional privacy-enhancing techniques like DP. Therefore,
we deploy FL experiments and centralized ML on an IoT testbed to quantify the entire
system’s energy footprint. Our findings highlight the difference between centralized
ML and FL systems with and without DP on energy consumption. We also capture the
behavior of the FL framework Flower on the scalability and training time. Training time
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4. DISCUSSION

Table 4.0.1: Overview of environments used for FL experiments. The prominent approach is to emulate
server and clients on a single device.

FL Environment / Hardware References
Single device [57, 58, 60, 67, 68, 69, 70, 71]
Virtual Machines [59, 72]
Physically distributed devices [34, 73]
Hybrid -
Unknown [61, 62, 63, 67, 74]

per round increases linearly with the number of participating clients for the Flower
framework. The same applies to the servers’ energy consumption regardless of the
aggregation strategy. DP running on the clients increases the training time and energy
consumed by 300 % and 280 %, respectively.

FC enables the generation of insights from distributed data sources without having to
access them directly. However, labels on the client side can be non-IID, which introduces
challenges concerning aggregating insights frommultiple clients. Additionally, the energy
consumption of FC with or without privacy-enhancing techniques becomes crucial for
comparing FC and traditional approaches, besides its model generation performance.
Additionally, it is challenging to create generally applicable strategies to know how
high an FC system’s network traffic and energy consumption will be in advance. Those
metrics depend on the distribution of the system, the aggregation frequency, and the
client update size. The participating clients consume the majority of energy, but the
aggregation strategy on the server also affects the systems total energy consumption. The
differences between aggregation strategies are minor. However, this becomes critical for
peer-to-peer systems where the clients also run aggregation algorithms. An aggregation
strategy with a minimal higher energy consumption could lead to an exponential increase
in energy consumption for a peer-to-peer system.

As computational capabilities within vehicles continue to rise, the prospect of offloading
computational tasks from the cloud to the edge becomes more feasible. The escalating vol-
ume of data generated within vehicles intensifies the competition for on-board hardware
resources. Given the sensitivity of data from privately owned cars, there is a need for
innovative solutions. Some existing approaches integrate FL with mobility applications
to address this challenge. For distributed and non-stationary vehicles in the Internet of
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Vehicles (IoV), issues such as connection loss and the heterogeneity of individual datasets
pose challenges, as discussed by Ji et al. in their survey [75]. To tackle this, Li et al.
and Ye et al. have developed a peer-to-peer architecture incorporating an aggregation
strategy to accommodate vehicles dropping out during training rounds [46, 76]. These
approaches exhibit comparable accuracy to centralized ML architectures. Various IoV
applications include stress level identification using training on roadside units [77], image
classification [78], and object detection [79]. Tan et al. offer an overview of other IoV
use cases leveraging FL [80], for instance using charging data of electrical vehicles to
better predict future energy demand. Beyond model performance, it is crucial to balance
ML models’ energy consumption with a battery’s state of charge to ensure a positive
customer experience [81, 82]. Notably, there is a gap in the literature regarding the
utilization of time series data for developing a privacy-preserving coolant temperature
prediction model.

To the best of our knowledge, our work is the first to leverage real-world measurements
from BEVs in an FC environment. We optimize the model performance of a linear
regression and an ML model and quantify the computational resources required for the
training. Both aspects are crucial to deploying a service into production. Model training,
which consumes too much memory, CPU, and disk storage capacities, interferes with the
demand for other services, such as street sign detection or algorithms for autonomous
driving. A high available driving distance for BEVs is a selling point, and any service
running in a vehicle should use as little energy as possible. Our experiments on an IoT
testbed highlight trade-offs between privacy, model performance, hardware utilization,
and energy consumption. The linear regression model delivers the most accurate models,
and its hardware utilization is also lower than that of the ML approach. However, its
privacy level is lower due to its deterministic nature. It is prone to reverse-engineering
the raw data based on the clients’ updates.

More and more FL and FA systems have emerged, and it is paramount to have a standard-
ized form to describe them to easily compare them. Multiple survey papers in this area
exist. We cluster each survey into the following categories: Quantitative analysis [42,
83], tutorial [84, 85, 86, 87, 88], domain-specific [89, 90, 91], and taxonomy [92, 93,
94]. However, those surveys mainly focus on FL and lack a coherent definition of what
belongs to FL. We distilled FC characteristics after looking at over two hundred FC use
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cases. Those characteristics include a description of the basic building blocks (client
selection, aggregation, and communication) required for all FC systems and widely used
extensions (privacy enhancements and compression). Our survey clusters a wide range
of FC systems based on our FC system taxonomy. We identified often-used combinations
of basic building blocks, widely used FL frameworks, and a need for FC systems running
on actual distributed hardware. The favorite aggregation strategy is FedAvg, and about
50 % of surveyed papers do not specify which framework they use for their experiments.
There is also a lack of more advanced client selection strategies that consider resource
availability on client loss or the impact of clients on the overall loss of the merged model.

Our findings and contributions add to the energy informatics and FC knowledge pool. We
highlight the importance of running FC experiments on physically distributed hardware
to capture otherwise invisible effects. Those insights include network traffic, energy
consumption, and scalability effects when increasing the number of participating clients.
Our experiments focus on ARM-based edge devices such as Raspberry Pis. There needs
to be more experimenting with computing architecture, such as x86 or RISC-V CPUs.
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Conclusions

Legal constraints and personal sentiments of decision-makers hinder the development
of cross-entity data sharing. FC can help to speed up the shift towards a data-driven
economy by leveraging already existing data silos. It enables stakeholders to either
monetize their existing data or get access to new data sources to improve current services
or create new ones. While FC might help with new business models, it is important to
quantify its energy footprint in advance to avoid adverse scaling effects.

The network traffic over the internet is increasing steadily, and the same applies to the
energy consumption of ICT. Therefore, it is crucial to consider the impact of FC systems
on those metrics at the beginning of the development process of new algorithms. Our
IoT testbed enables us to capture the energy footprint of the server and all clients. We
identified deviations between a centralized training approach and FC. Combining FC
with additional privacy-enhancing techniques, such as DP, significantly increases energy
costs for privacy. With our testbed, we also highlight scalability issues concerning the
systems’ total energy consumption and training time. Our experiments enable others to
better understand the potential impact of FC with and without DP on the energy footprint
of their system. They shed light on the ever-increasing ecological effects of ICT and
software. An increase in data privacy comes with higher energy costs and complexity.
Our energy footprint benchmarks help to better balance privacy and energy consumption.
However, there needs to be a rule of thumb or any experience finding a suitable balance
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of those two metrics for specific use cases in advance.

Our experiments on combining FCwith buildingmanagement systems and battery electric
vehicles highlight the possibility of achieving similar model prediction performance
compared to a centralized approach. This insight enables stakeholders from the industry
to develop data-driven business models without interfering with data privacy laws. Such
models can increase energy efficiency in the building and mobility sector or reduce
maintenance and failure rates. A decrease in repairs reduces service costs and waste.
Those improvements help achieve the Eu’s goals of reducing energy consumption and
increasing energy efficiency, which increases energy productivity. Nevertheless, our
experiments highlight the increase in complexity of leveraging distributed data sources
in a privacy-preserving fashion. Therefore, our work also points to future research
directions to decrease FC systems’ complexity and reduce their total energy consumption.

It is also challenging to match ML architectures and aggregation strategies to a potentially
unknown label distribution on the client side. The same applies to estimating which tools
to use for a specific use case in advance to achieve a pre-defined performance metric
threshold more quickly. A better understanding of the model architecture helps reduce
iterations to fine-tune hyperparameters and save energy. Additionally, fine-tuning via
iterations on distributed devices with potentially multiple different ownership increases
complexity compared to a centralized approach. Therefore, besides a technical dimension,
there is also an organizational one due to resource availability on the client side and the
need for proper processes, pipelines, and accounting. Our literature research highlights
the lack of answering economical questions for FC systems. It also shows the current focus
in testing new aggregation algorithms and client selection algorithms on an emulated
FC system to improve model prediction performance instead of relying on physically
distributed devices.
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ABSTRACT
Energy consumption in buildings is responsible for 40 % of the
final energy consumption in the European Union and the United
States of America. In addition to thermal energy, buildings require
electricity for all kinds of appliances. Regulatory constraints such
as energy labels aim at increasing the energy efficiency of large ap-
pliances such as fridges and washing machines. However, they only
partially cover plug-loads. The amount of electricity consumption
of unregulated plug-loads such as mobile phones, USB chargers and
kettles is continuously increasing. For European households, their
share of electricity consumption reached 25 % in 2018. Additional
data about the plug-loads usage can help decrease the energy con-
sumption of buildings by improving energy management systems,
applying peak-shaving or demand-side management. People live
and work in buildings, making such data privacy sensitive. Feder-
ated Learning (FL) helps to leverage these data without violating
regulatory frameworks such as the General Data Protection Regu-
lation. We use a high-frequency energy data set of office appliances
(BLOND) to train four appliance classifiers (CNN, LSTM, ResNet
and DenseNet). We investigate the effect of different data distribu-
tions (entire dataset, IID and non-IID) and training methods on four
performance metrics (accuracy, F1 score, precision and recall). The
results show that a non-IID setup decreases all performance metrics
for some model architectures by 44 %. However, our LSTM model
even with a non-IID labels achieves similar F1 scores compared to
central training. Additionally, we show the importance of client
selection in FL architectures to reduce the overall training time and
we quantify the decrease in network traffic compared to a central
training approach, the energy consumption and scalability.
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1 INTRODUCTION
The Green Deal from the European Union (EU) with the Paris Agree-
ment aims to achieve zero net emissions of greenhouse gases by
2050 and reduce global warming to an average temperature in-
crease of 2 ◦C [47, 73]. Several approaches have been implemented
to achieve these goals. Renewable energy sources, such as wind,
solar and water, replace the currently running fossil fuel-based
power plants, the energy efficiency of machinery and processes
is increased or the energy consumption is reduced. All these ap-
proaches can be applied to any of the three sectors mobility, elec-
tricity and heating. Improving the energy efficiency of buildings is
a key tool to achieve these targets. In the EU, buildings consume
the greatest share of energy and have the largest energy savings
potential [54].

Tenants and residents use buildings for work or living. Depend-
ing on the number of deployed sensors, they generate sensitive
data while working or living in offices or homes. Monitoring these
data enables stakeholders to increase energy efficiency by either
passively proposing saving strategies or actively switching actu-
ators. Some examples are peak-shaving for commercial buildings
or demand side management [17, 41, 42]. However, in different
countries or states sensitive information is protected by laws such
as the General Data Protection Regulation (GDPR) in the EU [72]
and the Californian Consumer Privacy Act [55]. European privacy
regulators scrutinise how employers collect workers’ personal data
and hand out fines when they violate the GDPR. Some examples are
unauthorized video surveillance or collection of employee details
about their health and religion [11]. These cases and regulatory
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uncertainties can hinder the deployment of a centralised energy
management system, making it necessary to use technology to
avoid privacy violations while obtaining valuable information. Fed-
erated Learning (FL) tries unravelling this contradiction between
data privacy and the potential from insights based on private data.
In our use case, it helps to combine the GDPR and energy transition
to reduce the ecological footprint of buildings. The challenge is
to develop well performing appliance classifiers in an FL system
running on edge devices with an ARM architecture. In this paper,
we use high-frequency electricity time-series data from an office
building to train an appliance detection model in different system
architectures. We evaluate four different models based on accuracy,
precision, recall and F1 score. The training process is benchmarked
through different hardware-related metrics. They include moni-
toring of memory, CPU, network usage and energy consumption
during mode training.

The contributions of this study are as follows:

(1) Training and evaluating four different machine learning (ML)
architectures (convolutional neural network (CNN), long
short-term memory (LSTM), ResNet, DenseNet) on a high-
frequency energy data set, building-level office environment
(BLOND). Most appliance detection models use data with
a frequency of maximum 1 Hz. By gaining knowledge into
working with high-frequency data, we help to expand the
usage of electricity data beyond appliance detection, e.g., for
condition monitoring in industry processes.

(2) Investigating the effect of training data distributions (cen-
tral, IID and non-IID) and variations of model training (early
stopping, learning rate scheduler and aggregation strategy)
on model metrics. Our results show that it is possible to train
ML models on non-IID data while achieving a model perfor-
mance that can compete with a centrally trained model.

(3) Edge devices have limited computational and energy re-
sources and are installed at remote locations with network
constraints. Our results show the importance of running
FL on physically separated devices to capture the effect of
different setups on network and CPU load, training time and
energy consumption.

(4) Highlighting the importance of plug-loads on energy sav-
ings in buildings and providing some examples on how to
leverage our models to improve energy efficiency and main-
tenance costs. Knowing where saving potentials are and how
to leverage them can help to decrease the energy consump-
tion of private and commercial buildings.

Finally, all models and source code are made open source to enable
other groups to reproduce and improve the pipeline. We use the
BLOND data set, which is already open-source [33].

The remainder of the paper is organised as follows. First, we
discuss related work in Section 2. We explain FL in Section 3 and
Section 4 presents some context for plug-loads in buildings from
an energy perspective. Our experiments consist of three parts (data
preparation, model execution and evaluation). Figure 1 gives an
overview on how these components work together. The paper
structure follows the same pipeline, enabling the reader to quickly
browse to a specific topic. Section 5 explains the preparation of the
data set. Section 6 presents the design and experiments based on

one pick from three different categories (model, data distribution
and hardware). We evaluate the hardware and model metrics in
addition to the effect of scaling up the our setup on the training
time in Section 7. Some example use-cases of our ML model are
illustrated in Section 8.We present some learned lessons in Section 9.
Finally, Section 10 presents the conclusion.

2 RELATED WORK
To the best of our knowledge, this is the first work on plug-load
appliance detection on high-frequency energy data in an FL envi-
ronment. In the next paragraph we see others who implemented
appliance detection of plug-loads or FL on energy data in house-
holds, including larger appliances such as washing machines and
electric vehicle charging stations. This section presents some of
these works, starting with plug-load appliance detection.

Based on a 15 min frequency data set of office occupancy sen-
sors and plug-loads, Mahdavi et al. [40] predicted user electricity
consumption. Wireless energy meters measure the plug-load. Their
approach does not facilitate data privacy (all plug-loads are associ-
ated with a user), and all data is stored centrally. Based on smart
plugs, Reddy et al. [62] examined electricity consumption with the
ability to actively interact with appliances. They used k-nearest
neighbours, Naive Bayes, logistic regression and random forest algo-
rithms to identify plug-loads and compared their respective results.
Radhakrishna et al. [30] developed a smart plug. A central server
stores all measurements with different levels of detail and privacy.
The device has information about its electrical ratings and can act
decisively to reduce potential fire hazards due to overcharging of
malfunctioning plug-loads.

The following research in the context of FL on energy data runs
all on simulated nodes on one machine. This allows for an easy
setup. However, it neglects network constraints and possibly related
computational constraints due to CPU stalls. The evaluation of
hardware metrics during FL training is not well investigated in
research. Other papers focus on model performance on simulated
nodes [9, 16, 35, 68, 71, 76, 77, 80]. These setups do not cover the
system behaviour under real-world conditions. We fill this research
gap and introduce some future research questions. One approach
to address this issue is to calculate a theoretical network load while
training an LSTM model on data from Pecan Street Inc.’s Dataport
site with TensorFlow Federated [68]. The focus in the FL energy
domain is on LSTMmodels using either TensorFlow or PyTorch [9, 68,
71]. Taik et al. used a FL specific framework (TensorFlow Federated).
The focus is on household applications and stationary equipment
[68]. Exceptions are Yang et .al [80] who ran experiments on mobile
devices and Wan et al. [77] who used a data set of heavy-machinery
from a Brazilian poultry feed factory. In both cases, they clustered
the data to have similar properties. Doing so might interfere with a
normally not independent and identically distributed (non-IID) data
set in FL, because all houses have similar characteristics. Another
LSTM was trained by Briggs et al. [9] with PyTorch on eight virtual
machines on the "SmartMeter Energy Consumption Data in London
Households" data set and Guo et al. [16] trained multiple models
(linear regression, neural network, random forest, boosting tree and
AdaBoost) with PyTorch on a simulated cloud-edge environment
on mostly non publicly available data.
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Figure 1: Pipeline of our research approach. In the first block (Prepare Data) we generate training data based on two annotation
runs. Block 2 (Design and Experiment) shows how we build our experiments based on three different parameters. Finally, in
block 3 (Evaluate Experiment) we introduce the model and hardware metrics we are evaluating.

Our work goes beyond these by working with high-frequency
energy data in an FL system with physically separated nodes. This
enables us to investigate the behavior of different model training
strategies on its performance metrics. Additionally, we can quantify
the network and energy usage. Furthermore, we apply new model
architectures like ResNet and DenseNet to the energy domain and
investigate the impact of memory usage, training time and model
complexity on the energy consumption. This is especially important
for remotely installed and battery powered edge devices.

3 FEDERATED LEARNING
One subcategory of privacy preserving ML is FL. This method
enables data scientists to work on remote data while keeping it
privately. The data stay at its origin and each device trains its local
model with its individual data. Only the model parameters are trans-
ferred to a central server where each individual model is incorpo-
rated into one central model. FL aims to open up existing data silos
while considering privacy concerns. Different approaches have been
developed to combine multiple models such as (weighted) federated
averaging (FedAvg) [8, 44], matched averaging (FedMa) [14, 78],
FedPer [14], FedSGD [44], FedProx [36] and FedDane [37]. We use
FedAvg.

In FL, the data scientist works with distributed data. This can
lead to non-IID data because of an uneven distribution of features
and labels over the connected devices. Different definitions of FL
exist [31]. Horizontal FL describes a data set with the same features

on multiple devices, but the labels vary. Some examples are the next
word written prediction on Google’s Gboard [8] and traffic flow
prediction with the Caltrans Performance Measurement System
data set [38]. Vertical FL uses multiple feature sets from different
sources to run inference on one object. An example arises from
financial sector where retailers and banks store historical data on
the same person, but with different features [79]. Transfer FL is
vertical FL in combination with a pre-trained model [79].

In our context of office appliance classification, one device might
only have measurements for certain appliances. Training two sep-
arate models on these two data sets and averaging them can give
worse results than a central approach. Other challenges include the
non-IID of data over multiple devices and the system-induced bias
of distributed systems. With our experiments and evaluations we
give a reference case on physically separated hardware. Nodes can
also drop out during a training process.

Multiple organisations, institutes or other stakeholders develop
FL frameworks. Some of them have a specific focus on a certain
domain, some are not for commercial use and others are not further
developed. Several frameworks have been developed, such as PySyft
from openMined [67], TensorFlow Federated from Google [8], IBM
FL from IBM [39], FedAI/FATE from WeBank [15], Clara SDK from
Nvidia [70], FedML [18], Paddle FL from Baidu, Fed-BioMed [66]
and Flower [7]. LEAF [10] provides tools to benchmark different
pre-selected models in a FL setting.
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4 ELECTRICITY CONSUMPTION IN
BUILDINGS

A general way to distinguish between the usage of buildings is
residential and non-residential or commercial/service [48]. In this
section we will compare the energy and plug-load consumption of
the EU and USA. In Europe and the USA, buildings accounted for
40 % of the final energy consumption in 2021 and 2020 [2, 69]. Influ-
encing factors are legal differences and different housing standards.
Both numbers provide an order of magnitude for industrialised
countries. This paper focuses on electricity and specifically on plug-
loads.

4.1 Plug-Loads
A building and its equipment consume different forms of energy,
particularly thermal and electrical energy. The latter includes plug-
loads. This study focuses on unregulated plug-loads, which cover
energy used by products and equipment powered by an ordinary
alternate current (AC) plug. Plug-loads are also known as miscel-
laneous electronic loads or plug-and-process-load. In this context,
we restrict plug-loads to small appliances such as routers, speakers,
computers, monitors, tablets, printers, projectors, paper shredders
and other consumer electronics. Such devices also exist in private
households, which makes our results also applicable to that area.
Big appliances such as washing machines, fridges and servers are
excluded from our office data set. The energy consumption due
to plug-loads is increasing globally. However, there are regional
differences due to ownership saturation and efficiency improve-
ments [24]. To motivate the need for a better understanding of
plug-load consumption in buildings, we give an overview of their
contribution to the overall energy consumption in buildings and
how the consumption changed over time.

The share of electricity consumption in households within the
EU ranks second in energy consumption and it increased from
21 % in 2000 to 25 % in 2018 [52], which is primarily attributed
to electrical appliances. These captive uses of electricity exclude
thermal uses. The share for large appliances decreased from 2000
to 2018 by 24 % from 1100 to 800 kWh per household and year. The
European Ecodesign and Energy Labelling Framework Directives
enforces manufacturers to label their products according to their
energy usage and to continuously decrease power consumption.
Other countries have similar energy labels. Figure 2 shows differ-
ent examples. This image is not exhaustive, as Singapore, India,
the Philippines and Jamaica also have an energy label. However,
all labels focus on large appliances. Table 1 presents an overview
of which energy label covers which small appliances. The focus
is on televisions, computers and monitors. However, some small
appliances might not be subject to registration and labelling require-
ments, but they might be under other mandatory standards that
give a minimum value for energy efficiency. Therefore, the overall
plug-load consumption increases as the energy consumption of
some small appliances decreases. This can be because of rebound
effects or unregulated devices such as USB chargers, phones and
power supplies [53]. The energy labelling EU directive is also in
place for small appliances such as computers, fans and vacuum
cleaners; however it does not cover other appliances such as moni-
tors, printers and USB chargers [59]. Therefore, the rapid growth

Figure 2: Examples of energy labels from Australia and
New Zealand [63], Brazil, Canada [56], China, and European
Union [74].

Table 1: Energy labels in different parts of the world
and small appliance they cover (Australian and New
Zealand [63], Brazil, Canada [56], China, European
Union [74], India [58], Japan [45], Jamaica, United States of
America [12], Philippines [57] and Singapore [3]).

Country / Unions TV Printer Monitor PC Game
Console

Australia & + - - -
New Zealand
Brazil + - - - -
Canada - - - - -
China + + + - -
European Union + - + + +
India + + - + -
Japan + - - + -
Jamaica - - - - -
USA + - - - -
Philippines - - - - -
Singapore + - - - -

of small appliances of 18 % within the last 12 years till 2020 cannot
counterbalance the decrease in energy consumption for large appli-
ances. All these numbers are averages from all 27 EU States [52].
However, Rudzki et al. [65] showed that consumption in office
buildings could significantly vary depending on the building type
and tenants. Additionally, some consumers focus on the energy
efficiency on a label, but not on its actual electricity consumption
and therefore potentially overestimate the energy efficiency of a
product, leading to higher energy costs than expected [75].

The plug-load share in commercial buildings in the USA in-
creased from 33 % in 2008 to 47 % in 2020 [50]. Retail buildings
in the USA have a similar distribution [51]. The energy consump-
tion of other consumers such as lighting and space heating, also
decreased [1, 43]. The energy consumption for lighting decreased
because of increasing share of more efficient LEDs than fluorescent
lamps [23, 52]; therefore it partially explains the higher share of
plug-loads. The results of Attia et al. [6] showed this relationship
in the example of Egypt. Another reason for the higher share of
plug-loads at the overall energy consumption is the increase in
small appliances such as routers, set-top boxes and smart speakers,
which is also suggested by an International Energy Agency (IEA)
study [24].
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For detecting events, we leverage changes in current load waves
that occur when an appliance switches its state. Four general states
exist, which are categorised from type I to type IV [81]: On/Off
state (e.g. light bulbs), multi-state (e.g. washing machines), continu-
ously varying (e.g. laptops and mobile phones) and constant energy
consumption (e.g. fire alarms and landlines).

4.2 Appliance Data Sets
Different publicly available data sets cover the area of appliance
detection, e.g. REDD [32], BLUED [5], WHITED [27], PLAID [13]
and IDEAL [61]. Renaux et al. [64] and Ahajjam et al. [4] presented
an overview of available non-intrusive load monitoring (NILM)
data sets with some of their features and characteristics. Due to
the mobility and heterogeneity of small appliances, metadata is
sometimes unavailable or hard to track in some data sets. The
different model training approaches in this study run on the BLOND
data set according to Kriechbaumer et al. [33].

The BLOND data set contains high-frequency data of plug-bars
in multiple offices in a university. It comprises of voltage and cur-
rent measurements over a sequence of 213 and 50 consecutive days
with either a frequency of 50 or 250 Hz, respectively. The power
plug bars used for the measurements have six slots metered indi-
vidually. To avoid any interference or overlapping signals between
the sockets, all sockets produce an independent current signal by
measuring with a Hall-effect-based integrated circuit [33]. A re-
designed power socket combined with a Raspberry Pi takes the
measurements. Such power sockets are called MEDAL units and
a total of 15 of these units are deployed. Please refer to [33] for a
detailed description of the data sampling setup. Two example event
snippets for an USB charger and a monitor are given in Figure 3.
Each event snippet comprises of 25,600 measurements with a sam-
pling rate of 6.4 kHz, resulting in an event window of 4 s. and the
meta data for each appliance is available. The measurements for
the BLOND data set come from an office environment. However, it
covers small appliances such as monitors, laptops and USB chargers,
which are also used in residential houses. Therefore, a transferring
of our results to a non-office environment is possible.
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Figure 3: Pre-processed events of an USB charger and a com-
puter monitor with a measurement frequency of 6.4 kHz
(25,600 samples). The X-axis shows the time in seconds and
the Y-axis shows the current in ampere.

5 DATA PREPARATION
The following subsections explain the annotation of the training
data.We explain in detail which events come fromwhich annotation
and which category (e.g. USB charger or laptop) they represent.

5.1 Event Annotation
The event snippets used for training are state transition events
between an off/on switch either way. Event annotation or event
detection is performed manually using MATLAB [28] and Python
tools. Both tools have a simple graphical user interface (GUI) to
plot the data and zoom in and out. Each electrical phase is plotted
separately. After annotating a specific time series, the script stores
the start and endpoint of the event in a file. There is no information
available on when an event happens. Therefore, the annotator has
to go through the time series and look for peaks and changes in
the time series of the current waves. F The training data set comes
from two annotation runs that are two years apart (Figure 1). Each
annotation was performed by a different person. For the first one,
the annotator used the MATLAB tool. It covers the time between
October, 2016 and December, 2016 resulting in 11,719 event snippets.
However, they have a huge bias towards monitors, which make up
75 % of the events. Therefore, a second annotation using the Python
GUI focused on obtaining additional events from underrepresented
appliances. This led to a total of 1,445 additional events from laptops,
dev boards, PCs, kettles, printers, projectors, screen motors, USB-
chargers and daylight. However, for the kettle and daylight, only
few events are available. The total labeled power of all appliances
is 11.2 kW. Daylight contributes with 10 W about 0.1 % to it and
is therefore be neglected. The two kettles contribute 3.8 kW, but
they are rarely used. Therefore, we removed these two classes of
devices from the training and testing data set. Figure 4 shows the
distribution of all events from both annotation runs. The majority
of the events are laptop and monitor events because almost every
uses these devices in offices. Only one kettle exists in the kitchen.
The printer and projector also have their dedicated room and are
not used as frequently as laptops or monitors.

5.2 Features
The features for training the four ML models belong to either the
power or spectral category. Power features are basic or advanced
calculations from the electrical engineering domain. Spectral fea-
tures are often transformed into the frequency space using a Fourier
transform, and some of them originate in the audio domain. The
power features allow us to classify steady-state appliances (Type I).
Additionally, spectral features can help to classify transient-state
appliances. A steady state is a time period in which the variables
describing the current process do not change. An example is a
light bulb. A transient state occurs during the change between two
steady states of a process or system. For example, this state occurs
in laptops, stoves or workstations (Type II to Type IV).

6 DESIGN AND EXPERIMENTS
The next step after preparing the data is the experimental design.
First, we present how a reference model is trained on a central
server. This section focuses on the methods we used to identify a
good performing model with access to the entire data set. Then, we
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elaborate on the FL experimental environment. For the FL setups,
we alter the model’s training process with three different variations.
• No-stopping:
The training does not stop when the validation loss does not
decrease for five consecutive epochs.
• Learning rate scheduler:
Cosine annealing is initialised with an initial value and the
number of training epochs. The learning rate follows a co-
sine trajectory that reduces the learning rate on each epoch.
Compared to the scheduling based on client loss, the ad-
vantage of this approach is that cosine annealing creates an
equal reducing policy on each client.
• Aggregation strategy:
Instead of aggregating model parameters after an epoch, we
can aggregate them after different batches. For example, an
aggregation step of four means we average all model param-
eters after every fourth batch. This approach has the advan-
tage that all clients perform synchronised training since they
have the same batch size on each client. Nasirigerdeh et al. [46]
used this approach and found that the FL model achieved
comparable performance to a centrally trained model.

6.1 Reference Model
We build a well-performing reference model for each model ar-
chitecture (CNN, LSTM, ResNet and DenseNet) that has access to
the entire data set. Hyperparameter tuning, feature chaining and
cross-validation aided in finding the optimal model parameters
based on our parameter space. The performance metrics, namely
accuracy, F1 score, precision and recall, are to be optimised. Fixed
parameters are the batch size, maximum number of epochs and
the train/validation/test split which are set to 128, 20 and 80 % /
10 % / 10 %, respectively. Each model uses cross entropy for the
loss calculation. The sampler is a weighted random sampler and
the scheduler is set to ReduceLROnPlateau (factor=0.1, patience=3).
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Figure 4:Number of events per appliance in the training data
set based on two feature annotation runs.

The baseline CNN uses a simple architecture, which is adopted
from the LeNet architecture presented in 1998 by Lecun et al. [34].
This architectural design is extended with activation functions and
batch normalization. The numbers behind the model name in Ta-
ble 3 give the number of blocks and the numbers in brackets give
the number of filters/hidden units. The best size of the first unit
is obtained via hyperparameter tuning and all consecutive units
1.5 times larger than the previous one. The entire source code with
the model architecure will be made open source. For the working
principles of LSTM, ResNet and DenseNet model refer to [20], [19]
or [22], respectively. Table 2 summarises the performance metrics
of the central training for all four model metrics (accuracy, F1-score,
precision and recall). The model metrics vary slightly between the
experiments and model architectures. We focus on the F1 score
as the leading performance metric. It combines the precision and
recall metrics and it is a widely used score for evaluating ML classi-
fications.

Four second level parameters are optimised during the hyper-
parameter tuning: learning rate (lr), weight decay (wd), number of
blocks and number of filters/hidden units. Their respective min-
imum and maximum values are (0.001, 0.1), (0, 0.001), (1, 4) and
(10, 30). To reduce the computational overhead we use an optimal
latin hypercube based on the enhanced stochastic evolutionary [26].
Optimal latin hypercube is a method to distribute multiple parame-
ter combinations evenly in a multidimensional space. It belongs to
the category of design of experiments, and its goal is to uniformly
distribute N parameter combinations in an m-dimensional space,
where m represents the number of hyperparameters. The best fea-
ture set, with respect to the F1 score, is identified with forward
feature chaining. Seven features are available. First, each feature is
used individually. Then, the best performing feature is combined
with each leftover feature and the performance is evaluated again.
In theory, this can lead to N! trained models. The results listed in
Table 3 show the feature combined with the highest F1 score. These
feature sets might change for a non-IID FL setup. However, in our
case it is not feasible to run hyperparameter tuning and feature
chaining on computationally weak edge devices. To increase the
confidence in the results, we run ten-fold cross-validation with
the best hyperparameters and feature sets which yield a maximum
difference of 1 % in all four performance metrics. The best per-
forming features are always spectral features. Power features rank
second or third. Electrical signals are sine curves. By transforming
these signals into the frequency domain we can extract additional
information.

6.2 Edge Device Testbed
Our edge device testbed comprises of 16 Raspberry Pis model 4B
with 2 GB of memory. They are powered over a Netgear Power-over-
Ethernet switch. It measures the individual power consumption
of all devices. An external power meter measures the total energy
consumption of the switch to identify possible deviations of the
power readings from the switch’s web interface. In addition to the
power and energy readings, each module runs a local monitoring
script to track different hardware-related metrics. These include
measurements of memory, CPU and network with a sampling fre-
quency of 1 Hz. The external and switch power meters have a
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Experiment Accuracy F1 Precision Recall
CNN LSTM ResNet Dense CNN LSTM ResNet Dense CNN LSTM ResNet Dense CNN LSTM ResNet Dense

Central .96 .89 .95 .91 .96 .86 .95 .89 .96 .85 .95 .92 .96 .89 .95 .91
IID .87 .82 .80 .79 .83 .79 .79 .73 .84 .78 .78 .68 .84 .82 .82 .79
Non-IID .34 .50 .22 .28 .31 .44 .19 .19 .34 .45 .17 .17 .34 .50 .22 .28
Non-IID + [1] .27 .79 .26 .35 .26 .79 .23 .27 .33 .82 .23 .26 .27 .79 .26 .35
Non-IID + [1, 2] .39 .81 .33 .35 .33 .80 .31 .27 .40 .81 .32 .26 .39 .81 .33 .35
Non-IID + [1, 2, 3] .50 .86 .28 .41 .50 .84 .26 .38 .54 .82 .31 .48 .50 .86 .28 .41
Non-IID + [1, 2, 4] .27 .77 .23 .22 .25 .77 .19 .18 .28 .79 .16 .16 .27 .77 .23 .22
Non-IID + [1, 2, 5] .29 .70 .28 .34 .26 .68 .25 .31 .27 .74 .25 .40 .29 .70 .28 .34

Table 2: Performance metrics (accuracy, F1-score, precision and recall) for all model architectures and experiments (1 = No-
Stopping, 2 = Cosine learning rate, 3 = Aggregation step 1, 4 = Aggregation step 4, 5 = Aggregation step 10).

Model Optimiser Features
CNN 4 SGD MFCC, DCS, AOT
(19, 28, 42, 63) (lr=0.055, wd=0.0)
LSTM 1 SGD MFCC, AC Power
(23) (lr=0.045, wd=0.001)
ResNet 4 SGD MFCC, COT
(20, 30, 45, 67) (lr=0.052, wd=0.001)
DenseNet 3 SGD MFCC, DCS, AOT
(13, 18, 27) (lr=0.075, wd=0.001)

Table 3: Overview of the hyperparameters of the four tested
model architectures with the best testing results.

measurement frequency of one sample per two minutes. The mea-
sured parameters enable the evaluation of the hardware load for
each module individually and network traffic caused by a training
process. We use Raspberry Pis to simulate edge device, because
they have a small form factor, are cheap and computationally weak.
Additionally, the BLOND data set is generated with Raspberry Pis.
Therefore, we use this device for our experiments.

7 EVALUATION OF EXPERIMENTS
The following two subsections discuss the model and hardware
measurements of our experiments. Subsection 7.1 includes a com-
parison of the four performance metrics (accuracy, precision, recall
and F1 score), whereas Subsection 7.2 focuses on network, CPU,
energy utilisation and training time during the training process. All
experiments were run with four model architectures (CNN, LSTM,
ResNet and DenseNet) and either the entire data set, an IID or
non-IID data. For the latter we split the entire data set into random
subsets. In the non-IID setup each Raspberry Pi only has access to
the data from one MEDAL unit.

7.1 Model Metrics
We use centrally trained models that have access to the entire data
set for reference. In a best case scenario, the FL models achieve
at least the same model performance or are even better than cen-
tralised training. During all experiments we calculate the models
accuracy, F1 score, precision and recall on the test data set.

The experiments on the virtual machines and Raspberry Pis do
not yield the same performance results. It is necessary to use Fourier

transformations to calculate the spectral feature (e.g. MFCC). Py-
Torch implements a short-time Fourier transform for that. However,
at the time of writing this paper, this implementation does not work
on ARM architectures. Therefore, we used the Librosa library on
the Raspberry Pis. This results in lower performance metrics for
the CNN and LSTM architectures trained on the Raspberry Pi; the
LSTM architecture is particularly affected by this library change.
Its F1 score in a non-IID FL setting on an ARM device reduces by
35 % points. The performance metrics for the ResNet and DenseNet
architecture stay the same. Therefore, ensuring the availability of
all required packages and libraries on the target architecture is
essential before the model training. Figure 5 shows an overview of
our results with the experiments running on virtual machines with
an x86 architecture.

The best F1 score is achieved with central training. The models
have all data available. For the IID data, we split the entire data set
into equally sized subsets. Each subset contains a random selection
of the entire data set. This setup represents our first FL experi-
ment. After every epoch we use the FedAvg algorithm to merge
all 15 model parameters into one global model. Then, this model
is transferred back to each node and the training continues. The
validation and test sets are the same for all experiments to allow for
a better comparison between different setups. The server performs
the evaluation on each aggregation step. The F1 score for the IID
setup is 15 % worse than the central training.

The data distribution in our next experiments is non-IID. The
data come from 15 MEDAL units. Now, each node only has its inde-
pendent data for training. In some offices only projectors or kettles
are present and others measure the electricity usage of laptops
and monitors. Figure 4 shows the overall presence of all appliance
categories. They are unevenly distributed among the nodes in the
non-IID experiments. This scenario reduces the F1 score drastically
by 64 % compared to the IID setup. The LSTM model is least af-
fected by this change. The F1 score for the LSTM model decreases
by 44 %. Themodel training uses early stopping. It stops the training
when the validation loss is not decreasing between five consecutive
epochs. Without early stopping, the ResNet and DenseNet models
perform slightly better and the LSTM model achieves an F1 score
as high as in the IID setup. With the cosine annealing learning rate
scheduler, the F1 score improves for the CNN and ResNet models.

In the last three experiments we do not aggregate the model pa-
rameters after an epoch, but rather after every batch or every fourth
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Figure 5: Overview of F1 score for all experiments and model architectures.

and tenth batch, improving the F1 score for CNN and DenseNet by
51 % and 33 %, respectively. The LSTM model achieves an F1 score
almost as high as the central training. A decrease in aggregation
frequency also decreases the F1 score. Therefore, we recommend
using an LSTM model architecture with no early stopping, cosine
annealing learning rate and model aggregation after every batch
for high-frequency electricity data.

7.2 Hardware Metrics
This subsection describes our findings with respect to the hardware
usage of the edge devices. First, we elaborate on why we chose the
FL framework Flower. Then, we evaluate the network load, CPU
usage and training time in detail. Finally, we compare the energy
consumption between the central and FL non-IID experiments.

The FL experiments run on an unaltered network. Each module
is connected to a switch with a 1 Gbit/s Ethernet cable. The switch
itself has four glass fibre cables with 10 Gbit/s each. We use the
FL framework Flower. This framework uses the gRPC protocol
for communication and it only requires to install some Python
packages. It allows for an easy setup on ARM architectures such
as Raspberry Pis or NVIDIA Jetson Nanos and is generic towards
PyTorchmodels. The other FL frameworks have some disadvantages.
For example, PySyft has a huge overhead due to Docker, a SQLite
database and other third party packages, IBM FL community version
is not available for commercial use and Clara from NVIDIA focuses
on the healthcare domain.

We compare three scenarios with different data distributions.
In the first scenario one Raspberry Pi has the entire data set and

trains a single ML model. The other two scenarios have an IID
and non-IID setup. For the former we split the entire data set into
random subsets. In the non-IID setup each Raspberry Pi only has
access to the data from one MEDAL unit.

For the network load we use the transfer of the raw data to a
central location as a reference. Therefore, a 0 in the radar chart
in Figure 7 represents the transfer of the entire data set of 5.3 GB.
This is the case for the central training. The FL experiments reduce
the network traffic to 0.2 GB. The network load is reduced by 97 %.
Therefore, it gets a score of 97.

Wemeasure the idle timewith the CPU pressure stall information
(PSI). This metric describes how contended the CPU’s resources
are. It indicates how long processes had to wait for CPU resources.
The higher this number is, the longer processes have to wait and
the more overloaded is the CPU. A CPU PSI of below 1000 µs is
considered as idle.

The training time for the central setup varies per model. The
CNN and the LSTMmodel architecture need approximately 3 h. The
DenseNet needs 1 hour more and the ResNet model architecture
takes 4.5 h to train. All these models have different levels of com-
plexities and it is hard to normalize these results. Therefore, a direct
comparison is not possible. However, the training time seems to
correlate with the models memory usage. The CNN and the LSTM
are the smallest models. They require 450 MB and 550 MB, respec-
tively. The DenseNet consumes 600 MB and the ResNet 650 MB.
For the non-IID setup this looks differently. The training time for
20 epochs decreases to 0.5 h and 1 h for all model architectures for
the IID and non-IID case, respectively. The reduction in training
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Figure 6: Idle time in percent of an LSTM training with non-
IID data.

time is due to the smaller data sets per Raspberry Pi. Additionally,
the total compute power is 15x higher. However, due to the non-IID
nature of the data set some devices are idle for up to 95 % of the
time. Figure 6 shows the idle time of each device / MEDAL unit
in percent for a FL training of an LSTM model for 20 epochs. The
whole training took 1 hour. To speed up the training process, we
could remove the device with the data from the MEDAL 1 unit.
This device has 3,618 training samples. The other devices have an
average of 684 training samples. To reduce the over all training time
we could not consider the first device in the client selection process.
However, this potentially reduces the overall model performance.

During our experiments we monitor the energy consumption
of all edge devices individually. For the energy evaluation we first
subtract the idle power of the edge devices from the measured
values during training, which is 3.8 W for the Raspberry Pi with
2 GB memory. The energy consumption for training a CNN, LSTM,
DenseNet and ResNet on the entire data set on a Raspberry Pi with
2 GB of memory is 7.63 Wh, 8.03 Wh, 10.25 Wh and 12.45 Wh, re-
spectively. The normalized energy consumption by training time is
the same for all model architectures and results to 2.6 Wh. Training
each of the four models in a FL setup increases the total energy
consumption by up to 37 % for the LSTM. The CNN, DenseNet
and ResNet consume 18 %, 12 % and 5 % more energy, respectively.
Therefore, it is crucial for practical applications to consider the
model architecture and the training time for the energy consump-
tion. Our findings help to find an optimum with respect to training
time, energy consumption and level of privacy.

7.3 Scalability
We ran additional experiments to evaluate the influence of the num-
ber of clients in a FL setup on the overall training time. Each client
runs on a Raspberry Pi 4B and trains an LSTM model on the same
training data set. We use the FL framework Flower. Even though all
clients always need the same amount of individual training time,
the overall training time increases linearly with the number of
clients. Our experiment consisted of a total number of 41 clients
and we ran an experiment each time after increasing the number
of clients by five.

7.4 Summary of all Metrics
This subsection summarizes the findings from Subsection 7.1 and 7.2.
We use multiple radar charts to visually compare the performance
of different data distributions on model and hardware metrics. The
results of the training of the LSTM and the ResNet model architec-
ture are presented in Figure 7. All values range from 0 to 100 where
100 represents the best outcome and the results are normalized to
the best score. We assume that FL is completely private and sub-
sequently give all FL based solutions a privacy score of 100, while
central training gets a privacy score of 0.

The radar chart shows the trade offs between different metrics.
Central training has the best F1 score, but it does not conserve data
privacy. Also, it is slow on a computationally weak edge device.
For the two FL data distributions, data privacy increases, but the
accuracy decreases drastically. This is especially the case for non-IID
labels and the ResNet and DenseNet architecture. The training time
decreases by a factor of up to 6 for the ResNet model architecture.

FL aims at increasing data privacy. However, in a non-IID case
our ML models performance decreases. To achieve similar model
performance compared to central training, additional steps are
required. In our case these are no-stopping, cosine learning rate
and a different aggregation strategy. By applying these steps we
found that FL can compete with a centrally trained model in terms
of quality while keeping data private.

8 EXAMPLE USE CASE
With a building management system an operator can maintain its
infrastructure and optimise its usage. In the following paragraphs
we introduce some potential use cases for our appliance classifier in
an office environment. These use cases are split into two categories:
Energy and safety.

Plug-loads add thermal energy to a room. This energy is consid-
ered in the design phase of a building [49, 60]. However, the actual
usage might differ from the theoretical value. Knowing which de-
vices are running can help adjusting ventilation and cooling to
avoid uncomfortable user experience and uncontrolled, wasteful
window opening. Office devices consume electrical energy. With
our classifier, the operator can identify appliances that run over
night or the weekend and accumulate the wasted energy. The oper-
ator can improve energy awareness by showing these numbers to
the users.

Office equipment must comply with safety standards; depending
on the country, theymust be checked frequently. Some examples are
the "EN 60950:2002 Safety of IT equipment" in United Kingdom or
DGUV V3 in Germany. Running inference of an appliance detection
model locally in an office environment allows us to keep track of
the actual usage of the equipment. Safety checks based on the
equipment’s actual run time instead of calendar based checks can
reduce maintenance costs.

Besides the mentioned use cases, Radhakrishnan et al. [30] pro-
vided further ideas for exploiting information about plug-loads in
a building and Hosseini et al. [21] gave an overview on how NILM
can help to improve home energy management systems. All these
use cases have touching points with legal, technical or economical
aspects. Our office appliance classifier can solve technical issues
and help realizing the applications discussed above.
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Figure 7: Radar diagram showing a rating of privacy, F1 score, network and training time on a scale from 0 to 100 of an LSTM
(left) and ResNet (right) training with three different data distributions (central, IID and non-IID).

9 LEARNED LESSONS
This section gives takeaway messages based on the conducted
experiments. First, we highlight our findings with respect to a
central model training on a high-frequency energy data set. Then
we show our findings with respect to training the same models in
an FL system.

(1) Our four developed ML model architectures trained perform
well in classifying On/Off states in a high-frequency en-
ergy data set with a few features (see Subsection 6.1). These
are electrical engineering (AC power) and spectral features
(MFCC, AOT, DCS and COT). The equations for all these
features are given in the Appendix.

(2) Data distribution (IID or non-IID) in a distributed FL system
has a tremendous effect on the model’s performance. All per-
formance metrics (accuracy, F1 score, recall and precision)
decrease for all four model architectures by at least 50 %
when going from a central to non-IID scenario. However,
avoiding early stopping in the training or introducing learn-
ing rate schedulers and different aggregation strategies help
to boost the performance metrics (see Subsection 7.1).

(3) Network traffic in FL experiments decreases compared to
transferring only the raw data to a central location. However,
this depends on the FL framework and its implementation
(see Subsection 7.2).

(4) The training time of all our FL experiments decreases com-
pared to central training by a factor of up to 6 (see Subsec-
tion 7.2). This is due to the smaller data set per edge device.
The entire training is as fast as the slowest edge device with
the largest data set. To avoid drop outs in the training, it is
helpful to only choose clients for the training which have a
data set of similar size.

(5) Changing from a central training approach to a FL setup
increases the energy consumption. Depending on the model
architecture the energy consumption increases by up 37 %.

10 CONCLUSION
Energy informatics is an emerging field that tries to solve issues
related to energy or operational efficiency. To do so data are re-
quired. We developed four model architectures CNN, LSTM, ResNet
and DenseNet to leverage high-frequency energy data, which are
privacy-sensitive, from an office environment to classify appliances.
If all data are centrally stored, an employer could generate pro-
files of the working staff. However, regulatory frameworks like
the GDPR forbid such approaches. FL helps to generate insights
with the high-frequency data set, without violating privacy con-
cerns. We ran multiple experiments centrally to identify the best
performing model architecture for a data set with high-frequency
electricity measurements based on four metrics accuracy, F1 score,
precision and recall. To achieve better performance metrics for the
FL setups, we applied three different strategies. A cosine learn-
ing rate scheduler and the absence of early stopping increased all
four performance metrics equally. Additionally, we achieved with a
batch wise aggregation strategy even better performance. However,
our results show that all FL models perform worse than a central
training approach. Just the LSTM model achieves an F1 score close
to the one from the central training. The training time and the
network load decreased for the FL training compared to a central
training. The former decreases due to smaller data sets per client
and the network load required for the training process with the
Flower framework reduces by 97 % when compared to the size of
the entire data set of 5.3 GB.

In future work, we will investigate the impact of compression
techniques on the network load and the model accuracy to further
decrease the network usage. In addition to that, we will alter the
network of all or individual edge device to account for a heteroge-
neous network landscape (e.g., 4G mobile network or instead of
glas fiber connection a 15 MB/s DSL connection). We will also look
into transfer learning to pre-train a model on a smaller data set to
account for the non-IID environment of the BLOND data set.
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A FEATURE EQUATIONS
The following equations show how to calculate the feature we used
during our training processes. The variables V and I are the voltage
and current, respectively. The power factor is described by cos(phi).
The AC Power feature represents four features. These are the active
(P), reactive (Q), apparent (S) and distortion power (D).

P = Vrms × Irms × cos(ϕ) (1)
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Q = Vrms × Irms × sin(ϕ) (2)
S = Vrms × Irms (3)

D =
√
S2 − P2 −Q2 (4)

Mel-Frequency Cepstrum Coefficients (MFCC)

MFCC =
K∑
k=1

loдk × cos[n(k − 0.5)
π

K
],∀n ∈ 1, ...,N (5)

Device Current Signature (DCS) The DCS is a feature for appli-
ance classification presented by Jian et al. [25].

Current Over Time (COT)
COT = [I1, I2, ..., In ],∀In ∈ C (6)

Admittance Over Time (AOT) is a power feature presented by
Kahl et al. [29].

AOT = [ I1
U1
,
I2
U2
, ...,

In
Un
],∀In ,Un ∈ C (7)
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ABSTRACT
The increasing usage of edge devices and stricter data privacy regu-
lations motivate the use of federated learning (FL). At the same time,
more and more stakeholders are concerned about the ecological
impact of machine learning and its associate network traffic. The
current research in FL does not investigate the impact of different
network constraints and privacy-enhancing techniques, such as
differential privacy, on the network traffic and energy consumption
of the clients. Most experiments run either on virtual machines
or on one machine with simulated clients. In such environments,
it is challenging to measure each client’s network and energy us-
age. Therefore, we built our "Distributed Edge Device Testbed"
(DEDT) and evaluate a convolutional neural network trained on
the MNIST data set under different network constraints on DEDT,
with differential privacy and with an increasing amount of par-
ticipating clients. For each experiment, we quantify the network
traffic, energy consumption, and training time. The results show the
importance of experiments on physically separated nodes and the
need to improve software-based power monitoring. The estimated
energy consumption deviates by up to 35 % from the measured
ones. The accuracy of the estimated network traffic depends on
the monitored network interface and gives an error of 18 % for
virtual machines in combination with monitoring the Ethernet in-
terface. The training time also increases linearly with the number
of participating clients.
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1 INTRODUCTION
The increase in regulatory constraints such as the General Data
Protection Regulation in the European Union [31], the California
Consumer Privacy Act in the USA [18], and the Personal Data
Protection (Amendment) Act in Singapore [27] increase pressure
on companies and other stakeholders working with sensitive data.
However, current artificial intelligence (AI) models require big data
[19, 25]. Storing all data centrally leads to an increase in admin-
istrative overhead to comply with these new regulations and it
falls short of preserving data privacy [1, 6]. Another challenge is
the increasing amount of internet traffic and its associated energy
consumption for the data transmission network. The former in-
creased from 2015 to 2021 by 440 % and the latter also increased in
the same time frame by up to 60 % from 220 TWh to 340 TWh [9].
The majority of the internet traffic is video streaming. However,
these numbers illustrate the importance of decreasing the network
traffic of all applications to reduce the energy footprint of the data
transmission network. Federated learning (FL) can be a solution to
this problem by increasing data privacy and decreasing network
traffic of data science applications.

Most FL experiments in the literature run either on virtual ma-
chines (VM), on simulated nodes on one machine, or the platform
is not mentioned. However, data transfer between multiple VMs
over shared memory is much faster and less error prone than data
transfer over the internet (wired or mobile network). Furthermore,
it is hard to pinpoint parts of the energy consumption of a server to
its hosted VMs, so that a detailed analysis of energy consumption
becomes difficult. One approach to solving the latter is PowerAPI,
which currently only works on x86 architectures [3]. Therefore, we
built the Distributed Edge Device Testbed (DEDT) to evaluate FL
experiments on edge devices under real-world conditions to inves-
tigate the impact of different network constraints and additional
privacy-enhancing techniques such as differential privacy (DP) on
hardware performance. For a detailed description of the testbed
components see Appendix C.

Our contributions are:
(1) Quantifying the impact of different emulated networks and

privacy-enhancing techniques like DP on the energy con-
sumption.

(2) Insights and guidelines on how accurate estimated network
traffic and energy consumption are compared to measured
metrics on physically separated IoT devices in an FL context.

(3) Quantifying changes in the systems behavior when scaling
the number of participating clients. Those include network
traffic, energy consumption, and training time.

This paper is structured as follows. First, we describe how FL
works and which challenges it faces in Section 2 and we give an
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overview of different FL systems. Section 3 shows how we design
our experiments. Section 4 presents the performance and usability
of DEDT with different FL experiments. We evaluate our FL ex-
periments and compare the measured metrics with the estimated
ones. A summary of the lessons learned is provided in Section 5,
and Section 6 presents the conclusion of our findings.

2 FEDERATED LEARNING
The current prominent ML approach is to transfer raw data from
remote machines to a central location to further process it. In FL
no raw data is transferred. Instead, each remote client receives the
instructions on what to run, e.g. train an ML model, and it only
sends its local ML model parameters/gradients or other statistical
metrics to a central location for further processing. During the
entire process, the data scientist at the central server has no access
to the raw data. However, FL systems face a multitude of challenges.
Those are mainly due to an uneven label distribution on the par-
ticipating clients, network constraints or risks of privacy attacks.
In this paper we focus on challenges with respect to hardware and
network utilization.

We qualitatively describe privacy by tackling two prominent
problems in an information flow: Copy and bundling problem. The
former describes the risk of shared data being unlimitedly dupli-
cated [20, 29]. The latter describes the unintentional sharing of
information contained in a data set. FL tries to solve the copy prob-
lem and avoids sending raw data at a higher cost of energy due to a
larger pool of distributed devices compared to central training. DP
tackles the bundling problem and tries to keep the input of a pro-
cess private by artificially adding noise to the raw data. However,
it is computationally heavy. Different aggregation algorithms can
increase ML performance. We evaluate the impact of FedAvg [16],
QFedAvg [14], FedAdam [24] and FedAvgM [8] on the hardware
behavior. Some challenges of FL systems can be investigated purely
on one device and others need additional hardware to better mimic
the systems behaviour. However, coordinating and maintaining
multiple devices increase the organizational overhead.

The current focus in FL research is on improving model accuracy
or training time [15, 28, 38]. In most cases it is not clear which hard-
ware environment was used for the experiments. Bousbiat et al. [4]
identified a lack of evaluation of communication overhead and re-
quired processing resources in FL applications. Additionally, Table 1
gives an overview on which environments are used for FL experi-
ments. Current research focuses on virtual FL nodes for simulating
a distributed system. This makes it hard to evaluate the effect of
network communication induced by the FL training and to mea-
sure energy consumption on a client level. Bonawitz et. al [2] run
an FL system on mobile phones. However, they do not give any
measurements for energy and network usage. Therefore, this paper
illustrates the capabilities of FL in a real-world use case without
quantifying its ecological footprint. The goal of this overview is
to highlight the lack of FL experiments on physically distributed
devices and not to emphasize that all FL experiments should run in
such an environment. With our work we enable other researchers
to estimate their systems network traffic and, depending on the
hardware, also their energy consumption, independently of their
desired environment.

Table 1: Overview of environments used for different FL ex-
periments.

FL Environment / Hardware References
Single device [15, 28, 32–34]
Virtual Machines [5, 26]
Physically distributed devices [2]*
Hybrid -
Unknown [7, 13, 15, 23, 30]

Some researches developed optimization problems to balance
energy consumption depending on completion time or wireless
communication [35, 37]. The given constraints (e.g. fixed CPU fre-
quency and data transmission size) limit this approach to certain
edge cases. Additionally, Qui et. al [21, 22] ran FL experiments with
different data sets and aggregation strategies on multiple graphic
cards and measured the energy consumption. The goal was to quan-
tify the required energy to achieve certain ML model accuracies.
The energy consumption of the FL setups was up to 11x higher
when compared to a central ML approach. Our experiments follow
a similar approach but differ in hardware (48 CPU edge devices
instead of a few GPUs). We also introduce DP and monitor the
network traffic. Qui et. al converted the resulting energy in Watt
seconds to CO2 equivalents. In our experiments we focus on the
energy usage in Watt seconds and do not give any CO2 equivalents,
because the latter highly depends on the local energy mix. The
power consumption of FL on Raspberry Pis might vary from that
on other platforms. However, Raspberry Pis are common hardware
for IoT applications and Ubuntu is a widely adopted OS. Therefore,
our testbed is a feasible reference for real-world scenarios.

3 DESIGN OF EXPERIMENTS
We organize our experiments into three categories: FL extension,
network and environment. Each category has multiple options and
each experiment consists of one pick per category. FL extensions
are either with or without DP. To enable DP we use the Opacus
Python package with its default settings and secure mode off [36].
The network category consists of a pure network (no artificial
changes, which translate to 1 Gbit/s) and three networks emulated
with netEm (15 Mbit/s and 8 Mbit/s Ethernet network [17] and 4G
mobile [12]). The environment category is either a single device,
VMs or multiple devices.

In our experiments we use two types of data distributions. First,
all clients have the same data set available. Second, each client
samples the entire data set based on a Gaussian distribution along
a random number between zero and nine. Furthermore, a round
refers to the moment when all clients send their updates to the
aggregation server after they trained for one epoch. The Power-
over-Ethernet (PoE) switch delivers the ground truth for the power
measurements. We focus on quantifying the energy consumption of
the entire system (edge device) and not of specific software artifacts.
All experiments run with a different number of participating clients
(2, 5, 10, 20 and 40) to evaluate the scalability of FL. Central ML
training with and without DP is our reference scenario.
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Table 2: Overview of the energy consumption inWs/round for
an FL training with and without DP, FedAvg and clients 2 GB
of memory without idle load. 𝐸𝐶𝑙𝑖𝑒𝑛𝑡 and 𝐸𝑆𝑦𝑠𝑡𝑒𝑚 provide the
energy consumption of one client and the entire FL system,
respectively.

Nr. of DP 𝐸𝑆𝑒𝑟𝑣𝑒𝑟 𝐸𝐶𝑙𝑖𝑒𝑛𝑡 𝐸𝑆𝑦𝑠𝑡𝑒𝑚
Clients [Ws/round] [Ws/round] [Ws/round]
Central - - - 2841
2 - 432 1757 3946
5 - 451 1727 9086
10 - 516 1943 19,946
20 - 1203 2230 45,803
40 - 2750 1928 79,870
47 - 4081 2056 100,713
Central + - - 4380
2 + 1083 4594 10,271
5 + 1121 4585 24,046
10 + 2164 5501 57,174
20 + 4096 5485 113,796
40 + 7432 5177 214,512
47 + 10,457 4849 238,360

4 EVALUATION
For the power and network metrics, we compare the measurements
from the testbed with an estimator. We use the following methods
to estimate the power and network usage in an FL context.

(1) Power: Software-based power estimator based on CPU cy-
cles.

(2) Network: Monitoring local loopback network interface on
one Raspberry Pi hosting multiple simulated FL clients or
monitoring the Ethernet interface for the VM environment.

4.1 Energy Metrics
The PoE switch and the software-based power estimator return the
power measurements and estimations in milli Watt (mW). To calcu-
late the energy consumption, we use the time difference between
two readings in seconds. The resulting energy unit for evaluation
is Watt seconds (Ws). We normalize all results by the number of
training rounds giving us Ws/round.

First, we run reference scenarios with one device hosting the
entire data set and training only one central model. This approach
consumes 6075 Ws/round and 6690 Ws/round for the Raspberry Pi
model with 2 GB and 4 GB, respectively. This includes the energy
consumption of the entire device. With DP, the energy consump-
tion per round increases to 9925 Ws/round and 10,004 Ws/round,
respectively. Therefore, increasing data privacy results in about
56 % more energy consumption. The energy consumption is not
dependant on the network constraints.

To estimate the energy 𝐸𝐶𝑙𝑖𝑒𝑛𝑡,𝐹𝐿 consumed only by the FL pro-
cess, we deduct the power drawn of the devices in idle mode from
the power drawn during FL training. For example, a Raspberry
Pi with 2 GB of memory has an idle load of 3.3 W. In that case
the central training consumes 2841 Ws/round. Table 2 provides
an overview of the energy consumption per client and round for

Table 3: Simplified examples to get an idea of the training cost
with and without DP incurred on a state-of-the-art mobile
phone.

Mobile Phone Battery FL Rounds
[mAh] No DP DP

iPhone14 3279 312 123
Galaxy S23 Ultra 5000 490 188

different FL systems. The numbers exclude the idle load. Depend-
ing on the number of participating clients the energy consumption
𝐸𝐶𝑙𝑖𝑒𝑛𝑡,𝐹𝐿 varies by up to 25 %, and with DP it increases by up to a
factor of 2.6.

The servers’ energy consumption per aggregation strategy in
Ws/round for two clients without DP from high to low is FedAvg
(564), QFedAvg (421), FedAvgM (394) and FedAdam (378). It scales
linearly with the number of clients for all aggregation strategies.
The clients’ energy consumption is independent of the server ag-
gregation algorithm. Lastly, a Gaussian label distribution on client
side reduces the average client energy consumption by 30 % and by
20 % for the server due to shorter training.

To put our findings into perspective, we compare them to the
battery capacity of current high-end mobile phones by converting
Ws into milli Ampere hours (mAh). We consider the evaluation
from above with two clients. Without and with DP this translates to
1753 Ws/round and 4544 Ws/round per client, respectively. Table 3
summarizes the comparison. To avoid negative user experience due
to FL training, Bonawitz et al. [2] trained their models only when
the mobile phone was connected to a power source and it was idle.

31 22:10
31 22:20

31 22:30
31 22:40

31 22:50
31 23:00
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Figure 1: Three different power metrics for one client. The
ground truth are the measured power readings. The values
for the other two readings are calculated and are based on the
Raspberry Pis CPU utilization. All calculated power metrics
are capped at 7 W.
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It is not always practical to directly measure the power load of
an edge device. Therefore, we compare our measurements with
two software-based power meters to show how accurate they are
and to give guidelines on when to use them. For our estimations,
we capped all calculated values at the highest measured value of
7 W. We assume that the majority of users use their edge devices
without overclocking them.

Both Raspberry Pi power models mentioned in Appendix A vary
in their prediction performance. In general, the Pi model I over-
predicts the actual power drawn and the Pi model II under-predicts
it at high loads. An example for those relations is shown in Figure 1.
The highest error for the Pi model I and II are +35 % and -20 % for
runs with DP, respectively. The performance of the power models
is independent of the network. However, it depends on the total
amount of available memory. The maximum error without DP is
+12 % and -20% for the Pi model I and model II, respectively. The
lower the CPU load, the better the prediction performance of the
Pi model II. This is especially the case when more than 10 clients
are involved in FL training, because each client has to wait longer
for a round to finish which reduces the CPU load. We explain the
relation between number of clients and training time in more detail
in Section 4.3.

4.2 Network Metrics
We use tshark to monitor each devices individual network traf-
fic. For the experiments with physically distributed clients and
with multiple simulated FL clients on one machine we monitor
the Ethernet interface (eth0) and the local loopback interface (lo),
respectively. This interface is a message channel with only one end
point. The sender and receiver are identical in the loopback. The
evaluation only considers traffic between a client and the server by
filtering based on the respective IP addresses and port. We evaluate
the network traffic size and the number of messages.

For the clients, the network traffic (24MB/round) and the number
of messages per round (15,000 messages/round) for all emulated
networks are constant, independent of DP. They are 30 % higher
than for the pure setup. The number of messages per round for the
pure network reduces to 13,000. For a pure network the number
of large messages (21 % of all messages are 2962 byte) is higher
when compared to the emulated 4G network (11 % 2962 byte).The
aggregation strategy has an impact on network traffic. For two
clients and FedAvg, the server’s traffic per round is 36 MB. For
QFedAvg and FedAdam the traffic changes by +16 % and 55 %,
respectively, while for FedAvgM it stays the same.

While running FL on the VMs, we monitor the eth0 Ethernet in-
terface. For up to ten clients, the measured network traffic is compa-
rable to the one on the physically distributed devices. The network
traffic per client and round on the Raspberry Pis is 23 MB/round.
For two, five and ten clients running on VMs the measured network
traffic per round and client is almost the same with 19 MB/round,
17 MB/round and 17 MB/round, respectively. However, the number
of messages between the VMs is much smaller (about 94 % less mes-
sages when compared to the distributed training on the Raspberry
Pis). Therefore, monitoring the Ethernet interface on the VMs gives
a good estimate of the actual expected network traffic in terms of
bandwidth, but not in terms of number of messages.

We run experiments with two simulated clients and all four net-
work settings (pure, 15 Mbit/s, 8 Mbit/s and 4G) with and without
DP and monitor the lo interface. The results show a clear mismatch
between the monitored network traffic between devices and the
monitored traffic on the local loopback interface. The average net-
work traffic is 6 MB/round and the number of messages is 500. The
lo interface captures only 26 % of the network traffic and 4 % of the
messages measured in fully distributed setup.

4.3 Time and Scalability
Our testbed consists of 48 Raspberry Pis and is therefore limited
to represent large scale FL applications with multiple hundred or
even thousands of devices. Still, with our experiments, we provide
a starting point and identify some trends with respect to training
time and energy consumption. Each aggregation step on the server
takes 30 s/round, independently of DP running on the clients or not.
The training time on the clients increases with DP from 600 s/round
to 1600 s/round. The training time is independent of the network
profile. The training time per round increases linearly with the
number of participating clients even though all clients have the
same data set and the same hardware. This is due to the clients
training out of sync after every batch of eight clients. Every 8th
new batch introduces a training delay of 85 sec.

5 LESSONS LEARNED
In this section, we summarize some lessons learned:

(1) Differential privacy running on the clients increases the
training time and the consumed energy by 300 % and 280 %,
respectively.

(2) Training time per round increases linearly with the number
of participating clients for the Flower framework. The same
applies to the servers’ energy consumption regardless of the
aggregation strategy.

(3) Depending on the software-based power model and the num-
ber of participating clients the calculated energy consump-
tion can be off by up to +35 %. In any case, the underlying
power model should cap all estimations at the respective
maximum power load of the device.

(4) Using the Ethernet interface to measure network traffic be-
tween virtual machines gives a good estimate of the ex-
pected network bandwidth consumption, but underpredicts
the number of messages by 94 %.

(5) Using the local loopback interface to measure network traffic
on one machine hosting multiple simulated clients does not
give a good estimate for the actual network traffic.

6 CONCLUSION
The measurements obtained from our FL experiments on DEDT
quantify the accuracy of estimated power and network metrics for
different network constraints with and without DP. Our results
show that it is difficult to estimate the power and network usage in
a real-world scenario with a software-based power meter or local
experiments. However, running FL on VMs and simultaneously
monitoring the Ethernet interface give a good estimate of the ac-
tual network load. Due to high error rates this approach is not
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applicable to simulating multiple clients on one machine and moni-
toring the local loopback interface. Using CPU cycle based power
meters on Raspberry Pis is easy to implement and it can have high
prediction accurracies. Furthermore, FL specific extensions like DP
further increase energy consumption. Out scalability experiments
indicate a linear training time increase depending on the amount
of participating clients and an increase in training time by a factor
of three between the FL runs with and without DP.
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A RASPBERRY PI POWER MODEL
Raspberry Pis do not come with any power meter capabilities. One
approach to indirectly measure the power drawn is to leverage a
CPU utilization based model. Such models reach accurracies of up
to 97.5 %. Kaup et al. [10] and Kesrouani et al. [11] generated power
models for model 2 B and model 3 B+, respectively. By using the
same approach, we developed our own CPU based power model
for the Raspberry Pi model 4. We generated models for CPU loads
from 0 % to 50 % (P [W] = 0.02992 * u + 3.9364) and from 51 % to
100 % (P [W] = 0.031 * u + 5.2947). The variable u describes the
quotient between two types of total numbers of CPU cycles at two
consecutive time stamps: cbusy and ctotal. The numerator is the
difference between cbusy[t] and cbusy[t-1] and the denominator is
the difference between ctotal[t] and ctotal[t-1]. cbusy is the sum of
cuser, cnice, and csystem.

Table 4: CNN architecture used to train an MNIST predictor.
Padding is always equal to zero.

Layer Input Kernel Stride Output
Conv2d 1x28x28 3x3 1 32x26x26
ReLU 32x26x26 - - 32x26x26
Conv2d 32x26x26 3x3 1 64x24x24
ReLU 64x24x24 - - 64x24x24
Pool2d 64x24x24 64x12x12
Dropout 64x12x12 - - 64x12x12
Flatten 64x12x12 - - 9216
Linear 9216 - - 128
ReLU 128 - - 128
Droput 128 - - 128
Linear 128 - - 10

B MODEL ARCHITECTURE FOR
EXPERIMENTS

Table 4 provides details about the CNN architecture used in our
FL experiments. This architecture yields a pickled model size of
4.8 MB. This a rather large model for the MNIST use case and we
chose it to have more load on the network. The learning rate is set
to 1.0 and the optimizer is Adadelta.

C TESTBED DESIGN
Figure 2 provides an holistic overview of the edge device testbed
setup. Its hardware consists of the following components. The
external power meter verifies the power readings of the power-
over-Ethernet (PoE) switch.

(1) PoE switch (S5500-48T8SP)
(2) Raspberry Pi model 4 with PoE hat
(3) Jetson Nano
(4) External power meter with ZigBee communication capabili-

ties
We split the software components into operational and moni-

toring related categories. The former consists in our case of the
following parts:

(1) Ubuntu 20.04 LTS

Storage

Database

PI I

...

Switch

Power Meter

Controller

Egde Device Cluster PostgresZigBee FL FrameworkAnsible

Pi XLVIII

Figure 2: General overview of DEDT with its different com-
munication protocols.

(2) Watchdog: Power cycle Raspberry Pi if it is not responding
after a given interval to avoid manual interactions with it
when it freezes

(3) Network time protocol to synchronous time stamps on each
device

(4) Ansible (DevOps) to ease deployment of experiments
(5) PostgreSQL running on an VM to store all measurements
(6) netem to emulate different network environments
(7) FL framework
With psutil we monitor each devices’ CPU and memory us-

age. A batch scripts takes care of starting and killing the network
monitoring via tshark and we extract the switch’s power readings
with its API. The measurements are either stored in a PostgreSQL
database running on an VM or are processed with the commercial
product Weights and Biases. The data to the PostgreSQL database is
either sent via Pub/Sub (Mosquitto) or each client directly connects
to it.
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ABSTRACT
Reducing greenhouse gas emissions in mobility is paramount to
achieving a carbon-neutral society. However, battery-electrical ve-
hicles (BEV) introduce unique engineering challenges to protect
expensive electrical components from overheating. A centralized
architecture for model-driven predictions of coolant temperatures
poses privacy and legal issues. Additionally, the applications in
a vehicle compete for the available resources and must use them
as sparingly as possible. Therefore, we introduce a new federated
computing (FC) use case to help transform the mobility sector. We
evaluate the performance of two FC approaches (linear regression
and machine learning) on hardware and privacy metrics by lever-
aging a real-world dataset from BEVs. Our findings show trade-offs
between hardware utilization and model accuracy. The linear re-
gression model yields the best performance and prediction metrics.
FC with ML shows up to 761 % variances when comparing vehicle-
specific models with models trained with the entire fleet and clus-
tering the data into velocity profiles partly improves prediction
performance.

CCS CONCEPTS
• Security and privacy; • Computing methodologies→ Dis-
tributed computing methodologies; • Applied computing;
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1 INTRODUCTION
The carbon dioxide emissions caused by the transportation and
mobility sector in 2020 was 27.06 % of the European Union’s (EU)
total emissions, and vehicles drove 56.93 % of its carbon dioxide
emissions [2]. The share of battery and plug-in electric (BEV and
PHEV) vehicles at the new registrations increased in the EU from
3 % to 17.8 % between 2019 and 2021 [1]. Three drivers of this trend
are the public’s interest in reducing the personal carbon dioxide
footprint, legal restrictions, and government subsidies [13, 44].

However, BEVs introduce unique engineering challenges due to
higher proportions of costly electrical components, such as semi-
conductor parts. Keeping those parts at their optimum temperature
is crucial to reduce failure rates. BEVs’ thermal management sys-
tem (TMS) holds the vehicle components at optimum temperatures.
Figure 1 illustrates a simplified TMS of a BEV. The coolant and re-
frigerant are liquids. The latter can change its phase to gaseous. This
complexity makes it challenging to predict the coolant temperature
and its effect on all attached hardware components’ performance,
efficiency, and lifespan.

Vehicles generate different types of data, from time series data
to images. Sending entire datasets to a central server can introduce
network bottlenecks and cause privacy concerns by customers.
Additionally, regulatory constraints make it more challenging to

External Heat...

Electric
Heater

Coolant Path Refrigerant Path

Coolant
Condenser

Compressor

Electric
Motor

+ Inverter

High Voltage BatteryPassenger
Cabin

External
Heat

Exchanger
OBC +
DC-DC

Converter

Figure 1: Simplified illustration of anBEVTMS. TheOnBoard
Charger (OBC) and DC-DC converter convert AC to DC for
the battery and high voltage (400 V) to low voltage (12 V) for
applications, such as the radio, respectively.
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deploy centralized pipelines due to legal risks and compliance ef-
forts [5, 11]. Since 2016 the General Data Protection Regulation
has protected customers in the European Union [35]. Similar le-
gal frameworks are the California Consumer Privacy Act in the
USA [24] and the Personal Data Protection (Amendment) Act in
Singapore [31]. A strategy to enable privacy-preserving computa-
tions is federated computing (FC). It keeps the data at its origin and
shifts the computational workload to the source instead. However,
computational resources and energy in a BEV are scarce. Therefore,
we evaluate the impact of two different FC approaches on multiple
hardware metrics (memory, storage, network, and energy) to find
a trade-off between coolant temperature prediction accuracy and
hardware requirements. Finally, with an FC-enabled architecture
in combination with the Extended Vehicle (ExVe) or ADAXO (Au-
tomotive Data Access - Extended and Open) data standard [25],
automotive manufacturers could learn from one another without
sharing their datasets and tailor models more quickly to specific
geographical locations or customer behaviors.

Our contributions are:
• Quantifying trade-offs between multiple hardware metrics
(memory, storage, network, and energy) and privacy in a
BEV context by leveraging physically distributed hardware
tomimic real-world scenarios as closely as possible and using
a real-world data set from test vehicles.
• Investigating the impact of two FC approaches (FA and FL)
on model transferability for multiple vehicles with different
engine types.
• Quantifying the impact of velocity profiles on the prediction
performance.
• Evaluating the network on physically distributed edge de-
vices and virtual machines in the context of FC to highlight
differences.

This paper is structured as follows. First, we describe in detail
the motivation for this paper Section 2. Then we describe related
work in FC and temperature prediction (Section 3.1, and Section 3.2)
in the automotive context. Section 4 describes the dataset and our
pre-processing steps. The evaluation of our experiments concerning
privacy, hardware utilization, and model transferability (FC) is in
Section 5. Section 6 presents the conclusion of our findings.

2 MOTIVATION
Monitoring complex cooling circuits in a vehicle is challenging. An
abundance of temperature sensors allows fine-grained measure-
ments of the system. However, each sensor imposes design and
engineering challenges [14, 37]. The space in a vehicle is limited,
and neighboring components transfer heat from or to each other
over the air or by direct contact. Additionally, temperature sensors
themselves impact the transfer of excess heat. They also increase
initial costs, potential error sources, and maintenance efforts due
to broken or drifted sensors [37]. Therefore, each sensor should
generate as many insights as possible. One approach to achieve this
is data-driven models.

Knowing the temperatures of core components, such as semi-
conductor parts or capacitors, is crucial to the decrease downtime
of vehicles due to broken parts. For example, a 10 °C higher temper-
ature than estimated can reduce a capacitor’s lifetime by half [3, 28].

There are three different non-ML approaches to assessing those tem-
peratures in advance [38]. The most accurate approach is complex
numerical simulation with high computing costs. More straightfor-
ward numerical simulations with complexity-reducing assumptions
give a lower accuracy but a faster compute time. Lastly, assuming
a constant temperature reflects the absolute worst case and results
in over-engineered components. Enriching simulations with data-
driven models enables engineers to reduce the feature space and
the number of available design choices. Simulations with different
customer mission profiles can increase a vehicle’s efficiency by con-
sidering the model’s output in the design and production phases.
A car drives up to 200,000 km in long term tests under different
conditions to test its performance and durability. Such test drives
are expensive, and being able to run those with more accurately
simulated components reduces failure rates and time needed.

A coolant temperature model could also enable adaptive thermal
management and remote diagnostics [4, 8]. If we know in advance
when a component is getting hotter than a given threshold, the car
can adjust the cooling intake or flow. Improvements to the models
can come with over-the-air updates. The models’ hardware require-
ments should be as lows as possible. Computational resources in
vehicles increase and with it the number of services competing for
those resources [20]. Therefore, our prediction model should be
as lean as possible in every way (storage, memory, network, and
energy) [22].

3 STATE OF THE ART
To the best of our knowledge, there is no study combining FC
and analytical feature engineering (AFE) to predict the average
coolant temperature of a BEV by simultaneously measuring its
computational footprint. However, there is research on individual
parts of our toolchain (FC in vehicles and temperature prediction).

3.1 Federated Learning in Vehicles
One subcategory of privacy-preservingmachine learning (ML) is FC.
This method enables data scientists to work on remote data while
keeping it private. The data stay at its origin, and each device trains
its local model. Each client only transfers its model parameters to a
central server, where each model is aggregated into one primary
model and distributed back to each client. FC allows server-client or
peer-to-peer architectures. One of the first aggregation strategies
is FedAvg, which averages all updated model parameters. One chal-
lenge of FC is unevenly distributed labels (non-Independent and
Identically Distributed). FC comprises federated learning (FL) and
federated analytics (FA) [10, 39, 42]. The former applies iterative
optimizations with multiple rounds, such as ML. In contrast, FA
runs for only one round. It leverages statistical calculations such as
average and sum. An example use case is the fit of linear regression
models.

The connectivity of vehicles, their available network capabili-
ties, and computational resources are increasing, introducing the
term Internet-of-Vehicle (IoV). A challenge for distributed and non-
stationary vehicles or IoV is connection loss and their heteroge-
neous individual datasets [17]. Therefore, Li et al. and Ye et al.
developed a peer-to-peer architecture with an adopted aggrega-
tion strategy to consider vehicles dropping out during a training
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round [21, 41]. Their approaches achieve similar accuracy when
compared to a centralized ML architecture. Other IoV use cases
are stress level identification in vehicles with training on roadside
units [36], image classification [23], and object detection [9]. Addi-
tionally, Tan et al. provide a short overview of other IoV use cases
which leverage FL [34]. Besides model performance, it is also neces-
sary to balance theMLmodels’ energy consumptionwith a battery’s
state of charge to avoid a negative customer experience [32, 43].
However, no work leverages time series data to develop a coolant
temperature prediction model in a privacy-preserving fashion.

3.2 Temperature Prediction
In the past works, some data driven temperature predictions for
BEVs have beenmade, but there are fewworks that attempt tomodel
the complete TMS. Moreover, to the best of the authors’ knowledge,
federated training of models for EV TMS has not been proposed.
Billert et al. predicted high voltage battery coolant temperatures
using quantile neural networks [6, 7]. Padros et al. generate neural
network models to predict the important electric motor tempera-
tures together with the coolant temperature using Karhunen-Loeve
expansion as a pre-processing step [26]. Wallscheid et al. investi-
gate ML to predict the temperatures within the permanent magnet
synchronous motors. However, the coolant temperature is not ana-
lyzed [37, 38]. Park et al. leverage artificial neural networks to train
a model for TMS subsystems, then uses the subsystem models to
develop control strategies [27].

4 DATASET
Our dataset consists of time series measurements of 35 test BEVs
from an automotive manufacturer. The vehicles drive around Ger-
many with different routes. A mobile data recorder tracks all mea-
surements with a frequency of 10 Hz and loads the logs into a local
database. The vehicle category comprises one model (iX3) and two
engine types (C and D). We have data from 10 and 23 vehicles for
𝑖𝑋3𝐶 and 𝑖𝑋3𝐷 , respectively. The measured features capture the
behavior of multiple temperatures (e. g., ambient, inverter, and oil),
battery (e. g., state-of-charge, current, and voltage of high voltage
system), and movement-related (torque, velocity) metrics (Table 1).
However, not all metrics are always available. For example, test
vehicles measure some metrics more frequently than a vehicle sold
to a customer. Therefore, we focus on the feature mentioned in
Table 1.

Analytical feature engineering. To increase the precision and
transferability of the model without requiring vast amounts of

Table 1: Features used for the experiments with their respec-
tive unit and value range.

Name Symbol Unit Range
Velocity 𝑣 𝑘𝑚/ℎ [0, 180]
Torque 𝑀 𝑁𝑚 [0, 400]
RPM 𝑛 𝑚𝑖𝑛−1 [0, 15000]
HV System Voltage 𝑉𝐻𝑉𝐷𝐶 𝑉 [300, 400]
Ambient Temp. 𝑇𝐴𝑚𝑏 °C [0, 40]
Avg. Coolant Temp. 𝑇𝐶 °C [5, 55]

data, we generate new features using the underlying equations that
govern the physical processes within the TMS. The temperatures
within the BEV depend on the generated and dissipated heat from
the TMS components. The heat diffuses through surrounding com-
ponents to reach the coolant. Therefore, we use physical equations
related to heat losses and conduction to generate additional fea-
tures based on existing measurements. Eddy and Hysteresis losses
represent a portion of the losses in the electric motor [30], Fourier’s
Law [12], and Stefan-Boltzmann Law [40] describe heat diffusion
and radiation. Those features are a supplement to the main features
from Table 1 since they represent a portion of the power losses and
temperature relations in BEVs.

Table 2 provides an overview of newly calculated features. The ⊙
operation is an element-wise multiplication.𝑇 is the temperature, 𝑡
is time, 𝑘 is the thermal conductivity, 𝑐 is the specific heat capacity,
𝜌 is the density, 𝑗∗ is the radiated heat loss from a black body, 𝜎 is
the Stefan-Boltzmann constant.

Table 2: Empirical generation of features using physical equa-
tions. M, n and 𝑇𝐴𝑚𝑏 describe the torque, rotation speed and
ambient temperature, respectively.

Equation Operation
Mechanical Power [30] 𝑃 = 𝑀𝑛 𝑀 ⊙ 𝑛
Eddy Current Loss [30] 𝐾𝑒𝐵

2 𝑓 2 𝑀2 ⊙ 𝑛2
Hysteresis Loss [30] 𝐾ℎ𝐵

1.6 𝑓 𝑀1.6 ⊙ 𝑛
Fourier’s Law [12] 𝜕𝑇

𝜕𝑡 = 𝑘
𝑐𝜌

𝜕𝑇 2

𝜕2𝑥2
𝑇 2
𝐴𝑚𝑏

Stefan-Boltzmann Law [40] 𝑗∗ = 𝜎𝑇 4 𝑇 4
𝐴𝑚𝑏

Data pre-processing. The dataset requires pre-processing to
remove inaccurate measurements. Those include outliers, non-
changing values over a long period, or NaN values. We remove
those measurements, drop features containing only zeros, and nor-
malize each column by its min/max (ML) or mean (Lasso) values.
Some sensor measurements keep getting logged after the vehicle
stops operating, even though the data collection should stop. We
apply a stand-still filter similar to Padros et al. [26] to eliminate
those measurements by removing entries where the torque and
velocity equal zero. Additionally, a dataset per vehicle consists of
multiple separate driving events. We separate those via the times-
tamp. Any time gap above 10 minutes is considered an end to a
driving session.

5 EXPERIMENT EVALUATIONS
We simulate a fleet of vehicles with Raspberry Pis model 4 to get
more realistic measurements than simulating a fleet on onemachine
or with VMs. Table 3 provides a summary of our results. The Lasso
model requires fewer computational resources to train a model than
an ML model. We explain each measurement in more detail in the
following sections.

The Raspberry Pis emulate the available computational resources
in a vehicle. We limit our application to running on a weak device
because similar devices already operate in BEV. Another reason
is to simulate the internal competition of services for hardware
resources. During our experiments, we evaluate four hardware
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Table 3: Summary of hardware metric evaluations measured
during the training of the Lasso and ML model.

Memory Storage Network Energy
[MB] [kB] [kB] [J]

Lasso (Pi) 110 0.274 0.38 0.37
ML (Pi) 175 20.5 86 140

metrics (memory, storage, network, and energy) for an FA and FL
strategy together with their respective trade-offs (Section 5.3).

We monitor the network during each experiment with tshark.
We filter the monitored network traffic by port to eliminate any
noise. Additionally, we normalize all network- and energy-related
measurements by the number of rounds to allow easier comparison
between different runs. All Raspberry Pis draw their power via a
Power-over-Ethernet (PoE) capable from the switch. It measures
the individual power drawn.

5.1 Accuracy
We use the R2 score to benchmark the prediction performance of our
models. Its highest value is one. It can be arbitrarily worse and also
be negative. The model training runs with up to three features from
Table 2 and Table 1, and𝑇𝐶 is always the label. No feature correlates
with another one. We either take the entire dataset of a vehicle (no
WLTP) or split it by three velocity ranges (<= 50 km/h, > 50 km/h
and <= 100 km/h, > 100 km/h) based on the Worldwide Harmonised
Light Vehicles Test Procedure (WLTP), which describes driving
profiles to measure the vehicle’s emissions in real-world usage. We
highlight the effect of WLTP only on locally trained and the Lasso
models.

We train a Lasso model per BEV with all possible feature combi-
nations (up to three features) to find the best-performing features.
Figure 2 shows the highest respective R2 score per BEV for each
model and engine type. The WLTP boxplot shows the velocity
profile > 100 km/h. However, the other two look similar. Dividing
the data into velocity profiles improves the R2 score. The most oc-
curring features with the highest R2 score are 𝑇𝐴𝑚𝑏 and 𝑉𝐻𝑉𝐷𝐶 .
Also, all models with the best prediction performance use three
features in total. However, not all models use the same feature
combination. We merge only coefficients from the same features
for the FA and FL experiments. Therefore, we restrict each category
to use the three most occurring features. Those are 𝑉𝐻𝑉𝐷𝐶 , 𝑇𝐴𝑚𝑏 ,
and Stefan-Boltzmann Law. Not all vehicles have those features
available, resulting in four and one BEV dropping out for 𝑖𝑋3𝐶 and
𝑖𝑋3𝐷 , respectively.

When training only with 𝑉𝐻𝑉𝐷𝐶 , 𝑇𝐴𝑚𝑏 , and Stefan-Boltzmann
Law as features, the R2 score ranges from 0.68 to 0.77 and 0.19 to 0.86
for the 𝑖𝑋3𝐶 and 𝑖𝑋3𝐷 BEVs, respectively. With WLTP, the R2 score
improves on average by 0.04 for both vehicle categories. Figure 4
shows one car’s measured and predicted coolant temperature using
a Lasso and an ML model. Both approaches have some deviations
for high coolant temperatures. Their prediction performance is
feasible for a real-world application in BEVs, and both methods
achieve a similar output. However, this looks different for the FA
and FL scenarios.
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Figure 2: Maximum R2 score of all BEVs with and without
WLTP velocity profiles. The underlying model is a Lasso
regression mode trained on three features. The feature com-
binations vary between the BEVs.

Each Raspberry Pi trains one Lasso model per vehicle, and a
central server aggregates all model parameters. Those are three co-
efficients (one per feature) and the y-intercept. We use the FedAvg
algorithm to aggregate all models. It averages all received model
parameters. Each BEV calculates the R2 score with the aggregated
model by testing it with its own data set. First, we run one FA ex-
periment each for 𝑖𝑋3𝐶 and 𝑖𝑋3𝐷 . Figure 3 shows the percentage
difference of the R2 score between the individual models (local) to
the aggregated ones (FA). A percentage difference of zero describes
that the local and the FA achieve the same R2 score. Generally, the
R2 scores of the FA run get worst compared to locally trained ones.
On average it decreases by 18.1 % and 4.36 % for 𝑖𝑋3𝐶 and 𝑖𝑋3𝐷 ,
respectively. For 𝑖𝑋3𝐶 , we excluded an extreme outlier of 254 %.
However, running FA with all BEV yields for 𝑖𝑋3𝐶 vehicles an
average R2 score improvement of 12 %. The median R2 score for
𝑖𝑋3𝐷 stays constant. However, an outlier increased from -12 % to
-101 %. For WLTP-based FA runs with all vehicles, the average R2
score decreases by 57 % and 14 % for 𝑖𝑋3𝐶 and 𝑖𝑋3𝐷 , respectively.
Therefore, categorizing the data into WLTP profiles is not a feasi-
ble strategy to improve the overall prediction performance of the
vehicle fleet in a FA system.

We use an ML model coming from the energy domain [18]. The
best-performing feature combination for the Lasso model is the
basis for the ML models. Training locally on 𝑖𝑋3𝐶 vehicles yield
R2 scores between -0.031 and 0.77. For 𝑖𝑋3𝐷 vehicles, the R2 score
varies between -0.01 and 0.85 with an average of 0.69. The R2 score
with WLTP profiles vary by up to 100 % between them for 𝑖𝑋3𝐶
and are more constant for 𝑖𝑋3𝐷 . The right plot in Figure 3 provides
an overview of our FL experiments. The FL with FedAvg yield in
general worst R2 score compared to each vehicle training its own
model. We also tested QFedAvg [19], FedAvgM [15], FedAdam [29]
with their default settings, which all gave worst results than the
FedAvg aggregation strategy. FL for 𝑖𝑋3𝐶 and 𝑖𝑋3𝐷 yields on aver-
age an R2 score of 0.41 % (median 0.56) and 0.48 % (median 0.43),
respectively. FL with both vehicle categories reduces the R2 score
on average by 50 % compared to a vehicle-specific FL.
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Figure 3: Comparison of the R2 scores between the locally trained and FA (left) and FL (right) models. The aggregated models
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Figure 4: Prediction performance of a Lasso and a MLmodel trained with the same features (𝑉𝐻𝑉𝐷𝐶 ,𝑇𝐴𝑚𝑏 , and n) on one vehicle.
Left: Lasso linear regression model. Right: ML model consisting of CNN and LSTM components.

5.2 Hardware
Memory. Loading the entire dataset intomemory consumes 100MB
of memory and takes 1.7 s. We limit memory utilization with three
strategies. We are first reading only the required columns instead of
the entire dataset (40 MB and 0.8 s execution time). Second, change
the data type from Float64 to Float32 (20 MB), and third, read the
data in batches of 10,000 in Float32 format (0.04 MB and 0.017 s).
Therefore, the maximum memory reduction and data reading time
increase are 99 % and 97 %, respectively. Another system to fur-
ther reduce the memory footprint is a shift from Python to a more
resource-efficient programming language such as C++. However,
there is a trade-off between development speed, code complex-
ity, and memory footprint. Also, all existing FL frameworks are in
Python. Therefore, we limit ourselves to Python.

The additional memory consumption of the Lasso and ML model
training is 110 MB and 170 MB, respectively. Additionally, the mem-
ory consumption increases for the ML model linearly by about
0.6 MB per round, and it stays constant for the Lasso model. The
MLmodel requires 54 % more memory over a more extended period,
which can block the execution of other tasks.

Storage. Due to the storage demands of other applications, the
respective model size should be as small as possible. For the Lasso
regression model, we compare the storage requirements of four
different data types: Pickle, skops, open neural network exchange
(ONNX) format, or predictive model markup language (PMML).
Their respective model size is 541 B, 7732 B, 274 B, and 1259 B.
Pickle files are not secure and their documentation encourages
users only to open trusted pickle files. ONNX is standard for repre-
senting machine learning algorithms, and PMML is an XML-based
predictive model interchange format. We opt for ONNX with the
lowest storage requirements and the possibility to use it with dif-
ferent frameworks, such as scikit-learn, PyTorch or TensorFlow.

The tested formats for theMLmodel are Pickle, skops, andONNX.
Their respective file size is 22 kB, 18.2 kB, and 20.5 kB. We also pick
the ONNX model as our final storage format. It is 74 times larger
than the Lasso model due to the higher number of parameters. The
Lasso model has three coefficients and a y-intercept. In contrast,
the ML model consists of 3833 parameters. Another approach to
reducing model size for inference is dynamic quantization. We
quantize the LSTM and linear layer to Int8. However, the resulting
model size remains the same.
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Network. Transferring 100 MB of raw data over the network via
rsync results in about 4000 messages. The total network traffic and
number of messages per client both ways for the linear regression
model is 0.37 kB and six, respectively. Compared to a centralized
approach, the FA approach reduces the total network traffic by
99 %. The measured network traffic on the VMs is 0.26 kB and four
messages. It deviates by 30 % from the measurements made on
the Raspberry Pis. Therefore, it is not an excellent indicator for
estimating real-world network requirements.

The training-induced network traffic per round for the MLmodel
is 210 times higher than the one from the linear regression model.
After a round, each client sent and received a total of 86 kB. The
number of messages increases by a factor of 10 compared to the
linear regression model and is about 60 messages per round. The
network traffic per client for 100 rounds is 8.6 MB. The measure-
ments on the VM are 30 % and 500 % less for the network traffic
and number of messages, respectively.

Energy. The training of a Lasso regression model takes 0.007 s,
and the measurement frequency of the PoE switch is 10 s. We
run 100 identical training rounds to bring those two together and
calculate an average energy consumption per round. We excluded
for all experiments the idle load of the Raspberry Pis to isolate the
energy consumption of the training itself. This results in an energy
consumption of 0.37 J. The total energy consumption of this FA
system scales linearly with the number of participating clients.

Each FL round per client takes about 8 s and consumes 140 J. The
ML model’s training time and energy consumption are 1142 times
slower and 378 times higher than the training of the Lasso model,
respectively. The Lasso regression model is more favorable from
an energy perspective than the ML approach. A typical BEV has an
energy consumption of 20 kWh/100 km. Thus the range reduction
per round for the FA and FL training are 0.05 cm and 18.7 cm,
respectively.

5.3 Model Comparison
Figure 5 compares the differences in our performance metrics for
centralized training and two FC approaches (Lasso and an ML
model). A one indicates the best performance. A centralized train-
ing and model inference does not require any energy, memory, or
storage on the vehicle when neglecting the energy necessary to
send the data to a central server. Therefore, it gets a one on those
metrics. However, even though we expect a higher model accuracy
due to more data, it reaches a zero for the privacy metric. Based on
our Raspberry Pi experiments, we put the Lasso and ML model into
perspective to the centralized approach (see Table 3). For example,
storage requirements on vehicles with central training are zero,
and the highest storage demand is from the ML model (20.5 kB).
Therefore, the Lasso model gets a score of 0.98 (0.274 kB). The Lasso
model requires minor network traffic and a small storage capacity.
Its privacy level is a bit lower than the one from the ML model.
The Lasso linear regression model is deterministic, making it more
prone to inference attacks when compared to an ML which has
some randomness due to the optimizer [16, 33]. We recommend
using a linear regression model because of its trade-offs between
hardware metrics, privacy level, accuracy, and complexity.

Privacy

Accuracy

Energy

Memory

Storage

Network

0.2
0.4
0.6
0.8

Central

Lasso

ML

Figure 5: Trade-offs between multiple metrics for three dif-
ferent approaches. A one represents the best value.

6 CONCLUSION
Computational resources in vehicles, together with the number of
applications competing for those resources, are increasing. Addi-
tionally, policymakers and customers get more privacy sensitivity.
With our FA and FL experiments and their respective hardware
requirements evaluations, we enable car manufacturers to better
balance hardware and privacy needs. Our findings show that a
Lasso linear regression model achieves in an FC architecture better
R2 scores than an ML model and requires fewer hardware resources.
However, it is more prone to inference attacks. Clustering byWLTP
velocity profiles can improve prediction performance. Additionally,
we show that data-driven predictions can help engineers design the
vehicle. Reducing malfunctions in electrical components increases
acceptance of BEV and helps to transition the automotive sector
towards a more carbon-neutral industry. In future work, we will
evaluate compression techniques to reduce network traffic and try
to find shared data properties for well-performing vehicles.
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In response to the increasing volume and sensitivity of data, traditional centralized computing models face
challenges, such as data security breaches and regulatory hurdles. Federated Computing (FC) addresses
these concerns by enabling collaborative processing without compromising individual data privacy. This is
achieved through a decentralized network of devices, each retaining control over its data, while participating
in collective computations. The motivation behind FC extends beyond technical considerations to encompass
societal implications. As the need for responsible AI and ethical data practices intensifies, FC aligns with the
principles of user empowerment and data sovereignty.

FC comprises of Federated Learning (FL) and Federated Analytics (FA). FC systems became more complex
over time and they currently lack a clear definition and taxonomy describing its moving pieces. Current
surveys capture domain-specific FL use cases, describe individual components in an FC pipeline individually
or decoupled from each other, or provide a quantitative overview of the number of published papers. This
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1 INTRODUCTION
An increase in distributed Internet-of-Things (IoT) devices and the amount of generated data on
remote, distributed devices puts stress on central processing entities and the network. Current
inductive-based algorithms, such as machine learning training, run primarily on one device (i.e.,
a GPU), or distributed units execute the computations. In both cases, one entity or stakeholder
monitors the entire process. An example is a neural network running on multiple graphical pro-
cessing units trying to learn patterns in a dataset [45]. However, privacy concerns and regulatory
constraints make it more challenging to deploy centralized pipelines due to legal risks, compliance
efforts, and a higher consumer sensitivity [15, 49]. Such regularity constraints are put in place all
around the world, and they vary in their complexity. Some examples are the General Data Protection
Regulation in the European Union [132], the California Consumer Privacy Act in the USA [93],
and the Personal Data Protection (Amendment) Act in Singapore [120]. One approach to tackle
these issues is to shift the computational workload to the devices that generate the data in the first
place. With Federated Computing (FC), data scientists and other stakeholders try to disentangle
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the contradiction between using distributed, privacy-sensitive data, regulatory frameworks, and
consumer needs.

However, the literature needs to clearly define FC and how to extend it with approaches from other
domains. There are diverse FC paradigms, and it is possible to unintentionally mingle neighboring
techniques with FC, such as Federated Databases. FC paradigms are currently Federated Analytics
and Federated Learning. However, in the future, we might see additional paradigms emerging as
another branch of FC. Those FC paradigms share a similar basis but differ in certain parts. Therefore,
it is paramount to have a standard definition for all existing and potential future FC paradigms
to distinguish them. Such a framework allows the description of FC systems and subsequently
increases comparability with other FC systems to highlight similarities and differences.
Our goal is to show which components (basic building blocks) are at least required to consider

something as an FC system and which extensions currently exist. We show which kinds of FC
systems exist, which problems they are trying to solve, and which combinations of essential building
blocks and extensions the literature currently focuses on. Our proposed framework is expandable
to allow it to grow over time or adjust with a changing view of FC systems.

Our contributions are:
(1) We present a detailed study of recent developments and trends in FC with a focus on the

system level. We distinguish in our survey between FL and FA. Our survey highlights research
gaps and prevalent system configurations.

(2) We develop a reference framework for FC and categorize literature accordingly. We highlight
how FC basic building blocks and extension work together in different scenarios. A standard-
ized way of describing FC systems allows to compare different works and it enables other
researchers to more quickly identify bottlenecks or improvements in the future.

(3) We perform a deep discussion of underlying core technologies of FC on a low-level basis
(serilization and communication protocol) and categorize existing FL frameworks. Knowing
about the state-of-the art of the underlying communication allows to identify improvements
with respect to network traffic and latency.

(4) We present a taxonomy to describe client selection algorithms and summarize widely adopted
algorithms.

The rest of this paper is structured as follows. First, we give an overview of other surveys focusing
on FC systems in Section 2 and how our paper differs from them. Then, we describe in Section 3
how FC works and we discuss its challenges, how to build an FC system, and which external factors
influence the design process.

2 RELATEDWORK
In this survey, we look at FC from a system perspective. Other surveys followed a similar holistic
approach. However, they mainly cover individual components in an FC pipeline separate from
each other and focus on Federated Learning (FL) (without covering Federated Analytics (FA)) or a
specific domain. We cluster each survey into one of the following categories: Quantitative analysis,
tutorial, domain-specific, and taxonomy. Table 1 provides an overview of other surveys and the
respective features the capture.
A quantitative analysis describes trends and movements in a particular area by evaluating the

number of publications. Farooq et al. [47] and Lo et al. [82] present such an analysis for existing
FL research papers without considering FA. They highlight the recent increase in publications
starting in 2017. The yearly publications increased from 25 in 2017 to 280 in 2020. Additionally, they
cluster papers into different categories to distill focus areas. Most papers investigate the impact of
training settings on ML model performance. The main reason to adopt FL is data privacy (62 % of
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papers), followed by communication efficiency (23 %). In general, their research emphasizes the
increasing interest in FL. Multiple tutorial-like surveys exist as a reaction, which describe individual
components of an FL pipeline together with some application examples.

Table 1. Summary of existing surveys and what kind of components in an FC system they cover. Those
include FC basic building blocks (client selection, aggregation, communication) and extensions from other
domains (e.g., privacy-enhancing techniques or compression).

FC Basics FC Extensions System Level
Client Aggregation CP PET CompressionReference Selection

Quantitative Survey
Farooq et al. [47] !

Lo et al. [82] ! ! !
Tutorial Survey
Aledhari et al. [7] ! !

Yang et al. [148] ! !

Abreha et al. [5] ! ! ! !

Li et al. [75] ! !

Kairouz et al. [67] ! !

Reddy et al. [102] ! !

Zhang et al. [155] ! !
Domain Specific Survey
Xia et al. [143] ! ! !

Briggs et al. [19] ! ! !

Zhou et al. [160] !

Wei et al. [142] ! !

Thapa et al. [127] !

Kumar et al. [72] !

Dirir et al. [34] ! !

Enthoven et al. [44] !

Pfeiffer et al. [97] ! !

Gecer et al. [55] ! !

Zhu et al. [161] ! !
Taxonomy Survey
Li et al. [76] ! ! !

AbdulRahman et al. [3] ! ! ! !

Yin et al. [151] !

Bellavista et al. [16] ! ! !

Bonawitz et al. [18] ! ! !

Our survey ! ! ! ! ! !

CP = Communication Protocol, PET = Privacy-Enhancing Techniques
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Aledhari et al. [7] give in their survey an overview about different FL architectures and their
components. Each component with its features and different implementations is highlighted indi-
vidually. A system overview is missing. Other survey have a similar approach [5, 67, 75, 148]. Their
surveys allow researcher and practitioners new to the field to get a quick overview of existing
approaches and algorithms.
Domain-specific surveys investigate the state-of-the art in FL from a use-case perspective [19,

143, 160]. They focus on Internet-of-Things (IoT) and edge scenarios, among others.
Taxonomy is the practice and science of categorization or classification. A taxonomy is a scheme

of classification, especially a hierarchical classification, in which things are organized into groups or
types. Li et al. [76] introduces a taxonomy covering multiple aspects of an FC system. For example,
they highlight how to overcome different challenges by illustrating multiple optimization path.
They look at each part individually and do not put them into perspective. It is not clear where in
the FC system each component is used and how they interact with each other. Additionally, FL
specific methods like client selection and aggregation strategies are missing. However, they describe
attack vectors on FL training, such as model poisoning and inference attacks. The communication
architecture focuses on a high level overview of different options. It neglects the communication
protocols used in the back-end of different FL frameworks. A similar taxonomy is introduced
by Abdul Rahman et al. [3]. Their focus is on basic FL building blocks, such as client selection
and aggregation algorithms. With respect to communication costs, they briefly mention possible
compression techniques to reduce network traffic, but they do not describe it in a broader picture of
an FC system. On the application side, they give a comprehensive overview of different use cases and
which aggregation algorithms and dataset were used. However, it is not clear which problem each
use case was trying to solve (e.g., ML model performance, hardware/network utilization or privacy)
and which FL system was deployed. The survey from Yin et al. [151] focus on identifying privacy
leakages by introducing a 5W-scenario-based taxonomy. The 5W stands for different questions
which give guidance in identifying and resolving attacks. They stand for: "who", "when", "where",
and "why". The goal is to identify and quantify security breaches. Bellavista et al. [16] introduces a
taxonomy which describes decentralized learning systems from a high-level and practitioner point
of view with an emphasize on federated environments. It does not provide information about basic
FL components such as client selection, aggregation and communication
Another overview of different FL components is given by Bonawitz et al. [18]. The focus is

on building a centralized FL architecture with fallback aggregators similar to the hierarchical
architecture. Besides the given example use case for FL they also describe how FL pipelines work
in general and they mention some challenges with suggested solutions.
In our survey, we clearly separate between basic building blocks required to deploy a pure FC

system and additional extensions. Besides this new taxonomy, we also add a meta layer, which
describes motivation and the hardware environment. After describing each building block and
extension separately, we show current trends in FC systems. The reader will have an overview at
the end about which FC system is used to achieve which goal, which extensions are mostly used
jointly and which FC systems are not yet investigated in sufficient depth. We separate our research
and findings into FL and FA systems to highlight differences and shared characteristics.

3 FEDERATED COMPUTING DEFINITION
FC belongs to the domain of privacy-preserving computations. It introduces an information asym-
metry between the server and clients creating a situation where no one know everything. Its goal
is to extract information from distributed data sources without disclosing any raw data. In the
process, private data stays on the device. Instead of sending raw data over the network, a node
sends computing tasks to participating clients, which execute them and only send the respective
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Fig. 1. Intersection of definitions for FC, FL, and FA. FC consists of FL and FA, whereas FL systems can
contain FA characteristics. FA is a subset of FL and FL is a subset of FC.

computation results (e.g., machine learning model update such as weights and gradients) to the
requesting server. An FC round consists of the following steps:
(1) Server selects participating clients
(2) Server sends computation task to each participating client
(3) Clients execute the computation task and send their individual update to the server
(4) Server aggregates all clients results
(5) For FL: Server distributes the aggregated result back to each client
FC includes FL and FA (see Figure 1). The difference between those two is the type of executed

computing tasks and the number of aggregation rounds. FL focuses onmachine learning (ML), which
mainly consists of multiple aggregation rounds. The goal is to iteratively reduce a loss function and
subsequently increase model performance. Conversely, FA leverages statistical operations, such
as averages or sums. Each client executes them once, and the server draws conclusions from the
data [134]. Some example use cases for FA include model evaluation or debugging [6, 67]. Simplified,
FL consists of a combination of multiple FA steps [43]. FA emerged after FL. It started with Google
using it to evaluate the accuracy of Gboard next-word prediction models by using captured data
from users’ typing activities on their phones. This is similar to accuracy evaluation [43]. Other FA
use cases capture analytics for medical studies and precision healthcare or guiding advertisement
strategies [43].

Another way to divide FC is by system focus. An FC system can focus on reasoning or learning,
translating to FA and FL. Another term for the former is deductive systems and for the latter,
inductive systems [45]. Deductive systems are also called "Good old-fashioned AI" and typically
rely on rule-based or logical agents [52, 133]. Conversely, inductive systems try to learn based on
the input data and are less prone to changes in the observed environment. An example for FL and
FA are the collaborative optimization of an ML model (FL) and its subsequent distributed inference
testing on client-side to obtain accuracy metrics for each client (FA). In this survey, we do not
cover federated databases. Such systems also have a client-server architecture, which connects
distributed databases to one another. The end user only sees one database, even though it consists of
multiple ones. Other surveys describe the unique challenges and advantages of Federated Databases
(FD) [13, 115]. We exclude FD from FC. FDs focus on improving query execution time and increasing
availability and reliability of databases. On the other hand FC focuses on managing computations
executed on any arbitrary dataset with a focus on privacy. Data in an FD system is openly available
to all parties involved whereas FC limits access to client side data.

Depending on the FC system architecture, either a central server aggregates all results (central) or
clients act as a server as well (peer-to-peer). Figure 2 provides an overview of three FC architectures.
The first architecture in the figure shows a centralized FC approach. A server aggregates all results
from the clients. The hierarchical architecture has an intermediate layer between clients and
servers to increase redundancy. The devices in this intermediate layer act as servers and clients
simultaneously. This layer adds robustness to the overall system. It can still generate insights even
if one cluster fails. Additionally, it allows to cluster clients by categories, which could also be spatial
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Client

Centralized FC Hierarchical FC

Server Client & Server

Peer-to-Peer FC

Fig. 2. Three FC architectures (centralized, hierarchical and peer-to-peer) with different aggregation server
locations. Illustration inspired by [62]. A node can be a client, a server or both, which is indicated by the circle
filling.

or user-based. A fully decentralized FC system runs peer-to-peer without a central server. Another
term for this architecture is galaxy FC [63, 80]. Those systems are complicated to manage and it is
challenging to converge to a given performance threshold if the ML optimization per client keep
bouncing between multiple states instead of converging to a local or global optimum. All those
architectures work for FA and FL.

3.1 Scenarios
FC systems can have different objectives, run on different devices, or with different data distributions.
Table 2 summarizes commonly used ways to describe those scenarios. We structure them by a
guiding question into three groups. All production-ready FC systems consist of a combination of
one option per group - for example, a model-centric, horizontal, and cross-device FC system.
The first guiding question "Why" addresses the overall objective of the FC scenario. Does the

user want to improve an ML model output or generated insights (model-centric), or does the user
want to improve a data set and then make it available for others to train on (data-centric)? A
model-centric approach tries to extract as much information as possible from a given dataset, e.g.,
by tuning hyperparameters of the model or tweaking the optimizer. On the other hand, data-centric
is a quality-over-quantity approach and focuses on collecting and using only specific data suitable
for a particular use case. It is a paradigm emphasizing that systematic design and engineering
of data is essential for developing AI-based systems [64]. Therefore, performance improvements

Table 2. Three different groups of scenarios organized by a guiding question. Each scenario has a short
description. An FC scenario consists of at least one scenario per group, for example model-centric, vertical,
cross-silo FC.

Scenario Description Guiding Question
Model-Centric Curating or improving output Why?Data-Centric Curating or improving input
Horizontal Same features with different users How?Vertical Different features with same users
Cross-Device E.g. mobile phones, IoT devices Where?Cross-Silo E.g. hospitals, manufacturing sides
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result from improving the quantity and quality of the data instead of changing the underlying
model architecture. FL and FA require data. Gröger emphasizes challenges for data management,
governance, and democratization in an industry context, which highlights the potential for data
owner to make a data-driven approach more feasible in the future [58, 59]. The current focus in the
literature and the industry is on model-centric scenarios, as seen in Section 7. This approach can
start with a pre-trained ML model or from scratch.

The next group of scenarios considers the data distribution of the clients. In horizontal FC (HFC),
all participating clients have the same features, but different users. An example is predicting the
next words written on Google’s Gboard [18]. The users per client differ, but the features (word
predictions) are the same. Vertical FC (VFC) is the opposite. Each client monitors different features,
but they share the same user. An example application is the finance sector, where retailers and
banks store historical data on the same person but with different features [148].
Lastly, we group each scenario by the location of the participating devices. A cross-device

scenario uses distributed devices with a high degree of individual ownership. Those devices could
be mobile phones or wearables, such as smartwatches or home assistance systems. Cross-device
scenarios work with up to thousands of devices, which all can have a different owner, generally
private persons. On the other hand, cross-silo scenarios leverage data allocated on devices or entities
with much less diverse ownerships. Some examples come from the healthcare and manufacturing
domains. Multiple hospitals or pharmaceutical companies can collaborate and jointly generate
results in an FC fashion [105, 145]. The training process still runs on dedicated hardware, which
could be mobile phones. Therefore, there needs to be a clear cut between the definition of cross-
device versus cross-silo scenarios. Cross-silo is mainly limited to a few hundred participating clients
due to the organizational complexity, and the owners of the clients’ hardware are businesses.

3.2 Problems
FC systems increase data privacy due to limiting data access. However, FC faces a multitude of
problems. The assumption for FL is that each client has labelled data and therefore follows a
supervised training. We cluster the problems into three categories:
(1) Improve insights or ML performance,
(2) Improve privacy or security,
(3) Improve hardware or network utilization.
The first problem is mainly due to an uneven distribution of features and labels on the clients. In

an FC system, the server has no data access on client side. It only knows some meta information,
such as image resolution or for time series the respective units of each column. In an ideal scenario
all clients’ datasets have similar statistical attributes, which yield similar results of the executed
computation tasks as well. However, in real scenarios some clients’ datasets might be biased towards
certain labels. Therefore, the same execution task can yield different results per client. This is
called non-independent and identically distributed (non-IID) data. Aggregating results based on
non-IID data is a challenge due to its impact on the final result on server-side. For some cases
the aggregation of individual client updates can result in worse results compared to a traditional
centralized approach. Choosing a subset of available clients (Section 4.1.1) or a suitable aggregation
strategy (Section 4.1.2) can improve the generated insights. Another issue in this context are clients
dropping out during an FC process. This can also result in a non-IID scenario even though clients
were properly selected at the beginning of the process. furthermore, the entire run can get delayed,
because the server is waiting for all clients to finish their execution task.
The second problem mainly copes with the possibility of attacks on an FC system to infer raw

data from the individual clients model and data leakage during the process. In general, there are
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two types of attacks: Black-box and white-box attacks. In black-box settings, the adversary’s access
is limited to the model’s outputs only. The adversary can query the model with an arbitrary input
x and obtains the prediction vector f(x). In white-box settings, the adversary has full access to all
components of the model. The access includes the model’s architecture, parameters, and hyper-
parameters. Also, the adversary can inspect intermediate computations and prediction vectors.
Attacks can occur at different stages (input data, training and inference phase) during an FC round.
An attack during the input phase tries to poison the data in such a way that the final model is
impaired. This attack originates from a participating client. In the training phase, participating
clients can try to infer data based on the updates they get from the server or alter the model on
purpose to again impair the final model. Inference attacks happen during the training process or at
the end. Their goal is to leak information about the training data and not to impair any data or
models.
The third problem is due to the distributed nature of FC systems. Each client sends its updates

either to a central server or other clients (peer-to-peer). Reducing this network overhead without
interfering with result accuracy is one research area. Additionally, considering each clients individ-
ual hardware and data in the scheduling of the training helps to use computational resources more
efficiently.

3.3 Components
FC systems consist of different components (basic building blocks), which can be enhanced with
extensions from other domains (Figure 3). The goal is to a build an FC system to solve one or all
above mentioned problems. There are multiple options available for each basic building block and
extension. A systems’ performance depends on how well all components work together for the
respective use case. The following paragraphs shortly describe all required basic building blocks for
a FC system and two widely-adopted types of extensions. A detailed description of all components
follows in Section 4.1 and Section 4.2.

We separate those basic building blocks into hardware and software components. The hardware
consists of devices hosting private data sets and an aggregation server. For this definition, the
devices’ computational resources are not of importance. The computational resources can vary
from computationally weak edge devices to strong GPU servers. The software part consists of
three components: Client selection, aggregation strategy and communication protocol (e.g., gRPC,
WebSocket, HTTP). Figure 4 provides an overview on how these components work together with
some options per step. To further improve different aspects of such an FC system it is possible
to extend it with methods from other domains. For each building block and extension different
options exist.

C
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Se
rv
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FC
Extension(s)

FC Basic
Building Blocks

(Client Selection, Aggregation, Communication) (Privacy-Enhancement, Compression)

Fig. 3. Interaction between basic building blocks for FC systems and optional extensions. The basic building
blocks consist of hardware (devices hosting data set and an aggregation server) and software components
(client selection, aggregation strategy and communication protocol).
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Fig. 4. Framework to describe how different building blocks in an FC system work together. The illustrated
pipeline focuses on FC basic building blocks and it shows some example options for each block. Additionally,
it shows some options for the systems meta information.

In the following paragraphs, we shortly explain the three software components individually,
before going into detail in their respective section. FC works with distributed clients. The number
of participating clients can vary from a few to multiple thousands. Following a quantity over
quality approach might interfere with the above three mentioned problem categorize (Section 3.2).
Therefore, it is necessary to introduce constraints on the client selection process. Those constraints
can be of different nature and each of them tries to improve at least one problem. For example, taking
clients with a similar data set size reduces the idle time of individual clients. This approach decreases
the risk of clients dropping out during the training and helps to improve FC performance and
hardware utilization. Another example for a client selection constraint is to pick only geographically
close clients to reduce network failures. In Section 4.1.1 we go into detail on how different client
selection algorithms work and which advantages and disadvantages they have.
Each client sends its results either to a central server or to another client (peer-to-peer). Those

results have to be combined to leverage each individual clients’ insights. This can either be an
average of all results or more complex operations. Some other examples are to compute weighted
averages or to cluster clients into different groups. Taking an average is called Federated Averaging
(FedAvg) and it is one of the first aggregation algorithms [86]. The focus of an aggregation algorithm
is to improve the generated insights. However, as we see later in Section 4.1.2, some aggregation
algorithms are prone to privacy and security risks (e.g., reverse-engineering the raw data with the
client updates) or they introduce bottlenecks in the hardware or network utilization.
In an FC system, each node (server or client) has its own unique IP or identifier. During a

training round they have to communicate with each other and send data to one another. Engineers
leveraged different network protocols and serialization methods in the context of FC. Building an FC
system works in theory with all kinds of combinations of communication protocols and serilization
methods. In Section 4.1.3 we explain briefly how different communication and serilization methods
work. Then we introduce currently available FC frameworks with their respective architectures.
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3.4 Meta Layer
Besides the hardware and software components other more holistic aspects are also important to
classify an FC system. We split those aspects into three different categories:
(1) Problems (see Section 3.2),
(2) Hardware environment,
(3) Economic feasibility study
In Section 3.3 we already introduced the first meta layer "Motivation" with its three levels of

motivation. Improving insights with an FC system mainly faces the potential issue with non-IID
data on the clients. In contrast to a centralized approach, it is difficult to balance the distribution of
features and labels during an FC run. In the literature the focus is on three different approaches to
improve the generated insights. The first one works with avoiding non-IID in the first place by
using a suitable client selection process (Section 4.1.1). Secondly, more and more specialized and
tailored aggregation algorithms are developed to balance the clients updates (Section 4.1.2). Lastly,
leveraging optimization techniques developed originally for other applications can help to reduce
the negative impact of unbalanced data sets on the final results.

The next meta layer considers the environment an FC system runs in. Available options are:
(1) simulated FC system (clients and server) on one device,
(2) virtual machines (VM),
(3) physically separated devices or
(4) a combination or hybrid.
Choosing a suitable hardware environment requires a balance between development speed,

maintenance and boundary conditions. For example, testing the effect of different client selection
algorithms on the final result (e.g., machine learning prediction performance) does not depend
on the network bandwidth. Therefore, it is feasiable to simulate all clients and the aggregation
server on one device. On the other hand, tuning the way clients communicate with the server or
each other requires a realistic emulation of network communication to understand the impact of
different approaches on the communication behavior.
Lastly, all FC systems compete with centralized state-of-the-art approaches. Therefore, they

have to have advantages to be widely used in real-world applications. Those can be legal, public
relations or trust issues. However, all of them boil down to an economical impact for the respective
stakeholder. Currently, the focus of the literature is on technical aspects and less on economical fea-
sibility. However, this area is growing and some authors already mapped some existing economical
frameworks on FC system to investigate different scenarios.

4 MODULES
4.1 Basic Building Blocks
The following sections describe each basic building block of an FC system individually in more
detail. Those are client selection (Section 4.1.1), aggregation (Section 4.1.2), and communication
(Section 4.1.3). We give an overview of existing approaches and cluster them by different criteria.

4.1.1 Client Selection. FC systems work with distributed clients and the number of those can range
from just a few to multiple thousands of devices. Choosing a suitable pool of clients helps alleviating
one or multiple of the challenges introduced in Section 3.2. Currently, most FC systems work in
the order of magnitude of 40 clients. For those cases, the client selection is done manually and it
considers either 100 % of the available clients or randomly picks a subset. However, non-IID data
on the clients or geographically separated clients can introduce issues with respect to knowledge
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gain for example due to non-converging ML models, slower network traffic or higher latencies.
Therefore, we cluster the goal of client selection algorithms into three categorize:

(1) Decrease training time,
(2) Decrease network traffic,
(3) Improve generated insights.
There are different strategies available to achieve either one or all of the above listed goals. The

deployed strategy depends on the number of clients, their computational resources and the available
network. Nishio et al. [92] proposes FedCS and focus on mobile edge devices with limited and
heterogeneous computational resources. Clients are selected if their time to run one aggregation
round is below a given threshold. This approach does not allow a pre-selection of clients and needs at
least one round of training. Abdulrahman et al. [2] follow a similar approach with FedMCCS, which
additionally considers CPU, memory and energy constraints. These algorithms are not suitable for
FA, which only has one aggregation round. Besides computational resources, researchers select
clients depending on their network connection. The experiments of Xu et al. [146] run with clients
being connected all to one wireless link. Instead of having a throughput maximization approach
they follow an optimization strategy to improve the systems’ learning performance under finite
bandwidth and energy constraints. It is also possible to have a more fluctuating set of clients which
change during FL training. Here, a selection criterion can be the current loss of each client to
increase convergence speed of the trained model [27].

4.1.2 Aggregation. After every round, each participating client sends an update to an aggregation
server that merges all updates to a single model. A round refers to either a single event, a batch or
an epoch. Such updates can be scalars, vectors, or matrices containing for example an ML model’s
gradients, weights, or biases for FL systems. An aggregation strategy solely focuses on how to
process such updates. The server can apply statistical techniques, such as average or mean, or filter
based on thresholds. All those modifications can run on an element-wise order or follow another
arbitrary order. Some proposed strategies also change the client selection process. All aggregation
strategies aim to address the potential issue with non-IID on the client side. The challenge is
generalizing client updates on the server side by simultaneously personalizing the models on the
client side. Therefore, improvements for aggregation strategies apply to either the server or client
side or both.

FedSGD and FedAvg are the first aggregation algorithms designed for FL systems [87]. They run
element-wise calculations on the input. The equations for calculating FedSGD (Eq. 1) and FedAvg
(Eq. 2) on the server side differ by the number of training rounds on the client. For FedSGD, each
client takes one step of gradient descent and then it sends its update to the server. The server
takes a weighted average of all updates. FedAvg differs from FedSGD by running more iterations on
each client before aggregating the results. The learning rate is given by 𝜂, K is the set of clients, t
describes one time step, w is the model, n the number of data points on the client and the Nabla
operator ∇ converts a field of scalars to a field of vectors.

𝐹𝑒𝑑𝑆𝐺𝐷 : 𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑓𝑘 (𝑤𝑡 ) with ∇𝑓 (𝑤𝑡 ) =
𝐾∑︁
𝑘=1

𝑛𝑘
𝑛
𝑔𝑘 (1)

𝐹𝑒𝑑𝐴𝑣𝑔 : 𝑤𝑘 ← 𝑤𝑘 − 𝜂∇𝐹𝑘 (𝑤𝑘 ) (2)
McMahan et al. [87] introduces three parameters to describe an aggregation strategy. The first is

C, representing the fraction of clients participating in the computations on each round. It ranges
from 0 to 1, with one referring to all available clients. An FC system consists of at least two clients
to enable some form of aggregation and at least some protection against reverse-engineering the
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raw data based on the model updates. The second parameter is E, which refers to the number of
training passes on each client before aggregating their updates. It is an absolute value and refers
directly to the number of local training rounds. Third, the parameter B describes the size of the
mini-batch in relation to the clients’ dataset size. "1" refers to using the entire local dataset as
one batch. Besides those three parameters, Arivazhagan et al. [10] introduced the parameter K. It
describes the number of layers of a neural network trained exclusively locally. Those layers do not
change after receiving an update from the server.
Tweaking those parameters allows the development of new specialized aggregation strategies

designed to work in the dedicated system environment. Table 3 overviews various aggregation
strategies and their respective parameter settings. Those aggregation strategies solely focus on
FL and the challenge with non-IID data on the client side. For example, FedPer and FedDist focus
heavily on neural networks. The former only updates a given number of layers and keeps others
local. This approach aims to make the models generalizable for all clients by simultaneously keeping
a certain degree of personalization. The latter aggregation strategy calculates the Euclidean distance
between neurons in a neural network to identify diverging neurons. Focusing on neural networks
eliminates those aggregation strategies from being used in FA systems.

Besides FedDane, all other aggregation strategies have a pre-defined set of clients at the beginning
of the first FL training round. However, a pre-defined set of clients is still prone to clients dropping
out during training. The aggregation server might replace those clients with new ones. Therefore,
the set might change over time, but the defined set is not a crucial part of the aggregation strategy.
At the same time, FedDane incorporates the change of selected clients into its core structure. It
approximates the gradients using a subset of gradients from randomly sampled clients [78]. It
achieves theoretically better results than FedAvg, but it underperforms in actual experiments and
requires double the number of communication rounds due to adjusting the clients based on an
optimization problem.

Conversely, FedProx varies the number of local training iterations per client before aggregating
the results. FedProx differs from FedAvg by allowing for a variable number of training iterations on
the client side based on their available dataset and computational resources. This approach results
in some clients training more rounds than others. The server aggregates those partial solutions [79].

Table 3. Classification of FL aggregation strategies depending on C (number of clients participating in the
training with one being 100 %), E (number of training iterations before aggregation), B (local mini-batch size
with one referring to the entire local dataset as one batch), and K (number of unchanged / frozen layers).

C E B K Note
FedSGD [87] ≤ 1 1 1 0 -
FedAvg [87] ≤ 1 > 1 ≤ 1 0 -

FedPer [10] ≤ 1 > 1 ≤ 1 > 0 Clients update only a subset of NN layers
and train the other layers locally

FedProx [79] ≤ 1 Varies per client ≤ 1 0 -
FedMA [136] ≤ 1 > 1 ≤ 1 0 -
FedAT [21] ≤ 1 > 1 ≤ 1 0 Clusters clients based on latency
FedDane [78] Varies per round > 1 ≤ 1 0 -
FedZIP [84] ≤ 1 > 1 ≤ 1 0 Compresses updates

FedDist [39] ≤ 1 > 1 ≤ 1 0 Calculates euclidean distance to
identify diverging neurons

FedMAX [26] ≤ 1 > 1 ≤ 1 0 Max entropy regularization to equalize
activation vectors in an NN layer
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The parameters of the aggregation strategy for FedAT are the same as for FedAvg. However, it
clusters the available clients based on latency to improve the overall training time and test accuracy
by having clients with similar time and dataset constraints [21].

4.1.3 Communication. FC systems work with remote clients. It describes a distributed client and
server architecture with data being transferred between those nodes. This section describes FL
frameworks and their principles in more detail.
Multiple organisations, institutes or other stakeholders develop FL frameworks. Some of them

have a specific focus on a certain domain, some are not for commercial use and others are not
further developed. Several frameworks have been developed, such as PySyft from openMined [108],
TensorFlow Federated from Google [18], IBM FL from IBM [83], FedAI/FATE from WeBank [57],
Clara SDK and FLARE from Nvidia [125, 126], FedML [62], Paddle FL from Baidu, Fed-BioMed [107],
Flower [17], FLUTE from Microsoft [33], Substra from Owkin [54], OpenFL from Intel [50], Fed-
eratedScope from Alibaba [144] APPFL from the Argonne National Laboratory (USA) [109], and
Vatange6 [121]. LEAF [20] provides tools to benchmark different pre-selected models in a FL setting.
Karimireddy et al. [68] assess the strengths and weaknesses of 14 different FL frameworks, ranging
from supported data distributions and communication topologies to available built-in advanced
privacy and security features.
We divide the required components into communication protocols and serialization methods.

Serializations methods are either binary or contextual. The former converts an input into a series
of bytes and the latter uses data formats such as JSON or XML to transfer information. Contextual
serialization contains details about the data’s structure and purpose, making it simple for a human
reader to interpret and comprehend. Table 4 provides an overview of FC frameworks with their
respective components. Not all frameworks state exactly which protocol and serialization methods
they are using and instead refer to a vague statement in their documentation saying that messages
are sent over the internet. All frameworks are consistently promoted for FL. However, they can be
adjusted to also deploy an FA system. Eight out of twelve frameworks use gRPC in combination
with the binary serialization Protobuf. The gRPC protocol has no browser support.WebRTC and
WebSockets support browser integration and are therefore used for PySyft with its browser based

Table 4. FC frameworks with their communication protocols and serialization method(s). All frameworks
state in their white papers or documentation a focus on FL. However, they might be adjustable to FA use
cases.

Protocol Serialization
gRPC WebSocket HTTP GLOO Pickle JSON Protobuf FOBS

APPFL [109] ! ! ! !

FedBioMed [107] ! ! !

FedN [40] ! ! ! !

FedScope [144] ! !

Flower [17] ! !

Flute [33] ! !

IBM FL [83] ! ! !

FLARE [126] ! ! !

OpenFL [50] ! !

PySyft [108] ! !

TFF [18] ! !

Vantage6 [121] ! ! !
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Duet implementation. Other outliers are the FL frameworks of IBM and Microsoft, which use HTTP
and GLOO as their respective network protocol. It is not recommended to use Pickle serialization
in environments with untrusted parties due to potential security issues. The documentation of
Pickle emphasizes the fact that it is possible to construct malicious pickle data which could execute
arbitrary code during unpickling [51]. Instead, they recommend to either use hmac for message
authentication in Python or to switch to JSON serialization. IBM FL offers both serialization methods.

4.2 Extensions
4.2.1 Privacy Enhancement. Privacy enhancing techniques try to reduce data leakages in an infor-
mation flow. An information flow describes the communication between a server and the clients
and what each node is doing with the received information. For example, a client or a server
could try to infer information about the underlying raw data with the aggregated computation
outputs. All information flows have a trade-off between transparency and privacy [12, 130]. The
transparency is high if a server has direct access to the raw data and consequently privacy is low.
If no data is shared at all there is a high level of privacy, but no transparency and knowledge
gains. Privacy-enhancing techniques allow to keep a certain level of privacy while improving
transparency as well. Figure 5 illustrates this trade-off. The left plot shows a naive trade-off without
leveraging any privacy-enhancing techniques. The more a user shares the lower is the privacy
level. However, privacy-enhancing techniques, such as the ones mentioned in Table 5, allow to
keep a certain privacy level and simultaneously increase the transparency or the gained insights.
Data leakages can be clustered into two different categories: Copy problem and bundling prob-

lem [122]. The copy problem describes the loss of control when giving somebody a copy of a dataset.
There can be legal boundaries describing to which extend the data can be used. However, enforcing
those constraints is challenging. The bundling problem describes information leakages due to an
information content, which contains more information than the actual requested one, but they
cannot be separated from each other. Therefore, it is possible to directly get additional information,
which is not needed or it is possible to do backwards inference to the input data based on the
output. An example is the age verification of somebody who wants to buy alcohol. The cashier asks
for an ID and verifies that the customer is above the legal age for drinking. However, in the process
additional information is leaked such as the name or address of the customer. Those information
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Fig. 5. Two Pareto trade-offs between data transparency and privacy. Everything on the curve represents
a privacy preserving outcome. The level of privacy for Point B is in both cases the same, but the level of
transparency increased in the right trade-off due to privacy-enhancing techniques [98, 130].
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Table 5. Privacy enhancing techniques to either protect the input or output against privacy attacks.

Input Privacy Output Privacy
Secure-Multi-Party Computation Differential Privacy
Homomorphic Encryption Student-Teacher Learning (e.g., PATE [96])
Public-Key Cryptography
Federated Computing

are not required to complete the age verification process. An example about backward inference is
the de-anonymization of some users in a dataset from Netflix movie ratings by comparing rankings
and timestamps with public information in the Internet Movie Database [91]. Other examples
leveraged anonymized internet usage patterns [90] or location data [106, 153] to infer information
about individuals. First, we describe FC extensions trying to solve the copy problem and then we
focus on solutions to the bundling problem.

Input privacy tries to solve the copy problem. Its goal is to keep computation inputs of individuals
secret from all parties involved. Table 5 shows example techniques for achieving input privacy,
which mainly originate from the cryptography domain. It is possible to combine them, e.g., FC +
homomorphic encryption (HE). This implies that theoretically anybody can run computation tasks
on data without the need for direct access to it. This allows an information flow without the need
for a trusted third-party. [130, 138]
Secure-Multi-Party Computation (SMPC) enables multiple clients to jointly compute a result

without sharing their inputs. They obfuscate their inputs with random numbers, which are randomly
distributed to other participating clients. Some disadvantages of this approach are an increase in
network traffic due to multiple clients communicating with each other instead of only sending
updates to the server and the risk of data loss due to clients dropping out. Most SMPC algorithm
rely on a pair-wise collaboration. If one participant of such a pair drops out during the process the
added random numbers do not cross out, resulting in a false output.
HE allows to run computations on encrypted data. This approach increases input privacy at

the cost of computational complexity. The output of a computation is still encrypted and only the
server is able to decrypt the generated results. So there is a trade-off between SMPC’s high network
overhead or HE’s high computational requirements.

Output privacy tries to solve the bundling problem by preventing backwards inference or reverse-
engineering of the input based on the output. This is addressed by access control or statistical
disclosure control. The former imposes restrictions on who has access to the data. The latter relies
on a combination of suppression, perturbation, randomization and aggregation of data [104]. A
widely used approach is differential privacy (DP) and related techniques [130].

Table 6. Core components of a DP algorithm with some examples. An DP algorithm consists of one of each
component. The list with examples is not exhaustive.

DP Definition Randomization Mechanism Sampling Technique
Pure DP Gaussian Poisson
Approximate DP Laplace Uniform
Concentrated DP
Zero concentrated DP
Gaussian DP
Rényi DP
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DP is a mathematical framework that provides stringent statistical guarantees about the privacy
of individuals participating in a database [36–38]. Its basic idea is to artificially add noise to a
data set without changing its statistical properties. It provides provable guarantees about the
amount of private data an adversary can infer by observing the outputs of an algorithm. It can
either be deployed on client (user-level privacy) or server-side (record-level privacy). Table 6
provides examples for the three core components of each DP algorithm. This summary highlights
the complexity of choosing a suitable DP algorithm and it is not an exhaustive list. Several DP
definitions exist, with each having different theoretical privacy guarantees. In theory an DP
algorithm consists of any combination of those three components.

4.2.2 Compression. Running an FC system requires continuous communication between the server
and clients. The resulting network traffic can be higher when compared to transferring the raw
data. Also, clients’ weak network connections might result in dropouts during training. In general,
there are two approaches to reduce the network traffic. First, decrease the number of aggregation
rounds. Second, reduce the data transfer itself to decrease the overall network traffic. However,
both approaches (aggregation frequency and update size) can negatively impact the ML model
performance. Therefore, there is a trade-off between those two metrics. Since the upload speed is
significantly lower than the download speed, most papers focus only on compressing the gradient
updates that clients send each round and leave aside the global server updates. However, in real-
world applications, additional servers balance client requests. These so-called parameter servers
lead to an increased communication complexity of the global updates. Therefore, an FC system
should implement compression in both directions. [124].
A server can aggregate after every 10th batch instead of after every batch or decrease the

aggregation frequency even further by aggregating after every n-th epoch. However, the longer
clients train locally, the more biased they become towards their local dataset. It becomes more
challenging for the aggregation server to merge highly personalized models into one general model,
which is helpful for all clients. An experimental study with a dataset containing electrical signals
used to train four different ML architectures quantifies a reduction in overall model accuracy when
increasing the aggregation steps from one batch up to ten batches [112].
Data compression techniques have a wide range of applications that are not exclusive to FC.

However, those extensions boost hardware and network utilization in FC systems. Reducing
network requirements makes FC use cases in network constraint environments more feasible. For
example, mobile phones running on metered mobile networks or IoT devices connected with narrow
bandwidth IoT (NB-IoT) or low range wide area network (LoRaWAN) benefit from smaller updates

Model Compression

Deep
Neural Networks

Machine Learning

Quantization
Low-Rank

Factorization
Knowledge
Distillation

Pruning

Fig. 6. Model compression techniques for deep neural networks and machine learning (e.g., Support-vector-
machines and decision trees) [29].
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due to cost and network constraints. NB-IoT and LoRoWAN enable smart city applications due to
their long communication range, but they have constraints concerning the maximum package size
and energy consumption.

Multiple different model compression techniques exist that reduce storage size (memory or disk),
decrease energy consumption for inference, or increase inference speed. Figure 6 summarizes four
common model compression techniques. Knowledge distillation transforms a large model (teacher)
into a smaller and lighter model (student) by letting the student learn from the teacher. The student
model tries to learn the generalization capabilities while staying smaller. Quantization leverages
different data types with their respective precision. For example, using 32-bit floating-point numbers
instead of 64-bit ones saves storage. An advanced version of quantization is the usage of clusters.
A cluster consists of either the same values or multiple ranges of values. Instead of storing all
numbers, the model only stores those clusters. Some adaptions of quantization in the context of FL
are FedPAQ [103] and UVeQFed [118] among others [9, 25, 117]. Model pruning removes weights
and neuron connections that are either below a given threshold or do not contribute much to
the final result. Model pruning reduces complexity and the number of computations to run. The
latter is especially beneficial for edge device scenarios with limited computational resources or
battery-powered devices [65, 66, 152, 157]. Lastly, low-rank factorization factorizes a matrix into a
product of two matrices with lower dimensions to reduce complexity. [29]

5 FEDERATED COMPUTING SYSTEMS
Based on our proposed framework in Section 3 we categorize a wide range of use case / application
papers. Table 7 provides a few examples of our literature research. First, we identify the motivation
of the paper or the challenges it tries to solve. The numbers (1), (2), and (3) refer to the definitions
based on Section 3.2. The definition of the environment is given in Section 3.4 and we describe the
different available scenarios in Section 3.1. The next three columns (framework, client selection,
and aggregation strategy) capture the basic building blocks of the FC system. Instead of using an FC
specific framework, some papers leverage ML framework such as PyTorch or TensorFlow, or they do
not specify the used framework at all. A NaN indicates missing information about the framework
or aggregation strategy. The first row in the table uses the FL framework TFF, which stands for
TensorFlow Federated. All three examples in Table 7 run without any kind of privacy-enhancing or
compression extension. Lastly, we summarize the implemented extensions. With our framework
we capture an FC system completely, with all its unique components. We visualize our findings
and describe them in detail in the following sections. The goal is to identify FL and FA system

Table 7. Example FL systems classified based on our framework. The numbering convention in the motivations
columns follows our definitions from Section 3.2 ((1) Improve insights or ML performance, (2) Improve privacy
or security, (3) Improve hardware or network utilization)

Motivation Environment Scenario Framework Selection Aggregation Extension

(1) Single node
model-centric

TFF Manual FedAvg Nonehorizontal
cross-device

(1) Single node
model-centric

PyTorch Manual NaN Nonehorizontal
cross-device

(3) Single node
model-centric

NaN Manual NaN Nonehorizontal
cross-device



18 R. Schwermer, R. Mayer, and H.-A. Jacobsen

configurations, which are either extensively implemented in the research community or are lacking
further investigations. This enables the identification of research trends and gaps.

5.1 Federated Learning Systems
The focus in research is currently on FL. It covers applications from all domains, such as energy,
mobility, and healthcare. Table 8 provides an excerpt of our literature research for FL systems. It
shows all surveyed papers, but not all captured characteristics. Papers can appear multiple times if
they have more than one motivation. For example, a paper can improve the ML performance and
simultaneously try to improve hardware utilization. The y-axis in Table 8 contains the motivation
and client selection approaches. Section 3.2 describes each of those motivations in detail. We
separate client selection strategies into manual, resource-aware, and loss-aware. In the first strategy,
the authors either use all available clients or manually define a client set for training. The other
two client selection strategies define a client set for training based on the available resources
on the client side or on how the loss behaves during a training round. The x-axis shows the
experiment environment. It is unknown when the publication does not state the hardware used for
the experiments. If the publication contains information about the hardware, it is either a single
node hosting the server and clients or multiple nodes. The latter allocates one piece of hardware
for the server and each client, respectively. The hardware includes edge devices, such as Raspberry
Pi, dedicated servers, or GPUs. The distribution of a multi-node environment is either located in
one location or spatially distributed.
The majority of publications focus on improving machine learning prediction performance by

running experiments on either an unknown system or an environment with all parties (server and
clients) being simulated on one device. A one-device approach with simulated clients reduces the

Table 8. Categorization of FL papers into three groups. A reference can appear inmultiple groups. Environment
describes the number of hardware used for an experiment. Motivation refers to three categories introduced
in Section 3.2 ((1)) = Improve insights or ML performance, (2) = Improve privacy or security, (3) = Improve
hardware or network utilization). Client selection is either done manually, resource-aware, or loss-aware.

Motivation
Environment Unknown Single Node Multiple Nodes

(1)

Manual
Selection

[4, 30, 48, 73, 74, 80,
81, 89, 128, 131, 147]

[1, 24, 32, 35, 46, 60,
71, 77, 99, 110, 111,
123, 135, 135, 150,
150, 162–164]

[8, 11, 41, 70, 94, 101,
113, 157]

Resource-aware
Selection [146] [92]

Loss-aware
Selection [28]

(2) Manual [30, 80] [98]Selection

(3)

Manual
Selection [80] [46, 71, 137, 149, 154,

159]
[11, 70, 88, 100, 113,
114]

Resource-aware [146] [92] [2]Selection
Loss-aware [28]Selection
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complexity and overhead of the system. Having a realistic network traffic or monitoring the CPU
cycles are not necessary to investigate the effect of different ML and aggregation strategies on
the final models’ accuracy. A major challenge of FL systems is an uneven distribution of labels
on the clients (non-IID). Therefore, it makes sense to first focus on developing ML prototypes
which achieve satisfactory accuracy before increasing the systems’ complexity by introducing
hardware, network, or energy constraints. Most papers do not specify which environment they run
on (unknown). Figure 7 shows the distribution of motivation (a) and experiment environment (b)
for the surveyed FL systems. 49 out of 50 papers focus on improving machine learning prediction
performance. Eight of those 49 papers also try to improve hardware or network constraints. The
next prevalent motivation is to improve hardware or network utilization (motivation (2) in Figure 7).
To capture changes in those metrics, it is paramount to run the experiments on distributed devices.
However, only 26 % of FL papers run their experiments on multiples nodes. Papers using one node
(48 %) or an unknown environment (26 %) often test an optimization function with respect to
hardware or network utilization improvements. So, instead of measuring actual utilization rates,
they theoretically estimate them.
The preferred client selection algorithm and aggregation strategy are manual and FedAvg, re-

spectively. There is also a clear trend towards using unspecified (unknown) aggregation strategies
12 %) or FedAvg (59 %). The latter is a simple aggregation strategy, and it is mainly used in its
pure form. There is a huge variation of aggregation strategies. Our survey captures at least 11
different strategies, and the majority of publications work with only one aggregation strategy. Seven
publications deployed at least one aggregation strategy. We visualize its distribution in Figure 7 by
counting all occurrences independent of its publication. Only a few publications adopt aggregation
strategies developed in other work. For example, only two publications leverage FedAvgM. Reasons
for a lack of wide adaptations of new aggregation strategies, besides FedAvg, are manifold. The
developed aggregation strategy might be to specialized for a specific use case or dataset. Other
reasons can be a lack of documentation or source code. Having a standardized way of describing an
aggregation strategy highlights the differences and advantages of specific strategies. The summary
in Table 3 in Section 4.1.2 is a starting point for expanding it to more detailed definitions of the in-
and outputs of each aggregation strategy to better reproduce and understand its functionality.

Also, 94 % of our surveyed FL papers capture the same scenario, which represents a model-centric,
horizontal FL and cross-device architecture. The exceptions use cross-silos instead of cross-devices.
They come from the healthcare domain and capture different institutions instead of multiple devices.

(1)

(2)

(3)

39

3

21

(a) Motivation

Single Node

Multiple Nodes

Unknown

24

13

13

(b) Hardware Environment

Fig. 7. Distributions of the problem definition (a) and hardware environment (b) of summarized FL systems.
The numbers follow the structure introduced in Section 3.2 ((1) Improve insights or ML performance, (2)
Improve privacy or security, (3) Improve hardware or network utilization).
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Fig. 8. Distributions of aggregation strategies (a) and frameworks (b) for FL papers. We surveyed in total 50
FL papers published after 2020.

A cross-silo architecture is similar to a cross-device one. Differences between those two architectures
are rather on legal basis instead of a technological one. However, implementing data-centric instead
of model-centric or vertical FL instead of horizontal FL introduces new challenges and increases the
overall complexity. Data-centric architectures improve the ML model accuracy from an FL system
by altering a clients’ dataset and vertical FL merges datasets with different features. Therefore,
currently the focus is on model-centric and horizontal FL systems to keep the complexity low.
However, this highlights a lack of research in more complex FL systems incorporating datasets
with different feature sets.

Figure 8 provides an overview of deployed frameworks and aggregation strategies. Most FL
papers do not specify the framework used (44 %), or they leverage frameworks widely used in ML
applications, such as PyTorch (21 %) or TensorFlow (12 %). FL-ready frameworks with an integrated
communication and aggregation layer are theminority. Only 24 % of the papers use an FL framework,
such as TensorFlow Federated (4 %), PySyft (8 %), or Flower (12 %). We introduce a wide range of
FL frameworks in Section 4.1.3. However, almost none achieved a wide range adaptation due to
usage/license constraints or too short update cycles. For example, the FL framework from IBM has a
community and enterprise edition, and only the latter is open for commercial use. Such constraints
hinder adaptation. Additionally, their last version is almost 1.5 years old. Another reason for not
using a specific FL framework is the ease of use. Flower only requires the installation of its Python
packagewhereas PySyft requires Docker and a local database. All FL frameworks have some tutorials
or installation guides, but more requirements increase complexity and potential sources of errors.
Therefore, there seems to be a trend towards lean FL frameworks such as TensorFlow Federated
and Flower, which use optimized serialization (Protobuf) and communication protocols (gRPC).
Nevertheless 76 % of publications are most likely not built for a real-world FL deployment because
they rely purely on ML frameworks, such as TensorFlow or PyTorch. The majority of publications
using suchML frameworks focus on improvingML training in an FL system. Therefore, we infer that
all publications with an unknown framework focusing also on ML performance use ML frameworks
as well.

5.2 Federated Analytic Systems
The current driving motivation for FA is similar to FL systems’ main motivation: Improving
generated insights. FA systems run for one round and do not have an iterative optimization
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Table 9. Categorization of FA papers into three groups. A reference can appear inmultiple groups. Environment
describes the number of hardware used for an experiment. Motivation refers to three categories introduced
in Section 3.2 ((1)) = Improve insights or ML performance, (2) = Improve privacy or security, (3) = Improve
hardware or network utilization). Client selection is either done manually, resource-aware, or loss-aware.

Motivation
Environment Unknown Single Node Multiple Nodes

(1) Manual
Selection

[23, 31, 53, 56, 61, 69,
140, 141] [14, 95, 139] [85, 156]

(2) Manual [22, 56] [14, 31, 42, 69] [85, 116, 119]Selection

(3) Manual [140] [14, 42, 95, 129, 158] [85, 156]Selection

approach. Therefore, the focus is not on improving ML prediction performance, but rather on
generating and aggregating single performance metrics. The captured scenarios for FL and FA
are also similar and both focus on model-centric, horizontal FC in a cross-device environment.
No surveyed FA paper works with either data-centric, vertical or cross-silo environments and the
publication year for all publications are not older than 2021. This highlights the recent research
interest in FA. Table 9 provides an overview of our literature research.
The type of hardware environment used for FA use cases is more evenly distributed when

compared to the FL systems. Running the experiments on an unknown environment, a single node,
or multiple nodes associate for 21 %, 32 %, and 47 %, respectively. There is no clear match between
motivation and environment. For example, papers looking at hardware or network metrics use 63 %
of the times a single node and only 25 % of those papers deploy their system on multiple nodes.
This looks a bit different for papers capturing privacy or security motivations. About 45 % of them
use an unknown environment, whereas 22 % and 33 % run their experiments on a single node or
multiple nodes, respectively. The client selection is either manual, random, or unknown. 53 % of
the papers select clients manually and 16 % use a random client selection. For both approaches
the set of clients stays constant during the training. A manual client selection describes either an
undefined client selection or all available clients are always selected. The latter could be a dataset
which is inherently non-IID. For example, electricity measurements from multiple households
which have a different dominant label per house (e.g., TV for household 1 and washing machine
for household 2). However, 31 % of papers do not specify the type of client selection.
Figure 9 shows the distribution of frameworks and aggregation strategies used for FA systems.

Not a single paper uses a framework specifically built for FA or FL and 74 % of papers do not mention
which framework they use at all. The majority of papers use an ML framework, such as TensorFlow,
PyTorch or MATLAB, to simulate an FA environment. It is feasiable to use an adjusted version of a
framework dedicated for FL systems in an FA system. This requires only little to none changes,
because in the simplest scenario an FL framework runs for only one round to mimic an FA system.
This enables researchers to leverage the existing communication and serialization infrastructure.
Therefore, it is not clear why no FA paper uses existing FL frameworks even when they try to
improve hardware and network utilization. The field of frameworks used in FA systems is also less
divers when compared to FL systems (three vs. five frameworks). However, the ratio of unknown
frameworks for FA systems is 30 % percentage points higher, which introduces uncertainties when
comparing FA with FL systems.
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Fig. 9. Distributions of the problem definition (a) and hardware environment (b) of summarized FA systems.
The numbers follow the structure introduced in Section 3.2 ((1) Improve insights, (2) Improve privacy or
security, (3) Improve hardware or network utilization).

Figure 10 highlights the distribution of aggregation algorithms. Aggregation strategies are also
mostly unknown (50 %) and the focus is currently on custom strategies (40 %). They often work
with privacy-enhancing algorithms, such as homomorphic encryption, differential privacy or
secure-multi party aggregation. The number of different aggregation strategies is much lower when
compared to FL systems. A reason could be the reduced complexity of FA systems and the smaller
impact of aggregation strategies on the final result, because an FA training runs for one round
instead of multiple ones with an optimizer running on each client, which adds an additional layer
of complexity.

However, half of the surveyed papers extend FA with privacy enhancing techniques. The privacy
aspect is more present for FA systems compared to FL ones. FA training runs for only one round
and often with deterministic models. The risk of de-annonymizing or reverse-engineering the raw
data based on the clients’ output is higher compared to statistical models with some degree of
randomness. Therefore, it makes sense that about 35 % of surveyed papers combine FA systems
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Fig. 10. Distributions of aggregation strategies (a) and frameworks (b) for FA papers. We surveyed in total 19
FA papers published after 2020.
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with privacy-enhancing strategies. Improving generated insights is also easier compared to FL
systems due to the reduction of system complexity. This allows researchers to focus on other topics.

6 DISCUSSION
6.1 Current Research Trends
FL got attention in the industry and academia starting in 2016 and FA emerged in 2020. However,
their precursor such as Federated Databases have been studied long before that. Its main applications
are in the ML domain. Research focuses currently on improving ML prediction performance by
introducing new client selection (e.g., resource-aware or loss-aware client selection), aggregation
algorithms or fine tuning hyperparameters of ML models. The primary challenge is a non-IID of
labels on client-side leading to biased and unbalanced model updates. The network traffic and
hardware consumption are for those experiments neglectable. Therefore, to test new ML-focused
approaches, it is sufficient to deploy experiments on one machine which contains the server and
multiple simulated clients. This strategy also reduces complexity and organizational overhead when
compared to experiments running on distributed systems. The second most found motivation is
improving hardware and network utilization of FL systems. Those papers solely focus on this issue.
However, a few combine improving ML and hardware performance. Papers also considering the
hardware or network utilization of an FL system run about half and half on either a single machine
or on multiple ones. A few experiments investigate the impact of FL on those metrics theoretically
by compiling optimization functions with constraints. Lastly, only a few papers extend FL systems
with additional privacy-enhancing techniques, such as multi-party computation or DP. On the
other side, papers describing FA systems mainly combine it with some kind of privacy-enhancing
techniques. An explanation is the inherently deterministic nature of FA due to its lack of any
optimizations running on client side. Therefore, it is easier to reverse-engineer raw data based on
each clients individual update. To counter this, more works combine FA with techniques improving
either input or output privacy.
Another focus in research is on model-centric, horizontal, and cross-device FC. This is the

simplest scenario for FL and FA. Its goal is to improve ML performance by tuning hyper parameters,
which is easier with a pre-defined homogeneous set of features and devices. The distribution of
features per client can vary widely, but the feature set is the same for all of them. On the other
side, data-centric and vertical FL and FA increases complexity. A data-centric approach aims at
increasing ML performance by improving data quality. However, working with multiple distributed
clients with a divers level of ownership makes it challenging to make changes on client-side. Also,
vertical FL and FA work with multiple different feature sets, which can also vary per client.

About 99 % of surveyed papers incorporate a centralized architecture (see Figure 2). Only one
looks at the advantages and challenges of hierarchical [18] and none at peer-to-peer systems.

6.2 Open Challenges
FL and FA often lack information about deployed systems, such as environment, framework, or
aggregation strategy, which decreases reproducibility. Our proposed standardized framework to
describe FC systems enables other researchers and stakeholders to identify similar systems for
comparison.

FL and FA systems run mostly on one node or the environment is unknown due to the focus on
ML accuracy improvements. This leads to a lack of understanding on how FC systems perform under
real-world scenarios and how certain client selection and aggregation strategies affect network
traffic and other hardware metrics, such as CPU utilization or energy consumption. Running an
experiment on one device neglects potential latency or throughput bottlenecks of the network
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or the hardware itself. Therefore, ML-focused papers should be as reproducible as possible to
enable other researchers to quantify their impact on the above mentioned metrics and to optimize
hardware utilisation during the training process. Orchestration of multiple nodes in a real-world
FC scenario is also not well researched.

Client selection algorithms primarily consider all available clients and the client set stays constant
during training. Most dataset used in FC papers have a limited number of clients and reducing them
could lead to an insufficient amount of (training) data. However, resource-aware or loss-aware client
selection algorithms could improve ML performance and hardware utilization. Also, re-selecting a
new subset of clients after an ML round increases complexity, but could potentially improve the
entire systems’ performance.

Not much work for FA exist. Strategies working for FL systems might achieve similar results in
an FA system. FL-specific strategies, such as loss-aware client selection is not applicable in an FA
context, because FA runs for one run and hence, cannot incorporate iterative optimizations. There
is also a lack of using FC-specific frameworks in an FA system.

7 CONCLUSIONS
FL and FA enable the development of data-driven business models by leveraging data silos without
interfering with data protection laws and by eliminating reservations from decision makers and
stakeholders. Such models are paramount for improving business processes and to cope with the
ever increasing complexity and velocity of changes in the global economy. Both approaches belong
to FC. Over the last years researchers and practitioners expand FC systems with algorithms from
other domains (e.g., encryption and compression) to minimize the effect of some of its disadvantages.
However, those systems become more complex and there is currently a lack of clearly defined
boundaries for such systems. Our work introduces a taxonomy capturing all moving parts in an
FC systems. We differentiate between FL and FA. We summarize current research trends in FC
systems and identify gaps. Additionally, we categorize existing frameworks and client selection
algorithms. Currently, the majority of publications focus on FL systems with the goal to improve
the accuracy of the trained machine learning models. The experiments mainly run on one device
hosting the server and clients. There is a lack of research on the effect of FL Training on hardware
utilization. A similar picture exists for FA systems. However, publications in this area tend to
incorporate more privacy-enhancing techniques, such as differential privacy or secure-multi party
computation. Our taxonomy servers as a blue print for further research on FC systems. Additionally,
our comprehensive summary of existing FL frameworks highlights the focus on the combination of
gRPC with Protobuf for communication and object serialization.
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