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Abstract 

Optoacoustics is a powerful, non-invasive imaging technique that combines the benefits of both 

optical and ultrasound imaging. It holds great potential for the imaging of hemoglobin and lipids, 

among other molecules, providing valuable insights into their spatial distribution and dynamics within 

biological tissues. By taking advantage of the inherent light absorption properties of hemoglobin and 

lipids, acoustic responses are generated and recorded when these molecules absorb light pulses. 

Detection and processing of the acoustic waves enable the visualization and quantification of the 

chromophores mentioned above within the blood vessels, soft tissues, and parenchymal organs, such 

as the adipose tissues, liver, skin, and skeletal muscles. Such visualizations provide the user with 

detailed insights into not only tissue physiology but also the pathophysiology of relevant metabolic 

diseases, such as obesity and diabetes. In this work, we employ optoacoustic techniques to investigate 

different aspects of metabolism and metabolic disease, as reflected in the hemoglobin- and lipid-

specific changes induced in affected tissues and organs, such as the blood, the liver, and the skin. In 

particular, we first explore the lipid dynamics in the bloodstream after the oral consumption of a high-

fat meal, hypothesizing that imaging of postprandial lipemia using multispectral optoacoustic 

tomography (MSOT) would provide an innovative approach for studying postprandial lipid dynamics: 

a feature that is distorted in various health conditions. By employing multiple wavelengths of near-

infrared light (680-980 nm) and analyzing the resulting optoacoustic signals, this technique allowed 

for the comprehensive mapping of lipid distribution within not only blood vessels but also different 

tissue compartments, such as the subcutaneous fat and muscle. With MSOT, we demonstrate for the 

first time the unique capability of the technology to accurately image the temporal fluctuations of 

lipids within tissues in healthy volunteers based only on the characteristic absorption peak of the lipids 

when illuminated at 930 nm.  

Furthermore, apart from dynamic lipid readouts, we further explore the capability of MSOT to detect 

lipids in parenchymal organs, such as the human liver, lying at depths of several cm under the skin 

surface. Thus, as a next step, we captured MSOT images of subjects with already diagnosed hepatic 

steatosis, a disorder characterized by intrahepatic fat accumulation, which deteriorates the function 

of the hepatic tissue, leading to potential progression to more severe conditions. In this study, we 

demonstrate for the first time the capability of MSOT to image hepatic steatosis in humans. Here, we 

also include data from a relevant mouse model (high-fat diet), which underlines the excellent 

translational potential of MSOT. Our non-invasive approach holds promise for early detection or even 

for the assessment of treatment responses in future patients with hepatic steatosis.  

Finally, in another study, we employ raster-scan optoacoustic mesoscopy (RSOM) to image the 

microvasculature of the skin in patients with diabetes. By using green light (532 nm), we were able to 
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produce high-resolution (7-10 μm) images of the skin microvasculature in healthy volunteers and 

patients with diabetes based on the strong presence of hemoglobin in the skin. RSOM revealed a 

degradation of the skin microvasculature in diabetes by detecting the statistically significant lower 

number of vessels and blood volume compared to the healthy group. Our findings provided important 

insights into the microangiopathy related to diabetes and displayed once again the great potential of 

the RSOM technology as a tool for translational research and future clinical practice. Overall, 

optoacoustic imaging holds significant potential for imaging different aspects of tissue physiology and 

its distortion in disease. By exploiting the unique features of optoacoustics and through detailed 

design and conduction, our studies aim to improve our understanding of various diseases such as 

obesity, non-alcoholic fatty liver disease (NAFLD), and diabetes, and to facilitate the management of 

these patients in the future. 
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Zusammenfassung 

Die Optoakustik ist ein leistungsfähiges nicht-invasives Bildgebungsverfahren, das die Vorteile der 

optischen Bildgebung und der Ultraschall-Bildgebung vereint. Sie birgt großes Potenzial für die 

Darstellung von Hämoglobin, Lipiden und anderen Molekülen und bietet wertvolle Einblicke in deren 

räumliche Verteilung sowie Dynamik in biologischen Geweben. Unter Ausnutzung der inhärenten 

Lichtabsorptionseigenschaften von Hämoglobin und Lipiden werden akustische Reaktionen erzeugt 

und aufgezeichnet, wenn diese Moleküle Lichtimpulse absorbieren. Die Erkennung und Verarbeitung 

der akustischen Wellen ermöglicht die Visualisierung und Quantifizierung der oben genannten 

Chromophore in Blutgefäßen, Weichteilen und parenchymatösen Organen wie Fettgewebe, Leber, 

Haut und Skelettmuskeln. Derartige Visualisierungen bieten dem Nutzer nicht nur detaillierte 

Einblicke in die Gewebephysiologie, sondern auch in die Pathophysiologie relevanter 

Stoffwechselkrankheiten wie Fettleibigkeit und Diabetes. In dieser Arbeit setzen wir optoakustische 

Verfahren ein, um verschiedene Aspekte des Stoffwechsels und Stoffwechselkrankheiten zu 

untersuchen, die sich in den hämoglobin- und lipidspezifischen Veränderungen in den betroffenen 

Geweben und Organen wie dem Blut, der Leber und der Haut niederschlagen. Insbesondere 

untersuchen wir zunächst die Lipiddynamik im Blutkreislauf nach dem oralen Verzehr einer fettreichen 

Mahlzeit und stellten die Hypothese auf, dass die Darstellung der postprandialen Lipämie mittels 

multispektraler optoakustischer Tomographie (MSOT) einen innovativen Ansatz für die Untersuchung 

der postprandialen Lipiddynamik bieten würde, welche bei verschiedenen Gesundheitszuständen 

gestört ist. Durch die Verwendung mehrerer Wellenlängen von Licht im Nahinfrarotbereich (680-980 

nm) und die Analyse der daraus resultierenden optoakustischen Signale ermöglichte diese Technik 

nicht nur in den Blutgefäßen eine umfassende Kartierung der Lipidverteilung, sondern auch in 

verschiedenen Gewebekompartimenten wie dem subkutanen Fett und den Muskeln. Mit MSOT 

demonstrieren wir zum ersten Mal die einzigartige Fähigkeit der Technologie, die zeitlichen 

Fluktuationen von Lipiden im Gewebe gesunder Probanden allein auf der Grundlage des 

charakteristischen Absorptionspeaks der Lipide bei einer Beleuchtung von 930 nm präzise 

darzustellen.  

Darüber hinaus erforschen wir neben der dynamischen Lipidmessung auch die Fähigkeit von MSOT, 

Lipide in parenchymatösen Organen zu erkennen, die mehrere Zentimeter unter der Hautoberfläche 

liegen, wie z. B. in der menschlichen Leber. In einem nächsten Schritt erfassten wir MSOT Daten von 

Personen mit bereits diagnostizierter Lebersteatose, einer Erkrankung, die durch intrahepatische 

Fettanhäufung gekennzeichnet ist, welche die Funktion des Lebergewebes verschlechtert und zu 

Leberfunktionsstörungen führt, die sich potentiell zu schwereren Erkrankungen ausweiten. In dieser 
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Studie zeigen wir erstmalig die Fähigkeit von MSOT Lebersteatose beim Menschen darzustellen. 

Hierbei beziehen wir auch Daten von einem relevanten Mausmodell (fettreiche Diät) ein, die das 

hervorragende translationale Potenzial von MSOT unterstreichen. Unser nicht-invasiver Ansatz ist 

vielversprechend für die frühzeitige Erkennung von Lebersteatose oder sogar für die Bewertung des 

Behandlungserfolgs bei künftigen Patienten mit Lebersteatose. 

Abschließend nutzen wir darüber hinaus in einer weiteren Studie die optoakustische Mesoskopie mit 

Rasterabtastung (RSOM), um das Mikrogefäßsystem der Haut bei Patienten mit Diabetes abzubilden. 

Durch die Verwendung von grünem Licht (532 nm) konnten wir hochauflösende (7-10 μm) Bilder der 

Mikrovaskulatur der Haut bei gesunden Probanden und Patienten mit Diabetes erstellen, die auf der 

starken Präsenz von Hämoglobin in der Haut basieren. RSOM zeigte eine Verschlechterung der 

Hautmikrovaskulatur bei Diabetes, was sich in einer statistisch signifikant geringeren Anzahl von 

Gefäßen und einem geringeren Blutvolumen im Vergleich zur gesunden Gruppe äußerte. Unsere 

Ergebnisse lieferten wichtige Einblicke in die Mikroangiopathie bei Diabetes und zeigten einmal mehr 

das große Potenzial der RSOM-Technologie als Instrument für translationale Forschung und die 

künftige klinische Praxis. Insgesamt birgt die optoakustische Bildgebung ein erhebliches Potenzial für 

die Darstellung verschiedener Aspekte der Gewebephysiologie und ihrer Störung bei Krankheiten. 

Durch die Nutzung einzigartiger optoakustischer Merkmale und mithilfe von detaillierter Planung wie 

auch Durchführung zielen unsere Studien darauf ab, unser Verständnis verschiedener Erkrankungen 

wie Adipositas, nichtalkoholische Fettlebererkrankung (NAFLD) und Diabetes zu verbessern und die 

Behandlung dieser Patienten in Zukunft zu erleichtern. 
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1 | 
Introduction and Methodology 

1.1 | Lipid metabolism in humans: A brief introduction 

The term “lipids” refers to a group of diverse organic compounds, which includes fats, oils, 

phospholipids, waxes, and steroids. Lipids are crucial for the general homeostasis of the 

body, mainly by i) storing energy and regulating energy metabolism and ii) offering structural 

and functional support to the cellular membranes [1]. Thus, lipids, along with proteins and 

carbohydrates, belong to the most essential components of living cells. Nevertheless, apart 

from their significance at a cellular or microscale level, lipids are also crucial for the structure 

and function of the body at the macroscale. Lipids are mainly accumulated in specific cells, 

called adipocytes, which lie in many different positions throughout the body. Adipocytes 

contain fat globules in the form of triglycerides that occupy almost 90% of the total cell 

volume. Adipocytes are the main constituents of adipose or, alternatively, fat tissues. 

Adipose tissues offer protection and provide structural support to prevent injury and damage 

to essential organs in the human body, such as the spleen, liver, heart, and kidneys, among 

others [2]. 

The body is supplied with lipids mainly via food consumption (lipid digestion and absorption) 

or their de novo synthesis that takes place in the liver using glucose as substrate (Fig. 1.1). 

The digestion and absorption of lipids happen along the whole gastrointestinal tract. First, in 

the oral cavity, the mixing with saliva, the mechanical digestion, and the initial step of the 

enzymatic digestion, via the effect of lingual lipase, take place. Second, in the stomach, the 

enzymatic digestion continues mainly via the action gastric lipase – and a small amount of 

lingual lipase, which reaches the stomach with food/saliva – and the supporting effect of 

mixing and churning via the gastric peristaltic contractions. Third, and finally, in the small 

intestine, the lipids are emulsified by bile acids (produced in the liver and kept stored in the 

gallbladder), leading to the formation of small lipid globules from the breakdown of larger 

ones [3]. Emulsification is also enhanced by further enzymatic digestion through the activity 

of the pancreatic lipase so that, in the end, micelles are formed. Micelles are microscopic 

structures (< 10 nm in diameter) consisting of lipids and bile salts that are finally absorbed by 

specific epithelial cells of the small intestine and provide their lipid content so that 

chylomicrons are formed and enter the bloodstream [4]. 
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Fig. 1.1 | Overview of the main steps of lipid metabolism in humans. VLDL: very-low-density 

lipoprotein, LDL: low-density lipoprotein, IDL: intermediate-density lipoprotein, and HDL: high-density 

lipoprotein. 

 

Lipids are blood-insoluble, so after entering the bloodstream, they soon react with/bind to 

proteins that are water- and blood-soluble. Consequently, lipids are transported in the form 

of lipoproteins in the blood. As also mentioned below, the lipoproteins (very-low-density 

lipoprotein/VLDL, high-density lipoprotein/HDL, low-density lipoprotein/LDL, and 

intermediate-density lipoprotein/IDL) are produced in the liver [5]. Even if there is always a 

relatively steady supply of lipids in the bloodstream, the lipid concentration changes over 

time. For example, it rises rapidly after ingesting a meal (postprandial lipemia) [2]. In any 

case, lipoproteins facilitate the transport of lipids to their destination organs to be used as 

energy sources (via oxidation), stored for later use, or even excreted from the body (e.g., in 

feces) [2]. In particular, lipid storage takes place when the body is not in acute need of energy 

and the form of triglycerides in adipose tissue [6].  

Furthermore, apart from their digestion and absorption, lipids are produced de novo in the 

liver (lipogenesis) by converting excess glucose into fatty acids and triglycerides  [7, 8]. The 

latter are then packaged into VLDL, released into the bloodstream, and transported to 
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adipose tissue for storage or muscle for energy. The HDL, another liver-produced lipoprotein, 

also plays a significant yet opposite role compared to the VLDL. Ιt serves the removal of 

excess cholesterol from body tissues and transports them back to the liver to be metabolized 

and finally excreted [5]. In other words, the liver is an organ important for lipid metabolism 

or homeostasis since it is essentially involved in lipogenesis, lipid storage (either by 

facilitating their transport to adipose tissues or storing lipids in the form of triglycerides), lipid 

transport (via lipoproteins), lipid breakdown and production of bile acids [5]. Thus, the liver 

is responsible for providing the correct concentrations of lipids in the blood, ensuring their 

proper distribution throughout the body [6]. As a result, lipid metabolism remains in a 

continuous dynamic balance condition. The complexity of human lipid metabolism highlights 

its importance for general homeostasis. Indeed, dysregulation of any step of lipid metabolism 

leads to corresponding diseases, such as dyslipidemia, atherosclerosis, non-alcoholic fatty 

liver disease (NAFLD), obesity, and other significant diseases [9],[10]. Thus, in the next section 

(1.2), we provide further insights into the role of lipid metabolism and its dysregulation in 

relevant diseases, such as the ones belonging to metabolic syndrome. 
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 1.2 | The role of lipids and adipose tissues in metabolic diseases                        

The metabolic syndrome is a group of several different and complex conditions that lead to 

metabolic dysregulation and known severe diseases, such as cardiovascular disease (e.g., 

coronary heart disease, stroke, peripheral arterial disease) and diabetes. The latter, along 

with other conditions, such as hypertension, dyslipidemia, and obesity, are not only possible 

“results” but also possible “causes” of metabolic syndrome, highlighting the complex 

associations and “vicious circle” character of relevant underlying conditions, overt diseases, 

and risk factors. Within the same framework, different risk factors, either modifiable (e.g., 

lifestyle factors, such as obesity, smoking, etc.) or non-modifiable (e.g., age, gender, race, 

family history), have an impact on the general metabolism and function of organs controlling 

it, leading, thus, to the development or acceleration of conditions mentioned above and 

diseases and, therefore, of metabolic syndrome [11].  

In obesity, a persistent condition (more than 600 million adults are obese in the whole world), 

which is characterized by metabolic dysregulation, the disbalance between energy intake and 

expenditure is linked with excessive accumulation of adipose tissue and lipids in different 

tissues and organs [12]. In particular, the metabolism of several lipid types is affected. For 

example, triglycerides, VLDL, and small dense LDL are detected in increased levels in the 

bloodstream, while HDL-C is found to be decreased [13]. As a result, lipids accumulate in the 

liver, leading to liver steatosis/NAFLD, an initially benign condition, which, when left 

untreated, however, might not only lead to end-stage liver disease, hepatocellular carcinoma 

(HCC) but also increase the risk for other conditions, such as kidney disease or colorectal 

cancer [14]. Moreover, intramuscular lipid metabolism is also affected in subjects with 

obesity, where fatty acids enter the myocytes via the bloodstream but remain unoxidized in 

contrast to normal subjects, where increased intramuscular lipid oxidization drives their 

clearance via the capillaries [15, 16]. Excess intramuscular lipids seem to play an essential 

role in developing insulin resistance, thus consisting of a solid pathophysiological link among 

insulin resistance, obesity, and diabetes mellitus [17].  

Diabetes is also associated with distorted lipid metabolism via the development of diabetic 

dyslipidemia, taking into account that the metabolism of glucose and lipids are highly 

interconnected via a common insulin-based regulation [18, 19]. As in obesity, serum 

triglycerides (also postprandially) and small dense LDL are elevated, while HDL-C is found to 

be decreased in patients with diabetes [18, 20]. The majority (> 75%) of patients with type 2 

diabetes mellitus have diabetic dyslipidemia as well [20]. Of course, diabetic dyslipidemia is 
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one of the factors elevating the risk of developing cardiovascular disease in patients with 

diabetes.  

Finally, not only in diabetes but also in obesity, the adipose tissues (the main lipid depots) 

are also affected, apart from other abovementioned metabolic tissues and organs. For 

example, in obesity, adipose tissue dysfunctions and this local dysfunction promote a 

generalized inflammatory condition via the dysregulation of several adipokines, a family of 

endocrine active proteins. It is this very adipose tissue dysfunction that is finally associated 

with an increased risk for cardiovascular disease [21]. Furthermore, the mentioned earlier 

chronic low-grade adipose tissue inflammation seems to affect insulin sensitivity and glucose 

tolerance and is associated with the development of diabetes [10],[22].  

In any case, lipid metabolism dysregulation and adipose tissue dysfunction are 

pathophysiological hallmarks in obesity, diabetes, and cardiovascular disease: all 

components of the metabolic syndrome [23]. Thus, assessing these changes might give 

insights into disease mechanisms and possible future therapies. Imaging serves this goal, so 

several techniques have been developed and introduced. In the upcoming section (1.3), we 

provide a short overview of the imaging modalities used in everyday clinical practice in 

adipose tissue imaging while discussing the role of optoacoustic technologies in relevant 

applications. 
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1.3 | Clinical imaging of adipose tissues using non-invasive techniques 

The primary goals of adipose tissue clinical imaging are i) the description of their morphology, 

ii) the characterization of their functional status and metabolism, and iii) the mapping of their 

distribution and quantity throughout the body [24-26]. The abovementioned goals are based 

on observations that not only the morphology but also the function/metabolism and spatial 

distribution/quantity of adipose tissues are distorted in relevant diseases [27-29], rendering 

imaging a convenient tool for understanding disease pathophysiology or improving 

diagnostics and therapy assessment. Furthermore, taking into account the common 

differentiation of human adipose tissues mainly into white fat (WAT) and brown fat (BAT) 

tissues, two tissues with frequently opposing and/or complementary sets of characteristics 

and roles in lipid and general metabolism [30], relevant imaging techniques of both adipose 

tissues may offer a plethora of image-based biomarkers for the precise definition of any 

disease-induced alterations. Current clinical methods include ultrasound (US), magnetic 

resonance imaging (MRI), computed tomography (CT), dual-energy x-ray absorptiometry 

(DEXA), and positron emission tomography (PET).  

The US offers high portability and ease of use but lacks standardization by showing high 

dependency on the expertise of the examiner [31]. However, US has been used not only in 

white subcutaneous fat studies but also in abdominal WAT and BAT [contrast-enhanced US 

(CEUS)] studies [32-34]. The trade-off between resolution and penetration imposes 

resolutions of down to 0.3 mm if deep tissue imaging over several centimeters is needed 

[35]. MRI, in contrast with the US, is appropriate for whole-body imaging, offering the 

opportunity to assess all fat depots and different tissues/organs in the human body in a single 

examination. Typical MRI techniques offer resolutions of one to a few mm [36, 37]. 

Nevertheless, the long examination times (usually 30-45 min) and the need for specialized 

personnel and infrastructure hinder the dissemination of the technique, even if it does not 

employ ionizing radiation. MRI has been hired to image both WAT and BAT in health and 

metabolic diseases [38].  

Apart from MRI, CT can also be used to quantify fat in tissues, organs, compartments, or even 

the whole body. CT is more convenient for the patient due to shorter examination times but 

comes with exposure to ionizing radiation. Furthermore, CT also offers high resolutions (< 1 

mm) [39], even if it is less accurate and reproducible when it comes to the quantification of 

adipose tissues compared to MRI [40]. Even if CT has been employed in label-free WAT 

imaging (imaging of visceral adipose tissue, VAT) [40], BAT can only be visualized/detected 
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after the intravenous injection of a contrast agent [41]. The possible nephrotoxicity of such 

contrast agents, as well as the use of ionizing radiation, are two factors possibly hindering 

the use of CT for adipose tissue imaging in everyday practice.  

In contrast to the abovementioned imaging techniques, which provide mainly 

structural/morphological information, PET gives insights into adipose tissue 

function/metabolism. For this reason, 18F-Fluorodeoxyglucose (FDG)-PET is the technique of 

choice to image metabolically active adipose tissue, such as BAT [42]. Conventional PET, 

characterized by a spatial resolution of 4-5 mm, is usually combined with CT, which has a 

resolution of approximately 1 mm, to provide the user with complementary metabolic and 

anatomic imaging. However, newer PET scanners offer even higher resolutions, which are 

comparable to the ones provided by CT [43]. Even if PET is usually used to image BAT activity, 

studies using PET to image WAT have also been reported [44, 45]. 

Dual-energy x-ray absorptiometry (DEXA) has also been used for whole-body adipose tissue 

assessment [46]. DEXA is a relatively low-cost technique that is easily available and can be 

used to quantify fat throughout the body [47] without being able to differentiate between 

WAT and BAT [48]. DEXA is a two-dimensional (2D) modality employing ionizing radiation 

and, in particular, X-rays with two different energy levels, mainly to differentiate between 

bone and soft tissues [49]. DEXA scans generally expose the patient to much lower radiation 

levels compared to CT [50], and its readouts can also be translated into a “fat shadow” image 

(which has, however, a low resolution) for the whole human body [51].  

Apart from the abovementioned techniques, usually used in everyday adipose tissue 

imaging, others have been used in relevant translational studies. For example, infrared 

thermography (IRT) has been used to image BAT activation in humans by measuring the 

temperature increase of the supraclavicular region, where the BAT lies, upon BAT activation 

[52, 53]. IRT takes advantage of the infrared radiation emitted at the wavelength range of 

(8–15 μm) by the human body to image tissue metabolism as reflected in local temperature 

changes. Even if it is low-cost, highly portable, and easy to use, IRT does not provide depth 

information while lacking standardization [52].   

Optoacoustics, particularly multispectral optoacoustic tomography (MSOT, see sections 1.5 

and 1.6), has been recently introduced as a powerful tool for human imaging of adipose 

tissues, both BAT and WAT [54]. By illuminating the body surface at several different 

wavelengths at the near-infrared region (NIR) (usually 680-980 nm or even 680-1300 nm for 
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the new systems), MSOT offers the opportunity to directly image lipids, the main constituent 

of adipose tissues, within the human body [55]. Lipids can be detected and visualized based 

on their light absorption spectrum at the NIR, characterized by a prominent absorption peak 

at 930 nm [56]. MSOT is now available in highly portable, hand-held systems that can be used 

in everyday practice, even at the bedside. For a more detailed description of MSOT 

technology, please refer to sections 1.5 and 1.6 and relevant studies (chapters 2 and 3). In 

this thesis, we demonstrate the incredible capabilities of MSOT to visualize lipids not only 

within the bloodstream ([57], chapter 2) but also within complex tissue parenchymata, such 

as the one of the human liver ([58], chapter 3), or else compartments/organs full of 

hemoglobin, a potent light absorber whose presence may well render the detection of other 

chromophores, such as the lipids, indeed challenging.  

Furthermore, apart from MSOT, which is the optoacoustic technology with the highest 

translational potential at the moment, another technique, the so-called raster-scan 

optoacoustic mesoscopy (RSOM), has also been investigated as a powerful tool for imaging 

tissue changes induced in metabolic diseases. Usual RSOM implementations may not be real-

time (45 s are needed for the acquisition of one image for the new systems) but provide the 

user with high-resolution (7-10 μm) images of the microvasculature by employing green (532 

nm) light. In this work, we explore for the first time the capability of RSOM to deliver detailed 

images of the skin microarchitecture and its distortion in patients with diabetes ([59], chapter 

4). 

Thus, the current work, by combining both MSOT (macroscopy) and RSOM (mesoscopy), 

achieves the demonstration of the unique capability of optoacoustics: to provide not only a 

multi-aspect (by enabling the examination of several tissues/organs) but also a multi-scale 

(different resolutions and scales of detail) characterization of soft tissue 

physiology/metabolism and metabolic disease pathophysiology based on the same 

phenomenon and principle.  
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1.4 | Diabetes and skin microangiopathy   

Diabetes develops in concert with metabolic abnormalities mirroring and causing changes in 

the vasculature. Persistently high blood glucose levels and insulin resistance damage the 

microvascular status of various target organs, such as the peripheral nerves (diabetic 

neuropathy). Diabetes is also connected to macrovascular diseases, such as coronary and 

peripheral arterial disease. Both the micro- (such as neuropathy) and macrovascular (such as 

atherosclerosis) complications of diabetes affect the skin, the body's largest and most easily 

accessible organ, which serves as both a protective barrier against external factors like 

mechanical, chemical, and thermal and a susceptible sensory organ. These complications 

lead to microvascular rarefaction, structural and functional changes in the skin's 

microvascular organization [59], such as endothelial dysfunction (ED), and reduction of the 

capillary density and size, resulting in inadequate tissue perfusion and thus in loss of its health 

and functional integrity. Especially in the lower extremities, diabetic complications may result 

in skin ulcerations, wound healing disorders, and even amputations [60]. However, in 

diabetes, these microvascular abnormalities often occur early in the disease [61] and before 

other complications become evident.  

Diabetes-related dysfunctions and their significant impact on the quality of life illustrate the 

need to detect microvascular dysfunction in an early stage and diagnose patients with 

diabetes at risk. Skin microvascular changes and, specifically, skin microangiopathy caused 

by diabetes occur early in the course of the disease and before other serious complications 

manifest and serve as possible biomarkers for monitoring disease progression and severity, 

particularly concerning complications like diabetic foot ulcers (DFUs).  To efficiently assess 

these changes non-invasively, several imaging and sensing technologies have been employed 

so far.  

One such tool, capillaroscopy, uses digital cameras to capture high-resolution images of skin 

capillaries, with resolutions typically ranging from 1 to 6 μm per pixel. This technique has 

found extensive use in diabetes research. Capillaroscopy boasts numerous advantages, 

including its widespread availability, ease of use, and a high degree of repeatability and 

reliability [62]. However, it does not provide tomographic imaging of the skin's depth.  

Laser Doppler flowmetry (LDF) and laser Doppler imaging (LDI) represent optical methods for 

monitoring skin microvascular perfusion. LDF provides one-dimensional (1D) skin perfusion 

measurements by illuminating the skin with laser light. LDF devices incorporate small sensors 



 | 10 

applied directly to the skin, extracting real-time perfusion information over skin volumes of 

approximately one mm³. LDI offers the ability to reach depths of around 1–2 mm and real-

time imaging of skin perfusion with a spatial resolution of 1 μm. While both LDF and LDI rely 

on the Doppler effect and offer valuable insights into skin perfusion, it is essential to note 

that the information they provide is indirect, as they do not directly visualize the skin 

microvasculature at the single-vessel level. These techniques are frequently employed in 

functional tests, such as post-occlusive reactive hyperemia (PORH), thermal challenges, or 

iontophoresis tests. During these tests, the skin is stimulated through physical or chemical 

means, and its resulting hyperemic response is measured and evaluated as an indicator of its 

functional well-being. Studies have indicated that diabetes influences the hyperemic 

responses recorded by LDF and LDI [63].  

Laser speckle contrast imaging (LSCI) commonly visualizes blood vessels, similar to LDI, by 

capturing intravascular blood flow information. LSCI employs a charge-coupled device (CCD) 

camera to detect the speckle pattern and subsequently relates it to a blood flow model to 

estimate blood flow. LSCI also uses near-infrared light, typically around 785 nm, allowing it 

to penetrate depths of approximately 300 μm. It has effectively differentiated ischemic and 

non-ischemic areas in patients with diabetes [64]. 

Hyperspectral imaging (HSI) operates by utilizing light across a range of wavelengths, typically 

between 400 and 1000 nm, [65] to capture multiple images of the same skin area. This 

process effectively records the spectrum of each pixel, allowing for the assignment of a 

'tissue/molecular label' to each pixel by comparing its spectrum to established spectra of 

different tissues and molecules. Consequently, biomolecules such as HbO2, Hb, and water 

[66] can be accurately distinguished at a resolution of 100 μm. Typically, hyperspectral 

cameras are positioned at a distance of 25 to 30 cm above the skin region under examination, 

maintaining the integrity of the skin's surface and perfusion due to their non-contact nature 

[67]. It has shown potential in assessing skin perfusion and oxygenation in diabetes and 

predicting DFU healing. Notably, HSI has revealed diminished perfusion and oxygenation in 

the skin of patients with diabetes  [68]. 

In addition to its fundamental role in monitoring diabetic retinopathy, optical coherence 

tomography (OCT) proves to be a valuable tool for tracking skin microvasculature and its 

irregularities in individuals with diabetes. This technique enables the visualization and 

quantification of microvascular changes in the skin, shedding light on parameters like 

microvascular density, diameter, and flow rate [69].  
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A non-invasive optoacoustic imaging method, RSOM offers detailed cross-sectional images 

of the skin's layers. Operating with green light (532 nm), RSOM takes approximately 60 s to 

capture an image. This technique enables the distinction between epidermal and dermal 

layers and provides insight into various structures within the dermal papillary region and 

reticular dermis [70]. In particular, RSOM's ability to offer detailed images of skin 

microarchitecture and its correlation with diabetes severity through multiple biomarkers has 

been demonstrated  [71]. 

These modalities are often combined with functional tests like post-occlusive reactive 

hyperemia (PORH), thermal stimuli, and iontophoresis to evaluate skin microvascular 

responses. This evolving field offers researchers and clinicians valuable tools for improving 

the management of diabetes-related microangiopathy. 

In the next section (1.5), we will provide a more detailed description of the optoacoustic 

phenomenon and the standard technologies/imaging setups that employ it in biomedical 

applications. 
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1.5 | Optoacoustic phenomenon and imaging technologies 

The term “optoacoustic” – also known as “photoacoustic” – phenomenon is used to describe 

a complex but well-defined chain of physical processes that lead to the conversion of 

electromagnetic energy in the form of light into mechanical energy in the form of 

acoustic/sound/pressure waves within an object, material, or biological tissue (Fig. 1.2). 

More specifically, the amplitude/intensity of the light, which is emitted into the tissue under 

examination, should fluctuate over time to induce the generation of sound waves. The light 

fluctuation might be either periodical or in the form of pulses. Current systems used in the 

biomedical field employ lasers, which provide light pulses as output. Each pulse, which is 

usually very short in duration (on the scale of 10-9 s), is emitted within the tissues, travels, 

and gets absorbed by them, causing a local meager increase of temperature and, thus, a 

thermo-elastic expansion. Considering that i) the light pulse, the temperature increase 

induced by the energy it carries, and the subsequent thermo-elastic expansion are very 

short/fast and ii) this sequence of events is rapidly repeated at rates of 25-100 Hz, the 

produced local vibrations and propagated sound waves are characterized by high frequencies 

which lie in the range of ultrasound. These ultrasound waves are detected by appropriate 

detectors and converted into voltage signals that are finally reconstructed into images. The 

molecules that absorb the light pulses based on their optical or optoacoustic properties are 

called chromophores and can be endogenous (e.g., hemoglobin) or exogenous (e.g., injected 

agents), as thoroughly discussed in section (1.7). 

 

Fig. 1.2 | The optoacoustic or photoacoustic effect. The illumination of the tissue with light pulses 

results in light absorption by specific chromophores. With the absorption of light, a thermally-induced 

elastic expansion of the tissue is produced. The resulting local, fast, and transient “mechanical stress” 

leads to the production of ultrasound waves, which are finally recorded by tailored detectors and 

translated into images with specific algorithms. 

The optoacoustic phenomenon is mathematically described by means of the equation below 

(Eq. 1.1), which refers to the optoacoustic pressure wave produced upon tissue illumination:  
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Eq. 1.1 

where P is defined as the pressure derived from the production of the optoacoustic wave, 

𝜈𝛼c refers to the propagation speed of sound in tissue, β is volumetric thermal expansion 

coefficient that illustrates the changes induced tissue volume change as a result of a  

temperature change locally, Cp is the necessary thermal energy for the production of the 

expected local temperature change and 𝛼I(𝛼), where 𝛼 is defined as the absorption 

coefficient of the light expressed in cm-1, reflecting light absorption during the propagation 

in biological tissues. 

The majority of the optoacoustic systems used for biomedical imaging and sensing 

applications operate a spectral range that is preferably in the visible or near-infrared spectral 

regions for the production of the acoustic waves that lie within the ultrasound region [72]. 

Light radiation transfers energy to the target material based primarily on its absorption 

spectrum.  

Currently, there is a large variety of optoacoustic systems used for imaging biomedical 

applications that could be appropriately classified according to the spatial resolution and the 

penetration depth [73, 74]. For this reason, categories of systems (Fig. 1.3) based on the 

different spatial resolution and imaging depth are available. More specifically, there are 

microscopic (few µm resolution and less than 1 mm depth of imaging), mesoscopic (few tens 

of µm resolution and depth of imaging between 1 and 5 mm), and macroscopic systems (few 

tens to hundreds of µm resolution and more than 4 cm penetration depth). Due to this 

versatility, research could benefit from using the same principle to conduct imaging of 

anatomical and biological processes at the molecular level in three different scales: 

microscopic, mesoscopic, and macroscopic. 
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Fig. 1.3 | Common optoacoustic technologies. Categorization of techniques based on the 

optoacoustic phenomenon in accordance with penetration depth and spatial resolution. OAM refers 

to Optoacoustic Microscopy, RSOM to Raster Scan Optoacoustic Mesoscopy, and MSOT to 

Multispectral Optoacoustic Tomography. 

 

Optoacoustic microscopy (OAM) has been implemented by means of numerous different 

setups. Their detailed description lies beyond the scope of the current thesis, which focuses 

on clinical optoacoustic applications for lipids and their metabolism in relevant diseases. 

Nevertheless, lipids have served as optoacoustic contrast sources in several studies, and thus, 

we provide herein some characteristic applications. For example, in [75], a newly developed 

technology named “mid-infrared optoacoustic microscopy (MiROM)” has been employed to 

image lipids along with proteins and carbohydrates in excised carotid plaque samples from 

patients who underwent carotid endarterectomy. By operating at the illumination range of 

2932–2770 cm−1 and 1739–900 cm−1, MiROM showed excellent capability in providing highly 

detailed intraplaque spatial maps (resolution of 2.5 μm) of the abovementioned molecules, 

offering label-free biochemical characterization of the samples. Also, in [76], the authors 

produced a plaque-mimicking biological phantom with excised human carotid plaque 

samples to be imaged by means of a customized system operating at the range of 500-1300 

nm illumination wavelengths. Acquired data were then spectrally unmixed into 

comprehensive images/maps of lipids, methemoglobin, and collagen: all parameters 

associated with plaque instability and cause of events, such as stroke. 
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The primary representative of optoacoustic mesoscopic technologies is raster-scan 

optoacoustic mesoscopy (RSOM) (Fig. 1.4), achieving spatial resolution of about 7-10 µm. By 

offering this resolution, RSOM has already been implemented in various biomedical 

applications, such as microvascular skin imaging in health and disease (e.g., psoriasis) [77, 

78].  

 

Fig. 1.4 | RSOM system. The RSOM system is designed for precise skin measurements. It comprises 

two fiber bundles for illumination, accompanied by a high-frequency ultrasound transducer that 

performs a raster scan across the skin’s surface. 

 

This optoacoustic imaging system has a specialized probe enabling precise two-dimensional 

visualization of microvessels. Designed for the detection of optoacoustic signals within 

human tissue, it achieves this by laser excitation. The laser emits low-energy pulses, 

measuring less than 3.75 μJ/mm² per pulse, well below the permissible limit of 20 mJ/cm² 

[79], with a concise duration of approximately five ns, and operates at a 1 kHz repetition rate. 

Each pulse corresponds to a wavelength spanning the visible to infrared light spectrum, 

ranging from 400 to 1400 nm. RSOM system possesses the capability to visualize the three-

dimensional distribution of important biomolecules, including oxyhemoglobin, 

deoxyhemoglobin, water, and lipids, with high resolution around 20 μm laterally and 7 μm 

axially [71]. It achieves this remarkable precision even at depths of several millimeters within 

the tissue  [80]. The body's endogenous biomolecules absorb laser pulses, inducing a brief 

and minimal tissue heating, leading to thermoelastic expansion at the molecular level and 

the generation of a slight pressure wave. This subtle pressure wave subsequently produces 

an ultrasound echo, detectable by an ultrasound sensor. The principle is based on directing 
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a laser pulse into the target tissue, yielding ultrasound generation that can be captured from 

the tissue. Subsequently, a computer processes this data to generate an image of the sound 

wave pattern, which undergoes distortion due to interactions with skin and microvessels.  

In this technology, ultra-wideband transducers are employed to sense the ultrasound and, 

usually, monochromatic light source (e.g., the green light at 532 nm) to acquire volumetric 

images of the microvasculature of the whole tissue at depths of 1-2 mm (Fig. 1.5) [81]. Raw 

optoacoustic data is obtained by raster-scanning a small region of interest (ROI) over the skin 

(usually 2 x 4 mm2). During the measurement, the monochromatic light source and the 

ultrasound transducer are moved mechanically over the examined area (commonly at steps 

of 10 μm), and ultrasound signals are recorded over multiple different predetermined 

measurement locations (one pulse of light per signal).  

Ultimately, the final image is created by utilizing customized reconstruction algorithms that 

use the recorded signals as input to produce a volumetric image of the scanned region. 

Three-dimensional RSOM images were reconstructed over two frequency bands (10-40 MHz 

and 40-120 MHz). The reconstruction of low-frequency (LF) components (10-40 MHz) 

segmented larger vessels (40-150 μm), while in the high-frequency (HF) components (40-120 

MHz), smaller vessels (<10-40 μm) are seen. The different-sized vessels are color-coded in 

the rendered RBG images (red channel: larger vessels, LF components; green channel: 

smaller vessels, HF components; blue channel: empty) so that finer vasculature is highlighted 

in the presence of larger vessels. 

Current systems need less than a minute to acquire and produce an RSOM image, with newer 

implementations even faster [82]. Hence, RSOM emerges as an exceptional choice for rapid, 

label-free skin analysis in clinical settings. 
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Fig. 1.5 | RSOM principle of operation. The RSOM system for skin measurements incorporates two 

fiber bundles for illumination and a high-frequency ultrasound transducer that raster scans over the 

skin surface. For every light pulse, several ultrasound waves are generated. These ultrasound signals 

are captured on the forearm of a healthy volunteer and then reconstructed to create a volumetric 3D 

RSOM image. The various colors denote different frequencies, with green representing high 

frequencies and red representing low frequencies. Finally, a tomographic 2D maximum intensity 

projection (MIP) along the Y-axis RSOM image is generated, with a scale bar indicating 500 μm. 

 

Respectively, the most characteristic of the macroscopic optoacoustic imaging systems is the 

multispectral optoacoustic tomography (MSOT). MSOT is also known as optoacoustic or 

photoacoustic tomography (OAT, PAT). MSOT is closer to clinical translation than other 

optoacoustic imaging technologies. It has been used for imaging in both preclinical and 

clinical applications, giving potential possibilities for the conduction of translational studies 

[73, 83-85]. Current clinical systems are equipped with hand-held scanning probes with 

embedded illumination light sources operating at the NIR (see also section 1.3) and 

ultrasound detector arrays of hundreds of piezoelectric elements (e.g., n = 256 or 512). The 

spatial resolution of available systems ranges from 50-300 μm, and most of them operate in 

real-time with framerates of up to 100 Hz. MSOT takes advantage of the increased 

penetration depth of the near-infrared light in tissues to provide deep-tissue imaging (3-4 

cm) of tissues with high optical contrast and ultrasound resolution. Hand-held probes include 

a wide variety of configurations, either two-dimensional (2D) arc-shaped (covering an angle 

of ≈140-170°) or three-dimensional hemisphere-shaped, which help the examination of 

different body regions. The capability of MSOT to transmit pulses of light at multiple different 

wavelengths (Fig. 1.6) allows the concurrent extraction of information about either 

endogenous (e.g., hemoglobin, lipids, water) or exogenous chromophores (e.g., injected 

contrast agents). Thus, interactions between various biological processes could be explored. 
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MSOT technology, known for its multidimensional role, is used more often in molecular 

imaging. Additionally, to the three spatial dimensions of width, height, and depth (3D) and 

the fourth dimension of time (4D), the MSOT technique records the spectral data of the 

scanned tissues, adding a new fifth dimension (5D). Moreover, further analysis in the 

frequency domain could provide different relative sizes of visualizations of the scanned 

objects, creating a new sixth dimension (6D) in an advanced way. 

More specifically, the MSOT technique allows information extraction about different scales 

or orders of magnitude in the spatial domain. However, MSOT preserves robustness and its 

characteristics in both temporal and spectral domains. One of the significant limitations 

faced by all-optical imaging technologies is the limited penetration depth. MSOT technology 

overcomes this limitation by reaching a penetration depth of up to several centimeters, and 

it produces tomographic images of the illuminated volume. 

 

Fig. 1.6 | MSOT principle of operation. Pulses of light (indicated with red arrow), deriving from 

different wavelengths in the near-infrared region, illuminate tissue. Every light pulse is absorbed, and 

this process propagates the production of ultrasound waves (indicated with a blue arrow), which are 

finally reconstructed into an optoacoustic frame. For every optoacoustic frame, an ultrasound frame 

is recorded correspondingly. Eventually, all multispectral stacks of images recorded at different 

wavelengths are decomposed using the spectral unmixing step into images representing the spatial 

distribution of endogenous chromophores, such as the HbO2 and Hb, lipids, and water. 

 

In the work presented in the current thesis, MSOT was used to image lipids both in the 

bloodstream and within parenchymatous tissue, such as the human liver. Nevertheless, apart 

from MSOT, we have also employed RSOM to image the microvascular changes in the skin of 
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patients suffering from diabetes mellitus (Fig. 1.7), a common metabolic disorder, and its 

associated complications, including diabetic neuropathy as microvascular complication and 

atherosclerosis as macrovascular one compared to participants without diabetes [71].  

 

Fig. 1.7 | RSOM imaging of the skin microvasculature of the lower leg of healthy volunteers and 

patients with diabetes. a) Sectional MIP RSOM image of healthy skin of the lower extremity of a 

volunteer without diabetes, b) Sectional MIP RSOM image of skin from a patient diagnosed with type 

2 diabetes mellitus. Scale bar = 500 μm. 

 

In the following section (1.6), we will present a concise overview of the fundamental data 

processing workflow in clinical optoacoustics. 
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1.6 | Basic data processing workflow in clinical optoacoustics 

Current data processing schemes for clinical optoacoustics are usually tailored to each 

technology. In general, the recorded ultrasound signals are first denoised, then 

reconstructed, and finally spectrally unmixed (in the case of multispectral imaging). The 

corresponding algorithmic development has been rushed over the last decades, allowing not 

only for real-time imaging but also real-time data processing, providing the user with a 

significant amount of information while scanning. For example, usual clinical MSOT systems, 

which operate with a single-pulse per frame principle (SPPF), “transform” the recorded 

voltage signals into tomographic images of the examined region with framerates of 25 Hz. As 

a reminder, the recorded voltage signals represent the sensed ultrasound waves by the 

ultrasound detectors (piezoelectric elements). Also, the sensed ultrasound waves represent 

the tissue absorption of light, as defined by the optoacoustic phenomenon. During scanning, 

for each laser pulse emitted and absorbed by the tissue chromophores, dozens of 

voltage/ultrasound signals are recorded, each corresponding to one ultrasound sensor (e.g., 

n=256 or 512, depending on the system). The recorded signals are reconstructed into images 

by means of dedicated reconstruction algorithms. Even if numerous different reconstruction 

algorithms have been developed [86], the major categories are the back-projection and 

model-based ones [72, 87, 88]. Back-projection reconstruction implementations may well be 

executed in real-time and, for this reason, are usually embedded in current MSOT systems 

to enable real-time imaging.  

On the contrary, available model-based reconstruction implementations are generally slower 

than the back-projection ones, allowing only for their “offline” application on the acquired 

data. As already mentioned, one planar MSOT image is generated for every wavelength or 

illumination pulse after the reconstruction of the recorded signals. The sequence of the 

selected wavelengths (e.g., 28 wavelengths from 700 to 970 nm at steps of 10 nm) is 

repeated periodically during every MSOT measurement. Thus, for every group (e.g., 28) of 

illumination wavelengths, a “multispectral stack” consisting of a group of single-wavelength 

images is produced (Fig. 1.6). As a next step, each multispectral stack is used as an input for 

the process of spectral unmixing, or else the decomposition of the measured spectrum for 

each image/stack pixel into the previously defined spectrum endmembers, which are the 

known absorption spectra of endogenous chromophores (e.g., Hb, HbO2, lipids, water, 

collagen) or injected dyes. Usually, the process of spectral unmixing occurs on a per-pixel 

basis. As a result, a new set of images is produced (e.g., five images for five different 
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endmembers/chromophores), where each pixel's intensity depends on the spectral signature 

and abundance of the known endmember spectrum in the measured absorption spectrum. 

As for the reconstruction step, several spectral unmixing techniques have been developed, 

with the majority of them allowing for only “offline” use [56, 89-91].  

Nevertheless, current MSOT systems provide the option to achieve real-time hemoglobin 

unmixing (unmixing between Hb and HbO2) during scanning. Of course, several data 

processing methods ranging from denoising schemes to motion and fluence correction 

algorithms have been developed [86, 92]. Available methods may act on the recorded 

ultrasound/voltage signals of the reconstructed or unmixed images. The absolute goal of all 

methods is the image quality and spectral unmixing improvement to further boost MSOT 

towards a more “quantitative” approach and, thus, its clinical translation.  

As discussed, data processing schemes depend on system/data features. Thus, based on the 

fact that RSOM follows a non-real-time principle of operation with the usual RSOM systems 

being single-wavelength and offering superficial imaging (1-2 mm), RSOM data processing 

approaches focus mainly on denoising or motion correction aiming at improving image 

quality [93]. For example, in our pilot study, where the skin of patients with diabetes and the 

skin of participants without diabetes are examined using RSOM, a tailored motion correction 

algorithm was applied to the recorded RSOM data to enable the accurate extraction of skin 

microvascular features, such as the number and density of small vessels within the dermis 

[71]: features that seem to be diminished in diabetes leading probably to complications, such 

as skin ischemia and chronic ulcerations. Independently from the data processing schemes 

applied, optoacoustic imaging quality relies mainly on the spatial distribution of the sources 

of optoacoustic contrast, or else chromophores, employed.  

In the subsequent section (1.7), we are going to provide a brief overview of the main sources 

of optoacoustic contrast for preclinical and clinical applications.  
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1.7 | Endogenous and exogenous sources of optoacoustic contrast 

On the one hand, there are plenty of exogenous contrast agents that are already used in 

various preclinical or clinical optoacoustic applications [94]. For example, in [95], the authors 

incubated human carotid plaques for one hour with a contrast agent named MMPSenseTM 

680, a commercially available dye that binds to matrix metalloproteinases (MMPs), enzymes 

involved in inflammatory processes. By illuminating the excised and incubated plaques with 

light at the NIR (635-675 nm), the authors revealed not only morphological characteristics of 

the plaques but also achieved spatially-coregistered visualization of MMP-based 

inflammation: a feature showing plaque instability and increased risk for stroke [96]. Apart 

from ex vivo imaging of samples, exogenous contrast agents may well be injected in animal 

models to gain insights into disease pathophysiology. In [97], croconaine-based nanoparticles 

were intravenously injected in mice to explore the possibility of offering better diagnostics 

or image-guided surgery of brain tumors.  

Moreover, it has been shown that MSOT is able to provide simultaneous imaging of both 

exogenous (e.g., apoptosis-targeting dyes) and endogenous (e.g., hemoglobin) contrast 

agents, providing in this way multi-aspect investigations of complex disease pathophysiology, 

such as the one of breast cancer [83]. In the clinic, indocyanine green (ICG), a fluorescent dye 

approved for human use, has been shown to have beneficial optoacoustic properties in 

several studies. ICG is usually injected intravenously, remains in the vascular bed for 3-5 min, 

allowing for imaging of the vasculature, and then seems to accumulate into inflammatory 

cells (e.g., macrophages) serving this way as an inflammation marker [73].  

On the other hand, the strong presence of endogenous chromophores in biological tissues 

enables non-invasive and label-free anatomic, functional, and molecular imaging using MSOT 

[73]. The main endogenous light absorbers in human tissues are the oxy- and 

deoxyhemoglobins (HbO2 and Hb), the lipids, and the water. Each light-absorbing molecule 

has a representative absorption spectrum at the NIR (Fig. 1.8), as measured and validated in 

the laboratory in previous experiments.  
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Fig. 1.8 | The primary endogenous chromophores and their absorption spectra in the NIR using 

MSOT technology. Both oxy- and deoxygenated hemoglobin (HbO2 and Hb) remain the main light 

absorbers at the NIR despite the peak absorption of lipids at around 930 nm and the peak absorption 

of water at the 970 nm correspondingly. However, the measured spectra have a significantly different 

morphology, which facilitates the identification and unmixing (decomposition) of the multiple 

absorbers during the procedure of spectral unmixing. 

 

The spectra of main endogenous chromophores in the NIR between 680-980 nm are of great 

importance. This very NIR represents the first optical window where the light penetrates 

deeper (3-4 cm) in tissue compared to the visible spectral region. As shown in the figure 

above (1.8), there are specific features of the chromophore spectra that enable their 

differentiation. In general, MSOT images acquired at 750 nm are considered more 

characteristic for the spatial distribution of Hb since at 750 nm, the absorption of Hb is higher 

than that of HbO2. In analogy, MSOT images corresponding to the 850 nm are considered 

characteristic of the intratissue distribution of HbO2.  

Furthermore, the ‘isosbestic point’ of Hb and HbO2, or else the wavelength where the NIR 

absorptions of HbO2 and Hb are equal (800 nm), represents the distribution of the total 

hemoglobin (THb) within the examined tissues. Considering that hemoglobin is abundant in 

human tissues, MSOT images at 800 nm are considered to be representative of tissue 

morphology/anatomy. In other words, MSOT images at 750 nm, 800 nm, and 850 nm are 



 | 24 

usually used in applications investigating the perfusion and oxygenation of blood and soft 

tissues, such as skeletal muscle and tumors [84, 98, 99].  

Similarly, images acquired with MSOT at 970 nm correspond to tissue water content. For this 

reason, 970 nm-MSOT images are ideal for imaging the anatomy of high-water content 

tissues, such as the skeletal muscle [73]. Finally, the absorption of lipids is high at 930 nm, 

and thus, MSOT images recorded at 930 nm are typically used to represent lipids/fat. Based 

on this characteristic spectrum, lipids have been imaged in different applications with clinical 

relevance. For example, Karlas et al. demonstrated the capability of MSOT to differentiate 

between the liked and the lipid-rich plaque tissue in patients with carotid atherosclerosis. 
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1.8 | Limitations of optoacoustic imaging techniques 

Clinical optoacoustic imaging does not come without limitations. First, the systems used in 

clinical research have a limited field of view (FOV). For example, current macroscopic 

tomographic systems, such as MSOT, are characterized by a FOV of 1-4 cm. This feature, in 

combination with the second limitation of the small penetration depth (1-4 cm depending 

on tissue type and system configuration), highlights a major drawback of such technologies, 

which only allows imaging of small regions of the body and superficial structures. Of course, 

by developing image stitching algorithms that can combine different FOVs acquired during 

an examination, larger areas of the body can be scanned and assessed with a single scan 

[100]. Regarding the limited penetration depth, even if it seems to be extraordinarily good 

compared to purely optical imaging technologies (effective imaging depths of several mm 

because of light scattering), it is still poor compared to other imaging techniques used in the 

clinics, such as CT and MRI (whole-body imaging). Despite this disadvantage, the use of 

optoacoustics in applications involving shallow tissues, such as the subcutaneous fat, and 

selected patients (e.g., non-obese patients) can still provide invaluable information for 

physiology studies and future disease diagnostics. 

The generated ultrasound signals absorb light into tissue, traveling in all possible directions 

in 3D space. So, a detector, ideally in the shape of a sphere, should collect all signals that are 

produced by a particular object or source that absorbs light and give all the required 

information to the already used reconstruction algorithm. Nevertheless, in daily practice, the 

detector arrays used are more flexible and easier to use for practical reasons, on the one 

hand, limiting the input that is recorded and, on the other hand, decreasing the quality of 

the reconstructed data.  

As mentioned, the illumination at several multiple wavelengths to achieve high quality of the 

spectra and increase the accuracy of the spectral unmixing process extends the duration of 

every multispectral stack, raising the possibility that the final product would be susceptible 

to motion artifacts. Specifically, the spectral unmixing step that takes place on a per-pixel 

basis is prone to motion artifacts deriving from exogenous and endogenous sources. For 

instance, motion from the breathing and heart, motion resulting from the vascular pulsation, 

various movements of patients occurring randomly, and quick movements of the expert 

MSOT operator’s hand can provoke apparent errors, especially in the spectral unmixing 

process. For this reason, specific MSOT scanning methodologies need to be defined 
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according to the anatomical region or application, and therefore development of schemes 

for correction of the motion is required. 

Moreover, the currently used spectral unmixing methods rely on already-known spectra of 

specific chromophores, as measured under controlled conditions in the laboratory, to assign 

a chromophore signature to every pixel belonging to the unmixed image. However, the 

various phenomena characterizing the interaction between light and different tissue types 

(e.g., scattering and absorption) distort the perfectly defined laboratory-measured spectrum 

with increasing depth. This fact means that the whole process of spectral unmixing can be 

further challenging at increasing depths due to the “spectral coloring” phenomenon. Many 

advanced methods have been used in animal models in order to address this issue [101]. 

Nevertheless, although optoacoustic imaging is characterized by several limitations, its 

unique properties enable the visualization of different aspects of tissue physiology and 

disease pathophysiology. Thus, optoacoustics is of immense interest and utility not only for 

applied researchers and engineers but also for clinicians, promising a captivating and 

valuable field with a bright future ahead. In particular, optoacoustics of tissue metabolism 

and metabolic diseases has shown fast progress over the last years and is expected to 

develop further, aiming at entering the clinical practice and improving the diagnostics of 

future patients with relevant diseases. 
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2 | 
Multicompartmental non-invasive sensing of 

postprandial lipemia in humans with multispectral 

optoacoustic tomography 

2.1 | Summary 

The paper "Multicompartmental non-invasive sensing of postprandial lipemia in humans 

with multispectral optoacoustic tomography" is authored by Nikolina-Alexia Fasoula, Angelos 

Karlas, Michael Kallmayer, Anamaria Beatrice Milik, Jaroslav Pelisek, Hans-Henning Eckstein, 

Martin Klingenspor and Vasilis Ntziachristos. The version herein (Appendix A) is published in 

the Molecular Metabolism Journal. 

Abnormal blood lipid profiles following food consumption have been linked to an increased 

risk for various cardiovascular and metabolic diseases. Currently, the current gold standard 

method for assessing lipid profiles involves frequent blood sampling over several hours after 

a meal. However, this approach is invasive and inconvenient for the examined subjects. To 

tackle this, non-invasive imaging techniques could provide a more convenient and direct 

means of monitoring postprandial lipemia in humans. In this study, we propose the use of 

multispectral optoacoustic tomography (MSOT) for imaging postprandial lipemia within the 

human vasculature and soft tissues, offering an alternative to invasive methods. In this pilot 

study, we employed a hand-held hybrid MSOT-Ultrasound (US) device to measure the 

postprandial response in four (N=4) healthy volunteers. Each subject underwent multiple 

scans using a hand-held hybrid MSOT-US device over a six-hour period following the oral 

consumption of a high-fat meal. We focused our measurements on four anatomical 

structures: the subcutaneous fat, the brachioradialis muscle, the cephalic vein, and the radial 

artery of the forearm. The tissues were illuminated using 28 different wavelengths in the 

near-infrared range. Our analysis specifically focused on the 930 nm, which exhibits the 

highest optoacoustic signal absorption by lipids. To accurately assess the changes in lipid 

content, regions of interest were identified under ultrasound guidance. This step allowed for 

delineating cross-sections of blood vessels, muscles, and subcutaneous fat regions. The lipid 

content was then calculated and plotted over time for each of these regions, providing a 

comprehensive multicompartmental analysis of postprandial lipemia. The results obtained 

from MSOT revealed an average approximate 1.5-fold increase in arterial lipids around 4 

hours postprandially.  
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Additionally, there was a roughly 2-fold increase in venous lipids observed at 3 hours. We 

also observed an approximately 2-fold increase in muscle lipids detected after 3 hours and a 

roughly 1.5-fold increase in subcutaneous fat lipids observed around 4 hours following oral 

food intake. All changes were calculated with reference to a baseline measurement 

established for each subject, taking into account possible inter-individual variations. Our 

results demonstrate the remarkable capability of MSOT in providing non-invasive 

visualizations of lipid level fluctuations over time during postprandial tests, eliminating the 

need for contrast agents. Finally, by simultaneously imaging blood vessels and soft tissues, 

MSOT shows potential as a tool to explore probable “metabolic” interactions among 

different tissue types in future translational studies on cardiovascular and metabolic 

diseases.  

 

Contribution:  

NAF designed the study, performed the experiments, and wrote the manuscript. 
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2.2 | Publication  

NA Fasoula*, A Karlas*, M Kallmayer, AB Milik, J Pelisek, HH Eckstein, M Klingenspor, and V 

Ntziachristos, "Multicompartmental non-invasive sensing of postprandial lipemia in humans 

with multispectral optoacoustic tomography", Molecular Metabolism, vol. 47, 2021 May; 

101184. 
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3 | 
Non-invasive multispectral optoacoustic tomography 

resolves intrahepatic lipids in patients with hepatic 

steatosis 

3.1 | Summary 

The paper "Non-invasive multispectral optoacoustic tomography resolves intrahepatic lipids 

in patients with hepatic steatosis" is authored by Nikolina-Alexia Fasoula, Angelos Karlas, 

Olga Prokopchuk, Nikoletta Katsouli, Michail Bariotakis, Evangelos Liapis, Anna Goetz, 

Michael Kallmayer, Josefine Reber, Alexander Novotny, Helmut Friess, Marc Ringelhan, 

Roland Schmid, Hans-Henning Eckstein, Susanna Hofmann, and Vasilis Ntziachristos. The 

version herein (Appendix B) is published in the Photoacoustics Journal. 

Hepatic steatosis is commonly benign and reversible during its early stages. However, if left 

undetected and untreated, it can progress to irreversible liver failure. Several non-invasive 

imaging techniques have already been employed to assess hepatic steatosis. However, 

currently available methods often lack direct molecular information and typically rely on 

contrast agents or bulky equipment. A promising alternative is multispectral optoacoustic 

tomography (MSOT), which enables the generation of tomographic images depicting the 

spatial distribution of lipids, solely relying on their characteristic light absorption at 930 nm. 

In this study, we demonstrate the effectiveness of MSOT in conjunction with a newly 

developed common analysis framework for detecting lipids in both mice and humans with 

and without hepatic steatosis. To induce obesity and hepatic steatosis, a group of n1 = 5 B6 

(Cg)-Tyrc-2J/J mice was fed a high‐fat diet (HFD), while an age-matched cohort of n2 = 5 B6 

(Cg)-Tyrc-2J/J mice was kept on regular chow (CD) diet.  

Additionally, n3 =5 patients with previously diagnosed hepatic steatosis and n4 = 5 healthy 

volunteers were included in the study. For each image, three distinct regions of interest 

(ROIs) were selected: i) the liver region, ii) the subcutaneous fat (SAT) region, and iii) the 

entire imaged tissue region. The third ROI included both the liver and SAT areas and was 

identified as the “background region” (BGR) for every image. Considering this, we derived a 

“normalized ratio spectrum” for each image/subject by plotting the normalized ROI/BGR 

ratios for the measured wavelengths. We then compared the mean of the ROI/BGR ratio at 

930 nm, where lipids exhibit high absorption, between the two groups in both mice and 

humans. Our approach identified statistically significant differences between healthy and 
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diseased subjects based on MSOT-extracted spectral and intensity information. Specifically, 

we detected the characteristic near-infrared spectrum of lipids (prominent peak at 930 nm) 

within the liver region in diseased subjects (either mice or humans). The same peak was also 

detected in the corresponding subcutaneous fat regions, yet in both health and disease, as 

expected. This study represents the first known attempt to detect liver steatosis in both mice 

and humans based on a common and interplatform imaging and analysis framework, offering 

a unified translational solution that could aid in the detection and monitoring of the disease 

in both preclinical research and clinical settings. 

 

Contribution:  

NAF: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original 

draft. 
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3.2 | Publication 

NA Fasoula*, A Karlas*, O Prokopchuk, N Katsouli, M Bariotakis, E Liapis, A Goetz, M 

Kallmayer, J Reber, A Novotny, H Friess, M Ringelhan, R Schmid, HH Eckstein, S Hofmann, 

and V Ntziachristos, "Non-invasive multispectral optoacoustic tomography resolves 

intrahepatic lipids in patients with hepatic steatosis", Photoacoustics, vol. 29, 2023 

February, 100454. 
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4 | 
Opening a window to skin biomarkers for diabetes 

stage with optoacoustic mesoscopy 

4.1 | Summary 

The paper "Opening a window to skin biomarkers for diabetes stage with optoacoustic 

mesoscopy" is authored by Hailong He, Nikolina-Alexia Fasoula, Angelos Karlas, Murad Omar, 

Juan Aguirre, Jessica Lutz, Michael Kallmayer, Martin Füchtenbusch, Hans-Henning Eckstein, 

Annete Ziegler, and Vasilis Ntziachristos. The version herein (Appendix C) is published in the 

Light: Science and Application Journal. 

Diabetes-related complications, including diabetic neuropathy and atherosclerosis, are 

linked to the deterioration of the microvasculature in the skin. This fact highlights the 

importance of early detection of microvascular changes to identify patients at risk. By 

employing advanced imaging techniques to examine skin structure and microvasculature, we 

may be able to pinpoint sensitive metrics that can track not only the beginning and 

progression of diabetes but also its associated complications. Raster-scan optoacoustic 

mesoscopy (RSOM) offers unique capabilities for non-invasive imaging of skin 

microvasculature. In our study, we utilized the RSOM system to image the skin on the lower 

extremities over the distal pretibial region of 95 patients with diabetes and 48 healthy 

volunteers. To analyze the features extracted from the RSOM images in both participants 

with and without diabetes, we developed a new data processing pipeline that enables the 

automatic derivation of several metrics based on pathophysiological skin features and 

microvasculature within the dermis layer. In this pilot study, we present the possible 

correlations of label-free biomarkers extracted from RSOM images with the impact of both 

microvascular (neuropathy) and macrovascular (systemic atherosclerosis) diabetic 

complications on changes in skin microvasculature compared to participants without 

diabetes. Our findings demonstrated that biomarkers, such as skin epidermis thickness, 

blood volume, and vessel number, could significantly differentiate patients with diabetes and 

participants without diabetes.  

Furthermore, our investigation unveiled statistically significant variations in these metrics 

among patients with varying degrees of severity of diabetic neuropathy and systemic 

atherosclerosis. In essence, the comprehensive RSOM imaging of all skin layers and their 

microvasculature can facilitate precise analysis of skin microanatomy and vasculature. This 
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approach may reveal novel quantitative biomarkers of the disease, offering a non-invasive 

and convenient means of diagnosis. 

Contribution:  

N.-A.F. designed the study, recruited the participants with and without diabetes, performed 

the experiments, collected the data, interpreted the results, and wrote the paper. 
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4.2 | Publication 

H He*, NA Fasoula*, A Karlas, M Omar, J Aguirre, J Lutz, M Kallmayer, M Füchtenbusch, HH 

Eckstein, A Ziegler, and V Ntziachristos, "Opening a window to skin biomarkers for diabetes 

stage with optoacoustic mesoscopy", Light: Science & Applications 12 (1), 231 (2023). 
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5 | 
Conclusions 

5.1 | Conclusion and Outlook 

In conclusion, the current studies presented different but interrelated examples highlighting 

the unique opportunity of imaging using optoacoustics to provide imaging of blood and lipids 

in health and disease. Our results display the exceptional potential of optoacoustics to 

provide imaging not only under static (e.g., hepatic steatosis, diabetes) but also dynamic 

(e.g., postprandial lipemia) conditions, opening up new possibilities for translational research 

and future clinical diagnostics for different metabolic diseases, such as obesity, non-alcoholic 

fatty liver disease, diabetes, and metabolic syndrome. 

In Chapter 1, a comprehensive introduction is provided that includes the metabolism of lipids 

in humans, the role of lipids and adipose tissues in metabolic disorders, as well as a brief 

overview of the current techniques used for non-invasive imaging of adipose tissues. 

Moreover, a summary is included regarding diabetic microangiopathy of the skin and the 

modalities employed for its evaluation. Furthermore, we offered a thorough description of 

the optoacoustic phenomenon and available optoacoustic technologies/setups, as well as 

the steps followed in usual data processing schemes to achieve non-invasive and label-free 

imaging. The great capability of RSOM to provide detailed optoacoustic mesoscopy images 

of skin microvasculature is mentioned as well. Nevertheless, a short discussion regarding the 

main sources of optoacoustic contrast for preclinical and clinical applications is also included 

in this chapter. Finally, in Chapter 1, we thoroughly discuss the limitations of clinical 

optoacoustic imaging. 

In the following chapter (Chapter 2), we examine the possibility of imaging postprandial 

lipemia in humans. To this end, we employed MSOT in an attempt to image the increase of 

triglyceride-rich lipoproteins in circulation following the consumption of fatty food. Typically, 

individuals eat three or more meals per day, each containing 20-70 g of fat [102], so that they 

spend approximately 18 hours a day in the postprandial state, at least concerning dietary fat 

metabolism. High blood lipid levels at the fasting or postprandial (non-fasting) state have 

been associated with an increased risk of developing cardiovascular (CVD) or metabolic 

diseases [103] [104], including obesity, hepatic steatosis, and diabetes. Thus, in this study, a 

high-fat meal was consumed in an attempt to simulate a typical Western diet meal. In this 
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work, clinical MSOT readouts showcase the great potential of the technology to be used as a 

non-invasive molecular imaging technique for the visualization of postprandial lipid 

fluctuations in blood vessels (radial artery and cephalic vein) and soft tissues (brachioradialis 

muscle and subcutaneous fat of the forearm). Our results showed that MSOT could 

accurately detect postprandial lipid dynamics in blood vessels and soft tissues non-invasively 

and without the need for contrast agents. Thus, MSOT provides the potential to study lipid 

metabolism under functional tests, offering another arrow in the quiver of both the 

translational and clinical researchers that could lead to novel diagnostic and prevention 

strategies. 

Going one step further (Chapter 3), we explore the utility of MSOT as a label-free method for 

detecting the intrahepatic lipid content in healthy volunteers and patients with hepatic 

steatosis. To this end, we analyzed the spectral region around 930 nm, known for its 

distinctive lipid absorption properties.  In its initial phases, hepatic steatosis is often benign 

and reversible. Nevertheless, if left unnoticed and unaddressed, it may advance to 

irreversible liver failure. While several non-invasive imaging techniques are available to 

assess hepatic steatosis, current methods frequently need more direct molecular 

information, relying on contrast agents or unwieldy equipment [105]. In this preliminary 

study, we applied MSOT to assess the liver and surrounding tissues of five patients with 

already diagnosed hepatic steatosis and five healthy volunteers. Our findings revealed 

significantly higher absorption levels at 930 nm in the liver of patients compared to healthy 

volunteers. At the same time, no notable differences were observed in subcutaneous adipose 

tissue between the two groups. To further support our findings in humans, we conducted 

corresponding MSOT measurements in mice subjected to a high-fat diet (HFD) and those on 

a regular chow diet (CD). The results of this preclinical sub-study confirmed our findings in 

humans. This study introduces MSOT as a promising non-invasive and portable technique for 

detecting and monitoring hepatic steatosis in both preclinical and clinical settings. The 

encouraging results presented here warrant further exploration through larger-scale studies. 

In the last step and specifically in Chapter 4, we explore the capability of RSOM as a non-

invasive and label-free technique for evaluating cutaneous changes in microvasculature in 

participants with and without diabetes. Diabetes mellitus impacts the microvasculature of 

various organs, including the skin, which provides the opportunity to detect diabetes-related 

systemic effects on the microvasculature [59]. However, traditional methods for assessing 

skin microvasculature, such as histological analysis, are not well-suited for disease 
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monitoring or application to large populations. To address this issue, we introduce RSOM as 

a tool in diabetes healthcare for assessing diabetes-related changes in dermal 

microvasculature and skin micro-anatomy and characterizing disease complications. We 

measured the pretibial region on the lower extremities of participants diagnosed with 

diabetes and healthy volunteers. We unveiled the relationship between RSOM-extracted 

biomarkers and the severity of the diabetes, as reflected in the presence of relevant vascular 

complications. These biomarkers encompassed the total number of microvessels and blood 

volume in the dermal layer, the epidermal thickness, and the optoacoustic signal density. 

This pilot study demonstrates the potential of RSOM as a promising point-of-care device for 

quantifying diabetes-related complications and offering an image-based indicator that could 

reflect the stage of the disease. 

Thus, our work showcases the great capability of optoacoustic imaging for monitoring lipid 

fluctuations in human blood vessels and soft tissues following fatty food consumption over 

time, detecting hepatic steatosis in both mice and humans, and sensing the skin 

microangiopathy in patients with diabetes, rendering optoacoustics an ideal tool for 

preclinical and clinical metabolic applications.  

In the future, our goal is to harness multispectral RSOM imaging to precisely quantify 

alterations in both oxygenated and deoxygenated hemoglobin. This approach would allow 

us to extract valuable insights into skin metabolism and oxygenation. Such measurements 

hold the potential to elucidate the underlying pathophysiology of chronic wounds, ultimately 

offering a means to predict and mitigate impaired wound-healing processes in individuals 

with diabetes mellitus. On the other hand, this idea can alleviate the significant economic 

burden and enhance the overall quality of life for those affected. 

The next logical step involves conducting comprehensive preclinical and clinical studies to 

thoroughly evaluate the reproducibility of the measurements and implement a robust quality 

control mechanism. These studies would encompass metabolic studies focused on specific 

organs, such as skeletal muscle and adipose tissues, and their metabolism. Moreover, the 

substantial amount of acquired optoacoustic data necessitates an extended analysis period. 

To address this time-consuming challenge, continued progress in software development, 

probably along with artificial intelligence (AI) techniques, could facilitate the conduction of 

longitudinal preclinical and clinical studies in the spectrum of metabolic syndrome, including 

diseases such as diabetes mellitus, obesity, etc. Through this process, potential correlations 

between optoacoustic and other imaging modalities used in daily clinical routine could be 
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revealed, strengthening the position of optoacoustics as an additional method to the 

established diagnostic tools in clinical practice.   
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Multicompartmental non-invasive sensing of
postprandial lipemia in humans with
multispectral optoacoustic tomography

Nikolina-Alexia Fasoula 1,2,8, Angelos Karlas 1,2,3,8, Michael Kallmayer 3, Anamaria Beatrice Milik 1,2,
Jaroslav Pelisek 3,4, Hans-Henning Eckstein 3, Martin Klingenspor 5,6,7, Vasilis Ntziachristos 1,2,*

ABSTRACT

Objective: Postprandial lipid profiling (PLP), a risk indicator of cardiometabolic disease, is based on frequent blood sampling over several hours
after a meal, an approach that is invasive and inconvenient. Non-invasive PLP may offer an alternative for disseminated human monitoring.
Herein, we investigate the use of clinical multispectral optoacoustic tomography (MSOT) for non-invasive, label-free PLP via direct lipid-sensing in
human vasculature and soft tissues.
Methods: Four (n ¼ 4) subjects (3 females and 1 male, age: 28 � 7 years) were enrolled in the current pilot study. We longitudinally measured
the lipid signals in arteries, veins, skeletal muscles, and adipose tissues of all participants at 30-min intervals for 6 h after the oral consumption of
a high-fat meal.
Results: Optoacoustic lipid-signal analysis showed on average a 63.4% intra-arterial increase at ~ 4 h postprandially, an 83.9% intra-venous
increase at ~ 3 h, a 120.8% intra-muscular increase at ~ 3 h, and a 32.8% subcutaneous fat increase at ~ 4 h.
Conclusion: MSOT provides the potential to study lipid metabolism that could lead to novel diagnostics and prevention strategies by label-free,
non-invasive detection of tissue biomarkers implicated in cardiometabolic diseases.

� 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords Cardiovascular risk; Fat; Hyperlipidemia; Lipid metabolism; Metabolic imaging; Photoacoustics

1. INTRODUCTION

High blood lipid levels in either fasting or postprandial states indicate
high risk for developing cardiovascular (CVD) and metabolic diseases,
such as coronary artery disease (CAD), stroke, peripheral arterial
disease (PAD), obesity, diabetes, and non-alcoholic fatty liver disease
(NAFLD) [1e7]. Although fasting blood lipid measurements have been
successfully employed over the past decades for disease risk strati-
fication [8,9], the postprandial blood lipid levels are often better pre-
dictors of acute complications, such as heart attack, stroke, or death
[10]. For example, an analysis of the lipid profiles in 42,710 patients in
the non-fasting state showed that the non-fasting levels of lipids
predicted increased risk of cardiovascular events [9]. Furthermore,
lipid analysis of 8,270 subjects provided strong evidence to support the
routine use of postprandial lipid levels in clinical practice for accurate
risk assessment of atherosclerotic CVD [11].
Assessment of fasting blood lipid concentrations is primarily done by
single time-point blood sampling via venipuncture. Moreover,

measurements of blood lipid dynamics can be carried out by several
blood samplings after the consumption of a high-fat meal to yield more
information on lipid metabolism (postprandial lipid profiling, PLP) [12].
In both cases, the acquisition of blood samples causes patient
discomfort, consumes hospital time and resources, and is only
appropriate for infrequent sampling. Importantly, these methods of
sampling lipids only allow observations in the blood and not in different
tissue types.
Current non-invasive methods for lipid measurements in humans
include breath measurements and eye image analysis. Lipid meta-
bolism produces volatile organic compounds (VOCs, such as 2-pentyl
nitrate, carbon dioxide, methyl nitrate, and toluene), some of which are
exhaled. In one study, these VOCs were exploited to quantify blood lipid
levels [13]. Lipids can also accrue in the cornea after arriving through
the blood stream of the limbal vessels under hyperlipidemic conditions.
Processing of images taken from the human eye (RGB color repre-
sentation) calculated the corneal lipid deposition by analyzing the
grayscale intensity level within the region of lipid deposits [14]. Based
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on these values and known lipid values in the blood, a regression
model was developed and used to indirectly estimate the blood lipid
levels from the extracted image parameters. Both non-invasive
methods described above provide estimates of lipid concentration in
blood based on mathematical models. However, neither of these
methods offers a localized measurement of lipids in blood or tissues,
nor direct correlation analysis with either measured VOCs or image
intensities. For this reason, they have yet to be integrated into research
protocols or clinical practice.
Novel techniques providing direct imaging of lipid distributions and
dynamics in blood vessels and tissues could enable non-invasive tests
that evaluate the risk for CVD and metabolic diseases, as well as the
easy monitoring of nutritional and other metabolic conditions that are
difficult to study. Here, we aimed to introduce a method that could go
beyond the current state of the art in measuring postprandial lipid
dynamics by satisfying three critical specifications. First, the method
should be safe, non-invasive and portable, so that it can be seamlessly
disseminated to studies of large populations. Second, it should be
capable of recording lipid measurements in different tissue compart-
ments, not only single-point bulk measurements, enabling differential
studies of lipid circulation and uptake in tissues of interest. Third, it
should be capable of frequent sampling to provide a detailed profile of
highly resolved spatio-temporal lipid dynamics. Introducing such
functionality into lipid research and medical care could significantly
expand our knowledge of individual responses to nutritional challenges
and offer new abilities for cardiovascular and metabolic risk assess-
ment on a personalized basis.
To introduce this paradigm-shifting performance, we hypothesized that
optoacoustic imaging, in particular multispectral optoacoustic tomog-
raphy (MSOT), could offer a platform to obtain localized non-invasive
sensing of lipid concentrations. MSOT acquires images of tissue
molecules exhibiting optical absorption at multiple wavelengths in the

near-infrared range (NIR) and resolves spectral information, revealing
deoxygenated hemoglobin (Hb), oxygenated hemoglobin (HbO2), and
lipids among others (Figure 1) [15]. Thus, MSOT should enable the
monitoring of lipid distributions by means of wavelength selection
within different tissue compartments. Preliminary evidence demon-
strated that MSOT can resolve blood vessels, skeletal muscle, and
adipose tissues [16e22]. Furthermore, it was recently shown that
MSOT can visualize oxidative metabolism by monitoring the rate of
conversion of oxygenated hemoglobin to deoxygenated hemoglobin,
revealing oxygen utilization by tissue [16,23,24]. More specifically,
observations in animals were corroborated with measurements of
oxidative metabolism during brown fat activation in humans and mice
[16,23,24]. However, it is currently unknown whether MSOT can
resolve lipid dynamics in response to nutritional inputs. Therefore, we
employed MSOT to visualize vasculature and other soft tissue com-
partments in the 700e970 nm spectral window. Then, using obser-
vations at 930 nm, a wavelength in which lipids exhibit an absorption
peak in the near-infrared [25], we investigated whether we could
resolve lipid-specific signals over time in different tissue compart-
ments in response to oral fat intake. MSOT is a safe modality that uses
light, does not require labels for imaging lipids and offers high reso-
lution (<300 mm) and large fields of view (>4 cm) while reaching
depths of 3e4 cm in living tissue. We demonstrate in this study that
these capabilities combine to afford a novel tool for the non-invasive
study of lipid dynamics.

2. MATERIALS AND METHODS

2.1. Study design and experimental protocol
Four (n ¼ 4) subjects (3 females and 1 male, age: 28 � 7 years) with
body mass indices (BMI in kg/m2) of 28 (subject 1), 31 (subject 2), 23
(subject 3), and 21 (subject 4) were enrolled in the current pilot study.

Figure 1: MSOT principle of operation and study design. (A) Configuration of the clinical hybrid MSOT/US system. (B) Postprandial lipemia measurement protocol. (C) Exemplary
ultrasound image where the skin line (white dashed line), the subcutaneous fat and the skeletal muscle areas are shown. (DeF) MSOT images corresponding to the ultrasound
image in (C). The dotted white circles show a small vessel detail within the subcutaneous fat region, demonstrating the excellent resolution performance of clinical MSOT
technology. (D) MSOT image at 750 nm, representing mainly the distribution of deoxygenated Hb. (E) MSOT image at 850 nm, representing mainly the distribution of oxygenated
Hb. (F) MSOT image at 930 nm, representing mainly the spatial distribution of lipids. Scale bars are 0.5 cm. (G) Absorption spectra in the near-infrared range (NIR) for Hb, HbO2 and
fat/lipids. (HeK) Schematic diagrams of imaged anatomic compartments in the human forearm. (H) Cephalic vein. (I) Radial artery. (J) Skeletal muscle. (K) Subcutaneous fat.
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All volunteers were non-smokers and had no history of cardiovascular
or metabolic disease. They were kindly requested to avoid consuming
caffeine, food, and alcohol for at least 12 h before the planned mea-
surements. Signed informed consent was obtained from all partici-
pants prior to study enrollment. The study was approved by the ethics
committee of the medical faculty of the Technical University Munich
(Protocol No 349/20 S).
Measurements were conducted in a normal examination room at a
temperature of 23 �C. After a 12-h overnight fast, participants ingested
an oral fat load within 5 min. The consistency of the fatty meal was
350 ml of pasteurized heavy cream, 15 ml of fat-free milk, 15 ml of
chocolate syrup, and 1 tablespoon of granulated sugar. This fat load
contained 117 g of fat (70 g saturated fat, 467 mg cholesterol), 41.5 g
of carbohydrate, and 0.5 g of protein and provided 1,242 calories
(86.4% from fat, 13.4% from carbohydrates, 0.2% from protein) [26].
The high-fat liquid meal was assigned to simulate the fat content of a
typical high-fat meal.
A scanning probe was repeatedly placed in the same positions over the
radial artery, the cephalic vein, and the brachioradialis muscle of the
dominant forearm, guided by stable skin markers (Figure 1A). Re-
cordings of these regions were taken post-fasting and then every
30 min and for 6 h after consumption of the fatty meal (13 mea-
surements in total), which was determined to be a suitable timespan to
assess postprandial responses (Figure 1B). The fourth participant felt
some light gastric disturbances; hence, we decided to acquire less
measurements and stop the experiment at 5 h after the oral loading (5
measurements in total). Each anatomic compartment was scanned for
10 s.
Apart from prior anatomical knowledge, the arteries were initially
identified from their pulsation, the veins from their compressibility with
the hand-held probe, and the subcutaneous fat and the skeletal
muscles by their characteristic textures in traditional ultrasound (US)
(Figure 1C). The identification of the different tissues and anatomical
compartments was further facilitated by means of their MSOT
appearance: the blood vessels and skeletal muscles were character-
ized by an increased absorption at the 750 nm and 850 nm, compared
to the absorption at 930 nm, due to the strong presence of the Hb and
HbO2 in these tissue compartments and the prominent absorption of
both at these NIR-wavelengths [19]. Correspondingly, the subcu-
taneous fat tissue was characterized by an absorption peak at 930 nm
where lipids absorb the most in the NIR (Figure 1DeG).

2.2. MSOT data acquisition
Measurements were conducted using a hybrid clinical MSOT/US
(Acuity�, iThera Medical GmbH, Munich Germany). For ultrasound
detection, the hand-held probe (Figure 1A) was equipped with 256
piezoelectric elements with a central frequency of 4 MHz arranged in
an arc of 145�. Illumination was achieved through an optical fiber,
mounted on the same hand-held probe. Light was emitted in the form
of short pulses (10 ns in duration), at a rate of 25 Hz. For each pulse,
almost 15 mJ of energy were delivered over a rectangle area of around
1 � 4 cm, ensuring compliance with the safety limits of laser use for
medical applications [27]. For multispectral image acquisition, we
employed 28 different light wavelengths (from 700 to 970 nm at steps
of 10 nm). Thus, the recording of one ‘multispectral stack’, or a full set
of 28 single-wavelength optoacoustic images, lasted 1 s. Co-
registered US images were recorded in parallel to the MSOT images
at frame rate of 8 Hz.
As previously shown, MSOT images acquired at 750 nm reveal pri-
marily Hb contrast, whereas images at 850 nm reveal contrast pri-
marily from HbO2 [19]. MSOT images at the 930 nm show mainly

tissue lipid distribution [16,20,25]. Thus, observed differences in the
informational content, or else the appearance of different tissues, in
the abovementioned single-wavelength MSOT images (Figure 1DeF)
are based on: i) the different features of the known absorption spectra
of Hb, HbO2 and lipids in the NIR (Figure 1G) [25] and ii) the content of
Hb, HbO2 and lipids in the different tissues of each anatomic
compartment.
The appearance of different tissues in the MSOT images (Figure 1DeF)
showed good spatial correspondence to the co-registered US images
(Figure 1C), but with additional functional and molecular contrast.
Thus, illumination at 930 nm (Figure 1F) highlights the subcutaneous
fat region, which mainly contains lipids and is therefore characterized
by much stronger light absorption or else optoacoustic image intensity,
compared to adjacent blood vessels and muscles. The dotted white
circles in Figure 1DeF mark a small blood vessel in the subcutaneous
fat region, highlighting the details that can be recorded by means of
clinical MSOT, which achieves a spatial resolution of less than 300 mm.
Figure 1HeK shows the anatomical compartments, which were
selected for analysis in MSOT images recorded at 930 nm to sense
postprandial lipid dynamics in a variety of tissues: i) venous and arterial
blood, the gold standard tissues employed for quantifying lipid dy-
namics in clinical practice, ii) skeletal muscle, which promotes the
easy intra-tissue distribution of lipids via its high vascularization and
the high-contrast blood lipid imaging due to its low lipid content under
normal conditions (best-case scenario) and iii) subcutaneous fat, which
is poorly vascularized compared to muscle, and provides a low-
contrast environment for postprandial lipemia imaging due to its
high lipid content (worst-case scenario).

2.3. Data processing and analysis
Acquired MSOT data were reconstructed using a model-based
reconstruction method [28]. The blood vessels (radial artery and ce-
phalic vein) and the soft tissues of the forearm (subcutaneous fat and
muscle) were first identified in consensus between two clinicians with
experience in clinical MSOT and ultrasound imaging. The identification
was based on anatomical knowledge, ultrasound guidance, and the
characteristic MSOT appearance for each tissue. For each subject, a
set of characteristic 930 nm-frames for all measurement time points
was selected. Next, precise regions of interest (ROIs) within the arterial
or venous lumen, the subcutaneous fat, and the muscle regions were
manually segmented in consensus with two independent clinicians
with experience in clinical MSOT and ultrasound imaging. The
agreement between the two groups of ROIs was high, as indicated by
the Cohen’s Kappa value (mean 0.945, interquartile range 0.921e
0.969), supporting the reliability of the segmentation process. Finally,
the mean intensity values of the pixels belonging to the manually-
segmented ROIs were used to plot the time course of the MSOT-
extracted lipid signals within each compartment during the lipemia
challenge (see Results). Lipid signal calculations took place on the
recorded 930-nm images, without the application of any filtering or
denoising. Calculated values were reported as means or
means � standard deviation.

3. RESULTS

We applied MSOT to study postprandial lipid dynamics in the blood of
the cephalic vein (Figure 2AeD) and the radial artery (Figure 2EeH), as
well as, in soft tissues (skeletal muscle, Figure 3AeD and subcu-
taneous fat, Figure 3EeH). Figure 2A illustrates a series of charac-
teristic MSOT images of a cross-section of the cephalic vein (subject
#1) acquired at 930 nm that correspond to four time points: before oral
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loading (1), and 120 min (2), 240 min (3), and 330 min (4) after oral
loading. The 3rd image (240 min postprandially) corresponds to the
time point of the maximum intravenous lipid content. We also analyzed
the pixel intensities along the profile lines of the previous image series
to gain insights into the contrast between the lipid signal detected
inside the current ROI and that of adjacent structures (Figure 2B), that
may be also affected during postprandial lipemia. Our results show
that both the spatial and temporal fluctuations in lipid signals inside the
structures of interest are clearly higher compared to adjacent struc-
tures, proving that the observed phenomena are not caused by random
fluctuations of the 930-nm signal over the whole image, but by a
postprandial increase in the venous blood.
Figure 2C illustrates the changes in the mean lipid signals within the
cephalic vein over the whole duration of the experiment for subject #1.
Plotted mean values were normalized against the maximum mean
value (at 240 min), with the numbered data points corresponding to the
MSOT images in Figure 2A. The first time point of Figure 2C represents
the baseline state. The lipid signal in the cephalic vein of subject #1
reached its highest value (þ32.1% compared to subject’s baseline)
240 min after the consumption of the meal (Figure 2C, point 3).
Figure 2D shows the normalized lipid signals recorded within the
cephalic veins of all subjects for each time point. For Subject #2, the
highest value was recorded at 180 min postprandially (þ170%
compared to the subject’s baseline). Subject #3 shows a maximum
lipid value of þ95.1% compared to baseline at 90 min after meal
consumption. The highest MSOT-measured lipid signal in the cephalic
vein of Subject #4 is observed at 240 min postprandially (þ38.5%
compared to subject’s baseline). In summary, a mean maximum

increase of þ83.9% is reported among the four subjects. The intra-
venous lipid signal reaches its maximum value on average
187.5 min (3 h) after the oral loading. All percentages were extracted
from the measured, and not the normalized, optoacoustic signal
values. A detailed description of the maximum optoacoustically-
extracted lipid values for all subjects and measured anatomic com-
partments is provided in Table 1.
In brief, the outcomes of the radial artery are similar (Figure 2EeH),
with the highest intra-arterial lipid value being recorded at
232.5 min (4 h) after the oral loading, on average. The mean
maximum increase observed is 63.4%, relative to the baseline.
Furthermore, soft tissues also exhibited a prominent peak in post-
prandial lipids (Figure 3). An average time span of 180 min is
needed for the lipid signal to reach its maximum within the skeletal
muscle, which corresponds to an increase of 120.8% relative to
baseline (Figure 3AeD). Finally, for the subcutaneous fat, the mean
maximum increase is 32.8%, detected on average 217.5 min (4 h)
after the oral loading (Figure 3EeH).
To further investigate the observed variability of the postprandial time
points of the maximum-recorded lipid signal, we performed a more
elaborated statistical analysis with reference to the: i) different
anatomic compartments examined and ii) different BMIs of the sub-
jects. Even considering the small sample size, we observed that the
anatomic compartment with the lowest standard deviation of the
recorded maximum-value time points was the radial artery
(232.5 � 37.7 min). Furthermore, we observed that the two subjects
(subjects 1 and 2) characterized as overweight (BMI > 25 kg/m2)
showed lower standard deviations (subject 1: 28.7 min, subject 2:

Figure 2: MSOT imaging of postprandial lipid dynamics in the blood of veins and arteries. (A) A series of cross-sectional MSOT images of the cephalic vein recorded at 930 nm,
which correspond to the four time points indicated in (C) (subject 1). White dashed line: skin surface. White dashed ellipse: cephalic vein. Scale bars: 0.4 cm. (B) Pixel-intensity
cross-sections along the corresponding profile lines in the image series of Figure 2A. The red bands show the pixel range at 50% of the maximum pixel-intensity value along the
profile line. (C) Normalized mean lipid signal within the cephalic vein for subject 1 during the whole postprandial lipemia test. The first time point corresponds to the fasting state.
(D) MSOT-extracted lipid dynamics for the cephalic veins of all four subjects. The asterisks indicate the time points of the maximum-recorded value for each subject. The vertical
yellow-black line indicates the average time point (among all subjects) after oral loading for the maximum-recorded lipid signal within the vein. (E) Cross-sectional MSOT images (at
930 nm) of the radial artery for the four time points of (G) (subject 3). Upper white dashed line: skin surface. Lower white dashed line: lower limit of the subcutaneous fat region.
White dashed ellipse: radial artery. Scale bars: 0.3 cm. (F) Pixel-intensity cross-sections along the profile lines of Figure 2E-image series. Red bands: pixel range at 50% of the
maximum pixel-value along the profile line. (G) Postprandial lipid dynamics (normalized) within the radial artery for subject 3. (H) MSOT-extracted lipid dynamics for the radial
arteries of all subjects. Asterisks: time point of the maximum-recorded value for each subject. The vertical black-yellow line indicates the average recorded time point for the
maximum lipid signal within the artery to be recorded.
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45 min, subject 3: 78.9 min, subject 4: 57.4 min) of the maximum-
value time points throughout the examined anatomic compartments.

4. DISCUSSION

Postprandial lipemia is a dynamic condition characterized by an in-
crease in blood lipid levels after the consumption of a meal compared
with relatively stable fasting conditions. Pathological postprandial lipid
profiles, in particular prolonged high lipid levels in blood, have been
associated with serious diseases, such as diabetes, obesity, and CVD
[29]. Thus far, fluctuations of lipid levels in the blood stream have been
monitored either by traditional blood sampling, or with non-invasive,
but indirect, methods. We have demonstrated herein that a hand-
held MSOT can non-invasively visualize and quantify lipid fluctua-
tions in human blood vessels and soft tissues for several hours after
the ingestion of a high-fat meal. This technique offers two key ad-
vantages over other non-invasive methods for in vivo lipid measure-
ments: i) it provides direct lipid-specific molecular information in blood
vessels and soft tissues without the need for injected contrast agents;
and ii) it has excellent spatial resolution of less than 300 mm for
detailed tomographic imaging of in vivo lipid distributions over time.
The results of our pilot study demonstrate that MSOT can provide time-
resolved data on lipid levels during the postprandial period. Light ab-
sorption by lipids reaches its peak in the NIR at 930 nm, and signals
recorded by MSOT in tissue upon illumination at this wavelength have
been strongly associated with lipid content [25]. Our recordings
showed a clear increase in signal intensities within the segmented

anatomical compartments of interest (cephalic vein, radial artery,
brachioradialis muscle, and subcutaneous fat) approximately 3e4 h on
average after the subjects consumed a fatty meal.
Furthermore, MSOT provides direct molecular imaging of lipid dy-
namics within different anatomic compartments, most importantly
within blood, the gold standard for biochemical lipid analysis in
clinical settings. Other image-based methods, such as eye image
analysis [14], provide an indirect estimation of the circulating lipids
based on the lipid deposits on the cornea. The presented analysis of
the recorded color images is based on the mean grayscale intensity
within the segmented corneal ROI: a feature that may be affected by
the ambient light and hinder the image-based differential diagnosis
of corneal lipid depositions from other conditions, such as the
limbus sign, which indicates calcium and not lipid deposits in the
cornea [30]. Nevertheless, the segmentation approach that has
been used for the iris outer boundary by means of circle detection
[14] could indeed be used for the automatic segmentation of blood
vessels in MSOT images [31], a development which is expected to
significantly facilitate the analysis process, especially for large
datasets. Such an implementation could take place via a more
generalized approach by searching for elliptical objects, which
largely resemble the shape of vascular cross-sections in tomo-
graphic images. Moreover, an ellipse fitting approach for tracking
the wall dynamics in the radial artery has already been applied on
MSOT data, with good results [18]. Finally, more elaborate statistical
and multidimensional image analysis approaches could be applied
to both techniques to reveal possibly correlations between the

Figure 3: MSOT imaging of lipid dynamics in skeletal muscle and subcutaneous fat. (A) A series of cross-sectional MSOT images of the brachioradialis muscle recorded at
930 nm, which correspond to the four time points indicated in (C) (subject 2). Upper white dashed line: skin surface. Lower white dashed line: upper limit of the muscle region.
Scale bars: 1 cm. (B) Pixel-intensity cross-sections along the corresponding profile lines in the image series of Figure 3A. The red bands show the pixel range at 50% of the
maximum pixel-intensity value along the profile line. (C) Normalized mean lipid signal within the muscle for subject 2 during the whole postprandial lipemia test. The first time point
corresponds to the fasting state. (D) MSOT-extracted lipid dynamics for the brachioradialis muscles of all four subjects. The asterisks indicate the time points of the maximum-
recorded value for each subject. The vertical yellow-black line indicates the average time point (among all subjects) after oral loading for the maximum lipid signal within the
muscle to be recorded. (E) Cross-sectional MSOT images (at 930 nm) of the forearm subcutaneous fat for the four time points of (G) (subject 1). Upper white dashed line: skin
surface. Scale bars: 0.5 cm. (F) Pixel-intensity cross-sections along the profile lines of Figure 3E-image series. Red bands: pixel range at 50% of the maximum pixel-value along
the profile line. (G) Postprandial lipid dynamics (normalized) within the subcutaneous fat region for subject 1. (H) MSOT-extracted lipid dynamics for the subcutaneous fat of all
subjects. Asterisks: time point of the maximum-recorded value for each subject. The vertical black-yellow line indicates the average recorded time point for the maximum lipid
signal within the subcutaneous fat to be recorded.
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features extracted in MSOT images and the ones extracted in eye
images with regard to postprandial lipemia or relevant conditions,
such as the hypercholesterolemia.
The results agree with known postprandial lipid patterns recorded by
blood collection [29] and demonstrate the unique capability of MSOT to
provide direct and non-invasive monitoring of in vivo lipid level fluc-
tuations in the postprandial state without the need for contrast agents.
Moreover, although we only acquired data every 30 min for the current
study, the high temporal resolution of MSOT (25 Hz) would enable the
non-invasive investigation of faster phenomena of lipid kinetics to be
explored in future studies.
MSOT also provided high-resolution visualizations of lipids in blood
vessels and soft tissues simultaneously, which is enabled by its 2- to
4-cm depth-penetration and approximately 4-cm horizontal field of
view. Thus, using MSOT, we were able to detect tissue variations in the
occurrence of the highest average postprandial signals. The most
intense signals in the cephalic vein and the skeletal muscle were
recorded at ~3 h, while the corresponding signals in the radial artery
and the subcutaneous fat were recorded at ~ 4 h. To our knowledge,
such rich and direct information on lipid dynamics has not been pro-
vided before in the literature. The ability to image both the blood cir-
culation (arteries and veins) and soft tissues (adipose tissue and
muscle) during dynamic phenomena, such as the postprandial lipemia,
may reveal metabolic interactions among the involved compartments
and tissue components. Thus, MSOT could ideally help recognize paths
that regulate the crosstalk between cardiovascular and metabolic
components of human physiology and pathophysiology of diseases,
such as obesity, hypertension, and diabetes [32].
The current study introduces MSOT as a powerful tool for the non-
invasive monitoring of in vivo blood lipid dynamics during the post-
prandial state. Our results open up new possibilities in the diagnostics
and risk assessment of CVD and metabolic disease, especially when the
high portability and low complexity of hand-held MSOT is expected to
further facilitate its future disseminated use. Furthermore, the unique
capability of MSOT technology to provide real-time and label-free vi-
sualizations of intra-vascular, intra-muscular, and intra-subcutaneous

fat lipid maps renders it an ideal tool for basic and clinical research in
the cardio-metabolic field.
The imaging depth of MSOT (2e4 cm) is excellent compared to other
optical techniques, but is limited compared to traditional clinical mo-
dalities, such as ultrasonography. Nevertheless, in our study, we were
able to access key blood vessels and soft tissues within these depth
constraints and provide rich information on lipid dynamics in agreement
with literature. The consideration of novel light fluence correction models
that compensate for intensity attenuation due to scattering and absorp-
tion is expected to further improve the precision of MSOT imaging deeper
in tissue and widen the range of clinical applications. Furthermore, the
development of phantoms and advanced spectral unmixing algorithms
[33] will facilitate the direct quantification of lipid concentrations deep
within muscle or other soft tissues, rather than only their relative fluc-
tuations. Our aim here was to demonstrate a proof-of-concept via a
human pilot study with a small number of healthy participants. More
extended studies including larger cohorts of healthy volunteers and pa-
tients, and simultaneous blood analyses are needed to further refine the
application MSOT to the non-invasive monitoring of lipids.
Most individuals consume at least three meals per day, and each meal
is usually consumed before the postprandially high blood lipid levels
return to baseline. Consequently, individuals are in a postprandial state
for approximately 18 h per day. Thus, the thorough investigation of
in vivo lipid dynamics with novel methods may give new insights in
several fields of basic and clinical cardio-metabolic research. It has
been already shown that MSOT can provide precise anatomic, func-
tional and molecular imaging of the vasculature and other soft tissues,
such as adipose tissue and skeletal muscles [15,16,18,19]. This
unique set of capabilities may facilitate the exploration of hidden
mechanisms of cardio-metabolic crosstalk by enabling multifaceted
investigations of common cardiovascular and metabolic diseases, such
as atherosclerosis, diabetes, and lipid disorders. Further studies will
advance hand-held MSOT toward its clinical translation with implica-
tions for objective diagnostics and therapy evaluation under patient-
and operator-friendly conditions.

5. CONCLUSION

Clinical hand-held MSOT provides great potential to study lipid
metabolism in the postprandial state. This unique feature could lead to
novel diagnostics and prevention strategies by the label-free and non-
invasive detection of lipid-related tissue biomarkers implicated in
several cardiometabolic diseases.
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Appendix B 
 

 

Publication: Non-invasive multispectral optoacoustic 

tomography resolves intrahepatic lipids in patients with 

hepatic steatosis 

 

The version herein has been published in the journal "Photoacoustics" [58]. 

It was reprinted under a Creative Commons Attribution license (CC BY 4.0). 
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A B S T R A C T   

Hepatic steatosis is characterized by intrahepatic lipid accumulation and may lead to irreversible liver damage if 
untreated. Here, we investigate whether multispectral optoacoustic tomography (MSOT) can offer label-free 
detection of liver lipid content to enable non-invasive characterization of hepatic steatosis by analyzing the 
spectral region around 930 nm, where lipids characteristically absorb. In a pilot study, we apply MSOT to 
measure liver and surrounding tissues in five patients with liver steatosis and five healthy volunteers, revealing 
significantly higher absorptions at 930 nm in the patients, while no significant difference was observed in the 
subcutaneous adipose tissue of the two groups. We further corroborated the human observations with corre-
sponding MSOT measurements in high fat diet (HFD) - and regular chow diet (CD)-fed mice. This study in-
troduces MSOT as a potential non-invasive and portable technique for detecting/monitoring hepatic steatosis in 
clinical settings, providing justification for larger studies.   

1. Introduction 

Hepatic steatosis is a benign condition associated with chronic 
inflammation and may lead to non-alcoholic steatohepatitis (NASH), 
fibrosis [1–3], cirrhosis, or liver cancer [4,5]. There is therefore a need 
to swiftly assess steatosis to prompt early interventions, such as dietary 
and lifestyle changes or drug treatments, as well as to assess the efficacy 
of these interventions [6]. 

Today, monitoring of hepatic steatosis is primarily based on liver 
biopsies [7], which are analyzed for lipid content [3,8]. However, bi-
opsies are limited by their invasive nature, pain, and overall patient 
inconvenience and are not appropriate for disseminated observations or 
longitudinal monitoring. Moreover, biopsies are prone to sampling 

errors, may lead to complications, such as hemorrhages [8], and come 
with considerable cost when considering the time and infrastructure 
required for a diagnostic test. With steatosis becoming more prevalent 
worldwide as obesity rates increase, there is a clear need for 
non-invasive lipid assessment in liver [6]. 

Imaging techniques have been considered for the non-invasive 
assessment of liver lipid content [9,10]. X-ray computed tomography 
(CT) can resolve and quantify intrahepatic lipids and allow for staging of 
hepatic steatosis but is characterized by low sensitivity in mild cases 
[11] and uses ionizing radiation that limits frequent monitoring. Mag-
netic resonance (MR) imaging and spectroscopy techniques offer higher 
sensitivity and specificity in assessing hepatic steatosis, without using 
ionizing radiation [11–13]. Conversely, MR techniques require 
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expensive and low-throughput infrastructure that is not appropriate for 
disseminated use. 

Ultrasound (US) based techniques have been considered as a 
portable and low-cost alternative for assessing lipid content. While 
conventional ultrasonography is not sensitive to lipids [9], indirect 
measurements of mechanical properties using ultrasound elastography 
(USE) have shown potential to provide a surrogate marker for steatosis, 
as they associate with stiffness changes due to lipid accumulation [9,10, 
13–15]. In particular, controlled attenuation parameter ultrasound 
(CAP-US) has been studied for diagnosing hepatic steatosis, achieving 
detection sensitivity in the 80% range, but possibly with performance 
that is operator - dependent [16,17]. Nevertheless, stiffness is not a 
parameter that is lipid specific and may be affected also by other pa-
thologies, limiting the wide application of CAP-US in the general 
population. 

Optoacoustic imaging resolves optical contrast in tissue with reso-
lutions that are similar to ultrasonography. Multispectral optoacoustic 
tomography (MSOT) is a portable and non-invasive technique that has 
been employed to visualize hemodynamics, tissue oxygenation, and 
inflammation in humans and animals using illumination wavelengths 
between 700 and 900 nm [18–26]. Nevertheless, recent observations 
indicate that in vivo visualization of lipids is possible with MSOT by 
illumination on or around 930 nm [21,23,26–28], where lipids exhibit a 
characteristic strong absorption peak. Since previous publication has 
already presented a histological validation of MSOT imaging of hepatic 
steatosis in mice [29], extending lipid-detection with MSOT to the 
human liver could significantly impact the monitoring and management 
of hepatic steatosis in humans by potentially allowing frequent, 
non-invasive assessment of the liver’s lipid content. However, reliable 
detection of lipids in the liver would require penetration depths of a few 
centimeters, despite the organ being surrounded by deformable tissues. 

Here, we present a pilot study to examine whether MSOT can detect 
lipids at such depths within the human liver by their strong absorption 
around 930 nm. To this end, we employed a hybrid MSOT–US modality 
and developed an imaging protocol and data analysis methodology that 
leverages the availability of ultrasound images co-registered with 
optoacoustic images to offer image-guided recording of multispectral 
data from the liver. This feature allows for accurate comparisons of the 
absorption spectra in the near infrared (NIR, 700–970 nm) between 
subjects, from the liver and the overlying subcutaneous fat (SAT). A 
particular feature of the data analysis protocol used herein is the use of 
the SAT spectrum as a reference spectrum to account for system varia-
tions and depth-dependent attenuation effects on the spectra collected 
from the liver, thereby increasing the accuracy of the observation. 

To further investigate the accuracy and validity of the approach, we 
conducted a control study in animals, using mice with induced steatosis 
and healthy mice. The goal of the animal study was to validate the 
spectral features obtained from different depths in humans using signals 
from more shallow depths, i.e., using measurements that are not affected 
by the signal dependence of the optoacoustic measurement to depth, due 
to light attenuation. In both human and animal studies we observed 
strong optoacoustic signals at 930 nm for the lipid-rich tissue com-
partments, such as SAT, confirming that the 930 nm peak can be used for 
examining lipid content in human liver and that depth dependent 
attenuation did not significantly affect the spectral appearance of the 
data collected. In contrast, the 930 nm peak was not prominent in the 
livers of healthy mice and healthy volunteers. Therefore, the investi-
gation gives preliminary support to MSOT detecting elevated lipid levels 
in the livers of patients with hepatic steatosis, setting the stage for larger 
clinical studies. 

2. Methods 

2.1. Human imaging 

Five patients with previously diagnosed liver steatosis (n1 = 5, 3 

males and 2 females, mean age 58, range 46–61, mean BMI= 27.5 kg/ 
m2, range 21.5–32) were included in this pilot study. Liver steatosis in 
the patients was diagnosed using ultrasound imaging, CT, and visual 
inspection of the liver during an open abdominal surgery. Two out of the 
five patients had grade 2 liver steatosis while the other three patients 
had grade 3. 

Two out of five patients were overweight (BMI > 25 kg/m2) and two 
of them had class I obesity (BMI > 30 kg/m2). Three patients had a 
history of hyperlipidemia, two patients had a history of hypertension, 
and one patient had type 2 diabetes. 

Both diagnosis and grading of liver steatosis was performed using 
ultrasound features that include liver brightness, contrast differences 
between the liver and the kidney, ultrasound appearance of the intra-
hepatic vessels, liver parenchyma and diaphragm [30,31]. Since ultra-
sonography provides nowadays accurate detection of moderate to severe 
hepatic steatosis [30], an additional biopsy was not necessary. More-
over, in one out of five patients, hepatic steatosis was primarily diag-
nosed during open abdominal surgery (esophagectomy for 
adenocarcinoma of the esophagogastric junction) and described 
macroscopically as severe liver steatosis. In the other four patients 
included, hepatic steatosis was primarily diagnosed by a primary care 
physician and validated after inclusion in this study. In two patients, 
liver steatosis was additionally described in CT. 

Additionally, five healthy volunteers (n2 = 5, 3 males and 2 females, 
mean age 31, range 24–38 mean BMI= 20.5 kg/m2, range 19.7–21.6), 
were recruited as control subjects. All volunteers were non-smokers and 
had no history of cardiovascular or metabolic disease. Participants 
signed an informed consent form prior to enrollment in the study, which 
was approved by the ethics committee of the medical faculty of the 
Technical University of Munich (Protocol No 520/19 S). 

Optoacoustic scans took place in a quiet room with a normal room 
temperature (≈23 ◦C). Subjects were asked not to consume any food, 
alcohol, or caffeine for 8 h before the MSOT examination. Both partic-
ipants and examiners wore laser safety goggles. All participants were 
asked to lie in a supine position. For both patients and healthy volun-
teers, the hand-held scanning probe was placed over the right hypo-
chondriac region in a transversal position identified by anatomic 
knowledge under real-time ultrasound imaging (Fig. 1). Each scan lasted 
for approximately 60 s. The total duration of the MSOT examinations 
was approximately 5 min (patient and system preparation included), 
comparable to standard ultrasound examinations. This hand-held MSOT 
is capable of imaging up to depths of approximately 3–4 cm, which is 
sufficient to reach the liver. 

2.2. Animal imaging 

The Government of Upper Bavaria approved all procedures involving 
animal experiments. To induce substantial obesity and steatosis, mice 
(n3 = 5 B6 (Cg)-Tyrc-2 J/J, 3 males and 2 females; Charles River, River 
Laboratories, Wilmington, MA, USA) were fed with a high-fat, high- 
sugar diet (HFD) comprising 58% kcal from fat (D12331; Research Diets, 
New Brunswick, NJ, USA) for 20 weeks. Another age-matched cohort of 
mice (n4 = 5 B6 (Cg)-Tyrc-2 J/J, 2 males and 3 females) were fed a 
regular chow diet (CD) as a control. The mice were housed on a 12:12–h 
light–dark cycle at 22 ◦C with free access to water and food. 

All animals were anesthetized by inhalation of 2% isoflurane (Zoetis 
GmbH, Berlin, Germany) delivered in combination with oxygen. Ani-
mals were positioned in the MSOT machine according to a standard 
measurement protocol [20]; after being placed into a thin and trans-
parent polyethylene membrane, the mice were submerged in a water 
bath of 34 ◦C. The water ensures acoustic coupling and a stable body 
temperature. In vivo scans were conducted using an MSOT device 
tailored for small animal imaging described below [20]. Each mouse 
MSOT scan lasted for approximately 11 min recording data at many 
different positions along the long axis of the animal over the thorax and 
abdomen regions. 
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MSOT recordings were anatomically validated via cryoimaging, 
which was carried out after euthanizing the animals and freezing them 
to − 50 ◦C. The mice were next embedded in optimal cutting tempera-
ture compound (O.C.T, Tissue Teck, Sakura Finetek, USA) and trans-
versely cryosliced at steps of 50 µm along their long axis using a 
customized cryoimaging system. The latter consisted of a commercial 
cryotome (CM 1950, Leica microsystems, Germany) equipped with a 
CCD camera (AndorLucaR© CCD camera (DL-604 M, Andor Technol-
ogy, Belfast, UK), which recorded one RGB color image of the mouse 
cross-section after each slicing step. Acquired images were further pro-
cessed (denoising, contrast enhancement, and geometric trans-
formation) for visualization purposes. 

2.3. Hand-held MSOT/US and mouse MSOT systems 

MSOT scans of patients were conducted using a clinical hand-held 
MSOT-Ultrasound system (MSOT Acuity Echo©, iThera Medical 
GmbH, Munich, Germany) equipped with a handheld scanning probe. 
Briefly, the custom-built hand-held MSOT system is capable of acquiring 
real time optoacoustic images at a frame rate of 25 Hz and co-registered 
US images at a frame rate of approximately 9 Hz. The hand-held probe is 
enclosed within a light-weight 3D-printed casing and is equipped with 
256 piezoelectric elements with a central frequency of 4 MHz arranged 
in an arc of 145o for ultrasound detection. The cavity between the half- 
arc detector and specimen was filled with heavy water (D2O), which 
absorbs less light in the near-infrared range compared to normal water, 
while providing ideal coupling with the ultrasound transducer. Illumi-
nation was delivered in the form of short light pulses (approximately 
10 ns in duration), at a rate of 25 Hz. For each pulse, almost 15 mJ of 
energy were delivered over a rectangular area of around 1 × 4 cm, 
which is well below the safety limits of laser use for medical applications 
[32]. For multispectral imaging, we acquired images at 28 different 
wavelengths (from 700 to 970 nm, 10 nm steps). While the 900–970 nm 
region was used to detect lipids, the spectral information in the 
700–900 nm range was useful for identifying strongly absorbing struc-
tures such as large vessels that might obscure tissues of interest. 

Live mice were scanned using a small animal MSOT device (inVis-
ion© 256-TF, iThera Medical GmbH, Munich, Germany). Technical de-
tails of the device have been described elsewhere [20]. In brief, mice 
were illuminated with near-infrared light pulses of 29 different wave-
lengths (680–960 nm at steps of 10 nm) at a repetition rate of 10 Hz and 
with pulse energy of approximately 80 mJ. A fiber bundle splitting 
configuration with multiple outputs ensured homogenous ring-shaped 
line illumination around the mouse body (Fig. 1). The ultrasound 
waves produced upon pulsed illumination were recorded by means of a 

256-element-array of piezoelectric ultrasound detectors, covering an 
angle of 270◦ around the animal. A moving stage mechanism enabled 
the acquisition of full-thickness tomographic images of the mouse body 
at several positions along its long axis. Each scan included the recording 
(and averaging) of 10 frames at each of 23 different positions along the 
animal. 

The employed human and mouse MSOT systems are based on the 
same principle of operation (single-pulse-per-frame, SPPF) providing 
tomographic images of the examined anatomic regions. As described 
above, the delivery of illumination and ultrasound detector arrays differ 
between the two setups, providing high adaptability and flexibility to 
the user depending upon application. In specific, the mouse system 
employs mechanical stages for scanning different parts of the animal 
while the hand-held configuration of the human system enables the 
examination of different body regions. 

All acquired optoacoustic datasets were reconstructed using a model- 
based reconstruction algorithm developed in previous work [33] with 
non-negativity constraint, as usual in such studies. 

2.4. Optoacoustic data analysis 

The two systems employed herein share the engine and, after image 
acquisition, a common methodology was applied for data analysis in 
both humans and mice. Our analysis included the 29 wavelengths from 
680 to 960 nm at steps of 10 nm for the mouse dataset and the 28 
wavelengths from 700 to 970 nm at steps of 10 nm for the clinical 
dataset. A single characteristic set of 29 or 28 single-wavelength images, 
known as a ‘multispectral stack’, was selected for each mouse or human 
subject for further analysis. The selection criteria were an absence of 
motion and high image quality. Three different regions of interest (ROIs) 
based on the anatomical location in the co-registered ultrasound images 
were manually delineated for each multispectral stack: i) the liver re-
gion, ii) the subcutaneous fat (SAT) region, and iii) the entire imaged 
tissue region. The latter ROI included both the liver and SAT regions and 
was taken as the ‘background region’ (BGR) for each recorded image. 
The ROIs in the mouse data were manually segmented in consultation 
with two biologists with extensive experience in MSOT mouse imaging. 
The ROIs in the human data were manually segmented using both ul-
trasound data and in consultation with two clinicians with experience in 
clinical MSOT imaging. 

As a next step, we adjusted the measured optoacoustic signals within 
the liver to account for differences arising from either i) exogenous 
factors, such as normal fluctuations of the laser energy per pulse or ii) 
subject-dependent factors, such as variations in the thickness, type, and 
perfusion of tissue layers in the scanned region. This adjustment was 

Fig. 1. MSOT principle of operation and common analysis 
framework. Left: Preclinical MSOT imaging of the liver and 
validation by cryoimaging. Right: Clinical MSOT imaging 
of the liver and validation by ultrasound. The common 
analysis framework includes the intensity and spectral 
analysis. USD: Ultrasound detector, NIL: Near-infrared 
light, US: Ultrasound, WT: Water tank, HHP: Hand-held 
probe, NI: Near-infrared. The coverage angle in preclini-
cal MSOT is 270◦ and in hand-held clinical MSOT 140◦.   
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accomplished by first calculating the mean pixel intensity within the 
liver ROI and the BGR for the selected 29 (mouse) or 28 (human) single- 
wavelength images of all subjects. Then, the ROI/BGR ratio of the 
calculated mean values was extracted for each single-wavelength image. 
The extracted ratios were normalized against the maximum ratio value 
of each selected multispectral stack in order to fall within the range of 
[0,1]. By plotting the normalized ROI/BGR ratios for the measured 
wavelengths, we calculated for each subject a ‘normalized ratio spec-
trum’ in the NIR, which provided a common reference for all subjects 
and yielded comparable results. Next, the per-subject normalized ratio 
spectra were used to estimate the ‘mean’ normalized ratio spectra within 
the SAT and liver ROIs for the healthy and steatosis group in both mice 
and humans. 

Furthermore, we compared the mean of the ROI/BGR ratio at 
930 nm between the two groups (healthy and steatosis) in mice and 
humans to investigate possible correlations between the preclinical and 
clinical MSOT data of hepatic steatosis. This wavelength was chosen 
because it is where lipid absorption is highest in the NIR. The mean of 
the ROI/BGR ratio at 930 nm in healthy subjects and the same mean 
value in subjects with hepatic steatosis were compared using unpaired t- 
tests, since samples conformed to a normal distribution, as indicated by 
Shapiro-Wilk tests. 

To further evaluate and quantify the capability of MSOT to detect 
liver steatosis at high, usual for human imaging, depths of several cen-
timeters (> 2–3 cm) we performed a SNR analysis with increasing depth 
in the human MSOT data. To this end, the manually segmented liver 
regions in the 930 nm-MSOT images were further divided in 5 mm-thick 
horizontal segments and the SNR was calculated within the SAT segment 
and the resulted 5 mm-thick liver segments for all subjects (patients and 
healthy volunteers). The SNR for each segment at the various depths was 
calculated as the mean optoacoustic signal of the segment divided by the 
standard deviation of the noise, or else the signal measured within the 
region above the skin line in each image which corresponds to the water 

tank of the hand-held MSOT probe. 
Data processing and statistical analysis, including the creation of 

figures, was performed with MATLAB (R2019a, MathWorks, 2019, Inc., 
Massachusetts, United States) and R (version 3.6.0, R Core Team, 2019, 
Vienna, Austria). The results are reported as the mean ± standard error 
of the mean. We also report p-values and effect sizes of the relative 
statistical tests. 

3. Results 

We first conducted targeted human MSOT measurements to explore 
the capability of MSOT to resolve lipids at the depths of the human liver 
in patients with previously diagnosed hepatic steatosis. Fig. 2 depicts 
MSOT imaging and subsequent analysis of the livers of five patients and 
five healthy volunteers. Fig. 2a shows an exemplary US frame recorded 
over the hypochondriac region of a healthy volunteer. The corre-
sponding and coregistered MSOT image at 930 nm is provided in Fig. 2b. 
Likewise, Fig. 2c-d show the US and MSOT images of the same anatomic 
region of a patient with diagnosed hepatic steatosis. Both the SAT and 
liver regions are clearly delineated (dashed line/manually) in both the 
healthy volunteer and the patient based on the local anatomy. Two 
differences are apparent between the patient and the healthy volunteer: 
i) the lipid signal is stronger within the delineated liver region of the 
‘steatosis’ patient compared to the healthy volunteer and ii) the SAT 
layer is thicker in the ‘steatosis’ patient. 

To explore the capability of MSOT to detect lipids in human soft 
tissues, we analysed the high-lipid-content SAT layer. Fig. 2e-h sum-
marize our analysis for the SAT regions of the patients and healthy 
volunteers. The exemplary normalized ratio spectra of both a healthy 
volunteer and a patient with liver steatosis feature prominent 
absorption-peaks at 930 nm (Fig. 2e-f). The similarity in the spectra of 
the SAT layers between the two groups is further apparent in the sta-
tistical analyses of the normalized ratio spectra (Fig. 2g). Furthermore, 

Fig. 2. Human hand-held MSOT imaging and data analysis. (a) US image over the hypochondriac region of a healthy volunteer. (b) MSOT image recorded at 930 nm 
of the hypochondriac region of the same healthy volunteer. (c) US image of the liver of a patient with liver steatosis. (d) 930 nm-MSOT image of the same region of 
the patient. In (a)-(d): The dashed yellow lines delineate the skin/SAT layers and the dashed orange lines the liver region. (e-f) Normalized ROI/BGR ratio spectrum 
within the SAT region for a healthy volunteer and a patient with steatosis. (g) Mean (± standard error of the mean) normalized ROI/BGR ratio spectra for the whole 
cohort of healthy subjects (gray) and patients (orange). (h) Normalized ROI/BGR mean pixel intensity ratio at 930 nm within the SAT region for healthy volunteers 
(gray) and patients (orange). (i-j) Normalized ROI/BGR ratio spectrum within the liver region of a healthy volunteer (gray) and a patient (orange). (k) Mean 
(± standard error of the mean) normalized ROI/BGR ratio spectra for the whole cohort of healthy volunteers (gray) and patients (orange). (l) Normalized ROI/BGR 
mean pixel intensity ratio at 930 nm within the liver region of healthy subjects (gray) and patients with liver steatosis (orange). ns = non statistically signifi-
cant, *p < 0.05. 
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the normalized ROI/BGR ratios within the SAT region for the whole 
groups of healthy volunteers and hepatic steatosis patients are not 
significantly different (Fig. 2h; healthy volunteers 0.92 ± 0.031 vs. 
steatosis patients 0.9 ± 0.043, p-value = 0.6746, Cohen’s d = 0.27). 
Thus, as expected, MSOT is able to detect high levels of lipid signals 
within the SAT region in both healthy volunteers and patients with 
hepatic steatosis. 

As a next step, we used the same principle and analysis to investigate 
the capability of MSOT to detect lipids within the liver region in patients 
with diagnosed hepatic steatosis. Fig. 2i-l illustrate the spectral analysis 
of the MSOT measurements of the liver regions for both healthy vol-
unteers and patients. Comparison of exemplary normalized ratio spectra 
reveals higher absorption at 930 nm in the liver of the steatosis patient 
compared to that of the healthy volunteer, corresponding to the greater 
lipid content of the steatotic liver (Fig. 2i-j). Fig. 2k depicts the mean 
normalized ratio spectra for the whole ‘healthy’ and ‘steatosis’ human 
groups; the lipid-peak at 930 nm is again prominent. Moreover, the ROI/ 
BGR ratio at 930 nm within the liver region was significantly higher in 
the liver steatosis group compared to the group of healthy volunteers 
(0.762 ± 0.146 vs. 0.219 ± 0.081, p-value = 0.011, Cohen’s d = 2.07). 

To confirm the capability of MSOT to resolve lipids at imaging depths 
of several centimeters, we analysed the effect of depth on the SNR of the 
signal at 930 nm from the human MSOT data (Fig. 3). Our results show a 
steep SNR-decrease of the 83% from the SAT (0.4 cm depth) to the first 
liver segment (2.5 cm depth) and a subsequent mean decrease of 24.3% 
for every 5 mm along the liver segments. In total, we observe an average 
decrease of ≈ 15% for every centimeter of depth, with a recorded SNR of 
4.97 at a depth of 3.4 cm within the liver (Fig. 3a). However, the SNR at 
3.4 cm is sufficient to distinguish the lipid signal from the background 
noise, demonstrating that MSOT is capable of detecting lipid-specific 
optoacoustic signals at the average depths of the human liver. 

To go beyond bulk tissue analyses and gain insight into the measured 
OA signal within the liver at the single-pixel level, we conducted an 
additional statistical analysis of the pixels from the liver areas for both 
healthy volunteers and patients with liver steatosis. Plotting the density 
of OA signal intensities at 930 nm for all pixels inside the liver ROI 
revealed divergent distributions of OA signal intensities between the 
healthy volunteers and patients (Fig. 3b). In particular, the distribution 
within the steatosis group featured a notable tail towards higher signal 
intensities, suggesting the association of this subset of pixels with areas 
of increased lipid content. Finally, based on the presented histogram, a 
threshold was selected at the point of intersection between the two 
curves, and the proportion of pixels above this threshold was calculated 

for each subject. The proportion of pixels above the selected threshold 
was found to be significantly higher (the respective proportions test 
yielded a p-value < 0.001) in the patient group compared to the healthy 
volunteers (Fig. 3c). 

To further validate the efficacy of our method for detecting hepatic 
steatosis in humans, we performed experiments in mice, where signal 
attenuation due to tissue absorption is minimal because of the shallower 
imaging depths. Scanned mice were either CD-fed (controls) or HFD-fed 
(expected to develop hepatic steatosis). Fig. 4 shows images and ana-
lyses from MSOT measurements of the mice livers and the surrounding 
SAT regions. Fig. 4a-d compare exemplary cryoimages and MSOT im-
ages for both a control CD-fed mouse (Fig. 4a-b) and an HFD-fed mouse 
with liver steatosis (Fig. 4c-d). The MSOT images shown were recorded 
at 930 nm, where lipids absorption is the highest. Dashed orange lines 
delineate the liver while dashed yellow lines delineate the SAT regions. 
A clear difference is visible in the size of the two mice, with the HFD-fed 
mouse being larger in cross-sectional diameter than the CD-fed one. This 
increase in size is mainly the result of an increase in the size of the SAT 
layer, rather than the liver. However, the optoacoustic signal intensity 
within the liver is visually higher in the liver of the HFD-fed mouse 
compared to the CD-fed control. 

Spectral analysis did not indicate a significant difference in the lipid 
content of the SAT regions between the HFD-fed and CD-fed mice 
(Fig. 4e-h). Fig. 4e-f display characteristic normalized ratio spectra 
(680–960 nm) from the SAT regions of a ‘healthy’ mouse (Fig. 4e) and a 
‘steatosis’ (Fig. 4f) mouse. The spectra are qualitatively similar, with 
both containing a prominent absorption peak at 930 nm, as expected for 
the high-lipid-content SAT region. Fig. 4g shows the mean normalized 
ratio spectra for the whole mouse cohort of n4 = 5 CD-fed healthy 
controls (black line) and n3 = 5 HFD-fed steatosis (yellow line) mice, 
where the peak at 930 nm is again prominent for both groups. Finally, 
Fig. 4h depicts the statistical analysis for the normalized ROI/BGR 
intensity-based ratio at 930 nm within the SAT region. The difference 
between the ‘liver steatosis’ and the ‘healthy’ mice groups were, as ex-
pected, not significant (0.724 ± 0.136 for HFD-fed mice vs. 0.705 
± 0.133 for CD-fed mice, p-value = 0.923, Cohen’s d = 0.06). 

A similar analysis of the MSOT data from the liver region (Fig. 4i-l) 
reveals significant lipid accumulation in the livers of the HFD-fed mice 
compared to the CD-fed mice. Fig. 4i-j show exemplary normalized ratio 
spectra of a ‘healthy’ CD-fed and a ‘steatosis’ HFD-fed mouse. A strong 
peak indicative of lipid is visible at 930 nm in the ‘steatosis’ case, 
whereas no such peak is present in the ‘healthy’ case. Note that both 
spectra are characterized by higher absorption levels in the range 

Fig. 3. Depth analysis and pixel statistics of human data. (a) SNR in dB with increasing depth in human MSOT images at 930 nm. Each box represents the SNR for the 
SAT or liver segments at the noted depth for all corresponding subjects. The depths (in cm) refer to the centroid of each SAT or liver segment. (b) Density curves 
(histogram) for the measured optoacoustic signals at 930 nm for all pixels inside the liver ROIs of all subjects. The dashed line represents the selected threshold. (c) 
Proportion of pixels with optoacoustic signal above the threshold for each of the two groups (healthy volunteers vs. patients with liver steatosis, p-value < 0.001). 
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680–900 nm, compared to the spectra from the SAT regions (Fig. 4e-f), 
due to the much higher blood content of liver tissue compared to SAT. 
Fig. 4k displays the mean normalized ratio spectra for both groups of 
mice. Again, the peak at 930 nm is observed for the ‘steatosis’ group, but 
not for the ‘healthy’ control group. Fig. 4l illustrates the mean normal-
ized ROI/BGR ratio at 930 nm for the liver region. In contrast to the SAT 
region, the difference between the two mouse groups in the liver region 
at 930 nm is statistically significant (0.886 ± 0.044 for HFD-fed mice vs. 
0.484 ± 0.097 for CD-fed, p-value = 0.005, Cohen’s d = 2.39). 

4. Discussion 

Hepatic steatosis is a significant health problem that may lead to 
severe liver disease and frequently coexists with other conditions, such 
as obesity, type 2 diabetes, and cardiovascular disorders [34]. 
Non-invasive imaging can provide rich information about the patho-
physiology of the disease and enable early diagnosis, but available 
methods come with limitations (e.g., ionizing radiation, low sensitivity, 
bulky equipment, varying diagnostic cut-off values) that hinder their 
disseminated use in research and clinical settings. Here, we demon-
strated that non-invasive and label-free MSOT can detect significant 
differences in the spectral content of the liver in patients with steatosis 
and the liver of healthy volunteers, which manifest as stronger absorp-
tion around 930 nm in the liver of patients with steatosis due to the 
accumulation of lipids. These results suggest potential clinical and 
research applications of MSOT for hepatic steatosis and other disorders 
involving lipids. 

Following previous publications on imaging lipids in the blood-
stream [27] or the supraclavicular region [20], our results support the 
capability of MSOT to detect lipids in deeper soft tissues, such as the 
liver, non-invasively and without the need for exogenous contrast 
agents. First, by conducting targeted calculations within the SAT region 
of mice and humans, we showcased that MSOT indeed enables the 
detection of lipids based purely on the recorded spectral information 
from the NIR, in which lipids absorb strongly at ~930 nm. The 

localization of the SAT region is validated via cryoimaging for the mouse 
data and via US for the human data. Second, we employ the same 
principle to detect lipids within the visualized liver region. Thus, MSOT 
provides not only localized tissue-specific lipid detection, but also 
detailed (spatial resolution of ≈ 100–300 µm) maps of lipid distributions 
within different tissues, organs, and anatomic compartments (e.g., SAT 
region and liver) in a single scan. The ability to resolve lipids in the liver 
and other soft tissues could be useful for detecting possible signs of 
distorted pathways of metabolism. 

We demonstrated that the abovementioned unique capability of 
MSOT to detect lipids extends to depths necessary to analyse the human 
liver. We observed qualitative differences in the visual appearance and 
the spectral signatures of the livers of patients with steatosis compared 
to their healthy counterparts, with the steatotic livers being larger and 
featuring higher absorption at 930 nm (Fig. 2c-d, i-k). These observa-
tions in humans agreed well with the mouse data (Fig. 4c-d, i-k)), despite 
the much greater depth of the human liver. This qualitative observation 
of the spectra was confirmed by statistical analysis, which showed that 
absorption at 930 nm in the livers of both the preclinical and clinical 
steatosis groups was significantly higher than for the healthy groups 
(Figs. 4l and 2l; 0.886 ± 0.044 (diseased) vs. 0.484 ± 0.097 (healthy) 
with p-value = 0.005 in mice and 0.762 ± 0.146 (diseased) vs. 0.219 
± 0.081 (healthy) with p-value = 0.011 in humans). In other words, 
MSOT can provide both qualitative information about the consistency of 
liver tissue and semi-quantitative insights into its lipid-content. Thus, 
MSOT could be used not only for the detection of lipids, and thereby 
liver steatosis, but also for a rough estimation of the severity of the 
disease. Of course, more studies are needed in order to be able to provide 
an absolute quantification of lipids or other optoacoustically measured 
chromophores within the measured deep tissues. 

Nevertheless, MSOT does not come without limitations. As dis-
cussed, MSOT reaches depths of approximately 3–4 cm, which is unat-
tainable by other optical methods and sufficient for small animal 
imaging [35]. However, the achieved depth is poor compared to tradi-
tional techniques used for clinical liver imaging (e.g. US, CT, MRI) and 

Fig. 4. Mouse MSOT imaging and data analysis. (a) Cryoimage of a CD-fed mouse. (b) MSOT image recorded at 930 nm of the same mouse. (c) Cryoimage of an HFD- 
mouse. (d) 930 nm-MSOT image of the same mouse as in (c). The dashed white line marks the skin surface; the dashed yellow lines delineate the subcutaneous fat 
(SAT) region and the dashed orange lines the liver region. (e-f) Normalized ROI/BGR ratio spectrum within the SAT region for a CD-fed (e) and an HFD-mouse (f). (g) 
Mean (± standard error of the mean) normalized ROI/BGR ratio spectra for the whole cohort of the CD-fed (gray) and the HFD-fed (orange) mice. (h) Normalized 
ROI/BGR mean pixel intensity ratio at 930 nm within the SAT region for CD-fed (gray) and HFD-fed (orange) mice. (i-j) Normalized ROI/BGR ratio spectrum within 
the liver region of a CD-fed (i) and an HFD-mouse (j). (k) Mean (± standard error of the mean) normalized ROI/BGR ratio spectra for the whole cohort of the CD-fed 
(gray) and the HFD-fed (orange) mice. (l) Normalized ROI/BGR mean pixel intensity ratio at 930 nm within the liver region of CD-fed (gray) and HFD-fed (orange) 
mice. ns = non statistically significant, **p < 0.01. 
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cannot ensure full-depth imaging of the liver, especially in obese pa-
tients. Further development of light delivery systems or light fluence 
correction schemes may alleviate the effects of light attenuation and 
increase imaging and spectral unmixing quality with increasing depths. 
Moreover, spectral unmixing is currently done on a per-pixel basis and 
the quality is highly dependent on intrinsic (e.g., breathing, arterial 
pulsation) or extrinsic (e.g. hand movements during scanning) motion. 
For these reasons, novel motion correction schemes and spectral 
unmixing algorithms have been developed in order to enable the precise 
visualizations of chromophores in deep tissues [36–38]. Finally, some 
steps of the MSOT data analysis process (e.g., segmentation, interpre-
tation) might be time-consuming or labor-intensive, especially in the 
case of large (e.g., hundreds or thousands of images) or noisy datasets. 
Therefore, several automatic segmentation or image improvement 
techniques have been developed, even if herein, due to the small number 
of participants and the high data quality, we opted for a manual seg-
mentation approach [39,40]. 

However, the grading of hepatic steatosis is not routine; it is mainly 
performed using histology, i.e., using the NAFLD Activity Score (NAS), 
or sometimes by means of MRI or FibroScan©. In our patient cohort, no 
liver biopsies were performed and, thus, no histological assessments are 
available. Future studies are needed in order to explore the capability of 
MSOT to assess hepatic steatosis at different stages, as well as investigate 
possible correlations of MSOT with other imaging modalities or 
histology. 

While the current preliminary translational study is the first to suc-
cessfully apply hand-held MSOT imaging for the detection of hepatic 
steatosis in humans, it includes only a limited number of subjects. 
Furthermore, even if hand-held MSOT technology reaches unprece-
dented depths of several centimeters compared to other light-based 
imaging approaches (e.g., fluorescence imaging), it cannot provide 
full-depth imaging of the human liver (≈ 8–10 cm), especially in obese 
patients. Future targeted and more extended studies will seek to i) assess 
the specificity, sensitivity and accuracy of MSOT technology for the 
assessment of hepatic steatosis, ii) investigate the possible differences 
among different types of fatty liver disease, and iii) further advance 
MSOT towards clinical translation for liver diagnostics. Our recordings 
were further supported by corresponding mouse data and MSOT pro-
vided the expected results in the scanned anatomic compartments, as 
validated by cryoimaging and medical US imaging. Thus, the proposed 
MSOT-based method generates new possibilities for investigating the 
pathophysiology of hepatic steatosis and demonstrates translational 
potential with possible implications for future clinical diagnostics of the 
disease in selected patients. 
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Opening a window to skin biomarkers for diabetes
stage with optoacoustic mesoscopy
Hailong He1,2, Nikolina-Alexia Fasoula 1,2, Angelos Karlas1,2,3,4, Murad Omar1,2, Juan Aguirre1,2, Jessica Lutz5,6,
Michael Kallmayer3, Martin Füchtenbusch5,6, Hans-Henning Eckstein3,4, Annette Ziegler6,7 and
Vasilis Ntziachristos 1,2,4✉

Abstract
Being the largest and most accessible organ of the human body, the skin could offer a window to diabetes-related
complications on the microvasculature. However, skin microvasculature is typically assessed by histological analysis,
which is not suited for applications to large populations or longitudinal studies. We introduce ultra-wideband raster-
scan optoacoustic mesoscopy (RSOM) for precise, non-invasive assessment of diabetes-related changes in the dermal
microvasculature and skin micro-anatomy, resolved with unprecedented sensitivity and detail without the need for
contrast agents. Providing unique imaging contrast, we explored a possible role for RSOM as an investigational tool in
diabetes healthcare and offer the first comprehensive study investigating the relationship between different diabetes
complications and microvascular features in vivo. We applied RSOM to scan the pretibial area of 95 participants with
diabetes mellitus and 48 age-matched volunteers without diabetes, grouped according to disease complications, and
extracted six label-free optoacoustic biomarkers of human skin, including dermal microvasculature density and
epidermal parameters, based on a novel image-processing pipeline. We then correlated these biomarkers to disease
severity and found statistically significant effects on microvasculature parameters as a function of diabetes
complications. We discuss how label-free RSOM biomarkers can lead to a quantitative assessment of the systemic
effects of diabetes and its complications, complementing the qualitative assessment allowed by current clinical
metrics, possibly leading to a precise scoring system that captures the gradual evolution of the disease.

Introduction
Diabetes mellitus is a complex metabolic disease with

increasing worldwide prevalence, leading to several health
complications and aggravating healthcare costs1,2. The
disease affects the macro- and the microvasculature of
several organs, including the heart, brain, lower limbs,
retinas, peripheral nerves, kidneys, and skin1–4. In the
skin, diabetes-induced microvasculature alterations indi-
cate an adverse disease prognosis, as they compromise

tissue perfusion and oxygenation, as well as skin integrity,
which can lead to cutaneous infections3,5–8, neuropathy
with loss of sensation, ulcerations, and other comorbid-
ities3,5–7. These microvascular changes may also indicate
cardiovascular complications such as coronary artery
disease (CAD), carotid artery disease, and peripheral
arterial disease (PAD)9–11 and occur early in the devel-
opment of diabetes3,4,12. Therefore, assessment of skin
microvasculature could lead to a novel means of mon-
itoring diabetes onset and the progression of associated
vascular complications, allowing quantification of the true
burden of the disease on the vascular system rather than
disease course predictions offered by risk factors.
Currently, the characterization of diabetes stage and its

complications in patients relies on the assessment of clin-
ical symptoms and signs. In many instances, questionnaires
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and scoring systems are employed to assess the presence
and quality of peripheral neuropathy symptoms and signs
such as neuropathic pain, decreased perception of light
touches or muscle weakness, and can be combined with
clinical tests assessing pathophysiological parameters5,6.
Such assessments may offer subjective readings, are time-
consuming, and generally evaluate the progression of the
disease and its complications at infrequent intervals, during
which diabetes has advanced significantly enough to yield
large pathophysiological changes that present as clinical
symptoms relating to loss of function of different organs
and/or pain.
Disease manifestations in the skin microvasculature

could serve as a means to observe the multi-systemic
effects of diabetes and its complications in a quantitative
fashion and possibly lead to finer and more detailed
information in the course of the disease based on gradual
changes that are not perceivable as clinical symptoms.
Skin as the largest and most easily accessible organ could
serve as a window for diabetes microangiopathy and sta-
ging of the disease. However, routine assessment of epi-
dermal features and dermal microvasculature requires a
method appropriate for safe, longitudinal, direct, and non-
invasive measurements. Located under the highly-
scattering epidermis, dermal vasculature is not generally
accessible to optical microscopy methods, such as con-
focal or two-photon microscopy13,14. Other methods,
such as high-frequency ultrasound15–18, hyperspectral
imaging19,20, nailfold capillaroscopy21,22, and optical
coherence tomography (OCT)23,24, have various advan-
tages. However, in general, these technologies do not
provide sufficient resolution, contrast, and/or penetration
depth to visualize skin microvasculature and hence
application has mostly been restricted to differentiating
patients with diabetes from healthy subjects23,24.
Although certain methods have demonstrated micro-
vascular variations between individuals with and without
diabetes, to the best of our knowledge, none of these
methods have been utilized to classify disease progression
or its complications or employed to examine the corre-
lation between microvascular imaging biomarkers and
diabetic complications. Such information is an important
goal for an imaging method, as it would address a current
gap in diabetes research associated with disease staging.
Currently, only crude, and infrequent assessments of
disease complications known to affect the quality of
delivered healthcare are done25,26, as elaborated in the
discussion section of this paper.
It has been demonstrated that OCT angiography

(OCTA) and ultra-wideband raster scan optoacoustic
mesoscopy (UWB-RSOM) both have the potential to
indirectly detect vasculature by capturing small signal
variations resulting from micro-flows, thereby presenting
non-invasive approaches for evaluating cutaneous

changes in human skin microvasculature23,27–33. In this
work, we have chosen to focus on UWB-RSOM due to
certain key features. UWB-RSOM is a notably robust
method for visualizing deep dermal microvasculature
features (up to 1.5 mm deep) and this ability will enable
our search to identify novel biomarkers of skin micro-
angiopathy in diabetes. Furthermore, RSOM offers
detection with an enhanced signal-to-noise ratio due to
the generation of optoacoustic signals within blood ves-
sels primarily. This phenomenon allows for optimal
microvascular imaging of the skin, while retaining high
contrast due to the relatively high absorption of hemo-
globin at the wavelength of 532 nm28,34–39. Furthermore,
it was important to obtain highly detailed cross-sectional
images of human skin at high penetration depth because
these images would offer valuable information for diag-
nosis, treatment monitoring, and translational research
from understanding skin physiology and pathology and
indeed UWB-RSOM can provide such images to a depth
of ~1.5 mm.
We therefore employed UWB-RSOM to evaluate the

effect of diabetes on skin, offering the first in vivo
insights on the relation of dermal and epidermal fea-
tures and diabetes complications. To this end, we per-
formed measurements on 143 subjects including healthy
individuals without diabetes and participants with dia-
betes. The diabetic group comprised of participants with
previously diagnosed diabetes and no other symptoms,
participants with diabetes and peripheral neuropathy
and participants with diabetes and macrovascular
atherosclerotic complications. We were specifically
interested in exploring how diabetes progressed, as
evidenced in this study by the presence of different
complications, effects on different dermal and micro-
vascular components and whether it could be correlated
to any of the calculated skin features. We postulated
that we could employ image analysis techniques to
detect and quantify RSOM skin features associated with
the stage of diabetes mellitus, and this would be an
improvement to the currently done characterization
based on clinical symptoms and comorbidities.

Results
RSOM imaging and biomarker computation
To enable quantitative analysis of diabetic skin

microvascular features, we collected RSOM measure-
ments from 95 participants with diabetes and 48
volunteers without diabetes and developed an imaging
analysis pipeline to compute skin biomarkers (Fig. 1).
RSOM illuminated the surface of the skin over the pre-
tibial area at 532 nm and scanned with an ultrasound
transducer with bandwidth from 10MHz to 120MHz
and central frequency of 50MHz over a 4 × 2 mm2

field
of view (FOV, Fig. 1a, see RSOM imaging system in
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“Methods” section). Three-dimensional RSOM images
(Fig. 1b, see image reconstruction in “Methods” section)
were reconstructed over two frequency bands within the
120MHz bandwidth employed. Band-selected recon-
structions implicitly segmented vessels of different sizes;
larger vessels (40–150 µm) are seen in the 10–40MHz
band, whereby smaller vessels (<10–40 µm) are seen in
the 40–120MHz band. Vessels seen in the two different
bands are color-coded in the rendered images (red: lar-
ger vessels; green: smaller vessels) so that finer vascu-
lature is highlighted in the presence of larger vessels
(Fig. 1c). To quantify the differences observed by visual
inspection of the RSOM images, as well as to extract
relevant label-free RSOM biomarkers, we developed and
validated a RSOM image analysis pipeline including two
segmentation methods (see layer and vasculature seg-
mentation section in “Methods” section). Briefly, a layer
segmentation algorithm based on graph theory and
dynamic programming40 identified and separated the
epidermis and dermis, as visually marked on the images
(Fig. 1c, white dashed lines; see layer segmentation sec-
tion in “Methods” section and Fig. S2). The second
method employed a vessel segmentation algorithm41 to
identify and quantify vascular structures in the dermis
layer (Fig. 1d; see vessel segmentation section in
“Methods” section and Fig. S3). Quantification included
the computation of the vessel number and the diameter

of the different vessels identified. Validation of the seg-
mentation approach was performed by comparing the
RSOM computed biomarkers of mice skin with histolo-
gical analysis (see validation section in “Methods” sec-
tion and Figs. S2 and S4).
Based on this RSOM image analysis pipeline, we

computed and differentially analyzed six RSOM image
features (see biomarker computation section in “Meth-
ods” section): (1) the total number of small vessels (with
diameters <40 µm; 40–120MHz band) in the dermal
layer; (2) the total number of large vessels (with dia-
meters >40 µm; 10–40MHz band) in the dermal layer;
(3) the total vessel number in the dermal layer; (4) the
total blood volume in the dermal layer, computed as
ratio of the total number of volume elements (voxels)
occupied by the segmented vessels over the total number
of voxels in the image; (5) the epidermal thickness, and
(6) the epidermal signal density. The selection of small
vs. large vessels based on the 40 µm cut-off value was
explained (see “Methods” section) and a more detailed
analysis based on a finer vessel classification is shown in
Fig. S5.

Skin microvasculature differences between healthy
volunteers and participants with diabetes
We first analyzed RSOM skin images of the lower

extremities (distal pretibial area) of 95 participants with

Layer segmentation Vessel segmentation

Segmented EP Segmented vessels

Total vessel number
Total blood volume

Small vessel number
Large vessel number

EP thickness
EP signal density

DR

EP

EP

DR

VS

BC BC

c d

Skin biomarkers

IS

RSOM volume

b

a

RSOM

Ultrasound
waves 

UT

RSOM acquisition

Fi
be

r 
bu

nd
le

IR

Fig. 1 Computation pipeline of skin biomarkers from RSOM images. a Schematic of the RSOM system employed for skin measurements,
comprising two fiber bundles for illumination and a high frequency ultrasound transducer (UT) that was raster scanned over the skin surface. RSOM
signals are recorded on the pretibial area of the lower extremities of both healthy volunteers and participants with diabetes, after which volumetric
image reconstruction (IR) is performed. b A reconstructed RSOM volume image. The volumetric RSOM image is segmented (IS) to identify the
epidermis layer and dermal vasculature, which are used to subsequently compute biomarkers. c Segmentation of the cross-sectional RSOM image
into the epidermis (EP) and dermis (DR) layers of the skin (white dashed lines). The EP thickness and EP signal density biomarkers were computed
from the segmented EP layers in the RSOM images. d Vessel segmentation of the segmented DR layer of the skin. The numbers of vessel branches
and vessel diameters were automatically calculated; the red dots indicate positions of vessel branches. The segmented vessels in the DR were used to
calculate the vessel numbers and total blood volume biomarkers. IR image reconstruction, IS image segmentation, VS vessel segmentation, BC
biomarker computation, scale bar= 500 μm
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diabetes and 48 volunteers without diabetes, where the
characteristics of study participants are listed in Table 1
(see data grouping section in “Methods” section).
Inspection of 2-band RSOM images of the skin (Fig. 2)

visually exemplifies differences between a healthy volun-
teer and a participant with diabetes mellitus. Figure 2a
depicts an image from a 36-year-old female volunteer
without diabetes, while Fig. 2b shows the corresponding

Table 1 Characteristics of study participants

Participants with

diabetes mellitus

(DM) (95)

Participants with

DM and no

complications (45)

Participants with

DM, neuropathy

and no ASCVD (25)

Participants with

DM, neuropathy

and ASCVD (25)

Healthy

volunteers

(48)

P-value

Age (years) 68 ± 12 63 ± 19 70 ± 10 76 ± 7 64 ± 13 ns

Disease duration (years) 20 ± 16 12 ± 11 27 ± 17 23 ± 16 0 ns

Sex (male/female) 42/56 24/19 9/18 6/19 27/21 n/a

BMI (kg/m²) 27 ± 8 27 ± 6 30 ± 8 28 ± 4 26 ± 7 ns

Diabetes type (1/2) 21/74 7/36 11/14 3/22 n/a n/a

NSS 4 ± 4 0 4 ± 4 7 ± 2 n/a n/a

NDS 4 ± 4 0 4 ± 4 6 ± 3 n/a n/a

HbA1ca (%) 7.1 ± 1.1 7.1 ± 1.6 7.2 ± 0.7 6.9 ± 0.9 n/a n/a

Data is presented as the mean ± SD unless stated otherwise. Participants with diabetes (n= 95) were further divided into three subgroups: Participants with DM and
no complications [n= 45, participants with diabetes, but without neuropathy and without atherosclerotic cardiovascular disease (ASCVD)]; Participants with DM,
neuropathy, and no ASCVD (n= 25, participants with diabetic neuropathy and without ASCVD); Participants with DM, neuropathy and ASCVD [n= 25, participants
with diabetic neuropathy and ASCVD/PAD]
DM diabetes mellitus, ASCVD atherosclerotic cardiovascular disease, PAD peripheral arterial disease, BMI Body Mass Index, NSS Neuropathy Symptom Score, NDS
Neuropathy Disability Score, HbA1c glycated hemoglobin, ns not statistically significant, n/a not applicable
aHbA1c values were not recorded for the 27 participants with diabetes and without complications
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computed biomarkers between healthy volunteers and participants with diabetes. g Total number of small vessels (with diameter ≤40 μm) in DR
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image from a 42-year-old male participant with diabetes.
The images are rendered as maximum intensity projec-
tions (MIP) of the entire volume scanned and depict the
epidermal (EP) and dermal (DR) layers, reaching a depth
of ~1.5 mm. The typical RSOM appearance of healthy
skin shows a dense signal from the epidermis layer (cor-
onal view, Fig. 2c, d) and a vascular network in the dermal
layer (coronal view, Fig. 2e) that comprises several blood
vessels of various diameters. Conversely, the dermal vessel
density (coronal view, Fig. 2f) is far lower in the partici-
pant with diabetes mellitus compared to the healthy
volunteer, a finding that is confirmed by three-
dimensional skin visualizations (see Suppl. Movie. 1
and 2). Due to the loss of fine dermal vasculature, the
diabetic skin exhibits a characteristic high-contrast
boundary between the epidermal and dermal layers that
is not present in the healthy skin.
A next step was to examine the correlation of the six

computed biomarkers (see Fig. 1c, d) to diabetes status
(Fig. 2g–l). We found that the mean number of small
vessels (Fig. 2g) was ~2.8 times less in participants with
diabetes than in the volunteers without diabetes
(3.45 ± 2.62 vessels versus 9.78 ± 3.41 vessels). A
Mann–Whitney U-test showed statistically significant
differences between the mean number of small vessels in
healthy vs. diabetic subjects (P < 0.001). The mean num-
ber of large vessels (Fig. 2h) was about 1.5 times less in the
diabetic compared to the healthy group (13.39 ± 11.30
vessels versus 20.34 ± 8.32 vessels, P < 0.05). This suggests
that the systemic impacts of diabetes on vasculature are
more prominent in small vessels than in larger vessels.
These results were corroborated by analyzing the full
band RSOM image (Fig. 2i), revealing the total vessel
number in the volume examined. The total number of
vessels was found to be 16.87 ± 9.30 for diabetic partici-
pants vs. 30.12 ± 9.87 for healthy volunteers (P < 0.01).
The total blood volume in the DR layer was also

markedly different between the diabetic and healthy
groups (Fig. 2j), with values of 1.58 ± 0.90% and
4.21 ± 1.10%, respectively. The Mann–Whitney U-test
here also showed significant differences between the
healthy and diabetic subjects (P < 0.001). Analysis of the
EP layer also demonstrated statistically significant chan-
ges between the two groups. The mean values of epi-
dermal thickness were 105.27 ± 17.04 µm for healthy
volunteers and 81.03 ± 23.06 µm for participants with
diabetes (Fig. 2k) with P < 0.05. Likewise, the signal den-
sity of the EP layer (Fig. 2l) in the reconstructed seg-
mented volume, which contains contributions from
melanin and capillaries, was markedly lower in the par-
ticipants with diabetes than in the healthy volunteers
(P < 0.05).
The relation between RSOM features and age

(see Fig. S6), disease duration (see Fig. S7), body mass

index (see Fig. S8) and HbA1c values (see Fig. S9) were
investigated and shown in the supplementary results.
We found that these parameters did not show obvious
correlation with the RSOM biomarkers and did not
significantly influence the outcome of our study. We
have computed the Spearman correlation value between
age/disease duration /HbA1c /BMI with the vascular
biomarkers TBV (Total blood volume) and SVN (Small
vessel number), which showed no significant correlation
as presented in supplementary Table I. In addition, we
also applied multivariate logistic regression analysis to
compute the statistics of the two biomarkers TBV and
SVN with adjustment of age/disease duration /Hb1Ac
/BMI, which also revealed no significant association
between these vascular biomarkers and characteristics
of the participants (supplementary Table I). There were
no significant differences in age, Hb1Ac and BMI values
between the participant groups with type 1 or type 2
diabetes (supplementary Table V).

Quantification of RSOM biomarkers in diabetic neuropathy
We next investigated the relationship between periph-

eral diabetic neuropathy and microvasculature via the
extracted RSOM label-free biomarkers. Diabetes is a
chronic disease with systemic complications that generally
evolve with time and affect several systems (e.g., cardio-
vascular, nervous etc.). For the cardiovascular system in
particular, diabetes affects all of parts of the cardiovas-
cular system resulting in cardiovascular disease being the
leading cause of death among participants with diabetes.
Therefore, the question of understanding severity is per-
haps more critical than the separation of diabetic from
healthy groups. Indeed, while diabetes encompasses a
continuum of stages, a diagnostic test simply separates
healthy individuals from participants with diabetes based
on a threshold value. Consequently, we foresee RSOM
playing an important role in quantifying benchmarks or
features associated with these different stages of diabetes.
To address this question, we first examined RSOM fea-
tures obtained from measurements of participants with
diabetes without complications and measurements from
participants with diabetes and different severities of
neuropathy. The severity of diabetic neuropathy was
clinically evaluated using the Neuropathy Disability Score
(NDS) and the Neuropathy Symptom Score (NSS)42,43.
We divided the diabetic group into three categories: those
with no complications (NC, n= 45), those with low score
neuropathy (LN, n= 13; 1 ≤NDS ≤ 5 or 1 ≤NSS ≤ 5) and
those with high score neuropathy (HN, n= 12; NDS > 5
or NSS > 5). Representative RSOM images from the
healthy group and the three diabetic groups are depicted
in cross-sectional (sagittal) views (Fig. 3a–d) and coronal
views (images parallel to the RSOM scan plane) from the
EP (Fig. 3e–h) and DR (Fig. 3i–l) layers. The images
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confirm a reduced vascular density in the DR with pro-
gression of the disease and its complications. Moreover,
observation of the coronal views of the EP layer depicts
clearly resolved superficial skin ridges in the healthy skin,
which change into an amorphous pattern without ridge

definition depending on disease status, especially for the
groups with diabetic neuropathy.
Quantitative comparisons of the performance of different

RSOM features are presented in (Fig. 3f–i). Overall, the
count of small vessels (Fig. 3m) demonstrated statistically
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significant differences between the three diabetic groups,
i.e., healthy versus NC (P < 0.01), NC versus LN (P < 0.05),
and LN versus HN (P < 0.001). As shown in (Fig. 3m), the
neuropathy grade is visible in the count of small vessels
(<40 µm diameter). However, the presence of neuropathy
had no significant effects on the number of large vessels
(Fig. 3n). This finding is also reflected in the total vessel
number between the healthy and the NC (P < 0.05), as well
as between the LN and HN groups (P < 0.01). No marked
changes were observed between the NC and LN groups.
The computation of blood volume (Fig. 3p) demonstrated a
similar performance to the small vessel count, with the NC
group exhibiting significantly lower blood volume com-
pared to healthy group (P < 0.01). The total blood volume
was further reduced in the LN compared to NC group
(P < 0.05). A significant difference in total blood volume
was observed between the LN and HN groups (P < 0.001).
The EP layers of the NC group were markedly thicker

when compared to the healthy volunteers, while neuro-
pathy decreased the epidermal thickness significantly
(Fig. 3q). An unpaired t-test supported significant differ-
ences between the healthy versus NC (P < 0.05), as well as
the LN versus HN (P < 0.05). The differences between the
NC versus LN groups were even more significant
(P < 0.01). The overall optoacoustic signal density of the
EP layer (Fig. 3r) decreased in NC groups, compared to
the healthy and NC groups (P < 0.01).
In addition, we have computed the Spearman correla-

tion values between age/disease duration /HbA1c/BMI
with the vascular biomarkers TBV and SVN in the NC,
LN, and HN groups, and found no significant correlations
as presented in supplementary Tables II and III. We
applied multivariate logistic regression analysis to com-
pute the statistics of the two biomarkers TBV and SVN
with adjustment of age/disease duration /Hb1Ac /BMI,
which showed no significant association between the
vascular biomarker and participant parameters (supple-
mentary Table IV).

Quantification of RSOM biomarkers in diabetic neuropathy
and atherosclerosis
We were also interested in exploring the association

between RSOM features and macrovascular athero-
sclerosis. Most of the diabetic subjects with athero-
sclerosis enrolled in this study had also been diagnosed
with neuropathy. Therefore, participants with diabetes
were divided into two groups: diabetic subjects with
neuropathy and no atherosclerosis (NnA, n= 25), and
diabetic subjects with neuropathy and atherosclerosis
(NA, n= 24). Representative cross-sectional (sagittal)
views and coronal views of the DR layer from the two
groups (Fig. 4a–d) showed marked differences. There
were significant differences in the numbers of small, large,
and the total number of vessels between the group with

and the group without atherosclerosis (Fig. 4e–g). The
small vessel counts again exhibited the most statistically
significant difference (P < 0.001) between the two groups,
compared with the total vessel count (P < 0.01) and large
vessel count (P < 0.05). In addition, the total blood volume
(Fig. 4h) was significantly reduced in diabetic participants
with atherosclerosis (P < 0.001). Conversely, athero-
sclerosis had no apparent effect on the epidermal thick-
ness (Fig. 4i) or the optoacoustic signal density of the EP
layer (Fig. 4j).
While no other imaging method has previously studied

imaging biomarkers in relation to severity of diabetes
microangiopathy, the pilot RSOM data collected herein
has been shown to be able to classify participants with
diabetes based on skin microvascular changes. Typically,
previous imaging studies could only detect changes by
comparing monitored parameters of healthy and diabetic
populations, demonstrating a function that can be also
achieved in a straightforward way using a blood test. In
comparison, the RSOM features can be used to separate
participants with diabetes from healthy individuals with
high accuracy. For example, using the small vessel num-
ber (SVN) as the differentiating biomarker, a simple
classification model demonstrated a 90.2% accuracy with
a 93.1% sensitivity, an 80.0% specificity and an area under
the Receiver Operator Characteristic (ROC) curve of 0.93
(see Fig. S11). However, we do not envision RSOM for
simple diagnostic tests as above, but rather in its possible
role to study the state of the vascular system on a per-
sonalized basis and, in the future, contribute to assigning
a more informative “health score” as elaborated in the
discussion.

Discussion
The skin has been heralded as a window to assessing

systemic health conditions. This premise has so far held
true for identifying several conditions, for example,
manifestations of systemic sclerosis, lupus erythematosus,
sarcoidosis, or several types of infections based on
superficial features appearing on the upper layers of the
epidermis44. In this work, we employ RSOM as a novel
technique that can provide high-resolution imaging under
the skin surface and a detailed assessment of dermal
microvasculature and other skin features. RSOM is the
only technique available that can non-invasively provide
highly detailed three-dimensional images with virtually
isotropic resolution and precise cross-sectional images of
optical contrast through the deep skin dermis layer.
Therefore, it enables new opportunities for three-
dimensional investigation of sub-surface skin features
and new ways to use the skin in identifying disease than it
is possible with the traditional superficial inspection. We
note that previous studies based on OCTA have offered in
vivo insights into the diabetic skin microvasculature but
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did not reach the deep skin dermis layer compared to
RSOM. Furthermore, in our study, RSOM skin features
are associated with the stage of diabetes mellitus, as
reflected by the presence of different diabetes-related
complications. Successfully accomplishing these goals
would introduce a new label-free and portable technology
for quantifying diabetes complications, possibly serving in

the future as a portable tool for studying and monitoring
disease progression with fine precision, complementing
symptom-based assessments.
The relationship between skin microvasculature and

diabetes stage has not been previously investigated in a non-
invasive manner, due to the lack of tools that are capable of
detailed assessments of fine vasculature. Likewise, no
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technologies used in other imaging studies to date have
examined the relationship between biomarkers detected
in vivo and disease states. High-frequency ultrasound has
been applied to assess skin morphology in participants with
diabetes mellitus15–18. However, speckle effects prevent
ultrasound from visualizing microvasculature, i.e., vessels of
<100 µm in diameter45, without applying contrast agents
(microbubbles), which limits routine application in humans.
Hyperspectral imaging (HSI) assesses oxy- and deoxy-
hemoglobin concentrations in the skin19,20, but this method
cannot visualize skin microvasculature, as it suffers from
low resolution and quantification accuracy caused by var-
iations in skin absorption and scattering properties. Nailfold
capillaroscopy circumvents the scattering problem, due to
the relative transparency of the nail bed, and has been
employed to observe capillary abnormalities of diabetic
participants21,22. However, thicker, opaque, or pigmented
nail folds challenge the accuracy of the measurements46,47.
OCT has been employed to assess retinal vasculature in
relation to diabetic retinopathy48–51 or measure the epi-
dermal thickness in participants with type I diabetes mel-
litus52. Similarly, OCT angiography (OCTA) can quantify
impairments of the retinal vasculature in participants with
diabetic retinopathy compared to the control group53,54. In
addition, a few studies have applied OCTA to quantify skin
microvasculature structure and function, showing the pos-
sibility to distinguish between healthy individuals and par-
ticipants with diabetes23,24.
In general, several studies have explored the opportunity

to differentiate between healthy volunteers and participants
with diabetes based on imaging of the skin23,24. Never-
theless, none of these studies thoroughly examined these
changes at different stages of the disease, as reported by the
presence and severity of relevant complications. Herein,
ultra-wideband RSOM resolves skin vessels with diameters
ranging from 10 μm to about 150 μm, allowing a detailed
understanding of the relationship between disease severity
and vessel size, which was not previously possible. The
implications of this ability of RSOM are multi-faceted,
since successful application of the technology could
improve the longitudinal study of diabetes and enable a
method to monitor lifestyle or other interventions in a
detailed, quantitative way that is not available today. RSOM
can play a very different role in comparison to blood glu-
cose measurements. While the latter determines the day-
to-day glucose status and is necessary for reducing hypo-
glycemic incidents, RSOM could monitor an actual state of
diabetes using a measure of systemic damage. Importantly,
cutaneous microvasculature changes could be non-
invasively monitored by means of RSOM frequently, at
intervals close together enough that monitoring allows for
interventions before the appearance of new clinical symp-
toms. Regular monitoring would also provide a more
precise measure of diabetes progression.

We have previously demonstrated that RSOM can pro-
vide detailed images of skin vasculature, and that quanti-
tative information pertaining to dermatological conditions
can be extracted from these images27,32,55,56. However, it
was unclear previously if RSOM would have the sensitivity
to capture diabetes-related changes within skin micro-
architecture. The ability to capture microvascular changes
with RSOM would allow correlations to be drawn with
diabetes severity, which had not been examined before. The
study herein provided RSOM images of the skin of parti-
cipants with different diabetic conditions (diabetes severity).
Six RSOM label-free biomarkers were extracted from these
images: three associated with dermal micro-vasculature
(total vessel count, vessel count for vessels <40 μm in dia-
meter, and vessel count for vessels >40 μm in diameter), and
three associated with bulk measurements, such as the total
blood volume and the thickness and signal density of the
epidermis. The precision/accuracy of our segmentation
methods was further validated by means of relevant animal
studies. More specifically RSOM was also used to image the
skin microvasculature in mice. These measurements were
finally validated via histological analysis of the same skin
region excised after the RSOM measurement. Visual
inspection of RSOM images revealed changes in the pat-
terns observed in the different pathologies. Qualitatively, it
was generally visible that as diabetes progresses, the vas-
cular density in the dermal layer decreases and the epi-
dermis becomes thinner and less light absorbing. Statistical
significance tests performed on features quantitatively
extracted from the RSOM images confirmed that all these
biomarkers are associated with aspects of diabetes pro-
gression and its complications. Moreover, these analyses
identified density of vessels <40 μm in diameter to be the
most indicative marker of diabetes severity, providing the
starkest contrast between the different groups of partici-
pants. The identification of small vasculature as the com-
ponent of the skin that is most affected by diabetes
progression highlights the vulnerability of small vessels to
systemic effects caused by diabetes and suggests that this
marker could possibly be used as a label-free biomarker that
indicates diabetes severity.
The results obtained are consistent with findings based on

histology studies. Diabetes is known to alter human skin
microvasculature, reflecting a systemic effect of the disease.
Participants with diabetic neuropathy demonstrate patho-
logical alterations of the microvessels57, as also observed by
RSOM. Likewise, histological analysis of the skin revealed a
7.2% increase in epidermal thickness in participants with
diabetes and without neuropathy and a 16.5% decrease in
participants with diabetic neuropathy compared to healthy
controls (all P < 0.05)58, a finding also confirmed in the
current study using RSOM (Fig. 3). However, while RSOM
offers a comprehensive view of the human skin, histology
studies afford only partial observations. For example,
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previous analyses of thick samples using confocal micro-
scopy59 confirmed the presence of decreased vascular
densities within the sub-epidermal layers of participants
with diabetes compared to healthy individuals. These find-
ings were also consistent with our RSOM readouts (Fig. 3).
In contrast, histological analysis of thin samples from
superficial skin layers using conventional microscopy60

showed that the dermal vascular density was: (i) sig-
nificantly lower in participants with no or mild neuropathy
but (ii) higher in participants with moderate to severe
neuropathy, always compared to healthy individuals.
RSOM’s ability to capture three-dimensional images of the
entire skin in vivo not only enables longitudinal studies on
the same individual, but also more complete analyses of the
effects of diabetes on the skin.
RSOM represents a potential paradigm shift in the non-

invasive evaluation of skin vasculature, well beyond the
current state-of-the-art. Depending on the wavelength
employed, the method can penetrate several millimeters
under the skin surface. Using laser with a wavelength of
532 nm in this study, we focused on visualizing the first
millimeter of the skin while retaining high contrast due to
the relatively high absorption of hemoglobin in the green
region. Highly detailed RSOM images were showcased
herein both as cross-sectional images and as coronal ima-
ges from different layers. No other method today can
achieve this imaging detail and depth, using label-free
operation. Moreover, an RSOM system is cost-efficient and
can be made highly portable to allow disseminated use.
Therefore, the results point to the use of RSOM as a highly
potent strategy for offering a quantitative assessment of the
effects of diabetes on skin and possibly in diabetes staging.
Other tests that can measure skin changes include simple
visual assessment of the skin surface or Doppler imaging61

to assess changes in blood flow in the skin due to stimuli,
such as the post-occlusive increase of shear stress, hyper-
thermia, or drug applications62,63. Optical coherence
tomography also offers partial views of skin micro-
vasculature33,64. However, none of these methods offers the
quality and detail of RSOM, and consequently, none of
these methods have been considered for assessing skin
microvasculature and diabetes-related alterations.
There are several reports that microvascular changes

occur early in the course of diabetes3,5,7,8,59,60. This
observation points to a prospective study in high-risk
populations to examine RSOM biomarkers at different
stages of disease development, from pre-diabetes to dia-
betes. Such a study could further expand the possible
applications of RSOM, not only as a tool to stage and
monitor the progression of diabetes, but also as a means
for early detection. For example, with RSOM being safe,
portable, and non-invasive, such measurements could be
readily extended to larger-scale and multi-center studies,
in particular as it concerns collection of data for

identifying the early detection power of the RSOM bio-
markers. Likewise, optimization studies could be per-
formed to identify potential differences in different skin
loci of RSOM acquisition and select locations that further
improve performance. Our current RSOM system is
equipped with a monochromatic laser and provides access
to total hemoglobin measurements but does not differ-
entiate further between oxygenated and deoxygenated
hemoglobin. In the future, we aim to employ multi-
spectral RSOM imaging (see Fig. S12) to quantify changes
in both oxygenated and deoxygenated hemoglobin and
extract information on skin metabolism and oxygenation.
These measurements can be used to explain the patho-
physiology of chronic wounds and prognose disrupted
wound healing processes in participants with diabetes
mellitus that result in an enormous cost burden and
decreased of quality of life. Another potential use of
RSOM could be in improving classification of participants
with diabetes by assigning a quantitative “health score”
based on the status of skin features. The current practice
of separating diabetic and healthy populations based on a
simple threshold is a sub-optimal strategy for prevention
and diabetes healthcare25,26 that converts a gradual pro-
gression to a binary distribution. It has been noted25,26

that it is possible to administer better healthcare when the
population is not separated by a threshold but rather
assigned a score so that individuals are better alerted to
their condition, monitored closely and be considered for a
prevention program. A non-invasive portable and label-
free technology such as RSOM could play a vital role in
offering quantitative metrics in high-risk populations and
evaluating possible interventions. Although such strate-
gies apply primarily to participants with type 2 diabetes,
the overall need to improve diabetes staging has been
outlined for both types of diabetes 1 and 225,26.
In summary, we presented the first imaging study cor-

relating in vivo biomarkers to diabetes severity. The data
also represents the first optoacoustic mesoscopy images of
the skin of participants with diabetes, as well as the first
non-invasive in vivo study of the effects of diabetes and its
complications on skin microvasculature and skin micro-
anatomy in participants with diabetes mellitus. RSOM
extracted six label-free biomarkers associated with skin
morphology and microvasculature and identified fine
vasculature as the feature most sensitive to progress of
complications of diabetes. This finding further shows the
promise of RSOM as a potential point-of-care device for
quantifying systemic complications of diabetes and pro-
viding a quantitative score indicative of disease stage. Due
to its safety, portability, low cost, high image quality, and
ability to quantify label-free biomarkers, RSOM may offer
a paradigm shift in the clinical characterization of dia-
betes, assessment of interventions and in prevention
programs.
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Materials and methods
RSOM imaging system
We employed an in-house portable RSOM imaging

system featuring a transducer with a 10–120MHz band-
width and central frequency of ~50MHz (Fig. 1a), which
has been described in detail elsewhere27,65. Illumination
was provided by a pulsed laser at a wavelength of 532 nm.
The repetition rate of the laser was 1 kHz, yielding an
optical fluence of 3.75 µJ/mm2, which is far below the
safety limit according to the American National Standards
for Safe Use of Lasers in humans66. An optically and
acoustically transparent plastic membrane was affixed on
the participant’s skin over the examined position. Both the
laser output and ultrasound transducer (UT) were
mounted on the same scanning head placed close to the
membrane to position the focal point of the ultrasound
detector slightly above the skin surface and maximize
detection sensitivity. For every measurement, we con-
ducted a calibration step by placing the RSOM transducer
in a position so that the most superficial skin signal could
be clearly detected. The scanning head contained water as
a coupling medium. Two mechanical stages (PI, Ger-
many) were used to move the RSOM head. Both the laser
and the controller of the mechanical stages were placed
inside a plastic case, which ensured laser safety for all
participants, as shown in Fig. S1. The scanning field of
view is 4 × 2 mm2 with a step size 7.5 µm in the fast axis
and 15 µm in the slow axis. The axial and lateral resolu-
tions of RSOM is about 4.5 μm and 18.4 μm respectively,
our previous characterization measurements showed that
the resolutions generally remained constant throughout
the whole dermis (1.5 mm deep)27,65.

Recruitment, data grouping, and statistical analysis
One hundred and two (n= 102) participants with dia-

betes and 48 age-matched healthy volunteers were scanned
in total. Participants with diabetes and healthy volunteers
were recruited following approval from the Ethics Com-
mittee of the Faculty of Medicine of the Technical Uni-
versity of Munich (Protocol No 109/17S). All participants
with and without diabetes gave written informed consent
before the planned RSOM examination. RSOM data quality
was evaluated based on our previously developed RSOM
quality evaluation approach and low-quality data was
excluded67. Significantly, higher melanin concentrations in
skin could decrease the penetration depth of our imaging
system. The scanned regions from participants with strong
melanin were excluded to minimize the influence of the
melanin. Finally, RSOM data from 95 participants with
diabetes and 48 healthy volunteers were included in the
current analysis. Included participants were split into three
main groups based on the presence of relevant complica-
tions, such as peripheral neuropathy and macrovascular
atherosclerosis and peripheral artery disease (ASCVD/

PAD). Group A consisted of 45 participants with diabetes
but without complications (neither neuropathy nor
ASCVD/PAD). Group B included 25 participants with
diabetic neuropathy but without ASCVD/PAD. Group C
consisted of 25 participants with diabetic neuropathy and
ASCVD/PAD. The presence and severity of peripheral
neuropathy was assessed by using the neuropathy symptom
score (NSS)42 and painful symptoms were quantified with a
visual analog score ranging between 1 and 10. Peripheral
neuropathy was also assessed using the neuropathy dis-
ability score (NDS)43 in the range of 1 to 10, which included
10 g mono-filament testing, tuning fork vibration percep-
tion, pin prick perception, and temperature perception.
To quantify the effects of neuropathy, Group B was

further divided into two sub-groups with the low NDS
and NSS scores (n= 13, 1 ≤NDS ≤ 5 or 1 ≤NSS ≤ 5) and
high scores (n= 12, NDS > 5 or NSS > 5). Participants
with ASCVD/PAD were characterized either by a history
of cardiovascular events or by having undergone an
arterial revascularization procedure. PAD was character-
ized by the presence of a clinically relevant stenosis in the
peripheral arterial system, as diagnosed by Doppler
ultrasound measurements, which was associated with
intermittent claudication.

Participant preparation and image acquisition
Participants were asked to consume no caffeine or food

for at least 4 h before the RSOMmeasurements. They were
placed in a quiet and dark room and left to relax for at least
5 min. The temperature of the room was held stable at
23 °C during the whole procedure. The measurements were
performed with the participants in the supine position.
Each participant was scanned at 2 symmetric regions of
interest (ROIs, 4 × 2mm2) over the pretibial region of the
distal lower limb. The scan of the dominant leg was used
for further analysis. The pretibial region was used as
representative of skin microcirculation since the partici-
pants with diabetes are prone to developing cutaneous
alterations at this very position. Each RSOM scan lasted
~70 s. Before each scan, the skin was cleaned with alcohol
wipes. Both the participants and the operators used
appropriate goggles for laser safety reasons.

Image reconstruction
Acquired RSOM signals were divided into two fre-

quency bands, 10–40MHz (low) and 40–120MHz (high),
for the 10–120MHz bandwidth. Signals in the two dif-
ferent bands were independently reconstructed. Recon-
structions were based on beam-forming algorithms that
generated three-dimensional images65. The reconstruc-
tion algorithm was accelerated by parallel computing on a
graphics processing unit and improved by incorporating
the spatial sensitivity field of the detector as a weighting
matrix. The reconstruction time of one bandwidth takes
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about 5 min with voxel size of the reconstruction grid at
12 µm × 12 µm × 3 µm. The two reconstructed images
Rlow and Rhigh corresponded to the low- and high fre-
quency bands. A composite image was constructed by
fusing Rlow into the red channel and Rhigh into the green
channel of an RGB image. A weighting factor was intro-
duced for modulating the intensity of the high-frequency
band image. The detail process has been introduced in
our previous work27. The RSOM images can be rendered
by taking the maximum intensity projections of the
reconstructed images along the slow axis or the depth
direction as shown in Fig. 2.

Data quality control
For this study, we recruited 103 participants with diabetes

and 48 healthy volunteers and recorded 302 RSOM mea-
surements (two scans per person). Our previous studies
have shown that motion can significantly affect image
quality, although our motion correction algorithms can
offer marked improvements67,68. However, various motions
from physiological displacements due to arterial pulsation
and heartbeat and unintentional movements of the parti-
cipant may lead to inconsistent motion correction
improvements. Therefore, we developed a quality control
scheme based on the amount of motion in the raw data that
classifies the quality of data collected. The quality control
scheme enables the selection of high-quality datasets, in
which the motion is minimal enough for the motion-
correction algorithm to correct, resulting in consistent
correction improvements and uniform image quality for
quantitative analysis68. After the data quality evaluation,
RSOM datasets of 8 participants with diabetes were
excluded due to serious motion and low image quality.

Skin layer and microvasculature segmentation and
calculation of RSOM-based biomarkers
For layer segmentation, RSOM images were first flattened

based on our surface detection approach68. The recon-
structed volume of the selected frequency band
(10–40MHz) was split into four stacks with 0.5mm thick-
ness along the slow scanning axis. Then, the epidermis layer
in the MIP image of each stack was automatically segmented
by a graph theory and dynamic programming-based
approach (see Fig. S2)40. The segmented boundaries of the
epidermis layer from the four stacks were smoothed to
achieve the final segmented results, as shown in (Figs. 1c and
S2). The thickness of the epidermis layer was calculated as
the average width of the four segmented boundaries. Addi-
tionally, the signal density of the epidermis layer was deter-
mined as the ratio between the sum of the pixel intensity in
the epidermis layer and the total segmented volume of the
epidermis layer in the 4 × 2mm2 scanning region.
The dermis layer was segmented starting from the

bottom boundary of the epidermis layer and extending

1.5 mm deep. In the 4 × 2 mm2 scanning region, the total
blood volume in the segmented dermis layer was cal-
culated as ratio N

T

� � � 100, where N represents the
number of voxels with intensities above 20% of the
maximum voxel intensity, and T is the total voxel
number inside the 4 × 2 × 1.5 mm3 volume. Afterwards,
the vascular mask in the dermis was segmented by the
multi-scale matched filter-based vessel segmentation
algorithm, as shown in (Fig. 1d)41. Based on the mask,
vessel boundaries were extracted, and the corresponding
width of the boundaries was calculated as the vessel
diameter (Figs. 1d and Fig. S3). Then, the centerlines of
vessel boundaries were extracted, and junction points of
the centerlines were counted as the total vessel number
(see Fig. S3). To reduce noise or artifacts, we removed
isolated vessels with lengths <5 pixels (20 µm spatial
resolution divided by 3 µm pixel size is ~7). The total
vessel number was further divided into the small vessel
group and the large vessel group, which can be used to
investigate the diabetes effects on different size of ves-
sels. The small vessel number was determined based on
the number of junction points, where the average dia-
meter of the connected vessel was <40 µm. Corre-
spondingly, the large vessel number was computed as the
number of junction points, where the average diameter
of the connected vessel was >40 µm. The 40 µm cut-off is
a popular value for differentiating small arterioles and
venules from larger or even smaller (5–10 μm) capil-
laries69. Furthermore, smaller vessels (<40 μm) reside
only within the epineurium and endoneurium70, and
endoneurial microvessels are affected with the diabetic
nerves resulting in impaired blood supply (vasa ner-
vorum) and thus diabetic neuropathy71. We also ana-
lyzed this cut-off value of 40 μm based on vessel
diameter distributions of 20 healthy volunteers and 20
participants with diabetes as shown in Fig. S5. The vessel
diameter was equally categorized into 10 groups
according to size (10 µm size ranges from 10 µm in
diameter to 100 µm or more than 100 µm to investigate
the effects of diabetes on different vascular beds. We
noticed that more significant differences of vessel dia-
meter were found above the cut-off value of 40 μm when
comparing healthy participants against participants with
diabetes. Depending on the vessel characteristics of the
studied participants with and without diabetes, the cut-
off value can be altered to maximize sensitivity or spe-
cificity for the intended application. In addition, the
relation between RSOM features and age (see Fig. S6),
disease duration (see Fig. S7), body mass index (BMI)
(see Fig. S8), and HbA1c values (see Fig. S9) were
investigated and shown in the supplementary results. We
found that these parameters did not show obvious cor-
relation with the RSOM biomarkers and thus they did
not significantly influence the outcome of our study.
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Validation of the layer and vessel segmentation methods
The accuracy of the RSOM biomarker computation was

determined by the layer and vessel segmentation methods.
In RSOM images, the epidermal layer signal mostly derives
from the melanin generating a low frequency layer struc-
ture, while the microvasculature contains higher frequency
contents. It is very easy to separate visually the epidermal
layer from the dermal vasculature in RSOM images. To
validate the layer segmentation method, we compared the
results of the proposed automatic segmentation method
with the manual segmentation performed by two well-
trained and independent observers as shown in Fig. S2.
The correlation coefficients between the automatic and
manual segmentation methods are 0.92 (Observer 1) and
0.96 (Observer 2). Furthermore, we collected RSOM data
from the skin of the hip area (4 × 2 mm2) of 8 healthy mice
and compared with the corresponding histological images.
The animal measurements were performed in full com-
pliance with the institutional guidelines of the Helmholtz
Center Munich and with approval from the Government
District of Upper Bavaria. All scanning parameters of the
mouse measurements followed the same configurations of
the human measurements. The RSOM datasets of the 8
mice were reconstructed and analyzed following the same
analysis procedure of the human data. The RSOM image
of mouse skin was segmented into dermis and hypodermis
layers, and the vasculature in the hypodermis layer was
further segmented to compute the RSOM biomarker (total
blood volume). In addition, the dermis thickness of each
mouse was calculated in both histological and corre-
sponding RSOM images. CD31 immunostaining was
performed to evaluate vessel footprints. The total blood
volume in the histological image was computed as the
ratio between the vessel marker area and the total hypo-
dermis area, while the total blood volume of RSOM mouse
image was computed using the same analysis method of
the participants with diabetes data. As shown in Fig. S4,
the dermis thicknesses and total blood volumes showed
very good correlations between values obtained from the
histological and RSOM images (the correlation coefficients
values are 0.94 and 0.91 respectively). Furthermore, our
previous work has made a comparison of capillary imaging
by conventional nailfold capillaroscopy and RSOM55. The
capillary diameter and capillary density, which computed
from the segmented RSOM images, were correlated well
with the nailfold capillaroscopy. Moreover, our approaches
to segment RSOM skin features (including the epidermis
layer thickness and dermal vasculature) were validated in
previous work using histology27.

Statistics
A total number of 95 participants with diabetes and 48

healthy volunteers were grouped together to compute
biomarkers. All metrics were displayed into column table

with mean value and standard deviations as error bar.
Information of age/disease duration /Hb1Ac /BMI
between healthy controls and participants with diabetes,
and differences between the groups with diabetes and
subgroups or individuals with Type 1 or Type 2 diabetes
were evaluated by the mean of the Mann–Whitney U-test
as shown in Table 1 and supplementary Table I to Table
V. To assess the significance of the statistical differences
for the metrics between healthy and diabetic groups, and
sub-groups among participants with diabetes, we per-
formed parametric tests (unpaired t test) for normally
distributed data; otherwise, nonparametric tests
(Mann–Whitney U test) were applied. We have computed
the Spearman correlation to show the relationship among
age/disease duration /HbA1c /BMI with the vascular
biomarkers TBV (Total blood volume) and SVN (Small
vessel number). In addition, we also applied multivariate
logistic regression analysis to compute the statistics of the
two biomarkers TBV and SVN between different diabetic
groups with adjustment of age/disease duration /Hb1Ac
/BMI, and in the analysis of the diabetic neuropathy
groups as well. For the multiple regression analysis, all
variables that were significantly associated with RSOM
biomarkers in the univariate analysis were included in the
model. Statistical significance was defined at P < 0.05.
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Supplementary Information for 

Opening a window to skin biomarkers for diabetes stage with optoacoustic mesoscopy 

 

 

 

 

 

 

Figure S1. Picture of the portable RSOM imaging system. The laser source and the stage controller are contained within a 

plastic suitcase, creating a controlled laser safety environment during the measurement of the participants with or without diabetes 

mellitus.    
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Layer segmentation method and validation. To segment the epidermis (EP) layer, RSOM images were first 

flattened based on our surface detection approach1. The reconstructed volume of the selected frequency band [10-

40 MHz, Fig. S2a] was split into four stacks with 0.5 mm thickness along the slow scanning axis. Then, the 

epidermis layer in the MIP image of each stack was automatically segmented by a graph theory and dynamic 

programming-based approach2. To validate the layer segmentation method, we randomly selected 30 RSOM 

images (from the healthy volunteers and participants with diabetes) and compared the results of the automatic 

segmentation method with the manual segmentation performed by two well-trained and independent observers as 

shown in Fig. S2f. The correlation coefficients between the automatic and manual segmentation methods are 0.92 

(Observer 1) and 0.96 (Observer 2). 

 

 

Figure S2. RSOM image layer segmentation. (a) The reconstructed RSOM image of low frequency (10-40 MHz) signals, which 

mainly contain the epidermis layer structure originated from the skin pigment melanin. (b) The corresponding reconstructed 

RSOM image of (a) in the full frequency bandwidth, where the white dashed lines segment the epidermis layer. (c-e) Validation 

results of the layer segmentation on RSOM images of several healthy volunteers and participants with diabetes. (f) Comparisons 

of the layer segmentation results of 30 RSOM images between the automatic and manual segmentation methods by two 

observers based on human vision showing good correlations. EP: Epidermis, DR: Dermis. 
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Figure S3. Automatic vessel segmentation of the dermal vasculature and computation of biomarkers. (a) Cross-sectional 

RSOM image from a healthy volunteer. The white dashed lines segment the epidermal layer and dermis layer; (b) The segmented 

dermal layer; (c) The binary image of the segmented dermal vasculature; (d) The centerlines of the segmented binary image (c); 

Red dots mark the branches of vessels, used to count the vessel number; (e) The segmented boundaries of the binary image (c); 

(f) Computation of the diameter of the segmented vessel boundaries (e). EP: Epidermis, DR: Dermis. 
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Validations of the layer and vessel segmentation method. To validate the RSOM computed biomarkers, we 

collected RSOM data from the skin of the hip area (4×2 mm2) of 8 healthy mice and compared with the 

corresponding histological images. As shown in Fig. S4a and S4c, the RSOM image of the mouse skin was 

segmented into dermis and hypodermis layers, and the vasculature in the hypodermis layer was further segmented 

to compute the total blood volume. In addition, the dermis thickness of each mouse was calculated in both 

histological (Fig. S4c) and corresponding RSOM images (Fig. S4a). CD31 immunostaining was performed to 

evaluate vessel footprints (black arrows in Fig. S4c). The total blood volume in the histological image was computed 

as the ratio between the vessel marker area and the total hypodermis area, while the RSOM biomarker (total blood 

volume) was computed using the same analysis method of the human data. The dermis thickness and total blood 

volume showed very good correlations between the histological and RSOM images (the correlation coefficient 

values are 0.94 and 0.91, respectively) shown in Fig. S4d. 

 

 

Figure S4. Validations of layer and vessel segmentation methods on animal data with histology. (a) Cross-sectional RSOM 

image of the skin obtained from the hip area of a healthy male mouse. The dermis and hypodermis layers of mouse skin were 

automatically segmented as indicated by the white dashed line. (b) Corresponding MIP RSOM image of the microvasculature in 

the coronal view of the hypodermis layer. (c) CD31 immunostaining of the scanned mouse skin, where the black dashed line 

separates the dermis and hypodermis, in good correlation with the RSOM image (a). The vessels are indicated by the black 

arrows. To validate the segmentation method, the results of automatic segmentation of RSOM images were compared against 

manual segmentation of histological images using 8 mice of different weights. (d) The dermis thicknesses and total blood volumes 

were calculated from histological images and RSOM images, with high correlations found between values obtained from RSOM 

and histological images.  

 

 

  



5 

 

Selection of the cut-off vessel diameter to distinguish between participants with and without diabetes. In 

this study, vessels were categorized according to size (10 µm size ranges from 10 µm in diameter to 100 µm or 

more than 100 µm) to investigate the effects of diabetes on different vascular beds. The cut-off value was 

determined based on vessel diameter distributions of 20 healthy volunteers and 20 participants with diabetes as 

shown in Fig. S5. We noticed that more significant differences were found above the cut-off value of 40 µm when 

comparing healthy participants against participants with diabetes. Depending on the vessel characteristics of the 

study participants with and without diabetes, the cut-off value can be altered to maximize sensitivity or specificity 

for the intended application. 

 

 

 

Figure S5. Vessel number distributions in healthy volunteers and participants with diabetes. All vessels of 20 healthy (H) 

volunteers and 20 participants with diabetes (D) are categorized into 10 groups based on the vessel diameter. Values are means 

with standard deviations shown as error bars.  
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To understand the effects of diabetes on the vascular biomarker, we computed the Spearman correlation value 

between age/disease duration/HbA1c/BMI with the vascular biomarker TBV and found no significant correlations 

as shown in supplementary Table I. We further applied multivariate logistic regression analysis to estimate the 

significance of TBV between the healthy and diabetic groups including variables of age and BMI, which showed no 

significant association between the vascular biomarker and patient parameters. 

 

 

Table I Correlation and multivariate logistic regression analysis between vascular biomarker (Total blood volume: TBV) and 

patient parameters. 

 Correlation*  Multivariate** 

r p β p 

0.0007 

n/a 

n/a 

0.0004 

Age (years) -0.08 0.54 0.92 

Disease duration (years) -0.04 0.69 n/a 

HbA1c (%) -0.014 0.90 n/a 

BMI (kg/m²) -0.13 0.42 0.83 

Note: *The Spearman correlation value was calculated between TBV and the various patient parameters and no significant 

correlations were found; **Multivariate logistic regression analysis was applied to compute the significance of vascular biomarker 

TBV between the healthy and participants with diabetes groups including the variables of age and BMI, which still show 

significant differences between the healthy and patient groups. n/a: Not applicable. BMI: Body mass index, HbA1c: Glycated 

hemoglobin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

For participants with neuropathy, we carefully compared age, disease duration, HbA1c and BMI between NC 

(participants with diabetes and no complications), LN [participants with diabetes and low score neuropathy (1≤ 

NDS ≤ 5 or 1≤NSS ≤ 5)] and HN [participants with diabetes and high score neuropathy (NDS > 5 or NSS > 5)] as 

shown in supplementary Table II. There are no significant differences in age, HbA1c and BMI values among the 

three groups and only the duration of disease between the NC and LN differs significantly. We also computed the 

Spearman correlation between age/ duration of disease /HbA1c/BMI with the vascular biomarker TBV of the three 

groups and we found no significant correlation as shown in supplementary Table III. 

 

Table II Participant information for diabetic neuropathy analysis. 

 NC (n=45) LN (n=13) P value* HN (n=12) P value** 

Age (years) 63.1±18.7 68.8±8.3 ns 71.3±10.8 ns 

Disease duration 

(years) 

12.1±11.2 28.7±18.9 <0.05 27.1±14.2 ns 

HbA1c (%) 7.1±1.6 7.2±0.7 ns 7.3±0.7 ns 

BMI (kg/m²) 27.4±7.6 30.6±10.7 ns 29.8±6.0 ns 

 

Note: * NC group versus LN group; **LN group versus HN group [participants with diabetes and high score neuropathy (NDS > 

5 or NSS > 5). NC: participants with diabetes and no complications, LN: participants with diabetes and low score neuropathy (1

≤ NDS ≤ 5 or 1≤NSS ≤ 5) and HN: participants with diabetes and high score neuropathy (NDS > 5 or NSS > 5). We performed 

parametric tests (unpaired t-test) for normally distributed data; otherwise, non-parametric tests (Mann Whitney U test) were 

applied. Statistical significance was assumed at P < 0.05. ns: Not statistically significant. BMI: Body mass index, HbA1c: Glycated 

hemoglobin. 

 

 

 

 

Table III Correlation between vascular biomarker (Total blood volume: TBV) and participant parameters in the diabetic neuropathy 

groups. 

Variable NC LN HN 

r p r p r p 

Age (years) -0.08 0.41 -0.11 0.41 -0.18 0.42 

Disease duration (years) -0.04 0.41 -0.17 0.27 -0.09 0.31 

HbA1c (%) 0.019 0.43 -0.13 0.34 -0.24 0.29 

BMI (kg/m²) -0.19 0.57 -0.14 0.41 -0.07 0.38 

Note: The Spearman correlation value was computed between TBV and the patient parameters in each group with no 

significant correlations found. NC: participants with diabetes and no complications, LN: participants with diabetes and low 

score neuropathy (1≤ NDS ≤ 5 or 1≤NSS ≤ 5) and HN: participants with diabetes and high score neuropathy (NDS > 5 or 

NSS > 5). BMI: Body mass index, HbA1c: Glycated hemoglobin. 
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To examine the effects of age, disease duration, HbA1c and BM, as shown in supplementary Table IV, we applied 

multivariate logistic regression analysis including the variables of age, duration of the disease, HbA1c and BMI, 

which did not show significant effects in the statistical analysis among the three groups NC, LN, and HN. 

 

Table IV Multivariate logistic regression analysis of participant groups with neuropathy, including patient parameters. 

Patient parameters Patient groups P value* P value with adjustment** 

Age (years) NC and LN <0.05 <0.05 

LN and HN <0.001 <0.001 

Disease duration 

(years) 

NC and LN <0.05 <0.05 

LN and HN <0.001 <0.001 

HbA1c (%) NC and LN <0.05 <0.05 

LN and HN <0.001 <0.001 

BMI (kg/m²) NC and LN <0.05 <0.05 

LN and HN <0.001 <0.001 

 

Note: * We performed parametric tests (unpaired t-test) for normally distributed data; otherwise, nonparametric tests (Mann 

Whitney U test) were applied. Values of P < 0.05 were considered statistically significant. **Multivariate logistic regression 

analysis was applied to compute the significance of the vascular biomarker TBV between the patient groups NC and LN, and LN 

and HN including the variables of age, disease duration, Hb1Ac, and BMI, which did not affect the statistical results. NC: 

participants with diabetes and no complications, LN: participants with diabetes and low score neuropathy (1≤ NDS ≤ 5 or 1≤

NSS ≤ 5) and HN: participants with diabetes and high score neuropathy (NDS > 5 or NSS > 5). BMI: Body mass index, HbA1c: 

Glycated hemoglobin. 

 

 

We compared the characteristics of participants with type 1 and type 2 diabetes, as shown in supplementary Table 

V. We found that there were no significant differences in age, Hb1Ac and BMI values between the two groups and 

that only the type 1 group had significantly longer disease duration compared with the type 2 group.  

 

 

Table V Characteristics of participants with type 1 and type 2 diabetes 

 Type 1 (n=21) Type 2 (n=74) P value 

Age (years) 67.2±12.4 68.2±11.4 ns 

Disease duration (years) 32.0±19.3 16.1±11.5 <0.05 

Hb1Ac (%) 7.5±0.8 7.0±1.2 ns 

BMI (kg/m²) 27.1±3.4 26.9±8.1 ns 

 

Note: We performed parametric tests (unpaired t-test) for normally distributed data; otherwise, nonparametric tests (Mann 

Whitney U test) were applied. Statistical significance was assumed at P < 0.05, ns: Not statistically significant. BMI: Body mass 

index, HbA1c: Glycated hemoglobin. 
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Figure S6. Quantification of RSOM features in relation to patient ages. 72 participants with diabetes from the first dataset 

were grouped based on their ages (years) as follows: 46-55 (n = 15), 56-65 (n = 18), 66-75 (n = 20), >75 (n = 10). Comparisons 

among age groups for six RSOM features were carried out: (a) Total number of small vessels (with diameter <= 40 µm) in DR 

layer; (b) Total number of large vessels (diameter > 40 µm) in DR layer; (c) Total number of vessels in DR layer; (d) Total blood 

volume in DR layer; (e) Thickness of EP layer; (f) Signal density of EP layer. * Represents P < 0.05. The numbers of small, large, 

and total vessels were significantly reduced for 45 to 55-year-old participants when compared to 56 to 65-year-old participants. 

The vessel number and blood volume decrease with increasing age, however, there is no significant change among the groups 

(56-65, 66-75 and >75). In addition, age does not obviously affect the Epidermal thickness and the Epidermal signal density. EP: 

Epidermis, DR: Dermis. 
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Figure S7.  Quantified RSOM features plotted against diabetes duration. 72 participants with diabetes from the first dataset 

were grouped based on disease duration (years) as follows: 1-10 (n =25), 11-20 (n = 18), 21-30 (n = 10), >30 (n = 10). 

Comparisons amongst disease duration for six RSOM features were carried out: (a) Total number of small vessels (with diameter 

<= 40 µm) in DR layer; (b) Total number of large vessels (diameter > 40 µm) in DR layer; (c) Total number of vessels in DR layer; 

(d) Total blood volume in DR layer; (e) Thickness of EP layer; (f) Signal density of EP layer. * Represents P < 0.05. The numbers 

of small, large, and total vessels were significantly reduced in the group with 11 to 20 years of diabetes duration compared to the 

group with 21 to 30 years of diabetes duration. However, there were no significant changes when the other groups, i.e., 1-10 

versus 11-20 or 21-30 versus >31 were compared. Mean blood volume reduced with the increment disease duration. The 

diabetes duration did not play a significant role in influencing the Epidermal thickness and the Epidermal signal density. EP: 

Epidermis, DR: Dermis. 
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Figure S8. Quantification of RSOM features in relation to body mass index (BMI). 72 participants with diabetes from the first 

dataset were grouped based on BMI values as follows: Normal weight (18.5<BMI<25, n =18), Overweight (25<BMI<30, n = 25), 

Obesity (BMI>30, n = 20). Comparisons among the three BMI groups were done for six RSOM features: (a) Total number of small 

vessels (with diameter <= 40 µm) in DR layer; (b) Total number of large vessels (diameter > 40 µm) in DR layer; (c) Total number 

of vessels in DR layer; (d) Total blood volume in DR layer; (e) Thickness of EP layer; (f) Signal density of EP layer. * Represents 

P < 0.05. It can be observed that the mean numbers of total and large vessels were reduced between the group with normal 

weight and the overweight group. However, there is no significant difference. Mean blood volume, Epidermal thickness and 

Epidermal density were all decreased in the overweight and obesity groups compared to the normal weight patient group. 

However, the BMI values did not play a significant role in influencing RSOM biomarkers. EP: Epidermis, DR: Dermis. 
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Figure S9. Quantification of RSOM features associated with HbA1c values. 72 participants with diabetes from the first dataset 

were grouped based on HbA1c values as follows: HbA1c >= 7% (n=34), HbA1c < 7% (n=38). Comparisons between the two 

HbA1c groups were carried out for six RSOM features: (a) Total number of small vessels (with diameter <= 40 µm) in DR layer; 

(b) Total number of large vessels (diameter > 40 µm) in DR layer; (c) Total vessel numbers in DR layer; (d) Total blood volume 

in DR layer; (e) Thickness of EP layer; (f) Signal density of EP layer. It can be noticed that the HbA1c values did not significantly 

affect the RSOM biomarkers examined. EP: Epidermis, DR: Dermis, HbA1c: Glycated hemoglobin. 
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Figure S10. Quantification of epidermal thickness in participants with diabetes with neuropathy and the presence of 

atherosclerosis. Participants with diabetes were grouped as follows: N_NA (n=25), diabetic subjects with neuropathy and no 

atherosclerosis; N_CAR (n=7), diabetic subjects with neuropathy and carotid atherosclerotic disease; N_CAD (n=11), diabetic 

subjects with neuropathy and coronary artery disease; N_PAD (n=10), diabetic subjects with neuropathy and peripheral arterial 

disease; * Represents P < 0.05. The Epidermal thickness of the N_PAD group (64.89±8.43 µm) is significantly lower than in the 

group N_NA (73.02±15.08 µm).  
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Classification between participants with diabetes and healthy volunteers based on RSOM biomarkers. As 

demonstrated in Fig. 1 and 2, the RSOM biomarkers (Total blood volume and Small vessel number) were the two 

most indicative markers of diabetes (see Fig.1, 2), providing the starkest contrast between groups with or without 

diabetes. To investigate how RSOM biomarkers differentiate participants with diabetes from healthy volunteers, we 

trained a simple linear SVM (support vector machines) model to classify the participants with diabetes and the 

healthy volunteers. Since the RSOM data were collected from two hospitals and we simply separated them into 

the primary cohort (dataset 1 acquired from the first hospital: 72 participants with diabetes and 20 healthy 

volunteers) and the testing cohort (dataset 2 acquired from the second hospital: 23 participants with diabetes and 

28 healthy volunteers). All patient information is listed in Table I and supplementary Table I. The total data (dataset 

1 + dataset 2) based on the values of the two biomarkers were divided into four groups: non-diabetic volunteers 

from dataset 1 (NV-1, n=20), participants with diabetes from dataset 1 (DP-1, n=72), non-diabetic volunteers from 

dataset 2 (NV-2, n=28), participants with diabetes from dataset 2 (DP-2, n=23). As shown in Fig. S11a, the SVM 

classifier achieved 89.1% accuracy with 88.8% sensitivity and 90.0% specificity based on the biomarker of TBV 

(Total blood volume), while 90.2% accuracy with 93.1% sensitivity and 80.0% specificity was obtained using the 

biomarker of SVN (Small vessel number). Receiver operating characteristic (ROC) curves (Fig. S11b) were 

constructed based on the biomarkers of the TBV and SVN, revealing an area under the ROC curve (AUC) of 0.91 

and 0.93 respectively. The combination of the two biomarkers resulted in a higher accuracy of 91.3% with 93.1% 

sensitivity and 85.0% specificity. Furthermore, we tested the classifier trained from the primary cohort on the testing 

cohort and achieved the prediction classification accuracy of 84.1% with 82.6% sensitivity and 82.1% specificity, 

which suggested that the SVM classifier determined by the two biomarkers performs well in classifying the 

participants of the testing cohort into the non-diabetic or the diabetic groups. 
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Figure S11. Classification model to differentiate participants with diabetes and healthy volunteers. The total data was 

grouped into a primary cohort (dataset 1, 72 participants with diabetes and 20 volunteers without diabetes) and a testing cohort 

(dataset 2, 23 participants with diabetes and 28 volunteers without diabetes). The total dataset was divided into four groups: non-

diabetic volunteers from dataset 1 (NV-1, n=20), diabetic participants from dataset 1 (DP-1, n=72), non-diabetic volunteers from 

dataset 2 (NV-2, n=28), diabetic participants from dataset 2 (DP-2, n=23). The black line indicates the position of the linear SVM 

classifier based on the combination of the two biomarkers. a. Classification accuracy, sensitivity, specificity, and the AUC values 

computed by the linear SVM classifier on dataset 1. The trained SVM classifier was tested on dataset 2 with the prediction values.  

b. ROC plots in the differentiation of diabetes using TBV and SVN separately. TBV: Total blood volume, SVN: Small vessel 

number, ROC: Receiver operating characteristic, AUC: Area under the ROC curve.  

 

 

Figure S12. Absorption coefficient spectra of several endogenous tissue chromophores. Red line: oxyhemoglobin; blue 

line: deoxyhemoglobin; black line: water; brown line: lipid; black dashed line: melanin; green line: collagen: green line; and yellow 

line: elastin: yellow line. Data compiled by Scott Prahl, Oregon Medical Laser Center (http://www.omlc.ogi.edu/spectra). 
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Supplementary information accompanies the manuscript on the Light: Science & 

Applications website (http://www.nature.com/lsa) 
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