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1 Abstract 
Pancreatic ductal adenocarcinoma (PDAC) is a disease with a dismal prognosis and limited 

treatment options, encompassing to date mainly polychemotherapeutic regimens. One of the 

reasons for the difficulties in identifying promising targeted therapy approaches is thought to 

be the particularly high molecular heterogeneity found among PDAC tumors. This 

heterogeneity may translate into differential treatment responses and stratification of patients 

may be required for targeted therapies to be successful. In this study, an automated high-

throughput drug screen was performed to comprehensively characterize the landscape of 

therapeutic vulnerabilities in a large cohort of murine pancreatic cancer cell lines. Insights 

derived from the murine drug screening data can be validated across species as sensitivity 

data for a cohort of primary human cell lines was additionally generated. Drug screening 

results furthermore obtained for a set of commercially available human cell lines demonstrate 

that our data is similarly robust to existing pharmacogenomic datasets. The high-throughput 

drug screening data was shown to represent a valuable resource which can be used, for 

example, for the identification of efficacious drugs in PDAC and of subgroup-specific 

vulnerabilities as well as to gain insights into drugs’ mechanisms of action. The highly 

efficient drug NSC319726 was investigated in more detail and it could be demonstrated that 

while this compound was originally identified as a p53 mutant reactivator, mitochondrial 

respiration and copper may play important roles in the mechanism of action of this compound 

in our PDAC cohort. An additional application of the high-throughput drug screening data 

aimed at the identification of biomarkers is the integration with other large-scale datasets 

such as transcriptomic data. Computational approaches were used to define associations 

between the expression of single genes or pathway activation on the one hand and drug 

response on the other hand. It was shown exemplarily that the generated predictive models 

can be validated by different techniques such as combinatorial drug screening and 

CRISPR/Cas9-based negative selection screens. Overall, we present the largest dataset of 

drug sensitivity in pancreatic cancer known to date which provides manifold application 

opportunities for further studies encompassing multi-omics data integration, biomarker 

discovery and personalized medicine approaches.   
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2 Zusammenfassung 
Das duktale Adenokarzinom des Pankreas (PDAC) ist eine Erkrankung mit einer schlechten 

Prognose und begrenzten Behandlungsmöglichkeiten, die zurzeit hauptsächlich 

Polychemotherapien umfassen. Einer der Gründe für die Schwierigkeiten bei der 

Identifizierung vielversprechender zielgerichteter Therapieansätze ist die molekulare 

Heterogenität von PDAC-Tumoren. Diese Heterogenität kann ein unterschiedliches 

Ansprechen auf verschiedene Medikamente zur Folge haben, sodass eine Stratifizierung von 

Patienten notwendig sein könnte, damit zielgerichtete Therapien in Zukunft erfolgreich sein 

können. In dieser Arbeit wird ein automatisierter Hochdurchsatz-Wirkstoffscreen vorgestellt, 

der mit dem Ziel durchgeführt wurde, die Vulnerabilitäten einer großen Anzahl von murinen 

PDAC-Zelllinien umfassend zu charakterisieren. Erkenntnisse, die aus den Wirkstoffscreens 

der murinen Zelllinien gewonnen wurden, können artübergreifend validiert werden, da 

außerdem Sensitivitätsdaten für eine Kohorte primärer humaner Zelllinien generiert wurden. 

Die Ergebnisse des Wirkstoffscreenings für eine Reihe kommerziell verfügbarer humaner 

Zelllinien zeigen, dass unsere Daten ähnlich robust sind wie die anderer bereits publizierter 

pharmakogenetischer Screens. Es wurde gezeigt, dass die Hochdurchsatz-

Wirkstoffscreening-Daten eine wertvolle Ressource darstellen, die unter anderem für die 

Identifizierung von effizienten Wirkstoffen in PDAC und von Subgruppen-spezifischen 

Vulnerabilitäten sowie für Studien zum Wirkmechanismus von Medikamenten genutzt 

werden kann. Der besonders effiziente Wirkstoff NSC319726 wurde genauer untersucht und 

es wurde gezeigt, dass obwohl er ursprünglich als ein Reaktivator von mutiertem p53 

identifiziert wurde, die mitochondriale Atmung und Kupfer eine wichtige Rolle im 

Wirkmechanismus dieser Substanz in unserer PDAC-Kohorte spielen könnten. Eine weitere 

Anwendungsmöglichkeit der Daten aus dem Hochdurchsatz-Wirkstoffscreening, die auf die 

Identifizierung von Biomarkern abzielt, ist die Integration mit anderen großen Datensätzen 

wie zum Beispiel dem Transkriptom. Mit Hilfe computergestützter Ansätze wurden 

Zusammenhänge zwischen der Expression einzelner Gene oder der Aktivierung von 

Signalwegen einerseits und dem Ansprechen auf ein Medikament andererseits definiert. Es 

wurde beispielhaft gezeigt, dass die generierten Modelle durch verschiedene Techniken wie 

kombinatorische Wirkstoffscreens und CRISPR/Cas9-basierte Screens validiert werden 

können. Zusammenfassend präsentieren wir den größten bisher bekannten Datensatz zu 

Vulnerabilitäten im Bauchspeicheldrüsenkrebs, der vielfältige Anwendungsmöglichkeiten für 

weitere Studien bietet, die die Integration von Multi-omics-Daten, die Identifizierung von 

Biomarkern und Ansätze der personalisierten Medizin umfassen.   
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3 Introduction 

3.1 Pancreatic ductal adenocarcinoma (PDAC) 

Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent type of pancreatic cancer 

accounting for more than 90 % of all neoplastic diseases of the pancreas (Kleeff et al. 2016). 

PDAC is the fourth most common cause of cancer-related deaths (Siegel et al. 2022) and is 

projected to become the second most common cancer-related death reason by 2030 (Rahib 

et al. 2021). It has one of the lowest five-year survival rates of all cancers which is currently 

at around 11 % (Siegel et al. 2022). Risk factors that have been reported for this disease 

include advanced age, smoking, obesity, heavy alcohol consumption, pancreatitis and 

diabetes mellitus (Kleeff et al. 2016; Bosetti et al. 2012; Behrens et al. 2015; Tramacere et al. 

2010; Bosetti et al. 2014; Turati et al. 2013).  

There are several reasons for the particularly poor prognosis of pancreatic cancer which 

include late diagnosis, limited surgical and treatment options, but also a high genetic 

heterogeneity and a dense and complex tumor microenvironment (Frappart and Hofmann 

2020; Orth et al. 2019). Due to the lack of early and specific symptoms, PDAC is usually 

diagnosed at advanced stages when the disease presents with distant metastases that 

preclude curative surgical resection (Kleeff et al. 2016; Jiang and Sohal 2023). Only 20 % of 

patients are eligible for curative intent surgery at the time of diagnosis (Hosein et al. 2022; 

Gobbi et al. 2013). Additionally, PDAC displays resistance to most treatment options such as 

chemotherapy, radiotherapy and molecularly targeted therapy (Kleeff et al. 2016). 

Nevertheless, polychemotherapies are currently the standard of care treatments for PDAC. 

Gemcitabine has been approved by the US FDA for pancreatic cancer therapy since 1997 

(Burris et al. 1997). In 2011, the combination of folinic acid, 5-Fluorouracil, Irinotecan and 

Oxaliplatin (FOLFIRINOX) was shown to significantly improve overall survival compared to 

Gemcitabine monotherapy (Conroy et al. 2011). Due to significant toxicities associated with 

this polychemotherapeutic regimen, however, its application is limited to patients with an 

excellent ECOG performance status (Kleeff et al. 2016). Another clinical study, published in 

2013, showed improved efficacy of the combination of Gemcitabine and albumin-bound 

Paclitaxel (Hoff et al. 2013), a regimen which despite significant toxicities can be considered 

as a treatment option for patients with worse performance status (Kleeff et al. 2016). 

Notwithstanding these advances in poly-chemotherapy treatment protocols, the prognosis for 

affected patients is still poor with median overall survival rates for metastatic patients 

remaining at approximately one year (Orth et al. 2019; Conroy et al. 2011; Hoff et al. 2013).  
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3.2 Biological hallmarks of PDAC 

3.2.3 Pancreatic cancer progression model and genetics 

The nature of the cell of origin for PDAC is currently still being debated (Backx et al. 2022). 

The adult pancreas consists of cells belonging to the exocrine (acinar), epithelial (ductal) and 

endocrine compartment and displays a high degree of plasticity (Da Silva et al. 2022; Orth et 

al. 2019). A process called acinar-to-ductal metaplasia (ADM) describes the 

transdifferentiation of acinar cells to a ductal-like phenotype (Da Silva et al. 2022). A current 

model suggests that PDAC can arise both from the ductal epithelium as well as acinar cells 

undergoing ADM (Da Silva et al. 2022; Backx et al. 2022).  

Precursor lesions of invasive PDAC include pancreatic intraepithelial neoplasia (PanIN) or 

larger pre-neoplastic lesions such as intraductal papillary mucinous neoplasms (IPMNs) or 

mucinous cystic neoplasms (MCNs) (Kleeff et al. 2016). PanINs can be graded in different 

stages ranging from PanIN-1A and PanIN-1B that are both classified as low-grade to PanIN-

2 (intermediate grade) and high grade PanIN-3 (Hruban et al. 2000).  

The most common genetic alterations in PDAC are activating mutations in Kirsten rat 

sarcoma virus (KRAS) which can be found in more than 90 % of tumors (Kleeff et al. 2016). 

Other driver oncogenes that have been reported for smaller subsets of patients are mutated 

B-Raf Proto-Oncogene (BRAF) and Phosphatidylinositol-4,5-Bisphosphate 3-Kinase 

Catalytic Subunit Alpha (PIK3CA) (Witkiewicz et al. 2015; Payne et al. 2015). KRAS 

mutations are not only a very frequent alteration, but are also considered as an initial step 

during PDAC development (Kanda et al. 2012). In genetically engineered mouse models 

(GEMMs), the expression of oncogenic KRAS in the pancreas has been shown to be 

sufficient to induce and recapitulate the full spectrum of human PanIN formation followed by 

the development of invasive pancreatic cancer (Hingorani et al. 2003).  

RAS proteins belong to the family of guanine nucleotide binding membrane-bound regulatory 

proteins (G proteins) and control various important intracellular downstream signalling 

pathways (Huang et al. 2021; Takai et al. 2001; Román et al. 2018). KRAS switches between 

inactive guanosine diphosphate (GDP) and active guanosine triphosphate (GTP) binding 

states, which is controlled by guanine nucleotide exchange factors (GEFs) and GTPase-

activating proteins (GAPs) (Pylayeva-Gupta et al. 2011; Bos et al. 2007). Upon stimulation by 

cell surface receptors such as EGFR, other receptor tyrosine kinase receptors or G-protein 

coupled receptors (GPCRs), KRAS switches to its activated state and can in turn activate the 

rapidly accelerated fibrosarcoma (RAF)-mitogen-activated protein kinase (MEK)-extracellular 

regulated protein kinases (ERK) signaling pathway, phosphoinositide 3-kinase (PI3K)-protein 

kinase B (AKT)—mammalian target of rapamycin (mTOR) signaling pathway, and the Ral 
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guanine nucleotide exchange factor pathway (Gimple and Wang 2019; Pylayeva-Gupta et al. 

2011; Huang et al. 2021). KRAS thereby regulates several essential cellular processes such 

as proliferation, cell survival and cell growth (Pylayeva-Gupta et al. 2011; Gimple and Wang 

2019).  

In addition to early occurring mutations in KRAS, CDKN2A alterations are also commonly 

found in early stages during PDAC progression (Hezel et al. 2006). CDKN2A encodes for 

two different tumour suppressor genes by using alternative reading frames, namely p16INK4A 

and p14ARF (Mao et al. 1995; Quelle et al. 1995; Stott et al. 1998). p16INK4A acts by preventing 

S phase entry whereas p14ARF inhibits MDM2, thereby activating p53 (Sharpless 2005). p53 

protein in turn acts as a tumour suppressor by regulating key processes such as DNA repair, 

cell cycle arrest and apoptosis (Riley et al. 2008). 

Mutations in TP53 and SMAD4 occur in later stages of PDAC progression (Hruban et al. 

2000). TP53 mutations are found in around 70 % of PDAC cases and are mostly missense 

mutations which lead to inactivation of the gene (Maddalena et al. 2021; Integrated Genomic 

Characterization of Pancreatic Ductal Adenocarcinoma 2017). SMAD4 is another tumour 

suppressor gene which is inactivated in around 60 % of PDAC cases (Hahn et al. 1996; 

Dardare et al. 2020). It acts as an important effector of the transforming growth factor ß 

(TGFß) signaling pathway which is also altered in 47 % of PDAC cases and regulates 

cellular processes such as cell cycle arrest and apoptosis (Dardare et al. 2020; Bailey et al. 

2016; Zhao et al. 2018). 

In addition to mutations in KRAS, CDKN2A, TP53 and SMAD4, other genes including AT-

Rich interaction domain 1A (ARID1A), myeloid/lymphoid or mixed-lineage leukemia protein 3 

(MLL3) and transforming growth factor beta receptor 2 (TGFBR2) are mutated in PDAC at a 

prevalence of around 10 % (Kleeff et al. 2016). Apart from these commonly mutated genes, 

however, PDAC is characterized by a highly heterogenous genetic landscape with a large 

number of infrequently mutated genes that are found in less than 2 % of tumors (Kleeff et al. 

2016). These include, for example, mutations in genes belonging to DNA damage repair 

signalling pathways, such as BRCA1, BRCA2 and PALB2, chromatin modification genes and 

additional oncogenes such as MYC (Integrated Genomic Characterization of Pancreatic 

Ductal Adenocarcinoma 2017; Waddell et al. 2015).  

 

3.2.4 Molecular subtypes of PDAC 

As described previously, PDAC is a highly heterogeneous disease, which complicates the 

development of effective treatment strategies. Novel stratification approaches are therefore 
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thought to be required to design therapeutic strategies for subgroups of PDAC patients (Orth 

et al. 2019). 

Based on structural variations identified by whole genome sequencing and copy number 

variation (CNV) analysis, Waddell et al. have classified PDAC into four different subtypes 

termed stable, locally rearranged, scattered and unstable (Waddell et al. 2015). In addition, 

various subtyping efforts based also on transcriptomic profiling have already been 

undertaken (Waddell et al. 2015; Bailey et al. 2016; Connor et al. 2017; Moffitt et al. 2015; 

Collisson et al. 2011; Puleo et al. 2018; Chan-Seng-Yue et al. 2020). While the numbers of 

identified subtypes vary between the different studies, two major lineages were consistently 

described (Collisson et al. 2019). The commonly identified classical/canonical subtype is 

characterized by epithelial-like (such as GATA6) gene expression as opposed to the quasi-

mesenchymal/basal-like subtype which displays overexpression of mesenchymal genes 

(Orth et al. 2019; Collisson et al. 2019). Additionally identified subtypes in different studies 

may be explained by varying input materials and assumptions underlying the performed 

analyses (Collisson et al. 2019).  

The first gene expression-based subtyping study in PDAC by Collisson et al. from 2011 used 

microdissected epithelium from untreated, primary resected tumors and identified three 

molecular subtypes, namely quasi-mesenchymal, classical and exocrine-like subtypes 

(Collisson et al. 2011). The quasi-mesenchymal subtype with mesenchymal-associated gene 

expression correlated with a poorer prognosis (Collisson et al. 2011). In a second subtyping 

study from 2015, Moffitt et al. also identified two major subtypes which they designated 

basal-like and classical and, in addition, two stromal subtypes called normal and activated 

(Moffitt et al. 2015). In 2016, Bailey et al. assessed bulk tissue including the tumor 

microenvironment and defined four subtypes which they termed squamous, pancreatic 

progenitor, aberrantly differentiated endocrine exocrine (ADEX) and immunogenic (Bailey et 

al. 2016). The Cancer Genome Atlas (TCGA) Research Network demonstrated in 2017 that 

the immunogenic and ADEX subtypes strongly correlated with lower tumor purity (Integrated 

Genomic Characterization of Pancreatic Ductal Adenocarcinoma 2017). When using only 

high purity samples they observed a strong overlap of the squamous classification by Bailey 

et al. and the basal-like subtype termed by Moffitt et al. (Integrated Genomic Characterization 

of Pancreatic Ductal Adenocarcinoma 2017). Pancreatic progenitor (Bailey et al.) and 

classical (Collisson et al.) subtypes on the other hand were shown to correspond largely with 

the Moffitt et al. classical subtype (Integrated Genomic Characterization of Pancreatic Ductal 

Adenocarcinoma 2017). Contributing to the debate on whether the description of subtypes 

such as ADEX stem from normal tissue contaminations of examined tumors, Puleo et al. 

published a study in 2018 in which they investigated formalin-fixed paraffin embedded 
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PDACs with both high and low cellularity (Puleo et al. 2018). When analyzing only high-

cellularity samples, they identified two subtypes (Basal-like and Classical) and within the 

Classical subtype, two subgroups which they called “Immune Classical” and “Pure Classical” 

(Puleo et al. 2018). An analysis based on all samples, including those with low cellularity, 

identified two additional stromal subtypes which they termed “Stroma Activated” and 

“Desmoplastic” (Puleo et al. 2018; Collisson et al. 2019). Both stromal subtypes showed 

characteristics of basal-like and classical subtypes, which precluded a clear conclusion on 

whether these are indeed independent subtypes (Puleo et al. 2018; Collisson et al. 2019). 

Another study from 2020 confirmed the major classification into classical and basal-like 

subtypes (Chan-Seng-Yue et al. 2020). These previously identified subtypes, however, were 

in this case subcategorized in basal-like-A and basal-like-B as well as classical-A and 

classical-B groups (Chan-Seng-Yue et al. 2020). In their study, Chan-Seng-Yue et al. 

analyzed both genomic and transcriptomic data and were able to link molecular subtypes to 

copy number alterations in genes such as KRAS and GATA6 (Chan-Seng-Yue et al. 2020). 

These different subtypes are suggested to be associated with prognostic outcome as well as 

differential drug responsiveness (Frappart and Hofmann 2020). In a study published by 

Collisson et al., the quasi-mesenchymal subtype was shown to be more sensitive to 

Gemcitabine treatment and more resistant to Erlotinib compared to the classical subtype 

(Collisson et al. 2011). The group of Prof. Saur has also shown that MEK inhibition is more 

effective in the classical subtype (Falcomatà et al. 2022). Furthermore, in a clinical trial 

published in 2018, patients with different transcriptomic and genomic subtypes have been 

reported to show varying responses to chemotherapy (Aung et al. 2018). In this study, 

GATA6 expression was significantly increased in classical subtype tumors and was proposed 

as a robust biomarker for distinguishing the two major subtypes, thereby also potentially 

predicting chemosensitivity (Aung et al. 2018). Further clinical trials are ongoing that will 

evaluate the response to chemotherapy in different molecular subtypes (e.g. clinical trial 

NCT04469556: Pancreatic Adenocarcinoma Signature Stratification for Treatment (PASS-

01)) (Knox et al. 2022; Hosein et al. 2022). In another study, immunohistochemistry-based 

subtype stratification using HNF1A and KRT81 expression was likewise shown to be 

associated with different responses to chemotherapy and these were thus proposed as 

potential biomarkers (Muckenhuber et al. 2018).  

Therefore, even though these subtype classifications do not yet routinely inform clinical 

decisions, their potential value has already been shown. Overall, the identification of 

subgroups with differential responses to therapy and the stratification of such patient cohorts 

for personalized medicine approaches could potentially help to improve the so far dismal 

prognosis of PDAC patients.  
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3.2.5 Metastasis 

As discussed previously, one of the features of PDAC which are causative for its high 

lethality is the high prevalence of metastasis at the time of diagnosis (Kleeff et al. 2016). 

Common sites of metastasis include the peritoneum, the liver and lungs (Yachida et al. 

2012). In a mouse model of pancreatic cancer that allows for tracing of pancreatic epithelial 

cells, a strong association of dissemination and epithelial-to-mesenchymal transition (EMT) 

has been demonstrated (Rhim et al. 2012). EMT is defined as the biological process in which 

polarized epithelial cells lose their cell-cell adhesion and convert to a mesenchymal 

phenotype characterized by an enhanced migratory capacity and invasiveness which 

promotes metastasis (Kalluri and Weinberg 2009). EMT plays a role during implantation, 

embryogenesis, organ development, tissue regeneration and organ fibrosis as well as cancer 

progression and metastasis (Kalluri and Weinberg 2009). Several studies have demonstrated 

that the majority of circulating tumor cells express both epithelial and mesenchymal markers 

which strengthens the notion of an essential role of EMT during carcinoma dissemination 

(Wang et al. 2017; Khoo et al. 2015; Yu et al. 2013; Thiery and Lim 2013). EMT is regulated 

by complex networks of epigenetic modifications, transcription factors and transcription 

regulators (Wang et al. 2017). Among EMT-inducing transcription factors, snail family zinc 

finger protein SNAI1 and 2 (SNAI1/2), zinc finger E-box-binding homeobox 1 and 2 (ZEB1/2) 

and twist-related protein 1 and 2 (TWIST1/2) are common examples (Wang et al. 2017; Orth 

et al. 2019). In addition, microRNAs have also been shown to regulate EMT (Orth et al. 2019; 

Giovannetti et al. 2017; Mees et al. 2010). 

In pancreatic cancer, the quasi-mesenchymal subtype which is associated with 

mesenchymal gene expression is linked to a poorer prognosis, which may further point to the 

involvement of mesenchymal gene expression programs in accelerated metastasis formation 

(Orth et al. 2019; Moffitt et al. 2015; Collisson et al. 2011).  

 

3.2.6 Tumor microenvironment  

Another hallmark of PDAC which is highly relevant for the paucity of effective treatment 

strategies is the dense desmoplastic tumor stroma which can constitute up to 90 % of the 

tumor volume (Orth et al. 2019; Dougan 2017). PDAC stroma is highly heterogeneous, 

consisting of acellular and cellular components including extracellular matrix (ECM), 

vasculature, growth factors and cytokines, cancer-associated fibroblasts (CAFs), 

myofibroblasts, pancreatic stellate cells and immune cells (Feig et al. 2012; Hosein et al. 

2020). It is thought to be a critical mediator of PDAC progression, during which it can 

constantly change its composition, thereby further increasing the complex nature of the 
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desmoplastic reaction (Feig et al. 2012; Hosein et al. 2020). This so-called microenvironment 

of PDAC is recognized as an important contributor to therapy resistance (Feig et al. 2012), 

as for example the ECM can act as a physical barrier to effective drug delivery (Hosein et al. 

2020). PDAC vasculature is a complex system and is also characterized by desmoplasia-

associated hypovascularization which generates a hypoxic environment (Hosein et al. 2020; 

Orth et al. 2019). The existence of multiple CAF subtypes with distinct roles further increases 

the complexity of the tumor microenvironment, which additionally complicates the 

development of effective therapies (Hosein et al. 2020).  

 

3.3 Precision medicine approaches for PDAC treatment 

As discussed in Chapter 3.2.3, genomic analyses have revealed a high heterogeneity of 

mutations in PDAC that occur at a low prevalence or are patient-specific in nature (Sivapalan 

et al. 2022).  

The previously described molecular profiling and subtyping efforts have also revealed that up 

to 25 % of pancreatic cancers present with an actionable molecular alteration (Aguirre et al. 

2018; Bailey et al. 2016; Biankin et al. 2012; Collisson et al. 2011; Lowery et al. 2017; Moffitt 

et al. 2015; Waddell et al. 2015; Witkiewicz et al. 2015; Pishvaian et al. 2020). By definition, 

actionable mutations are alterations for which a specific therapy exists, which is supported by 

clinical or strong preclinical evidence (Pishvaian et al. 2020). The largest identified fraction of 

these actionable alterations in pancreatic cancer can be assigned to DNA damage response 

pathways (Pishvaian et al. 2020). These have been recognized as beneficial biomarkers, 

since it has been shown that patients with DNA mismatch-repair lesions or high microsatellite 

instability (MSI-H) show robust responses to immune checkpoint inhibitors (Le et al. 2015; 

Pishvaian et al. 2020; Nevala-Plagemann et al. 2020). Additionally, patients with germline 

BRCA1 or BRCA2-mutated pancreatic cancer are eligible for treatment with the PARP 

inhibitor Olaparib (Golan et al. 2019; Pishvaian et al. 2020).  

Another example of targeted therapy approaches in pancreatic cancer informed by molecular 

markers is the treatment of patients that display ROS1, NTRK1, NTRK2, and NTRK3 gene 

fusions with TRK inhibitors (Laetsch et al. 2018; Pishvaian et al. 2020; Nevala-Plagemann et 

al. 2020). Evidence also suggests that patients with BRAFV600E mutated pancreatic cancer 

benefit from treatment with RAF-MEK-targeted therapy (Guan et al. 2018; Pishvaian et al. 

2020).  

In 2020, Pishvaian et al. published the results of the so-called “Know Your Tumor (KYT)” 

programme in the USA in which they analyzed more than 1000 patients with pancreatic 
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cancer regarding, among others, the overall survival outcomes for patients with actionable 

molecular alterations who were treated with a molecularly matched therapy (Pishvaian et al. 

2020). They could demonstrate that for a subgroup of pancreatic cancer patients, median 

overall survival rates could indeed be significantly improved by treatments with molecularly 

matched therapeutics (Pishvaian et al. 2020). This study therefore provides a strong 

indication that precision oncology approaches for pancreatic cancer patients are a valuable 

strategy for improving overall survival rates for this disease, that molecular profiling should 

be performed routinely and should also guide prospective clinical trials (Pishvaian et al. 

2020). Nevertheless, only 25 % of pancreatic cancer patients have an actionable molecular 

alteration, which also shows the limitations of these approaches (Pishvaian et al. 2020).   

 

3.4 Pancreatic cancer models and high-throughput drug screens 

The promise of precision medicine approaches for pancreatic cancer treatment has already 

been discussed in Chapter 3.3. The stratification of patients based on their molecular profiles 

could be guided by specific biomarkers of drug sensitivity. Large-scale screening efforts in 

preclinical model systems have already been undertaken to identify such putative predictors 

of drug response (Barretina et al. 2012; Garnett et al. 2012; Haverty et al. 2016; Seashore-

Ludlow et al. 2015; Yu et al. 2016; Niepel et al. 2019; Corsello et al. 2020).  

Preclinical model systems of pancreatic cancer include patient-derived cell line and xenograft 

models, organoid cultures as well as cell lines derived from genetically engineered mouse 

models (GEMMs) (Kleeff et al. 2016).  

A classic GEMM for PDAC is based on the expression of oncogenic KRASG12D in the 

pancreas using the Cre/loxP system and the pancreas-specific promoter Pdx1 or Ptf1a 

(Hingorani et al. 2003). In this model, KRASG12D expression is prevented by an upstream stop 

cassette flanked by loxP sites (loxP-stop-loxP, LSL), except in the pancreas where this stop 

cassette is excised by Cre recombinase under the control of the pancreas-specific promoters 

(Hingorani et al. 2003). Using this system, KRASG12D expression could be shown to be 

sufficient to induce and recapitulate the full spectrum of human PanIN formation leading to 

the development of invasive pancreatic cancer and even the formation of metastases 

(Hingorani et al. 2003). Since then, GEMMs have also been generated for other altered 

genes such as Cdkn2a, Trp53, Smad4, Snail or Braf (Aguirre et al. 2003; Hingorani et al. 

2005; Bardeesy et al. 2006; Paul et al. 2023; Rad et al. 2013). Next-generation mouse 

models using a dual-recombinase system also allow for sequential genetic changes in tumor 

cells or to target the microenvironment, thereby further improving the recapitulation of the 

human disease (Schönhuber et al. 2014). The Saur laboratory has derived more than 1000 
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novel mouse PDAC cell lines from such GEMMs with various different genotypes including 

the expression of oncogenes with or without the additional deletion of tumour suppressors 

(Mueller et al. 2018). Genes that are altered exclusively or in combination with others in 

these cell lines include Kras, Braf, Pik3ca, Trp53, Smad4, Cdkn2a and Tgfßr2. These cell 

lines therefore comprehensively capture the genetic landscape of PDAC. In addition, they 

display different morphologies that reflect classical/epithelial, quasi-mesenchymal and 

mesenchymal subtypes with different degrees of expression of EMT signatures and range 

from differentiated to more undifferentiated histology (Mueller et al. 2018). These cell lines 

represent a valuable resource that can greatly extend the limited number of available human 

PDAC cell line models.  

Interspecies differences between mouse- and human-derived models are expected and must 

be considered. These can represent a major limitation of GEMMs, whereas an important 

advantage is the low passage number of this cell line cohort. Commercially available human 

cell lines have commonly been subjected to prolonged culturing periods and previous studies 

have demonstrated that the passage number can affect the cell line’s characteristics 

(O'Driscoll et al. 2006). Passage number can for instance influence cellular morphology, 

growth rate and gene expression (O'Driscoll et al. 2006) and lead to accumulation of somatic 

mutations over time (Kim et al. 2017). Therefore, these cell lines may not accurately retain 

key characteristics of their tumors of origin (Garcia et al. 2020).  

As both human and murine cell lines are relatively cost effective and easy to maintain and 

propagate (Garcia et al. 2020), they can, for example, conveniently be used for the screening 

of large compound libraries in a high-throughput fashion. Nevertheless, they remain 

simplified models with additional limitations. For example, they cannot account for effects of 

the tumor microenvironment and the interaction with the immune system, which has been 

shown to play an important role in promoting tumor growth and metastasis as well as 

providing a barrier to drug delivery (Feig et al. 2012). Patient-derived xenograft models 

(PDX) are an alternative, which is generated by direct implantation of human tumor tissue 

into immunocompromised mice (Garcia et al. 2020) and can more closely reflect the tumor-

stroma interaction in patients (Bleijs et al. 2019). On the other hand, these in vivo PDX 

models are labor and cost intensive and only a small number of drugs can be tested (Bleijs et 

al. 2019; Hirt et al. 2022).  

More recently, 3D organoid models have emerged which can strike a balance between the 

advantages of 2D cell lines and PDX models (Hirt et al. 2022; Baker et al. 2016; Boj et al. 

2015). These organoid models have been shown to convincingly represent drug response in 

patients (Hirt et al. 2022; Tiriac et al. 2018; Driehuis et al. 2019). Extensive PDAC organoid 

biobanks are currently being established and drug screening experiments have also already 

been undertaken (Hirt et al. 2022). Limitations in resources, however, still hamper the scale 



Introduction 
 

24 
 

of these efforts due to the relatively high cost of components needed for organoid growth, 

especially Matrigel (Hirt et al. 2022).  

2D models, as discussed previously, are currently more cost effective and are the basis for 

several large-scale screening datasets that are publicly available. The CCLE (Barretina et al. 

2012; Pharmacogenomic agreement between two cancer cell line data sets 2015), the 

GDSC (Iorio et al. 2016; Picco et al. 2019), the CTRP CTD2 (Seashore-Ludlow et al. 2015; 

Rees et al. 2016) and the PRISM Repurposing datasets represent major efforts that provide 

drug response data for large sets of molecularly characterized cancer cell lines from diverse 

tumor entities, which are available on the DepMap Portal (https://depmap.org/portal/).  

The idea of the DepMap project is to integrate the drug sensitivity data which is available for 

hundreds of cancer cell line models with other large-scale datasets to identify genetic targets 

for therapeutic development and to allow for stratification of patients responding to specific 

therapies based on biomarkers (https://depmap.org/portal/depmap/) (Tsherniak et al. 2017; 

Meyers et al. 2017; Behan et al. 2019; Krill-Burger et al. 2023).  

Using the CCLE cohort, for example, Barretina et al. combined gene expression and drug 

sensitivity data to demonstrate associations between AHR expression and MEK inhibitor 

efficacy and between SLFN11 expression and sensitivity to topoisomerase inhibitors, 

respectively (Barretina et al. 2012). Characterization of this cohort has since then been 

expanded and now includes RNA sequencing, whole-exome sequencing, whole-genome 

sequencing, reverse-phase protein array, reduced representation bisulfite sequencing, 

microRNA expression profiling and global histone modification profiling data as well as 

abundance measures of metabolites (Ghandi et al. 2019). Integration of these data with drug 

sensitivity profiles as well as short hairpin RNA knockdown and CRISPR-Cas9 knockout data 

has revealed potential targets for cancer drugs and associated biomarkers (Ghandi et al. 

2019). 

Loss-of-function genetic screens using CRISPR-Cas9 or shRNA knockdown based 

approaches can complement drug response measurements by adding another layer of 

vulnerability profiling in cancer cells (Meyers et al. 2017; Tsherniak et al. 2017; Hart et al. 

2015; Behan et al. 2019). Ideally, biomarker studies could therefore be independently 

supported by both drug response and gene fitness measurements (Gonçalves et al. 2020). 

Furthermore, integration of these two types of datasets, loss-of-function genetic screens and 

drug response, has also been shown to allow for investigations of drug mechanism of action 

(Gonçalves et al. 2020; Deans et al. 2016).  

The reproducibility and the utility of such large-scale screening efforts have been the matter 

of scientific discussion (Pharmacogenomic agreement between two cancer cell line data sets 

2015; Haibe-Kains et al. 2013; Bouhaddou et al. 2016; Niepel et al. 2019). Harmonization of 

https://depmap.org/portal/
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methodologies has been addressed as an important factor to improve the comparability of 

different large-scale screening efforts (Pharmacogenomic agreement between two cancer 

cell line data sets 2015). In that regard, several confounders of drug response measures 

have already been identified. Media composition and volume as well as cell density are such 

variables that can influence the biology of drug response (Haverty et al. 2016; Hafner et al. 

2016). These factors as well as intrinsic differences can cause variability in growth rate which 

has been identified as a strong confounder of drug response measures (Niepel et al. 2019; 

Hafner et al. 2016; Hafner et al. 2017). Cell density has also been shown to in turn influence 

media condition and the strength of autocrine signaling which can affect drug response in 

certain cases (Wilson et al. 2012; Yonesaka et al. 2008; Niepel et al. 2019).  Batch effects 

caused by the microtiter plates (Niepel et al. 2017) and edge effects caused by temperature 

gradients and uneven evaporation of media (Bushway et al. 2010) are additional variables 

that can have an influence on drug screening results (Niepel et al. 2019).  

Quality control measures that can help standardization and comparability of the results 

include the authentication of cell lines and compounds, standardization of consumables such 

as media, additives and plates and the use of automation to improve reliability (Niepel et al. 

2019).  

Analytical tools to calculate sensitivity values can also lead to discordant results between 

studies (Pharmacogenomic agreement between two cancer cell line data sets 2015). Most 

commonly, cells are exposed to drug treatment using different concentrations and cell 

viability is measured at the end of the assay (Hafner et al. 2016). The cell viability counts in 

the presence of drug are then divided by control counts (e.g. untreated samples) and fitted to 

a sigmoidal curve from which parameters of drug sensitivity can be derived (Hafner et al. 

2016). These include the concentration of drug at which the cell count is half the control 

(IC50), the normalized cell count at the highest drug concentration (Emax) and the area 

under the dose response curve (AUC) (Fallahi-Sichani et al. 2013; Sebaugh 2011; Hafner et 

al. 2016). As discussed previously, these metrics, IC50, Emax and AUC, can vary 

extensively depending on the number of cell divisions occuring during the course of an assay 

(Hafner et al. 2016). Hafner et al. have developed growth-rate independent metrics to correct 

for this confounder and make drug response data more reproducible and therefore more 

useful for personalized medicine approaches developed across different institutes (Hafner et 

al. 2016). Other approaches to harmonize drug response data obtained from different assays 

and institutes have likewise been published (Pharmacogenomic agreement between two 

cancer cell line data sets 2015; Pozdeyev et al. 2016; Bouhaddou et al. 2016).  
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3.5 Drug resistance and combinatorial drug screens 

Another pitfall of the precision medicine approaches discussed in Chapter 3.3 is the 

emergence of drug resistance towards targeted therapy (Vasan et al. 2019). Various 

mechanisms have been suggested to lead to drug resistance, including tumor burden, tumor 

heterogeneity, physical barriers, the immune system and therapeutic pressure (Vasan et al. 

2019). 

Drug resistance mechanisms can be categorized into intrinsic resistance, where the patient 

is unresponsive from the beginning of the treatment, and acquired resistance which develops 

over time after the patient initially showed a response (Jin et al. 2022). Acquired resistance 

can for example arise from changes in gene expression or from mutations, which can occur 

in the drug target itself (“on-target” mutations), upstream or downstream of the drug target or 

in parallel pathways (Jin et al. 2022). Tumors can for example circumvent MAPK inhibition by 

activating PI3K/AKT signaling (Villanueva et al. 2010). Intra-tumoral heterogeneity poses 

further challenges as selection of resistant subclones can occur under therapeutic pressure 

(Jin et al. 2022; McGranahan and Swanton 2017).  

One way to combat both intrinsic and acquired drug resistance is the use of combinations of 

compounds (Al-Lazikani et al. 2012; Lopez and Banerji 2017; Jaaks et al. 2022; Jin et al. 

2022). An additional advantage of the use of combination regimens is that the compounds 

can potentially also be used at lower doses as if used as monotherapies, thereby reducing 

treatment side-effects (Ianevski et al. 2020; Wood et al. 2014; Law et al. 2003). 

The vast number of possible combinations that could be tested, however, poses a major 

challenge to this approach (Jin et al. 2022). Functional genetic approaches can help to 

rationally design combination regimens (Jin et al. 2022). The identification of genes whose 

inactivation leads to lethality to a compound can help to determine reasonable drug targets 

for combinations (Jin et al. 2022; Mainardi et al. 2018; Prahallad et al. 2012). 

Rational approaches can also encompass strategies based on comprehensive knowledge of 

involved signaling pathways (Jin et al. 2022). The finding that BRAF inhibition leads to 

mutations in downstream players of the MAPK pathway has for example resulted in the use 

of BRAF-MEK combination strategies (Flaherty et al. 2012). In addition, computational 

approaches have also been applied to predict which drug combinations have the highest 

potential for being effective (Jin et al. 2022; Menden et al. 2019; Lotfollahi et al. 2023).  

High-throughput combinatorial drug screening is another established strategy to identify 

potentially synergistic drug combinations (Jin et al. 2022; Ianevski et al. 2020; Holbeck et al. 

2017; Jaaks et al. 2022), i.e. combinations with higher than expected effects (Ianevski et al. 
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2020). Synergy or the opposing antagonism can be quantified by comparing the drug 

combination response which is observed in the experiment to the response which is 

expected according to a reference model assuming no interaction between the drugs 

(Ianevski et al. 2020).The most commonly used reference models comprise the Bliss (BLISS 

1939), Loewe (LOEWE 1953), HSA (highest single agent) (Berenbaum 1989) and ZIP (Zero 

interaction potency) (Yadav et al. 2015) models. A useful drug combination identified in 

clinical trials across a patient cohort can, however, also stem from patient-to-patient 

variability in response to single drugs (Palmer and Sorger 2017). By giving more than one 

drug, chances are increased that the patient receives a drug that is effective (Palmer and 

Sorger 2017). 

A recently published high-throughput combinatorial drug screen analyzing breast, colon and 

29 pancreatic cancer cell lines has shown that overall, synergy between drugs is the 

exception rather than the rule, with 7.2 % of the tested combination – pancreatic cancer cell 

line pairs being classified as synergistic (Jaaks et al. 2022). Subsets of combinations were 

generally more synergistic, including combinations comprising the compound Navitoclax and 

inter-pathway targeting of MAPK and PI3K pathways (Jaaks et al. 2022). Jaaks et al. could 

also demonstrate that biomarkers can be identified for specific combinations such as an 

association between low CDH1 gene expression and irinotecan plus AZD7762 sensitivity in 

pancreatic cancer cell lines (Jaaks et al. 2022). The results from this high-throughput 

combinatorial drug screen showed that targeted drugs with weak single-agent activity are 

most likely to be synergistic and could provide a basis for the design of rational combinatorial 

therapies, of future screens and for novel computational approaches (Jaaks et al. 2022). 

 

 

 

 

 

 

 

 

 



Introduction 
 

28 
 

3.6 Aim of this work 

PDAC is a disease with an urgent unmet clinical need. The prognosis for PDAC patients is 

dismal and treatment options are currently very limited (Kleeff et al. 2016). One of the major 

challenges to the development of effective therapeutic strategies is the high molecular 

heterogeneity that can be found among PDAC tumors (Juiz et al. 2019). It is suggested that 

the identification of subgroups of patients with specific vulnerabilities and associated 

biomarkers allowing for stratification would be an important strategy to successfully employ 

targeted therapy approaches and improve the poor prognosis of PDAC patients (Kleeff et al. 

2016). The aim of this thesis was therefore to characterize the landscape of therapeutic 

vulnerabilities in a large cohort of pancreatic cancer cell lines by high-throughput drug 

screening. The drug response data was correlated with the molecular characteristics of the 

cell lines to identify associations and biomarkers of drug sensitivity or resistance. To validate 

the results obtained from a computational pipeline integrating the drug screening data and 

transcriptomics data, combinatorial drug screens and CRISPR/Cas9-based screens were 

performed.  
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4 Materials  

4.1 Technical equipment 

Table 4-1: Technical equipment. 

Device Source 
AxioCam HRc  Carl Zeiss AG, Oberkochen, Germany  
Analytical balance A 120 S  Sartorius AG, Göttingen, Germany  
Analytical balance BP 610  Sartorius AG, Göttingen, Germany  
Analytical balance Kern & Sohn GmbH, Balingen, Germany 
Autoclave 2540 EL  Tuttnauer Europe B.V., Breda, Netherlands  
Autoclave Systec VX-75  NeoLab Migge GmbH, Heidelberg, Germany  
Centrifuge 220R Hettich AG, Bäch, Switzerland 
Centrifuge Rotina 380 Hettich AG, Bäch, Switzerland 
Centrifuge Multifuge X3 FR Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
CO2 incubator HERAcell ® 240 Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
CO2 incubator HERAcell® VIOS 160i Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
CO2 incubator HERAcell® VIOS 250i Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
CO2 incubator MCO-17AIC Sanyo Denki K.K., Moriguchi, Japan 
CyBio® FeliX pipetting platform Analytik Jena, Jena, Germany 
CyBio FeliX head R 96/250 µL Analytik Jena, Jena, Germany 
Cytomat™ 24C automated incubator Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
Electrophoresis power supply Power Pac 
200 

Bio-Rad Laboratories, Munich 

Electrophoresis power supply EV243 Consort bvba, Turnhout, Belgium 
Electrophoresis system, Compact L/XL Biometra, Göttingen, Germany 
Gel Doc™ XR+ system  Bio-Rad Laboratories GmbH, Munich, Germany  
Glass ware, Schott Duran® Schott AG, Mainz, Germany 
Heating cabinet Memmert GmbH + Co. KG, Schwabach, 

Germany 
Heidolph Rotamax 120 Orbital Shaker 
 

Heidolph Instruments GmbH & Co. KG, 
Schwabach, Germany 

Horizontal shaker Henning Berlin GmbH, Berlin, Germany 
Laminar flow hood BDK Luft- und Reinraumtechnik GmbH, 

Sonnenbühl-Genkingen, Germany 
Laminar flow hood Envair Technology, Cheshire, UK 
Luminescence microplate reader 
CLARIOstar 

BMG Labtech Germany, Ortenberg, Germany 
 

Luminescence microplate reader 
FLUOstar OPTIMA 

BMG Labtech Germany, Ortenberg, Germany 
 

Luminescence microplate reader Infinite® 
200 PRO  

Tecan Group AG, Männedorf, Switzerland 

Magnetic stirrer, Ikamag®RCT IKA®Werke GmbH & Co. KG, Staufen, 
Germany 

Magnetic stirrer, 2mag magnetic motion 2mag AG, Munich, Germany 
Masterflex EasyLoad pump Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
Microscope Axio Imager.A1 Carl Zeiss AG, Oberkochen, Germany 
Microscope Axiovert 25 Carl Zeiss AG, Oberkochen, Germany 
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Device Source 
Microscope DM LB Leica Microsystems GmbH, Wetzlar, Germany 
Microscope Primovert Carl Zeiss AG, Oberkochen, Germany 
Microtome Microm HM355S Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
Microwave GGV Handelsgesellschaft mbH & Co. KG, 

Kaarst, Germany 
Microwave Imtron GmbH, Ingolstadt, Germany 
Multidrop™ Combi Reagent Dispenser Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
Multiway Valve Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
Nanophotometer® Implen GmbH, Munich, Germany 
Neubauer chamber (Hemocytometer) Lo-Labortechnik GmbH, Friedrichsdorf, 

Germany 
pH meter 521  
 

WTW 
Wissenschaftlich-Technische Werkstätten 
GmbH, Weilheim, Germany 

Pintool 96-well Analytik Jena, Jena, Germany 
Pipettes Eppendorf  
 

Research Plus, Eppendorf AG, Hamburg, 
Germany 

Pipetus Hirschmann 
 

Hirschmann Laborgeräte GmbH & Co. KG, 
Eberstadt, Germany 

Pump, Masterflex L/S® Easy-Load®  Cole-Parmer Instrument Company, Vernon 
Hills, USA 

Qubit®2.0 Fluorometer Invitrogen GmbH, Karlsruhe, Germany 
Schott Duran Glass ware Schott AG, Mainz, Germany 
Schutzmagazin OL3316-11-200 Analytik Jena, Jena, Germany 
Seahorse XFe96 Analyzer  Agilent, CA, USA 
Spectrophotometer NanoDrop 1000 Peqlab Biotechnologie GmbH, Erlangen, 

Germany 
Spinnaker automation system  Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
Stripettor™ Plus pipetting controller Corning Inc., Corning, NY, USA 
Stripettor™ Ultra pipetting controller Corning Inc., Corning, NY, USA 
Thermocycler T100 Bio-Rad Laboratories GmbH, Munich, Germany 
Thermocycler TOne Biometra GmbH, Göttingen, Germany 
Thermocycler Tpersonal Biometra GmbH, Göttingen, Germany 
Thermocycler Tprofessional Biometra GmbH, Göttingen, Germany 
Thermomixer compact Eppendorf AG, Hamburg, Germany 
UVP UVsolo touch Transilluminator Analytik Jena, Jena, Germany 
UVsolo TS Imaging System Biometra, Göttingen, Germany 
Vortex Genius 2 Scientific Industries, Inc., Bohemia, USA 
Washing station 96 DW Analytik Jena, Jena, Germany 
Water bath 1003 GFL Gesellschaft für Labortechnik mbH, 

Burgwedel, Germany 
 

 

 



Materials 
 

31 
 

4.2 Disposables 

Table 4-2: Disposables. 

Disposable Supplier 
Cell scrapers TPP Techno Plastic Products AG, 

Trasadingen, Switzerland 
BioPur® Safe-lock reaction tubes Eppendorf AG, Hamburg, Germany 
CELLSTAR® Cell culture multiwell plate (6, 
12, 24, 48, 96 well) 

Greiner Bio-One GmbH, Kremsmünster, 
Austria 

CELLSTAR® Cell culture flasks (T25, T75, 
T175) 

Greiner Bio-One GmbH, Kremsmünster, 
Austria 

Costar® Multiple Well Cell Culture Plates (6, 
12, 24, 48, 96 well) 

Corning Inc., Corning, NY, USA 

Cell strainer 70 µm Greiner Bio-One, Kremsmünster, Austria 
Combitips BioPur® Eppendorf AG, Hamburg, Germany 
Conical tubes, 15 mL Greiner Bio-One, Kremsmünster, Austria 
Conical tubes, 50 mL Greiner Bio-One, Kremsmünster, Austria 
CryoPure tubes Sarstedt AG & Co., Nümbrecht, Germany 
CyBio-Tips OL-3811-25-637-S Analytik Jena, Jena, Germany 
Dispensing Cassette Standard Tube  Steinle Labtechnology, Rodgau, Germany 
Dispensing Cassette for Multidrop™ Combi 
Reagent Dispenser 

Thermo Fisher Scientific, Inc., Waltham, MA, 
USA 

Disposable scalpels  Feather Safety Razor Co., Ltd., Osaka, 
Japan 

DNA LoBind® Tubes Eppendorf AG, Hamburg, Germany 
Filtermax vacuum filtration system TPP Techno Plastic Products AG, 

Trasadingen, Schwitzerland 
Filtropur S 0.2 Sarstedt AG & Co., Nümbrecht, Germany 
Masterblock Greiner Bio-One, Kremsmünster, Austria 
Microtome blades S35 and C35 Feather Safety Razor Co., Ltd., Osaka, 

Japan 
Microplate 384-well, barcoded Greiner Bio-One, Kremsmünster, Austria 
Pasteur pipettes Hirschmann Laborgeräte GmbH & Co. KG, 

Eberstadt, Germany 
Parafilm M 
 

Brand GmbH & Co. KG, Wertheim, Germany 

PCR reaction tubes Brand GmbH + Co. KG, Wertheim; 
Eppendorf AG, Hamburg, Germany 

Plate covers Greiner Bio-One, Kremsmünster, Austria 
Pipette tips Sarstedt AG & Co., Nümbrecht, Germany  
Reaction tubes, 0.5 mL, 1.5 mL and 2 mL Eppendorf AG, Hamburg, Germany  
Robotic reservoirs, convoluted bottom Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
Seahorse XFe96 FluxPak Agilent Technologies, Santa Clara, USA 
Serological pipettes Sarstedt AG & Co., Nümbrecht, Germany 
Single use needles Sterican® 27 gauge B. Braun Melsungen AG, Melsungen, 

Germany 
Tissue Culture Dish (6cm, 10cm, 15cm) TPP AG, Trasadingen, Switzerland 
Western Blotting Filter Paper 
 

Bio-Rad Laboratories GmbH, Munich, 
Germany 
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4.3 Chemicals, reagents and solutions 

Table 4-3: Chemicals, reagents and solutions. 

Reagent Supplier 
1,4-Dithiothreitol (DTT)  Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 
2-Desoxy-D-glucose Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 
2-Mercaptoethanol, 98%  Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 
2-Propanol Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 
Advanced DMEM/F-12 Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
Agarose 
 

Carl Roth GmbH & Co. KG, Karlsruhe, 
Germany 

Agarose Standard for DNA/RNA 
electrophoresis 

Carl Roth GmbH & Co. KG, Karlsruhe, 
Germany 

Aqua B. Braun B.Braun Melsungen AG, Melsungen, 
Germany 

Buthionine sulfoximine (BSO) Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Cherry-pick compound library Selleck Chemicals GmbH, Planegg, 
Germany 

Copper chloride (CuCl2) Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Crystal violet  
 

Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

D-galactose Thermo Fisher Scientific, Inc., Waltham, MA, 
USA 

D-glucose Thermo Fisher Scientific, Inc., Waltham, MA, 
USA 

Dimethyl sulfoxide Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Dimethyl sulfoxide for cell culture AppliChem, Darmstadt, Germany 
dNTP mix, 10mM each  
 

Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Dodecylsulfate Na-salt in pellets (SDS) 
 

Serva Electrophoresis GmbH, Heidelberg, 
Germany 

Dulbecco’s phosphate buffered saline (1x 
DPBS) solution 

Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Dulbecco's Modified Eagle Medium (DMEM) 
- High Glucose 

Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Dulbecco's Modified Eagle Medium (DMEM) 
– No glucose 

Thermo Fisher Scientific, Inc., Waltham, MA, 
USA 

Ethanol (100%)  Merck KGaA, Darmstadt, Germany 
Ethidium Bromide Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 
Fetal calf serum (FCS) Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 
Fetal calf serum (FCS), dialyzed Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
Gel loading dye, blue 
 

New England Biolabs GmbH, Frankfurt am 
Main, Germany 

GeneRuler™ 100bp DNA ladder  Thermo Fisher Scientific, Inc., Waltham, MA, 
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Reagent Supplier 
USA 

Histoclear Carl Roth GmbH & Co. KG, Karlsruhe, 
Germany 

Hydrochloric acid (HCl)  Merck KGaA, Darmstadt, Germany  
KAPA HiFi HotStart ReadyMix 
 

Roche Deutschland Holding GmbH, 
Grenzach-Wyhlen, Germany  

Keratinocyte SFM Thermo Fisher Scientific, Inc., Waltham, MA, 
USA 

Multiscribe Reverse Transcriptase  
 

Thermo Fisher Scientific, Munich, Germany 

MycoRAZOR® Biontex Laboratories GmbH, Munich, 
Germany 

N-acetyl cysteine (NAC) Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Penicillin/Streptomycin Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Polybrene Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Proteinase K, recombinant, PCR grade  
 

Roche Deutschland Holding GmbH, 
Grenzach-Wyhlen, Germany 

Puromycin Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Random Hexamers Hoffmann-La Roche, Basel, 
Switzerland 

RNase-free DNase set  Qiagen GmbH, Hilden, Germany 
RNase Inhibitor Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
RPMI 1640 Medium, GlutaMAX™ 
Supplement 

Thermo Fisher Scientific, Inc., Waltham, MA, 
USA 

Seahorse XF Base Medium  Agilent Technologies, Santa Clara, USA 
Seahorse XF Calibrant Solution  Agilent Technologies, Santa Clara, USA 
Sodium hydroxide solution (NaOH)  Merck KGaA, Darmstadt, Germany 
TaqMan RT Buffer Thermo Fisher Scientific, Inc., Waltham, MA, 

USA 
TE buffer, pH 8.0 AppliChem GmbH, Darmstadt, Germany 
Triton® X 100  
 

Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Trypan Blue Thermo Fisher Scientific, Inc., Waltham, MA, 
USA 

TrypLE™ Express Thermo Fisher Scientific, Inc., Waltham, MA, 
USA 

Trypzean Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany 

Tween® 20 Carl Roth GmbH & Co. KG, Karlsruhe, 
Germany 

V&P Solution  V&P Scientific, Inc., San Diego, CA, USA 
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4.4 Buffers and solutions 

Table 4-4: Buffers and solutions.  

Name Ingredients 
Freezing medium Dulbecco´s Modified Eagles Medium, high 

glucose 
10% (v/v) FCS 
10% (v/v) DMSO 

10x Gitschier’s buffer 670 mM Tris, pH 8.8 
166 mM (NH4)2SO4 
67 mM MgCl2 

Soriano lysis buffer 0.5 % TritonX-100 
1 % 2-Mercaptoethanol  
1x Gitschier’s buffer 
400 µg/ml Proteinase K (add prior to use) 

 

 

4.5 Kits  

Table 4-5: Kits. 

Kit Company 
Caspase-Glo® 3/7 Assay Promega, Walldorf, Germany 
CellTiter-Glo® Luminescent Cell 
Viability Assay 

Promega, Walldorf, Germany 

GenElute™ Mammalian Genomic DNA 
Miniprep Kit 

Sigma-Aldrich, Taufkirchen, Germany  

Monarch PCR & DNA Cleanup Kit New England Biolabs, Ipswich, USA 
RNeasy Mini Kit Qiagen, Hilden, Germany  
QIAGEN Blood & CellCulture DNA MaxiKit  QIAGEN GmbH, Hilden, Germany 
QIAmp DNA Micro Kit Qiagen, Hilden, Germany  
 

 

4.6 Compounds used for high-throughput drug screening 

All compounds used in the high-throughput drug screen were purchased as 10 mM stocks in 

DMSO or H2O from Selleck Chemicals LLC (Houston, TX, USA) and are listed in Table 4-6.  

Table 4-6: Compounds used for high-throughput drug screening.  

Product Name Target detailed Target broad Pathway 
(+)-JQ1 Epigenetic Reader 

Domain 
Epigenetic Reader 
Domain 

Epigenetics 

4E1RCat eIF4E/eIF4G 
interaction 

eIF4E/eIF4G 
interaction 

PI3K/Akt/mTOR 

4EGI-1 eIF4E/eIF4G 
interaction 

eIF4E/eIF4G 
interaction 

PI3K/Akt/mTOR 

A-1155463 Bcl-2 Bcl Apoptosis 
A-1210477 Bcl-2 Bcl Apoptosis 
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Product Name Target detailed Target broad Pathway 
A-366 Histone 

Methyltransferase 
Histone 
Methyltransferase 

Epigenetics 

A-769662 AMPK, Fatty Acid 
Synthase 

AMPK PI3K/Akt/mTOR 

Abexinostat (PCI-
24781) 

HDAC HDAC Epigenetics 

ABT-751 (E7010) Microtubule 
Associated 

Microtubule 
Associated 

Cytoskeletal 
Signaling 

Adavosertib _MK-
1775_ 

Wee1 Wee1 Cell Cycle 

Afatinib (BIBW2992) 
Dimaleate 

EGFR, HER2 Multi-RTK Protein Tyrosine 
Kinase 

AGI-5198 Dehydrogenase Dehydrogenase Metabolism 
AGI-6780 Dehydrogenase Dehydrogenase Metabolism 
AICAR (Acadesine) AMPK AMPK PI3K/Akt/mTOR 
Alectinib 
hydrochloride 

ALK ALK Protein Tyrosine 
Kinase 

Alisertib (MLN8237) Aurora Kinase Aurora Kinase Cell Cycle 
Allopurinol Sodium  ROS ROS Immunology & 

Inflammation 
Alogliptin DPP-4 DPP-4 Proteases & ER 
Alpelisib (BYL719) PI3K PI3K PI3K/Akt/mTOR 
AMI-1 Histone 

Methyltransferase 
Histone 
Methyltransferase 

Epigenetics 

Anastrozole Aromatase Aromatase Endocrinology & 
Hormones 

Apabetalone (RVX-
208) 

Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 

Apitolisib (GDC-
0980, RG7422) 

mTOR, PI3K PI3K/mTOR PI3K/Akt/mTOR 

Apocynin NADPH-oxidase NADPH-oxidase Metabolism 
Apoptosis Activator 2 Caspase Caspase Apoptosis 
APR-246 (PRIMA-
1MET) 

p53 p53/Mdm2 Apoptosis 

AT13148 Akt, S6 Kinase, 
ROCK, PKA 

AKT PI3K/Akt/mTOR 

AT7519 HCl CDK CDK Cell Cycle 
ATN-161 (Ac-
PHSCN-NH2) 

Integrin Integrin Cytoskeletal 
Signaling 

Avagacestat (BMS-
708163) 

Beta Amyloid, 
Gamma-secretase 

Gamma-secretase Stem Cells &  Wnt 

Axitinib c-Kit, PDGFR, 
VEGFR 

Multi-RTK Protein Tyrosine 
Kinase 

AZ 628 Raf Raf MAPK 
AZ191 DYRK DYRK Protein Tyrosine 

Kinase 
Azacitidine  DNA 

Methyltransferase 
DNA 
Methyltransferase 

Epigenetics 

AZD1208 Pim Pim JAK/STAT 
AZD1480 JAK JAK JAK/STAT 
AZD3965 MCT1 MCT1 Metabolism 
AZD4547 FGFR FGFR Protein Tyrosine 

Kinase 
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Product Name Target detailed Target broad Pathway 
AZD5153 Epigenetic Reader 

Domain 
Epigenetic Reader 
Domain 

Epigenetics 

AZD6482 PI3K PI3K PI3K/Akt/mTOR 
AZD6738 ATM/ATR ATM/ATR DNA Damage 
AZD7762 Chk Chk Cell Cycle 
Bafetinib (INNO-406) Bcr-Abl Bcr-Abl Protein Tyrosine 

Kinase 
b-AP15 DUB DUB Ubiquitin 
Barasertib 
(AZD1152-HQPA) 

Aurora Kinase Aurora Kinase Cell Cycle 

BAW2881 (NVP-
BAW2881) 

VEGFR, Raf, c-RET Multi-RTK Protein Tyrosine 
Kinase 

BAY 11-7082 E2 conjugating, 
I_B/IKK 

NF-_B NF-_B 

BAY 87-2243 HIF HIF Angiogenesis 
BAY-61-3606 Syk Syk Angiogenesis 
BAY-876 GLUT GLUT Metabolism 
BI-78D3 JNK JNK MAPK 
BI-847325 MEK, Aurora Kinase MEK MAPK 
BI-D1870 S6 Kinase S6 Kinase PI3K/Akt/mTOR 
Binimetinib 
(MEK162, ARRY-
162, ARRY-438162) 

MEK MEK MAPK 

Birinapant IAP IAP Apoptosis 
Bisindolylmaleimide 
IX (Ro 31-8220 
Mesylate) 

PKC PKC TGF-beta/Smad 

BLZ945 CSF-1R CSF-1R Protein Tyrosine 
Kinase 

BML-190 Cannabinoid 
Receptor 

Cannabinoid 
Receptor 

GPCR & G Protein 

BMS202 (PD-1PD-L1 
inhibitor 2) 

PD-1/PD-L1 PD-1/PD-L1 Immunology & 
Inflammation 

BMS-345541 I_B/IKK I_B/IKK NF-_B 
BMS-777607 TYRO3, AXL, MER, 

c-Met 
Multi-RTK Protein Tyrosine 

Kinase 
BMS-794833 c-Met, VEGFR Multi-RTK Protein Tyrosine 

Kinase 
BMS-986205 IDO1 IDO Metabolism 
BPTES Glutaminase Glutaminase Metabolism 
BQU57 Rho Rho/ROCK Cytoskeletal 

Signaling 
BRD4770 Histone 

Methyltransferase 
Histone 
Methyltransferase 

Epigenetics 

Brivanib (BMS-
540215) 

FGFR, VEGFR Multi-RTK Protein Tyrosine 
Kinase 

Bromopyruvic acid Hexokinase Hexokinase Metabolism 
Bromosporine Epigenetic Reader 

Domain 
Epigenetic Reader 
Domain 

Epigenetics 

BTB06584 ATPase ATPase Transmembrane 
Transporters 

Busulfan  DNA alkylator DNA alkylator DNA Damage 
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Product Name Target detailed Target broad Pathway 
BX-795 I_B/IKK, PDK PDK PI3K/Akt/mTOR 
BX-912 PDK PDK PI3K/Akt/mTOR 
C646 Histone 

Acetyltransferase 
Histone 
Acetyltransferase 

Epigenetics 

Cabozantinib malate 
(XL184) 

TYRO3, AXL, MER, 
VEGFR 

Multi-RTK Protein Tyrosine 
Kinase 

Capmatinib 
(INCB28060) 

c-Met c-Met Protein Tyrosine 
Kinase 

Carfilzomib (PR-171) Proteasome Proteasome Proteases & ER 
CB-5083 ATPase ATPase Transmembrane 

Transporters 
CB-839 Glutaminase Glutaminase Metabolism 
CC-115 DNA-PK,mTOR DNA-PK DNA Damage 
CCF642 Thioredoxin Thioredoxin Metabolism 
C-DIM12 Immunology & 

Inflammation related, 
Dopamine Receptor 

NF-_B NF-_B 

Cediranib (AZD2171) VEGFR VEGFR Protein Tyrosine 
Kinase 

Celecoxib COX COX Metabolism 
CEP-32496 CSF-1R, Raf Raf MAPK 
Ceritinib (LDK378) ALK ALK Protein Tyrosine 

Kinase 
CGP 57380 MNK MNK MAPK 
Chaetocin Histone 

Methyltransferase 
Histone 
Methyltransferase 

Epigenetics 

Chk2 Inhibitor II 
(BML-277) 

Chk Chk Cell Cycle 

CID755673 CaMK CaMK Apoptosis 
Cisplatin DNA/RNA Synthesis DNA/RNA Synthesis DNA Damage 
Cobimetinib (GDC-
0973, RG7420) 

MEK MEK MAPK 

Colchicine Microtubule 
Associated 

Microtubule 
Associated 

Cytoskeletal 
Signaling 

CP-673451 PDGFR PDGFR Protein Tyrosine 
Kinase 

CPI-169 Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

CPI-203 Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 

CPI-455 HCl Histone Demethylase Histone Demethylase Epigenetics 
CPI-613 Dehydrogenase Dehydrogenase Metabolism 
Crenigacestat 
(LY3039478) 

Gamma-secretase Gamma-secretase Stem Cells &  Wnt 

Crizotinib (PF-
02341066) 

ALK, c-Met c-Met Protein Tyrosine 
Kinase 

CUDC-101 EGFR, HDAC, HER2 Multi-RTK Protein Tyrosine 
Kinase 

CW069 Microtubule 
Associated 

Microtubule 
Associated 

Cytoskeletal 
Signaling 

Cyclophosphamide 
Monohydrate 

DNA alkylator DNA alkylator DNA Damage 
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Product Name Target detailed Target broad Pathway 
Dabrafenib 
(GSK2118436) 

Raf Raf MAPK 

Dalcetrapib (JTT-
705, RO4607381) 

CETP CETP Metabolism 

Danusertib (PHA-
739358) 

Aurora Kinase, Bcr-
Abl, c-RET, FGFR 

Aurora Kinase Cell Cycle 

Dapagliflozin SGLT SGLT GPCR & G Protein 
DASA-58 PKM PKM Metabolism 
Dasatinib 
hydrochloride 

Abl/Src Src Protein Tyrosine 
Kinase 

DBeQ p97 p97 Ubiquitin 
DDR1-IN-1 DDR1 DDR1 Protein Tyrosine 

Kinase 
Decitabine DNA 

Methyltransferase 
DNA 
Methyltransferase 

Epigenetics 

Defactinib (VS-6063, 
PF-04554878) 

FAK FAK Cytoskeletal 
Signaling 

Degrasyn (WP1130) Bcr-Abl, DUB Bcr-Abl Protein Tyrosine 
Kinase 

Deguelin Mitochondrial 
complex I 

Mitochondrial 
complex I 

Metabolism 

Dibenzazepine (YO-
01027) 

Gamma-secretase Gamma-secretase Stem Cells &  Wnt 

Dinaciclib 
(SCH727965) 

CDK CDK Cell Cycle 

DMOG Hydroxylase, HIF Hydroxylase Metabolism 
Dovitinib (TKI258) 
Lactate 

FLT3, c-Kit, FGFR, 
PDGFR, VEGFR 

Multi-RTK Protein Tyrosine 
Kinase 

Doxorubicin 
(Adriamycin) HCl 

Topoisomerase Topoisomerase DNA Damage 

Droxinostat HDAC HDAC Epigenetics 
EED226 Epigenetic Reader 

Domain 
Epigenetic Reader 
Domain 

Epigenetics 

eFT-508 (eFT508) MNK MNK MAPK 
EI1 Histone 

Methyltransferase 
Histone 
Methyltransferase 

Epigenetics 

Elacridar 
(GF120918) 

P-gp P-gp Transmembrane 
Transporters 

Elesclomol (STA-
4783) 

ROS ROS Immunology & 
Inflammation 

Eltanexor (KPT-
8602) 

CRM1 CRM1 Transmembrane 
Transporters 

Enasidenib (AG-221) Dehydrogenase Dehydrogenase Metabolism 
Entinostat (MS-275) HDAC HDAC Epigenetics 
Entospletinib (GS-
9973) 

Syk Syk Angiogenesis 

Entrectinib (RXDX-
101) 

Trk receptor, ALK Trk receptor Protein Tyrosine 
Kinase 

Enzastaurin 
(LY317615) 

PKC PKC TGF-beta/Smad 

Epacadostat 
(INCB024360) 

IDO IDO Metabolism 

EPZ004777 Histone Histone Epigenetics 
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Product Name Target detailed Target broad Pathway 
Methyltransferase Methyltransferase 

EPZ005687 Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

EPZ020411 2HCl Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

Erastin Ferroptosis Ferroptosis Metabolism 
Erdafitinib (JNJ-
42756493) 

FGFR FGFR Protein Tyrosine 
Kinase 

Erlotinib EGFR EGFR Protein Tyrosine 
Kinase 

Etoposide Topoisomerase Topoisomerase DNA Damage 
ETP-46464 ATM/ATR, mTOR ATM/ATR DNA Damage 
FH535 PPAR, Wnt/beta-

catenin 
Wnt/beta-catenin Stem Cells &  Wnt 

FLI-06 Gamma-secretase Gamma-secretase Stem Cells &  Wnt 
Fluorouracil (5-
Fluoracil, 5-FU) 

DNA/RNA Synthesis DNA/RNA Synthesis DNA Damage 

Fluvastatin Sodium HMG-CoA 
Reductase 

HMG-CoA 
Reductase 

Metabolism 

FR 180204 ERK ERK MAPK 
FX1 Bcl-6 Bcl Apoptosis 
Galunisertib 
(LY2157299) 

TGF-beta/Smad TGF-beta/Smad TGF-beta/Smad 

Ganetespib (STA-
9090) 

HSP (e.g. HSP90) HSP (e.g. HSP90) Proteases & ER 

GDC-0152 IAP IAP Apoptosis 
GDC-0994 ERK ERK MAPK 
Gemcitabine  DNA/RNA 

Synthesis,Autophagy 
DNA/RNA Synthesis DNA Damage 

Glesatinib 
(MGCD265) 

c-Met, Tie-2, VEGFR Multi-RTK Protein Tyrosine 
Kinase 

GMX1778 (CHS828) NAMPT NAMPT Metabolism 
GSK J1 Histone Demethylase Histone Demethylase Epigenetics 
GSK126 Histone 

Methyltransferase 
Histone 
Methyltransferase 

Epigenetics 

GSK1324726A (I-
BET726) 

Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 

GSK1904529A IGF-1R IGF-1R Protein Tyrosine 
Kinase 

GSK2256098 FAK FAK Cytoskeletal 
Signaling 

GSK2334470 PDK PDK PI3K/Akt/mTOR 
GSK2606414 PERK PERK Apoptosis 
GSK2656157 PERK PERK Apoptosis 
GSK2801 Epigenetic Reader 

Domain 
Epigenetic Reader 
Domain 

Epigenetics 

GSK2830371 Wip1 phosphatase Wip1 phosphatase DNA Damage 
GSK461364 PLK PLK Cell Cycle 
GSK503 Histone 

Methyltransferase 
Histone 
Methyltransferase 

Epigenetics 

GSK583 NF-_B NF-_B NF-_B 
GSK591 Histone Histone Epigenetics 
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Product Name Target detailed Target broad Pathway 
Methyltransferase Methyltransferase 

GSK650394 SGK1, SGK2 
inhibitor 

SGK PI3K/Akt/mTOR 

GSK690693 Akt AKT PI3K/Akt/mTOR 
GSK923295 Kinesin Kinesin Cytoskeletal 

Signaling 
GSK963 NF-_B, TNF-alpha NF-_B NF-_B 
GW0742 PPAR PPAR Metabolism 
GW3965 HCl Liver X Receptor Liver X Receptor Metabolism 
GW441756 Trk receptor Trk receptor Protein Tyrosine 

Kinase 
GW9662 PPAR PPAR Metabolism 
HA15 HSPA5 HSP (e.g. HSP90) Proteases & ER 
HLCL-61 HCL Histone 

Methyltransferase 
Histone 
Methyltransferase 

Epigenetics 

HTH-01-015 AMPK AMPK PI3K/Akt/mTOR 
I-BET-762 Epigenetic Reader 

Domain 
Epigenetic Reader 
Domain 

Epigenetics 

I-BRD9 Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 

Ibrutinib (PCI-32765) BTK BTK Protein Tyrosine 
Kinase 

ID-8 DYRK DYRK Protein Tyrosine 
Kinase 

Ilomastat (GM6001, 
Galardin) 

MMP MMP Proteases & ER 

Importazole Importin-_ 
(Karyopherin beta) 

Importin-_ 
(Karyopherin beta) 

Transmembrane 
Transporters 

Indirubin GSK-3 GSK-3 PI3K/Akt/mTOR 
INH1 Microtubule 

Associated 
Microtubule 
Associated 

Cytoskeletal 
Signaling 

Iniparib (BSI-201) PARP PARP DNA Damage 
IOX1 Histone Demethylase Histone Demethylase Epigenetics 
IPA-3 PAK Rho/ROCK Cytoskeletal 

Signaling 
Irinotecan HCl 
Trihydrate 

Topoisomerase Topoisomerase DNA Damage 

Ispinesib (SB-
715992) 

Kinesin Kinesin Cytoskeletal 
Signaling 

IWP-L6 Wnt/beta-catenin Wnt/beta-catenin Stem Cells &  Wnt 
IWR-1-endo Wnt/beta-catenin Wnt/beta-catenin Stem Cells &  Wnt 
Ixazomib Citrate 
(MLN9708) 

Proteasome Proteasome Proteases & ER 

JIB-04 Histone Demethylase Histone Demethylase Epigenetics 
JNJ-26854165 
(Serdemetan) 

E3 Ligase, p53 p53/Mdm2 Apoptosis 

JNK-IN-8 JNK JNK MAPK 
JSH-23 NF-_B NF-_B NF-_B 
Ki16425 LPA Receptor LPA Receptor GPCR & G Protein 
KU-0063794 mTOR mTOR PI3K/Akt/mTOR 
KU-55933 (ATM 
Kinase Inhibitor) 

ATM/ATR ATM/ATR DNA Damage 
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Product Name Target detailed Target broad Pathway 
KU-60019 ATM/ATR ATM/ATR DNA Damage 
KX2-391 Src Src Protein Tyrosine 

Kinase 
KYA1797K Wnt/beta-catenin Wnt/beta-catenin Stem Cells &  Wnt 
Lapatinib (GW-
572016) Ditosylate 

EGFR, HER2 Multi-RTK Protein Tyrosine 
Kinase 

LCL161 IAP IAP Apoptosis 
Linifanib (ABT-869) CSF-1R, PDGFR, 

VEGFR 
Multi-RTK Protein Tyrosine 

Kinase 
Linsitinib (OSI-906) IGF-1R IGF-1R Protein Tyrosine 

Kinase 
LJH685 S6 Kinase S6 Kinase PI3K/Akt/mTOR 
LLY-507 Histone 

Methyltransferase 
Histone 
Methyltransferase 

Epigenetics 

Lonidamine Hexokinase Hexokinase Metabolism 
LTX-315 Mitochondrial 

membrane 
Mitochondrial 
membrane 

Apoptosis 

Luminespib (AUY-
922, NVP-AUY922) 

HSP (e.g. HSP90) HSP (e.g. HSP90) Proteases & ER 

Luteolin PDE PDE Metabolism 
LY2090314 GSK-3 GSK-3 PI3K/Akt/mTOR 
LY2109761 TGF-beta/Smad TGF-beta/Smad TGF-beta/Smad 
Lys05 Autophagy Autophagy Autophagy 
Maraviroc CCR CCR Microbiology 
Masitinib (AB1010) c-Kit, PDGFR Multi-RTK Protein Tyrosine 

Kinase 
MCB-613 Steroid receptor 

coactivators 
Steroid receptor 
coactivators 

Metabolism 

Mdivi-1 Dynamin Dynamin Metabolism 
Melphalan DNA alkylator DNA alkylator DNA Damage 
MI-2 (MALT1 
inhibitor) 

MALT MALT Immunology & 
Inflammation 

MI-463 Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

MI-503 Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

Milciclib (PHA-
848125) 

CDK CDK Cell Cycle 

Mivebresib(ABBV-
075) 

Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 

MK-0752 Beta 
Amyloid,Gamma-
secretase 

Gamma-secretase Stem Cells &  Wnt 

MK-2206 2HCl Akt AKT PI3K/Akt/mTOR 
MK-8776 (SCH 
900776) 

CDK, Chk Chk Cell Cycle 

MK-886 (L-663,536) Lipoxygenase Lipoxygenase Metabolism 
ML264 KLF5 KLF5 MAPK 
ML323 DUB DUB Ubiquitin 
ML324 Histone Demethylase Histone Demethylase Epigenetics 
ML390 Dehydrogenase Dehydrogenase Metabolism 
MLN2480 Raf Raf MAPK 
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Product Name Target detailed Target broad Pathway 
Motolimod (VTX-
2337) 

TLR TLR Immunology & 
Inflammation 

MS023 Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

MS436 Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 

Mubritinib (TAK 165) HER2 HER2 Protein Tyrosine 
Kinase 

MX69 Mdm2 p53/Mdm2 Apoptosis 
Napabucasin STAT STAT JAK/STAT 
NCT-501 Dehydrogenase Dehydrogenase Metabolism 
NCT-503 Dehydrogenase Dehydrogenase Metabolism 
Neratinib (HKI-272) EGFR, HER2 Multi-RTK Protein Tyrosine 

Kinase 
Nintedanib (BIBF 
1120) 

FGFR, PDGFR, 
VEGFR 

Multi-RTK Protein Tyrosine 
Kinase 

Nintedanib 
Ethanesulfonate Salt 

VEGFR, FGFR, 
PDGFR 

Multi-RTK Protein Tyrosine 
Kinase 

NLG919 IDO IDO Metabolism 
NMS-873 p97 p97 Ubiquitin 
NSC 319726 p53 p53/Mdm2 Apoptosis 
NSC348884 p53 p53/Mdm2 Apoptosis 
NSC59984 p53 p53/Mdm2 Apoptosis 
NSC87877 SHP-1 and SHP-2 SHP-1 and SHP-2 MAPK 
NT157 IGF-1R IGF-1R Protein Tyrosine 

Kinase 
NU7026 DNA-PK DNA-PK DNA Damage 
NU7441 (KU-57788) DNA-PK, PI3K DNA-PK DNA Damage 
Nutlin-3 E3 Ligase, Mdm2 p53/Mdm2 Apoptosis 
NVP-BHG712 Bcr-Abl, Ephrin 

receptor, Raf, Src 
Multi-RTK Protein Tyrosine 

Kinase 
NVP-CGM097 Mdm2 p53/Mdm2 Apoptosis 
OF-1 Epigenetic Reader 

Domain 
Epigenetic Reader 
Domain 

Epigenetics 

Olaparib (AZD2281, 
Ku-0059436) 

PARP PARP DNA Damage 

Olmutinib (HM61713, 
BI 1482694) 

EGFR, BTK Multi-RTK Protein Tyrosine 
Kinase 

ON123300 CDK CDK Cell Cycle 
Onalespib (AT13387) HSP (e.g. HSP90) HSP (e.g. HSP90) Proteases & ER 
Oprozomib (ONX 
0912) 

Proteasome Proteasome Proteases & ER 

Orantinib (TSU-68, 
SU6668) 

PDGFR PDGFR Protein Tyrosine 
Kinase 

OSI-930 c-Kit, CSF-1R, 
VEGFR 

Multi-RTK Protein Tyrosine 
Kinase 

Osimertinib 
(AZD9291) 

EGFR EGFR Protein Tyrosine 
Kinase 

OTS514 
hydrochloride 

TOPK TOPK MAPK 

OTX015 Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 
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Product Name Target detailed Target broad Pathway 
Oxaliplatin DNA/RNA Synthesis DNA/RNA Synthesis DNA Damage 
P22077 DUB DUB Ubiquitin 
P5091 (P005091) DUB DUB Ubiquitin 
Paclitaxel Autophagy, 

Microtubule 
Associated 

Microtubule 
Associated 

Cytoskeletal 
Signaling 

Palbociclib 
(PD0332991) 
Isethionate 

CDK CDK Cell Cycle 

Panobinostat 
(LBH589) 

HDAC HDAC Epigenetics 

Pelitinib (EKB-569) EGFR EGFR Protein Tyrosine 
Kinase 

Pevonedistat 
(MLN4924) 

E1 Activating E1 Activating Ubiquitin 

PF-00562271 FAK FAK Cytoskeletal 
Signaling 

PF-3758309 PAK Rho/ROCK Cytoskeletal 
Signaling 

PF-3845 FAAH FAAH Metabolism 
PF-4708671 S6 Kinase S6 Kinase PI3K/Akt/mTOR 
PF-543 S1P Receptor Sphingosine Kinase 

1 
Kinase 

PFI-1 (PF-6405761) Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 

PFI-4 Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 

PFK15 Autophagy Autophagy Autophagy 
PHT-427 Akt, PDK AKT PI3K/Akt/mTOR 
Pictilisib (GDC-0941) PI3K PI3K PI3K/Akt/mTOR 
PIK-93 PI3K PI3K PI3K/Akt/mTOR 
Pinometostat 
(EPZ5676) 

Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

Plinabulin (NPI-2358) VDA Microtubule 
Associated 

Cytoskeletal 
Signaling 

PluriSIn 1 (NSC 
14613) 

Dehydrogenase Dehydrogenase Metabolism 

PLX-4720 Raf Raf MAPK 
Ponatinib (AP24534) Bcr-Abl, FGFR, 

PDGFR, VEGFR 
Multi-RTK Protein Tyrosine 

Kinase 
Poziotinib (HM781-
36B) 

HER2, EGFR Multi-RTK Protein Tyrosine 
Kinase 

PR-619 DUB DUB Ubiquitin 
Pracinostat (SB939) HDAC HDAC Epigenetics 
PRIMA-1 p53 p53/Mdm2 Apoptosis 
PRT4165 E3 Ligase, BMI-1 BMI-1 Ubiquitin 
PS-1145  I_B/IKK I_B/IKK NF-_B 
PTC-209 HBr BMI-1 BMI-1 Ubiquitin 
PX-12 Thioredoxin Thioredoxin Metabolism 
PX-478 2HCl HIF HIF Angiogenesis 
PYR-41 E1 Activating E1 Activating Ubiquitin 
Quisinostat (JNJ- HDAC HDAC Epigenetics 



Materials 
 

44 
 

Product Name Target detailed Target broad Pathway 
26481585) 2HCl 
Quizartinib (AC220) FLT3 FLT3 Angiogenesis 
Rabusertib 
(LY2603618) 

Chk Chk Cell Cycle 

Ralimetinib 
(LY2228820) 

p38 MAPK p38 MAPK MAPK 

RBC8 RalA and RalB RalA and RalB GPCR & G Protein 
Rebastinib (DCC-
2036) 

Bcr-Abl Bcr-Abl Protein Tyrosine 
Kinase 

Regorafenib (BAY 
73-4506) 

c-RET, VEGFR Multi-RTK Protein Tyrosine 
Kinase 

Remodelin Histone 
Acetyltransferase 

Histone 
Acetyltransferase 

Epigenetics 

RGFP966 HDAC HDAC Epigenetics 
RHPS 4 
methosulfate 

Telomerase Telomerase DNA Damage 

RI-1 RAD51 RAD51 DNA Damage 
Ribociclib (LEE011) CDK CDK Cell Cycle 
Rigosertib (ON-
01910) 

PLK PLK Cell Cycle 

RITA (NSC 652287) E3 Ligase, p53 p53/Mdm2 Apoptosis 
RKI-1447 ROCK Rho/ROCK Cytoskeletal 

Signaling 
RO5126766 
(CH5126766) 

Raf Raf MAPK 

Romidepsin HDAC HDAC Epigenetics 
Roxadustat (FG-
4592) 

HIF HIF Angiogenesis 

RRx-001 Dehydrogenase Dehydrogenase Metabolism 
RSL3 Ferroptosis Ferroptosis Metabolism 
Ruxolitinib 
(INCB018424) 

JAK JAK JAK/STAT 

Sabutoclax Bcl-2 Bcl Apoptosis 
Salermide Sirtuin Sirtuin Epigenetics 
Salirasib Rho Rho/ROCK Cytoskeletal 

Signaling 
Sapanisertib (INK 
128, MLN0128) 

mTOR mTOR PI3K/Akt/mTOR 

Saracatinib 
(AZD0530) 

Src Src Protein Tyrosine 
Kinase 

SB202190 (FHPI) p38 MAPK p38 MAPK MAPK 
SB216763 GSK-3 GSK-3 PI3K/Akt/mTOR 
SB743921 HCl Kinesin Kinesin Cytoskeletal 

Signaling 
SC144 P-gp P-gp Transmembrane 

Transporters 
SC79 Akt AKT PI3K/Akt/mTOR 
SCH58261 Adenosine Receptor Adenosine Receptor GPCR & G Protein 
Selisistat (EX 527) Sirtuin Sirtuin Epigenetics 
Selonsertib (GS-
4997)  

ASK1 ASK Apoptosis 

Selumetinib MEK MEK MAPK 
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(AZD6244) 
SF1670 PTEN PTEN PI3K/Akt/mTOR 
SF2523 PI3K, DNA-PK, 

Epigenetic Reader 
Domain, mTOR 

PI3K/mTOR PI3K/Akt/mTOR 

SGC 0946 Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

SGC707 Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

SGC-CBP30 Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 

SGI-1027 DNA 
Methyltransferase 

DNA 
Methyltransferase 

Epigenetics 

SGI-1776 free base Pim Pim JAK/STAT 
SGI-7079 VEGFR VEGFR Protein Tyrosine 

Kinase 
SGX-523 c-Met c-Met Protein Tyrosine 

Kinase 
SHP099 
dihydrochloride 

SHP-1 and SHP-2 SHP-1 and SHP-2 MAPK 

Silmitasertib (CX-
4945) 

Casein Kinase Casein Kinase Metabolism 

SMER28 Autophagy Autophagy Autophagy 
Sodium 
dichloroacetate 
(DCA) 

Dehydrogenase Dehydrogenase Metabolism 

Sorafenib Tosylate PDGFR, Raf, 
VEGFR 

Multi-RTK Protein Tyrosine 
Kinase 

Sotrastaurin PKC PKC TGF-beta/Smad 
SP2509 Histone Demethylase Histone Demethylase Epigenetics 
SP600125 JNK JNK MAPK 
Spebrutinib (CC-292, 
AVL-292) 

BTK BTK Protein Tyrosine 
Kinase 

SRPIN340 SRPK SRPK Kinase 
SRT1720 HCl Sirtuin Sirtuin Epigenetics 
STF-083010 IRE1_ IRE1_ Kinase 
STF-118804 NAMPT NAMPT Metabolism 
STF-31 GLUT GLUT Metabolism 
Sulfabenzamide Anti-infection Anti-infection Microbiology 
TAK-700 (Orteronel) P450 (e.g. CYP17) P450 (e.g. CYP17) Metabolism 
Taladegib 
(LY2940680) 

Hedgehog, 
Hedgehog/Smoothen
ed 

Hedgehog Stem Cells &  Wnt 

TAPI-1 ADAM17/TACE, 
MMP 

MMP Proteases & ER 

Tazemetostat (EPZ-
6438) 

Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

Tezacaftor (VX-661) CFTR CFTR Transmembrane 
Transporters 

TH287 MTH1 MTH1 DNA Damage 
TH588 MTH1 MTH1 DNA Damage 
Thiamet G  O-GlcNAcase O-GlcNAcase Epigenetics 
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Product Name Target detailed Target broad Pathway 
Thiomyristoyl Sirtuin Sirtuin Epigenetics 
Tipifarnib  Farnesyltransferase Farnesyltransferase Metabolism 
Tofacitinib (CP-
690550,Tasocitinib) 

JAK JAK JAK/STAT 

Topotecan HCl Topoisomerase Topoisomerase DNA Damage 
Tozasertib (VX-680, 
MK-0457) 

Aurora Kinase Aurora Kinase Cell Cycle 

TPX-0005 Src, ALK Src Protein Tyrosine 
Kinase 

Trametinib 
(GSK1120212) 

MEK MEK MAPK 

Tretinoin Retinoid Receptor Retinoid Receptor Metabolism 
U-104 Carbonic Anhydrase Carbonic Anhydrase Metabolism 
Ulixertinib (BVD-523, 
VRT752271) 

ERK ERK MAPK 

UNC0379 Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

UNC1215 Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 

UNC1999 Histone 
Methyltransferase 

Histone 
Methyltransferase 

Epigenetics 

UNC669 Epigenetic Reader 
Domain 

Epigenetic Reader 
Domain 

Epigenetics 

Uprosertib 
(GSK2141795) 

Akt AKT PI3K/Akt/mTOR 

Vactosertib (TEW-
7197) 

TGF-beta/Smad TGF-beta/Smad TGF-beta/Smad 

Vatalanib (PTK787) 
2HCl 

VEGFR VEGFR Protein Tyrosine 
Kinase 

VE-822 ATM/ATR ATM/ATR DNA Damage 
Veliparib (ABT-888) PARP PARP DNA Damage 
Vemurafenib 
(PLX4032, RG7204) 

Raf Raf MAPK 

Venetoclax (ABT-
199, GDC-0199) 

Bcl-2 Bcl Apoptosis 

Vincristine sulfate Autophagy, 
Microtubule 
Associated 

Microtubule 
Associated 

Cytoskeletal 
Signaling 

Vinorelbine Tartrate Microtubule 
Associated 

Microtubule 
Associated 

Cytoskeletal 
Signaling 

Vismodegib (GDC-
0449) 

Hedgehog/Smoothen
ed 

Hedgehog Stem Cells &  Wnt 

Vistusertib 
(AZD2014) 

mTOR PI3K/mTOR PI3K/Akt/mTOR 

VLX1570 DUB DUB Ubiquitin 
Volasertib (BI 6727) PLK PLK Cell Cycle 
VO-Ohpic trihydrate PTEN PTEN PI3K/Akt/mTOR 
Voxtalisib (XL765, 
SAR245409) 

mTOR, PI3K PI3K/mTOR PI3K/Akt/mTOR 

VPS34-IN1 PI3K PI3K PI3K/Akt/mTOR 
WH-4-023 Src Src Protein Tyrosine 

Kinase 
WIKI4 Wnt/beta-catenin Wnt/beta-catenin Stem Cells &  Wnt 
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Product Name Target detailed Target broad Pathway 
WZ4003 AMPK AMPK PI3K/Akt/mTOR 
Xanthohumol COX COX Metabolism 
XAV-939 Wnt/beta-catenin Wnt/beta-catenin Stem Cells &  Wnt 
XL413 (BMS-
863233) 

CDK CDK Cell Cycle 

XMD16-5 Tnk2 Tnk2 Protein Tyrosine 
Kinase 

Y-27632 2HCl Autophagy, ROCK Rho/ROCK Cytoskeletal 
Signaling 

YM155 
(Sepantronium 
Bromide) 

Survivin Survivin Apoptosis 

ZCL278 Rho Rho/ROCK Cytoskeletal 
Signaling 

Zibotentan (ZD4054) Endothelin Receptor Endothelin Receptor GPCR & G Protein 
Zileuton Lipoxygenase Lipoxygenase Metabolism 
ZSTK474 PI3K PI3K PI3K/Akt/mTOR 
 

 

4.7 Compounds used for additional experiments 

Table 4-7: Additional compounds.  

Compound Distributor 
Antimycin A Sigma-Aldrich Chemie GmbH, Taufkirchen 
Bortezomib (PS-341) Selleck Chemicals LLC (Houston, TX, USA) 
FCCP Selleck Chemicals LLC (Houston, TX, USA) 
Ferrostatin-1 Selleck Chemicals LLC (Houston, TX, USA) 
Necrostatin-1 Selleck Chemicals LLC (Houston, TX, USA) 
Oligomycin A Selleck Chemicals LLC (Houston, TX, USA) 
Rotenone Selleck Chemicals LLC (Houston, TX, USA) 
Z-VAD-FMK Selleck Chemicals LLC (Houston, TX, USA) 
 

 

4.8 Primers 

All oligonucleotides were synthesized by Eurofins MWG GmbH (Ebersberg) and diluted in 

H2O to a concentration of 10 μM.  

Primers used for cell line authentication (regenotyping) are shown in Table 4-8. 

Table 4-8: Regenotyping primers. 

PCR name Primer name Sequence (5’  3’) 
Ptf1a-Cre p48-Cre-GT-LP-

URP 
CCTCGAAGGCGTCGTTGATGGACTGCA 
 

p48-Cre-GT-wt-UP CCACGGATCACTCACAAAGCGT 
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PCR name Primer name Sequence (5’  3’) 
p48-Cre-GT-mut-
UP-neu 

GCCACCAGCCAGCTATCAA 

Pdx1-Cre Pdx-Prom-UP2 GCTCATTGGGAGCGGTTTTG 
V-Cre-LP2 ACATCTTCAGGTTCTGCGGG 
PdxKON-LP1 CACGTGGTTTACCCTGGAGC 

Pdx-Flp pdx5ut-scUP AGAGAGAAAATTGAAACAAGTGCAGGT 
Flpopt-scLP CGTTGTAAGGGATGATGGTGAACT 
Gabra-UP AACACACACTGGAGGACTGGCTAGG 
Gabra-LP CAATGGTAGGCTCACTCTGGGAGATGATA 

LSL-KrasG12D Kras-WT-UP1 CACCAGCTTCGGCTTCCTATT 
Kras-URP-LP1 AGCTAATGGCTCTCAAAGGAATGTA 
KrasG12Dmut-UP CCATGGCTTGAGTAAGTCTGC 

FSF-KrasG12D  
 

Kras-WT-UP1 CACCAGCTTCGGCTTCCTATT 
Kras-URP-LP1 AGCTAATGGCTCTCAAAGGAATGTA 
R26-Tva-SA-mut GCGAAGAGTTTGTCCTCAACC 

LSL-Trp53R172H Trp53R172H-WT-
UP2 

AGCCTTAGACATAACACACGAACT 

Trp53R172H-URP-
LP 

CTTGGAGACATAGCCACACTG 

Trp53R172H-mut-
UP4 

GCCACCATGGCTTGAGTAA 

LSL-Trp53R172H 
(deleted stop 
cassette) 

p53R172H-LoxUP AGCCTGCCTAGCTTCCTCAGG 
p53R172H-LoxLP CTTGGAGACATAGCCACACTG 

 
Trp53lox p53 berns Up-E CACAAAAAACAGGTTAAACCCAGC 

p53 berns LP-F GCACCTTTGATCCCAGCACATA 
Trp53frt p53-ftr1 CAAGAGAACTGTGCCTAAGAG 

p53-frt2 CTTTCTAACAGCAAAGGCAAGC 
Pik3caH1047R  
 

Soriano_SA_UP CAGTAGTCCAGGGTTTCCTTGATG 
PI3K-genotyp-RevPr AAATAGCCGCAGGTCACAAAGTCTCCG 
pGL3-pA-
pause4645-UP 

TGAATAGTTAATTGGAGCGGCCGCAATA 
 

Cdkn2alox INK4A-UP CCAAGTGTGCAAACCCAGGCTCC 
INK4A-LP TTGTTGGCCCAGGATGCCGACATC 

LSL-BrafV637E BR_UP TTTATCATAGTAGGGCTTGCTGTCTTGCTT 
BR_WT-LP CAAATATGTTTTGAGCAAGACCTTTGTTCT 
BR_SA-LP CCACTGACCAGAAGGAAAGTGGT 

p16Ink4a* VBC_Ink4a_PM-UP GCAGTGTTGCAGTTTGAACCC 
VBC_Ink4a_PM-LP TGTGGCAACTGATTCAGTTGG 

 

Primers used for human contamination test are shown in Table 4-9.  

Table 4-9: Primers used to test for human contamination. 

PCR name Primer name Sequence (5’  3’) 
Human 
contamination test 

Kras_hu_G12D_fw AAAGGTACTGGTGGAGTATTTGATAGTG 
Kras_hu_G12D_rev GGTCCTGCACCAGTAATATGCA 

 

Primers used for human contamination test are shown in Table 4-10. 
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Table 4-10: Primers used to test for murine contamination of human cell cultures. 

PCR name Primer name Sequence (5’  3’) 
Murine 
contamination 
test 

hKRAS_ex2_flank_Fw GGTACTGGTGGAGTATTTGATAGTG 
hKRAS_ex2_flank_Rv GGTCCTGCACCAGTAATATGCA 
mKras_ex2_flank_Fw TCCTTTGAGAGCCATTAGCTGCT 
mKras_ex2_flank_Fw TTTACAAGCGCACGCAGACTGTA 

 

Primers used for mycoplasma tests are shown in Table 4-11. 

Table 4-11: Primers for mycoplasma tests. 

PCR name Primer name Sequence (5’  3’) 
Mycoplasma 5’ primer 1 CGC CTG AGT AGT ACG TTC GC 

5’ primer 2 CGC CTG AGT AGT ACG TAC GC 
5’ primer 3 TGC CTG GGT AGT ACA TTC GC 
5’ primer 4 TGC CTG AGT AGT ACA TTC GC 
5’ primer 5 CGC CTG AGT AGT ATG CTC GC 
5’ primer 6 CAC CTG AGT AGT ATG CTC GC 
5’ primer 7 CGC CTG GGT AGT ACA TTC GC 
3’ primer 1 GCG GTG TGT ACA AGA CCC GA 
3’ primer 2 GCG GTG TGT ACA AAA CCC GA 
3’ primer 3 GCG GTG TGT ACA AAC CCC GA 

 

Primers used for virus contamination tests are shown in Table 4-12. 

Table 4-12: Primers used for virus contamination tests. 

PCR name Primer name Sequence (5’  3’) 
HIV-1 F-HIV ATAATCCACCTATCCCAGTAGGAGAAAT 

R-HIV TTTGGTCCTTGTCTTATGTCCAGAATGC 
hKras-fw GGTACTGGTGGAGTATTTGATAGTG 
hKras-rv GGTCCTGCACCAGTAATATGCA 

HIV-2 F-HIV2 CCTCAATTCTCTCTTTGGAAAAGACC 
R-HIV2 AAATGTTGATTGGGGTATCTCCTGTC 
R-HIV2-2 AAATGTTGATTGGGGTATCTCCTATC 
hBraf-fw GAAGAGCCTTTACTGCTCGCC 
hBraf-rv TTTCTAGTAACTCAGCAGCATCTCA 

HBV F-HEBP AAGCTGTGCCTTGGGTGGCTT 
R-HEBP CGAGATTGAGATCTTCTGCGAC 
hKras-fw GGTACTGGTGGAGTATTTGATAGTG 
hKras-rv GGTCCTGCACCAGTAATATGCA 

HCV F-HCV GCCATGGCGTTAGTATGAGT 
F-HCV-2 GCCATGGCGTTAGTATGAG 
R-HCV GTGCACGGTCTACGAGACCT 
Fw-beta-actin CGCGGCGATATCATCATC 
Rv-beta-actin CCTCGCCTTTGCCGATCC 
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4.9 Primers used for CRISPR/Cas9 screens 

Primers used for amplification of sgRNAs from CRISPR screens are shown in Table 4-13. 

Different forward and reverse primers were obtained by variable indexing sequences 

(denoted as NNNNNN, Table 4-13).  

Table 4-13: Primers used for sgRNA amplification. 

Primer name Sequence (5’  3’) 
sgRNA_NGS_P5 AATGATACGGCGACCACCGAGATCTACACNNNNNNCACCG 

ACTCGGTGCCACTTTT 
sgRNA_NGS_P7 AATGATACGGCGACCACCGAGATCTACACNNNNNNCACCG 

ACTCGGTGCCACTTTT 

 

4.10 Plasmids 

Plasmids used for this thesis are listed in Table 4-14. The plasmid “pEX-128-HA-MS-2” is a 

customized plasmid containing the following sequence from HIV-2: 

CCTCAATTCTCTCTTTGGAAAAGACCAGTAGTCACAGCATACATTGAGGGCCAGGCAGTAGAGGTCCTATTA
GATACAGGGGCTGATGATTCAATAGTAGCAGGAATAGAGTTAGGGAATGATTATAGTCCAAAAGTAGTAGGG
GGAATAGGGGGATTCATAAATACCAAAGAATACAAAAATGTAGAGATAAAAGTGTTAAATAAAAGAGTAAGAG
CCACCATAATGATAGGAGATACCCCAATCAACATTT 

Table 4-14: Plasmids. 

Plasmid Source RRID 
The mouse CRISPR 
Knockout 
Brie pooled Library (#73632) 

Addgene, Watertown, MA, 
USA 

n/a 

psPAX2 #12260  Addgene, Watertown, MA, 
USA 

Addgene_12260 

HBV 1.3-mer WT replicon 
#65459 

Addgene, Watertown, MA, 
USA 

n/a 

pFR_HCV_xb #11510 Addgene, Watertown, MA, 
USA 

RRID:Addgene_11510 

pEX-128-HA-MS-2 Thermo Fisher Scientific, 
Waltham, Massachusetts, 
USA 

 

 

 

4.11 Murine cell lines 

Murine PDAC cell lines used for this thesis were isolated from PDAC mouse models by 

members of the laboratories of Prof. Saur, Prof. Rad and Prof. Schneider. Isolation was 

performed as described previously (Burstin et al. 2009; Eser et al. 2013). The mouse models 

were based on the Cre-loxP and Flp-frt recombination systems. By interbreeding tissue-

specific Cre strains or Flp mouse strains with mice carrying transgenes flanked by loxP-sites 
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or frt-sites or silenced by a loxP-stop-loxP (LSL) or frt-stop-frt (FSF) cassette, mice with 

expression or deletion of the target gene(s) were obtained. All animals were on a mixed 

C57Bl/6; 129S6/SvEv genetic background.  

The following mouse strains were used and have previously been reported as indicated: 

Pdx1-Cre (Hingorani et al. 2003), Ptf1aCre/+ (Nakhai et al. 2007), Pdx1-Flp (Schönhuber et al. 

2014), LSL-KrasG12D/+ (Jackson et al. 2001; Hingorani et al. 2003), FSF-KrasG12D/+ 

(Schönhuber et al. 2014), LSL-PIK3CAH1047R/+ (Eser et al. 2013), LSL-Rosa26Snail/+ (Paul et al. 

2023), LSL-BrafV637E/+ (Rad et al. 2013), Cdh1fl/+ (Derksen et al. 2006), LSL-Trp53R172H/+ 

(Hingorani et al. 2005; Olive et al. 2004), Trp53lox/+ (Jonkers et al. 2001), Trp53frt/+ (Lee et al. 

2012), p16Ink4a*/+ (Krimpenfort et al. 2001), Cdkn2alox/+ (Aguirre et al. 2003), Tgfßr2lox/+ (Chytil 

et al. 2002), Smad4lox/+ (Bardeesy et al. 2006) and LSL-Rosa26Tgfβ1/+ (developed by the Saur 

laboratory).  

For this thesis, murine cell lines isolated from mouse models with the genotypes listed in 

Table 4-15 were used. For the purposes of this thesis (e.g. to improve readability), genotypes 

were categorized in genotype groups as also shown in Table 4-15.  

Table 4-15: Overview of genotype groups. 

Genotype group Detailed genotypes 
PK Ptf1aCre/+;LSL-KrasG12D/+ 

Pdx1-Cre;LSL-KrasG12D/+ 

Pdx1-Flp;FSF-KrasG12D/+ 

Pdx1-Flp-o;FSF-KrasG12D/+ 
PPI3K Ptf1aCre/+;Pdx1-Cre;LSL-Pik3caH1047R/+ 

Ptf1aCre/+;LSL- Pik3caH1047R/+ 

Pdx1-Cre;LSL-Pik3caH1047R/+ 

Pdx1-Flp;FSF-Pik3caH1047R/+ 
PKPI3K Ptf1aCre/+;LSL-KrasG12D/+;Pik3caH1047R/+ 

PPI3KP Ptf1aCre/+; LSL-Pik3caH1047R/+;Trp53R172H/+ 

Ptf1aCre/+;Pdx1-Cre; LSL-Pik3caH1047R/+;Trp53R172H/+ 

Pdx1-Cre;LSL-Pik3caH1047R/+;Trp53R172H/+ 

Pdx1-Cre;LSL-Pik3caH1047R/+;Trp53lox/lox 

Pdx1-Cre;LSL-Pik3caH1047R/+;Trp53lox/+ 

PKPI3KP Ptf1aCre/+;LSL-KrasG12D/+;Pik3caH1047R/+;Trp53R172H/+ 
PPI3KPC Pdx1-Cre;LSL-Pik3caH1047R/+;Trp53R172H/; Cdkn2alox/+ 
PKP Ptf1aCre/+;LSL-KrasG12D/+;Trp53R172H/+ 

Pdx1-Cre;LSL-KrasG12D/+;Trp53R172H/+ 

Ptf1aCre/+;Pdx1-Cre;LSL-KrasG12D/+; Trp53R172H/+ 

Pdx1-Flp;FSF-KrasG12D/+;LSL-Trp53R172H/+ 

Pdx1-Flp-o;FSF-KrasG12D/+;LSL-Trp53R172H/+ 

Ptf1aCre/+;LSL-KrasG12D/+;Trp53lox/+ 

Ptf1aCre/+;LSL-KrasG12D/+;Trp53lox/lox 

Pdx1-Cre;LSL-KrasG12D/+;Trp53lox/+ 

Pdx1-Cre;LSL-KrasG12D/+;Trp53lox/lox 

Pdx1-Flp;FSF-KrasG12D/+;Trp53frt/+ 

Pdx1-Flp;FSF-KrasG12D/+;Trp53frt/frt 
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Genotype group Detailed genotypes 
PBRC Pdx1-Cre;LSL-BrafV637E/+;p16Ink4a*/+ 

Pdx1-Cre;LSL-BrafV637E/+;p16Ink4a*/Ink4a* 

Pdx1-Cre;LSL-BrafV637E/+;Cdkn2alox/lox 
PBRPC Pdx1-Cre;LSL-BrafV637E/+;p16Ink4a*/+;Trp53R172H/+ 
PKC 
 

Ptf1aCre/+;LSL-KrasG12D/+;Cdkn2alox/+ 

Ptf1aCre/+;LSL-KrasG12D/+;Cdkn2alox/lox 

Ptf1aCre/+;LSL-KrasG12D/+; p16Ink4a*/+ 
PKCSm Pdx1-Flp;FSF-KrasG12D/+;Cdkn2alox/+;Smad4lox/+ 
PKPCSm 
 

Pdx1-Flp;FSF-KrasG12D/+;Cdkn2alox/+; Smad4lox/lox;Trp53lox/+ 

Pdx1-Flp;FSF-KrasG12D/+;Cdkn2alox/lox;Smad4lox/+;Trp53lox/lox 

Pdx1-Flp;FSF-KrasG12D/+;Cdkn2alox/lox;Smad4lox/lox;Trp53lox/+ 

Pdx1-Flp;FSF-KrasG12D/+;Cdkn2alox/lox;Smad4lox/+;Trp53lox/+ 
PKE Pdx1-Flp;FSF-KrasG12D/+;Cdh1fl/fl 
PKPE Pdx1-Cre;LSL-KrasG12D/+;Trp53R172H/+;Cdh1fl/fl 
PKPT 
 

Ptf1aCre/+;LSL-KrasG12D/+;Tgfβr2lox/lox;Trp53R172H/+ 

Ptf1aCre/+;LSL-KrasG12D/+;Tgfβr2lox/+;Trp53R172H/+ 
PKS Pdx1-Cre;LSL-KrasG12D/+;Rosa26Snail/Snail 

Pdx1-Cre;LSL-KrasG12D/+;Rosa26Snail/+ 

Ptf1aCre/+;LSL-KrasG12D/+;Rosa26Snail/+ 

PKSC Ptf1aCre/+;LSL-KrasG12D/+;Rosa26Snail/+; p16Ink4a*/+ 

Ptf1aCre/+;LSL-KrasG12D/+; Rosa26Snail/+; p16Ink4a*/Ink4a* 

Pdx1-Cre;LSL-KrasG12D/+;Rosa26Snail/+; p16Ink4a*/+ 

Ptf1aCre/+;LSL-KrasG12D/+; Rosa26Snail/+; Cdkn2alox/+ 

Ptf1aCre/+;LSL-KrasG12D/+; Rosa26Snail/+; Cdkn2alox/lox 

PKSm Ptf1aCre/+;LSL-KrasG12D/+;Smad4lox/+ 
PKT 
 

Ptf1aCre/+;LSL-KrasG12D/+; Tgfβr2lox/lox 

Ptf1aCre/+;LSL-KrasG12D/+; Tgfβr2lox/+ 
PKTo Ptf1aCre/+;LSL-KrasG12D/+; LSL-Rosa26Tgfβ1/+ 
PKTSm Ptf1aCre/+;LSL-KrasG12D/+; Tgfβr2lox/+;Smad4lox/+ 
 

All murine cell lines that were used for this thesis are listed in Table 4-16. All murine cell lines 

were authenticated by re-genotyping PCR as described in Chapter 5.3.7. Genotypes are 

listed in more detail in Table 9-1. Only confirmed cancer cell lines were used in this thesis. In 

the future, genome sequencing data for all cell lines will be available, providing even more 

detailed information on the presence of mutations and deletions of genes.  

Fibroblast contamination as indicated in Table 4-16 was determined based on the presence 

of unrecombined alleles according to re-genotyping PCRs (Table 9-1). As demonstrated in 

Figure 31, fibroblast contamination did not affect drug response and fibroblast contaminated 

cell lines were therefore not removed from analyses. 

All murine cell lines used in this thesis were tested negative for contamination with human 

cells (tested according to Chapter 5.3.9). Additionally, all murine cell lines were tested 

negative for mycoplasma contamination (described in more detail in Chapter 5.3.8). The cell 

line 8349 was initially mycoplasma positive (passage 12) and was used only after being 
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confirmed negative after mycoplasma removal (passage 29-30) (mycoplasma removal 

performed according to Chapter 5.1.3).   

The morphology of the cell lines as indicated in Table 4-16 was determined by microscopy. 

Table 4-16: Overview of murine cell lines used in this thesis with information on genotype group, 
fibroblast contamination and morphology.  

Cell line Genotype group Fibroblast 
contamination 

Morphology 

10092 PPI3K negative quasi-mesenchymal 
10139 PKP negative mesenchymal 
10158 PPI3K negative quasi-mesenchymal 
10161 PPI3K negative epithelial 
10193 PPI3KP negative mesenchymal 
10232 PKP negative quasi-mesenchymal 
10350 PPI3K negative quasi-mesenchymal 
10502 PKP negative quasi-mesenchymal 
10587 PPI3KP negative epithelial 
10593 PPI3KP negative quasi-mesenchymal 
10632 PPI3KP negative quasi-mesenchymal 
10688 PPI3KP negative mesenchymal 
10725 PPI3KP negative quasi-mesenchymal 
10729 PPI3KP positive quasi-mesenchymal 
10731 PPI3KP positive mesenchymal 
11343 PKP negative epithelial 
11363-2 PKPI3K negative quasi-mesenchymal 
11440 PPI3KP positive mesenchymal 
11600 PPI3KP negative quasi-mesenchymal 
11602 PPI3KP positive mesenchymal 
11714 PPI3KP negative mesenchymal 
11987 PPI3KP positive mesenchymal 
12047 PPI3K negative quasi-mesenchymal 
12128 PPI3KP positive mesenchymal 
12508 PK negative quasi-mesenchymal 
12690 PPI3K negative quasi-mesenchymal 
13474 PPI3KP negative quasi-mesenchymal 
13871 PKP negative mesenchymal 
14169 PKP negative quasi-mesenchymal 
14193 PKP negative quasi-mesenchymal 
14311 PKP negative epithelial 
16990 PK negative quasi-mesenchymal 
16992 PK negative mesenchymal 
1712 PKP negative epithelial 
1778 PKP negative epithelial 
2259 PK negative quasi-mesenchymal 
271-105 PKPCSm negative quasi-mesenchymal 
271-91 PKPCSm negative quasi-mesenchymal 
2937 PKPE negative mesenchymal 
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Cell line Genotype group Fibroblast 
contamination 

Morphology 

3139 PKP negative mesenchymal 
3202 PK negative mesenchymal 
3250 PK negative mesenchymal 
3862 PPI3KP negative quasi-mesenchymal 
4072 PK negative quasi-mesenchymal 
4130 PPI3KP negative mesenchymal 
4134 PPI3K negative mesenchymal 
4140 PPI3K negative epithelial 
4706 PK negative quasi-mesenchymal 
4888 PPI3K negative quasi-mesenchymal 
4900 PK negative quasi-mesenchymal 
4912 PK negative quasi-mesenchymal 
4971 PKP negative epithelial 
5123 PK negative quasi-mesenchymal 
5320 PK negative mesenchymal 
53578 PK negative quasi-mesenchymal 
53631 PK negative epithelial 
53646 PK negative epithelial 
53704 PK negative quasi-mesenchymal 
53909 PK negative mesenchymal 
5671 PK negative epithelial 
5748 PK negative quasi-mesenchymal 
6021 PKP negative quasi-mesenchymal 
6034 PKP negative epithelial 
6075 PK negative quasi-mesenchymal 
6127 PK negative epithelial 
6605 PKP positive mesenchymal 
6719 PKP negative epithelial 
7725 PKP negative epithelial 
7968 PK negative mesenchymal 
8013 PKP negative quasi-mesenchymal 
8028 PK negative mesenchymal 
8182 PK negative quasi-mesenchymal 
8248 PK negative mesenchymal 
8296 PK negative epithelial 
8305 PK negative mesenchymal 
8349 PK negative mesenchymal 
8442 PK negative epithelial 
8513 PK negative mesenchymal 
8570 PK negative mesenchymal 
8661 PK negative epithelial 
8927 PPI3K negative quasi-mesenchymal 
8932 PPI3K negative quasi-mesenchymal 
9063 PKP negative epithelial with 

fibroblasts 
9091 PK negative mesenchymal 
9172 PKP negative mesenchymal 
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Cell line Genotype group Fibroblast 
contamination 

Morphology 

9203 PK negative epithelial 
9255 PKP positive mesenchymal 
9366 PKP negative epithelial 
9471 PPI3K negative quasi-mesenchymal 
9580 PPI3K negative quasi-mesenchymal 
9591 PK negative epithelial 
9784 PKP positive mesenchymal 
9793 PKPI3KP positive mesenchymal 
9794 PK positive quasi-mesenchymal 
9795 PKPI3K negative quasi-mesenchymal 
9924 PKP positive mesenchymal 
9960 PPI3K negative quasi-mesenchymal 
9964 PK negative epithelial 
9965 PKPI3K negative quasi-mesenchymal 
AA120 PKC negative quasi-mesenchymal 
AA1229 PKC negative quasi-mesenchymal 
AA1261 PKC negative quasi-mesenchymal 
AA1377 PKC negative epithelial 
AA1467 PKC negative quasi-mesenchymal 
AA168 PKC negative epithelial 
AA169 PKC negative epithelial 
AA172 PKC negative epithelial 
AA199 PKC negative quasi-mesenchymal 
AA651 PKC negative quasi-mesenchymal 
AA765 PKC negative mesenchymal 
AA766 PKC negative mesenchymal 
AA785 PKP negative quasi-mesenchymal 
AA821 PKC negative mesenchymal 
AA852 PKC negative epithelial 
AA854 PKC negative epithelial 
AA966 PKP negative epithelial 
AK1301 PPI3K negative mesenchymal 
AK453 PPI3KP negative mesenchymal 
AK496 PPI3KP negative mesenchymal 
AK501 PPI3KP negative mesenchymal 
AK5299 PPI3K negative epithelial 
AK594 PPI3KP negative quasi-mesenchymal 
AK596 PPI3KP negative quasi-mesenchymal 
AK635 PPI3KP negative mesenchymal 
AK693 PPI3KP negative quasi-mesenchymal 
B127 PKP positive mesenchymal 
B191 PKP negative quasi-mesenchymal 
B212 PKP negative mesenchymal 
B231 PKP negative epithelial 
B590 PK negative epithelial 
BR19 PBRC negative epithelial 
BR230 PBRC negative mesenchymal 
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Cell line Genotype group Fibroblast 
contamination 

Morphology 

BR55 PBRC negative epithelial 
BR63 PBRPC negative epithelial with 

fibroblasts 
C065 PKT negative quasi-mesenchymal 
C1232 PKE negative epithelial 
C147 PKPT negative epithelial 
C1530 PK negative quasi-mesenchymal 
C1607 PK negative mesenchymal 
C1609 PK negative mesenchymal 
C1612 PKPT negative epithelial 
C1696 PK negative mesenchymal 
C1763 PKPT negative quasi-mesenchymal 
C2118 PK negative quasi-mesenchymal 
C2473 PKP negative epithelial 
C2514 PKP negative epithelial 
C2532 PKT negative mesenchymal 
C2552 PKP negative epithelial 
C2675 PKP negative quasi-mesenchymal 
C2677 PKP negative epithelial 
C2810 PKT negative epithelial 
C2922 PKT negative epithelial 
C3356 PKT negative quasi-mesenchymal 
C3443 PKT negative epithelial 
C4430 PKP negative epithelial 
C4466 PKT negative quasi-mesenchymal 
C4557 PKP negative epithelial 
C4617 PKP negative epithelial 
C4692 PKP negative epithelial 
C4722 PKP negative epithelial 
C5081 PKT negative quasi-mesenchymal 
C5310 PKP negative epithelial with 

fibroblasts 
C5315 PKP negative quasi-mesenchymal 
C5389 PKP negative mesenchymal 
C5599 PK negative epithelial 
C5835 PKP negative mesenchymal 
C6037 PKPT negative epithelial 
CF001-1 PKPI3K negative quasi-mesenchymal 
CF001-2 PKPI3K negative quasi-mesenchymal 
CF002-1 PKPI3K negative epithelial 
CF002-2 PKPI3K negative epithelial 
CR15798 PK negative epithelial 
E126 PPI3K positive quasi-mesenchymal 
E208 PPI3K positive mesenchymal 
E234 PPI3K negative epithelial 
E440 PPI3KPC negative mesenchymal 
E915 PKPI3K negative epithelial 
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Cell line Genotype group Fibroblast 
contamination 

Morphology 

KG471 PKT negative quasi-mesenchymal 
KG486 PKPT negative quasi-mesenchymal 
KG513 PKP negative epithelial 
KG564 PKP negative epithelial with 

fibroblasts 
KG6290 PKP negative quasi-mesenchymal 
MG172 PBRC negative epithelial 
MG846 PKP negative mesenchymal 
MZ1380 PKTo negative quasi-mesenchymal 
MZ1730 PKTo negative quasi-mesenchymal 
P1162 PKSC negative epithelial 
P1956 PKSC negative mesenchymal 
P2313 PKC negative mesenchymal 
P2324 PKS negative quasi-mesenchymal 
P2345 PKS negative mesenchymal 
P2347 PKS negative mesenchymal 
P3066 PKSC negative epithelial 
P3272 PKS negative mesenchymal 
P348 PKS negative mesenchymal 
P3532 PKP negative quasi-mesenchymal 
P4162 PKS negative epithelial 
P4470 PKSC negative epithelial 
P4492 PKP negative quasi-mesenchymal 
P4828 PKS negative quasi-mesenchymal 
P5078 PKC negative epithelial 
P5142 PKSC negative mesenchymal 
P5166 PKSC negative mesenchymal 
P5187 PKSC negative mesenchymal 
R1035 PK negative epithelial 
R211 PKP negative quasi-mesenchymal 
R254 PKP negative epithelial 
R259 PKP negative epithelial 
R4694 PKP negative epithelial 
R4765 PKP negative epithelial 
R6827 PKCSm negative epithelial 
R6888 PKCSm negative quasi-mesenchymal 
R7024-2 PKPCSm negative quasi-mesenchymal 
R7102 PKPCSm negative quasi-mesenchymal 
R7108 PKPCSm negative epithelial 
R7121 PKPCSm negative epithelial 
R7136-1 PKPCSm negative epithelial 
R7136-2 PKPCSm negative epithelial 
R7153 PKPCSm negative epithelial 
S1145 PKP negative epithelial 
S134 PK negative mesenchymal 
S302 PK negative quasi-mesenchymal 
S411 PK negative mesenchymal 
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Cell line Genotype group Fibroblast 
contamination 

Morphology 

S559 PK negative mesenchymal 
S821 PK negative quasi-mesenchymal 
S908 PKP negative mesenchymal 
S914 PK negative mesenchymal 
SB1381-1 PKT negative epithelial 
SB1382-1 PKSm negative mesenchymal 
SB1382-2 PKSm negative mesenchymal 
SB1382-3 PKSm negative quasi-mesenchymal 
SB1412-1 PKPT negative epithelial 
SB1437-1 PKT negative quasi-mesenchymal 
SB1516-2 PKPT negative epithelial 
SB1551-1 PKT negative epithelial 
SB1614-5 PKSm negative mesenchymal 
SB1672-2 PKTSm negative mesenchymal 
SB1751-1 PKSm negative epithelial 
SB1751-4 PKSm negative epithelial 
SB1751-5 PKSm negative epithelial 
SC3701 PKC negative quasi-mesenchymal 
SC5406 PKC negative quasi-mesenchymal 
SC5711 PKSC negative quasi-mesenchymal 
SC5815 PKSC negative mesenchymal 
SC5847 PKC negative quasi-mesenchymal 
SC5877 PKC negative mesenchymal 
SC5881 PKSC negative quasi-mesenchymal 
SC6039 PKSC negative quasi-mesenchymal 
V4706 PK negative epithelial 
W22 PKP negative mesenchymal 
 

 

4.12 Human cell lines 

All human cell lines used in this thesis were authenticated as described in Chapter 5.3.5. 

Only verified and unique cell lines were used. All primary human cell lines were confirmed to 

be free of murine contamination by PCR as described in Chapter 5.3.10. The cell line SMJ98 

was initially murine contaminated and was only used after confirmed removal of the 

contamination which was performed according to Chapter 5.1.4. All human cell lines used in 

this thesis were tested negative for mycoplasma contamination (tested as described in 

Chapter 5.1.2, 5.3.8). The cell line SMJ7 was initially mycoplasma positive (passage 8) and 

was used only after being confirmed negative after mycoplasma removal (passage 23). All 

primary human cell lines were tested negative for contamination with pathogenic viruses 

(tested as described in Chapter 5.3.11). Commercial cell lines were provided free of virus 

contamination by the vendor. 
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Table 4-17: Overview of human cell lines used for this thesis with information on source, culturing 
conditions and RRID number.  

Cell line Source Medium FCS RRID number 
AsPC1 AG Rad (TUM) RPMI 10 % CVCL_0152 
B250 AG Reichert (TUM) RPMI 20 % NA 
B403 AG Reichert (TUM) RPMI 20 % NA 
BxPC3 AG Rad (TUM) RPMI 10 % CVCL_0186 
Capan1 AG Rad (TUM) DMEM 10 % CVCL_0237 
DanG AG Rad (TUM) RPMI 10 % CVCL_0243 
EngB AG Saur (TUM) (Eser 

et al. 2013)  
RPMI 20 % NA 

GCDX13 AG Hessmann (UMG) RPMI 20 % NA 
HPAC AG Rad (TUM) RPMI 10 % CVCL_3517 
Hs766T AG Rad (TUM) DMEM 10 % CVCL_0334 
HucK  AG Saur (TUM) (Eser 

et al. 2013) 
RPMI 20 % NA 

Hupt4 AG Rad (TUM) DMEM 10 % CVCL_1300 
IMIM-PC1 AG Rad (TUM) RPMI 10 % CVCL_4061 
KP4 AG Rad (TUM) RPMI 10 % CVCL_1338 
LohC AG Saur (Eser et al. 

2013) 
RPMI 20 % NA 

MiaPaca2 AG Rad (TUM) DMEM 10 % CVCL_0428 
Pacadd119 DSMZ  RPMI 20 % CVCL_1848 
Pacadd135 DSMZ RPMI 20 % CVCL_1849 
Pacadd137 DSMZ RPMI 20 % CVCL_1850 
Pacadd159 DSMZ RPMI 20 % CVCL_M465 
Pacadd161 DSMZ RPMI 20 % CVCL_M466 
Pacadd165 DSMZ RPMI 20 % CVCL_M467 
Panc1 AG Rad (TUM) DMEM 10 % CVCL_0480 
Panc0327 AG Rad (TUM) RPMI 10 % CVCL_1635 
Panc0403 AG Rad (TUM) RPMI 10 % CVCL_1636 
Panc1005 AG Rad (TUM) RPMI 10 % CVCL_1639 
Patu8902 AG Rad (TUM) RPMI 10 % CVCL_1845 
Patu8988S AG Rad (TUM) DMEM 10 % CVCL_1846 
PDC40 AG Kong (Ulm) Advanced DMEM 10 % NA 
PDC49 AG Kong (Ulm) Advanced DMEM 10 % NA 
PDC56 AG Kong (Ulm) Advanced DMEM 10 % NA 
PL45 AG Rad (TUM) RPMI 10 % CVCL_3567 
Psn1 AG Rad (TUM) RPMI 10 % CVCL_1644 
SMJ7 AG Saur (Eser et al. 

2013) 
RPMI 20 % NA 

SMJ31 AG Saur (Eser et al. 
2013) 

RPMI 20 % NA 

SMJ98 AG Saur (Eser et al. 
2013) 

RPMI 20 % NA 

SW1990 AG Rad (TUM) DMEM 10 % CVCL_1723 
YAPC AG Rad (TUM) RPMI 10 % CVCL_1794 
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4.13 Software 

Table 4-18: Software. 

Software Source 
CyBio® Composer Analytik Jena, Jena, Germany 
Excel, RRID:SCR_016137 Microsoft Corporation, Redmont, WA, USA  
GraphPad Prism 5, RRID:SCR_002798 Graphpad Software, Inc, La Jolla, CA, USA  
Momentum Integration Software Thermo Fisher Scientific, Waltham, 

Massachusetts, USA 
RStudio, RRID:SCR_000432 RStudio, Inc., Boston, Massachusetts, USA 
Seahorse Wave 4.2.2, RRID:SCR_014526  
 

Agilent Technologies, Santa Clara, USA 

Snapgene Viewer, RRID:SCR_015052 
 

GSL Biotech LLC, San Diego, USA 

Unipro Ugene, RRID:SCR_005579 Unipro LLC, Akademgorodok, Russia 
ZEN 2 (blue edition), RRID: SCR_013672 Carl Zeiss AG, Oberkochen, Germany 
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Methods 
 

61 
 

5 Methods 

5.1 Cell culture 

5.1.1 Culture of PDAC cell lines 

Cells were cultured in cancer cell medium (DMEM, Advanced DMEM or RPMI supplemented 

with 10 % or 20 % FCS and 1 % penicillin/streptomycin) at 37 °C, 5 % CO2 and 100 % 

humidity.  

For passaging of cells, the medium was aspirated, the cells were washed with PBS and then 

incubated with Trypzean® solution at 37 °C. To stop the trypsinization reaction, medium was 

added, and the cell suspension was transferred to a falcon tube and centrifuged at 1000 rpm 

for 5 minutes. The supernatant was removed, and the cells were resuspended in medium 

and seeded into a new vessel at an appropriate dilution depending on the experiment. Cell 

numbers were determined by a Neubauer hemacytometer.  

For cryopreservation, cells were trypsinized, resuspended and centrifuged at 1000 rpm for 

5 minutes. The supernatant was discarded, and the cell pellet was resuspended in ice-cold 

freezing medium (DMEM with 20 % FCS and 10 % DMSO) and transferred to CryoPure 

tubes. The cells were frozen at -80°C and subsequently stored in liquid nitrogen.  

 

5.1.2 Mycoplasma test 

For mycoplasma testing, cells were cultivated in 6-well plates in medium without antibiotics 

for at least two weeks until the cells were almost 100 % confluent. 2 ml of supernatant were 

taken and centrifuged at 250×g for 2 minutes. The supernatant was transferred in new tube 

and centrifuged at 20’000×g for 10 minutes. The supernatant was discarded, and the pellet 

resuspended in 50 µl PBS and heated to 95 °C for 3 minutes. The samples were then used 

for mycoplasma test PCRs (Chapter 5.3.8).  

All cell lines used for this thesis were routinely tested for mycoplasma contamination and 

only those with a confirmed negative result were used in experiments. All cell lines were 

tested during expansion for the automated high-throughput drug screen (Chapter 5.2), so 

that only cells from a confirmed negative stock were used for the drug screening procedure. 

Mycoplasma tests were repeated for the vial of cells used for the screen and a negative 

result was confirmed for all used cell lines.   
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5.1.3 Mycoplasma removal 

MycoRAZOR® antibiotics reagent was used to remove mycoplasma contamination from cell 

cultures. The manufacturer’s instructions were followed. 1:25 and 1:50 dilutions of the 

reagent were used. The cell lines 8349 (positive at passage 12, negative at passage 29) and 

SMJ7 (positive at passage 8, negative at passage 23) were subjected to mycoplasma 

removal by this procedure.  

 

5.1.4 Removal of murine contamination by differential trypsinization 

The cell line SMJ98 used in this thesis was initially tested positive for murine contamination 

(tested according to 5.3.10). As murine cells generally detach faster upon Trypzean® 

treatment than human cells, a method called differential trypsinization was used to remove 

the contamination. To this end, the normal procedure for passaging of cells was followed 

(Chapter 5.1.1), but before all cells were detached, the trypsinization reaction was stopped 

by adding medium. After removal of the first fraction of cells, Trypzean® solution was added 

again to detach the second fraction. This procedure was repeated several times until murine 

contamination could no longer be detected by PCR (Chapter 5.3.10). The cell line SMJ98 

was tested positive at passage 8 and was used at passage 37-38 after repeated confirmation 

of murine cell removal.  

 

5.1.5 CellTiter-Glo® Assay 

CellTiter-Glo® Assay was performed to assess cell viability. Cells were seeded in 

appropriate densities (500-3000 cells/well) in 96-well plates. At the end of the assay, 25 µl 

CellTiter-Glo® reagent was added to each well, the plates were incubated for 10 minutes on 

a shaker protected from light and luminescence was measured in a plate reader.  

 

5.1.6 Caspase-Glo® 3/7 Assay 

Caspase-Glo® 3/7 Assay was performed to assess apoptosis. 1000 cells per well were 

seeded in 96-well plates. On the next day, the cells were treated with inhibitors. 24 hours 

after the start of the treatment, 100 µl Caspase-Glo® was added to each well, the contents 

were mixed for 30 seconds on a shaker and then plates were incubated for 30 minutes 

protected from light. Luminescence was measured according to the manufacturer’s 

instructions.  
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5.1.7 Clonogenic assays 

For clonogenic assays, 1000-2000 cells per well, depending on the growth rate of the cell 

line, were seeded into 24-well plates. Drug treatment was started the following day. The 

plates were incubated at 37 °C and 5 % CO2. Depending on the confluence of the vehicle-

treated control, 7-13 days after the beginning of the drug treatment, the cells were washed 

with PBS and stained with Crystal Violet solution (2.5 % (v/v) EtOH and 4 % (w/v) Crystal 

Violet in H2O). After incubating on a shaker at room temperature for 30 minutes, the wells 

were washed three times with tap water and then dried. Visualization of the stained colonies 

was performed using a photo scanner. For quantification, crystal violet stain was solubilized 

with 1 % SDS and absorbance was measured at 595 nm. 

 

5.1.8 Culturing of cells in glucose/galactose conditions 

For experiments in glucose/galactose conditions, DMEM medium lacking glucose was 

supplemented with dialyzed FCS and either 10 mM glucose or 10 mM galactose.  

 

5.1.9 Seahorse Assay – Cell Mito Stress Test and Glycolytic Stress 
Test 

For Seahorse assay analyses, 5000 cells per well were seeded in quadruplets in 80 µl 

DMEM (supplemented with 10 % FCS and 1 % Penicillin/Streptomycin) in a Seahorse cell 

culture plate. The wells at the four edges were left empty. As a control for cell viability, a 96-

well plate was prepared in the same manner for Cell Titer Glo measurement. On the next 

day, NSC319726 and DMSO for the control wells were added in 20 µl medium. One day prior 

to the final measurement, the cartridge was hydrated by adding 200 µl H2O to each well. The 

cartridge and the calibration solution were incubated overnight at 37 °C and 0 % CO2. The 

H2O in the cartridge was changed to 200 µl pre-warmed calibration solution at least one hour 

before the measurement. For the Mito stress test, 5 g/L glucose was added to the Seahorse 

medium and the pH was adjusted to 7.4. The medium in the Seahorse plate was changed to 

180 µl of the glucose supplemented Seahorse medium one hour before the measurement. 

The loading of the Seahorse plate ports was as follows: Port A) 20 µl of 20 µg/ml Oligomycin; 

Port B) 22 µl of 10 µM FCCP and 50 mM Pyruvate; Port C) 25 µl of 25 µM Rotenone and 

25 µM Antimycin-A. For the glycolytic stress test, one hour before the measurement, the 

medium in the Seahorse plate was changed to Seahorse medium without glucose 

supplementation. The ports were loaded as follows: A) 20 µl of 100 mM Glucose; Port B) 

22 µl of 20 µg/ml Oligomycin; Port C) 25 µl of 1 mM 2-desoxy-D-glucose. Analysis of the 



Methods 
 

64 
 

Seahorse plate was done in a Seahorse XFe96 Analyzer. Cell viability in the parallelly 

prepared 96-well plate was measured using CellTiter-Glo® Assay. The ECAR and OCR 

values were calculated in relation to cell viability. Calculation of the different parameters was 

done as described by the manufacturer. 

 

5.1.10 Growth curves and doubling time calculation 

Cells were counted and cell suspensions with 5000, 10000 and 20000 cells/ml were 

prepared. Five 96-well plates with 3 wells of each concentration in 100 µl were seeded. On 

each of the following days, one plate was used for CellTiter-Glo® Assay as described in 

Chapter 5.1.5. After collecting the data for all time points for all concentrations, each time 

point was normalized to the first day of measurement (day 0). The normalized values were 

plotted using the GraphPad Prism software. Doubling times were calculated using the 

following formula:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 72 ℎ𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜 ∗
log(2)

log �𝐷𝐷𝐷𝐷𝑚𝑚𝐷𝐷 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝑜𝑜 𝐺𝐺𝐷𝐷𝐷𝐷 𝑣𝑣𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 𝐷𝐷𝑚𝑚𝐷𝐷 3
𝐷𝐷𝐷𝐷𝑚𝑚𝐷𝐷 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝑜𝑜 𝐺𝐺𝐷𝐷𝐷𝐷 𝑣𝑣𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 𝐷𝐷𝑚𝑚𝐷𝐷 0�

 

 

5.2 Automated high-throughput drug screening 

5.2.1 Automated cell seeding 

Before changing the seeded cell line, each valve of the Multiway Valve attached to the 

Multidrop™ Combi Reagent Dispenser equipped with a Standard Tube Dispensing Cassette 

was routinely washed with water and ethanol.  

Cells were detached as described in Chapter 5.1.1. After centrifugation and resuspension in 

medium, the cells were filtered using a 70 µm filter. The cells were counted using Trypan 

Blue Solution and a Neubauer counting chamber. The medium supplemented with FCS and 

Penicillin/Streptomycin was filtered using a 0.22 µm filter top. The same batch of FCS was 

used for the entire screen. A cell suspension with 7500-30000 cells/mL was prepared. The 

cells were seeded in technical duplicates in 96-well plates using 100 µl/well using the 

Multiway Valve and Multidrop™ Combi Reagent Dispenser. The plates were transferred onto 

the Multidrop™ Combi Reagent Dispenser and afterwards into a Cytomat™ 24C automated 

incubator using a Spinnaker automation system. The cells were incubated overnight at 37 °C 

and in 88 % humidity and 5 % CO2. 
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After cell seeding, each valve of the Multiway Valve attached to the Multidrop™ Combi 

Reagent Dispenser was routinely washed with PBS, water and 0.1 % Tween in water.  

 

5.2.2 Automated drug treatment 

The drug library was diluted beforehand in barcoded 384-well plates using a CyBio® FeliX 

pipetting platform equipped with a pipetting adaptor. Each drug was diluted to seven 

concentrations (3-fold dilution series, highest concentration in the “source” plate 10 mM). To 

reduce edge effects (Mansoury et al. 2021), the highest concentrations of each drug were 

kept at the edge of the plate (rows A and H) and the DMSO control was pipetted into row D. 

All stock solutions were purchased from SelleckChem dissolved at 10 mM either in DMSO or 

water. The drug library was used for up to ten freeze-thaw cycles.  

Drug treatment with the compound library was performed after overnight incubation of the 

cells using the CyBio® FeliX pipetting platform equipped with a 96-well Pintool. The Pintool 

was initially washed with V&P solution and water. The plates were loaded into the CyBio® 

FeliX pipetting platform using the Spinnaker automation system. The Pintool was used to 

transfer the diluted drugs from the barcoded 384-well plate to the cell culture plate. 100 nL of 

drug were transferred (highest final concentration 10 µM). After each treated cell culture 

plate, the Pintool was washed with DMSO:H2O (1:1) and Isopropanol using a Masterflex 

Easy-Load pump connected to washing stations. At the end of the day, the Pintool was again 

washed with V&P solution and water.  

 

5.2.3 Automated cell viability measurement  

Cell viability was measured on the third day after drug treatment using CellTiter-Glo® 

Luminescent Cell Viability Assay. The Multidrop™ Combi Reagent Dispenser was washed 

with water and then connected to the filtered (using a 0.22 µm filter) CellTiter-Glo® reagent. 

Using the Spinnaker automation system, the plates were transferred from the Cytomat™ 24C 

automated incubator to the Multidrop™ Combi Reagent Dispenser where 25 µl of CellTiter-

Glo® Luminescent Cell Viability Assay reagent were added to each well. After incubation at 

room temperature for 10 minutes, luminescence was measured using a microplate reader.  
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5.2.4 Primary analysis of high-throughput drug screening data 

The raw data obtained as described in Chapters 5.2.1-5.2.3. was processed using the R 

package GRmetrics (version 4.0.3) (Hafner et al. 2016; Clark et al. 2017). The AUC values 

derived from this initial analysis were used in further downstream analyses. The AUC values 

for three cell line – drug pairs were excluded from all analyses (mean AUC > 3, C1530 

treated with GSK923295 and Oprozomib, W22 treated with Thiomyristoyl) as they would 

strongly bias for example principal component analyses. Their respective dose response 

curves are shown in Figure 32. Standard deviations for the AUC values between replicates 

ranged between 8 and 1015 for these pairs indicating non-reliable data.  

 

5.2.5 Automated combinatorial drug screening 

Cells were seeded as described in Chapter 5.2.1. One technical replicate each was seeded 

for monotherapy and combination treatment. Drug treatment was performed as described in 

Chapter 5.2.2, except that for the combination treatment, the Pintool was used to transfer 

drugs from the 384-well plate containing library drugs, then washed and subsequently used 

to transfer the “anchor drugs” from another manually diluted 384-well plate. The anchor 

drugs were given in one concentration (Afatinib: 0.2 µM, Paclitaxel: 0.01 µM). Cell viability 

measurements were performed after 72 hours as described in Chapter 5.2.3.  

 

5.2.6 Analysis of combinatorial drug screening  

The R package GRmetrics (version 4.0.3) (Hafner et al. 2016; Clark et al. 2017) was used to 

generate dose-response curves and calculate AUC values for both monotherapy and 

combination treatment. The Bliss independence model (BLISS 1939) was used to calculate 

expected AUC values for the combinations. Delta AUC values, calculated by subtraction of 

expected AUC values from observed AUC values, were used as proxy for synergy.  

 

5.2.7 Comparison of drug screening data to publicly available 
datasets 

GDSC2 (Picco et al. 2019), CTRP (Seashore-Ludlow et al. 2015; Rees et al. 2016) and 

PRISM (Corsello et al. 2020) datasets were downloaded from the DepMap Portal website 

(https://depmap.org/portal/download/all/, downloaded in November 2022). Compound names 
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were manually curated and harmonized between the datasets. Pearson correlation values 

were calculated across all AUC values for overlapping cell line – drug pairs.  

 

5.3 Molecular biology techniques 

5.3.1 DNA isolation from cells for genotyping PCRs 

Cells were pelleted at 1000 rpm for 5 minutes. The medium was removed, and the pellet 

washed with PBS. After centrifugation at 1000 rpm for 5 minutes, the supernatant was 

discarded, and the pellet was resuspended in 50 µl Soriano lysis buffer supplemented with 

DTT. The samples were briefly centrifuged and incubated at 55 °C for 2 hours and 95 °C for 

15 minutes. Afterwards, the samples were vortexed and centrifuged at 4 °C at full speed for 

10 minutes. 40 µl of the supernatants were pipetted into PCR strips which were briefly 

centrifuged and stored at -20 °C. The maximum volume used for PCR was 1 µl.   

 

5.3.2 Genomic DNA isolation from cells for sequencing and 
genotyping PCRs 

Genomic DNA was isolated using the GenElute™ Mammalian Genomic DNA Miniprep Kit. A 

cell pellet was obtained by trypsinization and centrifugation in a 1.5 ml tube at 1000 rpm for 5 

minutes. The cell culture medium was removed, and the cell pellet resuspended in 200 µl 

resuspension solution. 20 µl of Proteinase K were added, followed by 200 µl of lysis 

solution C. The sample was mixed by vortexing for about 15 seconds and incubated at 70 °C 

for 10 minutes. The GenElute™ Miniprep Binding Column was prepared by adding 500 µl of 

Column Preparation Solution followed by centrifugation at 12000×g for 1 minute. The flow-

through was discarded. 200 µl 100 % ethanol were added to the lysate which was 

subsequently mixed thoroughly by vortexing for 10 seconds. The entire lysate was 

transferred to the pre-treated GenElute™ Miniprep Binding Column and centrifuged at 

7000×g for 1 minute. The binding column was placed in a new 2 ml collection tube and 

washed with 500 µl Wash solution. After centrifugation at 7000×g for 1 minute, the 

flowthrough was discarded, and the binding column was placed in a new 2 ml collection tube. 

The column was washed with another 500 µl of Wash Solution and centrifuged at 16000×g 

for 3 minutes. 80 µl of Elution Solution were added to the binding column, then it was 

incubated for 5 minutes at room temperature and finally centrifuged at 7000×g for 1 minute. 

The concentration of genomic DNA was then measured using a NanoPhotometer® or Qubit 

device.  
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5.3.3 Genomic DNA isolation from tails for sequencing and 
genotyping PCRs 

Genomic DNA from tails was isolated using the GenElute™ Mammalian Genomic DNA 

Miniprep Kit. Frozen mouse tails were cut into small pieces using a scalpel and placed in a 

1.5 ml tube. 180 ml of Lysis Solution T were added, followed by 20 µl of Proteinase K. The 

sample was incubated shaking at 55 °C overnight. 200 µl of Lysis Solution C were added and 

the sample was subsequently vortexed. The GenElute™ Miniprep Binding Column was 

prepared as described in Chapter 5.3.2. All subsequent steps were followed as described in 

Chapter 5.3.2. The concentration of genomic DNA was then measured using a 

NanoPhotometer® or Qubit device. 

 

5.3.4 Isolation of DNA from formalin-fixed, paraffin-embedded 
tissue for sequencing and genotyping PCRs 

At least 5 sections of 10 µm thickness were cut from tissue blocks using a cryotome and 

collected in a 1.5 ml Eppendorf tube. The tube was centrifuged at full speed for one minute. 

1 ml Histoclear was added, the samples were vortexed for 10 seconds and centrifuged at full 

speed for one minute. The supernatant was discarded and 0.5 ml Histoclear were added. 

The samples were again vortexed for 10 seconds and centrifuged at full speed for one 

minute. The supernatant was discarded, and the pellet was washed with 1 ml 100 % Ethanol. 

After vortexing and centrifugation at full speed for one minute, the supernatant was 

discarded. The ethanol wash was repeated once. Residual ethanol was removed using a 

10 µl pipette, the tube was opened, and the pellet dried at 37 °C for 10 minutes. The pellet 

was resuspended in 180 µl buffer ATL and 20 µl proteinase K. The sample was vortexed and 

incubated at 56 °C and 800 rpm for three hours and subsequently at 90 °C for one hour. The 

samples were briefly centrifuged and 200 µl buffer AL was added. After vortexing 200 µl 

100 % Ethanol were added and the lysate was transferred to a QIAamp MinElute spin 

column. The samples were centrifuged at room temperature at 8000 rpm for 1 minute and 

the spin column was placed in a new collection tube. 500 µl AW1 buffer was added and after 

centrifugation at room temperature at 8000 rpm for 1 minute, the spin column was again 

placed in a new collection tube. The same washing step was then performed using 500 µl 

AW2 buffer. Afterwards, the samples were centrifuged at full speed for 3 minutes to dry the 

membrane. The spin column was then placed in a 1.5 ml tube and 20 µl of buffer AE were 

added. After incubation at room temperature for 10 minutes, the samples were centrifuged at 

full speed for 1 minute to elute the DNA. The eluate was again transferred to the spin column 
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and centrifugation at full speed for 1 minute was repeated. The DNA concentration was 

measured using a Qubit device.  

 

5.3.5 Authentication of human cell lines 

All human cell lines were authenticated either by Single Nucleotide Polymorphism (SNP)-

Profiling or by Short Tandem Repeat (STR) Profiling conducted by Multiplexion (Multiplexion 

GmbH, Heidelberg, Germany) in August 2022. Only cell lines with confirmed identity and 

uniqueness were used in this thesis.  

 

5.3.6 Detection of Kras mutations in primary human cell lines 

Cancer cell line status for all primary human cell lines was confirmed by detection of Kras 

mutations by Sanger Sequencing. To this end, DNA isolated according to Chapter 5.3.2 was 

sent to Eurofins (Ebersberg, Germany) with the primers hKras_ex2_flank_Fw and 

hKras_ex2_flank_Rv listed in Table 4-10. The sequences were analyzed using UniPro 

UGene (Version 35) or Snapgene Viewer (Version 6.0.2).  

 

5.3.7 Polymerase Chain Reaction (PCR)  

Taq DNA Polymerase 2x-PreMix was used for mouse regenotyping, mycoplasma and virus 

contamination testing. The general reaction setup for regenotyping PCRs is shown in Table 

5-1. The thermocycler program is shown in Table 5-2. The annealing temperatures and PCR 

products are listed in Table 5-3. 

Table 5-1: Reaction setup for regenotyping PCRs. 

Component Volume 

Template DNA 1 µl (ca. 100 ng) 

2x PCR Master Mix  12.5 µl 

10 µM Forward Primer 1 µl 

10 µM Reverse Primer  1 µl 

Distilled water 9.5 µl  
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Table 5-2: Thermocycler program for regenotyping PCRs.  

Temperature  Time   

95 °C 3 minutes  

95 °C 30 seconds  

Tm – 5 °C 30 seconds 40 cycles 

72 °C 60 seconds/kb  

72 °C 15 minutes  

16 °C ∞  

 

Table 5-3: Annealing temperatures and PCR products. 
(Mut=Mutant Allele; WT=Wild Type Allele; Rec=Recombined Allele).  

PCR reaction Annealing temperature Size of PCR product(s) 
Ptf1a-Cre 60 °C 400 bp (mut), 600 bp (WT) 
Pdx1-Cre 64 °C 674 bp (mut), 202 bp 

(internal control) 
Pdx-Flp 56 °C 620 bp (Mut), 300 bp 

(internal control) 
LSL-KrasG12D 55 °C 170 bp (mut), 270 bp (WT), 

300 bp (rec) 
FSF-KrasG12D  55 °C 351 bp (mut), 270 bp (WT) 
LSL-Trp53R172H 60 °C 270 bp (mut), 570 bp (WT), 

600 bp (rec) 
LSL-Trp53R172H (deleted stop 
cassette) 

55 °C 330 bp (mut), 290 bp (WT) 

Trp53lox 64 °C 370 bp (mut), 288 bp (WT) 
Trp53frt 57 °C 292 bp (mut), 258 bp (WT) 
Pik3caH1047R 60 °C 629 bp (mut), 550 bp (del) 
Cdkn2alox 58 °C 180 bp (mut), 140 bp (WT), 

220 bp (unspecific) 
LSL-BrafV637E 55 °C 660 bp (mut), 400 bp (WT) 
p16Ink4a* 60 °C 600 bp (mut), 500 bp (WT) 
 

 

5.3.8 PCR for mycoplasma contamination 

For mycoplasma testing, samples were prepared as described in Chapter 5.1.2. A forward 

primer mix was prepared using 10 µl of each forward primer (listed in Table 4-11) and 30 µl 

H2O. A reverse primer mix was prepared using 10 µl of each reverse primer (listed in Table 

4-11) and 70 µl H2O. The reaction setup for mycoplasma test PCRs is shown in Table 5-4. 

The thermocycler program is listed in Table 5-5. The product size produced by a positive 

culture is 200 bp.  
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Table 5-4: Reaction setup for mycoplasma test PCRs. 

Component Volume 

15µl Premix 15µl Premix 

2µl forward-Primer-Mix 2µl forward-Primer-Mix 

2µl reverse-Primer-Mix 2µl reverse-Primer-Mix 

9µl H2O 9µl H2O 

15µl Premix 15µl Premix 

 

Table 5-5: Thermocycler program for mycoplasma test PCRs.  

Temperature  Time   

95 °C 15 minutes  

94 °C 60 seconds  

60 °C 60 seconds 40 cycles 

74 °C 60 seconds  

72 °C 10 minutes  

16 °C ∞  

 

5.3.9 Test for human contamination of murine cell lines 

To test for human contaminations in murine cell cultures, the primers listed in Table 4-9 were 

used. The reaction setup is described in Table 5-6. The thermocycler program is listed in 

Table 5-6.  

Table 5-6: Reaction setup for testing for human contamination in murine cell lines 

Component Volume 

Template DNA 1 µl (ca. 100 ng) 

2x PCR Master Mix  12.5 µl 

10 µM Forward Primer Kras_hu_G12D_fw 0.6 µl 

10 µM Reverse Primer   Kras_hu_G12D_rev 0.6 µl 

Distilled water 10.3 µl  
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Table 5-7: Thermocycler program for testing for human contamination in murine cell lines.  

Temperature  Time   

95 °C 3 minutes  

95 °C 45 seconds  

58 °C or 60 °C 60 seconds 40 cycles 

72 °C 90 seconds  

72 °C 15 minutes  

16 °C ∞  

 

5.3.10 Test for murine contamination of human cell lines 

All primary human cell lines used in this thesis were tested negative for murine contamination 

according to the test described below, except for the cell line SMJ98 which was subjected to 

differential trypsinization (described in Chapter 5.1.4).  

To test for murine contaminations in human cell cultures, the primers listed in Table 4-10 

were used. The reaction setup is listed in Table 5-8. The thermocycler program is shown in 

Table 5-9.  

Table 5-8: Reaction setup for testing for murine contaminations in human cell cultures. 

Component Volume 

Template DNA 1 µl (ca. 10 ng) 

2x PCR Master Mix  12.5 µl 

10 µM Forward Primer mKras_ex2_flank_Fw 0.6 µl 

10 µM Reverse Primer mKras_ex2_flank_Rv 0.6 µl 

Distilled water 10.3 µl  

 

Table 5-9: Thermocycler program for testing for murine contaminations in human cell cultures.   

Temperature  Time   

95 °C 3 minutes  

95 °C 45 seconds  

58 °C or 60 °C 60 seconds 40 cycles 

72 °C 90 seconds  

72 °C 15 minutes  

16 °C ∞  
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5.3.11 Test for virus contamination of human cell lines 

All human cell lines used in this thesis were tested negative for HIV-1, HIV-2, HBV and HCV. 

To test for contamination with these pathogenic viruses, DNA was isolated as described in 

Chapter 5.3.2. For HCV testing, RNA was isolated from cell lines according to Chapter 5.3.13 

and reverse transcribed to obtain cDNA as described in Chapter 5.3.14. Subsequently, 

samples were subjected to PCR as shown in Table 5-10. The thermocycler program is 

described in Table 5-11 and PCR products are listed in Table 5-12. 

Table 5-10: Reaction setup for virus contamination tests 

HIV-1  HIV-2  HBV  HCV  

S mix 25 µl S mix 12.5 µl S mix 25 µl S mix 12.5 µl 

Primer F-

HIV 

1.2 µl Primer F-

HIV2 

0.4 µl Primer F-

HEBP 

1.2 µl Primer F-HCV 0.1 µl 

Primer R-

HIV 

1.2 µl Primer R-

HIV2 

0.4 µl Primer R-

HEBP 

1.2 µl Primer F-HCV-2 0.1 µl 

Primer 

hKras fw 

1.25 µl Primer R-

HIV2-2 

0.4 µl Primer 

hKras fw 

1.25 µl Primer R-HCV 0.1 µl 

Primer 

hKras rv 

1.25 µl Primer Fw-

Braf 

0.4 µl Primer 

hKras rv 

1.25 µl Primer Fw-beta-

actin  

0.1 µl 

  Primer Rv-

Braf 

0.4 µl   Primer Rv-beta-

actin 

0.1 µl 

      DMSO 1.2 µl 

H2O 20.1 µl H2O 10.5 µl H2O 19.7 µl H2O  1.2 µl 

DNA 200 ng DNA 200 ng DNA 200 ng cDNA 1 µl 

psPAX2 10 ng pEX-128-

HA-MS-2 

10 ng HBV-

1.6mer 

10 ng pFR_HCV_xb 10 ng 
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Table 5-11: Thermocycler program for virus contamination tests 

Temperature  Time   

95 °C 2 minutes  

94 °C 30 seconds  

68 °C 30 seconds 15 cycles decreasing 1 °C 

each cycle (Touchdown 

PCR) 

72 °C 1 minute  

94 °C 30 seconds  

52 °C 30 seconds 40 cycles 

72 °C 1 minute  

72 °C 5 minutes  

4 °C ∞  

 
 
Table 5-12: PCR products of virus contamination tests 

PCR reaction Size of PCR product(s) 
HIV-1 115 bp positive control 

250 bp internal control  
HIV-2 252 bp positive control 

535 bp internal control 
HBV 563 bp positive control 

250 bp internal control 
HCV 255 bp positive control 

70 bp internal control 

 

5.3.12 Agarose gel electrophoresis of PCR products 

Agarose was dissolved in appropriate volumes of 1x TAE buffer to make 1 % - 2 % agarose 

gels by boiling for 10 minutes in a microwave. Ethidium bromide was added to the gel 

mixture before polymerization. The samples were loaded into the gel and the gel was run in 

1x TAE buffer at 120 V. 5 µl DNA ladder (GeneRuler™ 100 bp DNA Ladder) was also loaded 

for estimation of the molecular weight. DNA fragments were visualized with UV light. 

 

5.3.13 RNA isolation from cell cultures 

Cells were grown on a 10 cm dish in the appropriate medium until they reached 60-80 % 

confluency. The cells were washed twice with ice-cold PBS. 500 µl of RLT buffer 

supplemented with 1:100 ß-mercaptoethanol were added to lyse the cells. The cells were 
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collected using a cell scraper. The cell solution was then transferred to a QiaShredder 

column and centrifuged at maximum speed for 2 minutes.  The homogenized cells were 

snap-frozen and stored at -80 °C. RNA was isolated using the RNeasy Mini Kit according to 

the manufacturer’s instructions. RNA concentration was determined using a 

NanoPhotometer®. 

 

5.3.14 Reverse transcription 

The general reaction setup for reverse transcription is shown in Table 5-13. The 

thermocycler program is detailed in Table 5-14.  

Table 5-13: Reaction setup for reverse transcription. 

Component Final concentration 
10x TaqMan RT buffer 1x 
MgCl2 (25 mM) 5.5 mM 
dNTP Mix 500 µM each 
Random hexamers 2.5 µM 
RNAse inhibitor 0.4 U/µl 
Multiscribe Reverse Transcriptase (50 U/µl) 1.25 U/µl 
RNA 2 µg 
RNase free water Ad 100 µl 

 

Table 5-14: Thermocycler program for reverse transcription 

Temperature Time 
25 °C 10 minutes 
48 °C 1 hour 
95 °C 5 minutes 
4 °C ∞ 

 

5.3.15 RNA sequencing and analysis  

RNA sequencing was performed by the group of Prof. Roland Rad (TUM). RNA-seq library 

preparation and sequencing were carried out as described previously (Mueller et al. 2018). 

Computational analyses for the integration of RNA sequencing and drug screening data were 

performed by Fabio Boniolo as described in his doctoral dissertation (Boniolo 2022). The 

DESeq2 R package (version 1.26.0) was used for normalization and log-stabilization. For 

single-sample gene set enrichment analysis (ssGSEA), the R package GSVA (version 

1.34.0) was used. PID pathways (Schaefer et al. 2009) used for pathway-based predictions 

of drug response were downloaded via the msigdbr R package (version 7.4.1) (Boniolo 

2022). 
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5.4 Whole-genome CRISPR/Cas9 screen 

5.4.1 Determination of lentiviral library titration 

6 wells of a 12-well plate were seeded at a density of 3×106 in 2 mL medium per well with 

8 µg/mL polybrene. 400 µl, 200 µl, 100 µl, 50 µl, 25 µl or 0 µl of lentivirus supernatant were 

added to the respective wells. After thoroughly mixing each well by pipetting up and down, 

the cells were spinfected by centrifuging at 1000×g for 2 hours at 33 °C. 24 hours after the 

end of spinfection, the medium was removed, cells were washed with PBS, trypsinized and 

counted. For each virus condition, 4 wells were seeded at a density of 4×103 cells in 100 µl 

medium in a 96-well clear-bottom tissue culture plate. 100 µl of medium with puromycin at a 

final concentration of 4 µg/mL were added to two wells and 100 µl of medium without 

antibiotics to the other two wells for each of the conditions. 96 hours after replating, when the 

no virus conditions were at 80 to 90 % confluency, cell viability for each condition was 

determined using CellTiter Glo® Assay (as described in Chapter 5.1.5). The percentage of 

surviving cells under antibiotics selection compared to the non-puromycin treated cells was 

plotted against the lentivirus volume. The amount of lentivirus to achieve 25 % survival was 

determined to be used in the genome-wide CRISPR/Cas9 screens.  

 

5.4.2 Determination of drug concentration  

The doses of Afatinib and Paclitaxel for the CRISPR/Ca9-based whole-genome screens 

were determined by culturing the cells with different concentrations of the compounds. For 

Afatinib treatment, 1.6 µM, 0.8 µM, 0.4 µM, 0.2 µM and 0.1 µM were used whereas for 

Paclitaxel, concentrations of 0.04 µM, 0.02 µM, 0.01 µM, 0.005 µM and 0.0025 µM were 

tested. 50’000 cells were well were seeded in 6-well plates. Treatment was performed in 

triplicates and was started 24 hours after cell seeding. The cells were passaged every 3-4 

days and counted at each passage.  

 

5.4.3 Lentiviral transduction for genome-wide screens 

For the whole-genome wide screens, the cell line 9091 stably expressing Cas9 (“9091 

Cas9”) provided by Sebastian Widholz (group of Prof. Roland Rad (TUM)) was used. This 

cell line was generated as previously described (Falcomatà et al. 2022). For screening, at 

least 140×106 cells were transduced per replicate to allow for a 500× coverage. The screen 

was performed in duplicates for each of the conditions (Afatinib treatment, Paclitaxel 

treatment, DMSO control) Cells were seeded at a density of 3×106 per well in 12-well plates 
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in a volume of 2 ml per well containing cell suspension, medium, 275 µl virus (as pre-

determined according to Chapter 5.4.1) and 2 µl polybrene. The cells were spinfected by 

centrifuging the plates at 1000×g and 33 °C for 2 hours and then incubated at 37 °C 

overnight. On the next day, the cells were collected, pooled and plated in medium 

supplemented with puromycin at a final concentration of 4 µg/ml. After 4 days of puromycin 

selection, the medium was changed to antibiotics-free medium and the cells were allowed to 

recover for two days. The cells were then trypsinized, counted and 35×106 cells per condition 

were plated in 10 cm dishes at a density of 3.5×106 cells. One of the drugs (Afatinib at a final 

concentration of 0.2 µM or Paclitaxel at a final concentration of 0.01 µM) or DMSO were 

added. The cells were cultured in these conditions for two weeks with passaging being 

performed every three to four days. An appropriate cell number was replated at each 

passage to maintain the coverage of the library. Cell pellets were collected at each time 

point. Cell pellets frozen at the final time point were used for downstream processing as 

described in Chapter 5.4.4.  

 

5.4.4 Isolation of genomic DNA from CRISPR screens 

Genomic DNA (gDNA) from frozen cell pellets collected according to Chapter 5.4.3 was 

isolated using the Qiagen Blood & Cell Culture DNA Maxi Kit following the protocols provided 

by the manufacturer. The pellets were thawed and resuspended in PBS followed by lysis in 

Buffer C. The nuclei were then lysed in Buffer G2 and QIAGEN Proteinase K stock solution 

and incubated at 50 °C overnight. On the following day, the samples were applied to an 

equilibrated QIAGEN Genomic tip. The tip was then washed twice after which the DNA was 

eluted from the column, precipitated in Isopropanol and spooled with a Pasteur pipette. The 

spooled DNA was immediately transferred to a microcentrifuge tube containing 400 µL TE 

buffer and dissolved at 55 °C for 2 hours. The final DNA concentration was determined using 

a NanoPhotometer®. 

 

5.4.5 Library preparation of CRISPR screen gDNA with Kapa HiFi 

The reaction setup shown in Table 5-15 was used to amplify sgRNA sequences from 

genomic DNA obtained according to Chapter 5.4.4. The amounts shown in Table 5-15 were 

pipetted as 38 PCR reactions containing 50 µl each. A 500x coverage of the library was 

maintained. For each condition, a different combination of forward and reverse primers with 

unique sequencing-barcode indices was used. The cycling conditions used are shown in 

Table 5-16. After PCR, all 38 reactions were pooled and 10 µl were used for agarose gel 
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electrophoresis to confirm the presence of a band at 281 bp indicating successful 

amplification.    

Table 5-15: Reaction setup for amplification of sgRNA sequences after CRISPR/Cas9 screening. 

Component Amount 
gDNA 228 µg 
Fw primer (10 µM) 76 µl 
Rv primer (10 µM) 76 µl 
KAPA HiFi Hot Start Master Mix 2X 950 µl 
H2O ad 1900 µl 
 

Table 5-16: Thermocycler program for amplification of sgRNA sequences.  

Temperature  Time   

95 °C 3 minutes  

98 °C 20 seconds  

62 °C 30 seconds 28 cycles 

72 °C 45 seconds  

72 °C 5 minutes  

16 °C ∞  

 

200 µl of the pooled PCR product were subjected to cleanup using the NEB Monarch PCR-

cleanup kit according to the manufacturer’s instructions. Elution was performed using 20 µl 

and Lo-Bind tubes.  

Subsequent pooling, quantification and sequencing steps were performed by the group of 

Prof. Roland Rad (TUM) as previously described (Falcomatà et al. 2022).  

 

5.4.6 Whole-genome CRISPR/Cas9 data analysis 

Downstream analysis of whole-genome CRISPR/Cas9 data was performed with MAGeCK 

(version 0.5.9.4) (Li et al. 2014) as previously described (Falcomatà et al. 2022). In brief, 

reads obtained after sequencing and demultiplexing were aligned to reference sgRNA 

sequences and counting was performed. ß-scores were calculated using maximum likelihood 

estimation. Positive ß-scores indicate enrichment whereas negative ß-scores represent 

depletion of the sgRNAs compared to their initial abundance. To identify genes that are 

significantly depleted under Afatinib or Paclitaxel treatment, the differences in ß-scores 

between each of these conditions (Afatinib or Paclitaxel) and DMSO controls were 

calculated, thereby obtaining differential sensitivity values (ß-scores for DMSO control 

subtracted from ß-scores for Afatinib or Paclitaxel conditions). For the computation of 
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enrichment scores, filtering was performed for differential sensitivity values ≤ -0.25 and FDR 

values ≤ 0.05. The thus obtained genes were then subjected to gene set enrichment analysis 

using the MSigDB Molecular Signatures Database (MSigDB v2023.1.Mm updated March 

2023) (Subramanian et al. 2005; Liberzon et al. 2011; Liberzon et al. 2015).  
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6 Results 

6.1 Declaration of contributions 

The monotherapy high-throughput drug screening data presented in this thesis have been 

generated by myself with contributions from Andrea Coluccio, Raquel Bernad and Julia 

Manolow. Computational analyses comprising drug response and RNA sequencing data 

used in Chapters 6.9 to 6.11 were performed by Fabio Boniolo and have already been 

published in his doctoral dissertation (Boniolo 2022), which also features an overview of the 

drug screening data with partial similarities to the graphs presented in Chapters 6.2-6.5. 

Additional contributions are indicated in the respective figure legends.  

 

6.2 An automated high-throughput drug screen for the 
identification of therapeutic vulnerabilities in pancreatic cancer 
cell lines 

PDAC is a cancer entity with a particularly dismal prognosis and for which treatment options 

are currently mainly limited to polychemotherapies (Chapter 3.1). The high molecular 

heterogeneity found among PDAC patients is hypothesized to result in heterogeneous 

responses to therapy, thereby posing one of the major challenges to the development of 

effective targeted treatment approaches (Kleeff et al. 2016).  

To investigate whether the molecular heterogeneity of PDAC tumors indeed results in 

variable drug responses, we performed an automated high-throughput drug screen in 250 

murine cell lines derived from GEMMs with different genetic backgrounds using a large 

compound library consisting of 415 drugs (Figure 1). 

Before being used in the drug screen, each cell line was subjected to different quality control 

steps, comprising cell line authentication by regenotyping, tests for mycoplasma 

contamination and the evaluation of growth rates for determination of optimal seeding density 

(Figure 1A). Using an automation pipeline, the cell lines were then seeded in technical 

duplicates and treated with the drug library one day later. CellTiter-Glo® Assay was used as 

a readout of cell viability (Figure 1B). 

Importantly, to reflect the molecular heterogeneity found among PDAC patients, cell lines 

with different morphologies (Figure 1C), driver oncogenes (Figure 1D) and genotypes (Figure 

1E) were used. This heterogeneous set of cell lines was treated with a comprehensive drug 

library consisting of compounds already approved for clinical use (16 %), in different phases 

of clinical trials (35 %) or in pre-clinical development (49 %) (Figure 1F). As shown in Figure 
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1G, various pathways known to be relevant in cancer are targeted by this collection of 

compounds.  

 
Figure 1: Overview of the automated high-throughput drug screening pipeline.  
(A) Quality control procedures performed for each cell line before its use in the automated high-throughput drug 
screen include cell line authentication, tests for mycoplasma contamination and evaluation of growth rate to 
determine optimal seeding density. DNA, RNA and protein were also harvested for sequencing purposes. (B) 
Experimental setup of the drug screen: cells were seeded in technical duplicates on Day 1 and treated with a drug 
library consisting of 415 drugs on Day 2. Cell viability was measured on Day 5 by CellTiterGlo® Assay (C) 
Distribution of morphologies (epithelial, epithelial with fibroblasts, quasi-mesenchymal, mesenchymal) in the 
cohort of 250 screened murine cell lines. Morphology was determined by microscopy. (D) Distribution of 
oncogenic drivers. (E) Distribution of main genotype groups. Abbreviations and associated genotypes are listed in 
Table 4-15. (F) Overview of clinical phases of drugs in the compound library. (G) Overview of drug targets. Panels 
(A) and (B) were created using BioRender.com. 

The evaluation of growth rates for the determination of optimal seeding density in the drug 

screen (Figure 1A) also produced a doubling time for each of the tested cell lines, i.e. the 

number of hours required for doubling of cell number to occur (Figure 2A). This information 

was also integrated into the analysis pipeline to generate dose response curves, as 

exemplarily shown in Figure 2B. From these dose response curves, parameters of drug 

response were calculated, including area under the curve (AUC) and IC50 values (Figure 

2B). Importantly, in this approach, IC50 values could not always be calculated as a relative 

cell viability of 50 % was not always reached during the assay (Figure 2C). In fact, for less 

than 50 % of drug – cell line pairs, IC50 values were calculated. Therefore, in general, AUC 

values will be used in further analyses presented in this thesis.  
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Figure 2: Overview of the analysis of data obtained from the automated high-throughput drug screening 
pipeline. 
(A) Overview of doubling times (in hours) calculated for the tested cell lines. Doubling times were calculated 
across a time frame of 72 hours based on CellTiter-Glo® measurements. Cell lines with less than two doublings 
within 72 hours are highlighted in red. (B) Exemplary dose response curve illustrating the commonly used 
parameters of drug sensitivity, area under the curve (AUC) and IC50 values. (C) Numbers of called IC50 values 
(n = 47’413) and not called IC50 values (n = 56’332). (D) Comparison of data quality for technical duplicates and 
technical triplicates. One replicate was randomly removed from drug screening data obtained by triplicate 
measurements to generate examples of duplicate measurements. When applying a threshold of 0.1 for the mean 
absolute deviation of the AUC between replicates, 505 datapoints were lost for duplicate measurements, 301 
datapoints for triplicate measurements and 292 in both. Total number of datapoints = 24’555. Analysis and graph 
by Andrea Coluccio. (E) Density plot for the standard deviation of the AUC between replicates (sdAUC) based on 
the entire dataset (250 murine cell lines treated with 415 drugs (3 cell line – drug pairs excluded according to 
Chapter 5.2.4)). 2.7 % (2’832 out of 103’745 datapoints) of the AUC values generated have a standard deviation 
between replicates above 0.1. 

The mean absolute deviation of AUC values derived from distinct replicates (madreplicate AUC) 

was used to assess the utility of performing the high-throughput drug screening assay in 

duplicate or triplicate measurements. The assay was initially performed in technical 

triplicates, generating 24’555 datapoints (AUC values for cell line – drug pairs) (Figure 2D). 

One replicate was randomly removed from the dataset to compare the results for duplicate 

compared to triplicate measurements. Selection of data based on madreplicate AUC values 

below 0.1 led to a loss of 3.2 % of datapoints in duplicate measurements and 2.4 % in 

triplicate measurements. As overall, the difference is not striking, for feasibility reasons, the 

remaining cell lines were screened in technical duplicates. The vast majority of thereby 

produced AUC values had a standard deviation below 0.1 between the replicates (Figure 

2E).  

As demonstrated in Figure 3A, we observed heterogeneous drug responses across the cell 

line cohort for the 415 tested drugs. The majority of drugs were rather ineffective in the 
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tested cell lines, with mean AUC values above 0.5 for 91 % of the tested drugs (Figure 3B). 

Only eight drugs showed AUC values lower than 0.5 in all tested cell lines (Romidepsin, 

Quisinostat, Carfilzomib, Ganetespib, Chaetocin, STF-118804, NSC319726 and Dinaciclib) 

indicating their particular effectiveness across PDAC models (Figure 3C, Table 6-1).  

Table 6-1: Overview of the eight drugs for which maximum AUC value < 0.5.  
Drug, target and mean AUC (mAUC), minimum (min) AUC, maximum (max) AUC values across cell lines are 
indicated.  

Drug Target mAUC minAUC maxAUC 
Romidepsin HDAC 0.01092399 0.0009105606 0.09384819 
Quisinostat HDAC 0.10063935 0.0239128868 0.30003590 
Carfilzomib Proteasome 0.05221285 0.0015469175 0.33865542 
Ganetespib HSP 0.16013788 0.0141134398 0.41478392 
Chaetocin Histone 

Methyltransferase 
0.08384820 0.0019955046 0.42432457 

STF-118804 NAMPT 0.12212811 0.0023496998 0.46251906 
NSC 319726 p53 0.17454827 0.0185857422 0.49595341 
Dinaciclib CDK 0.21614449 0.0370722220 0.49898241 
 

Using three examples, Figure 3D illustrates the heterogeneous drug responses which were 

produced by different drugs in the compound library. We observed both compounds with low 

efficacy such as Thiomyristoyl which covered only the upper part of the AUC spectrum and 

drugs such as Romidepsin which produced low AUC values in all tested cell lines (Figure 

3D). In addition, we also identified a group of compounds including Adavosertib (Figure 3D), 

for which variable responses covering a wide range of AUC values were observed.  
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Figure 3: The majority of drugs is ineffective in the murine cell line cohort. 
(A) Heatmap of Z scores of AUC values derived from 250 murine cell lines treated with 415 drugs (3 cell line – 
drug pairs excluded according to Chapter 5.2.4). Clustering is based on Euclidean distance. Morphology and 
main genotype groups are annotated. (B) Overview of mean AUC values for each drug across all tested cell lines. 
(C) Overview of maximum AUC values calculated for each drug across all tested cell lines. (D) Overview of AUC 
values obtained in the different cell lines for three exemplary drugs, Thiomyristoyl, Adavosertib and Romidepsin. 
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To determine the heterogeneity in the dataset in more detail, the mean absolute deviation of 

the AUC values (madAUC) across all tested cell lines for each drug can be used (Figure 4A). 

Drugs with high madAUC values cover a broad range of sensitivities, as is exemplarily 

shown for Deguelin, the compound with the highest madAUC (madAUC = 0.31) in our cohort. 

(Figure 4B). 

 

Figure 4: Heterogeneity in drug response becomes evident by selection for high madAUC. 
(A) Overview of madAUC values calculated for each drug across all tested 250 murine cell lines (mad = mean 
absolute deviation). (B) Overview of AUC values obtained for the drug Deguelin. Deguelin is the drug with the 
highest madAUC (madAUC = 0.31). (C) Heatmap of Z scores of AUC values for all drugs with madAUC > 0.1 
(n=73 drugs). Clustering is based on Euclidean distance. Morphology and main genotype groups are annotated.  

In addition to Deguelin, other drugs which produced the most variable drug responses 

include Panobinostat (HDAC inhibitor), RSL3 (ferroptosis inducer), LY2090314 (GSK-3 

inhibitor) and Mubritinib (HER2 inhibitor) (Table 6-2).  



Results 
 

86 
 

Table 6-2: Overview of the drugs which produce most heterogeneous drug responses.  
Drug, target and mean AUC (mAUC), minimum (min) AUC, maximum (max) AUC and mean absolute deviation of 
the AUC (madAUC) values across cell lines are indicated.  

Drug Target mAUC minAUC maxAUC madAUC 
Deguelin AKT 0.55105117 0.0676409 1.03926934 0.31017901 
Panobinostat 
(LBH589) 

HDAC 0.43463361 0.04008386 0.99773572 0.26531807 

RSL3 Ferroptosis 0.60945884 0.11895309 0.96070352 0.21754248 
LY2090314 GSK-3 0.64852836 0.10972772 1.40482019 0.20949062 
Mubritinib 
(TAK 165) 

HER2 0.73938619 0.26072047 1.14852693 0.20202032 

 

After selection of drugs with high madAUC (madAUC > 0.1), the heatmap representation of Z 

scores of AUC values clearly demonstrates the heterogeneity of drug response across the 

PDAC cell line cohort (Figure 4C). Therefore, we concluded that, as hypothesized, 

pancreatic cancer represented here by the different cell line models indeed displays high 

variability in treatment responses, which could be exploited by personalized or subgroup-

specific therapeutic approaches.  

 

6.3 Identification of subtype-specific vulnerabilities 

Subtype-specific vulnerabilities of pancreatic cancer have previously been reported 

(Falcomatà et al. 2022; Collisson et al. 2011). As demonstrated in Figure 5A, principal 

component analysis revealed that likewise in our high-throughput drug screening dataset, the 

morphology of the tested cell lines can be considered as an important driver of drug 

response. Specific compounds for which AUC values showed statistically significant 

differences between morphologies (p value < 0.05, absolute log2-fold change > 0.3) are 

highlighted in Figure 5B.  

We confirm previously known associations between PDAC subtypes and drug sensitivity, 

namely increased effectiveness of MEK inhibitors in epithelial cell lines (Falcomatà et al. 

2022) and of the HDAC inhibitor Panobinostat in the mesenchymal subtype (Krauß et al. 

2022).  Other subtype-specific vulnerabilities observed in our cohort include, for example, a 

higher sensitivity of mesenchymal cell lines towards ferroptosis induction by RSL3 and 

Erastin and of the epithelial cohort towards GLUT inhibition by BAY-876 (Figure 5B).  

 



Results 
 

87 
 

 

Figure 5: Subtype-specific differences in drug response. 
(A) Principal component analysis (PCA) plot for the 250 screened mouse cell lines based on AUC values for 415 
drugs (3 cell line – drug pairs excluded according to Chapter 5.2.4). Each dot represents one cell line, colored by 
morphology. (B) Volcano plot for log2-fold changes for all tested compounds between epithelial and mesenchymal 
cell lines. Two-sided Student’s t tests were performed. Highlighted: p value < 0.05, absolute log2-fold change > 
0.3.  

 

6.4 Identification of genotype-specific vulnerabilities 

In addition to subtype-specific vulnerabilities described in Chapter 6.3, differential drug 

response can also be observed based on the genotypes of the cell lines. PCA revealed, for 

example, that the oncogenic driver can have an effect on drug sensitivity (Figure 6A). Due to 

the high number of different genotype groups, differences in drug response are hard to 

determine by PCA (Figure 6B), but pairwise comparisons with the PK cohort also showed 

specific vulnerabilities based on the genotype group of the cell lines (Figure 7A-I). 

 

Figure 6: Genotype-specific differences in drug response.  
Principal component analysis (PCA) plot for the 250 screened mouse cell lines based on AUC values for 415 
drugs (3 cell line – drug pairs excluded according to Chapter 5.2.4). Each dot represents one cell line, colored by 
(A) driver oncogene or (B) genotype group. A list of the abbreviations for each genotype group is available in 
Table 4-15. 
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Figure 7: Compounds with differential efficacy based on genotype groups. 
Mean AUC values across cell lines are plotted for specific genotype groups against the PK cohort. (A) PPI3K vs. 
PK; (B) PKPI3K vs. PK; (C) PPI3KP vs. PK; (D) PKP vs. PK; (E) PKT vs. PK; (F) PKC vs. PK; (G) PKPCSm vs. 
PK; (H) PKSC vs. PK; (I) PBRC vs. PK. Highlighted: absolute delta mean AUC > 0.15.  A list of the abbreviations 
for each genotype group is available in Table 4-15. 

Some of the identified genotype-specific differences in drug response were mechanistically 

reasonable. For example, PPI3K and PKPI3K cell lines were on average more susceptible to 

Akt inhibition by Uprosertib, MK-2206 and GSK690693 (Figure 7A, B). The PPI3K cohort was 

furthermore more sensitive towards GLUT inhibition by BAY-876 compared to the PK cell 

lines (Figure 7A). PI3K/Akt activation has previously been shown to promote glucose uptake 

via glucose transporters (GLUT) (Wright et al. 2021; Wieman et al. 2007). Another example 

is the higher sensitivity of Braf mutant PBRC cells towards Raf inhibition by the inhibitors 

AZ628 and Dabrafenib (Figure 7I).  

Overall, the results presented in chapters 6.3 and 6.4 demonstrate that the generated high-

throughput drug screening data, together with annotations of phenotypic and genotypic 

characteristics of the cell lines, allows for the identification of subgroup-specific 

vulnerabilities.  

 

6.5 Correlations in drug response can potentially be informative on 
drugs’ mechanisms of action  

Another application of high-throughput drug screening studies which has previously been 

demonstrated is to derive insights on drugs’ mechanisms of actions (Seashore-Ludlow et al. 

2015). Analyses of correlations between AUC values for each drug-drug pair can be useful to 

identify potentially inaccurate target annotations. As shown in Figure 8, for the majority of 

drug-drug pairs, AUC values were positively correlated, indicating that despite the previously 

described heterogeneity in drug response, a certain degree of general response produced by 

the drug screening pipeline is present.  

Figure 9A is a representation of the highest correlating drug-drug pairs after selection for 

drugs with at least one Spearman’s correlation value above 0.7. Certain clusters of drugs 

sharing the same target are evident, for example drugs targeting the MAPK pathway and 

agents acting on epigenetics. These findings can serve as a quality control measure of the 

drug screening data as they indicate high reproducibility for certain drug targets irrespective 

of the specific drug used.  

Upon closer analysis of Raf, MEK and ERK inhibitors, however, it becomes evident that only 

two of the tested Raf inhibitors (RO5126766 and AZ 628) cluster with the majority of MEK 

and ERK inhibitors (Figure 9B). RO5126766 is a dual Raf/MEK inhibitor (Wada et al. 2014) 
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and AZ 628 is a pan-Raf inhibitor (McDermott et al. 2007) while some of the other inhibitors 

such as Vemurafenib and Dabrafenib target more specifically mutant BrafV600E (Shelledy and 

Roman 2015; Kefford et al. 2010). This differential specificity may be reflected in the 

correlation values presented in Figure 9B. 

Cell cycle inhibitors provide another example of strong correlations based on specific targets, 

as for example Aurora kinase inhibitors and PLK inhibitors show clear clustering (Figure 9A, 

C). 

 
Figure 8: Drug response is overall positively correlated.  
Heatmap showing the Spearman’s correlation values computed for each drug-drug pair based on AUC values for 
250 murine cell lines and 415 drugs (3 cell line – drug pairs excluded according to Chapter 5.2.4). Clustering is 
based on Euclidean distance.  

 
On the other hand, certain clusters contain drugs with distinct target annotations. One 

example is the cluster of microtubule inhibitors consisting of the agents Colchicine, 

Vinorelbine tartrate, Plinabulin, Vincristine sulfate, and in addition the inhibitor KX2-391, for 

which the annotated target is Src (Fallah-Tafti et al. 2011; Wang et al. 2016) (Figure 9A). 

Previous cancer cell line profiling studies have made similar observations that KX2-391 

clusters with microtubule inhibitors and have also validated that this agent indeed targets 

microtubule dynamics (Seashore-Ludlow et al. 2015). Further studies have confirmed the 

dual mechanism of action for this drug (Smolinski et al. 2018). 
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Figure 9: Drug-drug correlation analysis reveals clusters of drugs with similar targets.  
(A) Heatmap of Spearman’s correlation values for drug-drug pairs after selection for drugs with at least one 
correlation value > 0.7 (n=65 drugs). Clustering is based on Euclidean distance. Pathways targeted by the 
compounds are indicated. (B) Heatmap of Spearman’s correlation values for each drug-drug pair with the target 
annotation Raf, MEK or ERK. Clustering is based on Euclidean distance. The specific annotated drug target is 
indicated. (C) Heatmap of Spearman’s correlation values for each drug-drug pair with the pathway annotation “cell 
cycle”. Clustering is based on Euclidean distance. The specific annotated drug target is indicated.  
 
Another unexpected cluster is formed by the drugs Deguelin, NMS-873 and OF-1 (Figure 

9A). Multiple targets have been described for Deguelin (Tuli et al. 2021), including Akt 

inhibition (Jin et al. 2007), but also mitochondrial complex I inhibition (Carpenter et al. 2019) 

and the induction of reactive oxygen species (ROS) (Xu et al. 2015). Interestingly, the drugs 

with the highest correlation values with Deguelin target various distinct pathways, which 

mostly appear to be related to metabolism (Figure 10). Among them are several drugs for 

which in addition to the originally identified one, an unrelated target has been discovered. For 

example, for NMS-873, originally identified as an inhibitor of the valosin-containing protein 

(VCP/p97) (Magnaghi et al. 2013), a dual mechanism of action targeting mitochondrial 

oxidative phosphorylation has been reported (Bouwer et al. 2021). Furthermore, the known 

HER2 inhibitor Mubritinib (Nagasawa et al. 2006) has been shown to target the electron 

transport chain complex I (Baccelli et al. 2019). The compound NSC319726, originally 
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identified as a p53-mutant reactivator (Yu et al. 2014; Yu et al. 2012) and now recognized as 

a ROS inducer (Shimada et al. 2018) and affecting the mitochondrial respiratory chain 

(Tsvetkov et al. 2022), will be investigated in more detail in Chapter 6.8.  

 
Figure 10: Compounds with the highest correlation values for the multi-target drug Deguelin.  
Representation of the ten drugs with the highest correlation values with Deguelin. Shown is the Spearman’s 
correlation value for each drug-drug pair. Clustering is based on Euclidean distance. The specific, originally 
annotated drug targets are indicated. 

 
Overall, it could be demonstrated in this chapter that several classes of inhibitors, including 

MAPK inhibitors, drugs targeting epigenetic reader domains or Aurora kinase inhibitors, 

produce highly correlating drug responses across the cell line cohort, showing the 

consistency of the high-throughput drug screening approach. Furthermore, it could be shown 

that unexpected correlations of drugs with deviating targets could help to identify 

mechanisms of action.  

 

6.6 Comparison of drug screen results for human and mouse cell 
lines 

In addition to the high-throughput drug screening of murine PDAC cell lines presented in the 

previous chapters, a collection of primary (n=18) and established, commercially available 

(n=20) human pancreatic cancer cell lines has likewise been included to allow for cross-

species validation of the results. The primary human cell lines have been derived directly 

from patient biopsies (n=9), from PDX models (n=6), from CDX models (n=1) or from 
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organoid cultures (n=2). These primary human cell lines and the murine cell lines used for 

this thesis are generally low passaged.  

Previous studies have demonstrated that the passage number can affect a cell line’s 

characteristics. Passage number can for instance influence cellular morphology, growth rate 

and gene expression (O'Driscoll et al. 2006) and lead to accumulation of somatic mutations 

over time (Kim et al. 2017). The 20 established, commercially available human pancreatic 

cancer cell lines of unknown total passage number were screened in addition to the primary 

dataset with two main goals. First, to confirm whether there are indeed differences in drug 

sensitivity between the primary and the established cell lines, which may for instance be 

caused by higher passage number. In addition, an important aim was to directly compare the 

drug screening results with the publicly available datasets (shown in Chapter 6.7).  

 
Figure 11: Selection of established human cell lines for high-throughput drug screening. 
(A) The Celligner tool (https://depmap.org/portal/celligner/) (Warren et al. 2021) was used to visualize differences 
in gene expression patterns for established human pancreatic cancer cell lines. Cell line names were manually 
added. (B) Overview of morphology and genetic alterations for the selected established human cell lines. Grey 
boxes indicate the presence of a genetic alteration for the specific gene. The information on genetic alterations 
was obtained from the DepMap Portal (https://depmap.org/portal/). Morphologies were determined by microscopy.  

Therefore, 20 established human pancreatic cancer cell lines were selected based on the 

availability of data on the Depmap portal (https://depmap.org/portal/) and heterogeneity in 

genomic alterations, morphology, and gene expression. For the latter, the Celligner tool 

(https://depmap.org/portal/celligner/) was used. It is an unsupervised alignment method that 

is applied to integrate several large-scale cell line and tumor RNA-Seq datasets (Warren et 

al. 2021). As shown in Figure 11A, the 20 screened cell lines represent different gene 
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expression patterns and should therefore reflect heterogeneity. Figure 11B demonstrates 

that different morphologies and genomic alterations are included. 

As shown in Figure 12, overall, human cell line data integrated well with the murine cohort. 

Nevertheless, specific clustering of primary human and established human cell lines could be 

observed, indicating that human specific drug responses are also present.  

 

Figure 12: Integration of high-throughput drug screening data for murine and human cell lines.  
Heatmap representation of the Z scores of AUC values across 415 drugs for 250 murine (3 cell line – drug pairs 
excluded according to Chapter 5.2.4), 18 primary and 20 established human cell lines. Clustering is based on 
Euclidean distance. Species, morphology and genotype groups are indicated. 

 
Such species-specific effects are also indicated by PCA, as shown in Figure 13A. 

Compounds with significantly higher efficacy in primary human compared to murine cell lines 

include, for example, the survivin inhibitor YM155, the ferroptosis inducer RSL3 and the 

NAMPT inhibitor GMX1778 (Figure 13B). By comparison, murine cell lines were generally 

more susceptible to HDAC inhibitors Romidepsin and Quisinostat and the NAMPT inhibitor 

STF-118804. It should be noted that the cohorts of murine, primary human and established 

human cell lines have different representation of morphologies (murine: 34 % epithelial, 31 % 

mesenchymal (Figure 1C), primary human: 100 % epithelial, 0 % mesenchymal, established 

human: 70 % epithelial, 30 % mesenchymal (Figure 13E)). Therefore, some of the 

differences in drug sensitivity between species may also be due to morphology, as this has 

previously been shown to be an important determinant of drug response (Figure 5).  



Results 
 

95 
 

Nonetheless, for example the survivin inhibitor YM155 was also highly significantly more 

effective in the established human cell lines compared to the murine cohort (Figure 13C), 

indicating that human cells are indeed generally more susceptible to this compound. 

Established human cell lines were also more sensitive to the chemotherapeutic drug 5-FU 

compared to both murine and primary human cell lines (Figure 13C, D). Overall, less 

significant differences were observed between primary and established human cell lines than 

between each of the latter and the murine cohort, in line with the results of the PCA (Figure 

13).  

 

Figure 13: Differences in drug response between murine, primary human and established human cell 
lines. 
(A) PCA plot based on AUC values for 415 drugs and 250 murine (3 cell line – drug pairs excluded according to 
Chapter 5.2.4), 18 primary human and 20 established human cell lines. Each dot represents one cell line, colored 
by species. (B) Volcano plot for log2-fold changes between murine and primary human cell line cohorts. Two-
sided Student’s t tests were performed. Highlighted: log2-fold change > 0.5, p value < 0.05.  (C) Volcano plot for 
log2-fold changes between murine and established human cell line cohorts. Two-sided Student’s t tests were 
performed. Highlighted: log2-fold change > 0.5, p value < 0.05. (D) Volcano plot for log2-fold changes between 
primary human and established human cell line cohort. Two-sided Student’s t tests were performed. Highlighted: 
log2-fold change > 0.5, p value < 0.05. 

 
The integration of human cell lines into the high-throughput drug screen, as described above, 

allows for cross-species validation which can be useful when selecting drug candidates for 
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further validation, as for each individual drug, comparisons can be made between the murine 

and human dataset.  

 

6.7 Comparison of drug screen results for established human cell 
lines to publicly available datasets 

Differences in drug response between murine, primary human and established human cell 

lines have been shown previously (Chapter 6.6). As mentioned above, the integration of 20 

established human cell lines (Figure 11) into our high-throughput drug screen also enabled 

us to directly compare our results to publicly available datasets.  

As discussed in Chapter 3.4 and Chapter 7.2, the consistency and reproducibility of high-

throughput drug screens is the matter of ongoing scientific debate and correlation between 

datasets is diminished by differences in experimental protocols between institutes (Haibe-

Kains et al. 2013; Safikhani et al. 2016b; Pharmacogenomic agreement between two cancer 

cell line data sets 2015; Smirnov et al. 2016; Safikhani et al. 2016a; Geeleher et al. 2016; 

Bouhaddou et al. 2016; Mpindi et al. 2016).  

Table 6-3: Comparison of important aspects of experimental setups for the generation of the different 
datasets.  
Information derived from (Picco et al. 2019; Seashore-Ludlow et al. 2015; Rees et al. 2016; Corsello et al. 2020).  
 

GDSC2 CTRP  PRISM  TUM 

Plate format 1536-well plates  1536-well plates  384-well plates 96-well plates 

Cell seeding Determination of 
optimal density 
for each cell line 

500 cells/well 1250 cells/well Human: 1000 – 
3000 cells/well  

Drug delivery Labcyte Echo 
555  

Labcyte Echo 
555  

Pintool  Pintool  

Drug 
concentration 
range 

Concentration 
range adjusted 
for each 
compound 

16-step, 2-fold 
dilution, in 
duplicate  

8-step, 4-fold 
dilution, ranging 
from 10 µM to 
610 pM 

7-step, 3-fold 
dilution, ranging 
from 10 µM to 
10 nM 

Viability assay Cell Titer Glo Cell Titer Glo Lysis and mRNA 
isolation, 
amplification by 
PCR, Luminex 
detection 

Cell Titer Glo 

Analysis R package 
gdscIC50  

MATLAB 
(MathWorks) 

R package drc R package 
GRMetrics 
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As demonstrated in Table 6-3, differences in experimental setups are also present between 

our own drug screening approach and the assays performed by other institutes. I therefore 

sought to investigate to what extent these datasets nevertheless correlate. To this end, the 

GDSC2 (Picco et al. 2019), CTRP (Seashore-Ludlow et al. 2015; Rees et al. 2016) and 

PRISM (Corsello et al. 2020) datasets were downloaded from the DepMap Portal website 

(https://depmap.org/portal/download/all/) and overlapping data for specific cell line – drug 

pairs were compared to AUC values generated in our own high-throughput drug screen.  

 

Figure 14: Moderate correlation between our own and publicly available datasets.  
AUC values from (A) the GDSC2 screen; (B) the CTRP screen and (C) the PRISM screen are plotted against 
AUC values for the same drug – cell line pair in our own data (TUM). Each dot therefore represents the AUC 
value for one specific drug – cell line pair present in both datasets. The publicly available data (Picco et al. 2019; 
Seashore-Ludlow et al. 2015; Rees et al. 2016; Corsello et al. 2020) were downloaded from 
https://depmap.org/portal/download/all/ and drug names were manually curated between the datasets. R = 
Pearson correlation coefficient. N = (A) 883, (B) 1056, (C) 728.  

As shown in Figure 14, pairwise comparisons between our data (TUM) and the public 

datasets yielded Pearson correlation values between 0.64 (CTRP vs. TUM) and 0.66 

(GDSC2 and PRISM vs. TUM). Moderate Pearson correlations between publicly available 

datasets in the range of 0.60 and 0.62 could previously be demonstrated (Corsello et al. 

2020). As shown in Figure 15, for the subset of pancreatic cancer cell lines used in this 

study, Pearson correlations determined using the same analysis pipeline as for Figure 14 

ranged between 0.48 (PRISM vs. GDSC2) and 0.55 (PRISM vs. CTRP) for pairwise 

comparisons between the publicly available datasets.  
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Therefore, as summarized in Figure 15D, while correlation values achieved for all 

comparisons are only moderate, comparisons including our own dataset did not perform 

worse than those performed within the publicly available datasets. Overall, this indicates 

similar robustness of our data compared to previously published pharmacological profiling 

datasets. 

 

Figure 15: Moderate correlations achieved between TUM dataset and publicly available data are 
comparable to those achieved within publicly available datasets.  
AUC values are plotted against each other for each drug – cell line pair overlapping between the respective 
datasets. (A) GDSC2 vs. CTRP (n = 651); (B) PRISM vs. GDSC2 (n = 470); (C) PRISM vs. CTRP (n = 937). The 
publicly available data were downloaded from https://depmap.org/portal/download/all/ and drug names were 
manually curated between the datasets. R = Pearson correlation coefficient. (D) Overview of Pearson correlation 
coefficients calculated for all pairwise comparisons. Pairs involving our own (TUM) dataset are highlighted. 

 

6.8 NSC319726 is highly effective across PDAC cell lines 
independently of p53 status  

As described in Chapter 6.2, most of the drugs in this study are rather ineffective across the 

cell line cohort. A small subset of drugs, however, is very efficient with AUC values below 0.5 

across all tested cell lines. As demonstrated in Figure 16A, NSC319726 is one of the most 

efficient drugs in the cohort with a mean AUC value across cell lines of 0.179, which is 

below, for example, the mean AUC value achieved for the standard of care drug 

Gemcitabine. AUC values are below 0.5 for almost all tested cell lines, irrespective of 

species, morphology, or genotype (Figure 16B, C, D). Nevertheless, specific differences in 
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drug response are observed, with the drug being significantly more effective in murine cell 

lines compared to primary human (p value: 0.0234) and established human cell lines (p value 

< 0.0001) (Figure 16B) and in mesenchymal compared to epithelial cell lines (p value < 

0.0001) (Figure 16C). Genotype-specific differences can likewise be observed. Compared to 

the PK cohort, PKC cell lines are significantly more resistant to the drug (p value: 0.0371), 

while PPI3K cell lines are significantly more sensitive (p value: 0.0064) (Figure 16D).  

 

Figure 16: NSC319726 is very efficient in all tested cell lines, independently of p53 status. 
(A) Overview of the mean AUC values calculated across the cell line cohort (250 murine cell lines) for each of the 
415 drugs. Mean AUC values for NSC319726 and Gemcitabine are highlighted. (B) Distribution of AUC values for 
mouse, primary human and established human cell lines. Mean values ± SD are shown, *p value ≤ 0.05, ***p 
value ≤ 0.001, two-tailed student’s t test. (C) Distribution of AUC values for epithelial, quasi-mesenchymal and 
mesenchymal murine cell lines. Mean values ± SD are shown, **p value ≤ 0.01, ***p value ≤ 0.001, two-tailed 
student’s t test. (D) Distribution of AUC values for the different murine genotypes. Mean values ± SD are shown. 
(E) Distribution of AUC values for PK, PKP_MUT (cell lines with Trp53 mutation) and PKP_DEL (cell lines with 
Trp53 deletion) murine cell lines. Mean values ± SD are shown. (F) AUC values for NSC319726 plotted against 
AUC values for Elesclomol for each murine cell line. R = Pearson correlation coefficient. 

NSC319726 is a small molecule that was first discovered as a reactivator of the p53 

missense mutant p53-R175H (Yu et al. 2014; Yu et al. 2012). More specifically, NSC319726 

was shown to restore the wild-type structure of mutant p53 by functioning as a zinc-

metallochaperone that optimizes zinc concentrations in the cell to allow for proper folding (Yu 

et al. 2014). In addition, an increase in cellular reactive oxygen species has been reported 

(Yu et al. 2014). Intriguingly, as shown in Figure 16E, in our cohort, we did not observe 

significant differences in drug response between Trp53 mutant and Trp53 wild-type cells. A 

previous study in glioblastoma patient-derived cells has likewise shown efficiency of 

NSC319726 in wild-type p53 cell lines  (Shimada et al. 2018). Shimada et al. reported that 

NSC319726 functions as a copper ionophore that induces copper dysregulation, which in 
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turn can generate reactive oxygen species (ROS) and DNA damage, leading to cell cycle 

arrest (Shimada et al. 2018).  

An involvement of copper in the mechanism of action of NSC319726 has recently been 

confirmed by Tsvetkov et al. (Tsvetkov et al. 2022). According to this study, NSC319726 

induces a copper-dependent, regulated form of cell death that is distinct from previously 

known death mechanisms and dependent on mitochondrial respiration (Tsvetkov et al. 

2022). The authors showed that copper binding to lipoylated components of the tricarboxylic 

acid (TCA) cycle results in lipoylated protein aggregation which induces iron-sulfur cluster 

protein loss, proteotoxic stress and subsequently cell death (Tsvetkov et al. 2022).  

Based on our results that Trp53 mutant cell lines did not respond better to NSC319726 

treatment than Trp53 wild-type cells and previous studies indicating divergent mechanisms of 

actions (Shimada et al. 2018; Tsvetkov et al. 2022), we sought to investigate further the 

mechanism of action of this drug. In addition, AUC values for NSC319726 moderately 

correlated with those for Elesclomol giving a further hint that indeed NSC319726 could 

function via oxidative stress related mechanisms (Figure 16F). NSC319726 is furthermore 

one of the highest correlating drugs for Deguelin, which forms a cluster with several drugs, 

for which mitochondrial complex I is a described target (Figure 10).  

We selected six Trp53 wild-type cell lines representing both rather sensitive and resistant 

phenotypes to NSC319726 treatment (Table 6-4, Figure 17A) for further investigation of this 

agent’s mechanism of action.  

Table 6-4: Overview of cell lines selected for investigating the mechanism of action of the drug 
NSC319726. 

Cell line Genotype Morphology AUC drug screen 
9091 PK mesenchymal 0.071202911 
C2532 PKT mesenchymal 0.076639129 
C1232 PKE epithelial 0.085650979 
4706 PK quasi-mesenchymal 0.28287945 
S559 PK mesenchymal 0.319649725 
4072 PK quasi-mesenchymal 0.475292332 
 

First, the effectiveness in the selected cell lines was confirmed by clonogenic assays (Figure 

17B). IC50 values ranged from 30 pM to 40 nM (Figure 17C). The cell line S559, in this type 

of assay, showed a rather sensitive phenotype compared to the original drug screening 

results. This could be due to diminished growth of this particular cell line at a comparably 

lower seeding density in clonogenic assays or due to technical problems during the high-

throughput drug screen. For the studies on the drug NSC319726, S559 was henceforth 
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considered as a sensitive rather than resistant cell line and the results for this sample were 

treated with caution.  

 

Figure 17: Confirmation of the cytotoxic effects of NSC319726.  
(A) Overview of AUC values derived from the high-throughput drug screening experiment for NSC319726 for 
each of the 250 murine cell lines. The six murine cell lines used for further validation experiments are highlighted. 
(B) Clonogenic assay results representative of two technical replicates and three independent experiments. The 
used concentrations of NSC319726 are indicated. 0 µM = DMSO control. (C) IC50 values obtained from 
quantification of the clonogenic assays shown in (B).  

Based on the results of Tsetkov et al. indicating that NSC319726 induces a previously 

unknown form of cell death (Tsvetkov et al. 2022), we next investigated an involvement of 

apoptosis, necroptosis and ferroptosis pathways in this drug’s mechanism of action. 

NSC319726 did not induce Caspase 3/7 activation as measured by Caspase-Glo® 3/7 

Assay (Figure 18A, B). In addition, the Caspase inhibitor z-VAD-FMK did not decrease the 

effectiveness of NSC319726 in two tested cell lines (Figure 18C, D). As a control, z-VAD-

FMK was shown to affect the response to the drug Bortezomib (Figure 18E, F). Furthermore, 

the necroptosis inhibitor Necrostatin-1 and the ferroptosis inhibitor Ferrostatin-1 did not affect 

the response to NSC319726 (Figure 18G) but diminished the sensitivity to the ferroptosis 

inducer RSL3 (Figure 18H). Overall, an involvement of several known cell death pathways 

could therefore not be shown, supporting the results published by Tsetkov et al. (Tsvetkov et 

al. 2022). 
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Figure 18:  NSC319726 does not induce apoptotic, ferroptotic or necroptotic cell death. 
(A) Results of Caspase-Glo®3/7 Assay for cell line C1232. Luminescence values were normalized to DMSO 
control. Mean values ± SD for three technical replicates are shown. (B) Results of Caspase-Glo®3/7 Assay for 
cell line 4706. Luminescence values were normalized to DMSO control. Mean values ± SD for three technical 
replicates are shown. (C) Co-treatment of NSC319726 (concentrations indicated on the x-axis) with 100 µM z-
VAD-FMK in the cell line C1232. Relative cell viability was determined by CellTiter-Glo® assay 72 hours after the 
beginning of treatment. Mean values ± SD for three technical replicates are shown. (D) Co-treatment of 
NSC319726 (concentrations indicated on the x-axis) with 100 µM z-VAD-FMK in the cell line 4706. Relative cell 
viability was determined by CellTiter-Glo® assay 72 hours after the beginning of treatment. Mean values ± SD for 
three technical replicates are shown. (E) CellTiter-Glo® assay for the cell line C1232 treated for 72 hours with 
1.5 µM Bortezomib alone or together with 100 µM z-VAD-FMK. Luminescence values are normalized to DMSO 
control. Mean values ± SD for three technical replicates are shown. (F) CellTiter-Glo® assay for the cell line 4706 
treated for 72 hours with 1.5 µM Bortezomib alone or together with 100 µM z-VAD-FMK. Luminescence values 
are normalized to DMSO control. Mean values ± SD for three technical replicates are shown. (G) Co-treatment for 
72 hours with NSC319726 (concentrations shown on x-axis) and 20 µM Necrostatin-1 or 10 µM Ferrostatin-1, 
respectively. Relative cell viability was determined by CellTiter-Glo® assay. Mean values ± SD for three technical 
replicates are shown. (H) CellTiter-Glo® assay for the cell line 4706 treated with 1 µM RSL3 alone or together 
with 20 µM Necrostatin-1 or 10 µM Ferrostatin-1. Luminescence values are normalized to RSL3. Mean values ± 
SD for three technical replicates are shown. 
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Tsvetkov et al. claim that Elesclomol and similar agents such as NSC319726 induce cell 

death by a novel mechanism that they termed cuproptosis (Tsvetkov et al. 2022). As shown 

in Figure 19, addition of CuCl2 increased sensitivity to NSC319726 in all our tested cell lines, 

indicating that this compound indeed acts via a copper-related mechanism. Consistently, 

buthionine sulfoximine (BSO), which lowers the concentration of the copper chelator 

glutathione in the cell (Drew and Miners 1984), also sensitized the tested cell lines to 

NSC319726 treatment (Figure 19A-F).  

 
Figure 19: Sensitivity to NSC319726 is increased by CuCl2 and BSO and decreased by NAC.  
IC50 values calculated from CellTiter-Glo® assays after 72 hours of drug treatment normalized to DMSO controls 
for cell lines (A) C1232; (B) C2532; (C) 9091; (D) 4706; (E) 4072; (F) S559. Cells were pretreated with 1 mM 
NAC, 100 µM BSO or 10 µM CuCl2 for three hours before NSC319726 was added in 7 concentrations (3-fold 
dilution series, highest concentration = 1 µM). Mean values ± SD for three biological replicates (each biological 
replicate was calculated from three technical replicates), p-values are indicated, ***p value ≤ 0.001, **p value ≤ 
0.01, *p value ≤ 0.05, two-tailed student’s t test. The experiment was performed together with Christian 
Schneeweis. 

Glutathione is not only a copper chelator, but is also part of the glutathione (GSH)/GSH 

reductase (GSR)/GSH peroxidase (GPx)/glutaredoxin (Grx) pathway which controls the 

redox homeostasis in the cell (Liu et al. 2019; Holmgren et al. 2005). BSO is therefore also 

commonly used as an inhibitor of anti-oxidative functions in the cell (Han et al. 2008). NAC-

acetyl cysteine (NAC) on the other hand can act as a scavenger of reactive oxygen species 

(ROS) (Liu et al. 2019; Mayer and Noble 1994; Samuni et al. 2013). As shown in Figure 19A-

F, NAC reduced the sensitivities of the cell lines to NSC319726, which hints at an 
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involvement of reactive oxygen species for the compound’s mechanism of action in line with 

the report from Shimada et al. (Shimada et al. 2018). 

Tsetkov et al. showed in their study that cells undergoing glycolysis are more resistant to 

Elesclomol and similar compounds such as NSC319726 than cells that are reliant on 

mitochondrial respiration (Tsvetkov et al. 2022). These results could be reproduced here as 

shown in Figure 20A-F. Cells cultured in galactose containing medium had a tendency 

towards higher sensitivity to NSC319726 treatment than cells that were cultured in glucose 

conditions, indicating that energy metabolism driven by oxidative phosphorylation favors 

sensitivity to this drug.  

In the same experiment the involvement of copper in the mechanism of action of NSC319726 

was additionally further confirmed. As also shown in the report by Tsetkov et al., depletion of 

serum, which is the source of copper in cell culture media, abrogated the effect of 

NSC319726 (Figure 20A-F). The effect could be restored by adding CuCl2 to the serum 

depleted medium (Figure 20A-F).  

 
Figure 20: Sensitivity to NSC319726 is increased in galactose and decreased in serum-starved conditions. 
IC50 values calculated from CellTiter-Glo® assays after 72 hours of drug treatment normalized to DMSO controls 
for cell lines (A) C1232; (B) C2532; (C) 9091; (D) 4706; (E) 4072; (F) S559. NSC319726 was added in 7 
concentrations (3-fold dilution series, highest concentration = 1 µM). Cells were cultured in different conditions as 
indicated. 10 µM CuCl2 was added three hours before the beginning of NSC319726 treatment. Each dot 
represents one biological replicate derived from three technical replicates. Mean values ± SD are shown, p values 
are indicated, ***p value ≤ 0.001, **p value ≤ 0.01, *p value ≤ 0.05, nc = not calculable, two-tailed student’s t test. 
The experiment was performed together with Christian Schneeweis. 
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To further elucidate whether oxidative phosphorylation and glycolysis play a role in the 

mechanism of action of NSC319726 as shown by Tsetkov et al. and the data presented in 

Figure 19 and Figure 20, Seahorse assays were performed measuring oxygen consumption 

rate (OCR) after treatment with NSC319726 and different inhibitors of the mitochondrial 

respiratory chain (Figure 21A-F). Across cell lines, decreases in oxygen consumption rate 

could be observed (Figure 21A-F), affecting all parts of mitochondrial respiration (Figure 22A-

F).  

Glycolysis was affected by NSC319726 to a weaker extent as shown in Figure 33 and Figure 

34 (Supplementary data, Chapter 9).  

 

Figure 21: NSC319726 affects the mitochondrial respiratory chain.  
Oxygen consumption rate (OCR) measured by Seahorse Assay Cell Mito Stress Test after 24 hours treatment 
with 0.03 µM NSC319726 for each of the tested cell lines (A) 4706; (B) 4072; (C) S559; (D) C1232; (E) 9091 and 
(F) C2532. Values for NSC319726 treatment and DMSO controls are normalized to cell viability, for each cell line 
separately. Mean values ± SD for four technical replicates are shown. Results shown are representative of two 
independent experiments.   
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Figure 22: NSC319726 affects all parts of the mitochondrial respiratory chain.  
OCR values from Figure 21 summarized for each part of the mitochondrial respiratory chain: (A) Non-
mitochondrial respiration; (B) Basal respiration; (C) Proton leak; (D) ATP-linked respiration; (E) Maximal 
respiratory capacity; (F) Reserve capacity. Mean values ± SD are shown for four replicate OCR values measured 
at three consecutive time points (12 datapoints per condition). 

 
Overall, it could be demonstrated that NSC319726 is highly efficient in vitro across the tested 

murine and human pancreatic cancer cell line cohort. Although it was originally discovered as 

a p53 mutant reactivator, the compound did not show significantly better efficacy in Trp53 

mutant cell lines. It could be demonstrated that NSC319726 could elicit its effects via 

pathways that are related to mitochondrial respiration.  

 

6.9 Integration of drug sensitivity and RNASeq data using a 
pharmacogenomics pipeline  

To identify biomarkers of drug sensitivity and resistance, drug sensitivity data can be 

integrated with other omics data such as genomic and transcriptomic data. As demonstrated 

in Figure 23A, for the majority of cell lines used for drug sensitivity profiling, RNA sequencing 

and genomic sequencing data is available. Since baseline transcriptional profiles have 

already been generated for almost all drug screened cell lines, we designed the first omics-

integration pipeline using drug sensitivity and RNA sequencing data. Detailed descriptions of 
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the computational methods used are available in the doctoral dissertation of Fabio Boniolo 

(Boniolo 2022).  

In brief, both single gene-based and pathway-based approaches were followed (Figure 23B). 

Elastic net models were generated based on gene expression alone whereas ridge 

regression models were calibrated on pathway enrichment scores (Boniolo 2022). For 

pathway predictions which are also further validated in this thesis (Chapter 6.11), publicly 

available protein-protein interaction networks and manually curated sets of pathways were 

used in addition to perform an a priori selection step for the calculation of single sample 

enrichment scores. These scores together with estimates of general drug response (GDR) 

were used to build models to predict drug response values (Figure 23B).  

 

Figure 23: A pharmacogenomic pipeline to predict pathways associated with drug response.  
(A) Overview of available omics data for the drug screened cell line cohort (WGBS: Whole Genome Bisulfite 
Sequencing, WGS: Whole Genome Sequencing, WES: Whole Exome Sequencing, LCWGS: Low-Coverage 
Whole Genome Sequencing, aCGH: array-based Comparative Genomic Hybridization, RNA_seq: RNA 
Sequencing). (B) Graphical summary of the input material and output of the pharmacogenomic approach to 
predict pathways associated with drug response. Panel (B) was created using BioRender.com.  

 

6.10 Validation of an association between CB-839 sensitivity and 
Surf1 expression 

The large-scale drug response dataset, together with gene expression data generated for the 

same cell lines, allows for the identification of promising drug – expression associations as 

described in Chapter 6.9. These associations could hint at potential biomarkers for patient 

stratification. As an example, I investigated the correlation between drug response to the 

glutaminase inhibitor CB-839 (Gross et al. 2014) and expression of the gene Surf1, which is 

linked to mitochondrial respiration (Pulliam et al. 2014) (Figure 24A, B). Glutaminase and 

Surf1 have previously been shown to be interacting proteins (Antonicka et al. 2020). To verify 

these findings, I selected four cell lines showing high CB-839 AUC values and Surf1 

expression levels, as well as four cell lines with low CB-839 AUC and Surf1 expression levels 

(Figure 24B). Subsequently, I performed clonogenic assays with the selected cell lines and 
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showed that indeed higher Surf1 expression levels are associated with CB-839 resistance 

(Figure 24C, D).  

 

Figure 24: Surf1 expression as a putative biomarker for CB-839 sensitivity. 
(A) Gene expression associated with drug response to CB-839 according to elastic net regression models. The 
models were generated based on data for 150 cell lines. Analysis and graph by Fabio Boniolo. (B) Normalized 
Surf1 expression plotted against AUC values for CB-839. Cell lines used for further validation experiments are 
highlighted in red. (C) Clonogenic assays using cell lines with low Surf1 expression and high Surf1 expression. 
Cells were treated with eleven concentrations of the drug CB-839 as indicated. Shown are representative results 
for one replicate out of two technical replicates (D) Representation of IC50 values derived from quantification of 
the clonogenic assays shown in (C). IC50 values were calculated based on two technical replicates and are 
shown for four cell lines with low Surf1 expression and four cell lines with high Surf1 expression. Mean with SD is 
indicated.   

Overall, this chapter provided evidence that the drug screening results generated in this 

thesis, together with gene expression data, can be used to generate models of sensitivity 

and resistance and to identify putative biomarkers of drug response which can be selected 

for further validation.   
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6.11 Combinatorial drug screens to validate predictive modelling of 
drug response based on transcriptomics data 

Predictive modelling of drug response based on pathway expression as described in Chapter 

6.9 can be validated using different approaches. We chose here to first investigate the 

relevance of pathways potentially associated with drug resistance or sensitivity by 

combinatorial drug screening. Of the 90 models generated according to the approach 

described in Chapter 6.9, 64 models were selected to be of sufficient model performance 

(Pearson correlation > 0.3) (Figure 25A). The pathways targeted by at least three drugs with 

sufficient performance are shown in Figure 25B. We selected the pathways represented by 

the highest numbers of drugs, i.e. MEK, microtubules and multi-receptor tyrosine kinases 

(multi-RTK) for further validation by combinatorial drug screening. For each pathway, the 

compound with the highest variability in effectiveness (highest mean absolute deviation of 

the AUC) was used (Figure 25C). The results for the combinatorial drug screens using 

Trametinib in combination with the drug library have already been published (Falcomatà et 

al. 2022). In this thesis, I will present the results for the validation of pathways associated 

with resistance and sensitivity to the microtubule inhibitor Paclitaxel and the multi-RTK 

inhibitor Afatinib. 

We selected a set of 10 cell lines representing groups of high (“sensitive”), intermediate 

(“neutral”), and low sensitivity (“resistant”) to the monotherapy treatment for both of these 

drugs (Figure 25D, E). Afatinib and Paclitaxel were added in a single dose, namely the 

median IC50 of the 25 % most sensitive cell lines from the monotherapy high-throughput 

drug screening dataset consisting of 250 murine cells lines (Figure 25F). Expected AUC 

values based on the Bliss model were derived from the monotherapy screening dataset and 

subtracted from AUC values calculated from the combinatorial drug screening data to obtain 

delta AUC values. Negative delta AUC values are used as a proxy for synergy, whereas 

positive delta AUC values were associated with potential antagonism.  
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Figure 25: Experimental design for the validation of pathways associated with drug response by 
combinatorial drug screening. 
(A) Overview of the model performance for the 90 generated models. 64 drugs had a performance above 0.3. (B) 
Overview of the pathways targeted by the highest number of drugs in the selection of 64 drugs (model 
performance > 0.3, at least 3 drugs targeting the pathway). (C) Median absolute deviation of AUC values for each 
of the drugs targeting MEK, microtubules or multi-RTK. The median absolute deviation was calculated from the 
monotherapy dataset for 250 murine cell lines. (D) AUC values from the monotherapy dataset for Afatinib for all 
screened 250 murine cell lines. Cell lines selected for the combinatorial validation screen are highlighted. (E) AUC 
values from the monotherapy dataset for Paclitaxel for all screened 250 murine cell lines. Cell lines selected for 
the combinatorial validation screen are highlighted. (F) Overview of the strategy for the combinatorial drug screen. 
The drug library (7 concentrations, 3-fold dilution, 10 µM – 10 nM) is given as monotherapy or in combination with 
the anchors Afatinib (single concentration: 0.2 µM) or Paclitaxel (single concentration: 0.01 µM). Using the Bliss 
model, an expected AUC value is calculated for each drug based on the monotherapy data and is compared to 
the AUC value obtained from the combination treatment. Panel (F) was created using BioRender.com. Figures 
and experimental design were adapted from Chiara Falcomatà. 
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The results represented by delta AUC values derived from the combination treatment with 

Afatinib are summarized in Figure 26. As shown in Figure 26A, the occurrence of potential 

synergism was highly cell line dependent. A large number of potentially synergistic 

combinations was identified for the cell lines C2532 and S559, whereas for the other tested 

cell lines, potential synergism was rare. Delta AUC values below certain thresholds, e.g. 

delta AUC < -0.1, therefore largely reflect the results for the cell lines C2532 and S559 

(Figure 26B, C). 

 

Figure 26: Overview of combinatorial drug screens results for the anchor Afatinib. 
(A) Heatmap representation of the delta AUC values (AUCcombination – AUCexpected) with values below 0 indicating 
potentially synergistic combinations. Clustering is based on Euclidean distance. Genotype, morphology and 
sensitivity to Afatinib monotherapy are indicated. (B) Overview of the distribution of delta AUC values colored by 
the sensitivity of the cell lines to the monotherapy treatment. (C) Overview of the distribution of delta AUC values 
colored by cell line.  

 

A similar pattern of potential synergism was observed for the combinations with Paclitaxel 

(Figure 27). In this case, the cell line S559 presented with by far the most potentially 

synergistic combinations as represented in Figure 27A, B and C.  
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Figure 27: Overview of combinatorial drug screens results for the anchor Paclitaxel. 
(A) Heatmap representation of the delta AUC values (AUCcombination – AUCexpected) with values below 0 indicating 
potentially synergistic combinations. Clustering is based on Euclidean distance. Genotype, morphology and 
sensitivity to Paclitaxel monotherapy are indicated. (B) Overview of the distribution of delta AUC values colored by 
the sensitivity of the cell lines to the monotherapy treatment. (C) Overview of the distribution of delta AUC values 
colored by cell line.  

 
The high variability in the number of potentially synergistic drug combinations across the 

tested cell lines complicated the identification of common hits to be compared to the 

pharmacogenomic predictions. We decided to select the most promising combinations based 

on the median delta AUC across our cell line cohort. The ten best scoring compounds 

(lowest median delta AUC) were then used for further analysis. These selection criteria 

revealed the inhibitors Linisitinib (targeting IGF-1R), Orantinib (targeting PDGFR), TPX-0005 

(targeting Src and ALK) and Ceritinib (targeting ALK) as potentially synergistic combinations 

with Afatinib (Figure 28A). While these targets do not exactly match the pathways predicted 

to be associated with sensitivity to Afatinib, namely for example ERBB and VEGF/VEGFR 

pathways (Figure 28B), they can nevertheless both be allocated to the group of receptor 

tyrosine kinases.  
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Figure 28: Results from combinatorial drug screen with Afatinib partially reflect predicted pathways.   
(A) Heatmap representation of the delta AUC values for the ten drugs with the highest median delta AUC values 
in combination with Afatinib across the ten tested cell lines. Clustering based on Euclidean distance. Genotype, 
morphology and sensitivity to Afatinib monotherapy are indicated as well as the drug targets. (B) Pathways 
predicted to be associated with drug response to Afatinib. Panel (B): Analysis and graph by Fabio Boniolo.  

 
Among others, the autophagy and 6-phosphofructo-2-kinase inhibitor PFK15 and the PI3K 

inhibitor ZSTK474 were identified as potentially synergistic compounds with Paclitaxel 

according to the same approach as described for Afatinib (Figure 29A). These targets are 

related to the pathways predicted to be associated with Paclitaxel sensitivity, namely PI3K 

and mTOR signaling as well as LKB1 pathways related to autophagy (Figure 29B).  

 

Figure 29: Results from combinatorial drug screen with Paclitaxel partially reflect predicted pathways. 
(A) Heatmap representation of the delta AUC values for the ten drugs with the highest median delta AUC values 
in combination with Paclitaxel across the ten tested cell lines. Clustering based on Euclidean distance. Genotype, 
morphology and sensitivity to Paclitaxel monotherapy are indicated as well as the drug targets. (B) Pathways 
predicted to be associated with drug response to Paclitaxel. Panel (B): Analysis and graph by Fabio Boniolo.   
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Overall, the results from combinatorial drug screens presented in this chapter encouraged 

further validation by complementary methods such as CRISPR/Cas9-based screens, which 

is presented in Chapter 6.12. 

 

6.12 CRISPR/Cas9 screens to validate predictive modelling of drug 
response based on transcriptomics data 

Based on the promising results obtained from the validation of predictive modelling of drug 

response by combinatorial drug screening, we decided to complement these findings by 

performing CRISPR/Cas9 based screens. An already available cell line stably expressing 

Cas9 (Falcomatà et al. 2022) was transduced with a genome-scale CRISPR/Cas9 pooled 

library and divided into two different treatment arms (Afatinib or Paclitaxel) and a control arm 

(DMSO) (Figure 30A). After a two-week treatment period, DNA was harvested and 

sequenced to identify genes which were depleted in the presence of Afatinib or Paclitaxel. To 

this end, ß-scores were calculated for each gene and each of the treatment and control 

arms. Differences in ß-scores are denoted as differential sensitivity. 165 genes for Afatinib 

treatment and 196 genes for Paclitaxel treatment were identified which showed significant ß-

scores (false discovery rate (FDR) ≤ 0.05 in both control and treatment arm) and differential 

sensitivity ≤ -0.25 (Figure 30B-C). After exclusion of essential genes, the remaining genes 

were analyzed for enrichment of PID pathways (Figure 30D-E).  

Several overlaps between the thus obtained pathways (Figure 30D-E) and pathways 

predicted to be associated with drug response (Figure 28B, Figure 29B) were observed. 

Depletion of TCR-JNK, PTP1B and ERBB1_DOWNSTREAM pathways seen in our 

CRISPR/Cas9 based screen performed under Afatinib treatment is coherent with the 

predictions made previously indicating associations with resistance to this drug. Importantly, 

the association between drug response to Afatinib and ERBB1 and PTP1B pathway 

expression is also reflected by synergistic combinations observed for receptor tyrosine 

kinase inhibitors (Figure 28A).  

AP1, MYC and LKB1 pathways predicted to be associated with resistance to Paclitaxel 

treatment (Figure 29B) were also significantly depleted after treatment with this drug as seen 

in our CRISPR/Cas9 based screen (Figure 30E). The 6-phosphofructo-2-kinase inhibitor 

PFK15 was identified as potentially synergistic with Paclitaxel in our combinatorial drug 

screens (Figure 29A), in line with the association seen between drug response and LKB1 

pathway expression.  
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Overall, it could be shown that the drug response data presented in this thesis, together with 

other omics data such as transcriptomics data, can be used to make predictions of drug 

sensitivity and resistance based on expression of specific pathways. These predictions could 

be validated for two exemplary drugs, Afatinib and Paclitaxel, by combinatorial drug screens 

and CRISPR/Cas9 based screens.  

 

Figure 30: Results from CRISPR/Cas9-based screens support predictions of drug sensitivity and 
combinatorial drug screens.  
(A) Experimental design of the CRISPR/Cas9-based screens: the cell line 9091 stably expressing Cas9 (9091 
Cas9) was transduced with a genome-scale library, subjected to antibiotics selection and subsequently divided 
into two treatment arms and one control arm. Sequencing was performed to identify depleted genes in the 
treatment arms. Differences in sgRNA representation between treatment and control arms are calculated as ß-
scores and differential sensitivity represents differences in ß-scores between each treatment arm and the control 
arm. Overviews of ß-scores and differential sensitivity are shown for Afatinib (B) and Paclitaxel (C) treatment. 
Differential sensitivity values ≤ -0.25 are highlighted in red. Gene set enrichment analysis was performed for non-
essential genes with differential sensitivity ≤ -0.25 and FDR ≤ 0.05 in both control and treatment arms. The 20 
pathways with highest significance are shown for Afatinib (D) and Paclitaxel (E) treatment. Pathways overlapping 
with predictions of drug resistance shown in Figure 28B and Figure 29B are highlighted in red. The experimental 
part of the CRISPR/Cas9-based screens was performed by myself with support from Christian Schneeweis. The 
primary analysis of the data including the calculation of ß-scores was performed by Anantharamanan Rajamani. 
The pipeline for gene set enrichment analysis was designed by Chiara Falcomatà. Panel (A) was created using 
Biorender.com. 
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7 Discussion  

7.1 An automated high-throughput drug screen in pancreatic 
cancer cell lines 

In this thesis, I have presented the results of the, to my knowledge, so far largest high-

throughput drug screen in pancreatic cancer cell lines. This dataset provides a 

comprehensive characterization of the landscape of drug response in a large collection of 

murine cell lines, complemented by a group of primary human cell lines. In addition, I re-

tested a cohort of commercially available established human cell lines for which drug 

screening data have previously been generated by different institutes and which are publicly 

available (Seashore-Ludlow et al. 2015; Rees et al. 2016; Picco et al. 2019; Corsello et al. 

2020).  

Overall, the drug sensitivity map presented in this thesis was characterized by resistance to 

the majority of the drugs. Nevertheless, we could identify several compounds with particularly 

high efficacy across the PDAC cell line cohort, including the HDAC inhibitor Romidepsin, the 

proteasome inhibitor Carfilzomib and the histone methyltransferase inhibitor Chaetocin.  

The potential of drugs targeting epigenetics pathways, such as HDAC inhibitors, for PDAC 

treatment has already been shown in various pre-clinical studies (Versemann et al. 2022). 

Romidepsin is one of the epigenetic compounds which is also being tested in clinical trials 

involving PDAC patients (Jones et al. 2012; Elrakaybi et al. 2022). Chaetocin is another 

epigenetic drug for which promising in vitro data in PDAC is already available (Mathison et al. 

2017). For the proteasome inhibitor Carfilzomib, on the other hand, subtype-specific 

vulnerabilities in PDAC have been reported (Fraunhoffer et al. 2020). While our study could 

therefore confirm previously known potential treatment strategies for PDAC with high in vitro 

efficacy, we could also identify novel candidates for further pre-clinical and clinical 

investigations in pancreatic cancer. For the compound NSC319726, to my knowledge, in 

vitro efficacy in PDAC cell lines has not been demonstrated prior to this study. We carried out 

further investigations on the mechanism of action of this drug which is discussed in more 

detail in Chapter 7.2.  

In addition to these generally effective or ineffective compounds, we observed high 

heterogeneity in drug response for a considerable fraction of drugs which also allowed us to 

identify subgroup-specific vulnerabilities. We observed highly significant differences in 

sensitivity based on the morphology/subtype of the PDAC cell lines and could confirm 

previously known associations. These include higher efficacy of MEK inhibition and the 

proteasome inhibitor Carfilzomib in epithelial cells (Falcomatà et al. 2022; Fraunhoffer et al. 

2020) and higher efficacy of HDAC inhibition in mesenchymal cells (Krauß et al. 2022). 
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Knowledge of such associations between drug response and specific characteristics (e.g. 

morphology) of the cell lines may be particularly valuable in the case of PDAC as 

stratification is thought to be an important strategy for the development of more effective 

treatment regimens (Juiz et al. 2019).   

Furthermore, the high-throughput drug screening data, together with other large-scale 

datasets encompassing transcriptomics, genomics, and proteomics data, can also be used to 

identify potential biomarkers of drug sensitivity and resistance. Such approaches are 

discussed in more detail in Chapter 7.4.  

An additional application of the drug response data presented in this thesis is the 

identification of misannotated targets and gaining insights into drugs’ mechanism of action. 

One prominent example shown here is the drug KX2-391, originally annotated as an Src 

inhibitor (Fallah-Tafti et al. 2011), but which shows clear clustering with microtubule 

inhibitors. This phenomenon has previously been reported and KX2-391 has been validated 

as a microtubule inhibitor (Seashore-Ludlow et al. 2015; Smolinski et al. 2018). Such 

correlation analyses also formed the basis of the investigations of the mechanism of action of 

NSC319726 presented in this thesis (Chapter 7.3).  

All these potential applications of the large-scale drug screening dataset, i.e. identification of 

effective drugs for pancreatic cancer, identification of therapeutic vulnerabilities in PDAC 

subgroups with potential biomarkers based on cell line phenotypes or derived from multi-

omics data integration and mechanistic studies, can be complemented by the availability of 

additional data for primary human PDAC cell lines. This allows for cross-species validations 

of the obtained results. In that regard it should be noted that, even though overall, mice and 

humans have many similarities on the molecular level, there are nevertheless also 

differences which can lead to differing responses to therapy (Lin et al. 2014). Therefore, not 

surprisingly, we observed for example specific drugs with generally higher or lower efficacy in 

human compared to murine cell lines. Such differences may need to be taken into account 

when selecting drugs for further validation studies.  

 

7.2 Comparability of large-scale pharmacogenomic datasets 

The reproducibility and the utility of large-scale pharmacogenomic approaches have been 

scientifically debated (Haibe-Kains et al. 2013; Safikhani et al. 2016b; Pharmacogenomic 

agreement between two cancer cell line data sets 2015; Smirnov et al. 2016; Safikhani et al. 

2016a; Geeleher et al. 2016; Bouhaddou et al. 2016; Mpindi et al. 2016). Various 

confounding factors such as drug concentration range, numbers of cells seeded per well, 
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numbers of cell doublings achieved, media conditions and growth rate as well as assay 

readout including the cell viability assay and analytical tools used have been identified which 

can diminish the achievable correlation values between studies (Pharmacogenomic 

agreement between two cancer cell line data sets 2015; Mpindi et al. 2016; Hafner et al. 

2016).  

In our high-throughput drug screening approach, we have strived to reduce the “intra-screen” 

confounding factors to minimal levels, by for example using the same batch of FCS for all 

screened cell lines and ordering the compounds always from the same provider who also 

conducts analytical chemistry to assure identity and purity of the compounds. “Intra-screen” 

consistency is reflected by the results presented in Chapter 6.5 which demonstrate high 

correlations of AUC values for drugs with similar targets.  

To investigate the degree of consistency of our screen compared to other large-scale 

screening approaches, I included 20 commercially available established human pancreatic 

cancer cell lines into the drug screening pipeline. The results can be directly compared to 

publicly available datasets from the DepMap Portal (https://depmap.org/portal/download/all/).  

Previous studies have employed different approaches to measure consistency, for example 

for each drug separately across all of the cell lines, termed an “across” cell line comparison 

(Haibe-Kains et al. 2013). Correlation values have been demonstrated to be improved by a 

“between” cell line comparison approach, where correlation is estimated for pairwise 

overlapping cell lines over shared sets of compounds (Mpindi et al. 2016). Other groups have 

calculated correlation coefficients across all shared data points (overlapping cell line – drug 

pairs) (Pozdeyev et al. 2016; Corsello et al. 2020). While correlation coefficients can be lower 

or higher for individual drugs (Haibe-Kains et al. 2013; Pharmacogenomic agreement 

between two cancer cell line data sets 2015), comparisons across shared data points 

commonly yield moderate correlation values of around 0.6 (Pozdeyev et al. 2016; Corsello et 

al. 2020). 

In this study, I applied a similar approach encompassing all shared data points to obtain an 

overall view on the levels of consistency of our own with the publicly available datasets 

GDSC2, CTRP and PRISM. Pearson correlation coefficients obtained from this analysis 

ranged between 0.64 to 0.66. To put these values into context, I also compared the public 

datasets for the selected 20 pancreatic cancer cell lines with each other, from which Pearson 

correlation coefficients between 0.48 and 0.55 were calculated. Overall, our dataset is 

therefore similarly robust to existing pharmacogenomic datasets (Corsello et al. 2020).  

Further analyses that could be performed include the “across” cell line comparison for each 

individual drug (Haibe-Kains et al. 2013) and applying corrective measures to take 
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differences in experimental setups, especially used concentration ranges, into consideration. 

The adjustment of AUC values to the respective overlapping dose range has been proposed 

in that regard (Bouhaddou et al. 2016; Pozdeyev et al. 2016). 

 

 

7.3 NSC319726 is highly effective across PDAC cell lines and is 
putatively targeting mitochondrial metabolism 

Among the most effective drugs across the PDAC cell line cohort used in this project is the 

compound NSC319726, which was originally discovered as a p53-mutant reactivator (Yu et 

al. 2012; Yu et al. 2014). In the study presented here, AUC values were below 0.5 for almost 

all tested cell lines and no significant differences were observed between Trp53 wild-type 

and Trp53 mutant cell lines, indicating a predominantly p53-independent mechanism of 

action. As has been shown in this thesis (Chapter 6.5) and in previous studies (Seashore-

Ludlow et al. 2015), clustering of compounds based on their drug response across a cell line 

cohort can be informative on drugs’ mechanism of action. The three drugs with the highest 

correlation values with NSC319726 were Deguelin, NMS-873 and Elesclomol. Deguelin has 

been shown to act via DNA damage and repair gene suppression (JI et al. 2012), Akt 

inhibition (Jin et al. 2007), but also the induction of reactive oxygen species production (Xu et 

al. 2015). For NMS-873, originally identified as an inhibitor of the valosin-containing protein 

(VCP/p97), a dual mechanism of action targeting mitochondrial oxidative phosphorylation 

has been reported (Bouwer et al. 2021). Elesclomol is an accepted inducer of oxidative 

stress and has in addition been shown to target mitochondrial metabolism and to induce a 

novel form of cell death called cuproptosis (Zheng et al. 2022; Tsvetkov et al. 2022; Kirshner 

et al. 2008). For NSC319726, mechanisms of action involving the generation of reactive 

oxygen species (Shimada et al. 2018) and mitochondrial metabolism, similar to Elesclomol, 

have likewise been shown (Tsvetkov et al. 2022). Tsetkov et al. also reported on similar 

killing profiles of Elesclomol and NSC319726 in the PRISM Repurposing dataset (Tsvetkov 

et al. 2022). Based on these previous studies and the correlations observed in our high-

throughput drug screen as well as the lack of Trp53-mutant-specific sensitivity, it could be 

assumed that the relevant mechanism of action of NSC319726 for our cell line cohort is 

independent of p53 but may involve mitochondrial metabolism and reactive oxygen species.  

Before studying the mechanism of action in our PDAC cell lines in more detail, I confirmed 

the cytotoxicity of NSC319726 by clonogenic assays. IC50 values were shown to be in the 

picomolar to nanomolar range, confirming the high efficacy of the compound. In line with 

previous studies (Shimada et al. 2018; Tsvetkov et al. 2022), there was no indication that 

NSC319726 induced apoptotic, necroptotic or ferroptotic cell death, as shown by co-
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treatment with specific inhibitors of these cell death pathways. This drug may therefore act 

via the recently identified novel cell death mechanism called cuproptosis (Tsvetkov et al. 

2022).  

We could confirm the role of copper in NSC319726’s mechanism of action as CuCl2 

increased NSC319726 efficacy, which is in line with what has been previously shown 

(Tsvetkov et al. 2022). Like Tsetkov et al. did for Elesclomol, we also investigated the effect 

of BSO and NAC on NSC319726 efficacy. BSO is an inhibitor of gamma-glutamylcysteine 

synthetase, which is essential for the synthesis of glutathione (GSH) (Griffith 1982). GSH, as 

the most abundant antioxidant in the cell, plays an important role in the protection against 

ROS and the regulation of intracellular redox status (Reliene and Schiestl 2006; Anderson 

1998). In addition, GSH is also a known copper chelator (Ngamchuea et al. 2016). Co-

treatment with BSO increased the effect of NSC319726 and Elesclomol in this study and the 

report by Tsetkov et al, respectively (Tsvetkov et al. 2022). This may be explained by the 

involvement of copper, reactive oxygen species or both.  

NAC is a synthetic precursor of cysteine and GSH and is therefore a widely accepted 

inhibitor of oxidative stress (Sun 2010; Zafarullah et al. 2003). Tsetkov et al. did not observe 

an effect of NAC on Elesclomol activity and therefore concluded that oxidative stress did not 

play a role in the mechanism of action (Tsvetkov et al. 2022). In our study, however, NAC 

reduced the activity of NSC319726 in some of the tested cell lines, indicating that for 

NSC319726 in our PDAC cohort, ROS may play a role. Even though the two inhibitors 

Elesclomol and NSC319726 have been previously reported to act in an overall similar 

fashion (Tsvetkov et al. 2022), there may nevertheless be differences in their detailed 

mechanism of action. In addition, NAC has been shown to reverse ROS production only in 

specific cells (Zheng et al. 2022; Kirshner et al. 2008; Rushworth and Megson 2014) and the 

effect of NAC on Elesclomol is also controversial depending on the cell lines and 

concentrations used (Zheng et al. 2022; Wangpaichitr et al. 2009; Lee et al. 2020; Buccarelli 

et al. 2021; Tsvetkov et al. 2022). Depending on the context, Elesclomol may therefore exert 

its effect by either ROS induction and/or targeting mitochondrial metabolism (Zheng et al. 

2022) and this may also be the case for NSC319726.   

Apart from the effect of NAC on NSC319726 toxicity that we could demonstrate, we could, 

however, not confirm the induction of ROS in flow cytometric analysis using CellROX™ Deep 

Red Reagent (data not shown). A previous study in glioblastoma cells which showed ROS 

induction by NSC319726 performed staining with the ROS detection reagent H2DCFDA 

(Shimada et al. 2018), which could also be attempted in our PDAC cell lines in the future. 

Shimada et al. could not define exactly which ROS is induced by NSC319726 and the 

specific species generated may not have been detectable by CellROX™ Deep Red Reagent. 
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While in our study, we could not confirm the induction of ROS by NSC319726, apart from the 

effect of NAC, we could present strong indications that oxidative phosphorylation and 

mitochondrial metabolism play an important role for NSC319726’s toxic effects. Culturing of 

cells in galactose, thereby forcing them to predominantly undergo oxidative phosphorylation, 

tended to increase the effect of NSC319726 in line with previous reports (Tsvetkov et al. 

2022). Whereas Elesclomol was shown to reduce the spare capacity of mitochondrial 

respiration in non-small cell lung cancer and Ewings sarcoma cells (Tsvetkov et al. 2022), I 

could show that in PDAC cells, NSC319726 affected all components of the mitochondrial 

respiratory chain. This indicates again that there may be detailed differences between the 

mode of action of Elesclomol and NSC319726 or that these may depend on the cell culture 

system and concentrations used.  

Overall, I presented evidence that oxidative phosphorylation, and potentially ROS, play an 

important role in the mode of action of NSC319726. To further elucidate key players that are 

involved, CRISPR/Cas9 knockout screens could, for example, be performed.  

Elesclomol has already been tested in several clinical trials where it has shown a favorable 

safety profile, but not the desired clinical response (Monk et al. 2018; Hedley et al. 2016; 

O'Day et al. 2009; Zheng et al. 2022). A retrospective analysis of a phase 3 combination trial 

in melanoma patients revealed, however, that low plasma lactate dehydrogenase (LDH) 

levels were associated with higher sensitivity to Elesclomol (O'Day et al. 2009; Tsvetkov et 

al. 2022). Future clinical trials of Elesclomol and similar compounds such as NSC319726 

may therefore be considered for selected patient populations (Tsvetkov et al. 2022; Zheng et 

al. 2022). NSC319726 has not yet been used in clinical trials. Based on the strong efficacy in 

PDAC cell lines, such clinical investigations, alone or in combination with for example 

glycolysis inhibitors, and possibly in selected patient populations may be warranted in the 

future.  

 

7.4 Multi-omics data integration using the obtained drug sensitivity 
data 

A great strength of the presented large-scale drug sensitivity dataset is that comprehensive 

molecular characterization is additionally available for the investigated cell lines. In an 

approach similar to what is being pursued by the DepMap Portal (Barretina et al. 2012; 

Ghandi et al. 2019), drug response can therefore be integrated with other large-scale 

datasets to identify biomarkers that could allow for patient stratification. Stratification may be 

particularly relevant in pancreatic cancer due to high molecular heterogeneity which is widely 
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thought to hamper the success of targeted therapies in unselected patient cohorts (Juiz et al. 

2019).  

A subset of the drug response data from the here presented high-throughput screen, 

including 36 mouse cell lines, has already been successfully used for an integration with 

(phospho)proteomic data (Giansanti et al. 2022). Associations between Sirt6 protein 

abundance and sensitivity to Trametinib and Cobimetinib as well as between Shroom2 

abundance and responses to KX2-391 and other tubulin polymerization inhibitors could 

exemplarily be shown (Giansanti et al. 2022).   

In addition, advanced machine learning techniques can be applied to the generated large-

scale datasets (Boniolo et al. 2021) and such a pharmacogenomic pipeline using drug 

sensitivity and transcriptomics data has recently been developed in the Saur laboratory 

(Boniolo 2022). Predictive models based on the expression of single genes on the one hand 

or of pathways on the other hand were generated. In a next step, these models need to be 

validated experimentally, as has exemplarily been shown in this thesis for an association 

identified between the effectiveness of the glutaminase inhibitor CB-839 and Surf1 mRNA 

expression. For further biomarker validation studies, Surf1 mRNA levels will additionally need 

to be verified by complementary methods such as qPCR and the association will also have to 

be shown in the human setting. Nevertheless, this study further demonstrates that it is 

possible to derive candidate biomarkers from our high-throughput drug screening and 

transcriptomics datasets.  

In a second computational approach, the activity of pathways was associated with drug 

response (Boniolo 2022). Previous work in the Saur laboratory has shown that such 

predicted pathways can be validated by combinatorial drug screening (Falcomatà et al. 2022) 

and CRISPR/Cas9-based negative selection screens (Boniolo 2022). In this thesis, I took a 

similar approach to validate the pathways predicted to be associated with drug response to 

two additional inhibitors, namely the multi-RTK inhibitor Afatinib and the microtubule inhibitor 

Paclitaxel. Combinatorial drug screens identified IGF-1R, PDGFR and ALK inhibitors to be 

cooperating with Afatinib, which correlates with pathways associated with receptor tyrosine 

kinases predicted to be relevant for Afatinib response. Sensitivity to Paclitaxel was predicted 

to be associated with PI3K, mTOR and LKB1 pathway activity. In line with these predictions, 

the autophagy inhibitor PFK15 and the PI3K inhibitor ZSTK474 were shown to potentially 

synergize with Paclitaxel in combinatorial drug screens.  

While the combinatorial drug screens provided first hints at the validity of the predicted 

pathways, this approach suffers certain limitations, regarding for example potential off-target 

effects of compounds (Klaeger et al. 2017; Antolin et al. 2020; Lechner et al. 2022) which 

can complicate the interpretation of associations. Due to constraints in feasibility, the 
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combinatorial drug screens were performed in only one replicate, further increasing the noise 

of the data. We therefore decided to complement them by further validation experiments 

using CRISPR/Cas9 based negative selection screens.  

Overall, good agreement between pathways predicted to be associated with drug response 

and those seen depleted after drug treatment in our CRISPR/Cas9 based experiments was 

observed. Among the pathways predicted to be associated with the resistance to the 

compound Afatinib (Figure 28B), TCR-JNK, PTP1B and ERBB1 pathways were also seen 

significantly depleted within our CRISPR/Cas9 based negative selection screen performed 

under treatment with the same drug. In general, pathways related to receptor tyrosine kinase 

signaling are highly represented in all three datasets, in the predictions made based on RNA 

sequencing data, in our combinatorial drug screen and the CRISPR/Cas9 based screen. 

Receptor tyrosine kinase inhibitors targeting for example ALK, c-Met, PDGFR and IGF-R are 

clearly enriched in the set of drugs with potential synergy with Afatinib and pathways 

depleted in the CRISPR/Cas9 based screen include MET, IGF1, PDGFR and ERBB1 

pathways, indicating a strong agreement between the datasets. EGFR (ERBB1) pathway 

activation, activating EGFR and ALK mutations and c-MET amplifications have previously 

been reported as resistance mechanism for the compound Afatinib (van der Wekken et al. 

2016).  

AP1, MYC and LKB1 pathways predicted to be associated with resistance to Paclitaxel 

treatment (Figure 29B) were also significantly depleted after treatment with this drug as seen 

in our CRISPR/Cas9 based screen. Interestingly, the 6-phosphofructo-2-kinase and 

autophagy inhibitor PFK15 was also identified as potentially synergistic with Paclitaxel by 

combinatorial drug screening. LKB1 is a kinase which directly activates, among others, 

AMPK, which in turn is a central player in cell growth and metabolism (Shackelford and Shaw 

2009). One of the substrates of AMPK is 6-phosphofructo-2-kinase (Shackelford and Shaw 

2009) which, as mentioned above, can be targeted by the compound PFK15 (Zhu et al. 

2016). Based on our results, it could therefore be hypothesized that LKB1 pathway 

expression could serve as a potential biomarker for Paclitaxel resistance which could be 

combated by co-treatment with PFK15. Intriguingly, synergy between Paclitaxel and PFK15 

has previously been shown in in vitro and in vivo breast cancer models (Lu et al. 2021) as 

well as in a study presenting dual targeting of cancer cells and cancer-associated fibroblasts 

by nanoparticles (Zang et al. 2022). These previously published findings may warrant further 

investigations to confirm synergy between Paclitaxel and PFK15 in pancreatic cancer. Given 

that Paclitaxel, administered together with Gemcitabine is currently part of standard of care 

therapeutic regimens for this cancer entity (Kleeff et al. 2016), a three-compound 

combination may also be interesting to analyze.  
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8 Conclusion and outlook 
In summary, this work comprises the so far largest high-throughput drug screening dataset 

for pancreatic cancer cell lines. It was shown that these data can be used to identify 

subgroup-specific vulnerabilities and compounds with high efficacy in PDAC and can help to 

elucidate drugs’ mechanisms of action. Additional mechanistic studies were performed for 

one particular drug, NSC319726, originally identified as a p53 mutant reactivator, which 

demonstrated that copper and mitochondrial respiration may play an important role in the 

mechanism of action of this drug. In addition, the integration of the drug response data with 

other omics data can help to determine specific biomarkers of drug sensitivity or resistance. 

As exemplarily shown here, expression of single genes or pathway activation can be 

proposed as potential predictors of drug response and can be validated using different 

approaches such as combinatorial drug screens and CRISPR/Cas9-based negative selection 

screens. While this study has focused on transcriptomics data, integration with other large-

scale datasets such as genomics and proteomics data is possible in the future and may yield 

an even more comprehensive view of biomarkers for stratification of sensitive PDAC 

subgroups. Overall, the high-throughput drug screening data presented in this thesis may be 

considered as a valuable resource which can hopefully be used to initiate further 

investigations deciphering therapeutic vulnerabilities in pancreatic cancer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary data 
 

125 
 

9 Supplementary data 
 

 

Figure 31: Fibroblast contamination does not affect drug response.  
(A) Heatmap of Z scores of AUC values derived from 250 murine cell lines treated with 415 drugs (3 cell line – 
drug pairs excluded according to Chapter 5.2.4). Clustering is based on Euclidean distance. Fibroblast 
contamination is annotated. (B) Principal component analysis (PCA) plot for the 250 screened mouse cell lines 
based on AUC values for 415 drugs (3 cell line – drug pairs excluded according to Chapter 5.2.4). Each dot 
represents one cell line, colored by fibroblast contamination status. No clustering based on fibroblast 
contamination can be observed, indicating that fibroblast contamination does not affect drug response.  

 

 

 

Figure 32: Dose response curves excluded from analysis.  
(A) Dose response curves for each replicate of the cell line C1530 treated with GSK923295. Calculated mean 
AUC = 718, sdAUC = 1015. (B) Dose response curves for each replicate of the cell line C1530 treated with 
Oprozomib. Calculated mean AUC = 6.1, sdAUC = 8.1. (C) Dose response curves for each replicate of cell line 
W22 treated with Thiomyristoyl. Calculated mean AUC = 9.5, sdAUC = 10.9.  
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Figure 33: Glycolysis is less affected by NSC319726 than oxidative phosphorylation.  
Extracellular acidification rate (ECAR) measured by Seahorse Assay Glycolytic Stress Test after 24 hours 
treatment with 0.03 µM NSC319726 for each of the tested cell lines (A) 4706; (B) 4072; (C) S559; (D) C1232; (E) 
9091 and (F) C2532. Values for NSC319726 treatment and DMSO controls are normalized to cell viability, for 
each cell line separately. Mean values ± SD for four technical replicates are shown.  
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Figure 34: Glycolytic capacity and glycolytic reserve may be affected by NSC319726 to some extent.  
ECAR values from Figure 33 summarized for (A) Non-glycolytic acidification; (B) Glycolysis; (C) Glycolytic 
capacity; (D) Glycolytic reserve. Mean values ± SD are shown for four replicate ECAR values measured at three 
consecutive time points (12 datapoints per condition). 
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Table 9-1: Detailed genotypes and information on recombined alleles for murine cell lines.  
WT = wildtype, REC = recombination, MUT = presence of unrecombined alleles (indicating fibroblast 
contamination), N.D. = not detected (Pik3ca: no band for MUT or REC in Pik3ca recombination PCR indicative of 
Pik3ca WT status; Trp53: no band detected in p53 PCRs indicative of Trp53 deletion).  

Sample ID Genotype 
group 

Detailed genotype Recombination in cell line 
Kras             Pik3ca          Trp53 

10092 PPI3K Ptf1aCre/+;Pdx1-Cre;LSL-
Pik3caH1047R/+ 

WT/WT REC WT/WT 

10139 PKP Ptf1aCre/+;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT N.D. REC/WT 

10158 PPI3K Ptf1aCre/+;LSL- 
Pik3caH1047R/+ 

WT/WT REC WT/WT 

10161 PPI3K Ptf1aCre/+;LSL- 
Pik3caH1047R/+ 

WT/WT REC WT/WT 

10193 PPI3KP Ptf1aCre/+; LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC REC/WT 

10232 PKP Ptf1aCre/+;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT N.D. REC/WT 

10350 PPI3K Ptf1aCre/+;LSL- 
Pik3caH1047R/+ 

WT/WT REC WT/WT 

10502 PKP Ptf1aCre/+;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT N.D. REC/WT 

10587 PPI3KP Ptf1aCre/+;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC REC/WT 

10593 PPI3KP Ptf1aCre/+;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC REC/WT 

10632 PPI3KP Ptf1aCre/+;Pdx1-Cre; LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC REC/WT 

10688 PPI3KP Ptf1aCre/+;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC REC/WT 

10725 PPI3KP Ptf1aCre/+;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC REC/WT 

10729 PPI3KP Ptf1aCre/+;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC/MUT REC/WT 

10731 PPI3KP Ptf1aCre/+;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC/MUT REC/WT/
MUT 

11343 PKP Ptf1aCre/+;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT N.D. REC/WT 

11363-2 PKPI3K Ptf1aCre/+;LSL-
KrasG12D/+;Pik3caH1047R/+ 

REC/WT REC WT/WT 

11440 PPI3KP Ptf1aCre/+;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC/MUT REC/WT 

11600 PPI3KP Ptf1aCre/+;Pdx1-Cre;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC REC/WT 

11602 PPI3KP Ptf1aCre/+;Pdx1-Cre;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC/MUT MUT/MUT 

11714 PPI3KP Ptf1aCre/+;Pdx1-Cre;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC REC/WT 

11987 PPI3KP Ptf1aCre/+;Pdx1-Cre; LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC/MUT REC/WT/
MUT 
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Sample ID Genotype 
group 

Detailed genotype Recombination in cell line 
Kras             Pik3ca          Trp53 

12047 PPI3K Ptf1aCre/+;LSL- 
Pik3caH1047R/+ 

WT/WT REC WT/WT 

12128 PPI3KP Ptf1aCre/+;LSL-
Pik3caH1047R/+;LSL-
Trp53R172H/+ 

WT/WT REC REC/WT/
MUT 

12508 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
12690 PPI3K Pdx1-Cre;LSL-

Pik3caH1047R/+ 
WT/WT REC WT/WT 

13474 PPI3KP Pdx1-Cre;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC REC/WT 

13871 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53lox/lox 

REC/WT N.D. N.D. 

14169 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT N.D. REC/WT 

14193 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53lox/lox 

REC/REC N.D. N.D. 

14311 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53lox/+ 

REC/WT N.D. N.D. 

16990 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
16992 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/REC N.D. WT/WT 
1712 PKP Pdx1-Cre;LSL-

KrasG12D/+;Trp53R172H/+ 
REC/WT N.D. REC/WT 

1778 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/REC N.D. REC/WT 

2259 PK Pdx1-Cre;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
271-105 PKPCSm Pdx1-Flp;FSF-

KrasG12D/+;Cdkn2alox/+; 
Smad4lox/lox;Trp53lox/+ 

REC/WT N.D. WT 

271-91 PKPCSm Pdx1-Flp;FSF-
KrasG12D/+;Cdkn2alox/+; 
Smad4lox/lox;Trp53lox/+ 

REC/WT N.D. WT 

2937 PKPE Pdx1-Cre;LSL-
KrasG12D/+;Trp53R172H/+; 
Cdh1fl/fl 

REC/WT N.D. REC/WT 

3139 PKP Ptf1aCre/+;LSL-
KrasG12D/+;Trp53lox/+ 

REC/WT N.D. WT 

3202 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
3250 PK Pdx1-Cre;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
3862 PPI3KP Ptf1aCre/+;Pdx1-Cre; LSL-

Pik3caH1047R/+;Trp53R172H/+ 
WT/WT REC REC/WT 

4072 PK Pdx1-Cre;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
4130 PPI3KP Ptf1aCre/+; LSL-

Pik3caH1047R/+;Trp53R172H/+ 
WT/WT REC REC/WT 

4134 PPI3K Ptf1aCre/+;Pdx1-Cre;LSL- 
Pik3caH1047R/+ 

WT/WT REC WT/WT 

4140 PPI3K Ptf1aCre/+;LSL- 
Pik3caH1047R/+ 

WT/WT REC WT/WT 

4706 PK Pdx1-Flp-o;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
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Sample ID Genotype 
group 

Detailed genotype Recombination in cell line 
Kras             Pik3ca          Trp53 

4888 PPI3K Pdx1-Cre;LSL-
Pik3caH1047R/+ 

WT/WT REC WT/WT 

4900 PK Pdx1-Flp-o;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
4912 PK Pdx1-Flp;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
4971 PKP Pdx1-Flp;FSF-

KrasG12D/+;LSL-Trp53WT/+ 
REC/WT N.D. MUT/MUT 

5123 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
5320 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
53578 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
53631 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
53646 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
53704 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
53909 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/REC N.D. WT/WT 
5671 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
5748 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
6021 PKP Ptf1aCre/+;LSL-

KrasG12D/+;Trp53R172H/+ 
REC/WT N.D. REC/WT 

6034 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/REC N.D. REC/WT 

6075 PK Pdx1-Cre;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
6127 PK Pdx1-Cre;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
6605 PKP Pdx1-Cre;LSL-

KrasG12D/+;Trp53R172H/+ 
REC/WT/
MUT 

N.D. REC/WT/
MUT 

6719 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT N.D. REC/WT 

7725 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53lox/+ 

REC/WT N.D. N.D. 

7968 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/REC N.D. WT/WT 
8013 PKP Pdx1-Cre;LSL-

KrasG12D/+;Trp53lox/+ 
REC/WT N.D. N.D. 

8028 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
8182 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
8248 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
8296 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
8305 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
8349 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
8442 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
8513 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
8570 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
8661 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
8927 PPI3K Ptf1aCre/+;LSL- 

Pik3caH1047R/+ 
WT/WT REC WT/WT 

8932 PPI3K Ptf1aCre/+;LSL- 
Pik3caH1047R/+ 

WT/WT REC WT/WT 

9063 PKP Ptf1aCre/+;Pdx1-Cre;LSL-
KrasG12D/+; Trp53R172H/+ 

REC/WT N.D. REC/WT 

9091 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
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Sample ID Genotype 
group 

Detailed genotype Recombination in cell line 
Kras             Pik3ca          Trp53 

9172 PKP Ptf1aCre/+;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT N.D. REC/WT 

9203 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
9255 PKP Ptf1aCre/+;Pdx1-Cre;LSL-

KrasG12D/+;Trp53R172H/+ 
REC/WT/
MUT 

N.D. REC/WT/
MUT 

9366 PKP Ptf1aCre/+;Pdx1-Cre;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT N.D. REC/WT 

9471 PPI3K Ptf1aCre/+;LSL- 
Pik3caH1047R/+ 

WT/WT REC WT/WT 

9580 PPI3K Ptf1aCre/+;LSL- 
Pik3caH1047R/+ 

WT/WT REC WT/WT 

9591 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
9784 PKP Ptf1aCre/+;LSL-

KrasG12D/+;Trp53R172H/+ 
REC/WT/
MUT 

N.D. REC/WT/
MUT 

9793 PKPI3KP Ptf1aCre/+;LSL-
KrasG12D/+;Pik3caH1047R/+; 
Trp53R172H/+ 

REC/WT/
MUT 

REC/MUT REC/WT/
MUT 

9794 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT/
MUT 

N.D. WT/WT 

9795 PKPI3K Ptf1aCre/+;LSL-
KrasG12D/+;Pik3caH1047R/+ 

REC/WT REC WT/WT 

9924 PKP Ptf1aCre/+;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT/
MUT 

N.D. REC/WT/
MUT 

9960 PPI3K Ptf1aCre/+;LSL- 
Pik3caH1047R/+ 

WT/WT REC WT/WT 

9964 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
9965 PKPI3K Ptf1aCre/+;LSL-

KrasG12D/+;Pik3caH1047R/+ 
REC/WT REC WT/WT 

AA120 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/+ 

REC/WT N.D. WT/WT 

AA1229 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/WT N.D. WT/WT 

AA1261 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/REC N.D. WT/WT 

AA1377 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/REC N.D. WT/WT 

AA1467 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/WT N.D. WT/WT 

AA168 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/REC N.D. WT/WT 

AA169 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/REC N.D. WT/WT 

AA172 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/REC N.D. WT/WT 

AA199 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/REC N.D. WT/WT 

AA651 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/WT N.D. WT/WT 

AA765 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/+ 

REC/REC N.D. WT/WT 
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Sample ID Genotype 
group 

Detailed genotype Recombination in cell line 
Kras             Pik3ca          Trp53 

AA766 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/+ 

REC/WT N.D. WT/WT 

AA785 PKP Pdx1-Cre;LSL-
KrasG12D/+;LSL-Trp53lox/+ 

REC/REC N.D. N.D. 

AA821 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/REC N.D. WT/WT 

AA852 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/REC N.D. WT/WT 

AA854 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/WT N.D. WT/WT 

AA966 PKP Pdx1-Cre;LSL-
KrasG12D/+;LSL-Trp53lox/lox 

REC/WT N.D. N.D. 

AK1301 PPI3K Pdx1-Cre;LSL-
Pik3caH1047R/+ 

WT/WT REC WT/WT 

AK453 PPI3KP Pdx1-Cre;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC REC/WT 

AK496 PPI3KP Pdx1-Cre;LSL-
Pik3caH1047R/+;Trp53lox/lox 

WT/WT REC N.D. 

AK501 PPI3KP Pdx1-Cre;LSL-
Pik3caH1047R/+;Trp53lox/+ 

WT/WT REC N.D. 

AK5299 PPI3K Pdx1-Flp;FSF-
Pik3caH1047R/+ 

WT/WT REC WT/WT 

AK594 PPI3KP Pdx1-Cre;LSL-
Pik3caH1047R/+;Trp53lox/+ 

WT/WT REC N.D. 

AK596 PPI3KP Pdx1-Cre;LSL-
Pik3caH1047R/+;Trp53lox/+ 

WT/WT REC N.D. 

AK635 PPI3KP Pdx1-Cre;LSL-
Pik3caH1047R/+;Trp53R172H/+ 

WT/WT REC REC/WT 

AK693 PPI3KP Pdx1-Cre; LSL-
Pik3caH1047R/+;Trp53lox/lox 

WT/WT REC N.D. 

B127 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT/
MUT 

N.D. REC/WT/
MUT 

B191 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT N.D. REC/WT 

B212 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53lox/lox 

REC/WT N.D. N.D. 

B231 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53lox/+ 

REC/WT N.D. N.D. 

B590 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
BR19 PBRC Pdx1-Cre;LSL-

BrafV637E/+;p16Ink4a*/+ 
WT/WT N.D. WT/WT 

BR230 PBRC Pdx1-Cre;LSL-
BrafV637E/+;p16Ink4a*/Ink4a* 

WT/WT N.D. WT/WT 

BR55 PBRC Pdx1-Cre;LSL-
BrafV637E/+;p16Ink4a*/Ink4a* 

WT/WT N.D. WT/WT 

BR63 PBRPC Pdx1-Cre;LSL-
BrafV637E/+;p16Ink4a*/+; 
Trp53R172H/+ 

WT/WT N.D. REC/WT 

C065 PKT Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/lox 

REC/WT N.D. WT/WT 
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Sample ID Genotype 
group 

Detailed genotype Recombination in cell line 
Kras             Pik3ca          Trp53 

C1232 PKE Pdx1-Flp;FSF-
KrasG12D/+;Cdh1fl/fl 

REC/WT N.D. WT/WT 

C147 PKPT Ptf1aCre/+;LSL-
KrasG12D/+;Tgfβr2lox/lox; 
Trp53R172H/+ 

REC/WT N.D. REC/WT 

C1530 PK Pdx1-Flp;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
C1607 PK Pdx1-Flp;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
C1609 PK Pdx1-Flp;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
C1612 PKPT Ptf1aCre/+;LSL-

KrasG12D/+;Tgfβr2lox/lox; 
Trp53R172H/+ 

REC/WT N.D. REC/WT 

C1696 PK Pdx1-Flp;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
C1763 PKPT Ptf1aCre/+;KrasG12D/+;Tgfβr2

lox/lox;LSL-Trp53R172H/+ 
REC/WT N.D. REC/WT 

C2118 PK Pdx1-Flp;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
C2473 PKP Pdx1-Flp;FSF-

KrasG12D/+;Trp53frt/+ 
REC/WT N.D. N.D. 

C2514 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/+ 

REC/WT N.D. N.D. 

C2532 PKT Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/lox 

REC/WT N.D. WT/WT 

C2552 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/+ 

REC/WT N.D. N.D. 

C2675 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/+ 

REC/REC N.D. N.D. 

C2677 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/+ 

REC/WT N.D. N.D. 

C2810 PKT Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/lox 

REC/WT N.D. WT/WT 

C2922 PKT Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/+ 

REC/WT N.D. WT/WT 

C3356 PKT Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/lox 

REC/WT N.D. WT/WT 

C3443 PKT Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/lox 

REC/WT N.D. WT/WT 

C4430 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53WT/WT 

REC/WT N.D. MUT/MUT 

C4466 PKT Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/+ 

REC/WT N.D. WT/WT 

C4557 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/+ 

REC/WT N.D. N.D. 

C4617 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/frt 

REC/WT N.D. N.D. 

C4692 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/frt 

REC/WT N.D. N.D. 

C4722 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/+ 

REC/WT N.D. N.D. 

C5081 PKT Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/+ 

REC/WT N.D. WT/WT 

C5310 PKP Pdx1-Flp;FSF- REC/WT N.D. MUT/MUT 
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Sample ID Genotype 
group 

Detailed genotype Recombination in cell line 
Kras             Pik3ca          Trp53 

KrasG12D/+;Trp53WT/WT 
C5315 PKP Pdx1-Flp;FSF-

KrasG12D/+;Trp53frt/frt 
REC/WT N.D. N.D. 

C5389 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/+ 

REC/REC N.D. N.D. 

C5599 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
C5835 PKP Pdx1-Flp;FSF-

KrasG12D/+;Trp53frt/+ 
REC/WT N.D. N.D. 

C6037 PKPT Ptf1aCre/+;LSL-
KrasG12D/+;Tgfβr2lox/+; 
Trp53R172H/+ 

REC/WT N.D. REC/WT 

CF001-1 PKPI3K Ptf1aCre/+;LSL-
KrasG12D/+;Pik3caH1047R/+ 

REC/WT REC WT/WT 

CF001-2 PKPI3K Ptf1aCre/+;LSL-
KrasG12D/+;Pik3caH1047R/+ 

REC/WT REC WT/WT 

CF002-1 PKPI3K Ptf1aCre/+;LSL-
KrasG12D/+;Pik3caH1047R/+ 

REC/WT REC WT/WT 

CF002-2 PKPI3K Ptf1aCre/+;LSL-
KrasG12D/+;Pik3caH1047R/+ 

REC/WT REC WT/WT 

CR15798 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
E126 PPI3K Ptf1aCre/+;Pdx1-Cre;LSL- 

Pik3caH1047R/+ 
WT/WT REC/MUT WT/WT 

E208 PPI3K Ptf1aCre/+;Pdx1-Cre;LSL- 
Pik3caH1047R/+ 

WT/WT REC/MUT WT/WT 

E234 PPI3K Ptf1aCre/+;LSL- 
Pik3caH1047R/+ 

WT/WT REC WT/WT 

E440 PPI3KPC Pdx1-Cre;LSL-
Pik3caH1047R/+;Trp53R172H/; 
Cdkn2alox/+ 

WT/WT REC REC/WT 

E915 PKPI3K Ptf1aCre/+;LSL-
KrasG12D/+;Pik3caH1047R/+ 

REC/WT REC WT/WT 

KG471 PKT Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/+ 

REC/WT N.D. WT/WT 

KG486 PKPT Ptf1aCre/+;LSL-
KrasG12D/+;Tgfβr2lox/+; 
Trp53R172H/+ 

REC/WT N.D. REC/WT 

KG513 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/frt 

REC/REC N.D. N.D. 

KG564 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/frt 

REC/WT N.D. N.D. 

KG6290 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/+ 

REC/WT N.D. N.D. 

MG172 PBRC Pdx1-Cre;LSL-
BrafV637E/+;Cdkn2alox/lox 

WT/WT N.D. WT/WT 

MG846 PKP Pdx1-Cre;LSL-
KrasG12D/+;Trp53lox/+ 

REC/WT N.D. N.D. 

MZ1380 PKTo Ptf1aCre/+;LSL-KrasG12D/+; 
LSL-Rosa26Tgfβ1/+ 

REC/WT N.D. WT/WT 

MZ1730 PKTo Ptf1aCre/+;LSL-KrasG12D/+; 
LSL-Rosa26Tgfβ1/+ 

REC/WT N.D. WT/WT 
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Sample ID Genotype 
group 

Detailed genotype Recombination in cell line 
Kras             Pik3ca          Trp53 

P1162 PKSC Ptf1aCre/+;LSL-
KrasG12D/+;Rosa26Snail/+; 
p16Ink4a*/+ 

REC/WT N.D. WT/WT 

P1956 PKSC Ptf1aCre/+;LSL-KrasG12D/+; 
Rosa26Snail/+; p16Ink4a*/Ink4a* 

REC/WT N.D. WT/WT 

P2313 PKC Ptf1aCre/+;LSL-KrasG12D/+; 
p16Ink4a*/+ 

REC/REC N.D. WT/WT 

P2324 PKS Pdx1-Cre;LSL-
KrasG12D/+;Rosa26Snail/Snail 

REC/WT N.D. WT/WT 

P2345 PKS Pdx1-Cre;LSL-
KrasG12D/+;Rosa26Snail/Snail 

REC/WT N.D. WT/WT 

P2347 PKS Pdx1-Cre;LSL-
KrasG12D/+;Rosa26Snail/+ 

REC/WT N.D. WT/WT 

P3066 PKSC Pdx1-Cre;LSL-
KrasG12D/+;Rosa26Snail/+; 
p16Ink4a*/+ 

REC/WT N.D. WT/WT 

P3272 PKS Pdx1-Cre;LSL-
KrasG12D/+;LSL-
Rosa26Snail/+ 

REC/WT N.D. WT/WT 

P348 PKS Ptf1aCre/+;LSL-
KrasG12D/+;Rosa26Snail/+ 

REC/WT N.D. WT/WT 

P3532 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/+ 

REC/WT N.D. N.D. 

P4162 PKS Ptf1aCre/+;LSL-
KrasG12D/+;Rosa26Snail/+ 

REC/WT N.D. WT/WT 

P4470 PKSC Ptf1aCre/+;LSL-KrasG12D/+; 
Rosa26Snail/+; Cdkn2alox/+ 

REC/REC N.D. WT/WT 

P4492 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/+ 

REC/WT N.D. N.D. 

P4828 PKS Ptf1aCre/+;LSL-
KrasG12D/+;Rosa26Snail/+ 

REC/WT N.D. WT/WT 

P5078 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/lox 

REC/WT N.D. WT/WT 

P5142 PKSC Ptf1aCre/+;LSL-KrasG12D/+; 
Rosa26Snail/+; Cdkn2alox/lox 

REC/REC N.D. WT/WT 

P5166 PKSC Ptf1aCre/+;LSL-KrasG12D/+; 
Rosa26Snail/+; Cdkn2alox/lox 

REC/WT N.D. WT/WT 

P5187 PKSC Ptf1aCre/+;LSL-KrasG12D/+; 
Rosa26Snail/+; Cdkn2alox/lox 

REC/WT N.D. WT/WT 

R1035 PK Pdx1-Flp;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
R211 PKP Ptf1aCre/+;LSL-

KrasG12D/+;Trp53R172H/+ 
REC/WT N.D. REC/WT 

R254 PKP Ptf1aCre/+;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT N.D. REC/WT 

R259 PKP Ptf1aCre/+;LSL-
KrasG12D/+;Trp53R172H/+ 

REC/WT N.D. REC/WT 

R4694 PKP Pdx1-Flp;FSF-
KrasG12D/+;Trp53frt/+ 

REC/WT N.D. N.D. 

R4765 PKP Pdx1-Flp;FSF- REC/WT N.D. WT 
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Sample ID Genotype 
group 

Detailed genotype Recombination in cell line 
Kras             Pik3ca          Trp53 

KrasG12D/+;Trp53frt/+ 

R6827 PKCSm Pdx1-Flp;FSF-
KrasG12D/+;Cdkn2alox/+; 
Smad4lox/+ 

REC/WT N.D. WT/WT 

R6888 PKCSm Pdx1-Flp;FSF-
KrasG12D/+;Cdkn2alox/+; 
Smad4lox/+ 

REC/WT N.D. WT/WT 

R7024-2 PKPCSm Pdx1-Flp;FSF-
KrasG12D/+;Cdkn2alox/+; 
Smad4lox/lox;Trp53lox/+ 

REC/WT N.D. N.D. 

R7102 PKPCSm Pdx1-Flp;FSF-
KrasG12D/+;Cdkn2alox/lox; 
Smad4lox/+;Trp53lox/lox 

REC/WT N.D. WT  

R7108 PKPCSm Pdx1-Flp;FSF-
KrasG12D/+;Cdkn2alox/lox; 
Smad4lox/lox;Trp53lox/+ 

REC/WT N.D. WT 

R7121 PKPCSm Pdx1-Flp;FSF-
KrasG12D/+;Cdkn2alox/lox; 
Smad4lox/+;Trp53lox/+ 

REC/WT N.D. WT 

R7136-1 PKPCSm Pdx1-Flp;FSF-
KrasG12D/+;Cdkn2alox/+; 
Smad4lox/lox;Trp53lox/+ 

REC/WT N.D. N.D. 

R7136-2 PKPCSm Pdx1-Flp;FSF-
KrasG12D/+;Cdkn2alox/+; 
Smad4lox/lox;Trp53lox/+ 

REC/WT N.D. N.D. 

R7153 PKPCSm Pdx1-Flp;FSF-
KrasG12D/+;Cdkn2alox/lox; 
Smad4lox/lox;Trp53lox/+ 

REC/WT N.D. N.D. 

S1145 PKP Pdx1-Flp;FSF-KrasG12D/+; 
LSL-Trp53R172H/+ 

REC/WT N.D. REC/WT 

S134 PK Pdx1-Flp-o;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
S302 PK Pdx1-Flp-o;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
S411 PK Pdx1-Flp-o;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
S559 PK Pdx1-Flp-o;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
S821 PK Pdx1-Flp-o;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
S908 PKP Pdx1-Flp-o;FSF-

KrasG12D/+; LSL-
Trp53R172H/+ 

REC/WT N.D. REC/WT 

S914 PK Pdx1-Flp;FSF-KrasG12D/+ REC/WT N.D. WT/WT 
SB1381-1 PKT Ptf1aCre/+;LSL-KrasG12D/+; 

Tgfβr2lox/lox 
REC/WT N.D. WT/WT 

SB1382-1 PKSm Ptf1aCre/+;LSL-
KrasG12D/+;Smad4lox/+ 

REC/WT N.D. WT/WT 

SB1382-2 PKSm Ptf1aCre/+;LSL-
KrasG12D/+;Smad4lox/+ 

REC/WT N.D. WT/WT 

SB1382-3 PKSm Ptf1aCre/+;LSL-
KrasG12D/+;Smad4lox/+ 

REC/WT N.D. WT/WT 

SB1412-1 PKPT Ptf1aCre/+;LSL- REC/WT N.D. REC/WT 
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Sample ID Genotype 
group 

Detailed genotype Recombination in cell line 
Kras             Pik3ca          Trp53 

KrasG12D/+;Tgfβr2lox/lox; 
Trp53R172H/+ 

SB1437-1 PKT Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/lox 

REC/WT N.D. WT/WT 

SB1516-2 PKPT Ptf1aCre/+;LSL-
KrasG12D/+;Tgfβr2lox/+; 
Trp53R172H/+ 

REC/WT N.D. REC/WT 

SB1551-1 PKT Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/lox 

REC/WT N.D. WT/WT 

SB1614-5 PKSm Ptf1aCre/+;LSL-
KrasG12D/+;Smad4lox/+ 

REC/REC N.D. WT/WT 

SB1672-2 PKTSm Ptf1aCre/+;LSL-KrasG12D/+; 
Tgfβr2lox/+;Smad4lox/+ 

REC/WT N.D. WT/WT 

SB1751-1 PKSm Ptf1aCre/+;LSL-
KrasG12D/+;Smad4lox/+ 

REC/WT N.D. WT/WT 

SB1751-4 PKSm Ptf1aCre/+;LSL-
KrasG12D/+;Smad4lox/+ 

REC/WT N.D. WT/WT 

SB1751-5 PKSm Ptf1aCre/+;LSL-
KrasG12D/+;Smad4lox/+ 

REC/REC N.D. WT/WT 

SC3701 PKC Ptf1aCre/+;LSL-KrasG12D/+; 
p16Ink4a*/+ 

REC/WT N.D. WT/WT 

SC5406 PKC Ptf1aCre/+;LSL-KrasG12D/+; 
p16Ink4a*/+ 

REC/WT N.D. WT/WT 

SC5711 PKSC Ptf1aCre/+;LSL-KrasG12D/+; 
Rosa26Snail/+; Cdkn2alox/+ 

REC/WT N.D. WT/WT 

SC5815 PKSC Ptf1aCre/+;LSL-KrasG12D/+; 
Rosa26Snail/+; Cdkn2alox/+ 

REC/REC N.D. WT/WT 

SC5847 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/+ 

REC/WT N.D. WT/WT 

SC5877 PKC Ptf1aCre/+;LSL-
KrasG12D/+;Cdkn2alox/+ 

REC/REC N.D. WT/WT 

SC5881 PKSC Ptf1aCre/+;LSL-KrasG12D/+; 
Rosa26Snail/+; Cdkn2alox/+ 

REC/WT N.D. WT/WT 

SC6039 PKSC Ptf1aCre/+;LSL-KrasG12D/+; 
Rosa26Snail/+; Cdkn2alox/+ 

REC/WT N.D. WT/WT 

V4706 PK Ptf1aCre/+;LSL-KrasG12D/+ REC/WT N.D. WT/WT 
W22 PKP Ptf1aCre/+;LSL-

KrasG12D/+;Trp53lox/lox 
REC/REC N.D. N.D. 
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