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Abstract

This work aims to numerically investigate the influence of viscoelastic fluids on cavitating
flows, precisely cavitation bubble dynamics. Cavitating bubbles occur in various engineer-
ing applications involving complex fluids with fundamentally different behavior than Newto-
nian liquids. Due to the underlying complex microstructure, especially in biomechanical and
biomedical applications as well as in polymer processing, viscoelastic effects are encountered.
The work presents a three-dimensional (3D) Eulerian approach to numerically simulate cav-
itating flows in viscoelastic fluids. It utilizes a density-based compressible flow solver with
finite volumes for spatial, and an explicit Runge-Kutta approach for time discretization. Vis-
coelasticity is considered by implementing four different Maxwell-/Oldroyd-like viscoelastic
models in conservative form with an appropriate time-derivative in the viscoelastic transport
equation regarding compressible flow.

The simulations show a significant influence of viscoelasticity on the spherical and as-
pherical vapor bubble collapse dynamics. For the spherical collapse, it is demonstrated that
viscoelasticity and the related stresses yield a rebounding bubble which is not observed for
Newtonian fluids. Collapse behavior is investigated for various elasticity, viscosity and consti-
tutive models. It is shown that viscoelasticity fundamentally alters the collapse behavior and
evolution of stresses. It is observed that the viscoelastic stresses develop with a time delay
proportional to relaxation and show distinct spatial distributions as opposed to solvent (New-
tonian) stresses. Furthermore, it is shown that viscoelasticity introduces isentropic stresses,
although the spherical bubble collapse exhibits purely deviatoric (elongational) deformation
rates. Additionally, it is demonstrated that the different viscoelastic models distinctly impact
the collapse. Moreover, grid-dependent shock-wave emission is observed for the spherical
collapse in upper convected Maxwell fluid.

The aspherical collapse is examined for the shear-thinning simplified linear Phan-Thien
Tanner fluid. The comparison of the collapse in Newtonian and viscoelastic fluid for dif-
ferent initial standoff distances shows significantly different collapse dynamics. For initially
detached bubbles, the shock-wave formation mechanism during first collapse and the amount
of vapor produced during rebound is altered by viscoelasticity. The intensity of shock-wave
emission is comparable for both fluids or increased for Newtonian fluid for the first collapse of
the investigated wall-detached bubbles. The pressure for detached bubbles resulting from the
second collapse is higher in viscoelastic fluid. Only the viscoelastic fluid leads to a second jet
formation for the initially detached bubbles. The attached bubbles show re-evaporation and
a second collapse only for the viscoelastic collapse. The responsible viscous and viscoelastic
stress distributions are reviewed, clearly showing the influence of stresses on the amount
of vapor produced during rebound. The viscoelastic stresses exhibit a different spatial dis-
tribution than solvent stresses caused by relaxation. Additionally, the influence of varying
elasticity shows the correlation between relaxation time and re-evaporation.
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Kurzfassung

Ziel dieser Arbeit ist es, den Einfluss viskoelastischer Fluide auf kavitierende Strömungen,
genauer die Dynamik von Kavitationsblasen, numerisch zu untersuchen. Kavitierende Blasen
treten in einer Vielzahl von Ingenieuranwendungen mit komplexen Fluiden, welche im Ver-
gleich zu Newtonschen Flüssigkeiten grundlegend unterschiedliches Verhalten aufweisen,
auf. Wegen der zugrunde liegenden komplexen Mikrostruktur treten insbesondere in biomech-
anischen und biomedizinischen Anwendungen sowie bei der Verarbeitung von Polymeren
viskoelastische Effekte auf. Die Arbeit stellt einen dreidimensionalen Eulerschen Ansatz
zur numerischen Simulation von kavitierenden Strömungen in viskoelastischen Fluiden vor.
Dabei wird ein dichtebasierter, kompressibler Strömungslöser mit Finiten Volumen für die
räumliche Diskretisierung und eine explizite Zeitintegration für die zeitliche Diskretisierung
verwendet. Die Viskoelastizität wird durch vier verschiedenen Maxwell-/Oldroyd-ähnliche
zeitabhängige viskoelastischen Modellen in konservativer Form berücksichtigt, wobei eine
geeignete Zeitableitung in der viskoelastischen Transportgleichung im Hinblick auf kompress-
ible Strömungen angewandt wird.

Die Simulationen zeigen einen deutlichen Einfluss von Viskoelastizität auf die Dynamik
des sphärischen und asphärischen Dampfblasenkollapses. Für den sphärischen Kollaps wird
gezeigt, dass Viskoelastizität und die damit verbundenen Spannungen zu einer wieder anwach-
senden Blase führen, was für Newtonsche Flüssigkeiten nicht beobachtet werden kann. Das
Kollapsverhalten wird für verschiedene Elastizitäten, Viskositäten und Konstitutivmodelle un-
tersucht. Es wird gezeigt, dass Viskoelastizität das Kollapsverhalten und die Entwicklung von
Spannungen grundlegend beeinflusst. Weiterhin wird beobachtet, dass die viskoelastischen
Spannungen mit einer zeitlichen Verzögerung, proportional zur Relaxationszeit, auftreten
und eine deutlich veränderte räumliche Verteilung im Vergleich zu Newtonschen Spannun-
gen aufweisen. Darüber hinaus wird gezeigt, dass Viskoelastizität isentrope Spannungen
erzeugt, obwohl der sphärische Blasenkollaps rein deviatorische Verformungsraten (reine
Elongation) aufweist. Es wird deutlich, dass die verschiedenen viskoelastischen Modelle den
Kollaps unterschiedlich beeinflussen. Für den sphärischen Kollaps mit dem Upper Convected
Maxwell-Fluid wird ein gitterabhängiges Auftreten von Schockwellen beobachtet.

Der asphärische Kollaps wird für das scherverdünnende vereinfachte lineare Phan-Thien
Tanner-Fluid untersucht. Der Vergleich des Kollapses in Newtonschen und viskoelastischen
Fluiden für verschiedene Anfangsabstände zeigt eine deutlich veränderte Kollapsdynamik.
Bei anfänglich nicht anliegenden Blasen werden der Mechanismus der Schockwellenbildung
während des ersten Kollapses und die Menge des erzeugten Dampfes, während die Blase
wieder anwächst, durch Viskoelastizität beeinflusst. Die Intensität der Schockwellenemission
ist für den ersten Kollaps der untersuchten nicht anliegenden Blasen vergleichbar für beide
oder verstärkt für Newtonsche Flüssigkeiten. Der Druck für nicht anliegende Blasen, der aus
dem zweiten Kollaps resultiert, ist in viskoelastischem Fluid höher. Für die anfänglich nicht
anliegenden Blasen führt nur das viskoelastische Fluid zur Bildung eines zweiten Jets. Bei
anfänglich anliegenden Blasen treten Dampf nach dem ersten Kollaps und ein zweiter Kol-
laps nur im viskoelastischen Fall auf. Die zugrunde liegenden viskosen und viskoelastischen
Spannungsverteilungen werden für die verschiedenen Fälle dargestellt, wobei der Einfluss
der auftretenden Spannungen auf die Menge des während des Wiederanwachsens erzeugten
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Dampfes deutlich gezeigt wird. Die viskoelastischen Spannungen zeigen unterschiedliche
räumliche Verteilungen im Vergleich zu Newtonschen Spannungen, zurückzuführen auf Re-
laxation. Darüber hinaus zeigt der Einfluss variabler Elastizität die Korrelation zwischen
Relaxationszeit und beim Wiederanwachsen erzeugtem Dampf auf.
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Chapter 1

Introduction and Motivation

Cavitation can be defined as the phenomenon that arises when the fluid pressure falls be-
low the vapor pressure, causing the liquid to undergo phase change and the formation of
vapor-filled cavities. Subsequently, if the pressure rises above the vapor pressure, the vapor
condensates, leading to the collapse of these cavities. The collapse of cavitating vapor bub-
bles can generate intense pressure wave emission and may give rise to the formation of liquid
jets. Consequently, the emitted pressure waves and liquid jets can exert a significant pressure
impact on the surrounding medium, which can lead to surface erosion. Engineering problems
include applications where surface erosion is harmful and unwanted such as liquid fuel injec-
tors [38], pumps and ship propellers [26]. However, there also exist applications like surface
cleaning [101] and biomedical applications [19, 30, 64, 67, 85, 100, 116, 141], where cavi-
tation is beneficial. In several of these applications, cavitation occurs in complex fluids. When
dealing with such fluids involving complex microstructure with long-chained molecules, the
physical behavior of the fluid cannot be accurately described using Newtonian models. How-
ever, a non-Newtonian behavior can be observed. Many of these fluids can be characterized
as viscoelastic, as they simultaneously exhibit viscous and elastic properties. Cavitation bub-
bles appear in various application scenarios of such materials. In biomaterials, cavitation
bubbles are exploited in applications such as drug delivery [30, 85, 100, 116], shock-wave
lithotripsy [64], histotripsy [141], and microbubble contrast agents for ultrasound diagnos-
tics and treatment [19, 67]. Other applications involving cavitation in complex fluids are the
usage of ultrasonics in food processing [17], rheological measurements for the determination
of material properties [123, 145], and polymeric foam production [39].

Several experimental [7, 10, 25, 145] and numerical studies [4, 5, 24, 45, 46, 70, 79,
132, 143, 150] proved that viscoelastic material behavior can crucially influence cavitation
and bubble dynamics. A comprehensive summary on cavitating flow applications in viscoelas-
tic media is provided by Brujan [23] and Dollet et al. [33]. This work aims to obtain detailed
insight in the influence of viscoelasticity on the spherical and aspherical vapor bubble collapse
considering cavitation, compressible shock wave formation, and different viscoelastic consti-
tutive models. For cavitating vapor bubbles considering condensation and evaporation, it
is necessary to apply an appropriate cavitation model. Furthermore, resolving compressible
shock-wave dynamics requires a fully-compressible approach to capturing the related time
scales. Additionally, for a detailed understanding of the influence of viscous and viscoelastic
stresses, it is necessary to employ a 3D approach considering stresses in the entire flow field.

1



CHAPTER 1. INTRODUCTION AND MOTIVATION 2

The three peer-reviewed journal publications on which this work is based can be sum-
marized as follows. In Lang et al. [75], an approach meeting the above-mentioned require-
ments is presented. A fully compressible 3D solver using finite volume spatial discretization
and explicit time integration resolving the relevant timescales is combined with viscoelastic
constitutive models of the Oldroyd-type in conservative formulation. Furthermore, the ap-
propriate time derivative for viscoelastic stresses in compressible flows is derived, and the
explicit time integration is adapted. The approach is validated against (semi-)analytical ref-
erence solutions with excellent agreement. A significant influence of viscoelasticity on the
spherical vapor bubble collapse and the corresponding shock wave emission is shown. In
the second study Lang et al. [78], the approach is used to investigate the spherical vapor
bubble collapse in viscoelastic fluids. 3D simulations of the collapse with varying elasticity,
viscosity, and for distinct viscoelastic models are carried out. Moreover, collapse dynamics,
occurring deformations, stress distributions, and the emission of shock waves are presented.
The third study Lang et al. [74] examines the aspherical viscoelastic collapse in the vicinity of
solid walls. The collapse dynamics and the shock wave formation mechanism for Newtonian
and viscoelastic fluids are compared for different initial standoff distances. Furthermore, the
influence of varying elasticity is studied. It is shown that viscoelasticity can significantly alter
the collapse dynamics, shock wave formation, and the amount of re-evaporated vapor during
rebound.

The work is structured as follows. Firstly, the theoretical foundation, including the un-
derlying models and corresponding equations, is presented. Subsequently, the numerical
approach and the applied boundary conditions are discussed. Furthermore, the journal pub-
lications are summarized, and the own contribution is outlined. In the following a list of the
journal publications, and a concluding discussion with respect to the state of the art is given.



Chapter 2

Model and Numerical Approach

2.1 Mathematical and physical model

2.1.1 Conservation equations in differential form

Unsteady, three-dimensional, compressible, and cavitating flow is considered together with
constitutive equations for viscoelastic fluids in an Eulerian framework. The phase change is
assumed to be isentropic, and hence a barotropic equation of state is applied. The internal
energy can be changed by viscous dissipation or shock wave formation, which is effectively
negligible for the investigated problems. Furthermore, the temperature changes due to the
isentropic phase change are negligibly small, and the heat capacity of the liquid phase is
relatively large. Consequently, the changes in internal energy are not considered. By neglect-
ing the surface tension and gravitational forces, the governing equations are the conservation
equations for mass and momentum. The differential form of the conservation equations read:

∂ ρ

∂ t
= −div (ρu) , (2.1)

∂ (ρu)
∂ t

= −div (ρu⊗ u−σ) . (2.2)

Therein, ρ = ρ (x, t), u = u (x, t) and σ = σ (x, t) represent the density field, the velocity
field and the Cauchy stress tensor field in the current configuration and for the time instant t,
respectively. Surface tension is neglected, wherefore the Cauchy stress tensor is composed of
the isentropic contribution of thermodynamic pressure p = p (x, t) and the additional stress
tensor τ.

σ = −pI+τ. (2.3)

2.1.2 Compressible viscoelastic constitutive model of the Maxwell-/
Oldroyd-type

There are mainly three mechanisms underlying most viscoelastic effects. Firstly, due to its
concurrently viscous and elastic behavior, a specific part of deformation is stored elastically,
whereas the other part causes dissipation. As a result, viscoelastic materials exhibit a time-

3



CHAPTER 2. MODEL AND NUMERICAL APPROACH 4

dependent stress or fading memory behavior. Viscoelastic stresses depend not only on the
current shear rate but also on past deformations and past viscoelastic stresses. In contrast
to Newtonian fluids, that leads, amongst others, to the convective transport of viscoelastic
stresses. Furthermore, the time dependency introduces time-delayed stress development,
where the stress is not directly linked to the current deformation rate. Secondly, due to
the complex microstructure, normal stress effects can occur, introducing normal stresses in
pure shear deformations. Third, viscoelasticity can introduce shear rate-dependent viscosities
resulting in shear-thinning or -thickening behavior.

The employed viscoelastic models are of the Maxwell-/Oldroyd-type. Thus, the additional
stress tensor comprises Newtonian (solvent) stresses τ

S
and viscoelastic stresses τ

M
. The

viscoelastic stresses are also denoted as Maxwell stresses in the following. The constitutive
equations for the applied Maxwell-/Oldroyd-like models read

τ = τ
S
+τ

M
, (2.4)

τ
S
= 2µSdd (2.5)

τ
M
+λ

∇
τ

M
+ f
�

τ
M

�

τ
M
= 2µMdd , (2.6)

where dd = d− 1
3 tr (d) I is the deviatoric part of the strain rate tensor d= 1

2

�

l + lT
�

, which itself
represents the symmetrical part of the spatial velocity gradient l =∇u. The solvent viscosity is
described by µS. µM represents the polymeric viscosity, denoted as Maxwell viscosity. λ = µM

G

represents the relaxation time and relates the Maxwell viscosity to the modulus of elasticity.
∇
τ

M
is the objective time derivative of the Maxwell stress tensor and is discussed in detail in the

following subsection 2.1.2. By the additional parameter f , different viscoelastic models can
be realized, as described hereunder. The one-dimensional (1D) rheological representation
for such models is a dashpot, representing the Newtonian solvent contribution, in parallel
arrangement to a Maxwell element as shown in fig. 2.1. The Maxwell element, responsible for
the viscoelastic behavior, including relaxation, contains a series arrangement of dashpot and
spring. The capability of predicting the aforementioned effects is summarized in section 2.1.2
for the applied models.

𝜇! 𝐺 =
𝜇!
𝜆

𝜇"

Figure 2.1: Schematic 1D rheological representation of materials of the Oldroyd-type (paral-
lel arrangement of dashpot and Maxwell element; Maxwell element is represented by series
arrangement of dashpot and spring).
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By assuming that only deviatoric deformations contribute to viscous dissipation, compress-
ibility is considered for the Newtonian as well as for the viscoelastic contributions (cf. [14,
68, 69, 104]). The isentropic part, responsible for purely volumetric deformation, does not
contribute to viscous dissipation. Accordingly, bulk viscosity, which considers viscous stresses
introduced by volume change, is neglected. However, the applied objective rate (eq. (2.15))
can introduce a nonzero trace tr

�

τ
M

�

̸= 0 in the Maxwell stress leading to isotropic (spher-
ical) Maxwell stresses τsph

M
̸= 0 as shown in Lang et al. [78]. The approach is similar to

the formulation of Keshtiban et al. [68, 69] and Belblidia et al. [14] but differs in not ex-
plicitly excluding the isotropic part of the stress tensor τ. Otherwise put, isotropic stresses
initiated by the objective rate, which is associated with the deformation itself, would not
contribute to the momentum equation (2.2) if the isotropic part would be excluded. The
physical motivation for such formulation is that spherical stresses, which occur due to defor-
mation and involved transformations ensuring frame invariance (see section 2.1.2), shall be
considered in the momentum balance. Bollada et al. [21] support this approach by applying
non-equilibrium thermodynamics to show that the thermodynamic pressure p and the trace
of the Cauchy stress tensor tr (σ) should not necessarily coincide. Our formulation of the
constitutive equations agrees with that of Housiadas et al. [56, 57]. Moreover, a different
objective time derivative is used with the Truesdell rate, which appears more appropriate for
compressible flows.

Furthermore, the viscoelastic transport equation can be extended by an additional term
f
�

τ
M

�

. The modification addresses the issue of an unbounded extensional viscosity and
can account for the description of shear-thinning behavior [20, 80, 107]. Different consti-
tutive models can be recovered by using a differential constitutive equation of the type of
eq. (2.6) like the Johnson and Segalman [66], the Giesekus [49, 50] and the Phan-Thien
Tanner (PTT) model [109, 110]. The PTT model originates from the network theory of poly-
meric fluids, predicts bounded extensional viscosity and shear thinning behavior, and is well
suited to simulate flows of polymer melts and solutions. For this work, the upper-convected
Maxwell (UCM) model, the Oldroyd-B (OLD-B) model [102, 103], the linear PTT (LPPT)
[109] and the exponential PTT (EPPT) [110] model are implemented. The simplified ver-
sions of the PTT models are utilized where the Truesdell rate replaces the originally used
Gordon-Schowalter rate. By selecting the upper-convected derivative as objective rate and
f
�

τ
M

�

= 0, the original Oldroyd-B model (OLD-B) is regained. By additionally neglecting
the solvent part and exclusively considering the Maxwell part for the stress tensor, the upper-
convected Maxwell model (UCM) is recovered. Nevertheless, throughout this work, the UCM
and the OLD-B model are exclusively employed together with the Truesdell rate. The PTT
models comprise the extensibility parameter ε = [0, 1]. A commonly used value of ε = 0.25
is chosen for the LPTT or the EPTT model.

Objective time derivative for the stress tensor in the context of compressible flows

Particular attention is paid to using a consistent time derivative for the stress tensor
∇
τ

M
in the

context of compressible flows. The correct formulation of the time derivative has to fulfill the
following requirements. To obtain a frame invariant description of the material behavior, it
is necessary to observe the principle of material objectivity or material frame invariance [54,
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Table 2.1: Applied viscoelastic models and their features.

Model
Solvent

f
�

τ
M

�

Features

viscosity
relaxation

normal stress solvent shear-
effects contribution thinning

Newtonian ̸= 0 0 •

UCM 0 0 • •

OLD-B ̸= 0 0 • • •

LPTT ̸= 0 ε λµM
tr
�

τ
M

�

• • • •

EPTT ̸= 0 exp
�

ε λµM
tr
�

τ
M

�

�

− 1 • • • •

137], i.e. to apply an objective time derivative. However, an infinite number of time deriva-
tives meet this criterion [92]. A time rate shall be used, which is also physically consistent
with compressible flows. Therefore, the stricter restriction of work conjugacy shall be ful-
filled additionally [15, 62]. The concept of deriving the physically correct time derivative by
applying the Lie derivative Lu with respect to the spatial velocity field u [35, 112] adapted to
compressible flow is applied. To calculate the Lie derivative, a mapping between the current
(spatial) and the material (reference) configuration is introduced. The mapping is given by
the deformation gradient F. F maps an infinitesimal material element in reference configura-
tion dX0 onto its spatial counterpart in the current configuration dx, given a motion defined
by the current position of a point x = x (X0, t) with its position in the reference configuration
X0 = x (X0, t = t0):

F :=
∂ x
∂ X0

. (2.7)

For a second order tensor a in the current configuration, the pull-back operation 1 is

φ∗ (a) := F−1 aF−T . (2.8)

The corresponding operation transforming a tensor A in the reference configuration to its
spatial description is called push-forward:

φ∗ (A) := FAFT . (2.9)

The concept of finding the objective rate of a tensor field described in the Eulerian configu-
ration is initially performing a pull-back operation to obtain the corresponding tensor field
in the reference configuration. Subsequently, the material time derivative D(...)

Dt of the field
in the reference configuration is calculated. Since that configuration remains unchanged,
performing the material time derivative of an objective tensor in the reference configuration
again results in an objective tensor. Finally, the push-forward operation is applied, and the

1Note that contravariant coordinates in conjunction with a covariant basis are assumed to obtain these forms
of the pull-back and push-forward. For other isomers used to describe the tensor fields, the pull-back and push-
forward operations have a different form. Yet, it can be shown that the representation mentioned above should
be used for a physically consistent formulation [130].
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objective time derivative in spatial description is obtained. Thus, the objective rate is given
by

Lu [a] := φ∗

�

D
Dt
(φ∗ (a))
�

=:
∇
a. (2.10)

Since the stress tensor in the spatial configuration represents a volume-specific quantity,
compressibility must be considered for the pull-back and push-forward operations. To con-
sider volume changes, the Jacobian J is introduced:

J := detF=
dv
dV0

. (2.11)

The Jacobian relates the differential volume element in the spatial configuration dv to the
one in reference configuration dV0.

The concept of the Lie derivative is applied to a volume-specific quantity as performed
similarly in Pinsky et al. [112]. The objective rate of the Cauchy stress tensor σ in spatial
configuration is calculated by using the material counterpart represented by the second Piola-
Kirchhoff stress tensor S (X0). The corresponding transformation acting as pull-back of σ and
push-forward of S is the Piola transformation:

S= φ∗ (σ) := J F−1σ F−T , (2.12)

σ = φ∗ (S) := J−1 FSFT . (2.13)

Thus, the objective rate of the Cauchy stress calculates to

∇
σ = φ∗

�

D
Dt
(φ∗ (σ))
�

=

=
Dσ
Dt
− l ·σ −σ · lT + tr (l)σ,

(2.14)

which is called Truesdell rate [135, 136]. Since the Truesdell rate is linear in its argument and
the Cauchy stress tensor is an additive combination of pressure, solvent stress, and Maxwell
contribution σ = −pI+ 2µSdd +τ

M
, it can be directly applied to the Maxwell stress tensor:

∇
τ

M
=

Dτ
M

Dt
− l ·τ

M
−τ

M
· lT + tr (l)τ

M
. (2.15)

For incompressible flows with tr (l) = div (u) = 0 the upper-convected Oldroyd rate [102] is
retrieved.

As already mentioned, the derived Truesdell rate not only represents an objective time
derivative but also fulfills the requirement of work conjugacy which has been proven by
Bazant [11], Bažant et al. [12], Bergander [15], and Ji et al. [62]. Bollada et al. [21] deploy-
ing the integral form of constitutive models and convected time derivatives also concluded
that the Truesdell rate is appropriate in a compressible context. Rouhaud et al. [120] uti-
lize the four-dimensional formalism “to show [that] the Truesdell transport is thus the only
objective transport that represents a frame-indifferent time derivative of the Cauchy stress.”
Mackay et al. [93] used the generalized bracket framework to ascertain that the Truesdell
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rate constitutes the thermodynamically consistent objective rate in compressible viscoelastic
fluid models.

2.1.3 Conservative form of the governing equations

By substituting the mass conservation eq. (2.1) in the transport equation for the Maxwell
stress eq. (2.6), the governing equations are reformulated in conservative form for an arbi-
trary spatial control volume V ∈ R3 as follows:

∫

V

∂ ρ

∂ t
dV = −
∫

V

∇ · (ρu) dV, (2.16)

∫

V

∂ (ρu)
∂ t

dV = −
∫

V

∇ ·
�

ρu⊗ u+ pI− 2µSdd −τ
M

�

dV, (2.17)

∫

V

∂
�

ρτ
M

�

∂ t
dV = −
∫

V

∇ ·
�

ρτ
M
⊗ u
�

dV +

∫

V

SρτM
dV, (2.18)

with the source term

SρτM
= ρ
�

l ·τ
M
+τ

M
· lT − (∇ · u)τ

M
+

1
λ

�

2µMdd − f
�

τ
M

�

τ
M
−τ

M

�

�

. (2.19)

By introducing the state vector U =
�

ρ,ρu,ρτ
M

�T
, applying Gauss’ theorem and group con-

vective fluxes, diffusive fluxes and source terms together, the governing equations can be
written in compact notation:

∫

V

∂U
∂ t

dV = −
∮

∂ V

�

Fc + Fd
�

dS +

∫

V

SdV, (2.20)

with the convective flux, the diffusive flux and the source term

Fc =







F c
ρ

Fc
ρu

Fc
ρτM






=





(ρu) · n
(ρu⊗ u+ pI) · n
�

ρτ
M
⊗ u
�

· n



 , (2.21)

Fd =







F d
ρ

Fd
ρu

Fd
ρτM






=





0
�

−2µSdd −τ
M

�

· n
0



 , (2.22)

S=





0
0

SρτM



=





0
0

ρ
�

l ·τ
M
+τ

M
· lT − (∇ · u)τ

M
+ 1
λ

�

2µMdd − f
�

τ
M

�

τ
M
−τ

M

��



 , (2.23)

where n describes the outward pointing unit normal vector perpendicular to the surface ∂ V
of the control volume. The aforementioned governing equations are equally applicable for
single-phase and multiphase flows without limitation if the field variables are thought of
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as volume-averaged homogeneous mixture quantities. In the context of the applied finite
volume spatial discretization, all quantities are assumed to be cell-centered and volume-
averaged over discrete control volumes Ω. The volume-averaging operator □ is introduced as
follows:

□ :=
1
VΩ

∫

Ω

□ dV, (2.24)

where VΩ represents the volume of a computational cell. Thus, the phases are not treated sep-
arately, but a homogeneous mixture is considered. The applied cavitation model is likewise
based on volume-averaging homogeneous mixture quantities and will be explained together
with the considered equations of state in section 2.1.4. The governing equations for a finite
volume can be written in discretized form:

∂U
∂ t
= −

1
VΩ

∮

∂Ω

�

eFc
�

U
�

+ eFd
�

U
��

dS +
1
VΩ

∫

Ω

eS
�

U
�

dV. (2.25)

e□ depicts numerical approximations including flux calculations and face reconstructions as
described in more detail in section 2.2.1.

2.1.4 Single fluid homogeneous mixture cavitation model

The two-phase cavitating flow, including evaporation and condensation, is modeled assum-
ing volume-averaged single-fluid homogeneous mixtures in thermodynamic and mechanical
equilibrium for each computational finite volume [127]. Phase change processes occur in-
finitely fast without time delay. Cell-centered volume-averaged quantities describe the ho-
mogeneous mixture for each discrete volume. Our approach ensures that only homogeneous
fluids, either pure liquid or mixtures of vapor and liquid, are considered within each computa-
tional cell. Condensation and evaporation is therefore implicitly modeled by the equation of
state for the mixture as it represents a direct correlation of the vapor volume fraction and the
thermodynamic variables, as explained hereafter. Because of the equilibrium assumption, the
corresponding vapor volume fraction instantaneously adapts to the flow properties, and an
additional model for the condensation rate or relaxation is not needed. Figure 2.2 illustrates
the concept of the single fluid model. On the left, an exemplary real situation of a two-phase
mixture with discrete regions of vapor and liquid is illustrated. Assuming that the cell size
is larger than the discrete regions, the corresponding numerical description resolved by our
model would be a homogeneous mixture with the corresponding vapor volume fraction for a
computational cell Ω. To appropriately simulate vapor bubbles during their collapse, enough
cells must be used to resolve the bubble size with sufficient accuracy. The approach was ex-
tensively applied to investigate cloud cavitation [127], to simulate cavitating flows including
non-condensable gas [105, 106], turbulent cavitating flows [37, 38], to predict cavitation
erosion [95] and to examine condensation shocks [26, 139]. A further detailed description
of the model can be found in Budich et al. [26], Schnerr et al. [127], and Sezal [128].
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vapor liquid

Ω

(a)

𝛼
1

0

homogeneous two-phase mixture

Ω

(b)

Figure 2.2: Schematic of the single-fluid homogeneous mixture model for a computational
cell Ω. (a) Real physical situation. (b) Numerical model approximation with the correspond-
ing vapor volume fraction α.

The homogenous mixture density is described by

ρ = αρv,sat + (1−α)ρl,sat , (2.26)

where ρ, α, ρv,sat , ρl,sat are the mixture density, the vapor volume fraction, the saturated
vapor density and the saturated liquid density, respectively. In the framework of the applied
explicit density-based method, the cell-averaged density is not computed by eq. (2.26). In-
stead, the density is obtained by the time integration of the continuity equation (2.25) and
subsequently utilized to ascertain whether a cell contains a two-phase mixture of liquid and
vapor or comprises pure liquid as shown hereunder:

α=
Vv,Ω

VΩ
=

(

0, if ρ ≥ ρl,sat (pure liquid)
ρl,sat−ρ

ρl,sat−ρv,sat
, else (liquid-vapor mixture),

(2.27)

where Vv,Ω represents the volume occupied by vapor within the computational cell. Since the
flow is considered barotropic, constant fluid properties apply as summarized in table 2.2. To
close the equation of state, a relation for the pressure is required. It is distinguished between
pure liquid and liquid-vapor mixtures. For pure liquid regions, a modified Tait equation of
state as introduced by Saurel et al. [125] is used:

p = B

�

�

ρ

ρl,sat

�N

− 1

�

+ psat , (2.28)

where N = 7.15 and B = 3.3× 108 Pa at reference temperature. The speed of sound for pure
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liquid thus is calculated to

c =
�

N (p+ B)
ρ

�1/2

. (2.29)

For the pressure calculation in two-phase mixtures the integration of the isentropic speed of
sound definition is used:

c2 =
∂ p
∂ ρ

�

�

�

�

s=const.

⇒ p(ρ)− psat =

ρ
∫

ρl,sat

c2dρ. (2.30)

The speed of sound is substituted by the formulation of Franc et al. [47], which considers the
latent heat of vaporization:

1
ρc2

=
α

ρv,sat c
2
v,sat
+

1−α
ρl,sat c

2
l,sat

+

�

(1−α)ρl,sat cp,l,sat −αρv,sat cp,v,sat

�

Tre f
�

ρv,sat lv

�2 . (2.31)

The last term on the right-hand side accounts for mass transfer through vaporization. The
speed of sound of pure liquid and vapor is represented by cl,sat and cv,sat . cp,sat,l and lv are
the specific heat capacity of saturated liquid and the latent heat of vaporization, respectively.
All variables correspond to values at reference temperature as listed in table 2.2. Further
explanations leading to this formulation can be found in Sezal [128] and Budich et al. [26].
By introducing eq. (2.31) in eq. (2.30) and subsequent integration, the pressure in the two-
phase region is obtained as

p =
1
A

ln
�

ρ

A+ Bρ

�

−
1
A

ln

�

ρl,sat

A+ Bρl,sat

�

+ psat ,

with A=−
ρl,sat

ρv,sat −ρl,sat

�

1
ρv,sat c

2
v,sat
−

1
ρl,sat c

2
l,sat

+ C

�

+
1

ρl,sat c
2
l,sat

+
ρl,sat cp,l,sat Tre f
�

ρv,sat lv

�2 ,

B =
1

ρv,sat −ρl,sat

�

1
ρv,sat c

2
v,sat
−

1
ρl,sat c

2
l,sat

+ C

�

,

C =
Tre f

�

ρv,sat cp,v,sat −ρl,sat cp,l,sat

�

�

ρv,sat lv

�2 .

(2.32)

2.1.5 Non-dimensional numbers

The cavitating viscoelastic flows can be characterized by the Reynolds number Re and the
Deborah number De. The Reynolds number relates the timescale of the diffusive momentum
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Table 2.2: Fluid properties of the barotropic model at Tre f = 293.15K

Property Symbol Value

Reference temperature Tre f 293.15K
Density of saturated liquid ρl,sat 998.16kg/m3

Density of saturated vapor ρv,sat 0.01721 kg/m3

Saturation pressure psat 2339.3Pa
Dynamic viscosity of saturated liquid µl,sat 1.0014× 10−3 Pa s
Dynamic viscosity of saturated vapor µv,sat 9.7275× 10−6 Pa s
Speed of sound of saturated liquid cl,sat 1482.2m/s
Speed of sound of saturated vapor cv,sat 423.18m/s
Specific heat capacity of saturated liquid cp,l,sat 4184.4J/(kgK)
Specific heat capacity of saturated vapor cp,v,sat 1905.9J/(kgK)
Latent heat of vaporization lv 2453.5× 103 J/kg

transport to the characteristic inertia-related timescale:

Re =
ρU L
µ0

, (2.33)

where U and L represent characteristic velocity and length scale, respectively. High Reynolds
number flows correspond to inertia-dominated problems, whereas a low Reynolds number is
associated with flows dominated by viscous forces. The Deborah number relates the timescale
of viscoelastic relaxation, i.e. the relaxation time, to the characteristic inertia-related time of
the flow problem:

De =
λU
L

. (2.34)

Large Deborah numbers correlate with high elasticities and long relaxation times. Increasing
the Deborah number leads to delayed development of stresses. Thinking of the 1D repre-
sentation of the Maxwell fluid, the series arrangement of damper and spring, increasing the
Deborah number corresponds to a softer spring that allows for larger deformations before the
viscous damper can react. The smaller the elasticity, the harder the spring and the smaller
the relaxation time, which leads to a less delayed response of the dashpot.
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2.2 Numerical approach

2.2.1 Spatial discretization and numerical flux calculation

The finite volume discretization is performed by subdividing the physical domain into body-
fitted, hexahedral cells with non-staggered cell-centered variables. The governing equations
are formulated in Cartesian coordinates. The numerical calculation of cell face fluxes is
performed separately for convective fluxes eFc

�

U
�

, diffusive fluxes eFd
�

U
�

and source terms
eS
�

U
�

, respectively. The content of an individual cell is thereby treated as a homogeneous
mixture irrespective of whether the cell contains pure liquid or a water-vapor mixture.

For the convective fluxes eFc
ρ
,eFc
ρu,eFc

ρτM
an upwind-biased low-Mach number consistent ap-

proximate Riemann solver is used. The method combines an AUSM-type (Advection Up-
stream Splitting Method) based Riemann solver with a MUSCL (Monotone Upstream-Centered
Schemes for Conservation Laws) reconstruction on a four-point stencil with TVD (Total Vari-
ation Diminishing) limiters for the numerical calculation of convective fluxes. The numerical
flux calculation separately addresses the density, velocities, pressure, and viscoelastic stresses.
For the different variables, distinct limiter functions can be applied. In Lang et al. [75, 78]
the density is reconstructed applying the MinMod limiter [119] for improved numerical ro-
bustness, which is required due to steep density and pressure gradients in two-phase flows.
In smooth regions, this limiter is of second-order accuracy [128]. The velocities are calcu-
lated with the Koren limiter function [73], which is third-order accurate in smooth regions.
The viscoelastic stresses are reconstructed applying the weighted essentially non-oscillatory
reconstruction procedure (WENO-3) [63]. Due to increased stability requirements, the Min-
Mod limiter is used to reconstruct all variables (density, pressure, velocities, and viscoelastic
stresses) in Lang et al. [74].

The diffusive flux eFd
ρu and the source term eFρτM

are calculated by a second order central
reconstruction. By additionally introducing the numerical approximation of the surface and
volume integrals of the already approximated fluxes and the approximated source

F□□
num
=

∮

∂Ω

eF□□dS, SρτM

num
=

∫

Ω

eSρτM
dV, (2.35)

the equations can be written in abbreviated form by its fully discretized fluxes for a compu-
tational volume Ω:

∂ ρ

∂ t
= −

1
VΩ

F c
ρ
, (2.36)

∂ (ρu)
∂ t

= −
1
VΩ
{F c

ρu +F d
ρu}, (2.37)

∂
�

ρτ
M

�

∂ t
= −

1
VΩ

F c
ρτM
+

1
VΩ

SρτM
. (2.38)
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2.2.2 Explicit time discretization

To capture compressible wave dynamics, time integration is performed by an explicit second-
order accurate low-storage four-step Runge-Kutta method with enhanced stability region.
A detailed description can be found in Schmidt [126] and Sezal [128]. Equations (2.39)
to (2.41) show one sub-step of the four-step time integration, where the operator L□ [□]
summarizes the Runge-Kutta substep of the respective transport equation. The coefficients of
the Runge-Kutta scheme are given in table 2.3.

ρ|n+ j/4 = ρ|n − ξ j
∆t
VΩ

F c
ρ

�

�

�

n+( j−1)/4 �

ρ|n+( j−1)/4 , u|n+( j−1)/4 , p|n+( j−1)/4
�

=: Lρ
�

F c
ρ

�

�

�

n+( j−1)/4�

,
(2.39)

(ρu)|n+ j/4 = (ρu)|n

− ξ j
∆t
VΩ

§

F c
ρu

�

�

�

n+( j−1)/4 �

ρ|n+( j−1)/4 , u|n+( j−1)/4 , p|n+( j−1)/4
�

+ F d
ρu

�

�

�

n+( j−1)/4 �

u|n+( j−1)/4 , τ
M

�

�

n+( j−1)/4�
ª

=: Lρu

�

F c
ρu

�

�

�

n+( j−1)/4
, F d

ρu

�

�

�

n+( j−1)/4�

,

(2.40)

�

ρτ
M

��

�

n+ j/4
=
�

ρτ
M

��

�

n

− ξ j
∆t
VΩ

§

F c
ρτM

�

�

�

n+( j−1/4) �

ρ|n( j−1)/4 , u|n+( j−1)/4 , τ
M

�

�

n( j−1)/4
, p|n+( j−1)/4
�

+ ξ j
∆t
VΩ

SρτM

�

�

�

n+( j−1/4)
(ρ|n+( j−1)/4 , u|n+( j−1)/4 , τ

M

�

�

n+( j−1)/4�
ª

=: LρτM

�

F c
ρ

�

�

�

n+( j−1)/4
, SρτM

�

�

�

n+( j−1/4)�

.

(2.41)

Table 2.3: Runge-Kutta sub-step coefficients

j 1 2 3 4

ξ j 0.11 0.2766 0.5 1.0

The time step criterion is defined following the concept of convection-dominated flow
analysis and introducing the Courant-Friedrich-Lewy (CFL) number [43, 55, 134]

∆t =
CFL

ic + id
, (2.42)

where ic =
1
∆tc

and id =
1
∆td

represent the inverse convective and diffusive timestep respec-
tively. The convective and diffusive timesteps are limited by the fastest transport mechanism
occurring for each computational cell. For defining the inverse diffusive time step, Hirsch
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[55] applies a linear von Neumann stability analysis for a standard diffusion problem. For
the analysis, an explicit time and central difference space discretization is assumed. Schmidt
[126] and Sezal [128] adapted the criterion to incorporate diffusion processes in n dimen-
sions. The diffusive time step ∆td is limited by

∆td <
1
id

:=min

�

ρ (∆x i/n)
2

2µS

�

, i = 1,2, 3, n= 3, (2.43)

with the cell length ∆x i in space direction i and n = 3 for 3D flows. It proved suitable to
only consider the solvent viscosity for the diffusive timestep limitations. Multiple simulations
for different scenarios, where the Maxwell viscosity was neglected for the viscous timestep
calculation, showed stable behavior and led to physically correct results, concluding that
the overall timestep criterion is dominated by convection. The assertion can be emphasized
by the fact that the transport equation (2.6) for Maxwell-/Oldroyd-like fluids represents a
system of first-order hyperbolic equations [107]. Besides, in the subsequent section, it will be
shown that a simplified system of equations results in a hyperbolic system of equations. Thus,
a diffusive transport mechanism for the timestep criterion of the Maxwell stress transport is
not considered. To determine the appropriate convective time step criterion, the quasi-linear
system is analyzed hereunder.

2.2.3 Classification and eigenvalue calculation of the quasi-linear sys-
tem

For the convective timestep criterion, the linearized wave speeds corresponding to the rel-
evant parts of the transport equations (2.1),(2.2) and (2.18) are calculated. To do so, the
Eigenvalues of a simplified system in 1D are examined. The analysis is similar to Edwards
et al. [36], Guy et al. [51], and Rodriguez et al. [117]. Thus, the viscous solvent contribution
(µS = 0) and lower order terms in the source term of eq. (2.18) are neglected. Due to the
omission of all lower order terms, the analysis correlates with the one of the UCM model
and is sufficient to characterize constitutive equations of Oldroyd-like models described by
eq. (2.6). Only the x1-direction is considered, taking into account the momentum in the
remaining two directions to quantify shear wave speeds and longitudinal wave speeds. The
simplified 1D equations for the eigenvalue analysis are presented in Cartesian coordinates
hereafter:
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∂

∂ t
ρ +

∂

∂ x1
(ρu1) = 0

∂

∂ t
(ρu1) +

∂

∂ x1

�

ρu2
1 + p−τ

M ,11

�

= 0

∂

∂ t
(ρu2) +

∂

∂ x1

�

ρu2u1 −τM ,12

�

= 0

∂

∂ t
(ρu3) +

∂

∂ x1

�

ρu3u1 −τM ,13

�

= 0

∂

∂ t

�

ρτ
M ,11

�

+
∂

∂ x1

�

ρτ
M ,11

u1

�

−ρ
�

4
3

G +τ
M ,11

�

∂ u1

∂ x1
= 0

∂

∂ t

�

ρτ
M ,22

�

+
∂

∂ x1

�

ρτ
M ,22

u1

�

+ρ
�

2
3

G +τ
M ,22

�

∂ u1

∂ x1
− 2ρτ

M ,12

∂ u2

∂ x1
= 0

∂

∂ t

�

ρτ
M ,33

�

+
∂

∂ x1

�

ρτ
M ,33

u1

�

+ρ
�

2
3

G +τ
M ,33

�

∂ u1

∂ x1
− 2ρτ

M ,13

∂ u3

∂ x1
= 0

∂

∂ t

�

ρτ
M ,12

�

+
∂

∂ x1

�

ρτ
M ,12

u1

�

−ρ
�

G +τ
M ,11

� ∂ u2

∂ x1
= 0

∂

∂ t

�

ρτ
M ,13

�

+
∂

∂ x1

�

ρτ
M ,13

u1

�

−ρ
�

G +τ
M ,11

� ∂ u3

∂ x1
= 0

∂

∂ t

�

ρτ
M ,23

�

+
∂

∂ x1

�

ρτ
M ,23

u1

�

+ρτ
M ,23

∂ u1

∂ x1
−ρτ

M ,13

∂ u2

∂ x1
−ρτ

M ,12

∂ u3

∂ x1
= 0.

(2.44)

With the definition of the speed of sound for barotropic flows c2 := ∂ p
∂ ρ

�

�

�

s=const.
the system

of partial differential equations (2.44) is rewritten in quasi-linear form

∂ q
∂ t
+A (q)

∂ q
∂ x1

= 0, (2.45)

with the vector of primitive variables q and the Jacobian matrix A,

q=





































ρ

u1

u2

u3

τ
M ,11

τ
M ,22

τ
M ,33

τ
M ,12

τ
M ,13

τ
M ,23





































, A (q) =





































u1 ρ 0 0 0 0 0 0 0 0
c2

ρ u1 0 0 − 1
ρ 0 0 0 0 0

0 0 u1 0 0 0 0 − 1
ρ 0 0

0 0 0 u1 0 0 0 0 − 1
ρ 0

0 −4G
3 −τM ,11

0 0 u1 0 0 0 0 0
0 2G

3 +τM ,22
−2τ

M ,12
0 0 u1 0 0 0 0

0 2G
3 +τM ,33

0 −2τ
M ,13

0 0 u1 0 0 0
0 0 −G −τ

M ,11
0 0 0 0 u1 0 0

0 0 0 −G −τ
M ,11

0 0 0 0 u1 0
0 τ

M ,23
−τ

M ,13
−τ

M ,12
0 0 0 0 0 u1





































.

(2.46)

The quasi-linear system depicted in eq. (2.45) is linearized by assuming the coefficients
in A (q) to be constant [86]. The Eigenvalues λi of the matrix A (q), which correspond to the
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wave speeds, are calculated to

λ1,2,3,4 = u1, (2.47)

λ5,6 = u1 +

√

√ 1
ρ

�

G + |τ
M ,11
|
�

, (2.48)

λ7,8 = u1 −
√

√ 1
ρ

�

G + |τ
M ,11
|
�

, (2.49)

λ9 = u1 +

√

√

a2 +
1
ρ

�

4
3

G + |τ
M ,11
|
�

, (2.50)

λ10 = u1 −
√

√

a2 +
1
ρ

�

4
3

G + |τ
M ,11
|
�

, (2.51)

where λ5,6,7,8 are the shear wave speeds and λ9,10 quantify the longitudinal (pressure) wave
speeds. Owens et al. [107] showed that the Maxwell stress transport equation itself (2.6)
exhibits hyperbolic behavior independently of the chosen f

�

τ
M

,dd
�

since this term comprises
only lower order terms.

Regarding absolute values of the wave speeds, the longitudinal waves propagate the
fastest and are considered for calculating the convective time step criterion. The correspond-
ing expression for the convective time step ∆tc in n dimensions reads as follows

∆tc <
1
ic

:=min

�

∆x i/n
λmax

i

�

=min

�

�

|ui|+
√

√

c2 +
1
ρ

�

4
3

G + |τ
M ,ii
|
�

�−1
∆x i

n

�

, i = 1,2, 3, n= 3

(2.52)

where the remaining two directions in space are incorporated again. The obtained convective
and diffusive time step, or more specifically the inverse convective and diffusive time step ic

and id are applied together with eq. (2.42) for all cells to acquire the appropriate global
timestep. Extensive investigations for several flow scenarios were conducted by Schmidt
[126] and led to the result that the employed Runge-Kutta method remains stable up to
CFL= 1.5. A CFL number of CFL= 1.4 is eventually chosen for all presented computations.

2.2.4 Boundary conditions

To solve the described problem numerically, proper conditions for the variables have to be im-
posed at the boundary of the computational domain. Boundary conditions are implemented
by attaching two layers of virtual cells, denoted ghost cells (|g), to the cells of the computa-
tional domain (|d) as illustrated in fig. 2.3. n|Γ is the unit normal vector pointing outward at
the boundary face. These ghost cells contain values for the primitive variables to meet the
physically correct constraints at the boundary face. In doing so, the variables within the ghost
cells are not restricted to physically reasonable values but are defined to result in correct re-
constructions at the face between the computational domain and the ghost cells. A central
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domain cells boundary Γ

𝑑!𝑑" 𝑔"

ghost cells

$𝒏
#

𝑔!

Figure 2.3: Computational cells d1, d2 and adjacent ghost cells g1, g2 separated by the bound-
ary face Ω. n|Γ represents the outward pointing unit normal vector at the boundary.

reconstruction scheme for the calculation of variables at the cell face

p|Γ =
1
2

�

p|d + p|g
�

,

u|Γ =
1
2

�

u|d + u|g
�

,

τ
S/M

�

�

�

Γ
=

1
2

�

τ
S/M

�

�

�

d
+ τ

S/M

�

�

�

g

�

,

(2.53)

is applied. The density is calculated according the vapor volume fraction with the above-
mentioned equation of state. The following boundary conditions are implemented for the
studies presented in this work.

Inlet boundary conditions

For channel or duct flow simulations, inlet boundary conditions yielding a specific mass flow
inside the geometry are required. For the channel flow simulations carried out within this
work, a fixed pressure at the inlet and a Neumann condition, namely a zero-gradient condi-
tion for the velocity and the solvent stress, is specified. As a result of the hyperbolic nature
of the Maxwell stress transport equation, only an upstream Dirichlet boundary condition for
the Maxwell stress is required at the inlet [144]. By imposing conditions for the Maxwell
stresses at the inlet, the history of deformation of the viscoelastic fluid in the upstream region
of the domain is determined. The inlet face’s desired value is specified in the ghost cell layer
[104]. If there is no deformation history present in the upstream direction of the inlet, the
physical condition for the Maxwell stresses at the inlet is τ

M ,in
= 0. Gradients of solvent and

Maxwell stresses in the upstream direction shall be zero to obtain a developed flow. Hence,
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the corresponding inlet conditions read

p|Γin = pin −→ p|g = pin,

∇u|Γin · n|Γin = 0 −→ u|g = u|d ,

∇τ
S

�

�

Γin
· n|Γin = 0 −→ τ

S

�

�

g
= τ

S

�

�

d
,

τ
M

�

�

Γin
= τ

M ,in
−→ τ

M

�

�

g
= τ

M

�

�

Γin
,

(2.54)

where the left side of −→ depicts the physical constraint at the boundary face Γ , and the
right side shows the numerical implementation. pin represents a user-defined value for the
pressure. The zero gradient conditions are ensured by copying the variables from the domain
into the ghost cells.

Outlet boundary conditions

At the outlet face, the pressure is imposed and a zero-gradient condition for velocity and
solvent stresses is assumed. Due to the hyperbolic behavior of the transport equation for the
Maxwell stresses, there is no need to define specific values for the stress tensor components,
except for the upstream inlet boundary. As the reconstruction in eq. (2.53) requires a spec-
ified value in the ghost cell, a zero gradient assumption ∇

�

τ|Γout

�

· n|Γout
= 0 is applied (cf.

[41]). The boundary conditions summarize as follows:

p|Γout
= pout −→ p|g = p|d ,

∇u|Γout
· n|Γout

= 0 −→ u|g = u|d ,

∇τ
S/M

�

�

�

Γout

· n|Γout
= 0 −→ τ

S/M

�

�

�

g
= τ

S/M

�

�

�

d
.

(2.55)

Viscous wall boundary conditions

The viscous wall stipulates no-slip conditions for all velocity components at the face. Conse-
quently, all velocity components have to be zero at the face. To ascertain the no-slip condition,
the velocities are mirrored. For the stress tensors, solvent and polymeric, a zero gradient con-
dition applies with the same explanation as for outlet boundary conditions. Moreover, a zero
gradient condition also applies to the pressure. The corresponding boundary conditions read
as follows:

∇p|Γvisc
· n|Γvisc

= 0 −→ p|g = p|d ,

u|Γvisc
= 0 −→ u|g = − u|d ,

∇τ
S/M

�

�

�

Γvisc

· n|Γvisc
= 0 −→ τ

S/M

�

�

�

g
= τ

S/M

�

�

�

d
.

(2.56)
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Symmetry boundary conditions

The symmetry boundary is treated similarly to an inviscid wall. The pressure follows a zero
gradient Neumann condition. The slip condition holds for velocities. Therefore, normal
velocities must not occur at the boundary

�

u|Γs ym
· n|Γs ym

�

n|Γs ym
= 0, (2.57)

and tangential velocities remain unchanged

u|Γs ym
= u|Γs ym

−
�

u|Γs ym
· n|Γs ym

�

n|Γs ym
= u|d −
�

u|d · n|Γs ym

�

n|Γs ym
. (2.58)

Only normal velocities are mirrored. Considering the reconstruction eq. (2.53) for the veloc-
ities, the following calculation of velocities in the ghost cells fulfills the conditions above:

u|g = u|d − 2
�

u|d · n|Γs ym

�

n|Γs ym
. (2.59)

Although symmetry boundary conditions are commonly applied in numerical simulations,
there are few publications where the physical conditions for the stress tensor at a symmetry
plane are explicitly formulated. An appropriate symmetry boundary condition for the stress
tensor is derived in the following, beginning with a physical condition followed by a corre-
sponding ghost cell formulation. Subsequently, all conditions at a symmetry boundary face
are summarized. Baaijens et al. [8] and Huilgol et al. [60] formulate the vanishing tangential
traction condition. At first, the traction vector

t := τ · n (2.60)

describing the resultant force occurring at a face with the outward pointing normal vector n,
is defined. Vanishing tangential traction at the symmetry face is formulated as follows

t t |Γs ym
:=
�

nt |Γs ym
· τ|Γs ym

· n|Γs ym

�

= 0, ∀nt : nt · n= 0, (2.61)

where nt represents any tangential vector perpendicular to the outward pointing normal
vector n. Consequently, the stress tensor τ|Γs ym

and the corresponding traction vector at the
boundary face t|Γs ym

have to fulfill the following condition to ensure that all traction other
than the normal traction tn|Γs ym

vanishes

t|Γs ym
− tn|Γs ym

n|Γs ym
= 0

t|Γs ym
−
�

t|Γs ym
· n|Γs ym

�

n|Γs ym
= 0,

⇔ t|Γs ym
=
�

n|Γs ym
· τ|Γs ym

· n|Γs ym

�

n|Γs ym
.

(2.62)

A related condition was described by Oliveira et al. [104]. Furthermore, the boundary con-
dition should only suppress tangential traction, and the normal traction should remain unal-
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tered, coinciding with the traction that corresponds to the stress inside the physical domain.

tn|Γs ym
= tn|d ,

�

n|Γs ym
· τ|Γs ym

· n|Γs ym

�

=
�

n|Γs ym
· τ|d · n|Γs ym

�

.
(2.63)

To the author’s best knowledge, there was no work prior to the attached studies explicitly
describing the formulation of symmetry boundary conditions for the stress tensor in a ghost
cell approach. The stress tensor formulation in the ghost cells can be derived by proceeding
with the aforementioned conditions. By taking into account the reconstruction eq. (2.53),
the equation for the traction vector is rewritten to

t|Γs ym
=
�

n|Γs ym
· τ|d · n|Γs ym

�

n|Γs ym
=

1
2

�

τ|d + τ|g
�

· n|Γs ym
. (2.64)

Instead of the last equation, a corresponding equation can be formulated to

1
2

�

τ|d + τ|g
�

−
�

n|Γs ym
· τ|d · n|Γs ym

�

I= 0, (2.65)

which allows calculating an equation for the stress tensor in the ghost cell

τ|g = 2
�

n|Γs ym
· τ|d · n|Γs ym

�

I− τ|d . (2.66)

The reconstructed Maxwell stresses from eq. (2.66) at the symmetry plane fulfill the condi-
tions eqs. (2.61) to (2.63). The conditions at the symmetry boundary face and the conditions
imposed for the ghost cells can be summarized as follows:

∇p|Γs ym
· n|Γs ym

= 0 −→ p|g = p|d ,

u|Γs ym
· n|Γs ym

= 0 −→ u|g = u|d − 2
�

u|d · n|Γs ym

�

n|Γs ym
,

t t |Γs ym
= 0 −→ τ

S/M

�

�

g
= 2
�

n|d · τS/M

�

�

d
· n|d
�

I− τ
S/M

�

�

d
.

(2.67)

2.2.5 Sequences of the numerical algorithm

Algorithm 1 describes the procedures and relevant variables in one Runge-Kutta sub-step.
Before executing the four sub-steps, the variables of the previous timestep are cached. The
storage is necessary since a low-storage Runge-Kutta algorithm is applied, which retrieves
the variables of each sub-step by adding the numerical flux and source terms to the vari-
ables of the previous time step as explained in eqs. (2.39) to (2.41). There are various
ways to incorporate the transport equation for the Maxwell stress (2.38). As indicated
by eq. (2.41), the Maxwell stresses of the subsequent sub-step τ

M

�

�

n+ j/4
are calculated ex-

clusively by taking variables of the current sub-step n + ( j − 1)/4. Thereby, a consistent
state of all conserved variables during each solution sub-step is achieved for the segre-
gated explicit solution scheme. The source term is computed based on the primary vari-
ables ρ|n+( j−1)/4 , u|n+( j−1)/4 , τ

M

�

�

n+( j−1)/4
before being overwritten by the corresponding ones
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of the subsequent timestep ρ|n+ j/4 , u|n+ j/4 , τ
M

�

�

n+ j/4
. To improve efficiency, the Maxwell stress

source term SρτM
is calculated at the end to avoid the necessity of buffering the primary

variables. Subsequently, the convective fluxes F c
ρ
,F c

ρu,F c
ρτM

and the diffusive flux F d
ρu are

computed. Thereafter, the primary variables of the next sub-step n + j/4 are computed by
conducting the time integration. Dividing the primary variables by the density of the new
sub-step ρ|n+ j/4 leads to the updated primitive variables u|n+ j/4 , τ

M

�

�

n+ j/4
. With the help of

the updated density, the updated vapor content α|n+ j/4
i is initially computed and eventually

the pressure p|n+ j/4
i of the new sub-step, as described in section 2.1.4, is obtained. Finally,

all variables within the ghost cells are updated at the end of one Runge-Kutta loop, meeting
physically correct boundary conditions.

Algorithm 1: Operations during a substep of the explicit Runge-Kutta method
eqs. (2.39) to (2.41)

subroutine RungeKutta4
SaveOldVars()
// Save primitive variables of previous time step

for j←− 1 to 4 do

// Calculation of convective fluxes
ComputeConvectiveFluxes()

F c
ρ

�

�

�

n+( j−1)/4 �
ρ|n+( j−1)/4 , u|n+( j−1)/4

�

F c
ρu

�

�

�

n+( j−1)/4 �
ρ|n+( j−1)/4 , u|n+( j−1)/4 , p|n+( j−1)/4

�

F c
ρτM

�

�

�

n+( j−1)/4 �

ρ|n+( j−1)/4 , u|n+( j−1)/4 , τM

�

�

�

n+( j−1)/4�

// Calculation of diffusive/viscous fluxes
ComputeDiffusiveFluxes()

Fd
ρu

�

�

�

n+( j−1)/4 �

u|n+( j−1)/4 , τM

�

�

�

n+( j−1)/4�

// Time marching for primary variables n+ ( j − 1)/4→ n+ j/4

ρ|n+ j/4 ←−Lρ
�

F c
ρ

�

�

�

n+( j−1)/4�

(ρu)|n+ j/4 ←−Lρu

�

F c
ρu

�

�

�

n+( j−1)/4
, Fd

ρu

�

�

�

n+( j−1)/4�

�

ρτM

�

�

�

�

n+ j/4
←−LρτM

�

F c
ρ

�

�

�

n( j−1)/4
, SρτM

�

�

�

n+( j−1/4)�

// Update primitive variables

u|n+ j/4 ←− ( ρu)|n+ j/4

ρ|n+ j/4

τM

�

�

�

n+ j/4
←−

�

ρτM

�

�

�

�

n+ j/4

ρ|+ j/4

// Evaluate barotropic equation of state

p|n+ j/4
i ←− EOS
�

ρ|n+ j/4
i

�

// Calculation source term for the Maxwell stress
Viscoelastic()

SρτM

�

�

�

n+ j/4 �

ρ|n+ j/4 , u|n+ j/4 , τM

�

�

�

n+ j/4�

// Update boundary conditions
BoundaryConditions()



Chapter 3

Summary and Accomplishments

3.1 A compressible 3D finite volume approach for the simula-
tion of unsteady viscoelastic cavitating flows

Christian Lang, Oliver Boolakee, Steffen J. Schmidt, Nikolaus A. Adams: A compress-
ible 3D finite volume approach for the simulation of unsteady viscoelastic cavitating flows.
International Journal of Multiphase Flow, Volume 150, 2022, 103981, ISSN 0301-9322,
https://doi.org/10.1016/j.ijmultiphaseflow.2022.103981. [75]

Summary and accomplishments

The publication introduces a novel Eulerian approach for the numerical simulation of cavitat-
ing flows in viscoelastic fluids. It presents a fully compressible, three-dimensional, density-
based finite volume solver that combines a single-fluid homogeneous-mixture model for cav-
itation with compressible viscoelastic models of the Maxwell-/Oldroyd-type. As viscoelastic
models, the upper convected Maxwell (UCM) model, the Oldroyd-B (OLD-B) model, the sim-
plified linearized Phan-Thien Tanner (LPTT) model and the exponential Phan-Thien Tanner
(EPTT) model are implemented in conservative form. The Truesdell rate is derived as ap-
propriate objective time derivative applied in the viscoelastic transport equation considering
compressible flows. The single-fluid cavitation model considers condensation and evapora-
tion and assumes both phases, liquid and vapor, to be in thermodynamic and mechanical
equilibrium. To capture wave dynamics, the approach employs explicit time integration. The
respective timestep criterion is adapted for viscoelastic fluids by calculating the eigenvalues of
the corresponding quasi-linear 1D system of the governing equations to estimate the modified
wave speeds. The study introduces a novel symmetry boundary condition for the viscoelastic
stress tensor for ghost cell approaches. Moreover, the sequences of the numerical approach
are explained in detail.

The implemented viscoelastic models are successfully validated against (semi-)analytical
reference solutions as illustrated in figs. 3.1 and 3.2. Furthermore, the influence of vis-
coelasticity on cavitation dynamics is demonstrated by simulating spherical cavitation bubble
collapses in viscoelastic fluids.

23
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Figure 3.1: Validation of the velocity evolution during the start-up of a channel flow for
different elasticities against reference solution in OLD-B fluid from Lang et al. [75]. Solid
lines represent the reference solution, symbols simulation results. / Re = 1, De = 0
(Newtonian), / Re = 1, De = 2, / Re = 1, De = 5, / Re = 5, De = 1
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Figure 3.2: Validation of the steady state simulation results against references from Lang
et al. [75]. Solid lines represent the reference solution and symbols simulation results. Left:
velocity in x1-direction. Middle and right: / LPTT, / EPTT at Re = 0.375, De = 0.375.
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A significant effect on collapse dynamics is observed as illustrated for the collapse behavior
in Newtonian compared to UCM fluid in fig. 3.3. Moreover, the capability of resolving the
emission of shock waves in cavitating viscoelastic fluids is demonstrated for a violent bubble
collapse in UCM fluid.
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Figure 3.3: Spherical vapor bubble collapse: Non-dimensional bubble radius over time. (a)
Newtonian against UCM fluid at Re = 1, De = 1; (b) UCM fluid for different relaxation

times at Re = 1: De = 0.1, De = 0.5, De = 1, De = 1.5, De = 5,
De = 10. Results as presented in Lang et al. [75].

Individual contributions of the candidate

This article was published in the peer-reviewed International Journal of Multiphase Flow. My
contributions to this publication include the conceptualization, deriving the mathematical
foundation, and the implementation of the numerical methodology and software to perform
numerical simulations of cavitating flows in viscoelastic fluids. I conducted the numerical
investigations, the validation against references, performed the post-processing of the data,
and visualized the results. The original manuscript of the publication was written by me.
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3.2 On spherical vapor bubble collapse in viscoelastic fluids

Christian Lang, Mengqi Zhang, Steffen J. Schmidt, Nikolaus A. Adams: On spherical
vapor bubble collapse in viscoelastic fluids. Applied Mathematical Modelling, Volume 123,
2023, Pages 484-506, ISSN 0307-904X, https://doi.org/10.1016/j.apm.2023.07.004. [78]

Summary and accomplishments

With the approach introduced in the aforementioned publication, numerical simulations are
performed to investigate the spherical bubble collapses in viscoelastic fluids. Specifically, 3D
simulations of the spherical vapor bubble collapse for different elasticities, viscosities, and
different viscoelastic models are conducted. The collapse behavior, the viscous and viscoelas-
tic stress development in correlation with the occurring strain rate distributions, and the
pressure distribution during shock wave emission are examined.

It is shown that although the motion during spherical collapse is associated with pure
deviatoric strain rates, the viscoelastic collapse also exhibits spherical (isotropic) stresses,
even though the dissipation term only considers deviatoric strains as illustrated in fig. 3.4.
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Figure 3.4: Stress evolution for the spherical bubble collapse at the position r/R0 = 1.2. (a)
For the UCM fluid the viscoelastic stress components τM ,r r , τ

M ,ψψ
, τd

M ,r r
, τsph

M ,r r

and the related deformation rates dr r , dψψ at Re = 1, De = 1 are illustrated. (b) For
the Newtonian model the viscous stress components τ

S,r r
, τ

S,ψψ
, τd

S,r r
, τsph

S,r r
and

the corresponding deformation rates dr r , dψψ at Re = 1 are depicted. Results from
Lang et al. [78].

Furthermore, the time-delayed viscoelastic stress development is examined and visual-
ized, clearly illustrating a substantial difference compared to the solvent stress build-up (cf.
fig. 3.5). It is also shown that viscoelasticity significantly alters the collapse dynamics, and
increasing relaxation yields an acceleration of the collapse and higher collapse velocities for
the investigated parameters. Furthermore, an increased relaxation time increases shear-rates
and more out-of-phase stress development since the time for stress development is increased.
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It is observed, that the rebound radius is increased and the viscoelastic stresses decrease
with increasing the relaxation time. On the other hand, the influence of the variation of the
Reynolds number, and thus the influence of viscous forces, is examined. It is ascertained
that reducing the Reynolds number or increasing viscous to inertial forces, respectively, re-
duces strain rates but increases the occurring stresses. Reducing the viscosity leads to less
dampened collapse resulting in higher strain rates, but lower stresses.

t = 1.5× 10−6 s t = 3× 10−6 s t = 3.5× 10−6 s t = 5× 10−6 s

(a) Top: dr r [1/s], bottom: τ
S,r r
[Pa]

(b) Top: dr r [1/s], bottom: τ
M ,r r
[Pa]

Figure 3.5: Development of (a) solvent stresses τ
S,r r

and (b) Maxwell stresses τ
M ,r r

and the
occurring deformation rates dr r for different time instances during the collapse for the OLD-B
model at Re = 1, De = 1 as presented in Lang et al. [78].
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Distinct collapse dynamics are observed for the different viscoelastic models. As expected,
the models with solvent contribution exhibit a more dampened collapse compared to the
collapse in UCM fluid, where only the viscoelastic stresses affect the dynamics. It is found,
that the LPTT model shows slightly increased viscoelastic stresses, despite including shear-
thinning behavior, as compared to the OLD-B fluid. Moreover, shock wave emission is pre-
sented for increased elasticity. A mesh study with three different resolutions was carried out
for the case with increased elasticity, and it is found that shock wave formation depends on
the resolution for the applied parameters as shown in fig. 3.6. For the finest mesh used, the
shock wave formation is suppressed.
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Figure 3.6: Spherical bubble collapse for increased elasticity Re = 1, De = 3 and different
mesh resolutions as shown in Lang et al. [78]. (a) Radius ( shows the solution of the
Keller-Miksis equation) and (b) corresponding pressures at r/R0 = 1.2 over time during the
collapse for the UCM model at Re = 1, De = 3 and three different grid refinements. Resolution
in number of cells per initial radius: 100/R0, 140/R0, 200/R0.

Individual contributions of the candidate

This article was published in the peer-reviewed journal Applied Mathematical Modelling. My
contributions to this publication lie in the conceptualization, selecting the simulation param-
eters, and performing the numerical simulations yielding the presented results. Furthermore,
I implemented the necessary post-processing routines and visualized the results. The original
manuscript of the publication for the publication was written by me.
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3.3 Viscoelastic vapor bubble collapse near solid walls and
corresponding shock wave formation

Christian Lang, Stefan Adami, Nikolaus A. Adams: Viscoelastic vapor bubble collapse near
solid walls and corresponding shock wave formation. Physics of Fluids 1 January 2024; 36 (1):
013110. https://doi.org/10.1063/5.0175807, licensed under a Creative Commons Attribu-
tion (CC BY) license. [74]

Summary and accomplishments

This study investigates the influence of viscoelasticity on cavitating vapor bubble collapses
close to a solid wall. Due to the solid boundary, an aspherical collapse forms, and liquid
jetting can be observed for particular conditions. The approach mentioned above is applied
to conduct 3D simulations in Newtonian and the simplified linear Phan-Thien Tanner (LPTT)
fluid. The general collapse dynamics in Newtonian and viscoelastic fluids are compared,
and shock wave formation and liquid jetting are examined. Furthermore, the viscous and
viscoelastic stress distributions are presented. Newtonian versus LPTT fluid simulations are
performed for three different initial standoff distances. Moreover, the influence of elasticity
is examined using three distinct relaxation times for LPTT fluid simulations.

It was found that viscoelasticity significantly alters the collapse dynamics (cf. figs. 3.7
and 3.8) and shock wave formation mechanism (cf. fig. 3.9).

t = 3.34× 10−6 s t = 3.52× 10−6 s

t = 3.36× 10−6 s t = 4.32× 10−6 s

Figure 3.7: Aspherical bubble collapse in Newtonian fluid, Re = 40, h∗ = 1.5 as presented in
Lang et al. [74]. First and third column: vapor volume fraction α [−]. Second and fourth col-
umn: Wall normal velocity in x2-direction u2 [m/s] through the x1/x2-midplane and velocity
vectors scaled by the velocity magnitude; pressure distribution p [Pa] through the x2/x3-
midplane and at the wall. Isosurface shows α= 0.01.
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t = 3.28× 10−6 s t = 4.6× 10−6 s

t = 3.3× 10−6 s t = 5.45× 10−6 s

t = 3.4× 10−6 s t = 5.5× 10−6 s

t = 4× 10−6 s t = 5.55× 10−6 s

Figure 3.8: Aspherical bubble collapse in LPTT fluid, Re = 40, De = 2, h∗ = 1.5 as presented
in Lang et al. [74]. First and third column: vapor volume fraction α [−]. Second and fourth
column: Velocity in x2-direction u2 [m/s] through the x1/x2-midplane and velocity vectors
scaled by the velocity magnitude; pressure distribution p [Pa] through the x2/x3-midplane
and at the wall. Isosurface shows α= 0.01.

For the initially wall-detached bubbles examined, viscoelasticity yields jet piercing, which
is not observed for the Newtonian collapse, where a complete condensation of the vapor
cavity without prior jet impingement occurs. The amount of re-evaporated fluid during the
second collapse is increased for the viscoelastic collapse. As illustrated in fig. 3.11, it is
ascertained that the pressure wave emission is of comparable intensity or stronger for the first
collapse in the Newtonian fluid. However, the pressure resulting from the second collapse
is much larger in the viscoelastic case (cf. fig. 3.11). For initially wall-attached bubbles,
a second collapse is only observed for the viscoelastic collapse which can be seen from jet
velocities as illustrated in figs. 3.10 and 3.11.
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t = 3.351× 10−6 s t = 3.353× 10−6 s t = 3.355× 10−6 s t = 3.363× 10−6 s t = 3.372× 10−6 s

t = 3.282× 10−6 s t = 3.284× 10−6 s t = 3.286× 10−6 s t = 3.288× 10−6 s t = 3.291× 10−6 s

Figure 3.9: Shock wave formation during the aspherical bubble collapse from Lang et al.
[74]. Pressure distribution p [Pa] in the x1/x2-midplane for Re = 40, De = 2, h∗ = 1.5. Top:
Newtonian fluid, bottom: LPTT fluid. Black isoline shows vapor content of α= 0.01.
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Figure 3.10: Jet velocity u2, jet [m/s] in x2-direction over time measured at centerline for
Re = 40, De = 2 and different initial standoff distances as presented in Lang et al. [74]. (a)
Newtonian fluid: h∗ = 0.35, h∗ = 1.1, h∗ = 1.5. (b) LPTT fluid: h∗ = 0.35,

h∗ = 1.1, h∗ = 1.5.
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Figure 3.11: Pressure evolution p [Pa] at the wall (x∗2 = 0) at the position of maximum
occurring pressure for different initial standoff distances at Re = 40, De = 2 (logarithmic
scale). (a) Newtonian fluid h∗ = 0.35 at r∗ = 0.25, reference case (h∗ = 1.1) at
r∗ = 0.02, h∗ = 1.5 at r∗ = 0.02. (b) LPTT: at r∗ = 0, reference case (h∗ = 1.1) at
r∗ = 0, h∗ = 1.5 at r∗ = 0. Results from Lang et al. [74].

The elasticity variation reveals that the amount of re-evaporation during rebound corre-
lates to the investigated cases’ relaxation time. Studying the viscous and viscoelastic stress
distributions showed a direct influence of the occurring stresses on the flow field and the
re-evaporation during rebound. The viscoelastic stresses exhibit a smoother distribution,
whereas the viscous (solvent) stress fields exhibit more fluctuations. The different distribu-
tions can be explained by the direct relation of viscous stresses and strain rate, which can
exhibit large oscillations, especially when shock waves are reflected and interfere, as in the
present problem. The viscoelastic stress field develops with a time delay, depending on the
relaxation time, which again yields much smoother stress distributions.

Individual contributions of the candidate

This article was published in the peer-reviewed journal Physics of Fluids. I contributed to
this publication in doing the literature review, developing the conceptualization, selecting
the relevant cases and simulation parameters, and conducting the numerical simulations. I
implemented the necessary post-processing routines and generated the visualizations. The
original manuscript of the publication for the publication was written by me.
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Chapter 5

Concluding Discussion with Respect to
the State of the Art

The method introduced in Lang et al. [75] represents a density-based approach with finite-
volume discretization, explicit time integration, and a single fluid homogeneous mixture cav-
itation model for the simulation of fully compressible cavitating flows in viscoelastic fluids.
Different viscoelastic models (Upper convected Maxwell model, Oldroyd-B model, linear and
exponential Phan-Thien Tanner model) are implemented in conservative formulation. Exist-
ing numerical studies on viscoelastic flows commonly assume incompressibility and single-
phase media [1, 6, 9, 31, 40, 42, 52, 104, 108, 124] often in connection with a (semi-)implicit
time discretization [1, 6, 40, 104, 108] and are frequently employed for steady-state flows.
In the 1990s, methods emerged, using finite volume spatial discretization to simulate 2D/3D
unsteady, but still mainly incompressible, flows. Yul Yoo et al. [148] simulated the unsteady
incompressible flow through a 2D planar contraction of an OLD-B fluid employing finite vol-
umes and the SIMPLER algorithm. Sato et al. [124] conducted unsteady simulations of the
UCM and OLD-B fluid using an explicit time integration and a mixed finite volume/finite el-
ement discretization. Mompean et al. [96] used an explicit time integration together with a
finite volume discretization and the OLD-B model to investigate the time dependent incom-
pressible flow through 2D and 3D planar contractions.

In several studies, multiphase flows are considered incorporating viscoelasticity assuming
incompressible flows [32, 34, 44, 53, 61, 88, 123, 129, 146, 147, 151, 152]. A few stud-
ies considered compressibility combined with viscoelasticity and multiphase flows by using
1D formulations to study the bubble dynamics in viscoelastic fluids [22, 24, 59, 87, 143,
150]. Furthermore, methods for the simulation of compressible viscoelastic flows in more
dimensions [14, 29, 68, 69, 89, 93, 94, 97, 98, 111, 117, 118, 121] have been developed,
but only few consider unsteady, multiphase flows [97, 117, 118]. In Rodriguez et al. [117,
118] solid-like viscoelastic models are employed, not considering cavitation, i.e., evapora-
tion and condensation. Naseri et al. [97] numerically investigates cavitating flows combined
with viscoelastic fluids, considering compressibility only in the mixture, whereas pure phases
are treated as incompressible, hence emitted shock waves cannot be fully resolved. To the
author’s knowledge, there is no other than the presented method to simulate unsteady, fully
compressible, three-dimensional flows considering cavitation and viscoelasticity. The density-
based approach allows for the simulation of two-phase cavitating flows with viscoelastic con-
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stitutive equations and to resolve shock-wave dynamics. In Lang et al. [75], the approach
is validated against (semi-)analytical references with excellent agreement by performing un-
steady start-up simulations of channel flows. Furthermore, viscoelasticity leads to oscillating
spherical bubble collapse in contrast to the Newtonian collapse. The different constitutive
models result in distinct collapse behaviors, where fluids with solvent contribution exhibit
smaller rebound radii during the oscillations. Moreover, it is shown that viscoelasticity can
lead to shock wave emission during collapse.

In Lang et al. [78] the approach mentioned above is applied to conduct 3D simulations
of the spherical vapor bubble collapse in three different viscoelastic fluids (UCM, OLD-B,
LPTT). Subsequently, the viscoelastic collapse dynamics, viscous and viscoelastic stress devel-
opment, and the relation between stress development and the occurring deformations rates
are investigated. Furthermore, the isolated influence of the variation of elasticity and vis-
cosity is examined, and the effect of the distinct viscoelastic models is determined. Existing
numerical studies on spherical bubble dynamics in viscoelastic fluids are typically based on
1D formulations [2–5, 22, 24, 45, 48, 59, 91, 123, 132, 143, 146, 150]. There are only a
few studies known by the author using 3D methods to investigate spherical bubble dynamics.
Foteinopoulou et al. [46] apply a finite element-based discretization to study the asphericity
and oscillatory behavior of bubbles in Phan-Thien Tanner fluid, assuming the flow to be in-
compressible. Laridon et al. [79] used a finite element method together with a multimode
Maxwell model to simulate the growth of bubbles in an incompressible medium. For the
numerical simulation of the spherical bubble collapse in viscoelastic media, compressibility
was only taken into account by some 1D approaches [22, 24, 48, 59, 143, 150]. For the sim-
ulation of aspherical bubble dynamics in the vicinity of a rigid wall, Lind et al. [89] employ
a 2D approach. From the aforementioned 1D methods, only Zilonova et al. [150] takes into
account cavitation. To the author’s best knowledge, 3D simulations of cavitating bubbles in
viscoelastic fluid have not been conducted thus far. Additionally, there have been no existing
numerical 3D simulations of cavitating bubbles in viscoelastic fluids considering compress-
ibility. Hence, Lang et al. [78] presents the first numerical study investigating the different
viscous and viscoelastic stress components, the relation to the occurring deformation rates,
and deviatoric and spherical stresses during viscoelastic bubble collapse. Furthermore, 3D
simulations of the bubble collapse with parameter variation of elasticity and viscosity have
not been conducted before. Moreover, there was no existing study to show 3D shock wave
emission for the viscoelastic bubble collapse yet.

The study shows the fundamental impact of viscoelasticity leading to oscillations during
collapse, which results from different viscoelastic stresses. The development of the viscoelas-
tic stresses is substantially different from Newtonian ones. It is illustrated that solvent stresses
appear without time delay directly proportional to the deformation rate. The viscoelastic
stresses develop with time-delay attributed to relaxation, which is described by the consti-
tutive equation. Viscoelastic stresses feature convective transport related to the flow field.
Moreover, viscoelasticity introduces isotropic stresses, although the deformation rate and the
corresponding dissipation term are entirely deviatoric. Furthermore, the significant influence
of relaxation time is exhibited. For the investigated parameters, increasing the elasticity accel-
erates the collapse in the early stages due to delayed stress development. The rebound radii
increase with increased elasticity since less viscous dissipation is present during the collapse.
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The comparison between the different viscoelastic models reveals more substantial viscous
damping and smaller rebound radii for models with solvent contribution. For the UCM model,
increasing the elasticity results in the emission of shock waves. It is demonstrated that, for
the investigated parameters, shock wave emission depends on the mesh resolution, and an
entire collapse is required to generate a shock wave.

Using a 3D method also allows simulating aspherical bubble collapses. In Lang et al. [74],
the approach is exploited to examine the viscoelastic vapor bubble collapse in the vicinity
of a solid wall. The study examines the generic dynamics of Newtonian versus viscoelastic
bubble collapse close to a rigid wall. Viscoelasticity is introduced by the simplified linear
Phan-Thien Tanner (LPTT) model, considering shear-thinning behavior. Besides the collapse
dynamics, the viscous and viscoelastic stress development, responsible for the distinct dy-
namics of Newtonian and viscoelastic behavior, is investigated. Furthermore, the influence
of initial standoff distance and distinct elasticities is presented. Additionally, the study ex-
amines shock wave formation and emission during collapse. Most of the existing numerical
studies on wall-influenced bubble collapse consider inviscid [16, 18, 58, 65, 81, 82, 84, 113,
114, 131, 133, 138, 146] or Newtonian fluids [13, 27, 28, 71, 72, 83, 90, 99, 115, 122,
140, 149]. Some of the existing numerical studies on wall-influenced bubble collapse in vis-
coelastic media assume irrotational and incompressible flow applying the Boundary Element
Method (BEM) [88, 142]. In Lind et al. [88], the Maxwell model combined with the material
derivative as time rate is applied as constitutive model. Walters et al. [142] use the Oldroyd-B
model to model viscoelasticity, incorporating solvent contributions and the upper convected
derivative for the viscoelastic stress tensor. The BEM is computationally very efficient but
comprises some disadvantages. First, stresses are only incorporated at the interface, neglect-
ing stresses in the remaining field. Second, if two points at the bubble surface coincide, a
singularity forms, yielding the simulation to fail. Liquid jet piercing and subsequent toroidal
bubble shapes can thus not be resolved. To overome this disadvantage, Walters et al. [142]
introduces a non-singular formulation of the BEM to simulate toroidal-shaped bubbles and
jet formation. Lind et al. [89] employs a spectral element marker particle approach consider-
ing rotational and compressible flows to simulate aspherical bubble collapses in viscoelastic
fluid. The Oldroyd-B model with upper convected time rate is used as viscoelastic model. The
approaches mentioned above [88, 89, 142] all consider gas-filled bubbles neglecting evapo-
ration and condensation. Furthermore, none of these studies examines shock-wave emission
generated during the collapse. Additionally, the present study Lang et al. [74] incorporates
shear-thinning effects by using the LPTT viscoelastic model. In sum, the major novelties in
Lang et al. [74] are the fully compressible 3D approach combined with a viscoelastic model
accounting for shear-thinning behavior and a cavitation model considering evaporation and
condensation. To the author’s best knowledge, this is the first study examining shock wave
emission during the aspherical vapor bubble collapse in the vicinity of a solid wall in vis-
coelastic fluid.

The study illustrates that viscoelasticity significantly influences the collapse dynamics
close to solid walls. It is shown that viscoelasticity increases re-evaporation during the first
rebound, resulting in larger pressures during the second collapse. The pressure wave emitted
during the first collapse is of comparable intensity for both fluids or more intense in New-
tonian liquid. For initially wall-detached bubbles, viscoelasticity changes the shock emission
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mechanism by introducing jet-piercing. Moreover, wall-detached bubbles exhibit jet forma-
tion during the second collapse only in the viscoelastic cases. It is shown that the viscoelastic
stresses are responsible for the increased amount of vapor produced during rebound. The
variation of elasticity reveals the correlation between relaxation time and re-evaporation. In-
creased relaxation time results in more vapor following the first collapse. The jet velocity is
highest for the lowest elasticity.



Chapter A

Peer-Reviewed Journal Publications

A.1 A compressible 3D finite volume approach for the simula-
tion of unsteady viscoelastic cavitating flows

(Reproduced from [75])

38



26.07.23, 19:06 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet 1/1

Home Help Live Chat Sign in Create Account

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

A compressible 3D �nite volume approach for the simulation of
unsteady viscoelastic cavitating �ows

Author: Christian Lang,Oliver Boolakee,Ste�en J. Schmidt,Nikolaus A. Adams

Publication: International Journal of Multiphase Flow

Publisher: Elsevier

Date: May 2022

© 2022 Elsevier Ltd. All rights reserved.

Journal Author Rights

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or dissertation,
provided it is not published commercially. Permission is not required, but please ensure that you reference the
journal as the original source. For more information on this and on your other retained rights, please
visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-rights

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com



International Journal of Multiphase Flow 150 (2022) 103981

Available online 31 January 2022
0301-9322/© 2022 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier.com/locate/ijmulflow

A compressible 3D finite volume approach for the simulation of unsteady
viscoelastic cavitating flows
Christian Lang a,∗, Oliver Boolakee b, Steffen J. Schmidt a, Nikolaus A. Adams a

a Chair of Aerodynamics and Fluid Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching bei München, Germany
b Department of Mechanical and Process Engineering, ETH Zürich, Tannenstrasse 3, 8092 Zürich, Switzerland

A R T I C L E I N F O

Keywords:
Viscoelasticity
Cavitation
Compressible flow
Objective time derivative
Stress tensor symmetry boundary condition
Bubble dynamics

A B S T R A C T

We present a fully compressible, density-based finite volume solver for the simulation of 3D cavitating flows
in viscoelastic Maxwell-/Oldroyd-like fluids. The upper-convected Maxwell model, the Oldroyd-B model and
the linear and exponential simplified Phan-Thien Tanner models are implemented as viscoelastic constitutive
equations in conservative formulation, and we identified the Truesdell rate as appropriate objective time
derivative for compressible flows. Cavitation is modeled by a single-fluid homogeneous mixture equilibrium
approach considering condensation and evaporation assuming volume averaged mixture quantities. The
corresponding simplified quasilinear system is analyzed, and the wave speeds are calculated in order to adapt
the employed four step Runge–Kutta explicit time stepping concerning the viscoelastic transport equations.
We introduce a novel ghost cell boundary condition for the viscoelastic stress tensor. The approach is tested
against (semi-)analytical unsteady and steady-state references and shows very good agreement. 3D simulations
of the spherical vapor bubble collapse are performed for all implemented viscoelastic models and show a
distinct influence compared to the Newtonian case. For the upper-convected Maxwell fluid a variation of the
relaxation time exhibits its perspicuous influence on the dynamics of the collapse.

1. Introduction

Cavitating flows play an important role in different fields of science
and engineering such as acoustics, biomedical applications and process
engineering. The applications range from liquid fuel injectors (Egerer
et al., 2014), pumps and ship propellers (Budich, 2018) to sono-
chemical reactors (Gogate et al., 2003), cleaning (Ohl et al., 2006a)
and medical applications such as shock-wave lithotripsy (Johnsen and
Colonius, 2008), histotripsy (Vlaisavljevich et al., 2015) and medical
drug delivery by means of sonoporation (Price and Kaul, 2002; Ohl
et al., 2006b; Lentacker et al., 2014) just to name a few examples.
Most of the research on cavitating flow has been conducted for purely
viscous Newtonian fluids. However, dependent on the relaxation time
and the time-scale of observation many materials can exhibit viscous
and simultaneously elastic behavior and therefore be described as
viscoelastic materials (Barnes, 1989; Owens and Phillips, 2002). Several
fields of application in which cavitation occurs are also influenced by
viscoelasticity. For instance, biomaterials most of the materials used
in biomedical applications where cavitation takes place in form of
bubble dynamics exhibit viscoelasticity (Brujan, 2011; Vlaisavljevich
et al., 2015; Walters, 2015). If cavitation occurs in polymeric materials

∗ Corresponding author.
E-mail address: c.lang@tum.de (C. Lang).
URL: http://www.aer.mw.tum.de (C. Lang).

viscoelastic influence has to be considered (Brujan, 2019), too. Also
in industrial applications such as lubricants in bearings, viscoelasticity
affects cavitation (Berker et al., 1995). A comprehensive overview of
cavitation in non-Newtonian fluids is given in the textbook of Brujan
(2011). Viscoelasticity can heavily alter cavitation and therefore it is of
crucial interest to understand its influence.

The majority of the developed solvers for viscoelastic flow prob-
lems assume incompressible flow (Crochet and Bezy, 1979; Perera
and Strauss, 1979; Oliveira et al., 1998; Sato and Richardson, 1994;
Aboubacar and Webster, 2001; Alves et al., 2003; Favero et al., 2010;
Al-Baldawi, 2012; Habla et al., 2012; Ferrás et al., 2020) often in
combination with a (semi-)implicit time discretization scheme (Perera
and Strauss, 1979; Oliveira et al., 1998; Aboubacar and Webster, 2001;
Alves et al., 2003; Favero et al., 2010). In the 1990s, several studies
emerged using a finite volume discretization for the calculation of 2D
and 3D unsteady viscoelastic flows. Yul Yoo and Na (1991) simulated
the unsteady incompressible flow through a 2D planar contraction of a
OLD-B fluid employing finite volumes and the SIMPLER algorithm. Sato
and Richardson (1994) conducted unsteady simulations of the UCM
and OLD-B fluid using an explicit time integration and a mixed finite
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volume/finite element discretization. Mompean and Deville (1997)
used an explicit time discretization together with a spatial finite volume
discretization and the OLD-B model to investigate the time dependent
incompressible flow through 2D and 3D planar contractions.

Additionally, in some approaches compressibility was taken into
account. Some of these consider the 1D formulation of the conser-
vation and constitutive equations to investigate bubble dynamics in
viscoelastic fluids (Brujan, 1999, 2001; Lind, 2010; Hua and Johnsen,
2013; Warnez and Johnsen, 2015; Zilonova et al., 2018). Only a few
numerical methods for the simulation of compressible viscoelastic flows
in more dimensions (Phelan et al., 1989; Nithiarasu, 2004; Keshtiban
et al., 2005; Belblidia et al., 2006; Lind and Phillips, 2013; Chakraborty
and Sader, 2015; Rowlatt and Lind, 2017; Naseri et al., 2018; Rodriguez
and Johnsen, 2019; Rodriguez et al., 2019) were developed so far.
Again, only few of these works on compressible viscoelastic flows inves-
tigate unsteady effects by use of an explicit time discretization (Phelan
et al., 1989; Nithiarasu, 2004; Rodriguez and Johnsen, 2019; Rodriguez
et al., 2019).

Most of the existing numerical studies connecting cavitation and
viscoelasticity focus on bubble dynamics and their collapse. In 1970,
Fogler and Goddard (1970) found out that viscoelasticity can alter the
spherical bubble collapse based on the 1D formulation of the governing
equations for a Maxwell fluid and incompressible flow. He examined
that the collapse can be retarded, and oscillatory motion is possibly
initiated. Kim (1994) likewise investigated the bubble collapse consid-
ering the 1D conservation and constitutive equations for a Maxwell
fluid and comparing two different finite element methods. Jiménez-
Fernández and Crespo (2006) showed the influence of viscoelasticity
on the collapse of gas bubbles and empty voids. Hua and Johnsen
(2013) and Warnez and Johnsen (2015) revealed that compressibility
can be relevant for bubble dynamics in viscoelastic materials. Hua and
Johnsen (2013) showed that damping can be influenced essentially by
compressible as well as viscoelastic effects considering the Zener model
for a viscoelastic solid in 1D together with the Keller–Miksis equa-
tion. Warnez and Johnsen (2015) employ a generalized constitutive
relation to realize several viscoelastic models and likewise solve the
compressible 1D Keller–Miksis equation to investigate the influence of
relaxation time on bubble dynamics. They found out that relaxation
can lead to faster bubble growth and that the differences between
the viscoelastic constitutive models become more conspicuous with
increasing relaxation time. Numerical studies that combine multiphase
flows in more dimensions (2D & 3D) with viscoelastic fluids are quite
rare. Lind and Phillips (2013) and Rowlatt and Lind (2017) used a spec-
tral element method to study the influence of viscoelasticity on bubble
dynamics. They applied a marker particle method and the compressible
OLD-B constitutive model. In Lind and Phillips (2013), they perceived
that viscoelasticity is able to reduce cavitation damage by inhibiting
jet formation. A boundary element method and the vortex ring method
were employed by Walters (2015) to examine the aspherical bubble col-
lapse in viscoelastic fluids near a solid wall, too. They also detected that
jet formation may be suppressed by viscoelasticity. Figueiredo et al.
(2016) developed a two-phase 3D approach to study the Weissenberg
effect for several viscoelastic materials. To the best of our knowledge,
only the works of Naseri et al. (2018), Rodriguez and Johnsen (2019)
and Rodriguez et al. (2019) present compressible solvers to calculate
viscoelastic cavitating flows in more dimensions. In Naseri et al. (2018),
only the liquid–vapor mixture is considered compressible whereas the
liquid phase is assumed to be incompressible. They employed the cav-
itation model of Schnerr and Sauer (2001) and implemented the linear
PTT (LPTT) model in a 3D finite volume framework. The cavitation
model does not account for condensation and time integration is real-
ized by an implicit time discretization. 3D simulations were conducted
to investigate the influence of viscoelasticity on cavitating flows. In
particular, the flow in two different nozzles together with cloud and
string cavitation was examined. They ascertained that the viscoelastic
contribution significantly reduces the occurrence of cavitation and

the resulting vapor volume fraction. Rodriguez and Johnsen (2019)
introduced a compressible 3D flow solver based on finite difference
discretization together with explicit time marching. They combine
the five-equations multiphase model with constitutive equations of
viscoelastic solids and implemented the Maxwell, Kelvin–Voigt and
generalized Zener model. In Rodriguez et al. (2019) a quite similar
methodology is employed. Like in Rodriguez and Johnsen (2019), their
multiphase approach does not take condensation into consideration.
They performed various test cases to validate their implementation and
demonstrated that the method correctly predicts wave propagation in
viscoelastic heterogeneous/multiphase materials. To date, there is no
3D flow simulation and numerical analysis of fully compressible, vis-
coelastic, cavitating flows, especially no consideration of condensation
and resulting shock wave dynamics. In order to capture shock and wave
dynamics during sudden re-condensation and collapse of cavitation
structures it is crucial to employ an unsteady compressible formulation
of the governing conservation and transport equations (Sezal, 2009).
Moreover, Hua and Johnsen (2013) and Warnez and Johnsen (2015)
stated that compressible effects have to be taken into account when
studying the influence of viscoelasticity on cavitation. For the spherical
collapse of a single vapor bubble the Keller–Miksis equation can be em-
ployed, although it has the disadvantage of considering compressibility
only in the far-field. Additionally, for aspherical bubble collapses a 3D
formulation is required.

Our research group has developed a density-based compressible
3D flow solver with spatial finite volume discretization and explicit
time integration to calculate unsteady cavitating flows. A single-fluid
homogeneous mixture equilibrium approach which is described in more
detail in Section 2.3 is deployed to model cavitation with evaporation
and condensation. By means of this method several studies on cavitat-
ing flows were conducted. Within the scope of this work, we present
a compressible viscoelastic flow solver for Maxwell-/Oldroyd-like con-
stitutive models with a proper compressible objective time derivative
which allows us to simulate unsteady cavitating flows and resolve
shock and wave dynamics in time. The UCM, OLD-B, the simplified
linear PTT (LPTT) and exponential PTT (EPTT) are implemented. We
present a novel formulation for the symmetry boundary condition of
the viscoelastic stress tensor that becomes necessary when employing a
ghost cell boundary condition approach. The solver is validated against
(semi-)analytical reference solutions and viscoelastic simulations of
the spherical vapor bubble collapse are performed exhibiting distinct
influence of viscoelasticity on the bubble dynamics.

2. Mathematical and physical model

2.1. Conservation equations for compressible flow

We employ the 3D conservation equations for compressible flow in
an Eulerian frame. We assume the phase change to be isentropic and
apply a barotropic equation of state (see Section 2.3). The temperature
changes due to isentropic phase change are very small. Furthermore,
the internal energy can only be altered by either shock wave emission
or viscous dissipation. For the investigated cases, the intensity of the
shock waves are of limited intensity and the heat capacity of the fluid
is rather large. Accordingly, the temperature changes due to modified
internal energy or phase change are small and can therefore be ne-
glected. Hence, the conservation equations of mass and momentum are
sufficient to describe the flow. By neglecting body forces the following
equations describe the mixture:

𝜕𝜌
𝜕𝑡

+ div (𝜌𝐮) = 0, (1)

𝜕 (𝜌𝐮)
𝜕𝑡

+ div (𝜌𝐮⊗ 𝐮) = div (𝝈) , (2)

where 𝜌 = 𝜌 (𝐱, 𝑡), 𝐮 = 𝐮 (𝐱, 𝑡) and 𝝈 = 𝝈 (𝐱, 𝑡) are the mixture density,
the fluid velocity and the Cauchy stress tensor with respect to the
position 𝐱 in current configuration and time 𝑡. The Cauchy stress tensor
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Fig. 1. 1D mechanical/rheological representation of an Oldroyd-like constitutive
model. Upper dashpot represents a Newtonian solvent; below: Maxwell element
consisting of dashpot and Hookean spring in series arrangement.

is composed of the thermodynamic pressure 𝑝 and the viscous stress
tensor 𝝉 neglecting surface tension:

𝝈 = −𝑝𝐈 + 𝝉 . (3)

Note that for the two phases of water and vapor these equations are
solved assuming a homogeneous mixture of both. The calculation of
mixture quantities is explained in Section 2.3 The formulation of the
viscous stress tensor which comprises the viscoelastic contribution is
described hereafter.

2.2. Viscoelastic constitutive model

2.2.1. Compressible Maxwell-/Oldroyd-type model
We consider a compressible Maxwell-/Oldroyd-type constitutive

model which consists of a Newtonian solvent stress 𝝉𝑆 and a vis-
coelastic part. The viscoelastic part can be regarded as polymeric
stress contribution in a Newtonian solvent and is denoted as Maxwell
stress 𝝉

𝑀
. The 1D rheological representation of Oldroyd-like models

is illustrated in Fig. 1. The Oldroyd element consists of a Newtonian
dashpot element and a Maxwell element in parallel. The upper dashpot
element represents the Newtonian solvent. The Maxwell element itself
is a series arrangement of a dashpot and a Hookean spring and is
responsible for the viscoelastic behavior introducing a time dependent
stress response.

By introducing the velocity gradient 𝒍 = grad (𝐮), the symmetric part
of the velocity gradient 𝐝 = 1

2

(
𝒍 + 𝒍𝑇

)
and the deviatoric (traceless)

strain rate tensor 𝐝𝑑 = 𝐝 − 1
3 tr (𝐝) 𝐈 the constitutive model reads

𝝉 = 𝝉
𝑆
+ 𝝉

𝑀
, (4)

𝝉
𝑆
= 2𝜇𝑆𝐝𝑑 , (5)

𝝉
𝑀

+ 𝜆
∇
𝝉
𝑀

+ 𝑓
(
𝝉
𝑀
,𝐝𝑑

)
𝝉
𝑀

= 2𝜇𝑀𝐝𝑑 . (6)

The solvent viscosity is described by 𝜇𝑆 and 𝜇𝑀 represents the poly-
meric viscosity which we call Maxwell viscosity.

∇
𝝉
𝑀

is an objective
time derivative of the Maxwell stress and is discussed in further detail
in Section 2.2.2. 𝜆 = 𝜇𝑀

𝐺 represents the relaxation time and relates
the Maxwell viscosity to the modulus of polymeric elasticity. Special
attention was paid to the formulation for compressible flow. We include
compressibility in the solvent as well as in the Maxwell part of the
fluid (cf. Oliveira et al., 1998; Keshtiban et al., 2004, 2005; Belblidia
et al., 2006) and consequently assume that only the deviatoric part of
the deformation contributes to dissipation in both the solvent and the
Maxwell part. The isotropic part, i.e. the part responsible for purely
volumetric deformation, however, does not. Thus, bulk viscosity which
models the viscous stress response to volume change is also neglected.
Nevertheless, the objective time derivative (cf. Section 2.2.2) used in
this work can introduce a nonzero trace tr

(
𝝉
𝑀

) ≠ 0 in the Maxwell

stress tensor which leads to an isotropic part in the viscous stress tensor
𝝉.

The approach resembles the formulation of Keshtiban et al. (2004,
2005) and Belblidia et al. (2006) but differs from that by not explicitly
excluding the trace of the stress tensor 𝝉. Otherwise, isotropic stresses
initiated by the objective rate which is connected with the deformation
itself would not contribute to the momentum Eq. (2). The physical mo-
tivation for such formulation is that spherical stresses which occur due
to deformation and involved transformations ensuring frame invariance
(see Section 2.2.2) are considered in the momentum balance. Bollada
and Phillips (2012) support this approach by applying non-equilibrium
thermodynamics to show that the thermodynamic pressure 𝑝 and the
trace of the Cauchy stress tensor tr (𝝈) should not necessarily coincide.
Our formulation of the constitutive equations agrees with that of Hou-
siadas and Georgiou (2011), Housiadas et al. (2012). Moreover, we use
a different objective rate, which appears to be more appropriate for
compressible flows.

Furthermore, the Maxwell model in differential form is extended by
an additional term 𝑓

(
𝝉
𝑀
,𝐝𝑑

)
. The modification addresses the issue of

an unbounded extensional viscosity and accounts for the description
of shear-thinning (Larson, 1992; Böhme, 2000; Owens and Phillips,
2002). Different constitutive models can be recovered by using a dif-
ferential constitutive equation of the type of Eq. (6) like the Johnson
and Segalman (Johnson and Segalman, 1977), the Giesekus (Giesekus,
1966, 1982) and the Phan-Thien Tanner (PTT) model (Phan-Thien and
Tanner, 1977; Phan-Thien, 1978). The PTT model originates from the
network theory of polymer fluids and predicts bounded extensional
viscosity as well as shear thinning behavior for the viscosity and is
well suited to simulate flows of polymer melts and solutions. For
this work, the upper-convected Maxwell (UCM) model, the Oldroyd-B
(OLD-B) model (Oldroyd, 1950, 1984), the linear (LPPT) (Phan-Thien
and Tanner, 1977) and the exponential PTT (EPPT) (Phan-Thien, 1978)
model are implemented. We utilize the simplified versions of the PTT
models where the originally used Gordon–Schowalter rate is replaced
by the Truesdell rate. For these models the additional term reads as
follows:

LPTT: 𝑓
(
𝝉
𝑀
,𝐝𝑑

)
= 𝜖 𝜆

𝜇𝑀
tr
(
𝝉
𝑀

)
, (7)

EPTT: 𝑓
(
𝝉
𝑀
,𝐝𝑑

)
= exp

(
𝜖 𝜆
𝜇𝑀

tr
(
𝝉
𝑀

))
− 1. (8)

The PTT model comprises the extensibility parameter 𝜖 = [0, 1].
Throughout this work a commonly used value of 𝜖 = 0.25 is chosen for
the LPTT or EPTT model. By selecting the upper-convected derivative
as objective rate and 𝑓

(
𝝉
𝑀
,𝐝𝑑

)
= 0 the original Oldroyd-B model

(OLD-B) is regained. By additionally neglecting the solvent part and
exclusively considering the Maxwell part for the viscous stress tensor
we recover the upper-convected Maxwell model (UCM). Nevertheless,
we exclusively employ the UCM and the OLD-B model together with
the Truesdell rate in this study (cf. Section 2.2.2).

2.2.2. Objective rate for the stress tensor in compressible flows
We paid particular attention to use a consistent time derivative

for the stress tensor
∇
𝝉
𝑀

in the context of compressible flows. The
correct formulation of the time derivative has to fulfill the following
requirements. In order to obtain a frame invariant description of the
material behavior, it is necessary to respect the principle of material
objectivity or material frame invariance (Truesdell and Noll, 2004;
Haupt, 2000). i.e. to apply an objective time derivative. However,
there exists an infinite number of time derivatives meeting this cri-
terion (Lippmann, 1996). We decided to use a time rate, which is
also physically consistent with the simulation of compressible flows.
Therefore, the stricter restriction of work conjugacy shall be fulfilled
additionally (Bergander, 1987; Ji et al., 2013). We follow the concept
of deriving the physically correct time derivative by applying the Lie
derivative with respect to the spatial velocity field 𝐮 (Pinsky et al.,
1983; Dvorkin and Goldschmit, 2005) adapted to compressible flow
denoted by 𝐮. To be able to calculate the Lie derivative a mapping
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between the current (spatial) and the material (reference) configuration
is introduced. The mapping is given by the deformation gradient 𝐅. 𝐅
maps an infinitesimal material element in reference configuration d𝐗0
onto its spatial counterpart in the current configuration d𝐱, given a
motion defined by the current position of a point 𝐱 = 𝐱

(
𝐗0, 𝑡

)
with

its position in the reference configuration 𝐗0 = 𝐱
(
𝐗0, 𝑡 = 𝑡0

)
:

𝐅 ∶= 𝜕𝐱
𝜕𝐗0

. (9)

For a second order tensor 𝐚 in current configuration the pull-back
operation is1

𝜙∗ (𝐚) ∶= 𝐅−1 𝐚 𝐅−𝑇 . (10)

The corresponding operation transforming a tensor 𝐀 in the reference
configuration to its spatial description is called push-forward

𝜙∗ (𝐀) ∶= 𝐅𝐀𝐅𝑇 (11)

The concept of finding the objective rate of a tensor field described
in Eulerian configuration is to initially perform a pull-back operation
to obtain the corresponding tensor field in the reference configuration.
Subsequently, the material time derivative D(...)

D𝑡 of the field in the
reference configuration is calculated. Performing the material time
derivative of an objective tensor in the reference configuration again
results in an objective tensor, since that configuration remains un-
changed. Finally, the push-forward operation is applied, and we receive
the objective time derivative in spatial description. Thus, the objective
rate is given by

𝐮 [𝐚] ∶= 𝜙∗

[ D
D𝑡

(
𝜙∗ (𝒂)

)]
=∶

∇
𝒂. (12)

Since the stress tensor in the spatial configuration represents a
volume specific quantity, compressibility has to be taken into account
for the pull-back and push-forward operations. To consider volume
changes the Jacobian 𝐽 is introduced

𝐽 ∶= det𝐅 = d𝑣
d𝑉0

. (13)

The Jacobian relates the differential volume element in the spatial
configuration d𝑣 to the one in reference configuration d𝑉0.

We apply the concept of the Lie derivative to a volume specific
quantity as performed in similar fashion in Pinsky et al. (1983). The
objective rate of the Cauchy stress tensor 𝝈 in spatial configuration
is calculated by using the material counterpart represented by the
second Piola–Kirchhoff stress tensor 𝐒

(
𝐗0

)
. The corresponding trans-

formation acting as pull-back of 𝝈 and push-forward of 𝐒 is the Piola
transformation:

𝐒 = 𝜙∗ (𝝈) ∶= 𝐽 𝐅−1 𝝈 𝐅−𝑇 , (14)

𝝈 = 𝜙∗ (𝐒) ∶= 𝐽−1 𝐅𝐒𝐅𝑇 . (15)

Thus, we calculate the objective rate of the Cauchy stress by
∇
𝝈 = 𝜙∗

[ D
D𝑡

(
𝜙∗ (𝝈)

)]
=

= D𝝈
D𝑡

− 𝒍 ⋅ 𝝈 − 𝝈 ⋅ 𝒍𝑇 + tr (𝒍)𝝈
(16)

which is called Truesdell rate (Truesdell, 1953, 1955). Since the Trues-
dell rate is linear in its argument and the Cauchy stress tensor is an
additive combination of pressure, solvent stress and Maxwell contribu-
tion 𝝈 = −𝑝𝐈 + 2𝜇𝑆𝐝𝑑 + 𝝉

𝑀
it can be directly applied to the Maxwell

stress tensor
∇
𝝉
𝑀

=
D𝝉

𝑀

D𝑡
− 𝒍 ⋅ 𝝉

𝑀
− 𝝉

𝑀
⋅ 𝒍𝑇 + tr (𝒍) 𝝉

𝑀
. (17)

1 Note that contravariant coordinates in conjunction with a covariant basis
are assumed to obtain these forms of the pull-back and push-forward. For
other isomers used to describe the tensor fields the pull-back and push-forward
operations turn out to have a different form. Yet, it can be shown that the
representation mentioned above should be used for a physically consistent
formulation (Surana et al., 2010).

For incompressible flows with tr (𝒍) = div (𝐮) = 0 the upper-convected
Oldroyd rate (Oldroyd, 1950) is retrieved.

As already mentioned, the derived Truesdell rate does not only
represent an objective time derivative but also fulfills the requirement
of work conjugacy which has been proven by Bergander (1987), Ji et al.
(2013) and Bazant (2010, 1971). Bollada and Phillips (2012) deploying
the integral form of constitutive models and convected time derivatives
also came to the conclusion that the Truesdell rate is appropriate
in a compressible context. Rouhaud et al. (2013) utilize the four-
dimensional formalism “to show [that] the Truesdell transport is thus
the only objective transport that represents a frame-indifferent time
derivative of the Cauchy stress.” Recently, Mackay and Phillips (2019)
made use of the generalized bracket framework to ascertain that the
Truesdell rate constitutes the thermodynamically consistent objective
rate in compressible viscoelastic fluid models.

2.2.3. Conservative formulation of the constitutive model
By substituting the mass conservation (1) into the Maxwell transport

Eq. (6), the corresponding transport equation for the Maxwell stresses
in conservative formulation is extracted:

𝜕
(
𝜌𝝉

𝑀

)

𝜕𝑡
+ div

(
𝜌𝝉

𝑀
⊗ 𝐮

)
= 𝐒𝜌𝝉𝑀 , (18)

with the source term

𝐒𝜌𝝉𝑀 = 𝜌
[
𝒍 ⋅ 𝝉

𝑀
+ 𝝉

𝑀
⋅ 𝒍𝑇 − div (𝐮) 𝝉

𝑀

+1
𝜆

[
2𝜇𝑀𝐝𝑑 − 𝑓

(
𝝉
𝑀
,𝐝𝑑

)
𝝉
𝑀

− 𝝉
𝑀

]]
. (19)

Regarding the implementation in a finite volume scheme, we introduce
the convective flux terms

𝐹 𝑐
𝜌 = 𝜌 (𝐮 ⋅ 𝐧) , (20)

𝐅𝑐
𝜌𝐮 = 𝜌𝐮 (𝐮 ⋅ 𝐧) + 𝑝𝐧, (21)

𝐅𝑐
𝜌𝝉𝑀

= 𝜌𝝉
𝑀
(𝐮 ⋅ 𝐧) , (22)

and the diffusive flux term

𝐅𝑑
𝜌𝐮 =

(
−𝝉

𝑆
− 𝝉

𝑀

)
⋅ 𝐧. (23)

Finally, we formulate the governing equations in integral form for a
control volume 𝑉 and apply Gauss’ theorem yielding the compact form:

∫𝑉
𝜕𝜌
𝜕𝑡

d𝑉 + ∮𝜕𝑉
𝐹 𝑐
𝜌 d𝑆 = 0, (24)

∫𝑉
𝜕 (𝜌𝐮)
𝜕𝑡

d𝑉 + ∮𝜕𝑉
𝐅𝑐
𝜌𝐮d𝑆 + ∮𝜕𝑉

𝐅𝑑
𝜌𝐮d𝑆 = 𝟎, (25)

∫𝑉
𝜕
(
𝜌𝝉

𝑀

)

𝜕𝑡
d𝑉 + ∮𝜕𝑉

𝐅𝑐
𝜌𝝉𝑀

d𝑆 − ∫𝑉 𝐒𝜌𝝉𝑀 d𝑉 = 𝟎. (26)

2.3. Single-fluid homogeneous mixture equilibrium cavitation model

To model the two-phase behavior of cavitating flows a single-
fluid approach which assumes volume averaged homogeneous mixture
quantities in each finite volume is employed. We consider fluids com-
posed of liquid and vapor with evaporation and condensation and take
into account compressibility of all phases. Our approach assumes that
a computational cell either contains pure liquid or a homogeneous
mixture of water and vapor. Fig. 2 illustrates the concept of our model
for a cell 𝛺. If a cell (Fig. 2a) contains vapor bubbles of discrete size
our model does not resolve the liquid–vapor interfaces. As depicted in
Fig. 2b, our approach models the volume averaged quantities of the
contained homogeneous mixture. The two-phase mixture is assumed
to be in mechanical and thermodynamic equilibrium and the phase
change is supposed to be isentropic, infinitely fast and without time
delay. Condensation and evaporation is therefore implicitly modeled
by the equation of state for the two-phase mixture as it represents a
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Fig. 2. Single-fluid homogeneous mixture model for a computational cell 𝛺. (a) Exemplary real physical situation, (b) Numerical model approximation with the corresponding
vapor volume fraction 𝛼.

direct correlation of the vapor volume fraction and the thermodynamic
variables as explained hereafter. Because of the equilibrium assump-
tion, the appropriate vapor volume fraction instantaneously adapts
to the flow properties and an additional model for the condensation
rate or for relaxation is not needed. The approach was extensively
used to investigate cloud cavitation (Schnerr et al., 2008), to simulate
cavitating flows including non-condensable gas (Örley et al., 2015b,a),
turbulent cavitating flows (Egerer et al., 2014, 2016), to predict cav-
itation erosion (Mihatsch et al., 2015) and to examine condensation
shocks (Budich et al., 2018; Trummler et al., 2020). Schenke et al.
(2019) showed for similar timescales of the flow and phase change,
the condensation rates are rather high so that for typical engineering
applications the equilibrium assumption is justified. A further detailed
description of the model can be found in Sezal (2009) and Budich et al.
(2018). The variables used for the transport equations Eqs. (37) to (39)
further express volume averaged variables representing the mixture
within a finite volume 𝑉𝛺, see Eq. (35). For the application to vis-
coelastic fluids, we suppose that the thermodynamic properties of pure
liquid water and liquid–vapor mixtures of water remain unchanged.
The mixture density results in a combination dependent on the vapor
volume fraction 𝛼:

𝜌 = 𝛼𝜌𝑣,𝑠𝑎𝑡 + (1 − 𝛼) 𝜌𝑙,𝑠𝑎𝑡. (27)

In the framework of an explicit density-based solver Eq. (27) is never
used to compute the cell-averaged density which is obtained by the
time integration of the continuity Eq. (1) and subsequently utilized to
ascertain whether a cell contains a two-phase mixture of liquid and
vapor or comprises pure liquid. The vapor volume fraction 𝛼 describing
the ratio of vapor volume 𝑉𝑣,𝛺 to the entire cell volume 𝑉𝛺 is calculated
depending on the mixture density within the cell according to

𝛼 =
𝑉𝑣,𝛺
𝑉𝛺

=
⎧
⎪⎨⎪⎩

0, if 𝜌 ≥ 𝜌𝑙,𝑠𝑎𝑡 (pure liquid)
𝜌𝑙,𝑠𝑎𝑡−𝜌

𝜌𝑙,𝑠𝑎𝑡−𝜌𝑣,𝑠𝑎𝑡
, else (liquid–vapor mixture).

(28)

Throughout this work we suppose the flow to be barotropic and apply
constant values at a reference temperature of 𝑇 = 293.15 K summarized
in Table 1.

To close the system of equations thermodynamic relations for the
liquid phase (𝛼 = 0) and the liquid–vapor mixture (0 < 𝛼 < 1) are
employed. Our method employs separate equations of state for pure
liquid and two-phase mixtures. If a cell is composed of pure liquid,
the modified Tait equation of state by Saurel et al. (1999) with the
parameters 𝑁 = 7.15 and 𝐵 = 3.3 ⋅ 108 Pa at a reference temperature of

Table 1
Parameters of the barotropic model at 𝑇𝑟𝑒𝑓 = 293.15 K.

Property Symbol Value

Reference temperature 𝑇𝑟𝑒𝑓 [K] 293.15
Density of saturated liquid 𝜌𝑙,𝑠𝑎𝑡 [kg m−3] 998.16
Density of saturated vapor 𝜌𝑣,𝑠𝑎𝑡 [kg m−3] 0.017214
Saturation pressure 𝑝𝑠𝑎𝑡 [Pa] 2339.3
Dynamic viscosity of saturated liquid 𝜇𝑙,𝑠𝑎𝑡 [Pa s] 1.0014 ⋅ 10−3
Dynamic viscosity of saturated vapor 𝜇𝑣,𝑠𝑎𝑡 [Pa s] 9.7275 ⋅ 10−6
Speed of sound of saturated liquid 𝑐𝑙,𝑠𝑎𝑡 [m s−1] 1482.2
Speed of sound of saturated vapor 𝑐𝑣,𝑠𝑎𝑡 [m s−1] 423.18
Specific heat capacity of saturated liquid 𝑐𝑝,𝑙,𝑠𝑎𝑡 [J kg−1 K−1] 4184.4
Latent heat of vaporization 𝑙𝑣 [J K−1] 2453.5 ⋅ 103

𝑇𝑟𝑒𝑓 = 293.15 K

𝑝 = 𝐵

[(
𝜌

𝜌𝑙,𝑠𝑎𝑡

)𝑁
− 1

]
+ 𝑝𝑠𝑎𝑡. (29)

is adopted. Accordingly, the speed of sound for pure liquid is given by

𝑐 =
(
𝑁 (𝑝 + 𝐵)

𝜌

)1∕2
. (30)

In the two-phase region of saturated liquid and vapor mixtures we
exploit the definition for the isentropic speed of sound 𝑐 to calculate
the pressure by integration:

𝑐2 = 𝜕𝑝
𝜕𝜌

||||𝑠=𝑐𝑜𝑛𝑠𝑡. ⇒ 𝑝(𝜌) − 𝑝𝑠𝑎𝑡 = ∫
𝜌

𝜌𝑙,𝑠𝑎𝑡
𝑐2d�̃�. (31)

For the definition of the speed of sound in two-phase regions we refer
to Brennen (1995) and Franc and Michel (2005). Since we want to re-
gard both phases to be in thermodynamic equilibrium and incorporate
phase transitions the latent heat of vaporization has to be considered
and the speed of sound 𝑐 of the two-phase mixture can be extracted
from:

1
𝜌𝑐2

= 𝛼
𝜌𝑣,𝑠𝑎𝑡𝑐2𝑣,𝑠𝑎𝑡

+ 1 − 𝛼
𝜌𝑙,𝑠𝑎𝑡𝑐2𝑙,𝑠𝑎𝑡

+
(1 − 𝛼) 𝜌𝑙,𝑠𝑎𝑡𝑐𝑝,𝑙,𝑠𝑎𝑡𝑇𝑟𝑒𝑓(

𝜌𝑣,𝑠𝑎𝑡𝑙𝑣
)2 . (32)

The last term on the right-hand side accounts for mass transfer through
vaporization. The speed of sound of pure liquid and vapor are repre-
sented by 𝑐𝑙,𝑠𝑎𝑡 and 𝑐𝑣,𝑠𝑎𝑡. 𝑐𝑝,𝑠𝑎𝑡,𝑙 and 𝑙𝑣 are the specific heat capacity
of saturated liquid and the latent heat of vaporization respectively.
All variables correspond to values at reference temperature listed in
Table 1. Further explanations leading to this formulation can be found
in Sezal (2009) and Budich et al. (2018). By introducing Eq. (32) in
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Eq. (31) and subsequent integration we obtain the pressure in the
two-phase region as

𝑝 = 1
𝐴
ln
(

𝜌
𝐴 + 𝐵𝜌

)
− 1

𝐴
ln
( 𝜌𝑙,𝑠𝑎𝑡
𝐴 + 𝐵𝜌𝑙,𝑠𝑎𝑡

)
+ 𝑝𝑠𝑎𝑡,

with 𝐴 = −
𝜌𝑙,𝑠𝑎𝑡

𝜌𝑣,𝑠𝑎𝑡 − 𝜌𝑙,𝑠𝑎𝑡

(
1

𝜌𝑣,𝑠𝑎𝑡𝑐2𝑣,𝑠𝑎𝑡
− 1

𝜌𝑙,𝑠𝑎𝑡𝑐2𝑙,𝑠𝑎𝑡
+ 𝐶

)

+ 1
𝜌𝑙,𝑠𝑎𝑡𝑐2𝑙,𝑠𝑎𝑡

+
𝜌𝑙,𝑠𝑎𝑡𝑐𝑝,𝑙,𝑠𝑎𝑡𝑇𝑟𝑒𝑓(

𝜌𝑣,𝑠𝑎𝑡𝑙𝑣
)2 ,

𝐵 = 1
𝜌𝑣,𝑠𝑎𝑡 − 𝜌𝑙,𝑠𝑎𝑡

(
1

𝜌𝑣,𝑠𝑎𝑡𝑐2𝑣,𝑠𝑎𝑡
− 1

𝜌𝑙,𝑠𝑎𝑡𝑐2𝑙,𝑠𝑎𝑡
+ 𝐶

)
,

𝐶 =
𝑇𝑟𝑒𝑓

(
𝜌𝑣,𝑠𝑎𝑡𝑐𝑝,𝑣,𝑠𝑎𝑡 − 𝜌𝑙,𝑠𝑎𝑡𝑐𝑝,𝑙,𝑠𝑎𝑡

)
(
𝜌𝑣,𝑠𝑎𝑡𝑙𝑣

)2 .

(33)

The dynamic viscosity for pure liquid as well as for liquid–vapor
mixture regions is computed following (Beattie and Whalley, 1982)

𝜇𝑆 = (1 − 𝛼)
(
1 + 5

2
𝛼
)
𝜇𝑙,𝑠𝑎𝑡 + 𝛼 𝜇𝑣,𝑠𝑎𝑡, (34)

where 𝜇𝑆 corresponds to the solvent viscosity used in Section 2.2.1.
𝜇𝑙,𝑠𝑎𝑡 and 𝜇𝑣,𝑠𝑎𝑡 represent the dynamic viscosity of pure liquid and
liquid–vapor mixture at reference temperature respectively.

3. Numerical method

3.1. Discretization and numerical flux calculation

The governing equations are spatially discretized by subdividing
the physical domain in body-fitted, structured hexahedral finite vol-
umes (Sezal, 2009; Mihatsch et al., 2015; Budich et al., 2018). A
non-staggered cell-centered variable layout within each finite volume
is utilized. We introduce a discrete volume averaging operator as

□ ∶= 1
𝑉𝛺 ∫𝛺 □ d𝑉 , with 𝑉𝛺 ∶= ∫𝛺 d𝑉 , (35)

where 𝑉𝛺 represents the volume of a discrete computational cell. We
introduce the numerically approximated fluxes □

□ and source term
𝜌𝝉𝑀

comprising the corresponding numerical reconstruction and the
calculation of surface and volume integrals:

□
□

num
= ∮𝜕𝛺

𝐹□
□ d𝑆, 𝜌𝝉𝑀

num
= ∫𝛺 𝐒𝜌𝝉𝑀 d𝑉 , (36)

Using the cell-averaged variables the governing equations read

𝜕𝜌
𝜕𝑡

+  𝑐
𝜌 = 0, (37)

𝜕
(
𝜌𝐮

)
𝜕𝑡

+  𝑐
𝜌𝐮 + 𝑑

𝜌𝐮 = 𝟎, (38)

𝜕
(
𝜌𝝉

𝑀

)

𝜕𝑡
+  𝑐

𝜌𝝉𝑀
− 𝜌𝝉𝑀

= 𝟎. (39)

An upwind-biased low-Mach number consistent approximate Riemann
solver is applied to calculate the convective numerical fluxes  𝑐

𝜌 , 𝑐
𝜌𝐮, 𝑐

𝜌𝝉𝑀
. The cell face variables are obtained by a higher-order spatial

reconstruction on a four-point stencil. The calculation of the numerical
fluxes is explained in more detail in Egerer (2016) where it is referred to
as baseline finite-volume scheme. Velocities at cell faces are reconstructed
using the total variation diminishing (TVD) limiter of Koren (1993)
which is third order accurate in smooth regions. For the reconstruction
of density the MinMod limiter of Roe (1986) is applied since an
improved numerical robustness is required due to steep density and
pressure gradients in two-phase flows. In smooth regions, this limiter
is of second order accuracy Sezal (2009). This combination of limiters
proved to provide numerically stable and accurate results (Mihatsch
et al., 2015; Budich et al., 2018). The reconstruction procedures are
explained in further detail in Egerer (2016). The Maxwell stresses

Table 2
Runge–Kutta sub-step coefficients.
𝑗 1 2 3 4

𝜉𝑗 0.11 0.2766 0.5 1.0

are reconstructed employing the weighted essentially non-oscillatory
reconstruction procedure (WENO-3) (Jiang and Shu, 1996). Since the
other reconstruction schemes are of second and third order accuracy,
respectively, we conducted our simulations solely with this limiter,
although a fifth-order accurate WENO (WENO-5) reconstruction would
result in less numerical dissipation.

It is crucial to treat the convective flux terms of the Maxwell stress
transport different to the diffusive flux due to the hyperbolic nature
which will be revealed in Section 3.3. The diffusive flux 𝑑

𝜌𝐮 as well as
the gradients in the source term 𝜌𝝉𝑀

are calculated by a second-order
accurate central-difference scheme.

3.2. Explicit time discretization

To capture compressible wave dynamics, time integration is per-
formed by an explicit second-order accurate low-storage four step
Runge–Kutta method with an enhanced stability region. A detailed
description can be found in Sezal (2009) and Schmidt (2015). Eqs.
(40) to (42) show one sub-step of the four step time integration. The
coefficients of the Runge–Kutta scheme are given in Table 2.

𝜌||𝑛+𝑗∕4 = 𝜌||𝑛 − 𝜉𝑗𝛥𝑡
1
𝑉𝛺

 𝑐
𝜌
|||
𝑛+(𝑗−1)∕4 (

𝜌||𝑛+(𝑗−1)∕4 , 𝐮||𝑛+(𝑗−1)∕4 , 𝑝||𝑛+(𝑗−1)∕4
)

=∶𝜌

[
 𝑐
𝜌
|||
𝑛+(𝑗−1)∕4

]
,

(40)

(
𝜌𝐮

)|||
𝑛+𝑗∕4

=
(
𝜌𝐮

)|||
𝑛

−𝜉𝑗𝛥𝑡
1
𝑉𝛺

{
 𝑐
𝜌𝐮
|||
𝑛+(𝑗−1)∕4 (

𝜌||𝑛+(𝑗−1)∕4 , 𝐮||𝑛+(𝑗−1)∕4 , 𝑝||𝑛+(𝑗−1)∕4
)

+ 𝑑
𝜌𝐮
|||
𝑛+(𝑗−1)∕4

(
𝐮||𝑛+(𝑗−1)∕4 , 𝝉𝑀

|||
𝑛+(𝑗−1)∕4

)}

=∶𝜌𝐮

[
 𝑐
𝜌𝐮
|||
𝑛+(𝑗−1)∕4

, 𝑑
𝜌𝐮
|||
𝑛+(𝑗−1)∕4

]
,

(41)

(
𝜌𝝉

𝑀

)||||
𝑛+𝑗∕4

=
(
𝜌𝝉

𝑀

)||||
𝑛

−𝜉𝑗𝛥𝑡
1
𝑉𝛺

{
 𝑐
𝜌𝝉𝑀

||||
𝑛+(𝑗−1∕4) (

𝜌||𝑛(𝑗−1)∕4 , 𝐮||𝑛+(𝑗−1)∕4 ,

𝝉
𝑀
|||
𝑛(𝑗−1)∕4

, 𝑝||𝑛+(𝑗−1)∕4
)

+ 𝜌𝝉𝑀
|||
𝑛+(𝑗−1∕4) (

𝜌||𝑛+(𝑗−1)∕4 , 𝐮||𝑛+(𝑗−1)∕4 , 𝝉𝑀
|||
𝑛+(𝑗−1)∕4

)}

=∶𝜌𝝉𝑀

[
 𝑐
𝜌
|||
𝑛+(𝑗−1)∕4

, 𝜌𝝉𝑀
|||
𝑛+(𝑗−1∕4)

]
.

(42)

The operators □ [□] represent the Runge–Kutta substep of the differ-
ent transport equations.

The time step criterion is defined following the concept of convec-
tion dominated flow analysis and introducing the Courant–Friedrich–
Lewy (CFL) number (Toro, 2009; Ferziger and Perić, 2002; Hirsch,
2007)

𝛥𝑡 = CFL
𝑖𝑐 + 𝑖𝑑

, (43)
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where 𝑖𝑐 and 𝑖𝑑 constitute the inverse convective and diffusive time step
respectively. For the definition of the inverse diffusive time step Hirsch
(2007) applies a linear von Neumann stability analysis for a standard
diffusion problem. For the analysis an explicit time and central differ-
ence space discretization is assumed. Sezal (2009) and Schmidt (2015)
adapted the criterion to incorporate diffusion processes in 𝑛 dimensions.
We obtain the diffusive time step 𝛥𝑡𝑑 being limited by

𝛥𝑡𝑑 < 1
𝑖𝑑

∶= min

(
𝜌
(
𝛥𝑥𝑖∕𝑛

)2
2𝜇𝑆

)
, (44)

with the cell length 𝛥𝑥𝑖 in space direction 𝑖. Since the transport Eq. (6)
for Maxwell-/Oldroyd-like fluids represents a system of first order
hyperbolic equations (Owens and Phillips, 2002) only the solvent vis-
cosity is considered for the time step. Multiple simulations for different
scenarios where the Maxwell viscosity was neglected for the viscous
time step calculation showed stable behavior and lead to physically
correct results. Besides, in the subsequent section we will show that
a simplified system of equations will result in a hyperbolic system of
equations. Thus, we do not consider a diffusive transport mechanism
for the timestep criterion of the Maxwell stress transport.

3.3. Classification and eigenvalue calculation of the quasi-linear system

In order to determine the appropriate convective time step criterion
necessary to account for shock-wave phenomena, the linearized wave
speeds corresponding to the relevant parts of the transport Eqs. (1),(2)
and (18) are calculated. In order to do so, the Eigenvalues of a sim-
plified system in 1D are examined. The analysis is conducted similar
to Edwards and Beris (1990), Guy and Fogelson (2008) and Rodriguez
and Johnsen (2019). Thus, we neglect the viscous solvent contribution
(𝜇𝑆 = 0) and lower order terms on the right-hand side of Eq. (18).
Due to the omission of all lower order terms the analysis correlates
with the one of the UCM model and is sufficient to characterize
constitutive equations of Oldroyd-like models described by Eq. (6). We
consider only the 𝑥1-direction taking into account the momentum in
the remaining two directions to quantify shear as well as longitudinal
wave speeds. The simplified 1D equations for the eigenvalue analysis
are presented in Cartesian coordinates hereafter:

𝜕
𝜕𝑡
𝜌 + 𝜕

𝜕𝑥1

(
𝜌𝑢1

)
= 0

𝜕
𝜕𝑡

(
𝜌𝑢1

)
+ 𝜕

𝜕𝑥1

(
𝜌𝑢21 + 𝑝 − 𝜏

𝑀,11

)
= 0

𝜕
𝜕𝑡

(
𝜌𝑢2

)
+ 𝜕

𝜕𝑥1

(
𝜌𝑢2𝑢1 − 𝜏

𝑀,12

)
= 0

𝜕
𝜕𝑡

(
𝜌𝑢3

)
+ 𝜕

𝜕𝑥1

(
𝜌𝑢3𝑢1 − 𝜏

𝑀,13

)
= 0

𝜕
𝜕𝑡

(
𝜌𝜏

𝑀,11

)
+ 𝜕

𝜕𝑥1

(
𝜌𝜏

𝑀,11
𝑢1
)
− 𝜌

( 4
3
𝐺 + 𝜏

𝑀,11

) 𝜕𝑢1
𝜕𝑥1

= 0

𝜕
𝜕𝑡

(
𝜌𝜏

𝑀,22

)
+ 𝜕

𝜕𝑥1

(
𝜌𝜏

𝑀,22
𝑢1
)
+ 𝜌

( 2
3
𝐺 + 𝜏

𝑀,22

) 𝜕𝑢1
𝜕𝑥1

− 2𝜌𝜏
𝑀,12

𝜕𝑢2
𝜕𝑥1

= 0

𝜕
𝜕𝑡

(
𝜌𝜏

𝑀,33

)
+ 𝜕

𝜕𝑥1

(
𝜌𝜏

𝑀,33
𝑢1
)
+ 𝜌

( 2
3
𝐺 + 𝜏

𝑀,33

) 𝜕𝑢1
𝜕𝑥1

− 2𝜌𝜏
𝑀,13

𝜕𝑢3
𝜕𝑥1

= 0

𝜕
𝜕𝑡

(
𝜌𝜏

𝑀,12

)
+ 𝜕

𝜕𝑥1

(
𝜌𝜏

𝑀,12
𝑢2
)
− 𝜌

(
𝐺 + 𝜏

𝑀,11

) 𝜕𝑢2
𝜕𝑥1

= 0

𝜕
𝜕𝑡

(
𝜌𝜏

𝑀,13

)
+ 𝜕

𝜕𝑥1

(
𝜌𝜏

𝑀,13
𝑢1
)
− 𝜌

(
𝐺 + 𝜏

𝑀,11

) 𝜕𝑢3
𝜕𝑥1

= 0

𝜕
𝜕𝑡

(
𝜌𝜏

𝑀,23

)
+ 𝜕

𝜕𝑥1

(
𝜌𝜏

𝑀,23
𝑢1
)
+ 𝜌𝜏

𝑀,23

𝜕𝑢1
𝜕𝑥1

− 𝜌𝜏
𝑀,13

𝜕𝑢2
𝜕𝑥1

− 𝜌𝜏
𝑀,12

𝜕𝑢3
𝜕𝑥1

= 0.

(45)

With the definition of the speed of sound in barotropic flows 𝑐2 ∶=
𝜕𝑝
𝜕𝜌
|||𝑠=𝑐𝑜𝑛𝑠𝑡. we rewrite the system of partial differential Eqs. (45) in

quasi-linear form
𝜕𝐪
𝜕𝑡

+ 𝐀 (𝐪) 𝜕𝐪
𝜕𝑥1

= 0, (46)

with the vector of primitive variables 𝐪 and the Jacobian matrix 𝐀
Eq. (47) as given in Box I.

The quasi-linear system depicted in Eq. (46) is linearized by as-
suming the coefficients in 𝐀 (𝐪) to be constant (LeVeque, 1992). The
Eigenvalues 𝜆𝑖 of the matrix 𝐀 (𝐪), which correspond with the wave
speeds are calculated to

𝜆1,2,3,4 = 𝑢1, (48)

𝜆5,6 = 𝑢1 +
√

1
𝜌

(
𝐺 + 𝜏

𝑀,11

)
, (49)

𝜆7,8 = 𝑢1 −
√

1
𝜌

(
𝐺 + 𝜏

𝑀,11

)
, (50)

𝜆9 = 𝑢1 +
√

𝑎2 + 1
𝜌

( 4
3
𝐺 + 𝜏

𝑀,11

)
, (51)

𝜆10 = 𝑢1 −
√

𝑎2 + 1
𝜌

( 4
3
𝐺 + 𝜏

𝑀,11

)
, (52)

where 𝜆5,6,7,8 are the shear wave speeds and 𝜆9,10 quantify the longi-
tudinal (pressure) wave speeds. Real valued wave speeds and thereby
a hyperbolic quasi-linear system (46) is obtained if the condition 𝐺 +
𝜏
𝑀,11

> 0 holds. Furthermore, if we require the problem to be well
posed, the conformation tensor 𝝉

𝐶
∶= 𝝉

𝑀
+ 𝐺𝑰 has to be positive

definite (Owens and Phillips, 2002). It is straightforward to show that
this requirement implicitly leads to only real valued characteristic
velocities and assures that the system (46) is hyperbolic (Owens and
Phillips, 2002). Otherwise put, if the problem is stable and well posed,
the quasi-linear system will also be hyperbolic. Beyond that Owens
and Phillips (2002) showed that the Maxwell stress transport equation
itself (6) exhibits hyperbolic behavior independently of the chosen
𝑓
(
𝝉
𝑀
,𝐝𝑑

)
since this term comprises only lower order terms.

By regarding absolute values of the wave speeds the longitudinal
waves propagate the fastest and are considered for the calculation of
the convective time step criterion. The corresponding expression for the
convective time step 𝛥𝑡𝑐 in 𝑛 dimensions reads as follows

𝛥𝑡𝑐 <
1
𝑖𝑐

∶= min
(
𝛥𝑥𝑖∕𝑛
𝜆𝑚𝑎𝑥𝑖

)

=
[
||𝑢𝑖|| +

√
𝑎2 + 1

𝜌

( 4
3
𝐺 + 𝜏

𝑀,𝑖𝑖

)]−1 𝛥𝑥𝑖
𝑛

, 𝑖 = 1, 2, 3,
(53)

where we incorporate the remaining two directions in space again. The
obtained convective and diffusive time step or more specifically the
inverse convective and diffusive time step 𝑖𝑐 and 𝑖𝑑 are applied together
with Eq. (43) for all cells to acquire the appropriate global timestep.
Extensive investigations for several flow scenarios were conducted
by Schmidt (2015) and led to the result that the employed Runge–Kutta
method remains stable up to CFL = 1.5. A CFL number of CFL = 1.4 is
chosen for all presented computations eventually.

3.4. Boundary conditions

The implementation of boundary conditions is realized by employ-
ing two layers of ghost cells ( |𝑔) adjacent to the last cells of the
computational domain ( |𝑑) as illustrated in Fig. 3. The ghost cell
variables are defined in order to compute physically consistent fluxes
on the face of the domain boundary ( |𝛤 ) between the last domain
cell and the first ghost cell. Hereafter, we firstly describe the physical
condition occurring at a particular boundary and subsequently discuss
the variables to impose within the ghost cells. Note that it is not
relevant whether the variables in the ghost cells constitute physically
meaningful values, but that reconstructed fluxes at the cell face meet
the flow conditions at the boundary with respect to the underlying
reconstruction. Since the boundary conditions for all variables except
those added through the implementation of the viscoelastic model are
already well described in Sezal (2009) and Schmidt (2015), exclusively
the boundary conditions and ghost cell definitions for the Maxwell
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𝐪 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌
𝑢1
𝑢2
𝑢3

𝜏
𝑀,11
𝜏
𝑀,22
𝜏
𝑀,33
𝜏
𝑀,12
𝜏
𝑀,13
𝜏
𝑀,23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝐀 (𝐪) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢1 𝜌 0 0 0 0 0 0 0 0
𝑐2

𝜌 𝑢1 0 0 − 1
𝜌 0 0 0 0 0

0 0 𝑢1 0 0 0 0 − 1
𝜌 0 0

0 0 0 𝑢1 0 0 0 0 − 1
𝜌 0

0 − 4𝐺
3 − 𝜏

𝑀,11
0 0 𝑢1 0 0 0 0 0

0 2𝐺
3 + 𝜏

𝑀,22
−2𝜏

𝑀,12
0 0 𝑢1 0 0 0 0

0 2𝐺
3 + 𝜏

𝑀,33
0 −2𝜏

𝑀,13
0 0 𝑢1 0 0 0

0 0 −𝐺 − 𝜏
𝑀,11

0 0 0 0 𝑢1 0 0
0 0 0 −𝐺 − 𝜏

𝑀,11
0 0 0 0 𝑢1 0

0 𝜏
𝑀,23

−𝜏
𝑀,13

−𝜏
𝑀,12

0 0 0 0 0 𝑢1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

Box I.

Fig. 3. Cells in the computational domain 𝑑1 , 𝑑2 and adjacent ghost cell layers 𝑔1 , 𝑔2
separated by the domain boundary face 𝛤 .

stress tensor 𝝉
𝑀

are explained below. The diffusive fluxes at the bound-
ary face are reconstructed following a central reconstruction scheme as
follows:

𝝉
𝑀
|||𝛤 = 1

2

(
𝝉
𝑀
|||𝑑 + 𝝉

𝑀
|||𝑔
)
. (54)

3.4.1. Inlet boundary conditions
As a result of the hyperbolic nature of the Maxwell stress trans-

port equation only an upstream Dirichlet boundary condition for the
Maxwell stress is required at the inlet (Xue et al., 1998). By imposing
conditions for the Maxwell stresses at the inlet we determine the history
of deformation of the viscoelastic fluid in the upstream region of the
domain. We neglect gradients of Maxwell stresses in upstream direction
and therefore specify the same value in the ghost cell layer as it is
desired at the inlet face (Oliveira et al., 1998):

𝝉
𝑀
|||𝑔 = 𝝉

𝑀
|||𝛤𝑖𝑛 . (55)

If there is no deformation history present in upstream direction at
the inlet, the physical condition for the Maxwell stresses at the face
is 𝝉

𝑀
|||𝛤𝑖𝑛 = 𝟎. This condition is applied as inlet boundary condition

throughout the present study.

3.4.2. Outlet and viscous wall boundary conditions
Due to the hyperbolic behavior of the governing transport equation,

there is no need to define specific values for the components of the
Maxwell stress tensor except for the upstream inlet boundary. As the
reconstruction Eq. (54) demands for a specified value in the ghost

cell, a Neumann boundary condition is applied namely a zero gradient
assumption for outflow and viscous wall boundaries grad

(
𝝉|𝛤𝑜𝑢𝑡∕𝑤𝑎𝑙𝑙

)
⋅

𝐧 = 0, with 𝐧 describing the outward pointing unit normal vector
perpendicular to the boundary face (cf. Fernandes et al., 2019). We
implement the boundary condition by copying the components of
Maxwell stresses from the last domain cell layers into the ghost cell
layers:

𝝉
𝑀
|||𝑔 = 𝝉

𝑀
|||𝑑 . (56)

3.4.3. Symmetry boundary condition
Although in many simulations conducted for viscoelastic fluids

symmetry boundary conditions are employed, there are just a few
publications where the physical conditions for the stress tensor at a
symmetry plane are formulated. During this work it turned out that for
channel flow simulations the symmetry boundary condition does not
cause severe issues due to small valued stresses at the midplane of the
channel but for the spherical bubble collapse presented in Section 4.2
an appropriate symmetry boundary condition is crucial. Baaijens et al.
(1995) and Huilgol and Phan-Thien (1997) formulate the vanishing
tangential traction condition. At first, we define the traction vector
𝐭 ∶= 𝝉 ⋅ 𝐧 describing the resultant force occurring at a face with the
outward pointing normal vector 𝐧. We can formulate the vanishing
tangential traction at the boundary as

𝑡𝑡||𝛤𝑠𝑦𝑚 ∶=
(
𝐧𝑡 ⋅ 𝝉|𝛤𝑠𝑦𝑚 ⋅ 𝐧

)
= 0, ∀𝐧𝑡 ∶ 𝐧𝑡 ⋅ 𝐧 = 0, (57)

where 𝐧𝑡 represents any tangential vector perpendicular to the outward
pointing normal vector 𝐧. Consequently, the stress tensor 𝝉|𝛤𝑠𝑦𝑚 and the
corresponding traction vector at the boundary face 𝐭|𝛤𝑠𝑦𝑚 has to fulfill
the following condition to ensure that all traction other than the normal
traction has to vanish

𝐭|𝛤𝑠𝑦𝑚 −
(
𝐭|𝛤𝑠𝑦𝑚 ⋅ 𝐧

)
𝐧 = 𝟎,

⇔ 𝐭|𝛤𝑠𝑦𝑚 =
(
𝐧 ⋅ 𝝉|𝛤𝑠𝑦𝑚 ⋅ 𝐧

)
𝐧,

(58)

to ensure that exclusively normal traction acts on the symmetry plane.
This condition was described in a similar way by Oliveira et al. (1998).
To the author’s best knowledge there is no work by now explicitly
describing the formulation for stress tensor values for a ghost cell
approach to satisfy the symmetry boundary conditions. By taking into
account our reconstruction Eq. (54) and the condition for the traction in
normal direction Eq. (58) we can rewrite the equation for the traction
vector

𝐭|𝛤𝑠𝑦𝑚 =
(
𝐧 ⋅ 𝝉|𝛤𝑠𝑦𝑚 ⋅ 𝐧

)
𝐧 = 1

2
(
𝝉|𝑑 + 𝝉|𝑔

)
⋅ 𝐧. (59)

If we additionally assume that the values of the stress tensor compo-
nents at the boundary face coincide with those of the next cell in the
computational domain, we get
(
𝐧 ⋅ 𝝉|𝑑 ⋅ 𝐧

)
𝐧 = 1

2
(
𝝉|𝑑 + 𝝉|𝑔

)
⋅ 𝐧. (60)
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Instead of the last equation we can formulate a corresponding equation

1
2
(
𝝉|𝑑 + 𝝉|𝑔

)
−
(
𝐧 ⋅ 𝝉|𝑑 ⋅ 𝐧

)
𝐈 = 𝟎, (61)

that allows us to calculate an equation for the Maxwell stress tensor in
the ghost cell

𝝉
𝑀
|||𝑔 = 2

(
𝐧 ⋅ 𝝉

𝑀
|||𝑑 ⋅ 𝐧

)
𝐈 − 𝝉

𝑀
|||𝑑 . (62)

It can be easily shown that the reconstructed Maxwell stresses from
Eq. (62) at the symmetry plane fulfills both conditions Eqs. (57) and
(58). We conducted extensive investigations on different formulations
for the symmetry boundary condition by simulating the symmetrical
vapor bubble collapse within viscoelastic liquid using three symmetry
planes, i.e. simulating one eighth of the vapor bubble (cf. Section 4.2).
It turned out that the formulation of the symmetry boundary condition
for the Maxwell stress tensor has a strong influence on the simula-
tion results and the aforementioned formulation provided a physically
meaningful outcome and a spherically shaped bubble during the col-
lapse event. The results obtained by using the symmetry condition for
the simulation of the collapse of one eighth of the vapor bubble were
compared and are in perfect agreement with the simulation of a full
8-quadrant simulation.

3.5. Program structure

The subsequential procedures together with the relevant variables
within one Runge–Kutta time integration sub-step are described in
algorithm 1. Before executing the four sub-steps, the variables of the
previous timestep are cached. The storage is necessary since we utilize
a low-storage Runge–Kutta algorithm, which retrieves the variables
of each sub-step by adding the numerical flux and source terms to
the variables of the previous time step as explained in Eqs. (40) to
(42). There are several ways to incorporate the transport equation
for the Maxwell stress (39). As already indicated by Eq. (42) we
decided to calculate the Maxwell stress of the subsequent sub step
𝝉
𝑀
|||
𝑛+𝑗∕4

exclusively by taking variables of the current sub step 𝑛 +
(𝑗 − 1)∕4. Thereby, a consistent state of all conserved variables during
each solution sub-step is achieved for the segregated explicit solution
scheme. The primary variables 𝜌||𝑛+(𝑗−1)∕4 , 𝐮||𝑛+(𝑗−1)∕4 , 𝝉𝑀

|||
𝑛+(𝑗−1)∕4

are

overwritten by the corresponding ones 𝜌||𝑛+𝑗∕4 , 𝐮||𝑛+𝑗∕4 , 𝝉𝑀
|||
𝑛+𝑗∕4

before
the source term is involved which requires these likewise. To improve
efficiency the Maxwell stress source term 𝜌𝝉𝑀

is calculated at the end
to avoid the necessity of buffering the primary variables. Subsequently,
we compute the convective fluxes  𝑐

𝜌 , 𝑐
𝜌𝐮, 𝑐

𝜌𝝉𝑀
and the diffusive flux

𝑑
𝜌𝐮. Thereafter, by conducting the time integration, the primary vari-

ables of the next sub step 𝑛 + 𝑗∕4 are computed. Dividing the primary
variables by the density of the new sub step 𝜌||𝑛+𝑗∕4 leads to the updated
primitive variables 𝐮||𝑛+𝑗∕4 , 𝝉𝑀

|||
𝑛+𝑗∕4

. With the help of the updated
density, we primarily calculate the updated vapor content 𝛼|𝑛+𝑗∕4𝑖 and
eventually the pressure 𝑝|𝑛+𝑗∕4𝑖 of the new sub step as described in
Section 2.3. Finally, all variables within the ghost cells are updated at
the end of one Runge–Kutta loop meeting physically correct boundary
conditions at the cell faces of the boundaries.

4. Numerical results and validation

In this section we examine the correct implementation of our solver,
validate it against analytical and semi-analytical results and present 3D
vapor bubble collapse simulations with viscoelastic influence. Initially,
we compare the unsteady results for the start-up of a planar 2D channel
flow to an analytical solution. Hereafter, we validate steady state results
for the 2D channel flow. Finally, we present results for simulations of

Algorithm 1: Operations during a substep of the explicit Runge–
Kutta method Eq. (56)
subroutine RungeKutta4

SaveOldVars()
// Save primitive variables of previous time step

for 𝑗 ⟵ 1 to 4 do

// Calculation of convective fluxes
ComputeConvectiveFluxes()

𝑐
𝜌
|||
𝑛+(𝑗−1)∕4 (

𝜌||𝑛+(𝑗−1)∕4 , 𝐮||𝑛+(𝑗−1)∕4
)

𝑐
𝜌𝐮

|||
𝑛+(𝑗−1)∕4 (

𝜌||𝑛+(𝑗−1)∕4 , 𝐮||𝑛+(𝑗−1)∕4 , 𝑝||𝑛+(𝑗−1)∕4
)

𝑐
𝜌𝝉𝑀

||||
𝑛+(𝑗−1)∕4 (

𝜌||𝑛+(𝑗−1)∕4 , 𝐮||𝑛+(𝑗−1)∕4 , 𝝉𝑀
|||
𝑛+(𝑗−1)∕4

)

// Calculation of diffusive/viscous fluxes
ComputeDiffusiveFluxes()

𝑑
𝜌𝐮

|||
𝑛+(𝑗−1)∕4

(
𝐮||𝑛+(𝑗−1)∕4 , 𝝉𝑀

|||
𝑛+(𝑗−1)∕4

)

// Time marching for primary variables 𝑛 + (𝑗 − 1)∕4 → 𝑛 + 𝑗∕4

𝜌||𝑛+𝑗∕4 ⟵ 𝜌
[
𝑐
𝜌
|||
𝑛+(𝑗−1)∕4

]

(
𝜌𝐮

)|||
𝑛+𝑗∕4

⟵ 𝜌𝐮
[
𝑐
𝜌𝐮

|||
𝑛+(𝑗−1)∕4

, 𝑑
𝜌𝐮

|||
𝑛+(𝑗−1)∕4

]

(
𝜌𝝉𝑀

)||||
𝑛+𝑗∕4

⟵ 𝜌𝝉𝑀
[
𝑐
𝜌
|||
𝑛(𝑗−1)∕4

, 𝜌𝝉𝑀
||||
𝑛+(𝑗−1∕4)

]

// Update primitive variables

𝐮||𝑛+𝑗∕4 ⟵

(
𝜌𝐮

)|||
𝑛+𝑗∕4

𝜌||𝑛+𝑗∕4

𝝉𝑀
|||
𝑛+𝑗∕4

⟵

(
𝜌𝝉𝑀

)||||
𝑛+𝑗∕4

𝜌||+𝑗∕4

// Evaluate barotropic equation of state

𝑝|𝑛+𝑗∕4𝑖 ⟵ EOS
(
𝜌|𝑛+𝑗∕4𝑖

)

// Calculation source term for the Maxwell stress
Viscoelastic()

𝜌𝝉𝑀
||||
𝑛+𝑗∕4 (

𝜌||𝑛+𝑗∕4 , 𝐮||𝑛+𝑗∕4 , 𝝉𝑀
|||
𝑛+𝑗∕4

)

// Update boundary conditions
BoundaryConditions()

the compressible spherical vapor bubble collapse in the different imple-
mented viscoelastic fluids. The flow properties concerning viscoelastic
fluids are characterized by the Reynolds number 𝑅𝑒 and the Deborah
number 𝐷𝑒. The Reynolds number for viscoelastic flows is defined as

𝑅𝑒 = 𝜌𝑈𝐿
𝜇0

, (63)

where 𝑈 and 𝐿 represent a characteristic velocity and length re-
spectively. The viscosity used to calculate the Reynolds number in
viscoelastic flows is the sum of solvent and Maxwell viscosity 𝜇0 =
𝜇𝑆 + 𝜇𝑀 . The Deborah number is given as

𝐷𝑒 = 𝜆𝑈
𝐿

, (64)

and describes the ratio of the relaxation time 𝜆 to a characteristic time
of the flow process and quantifies the influence of elasticity. The higher
the Deborah number, the more time is needed until the fluid responds
and the larger is the elastic contribution. The influence of elasticity can
also be described by the Weissenberg number 𝑊 𝑒. The use of Deborah
and Weissenberg numbers is not consistent in literature, and we will
refer exclusively to the Deborah number as defined in Eq. (64). For
a constitutive model with solvent viscosity (OLD-B, LPTT, EPTT), the
ratio of polymer viscosity to total viscosity is described by

𝛽 =
𝜇𝑆
𝜇0

=
𝜇𝑆

𝜇𝑀 + 𝜇𝑆
. (65)

4.1. Planar channel flow

First we consider 2D simulations for a planar 2D Poiseuille flow
between two parallel no-slip walls parallel to the 𝑥1-axis driven by a
pressure gradient 𝛥𝑝 in 𝑥1-direction. The dimensionless numbers are
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Table 3
Mesh parameters for the 2D channel flow simulations.

Mesh name 𝑁𝑥1 [−] 𝑁𝑥2 [−]
∑

𝑁 [−] 𝛥𝑥1 [m] 𝛥𝑥2 [m]

𝑀80 50 80 4000 2 ⋅ 10−5 1.25 ⋅ 10−7
𝑀120 50 120 6000 2 ⋅ 10−5 8.33 ⋅ 10−8
𝑀240 50 240 12 000 2 ⋅ 10−5 4.17 ⋅ 10−8

Table 4
Flow parameters for the 2D channel flow simulations carried out with the OLD-B
model.
𝑅𝑒 [−] 𝐷𝑒 [−] 𝛽 [−] 𝜆 [s] 𝛥𝑝 [Pa]

1 0 – – −8 ⋅ 105
0.01 0.01 0.1 9.96 ⋅ 10−6 −0.08 ⋅ 105
0.1 0.1 0.1 9.96 ⋅ 10−6 −0.8 ⋅ 105
1 1 0.1 9.96 ⋅ 10−6 −8 ⋅ 105
1 5 0.1 4.98 ⋅ 10−5 −8 ⋅ 105
5 1 0.1 1.99 ⋅ 10−6 −40 ⋅ 105

evaluated using the height ℎ of the channel and the maximum velocity
in the 𝑥1-direction 𝑢0 at the centerline:

𝑅𝑒 =
𝜌𝑢0ℎ
𝜇0

, 𝐷𝑒 =
𝜆𝑢0
ℎ

, 𝑢0 = −𝛥𝑝ℎ2

8𝜇0𝑙
. (66)

The channel dimensions ℎ = 1 ⋅ 10−5 m, 𝑙 = 1 ⋅ 10−3 m, are chosen
in order to achieve fast convergence but also ensure the continuum
hypothesis to be valid. The channel is of sufficient length in order
to ascertain developed flow conditions. The remaining quantities are
in accordance with the ones mentioned at reference temperature in
Table 1. We impose the derived boundary conditions, in particular the
inlet boundary conditions at the channel inlet, outlet boundary condi-
tions at the outlet and no-slip conditions at the lower and upper wall.
The complete domain is initialized with zero velocity and polymeric
stress. All the parameters of the homogeneous, structured meshes used
for our simulations are listed in Table 3. The velocities in streamwise
direction 𝑢1 are measured at 𝑥∕𝑙 = 0.5 to ascertain developed flow
conditions and suppress influences of the inlet and outlet boundaries.

Firstly, we compare unsteady results for an OLD-B fluid during the
unsteady start-up of a 2D Poiseuille flow as there exists an analytical
solution for this constitutive model. As reference, we employ the so-
lution of Waters and King (1970). It assumes incompressible, creeping
flow such that the convective term 𝐮 ⋅ ∇𝐮 in the momentum equation
is omitted. In order to obtain comparable results, the simulations are
carried out at low Reynolds numbers. The flow parameters for which
all channel flow simulations were conducted are listed in Table 4.
The case with 𝐷𝑒 = 0 corresponds to a Newtonian fluid without
relaxation. Different Deborah numbers were realized by the variation of
the relaxation time, the Reynolds number was modified by the pressure
gradient.

Initially, a mesh refinement study is conducted 𝑅𝑒 = 0.1 and
𝐷𝑒 = 0.1 to ascertain the appropriate resolution. Fig. 4 shows the
unsteady velocity evolution for and three different mesh refinements in
𝑥2-direction. We compare the results at two distinct 𝑥2-positions. The
velocity evolution at the centerline (𝑥2∕ℎ = 1∕2) is independent of the
different resolutions, and the results agree very well with the exact so-
lution. Only slight deviations can be observed during the first minimum
from the start-up. Such deviations between the incompressible and fully
developed analytical solution is attributed to compressibility and the
contribution of inertia terms that are present in the numerical method.
For the position near the viscous wall (𝑥2∕ℎ = 1∕4), the differences
between the results obtained with the different meshes are more pro-
nounced, which can be explained by the higher velocity gradients and
therefore finer mesh resolutions required near the wall. We therefore
proceed with the finest mesh 𝑀240 for the ensuing unsteady results.

Applying the finest mesh, additional simulations are conducted to
prove that our solver provides accurate results for lower and higher
values as well as other ratios of Reynolds and Deborah numbers, too. In

Fig. 4. Comparison of the velocities 𝑢1 of the reference solution (Waters and King,
1970) and the results of our simulation for the start-up of planar channel flow measured
at two different 𝑥2- positions with 𝑅𝑒 = 0.1, 𝐷𝑒 = 0.1 for the OLD-B constitutive model.
The results obtained with three different meshes (M80, M120, M240) and corresponding
distinct resolutions in 𝑥2-direction are presented.

Fig. 5. Comparison of the velocities 𝑢1 of the reference solution and the results of
simulations with two different combinations at two different 𝑥2 positions with (a)
𝑅𝑒 = 0.01, 𝐷𝑒 = 0.01 and (b)𝑅𝑒 = 1, 𝐷𝑒 = 1 for the OLD-B constitutive model. The
simulations are carried out on the M240-mesh.

Fig. 5, the unsteady velocity evolutions for the two aforementioned 𝑥2-
positions are displayed for the previous ratio of Reynolds and Deborah
for 𝑅𝑒 = 0.01, 𝐷𝑒 = 0.01 and 𝑅𝑒 = 1, 𝐷𝑒 = 1. We can observe a very
good agreement with the analytical reference for both simulations.

Furthermore, simulations with a distinct ratio of Reynolds and
Deborah numbers (𝑅𝑒 = 1, 𝐷𝑒 = 2; 𝑅𝑒 = 1, 𝐷𝑒 = 5; 𝑅𝑒 = 5, 𝐷𝑒 = 1), and
a case without relaxation (𝑅𝑒 = 1, 𝐷𝑒 = 0), i.e. the Newtonian equiva-
lent, are conducted to prove the capability of simulating flows with
higher elasticity and highlight its effect on the velocity evolution (see
Fig. 6). For the highest relaxation time (𝑅𝑒 = 1, 𝐷𝑒 = 5), a slightly
higher deviation from the analytical solution during the first overshoot
is observable. However, the results of the simulation agree very well
with the reference. Furthermore, it is apparent that the steady-state ve-
locity of the viscoelastic cases at 𝑅𝑒 = 1 coincides with the steady-state
velocity obtained for the Newtonian fluid.
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Fig. 6. Comparison of the velocity evolution during the start-up of a channel flow for
different elasticities and for a case without relaxation (𝐷𝑒 = 0, Newtonian fluid).

Fig. 7. Validation of the steady state velocity profiles for three different mesh
resolutions against the analytical solution with 𝑅𝑒 = 0.1, 𝐷𝑒 = 0.1 for the OLD-B
constitutive model.

Table 5
Flow parameters for the 2D channel flow simulations carried out with the PTT fluids.
𝑅𝑒 [−] 𝐷𝑒 [−] 𝛽 [−] 𝜖 [−] 𝜆 [s] 𝛥𝑝 [Pa]

0.375 0.375 0.1 0.25 9.98 ⋅ 10−6 −0.3 ⋅ 105

Finally, for the validation of the OLD-B model we compare steady-
state results of the velocity and stress profiles along the cross-section
of the channel for 𝑅𝑒 = 0.1, 𝐷𝑒 = 0.1 for the three resolutions. The
analytical steady-state velocity profile for viscoelastic channel flow
with an OLD-B fluid corresponds to the profile obtained by a Newtonian
fluid with the same total viscosity 𝜇0 (cf. Waters and King, 1970).
In Fig. 7 the velocity profiles for the different meshes are compared
against the exact solution. The numerical results agree very well with
the analytical ones. Minor deviations can only be observed for the
coarser resolutions 𝑀80, 𝑀120.

Furthermore, the steady-state profiles of Maxwell stresses 𝜏
𝑀,11

and
𝜏
𝑀,12

are validated against the analytical reference in Fig. 8. The pro-
files coincide perfectly with the analytical solution independent of the
mesh refinements. The well captured nonzero normal stress and the
corresponding first normal stress difference in shear flows is unique for
viscoelastic fluids and would not emerge for a Newtonian fluid.

Subsequently, the implementation of both of the simplified PTT
models are validated. The steady-state velocity and Maxwell stress
profiles obtained by simulations performed on the 𝑀240 mesh are
examined. Due to the shear-thinning behavior of PTT fluids, the veloc-
ity profiles differ from the OLD-B case. To highlight these deviations
more clearly the simulations are carried out with higher Reynolds
and Deborah numbers, different from those mentioned in Table 4.
The modified flow parameters are listed in Table 5. For comparison,

Fig. 8. Validation of the steady state Maxwell stress profiles for three different mesh
resolutions against the analytical solution with 𝑅𝑒 = 0.1, 𝐷𝑒 = 0.1 for the OLD-B
constitutive model. (a) 𝜏

𝑀,11
, (b) 𝜏

𝑀,12
.

we show the results of the corresponding simulation with the OLD-B
model. Furthermore, for the simplified LPTT an analytical steady-state
solution is available (Cruz et al., 2005). For the EPTT with solvent
contribution no analytical solution has been found hitherto. Thus, we
follow the approach presented in Cruz and Pinho (2007) to obtain
a semi-analytical solution by numerical integration. Our results show
excellent agreement with the analytical and semi-analytical solution,
respectively. As shown in Fig. 9 the velocities are much higher in both
PTT cases compared to the OLD-B case caused by the shear-thinning
behavior and the corresponding decreased effective viscosity at higher
shear-rates. The shear-thinning is more emphasized for the EPTT, since
an exponential relation for the velocity gradient is taken into account
for the Maxwell stress.

Fig. 10 shows the Maxwell stress profiles. The differences compared
to the OLD-B fluid are clearly perceptible. Likewise, the shear-thinning
property is illustrated. The viscosity is decreased in the vicinity of the
wall due to smaller velocity gradients, resulting in the largest stress
deviations between the OLD-B model and the PTT models in this region.

4.2. Two-phase cavitating flow — Spherical bubble collapse

In order to demonstrate the capability of simulating cavitating flows
with viscoelastic constitutive models, we present simulation results of
a collapsing spherical vapor bubble in a viscoelastic liquid. We exploit
spherical symmetry and simulate one eighth of the bubble and apply
symmetry boundary conditions at the three adjacent walls. While doing
so, we can also check the validity of the symmetry boundary condition
for the stress tensor described in Section 3.4.3. Furthermore, the influ-
ence of viscoelasticity is illustrated by comparing the viscoelastic with
the Newtonian case. The viscoelastic bubble collapse is characterized
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Fig. 9. Validation of the steady state velocity profiles for three different mesh
resolutions against the analytical solution at 𝑅𝑒 = 0.375, 𝐷𝑒 = 0.375 for the LPTT and
EPTT constitutive model against analytical and semi-analytical solutions. The analytical
result for the OLD-B model for the same driving pressure is presented to illustrate the
shear-thinning behavior.

Fig. 10. Validation of the steady state Maxwell stress profiles at 𝑅𝑒 = 0.375, 𝐷𝑒 = 0.375
for the LPTT and EPTT constitutive model compared to analytical and semi-analytical
solutions. (a) 𝜏

𝑀,11
, (b) 𝜏

𝑀,12
.

by the Reynolds and the Deborah number:

𝑅𝑒 =
𝑅0

√
𝜌𝛥𝑝

𝜇0
, 𝐷𝑒 = 𝜆

𝑅0

√
𝛥𝑝
𝜌
, (67)

where 𝑅0 and 𝛥𝑝 = 𝑝∞ − 𝑝𝑠𝑎𝑡 are the initial radius and the pressure
difference of the surrounding and the saturation pressure inside the
bubble. The parameters used for the simulations are summarized in
Table 6. In order to compare the Newtonian with the UCM fluid, the
viscosity of water is modified for the Newtonian case and differs from
the viscosity described in Table 1. All simulations were carried out with

Table 6
Flow parameters for the simulations for the 3D spherical bubble collapse with different
viscoelastic models.

Constitutive model 𝑅𝑒 [−] 𝐷𝑒 [−] 𝑅0 [m] 𝜆 [s] 𝜇0 [Pa s]

Newtonian 1 – 1 ⋅ 10−4 – 3.1554
UCM 1 0.5 1 ⋅ 10−4 1.5814 ⋅ 10−6 3.1554

1 1 1 ⋅ 10−4 3.1628 ⋅ 10−6 3.1554
1 1.5 1 ⋅ 10−4 4.7442 ⋅ 10−6 3.1554
1 5 1 ⋅ 10−4 1.5814 ⋅ 10−5 3.1554
1 10 1 ⋅ 10−4 3.1628 ⋅ 10−5 3.1554

OLD-B 1 1 1 ⋅ 10−4 3.1628 ⋅ 10−6 3.1554
LPTT 1 1 1 ⋅ 10−4 3.1628 ⋅ 10−6 3.1554
EPTT 1 1 1 ⋅ 10−4 3.1628 ⋅ 10−6 3.1554

Fig. 11. Contour plot of the initial vapor content 𝛼 for a slice through the 𝑥1-/𝑥2-plane
at 𝑥3 = 0 showing the computational mesh and the applied boundary conditions.

at a driving pressure of 𝑝∞ = 10⋅105 Pa. For the constitutive models with
solvent contribution a ratio of viscosities of 𝛽 = 0.1 is chosen and an
extensibility factor of 𝜖 = 0.25 is applied for the PTT models.

For all simulations a resolution of 50 cells/radius is employed.
Fig. 11 shows a slice of the 𝑥1-/𝑥2-plane at 𝑥3 = 0 of our setup and the
initial shape of the bubble in terms of vapor content and sketches the
applied symmetry boundary conditions. Adjacent to the refined region
displayed in Fig. 11 a coarsened mesh is attached in order to dissipate
perturbations and to avoid reflections.

Firstly, we compare the bubble collapse in the Newtonian and the
UCM fluid. In Fig. 12 the results in terms of the non-dimensionalized
radius 𝑟∗ = 𝑟∕𝑅0 over the non-dimensionalized time 𝑡∗ = 𝑡∕𝑡0 where
𝑡0 = 𝑅0

√
𝜌∕𝛥𝑝 are illustrated. Fig. 12a shows the comparison of the

collapse with Newtonian and UCM fluid for 𝑅𝑒 = 1, 𝐷𝑒 = 1. A
significant difference in the collapse behavior can be observed. The
bubble collapse in the UCM fluid shows oscillations and the bubble
size initially decreases faster compared to the Newtonian case. The
faster shrinkage in the initial stages can be traced back to the stress
relaxation of the constitutive model and the corresponding delayed
build up of the viscous stresses. To get a better understanding of
this mechanism we compare the UCM-collapse for different levels of
elasticity, i.e. for different relaxation times. The different bubble size
evolutions are compared in Fig. 12b for the listed Deborah numbers.
The collapse is determined by the interaction of driving inertia forces of
the collapsing liquid towards the center of the vapor bubble and viscous
stresses generated during the collapse and compressible damping. An
increased elasticity and a corresponding higher relaxation time leads
to a slower build up of viscous stresses and coincidentally to less
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Fig. 12. Spherical vapor bubble collapse: Comparison of the non-dimensional bubble
size for (a) the Newtonian against the UCM fluid at Re = 1, De = 1; (b) the UCM fluid
with different relaxation times (different 𝐷𝑒) at 𝑅𝑒 = 1.

viscous dissipation. In the simplified mechanical representation of the
Maxwell model sketched in the lower half of Fig. 1, the increase of
elasticity corresponds to a softer spring that leads to delayed transfer
of stress to the damper. That leads to larger rebound radii, which can
be detected in the range of 𝐷𝑒 = 0.5 to 𝐷𝑒 = 1.5. By further increasing
the elasticity the build-up of viscous stresses takes so long, that the
bubble collapses before rebound (𝐷𝑒 = 5, 𝐷𝑒 = 10). If we would
increase the elasticity even more, the collapse would be equivalent
to an inviscid Rayleigh collapse (Lind and Phillips, 2010). A direct
comparison of the obtained results with Warnez and Johnsen (2015)
is not feasible, since they consider a bubble filled with gas as opposed
to vapor-filled bubbles used in the present work. The gas-filled bubble
does not fully collapse and reaches an equilibrium radius during the
Rayleigh collapse, whereas the vapor bubbles investigated in our study
fully disappear due to condensation. Furthermore, Warnez and Johnsen
(2015) include surface tension, which is neglected here. However, the
overall evolutions of the bubbles in viscoelastic surroundings from our
study qualitatively agree with those of Warnez and Johnsen (2015) and
the following effects are observable in both works. For the collapse
with the UCM model, an increased relaxation time initially leads to
larger rebound radii, since the fluid has a longer time to accelerate
resulting in larger velocity gradients. Again, this causes less viscous
dissipation in the early stages of the collapse but higher viscoelastic
stresses at later stages. If the relaxation time is increased further, again
smaller rebound radii are observable, since the inertia forces become
more dominant.

For a more detailed analysis of the Maxwell stress build up we
examine the temporal evolution of these stress components during
the first collapse in the UCM fluid at 𝑅𝑒 = 1, 𝐷𝑒 = 1. Fig. 13
shows the corresponding shape of the bubble, visualized by the vapor
volume fraction and three different components of the Maxwell stress

at different stages of the collapse. We can clearly notice very low stress
levels at the beginning of the collapse and increasing amounts at later
stages. The maximum stress values which are acting against the inertia
forces of the accelerated liquid occur just before the bubble reached its
minimum size and decrease right afterwards.

Furthermore, the influence of elasticity or relaxation time, respec-
tively, on the intensity of the collapse is examined for the UCM model.
Therefore, the emitted pressure waves are compared qualitatively for
different Deborah numbers. The intensity of the pressure waves is
visualized in Fig. 14 for the UCM model at 𝑅𝑒 = 1 and different Deborah
numbers. The observations agree with the conclusions drawn from the
collapse dynamics for different relaxation times shown in Fig. 12b.
A small Deborah number (𝐷𝑒 = 0.5) corresponds to a small relax-
ation time and viscous forces rapidly develop. The resultant pressure
waves emitted during collapse are rather weak. An initial increase of
relaxation time leads to a delayed viscous response and less initial
viscous dissipation. The intensity of the pressure waves consequently
increases (𝐷𝑒 = 1.5). A complete collapse before the first rebound can
be observed for 𝐷𝑒 = 5, which leads to the emission of a shock wave
corresponding with very high pressures. A further increased relaxation
time would lead to a collapse behavior increasingly resembling the
inviscid case during the initial collapse and would result in more
intense shock waves.

Finally, we compare the bubble collapse for the different viscoelastic
models at 𝑅𝑒 = 1, 𝐷𝑒 = 1 illustrated in Fig. 15. All models different
from the UCM incorporate solvent viscosity which is responsible for an
immediate damping from the start of the collapse without relaxation.
The 1D representation of a solvent viscosity is the dashpot connected
in parallel, as outlined in the upper part of Fig. 1. Thus, the collapse
in the initial stages is slower than compared to the UCM case where
instant viscous damping is not present. Due to the increased viscous
dissipation, the rebound radii are smaller in those fluids with solvent
contribution. The PTT models furthermore show a distinct behavior due
to their shear-thinning properties. The viscosity is decreased dependent
on the shear rate in the fluid. Therefore, the bubble collapses faster
in the final stages of the first collapse compared to the OLD-B model.
Again, the results qualitatively agree with those of Warnez and Johnsen
(2015), viz. the largest rebound radius is obtained for the UCM model
followed by the collapse radii with the OLD-B and PTT models.

5. Summary and outlook

We presented an Eulerian method for the numerical simulation
of viscoelastic, compressible cavitating flows. The density-based 3D
approach uses finite volumes for space discretization and an explicit
Runge–Kutta scheme for time integration. Cavitation is modeled by
a single-fluid homogeneous mixture model assuming mechanical and
thermodynamical equilibrium and including condensation. We have
implemented different viscoelastic constitutive models namely the
upper-convected Maxwell, the Oldroyd-B and the simplified linear and
exponential Phan-Thien Tanner model. The Truesdell rate is identified
as proper objective time derivative in connection with compressible
flows. The time integration is adapted with respect to the viscoelastic
transport equations. For that purpose the eigensystem of a simplified
1D system was examined, and the relevant eigenvalues were identified.
A new formulation for the symmetry boundary conditions of the stress
tensor has been proposed that depends only on the stress coordinates
itself and does not require a calculation of boundary conditions based
on other primitive variables. The implemented viscoelastic models were
successfully validated against analytical or semi-analytical solutions,
respectively. The results of our numerical simulations show very good
to excellent agreement with the reference solutions. Finally, the ca-
pability for the simulation of two-phase viscoelastic flow problems is
demonstrated for the spherical vapor bubble collapse using the different
implemented viscoelastic models. It is apparent that viscoelasticity
significantly influences the collapse behavior and that the different
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Fig. 13. Contour plots of (a) the volume vapor fraction 𝛼 and the Maxwell stress components (b) 𝜏
𝑀,11

, (c) 𝜏
𝑀,33

, (d) 𝜏
𝑀,12

in the 𝑥1-/𝑥2-plane through the midplane of the vapor
bubble for different stages of the collapse. Black isoline: 𝛼 = 1%.

models show a distinct impact on the temporal evolution of the bubble
size. Furthermore, it was shown for the UCM model that the influence
of viscoelasticity strongly depends on the relaxation time and an
oscillatory motion of the bubble can only be observed for certain
combinations of Reynolds and Deborah numbers which corresponds to
the requirement of relaxation and collapse time have to of the same
order. We could also ascertain that for different relaxation times either
a violent or damped collapse event takes place. Depending on the
bubble evolution before the first rebound a shock wave can be emitted.
The intensity of such a shock wave in terms of the maximum pressure is
a good indicator to the potential damage caused by the bubble collapse.
Since our framework allows to resolve these shocks, the influence of
viscoelastic parameters on shocks will be in the scope of future studies.
Besides, the method can be used to investigate the aspherical bubble

collapse in the vicinity of solid walls and examine the influence of
viscoelasticity on jet formation during the collapse.
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Fig. 14. Temporal evolution (from top to bottom) of the pressure distribution (expo-
nential scale) in the 𝑥1/𝑥2-plane through the midplane of the vapor bubble during the
first rebound for the UCM model at 𝑅𝑒 = 1 and (a) 𝐷𝑒 = 0.5, (b) 𝐷𝑒 = 1.5, (c) 𝐷𝑒 = 5.

Fig. 15. Spherical vapor bubble collapse: Evolution of the dimensionless bubble radius
for the different viscoelastic models at 𝑅𝑒 = 1, 𝐷𝑒 = 1.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors gratefully acknowledge the Leibniz Supercomputing
Centre for funding this project by providing computing time and sup-
port on its Linux-Cluster.

References

Aboubacar, M., Webster, M.F., 2001. A cell-vertex finite volume/element method on
triangles for abrupt contraction viscoelastic flows. J. Non-Newton. Fluid Mech. 98
(2–3), 83–106. http://dx.doi.org/10.1016/S0377-0257(00)00196-8.

Al-Baldawi, A., 2012. Modellierung und Simulation viskoelastischer
Polymerschmelzen (Ph.D. thesis). Universität Kassel, URL: https://kobra.
bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2013012842468/1/
DissertationAmmarAlBaldawi.pdf.

Alves, M.A., Oliveira, P.J., Pinho, F.T., 2003. Benchmark solutions for the flow of
Oldroyd-B and PTT fluids in planar contractions. J. Non-Newton. Fluid Mech.
110 (1), 45–75. http://dx.doi.org/10.1016/S0377-0257(02)00191-X, URL: https:
//linkinghub.elsevier.com/retrieve/pii/S037702570200191X.

Baaijens, H.P.W., Peters, G.W.M., Baaijens, F.P.T., Meijer, H.E.H., 1995. Viscoelastic
flow past a confined cylinder of a polyisobutylene solution. J. Rheol. 39 (6),
1243–1277. http://dx.doi.org/10.1122/1.550635.

Barnes, H.A., 1989. An Introduction to Rheology.
Bazant, Z.P., 1971. A correlation study of formulations of incremental deformation

and stability of continuous bodies. J. Appl. Mech. 38 (4), 919–928.
http://dx.doi.org/10.1115/1.3408976, URL: https://asmedigitalcollection.
asme.org/appliedmechanics/article/38/4/919/423627/A-Correlation-Study-of-
Formulations-of-Incremental.

Bazant, Z.P., 2010. Stabiliy of Structures.
Beattie, D., Whalley, P., 1982. A simple two-phase frictional pressure drop cal-

culation method. Int. J. Multiph. Flow. 8 (1), 83–87. http://dx.doi.org/10.
1016/0301-9322(82)90009-X, URL: https://linkinghub.elsevier.com/retrieve/pii/
030193228290009X.

Belblidia, F., Keshtiban, I.J., Webster, M.F., 2006. Stabilised computations for viscoelas-
tic flows under compressible implementations. J. Non-Newton. Fluid Mech. 134 (1-3
SPEC. ISS.), 56–76. http://dx.doi.org/10.1016/j.jnnfm.2005.12.003.

Bergander, H., 1987. Deformationsgesetze der standardform in konvektiver metrik.
Tech. Mech. 8, 31–40.

Berker, A., Bouldin, M.G., Kleis, S.J., VanArsdale, W.E., 1995. Effect of polymer on
flow in journal bearings. J. Non-Newton. Fluid Mech. 56 (3), 333–347. http:
//dx.doi.org/10.1016/0377-0257(94)01299-W.

Böhme, G., 2000. Strömungsmechanik Nichtnewtonscher Fluide. Teubner.
Bollada, P.C., Phillips, T.N., 2012. On the mathematical modelling of a compressible

viscoelastic fluid. Arch. Ration. Mech. Anal. 205 (1), 1–26. http://dx.doi.org/
10.1007/s00205-012-0496-5, URL: http://link.springer.com/10.1007/s00205-012-
0496-5.

Brennen, C.E., 1995. Cavitation and Bubble Dynamics, Vol. 9. pp. 145–185. http:
//dx.doi.org/10.1017/CBO9781107338760, URL: http://arjournals.annualreviews.
org/doi/abs/10.1146/annurev.fl.09.010177.001045. arXiv:arXiv:1011.1669v3.

Brujan, E.A., 1999. A first-order model for bubble dynamics in a compressible
viscoelastic liquid. J. Non-Newton. Fluid Mech. 84 (1), 83–103. http://dx.doi.org/
10.1016/S0377-0257(98)00144-X.

Brujan, E.A., 2001. The equation of bubble dynamics in a compressible linear vis-
coelastic liquid. Fluid Dyn. Res. 29 (5), 287–294. http://dx.doi.org/10.1016/S0169-
5983(01)00030-2.

Brujan, E., 2011. Cavitation in Non-Newtonian Fluids. Springer Berlin Heidelberg,
Berlin, Heidelberg, http://dx.doi.org/10.1007/978-3-642-15343-3, URL: http://
link.springer.com/10.1007/978-3-642-15343-3.

Brujan, E.A., 2019. Shock wave emission and cavitation bubble dynamics by femtosec-
ond optical breakdown in polymer solutions. Ultrason. Sonochem. 58 (March),
104694. http://dx.doi.org/10.1016/j.ultsonch.2019.104694.

Budich, B., 2018. Numerical Simulation and Analysis of Shock Phenomena in Cavitating
Flow and its Application to Ship Propellers (Ph.D. thesis). Technical University of
Munich.

Budich, B., Schmidt, S.J., Adams, N.A., 2018. Numerical simulation and analysis
of condensation shocks in cavitating flow. J. Fluid Mech. 838, 759–813. http:
//dx.doi.org/10.1017/jfm.2017.882.

Chakraborty, D., Sader, J.E., 2015. Constitutive models for linear compressible vis-
coelastic flows of simple liquids at nanometer length scales. Phys. Fluids 27 (5),
http://dx.doi.org/10.1063/1.4919620.

Crochet, M., Bezy, M., 1979. Numerical solution for the flow of viscoelastic fluids. J.
Non-Newton. Fluid Mech. 5, 201–218. http://dx.doi.org/10.1016/0377-0257(79)
85014-4, URL: https://linkinghub.elsevier.com/retrieve/pii/0377025779850144.

Cruz, D.O.A., Pinho, F.T., 2007. Fully-developed pipe and planar flows of multimode
viscoelastic fluids. J. Non-Newton. Fluid Mech. 141 (2–3), 85–98. http://dx.doi.
org/10.1016/j.jnnfm.2006.09.001.

Cruz, D.O.A., Pinho, F.T., Oliveira, P.J., 2005. Analytical solutions for fully developed
laminar flow of some viscoelastic liquids with a Newtonian solvent contribution.
J. Non-Newton. Fluid Mech. 132 (1–3), 28–35. http://dx.doi.org/10.1016/j.jnnfm.
2005.08.013.

Dvorkin, E.N., Goldschmit, M.B., 2005. Nonlinear Continua. In: Computational Fluid
and Solid Mechanics, Springer Berlin Heidelberg, Berlin, Heidelberg, p. 586. http:
//dx.doi.org/10.1007/3-540-29264-0, URL: http://link.springer.com/10.1007/3-
540-29264-0.



International Journal of Multiphase Flow 150 (2022) 103981

16

C. Lang et al.

Edwards, B.J., Beris, A.N., 1990. Remarks concerning compressible viscoelastic
fluid models. J. Non-Newton. Fluid Mech. 36, 411–417. http://dx.doi.org/10.
1016/0377-0257(90)85021-P, URL: https://linkinghub.elsevier.com/retrieve/pii/
037702579085021P.

Egerer, C.P., 2016. Large-Eddy Simulation of Turbulent Cavitating Flows (Ph.D. thesis).
Technical University of Munich, p. 145.

Egerer, C.P., Hickel, S., Schmidt, S.J., Adams, N.A., 2014. Large-eddy simulation of
turbulent cavitating flow in a micro channel. Phys. Fluids 26 (8), http://dx.doi.
org/10.1063/1.4891325.

Egerer, C.P., Schmidt, S.J., Hickel, S., Adams, N.A., 2016. Efficient implicit LES method
for the simulation of turbulent cavitating flows. J. Comput. Phys. 316, 453–469.
http://dx.doi.org/10.1016/j.jcp.2016.04.021.

Favero, J.L., Secchi, A.R., Cardozo, N.S.M., Jasak, H., 2010. Viscoelastic flow analysis
using the software OpenFOAM and differential constitutive equations. J. Non-
Newton. Fluid Mech. 165 (23–24), 1625–1636. http://dx.doi.org/10.1016/j.jnnfm.
2010.08.010.

Fernandes, C., Vukčević, V., Uroić, T., Simoes, R., Carneiro, O.S., Jasak, H.,
Nóbrega, J.M., 2019. A coupled finite volume flow solver for the solution of
incompressible viscoelastic flows. J. Non-Newton. Fluid Mech. 265 (January),
99–115. http://dx.doi.org/10.1016/j.jnnfm.2019.01.006.

Ferrás, L.L., Afonso, A.M., Alves, M.A., Nóbrega, J.M., Pinho, F.T., 2020. Newtonian
and viscoelastic fluid flows through an abrupt 1:4 expansion with slip boundary
conditions. Phys. Fluids 32 (4), 043103. http://dx.doi.org/10.1063/1.5145092.

Ferziger, J.H., Perić, M., 2002. Computational Methods for Fluid Dynamics.
Springer Berlin Heidelberg, Berlin, Heidelberg, http://dx.doi.org/10.1007/978-3-
642-56026-2, URL: http://link.springer.com/10.1007/978-3-642-56026-2.

Figueiredo, R.A., Oishi, C.M., Afonso, A.M., Tasso, I.V., Cuminato, J.A., 2016. A two-
phase solver for complex fluids: Studies of the weissenberg effect. Int. J. Multiph.
Flow. 84, 98–115. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.04.014.

Fogler, H.S., Goddard, J.D., 1970. Collapse of spherical cavities in viscoelastic fluids.
Phys. Fluids 13 (5), 1135–1141. http://dx.doi.org/10.1063/1.1693042.

Franc, J.-P., Michel, J.-M., 2005. Fundamentals of Cavitation. In: Fluid Mechanics and
Its Applications, vol. 76, Kluwer Academic Publishers, Dordrecht, http://dx.doi.org/
10.1007/1-4020-2233-6, URL: http://link.springer.com/10.1007/1-4020-2233-6.

Giesekus, H., 1966. Die elastizität von flüssigkeiten. Rheol. Acta 5 (1), 29–35.
http://dx.doi.org/10.1007/BF01973575, URL: http://link.springer.com/10.1007/
BF01973575.

Giesekus, H., 1982. A simple constitutive equation for polymer fluids based on the
concept of deformation-dependent tensorial mobility. J. Non-Newton. Fluid Mech.
11 (1–2), 69–109. http://dx.doi.org/10.1016/0377-0257(82)85016-7.

Gogate, P.R., Wilhelm, A.M., Pandit, A.B., 2003. Some aspects of the design of
sonochemical reactors. Ultrason. Sonochem. 10 (6), 325–330. http://dx.doi.org/
10.1016/S1350-4177(03)00103-2.

Guy, R.D., Fogelson, A.L., 2008. A wave propagation algorithm for viscoelastic fluids
with spatially and temporally varying properties. Comput. Methods Appl. Mech.
Engrg. 197 (25–28), 2250–2264. http://dx.doi.org/10.1016/j.cma.2007.11.022.

Habla, F., Woitalka, A., Neuner, S., Hinrichsen, O., 2012. Development of a method-
ology for numerical simulation of non-isothermal viscoelastic fluid flows with
application to axisymmetric 4 : 1 contraction flows. Chem. Eng. J. 207–208,
772–784. http://dx.doi.org/10.1016/j.cej.2012.07.060.

Haupt, P., 2000. Continuum Mechanics and Theory of Materials. http://dx.doi.org/10.
1007/978-3-662-04109-3.

Hirsch, C., 2007. Numerical Computation of Internal and External Flows. Elsevier,
http://dx.doi.org/10.1016/B978-0-7506-6594-0.X5037-1, URL: https://linkinghub.
elsevier.com/retrieve/pii/B9780750665940X50371.

Housiadas, K.D., Georgiou, G.C., 2011. Perturbation solution of Poiseuille flow of
a weakly compressible Oldroyd-B fluid. J. Non-Newton. Fluid Mech. 166 (1–2),
73–92. http://dx.doi.org/10.1016/j.jnnfm.2010.10.007.

Housiadas, K.D., Georgiou, G.C., Mamoutos, I.G., 2012. Laminar axisymmetric flow
of a weakly compressible viscoelastic fluid. Rheol. Acta 51 (6), 511–526. http:
//dx.doi.org/10.1007/s00397-011-0610-x.

Hua, C., Johnsen, E., 2013. Nonlinear oscillations following the Rayleigh collapse of
a gas bubble in a linear viscoelastic (tissue-like) medium. Phys. Fluids 25 (8),
http://dx.doi.org/10.1063/1.4817673.

Huilgol, R.R., Phan-Thien, N., 1997. Fluid Mechanics of Viscoelasticity.
Ji, W., Waas, A.M., Bazant, Z.P., 2013. On the importance of work-conjugacy and

objective stress rates in finite deformation incremental finite element analysis. J.
Appl. Mech. Trans. ASME 80 (4), 1–9. http://dx.doi.org/10.1115/1.4007828.

Jiang, G.S., Shu, C.W., 1996. Efficient implementation of weighted ENO schemes. J.
Comput. Phys. 126 (1), 202–228. http://dx.doi.org/10.1006/jcph.1996.0130.

Jiménez-Fernández, J., Crespo, A., 2006. The collapse of gas bubbles and cavities in a
viscoelastic fluid. Int. J. Multiph. Flow. 32 (10–11), 1294–1299. http://dx.doi.org/
10.1016/j.ijmultiphaseflow.2006.06.001.

Johnsen, E., Colonius, T., 2008. Shock-induced collapse of a gas bubble in shockwave
lithotripsy. J. Acoust. Soc. Am. 124 (4), 2011–2020. http://dx.doi.org/10.1121/1.
2973229.

Johnson, M.W., Segalman, D., 1977. A model for viscoelastic fluid behavior which
allows non-affine deformation. J. Non-Newton. Fluid Mech. 2 (3), 255–270. http:
//dx.doi.org/10.1016/0377-0257(77)80003-7.

Keshtiban, I.J., Belblidia, F., Webster, M.F., 2004. Numerical simulation of compressible
viscoelastic liquids. J. Non-Newton. Fluid Mech. 122 (1–3), 131–146. http://dx.doi.
org/10.1016/j.jnnfm.2003.12.008.

Keshtiban, I.J., Belblidia, F., Webster, M.F., 2005. Computation of incompressible and
weakly-compressible viscoelastic liquids flow: Finite element/volume schemes. J.
Non-Newton. Fluid Mech. 126 (2-3 SPEC. ISS.), 123–143. http://dx.doi.org/10.
1016/j.jnnfm.2004.07.020.

Kim, C., 1994. Collapse of spherical bubbles in Maxwell fluids. J. Non-Newton.
Fluid Mech. 55 (1), 37–58. http://dx.doi.org/10.1016/0377-0257(94)80059-6,
URL: https://linkinghub.elsevier.com/retrieve/pii/0377025794800596.

Koren, B., 1993. A robust upwind discretization method for advection, diffusion and
source terms. Numer. Methods Advection-Diffus. Probl. 45 (c), 117–138.

Larson, R.G., 1992. Instabilities in viscoelastic flows. Rheol. Acta 31, 213–263. http:
//dx.doi.org/10.1007/BF01974447.

Lentacker, I., De Cock, I., Deckers, R., De Smedt, S.C., Moonen, C.T., 2014. Understand-
ing ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv.
Drug Deliv. Rev. 72, 49–64. http://dx.doi.org/10.1016/j.addr.2013.11.008.

LeVeque, R., 1992. Numerical Methods for Conservation Laws. Birkhäuser Basel, Basel,
http://dx.doi.org/10.1007/978-3-0348-8629-1, URL: http://link.springer.com/10.
1007/978-3-0348-8629-1.

Lind, S.J., 2010. A Numerical Study of the Effect of Viscoelasticity on Cavitation and
Bubble Dynamics (Ph.D. thesis). Cardiff University, p. 305.

Lind, S.J., Phillips, T.N., 2010. Spherical bubble collapse in viscoelastic fluids. J. Non-
Newton. Fluid Mech. 165 (1–2), 56–64. http://dx.doi.org/10.1016/j.jnnfm.2009.
09.002.

Lind, S.J., Phillips, T.N., 2013. Bubble collapse in compressible fluids using a spectral
element marker particle method. Part 2. Viscoelastic fluids. Internat. J. Numer.
Methods Fluids 71 (9), 1103–1130. http://dx.doi.org/10.1002/fld.3701, URL: http:
//doi.wiley.com/10.1002/fld.3701.

Lippmann, H., 1996. Angewandte Tensorrechnung. Springer Berlin Heidelberg,
Berlin, Heidelberg, http://dx.doi.org/10.1007/978-3-642-80292-8, URL: http://
link.springer.com/10.1007/978-3-642-80292-8.

Mackay, A.T., Phillips, T.N., 2019. On the derivation of macroscopic models for
compressible viscoelastic fluids using the generalized bracket framework. J. Non-
Newton. Fluid Mech. 266 (February), 59–71. http://dx.doi.org/10.1016/j.jnnfm.
2019.02.006.

Mihatsch, M.S., Schmidt, S.J., Adams, N.A., 2015. Cavitation erosion prediction based
on analysis of flow dynamics and impact load spectra. Phys. Fluids 27 (10),
http://dx.doi.org/10.1063/1.4932175.

Mompean, G., Deville, M., 1997. Unsteady finite volume simulation of Oldroyd-B fluid
through a three-dimensional planar contraction. J. Non-Newton. Fluid Mech. 72
(2–3), 253–279. http://dx.doi.org/10.1016/S0377-0257(97)00033-5.

Naseri, H., Koukouvinis, P., Malgarinos, I., Gavaises, M., 2018. On viscoelastic cavi-
tating flows: A numerical study. Phys. Fluids 30 (3), http://dx.doi.org/10.1063/1.
5011978.

Nithiarasu, P., 2004. A fully explicit characteristics based split (CBS) scheme for
viscoelastic flow calculations. Internat. J. Numer. Methods Engrg. 60 (5), 949–978.
http://dx.doi.org/10.1002/nme.993.

Ohl, C.D., Arora, M., Dijkink, R., Janve, V., Lohse, D., 2006a. Surface cleaning from
laser-induced cavitation bubbles. Appl. Phys. Lett. 89 (7), http://dx.doi.org/10.
1063/1.2337506.

Ohl, C.D., Arora, M., Ikink, R., De Jong, N., Versluis, M., Delius, M., Lohse, D., 2006b.
Sonoporation from jetting cavitation bubbles. Biophys. J. 91 (11), 4285–4295.
http://dx.doi.org/10.1529/biophysj.105.075366.

Oldroyd, J.G., 1950. On the formulation of rheological equations of state. Proc.
R. Soc. A 200 (1063), 523–541. http://dx.doi.org/10.1098/rspa.1950.0035, URL:
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1950.0035.

Oldroyd, J.G., 1984. An approach to non-newtonian fluid mechanics. J. Non-Newton.
Fluid Mech. 14, 9–46. http://dx.doi.org/10.1016/0377-0257(84)80035-x.

Oliveira, P.J., Pinho, F.T., Pinto, G.A., 1998. Numerical simulation of non-linear elastic
flows with a general collocated finite-volume method. J. Non-Newton. Fluid Mech.
79 (1), 1–43. http://dx.doi.org/10.1016/S0377-0257(98)00082-2.

Örley, F., Pasquariello, V., Hickel, S., Adams, N.A., 2015a. Cut-element based im-
mersed boundary method for moving geometries in compressible liquid flows with
cavitation. J. Comput. Phys. 283, 1–22. http://dx.doi.org/10.1016/j.jcp.2014.11.
028.

Örley, F., Trummler, T., Hickel, S., Mihatsch, M.S., Schmidt, S.J., Adams, N.A., 2015b.
Large-eddy simulation of cavitating nozzle flow and primary jet break-up. Phys.
Fluids 27 (8), http://dx.doi.org/10.1063/1.4928701.

Owens, R.G., Phillips, T.N., 2002. Computational Rheology. http://dx.doi.org/10.1142/
9781860949425, URL: http://ebooks.worldscinet.com/ISBN/9781860949425/
9781860949425.html.

Perera, M.G., Strauss, K., 1979. Direct numerical solutions of the equations for
viscoelastic fluid flow. J. Non-Newton. Fluid Mech. 5 (C), 269–283. http://dx.doi.
org/10.1016/0377-0257(79)85018-1.

Phan-Thien, N., 1978. A nonlinear network viscoelastic model. J. Rheol. 22 (3),
259–283. http://dx.doi.org/10.1122/1.549481, URL: http://sor.scitation.org/doi/
10.1122/1.549481.



International Journal of Multiphase Flow 150 (2022) 103981

17

C. Lang et al.

Phan-Thien, N., Tanner, R.I., 1977. A new constitutive equation derived from net-
work theory. J. Non-Newton. Fluid Mech. 2 (4), 353–365. http://dx.doi.org/10.
1016/0377-0257(77)80021-9, URL: https://linkinghub.elsevier.com/retrieve/pii/
0377025777800219.

Phelan, F.R., Malone, M.F., Winter, H.H., 1989. A purely hyperbolic model for unsteady
viscoelastic flow. J. Non-Newton. Fluid Mech. 32 (2), 197–224. http://dx.doi.org/
10.1016/0377-0257(89)85036-0.

Pinsky, P.M., Ortiz, M., Pister, K.S., 1983. Numerical integration of rate constitutive
equations in finite deformation analysis. Comput. Methods Appl. Mech. Engrg. 40
(2), 137–158. http://dx.doi.org/10.1016/0045-7825(83)90087-7.

Price, R.J., Kaul, S., 2002. Contrast ultrasound targeted drug and gene delivery: An
update on a new therapeutic modality. J. Cardiovasc. Pharmacol. Ther. 7 (3),
171–180. http://dx.doi.org/10.1177/107424840200700307.

Rodriguez, M., Johnsen, E., 2019. A high-order accurate five-equations compressible
multiphase approach for viscoelastic fluids and solids with relaxation and elasticity.
J. Comput. Phys. 379, 70–90. http://dx.doi.org/10.1016/j.jcp.2018.10.035.

Rodriguez, M., Johnsen, E., Powell, K.G., 2019. A high-order accurate AUSM + -up ap-
proach for simulations of compressible multiphase flows with linear viscoelasticity.
Shock Waves 29 (5), 717–734. http://dx.doi.org/10.1007/s00193-018-0884-3.

Roe, P., 1986. Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid
Mech. 18 (1), 337–365. http://dx.doi.org/10.1146/annurev.fluid.18.1.337.

Rouhaud, E., Panicaud, B., Kerner, R., 2013. Canonical frame-indifferent transport
operators with the four-dimensional formalism of differential geometry. Comput.
Mater. Sci. 77, 120–130. http://dx.doi.org/10.1016/j.commatsci.2013.04.032.

Rowlatt, C.F., Lind, S.J., 2017. Bubble collapse near a fluid-fluid interface using the
spectral element marker particle method with applications in bioengineering. Int.
J. Multiph. Flow. 90, 118–143. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.
11.010.

Sato, T., Richardson, S.M., 1994. Explicit numerical simulation of time-dependent
viscoelastic flow problems by a finite element/finite volume method. J. Non-
Newton. Fluid Mech. 51 (3), 249–275. http://dx.doi.org/10.1016/0377-0257(94)
85019-4.

Saurel, R., Cocchi, J.P., Butler, P.B., 1999. Numerical study of cavitation in the
wake of a hypervelocity underwater projectile. J. Propul. Power 15 (4), 513–522.
http://dx.doi.org/10.2514/2.5473.

Schenke, S., Melissaris, T., Terwisga, T.J.C.V., 2019. On the relevance of kinematics for
cavitation implosion loads on the relevance of kinematics for cavitation implosion
loads. Phys. Fluids 31 (5), http://dx.doi.org/10.1063/1.5092711.

Schmidt, S.J., 2015. A Low Mach number Consistent Compressible Approach for
Simulation of Cavitating Flow (Ph.D. thesis). Technical University of Munich.

Schnerr, G., Sauer, J., 2001. Physical and numerical modeling of unsteady cavitation
dynamics. In: 4th International Conference on Multiphase Flow (ICMF).

Schnerr, G.H., Sezal, I.H., Schmidt, S.J., 2008. Numerical investigation of three-
dimensional cloud cavitation with special emphasis on collapse induced shock
dynamics. Phys. Fluids 20 (4), 1–9. http://dx.doi.org/10.1063/1.2911039.

Sezal, I.H., 2009. Compressible Dynamics of Cavitating 3-D Multi-Phase Flows (Ph.D.
thesis). Technical University of Munich.

Surana, K.S., Ma, Y., Romkes, A., Reddy, J.N., 2010. The rate constitutive equations and
their validity for progressively increasing deformation. Mech. Adv. Mater. Struct.
17 (7), 509–533. http://dx.doi.org/10.1080/15376494.2010.509195.

Toro, E.F., 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics, Vol.
40. Springer Berlin Heidelberg, Berlin, Heidelberg, p. 9823. http://dx.doi.org/10.
1007/b79761, URL: http://link.springer.com/10.1007/b79761.

Truesdell, C., 1953. Corrections and additions to "The mechanical foundations of
elasticity and fluid dynamics".

Truesdell, C., 1955. The simplest rate theory of pure elasticity. Comm. Pure Appl. Math.
8 (1), 123–132. http://dx.doi.org/10.1002/cpa.3160080109.

Truesdell, C., Noll, W., 2004. The Non-Linear Field Theories of Mechanics.
Trummler, T., Schmidt, S.J., Adams, N.A., 2020. Investigation of condensation shocks

and re-entrant jet dynamics in a cavitating nozzle flow by large-eddy simula-
tion. Int. J. Multiph. Flow. 125, http://dx.doi.org/10.1016/j.ijmultiphaseflow.2020.
103215.

Vlaisavljevich, E., Lin, K.W., Warnez, M.T., Singh, R., Mancia, L., Putnam, A.J.,
Johnsen, E., Cain, C., Xu, Z., 2015. Effects of tissue stiffness, ultrasound frequency,
and pressure on histotripsy-induced cavitation bubble behavior. Phys. Med. Biol.
60 (6), 2271–2292. http://dx.doi.org/10.1088/0031-9155/60/6/2271.

Walters, M.J., 2015. An Investigation into the Effects of Viscoelasticity on Cavita-
tion Bubble Dynamics with Applications to Biomedicine (Ph.D. thesis). Cardiff
University, URL: http://orca.cf.ac.uk/73461/1/Thesisdraft.pdf.

Warnez, M.T., Johnsen, E., 2015. Numerical modeling of bubble dynamics in viscoelas-
tic media with relaxation. Phys. Fluids 27 (6), 1–28. http://dx.doi.org/10.1063/1.
4922598.

Waters, N.D., King, M.J., 1970. Unsteady flow of an elastico-viscous liquid. Rheol. Acta
9 (3), 345–355. http://dx.doi.org/10.1007/BF01975401, URL: http://link.springer.
com/10.1007/BF01975401.

Xue, S.-C., Phan-Thien, N., Tanner, R., 1998. Three dimensional numerical simulations
of viscoelastic flows through planar contractions. J. Non-Newton. Fluid Mech. 74
(1–3), 195–245. http://dx.doi.org/10.1016/S0377-0257(97)00072-4, URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0377025797000724.

Yul Yoo, J., Na, Y., 1991. A numerical study of the planar contraction flow of a
viscoelastic fluid using the SIMPLER algorithm. J. Non-Newton. Fluid Mech. 39
(1), 89–106. http://dx.doi.org/10.1016/0377-0257(91)80005-5.

Zilonova, E., Solovchuk, M., Sheu, T.W.H., 2018. Bubble dynamics in viscoelastic soft
tissue in high-intensity focal ultrasound thermal therapy. Ultrason. Sonochem. 40
(35), 900–911. http://dx.doi.org/10.1016/j.ultsonch.2017.08.017.



CHAPTER A. PEER-REVIEWED JOURNAL PUBLICATIONS 57

A.2 On spherical vapor bubble collapse in viscoelastic fluids

(Reproduced from [78])



26.07.23, 19:02 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet 1/1

Home Help Live Chat Sign in Create Account

© 2023 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

On spherical vapor bubble collapse in viscoelastic �uids

Author: Christian Lang,Mengqi Zhang,Ste�en J. Schmidt,Nikolaus A. Adams

Publication: Applied Mathematical Modelling

Publisher: Elsevier

Date: November 2023

© 2023 Published by Elsevier Inc.

Journal Author Rights

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or dissertation,
provided it is not published commercially. Permission is not required, but please ensure that you reference the
journal as the original source. For more information on this and on your other retained rights, please
visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-rights

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com



Applied Mathematical Modelling 123 (2023) 484–506 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

On spherical vapor bubble collapse in viscoelastic fluids 

Christian Lang 

a , b , ∗, Mengqi Zhang 

b , Steffen J. Schmidt a , Nikolaus A. Adams a 

a Technical University of Munich, TUM School of Engineering and Design, Chair of Aerodynamics and Fluid Mechanics, Boltzmannstr. 15, 

Garching bei München 85748, Germany 
b Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore 

a r t i c l e i n f o 

Article history: 

Received 16 January 2023 

Revised 9 May 2023 

Accepted 3 July 2023 

Available online 8 July 2023 

Keywords: 

Viscoelasticity 

Bubble collapse 

Multiphase flows 

Computational fluid dynamics 

Numerical simulation 

Complex fluids 

a b s t r a c t 

Cavitating vapor bubbles, occur in variety of engineering applications, employing complex 

fluids as operating medium. Especially in biomechanics, biomedical applications as well 

as in polymer processing, fluids exhibit viscoelastic properties and fundamentally differ- 

ent behavior than Newtonian fluids. To explain the influence of viscoelasticity on cavita- 

tion a detailed understanding of the viscoelastic influence on bubble dynamics and of the 

underlying mechanisms is essential. With this study we provide in-depth numerical in- 

vestigations of the spherical vapor bubble collapse in viscoelastic fluids. A compressible, 

density-based, 3D finite-volume solver with explicit time integration is used together with 

a conservative, compressible formulation for the constitutive equations of three different 

viscoelastic models, namely the upper convected Maxwell model, the Oldroyd-B model and 

the simplified linear Phan-Thien Tanner model. 3D simulations of the collapse dynamics 

are carried out to show the viscous and viscoelastic stress development during the col- 

lapse, and its relation to the occurring deformations. Collapse behavior is investigated for 

various elasticity, viscosity and constitutive models. It is demonstrated that viscoelastic- 

ity fundamentally alters the collapse behavior and evolution of stresses. It is observed that 

viscoelastic stresses develop with a time delay proportional to elasticity and show different 

spatial distributions as opposed to Newtonian stresses. Viscoelasticity introduces isotropic 

stress components even though the spherical collapse leads to purely deviatoric (elonga- 

tional) deformation. Furthermore, the distinct influence of constitutive models is illustrated 

and the influence of viscoelastic models with solvent contribution is explained. For the up- 

per convected Maxwell model, we show that for increased elasticity shock wave emission 

can be observed depending on the applied grid resolution. 

© 2023 Published by Elsevier Inc. 

1. Introduction 

Many applications involving cavitation and cavitating bubbles incorporate materials that concurrently show viscous and 

elastic behavior. Viscoelastic behavior can be attributed to the underlying complex microstructure comprising long-chained 

molecules. Cavitation bubbles can be present in a wide range of application scenarios of such materials. In biological media 

cavitation bubbles are exploited in applications such as drug delivery [1,2] , shock-wave lithotripsy [3] , histotripsy [4,5] and 

microbubble contrast agents for ultrasound diagnostics and treatment [6,7] . Other applications with cavitation in materials of 
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complex microstructure are the usage of ultrasonics in food processing [8] , rheological measurements for the determination 

of material properties [9,10] and polymeric foam production [11] . The interested reader is referred to Brujan [12] , Dollet 

et al. [13] for a comprehensive summary on applications of cavitation in viscoelastic media. 

The alteration of cavitation bubble dynamics by viscoelastic effects was clearly proven experimentally. Barnett [14] per- 

formed experiments of dissolving bubbles in water and viscoelastic fluids and assessed a retardation of the process caused 

by viscoelasticity. Ashworth and Procter [15] conducted experiments with dilute polymer solutions to investigate cavita- 

tion damage through bubble collapse and revealed that small amounts of polymers in water can significantly change the 

erosion potential. Brujan [16] conducted experiments and simulations to show the viscoelastic impact on cavitation bubble 

dynamics and detected a reduction the oscillation size and period, and a pressure reduction of the emitted pressure wave in 

polyacrylamide gel compared to water. Recently, Yang et al. [10] utilize cavitation in viscoelastic materials for the purpose 

of rheometry extracting material parameters during the collapse of laser-generated bubbles. In doing so, they additionally 

applied a numerical 1D formulation based on the Kelvin-Voigt viscoelastic model. 

Aside from experiments, mathematical models were formulated and simulations were carried out to investigate viscoelas- 

tic bubble dynamics. Numerical studies of Fogler and Goddard [17] , Tanasawa and Yang [18] ascertained that viscoelasticity 

has a significant impact on the spherical bubble collapse in a Maxwell- and an Oldroyd-fluid, respectively. In both studies 

modifications of the 1D Rayleigh-Plesset equation are applied, neglecting compressibility. Brujan [19] performed simulations 

using a 1D formulation of the equation of motion including compressibility. They applied the Oldroyd viscoelastic model 

with the material time derivative as stress rate. By using a singular perturbation method they ascertained that only for 

Re < 100 viscoelastic effects become significant for the spherical bubble collapse. Allen and Roy [20 , 21] studied oscillations 

of spherical gas bubbles in viscoelastic fluids with the help of the generalized Rayleigh-Plesset equations assuming incom- 

pressible flows. For the linear case Allen and Roy [20] used a traceless stress tensor formulation, the partial time derivative 

as stress rate and the Oldroyd viscoelastic constitutive model. In the second part [21] they extended their model using a 

nonzero trace formulation for the viscoelastic stress tensor and the upper convected Maxwell (UCM) model including the 

upper convected time derivative for the stress rate that ensures frame invariance, also for large deformations. They showed 

that elasticity or the corresponding relaxation strongly influences the amplitude of oscillations. The limitations of the trace- 

less formulation with non-objective stress rates were highlighted by showing distinct differences in the oscillatory motion 

for large deformations. Furthermore, the viscoelastic stresses during bubble oscillations were examined. Bubble oscillations 

and non-spherical shape change were studied by Foteinopoulou and Laso [22] . They used the incompressible equations of 

motion combined with the exponential Phan-Thien Tanner (EPTT) viscoelastic model which includes shear-thinning, and 

solved the 3D equations using a finite element discretization. They found an increased oscillation amplitude by increas- 

ing the relaxation time or decreasing the viscosity. Furthermore, they stated that a traceless formulation of the viscoelastic 

stress tensor may lead to incorrect results. Lind and Phillips [23] formulated a generalized Bernoulli equation assuming 

incompressible flow. The (generalized) Maxwell and the Oldroyd viscoelastic model were applied with the material time 

derivative as stress rate. A boundary element method was utilized to numerically solve the equations and find a rebound 

condition for the viscoelastic bubble collapse. In a later study [24] the same authors used a model based on the compress- 

ible 2D conservation equations and the Oldroyd-B model, which is equipped with the upper convected derivative for the 

viscoelastic stresses to study the bubble collapse in the vicinity of a rigid wall. The governing equations were discretized 

by a spectral element method and a particle marker method was employed to model two-phase flow. They found that 

viscoelasticity can crucially affect the shape during collapse and is able to suppress jet formation which is related to pos- 

sible cavitation damage. Assuming incompressible flow and a traceless stress tensor, Aliabadi and Taklifi [25] combined the 

UCM model with the Rayleigh-Plesset equation to investigate the influence of magnetic fields on gas bubble oscillations in 

viscoelastic media. Different magnitudes of magnetic fields were applied, and it was concluded that magnetic fields can con- 

siderably dampen collapse dynamics. Albernaz and Cunha [26] present a model to simulate bubbles in fluids with anistropic 

additives and examine the influence of the additive orientation. Hua and Johnsen [27] , Warnez and Johnsen [28] used the 

1D Keller-Miksis equation, that accounts for far-field compressibility, and applied viscoelastic models to investigate spher- 

ical bubble dynamics. In Hua and Johnsen [27] the Maxwell, Kelvin-Voigt and Zener viscoelastic models with the partial 

time derivative as viscoelastic stress rate and a traceless stress tensor were used. They showed that for the applied models, 

bubble oscillations are clearly affected by both viscoelasticity and compressibility, and that the influence of compressibility 

increases with increasing relaxation time. Warnez and Johnsen [28] used a generalized formulation to simulate the dynam- 

ics of different viscoelastic models with the upper convected derivative as time rate and a nonzero trace assumption for the 

viscoelastic stresses. They ascertained that relaxation exclusively is responsible for the bubble rebound. Furthermore, they 

found that large relaxation times lead to weak damping and more intense collapses. Both studies emphasize the importance 

of considering compressibility for viscoelastic bubble dynamics. The growth of a bubble in cheese is modelled and examined 

in Laridon et al. [29] . A generalized multimode Maxwell model with partial time derivative was used to describe viscoelas- 

tic behavior of the incompressible medium. The governing equations were solved by using a finite element discretization 

and the results were validated against experiments. Dastjerdi et al. [30] recently modelled the SARS-CoV-2 virus assuming 

viscoelastic material behavior, applied the nonlocal elasticity model of Eringen and thereby numerically investigated the 

application of loads and vibrations as an approach for treatment. 

The aforementioned studies showed the importance of viscoelasticity for the bubble collapse dynamics. The majority 

of the approaches employs 1D equations and in the case of compressible implementations, compressibility is commonly 

incorporated only in the far-field and the near field is treated incompressible. Moreover, there is no general agreement in the 
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Fig. 1. Schematic 1D rheological representation of materials of the Oldroyd-type (parallel arrangement of dashpot and Maxwell element). 

Table 1 

Applied viscoelastic models and their features. 

Model Solvent viscosity μS f 
(
τ

M 

)
Features 

relaxation 

normal stress 

effects 

solvent 

contribution 

shear- 

thinning 

Newtonian � = 0 0 •
UCM 0 0 • •
OLD-B � = 0 0 • • •
LPTT � = 0 ε λ

μM 
tr 

(
τ

M 

)
• • • •

literature whether the stress tensor should be assumed traceless or not. Collapse intensity and cavitation damage potential 

are immediately related to the viscoelastic impact on the bubble collapse dynamics. For a profound understanding of the 

viscous and viscoelastic stress development and their influence on the collapse, a time-dependent, compressible approach 

capable of resolving stress contributions is necessary. 

There are mainly three mechanisms driving most of the viscoelastic effects. First, due to its concurrently viscous and elas- 

tic behavior, viscoelastic materials exhibit a time dependent stress or fading memory behavior where viscoelastic stresses do 

not only depend on the current shear rate but also on past deformations and past viscoelastic stresses. Contrary to Newto- 

nian fluids, memory effects necessitate convective transport of viscoelastic stresses and correspondingly, to non-local stress 

effects. Furthermore, time dependency introduces time-delayed stress development. Second, due to complex microstruc- 

ture, normal stresses can occur in pure shear flows. Moreover, viscoelasticity can introduce shear rate dependent viscosi- 

ties resulting in shear-thinning or -thickening [31] . One possibility to model viscoelasticity is to consider materials of the 

Oldroyd-type, whose rheological 1D-representation consists of a parallel arrangement of a dashpot, representing a Newto- 

nian solvent fluid and a Maxwell element (see Fig. 1 ). The Maxwell element itself consists of a dashpot and spring in series 

and introduces relaxation. The capability of predicting the aforementioned effects is summarized in Table 1 for the applied 

models. 

In Lang et al. [32] a fully compressible density-based approach in 3D with finite-volume discretization and explicit time- 

stepping for the simulation of cavitating viscoelastic flows was introduced. The solver comprises compressible formulations 

of the UCM model, the Oldroyd-B model (denoted as OLD-B model in the following) and the simplified linear Phan-Thien 

Tanner (LPTT) and exponential Phan-Thien Tanner (EPTT) models and allows for the resolution of shock wave dynamics. We 

showed that viscoelasticity alters the bubble collapse dynamics. With the present study we provide an in-depth investiga- 

tion of viscous and viscoelastic stress development during the spherical bubble collapse and the relation to the underlying 

kinematics. We analyze the influence of viscoelasticity on collapse dynamics and stress development by considering the 

influence of viscosity, elasticity and different constitutive models. The study first introduces the physical model and the gov- 

erning equations. Subsequently, numerical method and boundary conditions are briefly discussed. Thereafter, problem con- 

figuration and numerical setup are described followed by the results of the conducted simulations. We discuss kinematics 

and show that the spherical collapse represents a purely deviatoric deformation. Viscous and viscoelastic stress development 

during collapse is reviewed. The collapse is additionally examined for different elasticity and viscosity. Furthermore, the col- 

lapse behavior and stress distributions are compared between a Newtonian fluid and three different viscoelastic models 

(UCM, OLD-B and LPTT model). It is shown that the variation of the relaxation time, the viscosity and the different models 

have a clear impact on the resulting stress fields and collapse dynamics. Eventually, we show the emission of shock waves 

during the collapse in a UCM fluid and ascertain that shock wave intensity is grid dependent for the investigated elasticity. 

2. Mathematical model and governing equations 

2.1. Transport and constitutive equations for compressible viscoelastic flow 

We consider unsteady, 3D, compressible and cavitating flows for viscoelastic fluids in an Eulerian framework. We assume 

phase change to be isentropic and hence apply a barotropic equation of state. Surface tension and gravitational forces are 
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neglected. The governing conservation equations are the conservation of mass and momentum, written in differential form 

∂ρ

∂t 
= −∇ · ( ρu ) , (1) 

∂ ( ρu ) 

∂t 
= −∇ · ( ρu � u − σ) . (2) 

Therein, ρ = ρ( x , t ) , u = u ( x , t ) and σ = σ( x , t ) represent the density field, the velocity field and the Cauchy stress ten- 

sor field in the current configuration and for the time instant t , respectively. The Cauchy stress itself is composed of the 

thermodynamic pressure field p = p ( x , t ) and the additional stress τ( x , t ) 

σ = −pI + τ. (3) 

As introduced in Section 1 Maxwell-/Oldroyd-type constitutive equations (cf. Owens and Phillips [33] ) are employed, for 

which the additional stress tensor is composed of the solvent (Newtonian) τ
S 

and the viscoelastic contribution τ
M 

, referred 

to as Maxwell stress in the following. The resulting constitutive equations read 

τ = τ
S 
+ τ

M 
, (4a) 

τ
S 
= 2 μS d 

d , (4b) 

τ
M 

+ λ
∇ 

τ
M 

+ f 
(
τ

M 

)
τ

M 
= 2 μM 

d 

d , (4c) 

∇ 

τ
M 

= 

D τ
M 

D t 
− l · τ

M 
− τ

M 
· l 

T + 

(∇ · u 

)
τ

M 
, (4d) 

where μS , μM 

are the Newtonian and the Maxwell viscosity, respectively. d 

d = d − 1 
3 tr 

(
d 

)
I is the deviatoric part of the strain 

rate tensor d = 

1 
2 

(
l + l T 

)
, where tr 

(
d 

)
is the trace of the same. The strain rate tensor represents the symmetric part of the 

spatial velocity gradient l = ∇u . The constitutive equations include the transport equations for the Maxwell stress tensor, 

where 
∇ 

τ
M 

represents the Truesdell rate which can be identified as proper objective time derivative in a compressible context, 

which is explained in further detail in Appendix A . 
D 
(
τ

M 

)
D t is the material time derivative of the Maxwell stress tensor. In 

both dissipation terms, for the Newtonian and the viscoelastic contribution, compressibility is considered, meaning that the 

isotropic part of the strain rate is explicitly excluded and only deviatoric deformations contribute to dissipation. However, 

the viscous stress tensor can still comprise a non-zero trace and hence have an isotropic part as demonstrated in Section 4.2 . 

A detailed discussion and a validation of the implemented constitutive model can also be found in Lang et al. [32] . By 

changing the solvent viscosity μS and the additional term f 
(
τ

M 

)
which introduces shear-rate dependent effective viscosity 

(see Table 1 ), the upper convected Maxwell model (UCM) [34] , the Oldroyd-B (OLD-B) model [34] and the simplified linear 

Phan-Thien Tanner (LPTT) model [35] are realized. The extensibility parameter within the LPTT model is chosen to the 

commonly used value of ε = 0 . 25 . 

By substituting the mass conservation Eq. (1) in the transport equation for the Maxwell stress Eq. (4c) the governing 

equations are reformulated in conservative form for an arbitrary control volume V ∈ R 

3 as follows: ∫ 
V 

∂ρ

∂t 
d V = −

∫ 
V 

∇ · ( ρu ) d V, (5) 

∫ 
V 

∂ ( ρu ) 

∂t 
d V = −

∫ 
V 

∇ ·
(
ρu � u + pI − 2 μS d 

d − τ
M 

)
d V, (6) 

∫ 
V 

∂ 
(
ρτ

M 

)
∂t 

d V = −
∫ 
V 

∇ ·
(
ρτ

M 
� u 

)
d V + 

∫ 
V 

S ρτ
M 

d V, (7) 

with the source term 

S ρτ
M 

= ρ

[
l · τ

M 
+ τ

M 
· l 

T −
(∇ · u 

)
τ

M 
+ 

1 

λ

[
2 μM 

d 

d − f 
(
τ

M 

)
τ

M 
− τ

M 

]]
. (8) 

Introducing the state vector U = 

[
ρ, ρu , ρτ

M 

]T 
, the conv ectiv e fluxes F c , the diffusive fluxes F d and the source terms S 

and applying Gauss’ theorem, the governing equations are reformulated in compact notation ∫ 
V 

∂U 

∂t 
d V = −

∮ 
∂V 

(
F c + F d 

)
d S + 

∫ 
V 

S d V, (9) 
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with 

F c = 

⎡ ⎣ 

F c ρ

F c ρu 

F c ρτ
M 

⎤ ⎦ = 

⎡ ⎣ 

( ρu ) · n 

( ρu � u + pI ) · n (
ρτ

M 
� u 

)
· n 

⎤ ⎦ , 

F d = 

⎡ ⎣ 

F d ρ

F d ρu 

F d ρτ
M 

⎤ ⎦ = 

⎡ ⎣ 

0 (
−2 μS d 

d − τ
M 

)
· n 

0 

⎤ ⎦ , 

S = 

⎡ ⎣ 

0 

0 

S ρτ
M 

⎤ ⎦ = 

⎡ ⎢ ⎣ 

0 

0 

ρ
[ 

l · τ
M 

+ τ
M 

· l 
T −

(∇ · u 

)
τ

M 
+ 

1 
λ

[
2 μM 

d 

d − f 
(
τ

M 

)
τ

M 
− τ

M 

]] 
⎤ ⎥ ⎦ 

, (10) 

where n represents the outward pointing unit normal vector. 

The aforementioned governing equations are equally valid for single phase and multiphase flows without limitation as- 

suming the field variables represent a volume averaged homogeneous mixture of the present components within each dis- 

crete finite-volume �. To calculate volume averaged discrete quantities we introduce the volume averaging operator 

� := 

1 

V �

∫ 
�

� d V. (11) 

In the context of the applied finite-volume spatial discretization we assume all quantities to be cell-centered and volume 

averaged over discrete control volumes �. Correspondingly, the phases are not treated separately, but a homogeneous mix- 

ture is considered. The applied cavitation model is based on this assumption as explained together with the equations of 

state in the following Section 2.2 . The discretized equations for each computational cell read 

∂ U 

∂t 
= 

1 

V �

⎧ ⎨ ⎩ 

−
∮ 
∂�

(̃
 F c 
(
U 

)
+ ̃

 F d 
(
U 

))
d S + 

∫ 
�

˜ S 
(
U 

)
d V 

⎫ ⎬ ⎭ 

. (12) 

where ˜ � depicts numerical approximations including flux calculations and face reconstructions as described in more detail 

in Section 2.3.1 . 

2.2. Single fluid cavitation model and equations of state 

The cavitating two-phase flow with condensation and evaporation is modeled by a single-fluid homogeneous mixture 

model. For two-phase mixture regions, it is assumed that both phases are in thermodynamic and mechanical equilibrium. 

The phase change processes occur infinitely fast without time delay and is supposed to be isentropic. The approach thus 

considers only homogeneous fluids, either of pure liquid or homogeneous mixtures of liquid and vapor. The homogeneous 

fluid is described by cell-centered volume averaged quantities for each discrete volume. Fig. 2 shows the concept of the 

applied model. On the left-hand-side an exemplary situation of a two-phase mixture with discrete regions of vapor and 

Fig. 2. Single-fluid homogeneous mixture model for a computational cell �. (a) Real physical situation. (b) Numerical model approximation with the 

corresponding vapor volume fraction α. 
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Table 2 

Fluid properties of the barotropic model at T re f = 293 . 15 K . 

Property Symbol Value 

Reference temperature T re f 293 . 15 K 

Density of saturated liquid ρl,sat 998 . 16 kg / m 

3 

Density of saturated vapor ρv ,sat 0 . 01721 kg / m 

3 

Saturation pressure p sat 2339 . 3 Pa 

Dynamic viscosity of saturated liquid μl,sat 1 . 0014 × 10 −3 Pa s 

Dynamic viscosity of saturated vapor μv ,sat 9 . 7275 × 10 −6 Pa s 

Speed of sound of saturated liquid c l,sat 1482 . 2 m/s 

Speed of sound of saturated vapor c v ,sat 423 . 18 m/s 

Specific heat capacity of saturated liquid c p,l,sat 4184 . 4 J/(kg K) 

Specific heat capacity of saturated vapor c p, v ,sat 1905 . 9 J/(kg K) 

Latent heat of vaporization l v 2453 . 5 × 10 3 J/kg 

liquid as it would occur in reality is illustrated. Assuming that the discrete cell size is larger than present vapor regions, the 

corresponding numerical representation resolved by our model would be a homogeneous mixture with the respective vapor 

volume fraction for a computational cell �. To appropriately simulate vapor bubbles during their collapse it is necessary to 

use a sufficient number of cells to resolve the bubble with sufficient accuracy. 

The mixture density for two-phase mixtures calculates to 

ρ = αρv ,sat + ( 1 − α) ρl,sat . (13) 

Consequently, pure liquid zones and liquid-vapor mixture regions can be determined by means of the vapor volume fraction 

α = 

V v , �

V �
= 

{
0 , if ρ ≥ ρl,sat (pure liquid) 

ρl,sat −ρ
ρl,sat −ρv ,sat 

, else (liquid-vapor mixture) , 
(14) 

defined as the occupied volume of vapor V v , � within the computational cell. α is calculated by the help of the mixture 

density ρ which is obtained from the explicit time integration of the mass conservation Eq. (5) . The flow is assumed to 

be barotropic, and we employ constant fluid properties at a constant reference temperature of T re f = 293 , 15 K as listed in 

Table 2 . Equations of state for the liquid phase and the mixture serve as closure of the system of equations. For pure liquid 

regions, a modified Tait equation of state as introduced by Saurel et al. [36] is used 

p = B 

[ (
ρ

ρl,sat 

)N 

− 1 

] 

+ p sat , (15) 

where N = 7 . 15 and B = 3 . 3 × 10 8 at the stated reference temperature. The speed of sound for pure liquid is 

c = 

(
N ( p + B ) 

ρ

)1 / 2 

. (16) 

For two-phase mixtures of saturated liquid and vapor we use the isentropic speed of sound definition 

c 2 = 

∂ p 

∂ρ

∣∣∣∣
s = const. 

⇒ p( ρ) − p sat = 

ρ∫ 
ρl,sat 

c 2 d ρ (17) 

to calculate the mixture pressure by integration. The speed of sound is substituted by the formulation of Franc and Michel 

[37] , which considers the latent heat of vaporization: 

1 

ρc 2 
= 

α

ρv ,sat c 2 v ,sat 

+ 

1 − α

ρl,sat c 
2 
l,sat 

+ 

(
( 1 − α) ρl,sat c p,l,sat − α ρv ,sat c p, v ,sat 

)
T re f (

ρv ,sat l v 
)2 

. (18) 

A detailed derivation of the pressure equation is given in Lang et al. [32] . The combination of Tait equation for pure liquid 

and the aforementioned equation for mixture regions was validated in several studies [ 42–44 ] and proved to yield better 

results than the stiffened gas equation. The solvent viscosity is calculated similarly for pure liquid and mixture regions 

following the approach of Beattie and Whalley [38] : 

μS = ( 1 − α) 

(
1 + 

5 

2 

α

)
μl,sat + α μv ,sat . (19) 

The viscoelastic viscosity μM 

is assumed to be constant in both pure liquid and mixture regions which is reasonable since 

the diffusive contribution is scaled by the density accounting for mixture dependent viscous influence, i.e. the high density 

in liquid regions leads to strong viscous influence and low density in vapor regions corresponds to a weak influence. 
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2.3. Numerical approach 

2.3.1. Discretization 

The finite-volume discretization is performed on body-fitted, hexahedral cells with non-staggered cell-centered variables. 

The governing equations are formulated in Cartesian coordinates. The calculation of cell face fluxes is performed separately 

for convective and for diffusive fluxes or source terms, respectively. For the convective fluxes a low-Mach number consistent 

approximate Riemann solver with upwind-biased reconstruction procedure is used. The method combines an AUSM-type 

(Advection Upstream Splitting Method) based Riemann solver with a MUSCL (Monotone Upstream-Centered Schemes for 

Conservation Laws) reconstruction with TVD (Total Variation Diminishing) limiters for the numerical calculation of convec- 

tive fluxes. The numerical flux calculation addresses the velocities and the pressure separately. For the different variables 

distinct limiter functions are applied. The density is reconstructed with the MinMod limiter [39] , the velocities with the 

Koren limiter [40] and the viscoelastic stresses are reconstructed by applying the weighted essentially non-oscillatory re- 

construction procedure (WENO-3) [41] . The numerical flux calculation and reconstruction procedures are described in more 

detail as baseline finite-volume scheme in Egerer et al. [42] . The diffusive flux and the source term are calculated by a sec- 

ond order central reconstruction. Time integration is realized by an explicit second-order accurate low-storage four step 

Runge-Kutta method with improved stability range. For a detailed description of the algorithm, the reader is referred to 

Lang et al. [32] . An appropriate timestep criterion with respect to viscoelastic flows is used. The timestep calculation is 

defined introducing the Courant-Friedrich-Lewy ( CF L ) number 

�t = 

CFL 

i c + i d 
, (20) 

where i c = 

1 
�t c 

and i d = 

1 
�t d 

represent the inverse convective and diffusive timestep respectively. The convective and diffu- 

sive timesteps are limited by the fastest transport mechanism occurring for each computational cell. The convective timestep 

limitation reads 

�t c < 

1 

i c 
:= min 

(
�x i /n 

λmax 
i 

)

= min 

⎛ ⎜ ⎝ 

⎡ ⎣ | u i | + 

√ 

c 2 + 

1 

ρ

(
4 

3 

G + 

∣∣τ
M,ii 

∣∣)⎤ ⎦ 

−1 

�x i 
n 

⎞ ⎟ ⎠ 

, 

i = 1 , 2 , 3 , n = 3 . (21) 

with cell length �x i in direction i and n = 3 for 3D flow. λmax 
i 

describes the fastest wave in i -direction taking into account 

waves introduced by the viscoelastic transport equations. The corresponding wave speeds are obtained by calculating the 

eigenvalues of the quasi-linear form as described in Appendix B . The diffusive timestep calculation considers diffusion pro- 

cesses in n dimensions. It proved to be suitable to only consider the solvent viscosity for the diffusive limitations, since the 

viscoelastic influence on the timestep criterion is dominated by convection 

�t d < 

1 

i d 
:= min 

(
ρ( �x i /n ) 

2 

2 μS 

)
, i = 1 , 2 , 3 , n = 3 . (22) 

The applied Runge-Kutta scheme has been demonstrated to provide stable results up to CFL = 1 . 5 [43] . We set CFL = 1 . 4 for 

all conducted simulations throughout this study. The time step criterion is calculated for every iteration and the smallest 

time step amongst all cells is taken globally. 

2.3.2. Boundary conditions 

Boundary conditions are implemented by attaching two-layers of virtual cells, called ghost cells ( | g ), to the cells of the 

computational domain ( | d ) as illustrated in Fig. 3 . These ghost-cells contain data for the primitive variables in order to meet 

the physically correct constraints at the boundary face. In doing so, the variables within the ghost cells are not restricted 

to physically meaningful values but are defined so as to result in correct reconstructions at the face between the computa- 

tional domain and the ghost cells. A central reconstruction at the boundary face is used (cf. Appendix C ). For the problem as 

described in Section 3 , two different boundary conditions are applied. First, we impose symmetry boundary conditions en- 

abling us to simulate only one eighth of the bubble in order to reduce computational costs. Symmetry boundary conditions 

for the primitive variables in the ghost cells are 

∇ p 
∣∣

sym 

· n | 
sym 
= 0 −→ p | g = p | d , 

u | 
sym 
· n | 
sym 

= 0 −→ u | g = u | d − 2 

(
u | d · n | d 

)
n | d , 

t t | 
sym 
= 0 −→ τ

S / M 

∣∣
g 

= 2 

(
n | d · τ

S / M 

∣∣
d 

· n | d 
)

I − τ
S / M 

∣∣
d 
, (23) 
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Fig. 3. Computational cells d 1 , d 2 and adjacent ghost cells g 1 , g 2 separated by the boundary face 
. 

where the left side of −→ depicts the physical constraint at the boundary face 
 and the right side shows the numeri- 

cal implementation. n | 
 describes the outward pointing unit normal vector at the boundary. For the pressure a Neumann 

boundary condition, specifically a zero gradient condition, is imposed. Symmetry requires normal velocities at the boundary 

to vanish; tangential velocities remain unchanged with respect to values within the domain. The Newtonian and viscoelas- 

tic stresses are imposed in a way, that tangential traction t t | 
sym 
= n t | 
sym 

· τ
S / M 

∣∣

sym 

· n | 
sym 
vanishes, and only normal 

traction t n | 
sym 
= n | 
sym 

· τ
S / M 

∣∣

sym 

· n | 
sym 
occurs at the symmetry face. n t | 
 represents an arbitrary tangential unit vector 

perpendicular to the unit normal vector 
(∀ n t | 
 : n t | 
 · n | 
 = 0 

)
. Furthermore, it is assumed that normal traction should 

remain unaltered by the boundary condition. The procedure is applied similarly to solvent τ
S 

and viscoelastic stresses τ
M 

. A 

detailed derivation of the symmetry conditions for stresses is given in Appendix C . By using the equations of state pressure 

and density at the symmetry are calculated accordingly. 

In the far-field of the vapor bubble the following outflow boundary conditions are used: 

p | 
out 
= p out −→ p | g = p out , 

∇u 

∣∣

out 

· n | 
out 
= 0 −→ u | g = u | d , 

∇ τ
S / M 

∣∣

out 

· n | 
out 
= 0 −→ τ

S / M 

∣∣
g 

= τ
S / M 

∣∣
d 
. (24) 

The static pressure at the outlet is specified via a Dirichlet boundary condition realized by setting the pressure within the 

ghost cells to the specified outlet pressure. Velocities and stresses are assumed to be fully developed, thus zero gradient 

boundary conditions are used, realized by copying the domain cell values to the ghost cells. The density is again calculated 

according the pressure and the equations of state. 

3. Problem description 

Exploiting the spherical symmetry, the simulations are carried out for one eighth of a spherical vapor bubble with an 

initial radius of R 0 = 1 × 10 −4 m as shown in Fig. 4 . The computational mesh is divided in a refined cubic subdomain with 

Fig. 4. Numerical setup showing a slice of the x 1 /x 2 -plane and the corresponding boundary conditions: (a) Entire computational domain with refined zone 

and attached coarse mesh (for the refined zone in (a) only every 10th grid line is shown) (b) Closeup of the refined zone with initialized vapor volume 

fraction α [ −] and the computational mesh. 
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Table 3 

Properties of the applied computational meshes. 

Cell size refined zone 

�x 1 = �x 2 = �x 3 [ m ] 

Total number 

of cells [ −] 

Coarse mesh 1 . 0 × 10 −6 ≈ 4 . 91 × 10 6 

Reference mesh 7 . 14 × 10 −7 ≈ 12 . 17 × 10 6 

Fine mesh 5 . 0 × 10 −7 ≈ 32 . 77 × 10 6 

an edge length of 1 . 5 × R 0 in every direction and a resolution of 140 /R 0 equidistant finite volumes per initial radius in every 

direction for the reference case. The applied resolution was chosen upon reviewing Trummler et al. [44] , where a resolution 

of at least 80 /R 0 was suggested for Newtonian collapses and Schmidmayer et al. [45] where it was found, that the resolution 

influences the sphericity of the bubble during collapse, and simulations with a resolution up to 150 /R 0 were conducted. 

Other resolutions are used for a mesh study connected with shock wave emission described in Section 4.4 . For all remaining 

simulations the reference mesh is employed. The properties of the different meshes are summarized in Table 3 . For the outer 

part a mesh stretching is applied with an extent of 20 × R 0 in every direction. Symmetry boundary conditions are used for 

the three adjacent planes of the bubble. Outflow boundary conditions with an outlet pressure equal to the surrounding 

pressure p exit = p ∞ 

are applied for the far field planes to suppress reflecting waves. The pressure field is initialized with a 

constant saturated vapor pressure p sat inside the bubble and a constant surrounding pressure p ∞ 

= 10 × 10 5 Pa resulting in 

a pressure jump at the bubble interface. The densities are calculated corresponding to the initialized pressure fields and the 

according equations of state. The whole domain is initialized with fluid at rest u init = 0 and zero viscous and viscoelastic 

stresses τ
S,init 

= τ
M,init 

= 0 . 

The non-dimensional numbers characterizing the viscoelastic bubble collapse are the Reynolds and the Deborah number. 

The Reynolds number Re relates convective to diffusive momentum transport and is therefore appropriate to characterize 

the influence of viscosity. The Deborah number De describes the ratio of relaxation time λ to a characteristic flow timescale. 

For the viscoelastic bubble collapse Re and De are defined as follows 

Re = 

R 0 

√ 

ρl,sat �p 

μ0 

, De = 

λ

R 0 

√ 

�p 

ρl,sat 

, (25) 

where �p = p ∞ 

− p sat is the pressure difference of driving and saturation pressure of vapor inside the bubble and μ0 = 

μS + μM 

is the sum of solvent and Maxwell viscosity. The non-dimensionalized radius r ∗ reads 

r ∗ = 

r 

R 0 

. (26) 

Furthermore, β describes the ratio of solvent to total viscosity 

β = 

μS 

μ0 

(27) 

which is chosen to β = 0 . 1 for the applied fluids with solvent contribution. 

4. Numerical results and discussion 

First, we focus on the kinematics of the spherical bubble collapse. Second, the stress distributions during the viscoelastic 

bubble collapse as well as the influence of viscosity and elasticity will be discussed. Finally, we compare the collapse and 

underlying stresses for different viscoelastic models and review shock wave emission caused by viscoelastic bubble collapse. 

The results are illustrated in spherical coordinates. Since the employed numerical solver internally works with Cartesian 

coordinates, the quantities in spherical coordinates are obtained by a postprocessing procedure that transforms Cartesian 

variables to the spherical counterparts simultaneously to the numerical simulation. The position of a point is given by 

Cartesian ( x 1 , x 2 , x 3 ) and spherical coordinates ( r, ψ , ϑ ) by the following transformation 

r = 

⎡ ⎣ 

x 1 
x 2 
x 3 

⎤ ⎦ = 

⎡ ⎣ 

r sin (ψ) cos (ϑ) 
r sin (ψ) sin (ϑ) 

r cos (ψ) . 

⎤ ⎦ (28) 

To obtain physical components of vectors and tensors with respect to the normalized spherical base vectors 

g r = 

⎡ ⎣ 

sin (ψ) cos (ϑ) 
sin (ψ) sin (ϑ) 

cos (ψ) 

⎤ ⎦ , g ψ 

= 

⎡ ⎣ 

cos (ψ) cos (ϑ) 
cos (ψ) sin (ϑ) 

−sin (ψ) 

⎤ ⎦ , g ϑ = 

⎡ ⎣ 

−sin (ϑ) 
cos (ϑ) 

0 

⎤ ⎦ (29) 

the following transformations for vectors of components [ u ] x 1 ,x 2 ,x 2 , [ u ] r,ψ,ϑ and matrices of components [ τ] x 1 ,x 2 ,x 2 , [ τ] r,ψ,ϑ 

in Cartesian and spherical coordinates, respectively, are applied 

[ u ] r,ψ,ϑ = [ M ] T · [ u ] x 1 ,x 2 ,x 2 , [ τ] r,ψ,ϑ = [ M ] T · [ τ] x 1 ,x 2 ,x 2 · [ M ] 
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Fig. 5. Correlation of Cartesian and spherical coordinates. 

[ M ] = 

⎡ ⎣ 

sin (ψ) cos (ϑ) cos (ψ) cos (ϑ) −sin (ϑ) 
sin (ψ) sin (ϑ) cos (ψ) sin (ϑ) cos (ϑ) 

cos (ψ) −sin (ψ) 0 

⎤ ⎦ (30) 

where [ M ] represents the transformation matrix. The spherical coordinates are chosen as depicted in Fig. 5 . 

4.1. Kinematics for the spherical viscoelastic bubble collapse 

In the following, we review the kinematics of the spherical bubble collapse in terms of radial velocity and deformations. 

The deformations are investigated considering the collapse for the UCM model and Re = 1 , De = 1 , since this case shows the 

relevant dynamics for the viscoelastic collapse in general. First, the bubble size and the bubble interface velocity over time 

are examined in Fig. 6 . For comparison, the Newtonian counterpart at the same Reynolds number and the solution of the 

generalized Keller-Miksis equation with upper convected Maxwell constitutive model is juxtaposed. The bubble in the UCM 

fluid behaves entirely different compared to the bubble in the Newtonian fluid. For the viscoelastic case a damped oscilla- 

tory collapse is observed. The oscillatory behavior can be attributed to relaxation and thus to a delayed viscoelastic stress 

formation. An initially stronger acceleration and less viscous dissipation allows for subsequent re-expansion of the collaps- 

ing bubble as discussed in further detail in Section 4.2 . Deviations from the results obtained by solving the Keller-Miksis 

equation can be attributed to the fact that the Keller-Miksis equation takes into account compressibility only in the far-field, 

whereas the near-field is treated incompressible as opposed to our simulations where compressibility is considered in the 

entire field. Furthermore, the Keller-Miksis equation assumes an initial pressure field with a smooth pressure distribution 

over the interface following the Rayleigh-Plesset equation. Our simulations, however, are initialized with a pressure jump at 

the interface. Fig. 7 shows the vapor volume fraction for different time instants as indicated in Fig. 6 . The initial collapse 

followed by the re-expansion can clearly be observed. 

In Fig. 8 we present the corresponding radial velocity field u r and the strain rate fields d rr , d ψψ 

for the aforementioned 

time instants. The diagonal component in ψ ψ -direction is identical to the component in ϑ ϑ -direction ( d ψψ 

= d ϑϑ ) just like 

Fig. 6. Bubble collapse in a UCM and a Newtonian fluid at Re = 1 , De = 1 . (a) Bubble radius ( shows the solution of the Keller-Miksis 

equation for UCM) (b) velocity of the interface over time. Dashed vertical lines represent the time instants for the following contour plots Figs. 7 and 8 . 

(Results for bubble radius in (a) as presented in Lang et al. [32] ). 
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Fig. 7. Vapor volume fraction α[ −] for different time instants as indicated in Fig. 6 for the bubble collapse in UCM fluid at Re = 1 , De = 1 . 

Fig. 8. Bubble collapse for the UCM model at Re = 1 , De = 1 . Contour plots through the midplane of the bubble for different time instants as tagged in 

Fig. 6 . (a) Radial velocity field u r , Strain rate components (b) d rr and (c) d ψψ . Black contour represents a vapor volume fraction of α = 0 . 01 . 

all non-diagonal components are identical amongst themselves ( d rψ 

= d rϑ = d ψϑ ) due to the spherical symmetry. Further- 

more, all off-diagonal components are zero likewise due to spherical symmetry, wherefore those are not illustrated here. 

It can be observed that the largest strain rates occur close to the bubble surface and decrease with increasing distance. 

The radial diagonal components of the strain rate d rr are much larger than the diagonal components of the strain rate in 

circumferential directions d ψψ 

. 

Next, the radial velocity field and deformation rates are reviewed in more detail as shown in Fig. 9 . The spherical bubble 

collapse is known to lead to pure uniaxial and biaxial extensional flow in the surrounding liquid during the collapse and the 

re-expansion, respectively. The strain rate tensor d = 

1 
2 

(
l + l T 

)
can be decomposed into its spherical d 

sph = 

1 
3 tr 

(
d 

)
and de- 

viatoric d 

d = d − d 

sph = d − 1 
3 tr 

(
d 

)
I part, accounting for shape and volumetric change, respectively. The resulting strain rate 

tensor comprises only deviatoric deformations due to the pure extensional deformation. We investigate the radial velocity 
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Fig. 9. Temporal evolution of (a) u r , (b) d rr , (c) d ψψ , (d) d rψ for the UCM model at Re = 1 , De = 1 in the surrounding liquid for two positions 

r /R 0 = 0 . 8 , r /R 0 = 1 . 2 . deviatoric amount of the respective strain rate component, indicating pure deviatoric strain rates. 

and strain rate components over time for two positions in the surrounding liquid ( r/R 0 = { 0 . 8 , 1 . 2 } ). Note that the plots 

of the position initially inside the bubble ( r/R 0 = 0 . 8 ) are plotted first for times when the surrounding fluid has reached 

the point and are thus not plotted from the beginning. It can be observed that only the diagonal components of the de- 

formation rate tensor d have nonzero entries. Furthermore, we can ascertain that there exist no off-diagonal strain rates 

d rψ 

= d rϑ = d ψϑ = 0 . The deviatoric amounts of the respective strain rates are also depicted, which are identical to the 

strain rates itself, to emphasize that the motion only comprises deviatoric and no spherical deformation rates d 

sph = 0 . The 

strain rate tensor hence is identical to its deviatoric part d = d 

d . The uniaxial elongational flow during the compression of 

the bubble is observed by d rr = −d ψψ 

− d ϑθ = −2 d ψψ 

. 

4.2. Viscous and viscoelastic stress distributions and the influence and elasticity 

In the following, the viscous and viscoelastic stress distributions are discussed. At first, we compare the UCM-collapse 

to the Newtonian counterpart at Re = 1 and De = 1 . Fig. 10 shows the strain rate d rr and the corresponding viscoelastic 

stresses τ
M,rr 

and its decomposition into the deviatoric τ d 
M,rr 

and spherical part τ sph 
M,rr 

. Furthermore, the corresponding viscous 

stresses for the Newtonian case τ
S,rr 

are illustrated. The plots are shown for a time instant right before rebound. For the sake 

of clarity, we only compare the r r -components in this figure. During the collapse, the balance of driving pressure, inertia 

forces, compressible damping and viscous or viscoelastic stresses, respectively, determine the collapse dynamics. It can be 

observed that Newtonian stresses are directly proportional to the deformation rate and the largest stresses occur much 

closer to the region of maximum deformation, viz. closer to the bubble surface. The Newtonian stresses induce damping 

such that oscillations are not observed. Looking at the spatial distribution of the viscoelastic stresses in the UCM fluid, 

opposed to the stresses of the Newtonian case it is observed that the viscoelastic stresses arise with a small detachment 

Fig. 10. Contour plots of the strain rate and stress components through the midplane of the bubble for the time instant t = 3 × 10 −6 s (immediately before 

the collapse in the UCM fluid). (a): Viscoelastic collapse for the UCM model at Re = 1 , De = 1 . (b): Newtonian collapse at Re = 1 . Black contour represents 

a vapor volume fraction of α = 0 . 01 . 

495 



C. Lang, M. Zhang, S.J. Schmidt et al. Applied Mathematical Modelling 123 (2023) 484–506 

Fig. 11. Evolution of Maxwell stresses τ
M,rr 

and the occurring deformation rates d rr for different time instances during the collapse for the UCM model at 

Re = 1 , De = 1 . Time instances as indicated in Fig. 6 . 

Fig. 12. Stress components over time during the collapse at the position r/R 0 = 1 . 2 . (a) For the UCM fluid the viscoelastic stress components τM,rr , 

τ
M,ψψ 

, τ d 
M,rr 

, τ sph 
M,rr 

and the related deformation rates d rr , d ψψ at Re = 1 , De = 1 are illustrated. (b) For the Newtonian model the 

viscous stress components τ
S,rr 

, τ
S,ψψ 

, τ d 
S,rr 

, τ sph 
S,rr 

and the corresponding deformation rates d rr , d ψψ at Re = 1 are depicted. 

from the interface, whereas the Newtonian stresses appear closer to the interface. This can be traced back to the time- 

dependent and -delayed stress developed in the viscoelastic case which conversely leads to a spatial displacement. For a 

better understanding we combine stress and strain rate evolution in Fig. 11 . The delayed appearance of viscoelastic stresses 

is clearly observable, especially for the time instant t = 3 . 5 × 10 −6 s , where the deformation rate is very small, but the 

viscoelastic stresses are still fairly large. This behavior can also be seen clearly for Maxwell and solvent stresses of the OLD- 

B model in Section 4.3 (cf. Fig. 15 ). Furthermore, in the Newtonian case viscous stresses are purely deviatoric since viscous 

forces are only introduced by the dissipative term 2 μS d 

d . In contrast, the viscoelastic case also shows spherical stresses 

during the collapse, although the dissipative term in the constitutive equation 2 μM 

d 

d also exclusively considers deviatoric 

deformations. Hence, the spherical stresses are introduced by the transport equation for the Maxwell stresses Eq. (4c) itself. 

Due to the appearance of spherical stresses it can be concluded that the trace of the stress tensor is likewise nonzero. 

Viscous and viscoelastic stress components over time for the viscoelastic and the Newtonian case are shown in Fig. 12 . For 

better clarity, we only show the stresses at one position ( r/R 0 = 1 . 2 ) in the surrounding liquid. Off-diagonal elements of 

the viscoelastic stresses are zero and therefore omitted. Furthermore, spherical symmetry of the underlying problem with 

τ
M,ψψ 

= τ
M,ϑϑ 

is considered. By evaluating the diagonal components of the viscoelastic stresses a nonzero trace of the stress 

tensor tr 
(
τ

M 

)
= τ

M,rr 
+ τ

M,ψψ 
+ τ

M,ϑϑ 
= τ

M,rr 
+ 2 τ

M,ψψ 
� = 0 can be ascertained resulting in nonzero spherical stresses τ sph 

M,rr 
� = 

0 . There is no consent in literature whether a finite trace formulation of the stress tensor resulting in isotropic stresses 

should be considered. In Allen and Roy [20] , the authors employ a traceless stress tensor formulation for what they call 

496 



C. Lang, M. Zhang, S.J. Schmidt et al. Applied Mathematical Modelling 123 (2023) 484–506 

Fig. 13. The reference case Re = 1 , De = 1 is compared to collapses for variations of elasticity and variations of viscosity. Top: Non-dimensional Radius 

over time. Bottom: Shear rate d rr (blue) and the corresponding Stress component τ
M,rr 

(black). (a) Variation of elasticity: , Re = 1 , De = 0 . 5 , 

, Re = 1 , De = 1 , , Re = 1 , De = 1 . 5 . (b) Variation of viscosity: , Re = 0 . 5 , De = 1 , , Re = 1 , De = 1 , , 

Re = 1 . 5 , De = 1 . 

linear-viscoelastic problems. For the nonlinear case, they apply a finite trace formulation in Allen and Roy [21] . Hua and 

Johnsen [27] adopt a traceless stress tensor for their 1D simulations in contrast to Warnez and Johnsen [28] where a general 

approach without excluding isotropic parts of the stress tensor was utilized. Brujan [12] , Dollet et al. [13] explicitly mention 

that for nonlinear problems with large deformations a finite trace formulation is suitable. By the previously presented results 

we can show that isotropic stresses are a result of the constitutive (transport) equation and the underlying dynamics. Even 

for the relatively low Reynolds numbers and the corresponding moderate deformation rates, considerably large spherical 

stresses emerge. 

Furthermore, the Newtonian stresses occur immediately without time delay, whereas viscoelastic stresses are spread over 

a finite time-interval and show a delayed development due to relaxation. The temporal and spatial distribution of viscoelastic 

stresses can be traced back to relaxation and convective transport of stresses. First, the viscoelastic stresses do not imme- 

diately emerge due to a present deformation rate. With reference to the 1D rheological representation of the UCM model, 

the series arrangement of dashpot and spring (cf. Fig. 1 ), the deformation is not directly acting on the dashpot. Instead, 

the deformation rate initially acts on the spring, and dependent on its stiffness, affects the dashpot with a respective time 

delay. The Newtonian stresses in contrast are directly proportional to the deformation rate. Furthermore, the constitutive 

equation of the applied Maxwell-/Oldroyd-type models incorporates convective transport additionally leading to a removal 

of viscoelastic stresses according to the velocity field. Thus, with further distance from high-velocity regions, the viscoelastic 

stresses are already smaller compared to the Newtonian stresses, in spite of the time-delayed stress development. Obviously, 

such effects strongly depend on relaxation time. 

Next, we investigate the effect of elasticity and viscosity. In the rheological representation of the UCM model, an in- 

creased elasticity corresponds to a softer spring and a delayed stress development. Increased viscosity is associated with 

a damper with increased resistance. At top of Fig. 13 the bubble radius over time is shown for the UCM model and dif- 

ferent values for the elasticity De = { 0 . 5 , 1 , 1 . 5 } and different Reynolds numbers Re = { 0 . 5 , 1 , 1 . 5 } . Increasing the elasticity 

( Re = 1 , De = 1 . 5 ) and thus relaxation time retards stress development and accordingly leads to a faster collapse in the ini- 

tial stages. The accelerated collapse allows for larger velocity gradients or deformation rates, respectively. Interestingly, al- 

though larger deformation rates are observed for increased elasticity, the corresponding viscoelastic stresses are decreased. 

Increased deformation rates could be explained by the fact, that in case of increased relaxation and hence more delayed and 

decreased stresses the damping forces are reduced. Accordingly, increasing elasticity results in larger phase-shift between 
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Fig. 14. Comparison of (a) non-dimensional radius and (b) interface velocity over time for the bubble collapse in different viscoelastic fluids at Re = 1 , De = 

1 . Newtonian fluid , UCM model, OLD-B model and LPTT model. (Results for the bubble radius as presented in Lang et al. [32] ). 

deformation rate and stress, whereas decreased elasticity ( Re = 1 , De = 0 . 5 ) leads to decreased phase-shift. The increased 

elasticity eventually leads to larger rebound radii, too. The influence of decreased viscosity and an increased inertia to vis- 

cous force ratio ( Re = 1 . 5 , De = 1 ) shows an acceleration of the collapse and increased rebound radii. Further increasing 

elasticity to very high values would result in bubble radius evolutions similar to the inviscid Rayleigh collapse [23] . This is 

because with further increased relaxation time, the stress development is delayed to such extent that the collapse happens 

faster than stress counteraction. 

Decreasing the Reynolds number ( Re = 0 . 5 , De = 1 ) and thereby increasing the ratio of viscous to inertia forces leads 

to decreased deformation rates and increased Maxwell stresses. While increased Maxwell stresses for the case with de- 

creased relaxation ( Re = 1 , De = 0 . 5 ) ultimately results in smaller rebound radii, increased viscoelastic stresses for decreas- 

ing the Reynolds number ( Re = 0 . 5 , De = 1 ) lead to the opposite effect and result in increased rebound radii. Apparently, 

the increased restoring forces caused by the stress outweigh the increased dissipation for this case. The comparison of 

the viscoelastic stresses τ
M,rr 

together with the corresponding deformation rate d rr (at bottom of Fig. 13 ) reveals that in- 

creasing the elasticity leads to increased retardation of stress formation and changes the magnitude of stresses, whereas 

decreasing viscosity does not delay the formation of stresses as much but mainly decreases the magnitude of occurring 

stresses. By comparing the case with the smallest elasticity ( Re = 1 , De = 0 . 5 ) to the one with the lowest Reynolds num- 

ber ( Re = 0 . 5 , De = 1 ) one can ascertain that the deformation rates look very similar. The magnitude of viscoelastic stresses 

however is much larger for the case with increased viscosity. 

4.3. Collapse dynamics for different viscoelastic models 

In this section the effect of distinct viscoelastic models on the stress development and distribution, and the correspon- 

dent collapse behavior shall be investigated. Firstly, the bubble size and interface velocity versus time is compared for the 

implemented constitutive models at Re = 1 , De = 1 illustrated in Fig. 14 . It can be observed that the collapse is retarded 

for both cases with solvent contribution (OLD-B and PTT model) compared to the collapse in the UCM fluid. The OLD-B and 

LPTT are represented by a parallel arrangement of Maxwell element and damper in the 1D rheological analogy. The viscous 

damper, representing the solvent, reacts without time delay due to an applied shear rate. The retardation of the collapse 

is caused by the immediate viscous stress which is developed by the Newtonian contribution. Hence, in contrast to the 

UCM case, where exclusively time-delayed viscoelastic stresses act against the pressure- and inertia-driven collapse, solvent 

stresses are additionally present without time-delay directly related to the current deformation rate. This leads to slower 

collapse dynamics and moreover to increased dissipation resulting in smaller rebound radii. By comparing the collapse of 

the OLD-B with the LPTT fluid, one can observe a faster collapse for the LPTT fluid in the later stages of the initial collapse 

right before rebound which is induced by the shear-thinning property of the LPTT model introducing an effective Maxwell 

viscosity that decreases with increasing shear rates. The higher viscoelastic stresses in LPTT can be explained by less viscous 

damping and result in slightly higher deformation rates in LPTT as presented in Fig. 17 . Although the Maxwell viscosity is 

lower for LPTT fluid and consequently dissipation is decreased, and restoring forces through increased viscoelastic stresses 

are larger, the rebound radius is smaller than for OLD-B. Apparently, decreased dissipation and increased viscoelastic stresses 

are overcompensated by higher inertia due to increased acceleration before the rebound in LPTT. 

The stress development for different time instants during the collapse and re-expansion is examined for OLD-B model, 

since it captures the distinct development of viscoelastic and solvent stresses and does not differ qualitatively from the 

LPTT collapse. In Fig. 15 the viscoelastic and solvent stress distributions are illustrated together with the deformation rate. 

For clarity, only the r r -component is presented. It is observed that solvent stresses are directly linked to the deformation rate 

without time delay, whereas the viscoelastic stresses show a delayed development, most evident for time t = 3 . 5 × 10 −6 s , 
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Fig. 15. Development of (a) solvent stresses τ
S,rr 

and (b) Maxwell stresses τ
M,rr 

and the occurring deformation rates d rr for different time instances during 

the collapse for the OLD-B model at Re = 1 , De = 1 . Time instances as indicated in Fig. 6 . 

where the solvent stress is very small as opposed to the viscoelastic stresses. Moreover, one can see that the solvent stresses 

are directly located at the bubble surface, while viscoelastic stress occurs with a spatial displacement that is caused by the 

time-delayed development. 

Subsequently, the stress fields for the time instant t = 3 × 10 −6 s of the Newtonian, UCM, OLD-B and LPTT fluid are di- 

rectly compared. In Fig. 16 the spatial distribution of the Maxwell stresses τ
M,rr 

and the solvent stresses τ
S,rr 

are compared. 

Naturally, the Newtonian collapse exhibits only solvent stresses and the UCM model only yields Maxwell stresses. Further- 

more, it can be seen that the bubble collapse for the OLD-B and LPTT models has not yet progressed as far as for the UCM 

fluid, which can be explained by the stronger damping of instantly occurring solvent stresses. Additionally, the occurring 

Maxwell stresses are much smaller for those models with solvent contribution since deformation leads to both viscoelastic 

and solvent stresses and not exclusively to viscoelastic stresses as for the UCM model. There is no visible difference in the 

solvent and viscoelastic stress fields for the OLD-B and the LPTT in the contour plot. To get a more detailed insight, we 

examine the stress evolutions at r/R 0 = 1 . 2 for the different models in Fig. 17 . We can again observe, the reduced Maxwell 

stresses for the models with solvent viscosity compared to the UCM model and the underlying allocation of the total stress 

in Maxwell and solvent stresses. When comparing OLD-B and LPTT it is observed that the Maxwell stresses are slightly 

smaller for OLD-B, despite the reduced effective viscosity in LPTT due to shear-thinning. The reduced viscosity apparently 

leads to an accelerated collapse in LPTT resulting in increased deformation rate which in turn leads to increased viscoelastic 

stresses. However, increased viscoelastic stresses do not suffice to outweigh the increased acceleration and related larger 

inertia forces resulting in a smaller rebound radius comparing LPTT to OLD-B. The solvent stresses however, exhibit virtually 
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Fig. 16. Contour plots of the stress distributions for the different constitutive models during the bubble collapse through the midplane of the bubble for 

the time instant as indicated in Fig. 17 . (a): Maxwell stress τ
M,rr 

. (b) Solvent stress τ
S,rr 

. 

Fig. 17. Stress components and deformation rate at r/R 0 = 1 . 2 over time during the collapse for distinct viscoelastic models at Re = 1 , De = 1 . Deformation 

rate d rr for the Newtonian model, UCM model, OLD-B model and the LPTT model. (a) Maxwell stress τ
M,rr 

, (b) Solvent stress τ
S,rr 

for the Newtonian model, UCM model, OLD-B model and the LPTT model. Dashed vertical line represents time instant for contour 

plot Fig. 16 . 

no differences for these models. Furthermore, one can ascertain the time-delayed occurrence of Maxwell stresses to the 

strain rates in contrast to the immediate appearance of the Newtonian stresses. 

4.4. Shock wave emission for the upper convected Maxwell (UCM) fluid 

Finally, shock wave emission due to violent collapse is examined, and grid dependency is reviewed. Lang et al. 

[32] showed that for increased relaxation times the collapse is accelerated to such an extent that a compression wave is 

emitted when the bubble completely collapses right before the rebound. In this section, we want to examine whether these 

waves occur for a physical reason or if they are connected to the computational discretization and depend on the grid res- 

olution. For this purpose, simulations with increased elasticity ( Re = 1 , De = 3 ) are conducted and a variation of the mesh 

resolution is examined. Schmidmayer et al. [45] showed that the resolution can significantly influence the sphericity of the 

bubble and investigated resolutions up to 150 /R 0 . Apart from the reference resolution of 140 /R 0 , the simulations shown in 

the following are performed on a coarser mesh with a resolution of 100 /R 0 and on a refined mesh with 200 /R 0 . At the 

beginning of the collapse, a rarefaction wave is emitted due to the initial pressure discontinuity at the bubble interface. 
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Fig. 18. Shock wave emission at the beginning of the collapse for the UCM model at Re = 1 , De = 3 . Contour plots for the pressure p [ Pa ] through the 

midplane of the bubble for different time instants. Black contour represents a vapor volume fraction of α = 0 . 01 . 

Fig. 19. (a) Radius ( shows the solution of the Keller-Miksis equation) and (b) corresponding pressures at r/R 0 = 1 . 2 over time during the collapse for 

the UCM model at Re = 1 , De = 3 and three different grid refinements. Resolution in number of cells per initial radius: 100 /R 0 , 140 /R 0 , 

200 /R 0 . 

Fig. 18 depicts the pressure distribution during the initial stages, showing the expansion wave emerging from the interface. 

This pressure wave is much weaker (depicted range 1 × 10 3 − 1 × 10 6 Pa ) compared to the emitted shock waves discussed 

hereafter. 

In Fig. 19 the bubble size and the corresponding pressures over time are plotted for the different resolutions. We can 

ascertain that, at least for given elasticity, shock wave formation depends on grid resolution. For the reference resolution 

( 140 /R 0 ) shock wave emission is only visible after the second rebound and follows the preceding complete collapse before 

the second rebound. At the coarsest resolution ( 100 /R 0 ), the bubble fully collapses before the first and second rebound 

and consequently shock waves are emitted before the first and the second collapse. The shock wave intensity in terms of 

the pressure signal is highest for the coarsest grid. For the finest grid ( 200 /R 0 ) neither full collapses nor emitted shock 

waves are observed. For the investigated cases a pressure wave is only emitted following a complete collapse. We come to 

the conclusion that for the investigated combination of Reynolds and Deborah number the appearance of a shock wave is 

related to the grid resolution. 

For the coarsest mesh the emitted shock waves following the first and second collapse are visualized by the pressure 

distributions in Fig. 20 . The emission of the shock waves is clearly perceptible by a narrow region of high pressure. The 

high pressure region has a larger extension following the first collapse compared with the second one. For the visualized 

timesteps the bubble is already re-expanding. Since, with increasing mesh resolution, our simulations converge towards 

the result without shock emission, a physically correct shock is not expected for the investigated parameters ( Re = 1 , De = 

3 ), and we assume the shock to be generated by underresolved viscoelastic stresses. However, we presume that further 

increasing elasticity would result in shock wave emission, since the collapse would be accelerated by more delayed stress 

formation. 
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Fig. 20. Shock wave emission during the bubble collapse for the UCM model at Re = 1 , De = 3 . Contour plots for the pressure p [ Pa ] through the midplane 

of the bubble for different time instants for (a) the first collapse, (b) second collapse. Black contour represents a vapor volume fraction of α = 0 . 01 . 

5. Concluding remarks 

A comprehensive study of spherical vapor bubble collapses under the influence of surrounding viscoelastic fluids was 

conducted. For that reason 3D simulations of the two-phase flow of compressible vapor bubble collapses were conducted 

using a density based finite-volume approach with explicit time integration and different viscoelastic constitutive mod- 

els. A detailed review of the kinematics during the collapse in viscoelastic fluid and the corresponding viscoelastic stress 

development was investigated for the UCM model which is representative for the other studied viscoelastic models, too. 

Furthermore, we have examined the impact of elasticity, viscosity and the differences between the UCM, OLD-B and LPTT 

model. Finally, the capability of resolving emitted shock waves during the collapse was demonstrated. The key findings can 

be summarized as follows: 

• Viscoelasticity affects dynamics of spherical vapor bubble collapse. Compared to the corresponding collapse for a New- 

tonian fluid at the same Reynolds number, viscoelasticity leads to oscillations during the collapse. These oscillations can 

not be observed for the Newtonian fluid. 
• The development of viscoelastic stresses is fundamentally different from that of solvent stresses. We illustrate that sol- 

vent stresses appear without time delay and directly proportional to the field of deformation rate. Viscoelastic stresses, in 

contrast, develop with a time delay proportional to the elasticity, and exhibit convective transport related to the present 

flow field. 
• The viscoelastic constitutive model introduces isotropic stresses, although the viscoelastic dissipation term ( 2 μM 

d 

d ) 

arises exclusively from the traceless deformation rate. We suggest considering the complete viscoelastic stress tensor in 

the momentum equations, since otherwise (by excluding the spherical part of the viscoelastic stress tensor), the spherical 

part introduced through the kinematics of the flow and the material response would be neglected. 
• The elasticity or relaxation time, respectively, has a significant impact on the dynamics of the collapse. For the inves- 

tigated parameters, increasing the elasticity accelerates the collapse in the early stages due to a delayed stress devel- 

opment. Furthermore, the rebound radii increase with increased elasticity since less viscous dissipation acts during the 

collapse. 
• Different viscoelastic models have a distinct influence on the collapse dynamics. Oldroyd-type models with solvent con- 

tribution (OLD-B and LPTT model) show a retarded collapse with stronger viscous damping due to the continuously 

present solvent stresses that occur without time delay. Solvent contribution leads to more viscous dissipation and hence 

smaller rebound radii. Furthermore, the shear-thinning property of the LPTT fluid leads to an accelerated collapse and 

increased viscoelastic stresses. However, the increased stresses and the decreased dissipation through decreased effective 

viscosity are outweighed by increased inertia finally leading to a smaller rebound radius as opposed to the OLD-B model 

without shear-thinning behavior. 
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• Simulations with higher elasticities show emission of shock waves to depend on grid resolution. By carrying out simu- 

lations with three different meshes, it was demonstrated that the shock wave emission is only visible for coarser mesh 

resolutions. It was observed, at least for the investigated elasticity, that shock wave emission is related to a complete 

collapse before rebound. It was demonstrated that the employed approach is capable of resolving shock waves caused by 

vapor bubble collapses in viscoelastic fluids. 
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Appendix A. Derivation of the Truesdell rate as objective rate of viscoelastic stresses in compressible flows 

For the derivation of a consistent objective time derivative in the context of compressible flows it has to fulfill material 

objectivity (alias material frame invariance) [46] and the yet more restrictive requirement of work conjugacy [47] . To derive 

a physically consistent time rate, the concept of calculating the Lie derivative modified for compressible flow is applied [48] . 

First, there shall be a mapping of points from their material (reference) configuration, where X 0 represents an arbitrary 

point in the reference configuration, to the current (spatial) configuration. The mapping for the corresponding point in 

current configuration x and the current time t reads: 

x = x ( X 0 , t ) . (A.1) 

The infinitesimal material elements are then mapped by the deformation gradient F 

F := 

∂x 

∂X 0 

. (A.2) 

For an arbitrary second order tensor quantity in current configuration a and its counterpart in reference configuration A the 

pull-back operation 

A = φ∗( a ) := F −1 a F −T , (A.3) 

and the push-forward 

a = φ∗( A ) := F A F T , (A.4) 

can be defined. For volume specific second order tensor quantities like the Cauchy stress tensor σ and the second Piola- 

Kirchhoff stress tensor S pull-back and push-forward are 

S = φ∗( σ) := J F −1 σ F −T , (A.5) 

σ = φ∗( S ) := J −1 F S F T , (A.6) 

referred to as Piola transformation. To derive the proper objective time derivative of the Cauchy stress tensor expressed in 

the current configuration it is at first pulled back to the initial configuration. The material time derivative 
D ( ... ) 

D t is then ap- 

plied in reference configuration resulting in a similarly objective field since the reference configuration remains unchanged. 

Finally, the material derivative of the pulled-back tensor is pushed forward to the current configuration to receive the de- 

sired objective rate. This derivative can also be regarded as the Lie derivative of the Cauchy stress tensor with respect to the 

spatial velocity field L u [ σ] and is often abbreviated with 

∇ 

σ . The result 

∇ 

σ = L u [ σ] := φ∗

[
D 

D t 

(
φ∗( σ) 

)]
= 

D σ

D t 
− l · σ − σ · l 

T + tr 
(
l 
)
σ (A.7) 

is named the Truesdell rate. Since the Truesdell rate is linear with respect to its argument and the Cauchy stress tensor 

comprises the sum of pressure, solvent stress tensor and Maxwell stress tensor σ = −pI + 2 μS d 

d + τ
M 

, the Truesdell rate is 

directly applicable to the Maxwell stress tensor itself: 

∇ 

τ
M 

= 

D τ
M 

D t 
− l · τ

M 
− τ

M 
· l 

T + tr 
(
l 
)
τ

M 
. (A.8) 
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Appendix B. Quasi-linear 1D formulation for eigenvalue calculation 

In order to calculate the linearized wave speeds in the corresponding differential forms of Eqs. (5) to (7) lower order 

terms on the right-hand sides and viscous contributions ( μS = 0 ) are omitted [49] . The resulting equations in x 1 -direction 

read 

∂ 

∂t 
ρ + 

∂ 

∂x 1 
( ρu 1 ) = 0 , 

∂ 

∂t 
( ρu 1 ) + 

∂ 

∂x 1 

(
ρu 

2 
1 + p − τ

M, 11 

)
= 0 , 

∂ 

∂t 
( ρu 2 ) + 

∂ 

∂x 1 

(
ρu 2 u 1 − τ

M, 12 

)
= 0 , 

∂ 

∂t 
( ρu 3 ) + 

∂ 

∂x 1 

(
ρu 3 u 1 − τ

M, 13 

)
= 0 , 

∂ 

∂t 

(
ρτ

M, 11 

)
+ 

∂ 

∂x 1 

(
ρτ

M, 11 
u 1 

)
− ρ

(
4 

3 

G + τ
M, 11 

)
∂u 1 

∂x 1 
= 0 , 

∂ 

∂t 

(
ρτ

M, 22 

)
+ 

∂ 

∂x 1 

(
ρτ

M, 22 
u 1 

)
+ ρ

(
2 

3 

G + τ
M, 22 

)
∂u 1 

∂x 1 
− 2 ρτ

M, 12 

∂u 2 

∂x 1 
= 0 , 

∂ 

∂t 

(
ρτ

M, 33 

)
+ 

∂ 

∂x 1 

(
ρτ

M, 33 
u 1 

)
+ ρ

(
2 

3 

G + τ
M, 33 

)
∂u 1 

∂x 1 
− 2 ρτ

M, 13 

∂u 3 

∂x 1 
= 0 , 

∂ 

∂t 

(
ρτ

M, 12 

)
+ 

∂ 

∂x 1 

(
ρτ

M, 12 
u 1 

)
− ρ

(
G + τ

M, 11 

)∂u 2 

∂x 1 
= 0 , 

∂ 

∂t 

(
ρτ

M, 13 

)
+ 

∂ 

∂x 1 

(
ρτ

M, 13 
u 1 

)
− ρ

(
G + τ

M, 11 

)∂u 3 

∂x 1 
= 0 , 

∂ 

∂t 

(
ρτ

M, 23 

)
+ 

∂ 

∂x 1 

(
ρτ

M, 23 
u 1 

)
+ ρτ

M, 23 

∂u 1 

∂x 1 
− ρτ

M, 13 

∂u 2 

∂x 1 
− ρτ

M, 12 

∂u 3 

∂x 1 
= 0 . (B.1) 

The definition of the speed of sound for barotropic flow c 2 := 

∂ p 
∂ρ

∣∣∣
s = const. 

allows for rewriting the equations for primitive 

variables in quasi-linear form 

∂q 

∂t 
+ A ( q ) 

∂q 

∂x 1 
= 0 , (B.2) 

with the vector of primitive variables q and the Jacobian matrix A 

q = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ρ
u 1 

u 2 

u 3 

τ
M, 11 

τ
M, 22 

τ
M, 33 

τ
M, 12 

τ
M, 13 

τ
M, 23 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, A ( q ) = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

u 1 ρ 0 0 0 0 0 0 0 0 

c 2 

ρ u 1 0 0 − 1 
ρ 0 0 0 0 0 

0 0 u 1 0 0 0 0 − 1 
ρ 0 0 

0 0 0 u 1 0 0 0 0 − 1 
ρ 0 

0 − 4 G 
3 

− τ
M, 11 

0 0 u 1 0 0 0 0 0 

0 

2 G 
3 

+ τ
M, 22 

−2 τ
M, 12 

0 0 u 1 0 0 0 0 

0 

2 G 
3 

+ τ
M, 33 

0 −2 τ
M, 13 

0 0 u 1 0 0 0 

0 0 −G − τ
M, 11 

0 0 0 0 u 1 0 0 

0 0 0 −G − τ
M, 11 

0 0 0 0 u 1 0 

0 τ
M, 23 

−τ
M, 13 

−τ
M, 12 

0 0 0 0 0 u 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (B.3) 

The eigenvalues of A correlate with the wave speeds in the respective direction used to define the convective timestep 

criterion Eq. (21) . 

Appendix C. Derivation of the symmetry boundary condition for the stress tensor 

The resultant force at a surface with the outward pointing normal vector n is calculated to 

t := τ · n (C.1) 

where t represents the traction vector. Vanishing tangential traction at the symmetry face corresponds with 

t t | 
sym 
:= 

(
n t | 
sym 

· τ| 
sym 
· n | 
sym 

)
= 0 , ∀ n t : n t · n = 0 , (C.2) 
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where n t represents a tangential vector perpendicular to the outward pointing normal vector n . To ensure vanishing tan- 

gential traction, the conditions for the stress tensor τ| 
sym 
and the corresponding traction vector at the boundary face t | 
sym 

are imposed with the restriction that exclusively normal traction t n | 
sym 
can occur 

t | 
sym 
− t n | 
sym 

n | 
sym 
= 0 

t | 
sym 
−

(
t | 
sym 

· n | 
sym 

)
n | 
sym 

= 0 , 

⇔ t | 
sym 
= 

(
n | 
sym 

· τ| 
sym 
· n | 
sym 

)
n | 
sym 

. (C.3) 

Furthermore, the boundary condition should only suppress tangential traction. The normal traction should remain unaltered 

by the boundary condition 

t n | 
sym 
= t n | d (

n | 
sym 
· τ| 
sym 

· n | 
sym 

)
= 

(
n | 
sym 

· τ| d · n | 
sym 

)
. (C.4) 

By taking into account the applied central reconstruction at the face 

τ| 
 = 

1 

2 

(
τ| d + τ| g 

)
, (C.5) 

the stress tensor formulation in the ghost cells can be derived proceeding from the aforementioned conditions Eqs. (C.3) and 

(C.4) . The equation for the traction vector is rewritten to 

t | 
sym 
= 

(
n | 
sym 

· τ| d · n | 
sym 

)
n | 
sym 

= 

1 

2 

(
τ| d + τ| g 

)
· n | 
sym 

. (C.6) 

A corresponding equation can be formulated to 

1 

2 

(
τ| d + τ| g 

)
−

(
n | 
sym 

· τ| d · n | 
sym 

)
I = 0 , (C.7) 

that allows to calculate an equation for the stress tensor in the ghost cell 

τ| g = 2 

(
n | 
sym 

· τ| d · n | 
sym 

)
I − τ| d . (C.8) 

It can be shown that the reconstructed Maxwell stresses from Eq. (C.8) at the symmetry plane fulfills the conditions 

Eqs. (C.2) to (C.4) . 
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ABSTRACT

This study investigates the influence of viscoelasticity on the collapse of aspherical vapor bubbles near a solid boundary through numerical
simulations. A fully compressible three-dimensional finite volume method is employed, incorporating a single-fluid homogeneous mixture
cavitation model and the simplified linear Phan-Thien Tanner viscoelastic constitutive model. The collapse dynamics, liquid jetting, shock
wave formation, and associated pressure impact are analyzed, and the viscous and viscoelastic stress fields are presented. A comparison of vis-
coelastic to Newtonian dynamics reveals significant differences in collapse behavior and shock wave formation due to viscoelasticity.
Viscoelasticity can induce jet piercing, which is not observed in the Newtonian collapse, and increases vapor re-evaporation after the first col-
lapse. The effect of changing the initial standoff distance is examined for both viscoelastic and Newtonian fluids, where a second jet formation
is present only for the viscoelastic collapse, and the second collapse’s intensity is increased due to increased vapor production during rebound.
Additionally, the variation of elasticity in the viscoelastic case demonstrates a correlation between the amount of vapor produced during
rebound and the relaxation time for the investigated cases.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0175807

I. INTRODUCTION

The dynamics of aspherical bubbles near rigid walls and their
potential impact on the wall, including shock wave and jet forma-
tion, are crucial in various applications involving non-Newtonian
fluids. Especially in biomedical applications, where the addressed
materials often show a complex microstructure, cavitating bubble
collapse is of significant importance. In sonoporation, the collapse
of microbubbles close to a surface of a cell, the resulting liquid jet
and shock wave emission are capable of producing large forces and
perforating the cell membrane.1,2 Drug-carrying microbubbles can
be utilized together with focused ultrasound to interrupt the
blood-brain barrier and deliver drugs targeted into brain tumors.3

Ultrasound and aspherical cavitating microbubbles can also be
used for gene delivery by penetrating tissue.4 Shockwave litho-
tripsy also relies on aspherical bubble collapse to destroy kidney
stones.5

Experiments proved that viscoelasticity has a significant impact
on the collapse dynamics in the vicinity of a wall. Chahine and

Fruman6 found with their experiments that polymer additives can
inhibit liquid-jet formation during the collapse of spark-generated
bubbles in the vicinity of a rigid wall. Brujan et al.7 examined the col-
lapse of ultrasound-induced bubbles close to a rigid wall experimen-
tally with the result that polymer additives can decrease the velocity of
the liquid-jet. However, most numerical studies either neglect viscous
forces8–20 or consider Newtonian fluids.21–32 Only a few numerical
studies have considered non-Newtonian media for the wall-influenced
aspherical bubble collapse.

One of the first numerical studies by Hara and Schowalter33

revealed that viscoelastic effects are more substantial for the aspherical
than for the spherical bubble collapse by applying a modified
Rayleigh–Plesset equation. For the numerical simulation of bubble
dynamics close to solid walls, the boundary element method (BEM) is
frequently employed. The classical BEM assumes the flow field to be
irrotational and incompressible to describe the flow by a potential
function. Viscous forces, hence, are only incorporated through the
dynamic boundary condition at the interface, and stresses in the

Phys. Fluids 36, 013110 (2023); doi: 10.1063/5.0175807 36, 013110-1
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remaining field are neglected. For high Reynolds number flows, where
inertia is dominant and viscous forces are negligible, an irrotational
flow field assumption can be appropriate. Furthermore, in the classical
BEM two coinciding points or a doubly connected domain, respec-
tively, would lead to a singularity. Thus, the simulation would fail as
soon as a liquid jet pierces through the bubble, producing a toroid-
shaped bubble. To overcome this limitation, methods have been
developed to resolve the occurrence of fluid jets and associated toroidal
bubbles. Different modifications, such as vortex-cut methods10,34 and
vortex-ring methods,35,36 enable the BEM to resolve toroidal bubbles
and doubly connected domains. A comprehensive comparison of the
methods is provided in Han et al.37 Lind and Phillips38 use the bound-
ary element method (BEM) to investigate the near-wall collapse of gas-
filled bubbles. They consider incompressible and irrotational flow.
Thus, stresses are only incorporated at the interface. The viscoelastic
Maxwell model without a solvent contribution together with the mate-
rial derivative as time derivative for the stress tensor is applied.33,38

come to the conclusion that viscoelasticity can inhibit jet formation.
However, it is found in Lind and Phillips,23,38 that jet suppression also
can be observed for highly viscous fluids with identical Newtonian vis-
cosity. To consider viscous and viscoelastic stresses in the entire field
Lind and Phillips39 employ the more elaborate marker particle method
together with spectral element discretization. In addition to not being
restricted to irrotational flows, they account for compressibility and
use a compressible Oldroyd-B model with objective rate and thus con-
sider solvent contributions in the viscoelastic constitutive model. In
both studies, the simulations are 2D, and a gas bubble is considered.
Thus, evaporation and condensation are neglected. Walters and
Phillips40 introduce a singularity-free formulation of the BEM to sim-
ulate toroid-shaped bubbles and liquid jet formation. Due to the
required velocity potential, incompressibility and an irrotational
velocity field are assumed. Thus, stresses are likewise only introduced
at the bubble interface and neglected in the remaining field.
Viscoelasticity is described by the Oldroyd-B model, incorporating
solvent contributions and the upper convected derivative for the vis-
coelastic stress tensor. The authors explain that the approach is
restricted to moderate to high Reynolds number flows. Other recent
numerical studies involving viscoelastic bubble dynamics investigate
microbubbles in a corner geometry,41 and rising bubbles in viscoelas-
tic fluid,42 respectively.

In the present study, we conduct fully compressible three-
dimensional (3D) simulations for two-phase cavitating flows con-
sidering condensation and evaporation. The density-based
approach43 uses finite volume discretization and explicit time inte-
gration. The simplified linear Phan-Thien Tanner (LPTT) model is
used to describe viscoelasticity. This viscoelasticity model is of the
Maxwell-/Oldroyd-type, comprising a Newtonian (solvent) and a
viscoelastic contribution. The method naturally considers viscoelas-
tic stresses in the whole domain filled by the liquid and not only at
the bubble interface. Opposed to the studies mentioned above, we
consider vapor-filled bubbles in the present simulations, and jet
formation and impingement on the rigid wall are resolved.
Furthermore, the approach fully resolves wave dynamics through-
out the collapse.

The article is structured as follows: In the subsequent Sec. II, the
model and its governing equations and the numerical approach is
introduced. Subsequently, Sec. III describes the setup, including

boundary conditions and the non-dimensionalized numbers charac-
terizing the problem. Simulation results are presented in Sec. IV, start-
ing with comparing the general dynamics in Newtonian vs viscoelastic
fluids. The dynamics for variations of initial standoff distance and elas-
ticity are presented thereafter. Finally, the key findings are summarized
in Sec. V.

II. PHYSICAL MODEL AND NUMERICS
A. Governing equations

We apply an Eulerian approach for three-dimensional (3D),
compressible, cavitating flows in viscoelastic fluids. Phase change is
assumed to be isentropic. Consequently, we assume the flow to be bar-
otropic, and the energy conservation is not considered. Surface tension
is neglected. The resulting governing equations consist of the mass and
momentum conservation equations and an additional transport equa-
tion for the viscoelastic stresses. The conservative form of the govern-
ing equations for an arbitrary control volume V with surrounding
surface @V is given byð

V

@

@t
QdV ¼ �

ð
@V

Fconv þ Fdiffð ÞdSþ
ð
V

SdV; (1)

where Q ¼ ½q; qu; qsM �T represents the vector of variables consist-
ing of the density q, the momentum qu, and the additional visco-
elastic stress contribution qsM . Here, sM is the viscoelastic stress
tensor, which we denote as Maxwell stress tensor referring to
the series element of dashpot and spring, which is part of the 1D
rheological representation43 of Oldroyd-like viscoelastic constitu-
tive models. The integral comprises convective Fconv and diffusive
Fdiff flux terms, and the source term S which is introduced by the
viscoelastic constitutive equations. The convective and diffusive
fluxes read

Fconv ¼
q

qu

qsM

2
64

3
75u � nþ

0

p

0

2
64

3
75 � n; Fdiff ¼

0

�2lSd
d � n� sM � n
0

2
64

3
75;
(2)

where u and p represent the velocity and the thermodynamic pressure.
dd ¼ d� 1

3 trðdÞI is the deviatoric part of the symmetric shear rate

tensor d ¼ 1
2 ðl þ lTÞ, where l ¼ ru is the velocity gradient and trð…Þ

represents the trace. The diffusive flux comprises Newtonian (solvent)
stresses sS ¼ 2lSd

d and viscoelastic stresses sM .
We apply the simplified linear Phan-Thien Tanner (LPTT)

model,44 which is written in differential formulation as follows:

sM 1þ �
k
lM

tr sMð Þ
� �

þ ks
r
M ¼ 2lMd

d; (3)

s
r
M ¼ DsM

Dt
� l � sM � sM � lT þ tr lð ÞsM ; (4)

where the Truesdell rate s
r
M is applied as objective rate for the visco-

elastic stress tensor, which was identified in Lang et al.43 as appropriate
objective time derivative for compressible flows. lM represents the
viscoelastic dynamic viscosity, denoted as Maxwell viscosity. k is

the relaxation time and DsM
Dt is the material time derivative of the
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viscoelastic stress tensor. The extensibility parameter � in Eq. (3) is set
to the commonly used value of � ¼ 0:25. By using the mass conserva-
tion, the source term for the conservative formulation is obtained:

S ¼
0
0

q l � sM þ sM � lT � r � uð ÞsM þ 1
k

2lMd
d � sM

� �� �
2
664

3
775: (5)

The viscoelastic implementation has been validated and grid conver-
gence studies have been performed for single-phase channel flows in
Lang et al.43

B. Single-fluid homogeneous mixture cavitation model

Cavitating two-phase flow is modeled by a single-fluid homoge-
neous mixture approach,45 assuming that a computational cell contains
either pure liquid or a homogeneous water–vapor mixture. For mix-
tures, we assume that both phases are in mechanical and thermody-
namic equilibrium with infinitely fast and isentropic phase change
without time delay. The model inherently considers condensation
and evaporation since the generated phase is directly reproduced
according to the thermodynamic equilibrium state through the equa-
tion of state. An additional mass-transfer rate equation, such as the
Schnerr–Sauer cavitation model,46 is not required. The cavitation
model was extensively used and validated for various applications
such as bubble dynamics,31,45,47,48 fuel injectors,49 and condensation
shocks.50 The governing Eq. (1) apply to homogeneous mixtures of
multiple components without limitation. Consequently, we can
assume that all quantities are represented by volume- and phase-
averaged mixtures via

�� :¼ 1
VX

ð
VX

� dV (6)

for each computational cell VX, describing the homogeneous mixture.
Within a discrete finite volume, the vapor volume fraction is calculated
from

a ¼ Vv;X

VX
¼

0; if �q � ql;sat pure liquidð Þ;
ql;sat � �q

ql;sat � qv;sat
; else liquid–vapormixtureð Þ

8><
>: (7)

with the vapor volume Vv;X in a computational cell and the saturation
densities of vapor ql;sat and liquid ql;sat . For pure liquids, a modified
Tait equation of state by Saurel et al.51 is applied,

�p ¼ B
�q

ql;sat

� �N

� 1

" #
þ psat ; (8)

where N¼ 7.15 and B ¼ 3:3� 108 Pa at reference temperature
Tref ¼ 293:15K. The speed of sound in computational cells of pure
liquid is calculated by

c ¼ N �p þ Bð Þ
�q

� �1=2

: (9)

For mixtures of saturated liquid and vapor, the definition of the
isentropic speed of sound

c2 ¼ @p
@q

����
s¼const:

) pðqÞ � psat ¼
ðq

ql;sat

c2d~q (10)

allows to obtain the pressure of the mixture by integration. The speed
of sound is given by

1
�qc2

¼ a
qv;satc

2
v;sat

þ 1� a
ql;satc

2
l;sat

þ 1� að Þql;satcp;l;sat � aqv;satcp;v;sat
� �

Tref

qv;sat lv
� �2 (11)

containing the latent heat of vaporization lv.
52 A detailed derivation of

the pressure calculation is given in Lang et al.43 The solvent viscosity is
calculated similarly for pure liquid and mixture regions following the
approach of Beattie andWhalley,53

lS ¼ 1� að Þ 1þ 5
2
a

� �
ll;sat þ a lv;sat : (12)

The fluid properties applied in the present study are summarized
in Table I.

C. Numerical approach

The finite volume discretization is applied using body-fitted,
hexahedral cells with non-staggered cell-centered variables, and the
governing equations are formulated in Cartesian coordinates. The
cell-face fluxes are calculated separately for convective fluxes and
diffusive fluxes, respectively. Convective fluxes are calculated by an
upwind-biased low-Mach number consistent AUSM-type (advec-
tion upstream splitting method) approximate Riemann solver. The
cell-face values for density, pressure, velocities, and viscoelastic
stresses are calculated by higher-order MUSCL (monotone
upstream-centered schemes for conservation laws) reconstruction
on a four-point stencil with the Min-Mod54 limiter. The convective
flux calculation is described in more detail as baseline finite-volume

TABLE I. Fluid properties of the barotropic model at Tref ¼ 293:15 K.

Property Symbol Value

Reference temperature Tref 293.15 K
Density of saturated liquid ql;sat 998.16 kg/m3

Density of saturated vapor qv;sat 0.017 21 kg/m3

Saturation pressure psat 2339.3 Pa
Dynamic viscosity of saturated liquid ll;sat 1:0014� 10�3Pas
Dynamic viscosity of saturated vapor lv;sat 9:7275� 10�6Pas
Speed of sound of saturated liquid cl;sat 1482.2m/s
Speed of sound of saturated vapor cv;sat 423.18m/s
Specific heat capacity of saturated liquid cp;l;sat 4184.4 J/(kg K)
Specific heat capacity of saturated vapor cp;v;sat 1905.9 J/(kg K)
Latent heat of vaporization lv 2453:5� 103 J=kg
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scheme in Egerer et al.47 The diffusive flux and the source term are
calculated by a second order central reconstruction. The time dis-
cretization is realized by an explicit four-step Runge–Kutta method
with a modified time step criterion considering the viscoelastic
transport equation. Further information on the numerical
approach, including the discretization, numerical flux term approx-
imation, and time integration, is given in Lang et al.43

III. NUMERICAL SETUP

The collapse of a vapor cavity with initial radius RO ¼ 1� 10�4 m
surrounded by (viscoelastic) fluid is simulated. The pressure inside the
bubble is initialized with the constant saturated vapor pressure psat, and
the pressure in the surrounding is initialized with a distribution,

pðr; t ¼ 0Þ ¼ p1 � R0

r
p1 � psatð Þ; r > R0 (13)

and driving pressure of p1 ¼ 10� 105 Pa. The bubble and the sur-
rounding fluid are initially at rest. The pressure field represents the
solution of the Rayleigh–Plesset equation for the Besant problem,55 and
has been used to simulate similar problems31 to suppress artificial pres-
sure waves due to pressure jumps at the interface. The computational
mesh is depicted in Fig. 1. The initial standoff distance h0 represents
the initial distance of the bubble center from the solid wall. We exploit
two symmetry planes and hence simulate only one quarter of the col-
lapsing vapor bubble. The bubble is located inside a refined rectangular
subdomain with the size of 1:5R0 � 3:5R0 � 1:5R0 and an equally
spaced grid. The grid resolution of the refined zone is 100 cells=R0. A
coarsened region is attached to the refined zone to dissipate outgoing
waves and minimize wave reflections toward the refined zone. The
computational domain has a total size of 30R0 � 30R0 � 30R0. As
boundary conditions, two symmetry boundary conditions in the
x1=x2- and the x2=x3-plane are applied, as well as a no-slip boundary
condition in the x1=x3-plane. Outlet boundary conditions apply for the
remaining planes.

The viscoelastic flow can be characterized by the non-
dimensional Reynolds- and Deborah number. The Reynolds number

relates the timescale for diffusive momentum transport and the
Deborah number the relaxation timescale to the characteristic inertia-
related timescales of the flow. The inertia-related timescale is defined
from the characteristic velocity for the spherical Rayleigh collapse

u0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp=ql;sat

q
. For the viscoelastic bubble collapse, Re and De are

defined as follows:

Re ¼ R0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ql;satDp

p
l0

; De ¼ k
R0

ffiffiffiffiffiffiffiffiffi
Dp
ql;sat

s
; (14)

where Dp ¼ p1 � psat is the pressure difference of driving and satura-
tion pressure of vapor inside the bubble and l0 ¼ lS þ lM is the sum

FIG. 1. Initialization of the vapor bubble and the imposed boundary conditions. (a) Entire computational domain with refined zone and attached coarse mesh [for the refined
zone in (a) only every 10th grid line is shown]; (b) isosurface (a ¼ 0:01) visualizing initial bubble surface and adjacent boundaries; and (c) closeup of the initial vapor volume
fraction a ð�Þ and computational grid in the refined region.

FIG. 2. Non-dimensional vapor content in the domain over time for Re ¼ 40; De
¼ 2; h� ¼ 1:1 with close-up of the rebound. Blue line–Newtonian fluid; black
line–LPTT fluid.
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of solvent and Maxwell viscosity. The non-dimensional numbers are
calculated with respect to the spherical bubble collapse (Rayleigh col-
lapse) in an infinite domain without solid wall influence. Furthermore,
b describes the ratio of solvent to total viscosity,

b ¼ lS
l0

; (15)

which is chosen to b ¼ 0:1. The non-dimensional initial standoff dis-
tance h�, the non-dimensional radial distance from the center in the

FIG. 3. Collapse in Newtonian fluid for initial standoff distance h� ¼ 1:1 and Re¼ 40. First and third column: vapor volume fraction a ð�Þ. Second and fourth columns: Wall
normal velocity in x2-direction u2 ðm=sÞ through the x1/x2-midplane and velocity vectors scaled by the velocity magnitude. Pressure distribution p ðPaÞ through the x2/x3-mid-
plane and at the wall. Isosurface shows constant vapor content of a ¼ 0:01.
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plane of the solid wall r�, and the non-dimensional x2-direction x�2 are
defined as

h� :¼ h0
R0

; r� :¼ x21 þ x23
R0

����
x2¼0

; x�2 :¼
x2
R0

:

IV. RESULTS AND DISCUSSION
A. General dynamics of the aspherical collapse

We simulate the vapor bubble collapse with a standoff distance of
h� ¼ 1:1 for highly viscous flow at Re¼ 40. This Reynolds number
is chosen since rheological effects become significant for Re< 100

FIG. 4. Collapse in LPTT fluid for initial standoff distance h� ¼ 1:1 and Re ¼ 40;De ¼ 2. First and third column: vapor volume fraction a ð�Þ. Second and fourth columns:
Velocity in x2-direction u2 ðm=sÞ through the x1/x2-midplane and velocity vectors scaled by the velocity magnitude. Pressure distribution p ðPaÞ through the x2/x3-midplane and
at the wall. Isosurface shows constant vapor content of a ¼ 0:01.
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(Ref. 56), but jet formation can still be expected for such a Reynolds
number.38 The parameters as mentioned above represent the reference
for which Newtonian and viscoelastic collapse with an elasticity of
De¼ 2 are compared. Figure 2 shows the total vapor content over time
for the Newtonian opposed to the LPTT case. In Figs. 3 and 4, the col-
lapse behavior for both fluids is illustrated qualitatively. During the ini-
tial collapse, the bubble in the Newtonian fluid collapses before the
water-hammer impinges onto the opposite side of the vapor bubble.
Contrarily, the LPTT fluid exhibits larger bubble deformation
and elongation in wall normal direction. Also, the resulting radial

water-hammer leads to an initial pressure wave already before the first
collapse (cf. Fig. 6). The pressure wave emitted after the first collapse
results from a superposition of the water-hammer and the collapse of
the vapor cavity in the LPTT fluid as opposed to the Newtonian col-
lapse, where only collapse is observed. Subsequently, the LPTT collapse
yields larger amounts of vapor during rebound than the Newtonian
fluid, where only a tiny toroidal vapor region is produced. The vapor
after rebound occupies a larger coherent area in LPTT, especially dur-
ing later stages of the collapse, enabling jet formation during the sec-
ond collapse (cf. Fig. 5). Additionally, the vapor region in LPTT is
squeezed and dragged along the solid wall after the rebound, and a
splashing effect is observed. The vapor cavity in the center leads to a
complex second vapor structure. In the Newtonian case, the small
toroidal vapor region after rebound does not lead to jet formation dur-
ing the second collapse.

In the following, the jet evolution during collapse and the pres-
sure wave emission for the first collapse are investigated in detail.
Figure 5 depicts the jet velocity during collapse for the Newtonian and
the LPTT fluid. The jet velocity is identified by the maximum wall nor-
mal velocity magnitude along the centerline. Note that a finite jet
velocity does not necessarily indicate that the flow from the top of the
bubble actually pierces through the bubble deforming it to a toroid.
We observe that during the first collapse, the jet velocity evolution for
both cases agrees qualitatively, and that the maximum absolute jet
velocities are larger for the Newtonian case compared to the LPTT
fluid. For LPTT, a second jet forms during the second collapse, which
cannot be found for the Newtonian case. The second jet results from
the collapse of the vapor cavity formed after rebound.

In Fig. 6, the pressure distribution during the first collapse is
examined in detail. For the collapse in a Newtonian fluid (upper row),
no water penetration and corresponding piercing of the vapor cavity
can be observed. The bubble sphericity increases during collapse, and

FIG. 6. Pressure distribution p ðPaÞ and illustration of shock formation during first collapse through the x1/x2-midplane for Re ¼ 40; De ¼ 2; h� ¼ 1:1. Top: Newtonian fluid;
bottom: LPTT fluid. Black isoline shows vapor content of a ¼ 0:01.

FIG. 5. Jet velocity u2;jet ðm=sÞ in x2-direction measured at centerline over time.
Blue line—Newtonian fluid; black line—LPTT fluid.
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pressure increase is observed at the upper side of the bubble due to the
decelerated water column. A shock wave is emitted after the full col-
lapse. The LPTT case (lower row) shows a radial water-hammer
impinging the opposite side of the vapor cavity leading to shock wave
emission before condensation and separation of the remaining vapor
cavities into a toroidal upper part and a droplet-like lower part. The
pressure wave emission is followed by the complete collapse of the two
remaining vapor cavities. Shock wave interference results in a complex
pressure field.

In Fig. 7, we show pressure and vapor distribution in x2-direction
along the centerline for both fluids. First, it can be seen that the pres-
sure magnitudes in the vicinity of the collapsing vapor cavities are sig-
nificantly larger for the Newtonian case, which can be attributed to the
more focused Newtonian collapse as compared to the LPTT case (cf.
Fig. 6), where two vapor cavities collapse separately. Moreover, in the
LPTT fluid, a distinct pressure rise is observable right before full con-
densation (t ¼ 3:47� 10�6 s) caused by the pressure wave emitted
from the radial water impingement. Subsequently, the pressure wave

from water impingement and the collapse of the remaining lower
vapor cavity interfere. For the Newtonian fluid, however, the pressure
rises not before collapse.

By comparing the Newtonian and the LPTT collapse at the iden-
tical Reynolds number, we show that jet formation, or more precisely,
jet piercing through the vapor bubble, is enabled by viscoelasticity for
the investigated parameters. However, Lind and Phillips38,39 assert that
jet formation is suppressed by viscoelasticity, although they also found
that jet formation is likewise suppressed for highly viscous fluids.23,38

Karri et al.57 ascertained in their experimental study for Newtonian
fluid, that high viscosity can yield bubble oscillations and jet suppres-
sion. Their viscoelastic simulations are performed for the same or even
lower Reynolds numbers as in the Newtonian case. For this compari-
son, we cannot see clear evidence that jet suppression is purely caused
by viscoelasticity. For the identical or further decreased Reynolds num-
bers in the viscoelastic case, jet formation is expectedly suppressed, but
it is not evident whether the mitigating effect is unambiguously caused
by viscoelasticity or if viscous and viscoelastic stresses similarly can

FIG. 7. Distribution of vapor volume fraction a ð�Þ (top) and pressure p ðPaÞ (bottom) along the centerline in x2-direction for Re ¼ 40; De ¼ 2; h� ¼ 1:1. (a) Newtonian fluid:
Black line—t ¼ 3:546� 10�6 s, blue line—t ¼ 3:547� 10�6 s, red line—t ¼ 3:548� 10�6 s. (b) LPTT fluid: Black line—t ¼ 3:466� 10�6 s, blue line—t ¼ 3:47� 10�6 s,
red line—t ¼ 3:471� 10�6 s.
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inhibit jet formation. Moreover, in Lind and Phillips,38 a parameter
study for the variation of Reynolds and Deborah number, associated
with the variation of viscous and elastic influence, was conducted and
determined that for given Reynolds number increasing elasticity in a
viscoelastic fluid can lead to jet formation in the first place.

Figure 8 compares the pressure evolution at the position of maxi-
mum wall pressure (for h� ¼ 1:1 at the focus point r� ¼ 0) and at the
maximum pressure position along the centerline for both fluids. The
maximum pressures at the wall during first collapse are comparable.
Opposed to the pressures at the wall, the pressure along the centerline
during the first collapse is larger for the Newtonian case. Furthermore,
the maximum pressure from the first collapse occurs at a larger dis-
tance from the wall for the Newtonian collapse. The overall pressure
evolutions for the first collapse are qualitatively similar. A substantial
pressure rise caused by the collapse (Newtonian case) or the superposi-
tion of the pressure waves from the water-hammer and collapse
(LPTT case), respectively, is immediately followed by the jet impinging
the rigid wall. Gonzalez-Avila et al.58 observed a similar pressure

evolution at the wall for the same initial standoff distance and gas-
filled bubbles. The subsequent pressure evolution shows an additional
pressure peak related to the second collapse after the rebound. The sec-
ond pressure peak is much stronger for the viscoelastic fluid, caused by
the larger vapor cavity formed during rebound. Moreover, the second
collapse for LPTT is delayed compared to the Newtonian case due to
the larger vapor cavity after the rebound and the increased total
stresses. Between the first and second collapse, the pressure at the wall
decreases to vapor pressure in the LPTT case, since the vapor region is
pushed to the center. In the Newtonian fluid, vapor is not observable
at the wall before the second collapse, and hence the pressure drop
between the two collapses is not as pronounced as in LPTT.

The differences in the collapse dynamics and shock wave forma-
tion are consequence of the different constitutive relations. In the fol-
lowing, different Newtonian and LPTT stress components are
compared. Figures 9 and 10 show s11, the component which differs
most distinctly when comparing the aspherical collapse of Newtonian
and viscoelastic fluid.39 An additional s11-stress-layer can be observed

FIG. 8. Pressure p ðPaÞ over time for Re ¼ 40; De ¼ 2; h� ¼ 1:1 (logarithmic scale). Top: at the wall (x�2 ¼ 0) at the location of maximum pressure: (a) Newtonian fluid at
r� ¼ 0:02 and (b) LPTT fluid at r� ¼ 0. Bottom: Along the centerline at the position of maximum occurring pressure for (a) Newtonian fluid at x�2 ¼ 0:22, and (b) LPTT fluid at
x�2 ¼ 0:16.
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for the collapse in LPTT, a unique feature of viscoelastic fluids also
observed by Lind and Phillips,39 which is caused by normal stress
effects. These positive stresses accelerate fluid along the wall away from
the center and lead to splashing (t ¼ 5:8� 10�6 s) in the later instants
of the collapse. By comparing solvent (sS;11) and viscoelastic (sM;11)
stresses in general, we can observe that solvent stresses exhibit more
oscillations as compared to the smoother viscoelastic stresses. This
behavior can be explained by the delayed viscoelastic stress build-up,
whereas solvent stresses are directly related to the occurring deforma-
tion rate. Furthermore, solvent stresses in the Newtonian case are
higher than in the LPTT case since the total stress is divided into addi-
tional viscoelastic stresses, and the solvent stresses themselves.

Additionally, it is observable that in the LPTT case, large viscoelastic
stresses occur at the two upper tips of the bubble and a narrow region
of negative stresses at the centerline (t ¼ 3:46� 10�6 s).

For the shear stress component s12 in Figs. 11 and 12, significant
negative viscoelastic stresses occur in the lower part and large positive
stresses in the upper part of the tips in LPTT case. Positive viscoelastic
stresses cover a much larger region than the solvent stresses.

The s22 component, visualized in Figs. 13 and 14, likewise shows
more delayed evolution and smoother distribution of viscoelastic
stresses as compared to solvent stresses. The viscoelastic stress compo-
nent sM;22 shows a large region of positive stresses at the centerline.
This component represents the normal stress in x2-direction, pulling

FIG. 10. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 2; h� ¼ 1:1 in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01. Top: solvent stress sS;11 ðPaÞ;
bottom: viscoelastic stress sM;11 ðPaÞ.

FIG. 9. Solvent stress sS;11 ðPaÞ through x2/x3-midplane for Re ¼ 40; h� ¼ 1:1 in Newtonian fluid. Black isoline shows vapor content of a ¼ 0:01.
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FIG. 12. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 2; h� ¼ 1:1 in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01. Top: solvent stress sS;12 ðPaÞ;
bottom: viscoelastic stress sM;12 ðPaÞ.

FIG. 13. Solvent stress sS;22 ðPaÞ through x2/x3-midplane for Re ¼ 40; h� ¼ 1:1 in Newtonian fluid. Black isoline shows vapor content of a ¼ 0:01.

FIG. 11. Solvent stress sS;12 ðPaÞ through x2/x3-midplane for Re ¼ 40; h� ¼ 1:1 in Newtonian fluid. Black isoline shows vapor content of a ¼ 0:01.
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fluid in this direction, and is responsible for the re-evaporation of
vapor in this region (t ¼ 5:8� 10�6 s).

B. Variation of initial standoff distance

The following simulations examine the variation of initial stand-
off distances (h� ¼ f0:35; 1:5g). Figure 15 shows the total vapor

content for the modified initial distances compared to the reference
case with h� ¼ 1:1 while Re and De remain unchanged. For the
Newtonian fluid, collapse time decreases for both standoff distances
h� ¼ 0:35 and h� ¼ 1:5, with the shortest collapse time for h� ¼ 1:5.
Furthermore, the largest vapor cavity formed during rebound is
observed for h� ¼ 1:1. The general behavior for LPTT is similar. The

FIG. 14. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 2; h� ¼ 1:1 in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01. Top: solvent stress sS;22 ðPaÞ;
bottom: viscoelastic stress sM;22 ðPaÞ.

FIG. 15. Non-dimensional vapor content in the domain over time for Re ¼ 40; De ¼ 2 and different initial standoff distances with close-up of the rebound: (a) Newtonian fluid:
blue line—h� ¼ 0:35, black line—h� ¼ 1:1, red line—h� ¼ 1:5; (b) LPTT fluid: blue line—h� ¼ 0:35, black line—h� ¼ 1:1, red line—h� ¼ 1:5.
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largest cavity during rebound is formed for h� ¼ 1:1, the smallest for
h� ¼ 0:35, although the formed cavities are conspicuously larger as for
the Newtonian case. The shortest collapse time in LPTT is observed
for h� ¼ 1:5, and the longest time can be appreciated for h� ¼ 1:1.

Jet velocities, calculated as described in Sec. IVA, are illustrated
in Fig. 16. For h� ¼ 0:35, the Newtonian and the LPTT show an oscil-
latory behavior of the jet, with a negative and ensuing positive jet
velocity. The jet velocities are smallest for an initial distance of h�

¼ 0:35 for Newtonian and viscoelastic fluid compared to the remain-
ing standoff distances. The largest absolute jet velocities are produced
for h� ¼ 1:1 for both fluids. Comparing Newtonian to viscoelastic
fluid, the jet velocities for LPTT are larger than for the Newtonian fluid
for h� ¼ 0:35. For h� ¼ 1:1; h� ¼ 1:5, the jet around the first collapse
is faster for the Newtonian fluid. For h� ¼ 1:1 and the increased stand-
off distance h� ¼ 1:5, the jet velocity exhibits a second jet formation
only for the LPTT fluid.

In the following, the collapse for decreased initial standoff dis-
tance h� ¼ 0:35 is examined in detail. For all subsequent variations,
the evolution of the collapse is only shown for the relevant stages start-
ing right before the first collapse. Figures 17 and 18 illustrate the col-
lapse dynamics for selected time instants for Newtonian and LPTT
fluid. We observe that the bubble is more elongated in x2-direction
during the first collapse in the viscoelastic case (Newtonian:
t ¼ 3:41� 10�6 s, LPTT: t ¼ 3:26� 10�6 s). Furthermore, while the
jet penetrates the bubble and impinges the wall, more fluid is pushed
below the vapor cavity in LPTT (Newtonian: t ¼ 3:44� 10�6 s,
LPTT: t ¼ 3:3� 10�6 s). After the first collapse, a toroidal vapor cav-
ity forms in the viscoelastic case, which is not observed for the
Newtonian fluid. This vapor torus in LPTT yields a second collapse,
less intense than the first.

Figure 19 compares the shock wave inception in the
Newtonian and the viscoelastic bubble collapse for reduced stand-
off distance. The initial time steps look similar, despite that the
vapor cavity is more elongated in wall normal direction for the vis-
coelastic fluid. During jet impingement on the solid wall, the liquid
jet penetrates below the vapor cavity for the LPTT case. Due to the
absence of liquid penetrating below the vapor cavity in the
Newtonian case, a narrower and more focused jet is observed. The

subsequent high-pressure region exhibits higher pressures for the
Newtonian collapse.

Figure 20 shows the pressure evolution at the position of maxi-
mum occurring pressure at the wall and along the centerline,
respectively. The reference case (h� ¼ 1:1) is shown for compari-
son. For the Newtonian case, the maximum pressure at the wall
does not occur at the center. We also show the pressure evolution at
the center to compare the pressures induced by jet impingement.
We observe that the maximum pressures at the wall are larger for
decreased standoff distance compared to the reference case for both
fluids. Pressure maxima at the wall are not caused by jet impinge-
ment but by the subsequent collapse for both fluids. The pressure
curves at the wall center position reveal a pre-compression due to
jet impingement, which is followed by a higher pressure peak
originating from the actual collapse. Furthermore, an additional
prominent pressure peak induced by the second collapse
(t � 3:9� 10�6 s) of the re-evaporation vapor can be observed for
the LPTT fluid. By looking at the positions of maximum pressure
along the centerline, we observe that the maximum pressures in the
field are smaller than for the reference case for both fluids.

To explain the different collapse dynamics in Newtonian and
viscoelastic fluid, stress evolution is examined in more detail. In
the following, we only show the development of the most relevant
stress components s11 in Figs. 21 and 22. For the interested reader,
the remaining components are included in Appendix A. We again
observe a distinct viscoelastic stress layer sM;11 in the LPTT fluid
right above the solid wall, pulling vapor in opposite x1-directions
and leading to the larger vapor cavity after the rebound than for
the Newtonian case.

Next, the collapse dynamics for the increased initial distance
h� ¼ 1:5 is investigated. Figures 23 and 24 show the evolution of
the collapse in Newtonian and LPTT fluid. In the Newtonian fluid,
the bubble entirely collapses before the liquid jet pierces through the
bubble. After a violent collapse, a toroidal vapor cavity re-evaporates
before the second collapse. In the viscoelastic fluid, the liquid jet verti-
cally pierces through the bubble before the collapse. During rebound, a
large heart-shaped vapor cavity is formed (t ¼ 4� 10�6 s). Due to the
larger vapor cavity, the second collapse is more violent than in the
Newtonian fluid.

FIG. 16. Jet velocity u2;jet ðm=sÞ in x2-
direction over time measured at centerline
for Re ¼ 40; De ¼ 2 and different initial
standoff distances: (a) Newtonian fluid:
blue line—h� ¼ 0:35, black line—h�
¼ 1:1, red line—h� ¼ 1:5; (b) LPTT fluid:
blue line—h� ¼ 0:35, black line—
h� ¼ 1:1, red line—h� ¼ 1:5.
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Figure 25 compares the pressure wave formation during the
first collapse between Newtonian and LPTT fluid. As mentioned,
we can only observe jet piercing in LPTT fluid. The fundamental
collapse is more focused for the Newtonian fluid since there is no
separation of high-pressure regions due to piercing.

The pressure evolutions for increased standoff distance are shown
in Fig. 26 and compared to the reference case. The top row of Fig. 26
shows the pressure evolution over time at the location where the
maximum wall pressure occurs. For both the Newtonian and the
LPTT case, the pressures are smaller than in the reference case.
Yang et al.20 also observed decreasing wall pressures for increasing
standoff distances. The pressure peak during the first collapse is
slightly higher for the LPTT fluid. The second collapse leads to
much stronger pressure impact at the wall in LPTT as compared to
the Newtonian case. We attribute this observation to the larger re-
evaporated cavity during rebound in LPTT. Furthermore, a pres-
sure rise around t � 4:5 �10�6 s is present in LPTT, which is
caused by jet impact (cf. Fig. 4) and cannot be detected in the

Newtonian case. The pressures at the position of maximum pres-
sure along the centerline are illustrated in the lower part of Fig. 26.
The peak pressures are again smaller than in the reference case for
both fluids. The maximum pressure in the LPTT is associated with
the second collapse of the re-evaporated vapor. Additionally, the
pressure evolution for the position of the maximum pressure during
the first collapse is shown. The maximum pressure during the first
collapse is larger in the Newtonian case due to the more focused
collapse (cf. Fig. 25). However, the second collapse in LPTT is dis-
tinctly stronger than for the Newtonian fluid due to the mentioned
extensive re-evaporation area.

Subsequently, we examine the relevant stress components.
s11 is illustrated in Figs. 27 and 28. A large region of positive sM;11

stresses formed along the solid wall can be seen for the viscoelastic
stress. These stresses are responsible for the cusped concave shape
(t ¼ 4:6� 10�6 s) of the bubble during the collapse, an effect also
described in Lind and Phillips.39,59 The viscoelastic stresses along
the solid wall pull fluid radially away, creating suction that

FIG. 17. Collapse in Newtonian fluid for initial standoff distance h� ¼ 0:35 and Re¼ 40. First and third column: vapor volume fraction a ð�Þ. Second and fourth columns:
Velocity in x2-direction u2 ðm=sÞ through the x1/x2-midplane and velocity vectors scaled by the velocity magnitude. Pressure distribution p ðPaÞ through the x2/x3-midplane and
at the wall. Isosurface shows constant vapor content of a ¼ 0:01.
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FIG. 18. Collapse in LPTT fluid for initial standoff distance h� ¼ 0:35 and Re ¼ 40; De ¼ 2. First and third column: vapor volume fraction a ð�Þ. Second and fourth columns:
Velocity in x2-direction u2 ðm=sÞ through the x1/x2-midplane and velocity vectors scaled by the velocity magnitude. Pressure distribution p ðPaÞ through the x2/x3-midplane and
at the wall. Isosurface shows constant vapor content of a ¼ 0:01.

FIG. 19. Pressure distribution p ðPaÞ and illustration of shock formation during first collapse through the x1/x2-midplane for Re ¼ 40; De ¼ 2; h� ¼ 0:35. Top: Newtonian fluid;
bottom: LPTT fluid. Black isoline shows vapor content of a ¼ 0:01.
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FIG. 20. Pressure p ðPaÞ for reduced initial standoff distance h� ¼ 0:35 vs reference case h� ¼ 1:1 at Re ¼ 40; De ¼ 2 (logarithmic scale). Top: at the wall (x�2 ¼ 0): (a)
Newtonian fluid: blue line—at r� ¼ 0:25 (location of maximum pressure), light blue line—r� ¼ 0, black line—reference case (h� ¼ 1:1) at r� ¼ 0:02; (b) LPTT: blue line—
at r� ¼ 0, black line—reference case (h� ¼ 1:1) at r� ¼ 0. Bottom: Along the centerline at the position of maximum pressure: (a) Newtonian fluid: blue line—at x�2 ¼ 0, black
line—reference case (h� ¼ 1:1) at x�2 ¼ 0:22; (b) LPTT: blue line—LPTT fluid at x�2 ¼ 0:06, black line—reference case (h� ¼ 1:1) at x�2 ¼ 0:16.

FIG. 21. Solvent stress sS;11 ðPaÞ through x2/x3-midplane for Re ¼ 40; h� ¼ 0:35 in Newtonian fluid. Black isoline shows vapor content of a ¼ 0:01.
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FIG. 22. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 2; h� ¼ 0:35 in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01. Top: solvent stress
sS;11 ðPaÞ; bottom: viscoelastic stress sM;11 ðPaÞ.

FIG. 23. Collapse in Newtonian fluid for initial standoff distance h� ¼ 1:5 and Re¼ 40. First and third column: vapor volume fraction a ð�Þ. Second and fourth columns:
Velocity in x2-direction u2 ðm=sÞ through the x1/x2-midplane and velocity vectors scaled by the velocity magnitude. Pressure distribution p ðPaÞ through the x2/x3-midplane and
at the wall. Isosurface shows constant vapor content of a ¼ 0:01.
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FIG. 24. Collapse in LPTT fluid for initial standoff distance h� ¼ 1:5 and Re ¼ 40; De ¼ 2. First and third column: vapor volume fraction a ð�Þ. Second and fourth columns:
Velocity in x2-direction u2 ðm=sÞ through the x1/x2-midplane and velocity vectors scaled by the velocity magnitude. Pressure distribution p ðPaÞ through the x2/x3-midplane and
at the wall. Isosurface shows constant vapor content of a ¼ 0:01.
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FIG. 25. Pressure distribution p ðPaÞ and illustration of shock formation during first collapse through the x1/x2-midplane for Re ¼ 40; De ¼ 2; h� ¼ 1:5. Top: Newtonian fluid;
bottom: LPTT fluid. Black isoline shows vapor content of a ¼ 0:01.

FIG. 26. Pressure p ðPaÞ for increased
initial standoff distance h� ¼ 1:5 vs refer-
ence case h� ¼ 1:1 at Re ¼ 40; De ¼ 2
(logarithmic scale). Top: at the wall
(x�2 ¼ 0) at the location of maximum pres-
sure: (a) Newtonian fluid: red line—at
r� ¼ 0:02, black line—reference case
(h� ¼ 1:1) at r� ¼ 0:02; (b) LPTT: red
line—r� ¼ 0, black line—reference case
(h� ¼ 1:1) at r� ¼ 0. Bottom: Along the
centerline at the position of maximum
pressure: (a) Newtonian fluid: red line—at
x�2 ¼ 1:13, black line—reference case
(h� ¼ 1:1)—at x�2 ¼ 0:22; (b) LPTT: red
line at x�2 ¼ 0:29 (location of maximum
pressure), light blue line—at x�2 ¼ 1:19,
black line—reference—case (h� ¼ 1:1) at
x�2 ¼ 0:16.
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FIG. 27. Solvent stress sS;11 ðPaÞ through the x2/x3-midplane for different time instants during the collapse for Re¼ 40 and initial standoff distance h� ¼ 1:5 in Newtonian fluid.
Black isoline shows constant vapor content of a ¼ 0:01.

FIG. 28. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 2; h� ¼ 1:5 in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01. Top: solvent stress sS;11 ðPaÞ;
bottom: viscoelastic stress sM;11 ðPaÞ.

FIG. 29. Solvent stress sS;22 ðPaÞ through the x2/x3-midplane for different time instants during the collapse for Re¼ 40 and initial standoff distance h� ¼ 1:5 in Newtonian fluid.
Black isoline shows constant vapor content of a ¼ 0:01.
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accelerates fluid from the bulk of the bubble. Furthermore, the
Newtonian case exhibits larger solvent stresses than the LPTT
fluid, again due to the additional viscoelastic stresses emerging in
the LPTT case.

By looking at the s22 stress components in Figs. 29 and 30, it
can be appreciated that significant viscoelastic stresses sM;22

covering two lengthy regions above the vapor cavity during
rebound for the LPTT case (t ¼ 3:4� 10�6 s; t ¼ 4:6� 10�6 s).
These stresses yield positive forces in x2-direction, resulting in the
observed heart-shaped vapor cavity before the second collapse. For
completeness, the remaining stress distributions are included in
Appendix B.

FIG. 30. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 2; h� ¼ 1:5 in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01. Top: solvent stress sS;22 ðPaÞ;
bottom: viscoelastic stress sM;22 ðPaÞ.

FIG. 31. Non-dimensional vapor content in the domain over time for Re ¼ 40;
h� ¼ 1:1 and different relaxation times in LPTT fluid; close-up of the rebound. Blue
line—De¼ 1, black line—De¼ 2, red line—De¼ 4.

FIG. 32. Jet velocity u2;jet ðm=sÞ in x2-direction over time measured at centerline
for Re ¼ 40; h� ¼ 1:1 and different relaxation times in LPTT fluid. Blue line—
De¼ 1, black line—De¼ 2, red line—De¼ 4.
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C. Variation of elasticity

The following section investigates the influence of elasticity,
respectively, the variation of relaxation time, for the LPTT case.

The Reynolds number Re¼ 40 remains unchanged. Figure 31
shows the vapor content over time for the three considered
Deborah numbers De ¼ f1; 2; 4g. For all cases, we observe a dis-
tinct rebound after the initial complete collapse. The largest vapor

FIG. 33. Collapse in LPTT fluid for Re ¼ 40; De ¼ 1; h� ¼ 1:1 (increased relaxation time). First and third column: vapor volume fraction a ð�Þ. Second and fourth columns:
Velocity in x2-direction u2 ðm=sÞ through the x1/x2-midplane and velocity vectors scaled by the velocity magnitude. Pressure distribution p ðPaÞ through the x2/x3-midplane and
at the wall. Isosurface shows constant vapor content of a ¼ 0:01.
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content during re-evaporation is observed for the largest elasticity
De¼ 4, whereas the smallest vapor content is produced for the
smallest elasticity De¼ 1. A comparison of the jet velocities in
Fig. 32 reveals that the largest jet velocity magnitudes occur for the

smallest elasticity De¼ 1 during the first and second collapse. The
jet velocities are smallest for the largest elasticity De¼ 4. In Fig. 33,
the collapse behavior for decreased elasticity (De¼ 1) is depicted.
It appears generally similar to the reference case, including splash-
ing. The collapse appears to be more focused with decreasing elas-
ticity. Figure 34 shows the formation of the emitted shock waves
during the first collapse. The overall phenomenology is compara-
ble to the reference case. Radial impingement of the water-
hammer is followed by the collapse of the remaining vapor cavities,
and the pressure waves of the water-hammer and collapse (com-
plete condensation) overlap.

For the pressure evolutions at the position of maximum pres-
sure at the wall (top of Fig. 35) and at the centerline (bottom of
Fig. 35), we can observe that the maximum emitted pressure at the
wall is marginally increased for De¼ 1 as compared to the refer-
ence case. The pressure at the wall due to the second collapse is
larger for the reference case, which can be associated with the
increased water cavity produced during rebound. For the location
of the maximum pressure along the centerline, the first collapse of
the reference case is more intense, while the pressure generated by
the second collapse is almost similar. All stress distributions for
the case with decreased and increased elasticity can be found in
Appendixes C and D.

Figure 36 depicts different stages of the collapse for increased
relaxation (De¼ 4). It is observed that more vapor is produced during
rebound than for the other elasticity. However, the qualitative collapse
evolution is similar for all cases with identical initial standoff distance
h� ¼ 1:1.

The pressure distribution over time depicted in Fig. 37 shows a
radial impingement of the water-hammer toward the other side of the
vapor cavity, followed by the complete collapse of the bubble. The
pressures over time at the locations of maximum occurring pressures
in Fig. 38 reveal that the pressure at the wall is smaller for the first and
second collapse compared to the reference. At the location of maxi-
mum pressure along the centerline, the pressure of the first collapse is
also smaller for increased elasticity. The pressure during the second
collapse is of comparable magnitude for the increased and the refer-
ence elasticity.

V. CONCLUSION

Viscoelastic vapor bubble collapse near solid walls is investigated
conducting fully compressible 3D simulations using the linear
Phan-Thien Tanner viscoelastic model. The following novelties apply
to the investigation:

FIG. 34. Pressure distribution p ðPaÞ and illustration of shock formation during first collapse through the x1/x2-midplane for Re ¼ 40; De ¼ 1; h� ¼ 1:1 in LPTT fluid. Black
isoline shows vapor content of a ¼ 0:01.

FIG. 35. Pressure p ðPaÞ for decreased elasticity De¼ 1 vs reference case De¼ 2
at Re ¼ 40; h� ¼ 1:1 (logarithmic scale) in LPTT fluid. Top: at the wall (x�2 ¼ 0)
at the location of maximum pressure: Blue line—De¼ 1 at r� ¼ 0:05 and black
line—the reference case (De¼ 2) at r� ¼ 0. Bottom: Along the centerline at the
position of maximum pressure blue line—De¼ 1 at x�2 ¼ 0:195 and black line—the
reference case at x�2 ¼ 0:155.
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FIG. 37. Pressure distribution p ðPaÞ and illustration of shock formation during first collapse through the x1/x2-midplane for Re ¼ 40; De ¼ 4; h� ¼ 1:1 in LPTT fluid. Black
isoline shows vapor content of a ¼ 0:01.

FIG. 36. Collapse in LPTT fluid for Re ¼ 40; De ¼ 4; h� ¼ 1:1 (increased relaxation time). First and third column: vapor volume fraction a ð�Þ. Second and fourth columns:
Velocity in x2-direction u2 ðm=sÞ through the x1/x2-midplane and velocity vectors scaled by the velocity magnitude. Pressure distribution p ðPaÞ through the x2/x3-midplane and
at the wall. Isosurface shows constant vapor content of a ¼ 0:01.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 013110 (2023); doi: 10.1063/5.0175807 36, 013110-24

VC Author(s) 2023

 11 January 2024 12:51:18



• Usage of viscoelastic constitutive model including solvent contri-
bution and shear-thinning behavior (LPTT).

• Application of a fully 3D-approach.
• Fully compressible method enables resolution of shock wave for-
mation and of emitted pressure waves.

• Simulation of a cavitating vapor bubble considering condensation
and evaporation in contrast to gas-filled bubbles neglecting con-
densation and evaporation.38–40

The near-wall collapse for different initial wall-distances by com-
paring the results of viscoelastic and Newtonian fluid reveals that visco-
elasticity can strongly affect collapse dynamics. For wall-detached
bubbles, viscoelasticity changes the shock wave formation mechanism
by introducing liquid-jet-piercing, which cannot be observed for
Newtonian collapse. Furthermore, viscoelasticity significantly increases

the amount of re-evaporated fluid during the rebound for the consid-
ered standoff distances. While the pressure emitted during the first col-
lapse is larger or comparable for the Newtonian fluid, the pressure peak
during the second collapse is considerably larger in the viscoelastic liq-
uid for all cases. Furthermore, the re-evaporated fluid generates a
second jet only for the viscoelastic collapse. For initially wall-
attached bubbles, re-evaporation and subsequent second collapse
is only observed for the viscoelastic fluid. The different collapse
dynamics are caused by the additional viscoelastic stresses.
Analyzing solvent and viscoelastic stress distributions shows a
smoother distribution of the viscoelastic compared to the
solvent stresses due to relaxation. We observe that viscoelastic
stresses influence the amount of re-evaporation during rebound.
The variation of elasticity shows that the vapor produced during
rebound is correlated with the relaxation time. Increasing the
relaxation time yields significantly more vapor, at least for
the range of investigated parameters. The jet velocity is largest for
the lowest elasticity.
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APPENDIX A: VISCOUS AND VISCOELASTIC STRESS
DISTRIBUTIONS FOR RE540, DE52, h�50:35

The following figures show the stress distributions for an ini-
tial standoff distance h�¼ 0.35 and Re¼ 40, De¼ 2 for different
time instants. Figures 39 and 41 illustrate the solvent stress distri-
butions for the Newtonian collapse and Figs. 40 and 42 depict the
solvent and viscoelastic stress distributions for the collapse in
LPTT fluid.

FIG. 38. Pressure p ðPaÞ for decreased elasticity De¼ 4 vs reference case De¼ 2
at Re ¼ 40; h� ¼ 1:1 (logarithmic scale) in LPTT fluid. (a) At the wall (x�2 ¼ 0)
at the location of maximum pressure: red line—De¼ 4 at r� ¼ 0:035 and black
line—the reference case (De¼ 2) at r� ¼ 0. (b) Along the centerline at the position
of maximum pressure: red line—De¼ 4 at x�2 ¼ 0:175 and black line—the refer-
ence case (De¼ 2) at x�2 ¼ 0:155.
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FIG. 40. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 2; h� ¼ 0:35 in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01. Top: solvent stress
sS;12 ðPaÞ; bottom: viscoelastic stress sM;12 ðPaÞ.

FIG. 41. Solvent stress sS;22 ðPaÞ through x2/x3-midplane for Re ¼ 40; h� ¼ 0:35 in Newtonian fluid. Black isoline shows vapor content of a ¼ 0:01.

FIG. 39. Solvent stress sS;12 ðPaÞ through x2/x3-midplane for Re ¼ 40; h� ¼ 0:35 in Newtonian fluid. Black isoline shows vapor content of a ¼ 0:01.
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FIG. 42. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 2; h� ¼ 0:35 in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01. Top: solvent stress
sS;22 ðPaÞ; bottom: viscoelastic stress sM;22 ðPaÞ.

FIG. 43. Solvent stress sS;12 ðPaÞ through the x2/x3-midplane for different time instants during the collapse for Re¼ 40 and initial standoff distance h� ¼ 1:5 in Newtonian fluid.
Black isoline shows constant vapor content of a ¼ 0:01.

APPENDIX B: VISCOUS AND VISCOELASTIC STRESS DISTRIBUTIONS FOR RE540, DE52, h�51:5

The following figures show the stress distributions for an initial standoff distance h�¼ 1.5 and Re¼ 40, De¼ 2 for different time instants.
Figure 43 illustrates the solvent stress distributions for the Newtonian collapse and Fig. 44 shows the solvent and viscoelastic stress distribu-
tions for the collapse in LPTT fluid.
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FIG. 44. Stress through x2/x3-midplane for
Re ¼ 40; De ¼ 2; h� ¼ 1:5 in LPTT
fluid. Black isoline shows constant vapor
content of a ¼ 0:01. Top: solvent stress
sS;12 ðPaÞ; bottom: viscoelastic stress
sM;12 ðPaÞ.

FIG. 45. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 1; h� ¼ 1:1 (decreased relaxation time) in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01.
Top: solvent stress sS;11 ðPaÞ; bottom: viscoelastic stress sM;11 ðPaÞ.

APPENDIX C: VISCOUS AND VISCOELASTIC STRESS DISTRIBUTIONS FOR RE540, DE5 1, h�51:1

The following figures show stress distributions for an initial standoff distance h�¼ 1.1 and Re¼ 40, De¼ 1 for different time instants in
LPTT fluid. Figures 45 to 47 illustrate the solvent and viscoelastic stress distributions during the collapse.
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FIG. 46. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 1; h� ¼ 1:1 (decreased relaxation time) in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01.
Top: solvent stress sS;12 ðPaÞ; bottom: viscoelastic stress sM;12 ðPaÞ.

FIG. 47. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 1; h� ¼ 1:1 (decreased relaxation time) in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01.
Top: solvent stress sS;22 ðPaÞ; bottom: viscoelastic stress sM;22 ðPaÞ.
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FIG. 48. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 4; h� ¼ 1:1 (increased relaxation time) in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01.
Top: solvent stress sS;11 ðPaÞ; bottom: viscoelastic stress sM;11 ðPaÞ.

FIG. 49. Stress through x2/x3-midplane for Re ¼ 40; De ¼ 4; h� ¼ 1:1 (increased relaxation time) in LPTT fluid. Black isoline shows constant vapor content of a ¼ 0:01.
Top: solvent stress sS;12 ðPaÞ; bottom: viscoelastic stress sM;12 ðPaÞ.

APPENDIX D: VISCOUS AND VISCOELASTIC STRESS DISTRIBUTIONS FOR RE540, DE54, h�51:1

The following figures show stress distributions for an initial standoff distance h�¼ 1.1 and Re¼ 40, De¼ 4 for different time instants in
LPTT fluid. Figures 48 to 50 illustrate the solvent and viscoelastic stress distributions during the collapse.
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