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Abstract

Safety is a significant challenge when deploying personal care robots, automated vehicles,
and collaborative robots in human environments. Furthermore, a safe system shall not overly
restrict task efficiency. Due to the increasing complexity of safety functions and their verifica-
tion, formal methods are desired to create safe-by-design robotic controllers or to mathemat-
ically prove safety. Such techniques depend on verification models to describe the behavior
of the real system. However, the challenge with formal methods that use verification models
is bridging the gap between model and reality. To overcome this gap in verifying safety, the
reachset conformance relation has been proposed, which states that the reachable set of the
model always includes the behavior of the real system so that an unsafe region unreachable
by a model is also unreachable by the real system.

This dissertation proposes a framework for model identification that establishes a reachset
conformance relation between the identified model and the real system. This is achieved by
considering uncertainties in the verification model, measuring the real system, and adapt-
ing the uncertainties to establish reachset conformance. This framework discusses selecting
identification objectives and choosing model structures and provides efficient algorithms for
identifying linear dynamics with uncertain disturbances.

The effectiveness of the identification framework has been tested on various safety problems
in the human-robot interaction domain. By modeling and identifying human-robot interaction
as an uncertain system, safety properties are ensured, such as collision avoidance and adhering
to force limits in physical interaction. The author demonstrates that using formal methods
such as online verification increases the task efficiency of robots while maintaining human
safety. This work also uses verification models to ensure that robotic motion controllers do
not violate torque constraints. The identification framework can be combined with formal
synthesis to simultaneously create safe-by-design controllers and their underlying verification
model.
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Zusammenfassung

Sicherheit ist eine grofle Herausforderung beim Einsatz von Pflegerobotern, automatisierten
Fahrzeugen und kollaborierenden Robotern in menschlicher Umgebung. Auflerdem darf ein
sicheres System die Effizienz der Roboterarbeit nicht zu sehr einschranken. Aufgrund der
zunehmenden Komplexitat von Sicherheitsfunktionen und deren Verifikation werden formale
Methoden gewtinscht, um Safe-by-Design-Robotersteuerungen zu erstellen oder die Sicherheit
mathematisch zu beweisen. Solche Methoden sind auf Verifikationsmodelle angewiesen, um
das Verhalten des realen Systems zu beschreiben. Die Herausforderung bei formalen Metho-
den, die Verifikationsmodelle verwenden, besteht jedoch darin, die Liicke zwischen Modell und
Realitat zu schlieBen. Um diese Liicke bei der Verifizierung der Sicherheit zu schlieSen, wurde
die Reachset-Konformanzrelation vorgeschlagen, die besagt, dass die erreichbare Menge des
Modells immer das Verhalten des realen Systems umfasst, so dass eine unsichere Region, die
von einem Modell nicht erreicht werden kann, auch vom realen System nicht erreicht werden
kann.

In dieser Dissertation wird eine Vorgehensweise fiir die Modellidentifikation vorgeschlagen,
die eine Reachset-Konformanzrelation zwischen dem identifizierten Modell und dem realen
System herstellt. Dies wird erreicht, indem Unsicherheiten im Verifikationsmodell bertick-
sichtigt werden, das reale System gemessen wird und die Unsicherheiten so angepasst wer-
den, dass eine Reachset-Konformanz hergestellt wird. Fiir die Vorgehensweise wird in dieser
Arbeit die Auswahl von Identifikationszielen sowie Modellstrukturen erortert und effiziente
Algorithmen zur Identifikation linearer Dynamik mit unsicheren Stérungen vorgeschlagen.

Die Wirksamkeit unserer Vorgehensweise fiir Modellidentifikation wurde an verschiede-
nen Sicherheitsproblemen im Bereich der Mensch-Roboter-Interaktion getestet. Indem die
Mensch-Roboter-Interaktion als unsicheres System modelliert und identifiziert wird, ist es
moglich, Sicherheitseigenschaften wie Kollisionsvermeidung und die Einhaltung von Kraft-
grenzen in der physischen Interaktion zu gewéhrleisten. Der Autor zeigt, dass der Ein-
satz formaler Methoden wie der Online-Verifikation die Arbeitseffizienz von Robotern erh6ht
und gleichzeitig die Sicherheit des Menschen gewéhrleistet. Diese Arbeit verwendet auch
Verifikationsmodelle, um sicherzustellen, dass Roboterbewegungssteuerungen keine Drehmo-
mentbeschrankungen verletzen. Die Vorgehensweise zur Modellidentifikation kann mit der
formalen Synthese kombiniert werden, um gleichzeitig Safe-by-Design-Steuerungen zu en-
twerfen und das zugrunde liegende Verifikationsmodell zu liefern.
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1 Introduction

Robotics and automation are of increasing importance to a prosperous economy and society
by relieving the work of humans. So-called collaborative robots are moving out of their
traditional workspaces in industrial applications and operating closer to humans. Examples
are robots that assist older people, do household work, act as museum tour guides, or perform
surgeries. For these applications, robot manufacturers must ensure that these collaborative
robots are safe and reliably fulfilling their tasks. At the same time, humans should never be
harmed during an interaction with a robot, no matter in which situation. The future success
of robotics will highly depend on how safe the control algorithms will be.

Traditionally, control algorithms are extensively tested before deployment. For example,
the Google Waymo project is simulating the equivalent of billions of years of driving to
test the safety of their control algorithms [11]. Due to the complexity of our environment
and its continuous nature, however, it is unfeasible to simulate every possible scenario and
every possible combination of circumstances. In addition, such simulations could even leave
out essential details relevant to the real robot’s behavior. To counter these issues, formal
methods are increasingly explored in robotics [12]. Such techniques aim to ensure safety
through mathematical proofs and thus derive control algorithms that are safe by design.

One promising approach for the formal verification of safety is reachability analysis [13]:
instead of simulating single trajectories of a system, reachable sets are computed, which
are sets that include all possible trajectories given all uncertain parameters of a system.
Subsequently, this work models unsafe sets, i.e., these are areas the system should not reach.
Safety is formally proven by demonstrating that the reachable set of the robot system never
intersects with unsafe sets. This is visualized in Figure 1.1. The advantage of such an
approach is that reachability analysis allows modeling engineers to explicitly use uncertain
but bounded parameters in their verification models so that non-deterministic and complex
system behavior can be abstracted and contained.

initial set initial set

possible violation

reachable set

reachable set

safety cannot be verified safety is verified

Figure 1.1: Safety verification is a reachability problem. If the reachable sets of a system do not
intersect with unsafe sets, then the system is verified safe.
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Figure 1.2: Reachset-conformant models enable a safety property transfer from the verification
model to the real-world system.

Both simulation and formal analysis rely on sufficiently accurate modeling of the robot
system interacting with its environment. However, the question arises about what sufficiently
accurate means. Whether a model is suitable depends on its intended purpose, e.g., a first-
principles model is derived from physical laws to fundamentally understand the behavior
of a system. In contrast, control models are developed to help optimizing the performance
of a controlled system through simulating the plant system. For verification models, it is
required that they have a formal relationship to the real system. This is also called model
conformance [14], i.e., a verification model would be sufficiently accurate if it satisfies the
necessary conformance relation. For safety properties, reachset conformance is a necessary
and sufficient relation between a model and the real system [15]. Figure 1.2 illustrates the
relations between the real system, the verification model, and a safety property. Yet, how
can such a model be found, and what can be done to ensure that this model satisfies reachset
conformance? Hence, this thesis is concerned with the following research question:

How can a verification model be identified to formally prove the safety of human-robot
interaction and ultimately allow robots to safely operate alongside humans?

Throughout my research, I have developed a methodology for solving this question and
demonstrated my identification approach to the safety verification of real human-robot in-
teractions. As a result, I published multiple papers with examples of safety properties and
applied formal methods to real robotic systems, which in some cases even improved the
task efficiency. I have chosen the publication-based thesis format to present my results, and
therefore, I have selected the following structure for this thesis:

e Section 1.1 presents a literature overview highlighting the challenges of applying formal
methods to human-robot interaction.

e Section 1.2 lists my publications that are included in this thesis, which tackle the main
research question.

e Chapter 2 describes the general methodology: it provides basic definitions and introduce
the framework for identifying verification models for safety. Simple examples from my
papers are included to convey the basic ideas.

e Chapter 3 discusses the conclusions of my research and lists future work.

e The Appendix includes my full papers, where each paper is introduced by a summary
describing how they relate to this thesis and listing the contributions of each co-author.
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1.1 Overview of related literature

This section reviews related literature and identifies the challenges this thesis tackles. Safe
human-robot interaction is reviewed in Section 1.1.1, formal methods in robotics are reviewed
in Section 1.1.2, and model identification for formal methods are reviewed in Section 1.1.3.
An overview of further literature and challenges can be found in my publications in [1-10].

1.1.1 Safe human-robot interaction

Multiple standards have been introduced as guidance for safely designing and operating robot
systems around humans. The International Organization for Standardization (ISO) norms
provide a worldwide common understanding of robot safety. We would like to highlight the
following standards [16-19]:

e ISO 12100 [16] specifies general principles for the safe design of a machine and focuses
on risk assessment and risk reduction. Risk reduction should be achieved through (in
the order of priority) 1) inherently safe design, 2) safeguards and protective devices, and
3) information for use. The application if such principles lead to the recommendations
in ISO 10218 and ISO 13482, but also the works in this thesis can be regarded as a
result of applying the first principle. The risk assessment and reduction process for
safety controllers is specified in more detail in ISO 13849 and IEC 62061 [16].

e ISO 10218 [17] specifies safety requirements of industrial robots. It also lists four pos-
sible modes for human-robot collaboration and their requirements, which are 1) safety-
rated monitored stop, 2) hand-guiding, 3) speed and separation monitoring, and 4)
power and force limiting. Examples for computing the limits for maximum power,
force, velocity, and energy are given in ISO/TS 15066 [18], which will be integrated into
future versions of ISO 10218.

e ISO 13482 [19] specifies safety requirements for personal care robots, including mobile
servant robots, physical assistant robots, and person-carrier robots. Safety controller
requirements for human-robot interaction are concerned with stopping functions, oper-
ational spaces, stability, speed and force control, human detection, etc.

The latter two standards also provide implementation examples for fulfilling the safety re-
quirements. Since collaborative applications have been introduced fairly recently, the pro-
posed methods and the safety limits still need to be explored within the research community.
Multiple works [20,21] are pointing out that the abstract models used in ISO/TS 15066 [18]
for converting between force, energy, and velocity limits are inaccurate and could lead to
dangerous behavior. In our work in [2], we have shown that robots are guaranteed to avoid
collisions without defining operational spaces as required in ISO 13482 and that these spaces
unnecessarily decrease robot performance.

Naturally, safety standards can only be based on available technologies at the time of their
publication, and their content may change in the future, incorporating updated research
results. In the meantime, newer methods that improve robot efficiency and cover more ap-
plications are being developed. Recent examples of improving efficiency include a dynamic
scaling of the operational spaces [22] and a dynamic scaling of robot velocity based on human
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behaviors [9,23]. The work in [24] proposes a new controller that smoothly switches between
energy limits for human-robot collaboration depending on human behavior through variable
impedance control. Some works consider probabilistic models, e.g., [25] uses Gaussian pro-
cesses to model the contacts of the robot with the environment to reduce collision forces,
and [26] trains convolutional neural networks to compute control policies for navigating in
crowded environments. However, the work in [27] points out that probabilistic methods are
problematic when considering human uncertainty. The authors argue that a failure prob-
ability of under 1078 is necessary, but existing learning methods would be ill-equipped to
compute accurate confidence bounds at such low probabilities.

Formal methods for guaranteeing safety are not yet considered in current robotic standards.
For verifying safety functions, both ISO 10218 and ISO 13482 focus on non-formal techniques,
such as testing, code review, and sufficient documentation of the risk assessment procedure.
As pointed out earlier, this may not be sufficient for applications such as human-robot inter-
action, where human behavior varies broadly and is highly uncertain, and the applications are
getting increasingly complex. As research on formal methods for safety-critical applications
progresses, they are being increasingly advocated for adoption in safety standards [28]. Still,
a wide-scale application will ultimately depend on the maturity of these methods. Thus, the
following subsection covers recent advances in formal methods in robotics.

1.1.2 Formal methods in robotics

First, let me define formal methods. The survey of Kress-Gazit et al. in [12] gives the following
definition (emphasis added):

Formal methods are mathematical tools and techniques used in several engi-
neering domains to reason about systems, their requirements, and their guaran-
tees. Typically, formal methods address two questions: verification (given a set
of requirements or specifications and a system model, does the system satisfy the
specifications?) and synthesis (given a set of specifications, can one generate a
system that is correct by construction, i.e., built in a way that is guaranteed to
satisfy the requirements?).

This thesis addresses both formal synthesis and formal verification. However, requirements,
such as those in the previously mentioned safety standards, are usually written in natural
language. Requirements must be formulated in a mathematically precise language for use
in formal methods. Typically, temporal logic can be used for this, e.g., linear temporal logic
(LTL), metric temporal logic (MTL), or signal temporal logic (STL) [12,29]. For example,
the authors of [30] cooperated with lawyers to formalize road traffic rules into MTL formulas
based on German laws, the Vienna Convention, and previous court decisions. Specifications
can be roughly categorized into safety specifications, i.e., how the robot should always behave,
and liveness specifications, i.e., task goals that the robot should eventually achieve [12]. For
the following discussion, the focus is mainly on safety.

Formal verification aims to check whether the controlled system satisfies the required spec-
ifications. Multiple techniques have been developed for robotic systems, where the dynamics
can be hybrid, i.e., continuous and discrete dynamics. Examples are theorem proving [31],
barrier certificates [32], and reachability analysis [13], each of which have a differing view on
the task of safety verification:
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e Theorem proving aims for logically proving the specifications by also representing the
dynamics of hybrid systems as logical formulas, e.g., using differential dynamic logic [31].

e Barrier certificates are functions of the state, which are positive for unsafe states, nega-
tive for safe states, and have a negative derivative [32]. Thus, the existence of a barrier
certificate proves safety; this notion is similar to Lyapunov functions since the main
challenge to verify safety is finding the barrier certificate. Control barrier functions
(CBF) are input-dependent barrier certificates, i.e., the CBF is a barrier certificate if
the control input is chosen from a constrained set.

e Reachability analysis computes the set of all possible behaviors of a system. Safety is
verified by geometrically checking for intersections with unsafe sets, as shown in Figure
1.1. Unsafe sets are part of safety properties, which will be formally defined in Section
2.1.

One example in the literature analyzed with all three verification methods is the collision
avoidance problem of mobile robots around moving obstacles [2,33,34]. Other examples of
using CBFs are guaranteeing the foot placement of legged robots on stepping stones [32],
safe adaptive cruise control (ACC) for autonomous driving [32], guaranteeing that a fleet
of mobile robots never runs out of energy [32], or guaranteeing torque saturation of robot
manipulators [35]. However, an important drawback of classical CBFs is that they do not
inherently consider uncertainties. Only recent works such as [36] consider robust variants
with measurement errors. In contrast, reachability analysis explicitly considers dynamics
where uncertainties can be modeled as bounded sets. The work in [37] predicts possible
future occupancies of traffic participants, where adherence to traffic laws can also be factored
in the verification model. These predicted occupancies can be used to iteratively verify
possible motions of an automated vehicle to avoid collisions, e.g., for safe ACC [38]. The
paper in [39] explains the modeling and verification of surgical robots using reachability
analysis, where the robot must find a correct region for needle puncturing on a patient
without exceeding an interaction force on non-correct areas. In [40], the authors verify that
the deviation from the reference trajectory stays below a threshold value for robotic paint
spraying tasks. Apart from our work [1-3,5,8-10] which includes multiple examples of using
reachability analysis in robotics, let me also mention recent works such as in [41], where
the authors combine reachability analysis with reinforcement learning to ensure a safe lane-
change maneuver of autonomous vehicles and the safe traversing of a quadrotor drone through
a tunnel with randomly placed obstacles; and in [42], where the authors verify an airborne
collision avoidance system that includes a neural network; in [43], where the authors verify a
stop-and-go ACC. Reachability analysis is also suitable for online verification, where control
inputs are iteratively verified at runtime for short intervals, sufficient for the robot to reach
an invariably safe state. Since only the current scenario needs to be considered with a
short time horizon, online verification can lead to less conservative results and even increase
task efficiency while retaining the same level of safety. Examples of online verification for
autonomous driving can be found in [44] and for robot manipulators interacting with humans
in [9].

Formal synthesis aims to provide inherently correct controllers concerning liveness and
safety specifications. The previously mentioned CBFs and online verification can also be con-
sidered under this category. Much of the previous work, however, uses an abstraction-based
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approach [12,45], where the continuous dynamics of robots are translated into a (discrete)
symbolic model. Possible abstraction techniques are state partitioning [46,47], time dis-
cretization [48], or motions primitives [49,50]. This way, LTL formulas and abstracted robot
dynamics can be translated into transition systems, and the controller can be synthesized
through a graph-search algorithm. Recent examples are, e.g., a sampling-based path plan-
ning algorithm for mobile robots in [51], which considers LTL specifications, and a mobile
robot navigating through a warehouse by concatenating motion primitives [52]. In [48], STL
formulas and time-discretized dynamic systems are encoded as a Mixed-Integer-Linear pro-
gramming for efficient solving. In [49] and [50], motion primitives are generated through
optimizing reachable sets, and a maneuver automaton is used to synthesize safe motions.
Abstraction-based techniques are only sometimes suitable since abstracted discrete states
scale exponentially with the number of states and inputs; most cited examples are only two-
dimensional. In robotic control, interval arithmetic techniques for formally proving stability
can be employed [8,53].

Although there have been significant advances recently in formal methods in robotics,
critical challenges remain. As [54] points out, formal models have “the problem of the reality
gap”, meaning that the modeled behavior is “not close enough to the real world to ensure
successful transfer of their results.” The paper in [55] added to this that also the gap between
a complex model and an abstract model which planning algorithms can handle “represents
a major challenge that cannot be neglected when addressing real-world robotic systems.”
The review article on task and motion planning in [56] specifically addresses “planning with
uncertainty” as an open research question, as current planning methods often do not consider
uncertainties. Whether local control methods can handle uncertainties or even need to be
considered on the task level should be validated.

To provide possible answers to these modeling challenges, model conformance and identi-
fication for formal methods is reviewed in the following section.

1.1.3 Model identification for formal methods

Formal methods are usually applied to a model representing the real system. However, if a
property has been verified on a model, how does the same property also apply to the real
robot? The answer to this question is that a model conformance relation must exist, which
means that the behavior of a model is related to the behavior of the real system in a way
that allows transference of a verified property. Model conformance relations for cyber-physical
systems have been reviewed in [14]. They can be sorted into three main categories: simulation
relation, trace conformance, and reachset conformance, which differ from each other in terms
of the types of properties that can be transferred if the corresponding conformance relation
has been shown. The simulation relation is the strictest among these three but always allows
the transference of LTL and MTL properties.

Finding a simulation relation is the goal of most set-based identification literature. The
model can take the form of differential inclusions [57, 58], or a coarse-grained abstraction of
the state space into a discrete automaton (for example, for mobile robot navigation [12]).
A linear system with uncertainties is identified in the study in [57] such that every state
measurement falls inside a polytopic reachable set. The work in [58] establishes a simulation
relation between measured states and hyper-rectangular reachable sets and identifies piece-
wise affine models via mixed-integer linear programming.
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However, the simulation relation may be overly conservative and restrictive if a system is
high-dimensional, while only a small number of its outputs are essential for the verification
problem. Therefore, Roehm et al. [14] suggest relaxing the conformance relation to the
system’s output using trace and reachset conformance. Schiirmann et al. [59] reconstruct
the disturbance traces given measurements from a real autonomous vehicle to demonstrate
trace conformance. The set of uncertain disturbances is then modeled as the bounds of all
disturbance traces. The reachset conformance relation is an additional relaxation that only
requires that the output traces of a system are contained within the reachable set. To verify
safety properties, reachset conformance is sufficient as shown in [14,15].

Another related class of methods is set-membership identification [60-64]. These works aim
to identify feasible solution sets for the parameters of a system, such that they are guaranteed
to contain the true value. However, these studies assume that these parameters are determin-
istic and constant over time, while reachability analysis explicitly considers time-varying and
non-deterministic parameters. Thus, the identification approach for finding feasible solution
sets differs from reachset-conformant model identification and, therefore, cannot be directly
used for safety verification.

1.2 Publications and outline

To summarize the literature review, current robotic applications suffer from reduced task
efficiency when operating around humans, and ensuring safety in human-robot interaction is
a complex problem. Formal methods are increasingly demanded in robotics, but proposed
methods are only demonstrated in simulation, and a “reality gap”, i.e., the lack of a con-
formance relation, prevents the results from transferring to real applications. To address
these challenges by answering my research question on how to identify verification models for
proving safety, I have co-written ten publications [1-10]. All of them have been published in
peer-reviewed international journals or conferences. The following five publications, where I
am the first author, are included in the Appendix of this document as core publications:

[1] S. B. Liu and M. Althoff, “Reachset Conformance of Forward Dynamic Models for
the Formal Analysis of Robots,” in Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018, pp. 370-376.

[2] S. B. Liu, H. Roehm, C. Heinzemann, I. Lutkebohle, J. Oehlerking, and M. Al-
thoff, “Provably safe motion of mobile robots in human environments,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017,
pp- 1351-1357.

[3] S. B. Liu and M. Althoff, “Online Verification of Impact-Force-Limiting Control for
Physical Human-Robot Interaction,” in Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021, pp. T77-783.

[4] S. B. Liu, A. Giusti, and M. Althoff, “Velocity Estimation of Robot Manipulators: An
Experimental Comparison,” IEEE Open Journal of Control Systems, vol. 2, pp. 1-11,
2023.
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[5] S. B. Liu, B. Schiirmann, and M. Althoff, “Guarantees for Real Robotic Systems:

Unifying Formal Controller Synthesis and Reachset-Conformant Identification,” IEEFE
Transactions on Robotics, vol. 39, no. 5, pp. 3776-3790, 2023.

The first listed paper [1] introduces the notion of reachset conformance for robotics, and
proposes the first algorithm for uncertainty identification. Our works in [2,3] demonstrate
examples of human-robot interaction, where reachset-conformant models are found and used
for safety verification. In both cases, online verification is applied. The papers in [4,5] focus on
control design: the work in [4] compares velocity estimators for robotics using classical design
methods, while [5] shows how controllers can be designed using reachability analysis and
reachset-conformant models. The remaining co-authored five publications are also strongly
related to the objectives of this dissertation:

[6]

[10]

M. Wagner, S. B. Liu, A. Giusti, and M. Althoff, “Interval-arithmetic-based trajectory
scaling and collision detection for robots with uncertain dynamics,” in Proc. of the IEEE
International Conference on Robotic Computing (IRC), 2018, pp. 41-48.

S. B. Liu and M. Althoff, “Optimizing performance in automation through modular
robots,” in Proc. of the IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 4044-4050.

A. Giusti, S. B. Liu, and M. Althoff, “Interval-Arithmetic-Based Robust Control of
Fully Actuated Mechanical Systems,” IEEE Transactions on Control Systems Technol-
ogy, vol. 1, no. 1, pp. 1-13, 2021.

M. Althoff, A. Giusti, S. B. Liu, and A. Pereira, “Effortless creation of safe robots
from modules through self-programming and self-verification,” Science Robotics, vol. 4,
no. 31, p. eaaw1924, 2019.

S. Schepp, J. Thumm, S. B. Liu, and M. Althoff, “SaRA : A Tool for Safe Human
—Robot Coexistence and Collaboration through Reachability Analysis,” in Proc. of the
IEEE International Conference on Robotics and Automation (ICRA), 2022, pp. 1-7.

The work in [6] uses a reachset-conformant inverse dynamics model for trajectory scaling
and collision detection, and a similar model is used in [8] for robust control. The works in [7]
and [9] concern modular robots and their use for safe human-robot coexistence, while [10]
introduces a tool for computing reachable sets of human motion.



2 Methodology

Developing adequate verification models is essential to formally ensure safe human-robot
interaction. This chapter summarizes and reviews the methodology that I developed through
the course of my research. The purpose of this chapter is to give a general context to the
publications. The publications in Appendix A provide further details on methods and real
application examples. In this chapter, some basic definitions will be provided; I will denote
sets using calligraphic letters (e.g., A), matrices using upper case letters (e.g., A), vectors
using -, and scalar values using lower case letters (e.g., a). In addition, I use a(.) as a notation
for the whole trajectory and a(t) as the value a at time ¢.

2.1 Modelling for safety verification

Exactly characterizing real systems through mathematical descriptions is commonly accepted
to be an impossible feat. Thus, the purpose of models is to reduce the characterization effort
by leaving out unnecessary details. How models are developed primarily depends on the
given objective, i.e., a first principles model is developed to fundamentally understand the
behavior of a system. In contrast, control models are developed to optimize the performance
of a controlled system.

This thesis is concerned with developing verification models for analyzing the safety of a
system. If it can be proven that an output of a system can never enter unsafe sets, this
is referred to as “verifying a safety property”. A property is a safety property if it can be
defined as a set of time-dependent unsafe sets B(t), that the reachable set of the system R(t)
should never reach at any time [15, Equation 6]:

Vt s R(t) N B(t) = 0. (2.1)

In human-robot interaction, such unsafe sets are usually associated with unintended collisions
[17,19], or in case of an intended collision, the avoidance of human pain or injury [18].

2.1.1 Models and reachability analysis

To prove safety, reachability analysis [13] is used to compute the set of all possible behaviors
of a human-robot interaction system and show that the system never enters an unsafe set. In
the following examples, human-robot interaction is modeled using the state function f and
the output function g:

(t) = f(&(t), a@(t), p(1)), (2.2a)
y(t) = g(2(t), u(t), plt)), (2.2b)
p(t) € P, (2.2¢)
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where Z(t) is the modeled state, u(t) is the measurable system input, ¢(¢) is the measurable
system output, and p(t) are non-measurable time-varying model parameters that belong to
a bounded set P to represent uncertainty in our system. Given an initial state Z(0) = 2, an
input trajectory (.), and a possible parameter trajectory p(.), the system in (2.2) admits a
unique trajectory of the output, denoted in the following by (., o, u(.), p(.)). The reachable
set of the system in (2.2) at time ¢ > 0 from a set of initial states Xy is the set of all possible
outputs:

R(t) = {§(t, Fo, @(.), 7)) | Zo € Xo,¥7 € [0,4] : () € P}, (2.3)

where u(.) is a trajectory from time [0,¢]. Compared to the definition in [13, Equation
2], the above definition considers an additional output function and distinguishes between
measurable inputs % and unmeasurable disturbances/model parameters p.

2.1.2 Reachset conformance

As initially described, a model only partially characterizes the real system. In our case, (2.2a)
and (2.2b) are making assumptions on the dynamical behavior, while (2.2¢) is assuming the
uncertainty of the parameter set P. Formally verifying safety for a model does not necessarily
mean that safety is verified for the real interaction. To bridge this formal gap, Roehm et
al. [29] introduced reachset conformance to relate a model with a real system, and thus to
allow the safety property (2.1) verified on a model to transfer to the real system. Furthermore,
the authors point out in [15] that reachset conformance is a necessary and sufficient relation.
A verification model is reachset conformant if its reachable set not only encloses the model
behavior but also encloses all possible behaviors of the real system. Only if this property
holds can we ascertain that the real system is safe because an unsafe state non-reachable by
the model is also non-reachable by the real system. The testing of this substantial property
is called reachset conformance checking and can be executed as follows: Given both the real
system and the model, and the same series of inputs #(t) belonging to a finite set of input
trajectories U, where t € [0..t*] and t* is a finite time horizon, the reachable set R(t) of the
verification model shall always include the measured output #,(t) of the real system:

Vi(t) € U : V€ [0,6] : Gn(t) € R(E). (2.4)

The example shown in Figure 2.1 visualizes reachable sets and reachset conformance. As seen
on the right side, the model is not reachset conformant because one of the measured output
trajectories is not within the reachable set of the model.

Formal reachset conformance vs. reachset conformance checking

Notice that the above definition of reachset conformance checking is not a formal proof of
reachset conformance as defined in [14, Section 3.5]; however, it is possible to increase our
confidence in reachset conformance through sufficient testing. To safeguard against scenarios
where the real system is not behaving conformantly, I propose implementing (2.4) as an online
monitor. Such a monitor would detect, whether the assumed verification model is failing and
introduce fail-safe actions. One example is the safety filter in [65], which monitors reachset
conformance and automatically adapts the verification model and the model-based controller
in case of detecting a non-conformant behavior.

10



2.1 Modelling for safety verification

y(t) given py(t) € P Model Model vs. real system

y(t) given pa(t) € P failed test case

R(0) given P R(t1) given P R(0) R(t1)

Figure 2.1: Left side: the computed reachable set R(t) encloses all possible behaviors ¢(t) of the
model for the same input @(t) given a set of possible parameters P. Right side: the
computed set R(t) does not enclose all behaviors #,,(t) measured from the real system;
thus, the model is not reachset conformant.

2.1.3 Reachset conformance of linear systems

In this thesis, linear systems receive special attention due to properties, such as the separation
principle [5], that allow us to reduce the problem of reachset conformance checking in (2.4) to
a linear inequality. Let us use the notation a[k] to express the value of a at time kAt, where
k€ {0,1,...} and At is the sampling time. The following difference equations define linear
systems:

Z[k + 1] = AZ[k] + Bulk| + @[k, (2.5)

ylk] = Cz[k] + Dulk] + U[k], '
where A, B, C, D are matrices of proper dimension; and w[k] € W and ¢]k] € V are uncertain
parameters representing additive disturbances and sensor noise, respectively. Furthermore,
let us use zonotopes to represent the parameter sets. A zonotope Z is defined by a center ¢
and a generator matrix G of proper dimension, where ¢® is its h-th column:

Z=(¢Q) = {:E =c+ Y Bug"
h=1

,Bh c [—1,1]}.

For our parameter sets, let us define scaled zonotopes W = (¢w, Gy, diag(dw)) and V =
(¢y, G, diag (dy)), where ay,dy are scaling factors for each of the zonotope generators
represented in Gy, and GY,. Zonotopes and scaled zonotopes are visualized in Figure 2.2. For
the introduced linear system, let me outline the following proposition.

Proposition 1 (Reachset conformance checking as a linear inequality) Given a lin-
ear system whose dynamics is described by (2.5) and whose uncertain parameter sets are
described by W = (éw, Gy, diag(dw)) and V = (¢, G}, diag (ay)), the reachset _confor-
mance checking in (2.4) is equal to a linear inequality of the form N (¢)y,,(t) < H(t)£, where
£ = [Cw, aw, Cy, dy]T are its variables.

Proof T am referring to Theorem 1 in [5]. The basic idea is to represent the reachable sets as
a set of halfspaces N(¢)y < h(t), where N is a matrix of normal vectors, and h is a vector of
distances. As shown in [5], h(t) is linear in &, such that h(t) = H(t)E. [ |

11
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7 Zonotope azg® Scaled Zonotope
0é2£7(2)

Z) = (¢,¢) 2, = (¢, G'diag(d))

G =[g",5®, 5] G'diag(a) = [01§"), 02§, asg®)]

Figure 2.2: Left side: the zonotope Z is defined by a center ¢ and three generators in G’. Right
side: the zonotope Z, is a scaled version of Z;, where the generators are the same, but
their lengths have been altered by a1, as, as.

Expressing reachset conformance checking as a linear inequality significantly reduces the
computational complexity of identifying reachset-conformant linear systems, as I will describe
in Section 2.2.

2.1.4 Examples

Table 2.1 lists examples of safety problems published with involvement from the author of
this thesis, which have been analyzed using the methodology introduced in this chapter. For
a detailed discussion, let us look at an example from [2].

This example is also visualized in Figure 2.3. I consider that humans and robots only move
along one dimension for presentation purposes, while the full problem can be found in the
publication. The safety problem is to verify online that a proposed series of robot inputs
can never lead to a collision between humans and a mobile robot while the robot is moving.
Therefore, the unsafe set is defined by

{xrobot | (Occ(xrobot) N Occ(xhuman) 7A @) A (li'robot| > O)}

where Tpyman, Trobot are the human and robot position, respectively, and occ(z) is the occu-
pancy given a position. Analyzing this problem requires a model for robot motion and a
model for human motion. The main difference between these two subsystems is that robot
motion can be accurately controlled, i.e., the motion uncertainty is bounded by a control
error. In contrast, the control of human motion is unknown to us, which is why I conserva-
tively assume motion uncertainty that is only bounded by the physical capability of humans.
For the sake of brevity, I am only illustrating the human motion model and its conformance
checking here. I model human physical capability by limiting their acceleration. Therefore,
the dynamics are a double integrator, where the state is Z = [Zhuman; Thuman)” :

:i::{o 1}.§:’+ [O}w, weWw

00 1
Yy = [1 O] x
where W = {w € R | —Gpmar < W < Gz} 1S the set of possible accelerations limited by

Umaz- Since the safety verification is interested in Zpyman from the human subsystem (and
Trobot, Trobot from the robot subsystem), the human motion model must be reachset conformant

12



2.1 Modelling for safety verification

Table 2.1: Safety verification examples with author’s involvement

Safety problem Authors Publication, Year
[2] Verify that a moving mobile robot does not col-  Liu, Roehm, IEEE/RSJ International Conference
lide with walking humans. Heinzemann, on Intelligent Robots and Systems,
Liitkebohle, 2017
Oehlerking,
Althoff
[3] Verify that the interaction force at an unin- Liu, IEEE/RSJ International Conference
tended collision of a robot with a human hand  Althoff on Intelligent Robots and Systems,
does not exceed a force limit. 2021
[5] Synthesize a tracking controller for a robot arm  Liu, Schiir- ~ IEEE Transactions on Robotics,
and verify that torque constraints are met. mann, Althoff 2023

[6] Ensure torque constraints for motion planning, Wagner, Liu, IEEE International Conference on
collision detection. Giusti, Althoff Robotic Computing, 2018

[8] Ensure robust stability of a robot tracking con-  Giusti, Liu IEEE Transactions on Control Sys-
troller despite perturbation in the inverse dy- Althoff tems Technology, 2021
namics model.

[9] Verify that a moving robot arm does not collide ~ Althoff, Giusti Science Robotics, 2019
with a human upper body. Liu, Pereira

pedestrians and their
reachable sets .

mobile robot

Figure 2.3: The safety problem presented in [2] is for a mobile robot (blue) to avoid colliding with
humans (green). Safety is verified by computing the reachable sets of humans and
robots and determining that these sets are not intersecting. Conformance checking for
the human motion model was performed using a pedestrian video dataset [66].

13
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Prior knowledge

l

Choose identification a N no
objective
Reachset-conformant yes
Choose model | > Identification > > Finished!
structure J
Model
Test data > valid?
\_ %

Figure 2.4: The identification framework proposed by this thesis follows the general system iden-
tification procedure suggested by Ljung in [67, Chapter 1.4].

for the output ¥ = Zpuman. As demonstrated in [2], reachset conformance checking was
done by recording the position of real human motion and comparing the measured positions
with the computed reachable sets from the above model. In theory, I could also choose
Y = [Thuman, Thuman]*» but adding another output only increases the number of constraints
that the model must fulfill, which generally means larger reachable sets might be required,
i.e., adding unnecessary conservativeness (see similar discussion in [5, Remark 2]).

2.2 ldentification

As described in [15], reachset conformance is a necessary and sufficient property for a verifi-
cation model when it comes to safety verification using reachable sets. Usually, the uncertain
parameter set P is unknown, and sometimes the state and output function can also be un-
known. Even if all parts of the model are given (e.g., through a first principles modeling),
the proposed model may not be reachset conformant or could lead to unnecessarily large
reachable sets due to conservative assumptions.

The idea behind reachset-conformant identification is to obtain algorithmic support for
finding a reachset-conformant model that minimizes conservativeness. Figure 2.4 depicts
the proposed identification framework and is inspired by the general system identification
procedure suggested by Ljung in [67, Chapter 1.4]. To be able to run algorithms for reachset-
conformant identification (Section 2.2.2), three inputs are required:

e an identification objective (Section 2.2.1) shall be chosen, which will serve as the cost
function to optimize for and which depends on the final application of the verification
model,

e a model structure (Section 2.2.2) shall be chosen that best suits the problem at hand,
e.g., parameterized state/output functions. The chosen structure depends on the amount
of prior knowledge we intend to apply, and it can range from black-box models (function
structure or parameter unknown) to white-box models (functions fully known, param-
eter set unknown),

e a data set obtained from the real system for identification.

14
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Ideally, the reachset-conformant identification algorithm converges to a solution, and it shall
be determined whether that model is valid for the corresponding purposes. For safety verifi-
cation using reachable sets, it is typically checked whether that model is overly conservative
and leads to reachable sets that are too large. In that case, safety verification would fail
due to excessive scenarios the model predicts that the real system does not entail. Then,
the inputs to the identification algorithm shall be revisited, e.g., adding details to the model
structure or changing the objective function. In the following subsections, I will review the
steps of this framework.

2.2.1 Identification objectives

First and foremost, the identified model should be reachset conformant to the data that is
provided, i.e., (2.4) must be fulfilled and thus constrains the solution space. Within the
solution space, an identification objective function decides which goal our model optimizes.

Generally, objective functions should help reduce conservativeness regarding the safety
goal, i.e., the model should not predict scenarios the real system cannot show. Minimizing
a norm of the reachable set of the model output is an obvious choice and was used most
in the author’s work, as shown in Table 2.2. Depending on the set representation, various
norms are available to measure the size of a reachable set (e.g., see [68,69]). When zonotopes
are used for linear systems, two norms stand out: the interval norm [5, Definition 2] and
the Frobenius norm [70, Equation 22]. As shown in Appendices A and B in [70] for linear
systems, the interval norm is linear in 5 and the Frobenius norm is quadratic in 5, which
are valuable properties for creating efficient identification algorithms, as I will present in the
following subsection.

In [5], the reachable set of the tracking error was used in the objective function, which
was not the model output but the output of a closed-loop system, i.e., the outcome of a
model interacting with a controller system. The advantage of that approach is that controller
synthesis and reachset-conformant identification are unified into a single optimization problem
with a shared objective function instead of a separate optimization approach leading to sub-
optimal controllers. This was demonstrated in Section IV-A in [5], which showed that for
that specific example, a unified optimization approach is superior to a separate optimization
approach, i.e., providing a better-performing controller. As shown in [65, Equation 8], another
possible option is to minimize the parameter set P (in that work called W) directly.

2.2.2 Model structures and identification algorithms

Let me formulate the general problem of reachset-conformant identification: the goal is to
find an optimal model (2.2) according to some cost function h that satisfies the reachset
conformance constraint (2.4):

min h(f,9,P), (2.6a)
f.9,P
subject to  Vu(t) e U : Vt € [0,t"] : y(t) € R(Y, f,9,P). (2.6b)

Potential cost functions were already discussed in Section 2.2.1. Let me discuss the algorithms
for identification. These mainly depend on the desired model structure. In this work, I am
differentiating between three possible types of model structures:

15
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Table 2.2: Identification objectives in the author’s work

Safety problem

Model

Minimize the norm of reachable set
of ...

Which output?

[2] Mobile robot collision
avoidance

[3] Limit collision force

[5] Tracking control with
input constraints

[6] Motion planning with
torque constraints

[8] Robust stability

[9] Robot arm collision
avoidance

Robot forward
dynamics

Human motion on
2D plane

Coupled  human-
robot dynamics

Robot forward
dynamics
Robot inverse
dynamics
Robot inverse
dynamics

Human arm motion
in 3D space

Robot position and velocity
Humans in position space
Human-robot collision force

Robot position and velocity tracking
error

Robot inverse dynamics perturba-
tion
Robot inverse dynamics perturba-
tion

human arms in position space

Model

Model

Model

Closed-loop

Model

Model

Model

e White-box models are models, where the state and output functions f and ¢ are
fully known and fixed, and the set of variable uncertain parameters P is known.

e Grey-box models are models where the state and output functions f(p,) and g(p,)
are known but depend on some variable parameters p,,, which are not part of a set, and
the variable uncertain parameter set P.

e Black-box models are models, where the state and output functions f and g and the
uncertain set P are all unknown.

In the following, identification algorithms for linear systems are presented.

2.2.2.1 White-box algorithms

For linear systems, linear or quadratic programming algorithms [71] can be used for solving

white-box identification.

Proposition 2 (Linear programming for white-box identification of linear systems)
For linear systems as described in (2.5), where

e the matrices A, B,C, D are known,

e the set P := W x V is unknown, but is described by the scaled zonotopes W =
(¢w, Gy diag(adw)) and V = (¢y, G}, diag (dy)), where the matrices G}, and G, are

known and & = [, dw, Cv, Ay

e the interval norm [70, Section 3.1] has been chosen as the cost function,

]T

is unknown,

the reachset-conformant identification problem (2.6) is a linear program.

16
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Proof As per Proposition 1, the constraint in (2.6b) is a linear inequality, and as per proof
of Theorem 1 in [70], the cost function in (2.6a) is linear in &. [

Proposition 3 (Quadratic programming for white-box identification of linear systems)
For linear systems as described in (2.5), where

e the matrices A, B,C, D are known,

e the set P := W x V is unknown, but is described by the scaled zonotopes W =
(¢w, Gy diag(aw)) and V = (¢y, G}, diag (dy)), where the matrices G}, and G, are
I

known and £ = [éy, dw, v, dy|" is unknown,

e the Frobenius norm [70, Section 3.2] has been chosen as the cost function,
the reachset-conformant identification problem (2.6) is a quadratic program.

Proof As per Proposition 1, the constraint in (2.6b) is a linear inequality, and as per proof
of Theorem 2 in [70], the cost function in (2.6a) is quadratic in &. [ |

2.2.2.2 Grey-box algorithms

For linear systems, grey-box models are a generalization of white-box models, where a limited
amount of selected parameters p,, are unknown, such that the matrices A(p,,), B(p,), C(pn),
D(p,), G4 (p,) depend on p,,. As proposed in [3], I suggest to make use of the white-box
algorithms in a nested fashion:

e an outer loop optimization using nonlinear programming algorithms [71] selects candi-
dates for p,,

e an inner loop optimization using white-box identification algorithms selects the optimal
p given the p, candidate. It returns the optimal cost for that candidate to the outer
loop.

As an example, the state function of the verification model in [3] for a physical human-robot
interaction is defined by

7= Ap,)T+1[0,1,0,0"u +w, weW = (Gw,Gy diag(aw))

0 1 0 0
(brtkn) _ (datdr)  ky dn .
A(ﬁn) = W(L)T (T)flr T’E)T niT 7ﬁn - [mh7 kha dh]
kn dn _ ko _dy

where m,., k., d, are the known mass, stiffness, and damping of the impedance-controlled robot
and my, ky, dj, are the unknown mass, stiffness, and damping of the human hand. Figure 2.5
illustrates this mass-spring-damper model. In this case, the outer loop optimizes my, ky,, dj,
while the inner loop optimizes ¢ and dyy.

17
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Ta Ly, Tsk Zh

ky kn
4% Unconstrained
my mp
= collision
dr dh

«— robot —>|<— tissue —>| «— hand —

Figure 2.5: The safety problem presented in [3] is for the interaction force between a robot end-
effector and a human hand to stay below a certain threshold. Safety is verified by
computing the reachable sets of this mass-spring-damper system. Conformance check-
ing for this model was performed using a real collision experiments.

2.2.2.3 Black-box algorithms

This thesis does not explore black-box algorithms, but literature examples are reviewed for
completeness. Assuming § = & as the output function, Gruber and Althoff [65] use linear
programming to simultaneously find optimal matrices A, B for the state function and an opti-
mal W such that the model is reachset conformant. Alanwar et al. [72] computes conformant
reachable sets assuming ¢ = '+ U as the output function by generating sets of matrices A, B,
where the true matrix is guaranteed to be contained. The authors also present extensions to
nonlinear systems.

2.2.2.4 Model structure selection

A chosen model structure may not be the most suitable one. For safety verification, models
that lead to large reachable sets are more likely to detect false positive safety violations, so
less conservative models are preferred. An inefficient model structure becomes noticeable if
the optimal reachset-conformant model still leads to large reachable sets, and verifying safety
becomes difficult.

Choosing the model structure also has an impact on both the identification algorithm as
well as the reachability analysis technique. If a nonlinear programming technique is necessary
to solve the identification in (2.6) (e.g., due to a nonlinear cost function), it may not converge
to a global optimum. In addition, some reachability analysis techniques, e.g., for nonlinear
systems, experience a wrapping effect [13], i.e., the over-approximation error of the reachable
sets accumulates over many time steps. In contrast, reachability analysis of linear systems
(e.g., [b, Equation 7]) can be exact and computationally efficient compared to nonlinear
systems and does not experience the wrapping effect. I recommend starting with a simple
model structure for the first iteration of model identification and adding more detail in further
iterations when the model is too conservative and therefore the verification fails.

To illustrate this, let me demonstrate a model selection example for the robot forward
dynamics in [5], where I evaluate three candidate white-box models with increasing model
order and complexity. Further details of this comparison can be found in [73, Section IV-A].
Let us assume the robot has an internal feedback linearization controller [5, Equation 9] that
linearizes the input-output dynamics. Given a rigid-body model of a robot [5, Equation 8], a
model is obtained where the state is Z1 = [q, 4], ¢ is the position of a robot axis, and At is the
sampling rate. Adding additive process noise w and sensor measurement error v, candidate
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model 1 is a double integrator that is described by:

5M+u:[éﬁq@m+[%gﬂmm+ﬂ@

ylk] = 1 [k] + O[k].

In candidate model 2, I take into account that there is a transmission delay of one sampling
time step for the input to reach the robot and a transmission delay for the measured output
to reach the controller:

001 0 0 0
000 1 0 0
Bok+1]= 0 0 1 At At2/2| Dlk] + |0] ulk] + @[],
000 1 At 0
000 0 0 1
glk] = Zo[k] + k],

where Zo[k] = [qlk — 1], ¢k — 1], q[k], 4[k],u[k — 1]]. In candidate model 3, I take into
account, apart from the transmission delay, that only the position ¢ is measured, and the
velocity is externally estimated using the following high-gain observer:

=Tt [+ ]

q?

where hy = 15, hy = 30, and € = 0.01 are the gains. I use the bilinear transformation discussed
in [74] to discretize the observer. The input of the observer is g,,, which is the measured robot
position and the output of the following robot model:

0 0
_ At A2)2
Tylk+ 1] = Y
0

B[k + | | ulk] + w[k],

At
0

O O ==
— o O O

0
0
0
0
k] = Zs[k] + v[K].

The model order and state dimension of candidate model 1 is two, the state dimension of
candidate model 2 is five, and the state dimension of candidate model 3 is six (taking into
account both the observer and the robot model). To compare these candidate models, I use
the same dataset, where I recorded the one-dimensional input u and the two-dimensional
output ¥, (robot position and velocity) from each axis of a six-degrees-of-freedom robot
manipulator. Linear programming (see Proposition 2) is applied to obtain the optimal cost.

The resulting cost for each candidate model and each robot axis are listed in Table 2.3. As
seen across all robot axes, the interval norms of both candidate models 2 and 3 are signifi-
cantly smaller compared to candidate model 1. For our work in [5], where the application is
to synthesize a motion controller given the robot position and velocity, I ultimately chose can-
didate model 3 because it accurately models the interacting dynamics between the high-gain
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Table 2.3: Comparison of the cost of the candidate models for each robot axis for model structure
selection

Candidate Axis1 Axis2 Axis3 Axis4 Axisb Axis6
Model 1 0.0322 0.0422 0.0325 0.0309 0.0505 0.0405
Model 2 0.0025 0.0044 0.0022 0.0023 0.0035 0.0050
Model 3 0.0022 0.0041 0.0021 0.0023 0.0032 0.0041

Table 2.4: Identification algorithms used in the author’s work

Model Structure  Dynamics Algorithm
[1] Robot forward dynamics white-box  linear linear programming
[2] Human motion on 2D plane white-box  linear manual tuning
[3] Coupled human-robot dynamics grey-box  linear nonlinear programming with
nested linear program
[5] Robot forward dynamics white-box  linear nonlinear programming
[6] Robot inverse dynamics grey-box  nonlinear manual tuning
[8] Robot inverse dynamics grey-box  nonlinear  nonlinear programming
[9] Human arm motion in 3D space white-box linear manual tuning

observer and the motion controller, and thus provides the smallest reachable set. Although
candidate model 1 is the simplest, it ultimately was too conservative for our work in [5].
Given the minimal difference of candidate model 2 and 3, choosing candidate model 2 would
also be justified.

2.2.3 Examples

Table 2.4 lists the author’s work, the model, the model structure type, the dynamics type, and
the algorithms used for identification. In [5], reachset-conformant identification is combined
with controller synthesis in a single optimization, which is solved using nonlinear programming
techniques. In [6,8], the robot inverse dynamics model is a nonlinear output function without
states. Please note that for some mechanical systems, the inverse dynamics models are linear
to the dynamic parameters [75, Section 7.2.2], which would make it conceivable to use linear
programming approaches. Appendix A shows further details on these examples.

2.3 Tools

With contributions from the author of this thesis, our research team has created tools that
have been made available to the public to foster the adoption of formal methods in robotics
and to identify verification models to prove safety.
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e The tool SaRA! (Safe Human-Robot Coexistence and Collaboration through Reachability
Analysis) in [10] can be used to compute the reachable occupancy of humans in 2D and
3D space, includes a ROS? (Robot Operating System) node for visualization, and makes
the reachable sets available to other computing nodes. The computations are based on
our work in [2] and [9].

e The tool CORA? (COntinuous Reachability Analysis) initially developed by Althoff [76]
is a software for the reachability analysis of verification models with linear, nonlinear,
and hybrid dynamics and their formal verification. Version 2023 [70] implements white-
box and black-box identification algorithms (see Sec. 2.2.2) and reachset-conformance
checking algorithms for linear systems.

e The tool Unifying Formal Controller Synthesis and Reachset-Conformant Identifica-
tion* implements a solver for the optimization problem in [5, Equation 12] of the com-
bined controller synthesis and reachset-conformant identification of linear systems. It
also includes the dataset from a real robot, for which an optimal forward dynamics
model, the optimal motion controller, and the observer are determined.

https://github.com/Sven-Schepp/SaRA
’https://www.ros.org
3https://cora.in.tum.de/
‘https://doi.org/10.24433/C0.1635335.v1
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3 Conclusions and Future Work

This chapter discusses the conclusions and future work for this thesis’s overall body of re-
search. Further detailed discussions and findings are provided in each publication.

This thesis provides a framework for identifying verification models, such that these models
are reachset conformant. This is achieved by measuring the real system and identifying
the model and its uncertainties, such that the reachable set of the model covers all real
system behaviors. For the first time in the domain of continuous dynamics and human-robot
interaction, a systematic approach has been presented for transferring the safety property
from a formally verified model to the actual human-robot interaction system. For each of the
areas of contribution in the thesis, let me discuss the results, their implications, and future
work in more detail:

Model identification for safety verification

This thesis poses the general problem of identifying verification models for safety as a con-
strained optimization problem, where the reachset conformance relation is represented as the
constraint. Applying this optimization problem to models with linear and nonlinear dynam-
ics is explored. The main steps are to choose an identification objective, a model structure,
and a suitable identification algorithm. Based on the identification objective, we can deter-
mine whether the model is appropriate and fulfills our needs; if not (e.g., because it is too
conservative) we can choose a different identification objective or model structure and repeat
this procedure. I propose white-box and grey-box algorithms for linear dynamics, which are
efficient to solve. The soundness and effectiveness of this framework have been tested on
multiple examples from the human-robot interaction domain in [1-3,5,6,8,9], where I have
found models for the robot forward dynamics, inverse dynamics, human motion prediction,
and physical human-robot interaction to solve a range of safety problems.

This thesis provides a starting point for continued exploration in identifying verification
models. Nonlinear dynamics remains a significant challenge since many simplifications for
linear dynamics do not generalize to nonlinear dynamics. One possible approach is a de-
composition into piecewise linear dynamics (such as in [58]) in terms of time or space. Also,
hybrid dynamics with switching continuous dynamics and jumping continuous variables re-
main challenging. The work in [77] provides a starting point in this direction. Black-box
identification (or data-driven reachability analysis, as often called in literature) has remain-
ing challenges considering system dynamics where there are fewer outputs than states. Here,
it is challenging to determine the model order, i.e., how do I choose an appropriate dimension
for state x, or what amount of previous data is necessary for ARMAX models [78].

The discipline of test design and test selection also remains a future work. The examples
in this thesis mostly use random testing, which, in theory, is probabilistically complete but
may not be efficient, especially when gathering large amounts of data from real systems. It
may be more efficient to select tests that explore the boundaries and edge cases of the model,

23



3 Conclusions and Future Work

i.e., falsification-based test selection, or to find suitable coverage metrics, i.e., coverage-based
test selection, to filter out tests that do not provide valuable data [14, Section 5]. In addition,
defining a test end criterion can be helpful to measure the confidence in a model. Finally, I
also suggest further exploring online conformance monitoring, such as proposed in [33, Section
9] and in [65], to further safeguard the system against unforeseen non-conformant behavior
and to restore formal safety.

Formal methods: online safety verification

Online safety verification was the main scheme in [2,3,9,10] for proving safety. It uses the
identified model to formally prove a safety property at runtime through online verification
and fail-safe planning. This method was first proposed in [79] for automated vehicles, and
my work extends this to more safety properties in the human-robot interaction domain.
[ have demonstrated that online verification ensures safety at all times (assuming correct
modeling) and leads to better task efficiency than traditional industry approaches. Online
verification has two significant advantages that contribute to better task efficiency: 1) it
supports continuous and hybrid dynamics with uncertainty for higher-fidelity modeling that
is less conservative than the simple models assumed in the safety standards, and 2) it only
needs to verify the current control inputs for the current scenario, allowing more aggressive
behaviors, as long as safety is ensured. My work in [2] compares online verification with ISO
13482 approaches and demonstrates that a mobile robot in dense human crowds can reach
the goal 1.4 to 3.5 times faster while never colliding with humans when the robot is moving.
My work in [3] applies a different safety property, allowing collisions during robot motion as
long as a force limit is ensured, further increasing potential task efficiency. All the models in
these works have been identified using data from real systems. Most of the approaches have
been tested on actual robots. I believe that my work has contributed significantly to closing
the “reality gap” of formal methods and “unfreezing” the robot operating near humans.

Due to the capability of online verification to handle better models with uncertainty, I see
great potential in proving the safety of further tasks in physical human-robot interaction,
where the main challenge is to predict highly uncertain human behavior. A different area
for exploring the application of reachability analysis is verifying robot tasks involving stiff
contact with the environment [80].

Formal methods: controller synthesis vs. traditional controller tuning

The publication in [5] and my co-authored publication in [8] describe the use of reachset-
conformant models in obtaining formally safe controllers. In contrast, my work in [4] describes
a rather traditional approach to controller design. My work in [5] minimizes the reachable set
of the tracking error of the closed-loop system, where the controller synthesis is performed
with few validation iterations on the real system. The work in [8] uses the worst-case inverse
dynamics perturbation to prove global uniform ultimate boundedness; the proof is valid for
any model perturbation, but a model that minimizes the reachset-conformant perturbation
improves the robust performance of that controller. The work in [4] minimizes an integral
squared error (ISE) metric, where many controller-observer candidates are tested on a real
robot system, and the ISE is measured per candidate. Formal controller synthesis provides
safety guarantees, e.g., adhering to input constraints given all identified uncertainties, while
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traditional tuning only tests specific scenarios, usually due to limited testing resources. In
contrast, reachability analysis can account for all possible scenarios within the bounds of
the parameter sets. Formal controller synthesis remains an attractive challenge for ensuring
formally correct behavior safe-by-design controllers. In the following Appendix, I will provide
the core publications of this thesis, including their summaries.
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A Reproduction of Core Publications

A.1 Reachset Conformance of Forward Dynamic Models for
the Formal Analysis of Robots [1]

Summary This paper introduces the concept of reachset conformance for robotic systems
to address the need for appropriate modeling techniques in safety-critical applications. Tra-
ditional deterministic models will always have a behavior mismatch that can be caused by
sensor noise or disturbances. In model-based testing, such mismatches can lead to undetected
dangerous behaviors. Instead, we propose models with parameters modeled as uncertain sets,
which bound sensor noises and disturbances. These sets must be chosen such that all pos-
sible behaviors of the real system are contained within the reachable sets of the model; this
is also called reachset conformance. We enforce reachset conformance by either testing the
containment of measured trajectories within the reachable sets of a chosen model or through
an identification that optimizes the uncertain parameter sets where the reachset conformance
is encoded as a linear inequality. Subsequently, this paper introduces such identification for
linear systems, where the unknown uncertainties are modeled as a disturbance of the input
and an initial measurement error.

The concept of reachset conformance is demonstrated on the forward dynamics of a six-
degrees-of-freedom robot manipulator. The challenge here is that standard forward dynamic
models are complex nonlinear differential equations that cannot be explicitly given due to
their length. Therefore, we investigate three methods in this work to abstract these equations.
The general idea behind this is that we aim for model simplicity (which is suitable for formal
analysis) by sacrificing the accuracy of the nominal model. However, as long as the uncertain
sets also capture these abstraction errors, reachset conformance is preserved.

A linear model abstraction of the forward dynamics is chosen for the experimental results.
Many open-loop tests are carried out on the real robot to gather data for identifying the
uncertain sets. Finally, the proposed identification algorithm finds optimal sets that minimize
the reachable sets’ interval norm while ensuring reachset conformance.

Author Contributions M. A. initiated the idea of reachset-conformant models in robotics.
S. L. developed the methods for abstracting the forward dynamics of robots. S. L. developed
the method for identifying uncertain sets for linear systems. S. L. designed, conducted and
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Reachset Conformance of Forward Dynamic Models for the
Formal Analysis of Robots

Stefan B. Liu and Matthias Althoff
Department of Informatics, Technical University of Munich, Germany, Email: [stefan.liu | althoff]@tum.de

Abstract— Model-based design of robotic systems has many
advantages, among them faster development cycles and reduced
costs due to early detections of design flaws. Approximate
models are sufficient for many classical robotic applications;
however, they no longer suffice for safety-critical applications.
For instance, a dangerous situation which has not been detected
by model-based testing might occur in a human-robot co-
existence scenario since models do not exactly replicate be-
haviors of real systems—this problem arises no matter how
accurate a model is, since even disturbances and sensor noise
can cause a mismatch. We address this issue by adding non-
determinism to robotic models and by computing the whole
set of possible behaviors using reachability analysis. By using
reachset conformance, we automatically adjust the required
non-determinism so that all recorded behaviors are captured.
For the first time this approach is demonstrated for a real
robot.

I. INTRODUCTION

Formal methods require models of real physical systems.
However, we only have formal correctness if models and
real systems conform to each other. In [1] it is shown
that for the formal verification of safety properties, reachset
conformance is sufficient. As shown in Fig. 1, this means
that the real behavior (red lines) must always lie within the
reachable set prediction (gray area) of the model. There-
fore, reachset conformance checking is a prerequisite for
safety approaches such as verified controllers [2] or safe
human-robot coexistence [3]. Further possible applications
of reachset-conformant models are, e.g., the error bounding
of feedback control and the formal analysis of open-loop sce-
narios, such as mechanical braking or sensor faults, where the
robot’s possible future behavior could quickly diverge. Here,
reachable sets give us upper and lower-bound predictions
of the robot position and velocity states, which helps us to
formally avoid collisions with surrounding objects.

Bounding uncertainties have previously been addressed in
set-membership approaches [4], [5], where one determines
feasible parameter sets of dynamical systems such that the
current measurement of a physical system is always con-
tained within the output sets of its model. Set-membership
approaches are useful for robot modeling [6], fault diagnosis
[7], and state estimation [8]. Reachset conformance extends
set-membership by the idea that not only current, but also
the future behavior is considered in the uncertainties. The
tool proposed in [9] monitors reachset conformance for a
future time sequence at runtime for systems modeled as
hybrid programs. In this work, we model our systems using
differential equations. Previous reachset conformance checks
can be found for human arms [10], [11] or pedestrians [12].

open-loop tests

position

identified reachset | reachable sets

conformant model time

Fig. 1. We identify a reachset conformant model of the Schunk LWA-4P
robot, such that the reachable sets enclose all recorded future behaviors of
the robot.

Formal analysis tools for dynamical systems (e.g.,
SpaceEx [13], Flow* [14], HyLAA [15], XSpeed [16], or
CORA [17]) require simple, yet conformant models, which
are restricted to e.g., linear or polynomial terms. In contrast,
the forward dynamics of robot arms are highly nonlinear and
also hard to obtain symbolically, especially when the robot
has many degrees of freedom (DOFs). In [18] the authors
use automatic differentiation to generate fast forward dy-
namics abstractions up to the second order without explicitly
generating the symbolic version of the forward dynamics.
Higher-order approximations are often realized using Taylor
polynomial arithmetics [19], [20] and are not only beneficial
for formal techniques, but also for control design and optimal
control in particular [18], [21].

In this paper we present the first work on reachset confor-
mance of robot arms. We are aiming to find abstract models
with a simple structure and consider unmodeled effects by
adding non-determinism to achieve reachset conformance.
Our approach creates reachset-conformant models in four
steps:

1) We identify the nominal robot dynamics through ex-

periments on the real counterpart.

2) We generate a global forward dynamics abstraction
(linear or polynomial) using Taylor polynomial arith-
metics and exploiting structural properties.

3) We perform open-loop testing using a fixed input
trajectory.

4) We identify additive uncertainties using intervals of
minimum size to ensure that all recorded behaviors
lie within the reachable set of the abstract model.

Our approach is demonstrated experimentally on a 6-DOF
Schunk LWA-4P robot arm shown in Fig. 1. We begin this
paper in Sec. II by formalizing the problem at hand. In
Sec. III we introduce the mathematical tools we use. Sec. IV
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describes our main contribution, which is the identification
of the reachset-conformant robot model. Experimental results
on our Schunk LWA-4P robot arm are presented in Sec. V.

II. PROBLEM STATEMENT

We consider a robot manipulator with rotary joints, whose
n joint positions and n velocities x = (g, ¢)T € R?" depend
on joint torques u € R™. To describe all possible behaviors of
a robot manipulator, we use a first-order differential inclusion
in state space form. Model uncertainties are captured by sets
of uncertain initial states Xy C R?” and sets of uncertain
inputs &/ C R™ imposed on the initial state z¢o = x,,,(0) and
nominal input w,, (t):

xe{fw U ’ )EUT,L()@U},I(O)EI()@X(), )

where the Minkowski sum is defined as A® B = {a+b|a €
A, b € B}. Next, we define reachable sets:

Definition 1 (Reachable Set). Given an initial set X and
a time-dependent input trajectory u,,(7), and the uncertain
input set U/, the reachable set at time ¢ of system (1) is

/f

x(0) € 2o @ Xo, V7T € [0,1] : u(

R(t, 20, (7 7)dr + 1:(0)'

(1) € Um(7T) @U}.

For conformance checking, reachable sets are compared
against test suites obtained from the real robot (see Fig. 1):

Definition 2 (Test suite). Given are measured trajectories
T, 1(+); Tm,2(+), ... of a physical system starting at the same
initial state z( and receiving the same input trajectory w,, (+)
via open-loop control. A test suite is the set

Xm(t7 Zo, Um(')) = {xm,l(t)y Tm,2 (t)7 }

For establishing reachset conformance, the sets Xj, U are
chosen such that reachable sets always overapproximate all
test suites, regardless of input or initial state. To formalize
our goal, we introduce the volume operator Vol() and the
time horizon t.. The goal of this paper is to derive a robot
model in the form of system (1), where f(z,u) is linear
or polynomial and where the uncertainty sets X and U are
chosen such that a reachset-conformant model is obtained
whose reachable set has a minimized volume:

te
2[1)13/0 Vol(R(t,xo,um(v)))dt
subject to Vg, unm(-),t € [0, ] :
R(t7 .1’0711,,,"(')) D X (t IOaum( ))

2

III. PRELIMINARIES

To obtain reachset-conformant models, we use Taylor
polynomials and interval arithmetics, which are introduced
subsequently.
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A. Taylor polynomial arithmetics

We use Taylor polynomials to locally approximate a
continuous function f(z) with variables z =€ RF at the
expansion point a € R,

Definition 3 (Taylor polynomial (see Sec. 3 in [22])). Let
us first introduce the multi-index set

)|l €N, Zl <p}.

We define TJ’Z (z — a) as a p-th order Taylor polynomial of
f(2) around a:

_ ohit- +lkf( )
Tiﬁ _ H al .
(-a)=3, 11..,.zk. ( CECE A

leLr

L8 = {(ly, 12, s i

One way to create T]’Z (2) (short notation) is to obtain f(z)
symbolically and subsequently compute its derivatives. A
second way is to perform numerical differentiation, which
often yields high inaccuracies [18].

A third way to build Taylor polynomials is via compo-
sition of simpler Taylor polynomials. In fact, coefficients
of Taylor polynomials form a commutative algebra [19],
[20] with well-defined arithmetic operators such as *+’,-’
and ’/’. Via operator overloading we can use the same
algorithms that are used for the numerical evaluation of f(z)
(i.e., recursive Newton-Euler and Featherstone’s algorithm in
robotics) to compose T]’Z (2) up to an arbitrary degree p. For
our application, this approach is faster and more accurate
than symbolical or numerical derivation. For details on our
implementation of Taylor polynomial arithmetics, please see
[23].

B. Interval arithmetics

We use intervals to describe model uncertainties. An inter-
val is defined by an upper and a lower limit [a] := [a,@],a €
R,a € R,a < a. Set-based operations * € {+,—, -} are
defined as

[a] ® [b] := {a*bla € [a],b € [b]}.

The functions inf([a, @]) := a and sup([a, @]) := @ return the
infimum and supremum, respectively.

A k-dimensional interval is called hyperrectangle and
is defined by the Cartesian product of intervals in each
dimension [z;,%;]x- - -X[2},, Zx]. For an arbitrary set Z € R”
the function inf(Z) := z € R¥ and sup(Z2) := 7 € R¥ return
the infimum and supremum of the smallest hyperrectangle
overapproximation of Z.

IV. FORWARD DYNAMICS MODELING

We aim to create a reachset-conformant robot model in the
form of (1), consisting of the nominal model f(z, ) and un-
certainty sets Xy, U. We first introduce our robot and friction
model. Afterwards we present our main contribution, which
is the forward dynamics abstraction and the identificiation of
uncertain sets based on conformance testing.
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A. Robot model

The standard inverse dynamics model of a robot arm is

n=(M@+ﬁw%%mﬁ+d%®+M% 3

where 7; is the link-side torque; g, g, § are the joint positions,
velocities, and accelerations, respectively; M is the mass
matrix; c are the Coriolis forces; g is the gravity vector; k,. is
the gear ratio; and I,,, is the motor inertia. These terms can
be obtained by using the recursive Newton-Euler algorithm
(see Ch. 7 in [24]). We present two possible ways to obtain
the nominal part of (1): The first one is to solve (3) for ¢,
which results in:

G=Mp(q)" (1 — c(g,4) — 9(q)), 4

where M,(q) = M(q) + diag(k2I,,). The second way
is to compute ¢ directly using Featherstone’s algorithm for
rigid-body dynamics [25], which bears a result equal to (4).
Featherstone’s algorithm is generally more accurate and is
faster for many DOFs [26]. Using our computer setup (see
Sec. V), however, neither algorithm is able to terminate when
trying to obtain (4) symbolically for DOFs greater than four.
Therefore we use Taylor polynomial arithmetics.

For the joint friction we choose to model the load-
dependency and nonlinearity of joint friction. The resulting
link-side torque is

i = Ty — Teq — (V1Gi + v2d? + v3G7), ®)

)

Tv,i

where ¢ denotes the joint number, 7, is the motor torque,
7. is the Coulomb friction, and 7, is the viscous friction
modeled as a cubic function with constants vy, vs, v3.

For the Coulomb friction we use the model in [27] which
considers different constants a for each motor quadrant, such
that 7.(7;, ¢) is for each joint (subscripts omitted):

if sgn(n)) # sgn(d) Ad <0, (6)
if sgn(n) = sgn(@) AG <0, ()
if sgn(m) # sgn(q) Ag >0, (8)
if sgn(m) =sgn(¢) A¢g>0. (9

Te = a1 + a2,
Te = a3 + a47Ty,
Te = a5 + agT,
Te = a7 + ag7,
Employing a load-dependent friction model has one caveat:
when inserting (5) into (4), acceleration ¢ appears on both
sides such that forward dynamics becomes implicit and
would need to be solved iteratively [28]. We avoid accel-
eration to appear on the right side by setting 7, = g(q) in
(6)—(9), because gravity usually dominates 7; at low speeds.
For the identification of our robot and friction model we refer
to the Appendix.
B. Abstracting the forward dynamics

We abstract the following forward dynamics:

LN T
@ u) = (M'm(il)‘l(u ~ e(d1,82) — Tu(:zz))> » (10
where #; = ¢, %5 = ¢ and u; is the input of the i** joint

(1)

Ui = Tmi — Tc7i(gi(1'1)7x2,i) - 9i($1)7

The input u represents the motor torque, but with added
gravity and feed-forward Coulomb friction compensation
since this drastically simplifies the obtained model and only
requires small uncertainty sets. In addition, we avoid mixed
discrete/continuous dynamics by considering the disconti-
nuities of 7, inside u instead of f(Z,u). Additionally, we
exploit three structural properties of robot dynamics:

Property A (Trigonometric Z;): The generalized coor-
dinates Z; of revolute joints only appear as trigonometric
functions sin(Z1) and cos(#1) in (3) as shown in [29]. By
introducing x3 = ¢s = sin(Z;) and x4 = g. = cos(Z;) as
new variables, (3) becomes a polynomial in gs, q., ¢, g, 7.
This reduces the number of operations and therefore reduces
the model error when applying Taylor polynomial arith-
metics. Using this property increases size of the state-space:
z=(q,4,4s,q.)" € R*™.

Property B (Near diagonal mass matrix): For high gear
ratios the mass matrix M,,, is dominated by the constant term
diag(k2I,,). This also propagates to the inverse of M,,.

Property C (Omitting Coriolis terms): The Coriolis and
centripetal term ¢(z1,x2) can be written as

lgcl (.1‘1).%2

c(x1,me) := , see [30], (12)

.Z'gCN(.Z‘l)ZQ
where C; € RV*N are matrices that degend only on ¢
M

. . M, ; ik
and its coefficients are c;j, = gL — L2k (as shown

2 0wy
in [24], Ch. 7) . In (12) it is shown that velocities xo

only appear as squared terms in the forward dynamics, such
that small velocities can be neglected and high velocities
may let ¢(z1, z2) dominate the robot dynamics. We propose
omitting ¢(z1, z2) for slow moving robots and using Taylor
polynomials of C;(z;) for high velocities.

In the following we list three useful models which apply
the above properties to a varying degree and are evaluated
subsequently. For a global approximation, we use the ex-
pansion point (¢q, Ga,sin(qa), ue)” = 0 and cos(q,) = 1.
Model 1 is the simplest model, considering properties B and
C and only depends on input » and velocity zo = ¢:

. pp— x2
&= fi(z,u) = <M;1(qa)(u -7 (””2))) -

where the subscript of 7" denotes the function that is Taylor-
approximated. Model 2 uses assumputions A and B, and
therefore considers Coriolis effects:

T2
= fQ(ZE, u) — M;Ll(Qa)(u - CaEL.IQ’ zs3, .1’4) - Tfu (732)
224
—T2T3
(14)
2 TE 2 (w3, 24) 22
Ca(T2,X3,24) 1= , (15)

z'QTTg;z (3, 74)T2

where (15) is only evaluated for p > 2 (else ¢, = 0) and
we replace z; by the trigonometrical variables z3 and x4
when evaluating the Coriolis matrix. From property A we
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know that ¢(x2, z3,24) is a polynomial, of which we denote
its order as Ppq.. We conclude that for p > prge — 2 ¢

co(xo,23,24) = c(x2,23,24). Model 3 only considers
property A:
Z2
TP
I.:fg(l‘,’u) = f($2751737$47u) , (16)
XoT4
—ToT3

where f is the second row of (10) and, e.g., can be computed
using a modified Featherstone’s algorithm that evaluates
s, qc instead of ¢. Note that for p = 1 the model in (13) and
the first two rows of (14) and (16), respectively, are identical
and linear.

C. Identifying the uncertainty sets

After obtaining the nominal part of (1), we identify the
sets Xp and U by solving the optimization problem in (2).
We first consider the case of linear systems (p = 1), which
can also be written in the standardized form & = Az + Buyy,.

Given an initial state zo and an input trajectory w, (-), the
solution of a linear system is known to be

¢
x(t, o, um(+)) = etz —I—/ eA(t_T)U(T)dﬂ
0
v(T) = Bupy(7).

If the linear system has the uncertainty sets X, and U/, the
reachable set is

R(tv Zo, U’m(')) =

t
eM(zo @ X)) ® / A (y(r) e V)dr, V= BUY.
0

We consider the conformance constraint in (2) and subtract
z(t,*x) = x(t, zo,um(-)) from both sides to obtain Vi €
[07 te]u v‘rou vum('):

X (t,*) — z(t,*x) C R(t, *) — z(t, x)

where on the left-hand side x is substracted from every
element of X,,, and thus

t
Xm(t7*)—w(t,*)§eAtX0€B/ AIVdr, (17)
0

and observe that the right side is now independent of xg, .

Proposition 1. By moving a constant set V out of the con-
volution integral, the result becomes an underapproximation
v E V} -

t
{/ AT dry
0
¢
{/ eA(tiT)’U(T)dT
0

The proof is trivial, because the notation already shows that
on the right-hand side more solutions are present.

VT:v(r)eV}.

After introducting
I

Xan(t) = | (X (20,0 i () = (b, () )

i=1
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where [ is the number of test suites, we infer from proposi-
tion 1 and (17)

t
Xou C eMXy @ / AT qry, (18)

0
which is a stricter constraint on V and thus it subsumes (17).
For easier reading we introduce E, F5 to replace the matrix-
valued terms in (18):

X
Xau(t) C E1(t) X ® Ex(t)V = (Ev(t)  Ea(t)) <V0> :
We overapproximate both sides by hyperrectangles (multidi-
mensional intervals). We then know that the following must
hold true for ¢ € [0, t.]:

sup(Xan(0) <sw (B2 2200) (7))
nf(Xou(t)) > inf ((El(t) Ey(t)) (’fj)) .

Without loss of generality we assume that the origin is
contained in Xy and V. Hence inf(Xp, V)7 is a 4n x 1 vector
with only negative elements, and sup(Xp, V)T is a 4n x 1
vector with only positive elements. Usually, ¢ is sampled.
We stack the vectors and matrices for all m samples in time
0<t; <t

X
Sup(X]u) S |E]\/[|Sup <VO) (19)
. . (X
inf(Xys) > |Ep|inf <V) (20)

Xy = Xa”(tk) CRnAm,k =0,....m

By = | Ei(ty) Ba(ty) | € R*™2" k=0, ...,m.

We overapproximate all reachable sets R(t,x) with
hyperrectangles Hrp(; ). Because z(t,x) is a vector,
VO]('HR(LL’*)) = VO](’HR(L*) — l’(t,*)) = VO](El(t)XO ©®
E5(t)V), where the last expression is evaluated via matrix
interval multiplication (see Sec. 2.2 in [31]). We therefore
simplify the optimization task in (2) to an optimization
problem, that minimizes the sum of the edge lengths of
Hr )

: T
min ] ;) (Brte)  Ea(ty)) (b1 —92), 2D
where j is a 2n - m x 1 column vector of ones, y; =
(sup(Xp),sup(V))T and y, = (inf(Ap),inf(V))T. The ad-
vantage of (21) is that together with (19) and (20) a linear
program is formed which can be efficiently solved. U* is
obtained by using the pseudo-inverse B#:

U = B#V*,

where U* is a hyperrectangle, when evaluated using matrix
interval multiplication.
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TABLE I
SIMULATION ERROR OF MODEL ABSTRACTIONS

conformance
evaluation

grav. comp. Gm>Gm

Coul. fric.

polyn. Model 1 Model 2 Model 3
ord. p slow fast slow fast slow fast
1 0.0040 0.0408 0.0040 0.0408 0.0040 0.0408
3 0.0034 0.0243 0.0042 0.0294 0 0
5 - —— 0.0026  0.0161  0.0031 e
7 —— —— 0.0025 0.0162 —— ——

For polynomial and nonlinear systems, we first linearize
the dynamics and then use binary search for each dimension
to find the sets Xy, U.

V. EXPERIMENTAL RESULTS

In this section we present the experimental results of our
approach. We carry out the experiments on a 6-DOF Schunk
LWA 4P robot (Fig. 3), which is controlled by Simulink
Real-Time OS on a Core i7 Speedgoat machine. The results
for the identification of the nominal model can be found
in the Appendix. Subsequently, we first evaluate the model
abstractions in a simulation study, and then provide the
results of conformance testing.

A. Evaluation of the model abstractions

In this section we evaluate the effectiveness of the three
different model abstractions proposed in Sec. IV-B. These
are computed using our MATLAB reachability analysis tool
CORA [17], which already contains an implementation of
Taylor polynomial arithmetics. As can be inferred from their
model structures models 1 and 2 have maximal polynomial
degrees; for our robot these are 3 and 12, respectively.

We compare these models in simulations by generating a
slow and a fast trajectory, where the top speeds of each axis
are 0.4 and 1.2 rad/s (max. velocity from the robot’s data
sheet), respectively. In Tab. I we show the mean of velocity
errors of each abstracted model versus the standard numerical
simulation using Featherstone’s algorithm.

We observe that for the slow trajectory, there is almost no
difference between the abstracted models and the numerical
simulation. For fast trajectories the errors are larger. For
model 2, the error decreases below the error of model 1 for
higher orders, because of the improved modeling. For model
3, however, the errors frequently diverge from the simulation.

We observe that the linear model already has a decent
approximation performance, although one would not expect
this for a single expansion point. Our simulations have shown
that the model 1 abstractions only start to diverge from the
original rigid-body dynamics at velocities much higher than
the robot’s capability. The improvements of model 2 are not
that significant for our robot. In fact, as will be shown later
in the experiments, the uncertainty of friction has a higher
effect on the dynamics than the Coriolis terms, which have
been considered in model 2. Model 3 is not suitable for
global approximation.

frecorded
motor torques

-

T —
real robot

abstracted model

Fig. 2. Open-loop control with gravity and Coulomb friction compensation
result in non-deterministic robot behavior (red). The same motor torques
influence the abstracted model, which generates the reachable sets (gray).

B. Conformance testing and optimal uncertainty sets

In this subsection we present the results from conformance
testing and obtained optimal uncertainty sets. We focus on
the linear model 1, which turned out to be sufficiently
accurate in the previous subsection.

For conformance testing we have recorded 152 test suites,
where each test suite consists of a fixed series of motor
torques that are applied via open-loop control to the real
robot 15 times from the same initial state, as shown in
Fig. 2. The motor torques are pre-recorded from closed-
loop point-to-point (PTP) motions. We generate 38 uniformly
random PTP motions; from each motion, we choose four
initial points, as shown in Fig. 3. The robot moves to these
initial points via closed-loop control, and then immediately
switches to open-loop by applying the pre-recorded motor
torques, such that the resulting trajectories diverge. Each test
suite is up to ¢, = 5 seconds long.

Using the data from all test suites, we determine the
optimal uncertainty bounds via Sec. IV-C such that the
reachable sets enclose all measurements, as shown in Fig.
2. The results are shown in Tab. II for two cases: In the
first case we aim for conformance of all states (position and
velocity). In the second case we only aim for conformance
of the robot position by excluding the velocity constraints
in (19) and (20) from the linear program (21). Fig. 4 shows
the reachability analysis of both cases for an exemplary test
suite.

Fig. 3. In each random point-to-point motion the conformance testing starts
from four different points indicated by dotted lines, where the controller is
switched from closed-loop to open-loop
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Fig. 4. Reachable set predictions of model 1 for axis 1-6 (left to right) of the Schunk LWA-4P robot. Light gray: both position and velocity are reachset
conformant. Dark gray: only the position is reachset conformant. Colored lines are the measured test trajectories. The colors indicate the temperature
relative to the temperature range of each axis, where red is hot and blue is cold.

TABLE II
IDENTIFIED OPTIMAL UNCERTAINTY SETS OF MODEL 1 FOR EACH JOINT

Velocity conformant

Jnt. Xo:q Xo:q u
1 —0.0030, 0.0030 —0.0317,1.2140 —2.7201, 3.6017
2 —0.0017,0.0017 —0.6586, 0.2550 —2.3225,7.1559
3 —0.0025, 0.0025 —0.0154,0.0463 —6.8833,2.6287
4 —0.0027,0.0027 —0.0184,0.0331 —1.7374,2.0317
5 —0.0075,0.0075 —0.1179,0.0551 —1.4919,0.5486
6 —0.0063,0.0063 —0.0765,0.0765 —1.0060, 1.0060

Position conformant

Int. Xo:q Xo: g u
1 —0.0030, 0.0030 [—0.2785,1.1309] —1.9257,1.8615
2 —0.0017,0.0017 [—2.0695, 2.3636] —0.8212,1.0395
3 —0.0025, 0.0025 [0,0] —1.8045,1.5717
4 —0.0027,0.0027 [0.0000, 0.6020] —1.2072,1.2231
5 —0.0075,0.0075 [—0.3491,0.1180] —0.6622,0.2146
6 —0.0063,0.0063 [—0.6369,0.7051] —0.5366,0.5187

We observe that in both cases the test suite is enclosed,
which means that the model shown in this evaluation is
indeed reachset conformant. By color-coding the test trajec-
tories according to the joint temperature measurement, we
observe that temperature is one of the main reasons why
the trajectories diverge. We have not included a temperature
model in this work, but this would further improve the open-
loop prediction.

VI. CONCLUSIONS

We present an approach to create reachset-conformant
models of robot manipulators. To this end, we abstract
the identified forward dynamics to linear or polynomial
systems and optimize the required uncertainty sets to achieve
reachset conformance. Experimental results demonstrate the
effectiveness of our approach on a real robot. Reachset-
conformant models are useful for the formal analysis of
uncertain behavior, such as to avoid collisions. We wish to
apply our model to the formal analysis of mechanical braking
(STOP 0 and STOP 1).

During the experiments it became apparent that friction
has a large effect on the dynamics and that an accurate fric-
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tion model is very important. Especially the highly uncertain
stiction in the case of crossing zero velocity has not been
addressed by this paper and is the subject of future work.
We also plan to consider temperature dependency of friction
in the future to reduce the uncertainty bounds.

APPENDIX: DYNAMIC PARAMETER IDENTIFICATION

The identification of our robot is based on the works in
[32] and [33]. The standard DH parameters can be found
with the help of CAD files available from the Schunk
website. Gear ratios are taken from the robot’s data sheets
(k- = [160, 160, 160, 160, 100, 100]). We estimate the grav-
ity model from 1000 static positions. Subsequently, we use
the gravity torques as load torque to identify our friction
model. As an example, we display the curve fitting results of
the friction models for joint 2 in Fig. 5. Lastly, we determine
our inertial parameters through linear regression. The results
are shown in Tab. III.
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Fig. 5. Fitting results for load-dependent Coulomb friction (up) and viscous

friction (down) of joint 2.

TABLE III
IDENTIFIED MODEL OF THE SCHUNK LWA-4P (SI BASE UNITS)

DH parameters

Par. Link 1 Link 2 Link 3 Link 4 Link 5 Link 6
a 0 0.35 0 0 0 0
a -3 T -3 5 -3 0
0 a1 @2—%5 43— 3 qa a5 96
d 0 0 0.3012 0 0.1548

Friction parameters
Par. Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
ai 6.08 4.46 6.27 6.08 1.71 2.33
asz 0 0.38 0.25 0 0.58 0
as —6.08 —5.46 —6.50 —6.08 —1.95 —2.33
as 0 0.32 0.25 0 0.46 0
as —6.08 —4.64 —5.95 —6.08 —2.10 —2.33
ag 0 0.041  —0.029 0 0.21 0
a7 6.08 4.08 6.38 6.08 1.67 2.33
asg 0 —0.0019 0.0025 0 —0.081 0
v1 11.52 10.08 10.68 8.41 3.61 3.53
V2 0.088 0.10 0.93 —0.0098 0.024 0.11
v3 —0.79 —1.02 —1.56 0.099 —0.24 —0.11

Gravity model

Parameter Value
mo + ms + my + ms + mg + 2.8571como 6.36
0.3012(my4 + ms + me) + cyamy + c.3m3 1.04
C24Myg — CysMms —0.0661
0.1548mg + c.5 * ms + c.6me 0.189

Inertial parameters
Parameter Value
Diyy + Toyy — Tozz + Is2o + k2Lt — klglma  —0.0162
ma — 8.163(k2,Ima — I222) + ma + ma + ms + me —7.45
0.301(m4 + ms + mg) + cyamy + cz3ms3 0.94
I3p0 — 1322 + 142z + 0.0907(my + ms5 + mg) + 0.602¢, 4my 0.171
I3yy + I4z- + 0.0907(my4 + ms + me) + 0.602¢cy4my 0.371
Isew + Ioyy — 522 + 0.024me + 0.31c.gmg 0.0555
Isyy + l6yy + 0.024me + 0.31c.6ms 0.126
2.857(I22» + k25 I;m2) + coama 5.02
Parameter Value Par. Val.
0.155mg + cz5ms5 + cz6Me 0.174  k23Ims 1.78
Czoma — Cyzmz — 2.857 2, —0.183 T4y 0.0726
Doy — Ingy + Tooz + k25 Imo 1.64 k2, Ima 1.63
Czamyg — cysms  —0.0388 Isy 0.0352
Tios — Tazz + Isz 0.135  k25Ims 0.541
Liyy + Is-z  0.0269 Is.»  0.00569
Toww — ﬁeyy 7060:1332 k26 Ime 0.637
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A.2 Provably Safe Motion of Mobile Robots in Human
Environments [2]

Summary The safety problem of this paper is to ensure that a mobile robot can never collide
with humans when the robot is moving. At the same time, current approaches in the industry
(e.g., ISO 13482 [19]) suffer from conservative human motion models, which frequently lead to
a freezing robot problem. To increase the efficiency of robot motion while maintaining human
safety, we propose to apply online verification. This algorithm continuously analyses the
robot motion planning, generates fail-safe trajectories, and verifies the safety of the human-
robot interaction for the robot input, including the fail-safe trajectory. If verification fails,
i.e., the robot input leads to an unsafe collision, the previously verified fail-safe trajectory is
selected to transition the robot into a safe state.

We choose verification models for humans and mobile robots on a 2D plane and compute
their reachable set in position space. We assume uncertainties such as their possible maximum
acceleration, velocity, and sensor measurement errors for the human motion model and tune
them manually to minimize the reachable set. Reachset conformance of the human model is
shown through a publicly available video dataset, where the trajectories of the humans on
pedestrian walkways are checked against computed reachable sets.

The algorithm is tested in a pedestrian simulator, where the robot is commanded to move
either with, across, or against a flow of pedestrians. Using online verification, we have deter-
mined that the robot’s goal position can be reached between 1.4 and 3.5 times faster than the
ISO 13482 methods, while safety is never violated. Therefore, we have shown the effectiveness
of formal methods in mobile robotics and their potential improvements in task efficiency that
such approaches can bring to the application through improved modeling and verification.

Author Contributions S. L. developed the main algorithm (Alg. 1) and the models required
for verification. S. L. and H. R. performed the reachset conformance checking for pedestrians.
S. L., C. H., and I. L. designed, conducted, and evaluated the experiments. S. L., H. R., C.
H., I. L., and J. O. wrote the article. J. O. and M. A. led the research project. M. A. drafted
the initial idea, provided feedback, and helped improve the manuscript.

Conference Paper The accepted version of the conference paper is reprinted in this the-
sis. The final version of the record is available at https://doi.org/10.1109/IR0S.2017.
8202313.

Copyright notice (©2017 IEEE. Reprinted, with permission, from Stefan B. Liu, Hendrik
Roehm, Christian Heinzemann, Ingo Liitkebohle, Jens Oehlerking, and Matthias Althoff,
Provably safe motion of mobile robots in human environments, in Proc. of the 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), September 2017.
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Abstract— Mobile robots operating in a shared environment
with pedestrians are required to move provably safe to avoid
harming pedestrians. Current approaches like safety fields use
conservative obstacle models for guaranteeing safety, which
leads to degraded performance in populated environments.
In this paper, we introduce an online verification approach
that uses information about the current pedestrian velocities to
compute possible occupancies based on a kinematic model of
pedestrian motion. We demonstrate that our method reduces
the need for stopping while retaining safety guarantees, and
thus goals are reached between 1.4 and 3.5 times faster than
the standard ROS navigation stack in the tested scenarios.

I. INTRODUCTION

Mobile service robots often need to operate freely and
flexibly in environments occupied by pedestrians. Because
collisions could cause serious harm, particularly in settings
with heavier robots, safety mechanisms always have to be
considered. Despite the large body of work in path planning
and obstacle avoidance [1], [2], in practice, most production
robots still rely on hardware safety devices such as certified
laser scanners. The main reason is that demonstrating the
safety of software to the satisfaction of a safety body is
difficult, and difficulty scales with the complexity of the
algorithm.

In environments with none or only a few humans, a
common way to reduce the problem is through a simple
model of human motion: Either assume people will always
stop (ISO 3691-4 [3]), or assume they always move at
full speed (ISO 13855 [4] and ISO 13482 [5]). The latter
is usually applied and results in a circular safety area as
illustrated in the left part of Fig. 1.

Unfortunately, a circular field seriously restricts robot mo-
tion, including in areas which common sense would indicate
as usable, such as beside or following a walking pedestrian.
In more populated environments, it leads to frequent stopping
of the robot and is therefore almost unusable.

This paper, in contrast, proposes a safeguard that predicts
all possible motions based on a kinematically-accurate model
of human motion, as well as the humans’ current position
and velocity. It guarantees the same level of safety but allows
much more efficient motion.

Specifically, we compute so-called reachable sets that
include all possible future occupancies of pedestrians and
the robot based on their kinematic models. Based on these
sets, we consider a velocity command as verified safe if
the robot can stop before entering the reachable set of any
pedestrian, i.e., no collision can occur before the robot stops

(passive safety [6]). From the example reachable sets shown
on the right side of Fig. 1 it is immediately obvious that they
leave much more maneuvering space compared to the static
approach on the left.

While our current kinematic model considers walking
pedestrians only, our approach is extensible to multiple mod-
els, e.g., to other dynamic behaviors (running, wheelchairs,
etc.) as well as to structured environments. For instance,
reachability analysis has also already been used in other
safety-related applications such as autonomous driving [7]
and robot manipulators [8].

pedestrians pedestrians and their
reachable sets

\\ \

mobile robot [
! &) @

mobile robot

”slow down”

Fig. 1: Standard safety field (left) compared to our method.

We evaluate the performance of our approach regard-
ing safety and efficiency in a Gazebo-based simulation
environment which combines the standard ROS navigation
stack! with a safeguard based on either i) the one proposed
in ISO 13482, ii) an obstacle model of the braking ICS
approach [9], or iii) our method. We use three different
scenarios and two pedestrian densities. Here, our approach
improves the average velocity by a factor of 1.4 — 3.5. In
absolute numbers, the average velocities for an easy situation
are 1 m/s (our approach) compared to 0.64 m/s (ISO 13482),
or, more striking for a difficult situation, 0.92 m/s vs 0.27 m/s.

In the following, we first outline the main ideas of reacha-
bility analysis, passive safety, and reachable set conformance
in Sect. II. In Sect. III, we describe the modeling and online
verification approach. Sect. IV shows the evaluation results.
Works related to our approach are described in Sect. V.

II. PRELIMINARIES / DEFINITION OF TERMS

In this section we briefly introduce the main methods and
terms relevant to our approach.

http://www.ros.org/navigation
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A. Reachability analysis of continuous systems

We model a system as a differential equation x(¢) =
S(x(#),u(t)), where ¢, x and u are time, state, and input
respectively. The initial state x(0) can be chosen arbitrarily
within the initial set .20, The time-dependent input trajec-
tory u(r) is allowed to vary, but is assumed to stay in a
time-dependent input trajectory set % (). These two sources
of non-determinism are used to model the fact that we do not
exactly know the current positions and velocities of objects
and their behavior in the future, see Sect. III-A.

Reachability analysis is the computation of reachable sets
of states over time of such a model. For instance, the
reachable sets for a robot and two pedestrians for different
points in time are illustrated in Fig. 1. Reachable sets are
formally defined as follows:

Definition 1 (Reachable Set (Reachset), see [7]). Given an
initial set 20 and a time-dependent input trajectory set
% (t), the reachable set Z(t) at time ¢ of a system of the
form %(¢) = f(x(¢),u(t)) is the set of all reachable states at
time :

R(0) = {x(1) = /0
x(0) € v e [0,1] :u(t) € %(1)}. )

Fx(2),u())dT+(0)|

We are using CORA for efficient computation of reachable
sets for high dimensional and nonlinear problems. Although
CORA itself has yet to be proved formally in a theorem
prover such as in [10], the method proposed in this work
can be proven similarly.

For safety analysis it is very important to account for
system uncertainties. Since we do this by using the non-
determinism of the model, Z(r) is a set containing all
possible future states of the system at a time ¢t. We verify
safety by checking that there is never an intersection between
reachable sets Z(t) of our system and sets of unsafe states
(e.g. position of surrounding objects, unsafe velocities, etc.).

B. Passive Safety & Safe Motion Trajectory

Passive safety means that no collisions with surrounding
pedestrians are allowed to happen when the robot moves
[11]. This is equivalent to ensuring a complete stop before
a potential collision. We therefore choose an input trajectory
that brings the robot to a stop. The trajectory is considered
safe if the following property holds:

Definition 2 (Safe Motion Trajectory). An input trajectory
u(t) of a robot system that brings the robot to a safe stop at
tsop 1s safe according to passive safety, if

Yt € [0stsi0p) : Rpealt) N Frop(t) = 0, 2)

where Z,0q(t) are pedestrian reachable sets and Z,,(t) are
robot reachable sets with input trajectory u(z).

C. Model Conformance

Validating that our pedestrian model conforms to real
pedestrian behavior is very important for the overall veri-
fication technique. For our model-based results to hold in
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reality, our model of the pedestrian has to conform to real
behavior. We therefore check our pedestrian model against
real measured data before using it for verification.
Recently, we showed that for verifying the absence of col-
lisions, reachset conformance testing is a suitable approach
to check the conformance of models to real behavior [12].

Definition 3 (Reachset Conformance). Measured state data
Di1,--.,pn of a pedestrian with timestamps #1,...,#, is reach-
set conformant to the pedestrian model, if the following
holds:

vi:pie<%ped(ti)' 3)

We evaluate reachset conformance in Sect. IV-A based on
the pedestrian model introduced in the next section.

III. MODELLING AND VERIFICATION

In this section, we provide the models for the pedestrians
and the robot that we employ for the reachable set compu-
tations and give an algorithm for the online computation of
safe motion trajectories based on reachable sets.

A. Pedestrian Modeling

We model a single pedestrian as a point on a two-
dimensional plane. The shape of the pedestrian is then
taken into account after the reachable set computation by
enlarging the reachable sets accordingly. We assume that
we can measure the pedestrian’s position and velocity with
some known uncertainty. Also, we assume that the pedestrian
performs a forward walking motion while possibly changing
directions and that the pedestrian has a maximum speed
and acceleration. We represent these constraints as two
separate differential equation models: one constraining the
acceleration and one constraining the velocity. Reachable
states of the pedestrian are then states which are reachable
under both models.

It would be possible to merge these two models into
one that includes state constraints. This can be realized in
CORA by a hybrid model, for which reachable sets are
difficult to obtain. However, it has been shown in [13] that
for reachability analysis it is possible to define multiple
abstracting models, such that their reachable set intersection
overapproximates the reachable sets of the hybrid model.

Therefore, we define the following two models. The
acceleration-constrained model

Dx = Vy, Dy = Vy, Vy = dy, Vy =ay @
2, .2 2
?/p(eazg = {(amay) ERx R'“x +ay S amch}

has the two-dimensional position p and velocity v as its
state variables. The input trajectory is a time-invariant set
representing all possible two-dimensional accelerations and
bounded by a,,,,. The velocity-constrained model

Dx = Vx, Dy =Vy

%p(e‘; ={(vs,»y) eRx ]R\v_%—i—v}z, < Vzmax}

)

has only the two-dimensional position p as its state variables,
while the velocity v is instead an input bounded by vy-.
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The initial position [p(0),p,(0)] and initial velocity
[v¢(0),vy(0)] are assumed to lie in the sets %p(:;,o and

.%;(:3’0, respectively. Since both models are used to predict
possible pedestrian behavior, their initial states can be inter-
preted as the currently measured position and velocity of the
pedestrian, plus some assumed measurement uncertainty.

The reachable sets of a single pedestrian are obtained by
computing the reachable sets %l(fézj(t) and f%’l(;zi(t) (Fig. 2)
of both models and then taking their intersection %4 (t) =
‘%;21([) ﬁ%ﬁ;)d(t). Lastly, we enlarge all Z,.,(t) by a circle
in the (px, py)-dimensions to account for the shape of the
human; any other shape can also be used.

(t=1.0s) 2 ), (1.05)

E 0.4 é, 0
< <
02
-
1 Iz0 >S5 02 2y
- ped /ped( . S) 2 a . ped(O.Zs)
’ 0 05 1 2 -1 0 1 2
px[m] px[m]

Fig. 2: Reachable sets according to the acceleration-
constrained (left) and velocity-constrained (right) model.

B. Robot Modeling

For modeling the mobile robot we use a kinematic model
of a differential-drive robot

Px = Vira COS(¢)7 p)' = Vtra Sin(¢)> ¢ = Vrot -

The initial state [p,(0), p,(0),9(0)]” represents the current
pose of the robot and is bounded by an initial set .B&’rgb
that accounts for the inaccuracy of the robot’s localization
algorithm. The input of the system is the vector [Viq,Vsor]” s
consisting of the translational and rotational velocities of the
differential drive. For verification we consider that the input
is not allowed to change at a larger rate than the maximum
acceleration of the robot. In the same fashion as for the
reachable sets of the pedestrians, we add the shape of the
robot to the (py, py)-dimensions of all Z,(t).

C. Online Motion Trajectory Verification

In our approach, we verify passive safety (Sect. II-B)
of motion commands for every step k, where the sampling
time is Ar. To this end, we employ reachability analysis to
predict whether the robot can still come to a collision-free
stop after applying the input ugizm = [vﬁf(),,vgg]T to the robot
motors for a time step. For that we define a candidate input
trajectory u*(): It begins with the planned motion command
u*(t) = upian for t € [0,Ar] and continues with 1*(r) = up« (1)
for + > Ar. The braking trajectory up, () brings the robot
to a stop u(tsop) = [0,0]" and the slope is the maximum
deceleration of the robot system (see Fig. 3). Note that r =0
always corresponds to the current time step in this analysis,

while signal values and reachable sets at ¢ > 0 correspond to
(predictions of) future behavior.

AL®

plan

Uprk (t)

0 : ' >

0 local prediction time

T
tstop

Fig. 3: Candidate input trajectory u*(¢) that we use to
compute Z,,p(t), here shown for vy,q. vy is analogous.

We then compute pedestrian and robot reachable sets and
verify u*(r) by checking whether u*(¢) satisfies the property

in Def. 2. If u*(¢) is verified, we store uiﬁ}c(z) =u*(r) as a
(k)

safe input trajectory and apply u, fe(z) to the motors for the
next time step Ar.

<
S
g
e

velocity

usafé :
0 : - >
T t >

0 local prediction time

tstop

Fig. 4: Continued use of previously verified safe trajectory
u (1), shifted by Ar, if u* (1) is not safe

If u*(¢) is not successfully verified, we simply execute the
previously verified safe input trajectory ugﬁ} (1) = uy;;el ) (t+
At) (see Fig. 4), which is shifted by Az. Thus, we ensure that
only inputs verified as safe are applied to the motors. The
robot does not necessarily approach zero velocity if during
the braking maneuver a new motion command is verified as
safe and applied to the motors. This approach is implemented
as a safety control module (Alg. 1) between the planning
module and the robot motor control (see Fig. 5). We initially
set ult (1) :=10,0]".

Depending on the hardware, robot control often encounters
a system delay. We can easily account for that by extending

u*(r) with all the delayed motion commands in [—Ze14y:0].

IV. EVALUATION

In the following, we present the results of evaluating our
pedestrian model (Sect. IV-A), and we present results on the
performance of our online verification approach (Sect. IV-B).

A. Model Evaluation

We check whether the pedestrian model of Sect. III-A
overapproximates the real behavior of a walking-only human
by performing a reachset conformance test (Def. 3) using
ground truth pedestrian trajectories from a labeled video
source of a street scene in Zurich, Switzerland [14]. We
check if the trajectories lie inside the computed pedestrian
reachable sets. This test was performed for a time horizon
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Algorithm 1 Online safety control (step k, sampl. time Ar)

Input: uiﬁ}e] >(t),u§s2m, 20, L%”p%d_’l”n for n pedestrians
k
Output: uf_a)fe(z)
ugjzm 0<r<Ar
Lo Set w(1) =4 upy(r) Ar<t<ty,, (seeFig.3)
0 Lstop <1

2: Compute Z,,(t) with %gb, u*(t) for t € [0;t50p)]
: Compute Zpeq,i(t) with ‘%pgd,i for t € [0;t4,p] for all
i = 1..n pedestrians

w

4 1 Vit Rpea i(t) N\ Rrop(t) = 0 for all 1 € [0;15,p) then
50 Set MEZ}E(I) :=u*(r) forall r >0

6: else

7: Set uy;)fe(t) = uﬁs;el)(t +At) for all t >0

8: end if

TABLE I: Pedestrian model and conformance test results

Pedestrian Model Conformance Test

Time horizon 1.6s Pedestrians | 420
Amax | 0.6 m/s? Gener. test cases | 20084
Vmax | 2.0 m/s Passed tests 19843
Ped. diameter | 0.54 m Rate | 98.80 %
%[f’ed (px, py)-uncertain. | + 0.1 m
5{[2,[1 (vy,vy)-uncertain. | £ 0.1 m/s

of 1.6s, which is larger than the largest #y,, of the robot in
our evaluation (Sect. IV-B).

For the pedestrian model, we parameterize v,y = 2.0 m/s
as suggested by [4], because it is the transition speed between
walking and running. To set dp., we apply numerical
differentiation and filtering on the velocity data of the video
source and then set dpq = 0.6 m/s? as an overapproximative
value. The parameters of our model are shown in Tab. I.

The results (Tab. I) show good reachset conformance
results. However, there are some unsuccessful tests. A closer
look at these failed cases reveals that the unsuccessful tests
are caused by special pedestrian behavior lying outside of
our initial assumptions such as changing directions too fast
(12 cases), and velocities faster than v,,,, (229 cases).

This conformance test shows that our pedestrian model is
reachset conformant to walking-only pedestrians which do
not change their direction of movement very abrupt. This
pedestrian model can therefore be used for our verification
approach if we are able to constrain human behavior to
walking-only and slow-direction-changing, which is possible
in a closed environment setting, as in production plants.
However, our model is not reachset conformant to all pedes-
trian behaviors and there are two possible solutions. First,
we could increase the bounds a,,,, and v, leading to a
richer set of behaviors and thus, to bigger reachable sets.
Second, one may consider hybrid models switching to more
conservative models, as suggested in [13], once the special
cases above are detected. In addition, runtime monitors as
proposed by ModelPlex [15] could be used to continuously
validate the correctness of the used model at runtime.
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B. System Evaluation

We evaluate the performance of our online verification in
a ROS simulation for different scenarios where the robot has
to navigate in the presence of pedestrians.

Considered Approaches: We compare three approaches
with different obstacle models. First, we use our approach
introduced in the previous sections. Second, we consider an
ISO13482-compliant safety field [5] with 360° warning and
protective fields. The size of the safety field is fixed and
dimensioned based on the maximum speed of the robot and
the assumption that a pedestrian may approach the robot at
full speed at any point in time. In contrast, the size of the
reachable sets in our approach is dynamic and depends on
the current velocity of the robot and pedestrians. The third
approach is based on the obstacle model used in braking
ICS [9] and by Mitsch et al. [11]. This obstacle model
assumes that obstacles may always move at full speed in any
direction if we do not know their future behavior and requires
that the robot is able to come to a rest before the obstacle
may hit it. We refer to this approach as braking ICS in the
following. In contrast, our approach computes reachable sets
based on current velocity and direction of movement.

Experiment Setup: We execute our evaluation based on
ROS Indigo. The physics simulation is carried out in
Gazebo 7% and the robot uses a standard move base based
on the Dynamic Window Approach (DWA, [16]). We use the
default parameters from the Indigo release for the move base,
except that we set the maximum velocity and acceleration for
the differential drive robot to v;,, = 1.5 m/s, v,,, = 2.0rad/s,
arrq = 1.5m/s%, and a,,; = 1.0rad/s?. Initially, the robot is
stationary. The robot model is based on the Robotino models
for Gazebo by RWTH Aachen’, where we use its laser
scanner for navigation and use the standard Planar Move
Plugin to steer the robot.

The setup of our ROS system is shown in Fig. 5. The
pedestrian simulation (upper left box) computes the pedes-
trian positions and velocities that are then sent to Gazebo
(upper right box) and to the online safety control. The robot
simulation in Gazebo (left box) simulates the robot actuators
and provides laser scan data for localization in our map. The
localization is performed in amcl, and information on robot
pose and static obstacles contained in the laser scans are
used by the ROS move base for computing a path to the
goal position (lower right boxes). In addition, the move base
contains the DWA implementation that generates the velocity
commands for the robot. These velocity commands are then
fed into the online safety control node (middle right box) and
only forwarded to the robot actuators in the Gazebo Robot
Simulation if they are safe. In our experiments, the whole
setup of the ROS system remains unchanged except that we
change the safety checker inside the online safety control.

For improving the efficiency of our approach and to enable
real-time performance, we created a library of reachable sets
for the pedestrians at design time that we store in a look-

2http://gazebosim.org/
3https://git.fawkesrobotics.org/gazebo-models.git
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up table (14 MB). Since the pedestrian model equations are
independent from the initial position, we only need to sample
based on the initial velocity, which we do in steps of 0.1 m/s.

Pedestrian Simulation
pedsim_simulator, S set pose
pedsim_ros, pedsim set velocity
pedestrian Xped 1.0 — Z
Gazebo Plugin:
planar_move

Gazebo Plugin:
gpu_laser

0
ped.l..n

Usafe(t)

Uplan

|
| I Planni
laser scan data
amcl move_base

Fig. 5: Setup of the simulation environment in ROS.

The evaluations are carried out on a map that is illustrated
in Fig. 6. The map is 24 m times 30m from wall to wall
and pedestrians walk continuously counter-clockwise along
the green area. For obtaining realistic pedestrian motion, we
simulate pedestrian motion in a dedicated Pedestrian Simu-
lator* (PedSim) that is based on social forces. The simulated
pedestrian positions are then transferred to Gazebo, while
the robot position is also considered in PedSim such that the
pedestrians react to the robot.

¢ N o N o N

'flow

'cross-flow 'anti-flow

Fig. 6: Illustration of the map used for the experiments.

In our experiments, the robot will always move from
top to bottom through the green area with different starting
positions. Depending on the starting position, we create three
scenarios for encountering pedestrians: flow (move in same
direction as pedestrians), cross-flow (pedestrians coming
from left or right), and anti-flow (pedestrians approach-
ing from front). In addition, we consider two pedestrian
densities: light population and dense population. For light
population, we place 25 pedestrians uniformly at random

*https://github.com/srl-freiburg/pedsim_ros

|

Fig. 7: Gazebo screenshot for a dense antiflow scenario.

in the green area; for dense population, we distribute 60
pedestrians. We create 10 different placements of pedestrians
for each density with a minimum distance of 0.5 m between
any two pedestrians. Fig. 7 shows a Gazebo screenshot of a
typical situation in anti-flow scenarios with dense population.

Assumptions: The current pose and velocity of each pedes-
trian, which we require as inputs to our online verification,
would need to be provided by a people-tracking approach on
a real robot. In simulation, we instead take this information
directly from PedSim. This therefore represents the best case,
where we can track all pedestrians perfectly and exactly
know their current position and velocity. In order to account
for the imprecision of current perception and tracking ap-
proaches, we add an uncertainty of 0.1 m to the pedestrian
positions and 0.1 m/s to the pedestrian velocities to make our
simulation more realistic. Finally, we have also included the
actual control delay of 100 ms that the real hardware exhibits.

Experimental Execution: For each scenario (flow, cross-
flow, anti-flow), and for both light and dense populations,
we generate 10 different pedestrian placements. All three
approaches are executed on all of the situations. Based on
the collected data, we compute (1) whether the goal has
been reached, (2) how long it took to reach the goal, (3)
the distance traveled by the robot, (4) the average velocity,
and (5) the number of unsafe collisions. An unsafe collision
is one in which the robot’s velocity is greater than O.

Results: The results are summarized in Table II for lightly
populated situations and in Table III for the densely pop-
ulated ones. Throughout our simulation runs, no unsafe
collisions occurred for any of the approaches, so we omitted
the corresponding column in the result tables. All values are
arithmetic means over all runs.

The results clearly show that our method performs best in
all cases by a large margin. Even in the simplest situation,
motion with a lightly populated flow, our method is 1.4
times faster, and in the dense situation this even increases
to a factor of 3.5. The example in Fig. 8 illustrates how
the robot is able to follow a group of pedestrians in a flow
scenario with light population when applying our online
verification approach. It is also notable that both safety field
and Braking ICS exhibit very bad performance in the anti-
flow situation. This is despite the fact that our pedestrian
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Fig. 8: Gazebo screenshots from the same position with a time step of approx. 1s for a light flow scenario where the robot

uses the online verification approach.

TABLE II: Results from ROS Simulation (Lightly Populated Scenarios)

Flow Cross-flow Anti-flow
Approach @Goal Time(s) Len(m)  Vel(m/s) | @Goal Time(s) Len(m)  Vel(m/s) | @Goal Time(s) Len(m)  Vel(m/s)
Braking ICS 10 34.3 22.9 0.73 10 40.0 23 0.63 10 116.1 23.0 0.21
Safety Field 10 37.9 22.9 0.64 10 35.7 23 0.68 10 74.8 229 0.32
Onl. Verif. 10 22.4 22.9 1.04 10 26.3 23.2 0.91 10 52.3 23.0 0.45

TABLE III: Results from ROS Simulation (Densely Populated Scenarios)

Flow Cross-flow Anti-flow
Approach @Goal Time(s) Len(m)  Vel(m/s) | @Goal Time(s) Len(m)  Vel(m/s) | @Goal Time(s) Len(m)  Vel(m/s)
Braking ICS 10 108.0 22.9 0.25 10 114.2 23.1 0.21 10 519.5 232 0.05
Safety Field 10 96.0 22.9 0.27 10 76.9 23 0.31 10 251.5 23.0 0.10
Onl. Verif. 10 26.0 23 0.92 10 37.8 23.1 0.65 10 159.2 232 0.15

simulator is cooperative, i.e. humans attempt to actively
avoid the robot, and that the robot also uses a normal obstacle
avoidance algorithm (albeit one that makes a static obstacle
assumption). To this end, the effect of the obstacle avoidance
seems to be minimal because the path lengths traveled by
the robot are nearly the same for the three approaches in all
considered situations. That means the robot takes almost the
same path in all situations and only adjusts its speed instead
of going round the populated areas, which we attribute to
the static obstacle assumption.

For dense population, our online verification method pro-
vides significant improvements in average velocity for the
flow and cross-flow scenarios. For the anti-flow scenario, the
online verification still enables an average velocity that is a
factor 2 (safety field) or 3 (braking ICS) higher compared
to the other approaches, but an absolute average velocity of
0.15m/s still leaves significant room for improvement.

Last, but not least, it might be surprising that the Braking
ICS approach often performs worse than the ISO 13482
safety field. We surmise that this is because the safety field
includes a warning field, which just reduces speed but still
enables to robot to move. In contrast, the Braking ICS
approach always stops the robot when it detects a potential
collision, which essentially corresponds to a having safety
field without a warning field.

V. RELATED WORK

We discuss related work that aims at establishing provably
safe motion of mobile robots with respect to a mathematical
model considering moving obstacles, particularly humans.
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Full Obstacle Knowledge: The first approaches in this
regard are inevitable collision states (ICS, [17]), non-linear
velocity obstacles [18], and the FD* path planner [19]. All of
these approaches, however, make the assumption of exactly
knowing the future behavior of all obstacles during the
planning horizon, which is unrealistic for pedestrians.

Conservative Obstacle Model: Braking ICS [9] use a
conservative obstacle model where an obstacle may always
move with maximum speed in any direction. This obstacle
model corresponds to the relevant safety norms [5], [4].
Similar to our approach, braking ICS append to each verified
trajectory a braking trajectory for proving passive safety [6].
In contrast to our approach, they compute and check several
possible braking trajectories for the robot. Mitsch et al. [11]
and Zhang et al. [20] use theorem proving for showing
that the DWA enables passively safe motion for differential
drive robots using the same obstacle model as braking ICS.
Likewise, Dabadie et al. [21] assume that obstacles behave in
the worst possible way while proving collision-free motion
based on a reach-avoid problem formulation. Aniculaesi et
al. [22] construct an observer monitor that considers a fixed
braking distance and obstacle velocity for constructing a
safety circle around the robot. Similar to a safeguard, the
monitor triggers a safe braking maneuver if an obstacle enters
the safety circle. As indicated by our evaluation results, such
models with a fixed maximum velocity are conservative and
lead to decreased performance in populated environments.

Motion Primitives: The approaches by Hess et al. [23]
and Majumdar et al. [24] build a library of motion primitives
from which they construct motion plans. These motion plans
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include occupancies of the robot along the trajectory and may
be verified against occupancies of obstacles. Such approaches
could be a useful extension to our approach if the online
computation of robot reachsets is too resource demanding.

Occluded Obstacles: The approaches by Alami et al. [25]
and Chung et al. [26] consider (partially) occluded obstacles,
e.g., if humans appear from a crossing corridor. Obstacles
are assumed to appear with maximum speed at any time.
For these cases, our model cannot be applied and the use of
such conservative models is necessary.

Probabilistic Approaches: Probabilistic approaches like
probabilistic ICS [27] and probabilistic collision states [28],
[29] accept a small probability of collision, which is not ac-
ceptable in settings with heavier robots such as intralogistics.

VI. CONCLUSIONS

We present a safety approach for mobile robots that
guarantees passive safety regarding walking pedestrians by
an online verification using reachability analysis. Based on
models of pedestrians and the mobile robot, we compute their
reachable future occupancy at every timestep to determine
whether a braking trajectory leads to a safe stop. In our
evaluation, we demonstrate the validity of the pedestrian
model using reachset conformance testing and discuss possi-
ble improvements. The evaluation of the online verification
in a ROS simulation shows that our approach enables sig-
nificantly improved navigation performance through crowds
compared to standard safety approaches.

Future work focuses on real world applicability of our
approach. Today’s people-tracking algorithms still lack accu-
racy and reliability especially in velocity estimation, which
needs to be the major focus. The effect of sensor occlusion on
our approach is also of interest. Furthermore, additional mod-
elling effort is needed, e.g., to extend our pedestrian model
or to consider other dynamical objects in the environment.
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A.3 Online Verification of Impact-Force-Limiting Control
for Physical Human-Robot Interaction [3]

Summary The safety problem of this paper is to verify that in case of an unintended collision
between humans and robots, the impact force never exceeds a limit, e.g., a pain limit as defined
in ISO/TS-15066 [18]. In contrast to our previous work on human-robot interaction [2,9],
where we verified that the robot never collides with humans when it is moving, this safety
objective allows robot motion during a collision, as long as the impact force threshold is not
violated. Such safety objectives would further increase human-robot interaction efficiency
and relieve the freezing-robot problem. To realize that, we use the same online verification
framework for motion planning introduced in [2,9], but with a changed safety objective and
interaction modeling.

For the safety verification, we use a model for predicting human arm and robot arm mo-
tion (same as [9], and switch to a human-robot physical interaction model if a collision is
predicted. The physical interaction model accounts for the stiffness and damping of the
impedance-controlled robot and the human tissue, as well as the masses of the robot and hu-
man. In addition, we distinguish between constrained collisions (the human hand is clamped
between the robot and another object) and unconstrained collisions (the human hand can
move freely). Reachset conformance of the model is shown through a series of real constrained
and unconstrained collision experiments, and the verification model has been found using the
grey-box identification approach, such that the measured collision force is always contained
within the predicted reachable set of the collision force.

The algorithm is tested on a real six-degrees-of-freedom robot, where the end-effector in-
teracts with a human hand. We demonstrate that the online verification approach for motion
planning always reduces the robot’s speed to prevent unsafe collisions. This method is ef-
fective with or without sensors for human arm detection, although arm detection helps the
robot to increase its speed when the human is not near the robot. For the first time, we use
formal methods to verify controllers for physical human-robot interaction.

Author Contributions S. L. developed the verification algorithm (Alg. 1) and the models
required for verification. S. L. developed the grey-box identification approach. S. L. de-
signed, conducted and evaluated the experiments. S. L. wrote the article. M. A. led the
research project, provided feedback, and helped improve the manuscript.

Conference Paper The accepted version of the conference paper is reprinted in this thesis.
The final version of the record is available at https://doi.org/10.1109/IR0S51168.2021.
9636610.

Copyright notice (©)2021 IEEE. Reprinted, with permission, from Stefan B. Liu and Matthias
Althoff, Online Verification of Impact-Force-Limiting Control for Physical Human-Robot In-
teraction, in Proc. of the 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), September 2021.
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Online Verification of Impact-Force-Limiting Control
for Physical Human-Robot Interaction

Stefan B. Liu, and Matthias Althoff

Abstract— Humans must remain unharmed during their
interaction with robots. We present a new method guaranteeing
impact force limits when humans and robots share a workspace.
Formal guarantees are realized using an online verification
method, which plans and verifies fail-safe maneuvers through
predicting reachable impact forces by considering all future pos-
sible scenarios. We model collisions as a coupled human-robot
dynamical system with uncertainties and identify reachset-
conforming models based on real-world collision experiments.
The effectiveness of our approach for human-robot co-existence
is demonstrated for the human hand interacting with the end
effector of a six-axis robot manipulator with force sensing. By
integrating a human pose detection system, the efficiency of
robot movements increases.

I. INTRODUCTION

Humans and robots are sharing their workspaces, collabo-
rating, and interacting with each other. Trending application
areas include collaborative manufacturing, assistive robotics
for rehabilitation and elderly care, and robotic surgery. When
designing robot controllers, safety is one of the top priorities;
humans should never be harmed or injured. To mitigate pain,
ISO/TS 15066 [1] defined interaction-force thresholds for
each body part, which should not be exceeded. However,
guaranteeing safety through limiting these forces is a chal-
lenging task:

o The human body is capable of performing a range of
movements, making it difficult to predict exact collision
scenarios.

« Interaction forces depend on the mechanical properties
of robots and humans. These are subject to uncertainty,
e.g., stiffnesses changes according to muscle activity.

o Varying tasks and diverse environments create many
possibilities for collision, thus, offline assessments be-
come infeasible. Therefore, an online approach should
be preferred, considering only the current situation.

o To guarantee safety properties despite uncertainties,
formal methods should be used.

We propose to tackle these challenges through an online
verification approach based on human pose detection, fail-
safe planning, and reachability analysis. The fail-safe planner
decides whether an upcoming motion command can be exe-
cuted by verifying the safety of possible fail-safe maneuvers.
The online proofs are based on reachability analysis, which
checks, whether all possible interaction forces are within
specified limits. Reachable sets are computed using a model

Authors are with Cyber-Physical Systems Group, Department of In-
formatics, Technical University of Munich, 85748 Garching, Germany
[stefan.liu,althoff]@tum.de

of the coupled human-robot interaction dynamics. Uncertain-
ties in the system, such as human velocity, collision time,
varying stiffnesses, control performance are all modeled as
sets, and the interaction dynamics are identified in a way that
preserves reachset conformance with real behaviors.

Most of the previous approaches only assess safety without
proving thresholds. Shivakumar et al. [2] propose that impact
forces with environmental objects can be predicted using a
spring-damper model or an energy-based model. Yamada et
al. [3] describe how to design the thickness of a viscoelastic
coat for robots to avoid exceeding pain limits during colli-
sions. Ikuta et al. [4] introduce a danger index relative to the
maximum tolerable collision force at the end effector, which
depends on factors such as the robot’s mass and velocity and
joint- and and coating elasticities. Heinzmann and Zelinski
[5] propose an online safety controller that derives admissible
control torques from the maximum collision forces of a rigid
robot, coupled with scaling of the robot velocity. Models
used in [3]-[5], however, assume that human is a rigid
obstacle, which reduces uncertainty but contributes to a
conservative force estimation. Post-collision force-limiting
strategies in Navarro et al. [6] and Li et al. [7] focus
on reactive behavior for overshoots during the interaction,
however, it cannot guarantee impact-force limits. Some non-
mentioned works use the model provided in ISO/TS 15066
[1] to guarantee force limits. However, Kirschner et al.
[8] reported that the model is inaccurate and unsuitable
for estimating collision forces. In contrast to these non-
formal studies, we consider impedance models with reachset
conforming uncertainties to provide formal guarantees.

In addition, alternative metrics for reducing impact injury
have been proposed, involving velocity [9], [10] or energy
and power [11]-[14], which are easier to evaluate, since only
the robot model is required. Haddadin et al. [9] realized that
injury occurrence is directly related to the impact velocity
beyond a certain robot mass. A database has been imple-
mented by Mansfeld et al. [10], which can be used for online
and offline injury assessments based on collision speeds and
robot modeling. Meguenani et al. [11] indirectly limit impact
force by limiting the kinetic and potential energy of the
robot. Raiola et al. [12] scale the stiffness and damping of
impedance controllers to guarantee energy and power limits.
The port-Hamiltonian formulation of coupled human-robot
dynamics in [13], [14] allows one to directly control energy
in physical interaction to preserve passivity. The difficulty
with speed, energy, and power metrics is that suitable limits
are unavailable, or are based on the non-formal derivations
from [1]. In contrast, we verify established force-based pain
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limits [1] for humans.

Our study is the first one that uses formal methods to
verify controllers for physical human-robot interaction. In
addition, we provide an identification method for models and
uncertainties based on real-world experiments. Also, other
methods for formal verification, such as differential dynamic
logic theorem-proving [15] and inevitable collision states
[16] consider uncertainties in dynamical systems.

This study is structured as follows: we define the safety
properties to be verified in Sec. II. Modeling and identifi-
cation of the coupled human-robot dynamics are discussed
in Sec. III. The impact-force-limiting controller is presented
in Sec. IV. The experimental evaluation in Sec. V demon-
strates the effectiveness of our approach on a real interaction
scenario, followed by the conclusions in Sec. VI.

II. SAFETY OBJECTIVES

This section poses the safety problem that is encountered
inbetween humans and robots. We denote sets in calligraphic
letters (e.g., \A), matrices with upper case letters (e.g., A),
vectors by -, and scalar values by lower case letters (e.g.,
a). Considering a system with state vector 2, input vector
@, and parameters p, of which the dynamical equation is
Z = f(Z,1,p). We make use of reachable sets, which are
defined as follows:

Definition 1 (Reachable Set). Given the initial set Z, the
uncertain input set ¢/, and the non-deterministic parameter
set P, the reachable set of Z'= f(Z, d, p) at time ¢ is

RO = { [ et i) mir+ 2020 € 20,
vre 0,4 @(r) e U, f(r) e 73}.

To compute R(t) (also denoted as reach (Zy,U,P)), we
use an optimized version of the software CORA [17].

We regard systems consisting of humans sharing a
workspace with a robot manipulator. From the goal that a
robot should not actively cause harm to the human, we derive
three safety objectives:

1) A non-moving robot cannot actively cause harm to a
human. Consider a robot manipulator with n degree of
freedoms, where ¢,¢ € R" are the joint position and
velocity of the robot, and Z = [¢, )" is its state. Let
us define the predicate standstill(¢) indicating whether
the system is safe:

standstill(t) <= Z(t) € ZSS := R" x 0,

where 0 is a vector of n zeros. We refer to the set on the
right hand side as an invariably safe set, implying that
our system is safe for an infinite time horizon when it
is reached.

2) We consider that a robot cannot cause harm to the
human, if they are not physically interacting, i.e., the
occupied space of the human does not overlap with the
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occupied space of the robot. We denote M (t) and #(t)
as occupancy sets of the robot and human, respectively:

nolnteraction(t) <= M(t) NH(t) = 0.

To predict occupancy sets of humans, a tracking system
is required. For additional information, we refer to our
previous work in [18], [19].

3) We consider that harm is caused to the human if
force thresholds are violated during an impact. For
ISO/TS 15066, two limits are defined: a transient force
limit fiya 1im. Which is the peak at the beginning of a
collision, and the quasi-static force fqs 1im limit, which
is the converged stationary force acting on a clamped
human. We introduce the reachable set of the absolute
force Feon(r) C Rt < 7 < t + t., where t. is a
prediction horizon. Our system is safe if

safeForce(t) <= sup (Feon(7)) < firalim
A lgrtl sup(Feoll (7)) < fgs,lim,

where sup is the supremum, and ¢. needs to be large
to converge to the quasi-static force.

We consider a system to be verified as safe, if any of the
above three conditions hold at all times:

Vt : standstill(¢) V nolnteraction(t)
V safeForce(t) <= safe. (1)

The remaining part of this paper focuses on the prediction of
reachable forces to evaluate the predicate safeForce(t). For
the other predicates, we refer to [18], [19].

ITI. INTERACTION MODELING

To represent physical interaction, we state the dynamical
models with uncertainties in Sec. III-A, and present its
reachset-conforming model identification in Sec. III-B.

A. Physical interaction modeling

The goal of the model is to predict the set of reachable
forces Fcon, given the planned robot trajectory, and the
human and robot collision velocities. We make the following
assumptions:

e We model the case of a hand interacting with the
robot end-effector, which is controlled by a Cartesian
impedance controller.

o The collision is a blunt impact with any part of the end
effector from any direction, for which the force limits
apply [1]. We do not consider robots with sharp edges;
for their safety analysis, pressure limits apply [1].

e The collision is unintended, i.e., the human does not
push against the robot, and remains passive after impact.

In addition, we use a scalar model to represent the dynamics
in all possible (three-dim.) spatial directions. A projection
operator over-approximatively transforms three-dimensional
inputs of our models into a one-dimensional interval:
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Fig. 1. Physical interaction is modelled as mass-spring-damper systems.

Definition 2 (Scalar projection of a set). The scalar projec-
tion of a three-dimensional set S is defined as an interval

proi(8) := [=[ISllz, [IS]l2],
where the 2-norm of a set is ||S||2 := sup{||s||2|s € S}.

Our modeling approach takes the following steps: 1) derive
a human model, 2) derive a robot model, and 3) couple
the dynamics and introduce uncertainty into the model. We
distinguish between two types of collisions [20]:
1) Unconstrained collision: the human hand can move
away after a collision, i.e., it is not clamped.
2) Constrained collision: the human hand is clamped be-
tween the robot end-effector and another static object.
We choose mass-spring-damper systems to model both inter-
actions (Fig. 1). For the unconstrained collision, the human
hand is modeled by a moving mass mj,, where x4 are the
hand and skin position, respectively, and the impact force is
feon,1. The skin has a tissue stiffness kj,, and a damping dj,:

mpZn = kn(zs — on) + dn(Es — &n), 2

feoll,1
For the constrained collision, the hand position is assumed
to be fixed, thus cannot move (xp, Ty, Zp = 0). Therefore,
we define the dynamical equation as
feol,2 = knZsk + dp k. 3)
To model the robot, we consider the rigid-body dynamics
M@I+CE@DT+FD) =7+ I @D foxr, @)

where  is the joint position, M () the mass matrix, C(q, §)
the Coriolis and centripetal matrix, §(g) the gravity torques,
J(@) the Jacobian, fy the measured external force at the
end effector, and 7 the input torque. To track the desired
trajectory Z4(t), we use a Cartesian impedance controller
[21]—a prominent method for controlling human-robot in-
teraction [22]—given by

7 =4(@) + J@" (A@Fa + 1@ D7)~
T(@T MDA (Ko (F = Fa) + Dy (& — )+
J@TA@DA I fxs,
A@) =@ TM@I@
W@, d) =1@" (C@d - M@I@ @) I@ ",

where &, is the end effector position, A, is the desired mass
matrix, K, is the desired stiffness matrix, and D, is the
desired damping matrix. Thus, the end effector behaves like a
mass-spring-damper system, which can be seen in the closed-
loop robot dynamics [21]:

Za) = foxi- (5)

We consider only the translational part of the closed-loop
dynamic§ since our interest is in translational forces, i.e.,
T, Tg, foxt € R® and A, D,., K, € R3*3. When choosing
A, =m,I,D, =d,.I and K, = kI, where m,.,d,, k, are
scalars and I is a three-dimensional identity matrix, then the
following equation

A (Z, — Tg) + Dy (& — Zq) + K (2 —

my (& — #q) + dp(@p — Ta) + kr(Tr — Ta) = foxe  (6)

is the orthogonal projection of (5) onto any spatial direction.

We derive the coupled dynamics of the unconstrained
collision by coupling the forces feon,1,2 = —fext, con-
necting the end effector to the skin of the human hand
T, = sk, and inserting (2) into (6). Given the vector
7 = @y, &y, xn, <n]7, the state-space representation of the
dynamics is:

0 1 0 0 0
. (krtkn)  (dntdr)  ky dn 1
S 0" o [T o]t
k. dn _kn _dn 0
@)
feonr = [kn dn —kn —dp] 21 + 01, 3)
and wu is an orthogonal projection of
i =2+ AN 'D, g+ AV K, Zg ©)

The coupled dynamics for the constrained collision are
derived by inserting (3) into (6). Given state z» = [z,., &, :

. 0 LR U (6]
2= | (ethn)  _(dntdy) |22 || Ut W2 (10)
my m,

an

The state-space dynamics have been augmented by additive
disturbances W, € Wy, wWs € W5 and v; € Vi,v9 € Vs,
which shall represent the model uncertainties. We assume
that the system starts in a relaxed state x,.(0) = z,(0) = 0,
and without loss of generality, we set x,.(0) as the origin of
the variables z,,xj, and x4. We can now apply Def. 1 to
compute the reachable forces feon,1 € Feon,i and feon2 €
F coll,2-

The Cartesian impedance controller is a convenient choice,
since the resulting coupled dynamics are linear in the Carte-
sian spatial dimensions. Reachable sets of linear systems can
be efficiently computed [23]. Generally, choosing other robot
controllers is also possible, and the coupled dynamics can be
derived similarly. Then, the systems are generally non-linear.
The generalization into three-dimensional models is straight-
forward; the mass, spring, and damping parameters for
both robots and humans are replaced by three-dimensional

feotlz = [kn  dn] Z2 + va.
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matrices. The proj() operator is not needed anymore, re-
ducing over-approximativity. The three-dimensional model is
general, however, the number of parameters increases, which
makes the model identification difficult. The number of states
increases from 4 to 12 for the unconstrained collision model,
which leads to a slower reachability analysis. A typical
algorithm with zonotopic set-representation has complexity
(9(n3) [24], where n is the number of states.

B. Reachset-conforming model identification

For our chosen interaction models in (7)—(11), only the
parameters m,., d,, and k, of the Cartesian impedance con-
troller are known. The parameters my,, dp,, and kj, as well
as the uncertainties P; = {Wy,V1}, Py = {Wa,Vs}, are
unknown.

The parameters are selected in a way that allows the reach-
able sets Fo to include the behavior of the real system. We
also refer to this property as reachset conformance [25]. We
propose to ensure this property by means of testing the real
system: from real collision experiments, we collect the inputs
for our models, which are the initial states Zz3(0), z1(0),
and u. We then make a forward prediction using a set of
parameters and check if measured forces f,,(t) are contained
in Feon(t) for all times. We wish to keep the reachable sets
as small as possible.

Given m test cases, we formulate the identification as a
constrained optimization problem minimizing the norm of
the reachable sets, where P are the unknown parameters:

-

: y

min ) /0 IFp®lldt, — (12a)
1<i<m

subject to ViVt : fu(t) C F) p(2). (12b)

Because (7)—(11) are linear systems, the above optimization
can be solved in a nested fashion, according to [25]: an inner
loop computes the cost of optimal disturbances ¥V and V
using linear programming, given my,dp, and kj; an outer
loop uses nonlinear programming to find my,dy, and ky,
with the smallest cost computed using the inner loop.

For safety analysis, reachset-conformant force predictions
are sufficient. Requiring other variables (e.g., position tra-
jectories) to be reachset-conformant would pose unnecessary
constraints on the identification, which leads to more con-
servative models.

IV. ONLINE VERIFICATION

This section describes our novel online verification pro-
cedure for our novel impact-force-limiting control, which
always ensures the safety objective in (1). We first illustrate
the fail-safe planning framework in Sec. IV-A, and then
present our algorithm for evaluating safeForce(¢y) in Sec.
IV-B.

A. Fail-safe planning

The main idea of fail-safe planning [18], [26] is that during
normal operation, the controller aims to generate and verify
fail-safe maneuvers, as shown in Fig. 2. The next section

o4

|— long-term trajectory

invariably
Ty safe states
fail-safe
t maneuvers
Fig. 2. Fail-safe planning: The robot is moving on the trajectory on

[tk—1,tk]. The verification of the fail-safe maneuver on [tgy1,tp] fails,
because it passes an unsafe region. Therefore, the robot will execute the
previously stored verified maneuver for [tx,ty preo]-

of an intended long-term trajectory in the time interval
[tk,tr+1] can only be executed, if a consecutive and verified
fail-safe maneuver to the invariably safe set ZSS exists,
while satisfying (1) upon reaching the ZSS. If a verified fail-
safe maneuver cannot be found, then the previously verified
one, starting at t;, will be immediately executed, as can
be seen in Fig. 2. If the robot has already been in a fail-
safe maneuver during [t;_1,%x], it is attempted to verify
and then execute a recovery maneuver for [ty, tj41] to bring
the system back to the long-term trajectory. Similar to [18],
we limit ourselves to path-consistent fail-safe and recovery
maneuvers [27] in this work to focus on the novel aspect of
limiting forces.

Let us denote the time of reaching the ZSS as t;,. A fail-
safe maneuver for [t;1, %] is verified by first checking the
predicate nolnteraction, by computing the reachable occu-
pancies of the robot and the tracked human for the interval
[tk,tp). If the occupancies indicate a possible collision at
tr < t. < tp, we also check the predicate safeForce for the
interval [t., t;]. If humans are not tracked, then we disregard
nolnteraction and directly evaluate safeForce by setting
t. = tg. If an actual collision occurs, as measured by force
sensors, then the robot brakes, until the force acting on the
robot has vanished.

In practice, due to the interplay of intended trajectories,
fail-safe trajectories, and recovery trajectories, the speed of
the robot will always be as high as safely possible. Thus, it
is not necessary to offline design a safe long-term trajectory.

B. Verifying compliance to impact-force limits

We present Alg. 1, which verifies at each time instant
t; that a fail-safe maneuver adheres to both transient and
quasi-static force limits. Given is the maneuver Z4(t) for
t € [tk,tp], which brings the robot to an ZSS. We first
compute the reachable occupancies of the human H ([tx, tp])
and of the robot M([ty,t]), using the approach in [19],
to detect possible future collisions, which trigger subsequent
force evaluations. In case of a potential collision, we compute
the set of reachable forces Fop,1 for possible unconstrained
collisions and F.11,2 for possible constrained collision dy-
namics, as presented Sec. III-A. However, additional uncer-
tainties have to be considered here:
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Algorithm 1 Verification of safeForce(t)

Input: %4(t),t € [tk,tb]

Output: isSafe

s M(t), H(t) + (see [19])

. find t, s.t. M([te,ts])) N H([te, to)) # 0

o T (t) < Za(t) + & {assume tracking error bound}
: fr(t) — fd(t) + 57»

U «+ proj(i([te,tp])) {uncertain input set}

i A < proj(@,([te, tp])) {robot collision velocities}
Xn < [~VUmax; Vmax] {maximum hand velocities}
Zo1 0 x X, x 0 x X, {initial set for z, }

. Zp9 + 0 x X, {initial set for 2}

10: Feon1(7) = reachi(Zo1,U, Pr)

: .FCO]LQ(T) — reachg(Zo’g,U, PQ)

12: ftra = Sup(]:coll,l(T) @) ]:coll,Q(T)) for
13: qu = lirnr—)te Sup(]:coll,Z(T))

14: if ftra < ftra,lim A qu < qu,lim then
15  isSafe < true

16: else

17  isSafe « false

18: end if

I N

0<7<t,

Due to the acceleration capabilities of the human hand,
we cannot predict its future velocity. Thus, we assume
that it is bounded by an interval X}, := [—VUmax, Umax)-
E.g., Umax = 2 (m/s) complies with ISO 13855 [28].
We assume that the robot position & and velocity 7, are
bounded by the errors &,,&, € R3 around the desired
trajectory before a collision.

The collision time can be at any ¢ € [t., ¢,]. Therefore,
the collision speed of the robot is uncertain, but can be
bounded by the union of all possible robot velocities
X, = proj(Z,([te, tp])). Similarly, we bound the input
by ald = proj(u([t.,ts]))-

The initial sets are defined as Zy; := 0 X )ET x 0 x .Xo'h and
Zp2:=0x ./\?r, accounting for the above uncertainties. The
operations in line 10-18 of Alg. 1 compute the reachable
sets and evaluate the predicate safeForce from Sec. II.

V. EXPERIMENTAL RESULTS

This section experimentally evaluates our verified impact-
force-limiting control for the interaction of a robot end-
effector with the right hand of a human. The robot used
is a Schunk LWA-4P lightweight robot using the Cartesian
impedance controller from Sec. III-A, where the desired
impedances are chosen as A, = 51, D,. = 501, and K, =
1501. To measure the impact force at the end effector, we
designed a custom 3D-printed blunt impactor, which contains
a 6-axis force-torque sensor. To measure the hand position
and velocities, we use a Vicon Vero motion capture system.
We show the experimental identification of the physical
interaction model in Sec. V-A. We show the effectiveness
of our controller in a human-robot co-existence scenario by
comparing the robot performance with and without human
tracking in Sec. V-B.

TABLE 1
IDENTIFEED PARAMETERS OF UNCONSTRAINED (UP) AND CONSTRAINED
(DOWN) COLLISION MODELS

Dim. Wi V1 Param.  Value
1 0.196 [-79.27,85.33] my 0.29

2 19.20 - dp, 55.05
3 0 - kp 5434
4 0 N

Dim. Wo V2 Param. Value
1 —0.498 [—69.67,38.37] dj 719.3
2 5.459 - kp, 29900

A. Results for model identification

We use our approach in Sec. III-B to identify reachset
conforming model parameters. For that, two series of tests
are conducted with the impedance-controlled robot, one for
the unconstrained collision model, and the other for the
constrained collision model. In the first experiment, multiple
collisions of a hand with the end effector are initiated from
random directions, and with random parts of the hand. In the
second experiment, the robot collides with a resting hand on
a table at different velocities. The hand is moved around in-
between experiments, such that different parts of the hand
are clamped. Due to safety reasons, we only did a reduced
amount of tests, and these experiments were only conducted
by the first author of this paper. Forty-three collisions have
been evaluated for identifying the unconstrained collision
model, whereas 41 collisions for the constrained collision
model. The identified parameters are shown in Tab. I.

The results for a few randomly selected test cases are
plotted in Fig. 3. For the unconstrained collision model, we
only test until £, = 0.06 seconds, since the impact transient
has finished for all test cases at that time. For the constrained
collision model, we test until ¢, = 0.5s, because we are
interested in the quasi-static force, to which our system
converges. Regarding the values in Tab. I, we observe that
the identified stiffnesses are smaller than in other works (e.g.,
[1]), and the damping values are high. The reason is that
the identification algorithm decided that it is more effective
(i.e., smaller reachable sets) to let the nominal parameters
mp, kp, and dj, model the low-frequency dynamics, whereas
high-frequency dynamics resulting from high stiffness and
low damping are lumped inside the sets Vi ».

B. Results for the impact-force-limiting control

We demonstrate the effectiveness of the impact-force-
limiting control using our online verification approach de-
scribed in Sec. IV. We consider two scenarios. In the first
scenario, we assume that human hand tracking is avail-
able to the controller, i.e., the collision time ¢, > ¢;. In
the second scenario, tracking is not available, i.e., we set
t. = tr. The robot moves between the joint angles q; =
5.5.-%—5,5.00" and o = [-%,5,-5.-5.5,0/",
for three times. At the first time, the human does not
intervene. At the second time, the human intervenes without
a collision, and at the third time with a collision. We set the

transient force limit to 220 N, and quasi-static force limit
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Reachset conformance testing of unconstrained collision model
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Fig. 3. Reachset conformance testing of physical interaction models. The model identified in Tab. I is reachset conformant. The reachable sets (gray) of

of the models always over-approximate the force profiles (black) of real collision experiments. For each test case, the collision velocity is shown.
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Fig. 4.
blue, force measurements are shown in bold, and collisions are shown in red. Lower graph: robot velocity is shown in black, and the relative distance of
the hand to the robot is shown in orange All numbers are absolute values.

to 140 N. The resulting behavior of the robot is shown in
Fig. 4. A video recording of the experiments is provided in
supplementary materials.

For the scenario with tracking, we observe that in the first
run, the robot can run at full speed, although the human-
robot distance is closer than one meter. In the second run,
we place our hand directly on the path of the robot. The
robot automatically slows down because the reachable force
predictions hit the transient force limit. However, as soon
as the robot approaches a certain distance to the hand, it
speeds up again. In the third run, we initiate collisions with

56

time (s)

Verified impact-force-limiting control. Upper graph: Transient force estimations are shown in green, quasi-static force estimations are shown in

the robot. The collision force never exceeds the estimated
maximum transient.

For the scenario without human tracking, the results are
similar, however, the robot remains at a slow speed for all
times, and thus needs more time to complete its task. Human
tracking benefits the efficiency of the robot.

VI. CONCLUSIONS AND FUTURE WORK

This study presents the first work on guaranteeing impact-
force limits during possible unintentional collisions between
the human hand and robot end-effectors, despite uncertain-
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ties. We believe that this concept can be extended to the
entire human body and robot arm using similar coupled in-
teraction models. The primary innovation is the prediction of
the impact forces using reachability analysis, combined with
a fail-safe motion planning. Our model identification method
ensures that the interaction model is reachset conformant
with the real interaction. In an experiment, we demonstrated
that the impact force limit criterion allows robot motion, even
if humans work closely to the robot. In addition, we have
shown the advantages of tracking humans, which allows the
robot to move faster when humans are distant to the robot.
Multiple extensions to this work are possible:

o To extend this approach to the entire human body,
the identification experiments need to be repeated for
every body part. Additionally, high-volume testing and
experiments on more diverse human tissues are needed
to make sure that edge cases of the model are covered.

o We have not regarded the fact, that the robot closed-
loop dynamics can be uncertain. In this study, such
uncertainties were lumped inside the sets WW; 5 and V; .
Thus, our approach is only applicable to the controller
used in the identification experiments. To verify variable
impedance controllers, the uncertain dynamics of the
robot and the human should be separately identified, and
the coupling between these should be created online to
analyze interaction forces.

¢ Online verification can also be combined with any other
safety metric, i.e., by exchanging predicate safeForce(t)
with power, energy, or safe velocity limits.

« An interesting extension is the verification of continuous
physical interaction, where the dynamics of the human
arm are also usually modeled as impedances.
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Summary Precise controllers and safety algorithms depend upon accurately estimating the
robot’s velocity because most of today’s robots are manufactured without including direct
velocity sensing. Instead, they are mostly equipped with encoders for position measurements,
which we need to derive the robot velocity. Many estimators exist in the literature to accom-
plish this, but a proper comparison between these methods has yet to be included. This work
aims to close this gap by comprehensively comparing estimators on a real robot, focusing
on the practicality of the velocity estimation methods. In addition, this work is a precursor
to our subsequent work on formal controller synthesis in [5], for which we chose a velocity
estimation method from this work. This paper is also a contrast to [5] in terms of tuning:
the work in [5] uses formal synthesis to obtain optimal observers. In contrast, this work
uses a classical tuning approach by testing parameter candidates directly on the robot and
optimizing a classical tuning metric (integral squared error) using a genetic algorithm.

This paper compares velocity estimation methods using various trajectories: finite differ-
ence, moving average filter, derivative filter, Kalman filter, linear high-gain observer, nonlin-
ear high-gain observer, and sliding-mode observer. To evaluate the methods, we look at the
optimal estimation error, the closed-loop tracking error, convergence behavior, sensor fault
tolerance, implementation, and tuning effort.

The experimental results show that the linear high-gain observer consistently displays the
best accuracy when the gains are properly tuned. The nonlinear high-gain observer was
challenging to adjust and could not reach a good performance despite our efforts to identify
the robot model as accurately as possible. The sliding-mode observer and the Kalman filter
showed good robustness to sensor errors, but the sliding-mode observer tends to lose con-
vergence at high accelerations. From our experiments, we cannot conclude that model-based
observers perform better than mode-free methods, despite including the robot model, which
requires high identification efforts. When optimally tuned, the velocity estimation methods,
except for the nonlinear high-gain observer, do not impact the tracking error.

Author Contributions S. L. performed the literature research and selected the estimation
methods for the comparison. S. L. developed the automatic tuning method. S. L. and A.
G. designed, conducted, and evaluated the experiments. S. L. and A. G. wrote the article.
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ABSTRACT Accurate velocity information is often essential to the control of robot manipulators, especially
for precise tracking of fast trajectories. However, joint velocities are rarely directly measured and instead
estimated to save costs. While many approaches have been proposed for the velocity estimation of robot
joints, no comprehensive experimental evaluation exists, making it difficult to choose the appropriate method.
This paper compares multiple estimation methods running on a six degrees-of-freedom manipulator. We
evaluate: 1) the estimation error using a ground-truth signal, 2) the closed-loop tracking error, 3) convergence
behavior, 4) sensor fault tolerance, 5) implementation and tuning effort. To ensure a fair comparison, we
optimally tune the estimators using a genetic algorithm. All estimation methods have a similar estimation
error and similar closed-loop tracking performance, except for the nonlinear high-gain observer, which is not
accurate enough. Sliding-mode observers can provide a precise velocity estimation despite sensor faults.

INDEX TERMS Genetic algorithms, manipulators, robots, tuning, velocity estimation.

I. INTRODUCTION

Accurate joint velocity signals of robot manipulators are
needed for many fundamental control purposes, e.g., tra-
jectory tracking, collision detection, and force control [1].
Sensors for measuring joint positions, e.g., encoders, have
become inexpensive, reliable, and have a high resolution. The
same cannot be said for velocity measurements. Direct mea-
surements, e.g., through magnetic tachometers are affected
by discontinuities of the magnetic field, ripple torques, and
other high-frequency noise [2], while encoders are much more
robust. Compactness and economic reasons often lead to not
integrating joint velocity sensors at all.

Starting with the works of Nicosia and Tomei [3] in the
1990 s, velocity estimation for robots has been discussed
widely in the literature, and many different methods have
been proposed since then. From a practitioner’s point of view,
however, it is still hard to select a proper estimation method,
because 1) it is hard to infer differences between estimation
methods from previous papers, 2) many techniques have only
been evaluated in simulation, and 3) the evaluations have been
carried out on different robots.

Our paper addresses this issue by systematically compar-
ing popular velocity estimation concepts and evaluating them
using criteria which are important to practitioners, such as
tuning and robustness to faults. Together with this paper, we
also publish a MATLAB tool package, that includes an imple-
mentation of all discussed methods ready-to-use.

Previous studies that involve comparing velocity estimation
methods can be found in [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14]. Simulative comparisons of derivative filters
for discrete position measurements showed that no approach
works best for all velocity profiles [4], [5], [6]. In the simula-
tive comparison in [7], an extended Kalman filter, a nonlinear
high-gain observer, and a linear observer have been compared
considering their position estimation error and tracking er-
ror on a two degrees-of-freedom (DOF) robot. The authors
in [8], [9] experimentally compare the tracking error of differ-
ent tracking controllers using linear high-gain observers. The
study in [10] experimentally analyzes the tracking error of a
2-DOF planar robot using five different observers. However,
each observer uses a different tracking controller and only

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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trapezoidal trajectories were tested. An experimental compar-
ison between a nonlinear high-gain observer, a Kalman filter,
and a lead-lag based filter has been conducted on a parallel
kinematics robot in [11], where the authors use a dual-mode
controller and a proportional-derivative (PD) controller. The
comparisons in [10] and [11] have two main drawbacks: 1) the
gains of the proposed methods were chosen without apparent
justification, although the performance of velocity estimation
mainly depends on such gains, and 2) these comparisons did
not evaluate the performance in terms of velocity estima-
tion error. Our paper addresses these issues by including a
gain tuning approach that allows a comparison of optimally
tuned estimators, while the velocity estimation error is mea-
sured through an actual ground-truth signal. Further works
that compare model-free and model-based observers, used in
conjunction with different controller structures, can be found
in [12], [13], [14].

In contrast to previous works, our paper presents for the
first time an experimental comparison of a wide variety of
estimation methods, including multiple filters and multiple
observers. We use the same 6-DOF robot manipulator, the
same tracking controller, and the same test trajectory for all
estimators.

This paper is organized as follows: in Section I, we state the
problem at hand and survey the literature for popular existing
velocity estimators. In Section II, we provide an in-depth
review of selected estimators, which we consider to be among
the most suitable for practical applications. The automatic
parameter tuning is explained in Section III. The evaluated
estimators are compared experimentally in Section IV and we
conclude the paper in Section V.

A. PROBLEM STATEMENT
Let us consider the rigid dynamics of robot manipulators with
n revolute joints written in state-space form as

x| = x2, 0

%o = flxn,x0,u) = M7 () — n(xy, x2)),

where x; € R” is the vector of joint positions, x, € R” is
the vector of joint velocities, u € R” is the vector of motor
torques, M(x;) € R"™*" is the inertia matrix, and n(xy, x3) €
R”" is the vector-valued function including Coriolis and cen-
tripetal forces, gravity, and friction. The joint positions are
measured at a finite resolution using rotational encoders.

The robot tracks a desired trajectory of positions, veloci-
ties, and accelerations xj’ (1), xg (1), x§’ () € R" via an inverse
dynamics controller [15, Sec. 8.5.2]

u=M(E)v + n(k, £), 2)
v=xf + Ky —x{) + Kg (2 — x9), 3)

where X1, X, are the vectors of estimated joint positions and
velocities. Some of the discussed methods do not estimate £1;
but since x| is measured directly, £; can be replaced by x; in
(2) and (3), when applicable.

60

TABLE 1. Velocity estimation methods identified in this survey (references
with * are evaluated in our comparison).

Validated

in simulation

[51%, [12]-{14], [28]-[30],

[32]-[34], [37]*

model-based [2], [12]-[14], [18], [19],
[207*, [22], [24], [25]*

Validated
in experiments
[81%, 1261, [27], [31]

model-free

[17], [21], [23]

The objective of this paper is to compare different methods
to obtain % and to tune the parameters of all estimators,
such that the error x; — X between the estimated and the
ground-truth velocity is minimized. To obtain a ground-truth
signal, any method can be used that returns a significantly
more accurate velocity than the evaluated estimations, e.g.,
using external encoders with a higher resolution and sampling
rate. In our paper, we simulate external measurement by arti-
ficially decreasing the sensor resolution and sampling rate of
the internal sensors for closed-loop control, while the ground
truth is obtained using the actual sensor resolution at a higher
sampling rate.

The estimation methods are subject to disturbances in our
robot system. Amongst others, there can be

® quantization errors due to the finite resolution of the

encoders;

® high-frequency noises due to manufacturing errors of the

encoders [16];
® modeling errors due to an inaccurate parametrization of
S (x1, x2, u);

® sensor faults due to communication errors.

In the subsequent literature survey we group the approaches
we identified for velocity estimation into model-based ap-
proaches, that require the computation of the nonlinear dy-
namical model in (1), and model-free approaches, which do
not need this model. Model-free methods can be implemented
decentrally at each individual joint, if the methods do not have
dependencies between joints. Model-based methods, however,
must be implemented in a centralized manner. The considered
approaches are collected in Table 1, which also sorts them
according to the fact that they are validated in the literature
using simulations or experiments.

B. MODEL-BASED METHODS

We first survey model-based schemes. The popular and pi-
oneering model-based method of Nicosia and Tomei in [3]
presents an asymptotically stable observer whose region of
attraction can be enlarged via the observer gain. In contrast to
previous work, the authors design the model-based observer
in conjunction with a controller; many subsequent works fol-
lowed this idea. The authors in [17] propose a model-based
observer which provides semi-global exponentially stable er-
ror dynamics of the velocity tracking error, considering a
dedicated controller structure. Effectiveness of this approach
is shown by experiments on a 2-DOF manipulator. Another
model-based extension of the approach from Nicosia and
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Tomei can be found in [18], in which the authors show
semi-global exponential stability of their proposed combined
observer and controller. The authors in [19] and [20] dis-
cuss nonlinear high-gain observers for the velocity estimation
problem, including how to avoid the peaking phenomenon in
the transient behavior, i.e., the initial estimation error may
exhibit an impulse that could destabilize the controller. An
adaptive approach providing locally asymptotically stable es-
timation error dynamics has been proposed in [21] in which
the authors show that their proposed approach is superior
to simple numerical differentiation; the authors perform ex-
periments on a 6-DOF PUMA-560 robot. The work in [22]
introduces a combined observer/controller structure providing
global exponential convergence of the estimation error. How-
ever, that paper only shows practical effectiveness by means
of simulations. More recently, the author in [23] showed the-
oretically that a proposed Luenberger-like observer with a
simple proportional-derivative control with gravity compen-
sation achieves uniformly ultimately bounded stability, which
is confirmed by experiments on a 2-DOF robot. Model-based
approaches using sliding mode observers have been proposed
for robots in [2], [24], [25], whose effectiveness was only
demonstrated by simulations.

C. MODEL-FREE METHODS

In this subsection, we survey model-free approaches. In the
works of Nicosia et al. [8], a simple high-gain observer is
introduced, which supports distributed implementations; this
approach also provides uniformly ultimate boundedness of
the velocity estimate and is presented and tested using both
simulations and experiments on a 6-DOF robot. The work
in [26] introduces a model-free observer providing uniformly
ultimate boundedness of the velocity estimation error. This
scheme accounts for model uncertainties in its design and its
effectiveness have been verified by means of experiments with
a 2-DOF robot. Both [8] and [26] consider inverse dynam-
ics control and proportional-derivative control for tracking,
provide a closed-loop stability analysis for both cases, and
suggest parameters to ease gain tuning of the observer. Sub-
sequently, the authors in [27] also proposed a model-free
observer that provides uniformly ultimate boundedness of
both tracking and observer errors when used in conjunction
with their proposed robust controller. The authors in [28],
[29] introduce a model-free observer which provides asymp-
totic stability of the velocity estimation error dynamics. To
achieve this, [28] uses passivity arguments, while more gen-
eral Lyapunov arguments are used in [29], where also external
disturbance is taken into account and the performance is
shown using simulations on a 2-DOF robot. Similarly, the
works in [30], [31] present model-free observers that provide
asymptotic stability demonstrated in simulation [30] and ex-
periments [31]. A model-free sliding-mode observer has been
proposed in [32]; its practical effectiveness has been presented
by simulations. As an extension, some estimators incorporate
neural networks [33], [34].

VOLUME 2, 2023

Furthermore, there exist popular estimators without explicit
closed-loop stability proofs. Kalman filters [35] are such an
example, which assume white noise to approximate the robot
dynamics. Also, the derivative filtering methods, such as the
ones in [5], are not yet proven to be stable in closed-loop.
However, the author of [36] introduces a possible theoretical
framework to foster the use of derivative filtering in place of
state observers for a stable output-feedback control of robots.

From the available literature, we select several estimation
methods, of which we conduct an in-depth review, which
can be divided into four model-free methods from the works
in [5], [8], [37], and two model-based methods from the works
in [20], [25]. The selected methods have an asterisk in Table 1.
These have been mainly selected for their popularity, ease
of implementation, ease of tuning, and their robustness with
respect to the chosen controller.

Il. REVIEW OF SELECTED ESTIMATORS

In this section, we discuss the estimators that we exper-
imentally compare, namely moving average filtering [5],
derivative filtering [5], Kalman filtering [37], linear high-gain
observer [8], nonlinear high-gain observer [19], and sliding-
mode observer [25]. We review their respective properties as
studied in the literature. Furthermore, we discuss the imple-
mentation aspects.

A. FINITE DIFFERENCE AND MOVING AVERAGE FILTERING
This basic technique numerically approximates the deriva-
tive by dividing the difference between successively obtained
position measurements by a time window pAf, where At
is the sampling time of the controller and p is an integer
that determines the size of the window for which we take
the average. We denote a position measurement as xj y— =
x1((k — 1)At). The estimated velocity is given by

X1k — X1 k—p

DA “

£ =
With large p, the averaging effect attenuates quantization
noise in the measurements, but introduces a delay in the es-
timated velocity, while small p values amplify the noise [37].
For our comparison, we use p = 1, which we also call the
finite difference (FinDiff) method, and an optimally chosen
p > 1, which we call the moving average (MovAv) method.

B. DERIVATIVE FILTERING

Here, we describe a class of methods that compute the deriva-
tive through filtering the position signal. Various predictive
strategies have been proposed in the literature based on a poly-
nomial fitting of previous measurements, such as Taylor series
expansion (TSE), and backward difference expansion (BDE),
which are characterized by the number of samples ntsg and
nppg- To counter the problem of overfitting and the resulting
noise amplification, the least-squares fit (LSF) has been pro-
posed in [5], that uses regression to find a polynomial of the
order pysp with the smallest error among n; sp measurements,
where prsp < nisg. In-depth comparisons of these methods

3
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and a description of their implementation can be found in [4],
[51, [38]. The findings of Brown et al. [5] are that TSE and
BDE are good for transient responses and LSF filters are more
suited for constant velocities. For velocity profiles that vary a
lot, such as for robot manipulators, no single filtering method
is best [38]. In our comparison, we will first evaluate the TSE,
BDE, and LSF filters amongst each other, and choose the best
one for the overall comparison with other methods.

C. KALMAN FILTER

The Kalman filter is a linear observer, that has been used
in many engineering fields, such as for state and parameter
estimation, data merging, or signal processing [39]. Bélanger
proposes such an observer for rotary encoders [37], and in-
stead of using the dynamical model in (1), assumes a triple
integrator model for each individual axis i, consisting of the
state z; = [x1,;, X2,i, X3,i] € R3 (position, velocity, and accel-
eration of each axis), the output y;, and the Gaussian white
noises v; (sensor noise) and w; (process noise) [37, Eq. 14]:

zi=Azi +T'w;
vi = Czi + v,

01 0 0
A=10 0 1|, '=1]0],
0 0 0 1

c=[1 0 o].

According to [37], v; can be chosen to be zero-mean with

2
m,i

variance Ai , where Ag,, ; is the quantization error of each
axis. The noise w; is also assumed to be zero-mean and has
a variance Q;, which has to be tuned for each axis. In the
same work, a second-order system is additionally proposed
for velocity estimation which, however, does not perform as
well as the third-order one. The analysis in [37] showed an
improvement compared to the finite difference method, espe-
cially at low speeds up to one tenth of an encoder increment
per time step.

To further improve the acceleration estimation [7] or to pro-
vide estimations for flexible robots [40], one could estimate
the state of the full model of the robot considering the nonlin-
ear dependencies between joints. For those systems, extended
Kalman filters are required due to the nonlinearity of the
system. Since both cases are not relevant in our application,
we deliberately exclude this method in our comparison.

D. LINEAR HIGH-GAIN OBSERVER

High-gain observers are theoretically well understood (see,
e.g., the works of Khalil [20]) and have been experimentally
examined, e.g., in [7], [8], [9], [10], [11]. In this work, we
discuss both the linear and the nonlinear versions. The linear
observer ([inHG) uses a scalar gain ¢; and two matrix gains

4
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Hy,H, e R™" [8,9]:

PO 1 R
X =%+ —Hi(x; — %),
€]

. 1
X = E—ZHZ(XI — %1).
I

This observer is asymptotically stable if the eigenvalues of
[
in [8], that there exists an € so that the closed-loop dynamics
is asymptotically stable for ¢ € [0, €], for any uniformly
asymptotically stable controller. In other words, high-gain ob-
servers can be flexibly combined with any tracking controller,
while overall stability is guaranteed.

In practice, however, the observer gains are limited, i.e.,
€; is lower-bounded by measurement noise and the sampling
time of the controller [20]. Therefore, a trade-off between the
noise suppression and estimation accuracy has to be found.
To partially overcome this compromise, one can filter mea-
surements and implement time-varying gains, as discussed
in [20]; this extension is excluded in our comparison since we
limit ourselves to easily implementable approaches. Also, a
peaking phenomenon occurs (not examined by [8]). For these
cases, an input saturation is sufficient for stability [20].

(1)] have negative real parts [20]. It has been shown

E. NONLINEAR HIGH-GAIN OBSERVER

Considering the full robot model (1) as an additional source
of information, there exists a potential for better results us-
ing nonlinear observers. The nonlinear high-gain observer
(nnlHG) is such a model-based approach, that is similar to its
above-discussed linear version. For robots, this observer has
first been introduced by Lee and Khalil in [19]. The observer
uses the scalar gain €, and two matrix gains Lj, L, € R™"
[20, 9.4]:

. 1
X =%+ —Li(x; — %),
€n

= flxr, %, u) + 6isz()Cl —X1).
n

Similar to the linear version, asymptotic stability is given if
I
0
a nonlinear separation principle can be established for the
stability of the closed-loop system [41], meaning that also this
observer can be flexibly combined with any stable tracking
controller. A simulation study in [20] has shown that, indeed,
a better velocity estimation compared to the linear version can
be achieved, if the model is precise. However, this advantage
becomes less and less significant, when the gains €; and €,
decrease [20].

. -L .
the real part of the eigenvalues of [_ L ] are negative and

F. SLIDING MODE OBSERVER

Robustness, finite-time convergence, and the ability to handle
discontinuous systems are major reasons for the application of
sliding mode observers (SliMod) [42]. Real implementations
of sliding mode observers, however, suffer from chattering
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while sliding along the switching surfaces. This effect can be
alleviated by second or [42] or third-order [43] sliding-mode
observers. Third-order versions experience a slower conver-
gence than second-order observers, as shown by Fraguela
Cuesta et al. in [43]. The version we consider in our com-
parison is the third-order version proposed in [25], which
adds a linear term to improve convergence. It consists of
the gain vectors oy, o, a3 € R"*1_ the linear gain matrices
Ky, K, € R™", the signum function sgn(-), the element-wise
absolute values | - |, and element-wise powers, such that [25,
Eq. 28]:

X ~ ~ 12/3 N ”
£1 =& +aslx) — £ Psgn(x) — %) + Ki(x) — £1),

172

X = flx1, X2, u) + az|®y — K| /Tsgn(®y — £2),

+ Ka(x1 — £1) + Zeg,

Zeoqg = aysgn(£) — £2),

where Z,, is the observed input disturbance, which could also
be used to improve the tracking performance, as described
in [25]. For continuous-time systems, this observer has finite-
time convergence, and can thus be trivially combined with
stable tracking controllers, since the observer only has to
reach the exact velocity before the controlled system would
leave the stability bounds [42].

G. IMPLEMENTATION

Except for derivative filtering, the above estimation methods
and their properties have been developed and presented in the
literature assuming continuous-time control. Real implemen-
tations, however, are usually in discrete time, which is why we
briefly review their implementation here.

Discrete-time versions of Kalman filters can be obtained by
transforming the system model to discrete time and solving
the discrete Riccati equation. As an example, the MATLAB
functions c2d, dlge, and destim provide the respective
functionality. Discrete-time implementation of both linear and
nonlinear high-gain observers are reviewed in [20, Ch. 9], and
boundedness of the estimation error has been shown. For the
linear version, the bilinear transformation performs best, as
shown in [20], and can also be formulated as an FIR filter [44].
For both nonlinear high-gain and sliding-mode observers, the
forward difference transformation can be used, for which
boundedness of the estimation error has been shown in [20]
and [42].

IlIl. GAIN TUNING USING A GENETIC ALGORITHM

Control gain tuning is one of the main concerns in industrial
applications [45]. For a fair comparison, one has to find the
optimal gains for each estimator—some of them feature up
to 90 gains, when every matrix element is considered (see
Table 2). Manually tuning the gains is a time-consuming task
for some estimation methods. Instead, we propose to use an
automatic approach to find the optimal gains, which can be
applied to all estimators.
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TABLE 2. Number of gains of velocity estimators for 6-DOF robots.

Method Gains Total # Reduced #
Moving Average n 6 6
BDE, TSE nBDE,TSE 6 6
LSF nysr, pLsF 12 12
Kalman filter @ 6 6
Linear high-gain ¢;, H1, Ho 73 12
Nonlinear high-gain ¢, L1, L2 73 12
Shdmg Mode al,az,ag,Kl,Kg 90 8

Possible automatic tuning techniques for PID controllers
are reviewed in [46]; however, these are not applicable to
multi-input multi-output systems. Instead, genetic algorithms
(GA) have shown promising results for the gain tuning of
nonlinear controllers, as demonstrated by simulations in [47]
for flight controllers and in [48], [49], [50] for robot con-
trollers. Genetic algorithms are bio-inspired techniques, for
which existing tools can be used, e.g., the Global Optimization
Toolbox in MATLAB.

To accelerate the tuning process, we reduce the number of
gains. For high-gain observers, the original authors propose
to choose Hy, Hy, L1, L, a priori and subsequently decrease
€1, €, as far as possible. As can be seen in the equations
of Section II-D and Section II-E, the € gains are, however,
redundant, since one can equally choose large values for the
matrices. This is why we arbitrarily set €; = €, = 0.03 a priori
and tune H;, H», Ly, L, instead. Additionally, we only con-
sider to tune their diagonals to reduce the number of gains.
For the sliding-mode observer, we choose a; = 1.1, ap =
1.5(f 2, and a3 = 1.9(f1)!/3, as proposed in [42], [43],
where f* e RO represents the upper bound of the model per-
turbation. Furthermore, we replace K and K by the scalars k;
and ky, respectively. We found these choices to be suitable as a
compromise between optimality and decreased tuning effort.

The cost function we use in this paper for tuning, as well as
for evaluating the performance of the estimators is the integral
squared error (ISE) of the velocity estimation

ISE(1) =[ (x2(1) — £2(1))d . &)
0

This cost function depends on a measurement of the ground
truth of x,, which must be more accurate than the estimation
from the reviewed methods. In our case, we run the estimation
methods online at a lower sampling rate with a lower encoder
resolution, while the ground truth position is measured by the
same encoders at a higher sampling rate and resolution. The
ground truth velocity is then obtained offline by computing
the finite difference and downsampling it with an anti-aliasing
filter [51] to match the sampling rate of the online estimation
methods. If measuring at a higher sampling rate and resolution
is not feasible, we propose to use offline zero-phase filter-
ing [51] to obtain a ground truth, so that we can minimize
the phase delay of the estimated velocity.

The hyperparameters of the genetic algorithm are chosen to
be almost the same as in [49] (see Table 3), except for the
number of generations. Although our tuning is carried out
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TABLE 3. Hyperparameters of GA for gain tuning.

Parameter Value
Population size 60
Number of elites 6

Selection  Tournament
Crossover  Uniform crossover at 87.5%
Mutation Random mutation at 0.38%

Maximum generation 20

FIGURE 1. The testbed consists of a 6-DOF robot manipulator and a
controller running on Simulink Real-Time.

on a real robot instead of simulations, we determined that
20 generations are sufficient for the gains to converge to an
optimal value.

IV. EXPERIMENTAL COMPARISON

In this section, we experimentally compare the velocity esti-
mation methods reviewed in Section II. Our testbed consists of
a 6-DOF Schunk LWA-4P robot, whose model has been iden-
tified in [52]. The controller and estimators are implemented
in Simulink Real-Time on a target machine with an i17-3770 K
3.5 GHz processor (see Fig. 1). For the computed-torque con-
troller, we choose K, = 100 and K; = 13. To measure the
ground-truth velocity, we run the position encoder at 1 mil-
lidegree per increment at a sampling rate of 250 Hz. The actual
velocity estimation is done at a resolution of 10 millidegrees
per increment and at a sampling rate of 125 Hz.

We structure the experimental comparison as follows: in
Section IV-A, we compare the tuning process using our pro-
posed genetic algorithm. In Section IV-B, we show the main
performance results, including the estimation error, the track-
ing error, and the convergence behavior of each estimator.
Afterwards in Section IV-C, we compare the performance,
when sensor faults are introduced. In Section IV-D, we
compare the performance when using different encoder res-
olutions or sampling rates. The experimental comparison is
concluded with a discussion of the results in Section I'V-E. For
simplicity in some of the plots, we only show the behavior of
one axis because the behavior of the other axes are similar.
The implemented velocity estimation methods, the experi-
mental results, trajectories, and the robot model are provided
as supplementary data' to this paper.

![Online]. Available: https://dx.doi.org/10.21227/tse3-h285
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Tuning: Desired Trajectory
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FIGURE 2. Desired trajectory for gain tuning.

TABLE 4. Optimal gains of velocity estimation methods
(10 millidegrees, 125 Hz).

Method Par. Optimal values (diag. elements of matrices)
MovAv n 2
LSF n 4
) 1
Kalman @ 18.55 17.93 0.010 14.62 0.037 11.48
linHG ¢ 0.03
H, 47.01 2598 59.80 54.96 35.83 34.25
H, 233.1 97.74 243.9 192.3 93.03 206.9
nonHG ¢, 0.03
Ly 1.090 0.818 1.155 1.172 1.196 1.191
Lo 1.812 0.999 2.205 2.428 2.006 2.552
SliMod f™ 17.19 12.20 30.38 32.24 28.38 34.77
k1 84.46
ko 41.03

A. TUNING BEHAVIOR

We apply our automatic tuning procedure described in Sec-
tion III to the four observers: Kalman filter, linear high-gain
observer, nonlinear high-gain observer, and the sliding-mode
observer. The remaining estimation methods only involve in-
teger gains, which is why a grid search for each robot axis
was sufficient. For tuning, we execute the trajectory displayed
in Fig. 2 for each genome. With 20 generations, each with a
population of 60 genomes, this translates to roughly 12 hours
of tuning per estimation method, including the computation
time.

In Fig. 3, we show how fast our genetic algorithm con-
verges. The model-free observers (Kalman filter and linear
high-gain observer) converge fast, while the model-based ob-
servers converge more slowly. According to our intuition,
this may be because the gains of the model-based observers
are more dependent on each other, where varying one gain
affects the estimation performance of multiple joints. For the
model-free observers, the gains are decoupled for each joint,
which makes the search easier. The resulting optimal gains are
shown in Table 4.

B. ESTIMATION PERFORMANCE

We compare the performance of the velocity estimation meth-
ods using a more varied trajectory than the tuning trajectory.
As shown in Fig. 4, it consists of a sine wave, a point-to-
point trajectory in joint space using Sth-order polynomials,
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FIGURE 4. Estimation performance: desired trajectory. The velocity signal

g4 consists of a sine part, a polynomial part, and a trapezoidal part.

TABLE 5. Integral squared error of the derivative filters
(10 millidegrees, 125 Hz).

Filter ISE Filter ISE
MovAv  0.035 | LSF3/8 0.434
LSF1/4  0.046 BDE2 0.092
LSF1/8 0.114 BDE3 0.184
LSF2/8 1.197 TSE3 0.128

and a trapezoidal point-to-point trajectory in both joint and
task space with inverse kinematics included. The experiments
are performed in closed-loop control, meaning that the esti-
mated velocities are directly applied to the computed-torque
controller.

At first, we choose the best derivative filter out of the TSE,
BDE, and LSF filters. Table 5 shows the ISE metric for the
test trajectory for all considered filters. These are the same
ones that have been analyzed in the previous comparisons
in [4] and [5]. For this experiment (and all subsequent ones)
we have determined that the LSF1/4-filter (i.e., ngpg = 2)
has the smallest velocity estimation error. Mathematically, the
LSF1/3-filter (i.e., pppE = 1 and ny.sp = 3) equals the moving
average filter for n = 2, and LSF1/2, BDEI, and TSEI1 equal
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the finite difference method, which is why we exclude them
in this comparison.

Next, we compare the LSF1/4-filter with all other opti-
mally tuned estimation methods. To reflect the fact that the
estimation performance can vary over time when used in
closed-loop, we run the test trajectory four times for each
estimator. In Fig. 5(b) we show the mean cumulative ISE over
the course of the test trajectory, as well as their maxima and
minima (shaded areas).

Except for the nonlinear high-gain observer, all other meth-
ods have a very similar estimation error. By small margins we
can see that the Kalman filter and the linear high-gain observer
perform slightly better than the rest. Although the finite differ-
ence method performs well in terms of ISE, we can also see
in Fig. 5(a) that it is a noisy estimation due to the quantization
error of the position encoder. On the one hand, the moving
average filter improves the smoothness, but on the other hand,
the error is larger due to the increased delay. Except for
nnlHG, the other estimation signals are less noisy than the
finDiff, while having a smaller delay than MovAv, which re-
sults in smaller estimation errors. The sliding-mode observer
behaves interestingly: for the smooth sine and polynomial
trajectories, it is an accurate estimation method. However,
in the trapezoidal section, the error increases faster than for
other methods, especially at the sections with sudden high
acceleration.

In terms of the performance of the tracking control, the
estimation methods do not differ significantly. As the overlap-
ping shaded areas in Fig. 6 show for the ISE of the tracking
error, the variation between multiple tests is far larger than the
influence of the estimation method. Only nnlHG has a worse
tracking error, resulting from its poor velocity estimation per-
formance.

To explain the different behaviors of the methods, we anal-
yse how fast they converge by analyzing their step responses.
To do that, with reference to the result in Fig. 7, we execute
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TABLE 6. Estimation error (ISE) with faulty sensors.

retuned retuned
normal normal faulty faulty
FinDiff  0.041 0.041 2,737 2.737
MovAv  0.033  0.097 0.763  0.160
LSF 0.041 0.088 0.526  0.207
Kalman 0.032  0.036 1.162 0.177
linHG 0.033  0.060 1.831 0.145
nonHG 0.508  2.011 1.312  2.017
SliMod 0.047  0.049 0.067 0.074

a trapezoidal trajectory and activate the estimators simultane-
ously when the reference velocity is constant (t = 8 seconds)
to observe their response. We can see that the nonlinear
high-gain observer never really converges, since it is not fast
enough. The sliding-mode observer has the smallest over-
shoot, but requires much longer than the rest of the estimators
to converge to the actual velocity. This is why in cases such as
high accelerations in trapezoidal trajectories, the sliding-mode
observer deviates, and the slow re-convergence accumulates
to a large estimation error, although otherwise it is an accu-
rate observer. The other methods converge significantly faster,
which explains their good closed-loop performance.

C. FAULT TOLERANCE

We analyze how the estimation methods react to errors in the
position measurement. To do that, we randomly simulate a
loss of communication for 10% of the measurements of axis
6 of our robot. The resulting velocity estimation can be seen
in Fig. 8(a). The estimated velocities experience severe chat-
tering, except for the sliding mode observer, which responds
more robustly by remaining smoother.

However, the robustness of the estimators can be improved.
To demonstrate that, we repeat the tuning process, in which
the sensor stays faulty. As Fig. 8(b) shows, the estimation
improves. As Table 6 shows, the retuned estimators signifi-
cantly sacrifice accuracy during normal operation, except for
the Kalman filter and the sliding-mode observer, which is why
we conclude that these two are the most fault tolerant methods
regarding our error model.
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FIGURE 8. Sensor fault tolerance: the left side (a) shows an excerpt of the estimated velocity of axis 6 given sensor errors, using the parameters from
Table 4. The right side (b) shows the estimated velocity with new gains, that mitigate the noise.

TABLE 7. Optimal gains of velocity estimation methods
(2 millidegrees, 125 Hz).

Method Par. Optimal values (diag. elements of matrices)
MovAv n 2
LSF n 4
p 1
Kalman @ 9.650 5.479 15.34 9.382 7.265 1.453
linHG ¢ 0.03
H, 36.81 30.77 45.18 27.40 55.17 34.04
Hy; 284.6 501.7 475.1 330.8 219.4 289.2
nonHG ¢, 0.03
Ly 1.011 0.768 1.153 1.180 1.193 1.057
Lo 1.689 0.997 2.175 2.216 2.399 1.835
SliMod f* 19.04 25.38 19.93 29.86 29.27 48.02
k1 119.5
ko 41.13

Velocity Estimation Error (2 millidegrees, 125 Hz)

TABLE 8. Optimal gains of velocity estimation methods

(1 millidegree, 250 Hz).

Method Par. Optimal values (diag. el ts of matrices)
MovAv n 2
LSF n 4
p 1
Kalman @ 1.07 16.71 26.07 7.87 0.88 1.28
linHG ¢ 0.01
H; 15.63 19.54 17.09 9.43 15.75 19.02
Hy 3211 50.34 34.72 25.92 19.05 38.35
nonHG ¢, 0.01
Ly 1.637 2.433 2.079 1.671 2.144 1.753
L, 3.061 3.359 3.463 3.343 3.046 3.404
SliMod f* 26.84 21.19 37.39 26.75 32.29 44.83
k1 37.47
ko  88.84

D. HIGHER SENSOR RESOLUTION AND SAMPLING RATE

At last, we compare the estimation methods when operating
the robot at a higher sensor resolution and higher sampling
rate. We repeat the tuning process for two configurations:
1) 2 millidegrees per increment and sampling at 125 Hz, and
2) 1 millidegrees per increment and sampling at 250 Hz. For
the latter configuration we compute the ground truth using the
filtfilt zero-phase filter from MATLAB with a cut-off
frequency at 28 Hz.
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FIGURE 9. Higher sensor resolution and sampling rate: comparison of the
velocity estimation methods.

The resulting optimal gains are shown in Tables 7 and 8,
and the cumulative ISEs are shown in Fig. 9. The estima-
tion errors decrease due to the improved measurement and
the higher gains for the observer methods. What is imme-
diately noticeable from the ISE graphs is that the relative
difference between the filtering methods (FinDiff, MovAv,
LSF1/4) depends much on the sampling rate and the encoder
resolution. In the first case, FinDiff and LSF1/4 perform better
than MovAv; in the second case, MovAv is the best of the
filters. In contrast, the relative difference between the observer
methods (Kalman, linHG, nnlHG, SliMod) stays similar in all
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TABLE 9. Qualitative comparison of each estimation method.
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considered cases. The linear high-gain observer is consistently
amongst the best in terms of accuracy in all experiments.

E. DISCUSSION

We have thoroughly investigated the performance of velocity
estimation methods, considering multiple aspects that are im-
portant for applying them to real robots. The moving average
and the derivative filters are easy to implement and to tune,
but their accuracy varies between different sensor resolutions
and sampling rates. In our experiments, the derivative filters
(LSE, BDE, TSE) did not perform very well and can lead
to large errors, as can be seen by comparing Table 5 to the
ISE. The linear high-gain observer consistently has the best
accuracy when the gains are properly tuned. The nonlinear
high-gain observer has not proven to be a suitable option
in our experiments, although we tried our best to identify
the robot model as accurately as possible. The sliding-mode
observer, which is also model-based, performs well and has
the added benefit of being robust against erroneous sensor
measurements, but often experienced a loss of accuracy at
high accelerations. From our comparison we cannot conclude
that model-based observers, which are harder to implement
due to the dynamical model of the robot, perform better than
model-free estimation methods. Finally, our experiments have
shown that most of the chosen estimators do not noticeably
influence the tracking error, when they are optimally tuned.
However, an inaccurate velocity estimation, such as the non-
linear high-gain observer in Fig. 6, will significantly degrade
the tracking performance of the controller. This emphasizes
the practical relevance of having accurate estimates and the
importance of tuning to reach the best performance. In Ta-
ble 9, we qualitatively summarize our discussed observations.

V. CONCLUSION

This work experimentally compares multiple velocity esti-
mation methods for robot manipulators, namely the finite
difference algorithm, moving average filtering, derivative
filtering, Kalman filtering, linear high-gain observer, non-
linear high-gain observer and the sliding mode observer.
Additionally, we propose an automatic tuning procedure
based on a genetic algorithm. The linear high-gain ob-
server is consistently amongst the best in terms of accuracy,
independent of the sampling rate and sensor resolution, while
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the sliding-mode observer is robust against sensor faults.
Simple-to-implement schemes, such as the moving average
filter, can perform well enough, when optimally tuned, with-
out affecting the tracking error of the closed-loop robot
system. The nonlinear high-gain observer was not suitable for
our robot. Overall, when the other estimators are tuned using
our genetic algorithm, their optimal performance is similar.
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A.5 Guarantees for Real Robotic Systems

Guarantees for Real Robotic Systems:
Unifying Formal Controller Synthesis and
Reachset-Conformant Identification

Stefan B. Liu, Bastian Schiirmann, and Matthias Althoff

Abstract—Robots are used increasingly often in safety-critical
scenarios, such as robotic surgery or human-robot interaction. To
ensure stringent performance criteria, formal controller synthesis
is a promising direction to guarantee that robots behave as
desired. However, formally ensured properties only transfer to
the real robot when the model is appropriate. We address this
problem by combining the identification of a reachset-conformant
model with controller synthesis. Since the reachset-conformant
model contains all the measured behaviors of the real robot, the
safety properties of the model transfer to the real robot. The
transferability is demonstrated by experiments on a real robot,
for which we synthesize tracking controllers.

Index Terms—formal methods, model identification, reachabil-
ity analysis, reachset conformance, controller synthesis, robots.

I. INTRODUCTION

Guaranteeing and optimizing control performance has been
a challenge for the robust control of robots for a long time
(e.g., see the surveys in [1], [2]). One of the reasons is that
models of robots and their controllers do not consider certain
effects: 1) rigid-body models of robots do not consider flexible
joints and links; 2) some model parameters are falsely assumed
to be constant, e.g., some friction parameters in robots depend
on load and temperature, which are not accounted for in
standard models; and 3) control limitations, such as finite
motor capabilities, finite sampling time, measurement errors,
delays, noise within circuit boards, etc., are typically not
modeled. Due to these and other reasons, an identified model
can never exhibit exactly the same behavior as the real system.

We propose a novel formal synthesis framework that uses
reachability analysis [3] to optimize the controller and provide
formal guarantees for robotic systems. Reachability analysis
allows us to formally bound all possible behaviors, making it
possible to decide whether a given specification is always met.

Our main challenge is how to correctly identify models
such that the guarantees obtained for these transfer to the
corresponding real robot. We will make use of the reachset
conformance relation [4], which means that the reachable sets
of the model must contain all possible behaviors of the real
robot. Broadly speaking: if a property can be guaranteed for a
conservative model, then we can guarantee the same property

All authors are with the Department of Informatics, Technical University of
Munich, Garching, 85748, Germany. Email: [stefan.liu; bastian.schuermann;
althoff] @tum.de.

Manuscript received April XX, XXXX; revised August XX, XXXX. This
work was supported by the European Union’s Horizon 2020 Research and
Innovation Program under Grant Agreement 101016007 (Project CONCERT).

for the real system (a formal explanation will be provided
in Sec. II). In this paper, we combine reachset-conformant
identification with controller synthesis in a single optimization
problem that simultaneously finds the optimal model and
controller. Obviously, if one is interested in only identifying a
reachset-conformant model or only finding a controller for a
given model of a robot, our approach is also applicable.

This paper focuses on the synthesis of tracking controllers
for feedback-linearized robots, but is applicable to all linear
systems. The software, as well as the scripts to replicate our
experimental results, can be obtained from Code Ocean'.

A. Literature overview

We divide our review of relevant works into three parts:
robust control, formal synthesis, and model identification.

1) Robust control: Previous robustness analyses of
feedback-linearizing robot controllers, many of which are sur-
veyed in [1] and [2], assume that system uncertainties originate
from model errors, which can be considered additive nonlinear
disturbances in the feedback-linearized model. For instance,
the nonlinear disturbance representation helps to prove general
uniform ultimate boundedness (UUB) for a computed torque
controller in [5]. In [6, Section 8.5.3], a robust controller
is proposed, where UUB is shown by bounding the mass
matrix and other nonlinear terms of the robot dynamics. The
approach in [7] presents a control scheme for robots that
achieves a desired tracking error with a pre-specified conver-
gence rate. Generally, in previous works, UUB is only shown
through Lyapunov’s theorem, which can be very tedious. In
contrast, we quantitatively model the additive disturbances as
an uncertain set and show UUB directly by computing the
reachable tracking error of a robot using standard algorithms
for reachability analysis [3]. These algorithms also make it
possible to incorporate sampling times, measurement errors,
and delays—all of which influence the final tracking error.

Hoo-synthesis (e.g., in [8], [9]) is a method that optimally
designs robot controllers that minimize an H..-norm, which
captures disturbance effects expressed in the frequency do-
main. However, H,-synthesis does not provide any guaran-
tees with respect to input constraints. Similarly, the linear
quadratic regulator (LQR) is an optimization-based approach,
which has robustness properties [10] but fails to consider
constraints (more details in Sec. IV).

Thttps://doi.org/10.24433/C0.1635335.v1
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A well-known type of controller ensuring the satisfaction
of state and input constraints despite the presence of distur-
bances is tube-based model predictive control (MPC). There,
an optimization algorithm iteratively optimizes a reference
trajectory over a moving horizon while a feedback controller
keeps the system in a tube around the reference trajectory.
For linear systems, the computation of the reference trajectory
and the control invariant set of the tube can be decoupled due
to the superposition principle [11]-[14], while for nonlinear
systems, this becomes more complex. Still, a number of
approaches exist for nonlinear systems, e.g., [15]-[18]. Other
ways to ensure the satisfaction of constraints are to embed an
invariance controller [19], [20] or use control barrier functions
[21], [22]. In contrast to tube-based MPC, our approach meets
the specification for the real robot and not just its model. In
addition, our approach does not require finding a Lyapunov
function, as required for most tube-based MPC approaches.

2) Formal synthesis: Formal controller synthesis is a re-
search area with many recent results in robotics; we refer to
[23] for an overview. The idea is to compute a controller which
formally guarantees the satisfaction of complex specifications.
Many of the control approaches mentioned in [23] focus on
high-level planning with little focus on uncertainty, while
our method formally synthesizes low-level controllers, where
uncertainty plays a larger role.

Many formally correct controllers are realized as
abstraction-based  controllers [24]-[34], which satisfy
rich specifications such as temporal logic expressions.
By discretizing the state and input space, they obtain a
finite state abstraction of the system so that they can use
techniques from automata theory to synthesize controllers.
The necessity to discretize the state space leads to an
exponential computational complexity with respect to the
number of continuous state variables, which restricts the
application to lower-dimensional systems. Some works try to
avoid this problem by not abstracting the whole state space,
e.g., see [35]-[37]. In contrast to these papers, we avoid
discretizing the state space and directly compute the reachable
set of the dynamic system, which scales polynomially with
the number of state variables [3].

Instead of abstracting the whole state space, other ap-
proaches compute safe motion primitives for mobile robots,
i.e., short trajectory pieces with a corresponding controller
that keeps the system in predefined sets. By computing many
motion primitives and storing them in a maneuver automaton,
they can be used with a discrete online planner, which only
needs to find a suitable concatenation of motion primitives
[38], [39]. There are different methods to compute these
motion primitives, e.g., using LQR trees [40], [41], or by com-
bining optimization with reachability analysis [42]-[44]. For
robotic systems, such as manipulators, precomputing motion
primitives would be infeasible since the number of required
motion primitives scales exponentially with the number of
states and inputs. Instead, our goal is to provide guarantees
for the tracking error independently from the desired motion.

Other techniques, such as interval arithmetics [45] or
Hamilton-Jacobi reachability [46], can also be used to compute
and ensure the tracking error bounds of dynamical systems
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given known disturbances. In the next few paragraphs, we will
review techniques that help us if disturbances are unknown.

3) Identification of model uncertainties: Uncertainties can
be generally categorized as stochastic and set-based uncer-
tainties formulated in the frequency or time domain [47]. A
discussion of uncertainties in the frequency domain for robust
control can be found in [48]. Stochastic aspects of model
uncertainty are treated in large detail in [49]. For instance, in
[50], the stochastic uncertainty of robot kinematics is identified
through Monte Carlo sampling. Since we focus on providing
guarantees, we will discuss set-based uncertainties in the time
domain.

Formal synthesis requires models that enclose the behavior
of real systems. This is also called the model conformance
relation and has been treated in-depth in [4]. Most literature
on set-based identification is based on finding a simulation
relation since it allows a transfer of, e.g., temporal logic
properties for the entire state space. The model can be a
coarse-grained abstraction of the state space into a discrete
automaton (e.g., for the navigation of mobile robots [23]) or
differential inclusions [51], [52]. The paper in [51] identifies
a linear system with non-determinism such that all state
measurements are within a polytopic reachable set. The paper
in [52] identifies piece-wise affine models using mixed-integer
linear programming, also establishing a simulation relation
between measured states with hyperrectangular reachable sets.
In contrast to these works, we use zonotopes, which have a
special structure that allows us to reduce the identification to
a linear problem.

However, if a system is high-dimensional, but only a
few outputs are relevant for synthesis, then the simulation
relation can be too restrictive and conservative. Thus, trace
and reachset conformance have been proposed to relax the
formal relation only to the output of a system [4]. In [53],
the authors apply trace conformance by reconstructing distur-
bance traces for a real autonomous vehicle. The set of non-
deterministic disturbances is then taken as the outer bounds
of all disturbance traces. Reachset conformance, on the other
hand, is a further relaxation that only requires that the output
traces of a system must be within the reachable set of the
model. The main advantage is that we can handle sensor noise
and arbitrary disturbances, which is not possible for trace
conformance since this would create infinitely many possible
behaviors, resulting in a more flexible model-order reduction
[54] or even applying black-box identification methods [55].
For transferring safety properties, reachset conformance is
sufficient [4].

Our previous work on the reachset conformance of robot
manipulators, on which this paper is based, can be found in
[56], [57]. Our work in [56] aims to identify the uncertain
sets of a forward dynamical model, while here, we iden-
tify a feedback-linearized robot model. In [57], a reachset-
conformant inverse dynamical robot model is identified. In
these works, we have not combined reachset-conformant iden-
tification with controller synthesis.

The identification of conformant parameter sets can also be
viewed as a synthesis problem. The authors in [58], [59] are
able to incorporate additional model knowledge as temporal



TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, AUGUST XXXX

logic constraints to improve identification results.

The main criterion for the identification of parameter sets is
usually the size of their range. However, small uncertainties do
not necessarily lead to good robust control, and large model
errors do not necessarily lead to bad control performance,
as [60] has pointed out. Therein lies the motivation for
identification for control, in which the model uncertainties are
determined in a way that is optimal for the control goal [47].
Our framework builds upon these ideas to formulate controller
synthesis and model identification as a unified optimization
problem, where they share a common cost function.

Notably, set-membership identification [61]-[65] has certain
similarities to our approach because it is also a set-based
method. There, the goal is to identify the true parameter of
a system by reducing the feasible solution set as much as
possible. This is different from reachset-conformant identifi-
cation, where the goal is to model the parameter set large
enough to ensure reachset conformance. Parameters obtained
from set-membership identification are generally not reachset
conformant and cannot be used for our robust control frame-
work.

B. Structure of this paper

This paper is structured as follows: in Sec. II, we provide
preliminaries on zonotopes and on the reachability analysis of
uncertain linear systems. Our combined controller synthesis
and reachset-conformant identification framework is presented
in Sec. III. We address the application of these methods to the
tracking control problem of robots in Sec. IV and conclude
this paper in Sec. V.

II. PRELIMINARIES AND PROBLEM STATEMENT

We first introduce preliminaries on set operations and sub-
sequently describe the control problem.

A. Preliminaries on set operations

We denote sets using calligraphic letters (e.g., A) matrices
using upper case letters (e.g., A), vectors using -, and scalar
values using lower case letters (e.g., a). To represent sets, we
mainly use zonotopes.

Definition 1 (Zonotope). A zonotope Z is defined by a center
¢ and a generator matrix G of proper dimension, where §")

is its h-th column:
Bn € -1, 1]} .

—(@Q) = {fze Zﬂﬂh)

A 0-dimensional zonotope Z with s generators can also be
described by an intersection of 2(0f1) half-spaces.

Proposition 1 (H-representation of a zonotope [66]). The half-
space representation of a zonotope is {yj|Ny < d},

Nt - |dt
v 5] - H /
where each row of N and d contains the normal vectors and
distances of a half-space, respectively. The direction of each
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normal vector is computed from a reduced generator matrix
G where v, ...,n are the s — 0 + 1 indices of the
generators that have been removed from G. The j-th row of
N7, where j € 1..( s ), is
ﬂ+ = nX(
nX(H) =1[..,

)X (G o, ¢))
(—l)z“det(H[ ). 7, 2

where HI means thc_zf the i-th row of H is removed, and the
j-th row of d* and d~ are

dj_:

Ad _Z‘ﬂwLT (h)" )

df =i’ e+ Adj,

; it é+ Ady,  (3)

Many operations on zonotopes can be exactly and efficiently
computed [3]. Let us define the Minkowski sum of sets as
A®B={d+b|ae A,be B}. For zonotopes, the following
propositions hold:

Proposition 2 (Minkowski sum of zonotopes [67]). Zonotopes
are closed under Minkowski sum:

(¢1,G1) & (G2, Go) =

Proposition 3 (Linear transformation of zonotopes [67]).
Zonotopes are closed under linear transformation:

AZ = (A, AG).

Z1 D 2y = (€1 + &,[G1, Ga)).

To reason about the size of a zonotope, we introduce a norm
that is defined based on the edge lengths of its interval hull.
Alternative norms can be found in [68].

Proposition 4 (Interval hull of zonotopes [67]). The interval
hull Z(Z) = [i~,i"], where i~ is the left bound and i* is
the right bound, is the smallest interval enclosing a set Z =

@1 ..,g™,...]), where

P
im=c-4, it=c+d, =) |g"W

h=1
Definition 2 (Norm of zonotopes). We dejine the norm of a
zonotope as the sum of each element of 6, which represents
the size of the interval hull:

0
12] = 3" 18l
i=1
Next, we introduce reachable sets for linear systems. Since
robots are commonly measured and controlled by comput-
ers, we restrict our discussion to discrete time. We use the
notation alk] to express the value of a at time kAt, where
k € {0,1,...} and At is the sampling time. Discrete-time
linear systems are defined by the following difference and
output equations:

Z[k + 1) = AZ[k] + Bulk] + w[k],
ylk] = CZ[k] + Dilk] + v[k],
where A, B,C, D are matrices of proper dimension, Z[k] is

the state, y[k] is the output, @[k] € U is the control input
constrained by U, and W[k] € W = (éw, G}y diag(dw))

(&)
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and U[k] € V = (¢v,G} diag(dv)) are the disturbances
sensor noise, respectively, bounded by appropriate zonotopes
to capture the errors of the nominal model. The operator
diag(.) returns a matrix where the elements of the input vector
are on the diagonal. Subsequently, vectors aiyy and dy are
variables that scale the length of each generator of WV and V,
respectively.

Reachable sets are defined as the set of all possible outputs
of a system, given a set of initial states and the set of all
possible inputs. The reachable set of (5) after one time step
is computed through a set-based evaluation of the difference
and output equations in (5):

Rk + 1] = C (AX[k] © Biilk] ® W) & Diilk + 1] & V,
(6)

where X'[k] is the current set of states. Given an initial set
X[0], the reachable set after k time steps can be computed by
recursively applying (6):

k k
Rk+1]=C (A’““X[O] @Y A'Bililo @ Aiw)
=0 =0

@ Dilk+1]®V. (7)

When using zonotopes, the above computation is exact since
(7) only involves Minkowski sums and linear transformations.

B. Plant model and reachset conformance

In this subsection, we discuss the model of our use case.
Because our method applies to linear systems and the robot
dynamics are nonlinear in general, we implement an internal
feedback linearization in the robot. Let us derive the plant
model by regarding the following rigid-body dynamics of a
robot [2, Sec. 2.2]:

M(Di+d(q.q) =7, ®8)

where ¢ is the vector of joint positions, 7 is the vector of
joint torques, M is the mass matrix, and 1/7 contains the
Coriolis, centripetal, gravity, and friction forces. The feedback
linearization technique [6] applies a control torque

7= M(Q)i, + (7, q) ©)

to (8); for the rigid-body dynamics, this results in linear
dynamical systems that are decoupled for each joint i:

Gi = Ur,i, (10)

where u,; is the plant input for the feedback-linearized robot
with rigid-body dynamics. In the discretized state-space model
for one robot joint, we additionally consider that both the input
and the output are delayed by one sampling instant. Let us
denote the linear dynamics by the subscript 7 (for robor):

01 0 0 0

. 0 1 At AF| 0

k1] = 2| &,k K],

GlR= g o 1 K| TR o Wl gy
00 0 0 1

y(t)=[1 0 0 0]&[k]
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where Z,.[k] = [q[k — 1], q[k], ¢[Kk], u-[k — 1]]7 is the state, and
y, is the measured joint position.

The dynamics of a real robot, however, will never be
exactly as in (11) because 1) the rigid-body assumption has
limitations, e.g., there are flexible parts in the system, 2)
the inertial parameters used in the feedback linearization
in (9) are usually not accurate, and 3) measurement errors
affect the feedback linearization. To capture the uncertainties
of the robot, we add the following uncertainties: a time-
varying additive disturbance ,;[k] € W,,; C R3, and a
measurement error vy, ;[k] € V,; C R, and an additional
constant disturbance state d, where d = 0. The full model
is denoted the subscript p (for plant) and is fully described in
Appendix A.

The next definitions specify the data we require to test for
reachset conformance.

Definition 3 (Test case). Let k* € Ny. A test case is a
tuple (yp[0], ..., yp[k*], up[0], ..., up[k*], Z,[0]) of output mea-
surements Yy, [k|, control inputs up[k], and the initial state
Zp[0].

To account for disturbances at any point in time, we should
generate sequential test cases (defined subsequently) to have
as many initial states as possible and to maximize the number
of test cases from one recording.

Definition 4 (Sequential test cases). From one recording, we
generate multiple test cases, where the state of each time step
can be the start of a new test case. Sequential test cases are
denoted by a superscripted index. The following relation holds
for sequential test cases:

gV = 3k + 1,
uSm O] = w{™ [k + 1]

Finally, we establish reachset conformance [4, Sec. 3.5] by
testing the real system.

Definition 5 (Reachset conformance testing). Given are a
plant model and M test cases of a real system. The model is
reachset conformant for the sampling instants k € {0, ..., k*}
if, for each test case, the measurement of the real system is
enclosed in the corresponding reachable set of the model:

VmVk : 5™ k] € RU™[K],
where g]ﬁ,m) [k] is the measured output and ’Rgm) [k] is computed
using (7) considering ™ [0] and u(™ [k].

We call finding of unknown parameters of the plant model,
such that Def. 5 is fulfilled, reachset-conformant identification.

C. Problem statement

Now, let us discuss the problem at hand. Our goal is to
synthesize an optimal closed-loop system given a linear plant
model, while the disturbance sets have unknown parameters
to be identified. The control goal is for the output of the
closed-loop system ¥ := [q, (j]T to track a reference output
Yret = [qd,qq] containing the desired position and velocity.

The observed variables ¢, (j have been chosen for . since the
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robot velocity is usually not measurable, so an observer [69]
is recommended.

For the closed-loop system, we select a parameterizable
linear feedback controller and a parameterizable linear ob-
server such that the closed-loop system is also linear, and
its reachable set can be computed using (7). Furthermore,
we can include input feedforward signals ug that are added
to the plant input, e.g., a desired acceleration ug := ¢q4. In
Sec. IV, we demonstrate two different closed-loop systems
with unknown parameters.

Next, we specify the optimization problem for the combined
controller synthesis and reachset-conformant identification.
Subsequently, we define the two main reachable sets consid-
ered in our controller synthesis:

Definition 6 (Reachable tracking error). R. is a reachable
set that encloses all tracking errors of the closed-loop system,
such that

gcl € gl‘cf &b Re~

Definition 7 (Reachable input). R, is the reachable set of all
plant inputs u, in the closed-loop dynamics. A controller is
considered safe if the reachable input is within the allowed
set Uy, such that R, C U,.

The computation of R, and R, are explained in Sec. III-A.
As a cost function, we choose the norm of the reachable
tracking error R.. The variables are the unknown controller
and observer parameters, as well as ¢y, , ¢y, , dw,, @y, from
the zonotopic disturbances of the plant model. These variables
are aggregated into a parameter vector p' € P, where P is a
user-defined search space. The optimization problem has two
constraints:

« the plant model shall be reachset conformant (Def. 5),

« the plant input is constrained so that we never exceed the

allowed motor torques of the robot,

and the optimization problem is formulated as:

min IR, (12a)
subject to  VmVk € [0,k] : gj’f,m) [k] € Rgn)(ﬁ)[k’L

(12b)

Ru(P) C U, (12¢)

where all computed reachable sets depend on j. The optimiza-
tion problem is defined for each robot axis ¢ € {1..n}, but the
set of allowed inputs U, ; for each axis are derived from the
allowed joint torque and depend on the axis configuration.
Given the feedback linearization in (9), the allowed set of
inputs U, = Up 1 X ... X Uy, must satisfy the torque limits:

T 2 M(Q)U, & §(Q, dQ), (13)

where 7 is the set of allowed torques, and Q,dQ are the
sets of allowed positions and velocities of the robot. Since
(13) is nonlinear, we recommend Taylor models [70], [71]
as a set representation to prove the above statement because
the precision of Taylor models in approximating nonlinear
functions can be set arbitrarily high.

The main advantage of this combined approach is that
all parameters are synthesized for the same goal, while an
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approach with separate goals would lead to sub-optimal mod-
els. Notice, however, that a standalone reachset-conformant
identification can be derived from the above problem by
leaving out (12c) and switching to any other cost function,
e.g., a prediction error as demonstrated in [56], [57], [72].
Also, by removing (12b), we arrive at the standalone controller
synthesis problem proposed in [44].

III. COMBINED CONTROLLER SYNTHESIS AND
REACHSET-CONFORMANT IDENTIFICATION

This section describes how to solve (12). In Sec. III-A,
we first explain the computation of the reachable tracking
error R, and the reachable input R,. In Sec. III-B, we
derive a linear formulation of reachset conformance (12b),
which reduces the complexity of the constraint evaluation to
a linear inequality check. In Sec. III-C, we discuss the need
to solve (12) iteratively and cover the computational aspects
in Sec. III-D.

A. Computing the reachable tracking error and input

Often in robotics, the desired position and velocity may
not be known in advance, e.g., when using online trajectory
generation. Therefore, our aim is to solve (12) independently
from the reference. Nevertheless, we shall restrict the desired
acceleration by a set ug € Ug to disallow unbounded feedfor-
ward inputs. To later extract both R. and R, as a projection
[73, Sec. 2.1] of the reachable set of the closed-loop system,
we augment its output by the plant input u,; the new output
is denoted by a tilde: Gol 1= [, up] T

Similar to [44], we use the superposition principle for linear
systems to divide the reachable set of the closed-loop system
into two parts: a set ’Iécl,e that is only dependent on the
disturbances W, and V,, and a vector Z?C]’ref that is only
dependent on the reference 7o and the feedforward ug, such
that the final reachable set is ¥ rer[k] ® ﬁcl,e[k].

The set ’I~2C11e is computed using (7) by setting ¥t = 0 and
ug = 0. If the system is stable, then ﬁcl,e[k] will converge to
an invariant set ﬁcl,e[koo] [74], i.e., ’Iécl_,e[koo—i—l} - ﬁcl’e[kw].
In practice, this convergence might not happen due to nu-
merical issues; therefore, we implement [74, Alg. 2], which
computes ﬁcl,c[km] from an arbitrarily small and an arbitrarily
large X'(0) until they converge to a final set with a tolerance
criterion that is chosen to be arbitrarily small. Thus, the
computed ﬁcl,e[koc] is a positive invariant set [74] of both
the tracking error and the plant input. An example of Ry o[k]
converging to Reto[koo] is shown in Fig. 1.

If Yo vot[k] = [Jret[k], ug]T, then the sets for the reachable
tracking error and the reachable input are given by the fol-
lowing projections; since the reachable input R, should also
contain ug, we add the bounded set Ug:

Re = [IL OLX_]] Rcl,c[koo]a

Ru = [0jxi Ij] Revelkoo] ® Us,
where I;y; is an identity matrix with dimension 4, 0;,; is a
matrix of zeros with ¢ rows and j columns, 7 is the dimension
of ¢, and j is the dimension of w,. However, we note that

Jret[K] is not always equal to ¢ ref[k]; extensions considering
the remaining error can be found in Appendix B.

5
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G — da (velocity error)

-

G — qa (position error)

Fig. 1. Computation of the reachable tracking error, which is a projection of
the converged set Rcj e[koo]-

B. Reachset conformance as a set of linear inequalities

If constraint (12b) was naively implemented, the reachable
set R(m) would have to be computed for each test case.
However, we will show that (12b) can be reduced to a set of
linear inequalities depending on § = [éw,,Cv,,dw, ,av]
For the remainder of this subsection, all variables refer to the
plant model, and the subscript p is omitted for ease of notation.

The first simplification is to combine all test cases as
described subsequently to check reachset conformance by
a single reachability analysis. Let us define ﬁm) [k] as the
nominal solution of (7) for the plant without the disturbance
sets W and V, and consider ("™ [0] as the initial state. To
make (12b) independent of each test case, we subtract the
nominal solution from both ™) [k] and the reachable set
RO [k]:

G ] = G~ 2R, (14)
k-1

Ralk] = R - "k P cawey,  (5)
i=0

where 75" [k] is the deviation of the real behavior from the

nommal one, and R,[k] is now independent of the input and
the initial state. Therefore, for linear systems, the following
statement is equal to (12b):

%emW}UmeCRW (16)

where the left side is the union of all trajectories deviating
from the nominal behavior. Since WV and V are zonotopes, we
can apply propositions 2 and 3 to derive that the center and
generator matrix of R,[k] = (¢, Gi) are

&= [T B 1] {‘;YVV} , E,=CA,
Gk = [E(]GW EkflGW Gv} .

an
18)

The second simplification is to formulate (16) as a set
of linear inequalities by usmg the H-representation of R,
(see Proposition 1): if all ya [k] satisfy all the half-space
inequalities of R, [k] for all k, then (16) follows, and the model
is reachset conformant. As we will show in the following
theorem, the half-space inequalities for R, are not only linear
in gj&m), but they are also linear in 5 The directions of
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the half-space normal vectors do not depend on E but our
optimization in (12) is rather varying the distance of each half-
space from the measured outputs. The number of test cases can
be arbitrarily large since we will use the measurement with the
largest deviation from the nominal behavior.

Theorem 1. The constraint (12b) for the reachset confor-
mance of linear systems is linear in £ =[Gy, v, dw,dy]T:

Vk € [0, k*] : max(Npy(™[k]) < D&, (19)

where Ny, = [N}, —N;'|T, and Dy, = D}, Dy ). The j-th
row of Nf, where j € 1,.(6f1), is a normal vector of the
H-representation of R,[k] and independent from &:

ity = nX (G )T/ X (G T,

and the j-th row of D,j and D, are defined as

d;Lk = [Zf olﬁ+ Ei, ﬁ;rk’

SIS L EG | 176y,
Jj_,k - [— Zf olﬁ+ Ei, _ﬁ;r,kv

S i EG |, lihGyl].

Proof. We demonstrate that the normal vectors of the H-
representation of any zonotope (¢, G’ diag(d)) are indepen-
dent from &. The numerator of n+ is (see (1)):

nX(G diag(d)) =
=[.., (=1 det(G! diag(a)),...]"
= det(diag(@))[. .., (—1)"* det(GM),...]T
= det(diag(@)) - nX(G) = pnX(G),

and since all elements of & are positive, we infer p > 0, and
the denominator of ﬁ;" is

[pnX(G)||, = pll nX(G)ll2,

such that @ cancels out from the definition of n+ in (1). Next,
we show that d+k, and d ', can be derived from applying the

definition of Gy, in (18) to (4) in Proposition 1, considering T
as a vector of ones:

Ad; g, = (| EoGw] it ErGw| |i5,Gyl] T

aw

[|n +EoGiy| |n+ Ey_1Gy| |ﬁ]+kclv|]
aw

ay
— Zk—l‘ﬂ+ EG! i aw
= i=0 |7 i wl \njk vl av |

The first two elements of af?  and (f; ; directly follow from
(3), which are linear in the zonotope center ¢, so that d? and

d_;._ in Proposition 1 are linear in 5 when Gy, is applied. [

One problem which we could encounter is that the number
of constraints is Q(Hf 1) and exponentially increases with k
since p (the number of generators of Gy, in (18)) grows for



TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, AUGUST XXXX

each time step. The following corollary can be used for a
conservative approximation of the linear inequality, which
reduces the number of constraints, yet guarantees reachset
conformance for £* — oo. This is achieved by making the
estimated states of the plant Z(™) conformant to the reachable
set of the plant states. As the following proof will show, this
reduces (12b) to a simple inclusion check for W and V.

Corollary 1. Let us consider sequential test cases. Then, a
linear system is reachset conformant for k* — oo, if

U @mnyew, (20)
me{l..M}
U @] - ca™o] - pa™)y cv,  @n
me{l..M}
where
k] = 2 k] - 7™ [K] 22)

is the deviation from the nominal state: 7™ [0] = ZU™[0] and
#™ (1] = AZ™[0] + Bu™]0].

Proof. We first rewrite the original problem before we perform
the actual proof. Let us define a set R, , as the reachable set
of states of Z,, such that

Roalk+1] = AR, o[K] ®W, Rual0] = Z,[0] = 0. (23)
The reachable output in (15) can thus be rewritten as
Rulk] = CRuu[k] @V,

and the definition of reachset conformance in (16) can be
rewritten as

Vk € No : ( {CE (K] + v[k]} € CRaalk] @ V. (24)

We can derive reachset conformance by proving that the
summands of (24) are conformant. Since (21) is given,

Yok cv (25)

for any k. Next, we show Vk : czi™ [k] € CRyqlk]. Here,
we prove

(k] € Ryalk], k— oo (26)

by induction, when (20) is given. Using u(™+*)[0] = u(™)[k]
from Def. 4, we derive
R ) — 2™ [k + 1)
= AZ (0] + Bu™tR)[0] — Az™ k] — Bu™[k]
= A K] - 2K
= AZM[k].

@7

Since (20) is given, the base case for k£ = 1 holds:

Vm s (1] € AR,..[0] @ W = X,[1],
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l Initial test data

Unified controller synthesis
and identification (11)

l New controller

g

New test data

. . No
Stop iterations?

Yes

Only re-identify
Cw, v, dw, v

!

Fig. 2. Iterative procedure for simultaneous reachability-based identification
and control synthesis.

because X, [0] = 0. Now we apply the induction step k + 1:

[k +1] D gm o]

a

— &Mk 4 1)
— &Mk 4 1)

(20)
D AFm (k] + FMHO[]E AT (K] @ W
induction hypothesis
- @3)

ARy o[k & W = Ry ok + 1.
O

Remark 1. The H-representation of VW and V can also be
used to formulate the constraints in the corollary as linear
inequalities. The proof is similar to Theorem 1.

Remark 2. Using Corollary 1 to identify the disturbances
is generally more conservative than using Theorem 1: if the
column rank of C'is not full, then checking X, € Ry, q is more
strict than checking ¥, € Rq = CRy o ®V because CR, 4 is
a projected set. Another explanation is that the conformance
of states constitutes a simulation relation [4, Sec. 3.3], which
entails the conformance of outputs.

Remark 3. In practice, a threshold exists where any larger
k* does not affect the results of Theorem 1 anymore. This
threshold can be found by testing the synthesis with increasing
k*. For Corollary 1, this step is not required.

C. Iterative synthesis

As has been demonstrated in [60], the error of the nominal
plant model can change depending on the chosen controller
parameters, e.g., our nominal model does not consider flexible
elements, which could lead to vibrations when controller
parameters are ill-chosen. Since we use W, and V), to enclose
the model errors, these sets, therefore, could also change
depending on the controller parameters.

When we solve (12), a new set of controller parameters are
proposed. We, therefore, need an iterative approach (see Fig.
2) that adjusts the sets WV, and V,, based on re-testing the real
robot, which in turn influences the controller synthesis again.
Similar to previous concepts in identification for control [47],
we propose the following iterations:

7
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Fig. 3. The testbed consists of a Schunk LWA-4P 6-DOF robot manipulator
and a controller running on Simulink Real-Time.

1) Given an initial set of test data obtained using an initial
controller, we compute the linear constraint using The-
orem 1 and solve (12a)—(12c) to synthesize an optimal
controller.

Using the new controller, we repeat the tests on the real
robot and obtain a new set of test data.

Repeat step 1 with the new data to synthesize a new
controller. If no further iteration is desired, then we
perform a re-identification of the disturbances only, i.e.,
solving (12a)—(12c) without changing the controller, to
obtain the final result.

2

~

3

~

D. Computational aspects

The optimization problem in (12) is posed as a nonlinear
program with a nonlinear cost function (12a). If a solution
exists, we are able to check reachset conformance (12b) and
satisfy input constraints (12c¢). However, we cannot guarantee
convergence to a globally optimal solution; we can only expect
to obtain a local optimum. Nevertheless, practical tuning rules
can be helpful in improving convergence, e.g., consider a static
feedback controller [6, eq. 8.58] that we will consider in Sec.
IV: u, = g + kp(ga — q) + ka(da — ¢). By replacing the
parameters k, = w? and k; = 2w with the natural frequency
w and damping ratio ¢, the convergence improved. Such tuning
rules were initially developed for manual tuning to converge
faster to an optimal solution and can obviously also serve as
hints to improve convergence for our automatic approach.

We cannot provide concrete complexity bounds for nonlin-
ear programming since no bounds exist for them. Neverthe-
less, let us give an idea of the complexity of the different
evaluations. The cost (12a) and the constraint function (12c)
mainly involve computing reachable sets and some algebraic
operations on the resulting zonotopes, which together have a
complexity of O(n?) [75], where n is the number of states.
The conformance constraints in (12b) can be efficiently evalu-
ated since they are linear inequalities. Checking the constraint
Ru € U, in (12¢) requires only checking if a zonotope is
inside a polytope, which can also be efficiently computed [75,
Lemma 2].

IV. EXPERIMENTS ON A 6-AXIS ROBOT MANIPULATOR

In this section, we show the results of applying our com-
bined controller synthesis and reachset-conformant identifi-
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TABLE I
DERIVING U;, FROM SPECIFIED ROBOT LIMITS USING (13)

Axis Tmax  Qmax é’max Uy, satisfying (13)
1 160 Nm  140° 0.7 rad/s [—26, 26] rad/s>
2 160 Nm  45° 0.7 rad/s [—26, 26] rad/s?
3 160 Nm  100° 0.7 rad/s [—26, 26] rad/s>
4 160 Nm  140° 0.7 radss [—26,26] rad/s?
5 40Nm  80° 0.7rads [—100,100] rad/s?
6 40 Nm  140° 0.7 rad/s  [—100,100] rad/s?

cation to a real 6-axis robot manipulator (see Fig. 3). In
the first experiment in Sec. IV-A, we work out the benefits
of using the combined approach in comparison to separate
identification and synthesis. In the second experiment in Sec.
IV-B, we compare our method against the linear-quadratic-
Gaussian control (LQG). In the third experiment in Sec. IV-C,
we demonstrate how our method makes it possible to compare
the guarantees of different controllers.

The data for testing reachset conformance were obtained
from the real robot running closed-loop trapezoidal and poly-
nomial trajectories’> with random target positions, velocities,
and accelerations up to Gy € User = [—2,2] rad/s?. The total
duration of the dataset is 33 minutes and 20 seconds. Each
sampling instant is considered a starting point of a new test
case, resulting in 497,880 test cases for each robot joint. Other
test selection methods (e.g., [4], [76]) can be used to find test
cases that explore edge scenarios more effectively; however,
a basic approach—such as random testing—may already be
sufficient. An inherent problem with testing will always be that
there are cases that are not covered by the tested trajectories.
In addition, changes to the robot dynamics can happen that are
also not covered by the test cases. We propose to implement
(12b) as an online conformance monitor that detects non-
conformant measurements, transitions the system to a safe
stop, and repeats identification for this new test case. If the
resulting new disturbance violates the input constraint in (12c),
the controller synthesis needs to be repeated.

The time horizon for reachset conformance has been se-
lected to be k* = 125. At a sampling time At = 0.004 s, this
amounts to 0.5 seconds. Because y,, is one-dimensional, this
amounts to 252 conformance constraints (two half-spaces per
time step, including & = 0). To check whether a selected U,
satisfies the allowed set of joint torques 7 := [~Tiax, Tnax)»
we set Q = [*qamaxyljmax] and dQ = [7(jmaxa q’max]
and evaluate (13) using tenth-order Taylor models [71]. The
values can be seen in Table I. To avoid the wrapping effect,
which accumulates approximation errors, we split Q into four
intervals and evaluate (13) for each interval combination.

A. Combined vs. separate identification and synthesis

In the first experiment, we compare our combined approach
against a separate approach, where a reachset-conformant
model is identified before the controller synthesis. The

2A video showing the initial tests, and the code for reproducing all
experiments are provided within the supplementary materials.
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dd

qa high-gain

observer

ij(l

Fig. 4. The control loop considered in Sec. IV-A tracks the reference gy =
[qd, ga] and has an input feedforward ug = G4. A high-gain observer [77] is
used to observe the position ¢ and velocity ¢, which are used in the feedback
control.

TABLE 11
OPTIMALLY SYNTHESIZED STATIC FEEDBACK (w, () AND
IDENTIFIED MODEL UNCERTAINTIES (a1, w2, Qv,1)

Axis  ||Re| w ¢ aw,1  ow,2 ay, 1
1 0.62 2440 0.96 0.0348 3.59 3.49-107°
2 0.70  24.39 0.96 0.0442 3.82 3.49-.107°
3 0.58 23.06 0.91 0.0381 2.93 3.49-107°
4 0.58 23.81 0.96 0.0363 3.00 3.49-107°
5 0.91 24.71 1.00 0.0142 7.72  3.49-107°
6 2.39  25.23 1.00 0.0000 23.28 2.80-107°

controller-observer structure for this experiment is depicted
in Fig. 4 and is chosen as follows: a high—gain observer [77]
uses the plant output 7, to estimate ¢ and ¢:

q| _[—m/e 1] [d L[

(j *hz/EQ 0 (j h2/€2 Y
where hy = 15,he = 30, and ¢ := 0.01 are the gains. To
discretize the observer, we use the bilinear transformation

discussed in [78]. As the controller, we consider a static
feedback one [6, eq. 8.58]:

(28)

up = Ga + w?(qa — §) + 2w (da — q), (29)

where w and ( are the parameters to be optimized. For the
combined approach, we set §’ = [w,(,aw, 1, aw, 2, av,]T
and solve (12) for two iterations. The final result can be seen in
Tab. II, and we plot R, and R,, for the first robot axis in Fig. 5.
Our combined approach returned feasible solutions for all six
axes. The uncertainties for axes 5 and 6 are larger than others,
mainly due to the inaccuracy of the feedback linearization
for these axes. As Fig. 5 shows, our reachable sets correctly
predict the real tracking errors and the real inputs.

For the separate approach, we first identify a reachset-
conformant model by solving an optimization problem, where
[IWp |l +1|Vpl| is set as the cost function and (12b) is set as the
constraint function, and aw, 1, aw, 2, ay, are the parameters.
For the subsequent controller synthesis, we set (12a) as the
cost, (12c) as the constraint, and w, { as the parameters. The
plots in Fig. 6 show that the separate approach leads to a
significantly larger reachable set R., although the identified
values aw,1 = 0.75 and aw,2 = 0 for axis 1 lead to
a smaller value of |[WW,| than the values identified in the
combined approach ayw,; = 0.0348 and aw,2 = 3.59
for axis 1. This is because the combined approach optimally
balances the disturbance parameters to ultimately converge to
the smallest reachable tracking error.
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0.4 -

Velocity error [rad/s]
-

. . . . \
-0.01 0 0.01 0.02
Position error [rad]

*
Ru

-0.4 L
-0.03 -0.02

.
-20 -10 0 10 20
Input u [rad/s?

Fig. 5. After solving (12), both the computed reachable tracking error Re
and the computed reachable input R, enclose their measured counterparts,
while R, satisfies the input constraint.

B. Our method vs. LQG control

The linear-quadratic-Gaussian control (LQG) [79] is an
optimization-based design approach, where the full state is
estimated via a Kalman filter and state-feedback is generated,
such that a cost function with weighting factors () and r is
minimized:

[e o]

J = (ekITQek] + up[Klruy [K]), (30)

=0

where € = &, — Zyer is the state tracking error, and Zyef[k] =
[qalk — 1], qa[k], da[k], Ga[k — 1]]T is the state reference. The
Kalman filter assumes uncertainties in the model using zero-
mean Gaussian noises with covariance matrices Sy for the
process and Sy for the measurement, respectively. Here, we
set Sy = (1/3 . GY]/I/I)CYGV;/F)2 and Sy = (1/3 -GVPGQ))Q,
which assumes that the zero-centered sets WV, and V, represent
three times the standard deviation. We apply the 1gg function
from MATLAB and use our model from (11) for the design.

LQG relies on the user to set the weights in ) and
r. This is a difficult task, especially when there are input
constraints to consider because, normally, the only way to
determine whether a controller is feasible and desirable is
to test it on the real system. Our paper realizes a different
solution: using the reachset-conformant model from Tab. II,
we can evaluate whether a possible weight combination may
lead to an infeasible controller. To demonstrate this, we set
@ = diag(1000,1000,0.01,7) and compute the reachable
sets by varying 7. For axis 1, we display the results in Tab.
IIT and the sets R. are also visualized in Fig. 7, including
the reachable set obtained from Sec. IV-A using combined
synthesis.

The results show that if a high r is set, then a weak
controller is obtained, resulting in a large tracking error, but we
receive the smallest R, interval. The more r is decreased, the
more the tracking error improves. However, at r near zero,

79
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Fig. 6. Comparing R and R, for the separate approach against the combined approach for identification and synthesis. A separate identification may lead
to suboptimal W), and V,, such that the closed-loop reachable sets become unnecessarily large. In the separate approach, the controller synthesis converged
to smaller gains, e.g., w = 5.9 for axis 1 to satisfy the input constraint; compared to the combined approach, where for axis 1, w = 24.4.

TABLE III
COMPARISON: LQG OPTIMIZATION WITH @ = diag(1000, 1000, 0.01)
VS. OUR CONTROLLER SYNTHESIS METHOD FOR ROBOT AXIS 1

R |[Rell Ru

10-7 0.831 [=75.37,75.70]

our method 0.625 [-23.24,23.57]
1074 0762 [—24.40,24.72]

0.01 1.091 [-17.12,17.45]

LQG (R=101%)

A\‘ LQG (R=10"7)

I

|

‘ our method
. ‘\. |

A

0 0.05
Position error [rad]

LQG (R = 0.01)

-0.5 .
-0.1 -0.05

0.1

Fig. 7. Comparison of the reachable tracking error R for controllers obtained
with LQG optimization (green) and our method from Sec. IV-A (blue).

the input constraints are violated. Instead, our optimization-
based approach not only satisfies the input constraint but can
use any controller and observer, while LQG is restricted to a
state feedback design. As we described earlier, LQG requires
test iterations to validate different combinations of possible
Q@ and r and their resulting closed-loop performance, while
our method requires test iterations only to make sure that
the model remains conformant. As Sec. IV-A showed, two
iterations can be sufficient here.

C. Comparing static feedback vs. disturbance-compensated
feedback

In the third experiment, we will demonstrate that our
method is generalizable to other controllers besides the one

80

qd l?l Up Yp g
Gd extended-state

.. observer i
Ga ] 4

Fig. 8. The control loop considered in Sec. IV-C tracks the reference gy =
[qd, da] and has an input feedforward ug = 4. An extended state observer
[80] is used to observe the position g, velocity ¢, and the disturbance d, which
are used in the feedback control.

specified in the previous two experiments. In the following,
we synthesize an observer-based feedback control law with
disturbance compensation

Up = Ga+wda — §) + 2wlga— @) —d, (3D

where ¢, ﬁ, and d are estimated by an extended-state observer
(ESO) [80]:

il o 1 0][q] [0 I/e
il =10 0 1| |d|+ 1] u+ |b/e| (@-3d). 32
il oo ofld o I/

We compare this new controller against the one from the
previous experiments. For the sake of brevity, we set w
20 and ¢ = 1 and only synthesize h1, hy for the high-gain
observer and [y, lo, 3 for the extended-state observer, as well
as the model uncertainties aw, 1, aw, 2, v, 1, respectively.
We perform two iterations for each method: the results for the
respective optimal parameters are shown in Tab. IV and the
reachable set, as well as the measured tracking errors from the
real robot, are shown in Fig. 9.

As the plotted reachable tracking errors show, the extended-
state observers help to significantly improve the position error
of the real robot, while the velocity error stays similar to
the high-gain observer. As can be seen in the plots, the
guarantees for the tracking error reflect a similar behavior.
Axis 5 and 6 of our robot perform badly mainly due to
insufficient feedback linearization. Nevertheless, the identified
model remains conformant, and the reachable tracking error
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is correctly predicted. What is also noticeable is that the
identified uncertain parameters « differ depending on the
controller, e.g., for axis 6, aw,1 is larger for HG, while
aw,,2 is larger for ESO. One reason is that our controller
synthesis chooses the optimal value that minimizes ||R.||.
Another reason is that the disturbance also depends on the
controller since different controllers can suppress disturbances
differently, e.g., the ayy, 2 are larger when using ESO, but the
feedback law in (31) is able to compensate for it, resulting in
a smaller positional tracking error.

We summarize the experimental results of our combined
controller synthesis and reachset-conformant identification.
We demonstrated in Sec. IV-A that a combined approach
is necessary to avoid conservative results. In Sec. IV-B,
we showed that LQG methods require careful balancing of
the tracking error and the input effort, while our approach
automatically satisfies the input constraints. In Sec. IV-C, we
showed that our approach could be used for any controller
structure as long as the closed-loop dynamics are linear. The
experiment has also shown that although the observers do not
consider the full dynamics of the plant, it is still possible to
derive guarantees, and the soundness of our approach is not
affected. Rather, we have shown for our robot that an observer
with a better model may lead to a better performance of the
closed-loop system.

V. CONCLUSION

In this paper, we have shown that our method can be used
to optimally design a controller and to derive guarantees for
the input constraint and tracking error. In contrast to previous
work, these guarantees are also applicable to real robotic
systems. Using our method, we can now formally analyze any
linear robotic controller for their safety.

The formal relation between the robot model and the
real system is established by identifying reachset-conformant
model parameters. The controller synthesis and identification
are unified into a single optimization, which means that the
model and controller are both optimized for the smallest
reachable tracking error. Our experiments have shown that
the computed reachable sets always successfully enclose all
behaviors of the real robot system, however large the distur-
bance in the system is. Our approach does not require tuning
of hyper-parameters, in contrast to LQR. We have shown the
effectiveness of our novel approach to synthesizing different
feedback laws.

Our method can be applied to any robot in practice that
uses feedback linearization, linear observers, and feedback
controllers. In the future, we would like to extend this ap-
proach to nonlinear plant models and controllers.

APPENDIX A
FULL ROBOT MODEL INCLUDING DISTURBANCE

To model the disturbance of the system, we make the
following assumptions: 1) the velocity is disturbed by an
interval [—ay, 1, aw, 1], 2) the acceleration is disturbed by
an interval [—ayy, 2, aw, 2], 3) the measurement is disturbed
by an interval [—ay,,ay,], and 4) we consider an additional

A.5 Guarantees for Real Robotic Systems

disturbance state, such that § = u, + d and d = 0. The
full model of the plant for each robot joint, including the
uncertainties, is described by the following linear system:

01 0 O 0 0

0 1 At At?/2 At?)2 0
Fk+1]=10 0 1 At At | Fplk] + |0 uplk]
00 O 1 0 0
0 0 0 0 0 1
+'ll_jp[k']7

yp[k}:[l 000 O]@?[H"‘”ﬁ%]v

where 7, (k] = [q[k — 1], q[k], 4[K], d[k], up [k — 1]]T, i [k] €
W,, and 0, [k] € Vp:

0 0 0
o [At At?)2 "
W,=110],]0 At {W] V= (0,av,),
P 0 0 0 O‘Wp,2 p ( p)
0 0 0

where aw, 1, aw, 2, and ay, are the scaling factors of the
zonotopes W, and V,. The generator matrix of W, is a
discretization similar to the plant linear dynamics.

APPENDIX B
ANALYSIS OF THE REFERENCE ERROR

The vector icl_yref is computed using (7) considering ¥ and
ug and considering w, = 0, vp = 0. The result is a trajectory
that tracks the reference with a reference error, which we
define as ¥, ref and ue g such that

.77ref + ?je,ref
ug + Ue,fr } ’
In cases where ug is the output of the inverted plant model
[81] given y.o¢ as an input, there will be no reference error.
A simple example is a double-integrator model § = wu,,
where the output is 4, = [g,¢]7. Applying w, = ¢4 would
exactly produce the reference ¥, = [qq, 4] Without any error.
In any other case, the tracking error increases by ¥ o and
thus requires an additional input ueg = —K¥erer, Where
K = [w?,2(w], to compensate for the additional tracking error.
In some cases, the additional input could lead to a violation
of the input constraint: ue g ® Ry, ¢ Up. In the following
paragraphs, we present three different ways to deal with the
reference error to arrive at an actual reachable tracking error
‘R and reachable input R}:

1) Tracking i ver instead of ijrer: Let us rewrite thc control
law in (29), considering et = [qa, Ga)”> ¥ = [¢,4]T, K =
[w?,2¢w], and . € R, such that

Yelwot = { (33)

up = g + K (Yret — Yer)
ug + K(grcf - (gl'cf + go,rcf + gﬁ))
= ug — K(:’je,ref + :‘7&)7 = ug + Ue, fFf — K?je

We slightly modify the static-feedback control law to track
Yel,ref instead of fer such that

U; = ug + K(gcl,ref - :‘701)
=ug + K(gref + ge,ref - (gref + ge,ref + ge))
=ug — K.

81
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TABLE IV
COMPARING SYNTHESIZED HIGH-GAIN OBSERVERS WITH SYNTHESIZED EXTENDED-STATE OBSERVERS

High-Gain Observer
Axis

Extended-State Observer

IRe|l h hy  aw,1  aw,» av, 1 IRell h lo ls  aw,1  aw,2 ay, 1
1 0373 1350 416.1 0.0417 0976 8.73-10~© 0.535 57.1 103.3  18.1 0.0234  3.587 3.49-10—°
2 0325 1351 4164 0.0397 0.652 8.73-106 0.662 935 182.0 37.9 0.0362 4.110 3.49-10°
3 0.409 1350 416.1 0.0539 0.679 8.73-106 0.534 75.6 113.7 165 0.0358  2.951 3.49-105
4 0428 1350 4161 0.0540 0.881 8.73-106 0.647 80.5 1534  30.1 0.0283  4.415 3.49.105
5 0.542 103.6 517.8 0.0344  2.780 8.73-1076 1.573 37.6 490.0 210.6 0.0055 17.936 8.73-10~6
6 1.297 1055 6024 0.0309 9.379 8.73-1076 4582 23.1 6389 338.7 0 55742 8.73-1076
1 —— High-Gain Observer 1 1
e Extended-State Observer
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Fig. 9. Comparison of the guaranteed tracking error R, for controllers using a high-gain observer (blue) and an extended-state observer (red).

By definition, u g vanishes using the new control law, and
the input constraint cannot be violated anymore. Since no
uncertainty is involved in obtaining i ef and e rer, they
can be exactly precomputed before executing a trajectory. The
actual reachable sets are then defined as

R: = Zje,ref D Reu
R :=TRy.

The advantage is that the input constraint is guaranteed inde-
pendently of the desired trajectory. The disadvantage, however,
is that we deviate from the original control law, and that R,
is relative to % rof instead of fres.

2) Precomputing the reference error: As no uncertainty is
involved, ¥, ref and ue g can be precomputed before executing
a trajectory. We define the actual reference-dependent sets as

Rz = gc,rcf 52 Rm
Ry = Ue 5 D Ry

The disadvantage of this approach is, however, that the input
constraint cannot be guaranteed at all times; R}, C U, must
be checked before every execution of a trajectory on the robot.
We only recommend this approach if the controller is designed
for a single reference trajectory.

3) Solve (12) for a predefined set of references: In this
approach, we predefine a large set of reference trajectories
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before solving (12), e.g., we can use the same trajectories
from the test cases used to identify the disturbances. We then
compute two sets Ve rof and U g, that enclose all ¥ ref and
ue ¢ for all references. The actual reachable sets are then
defined as

R: = ye,ref 57 Re:
R;: = Ue it @R'ru

and replace R. and R, when solving (12). The advantage
is that the input constraint is guaranteed for all consid-
ered references, and also all non-considered references where
ug € U g, while the effort for solving (12) is only slightly
increased. We used this method in our experiments in Sec.
IV. We recommend this approach if the controller is designed
for unknown references, but when the method for reference
generation stays similar, e.g., always ug[k] = ¢a[k], or
ug[k] = Gda[k + 2] to consider delays in the plant. However,
during pre-computation, sufficiently many reference trajecto-
ries are necessary so that the largest possible U ¢ can be
found.

REFERENCES

[1] C. Abdallah, D. M. Dawson, P. Dorato, and M. Jamshidi, “Survey of
robust control for rigid robots,” IEEE Control Systems Magazine, vol. 11,
no. 2, pp. 24-30, 1991.



TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, AUGUST XXXX

[2]

[3]

[4

[5]

[6

[7

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. G. Sage, M. F. De Mathelin, and E. Ostertag, “Robust control of
robot manipulators: A survey,” Int. Journal of Control, vol. 72, no. 16,
pp- 1498-1522, 1999.

M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques
for reachability analysis,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, no. 1, pp. 369-395, 2021.

H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff, “Model Con-
formance for Cyber-Physical Systems,” ACM Trans. on Cyber-Physical
Systems, vol. 3, no. 3, pp. 1-26, 2019.

Z. Qu, J. F. Dorsey, X. Zhang, and D. M. Dawson, “Robust control
of robots by the computed torque law,” Systems and Control Letters,
vol. 16, no. 1, pp. 25-32, 1991.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control. London, UK: Springer London, 2009.
S. Zenieh and M. Corless, “Simple Robust r-a Tracking Controllers
for Uncertain Fully-Actuated Mechanical Systems,” Journal of Dynamic
Systems, Measurement, and Control, vol. 119, no. 4, pp. 821-825, 1997.
M. J. Kim, Y. Choi, and W. K. Chung, “Bringing nonlinear H-infinity
optimality to robot controllers,” IEEE Trans. on Robotics, vol. 31, no. 3,
pp. 682-698, 2015.

M. Makarov, M. Grossard, P. Rodriguez-Ayerbe, and D. Dumur, “Model-
ing and Preview H-infinity Control Design for Motion Control of Elastic-
Joint Robots with Uncertainties,” IEEE Trans. on Industrial Electronics,
vol. 63, no. 10, pp. 6429-6438, 2016.

Feng Lin and R. Brandt, “An optimal control approach to robust control
of robot manipulators,” IEEE Trans. on Robotics and Automation,
vol. 14, no. 1, pp. 69-77, 1998.

D. Q. Mayne, M. M. Seron, and S. V. Rakovi¢, “Robust model predic-
tive control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, no. 2, pp. 219-224, 2005.

W. Langson, I. Chryssochoos, S. Rakovi¢, and D. Mayne, “Robust model
predictive control using tubes,” Automatica, vol. 40, no. 1, pp. 125-133,
2004.

S. V. Rakovi¢, B. Kouvaritakis, M. Cannon, C. Panos, and R. Find-
eisen, “Parameterized tube model predictive control,” IEEE Trans. on
Automatic Control, vol. 57, no. 11, pp. 2746-2761, 2012.

S. V. Rakovi¢, B. Kouvaritakis, R. Findeisen, and M. Cannon, “Homo-
thetic tube model predictive control,” Automatica, vol. 48, no. 8, pp.
1631-1638, 2012.

M. Rubagotti, D. M. Raimondo, A. Ferrara, and L. Magni, “Robust
model predictive control with integral sliding mode in continuous-time
sampled-data nonlinear systems,” IEEE Trans. on Automatic Control,
vol. 56, no. 3, pp. 556-570, 2011.

L. Magni, G. De Nicolao, R. Scattolini, and F. Allgower, “Robust model
predictive control for nonlinear discrete-time systems,” Int. Journal of
Robust and Nonlinear Control, vol. 13, no. 3-4, pp. 229-246, 2003.
D. Q. Mayne, E. C. Kerrigan, E. J. van Wyk, and P. Falugi, “Tube-based
robust nonlinear model predictive control,” Int. Journal of Robust and
Nonlinear Control, vol. 21, no. 11, pp. 1341-1353, 2011.

S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust online
motion planning via contraction theory and convex optimization,” in
Proc. IEEE Int. Conf. on Robotics and Automation, 2017, pp. 5883—
5890.

J. Wolff and M. Buss, “Invariance control design for constrained
nonlinear systems,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 37—
42, 2005, 16th IFAC World Congress.

M. Kimmel and S. Hirche, “Invariance control with chattering reduc-
tion,” in Proc. IEEE Conf. on Decision and Control, 2014, pp. 68-74.
A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” /EEE
Trans. on Automatic Control, vol. 62, no. 8, pp. 3861-3876, 2016.

P. Wieland and F. Allgéwer, “Constructive safety using control barrier
functions,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 462-467,
2007.

H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for Robots:
Guarantees and Feedback for Robot Behavior,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 211-236,
2018.

M. Kloetzer and C. Belta, “A fully automated framework for control
of linear systems from temporal logic specifications,” IEEE Trans. on
Automatic Control, vol. 53, no. 1, pp. 287-297, 2008.

M. Zamani, G. Pola, M. Mazo Jr., and P. Tabuada, “Symbolic models for
nonlinear control systems without stability assumptions,” IEEE Trans.
on Automatic Control, vol. 57, no. 7, pp. 1804-1809, 2012.

J. A. DeCastro and H. Kress-Gazit, “Synthesis of nonlinear continuous
controllers for verifiably correct high-level, reactive behaviors,” The Int.
Journal of Robotics Research, vol. 34, no. 3, pp. 378-394, 2015.

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

A.5 Guarantees for Real Robotic Systems

G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp- 343-352, 2009.

A. Girard, “Controller synthesis for safety and reachability via approx-
imate bisimulation,” Automatica, vol. 48, no. 5, pp. 947-953, 2012.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Trans. on Robotics, vol. 25,
no. 6, pp. 1370-1381, 2009.

J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans. on
Automatic Control, vol. 58, no. 7, pp. 1771-1785, 2013.

J. Liu and N. Ozay, “Finite abstractions with robustness margins for
temporal logic-based control synthesis,” Nonlinear Analysis: Hybrid
Systems, vol. 22, pp. 1-15, 2016.

G. Pola, A. Girard, and P. Tabuada, “Symbolic models for nonlinear
control systems using approximate bisimulation,” in Proc. IEEE Conf.
on Decision and Control, 2007, pp. 4656-4661.

V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in Proc.
ACM Int. Conf. on Hybrid Systems: Computation and Control, 2015,
pp. 239-248.

M. Rungger, M. Mazo Jr., and P. Tabuada, “Specification-guided con-
troller synthesis for linear systems and safe linear-time temporal logic,”
in Proc. ACM Int. Conf. on Hybrid Systems: Computation and Control,
2013, pp. 333-342.

M. Zamani, A. Abate, and A. Girard, “Symbolic models for stochastic
switched systems: A discretization and a discretization-free approach,”
Automatica, vol. 55, pp. 183-196, 2015.

E. M. Wolff and R. M. Murray, “Optimal Control of Nonlinear Systems
with Temporal Logic Specifications,” in Robotics Research: 16th Int.
Symposium ISRR. Cham: Springer Int. Publishing, 2016, pp. 21-37.
J. A. DeCastro and H. Kress-Gazit, “Nonlinear Controller Synthesis and
Automatic Workspace Partitioning for Reactive High-Level Behaviors,”
in Proc. ACM Int. Conf. on Hybrid Systems: Computation and Control,
2016, pp. 225-234.

1. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia,
“Automated composition of motion primitives for multi-robot systems
from safe LTL specifications,” in Proc. Int. Conf. on Intelligent Robots
and Systems, 2014, pp. 1525-1532.

R. G. Sanfelice and E. Frazzoli, “A hybrid control framework for
robust maneuver-based motion planning,” in Proc. American Control
Conference, 2008, pp. 2254-2259.

R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
trees: Feedback motion planning via sums-of-squares verification,” The
Int. Journal of Robotics Research, vol. 29, no. 8, pp. 1038-1052, 2010.
A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” The Int. Journal of Robotics Research,
vol. 36, no. 8, pp. 947-982, 2017.

B. Schiirmann and M. Althoff, “Convex interpolation control with formal
guarantees for disturbed and constrained nonlinear systems,” in Proc.
ACM Int. Conf. on Hybrid Systems: Computation and Control, 2017,
pp. 121-130.

——, “Guaranteeing constraints of disturbed nonlinear systems using
set-based optimal control in generator space,” in Proc. 20th IFAC World
Congress, 2017, pp. 12020-12027.

——, “Optimal control of sets of solutions to formally guarantee
constraints of disturbed linear systems,” in Proc. American Control
Conference, 2017, pp. 2522-2529.

D. Calzolari, A. M. Giordano, and A. Albu-Schaffer, “Error Bounds for
PD-Controlled Mechanical Systems under Bounded Disturbances Using
Interval Arithmetic,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 1231-1238, 2020.

M. Chen, S. L. Herbert, H. Hu, Y. Pu, J. F. Fisac, S. Bansal, S. Han, and
C. J. Tomlin, “FaSTrack:A Modular Framework for Real-Time Motion
Planning and Guaranteed Safe Tracking,” IEEE Trans. on Automatic
Control, vol. 66, no. 12, pp. 5861-5876, 2021.

P. M. Van Den Hof and R. J. Schrama, “Identification and control -
Closed-loop issues,” Automatica, vol. 31, no. 12, pp. 1751-1770, 1995.
S. G. Douma and P. M. Van Den Hof, “Relations between uncertainty
structures in identification for robust control,” Automatica, vol. 41, no. 3,
pp. 439457, 2005.

L. Ljung, System Identification. Theory for the User, 2nd ed.
Jersey: Prentice Hall, 1999.

J. Santolaria and M. Ginés, “Uncertainty estimation in robot kinematic
calibration,” Robotics and Computer-Integrated Manufacturing, vol. 29,
no. 2, pp. 370-384, 2013.

New

83



A Reproduction of Core Publications

TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, AUGUST XXXX

[51]
[52]

[53]

[54]
[55]
[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]

[71]

[72]
[73]
[74]

[75]

84

Y. Chen, H. Peng, J. Grizzle, and N. Ozay, “Data-Driven Computation of
Minimal Robust Control Invariant Set,” in Proc. IEEE Conf. on Decision
and Control, 2019, pp. 4052-4058.

S. Sadraddini and C. Belta, “Formal Guarantees in Data-Driven Model
Identification and Control Synthesis,” in Proc. ACM Int. Conf. on Hybrid
Systems: Computation and Control, 2018, pp. 147-156.

B. Schiirmann, D. HeB, J. Eilbrecht, O. Stursberg, F. Koster, and
M. Althoff, “Ensuring drivability of planned motions using formal
methods,” in 2017 IEEE Int. Conf. on Intelligent Transportation Systems,
2017, pp. 1-8.

M. Althoff and J. M. Dolan, “Reachability computation of low-order
models for the safety verification of high-order road vehicle models,” in
American Control Conference, 2012, pp. 3559-3566.

Z. Wang and R. M. Jungers, “Scenario-Based Set Invariance Verification
for Black-Box Nonlinear Systems,” IEEE Control Systems Letters, vol. 5,
no. 1, pp. 193-198, 2021.

S. B. Liu and M. Althoff, “Reachset Conformance of Forward Dynamic
Models for the Formal Analysis of Robots,” in Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems. IEEE, 2018, pp. 370-376.

A. Giusti, S. B. Liu, and M. Althoff, “Interval-arithmetic-based robust
control of fully actuated mechanical systems,” IEEE Trans. on Control
Systems Technology, vol. 30, no. 4, pp. 1525-1537, 2022.

T. Dang, T. Dreossi, E. Fanchon, O. Maler, C. Piazza, and A. Rocca,
“Set-Based Analysis for Biological Modeling,” in Automated Reasoning
for Systems Biology and Medicine. Springer Int. Publ., 2019, pp. 157—
189.

G. Batt, C. Belta, and R. Weiss, “Model Checking Genetic Regulatory
Networks with Parameter Uncertainty,” in Hybrid Systems: Computation
and Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, vol.
4416 LNCS, pp. 61-75.

R. E. Skelton, “Model error concepts in control design,” Int. Journal of
Control, vol. 49, no. 5, pp. 1725-1753, 1989.

A. Vicino and G. Zappa, “Sequential approximation of feasible parame-
ter sets for identification with set membership uncertainty,” IEEE Trans.
on Automatic Control, vol. 41, no. 6, pp. 774-785, 1996.

M. Milanese and C. Novara, “Set Membership identification of nonlinear
systems,” Automatica, vol. 40, no. 6, pp. 957-975, 2004.

M. Kieffer, E. Walter, and I. Simeonov, “Guaranteed nonlinear param-
eter estimation for continuous-time dynamical models,” Robust Control
Design, vol. 5, pp. 685-690, 2006.

J. Bravo, T. Alamo, and E. Camacho, “Bounded error identification
of systems with time-varying parameters,” IEEE Trans. on Automatic
Control, vol. 51, no. 7, pp. 1144-1150, 2006.

N. Ramdani and P. Poignet, “Robust dynamic experimental identification
of robots with set membership uncertainty,” IEEE/ASME Trans. on
Mechatronics, vol. 10, no. 2, pp. 253-256, 2005.

M. Althoff, O. Stursberg, and M. Buss, “Computing reachable sets
of hybrid systems using a combination of zonotopes and polytopes,”
Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 233-249, 2010.
A. Girard, “Reachability of Uncertain Linear Systems Using Zonotopes,”
in Proc. ACM Int. Conf. on Hybrid Systems: Computation and Control.
Springer, 2005, pp. 291-305.

V. Gassmann and M. Althoff, “Scalable Zonotope-Ellipsoid Conversions
using the Euclidean Zonotope Norm,” in Proc. American Control Con-
ference, 2020, pp. 4715-4721.

S. B. Liu, A. Giusti, and M. Althoff, “Velocity estimation of robot
manipulators: An experimental comparison,” IEEE Open Journal of
Control Systems, pp. 1-12, 2022.

K. Makino and M. Berz, “Taylor models and other validated functional
inclusion methods,” Int. Journal of Pure and Applied Mathematics,
vol. 4, no. 4, pp. 379-456, 2003.

M. Althoff, D. Grebenyuk, and N. Kochdumper, “Implementation of
Taylor models in CORA 2018,” in ARCHIS. 5th Int. Workshop on
Applied Verification of Continuous and Hybrid Systems, ser. EPiC Series
in Computing, vol. 54. EasyChair, 2018, pp. 145-173.

S. B. Liu and M. Althoff, “Online Verification of Impact-Force-Limiting
Control for Physical Human-Robot Interaction,” in Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2021, pp. 777-783.

M. Althoff, “An Introduction to CORA 2015 (Tool Presentation),” in
Proc. Workshop on Applied Verification for Continuous and Hybrid
Systems, 2015, pp. 120-151.

F. Gruber and M. Althoff, “Computing Safe Sets of Linear Sampled-
Data Systems,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 385-390,
2020.

B. Schiirmann and M. Althoff, “Optimizing Sets of Solutions for
Controlling Constrained Nonlinear Systems,” IEEE Trans. on Automatic
Control, vol. 66, no. 3, pp. 981-994, 2021.

[76]

[77]

[78]

[79]

[80]

[81]

J. Deshmukh, M. Horvat, X. Jin, R. Majumdar, and V. S. Prabhu, “Test-
ing Cyber-Physical Systems through Bayesian Optimization,” vol. 16,
no. 5s, pp. 1-18, 2017.

S. Nicosia, A. Tornambe, and P. Valigi, “State estimation in robotic
manipulators: Some experimental results,” Journal of Intelligent &
Robotic Systems, vol. 7, no. 3, pp. 321-351, 1993.

K. Busawon and H. K. Khalil, “Chapter 9: Digital Implementation,” in
High-Gain Observers in Nonlinear Feedback Control. Philadelphia, PA:
Society for Industrial and Applied Mathematics, 2017, pp. 279-311.

J. Doyle and G. Stein, “Multivariable feedback design: Concepts for a
classical/modern synthesis,” IEEE Trans. on Automatic Control, vol. 26,
no. 1, pp. 4-16, 1981.

W. H. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-Observer-Based
Control and Related Methods - An Overview,” IEEE Trans. on Industrial
Electronics, vol. 63, no. 2, pp. 1083-1095, 2016.

P. J. Moylan, “Stable Inversion of Linear Systems,” IEEE Trans. on
Automatic Control, vol. 22, no. 1, pp. 74-78, 1977.

Stefan B. Liu received a B.S. degree in mecha-
tronics, and an M.S. degree in robotics from the
Technical University of Munich (TUM), Germany,
in 2015 and 2017, respectively. He is currently
pursuing a Ph.D. degree at the Cyber-Physical Sys-
tems Group of the TUM Department of Informatics.
His research interest includes formal methods in
robotics, physical human-robot interaction, modeling
and identification, and modular robots.

Bastian Schiirmann received a Bachelor of Sci-
ence in Electrical and Computer Engineering from
Technische Universitit Kaiserslautern, Germany, in
2012; a Master of Science in Electrical Engineering
from the University of California, Los Angeles,
USA, in 2014; a Master of Science in Engineering
Cybernetics from Universitdt Stuttgart, Germany, in
2015; and a Ph.D. in Informatics from Technische
Universitit Miinchen in 2022. In 2018, he was a
visiting student researcher at the California Institute
of Technology. His research focuses on combining

control theory, reachability analysis, and optimization.

Matthias Althoff is an Associate Professor in com-
puter science at the Technical University of Munich,
Germany. He received his Diploma Engineering De-
gree in Mechanical Engineering in 2005 and his
Ph.D. in Electrical Engineering in 2010, both from
the Technical University of Munich, Germany. From
2010 to 2012, he was a postdoctoral researcher at
Carnegie Mellon University, Pittsburgh, USA, and
from 2012 to 2013, he was an assistant professor
at the Ilmenau University of Technology, Germany.
His research interests include formal verification of

continuous and hybrid systems, reachability analysis, planning algorithms,
nonlinear control, robotics, automated vehicles, and power systems.



B Licenses

This chapter contains all explicit licenses for the publications reprinted in Appendix A, as
required by the TUM Graduate School.

85



B Licenses

License for Appendix A.1

Rightslink® by Copyright Clearance Center

CcCC

RightsLink

Reachset Conformance of Forward Dynamic Models for the Formal
Analysis of Robots

QIEEE Conference Proceedings:

Requesting 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

permission )
to reuse Author: Stefan B. Liu
::".'g'g"é""'“ Publisher: IEEE
publication

Date: October 2018

Copyright © 2018, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
|IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.

3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW
© 2024 Copyright - All Rights Reserved |  Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy
| For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at

customercare@copyright.com

https://s100.copyright.com/AppDispatchServlet#formTop

86

(Rome] © @

02.08.24, 22:38

Seite 1von 1



License for Appendix A.2

Rightslink® by Copyright Clearance Center 02.08.24, 22:39

cce (o] © @

RightsLink

Provably safe motion of mobile robots in human environments

QIEEE Conference Proceedings:

2017 IEEE/RS) International Conference on Intelligent Robots and Systems (IROS)

Requesting

permission Author: Stefan B. Liu
to reuse

content from  Publisher: IEEE

an IEEE

publication Date: September 2017

Copyright © 2017, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.

3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW
© 2024 Copyright - All Rights Reserved |  Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy
|  For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at

customercare@copyright.com

https://s100.copyright.com/AppDispatchServlet#formTop Seite 1von 1



B Licenses

License for Appendix A.3

Rightslink® by Copyright Clearance Center

CcCC

RightsLink

Online Verification of Impact-Force-Limiting Control for Physical
Human-Robot Interaction

QIEEE Conference Proceedings:

Requesting 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

permission )
to reuse Author: Stefan B. Liu
::".'g'g"é""'“ Publisher: IEEE
publication

Date: 27 September 2021

Copyright © 2021, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
|IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.

3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW
© 2024 Copyright - All Rights Reserved |  Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy
| For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at

customercare@copyright.com

https://s100.copyright.com/AppDispatchServlet#formTop

88

(Rowme] © @

02.08.24, 22:40

Seite 1von 1



License for Appendix A.4

Deed - Attribution 4.0 International - Creative Commons 02.08.24, 22:42

English e Search Donate

WHO WE ARE WHATWEDO LICENSES AND TOOLS BLOG SUPPORT US

©@@® CCBY 4.0

ATTRIBUTION 4.0
INTERNATIONAL

Deed

Canonical URL : https://creativecommons.org/licenses/by/4.0/

See the legal code

You are free to:

Share — copy and redistribute the material in any
medium or format for any purpose, even
commercially.

Adapt — remix, transform, and build upon the
material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as
you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit,
provide a link to the license, and indicate if changes
were made . You may do so in any reasonable
manner, but not in any way that suggests the licensor
endorses you or your use.

https://creativecommons.org/licenses/by/4.0/ Seite 1von 3

89



Deed - Attribution 4.0 International - Creative Commons 02.08.24, 22:42

No additional restrictions — You may not apply
legal terms or technological measures that legally
restrict others from doing anything the license
permits.

Notices:

You do not have to comply with the license for elements of the
material in the public domain or where your use is permitted by
an applicable exception or limitation .

No warranties are given. The license may not give you all of the
permissions necessary for your intended use. For example,
other rights such as publicity, privacy, or moral rights may limit
how you use the material.

Notice

This deed highlights only some of the key features and terms
of the actual license. It is not a license and has no legal value.
You should carefully review all of the terms and conditions of
the actual license before using the licensed material.

Creative Commons is not a law firm and does not provide
legal services. Distributing, displaying, or linking to this deed
or the license that it summarizes does not create a lawyer-
client or any other relationship.

Creative Commons is the nonprofit behind the open licenses and
other legal tools that allow creators to share their work. Our legal
tools are free to use.

® |earn more about our work

e Learn more about CC Licensing

e Support our work

e Use the license for your own material.
® Licenses List

https://creativecommons.org/licenses/by/4.0/ Seite 2 von 3



Deed - Attribution 4.0 International - Creative Commons 02.08.24, 22:42

e Public Domain List

Footnotes

appropriate credit — If supplied, you must provide the name of the creator and
attribution parties, a copyright notice, a license notice, a disclaimer notice, and a link to the
material. CC licenses prior to Version 4.0 also require you to provide the title of the material if
supplied, and may have other slight differences.
o More info

indicate if changes were made — In 4.0, you must indicate if you modified the
material and retain an indication of previous modifications. In 3.0 and earlier license
versions, the indication of changes is only required if you create a derivative.
o Marking guide
o More info

technological measures — The license prohibits application of effective
technological measures, defined with reference to Article 11 of the WIPO Copyright Treaty.
o More info

exception or limitation — The rights of users under exceptions and limitations,
such as fair use and fair dealing, are not affected by the CC licenses.
o Moreinfo

publicity, privacy, or moral rights — You may need to get additional
permissions before using the material as you intend.
o More info

S DG mated DONATE
[areativel@ommonsAttibutiongiolintarnationalllicansel [Fonit NOW

https://creativecommons.org/licenses/by/4.0/ Seite 3 von 3



B Licenses

License for Appendix A.5

Rightslink® by Copyright Clearance Center

CcCC

RightsLink

Guarantees for Real Robotic Systems: Unifying Formal Controller
Synthesis and Reachset-Conformant Identification

QIEEE Author: Stefan B. Liu

Requesting

permission Publication: IEEE Transactions on Robotics
to reuse

content from Publisher: IEEE

an IEEE

publication Date: October 2023

Copyright © 2023, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
|IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]

2) Only the accepted version of an |IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.

3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW
© 2024 Copyright - All Rights Reserved |  Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy
|  For California Residents | Terms and ConditionsComments? We would like to hear from you. E-mail us at

customercare@copyright.com

https://s100.copyright.com/AppDispatchServlet#formTop

92

(Rowme] © @

02.08.24, 22:41

Seite 1von 1



C

Theses of Supervised Students

Lastly, we acknowledge the students [81-90], who have completed their Bachelor’s Thesis or
Master’s Thesis at the Technical University of Munich under the supervision of the author of
this dissertation and have thereby contributed to this research:

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]

[90]

M. Riedel, “Smart Modules for Modular and Reconfigurable Robots,” Master’s Thesis,
Technical University of Munich, 2019.

G. Michels, “Conformance Testing of a Robot Manipulator with Safety Guarantees,”
Master’s Thesis, Technical University of Munich, 2019.

B. Gaida, “A Robotics Software Framework for R&D,” Bachelor’s Thesis, Technical
University of Munich, 2019.

P. Maroldt, “Verified Safe Human-Robot Interaction with Impedance Control Based on
Force Limits,” Master’s Thesis, Technical University of Munich, 2019.

S. Schepp, “Visualization of Reachable Spaces for Interactions with Modular Robots,”
Bachelor’s Thesis, Technical University of Munich, 2019.

D. Beckert, “Verified safe collision system for human-robot collaboration,” Master’s
Thesis, Technical University of Munich, 2019.

F. Guan, “Robust people detection and online verification of mobile robots,” Master’s
Thesis, Technical University of Munich, 2020.

M. Perschl, “Reachability Analysis and Conformance Checking for Robot Manipulators
using Parallel Hybrid Automatons,” Bachelor’s Thesis, Technical University of Munich,
2021.

C. Pan, “Identification and Learning-Based Test Case Generation for the Safe Model
of Autonomous Vehicles,” Master’s Thesis, Technical University of Munich, 2021.

P. Schmutz, “Online Motion Verification of Industrial Mobile Robots Using Reachable
Sets,” Master’s Thesis, Technical University of Munich, 2021.

93



