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Abstract

Modelling flame dynamics is an essential topic in the combustion community and is
challenging because of the complicated, nonlinear dynamics involved. In this disserta-
tion, we will explore neural network-based modelling of the flame dynamics for various
applications, such as describing the nonlinear flame response of premixed laminar flame,
forecasting flame dynamics over a long time range, and controlling inlet velocity to
achieve the desired flame shape. The primary goal of our work is to explore the applica-
bility of neural network (NN) models in assisting existing computational fluid dynamics
(CFD) solvers to tackle the challenges in flame dynamics modelling.

Modelling the nonlinear flame response of a premixed flame comes with a very high
computational cost due to the large number of CFD simulations required. We propose a
neural network-based model to reliably learn the nonlinear flame response of a laminar
premixed flame while carrying out only one unsteady CFD simulation. The system
is excited with a broadband, low-pass filtered velocity signal that exhibits a uniform
distribution of amplitudes within a predetermined range. The obtained time series of
flow velocity upstream of the flame and heat release rate fluctuations are used to train
the nonlinear model using a multi-layer perception (MLP). In addition to accurately
predicting the flame describing function (FDF), the trained neural network model also
captures the presence of higher harmonics in the flame response. As a result, when
coupled with an acoustic solver, the obtained neural network model is better suited than
a classical FDF model to predict limit cycle oscillations characterized by more than one
frequency. Having demonstrated the potential of neural networks in modelling the flame
response of laminar flames, their application to turbulent flames is important for practical
relevance. Modelling the flame response of turbulent flames via data-driven approaches
is a challenging task due, among others, to the presence of combustion noise. Our work
analyses the ability of neural network models to evaluate the linear and nonlinear flame
response of turbulent flames. Initially, the NN is trained to evaluate and interpolate
the linear flame response model when presented with data obtained at various thermal
conditions. Later, the NN is trained to infer the nonlinear flame response model when
presented with a time series exhibiting sufficient large amplitudes.

Further, we study the problem of predicting flame dynamics for a given initial condi-
tion when the underlying chemistry is unknown. Modelling complex dynamical systems
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with only partial knowledge of their physical mechanisms is a crucial problem across
all scientific and engineering disciplines. Purely data-driven (PDD) approaches, which
only make use of an artificial neural network and data, often fail to accurately simulate
the evolution of the system dynamics over a sufficiently long time and in a physically
consistent manner. Therefore, we propose a hybrid approach that uses a neural network
model in combination with an incomplete partial differential equations (PDE) solver
that provides known, but incomplete physical information. In this study, we demon-
strate that the results obtained from the incomplete PDEs can be efficiently corrected
at every time step by the proposed hybrid neural network – PDE solver model, so that
the effect of the unknown physics present in the system is correctly accounted for. For
validation purposes, the obtained simulations of the hybrid model are successfully com-
pared against results coming from the complete set of PDEs describing the full physics
of the considered system. We demonstrate the validity of the proposed approach on
a reactive flow, an archetypal multi-physics system that combines fluid mechanics and
chemistry, the latter being the physics considered unknown. Experiments are made on
planar and Bunsen-type flames at various operating conditions. The hybrid neural net-
work - PDE approach correctly models the flame evolution of the cases under study for
significantly long time windows, yields improved generalization, and allows for larger
simulation time steps. Lastly, we show that the resulting hybrid solver provides a flexi-
ble building block for controlling the evolution of flame shapes. The control of reacting
flows is very challenging due to the chaotic nature of flows, the strong nonlinearity of the
chemical reactions and the complex interplay between flow and chemistry. The hybrid
solver can efficiently predict the states of the reactive flows and readily enable the control
of the flow inlet velocities to arrive at a desired flame shape. Therefore, we employ a
pre-trained hybrid solver to train a second controller network that learns to steer the
flame simulation such that the observed states are matched.

We demonstrate that the neural networks are powerful models and when systemat-
ically combined with the appropriate fluid solver can be successfully applied to model
flame dynamics. Our methods showcase diverse possibilities of neural networks in mod-
elling reactive flow simulations, forecasting the flame dynamics for unseen operating
conditions, and controlling the flame dynamics.
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Zusammenfassung

Das Verständnis von Flammendynamiken ist ein essenzielles Thema in der Verbren-
nungsbranche und ihre Modellierung stellt aufgrund der komplizierten, nichtlinearen
Dynamik eine Herausforderung dar. In dieser Dissertation werden wir die auf neuronalen
Netzen basierte Modellierung der Flammendynamik für verschiedene Anwendungen un-
tersuchen, wie z. B. die Beschreibung des nichtlinearen Verbrennungsverhaltens einer
vorgemischten laminaren Flamme, die Vorhersage der Flammendynamik über einen lan-
gen Zeitraum und die Steuerung der Einlassgeschwindigkeit, um die gewünschte Flam-
menform zu erreichen. Das Kernziel unserer Arbeit ist die Erforschung der Anwend-
barkeit von neuronalen Netzen zur Unterstützung bestehender Methoden in der nu-
merischen Strömungsmechanik, um diese Herausforderungen bei der Modellierung der
Flammendynamik zu bewältigen.

Die Modellierung des nichtlinearen Flammenverhaltens einer vorgemischten Flamme
erfordert zahlreiche CFD-Simulationen und deren Berechnung ist sehr kostenintensiv.
Wir entwickeln ein Modell basierend auf neuronalen Netzen, das das nichtlineare Ver-
brennungsverhalten einer laminaren vorgemischten Flamme zuverlässig erlernt, während
nur eine einzige instationäre CFD-Simulation durchgeführt wird. Das System wird mit
einem tiefpassgefilterten Breitband-Geschwindigkeitssignal angeregt, welches eine gle-
ichmäßige Verteilung der Amplituden innerhalb eines vorgegebenen Bereichs aufweist.
Die resultierend Zeitsequenzen des Strömungsfeldes stromaufwärts der Flamme und die
Schwankungen der Wärmeabgabe werden zum Trainieren des nichtlinearen Modells ver-
wendet, welches auf einem Multilayer Perceptron basiert. Neben der genauen Vorher-
sage der Flammenbeschreibungsfunktion erfasst das trainierte neuronale Netz auch die
höheren Harmonischen in der Flammenantwort. In Verbindung mit einer akustischen
Simulation ist das erhaltene neuronale Netz daher besser als ein klassisches FDF-Modell
in der Vorhersage von Grenzzyklusschwingungen, die durch ein breites Frequenzspek-
trum gekennzeichnet sind. Nachdem das Potenzial neuronaler Netze für die Modellierung
laminarer Flammen aufgezeigt wurde, ist ihre Anwendung auf turbulente Flammen von
praktischer Bedeutung. Die Schwierigkeit der datenbasierten Modellierung des turbulen-
ten Flammenverhaltens zeichnet sich unter anderem durch Verbrennungsrauschen in den
Daten aus. Unsere Arbeit untersucht die Fähigkeit von neuronalen Netzen ebendieses lin-
eare und nichtlinearen Flammenverhaltens turbulenter Flammen auszuwerten. Zunächst
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wird das neuronale Netz darauf trainiert, das lineare Flammenantwortmodell auszuw-
erten und zu interpolieren. Die Grundlage hierfür bilden Daten, die bei verschiedenen
thermischen Bedingungen gewonnen wurden. Später wird das NN darauf trainiert, das
nichtlineare Flammenantwortmodell abzuleiten, wenn Zeitreihen mit ausreichend großen
Amplituden vorliegen.

Außerdem untersuchen wir das Problem der Vorhersage der Flammendynamik für eine
gegebene Anfangsbedingung und unbekannte zugrunde liegende Chemie. Die Model-
lierung komplexer dynamischer Systeme mit nur unvollständiger Kenntnis ihrer physikalis-
chen Mechanismen ist ein fundamentales Problem in allen wissenschaftlichen und tech-
nischen Disziplinen. Rein datengetriebene Ansätze, bei denen nur ein künstliches neu-
ronales Netz und Daten verwendet werden, sind oft nicht in der Lage, die Entwicklung der
Systemdynamik über einen ausreichend langen Zeitraum und in physikalisch konsistenter
Weise zu simulieren. Daher schlagen wir einen hybriden Ansatz vor, der ein neuronales
Netz in Kombination mit einem numerischen Verfahren für partielle Differentialgleichun-
gen (PDG) verwendet, der bekannte, aber unvollständige physikalische Informationen
liefert. In dieser Studie zeigen wir, dass die aus den unvollständigen PDGs gewonnenen
Ergebnisse in jedem Zeitschritt durch das vorgeschlagene hybride Modell aus neuronalem
Netz und PDG-Löser effizient korrigiert werden können, sodass die Auswirkungen der un-
bekannten physikalischen Gegebenheiten im System korrekt berücksichtigt werden. Zu
Validierungszwecken werden die mit dem hybriden Modell erzielten Simulationen mit
den Ergebnissen verglichen, die sich aus dem vollständigen System von PDGs ergeben,
die die gesamte Physik des betrachteten Systems beschreiben. Wir demonstrieren die
Gültigkeit des vorgeschlagenen Ansatzes an einer reaktiven Strömung. Diese stellt ein
grundlegenden Multiphysiksystem das, das Strömungsmechanik und Chemie kombiniert,
wobei letztere als die unbekannte Physik gilt. Es werden Experimente mit planaren und
Bunsen-Flammen unter verschiedenen Betriebsbedingungen durchgeführt. Der hybride
Ansatz aus neuronalem Netz und PDG modelliert die Flammenentwicklung in den unter-
suchten Fällen für deutlich verlängerte Zeitfenster korrekt, bietet eine verbesserte Gen-
eralisierung und ermöglicht größere Simulationszeitschritte. Schlussendlich zeigen wir,
dass die resultierende hybride Methode einen flexiblen Baustein für die Steuerung der
Flammenentwicklung darstellt. Die Steuerung von reaktiven Strömungen ist aufgrund
der chaotischen Natur der Strömungen, der starken Nichtlinearität der chemischen Reak-
tionen und des komplexen Zusammenspiels zwischen Strömung und Chemie eine große
Herausforderung. Der hybride Solver kann die Zustände der reaktiven Strömungen
effizient vorhersagen und ermöglicht die Steuerung der Einlassgeschwindigkeiten der
Strömung, um eine gewünschte Flammenform zu erreichen. Daher verwenden wir einen
vortrainierten hybriden Solver, um ein zweites Reglernetzwerk zu trainieren, das lernt,
die Flammensimulation so zu steuern, dass die beobachteten Zustände übereinstimmen.

Wir zeigen, dass neuronale Netze leistungsstarke Modelle sind und bei systematis-
cher Kombination mit einem geeigneten numerischen Verfahren erfolgreich zur Model-
lierung der Flammendynamik eingesetzt werden können. Unsere Methoden zeigen die
vielfältigen Möglichkeiten neuronaler Netze bei der Modellierung reaktiver Strömungs-
simulationen, der Vorhersage der Flammendynamik für unbekannte Betriebsbedingun-
gen und der Steuerung der Flammendynamik.

vi



Acknowledgements

As I stand on the summit of this academic endeavour, I owe the view not only to my
own steps but to the steady hands and guiding spirits of those who accompanied me on
this ascent. This note of gratitude only begins to describe my appreciation of a few of
those many, who have contributed to the successful completion of this dissertation along
with my doctoral journey.

First and foremost, I am immensely thankful to my advisor, Prof. Nils Thuerey, for
his steadfast support, guidance, and patience throughout this research endeavour. His
expertise on the subject, dedication to this project, and structured feedback from time
to time have been invaluable in shaping the direction and quality of this dissertation.
I am grateful to him for agreeing to guide me and for the substantial time and effort
invested in overseeing my academic progress.

A big thanks goes to Dr. Nguyen Anh Khoa Doan and Dr. Camilo F. Silva, who
supported me with their knowledge during my research. Their advice in the field of
combustion and flame dynamics was of great assistance. Their constructive feedback has
played a pivotal role in refining the content and methodology of this study. I am truly
fortunate to have had such co-authors and mentors. I would also like to acknowledge the
members of my dissertation committee, Prof. Wolfgang Polifke and Dr. Nguyen Anh
Khoa Doan, for their time and expertise in reviewing and critiquing this work.

I am grateful to my colleagues and peers who have provided valuable insights and stim-
ulating discussions that have enriched the development of my research. Your encourage-
ment and support have been a source of motivation. I am thankful to Dr. Mark Lynass,
Dr. Lorenz Drack, Dr. Maximilian Zahn, Dr. Krzysztof Kostrzewa, Dr. Günter Wilfert,
Dr. Thomas Ripplinger, Michael McCartney, my colleagues at GE Aviation, Garching,
for helping me shape up the initial part of my work, to name a few. I would also like to
thank my colleagues at the Technical University of Munich, Björn List, Philipp Holl, Li-
wei Chen, Benjamin Holzschuh, You Xie, Georg Kohl, Kiwon Um, Lukas Prantl, Patrick
Schnell, Marton Szep, Erik Franz, Qiang Liu, Stephan Rasp, Felix Köhler, Brener d’Lélis,
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1.1 Motivation

Climate change and environmental degradation are an existential threat to the world.
The effects of climate change and global warming are raising new awareness of their
influence on our everyday existence. Power generation and transportation are some of the
significant contributors to greenhouse gas emissions. Indeed, as of 2022, in the European
Union (EU), 70 % of the energy is still produced by the combustion of fossil fuels [8, 9].
Thus, great efforts need to be spent to make combustion greener and safer than in the
past or find substitute solutions for energy conversion or power generation. Among the
different sectors, aviation and power generation are challenging sectors to address due
to their high energy consumption and the absence of easily expandable electrification
solutions [10]. Gas turbines are a dominant technology in the fields of power generation
and aviation. They are known for their efficiency and flexibility in converting fuel into
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(B)(A1) (A2)

Figure 1.1: Effect of combustion instabilities. Burner assembly (A1) before and (A2) after
thermo-acoustic instability [1]. (B) Turbine blade damage caused by combustion
instability.

mechanical energy. However, traditional gas turbines that burn fossil fuels contribute
to greenhouse gas emissions, which are a major driver of the climate crisis due to the
release of carbon dioxide and other pollutants. As the European Green Deal aims for
no net emissions of greenhouse gases by 2050, the development of gas turbines needs
substantial research on fuels, combustion techniques and more efficient burners with
low emissions of greenhouse gases, pollutants and noise. This includes technologies like
premixed lean-burn combustion and the use of alternative fuels like hydrogen.

These combustion concepts lead to more complex dynamics and coupling between
flame and turbulence. Achieving such concepts requires a redesign of combustion sys-
tems; for example, hydrogen fueled combustion requires flame stabilization and high
mixing of fuel and air [11, 12]. However, these redesigns give way to instabilities. Lean
combustion systems are prone to thermo-acoustic instabilities in which self-amplifying
feedback establishes between the unsteady heat release generated by the flame and the
acoustic pressure fluctuations [13]. Without proper mixing, hydrogen fueled flames can
be difficult to control and stabilize, leading to issues like flame blowoff, flashbacks (flame
propagating back into the fuel-air mixture), and flame instability [14, 15]. These insta-
bilities may cause severe damage to the engine such that the unconditional avoidance
of such instabilities limits the operational flexibility of engines. During the development
and testing of new combustion technologies, instabilities are observed (examples shown
in figure 1.1), and corrective actions are taken to prevent damages. Generally, it is a
retrofit or redesign activity specific to the engine designs [16]. Although these methods
are effective, they are neither fool-proof nor cost efficient. Therefore, there is a need
to develop tools that can predict these instabilities in the early design phase of the
combustor.

Numerical analysis plays a central role in understanding and modelling combustion
systems. Reactive flows are an archetypal multi-physics, multi-scale phenomena involv-
ing fluid mechanics and chemistry. Resolving the Navier-Stokes equations lies at the core
of these problems, where additionally the transport of different species of relevance must
also be accounted for, together with their production or consumption often following
complex reaction mechanisms [17]. Reactive flows are modelled within the framework
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of computational fluid dynamics (CFD) to analyze or predict combustion instabilities.
Due to the wide range of length and time scales involved, huge computational resources
are required to enable numerical analysis. Despite the improvement in computation
hardware and algorithms, it is still highly challenging to efficiently analyse the combus-
tion systems. Therefore, it is a very important direction of research for the combustion
community to develop highly accurate and efficient reduced order models to describe
and replace a certain aspect of the overall system. Deep learning methods have achieved
rapid developments and great success in many fields, such as computer vision [18, 19, 20]
and natural language processing [21, 22, 23]. While these are very interesting techniques,
their application to the field of fluid dynamics and, in particular, to reactive flow sim-
ulations is challenging. Since ensuring the conservation of physical quantities plays a
vital role, obtaining physically accurate results becomes one of the key challenges. Re-
searchers have just begun to explore applications of deep learning models in the field of
fluid dynamics [24, 25, 26, 27, 28]. Some early works [29, ?, 30] apply neural network
models to control combustion instabilities of Rijke tube. This dissertation focuses on
more sophisticated premixed flame setups and the integration of neural network models
with the CFD solver. With advances in numerical simulations, data required to predict
flame dynamics is made readily available. These applications help to reveal the ability
and the generality of the proposed methods to model and control the reactive flow sim-
ulations. This work focuses on modelling flame dynamics using deep learning methods.
Flame dynamics is the dynamics response of flame shape, flame position and flame re-
lease rate to flow perturbations [31]. This work explores how deep learning methods can
be used for different areas of flame dynamics. It includes study of flame propagation
i.e. how flame front moves through a combustible mixture; study of flame instabilities
i.e. predicting conditions for which flame becomes unstable; study of flame structure i.e.
predicting shape of a flame, including its temperature profile and species distribution.

1.2 Scope of the work

In this dissertation, chapter 1 motivates the need for flame dynamics modelling. Chapter
2 discusses relevant background information on the topics of fluid dynamics and deep
learning models. An overview of related work is presented in chapter 3. We propose
a neural network-based approach to model the nonlinear flame response of Bunsen-
type laminar flame in chapter 4. Chapter 5 extends the applicability of the proposed
approach to more challenging and practical turbulent flames. Then we demonstrate,
in chapter 6, the applicability of a convolutional neural network (CNN) based model
to reconstruct fields of reactive flow simulation. In chapter 7, we propose a hybrid
framework combining a neural network model with a differentiable PDE solver to model
flame dynamics of a Bunsen-type flame. We illustrate the application of learned models
to control flame dynamics. Finally, we discuss the potential outlook for future work
based on the proposed methods in chapter 8. An overview of the dissertation structure
is shown in figure 1.2.
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1 Introduction

Figure 1.2: An overview of the dissertation structure.

Nonlinear flame response modelling is important to predict thermo-acoustic insta-
bilities in lean, premixed combustion systems. A well-established strategy to model a
nonlinear flame response is by means of the flame describing function. It character-
izes the fluctuations of heat release rate, produced as a response to upstream velocity
perturbations, which are characterized by a well-defined frequency and amplitude. As
traditional approaches rely on multiple CFD runs in order to obtain the nonlinear flame
response, they are generally unaffordable. It is, therefore, crucial to develop method-
ologies where nonlinear flame response can be obtained by a single CFD simulation.
Neural network models are capable of capturing nonlinear relationships between the
data. Therefore, the neural network is used as a post-processing step to the single,
unsteady, broadband excited CFD simulation to model the nonlinear flame response.
We demonstrate the applicability of the proposed framework on the laminar multi-slit
burner investigated by Kornilov et al. [32] and Jaensch et al. [33]. The trained neu-
ral network model, which captures the flame response, is integrated with the acoustic
network model to predict thermo-acoustic instabilities. This motivates us to extend the
proposed neural network-based approach to challenging turbulent flames. We success-
fully train a multi-layer perceptron to obtain a linear and nonlinear flame response of
two turbulent, swirl-stabilized combustors, namely the fully premixed EM2C [5, 34] and
ETH burners [6]. These works showcase the potential of a multi-layer perceptron to
predict one-dimensional heat release rate fluctuations in response to the perturbations
in inlet flow velocity. Further, a convolutional neural network is used to reconstruct the
two-dimensional heat release rate flow fields of the reactive flows.

After successfully applying the neural network model trained on the data coming
from CFD solver, we explore integrating the neural network model with a differentiable
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CFD solver to model the solutions of reactive flow simulations. Modelling reactive
flow simulations require to resolve Navier-Stokes equations and transport of different
species following complex chemical mechanisms. Often times the underlying chemistry
is not well known or expensive to compute. Neural network models can be used to
model the effects of the chemical kinetic mechanisms. Convolutional neural network
models have been effective in modelling spatio-temporal relations, especially in the field
of fluid dynamics [35, 36]. However, these purely data-driven approaches can fail to
produce physically accurate solutions. Therefore it is necessary to use a methodology
that guarantees the conservation of underlying physical quantities. We propose a hybrid
framework that combines a neural network model with a non-reactive partial differential
equations solver to account for the effects of unknown chemistry present in the system.
Experiments are made on planar and Bunsen-type flames at various operating conditions.
The hybrid neural network - PDE approach correctly models the flame evolution from
given initial state due to various inlet, boundary conditions, of the cases under study
for significantly long time windows. We show that the resulting hybrid solver provides a
flexible building block for adjacent tasks. Specifically, we demonstrate this for controlling
the evolution of flame shapes via continuous control. The hybrid solvers can efficiently
predict the states of the reactive flows and readily enable the control of the flow inlet
velocities to arrive at a desired flame shape. Therefore, we employ a pre-trained hybrid
solver to train a second controller network that learns to steer the flame simulation
such that the observed states are matched. Our experimental evaluation demonstrates
the diverse possibilities of the hybrid NN-PDE solver, such as, performing accurate long
term predictions, generalization to unseen operating conditions and enabling flame shape
control.

All the proposed methods have the potential to be adapted to more complex, multi-
physics problems for forecasting, parameter identification and control.

1.3 Publication List

This dissertation explains and concludes work from the following manuscripts:

1. Tathawadekar, N., Doan, N. A. K., Silva, C. F., & Thuerey, N. (2021). Modeling
of the nonlinear flame response of a Bunsen-type flame via multi-layer perceptron.
Proceedings of the Combustion Institute, 38(4), 6261-6269.

2. Tathawadekar, N., Silva, C., Sitte, P., & Doan, N. A. K. (2023, February).
Physical quantities reconstruction in reacting flows with deep learning. INTER-
NOISE and NOISE-CON Congress and Conference Proceedings. 265(6), 1645-
1656. Institute of Noise Control Engineering.

3. Tathawadekar, N., Doan, N. A. K., Silva, C. F., & Thuerey, N. (2023). In-
complete to complete multiphysics forecasting - a hybrid approach for learning
unknown phenomena. Data-Centric Engineering, 4, E27. doi:10.1017/dce.2023.20
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4. Tathawadekar, N., Ösün, A., Eder, A. J., Silva, C. F., & Thuerey, N. (2024)
Linear and nonlinear flame response prediction of turbulent flames using neu-
ral network models. International Journal of Spray and Combustion Dynamics.
doi:10.1177/17568277241262641
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2
Fundamentals

2.1 Fluid dynamics

Numerical techniques for reactive flows are essential in the field of chemical weather
forecasting [37], combustion analysis in gas turbines and rocket engines [17]. Reactive
flow simulations require the study of fluid dynamics as well as the chemistry of com-
bustion. The following section describes the conservation equations needed for reactive
flows, specifically the Navier-Stokes equations and the treatment of multi-species chem-
ical mechanisms. Later we focus on the fundamentals of flame modelling. We describe
challenges faced by existing numerical methods in capturing flame response accurately
and establish the scope of this dissertation.

2.1.1 Navier-Stokes Equations

Reactive flows involve multiple species reacting through chemical reactions. The Navier-
Stokes equations apply for such multi-species, multi-physics phenomena but they require
some additional terms. The species are characterized through their mass fractions Yk for
k = 1 to N , where N is the number of species in the reacting mixture. The equations
can be written as,

∂ρ

∂t
+

∂ρui
∂xi

= 0

∂ρuj
∂t

+
∂ρuiuj
∂xi

= − ∂p

∂xj
+

∂τij
∂xi

∂ρYk
∂t

+
∂ρuiYk
∂xi

= ω̇k +
∂

∂xi

(
ρDk

∂Yk
∂xi

)
ρCp

(
∂T

∂t
+

∂uiT

∂xi

)
= ω̇′

T +
∂

∂xi

(
λ
∂T

∂xi

)
(2.1)

where density ρ, the three dimensional velocity field ui, pressure p, temperature T , the
mass fractions Yk are primary variables. τ , Dk, λ are the strain rate tensor, the diffusion
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coefficient of species k and the mixture thermal conductivity. In addition, Cp denotes
the mixture specific heat capacity. ω̇k and ω̇′

T are the species reaction rate and heat
release rate, respectively.

In this section, we discuss the equations and relevant simplifications used to produce
the simulation data of reactive flows. These equations are derived from the work of
Poinsot and Veynante [17]. Readers are encouraged to refer to their work for more
detailed discussions. The first two equations are the total mass conservation equation
and conservation of momentum equations, respectively. They are unchanged compared
to non-reacting flows. The mass conservation equation for species k is written as,

∂ρYk
∂t

+
∂

∂xi
(ρ(ui + Vk,i)Yk) = ω̇k (2.2)

where Vk,i is the i-component of the diffusion velocity Vk of species k and ω̇k is the
reaction rate of species k [17]. By definition:

N∑
k=1

YkVk,i = 0
N∑
k=1

ω̇k = 0 (2.3)

The diffusion velocities Vk of the N species are obtained by solving the system of equa-
tions [38] given by,

∇Xp =
N∑
k=1

XpXk

Dpk
(Vk − Vp) + (Yp −Xp)

∇P

P

ρ

p

N∑
k=1

YpYk(fp − fk) p = 1, N (2.4)

where Dpk = Dkp is the binary mass diffusion coefficient of species p into species k and
Xk is the mole fraction of species k; Xk = YkW/Wk. For multi-species system, equation
2.4 is replaced by the Hirschfelder and Curtiss [39] approximation which is the best
first-order approximation to the exact solution of system 2.4.

VkXk = −Dk∇Xk with Dk =
1 − Yk∑

j ̸=kXj/Djk
(2.5)

The coefficient Djk is a diffusion coefficient of species k into the rest of the mixture [17].
If the mixture contains only two species, then equation 2.5 reduces to Fick’s law [40],
otherwise it leads to the third equation in 2.1. The fourth equation in 2.1 is the energy
conservation equation. For a reacting flow, the energy is represented as a sum of sensible
and chemical energy. ω̇′

T is the heat release due to combustion ω̇′
T = −

∑N
k=1 ∆hof,kω̇k.

The formation enthalpy hof,k is the enthalpy needed to form 1 kg of species k at the
reference temperature T0 = 298.15K [17]. Now, we look into the details of chemical
reactions and how associated quantities are computed.

Consider a chemical system of N species reacting through M reactions,

N∑
k=1

υ′kjMk ⇌
N∑
k=1

υ′′kjMk for j = 1,M (2.6)
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where Mk is a symbol for species k, υ′kj and υ′′kj are the molar stoichiometric coefficients
of species k in reaction j [17]. Mass conservation enforces:

N∑
k=1

υ′kjWk =

N∑
k=1

υ′′kjWk or

N∑
k=1

υkjWk = 0 for j = 1,M (2.7)

where υkj = υ′′kj − υ′kj . For simplicity, only mass reaction rates are used. For species k,
this rate ω̇k is the sum of rates ω̇kj produced by all M reactions,

ω̇k =

M∑
j=1

ω̇kj = Wk

M∑
j=1

υkjQj (2.8)

where Qj is the rate of progress of reaction j [17]. The progress rate Qj of reaction j is
written as,

Qj = KfjΠ
N
k=1[Xk]

υ′kj −KrjΠ
N
k=1[Xk]

υ′′kj (2.9)

where Kfj and Krj are the forward and reverse rates of reaction j [17]. The kinetic rates
are expressed using molar concentrations [Xk] = ρYk/Wk = ρk/Wk. The rate constants
Kfj and Krj are usually modelled using the empirical Arrhenius law,

Kfj = AfjT
βjexp

(
− Ej
RT

)
= AfjT

βjexp

(
−Taj

T

)
(2.10)

where Afj is the pre-exponential constant, βj is the temperature exponent, Taj is the
activation temperature and Ej = RTaj is the activation energy [17].

In a premixed combustor, fuel and oxidizer are mixed before they enter the combustion
chamber. The computation of premixed flames with complex chemistry and transport
is complicated. The simplified premixed flames with one-step chemistry are presented
here. For a one-step reaction, chemistry proceeds only through one irreversible reaction
i.e. M = 1 in equation 2.6.

N∑
k=1

υ′kjMk →
N∑
k=1

υ′′kjMk. (2.11)

The reverse reaction rate is zero; Kr1 = 0. The forward reaction rate is Kf1 =
A1T

β1e−Ta1/T . The reaction rates ω̇k for each species are linked to the progress rate
Q1 at which the single reaction proceeds by equation 2.8,

ω̇k
Wkυk1

= Q1 or ω̇k = Wkυk1Q1. (2.12)

The heat release term ω̇′
T in the temperature equation becomes,

ω̇′
T = −

N∑
k=1

∆hof,kω̇k = −Q1

N∑
k=1

∆hof,kWkυk1 = |υF1|QmQ1 (2.13)
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where Qm is the molar heat of the reaction. Qm measures the heat released by the
complete combustion of 1 mole of fuel,

Qm = −
N∑
k=1

∆hof,kWk
υk1
|υF1|

= −
N∑
k=1

∆ho,mf,k
υk1
|υF1|

=
N∑
k=1

∆ho,mf,k
υk1
υF1

(2.14)

because υF1 = υ′′F1 − υ′F1 is negative. Poinsot et al. [17] define the quantity Q,

Q =
Qm

WF
=

N∑
k=1

∆hof,k
Wkυk1
WFυF1

(2.15)

to have positive Q values. The relationship between the heat release rate and the fuel
reaction rate becomes,

ω̇′
T = −Qω̇F (2.16)

In chapter 7, following assumptions are used to create reactive flow simulation data.
The fuel reaction rate ω̇F of the reaction 2.11 is assumed to be limited by the fuel
mass fraction (YF ) and not by the oxidizer mass fraction (YO) [17]. This assumption
corresponds to the study of a very lean flame in which oxidizer mass fraction remains
approximately constant. Only one species YF has then to be considered to evaluate the
fuel reaction rate. Therefore, the simplified fuel reaction rate is,

υ′F1 = 1; υ′′F1 = 0; υF1 = −1; υ′O1 = υ′′O1 = υO1 = 0

ω̇F = A1T
β1υF1ρYF e

−Ta1/T
(2.17)

Even though these assumptions may seem strong, they preserve many essential features
of flames such as intense nonlinear heat release, variable density and temperature [17].

2.1.2 Fundamentals of Flame Modelling

In order to meet low NOx emission targets for modern gas turbines used for power
generation, lean premixed combustion technology is applied. The main drawback of this
system is thermo-acoustic oscillations arising from the interactions between an oscillatory
combustion process and, natural acoustic modes of the combustor [13]. The flame moves
in response to the fluctuations in the velocity (u′) impinging on the flames. (1) These
flow rate fluctuations induce fluctuations in the heat release rate (Q̇′). (2) The resulting
heat release rate fluctuations excite acoustic pressure oscillations (p′). (3) The acoustic
oscillations generate the velocity fluctuations [13] described in point (1). This feedback
cycle may lead to large-amplitude pressure and velocity oscillations which may cause
severe damage to the combustion system. Therefore, it is desirable to predict the thermo-
acoustic stability behaviour over the whole operational envelope in the design phase of
a combustion system. Because the initial amplitudes of most instabilities are generally
quite small, their characteristics are described by the linear-wave equation [13]. To
predict the amplitude of the thermo-acoustic instabilities, a low-order model of acoustic
network of the system can be combined with an appropriate model of flame response
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2.1 Fluid dynamics

[41, 42]. The flame response estimates the response of flame subjected to the velocity
perturbations [42].

In the limit of small perturbation, a linear model can capture the flame response. A
well-established strategy to model such linear flame response is by means of the flame
transfer function (FTF). This transfer function relates the fluctuations of heat release
rate, Q̇′, produced as a response to upstream velocity perturbations, u′, by

FTF : F(ω) =
Q̇′(ω)/ ¯̇Q

u′(ω)/ū
(2.18)

where (̄·) and (·)′ denote temporal averaging and fluctuations, respectively. ω = 2πf
is the angular frequency. In linear stability analysis, the flame transfer function can be
cast in the following form:

F(ω) = G(ω)eiωt (2.19)

where gain and phase are modelled separately.

p′ ∝ e−iωt

ω = ωr + iωi

p′ ∝ e−iωrteωit

(2.20)

ωi


> 0 growth

= 0 neutral

< 0 damped

The pressure fluctuations are proportional to the eiωt. ω is composed of angular fre-
quency (ωr) and growth rate (ωi). If the imaginary part of the frequency ω is positive,
amplification of the small perturbations is realized and combustion instability is ex-
pected. The instability frequency is obtained from the real part of ω. The limit cycle is
obtained when the growth rate equals the damping rate. Linear analysis however cannot
predict amplitudes of self-excited oscillations correctly [43, 44].

The flame describing function is introduced to model nonlinear flame response by
Noiray et al. [41]. The main idea is to extend the definition of a flame transfer function
to include flame response to both input frequency and amplitude. The FDF:

FDF : F(ωr, |u′|) =
Q̇′(ωr, |u′|)/ ¯̇Q

u′(ωr, |u′|)/ū
= G(ωr, |u′|)eiψ(ωr,|u′|) (2.21)

extends the transfer function concept to the nonlinear case. It is a family of transfer
functions which describe the system at various levels of amplitude. FDF is a weakly
nonlinear function, i.e., it assumes that only the fundamental frequency determines the
dynamics of the system, while higher harmonics generated in the nonlinear process are of
sufficiently low amplitude to have a negligible effect on the system stability. Instability in
the combustion system for particular acoustic perturbation can be identified by solving
the nonlinear dispersion equation. Noiray et al. [41] showed that the FDF can be used to
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Figure 2.1: An example of a simple low order acoustic network. Adapted from [2]

model growth rates and modal frequencies as a function of the perturbation amplitude
level. It can be used to predict the exact amplitudes of oscillation and frequencies at the
limit cycles. There are different ways to obtain this flame response. Experimentally, the
flame response is obtained using acoustic forcing provided by speakers mounted in the
upstream or downstream duct [45, 46, 47, 48]. For numerical analysis, CFD simulations
are performed at various frequencies and amplitudes to obtain the flame response [49, 50].

The flame transfer function and the flame describing function capture the flame re-
sponse to incoming velocity perturbations. Thus it models the interaction in step (1)
of the feedback loop described at the start of this subsection. The acoustic waves in
step (2) can be modelled with an acoustic network model [2]. It models the propagation
of acoustic perturbations by a set of linear, time-invariant differential equations. The
combustor configuration can be divided into several elements and each element is sepa-
rately modelled. In the end, all models are interconnected to obtain the acoustic network
model of the combustor. Figure 2.1 shows an example of a low order acoustic network of
a simple area jump with two duct sections terminated by a closed respectively open end.
Thermoacoustic oscillations are modelled by combining the model of flame dynamics in
a loop with the acoustic network model.

2.2 Deep Learning Methods

Machine learning is a statistical tool with increased emphasis on the use of computers
to estimate complicated functions. Compared to the traditional statistical methods that
fit the training data, machine learning methods differ in finding patterns that generalize
to new data. Various algorithm components, such as an optimization algorithm, a loss
(cost) function, a model, and a dataset, are combined to build a machine learning algo-
rithm. A dataset consists of a collection of examples that a machine learning algorithm
should process. Most machine learning algorithms can be divided into the categories
of supervised and unsupervised learning, depending on the nature of the dataset avail-
able. Unsupervised learning algorithms use a dataset containing only examples and learn
useful properties of the structure of the dataset. Supervised learning algorithms use a
dataset containing examples and their associated label or target. We refer to such data
as input-output pairs. In this work, we only consider supervised learning algorithms.
Given a training set of examples of inputs X and outputs y, the learning algorithm es-
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timates a probability distribution p(y|X). Simple machine learning algorithms face the
challenge of generalizing to new examples when working with high-dimensional data.
The mechanisms used to achieve generalization in traditional machine learning are in-
sufficient to learn complicated functions in high-dimensional spaces. Such spaces also
often impose high computational costs.

Deep learning was designed to overcome these and other obstacles. Deep learning is a
specific kind of machine learning. Modern deep learning provides a powerful framework
for supervised learning. Deep learning models are built using layers of artificial neurons
that are loosely inspired by the neurons in a human brain. At the core of deep learning
are neural networks, which consist of layers of nodes (neurons) that transform input data
into output predictions. Each neuron receives input, applies a weight to it, and passes
the result through a non-linear activation function. By adding more layers and more
neurons within a layer, a deep network can represent functions of increasing complexity.
Most tasks consist of mapping an input vector to an output vector. In this chapter, we
begin by describing the multi-layer perceptron that is used to represent these functions.
Next, we introduce the convolutional neural networks, which efficiently processes the two
or multi-dimensional image data. Over the past decade, deep learning has had incredible
success in various fields [21, 18, 51]. Deep learning is revolutionizing many fields, such as
image processing, natural language modelling, autonomous driving, climate modelling,
and medical image processing, to name a few. Therefore, this dissertation explores the
use of deep learning techniques to model flame dynamics.

2.2.1 Multi-Layer Perceptron

Multi-layer perceptron or feed-forward neural networks, are the quintessential deep learn-
ing models. The goal of a multi-layer perceptron is to approximate some function f∗.
A multi-layer perceptron defines a mapping y = f(X; θ) and learns the value of the
parameters θ that result in the best function approximation. These models are called
feedforward networks because information flows from input X to the output y, through
the network. There are no feedback connections in which the output of the network is
fed back as input. These networks are called multi-layer because they are constructed
by composing together multiple layers. Each layer represents a function and multiple of
them are chained together to form the best function approximation f . The final layer is
called the output layer.

Figure 2.2 shows a simple MLP model with one hidden layer. The features of the
input example Xi are stacked together to form the input layer. The final layer formed
by a single node is called an output layer. In supervised learning, the training dataset
contains values of input examples X = {X1, X2, ...., Xn} and corresponding outputs
y = {y1, y2, ..., yn}. In the training set, true values of the intermediate layers are not
observed. Therefore, these middle layers are called as hidden layers. The hidden layers
and output layer have parameters associated with them, called as weights W and biases
b. For the example shown in figure 2.2, the outputs of the hidden layer and output layer
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Figure 2.2: A generic representation of multi-layer perceptron

are computed as follows,

Zi = σ(W T
1 Xi + b1)

ỹi = σ(W T
2 Zi + b2)

(2.22)

where σ indicates the activation function. The activation function can be used to intro-
duce nonlinearity to the affine transformation of W T

1 Xi+b1. Some examples of nonlinear
activation function include, sigmoid (σ(z) = 1

1+e−z ) which restricts the output in the

range of [0, 1], tanh (σ(z) = ez−e−z

ez+e−z ) restricts it to [−1, 1], ReLU (σ(z) = max(0, z))
maps it to positive values. Therefore, the key design considerations to build a neural
network model are the number of hidden layers, the number of neurons in each hidden
layer, the type of activation function to be used. These are called hyper-parameters
of the model. The neural network models are trained using iterative, gradient-based
optimization techniques. A suitable loss function is defined to compute the distance
between the predicted output (ỹ) and the actual output (y). Gradient descent is used to
minimize the loss function. It calculates the derivative of the loss function with respect
to the trainable weights via chain rule and updates the weights. Therefore, the error is
propagated back to each neuron and its corresponding weights are adjusted accordingly.
This process of updating weights is called back-propagation.

2.2.2 Convolutional Neural Networks

Convolutional neural networks are another type of neural network model that have been
tremendously successful at various tasks, such as image classification [52], object detec-
tion [53] and speech recognition [54]. CNNs provide an ideal architecture for detecting
and learning key features in images and time-series data. They specialize in processing
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Figure 2.3: A generic example of a convolutional operation

data that has a grid-like topology, such as images and videos. MLP ignores the locality of
reference in image data, both computationally and semantically. Thus, fully connected
neurons are wasteful for the task of image classification or object detection which are
dominated by spatially local input patterns. With MLP, the number of trainable param-
eters grow rapidly with the increase in data dimensions and the number of layers. The
convolutional neural network mainly consists of convolutional layers and pooling layers.
A convolutional layer performs a dot product between two matrices, where one matrix
is the set of learnable parameters, also known as a kernel, and the other matrix is the
restricted portion of the receptive field. The kernel is spatially smaller than an image.
During the forward pass, the kernel slides across the height and width of the image,
producing the image representation of that receptive field. Figure 2.3 shows an example
of such a convolution operation. In CNN, the convolution operation is performed dis-
cretely since both the inputs and the kernels are spatially discrete. The one-dimensional
discrete convolution f ∗ g of two functions where f, g : D → C can be written as,

(f ∗ g)(x) =
∑
j∈D

f(j) g(x− j). (2.23)

Unlike MLP, a CNN has common weights and bias values that are the same for all
hidden neurons in a given layer. Convolutional neural networks have sparse interaction,
achieved by small kernels. This leads to a small number of trainable parameters, making
CNNs efficient for high-dimensional data. The trainable parameters of the kernel are
shared; i.e. same kernel is applied to the whole input to obtain the output. This makes
CNNs equivariant to translation. If we change the input in some way, the output will
also get changed in the same way. The pooling layer replaces the output of the network
at certain locations by deriving summary statistics of the nearby outputs. This helps
in reducing the spatial size of the representation, which decreases the required amount
of computation and weights. The pooling operation is processed on every slice of the
representation individually. This reduces the size of the representation and also makes
it possible to build connections for points far away from each other. There are many
types of pooling functions that can be used. However, the most popular process is max
pooling, which reports the maximum output from the neighbourhood. It helps to make
the detected features more robust. Since convolution is a linear operation, activation
functions are used to introduce nonlinearity as discussed in section 2.2.1.
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Convolutional neural networks have become foundational in computer vision and im-
age processing, achieving remarkable success in various real-world applications, such as
medical imaging, audio processing, object detection, and synthetic data generation.
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3
Literature Review

This literature review summarizes various approaches used to model the flame response,
amplitudes of thermo-acoustic instabilities and flame dynamics. We discuss the progress
made so far in obtaining these models and the challenges faced by existing methods.

3.1 Thermo-acoustic System Identification

Thermo-acoustic instability arises from the positive interaction between acoustic waves
and unsteady combustion and manifests as self-excited acoustic oscillations [13]. To pre-
dict the amplitude of these acoustic oscillations at the design phase, low-order methods
have proven to be useful [41, 48, 42] if combined with appropriate models for the non-
linear acoustic flame response. A well-established strategy to model such a nonlinear
flame response is by means of the flame describing function. Conventionally, to obtain
this FDF, the inlet velocity is excited harmonically and both the frequency and ampli-
tude of the harmonic are varied. Although useful, the FDF approach is restrictive as
it assumes that the flame responds exclusively at the same frequency as the input sig-
nal u′. Accordingly, it neglects the possible apparition of harmonics in the response q̇′.
Such an assumption may lead to an inaccurate prediction of thermo-acoustic limit cycles
[55, 56]. To extend this FDF framework, Haeringer et al. [57] proposed an extended
FDF (xFDF), which includes additional transfer functions relating higher harmonics of
the heat release rate to the forcing velocity. The extended flame describing function per-
forms better than the conventional FDF in predicting limit cycle amplitudes, frequencies
and time series shapes. However, the same number of CFD simulations are required for
xFDF compared to the conventional approach. Alternatively, Orchini et al. [58] intro-
duced the flame double input describing function (FDIDF), where the FDF is extended
by forcing the flame with two amplitudes and two frequencies. The FDIDF is a more ex-
pensive object to calculate, but yields an improved stability prediction and the nonlinear
flame response is approximated more precisely than the conventional approach.

A more reliable yet more complex alternative to the FDF-acoustic network approach
is the hybrid CFD/low-order acoustic approach. It consists of coupling ‘on the fly’
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computational fluid dynamics to an acoustic solver. While the former simulates the
flame acoustic response q̇′ to a given input velocity u′, the latter provides the fluctuations
u′ as the result of the acoustic source q̇′ and the propagation of acoustic waves and
corresponding reflection at the domain boundaries. This method was demonstrated
to predict limit cycle amplitudes accurately [4]. Unlike FDF, this approach captures
the nonlinear interaction between fundamental frequency and associated harmonics to
predict the self-excited oscillations.

Obtaining the FDF (or xFDF) by means of CFD is usually computationally expensive.
This is because, under traditional methods, many independent simulations are necessary,
each one associated with a given amplitude and frequency. The computational costs for
the double input FDF are even higher if the same strategy is followed. The computational
costs associated with the hybrid CFD/low-order model are directly linked to the costs of
CFD, which may be considerable for highly resolved flames. As a consequence, nonlinear
thermoacoustic studies, where the nonlinear flame response plays a central role, are
generally unaffordable if all the calculation chain rely on numerical simulations. It is
therefore crucial to develop methodologies, where the FDF - or eventually more complex
flame models - can be obtained by a single CFD simulation, where a carefully designed
input signal u′ is applied during a short physical time window.

Polifke et al. [59] proposed a combined application of computational fluid dynamics
and system identification (CFD/SI) to characterize the flame response to incoming flow
perturbations. The CFD simulation is performed by exciting a flame with a low-pass
filtered, broadband signal of upstream acoustic velocity perturbations. The resulting
time series of fluctuating heat release rate Q̇′ and inlet velocity u′ are used to identify the
linear flame response, i.e. the impulse response, and corresponding frequency response
using correlation analysis. Even though this approach models an FTF from a single
simulation, it is limited to the linear flame response. Modelling the nonlinear flame
response [60, 41] remains unattainable for such kind of correlation approaches.

3.2 Deep Learning for Flame Response Modelling

The foundation of the SI methods is the linear time-invariant systems. Therefore, they
are incapable of modelling the nonlinear flame response and in turn the amplitudes of
self-excited oscillations. The universal approximation theorem states that an MLP has
the ability to learn any nonlinear function in its subspace [61]. This forms the basis
to use MLPs for the modelling of the nonlinear flame response. Selimefendigil et al.
[3] uses a feed-forward network to model limit cycle oscillations of linearly unstable
thermo-acoustic systems. A feed-forward neural network is used to model the nonlinear
behaviour of the heat source in a Rijke tube, using the broadband excited input-output
dataset generated with unsteady CFD simulation. The tanh activation function of the
neural network model is approximated with polynomials, resulting in a Volterra series
representation of input-output relations. The kernels are transformed into the frequency
domain to obtain the higher-order transfer functions. Overall, limit cycles are captured
accurately when compared with the Galerkin time domain simulation for a Rijke tube.
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Figure 3.1: Modelling of nonlinear heat source using feed-forward neural network model.
Adapted from Selimefendigil et al. [3]

Selimefendigil et al. [62] uses the CFD/SI approach to model the unsteady heat transfer
of a cylinder in pulsating cross flow. Förner and Polifke [63] modelled the nonlinear
acoustic behaviour of Helmholtz resonators using a data-based, reduced-order model.
The data coming from CFD simulation is used to train a local-linear neuro-fuzzy network.
All these studies have extended the CFD/SI approach to nonlinear regimes using neural
networks in the context of nonreacting flows. A similar approach was also proposed by
Jaensch et al. [33] for reacting flows, where they attempted to model the FDF of the
Kornilov’s flame [32] using neural network models. The results of that study were not
satisfactory, perhaps because of the lack of regularization techniques, such as dropout
or L-norms, or because of the use of shuffling in the data [64]. Nonetheless, it suggested
different ways to improve the results, such as using a more sophisticated and robust
model.

The study presented in Chapter 4 [65] uses the data collected by broadband forcing
and makes use of a machine learning-based approach to model the nonlinear acoustic re-
sponse of flames. This demonstrated the use of multi-layer perceptron (MLP), the same
type of neural network (NN) model used in Förner and Polifke [33], to characterize the
nonlinear flame response of a laminar flame. When combined with an acoustic solver,
the trained neural network model was able to predict limit-cycle amplitudes accurately.
Following work by Yadav et al.[66] applied the long short-term memory (LSTM) model,
a type of recurrent neural network, to predict the nonlinear flame response of a laminar
flame. They show that LSTM may be advantageous, as they require shorter time series
if compared with the MPL counterparts. However, that work lacks validation of LSTM
models to predict flame responses for amplitudes higher than 0.5 and to predict limit
cycle oscillations when coupled with a given acoustic solver. Rywik et al. [67] pro-
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posed an alternative approach to model the nonlinear flame response using multi layer
perceptron-convolutional autoencoder (MLP-CAE) model. It models the flow field data
to capture the nonlinear spacial dynamics. This approach can be useful to study the
flame response of acoustically noncompact flames. As a future direction, it would be
interesting to extend this work for more challenging turbulent flames.

3.3 Deep Learning for Fluid Dynamics

Deep learning in the field of fluid dynamics is rapidly developing, driven by large volumes
of data made available by experiments and numerical simulations. Deep learning can
be efficient in extracting patterns within the data and translating it into knowledge
about the underlying fluid dynamics. Deep learning methods have been widely used to
model the solutions of partial differential equations [68, 69, 70, 71] and in particular, the
Navier-Stokes equations [24, 72].

3.3.1 Purely Data-Driven Models

A simple approach in modelling any physical system consists of training a deep learning
model using data coming from either experiments or numerical simulation [24, 72]. These
models solely use deep learning techniques with appropriate data to make predictions
and hence are called as purely data-driven models. Thuerey et al. [24] applied a convo-
lutional neural network to learn Reynolds-Averaged Navier-Stokes (RANS) solutions of
airfoil flows. The proposed approach is very generic and applicable to a wide range of
PDE boundary value problems on Cartesian grids. Stachenfeld et al. [73] demonstrate
that a generic CNN-based model may predict turbulent dynamics on coarse grids more
accurately than classical numerical solvers. The proposed approach is effectively applied
to a wide range of physical domains, which can be represented as grids. These classical
neural networks map between finite-dimensional spaces and can only learn solutions tied
to a specific discretization, which can be excessively limiting. Therefore, approaches
based on learning operators are receiving increased attention. Lu et al. [74] proposed a
novel architecture based on fully connected neural networks called DeepONets to learn
diverse linear or nonlinear explicit and implicit operators. Neural operators [75, 76, 77],
specifically, the Fourier neural operator (FNO) of Li et al.[78] introduce an interesting
line of work by learning mesh-free, infinite-dimensional operators with neural networks,
but do not necessarily offer advantages for longer term predictions. These models can
be very fast and may not suffer from the time-step stability issues associated with tradi-
tional numerical solvers. Nevertheless, as these purely data-driven approaches lack the
physical understanding of the system being modelled, they generally fail in generalizing
to other operating conditions [35, 36]. To leverage the potential of deep learning in
physical simulations, it is, therefore, necessary to incorporate some physical information
within the deep learning framework.
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3.3.2 Physics-Informed Deep Learning Models

Deep learning models can enforce physical constraints partially through the loss function
[71, 25, 66] or changes in neural network architecture [79]. Kim et al. [35] define a novel
loss function to ensure the conservation of mass i.e. to ensure divergence-free motion for
incompressible flows. A well-known framework called Physics-Informed Neural Network
(PINN) [25] uses neural networks as methods for solving PDEs. It minimizes the residual
of the underlying governing laws by taking advantage of automatic differentiation to
compute exact, mesh-free derivatives. However, these approaches struggle to enforce
physical constraints such as boundary conditions or predict the strong unsteadiness and
chaotic nature of flows [80, 81]. PINN only learns the solution function of a single PDE
instance and needs re-optimization for other instances or PDEs. To alleviate this issue,
Wang et al. [82] extended the DeepONet framework by imposing the underlying physical
laws via soft penalty constraints during training. Although physics-informed DeepONet
imposes PDE losses on operator learning, they are not discretization invariant. To
tackle this issue, the physics-informed neural operator framework was proposed by Li et
al. [83] that uses available data and physics constraints to learn the solution operator
of parametric PDEs. However, all these approaches require explicit knowledge of the
underlying PDEs to accurately train the network. For the physical systems where only
partial knowledge of their physical mechanism is known, these approaches may fail to
converge to the solutions of the complete PDE solver. Minimizing the residual of only
the known but incomplete PDEs will not lead to an accurate prediction of the solutions
of a complete PDE system.

3.3.3 Neural Networks with Differentiable PDE Solvers

In recent years, the development of differentiable PDE solvers has led to an interesting
line of research. Thuerey et al. [84] have developed an open-source physics simulation
toolkit called PhiFlow for optimization and machine learning applications. SU2 [85]
is an open-source collection of software tools for analysing PDEs and PDE-constrained
optimization problems on unstructured meshes with state-of-the-art numerical meth-
ods. SciML [86] is a collection of tools for solving equations and modelling systems.
These tools provide differentiable functions for physical simulations, which enable close
integration with deep learning frameworks by leveraging their automatic differentiation
functionality. Hybrid approaches that combine machine learning techniques with nu-
merical PDE solvers [87, 88] have attracted a significant amount of interest due to their
capabilities for generalization [89]. In this context, neural networks are typically used to
model or replace a part of the conventional PDE solver to improve aspects of the solving
process. For example, Tompson et al. [90], Özbay et al. [91] and Ajuria Illarramendi
et al. [92] proposed a convolutional neural network-based approach to solve the Poisson
equation in CFD simulation. In recent years, a number of deep learning-based models
have been introduced to accurately model turbulent flows [93, 73, 94]. Um et al. [27]
and Belbute-Peres et al. [95] showed the advantages of training neural networks with
differentiable physics to correct the numerical errors that arise in the discretization of
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PDEs. Um et al. [27] integrates the convolutional neural network with the differential
PDE solver from the phiflow framework [96, 84] to reduce numerical errors in PDEs due
to spatial scales. They showcase improved generalization for out-of-distribution samples
and obtain stable, long-term recurrent predictions. Belbute-Peres et al. [95] combined
graph neural networks with SU2 framework for differential CFD simulator to recover
fine mesh solutions from coarse mesh inputs. These methods are shown to outperform
a purely data-driven model. Sirignano et al. [97] and Kochkov et al. [28] additionally
correct for closure error in turbulence modelling by integrating the neural network with
a differentiable CFD simulator. These approaches demonstrate the capabilities of neural
networks to correct errors in a fast, under-resolved simulation. The unresolved physics
in turbulence modelling is attributed to spatial filtering. Given additional computing
resources, one can arrive at accurate solutions by running the known PDEs at higher
resolution. Note that in chapter 7, we investigate a more challenging case of unknown
physics in a multi-physics system, where increasing the spatial or temporal resolution of
the known, but incomplete PDEs will not lead to the accurate solution of the complete
PDEs.

Yin et al. [98] and Takeishi and Kalousis [99] have introduced frameworks for aug-
menting incomplete physical dynamics with neural network models. These approaches
demonstrate the applicability on ODE/PDE systems, which are weakly nonlinear and
the unknown dynamics are linear combinations of the underlying flow fields. We expand
on these works to explore the significantly more challenging scenario of reactive flows.
These are characterised by multi-physics, multi-species systems with nonlinear advective
terms, which model the transport of a flow state by the velocity of the flow, and strongly
nonlinear dynamics, described by exponential source terms that exhibit nonlinear com-
binations of the flow fields. Compared to the work by Yin et al. [98], we do not use
an additive approach to learn the solutions of the complete PDE system. Instead, we
use the output of an incomplete PDE solver as an input to the neural network model to
correct for the effects of unknown terms.
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This work demonstrates the ability of neural networks to reliably learn the nonlinear
flame response of a laminar premixed flame, while carrying out only one unsteady CFD
simulation. The system is excited with a broadband, low-pass filtered velocity signal
that exhibits a uniform distribution of amplitudes within a predetermined range. The
obtained time series of flow velocity upstream of the flame and heat release rate fluc-
tuations are used to train the nonlinear model using a multi-layer perceptron. Several
models with varying hyperparameters are trained and the dropout strategy is used as
regularizer to avoid overfitting. The best performing model is subsequently used to
compute the flame describing function using mono-frequent excitations. In addition
to accurately predicting the FDF, the trained neural network model also captures the
presence of higher harmonics in the flame response. As a result, when coupled with an
acoustic solver, the obtained neural network model is better suited than a classical FDF
model to predict limit cycle oscillations characterized by more than one frequency. The
latter is demonstrated in the final part of the present study. We show that the RMS value
of the predicted acoustic oscillations together with the associated dominant frequencies
are in excellent agreement with CFD reference data. Following work was presented in
the 38th International Symposium on Combustion and is published in Proceedings of the
Combustion Institute by Tathawadekar et al. [65]. It is reproduced here under the terms
of the Creative Commons Attribution 4.0 License.

4.1 Numerical Setup

The experimental and CFD setup studied in this work is shown in Fig. 4.1. It is the lam-
inar multi-slit burner investigated by Kornilov et al. [32] where a premixed methane-air
mixture with an equivalence ratio of 0.8 is used. The velocity perturbation is performed
by using a loudspeaker operated by a single tone generator. Here, the numerical setup
and results of Jaensch et al. [33] are used: a 2D CFD domain with symmetric boundary
conditions to reduce the computational cost, the two-step chemical scheme as detailed
in Selle et al. [100] and OpenFOAM, a low-Mach number solver, are used for the simu-
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Figure 4.1: Left: Experimental configuration. Right: CFD domain. Figure adapted from [4].

lation. Additionally, no turbulent combustion model is used here as the flame is laminar
and all species transport equations are fully resolved. This approach with a low-Mach
formulation, coupled with an acoustic network model via the global heat release rate and
the fluctuation of the axial velocity at a reference position upstream of the flame, has al-
ready been validated against one based on resolving the fully compressible Navier–Stokes
equations, coupled to the low-order model via the characteristic wave amplitudes at the
inlet boundary by Jaensch et al.[4]. Given that there is no turbulence, all flow quantities
are also perfectly resolved. The grid was chosen following the grid independence study
performed in [4]. At the inflow, a mean inlet velocity of 0.4 m/s and inlet temperature
of 293 K are imposed. The plate on which the flame is stabilized is modelled as a no-slip
wall with a fixed temperature of 373K, as measured in the experiment by Kornilov et al.
[32]. A structured grid with 122,300 cells was used. The grid is uniform with a cell size
of 0.025 mm in the region of the steady-state position of the flame, which ensures that
the flame is fully resolved, and the area of contractions. Outside this region, the cells
were stretched in the axial direction [4]. The CFD simulation is run with an adaptive
time-stepping scheme with an average timestep ∆t = 10−6.
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4.2 Data Generation and Processing

Figure 4.2: Input signals used to train and validate the NN models. Dataset A, B, C from top
to bottom. Left: input time series u′

/ū, Right: probability density function of the
input data.

The time series for the training of the NN used in this work are those obtained by
Jaensch et al. [33]. The excitation signals used are of broadband nature as shown
in Fig. 4.2. The signals allow for a broadband, low-pass filtered excitation spectrum
with constant amplitude across the frequency range of interest [101]. A non-Gaussian
simulation method is applied to generate the random signal time series based on a
prescribed power spectrum and a cumulative distribution function [102]. u′ is the area
averaged velocity measured upstream of the burner plate. It is normalized by extracting
the temporal average. The normalized excitation amplitudes are 0.5, 1.0 and 1.5 for the
three datasets. These are subsequently called datasets A, B and C, respectively. Despite
having similar PDF of amplitudes, all three forcing signals are generated independently
and are statistically independent and uncorrelated. The heat release rate fluctuations
are integrated over the entire flame and then normalized to get the q̇′ time-series. It
should be noted that the accuracy of the NN model depends on the accuracy of the
training data used. Hence, the quality of the CFD simulation needs to be ensured. In
the present study, given the laminar state of the flame and the fact that the CFD resolves
all thermochemical and flow time and lengthscales, the data is accurate to be used for
the training of the NN model.

4.3 Neural Network Architecture

In this section, we formalize the problem statement and provide the implementation
details of the neural network model.
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Given a time series data D = {u′(t), q̇′(t)}m∆t
t=0 , where u′(t) ∈ R and q̇′(t) ∈ R, the

objective is for the neural network to find a mapping F such that

q̇′(t) ≈ F(u′(t)|u′(t− ∆t), ..., u′(t− n∆t)) ∀t (4.1)

where ∆t = 15µs denotes the sampling time. The main assumption is that the output
at any point in time t, i.e. q̇′(t) depends not only on the input u′ at time t, but also on
some history of input as formulated in Eq. 4.1, which reflects the time-lagged nature of
the system. Here, we consider at least 10 ms of history as it is the characteristic time
scale of the response of the system [103]. To solve this problem a Multi-Layer Perceptron
is used and its architecture is described next.

4.3.1 Non-linearity through Activation Functions

A multi-layer perceptron is a feed-forward network mapping the input to the output
as represented in Fig. 4.3 where an input layer, two hidden layers and an output layer
are represented. Here, the input u′ = [u′(t), u′(t − ∆t), ..., u′(t − n∆t)] is mapped to
the output q̇′(t) via the concatenation of nonlinear functions. The predicted output of
the MLP is denoted by q̇′p(t). It is termed as a feed-forward network as the output
is not fed back into the input layer. Each hidden layer consists of neurons which are
fully connected. This means that each and every neuron in layer li−1 is connected to
all neurons in layer li through a weight matrix Wi. Hence, the intermediate output of
the hidden layer i can be written as Zi = W T

i Xi−1 + bi where Xi−1 is the output of
layer i − 1 and bi is a bias term. In MLP, the non-linearity is introduced by using an
activation function g and, therefore, Xi = gi(Zi) becomes the final output of layer i.
The activation function is one of the most important choices in the design of MLP and

Figure 4.3: Typical representation of a neural network model with two hidden layers and
dropout regularizer.

the main options are usually the logistic function (sigmoid), hyperbolic tangent (tanh)
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or rectified linear unit (ReLU). Here, the tanh activation function is chosen because it
generally allows for a faster convergence of the training of the NN than the sigmoid
function [104]. Though ReLU is found to be better than tanh for many applications
[105, 52], functions approximated with tanh activation units are smoother than ReLU
which makes tanh more appropriate for the present work. The tanh activation function
is used for all hidden layers, whereas the linear activation function is adopted for the
output layer.

4.3.2 Dropout as Regularizer

The performance of many machine learning algorithms, neural networks included, suffers
from overfitting [33]. That is why it is necessary to regularize the model to reduce the
risk of overfitting and improve the generalization error. One way to ”regularize” a model
is to combine several models with different architectures or different data [106]. However,
it is computationally expensive to find optimal hyperparameters for each architecture
and there may not be enough data available to train the network on different subsets
of the data. The dropout regularizer addresses both of these issues. The key idea is
to randomly drop units along with their input and output connections from the neural
network during the training as shown in Fig. 4.3. This prevents the units from co-
adapting too much [106]. The dropout rate is one of the design parameters and, in this
work, it is set at 0.5 for the hidden layers. That means that neurons in the hidden layers
are dropped with a probability of 0.5 during training. This was found to be an efficient
value for this work.

4.3.3 Neural Network Architecture

To train the neural network, a loss function based on the mean squared error (MSE) is
used:

MSE =
1

n

n∑
i=1

(
q̇′p (i) − q̇′ (i)

)2
(4.2)

where q̇′p is the prediction from the neural network. The network parameters (weight
matrix W and bias b) are updated in response to the loss function using the Adam
optimizer with the learning rate as one of the hyperparameters.

In total, in order to get optimal performance, the design of the MLP requires to choose
the values of these hyperparameters: the number of hidden layers, the number of hidden
units and the learning rate of the optimizer. Generally, a grid search is widely used for
hyperparameter optimization but it is computationally expensive. So, here, a random
search is used as it is found to be efficient and inexpensive compared to grid search [107].
Neural networks with up to 4 hidden layers and a maximum of 200 neurons in the first
hidden layer were explored and the learning rate was log-linearly sampled from the range
[0.0001, 0.001].

The present study uses python - TensorFlow (http://tensorflow.org/) as a frame-
work. Contrary to the modelling approach of Jaensch et al. [33], where they use the
default implementation of artificial neural networks in Matlab R2015b. Additionally, we
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explore here deeper (more no. of hidden layers) and wider (more no. of neurons per
layer) networks compared to [33]. Regularization is also found to be crucial to avoid
overfitting. We use dropout as a regularizer, whereas [33] did not use any form of reg-
ularization. These differences between our work and [33] may explain the significant
differences in the corresponding results.

4.4 Training Details

Figure 4.2 shows the three datasets used to train and test the neural network models.
Each dataset contains 1s of inlet flow velocity fluctuations and associated heat release
rate fluctuations data. For the training and testing, each dataset is divided into 0.7s
for training and 0.3s for testing, where the last 20% of the training data is used for
validation. As described in section 4.3, the input data is pre-processed to include the
history of inputs. This transforms the input data into a higher dimensional space and is
fed to the neural network in batches. The model with the smallest MSE on the validation
set is taken to be the best and its performance is evaluated against the test set. For
the three datasets, the models are trained for different hyperparameters settings and
the best performing model is stored for further use. Table 4.1 shows the number of
hidden layers, neurons per layer and number of trainable parameters (weights) for the
best performing neural network. A dropout layer is used between each hidden layers.
The last layer of the network is the output layer with 1 neuron. Figure 4.4 shows the
prediction of the best trained model against the reference from CFD on test data for all
three datasets. This figure highlights the good agreement between the NN model and
the CFD on the dataset available.

Table 4.1: Details of the best performing MLP for all datasets.

Dataset # Hidden Layers # Neurons per layer Total weights

A 2 [73 36] 75774

B 2 [92 46] 96417

C 3 [128 64 32] 138497

4.5 Results and Discussion

4.5.1 Forced Response

To further assess the trained neural networks, the FDF is obtained from them and
compared to CFD results. To do so, the trained neural networks are forced with mono-
frequent excitation of different amplitudes. Frequencies from 10 to 500 Hz and amplitude
levels of 0.5, 1.0 and 1.5 are considered. Figure 4.5 shows the comparison of the FDF
computed from the best neural network models and the CFD simulation. It is seen that
all the NN models capture the FDF at amplitude = 0.5. However, only the NN trained
on dataset C captures the FDF accurately for all amplitudes. The networks trained
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Figure 4.4: Validation of the forced response of the best fit neural network model against broad-
band time series for dataset A, B, C from top to bottom. Solid line: prediction
of heat release rate fluctuations by NN model on test data. Dashed line: CFD
reference.

on datasets A and B fail to capture the higher amplitude flame response because those
datasets lack the necessary amplitude information as shown in Fig. 4.2. For dataset C,
all amplitude levels are present and quite uniformly distributed. Therefore, that dataset
contains all the necessary information that the NN needs to learn the nonlinear flame
response. However, as the phase does not vary much with different amplitude levels, the
networks trained on all datasets are able to predict the phase of the FDF satisfactorily.
The shaded regions in Fig. 4.5 show the bounds of prediction, using the estimates of
the 5 best performing NNs. The dataset C exhibits tighter bounds, which indicates less
uncertainty around the prediction.

As discussed in the introduction, the FDF neglects the excitation of higher harmonics
and the ability of the NN to do this also is assessed here. The trained NN-model is excited
with 3 different sinusoidal signals: each with a frequency of 100 Hz and amplitudes of
0.05, 0.1 and 0.5 respectively and the results are compared with the equivalent excited
CFD simulation. Figure 4.6 shows the FFT contents of the heat release rate fluctuations
at the fundamental frequency and its higher harmonics. At 0.05, the output is purely
sinusoidal. For amplitudes of 0.1 and 0.5, higher harmonics start to appear which is
a trend that the NN-model also predicts. This behaviour is consistent across all other
frequencies. This shows that the proposed neural network is capable of learning more
complex interactions between harmonics than the FDF.
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Figure 4.5: Comparison of the FDF computed from the best NN model and from the CFD sim-
ulation for dataset A, B, C from top to bottom. Left: Gain; Right: Phase; Lines:
estimate by the best NN fit model. Markers: CFD reference using mono-frequent
excitation. Shaded area: Bounds of prediction by top 5 NN models. Excitation
amplitudes: 0.5 (solid line, circle), 1.0 (dashed line, square), 1.5 (dotted line, dia-
mond).

4.5.2 Coupling of Neural Network and Acoustic Network

From the previous sections, it was observed that only the neural network trained with
dataset C can appropriately reproduce the FDF for all frequencies and amplitude levels
under consideration. The lack of accuracy of the NNs trained with datasets A and B
might lead to an inaccurate evaluation of the acoustic limit cycle. Therefore, for the rest
of the analysis, only a neural network model trained on dataset C will be used for further
processing and to assess whether it can accurately predict self-excited oscillations. To
do this, the trained neural network model is integrated into an acoustic network model
through flow velocity fluctuations and heat release rate fluctuations [108], as shown in
Fig. 4.7, where the overall network represents a flame in a duct. Additional details
about the acoustic network model can be found in Emmert et al. [2].
In this section, the results of the coupled neural network and acoustic network models
are compared with the hybrid CFD/low-order model by Jaensch et al. [4]. In that work,
the flame response was obtained using CFD. To study the stability of the system, the
length of the plenum duct is varied from 50 mm to 1000 mm and the amplitudes of the
velocity fluctuations are collected.

Figure 4.8 shows the RMS value of the flow velocity fluctuations measured at the
upstream side of the burner plate and the dominant frequency of the self-excited oscil-
lations for different plenum lengths. It is observed that the system becomes unstable at
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Figure 4.6: Comparison of FFT component of heat release rate fluctuations at different har-
monics for an excitation signal with frequency = 100 Hz and amplitudes from top
to bottom 0.05, 0.1, 0.5. Circle: NN model. Square: CFD reference.

Figure 4.7: Integration of acoustic network and neural network models.

a plenum length of 160 mm which is in agreement with the CFD results from [4]. Addi-
tionally, the neural network model shows a good agreement with the CFD results with
a slight over-prediction for the longer plenum. Furthermore, the NN model also exhibits
the same trend as the CFD results where, initially, the second harmonic is dominant
and, as the plenum length increases, the fundamental frequency becomes dominant (see
Fig. 4.8 at frequencies for plenum lengths between 200 mm and 300 mm). Finally, the
shape and frequency response of the obtained self-excited oscillations for two different
plenum lengths are shown in Fig. 4.9. The snapshots of the time series are taken once
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Figure 4.8: Comparison of RMS and dominant frequency of the reference velocity for different
plenum lengths. Line: estimate by the NN model. Markers: CFD reference.
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Figure 4.9: Time series (Top), power spectrum (Bottom) of the velocity signal for neural net-
work model integrated with an acoustic network (NN model) and the hybrid/low-
order model by Jaensch et al (CFD reference) for two plenum lengths (L). Left:
L = 200 mm, Right: L = 500 mm. Solid Line: NN model, Dashed Line: CFD
reference.

the steady limit-cycle state is reached. An excellent agreement is observed between the
neural network based approach and the CFD for both plenum lengths, with the appro-
priate frequency being dominant in the response signals. This shows that the NN-based
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approach can provide additional information compared to the FDF method as it also
produces harmonics in its response.

4.6 Discussion

Multi-layer perceptrons with different number of hidden layers and variable neurons
were explored to model the nonlinear flame response of a Bunsen-type flame. The
neural network models showcase the ability to learn the FDF for the laminar premixed
flame under study while using only one CFD simulation. The simulation is excited
with a broadband signal characterized by a uniform distribution of all amplitudes of
interest. The trained neural network model captures the flame response not only at the
input frequency but also at higher harmonics. When coupled with an acoustic solver,
the trained NN could accurately reproduce the bifurcation diagram and the limit-cycle
amplitude, shape and frequency contents when compared to the hybrid CFD/acoustic
solver of Jaensch et al. [4].

One of the limitations of the proposed methodology is that it uses 1 s of simulation
data for training. Obtaining 1 s of simulation data might be computationally time
consuming. Therefore, study of length of minimum data required to obtain accurate
flame response would be a good future research direction. Another short coming of the
proposed model is that the predicted flame response does not obey the low frequency
limit (see 4.5). The proposed methodology does not enforce any physical constraints on
the predicted integrated heat release rate fluctuations, therefore the low frequency limit
is not captured accurately. Following work of Yadav et al. [66] has shown that the loss
function can be constrained appropriately to obtain physically accurate flame response
at low frequency amplitudes. Such constraints can be added in the future work.
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5
Modelling Flame Response of Turbulent Flames

Modelling the flame response of turbulent flames via data-driven approaches is a chal-
lenging task due to, among others, the presence of combustion noise. Chapter 4 has
shown the potential of neural network methods to infer the linear and nonlinear flame
response of laminar flames when externally forced with broadband signals. This work
is an extension of that study to analyse the ability of NN models to evaluate the linear
and nonlinear flame response of turbulent flames. In the first part of this work, the NN
is trained to evaluate and interpolate the linear flame response model when presented
with data obtained at various thermal conditions. In the second part, the NN is trained
to infer the nonlinear flame response model when presented with a time series exhibit-
ing sufficiently large amplitudes. In both cases, the data is obtained from a large eddy
simulation of an academic combustor when acoustically forced by broadband signals.
Following work was presented in the Symposium on Thermoacoustics in Combustion :
Industry meets Academia and is published in International Journal of Spray and Com-
bustion Dynamics by Tathawadekar et al. [109]. It is reproduced here under the terms
of the Creative Commons Attribution 4.0 License.

5.1 Numerical Setup

The present work investigates the flame dynamics of two turbulent, swirl-stabilized com-
bustors, namely the fully premixed EM2C and ETH burners. Schematic representations
of both are given in figure 5.1 and 5.2, where the computational domains are highlighted
in colour. Geometrical and numerical details of both burners are summarized in table
5.1. The numerical validation of the EM2C burner was carried out by Merk et al. [5]
and Kulkarni et al. [34], for more information, the reader is referred to these works. The
combustor back plate was defined as a no-slip isothermal wall. In the work of Kulkarni
et al. [34], the back plate temperature of the combustor is varied in the range of 700 K
to 960 K to quantify the uncertainty in the flame response model. The respective data
is used for further analysis to predict the FTF at unseen boundary conditions with the
present NN model.
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Table 5.1: The two burners under investigation.

Name EM2C ETH

LES code AVBP OpenFOAM
(fully comp.) (low Mach)

Subgrid model [110] WALE WALE
Combustion model [111] DTFLES DTFLES
Chemistry scheme [112] 2S-BFER 2S-BFER

Mesh size 19×106 6×106

Swirler radial axial
Fuel CH4 CH4

Pth [kW] 5.5 48
ϕ [-] 0.82 0.77

Figure 5.1: Schematic of the EM2C turbulent swirl combustor. Dimensions are given in mil-
limeters. Figure adapted from Merk et al. [5].

The large eddy simulation of the ETH burner [6] is performed using the finite volume-
based OpenFOAM 10 library [113] solving the reactive Navier-Stokes equations. To
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Figure 5.2: Schematic of the ETH turbulent swirl combustor. Figure adapted from Eder et al.
[6].

decouple acoustics and flame response and therefore avoid self-excited instabilities or
resonances in the system [114], a low Mach number formulation of the reactingFoam

solver is utilized in the present work. The time integration is achieved using a fully-
implicit, second-order accurate Euler scheme. The velocity-pressure coupling is solved
with the PISO-consistent algorithm, with three inner iterations. The time step is ∆t =
10−6 s, which assures a Courant-Friedrich-Lewis (CFL) number below 0.3 in the flame
region. The numerical domain is discretized with 6 million hexahedral elements and is
refined in the swirler and flame region. The boundary conditions consist of velocity inlet
and total pressure outlet, while all walls are treated as no-slip. Isothermal walls with a
fixed temperature of 700 K are set for the combustor walls and bluff body plane. The
small-scale fluid motions are accounted for by the WALE [110] sub-grid scale model.
To consider turbulence-flame interaction, an extended version of the dynamic thickened
flame model (DTFLES) [111] is utilized. The two-step global mechanism BFER by
Franzelli et al. [112] is applied for modelling chemical reactions. The species and energy
equations are modelled with a unity Lewis number and a mixture Prandtl number of
Pr = 0.7, which is a common approximation in hydrocarbon combustion.

5.2 Methodology

In this section, we formalize the problem statement and provide the pre-processing of
data and details of the neural network model.

5.2.1 EM2C burner: problem formulation

Using the EM2C burner, LES simulations are carried out for 12 different back-plate
temperatures in the range of 700K to 960K. Each simulation generates the time series of
broadband, low-pass filtered velocity signal and corresponding heat release rate fluctua-
tions. The neural network model is trained to predict the heat release rate fluctuations
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Figure 5.3: Schematic of the neural network model used for both the case studies. The portion
in black shows the NN used to model the formulation in Eq. (5.3) for the ETH
burner case. For the EM2C case, we provide additional information on the normal-
ized back plate temperature (T̂ ) as formulated in Eq. (5.1).

given the data of inlet velocity and the back plate temperature (T ). The heat release
rate fluctuations at time t (Q̇′(t)) corresponds to the velocity fluctuation not only at
time t (u′(t)) but also some history of it. Therefore, the mathematical formulation is
given as follows :

Q̇′(t, T ) ≈ f(u′(t), T |u′(t− ∆t), ..., u′(t− n∆t)) ∀t (5.1)

where the value of n depends on the history of the input signal used. Table 5.2
lists the values used for different cases. To evaluate the ability of a neural network
in modelling the flame response of a combustor with unseen back plate temperature,
we divide the data into training, validation and test datasets. The data of Ttrain =
{700, 786, 800, 860, 926, 960} is used for training the neural network model. The data of
Tvalidation = {740, 842, 885} and Ttest = {760, 823, 905} is used for validation and test.
Before feeding it to the NN model, the data is pre-processed as follows. Given the data
D = {u′(t), Q̇′(t, T )}m∆t

t=0 , for different temperature configurations, the velocity and heat

release rate is mean normalized using ū and ¯̇Q, respectively. Due to the time-lagged na-
ture of the combustion system, the input time series is transformed to include the history
of velocity as shown in Eq. 5.1 and Fig. 5.3. We have data from multiple time series, each
corresponding to a simulation with a different back plate temperature. Therefore, the
neural network model requires an indicator to distinguish between the data of different
temperature configurations. We classify input data by appending it with the normalized
temperature value (T̂ ). Therefore, the data of training temperatures is concatenated in
addition to the history of velocity fluctuations in the input layer of the neural network
model. As shown in Fig. 5.3 the value of the normalized temperature is repeated multiple
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times in the input layer to emphasize that feature. It leads to better model performance.
In our implementation, we have repeated this value 100 times for all input instances.
This pre-processed data is shuffled and then fed into the neural network model.

Table 5.2: Hyper-parameters of the NN model

Case Learning Batch train:test History
Rate Size (n∆t)

EM2C 10−3 3000 NA 10 ms
ETH Model L 10−5 2750 70:30 10 ms
ETH Model NL 5 × 10−5 2250 80:20 10 ms

We use a multi-layer perceptron [61] to model the flame response of the turbulent
swirl combustor. Fig. 5.3 shows the schematic of a typical multi-layer perceptron with
an input layer, two hidden layers and an output layer. The hidden layers and output
layer have parameters associated with them, called weights W and biases b. The outputs
of ith hidden layer are computed as, Zi = σ(WiZi−1 + bi), where Zi−1 are the outputs of
the previous layer and σ indicates activation function. The activation function can be
used to introduce nonlinearity to the affine transformation of WiZi−1 + bi. Therefore,
the key design considerations to build a neural network model are the number of hidden
layers, the number of neurons in each hidden layer, and the activation function to be
used. These are called hyper-parameters of the model. Several models with varying
hyper-parameters are trained, and the model with the least validation error is selected
to predict the flame response. The hyper-parameters considered are: no. of hidden
layers, no. of neurons per layer, learning rate and batch size. Table 5.2 gives the
details of the hyper-parameters used. For all the cases considered in this work, we use
a NN model with three hidden layers, [128, 64, 32] neurons in each layer respectively.
The learning rate and batch size were identified as important hyper-parameters. The
grid search [115] is performed to exhaustively find the best combination of these values.
Learning rate is sampled from {10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3}. The batch size is
sampled from the range of [1500, 4500] with a step of 50. We explored values of 10ms,
12ms and 15ms for the history (n∆T ) provided to the neural network model. No. of
hidden layers and no. of neurons are efficiently found using Random search [107]. tanh
is used as an activation function. The dropout [106] is used as a regularizer and is set
to 0.5 for all the hidden layers. The neural network model is trained using the Adam
optimizer [116] with a suitable learning rate. The mean squared error loss function is
used to model the flame response of EM2C burner with unseen back plate temperature.
It is given by,

MSE =
1

m

m∆T∑
t=0

(Q̇′(t) − Q̇′
p(t))

2 (5.2)

where m is the number of data points and Q̇′
p(t) is the heat release rate predicted by

the neural network model.
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Figure 5.4: Probability density function of the input velocity signal with (A) 0.1 and (B) 1.0
amplitude fluctuations.

5.2.2 ETH burner: problem formulation

For the ETH burner, NN models are trained using the time series of u′ and Q̇′. The
neural network model is trained to solve the following regression problem:

Q̇′(t) ≈ f(u′(t)|u′(t− ∆t), ..., u′(t− n∆t)) ∀t (5.3)

The signal’s sampling rate (∆T ) is 10−6s and is increased to 10−5s for efficient process-
ing by the NN model. The length of the time series is 300 ms. Two datasets of different
excitation amplitudes, 0.1 and 1.0, are generated, as shown in Fig. 5.4. We train two NN
models, one to predict the linear flame response and another to predict the nonlinear
flame response. We will refer to these models as “Model L” and “Model NL” respec-
tively, throughout the paper. Model L uses data coming from 0.1 excitation amplitude.
When trained on only 1.0 amplitude data, Model NL fails to accurately capture the low
amplitude response. Therefore, data from 0.1 and 1.0 excitation amplitudes are con-
catenated to train Model NL. The input and output data are mean normalized using ū

and ¯̇Q, respectively. The velocity data is transformed to include the history of velocity
observations as shown in Eq. (5.3) and Fig. 5.3. The time series data is divided into the
training, validation, and test datasets without shuffling. Table 5.2 lists the training and
test split up used. The training data is divided into the training and validation datasets
using 80 : 20 split up. Similar to the EM2C setup, a multi-layer perceptron is used to
model the linear and nonlinear flame response of the ETH burner. Table 5.2 lists the
hyper-parameters used to train Model L. The Adam optimizer with the learning rate of
10−5 is used to train the MLP. The mean squared error is used as a loss function.

Model NL, which combines the data from two different amplitude levels, provides
unsatisfactory results when trained with the MSE loss functions due to the amplitude
imbalance problem. The MSE loss function computes the average of the squared dif-
ferences between the predicted values and the true target values as seen in Eq. (5.2).
However, the squared term in the loss function can lead to the problem of the model
being more sensitive to large errors (associated with larger amplitudes) than to smaller
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errors (associated with smaller amplitudes). During back-propagation, gradients are
scaled by the derivative of the loss function. The gradients can become much larger for
larger errors, thus emphasizing the model’s focus on large amplitudes. This can lead the
model to prioritize reducing errors for larger amplitudes, which can predict large am-
plitudes more accurately than smaller ones. To alleviate this issue, we tested different
loss functions that do not overly amplify the errors. Such loss functions include mean
absolute percentage error (MAPE), normalized mean squared error (NMSE), normalized
root mean squared error (NRMSE), and Huber loss. Taking inspiration from these loss
functions, we propose a novel loss function that performs best for the underlying data.
A novel loss function called mean square root error (MSQRE) is formulated as:

MSQRE =
1

m

m∆T∑
t=0

√
|Q̇′(t) − Q̇′

p(t)|. (5.4)

5.3 Results

In this section, we showcase results obtained on two tasks of flame response modelling.
First, we assess the model performance in predicting the FTF of a turbulent flame at
unseen thermal boundary conditions. Then, we showcase the ability of NN models to
capture the FTF and FDF of a turbulent flame.

5.3.1 Predicting FTF of a turbulent flame at unseen boundary conditions

Time series data obtained from 6 LES simulations, at different thermal boundary con-
ditions (Ttrain), are used to train the neural network model. It is validated on 3 different
combustor configurations (Tvalidation). The best performing model gives the MSE of
0.0068. This trained neural network is used to predict the FTF of a turbulent flame
with unseen back plate temperature (Ttest). To compute the FTF, mono-frequent har-
monic excitation signals with 0.1 amplitude are generated in the frequency range from 10
Hz to 500 Hz with 10 Hz resolution. The trained neural network model is used to predict
the output for each excitation signal. The fast Fourier transform (FFT) is applied to
obtain the gain and phase information of the frequency of interest. Fig. 5.5(A) shows the
prediction at 760K, which belongs to the test set. The FTF obtained by the NN model is
compared against the FTF coming from the CFD/SI approach [117]. Note that the lat-
ter requires data at that temperature: the CFD/SI approach is not capable of evaluating
the flame response at unseen conditions. In other words, there is no established method
that permits to ‘interpolate’ an impulse response, obtained by the CFD/SI approach,
from data obtained at adjacent operating conditions. We observe that the NN model
captures the flame response quite accurately. In order to obtain the uncertainty in FTF
prediction, we generate multiple realizations of training data using temporal slicing. We
slice the input-output time series of 350 ms length into the 5 overlapping time series of
length 150 ms each. 5 neural network models are trained using these datasets. Addi-
tionally, we train a neural network model with complete data of 350 ms. The gain and
phase predictions obtained from these 6 models are used to calculate upper and lower
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Figure 5.5: EM2C burner: Comparison of gain, phase and normalized FIR coefficients of the
linear flame response predicted by CFD/SI and NN approach at unseen, interpo-
lated back plate temperatures of (A) 760K; (B) 823K; (C) 905K. The shaded region
in blue shows the bounds of prediction by the NN model using different realizations
of the training data.

limits in the FTF prediction. Figures 5.5 (B) and (C) show the prediction bounds of
gain and phase obtained by the neural network model for additional test cases of 823K
and 905K.

Another equivalent approach to comparing the similarity in the predicted flame re-
sponse is by means of the Finite Impulse Response (FIR) model [118, 119, 120]. It
describes the effect of an impulse perturbation of velocity on the heat release by the
flame. It is formulated as,

Q̇′(t) =

nb∑
i=0

hiu
′(t− i∆t) (5.5)

where nb is the number of impulse response coefficients hi. The third row of Fig. 5.5
compares the estimated FIR coefficients at three corresponding temperatures obtained
by the CFD/SI approach and NN model. The FIR is obtained by performing the inverse
z-transform of the calculated FTF. The FIR obtained from the NN model is in good
agreement with the CFD/SI approach.

In the first two rows of Fig. 5.6, we collect the gain and phase for all 12 configurations
using the CFD/SI approach and the neural network model. The phase difference in the
resulting NN predictions (Fig. 5.6 (B)) displays that increasing the back plate temper-
ature of the EM2C burner results in a decrease in the phase difference. This finding is
in good agreement with [34]. According to that study, higher back plate temperatures
cause a reduction in the phase because such high temperatures promote closer stabiliza-

42



5.3 Results

10 100 200 300 400 5000.0

0.5

1.0

1.5

||F
TF

(f)
||

(A) CFD/SI Approach

10 100 200 300 400 5000.0

0.5

1.0

1.5

(B) NN Model

10 100 200 300 400 500
f [Hz]

10

8

6

4

2

0

FT
F 

[ra
d]

10 100 200 300 400 500
f [Hz]

10

8

6

4

2

0

0.000 0.004 0.008 0.012 0.016
Time lag  [s]

0.0

0.2

0.4

No
rm

al
ize

d
FI

R 
Co

ef
fic

ie
nt

s

0.000 0.004 0.008 0.012 0.016
Time lag  [s]

0.0

0.2

0.4

700

750

800

850

900

950
T [k]

Figure 5.6: EM2C burner: Comparison between mean gain, phase and normalized FIR coeffi-
cients of the linear flame response at 12 different temperatures using CFD/SI and
NN technique.
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tion of the flame to the burner mouth and, overall, a shorter flame length. Furthermore,
gain curves reveal that increasing back plate temperatures of the EM2C burner shifts
the flame response gain to higher frequencies slightly until 250 Hz. In addition, increased
back plate temperatures of the EM2C burner amplify the flame response between 250 Hz
and 500 Hz.

A collection of impulse responses, each of them characterizing the acoustic flame re-
sponse at a given temperature, is shown in the third row Fig. 5.6. Each of the shown
impulse responses of the NN model are obtained by applying the inverse z-transform
to the frequency responses shown in the first two rows of Fig. 5.6. From the results of
Fig. 5.6, it is understood that the flame responds faster and stronger for larger temper-
atures T. Note also that the valleys of the impulse response are also stronger for higher
plate temperatures T. This implies that the flame fluctuations – increase and decrease
of the integrated flame surface area – are more preponderant in the case of higher T.
For smaller plate temperatures T, crests and valleys strength decrease and are shifted to
the right (larger times). Similar observations are obtained when looking at the impulse
responses obtained by system identification, although in this case, the gradual change of
the impulse response (when shifting from larger to lower values of T) is not as apparent.
The agreement of results between NN and the benchmark case (SI) demonstrates the
validity of NN results when inferring models of the flame response at temperatures that
are not present in the training data.

The reader might wonder how to interpret the mistmatch betwen the CFD/SI and
NN when looking at the gain of the flame response. Upon studying the first row of
Fig. 5.6, it becomes evident that any resemblance between CFD/SI and NN results
is challenging to discern. It is important to note that CFD/SI cannot be considered
a reference truth, as this technique can be significantly affected by noise, particularly
combustion noise present in the data. This effect is especially pronounced in the EM2C
burner under investigation, as demonstrated by Kulkarni et al. [34], and reflected in the
high uncertainties observed (refer to the top row in Fig. 5.5). Therefore, any comparison
of flame response gain between the LES/SI and NN methods must take into account the
underlying uncertainties. In contrast, the level of uncertainty is lower when investigating
the phase of the flame response and the flame impulse response, allowing for a comparison
between the two methods.

5.3.2 Modelling nonlinear flame response

For ETH burner, the time series obtained using a normalized excitation amplitude of 0.1
(Fig. 5.4 (A)) is used to model the linear flame response of the flame. 30 % of the data is
used for testing and 70 % is used for training. Further, 20 % of the training data is used
for validation. A neural network model is trained using these time series. The model
with the least validation error of 0.0014 is chosen to further predict the FTF. Hyper-
parameters of the selected model are listed in Tab. 5.2 and are referred to as Model
L. Model L is subjected to mono-frequent forcing at 0.1 amplitude and frequencies in
the range of 10Hz to 500Hz. Figure 5.7 compares the FTF obtained by the NN model,
CFD/SI method, and experimental data available [121]. Overall, a very good agreement
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Figure 5.7: ETH burner: Comparison of the FTF predicted by the NN model with CFD/SI
and experiment. The shaded region in red shows the bounds of prediction by the
top 5 NN models.
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Figure 5.8: ETH burner: Comparison of the FDF computed from the NN model with LES.
Solid lines: estimate by the NN model. Markers: ground truth from LES using
mono-frequent excitation. The shaded region shows the bounds of prediction by
the top 5 NN models.

is found for the gain and phase prediction done by the NN model with the other data
sets.

Now, we assess the ability of neural networks to model the nonlinear flame response.
We combine the 0.1 and 1.0 excitation amplitude data to train the neural network model.
Combining data of 0.1 amplitudes provides NN with more data to train on and improves
its prediction at low amplitude levels. The model with the least validation error of
0.2608 is selected to predict the FDF. This task is more complicated than the FTF
prediction due to the variation in gain and phase response to the different amplitudes.
Figure 5.8 compares the FDF predicted by the neural network model with the data from
LES simulations at 0.1, 0.5, and 1.0 amplitude levels. Gains predicted by NN models
match accurately with the CFD simulations. A good agreement is observed for the gain
predicted by the NN model at 0.1 amplitude level with the CFD/SI approach. Similarly,
the NN model captures the variation in phase for different amplitude levels of 0.1 and 1.0.
The accurate predictions in gain and phase at low amplitude levels stem from the novel
MSQRT loss function used to train the neural network model. Furthermore, we show
the bounds of prediction by selecting the top 5 best-performing neural network models
from the hyper-parameter study. The predictions by these neural network models are
used to obtain the mean and standard deviation in gain and phase predictions shown
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in Fig. 5.8. Therefore, we show that the neural network model successfully predicts the
linear and nonlinear flame response of the ETH burner under study.

5.4 Discussion

In this work, we demonstrated the ability of the neural network model to predict the
linear and nonlinear flame response of turbulent flames for two different burner config-
urations. For the EM2C burner, the neural network is trained on the data from a few
back plate temperature configurations. The trained neural network model can predict
the linear flame response at unseen burner configurations with different back plate tem-
peratures. The neural network model with sufficient training data can eliminate the need
to run additional CFD simulations to capture the FTF at unseen boundary conditions,
thus reducing the computational cost. For the ETH burner, the neural network model
is shown to capture the nonlinear flame response. Compared with the data from the
mono-frequent excitations, predictions from the NN model are in good agreement. A
novel loss function is shown to be useful to improve flame response predictions.
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6
Reconstruction of Reactive Flow Fields

Performing measurements in reacting flows is a challenging task due to the complexity
of measuring all quantities of interest simultaneously or limitations in the optical access.
To compensate for this, recent advances in deep learning have shown a strong potential
in augmenting the information content in datasets composed of partial measurements
by reconstructing the quantities that could not be measured. This work analyses the
use of such deep learning tools. Convolutional neural networks are used to reconstruct
the heat release rate (HRR) from velocity measurements in a methane/air premixed
flame under harmonic excitation. The CNNs are trained from complete datasets at
some specific frequencies and amplitudes of excitation and their ability to reconstruct
the HRR for different operating conditions with good accuracy is demonstrated. The
work reproduced in this chapter was presented and published in INTER-NOISE and
NOISE-CON Congress and Conference Proceedings, InterNoise22, by Tathawadekar et
al. [122].

6.1 Test case: Bunsen flame under excitation

The Bunsen flame test case is shown in Fig. 4.1. It is the laminar multi-slit burner
investigated by Kornilov et al. [32], where a premixed methane-air mixture with an
equivalence ratio of 0.8 is used and is subjected to single tone velocity perturbation
with a loudspeaker. The numerical setup and results similar to the one in [65, 33] are
used: a 2D CFD domain with symmetric boundary condition in the transverse direction
and inflow/outflow boundary condition in the streamwise direction is considered. The
two-step chemical scheme as detailed in [100] and OpenFOAM [123] are used for the
simulation. Additionally, no turbulent combustion model is necessary here as all species
transport equations are fully resolved. A two-step mechanism is a simplified chemistry
model. Specifically, the continuity, Navier-Stokes, species mass fraction and enthalpy
equations [124] are solved with the CFD solver:

∂ρ

∂t
+

∂ρui
∂xi

= 0 (6.1)
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∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+

∂τij
∂xj

+ ρgi (6.2)

∂ρYk
∂t

+
∂ρuiYk
∂xi

=
∂

∂xi

[
ρD

∂Yk
∂xi

]
+ ρω̇k (6.3)

∂ρh

∂t
+

∂ρuih

∂xi
=

∂

∂xi

[
ρα

∂h

∂xi

]
(6.4)

where ρ is the density, ui denotes the velocity in the i-th direction, p the pressure,
Yk is the species mass fraction, ω̇k its reaction rate and h is the specific enthalpy of
the mixture. τij is the molecular stress tensor, D is the molecular diffusivity and α =
λ/(ρCp) is the thermal diffusivity, where Cp is the specific heat coefficient. The reaction
rate and species transport and thermodynamics properties are taken from the two-step
chemical mechanism detailed in [100]. It should be noted that for this case of an excited
laminar flame, gravity effects are neglected and therefore gi = 0. The heat release rate
is computed as [124]:

q̇ = −
Ns∑
k=1

ρω̇k∆h0f,k (6.5)

where ∆h0f,k is the formation enthalpy of specie k and Ns is the number of species.
The flame is laminar and the grid is composed of 122 300 cells with a cell size of

0.025 mm in the flame region and area of contractions and cell stretched in the axial
direction. This ensures that all flow and reaction lengthscales are fully resolved [4]. At
the inflow, a mean inlet velocity of 0.4 m/s and inlet temperature of 293 K are imposed.
The plate on which the flame is stabilized is modelled as a no-slip wall with a fixed
temperature of 373 K, as measured in the experiment [32]. The CFD simulation is run
with an adaptive time-stepping scheme with an average timestep ∆t = 10−6. Given
that this CFD set-up has already been validated in previous studies with respect to
experimental data, these validation steps are not repeated here. The interested reader
is referred to [65, 33] for additional details on the numerical set-up and its validation.

This initial set-up is then subjected to acoustic excitation at the inlet, where a normal-
ized harmonic streamwise velocity fluctuation is imposed. The frequencies considered for
excitation are f =100, 150 and 200 Hz with a normalized amplitude of A =10, 50, 100,
125 and 150% of the mean inlet velocity. Different combinations of cases will be used to
train the deep learning framework and it will then be tested on a different condition to
assess its reconstruction performance.

A typical time-sequence of the varying HRR (normalized by its maximum value) over
one period is shown in Fig. 6.1 for the case with f = 100 Hz and A = 100%. It can
be seen that the initial flame gets extremely elongated under the large amplitude of
excitation before regaining its original shape.

6.2 Reconstruction method with CNNs

In this section, the reconstruction objective is the inference of the heat release rate field
from the velocity field. To achieve this, a deep learning architecture based on the U-
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)

Figure 6.1: Evolution of HRR over one period of excitation for the case with f = 100 Hz and
A = 100%. Snapshots are spaced by a time-duration which is one-tenth of the
excitation period.

Figure 6.2: Schematic of the U-net architecture

net will be used [125]. This architecture is presented in Fig. 6.2. It is composed of
a series of CNNs which perform multi-level filtering of the input fields and recombine
these into one output field. For this reconstruction problem, it will be considered that
the U-net takes as input the full (2-component) velocity fields at 3 different successive
time instants in the past (i.e. u(x, t), u(x, t − ∆t), u(x, t − 2∆t)) and the mean HRR
field (i.e. ⟨q̇(x)⟩T , where ⟨·⟩T represents the time-averaging operation over the period
T of the velocity fluctuation) and outputs the HRR fluctuations dq̇ = q̇ − ⟨q̇⟩T . This
combination of information allows the U-net to estimate velocity gradients, which are
necessary to estimate the HRR fluctuation. The network is a special case of an encoder-
decoder architecture. In the encoding part, the input data is down-sampled by a factor
of 2 using max-pooling layers. This helps to extract large-scale and abstract information.
As image size decreases the spatial information is translated into extracted features in
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the growing number of feature channels. In the decoding part of the network, spatial
resolution increases with up-sampling layers and the number of features reduces. The
skip connections help in transferring low-level information on the encoding side to the
decoding layers.

In this setup, the U-net architecture requires the data of HRR fluctuations for train-
ing which may seem limiting. However, we will show that the U-net is also able to
infer the HRR fluctuations for operating conditions not present in the training dataset.
This situation would mimic an experimental campaign where measurements of HRR are
only available for a few operating conditions while the velocity measurements would be
available for all of them. It should be noted that the requirement of having the mean
HRR as an input is not excessively constraining given that it can be straightforwardly
obtained using luminescent photographs for example.

6.3 Results

(a)

(b) (d)

(c)

Figure 6.3: (a) Actual HRR field, (b) Reconstruction from U-net and (c) difference between the
two. (d) Time-evolution of (left axis) the total HRR fluctuation (blue line: U-net,
cross: exact) and (right axis) mean squared error for the amplitude interpolation
problem (for the case f = 100 Hz and A = 125%) .

Two different reconstruction problems are considered. In the first ”amplitude inter-
polation” case, the U-net architecture is trained with the data at specific amplitudes
of excitation (10, 50, 100, 150%) and frequencies of 100 and 200 Hz and the U-net is
used to reconstruct the HRR fluctuation for the other cases at different amplitudes of
excitation (125%), for the same frequencies. In the second ”frequency interpolation”
case, the U-net is trained with the case at 2 different amplitudes of excitation (50 and
100%) for frequencies 100 and 200 Hz and it is tested for a case with frequency of 150 Hz
and amplitude 50%.

A typical reconstructed HRR field for a representative timestep for the ”amplitude”
case is shown in Fig. 6.3 alongside the original data, where the U-net reconstruct the
HRR field for a case whose amplitude was not present in the dataset (A = 125%). It can
be seen that the HRR profile is correctly reconstructed from the input (the velocity fields
during several past time steps). Especially the formation of the HRR ”cusps”, which is
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(a)

(b)

(c)

(d)

Figure 6.4: (a) Actual HRR field, (b) Reconstruction from U-net and (c) difference between the
two. (d) Time-evolution of (left axis) the total HRR fluctuation (blue line: U-net,
cross: exact) and (right axis) mean squared error for the frequency interpolation
problem (for the case f = 150 Hz, and A = 50%).

due to the very large amplitude of the excitation, is recovered. The time evolution of
the mean-squared error (MSE) between the predicted HRR field and the exact one is
also shown in Fig. 6.3d where it can be seen that throughout the prediction, the MSE
remains small. In addition, an important feature of the flame for thermoacoustic studies
is the total HRR fluctuation (the HRR integrated over the entire domain, Q̇ =

∫
V q̇ dV ).

It is computed using the HRR reconstruction by the U-net and is shown in Fig. 6.3d.
It can be seen that it closely matches the actual total HRR fluctuation. This indicates
that the U-net is able to reconstruct the HRR field from the velocity field, not only in
terms of morphology and spatial features but also in an integral sense. The results for
the other test case (f = 200 Hz and A = 125%) exhibited a similar level of accuracy and
are not shown here for brevity.

A similar analysis was performed when considering the frequency interpolation prob-
lem, i.e. by requiring the U-net to reconstruct the HRR profile for a case whose frequency
of excitation was not present in the training dataset. This is shown in Figs 6.4a-c where
the exact, reconstructed HRR profiles and their difference are shown. Similarly to the
other case, one can observe that the reconstructed HRR matches well the actual one.
The U-net is also able to reconstruct the HRR accurately in an integral sense (see the
time-evolution of the MSE and total HRR in Fig. 6.4d). Similar accuracy was also
found for the other test case in this problem set-up (f = 150 Hz with A = 100%) and
the associated results are not shown for brevity.

6.4 Discussion

This work presented a deep learning-based method for the reconstruction of unmea-
sured quantities in reacting flows using available training data. A U-net architecture is
shown to be successful at reconstructing the HRR fluctuation in an acoustically excited
flame from past velocity information. The U-net was trained with the HRR dataset for
some specific frequencies and amplitudes of excitation and could accurately reconstruct
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the HRR for other frequencies and amplitudes, not in that training dataset. These
results demonstrate the potential of deep learning techniques in supplementing informa-
tion when only partial data is available. In the next chapter, we will further explore
the exciting problem of modelling reactive flow simulations when underlying physics is
unknown.
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7
Modelling of Flame Dynamics

Modelling complex dynamical systems with only partial knowledge of their physical
mechanisms is a crucial problem across all scientific and engineering disciplines. Purely
data-driven approaches, which only make use of an artificial neural network and data,
often fail to accurately simulate the evolution of the system dynamics over a sufficiently
long time and in a physically consistent manner. Therefore, we propose a hybrid ap-
proach that uses a neural network model in combination with an incomplete partial
differential equations solver that provides known, but incomplete physical information.
In this study, we demonstrate that the results obtained from the incomplete PDEs can
be efficiently corrected at every time step by the proposed hybrid neural network – PDE
solver model, so that the effect of the unknown physics present in the system is correctly
accounted for. For validation purposes, the obtained simulations of the hybrid model are
successfully compared against results coming from the complete set of PDEs describing
the full physics of the considered system. We demonstrate the validity of the proposed
approach on a reactive flow, an archetypal multi-physics system that combines fluid me-
chanics and chemistry, the latter being the physics considered unknown. Experiments
are made on planar and Bunsen-type flames at various operating conditions. The hybrid
neural network - PDE approach correctly models the flame evolution of the cases under
study for significantly long time windows, yields improved generalization, and allows for
larger simulation time steps. Following work is published in Data-Centric Engineering
journal by Tathawadekar et al. [126]. It is reproduced here under the terms of the
Creative Commons Attribution 4.0 License.

7.1 Preliminaries

Modelling and forecasting of complex physical systems described by nonlinear partial dif-
ferential equations are central to various domains with applications ranging from weather
forecasting [127], design of airplane wings [128, 129], to material science [130]. Typically,
a chosen set of PDEs are solved iteratively until convergence of the solution. Modelling
complex physical dynamics requires a good understanding of the underlying physical
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Figure 7.1: (A) The normalized vorticity solutions of complete/DNS (bottom) solver can be
reached by increasing the spatial resolution of the incomplete/LES (top) solver [7].
(B) We consider the problem of the incomplete/non-reactive (top) and complete/re-
active (bottom) PDE solvers which can yield fundamentally different evolutions, as
shown here for a sample temperature field over time.

phenomena. For cases where the complete information on the physics of the system
is missing, deep learning models can be employed to complete the physical description
when additional data of the system is available. Deep learning methods have shown
promises to account for these unknown components of the system [98]. We consider
a set of partial differential equations with partially unknown physics represented. The
corresponding PDE model for a general state ϕ is given by

∂ϕ

∂t
= Pc

(
ϕ,

∂ϕ

∂x
,
∂2ϕ

∂x2
, ...

)
, in Ω × (0,∞)

= F
(
Pi

(
ϕ,

∂ϕ

∂x
,
∂2ϕ

∂x2
, ...

)
,Pu

(
ϕ,

∂ϕ

∂x
,
∂2ϕ

∂x2
, ...

))
, in Ω × (0,∞)

G(ϕ) = 0, in ∂Ω × (0,∞)

ϕ = h, in Ω × (0)

(7.1)

where Pc represents the physical system with complete information. F represents a
potentially simple function that combines the known but incomplete PDE description,
Pi, and unknown physics represented by Pu to match the solutions of complete PDE
system. We take G and h to be known functions appropriately defining the boundary
and initial conditions respectively. Ω is the spatial domain over which we solve the PDE
system and ∂Ω its boundary. The term Pu can take the form of closure terms, source
terms, higher order coupling terms between state variables or terms resulting from a set
of unknown ODEs/PDEs depending on the physical system under investigation.

A commonly targeted case is when the governing equations of the complete PDE
description are computationally too expensive to solve or not known, with turbulence
modelling in computational fluid dynamics being a good example [131, 132]. In CFD,
spatial filtering is performed on the original governing PDEs in the context of large eddy
simulations. This step introduces unclosed terms in the model equations that correspond
to unrepresented physics in equation (7.1), due to the effects of the filtered scales. Figure
7.1 (A) shows instances of normalized vorticity for isotropic decaying turbulence. The

56



7.1 Preliminaries

solutions of a fully resolved direct numerical simulation (DNS) could be achieved by
increasing the spatial resolution of LES. This is a widely studied problem, where the
use of deep learning models is currently being explored [36, 73, 28, 7]. Several of these
methods train a neural network with LES as the incomplete system to model the effects
of the filtered scales and obtain the solutions of the complete DNS [28, 7]. Instead, we
consider a different, more challenging problem related to multi-physics, coupled systems
containing dependent variables which describe different physical phenomena. In equation
(7.1), Pu contains all the terms corresponding to different physical phenomena that are
not included in the PDEs represented by Pi. This formulation could describe fluid-
structure interactions which couple fluid mechanics with structural mechanics with Pu
representing the unknown coupling terms, or aeroacoustics problems which couple fluid
dynamics and acoustics [133, 134].

However, in this work, we will focus on reactive flow simulation as the complete
PDE description, while a non-reactive flow simulation will represent the incomplete
PDE basis. It collects the chemical kinetic mechanisms in the unknown physics term of
equation (7.1). In this system, Pu could take the form of the source terms from unknown
chemistry in the Navier-Stokes equations. A reactive flow refers to a fluid flow with
chemical reactions occurring within a reacting fluid, such as combustion-related flows.
A reacting fluid is a mixture of two or more species such as hydrocarbons, oxygen, water,
carbon dioxide, etc which undergo chemical reactions [17]. In contrast, a non-reactive
flow refers to a fluid flow where no chemical reactions take place. Figure 7.1 (B) shows a
visual example of a non-reactive and reactive flow simulations which can be considered
as an incomplete and complete PDE systems, respectively. Starting from the same
initial condition, the influence of Pu in this multi-physics system leads to fundamentally
different solutions as reacting fluid (shown by blue colour in figure 7.1(B)) advances
through the domain without reacting for the non-reactive flow simulation or forms a Λ
shaped flame with higher temperature of burned products (shown by dark red colour)
for the reactive flow simulation. Therefore, we are targeting a more challenging problem
than those tackled in [36, 28, 7, 73], where increasing spatial resolution and/or reducing
time-scales of the incomplete PDE solver does not lead to a converged full solution.
Rather, the complete and incomplete PDEs produce drastically different solutions due
to the unknown physics. The central learning objective is to correct this behaviour and
retrieve the evolution that would be obtained with the complete PDE description.

Our work expands on the combination of incomplete PDE solvers and neural networks
(NNs) [98, 99] to account for the effects of an incomplete physics model. The NN aims
to complete the PDE description, where the differences in complete and incomplete
PDE solutions are beyond the effects of spatial and temporal scales. We showcase that
combining the trained NN model with a differentiable solver for the incomplete PDE can
accurately reproduce the physical solutions of the complete, multi-physics PDE solver
with stable long-term rollouts.

Reactive flow modelling has applications in numerous domains such as combustion
processes in gas turbines [135, 136], climate modelling [137, 138] and astrophysics sim-
ulations [139]. Resolving the Navier-Stokes equations lies at the core of these problems,
where additionally the transport of different species of relevance must also be accounted
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Figure 7.2: (A) Multi-step training framework helps to learn the dynamics of complete PDE
solver over longer rollouts. (B1) Details of the input flow state and predictor block
used in a purely data-driven approach and (B2) the hybrid NN-PDE approach,
where S denotes the concatenation of different fields to obtain the complete flow
state ϕ̃ at next time step

for, together with their production or consumption often following complex reaction
mechanisms [17]. For chemically reacting flows, generation or consumption of multiple
species via some chemical reactions are modelled using a net source term. It is a well-
known fact that the incorporation of a detailed chemical kinetic mechanism in a reacting
flow model can result in a stiff system of governing equations [140, 141, 142].

We showcase the effectiveness of our approach for different cases of planar 2D premixed
methane-air flames, and the varying transient evolution of Bunsen-type flames. We
show that the proposed approach can handle large domains with highly resolved flames,
which are closer to the practical flame domains used in many industrial applications.
Specifically, we concentrate on training a NN model to correct the spatio-temporal effects
of energy and species transport source terms. We show that in addition to recovering
the desired solutions, this approach overcomes inherent problems of temporal stiffness
due to the complex reaction mechanism. Lastly, we show that the resulting hybrid solver
provides a flexible building block for adjacent tasks. Specifically, we demonstrate this
for controlling the evolution of flame shapes via continuous control.

7.2 Methodology

We consider two different sets of PDEs with their associated numerical solver, which
we denote as the incomplete PDE Pi and the complete PDE Pc. By evaluating Pc on
an input state ϕt at time t, we can compute the points of the phase space sequences;
ϕt+∆t = Pc(ϕt). Without loss of generality, we assume a fixed time-step ∆t and denote a
state ϕt+∆t at next time instance as ϕt+1. Let X be a Banach space of functions taking
values in a spatial domain Ω ⊂ R2. Furthermore, let C† : X → X be a nonlinear map
from ϕt to ϕt+1, defined over a finite time interval [0, T ] and an input flow state ϕ. The
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learning objective is to find the best possible correction function

C(ϕ; θ) : X → X , θ ∈ Θ (7.2)

for some finite dimensional parameter space Θ by choosing θ† such that C(.; θ†) ≈ C†.
The neural network models can be employed to learn such mapping as shown in figure
7.2. The model parameters θ are estimated from the complete PDE solution trajectories
(ϕ0, ϕ1, .., ϕT ). The learned predictions obtained after repeatedly applying the corrector
C and invoking Pi are denoted by (ϕ̃0, ϕ̃1, .., ϕ̃T ).

7.2.1 Partial differential equations for reactive flows

In this section, we present the basics of reactive flow simulation and underlying con-
servation equations. A reactive flow involves multiple species reacting through one or
more chemical reactions. Different species, such as hydrocarbons (fuel), oxygen (oxi-
dizer), water, carbon dioxide (products), are characterized through their mass fraction
Yk. The primary variables for two-dimensional (2-D) reacting flow involve density (ρ),
2-D velocity field (u), temperature (T ), and the mass fraction Yk of the N reacting
species.

In a premixed combustor, fuel (YF ) and oxidizer (YO) are mixed before they enter
the combustion chamber. The computation of premixed flames with complex chemistry
is possible but we consider a simplified approach. We assume that chemistry proceeds
only through one irreversible reaction i.e. one-step chemistry. If υ′F and υ′O are the
coefficients corresponding to fuel and oxidizer when considering a one-step reaction of
type υ′FF + υ′OO → products, the mass fractions of fuel and oxidizer correspond to
stoichiometric conditions. It is defined as,(

YO
YF

)
st

=
υ′OWO

υ′FWF
= φ. (7.3)

This ratio φ is called the mass stoichiometric ratio. WF and WO represent the molecular
weights of the fuel and oxidizer, respectively. The equivalence ratio of a given mixture
is then,

E = φ

(
YF
YO

)
. (7.4)

A common example of such reaction is CH4 + 2O2 → CO2 + 2H2O, where υ′F = 1, υ′O =
2,WF = 0.016 kg/mole,WO = 0.032 kg/mole and therefore φ = 4. The equivalence
ratio is an important parameter in the design of a premixed combustion system. Rich
combustion is observed for E > 1 (the fuel is in excess) and lean regimes are achieved
when (E < 1) (the oxidizer is in excess) [17]. Most practical premixed combustors
operate at or below stoichiometry [13].

The physical system we investigate is a laminar premixed methane-air flame with
one-step chemistry. It is governed by the following Navier-Stokes equations [17]
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∂ρ

∂t
+ ∇.(ρu) = 0 in Ω × [0, T ]

∂

∂t
(ρu) + ∇.(ρu⊗ u) = −∇p + ∇.τ in Ω × [0, T ]

ρCp

(
∂T

∂t
+ ∇.(u⊗ T )

)
= ω̇′

T + λ∇2T in Ω × [0, T ]

∂ρYk
∂t

+ ∇.(ρu⊗ Yk) = ω̇k + ρDk∇2Yk in Ω × [0, T ]

(7.5)

where τ , Dk, λ are the strain rate tensor, the diffusion coefficient of species k, and the
mixture thermal conductivity. In addition, Cp denotes the mixture specific heat capacity.
ω̇k and ω̇′

T are the species reaction rate and heat release rate, respectively. Boundary
conditions of each flow state vary depending on the applications and are provided in
detail in section 7.3. Ω ⊂ R2 represents the spatial domain.

The reaction rate ω̇k for each species are linked to the progress rate Q1 at which the
single reaction proceeds, as: ω̇k = WkυkQ1. The simplifications proposed by Williams,
1985 [38] and Mitani, 1980 [143] are used to model the reaction rates ω̇k for each species.
The progress rate Q1 is assumed to have the Arrhenius form and is given by,

Q1 = B1T
β1

(
ρYF
WF

)nF
(
ρYO
WO

)nO

exp

(
− Ea
RT

)
.

ω̇F = υ′FWFQ1; ω̇O = υ′OWOQ1

(7.6)

where ω̇F and ω̇O are the reaction rates of fuel and oxidizer, respectively. ω̇′
T is the heat

release due to combustion and is formulated as, ω̇′
T = −

∑N
k=1 ∆hof,kω̇k. The formation

enthalpy hof,k is the enthalpy needed to form 1 kg of species k at the reference temperature
T0 = 298.15K. The formulation for ω̇′

T can be further simplified as,

ω̇′
T = −

N∑
k=1

∆hof,kWkυkQ1 = −
N∑
k=1

∆hof,k
Wkυk
WFυF

WFυFQ1 = −
N∑
k=1

∆hof,k
Wkυk
WFυF

ω̇F = −Qω̇F .

(7.7)
Therefore, the heat release source term ω̇′

T and the fuel source term ω̇F are linked by
the Q, which is the heat of reaction per unit mass. Following [17], parameters correspond-
ing to a real-world methane-air flame are chosen as: B1 = 1.08107 uSI; β1 = 0; Ea =
83600 J/mole; nF = 1; nO = 0.5; Q = 50100 kJ/kg; Cp = 1450 J/(kgK). Taken
together, the system of equations above is a challenging scenario even for classical solvers,
and due to its practical relevance likewise a highly interesting environment for deep learn-
ing methods.

7.2.2 Problem formulation

The incomplete PDE solver solves the set of equations (7.5) without the source terms and
reaction rates ω̇k and ω̇′

T , while the complete PDE solver solves the full set from equation
(7.5). The neural network model, denoted by C(Pi(ϕ)|θ), corrects the incomplete/non-
reacting flow states Pi(ϕ) to obtain the complete/reacting states Pc(ϕ) as shown in
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Figure 7.3: Schematic of the convolutional neural networks used. Left: ResNet with 5 Res-
Blocks, Right: UNet32 with 2 layers.

figure 7.2 (B2). The neural network is trained to model the effects of the unknown
chemistry using parameters θ given an input flow state, ϕ = [ui, p, T, Yf , Yo]. As seen
from equation (7.5), and equation (7.6), the temperature and species mass fraction fields
are strongly coupled which significantly increases the prediction problem complexity. A
slight error in one of the fields will quickly propagate into the other fields, making the
predictions diverge. In the following, a subscript Cs(◦) will denote that the neural
network C generates the field s, e.g., CT generating the temperature field. The update
can be written as, ϕ̃t+1 = [ui,t+1, pt+1, CT (Pi(ϕ̃t)|θ), CYf (Pi(ϕ̃t)|θ), CYo(Pi(ϕ̃t)|θ)] where
·̃ indicates a corrected state. ui,t+1 and pt+1 are the time-advanced velocity and pressure
field, respectively, predicted using the incomplete PDE solver.

7.2.3 Training Methodology

Hybrid NN-PDE approach We employ a hybrid NN-PDE approach that augments
a neural network model with a PDE solver [27, 28]. In contrast to previous work, we
use the incomplete PDE solver as a basis, and hence the solver does not converge to
the desired solutions under refinement, as explained in section 7.1. The neural network
is integrated and trained in a loop with the incomplete PDE solver using stochastic
gradient descent for m time steps, as shown in figure 7.2 (A,B2). Here, the number of
temporal look-ahead steps, m, is an important hyper-parameter of the training process.
Higher m provides the network with longer-term feedback at training time through the
gradient roll-outs. This gives the model improved feedback on how the time dynamics of
the incomplete PDE solver affect the input states, and hence which corrections need to
be inferred by the model. In our framework, if an incomplete PDE solver is very close to
the complete PDE solver for the given data, the NN model would learn a correction which
is closer to an identity. The skip connections in the used convolutional neural network
architectures would readily enable such an identity operation. In contrast, when the
incomplete solver contributes very little, the proposed approach would start to represent
a purely data-driven approach.

Differentiable PDE Solver A central component of the hybrid NN-PDE model
is the differentiable solver, which allows us to embed the solver for the incomplete PDE
system in the training of a neural network. The differentiable solver acts as additional
non-trainable layers in the network. They provide derivatives of the outputs of the sim-
ulation with respect to its inputs and parameters. Finite differences can be used to
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compute the gradients of the PDE solver, but they are computationally very expensive
for high-dimensional PDEs. Differentiable solvers resolve this issue by solving the ad-
joint problem [144] via analytic derivatives. Here, we use the differentiable PDE solver
from the phiflow framework of [84] in combination with Tensorflow to obtain the non-
reactive flow solver and reactive flow solver solutions. The marker-and-cell method [145]
is adopted to represent temperature, pressure, density, species mass fraction fields in
a centered grid, and velocities in a staggered grid. Basic differential operators such as
gradient, divergence, curl, and Laplace operators are implemented in TensorFlow using
basic mathematical tensor operations [96]. These differential operators act on a 9 point
stencil of grid points and the corresponding derivatives are straight-forward to compute.
Advection is implemented with a semi-Lagrangian step, while the Poisson problem for
the pressure and its gradient are solved implicitly. Efficient derivatives for all these
operations are then combined via back-propagation [146].

Purely data-driven approach A PDD model is used as a baseline. It employs a
neural network model to learn the complete flow states Pc(ϕ) given an input flow state
ϕS where ϕS = [T, Yf , Yo], as shown in figure 7.2 (B1). The new state predicted by
the trained neural network model is ϕ̃St+1 = C(ϕ̃St |θ). For the hybrid NN-PDE as well
as PDD, the neural network part of the predictor block in figure 7.2 consists of a fully
convolutional neural network model.

We additionally compare against the Fourier neural operator (FNO) of Li et al. [78]
as an example of a state-of-the-art neural operator method. The new state predicted by
the trained model is given by ϕ̃St+1 = C(ϕ̃St |θ) where ϕ̃S = [T, Yf , Yo] and C(◦) represents
the Fourier neural operator.

7.2.4 Training Details

All three approaches use an L2 based loss that is evaluated for m steps as

L(θ) =
t+m∑
n=t+1

∑
ϕ={T,Yf ,Yo}

||ϕ̃n,Pc(ϕn)||2 . (7.8)

The network receives the input states as shown in figure 7.2. The output of the neural
network model is used to obtain the corrected state ϕ̃t+1 as specified above. We constrain
the mass fraction fields Yk to contain physical values in the range Yf ∈ [0, 0.05] and
Yo ∈ [0, 1]. All models are trained for 100 epochs with a batch size of 3 and a learning
rate of 0.0001. We have used a small batch size of 3 due to the memory requirements
as we unroll the NN-PDE framework over long timesteps. Our training procedure uses
the Adam optimizer [116]. For all our computations, a Nvidia Quadro RTX 8000 GPU
is used. Figure 7.4 shows the typical training loss curve over 100 epochs.

For PDD and the hybrid NN-PDE approach, we experimented with both the ResNet
[147] and the UNet [148] architectures. Figure 7.3 shows the schematic of the neural
network models used. We found that the ResNet performed the best for the PDD setting,
while for the hybrid NN-PDE approach the UNet performed consistently better. Hence,
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Figure 7.4: Typical L2 based training loss as defined in equation (7.8) over 100 epochs. The
inset figure shows zoomed in loss function curve for last 40 epochs.

the following results will use a ResNet for PDD models, and a UNet for the NN-PDE
hybrids.

Table 7.1: Details of various neural network architectures used in this paper.

Hyper-parameters ResNet UNet32 UNet100
Kernel size 5 5 5
Latent size 32
Activation LeakyReLu LeakyReLu ReLu

Loss MSE MSE MSE
# ResBlocks 5

# UNet layers 2 3
CNN stack depth 2 3 2
Base latent size 16 16

Spatial down-sample by layer 2 2
latent sizes (32) (32,64)

# trainable parameters 261,953 136,227 362,371

Table 7.2: Mean and standard deviation of errors over different architectures for purely data-
driven and hybrid NN-PDE approaches.

PDD PDD Hybrid NN-PDE Hybrid NN-PDE
ResNet UNet ResNet UNet

M
A

P
E

Planar-v0 6.33 ± 3.05% 7.09 ± 4.40% 1.62 ± 0.44% 1.40 ± 0.65%
uniform-Bunsen 7.58 ± 3.73% 2.87 ± 1.53% 2.01 ± 0.99% 0.72 ± 0.37%

nonUniform-Bunsen32 12.48 ± 11.31% 19.19 ± 14.92% 3.25 ± 2.35% 2.04 ± 1.39%
nonUniform-Bunsen100 - - 15.68 ± 10.44% 3.23 ± 3.76%
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Figure 7.5: Details of the boundary condition for - left: Planar flame; right: a Bunsen-type
flame. R represents resolution of the domain

Table 7.3: Details of the boundary conditions used for the planar flame case and various cases
of Bunsen-type flames. The uniform-Bunsen case is obtained with κ = constant and
nonUniform-Bunsen case is obtained with κ ∈ Rn as discussed in section 7.3.

Planar flame Bunsen-type flame
field inlet left and right wall

T 400 K Neumann BC
uy 0 -
ux 0 -
p 101325 Neumann BC
Yf

1

1+ φ
E (1+3.76

WN2
WO2

)
slip

field inlet left and right wall
T 800 K Neumann BC
uy κ no-slip
ux 0 slip
p 101325 Neumann BC
Yf

1

1+ φ
E (1+3.76

WN2
WO2

)
slip

Table 7.1 provides details of the convolutional blocks, layers of the network, and
activation function. The UNet32 architecture with 2 layers is used for 32 × 32 cases
and the UNet100 architecture with 3 layers is used for 100 × 100 case discussed in
section 7.3. Table 7.2 shows the comparison between MAPE achieved by ResNet and
UNet architectures for the purely data-driven and the hybrid NN-PDE approach for
different cases considered in this study. For the hybrid NN-PDE approach with 32 × 32
resolution cases, the ResNet and UNet achieve comparable performance with the UNet
yielding the lowest error. The main difference arises in the 100 × 100 resolution case. The
ResNet fails to converge during training, leading to high test error. On the contrary, the
UNet achieves low training and testing errors. The main advantage of UNet comes from
transforming high resolution input to low resolution representation and reconstructing it
back to the high resolution output. Therefore, we choose the UNet architecture for the
hybrid NN-PDE approach. For the purely data-driven approach the ResNet was found
to be better for 2 out of 3 cases. Specifically for the nonUniform-Bunsen32 case, UNet
performs very poorly for the PDD approach. Therefore, we report ResNet errors for the
PDD approach throughout the study.
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(D) Examples of final steady-state flame
shapes for nonUniform-Bunsen32 case
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Figure 7.6: Instances of (A): incomplete PDE solver; (B): complete PDE solver for different
operating conditions. (C): Snapshot of complete PDE solver at t = 300 for all
training and testing datasets of uniform-Bunsen case. (D): Snapshot of complete
PDE solver at t = 500 for all training and testing datasets of nonUniform-Bunsen32
case

7.3 Numerical Experiments

We consider a case of planar 2D premixed methane-air flame propagating in a quiescent
mixture (Planar-v0) and two cases of the transient evolution of an initially planar
laminar premixed flame into a Bunsen-type flame under different inlet velocity conditions
(uniform-Bunsen, nonUniform-Bunsen). We obtain the target data by considering
the source terms as defined by equation (7.6) with the parameters mentioned in section
7.2.1.

Planar-v0 For the most basic case, the planar 2D flame model setup, we consider
the reacting Navier-Stokes equations described in section 7.2 with zero inlet velocity i.e.
ux = 0, uy = 0. We consider a square domain of size 0.05 m × 0.05 m with 32 × 32
resolution and closed boundary conditions, as shown in figure 7.5. The simulation is
initialized using a steep transition between a premixed methane-air mixture and burnt
gases. Our training data consists of 6 simulations of 300 steps created by varying the
equivalence ratio E. It represents the stoichiometric mixture (φ) of fuel Yf and oxidizer

Yo mass fractions, i.e., E = φ
Yf
Yo

and thus fundamentally influences the dynamics of the
chemical reaction. For the training data we use Etrain = {1.0, 0.9, 0.8, 0.7, 0.6}, while the
test dataset contains Etest = {0.95, 0.85, 0.75, 0.65}.

uniform-Bunsen In contrast to the planar case, the premixed methane-air mix-
ture is now fed with a constant inlet velocity. The boundary conditions upstream, at
y = 0, are (ux, uy)x,y=0 = (0, κ) where κ is a n-dimensional vector with constant ampli-
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tude. The target simulation contains a heat release rate term, and in this case, the initial
temperature field evolves into different Λ-shaped flames at the end of the 300th time step.
Training and testing datasets are created by varying the equivalence ratio and inlet ve-
locity amplitude U : Etrain = {1.0, 0.9, 0.8} and Utrain = {0.45, 0.4, 0.3}. The test dataset
uses Etest = {0.95, 0.85} Utest = {0.43, 0.375, 0.325}. The length and temperature of the
flame significantly vary depending on the inlet velocity and equivalence ratio provided.
Figure 7.6 (A) shows the temperature field evolution of the incomplete PDE solver at
different time instances for 3 different operating conditions for the uniform-Bunsen case.
Figure 7.6 (B) shows the corresponding target training data for the uniform-Bunsen
case. All the simulations are run for 300 steps. It shows the difference between non-
reactive and reactive flow solver simulations for different operating conditions over 300
time-steps. Figure 7.6 (C) shows the last snapshot (t = 300) of 9 training simulations
and 6 testing datasets with operating parameters interpolated between the training data
parameters for uniform-Bunsen case. These datasets are obtained by varying the equiv-
alence ratio and the magnitude of the uniform inlet velocity. The flame temperature
depends on the equivalence ratio used and the flame height depends on the inlet velocity
amplitude and equivalence ratio.
nonUniform-Bunsen As a third case we consider the transient evolution of a

premixed methane-air flame with non-uniform inlet velocity. The boundary conditions
upstream, at y = 0, are (ux, uy)x,y=0 = (0, κ) where κ is a n-dimensional vector whose
elements are each sampled from a uniform distribution from [0.2, 0.65]. We experiment
with two different domain sizes, 32 × 32 (nonUniform-Bunsen32) and 100 × 100
(nonUniform-Bunsen100) . The larger domain size used is closer to the practical
reactive flow domain utilized in CFD applications [4] with a highly resolved flame. These
inlet velocity conditions generate complex flame shapes, which increase the difficulty of
the prediction problem. We consider simulation sequences with 500 steps, as it takes
longer time for the flame to reach the steady-state solution. Figure 7.6 (D) showcases
the snapshots of training and testing dataset at t = 500 for nonUniform-Bunsen32 case.
Non-uniform variations in inlet velocity profile leads to different complex flame shapes.
We use 12 datasets with 500 simulation steps to train the models and test it on 12 test
cases shown in figure 7.6 (D). For the nonUniform-Bunsen32 case with 32 unrolling steps
(m = 32), training requires approximately 60 hours with approximately 1 GB of GPU
memory.

The training and test datasets are split using different initial conditions. This en-
sures that varied (training) and unseen (test) data is provided. For example, in the case
of Planar-v0 scenario, the training data consists of 5 simulations of planar flame with
different equivalence ratios, evolving over 300 simulation steps. During test time, only
the initial state of the flow field (ϕ0) and unseen boundary conditions (i.e. other equiv-
alence ratios than those in the training datasets) are specified and the trained hybrid
NN-PDE model is used to make predictions over 300 time steps. A similar setup is used
for the baseline approaches. Multi-step training framework shown in figure 7.2 demon-
strates the training setup for the baseline and hybrid NN-PDE approaches. Continuous
time-slices are used during training. As shown in figure 7.2 (A), during training, the
Predictor Block is unrolled for m steps i.e. the network is trained using multiple “se-
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Figure 7.7: 1D cut of the planar flame simulation over 300 steps. The initial state is plotted in
red, target state in green. Hybrid NN-PDE approach predicts physically accurate
results over longer rollouts.
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Figure 7.8: Hybrid NN-PDE approach predicts physically accurate results with correct flame
temperature and relative displacement of flame front across different equivalence
ratios

quences” of m consecutive snapshots (selected from the cases in the training datasets).
During testing, only ϕ0 (the initial flow state) along with unseen boundary conditions
are provided and the trained predictor block is evaluated 300 times to obtain predictions
from t = 1, 2. . . , 300.

7.4 Results

We demonstrate the capabilities of the proposed learning approach to represent the
complete PDE description with the aforementioned cases of increasing difficulty. We
also study its ability to generalize to unseen operating conditions such as equivalence
ratios, simultaneous variations in constant inlet velocity and equivalence ratio, and non-
uniform inlet velocity profiles. As baselines, we compare against a purely data-driven
approach; a neural network model with exactly the same look-ahead steps, and the
Fourier neural operator of [78] that likewise includes m look-ahead steps as discussed in
section 7.2.3. All the qualitative and quantitative evaluations shown in the paper are
performed on test datasets with unseen initial conditions.

7.4.1 Planar-v0

Table 7.4 compares the mean absolute percentage errors (MAPE) and mean squared
errors of the temperature field for all the cases discussed in section 7.3. For Planar-v0,
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Table 7.4: Mean and standard deviation of errors over all time steps of all testsets. The Hybrid
NN-PDE approach outperforms all other baselines considered.

Baseline Baseline Hybrid Hybrid
FNO NN NN-PDE NN-PDE-dt

M
A

P
E

Planar-v0 8.27 ± 5.51% 6.33 ± 3.05% 1.40 ± 0.65% 1.21 ± 0.39%
uniform-Bunsen 15.57 ± 8.72% 7.58 ± 3.73% 0.72 ± 0.37% 1.11 ± 0.47%

nonUniform-Bunsen32 12.30 ± 7.98% 12.48 ± 11.31% 2.04 ± 1.39% 2.46 ± 1.61%
nonUniform-Bunsen100 - - 3.23 ± 3.76% 4.14 ± 4.99%

M
S

E

Planar-v0 88316 ± 124394 34491 ± 43966 1122 ± 1300 292 ± 296
uniform-Bunsen 220817 ± 167024 72563 ± 56919 721 ± 1007 1267 ± 1622

nonUniform-Bunsen32 184860 ± 185694 130219 ± 142094 9647 ± 13903 17569 ± 24392
nonUniform-Bunsen100 - - 23293 ± 37451 26862 ± 47639

the FNO and PDD approaches yield large errors with a MAPE of 8.27% and 6.33%,
respectively. On the other hand, the hybrid NN-PDE model trained with 32 look-
ahead steps reduces the error to 1.4%, and thus performs significantly better than the
two baselines. This behaviour is visualized in figure 7.7 with a 1D transverse cut of
the simulation domain over 300 time-steps. The hybrid NN-PDE approach successfully
captures the propagation of the flame.

In figure 7.8, we also compare two important physical quantities: the flame tempera-
ture and relative displacement of the flame front, across different equivalence ratios. It
can be seen that the hybrid NN-PDE model (green circles) accurately predicts the flame
temperature for different test cases (solid green line). The relative displacement of the
flame front is computed as |x̃t − x̃0|/|xt − x0|, where xt is the position along the flame
normal at time t on the 1200K isotherm of the ground truth simulation, and x̃ denotes
the predicted position. For all test cases, the hybrid approach accurately predicts the
flame displacement over t = 300 steps, while the other approaches yield significant er-
rors. Figure 7.9(A) shows the 2D visualization of the temperature field predictions for
Planar-v0 case. As seen from the ground truth images, the methane-air mixture (black
colour) converts into the burned products (yellow colour) due the chemical reaction at
the flat flame surface (red colour). The dotted, horizontal red line helps to compare the
transition of the flame interface, i.e. the displacement of the flame front. Due to the
chemical reaction, the fuel-air mixture is consumed and turns into the burned product
as the simulation progresses. The FNO approach completely fails to predict the prop-
agation of the flame for the given test case. Its output does not show any evolution
from the initial temperature profile for the given operating condition. The purely data-
driven approach fails to capture the flame front displacement correctly, thus leading to
an inaccurate prediction with large errors. The hybrid NN-PDE model accurately cap-
tures this evolution of planar methane-air flame in a quiescent mixture. Figure 7.9(B)
shows the instantaneous MAPE w.r.t. ground truth data for predictions shown in fig-
ure 7.9(A). The absolute error shown in figure 7.9(B) exceeds 1100 K for the FNO and
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Figure 7.9: Planar-v0 flame case with E = 0.95. (A) Temperature field predictions; (B) Ab-
solute error between ground truth (Pc(Tt)) and the output predicted - from top
to bottom top - by: FNO, purely data-driven approach and hybrid NN-PDE. The
numbers represent instantaneous MAPE

purely data-driven approaches as these do not predict the flame temperature and flame
front displacement correctly. We use the upper limit of 1100 K for colourbar to highlight
the errors in the hybrid NN-PDE approach more clearly. Large errors in FNO and PDD
results stem from their inability to reliably predict the flame temperature and flame
front displacement.

7.4.2 Bunsen-type flame

For the uniform-Bunsen case, the PDD baseline with an error of 7.58% performs better
than the FNO model which yields an error of 15.57%. However, a neural network model
combined with an incomplete PDE solver for 32 look-ahead steps yields a significantly
lower error of 0.72% as shown in table 7.4. This means that the hybrid approach reduces
the errors by a factor of 10 over the baselines considered. Figure 7.10(A) shows the
temporal evolution of the hybrid NN-PDE approach predicted over 300 time steps for
the uniform-Bunsen case. It shows the results for a test case with U = 0.4375 and
E = 0.95. It predicts a symmetric flame with accurate flame height and achieves very
low instantaneous MAPE of 0.73% at t=300, when compared with the ground truth
data.

Next, we study a complex scenario of nonUniform-Bunsen flame with 32 × 32 resolu-
tion. The hybrid NN-PDE approach outperforms the PDD approach and FNO with an
improvement of ∼ 80%. We also include a variant of the PDD approach (PDD-5) which
is trained to predict all quantities (ϕS = [T, Yf , Yo, u, p]) of the flow state. It employs a
neural network model to learn the complete flow states Pc(ϕ) given an input flow state
ϕS where ϕS = [T, Yf , Yo, u, p]. Keeping all hyperparameters the same, the ResNet is
trained to predict all quantities of flow state for nonUniform-Bunsen32 case. As the
PDD approach does not enforce any physical laws, the inclusion of additional quantities
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Figure 7.10: Left : Inlet velocity profile used. (a-d) Temperature field prediction by hybrid NN-
PDE approach over different steps given the inlet velocity profile. (e) Ground truth
data. Right : Difference between ground truth data and hybrid NN-PDE output
at last snapshot. Top to bottom: 32 × 32 resolution cases of (A) uniform-Bunsen,
(B) nonUniform-Bunsen32, and (C) 100 × 100 testcase nonUniform-Bunsen100.
ϵ represents the instantaneous MAPE

results in a more difficult learning task, which given the same number of learnable pa-
rameters naturally results in a deteriorated quality of the inferred results. Figure 7.11
shows the MAPE of the temperature field predicted by this new variant (referred to
as PDD-5) with the PDD approach described in section 7.2.3 and hybrid NN-PDE ap-
proach for the nonUniform-Bunsen32 case. Across all test cases, PDD-5 performs worse
as problem complexity has increased.

The hybrid NN-PDE model achieves a low MAPE of 2.04% compared to the higher er-
rors of 23.45% and 12.48% predicted by the PDD-5 and the PDD approach, respectively.
The MSE values show this trend even more clearly. The large standard deviations of the
MSE numbers indicate that the predictions made by the baseline approaches contain
substantial deviations from the target values. It is important to highlight that despite
using the same training data and a similar neural network architecture with the same
number of look-ahead steps, the hybrid approach outperforms the PDD approach due
to its learned collaboration with the incomplete PDE solver. It accurately reproduces
the complete PDE behaviour. Figure 7.10(B) highlights this with a visualization of the
hybrid NN-PDE model predictions for nonUniform-Bunsen32 case. The trained model
accurately predicts the flame simulation over long roll-outs of 500 steps and achieves the
complex flame shape with a low, instantaneous MAPE of 2.38%.

Finally, we showcase the ability of the hybrid approach to predict the temporal evo-
lution of highly resolved flames with the uniform-Bunsen100 scenario. Despite the in-
creased complexity of the larger resolution, it achieves a very good overall MAPE of
3.23% over 12 test cases of 500 simulation steps. Figure 7.10(C) shows an example of
physically accurate predictions made by the hybrid NN-PDE model. We omit the eval-
uation of baselines for high resolution cases as they do not succeed to model the flame
dynamics for low resolution cases.
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Figure 7.11: Bar plot of MAPE of temperature field predictions by a purely data-driven model
trained to predict 5 quantities of flow state (PDD-5), PDD model trained to
predict 3 quantities of flow state (PDD), and hybrid NN-PDE model (Hybrid)

In the following subsections, we present additional visualizations and a detailed com-
parison of the hybrid NN-PDE model against baseline approaches for different scenarios
of Bunsen-type flames.

7.4.2.1 uniform-Bunsen

Figures 7.12 show an example of the uniform-Bunsen case: a test case with uy = 0.375
and E = 0.95. The constant inlet velocity results in a symmetric, Λ-shaped flame. The
vertical, dotted, red line in figure 7.12(A) helps to assess the symmetric nature of the
flame. The purely data-driven model predicts a thicker flame (t = 50) or a flame with a
spurious tip (t = 172) or an asymmetric flame (t = 225). Snapshots of the hybrid NN-
PDE model predictions in figure 7.12(A) show that it adapts to this scenario very well
and succeeds in obtaining the correct results for long term forecasts of the temperature
field. Furthermore, the flame shape and height are also better predicted, as shown in
figure 7.12(A). Very low error levels in figure 7.12(B), such as ϵ = 1.26 at t = 300,
indicate that the hybrid model recovers the temperature field well.

7.4.2.2 nonUniform-Bunsen

Figure 7.13 compares the temporal predictions made by FNO, PDD and the hybrid
NN-PDE model with ground truth data for nonUniform-Bunsen32 case. Compared to
Planar-v0 and uniform-Bunsen case, FNO predicts qualitatively better results for this
case. Although still highly inaccurate, it predicts shapes that come closer to the target
flame shapes for the later part of the simulation (for t > 300). This improvement might
be due to the larger training dataset used for this scenario compared to the previous
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Figure 7.12: uniform-Bunsen case with constant inlet velocity U = 0.375 and E = 0.95. (A)
Temperature field predictions; (B) Absolute error between ground truth (Pc(Tt))
and the output predicted - from top to bottom top - by: FNO, purely data-
driven approach and hybrid NN-PDE. Hybrid NN-PDE model predicts physically
accurate evolution of the flame cases under study
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Figure 7.13: nonUniform-Bunsen32 : Comparison between different approaches - from top to
bottom - FNO, PDD, hybrid NN-PDE for a test case. Hybrid approach predictions
accurately match with the ground truth data over long-rollouts of 500 time steps
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two scenarios. However, it fails to predict accurate temporal predictions over the entire
simulation. The hybrid NN-PDE approach predicts the accurate flame evolution well.
Additionally, we showcase the performance of the hybrid NN-PDE approach on two
different test cases with complex flame shapes in figure 7.14. The neural network model
along with the incomplete PDE solver reconstructs these complex flame shapes in an
accurate manner.

For the nonUniform-Bunsen100 case, figure 7.15 compares the predictions made by
hybrid NN-PDE over {0, 100, 200, 250, 300, 325, 350, 400, 450, 500} simulation steps with
the ground truth data. It also shows the absolute difference between them. As the
simulation progresses, higher errors are observed around the flame front. However,
the hybrid NN-PDE approach captures the flame shape very accurately for longer roll-
outs of 500 simulation steps. Currently, this approach uses a training dataset similar to
nonUniform-Bunsen32. Further improvements in accuracy can be achieved by increasing
the training dataset size or training the hybrid model with longer look-ahead steps.

7.5 Discussion

In this section, we study the effect of temporal coarsening, incorrect PDE parameters
and longer look-ahead steps on predictions made by the hybrid NN-PDE solver.

7.5.1 Relaxing temporal stiffness in the PDE solver

Traditionally, the source terms and reaction rate terms involved in modelling the fast
chemistry of reacting flows require the use of very small time-steps in simulations due
to the stiffness of the chemical mechanisms. The incomplete PDE solver used in the
hybrid NN-PDE approach, does not contain the source terms and reaction rate terms.
Therefore, the time scales associated with the chemical reactions play a less important
role in maintaining numerical stability, and it becomes possible for the solver to employ
larger time steps. To illustrate this advantage, we train the neural network model with
a time-step that is twice as large as the largest time-step ∆tc required for the complete
PDE solver to yield a stable result.

We mimic the setup described in section 7.3, but now the incomplete PDE solver uses a
time-step of 2∆tc, which is too large for the complete PDE solver by itself to converge to
a solution. Figure 7.16 shows the results obtained from the models trained with a larger
time-step are in good agreement with the target data for 4 different scenarios considered.
The flame dynamics are predicted accurately while using less simulation steps. For the
uniform-Bunsen case, the hybrid approach takes 8.23 ± 0.011s to infer one simulation
run, whereas the complete PDE solver requires 15.21 ± 0.003s. Similar performance
gains are observed across the other cases studied. Note that for the previous cases with
a timestep size of one ∆tc, the trained model incurs a negligible runtime overhead. Even
though incomplete PDE solvers are cheaper to run, as mentioned in the introduction
section, increasing the spatial or temporal resolution of the incomplete PDE solver would
not converge to the solutions of the complete description. Using the incomplete solver,
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these solutions cannot be obtained irrespective of how much computational resources
are invested.

The last column of table 7.4 (Hybrid NN-PDE-dt) summarizes the errors of the large
time-step approach for all four reactive cases considered. Despite an effectively doubled
computational performance, this model achieves similar errors to the hybrid NN-PDE
approach. This highlights the capabilities of learned, hybrid PDE solvers, which can
produce these solutions without the stability problems exhibited by the complete PDE
solver, while at the same time being more accurate than pure data-driven predictions.

7.5.2 Robustness of the hybrid solver

Generalization to incorrect PDE parameters The proposed hybrid NN-PDE
model is capable of completing the PDE description even if the underlying incomplete
PDE solver has incorrect parameters. We refer to the incomplete solver with incorrect
parameters as ‘incomplete, incorrect PDE’. We experiment with a modified hybrid NN-
PDE approach wherein we combine an incomplete, incorrect PDE solver with a neural
network model. We assume that the known values of the incomplete PDE parameters
in equation (7.5), strain rate tensor (τ), the diffusion coefficient of species k (Dk) and
mixture thermal conductivity (λ), are incorrect. Figure 7.17 (A) shows the difference be-
tween the temperature field evolution of the incomplete PDE solver with correct param-
eters ([τ,Dk, λ] = [0.1, 0.1, 0.1]) and incorrect parameters ([τ,Dk, λ] = [0.05, 0.05, 0.05])
at different time-steps. The hybrid NN-PDE combines this incomplete, incorrect PDE
solver with the neural network model to obtain the solutions of the complete PDE solver
with the correct parameters. Figure 7.17 (B) compares the flame dynamics predicted
by this hybrid NN-PDE model with that of the complete, correct PDE solver. A good
match is observed over various test cases. The hybrid model with an incomplete, incor-
rect solver achieves an overall MAPE of 2.48 ± 1.20 %, compared to the MAPE of 2.04
± 1.39 % for the hybrid model with incomplete, correct PDE.

Effect of longer look-ahead steps We evaluate the effect of varying look-ahead
steps on the performance of the hybrid model. We show the comparison of models
trained with m = {2, 4, 8, 16, 32} for different cases in figure 7.18. Models with smaller
m (2) do not learn to accurately correct the fields over a long time and quickly diverge
from the target simulation. Using larger m improves the quality of prediction drastically
as the model learns the correction via the gradients over longer simulation steps. For
Planar-v0 and uniform-Bunsen cases, iterating the NN and PDE solver for 32 time-steps
improves the accuracy by 81.7% and 94% respectively compared to the m = 2 model. For
nonUniform-Bunsen32 and nonUniform-Bunsen100, the model performance improves by
84.2% and 70.9% respectively, by using m = 32 instead of m = 2 model.

Effect of training dataset size We study the effect of training dataset size
on the accuracy of PDD predictions. We train PDD models with different numbers of
simulations in the training dataset. Each simulation contains 500 time-steps. Figure
7.19 (A) shows the MAPE of PDD models trained with {4, 8, 12, 16, 24, 32} training
datasets, over a fixed testset. We compare the performance of these PDD models with
an equivalent (trained with the same look-ahead steps m = 2) hybrid NN-PDE model,
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Figure 7.16: Predictions made by hybrid NN-PDE model (T̃t) with an incomplete PDE solver
at twice the time-step of 2∆tc, are compared with the ground truth solutions
coming from the complete PDE solver at time-step of ∆tc. We showcase the
effectiveness of the hybrid approach in relaxing temporal stiffness of the complete
PDE solver on reactive flow cases of - from top to bottom - Planar-v0, uniform-
Bunsen, nonUniform-Bunsen32 and nonUniform-Bunsen100 for different test cases
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Figure 7.18: Effect of longer look-ahead steps. MAPE of temperature field predictions by hy-
brid NN-PDE model, over all testsets. Models trained with higher look-ahead
steps m accurately predict the temporal evolution of dynamics for a longer dura-
tion across all cases considered.
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Figure 7.19: (A) Effect of increasing training dataset size for PDD approach, over fixed testsets,
is compared with equivalent (trained with same look-ahead steps m = 2) hybrid
NN-PDE model. (B) Effect of temporal coarsening on PDD models trained with
m = 32 look-ahead steps

trained with 12 simulation sets. Figure 7.19 (A) shows increasing the number of training
sets has little or no effect on the prediction capabilities of the PDD models for the
nonUniform-Bunsen32 case. The hybrid model with 12 training sets achieves a MAPE
of 12.49 ± 4.17%, an improvement of 38% over the PDD model with 32 training sets. The
purely data-driven models cannot achieve the same level of accuracy even in the presence
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Figure 7.20: Bar plot of MAPE of temperature field predictions by FNO, PDD and hybrid
NN-PDE model at time-step 2∆tc, for different testcases
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Figure 7.21: Comparison between different approaches at time-step 2∆tc - from top to bottom
- FNO, PDD, hybrid NN-PDE for the nonUniform-Bunsen32 test case. Hybrid
approach predictions accurately match with the ground truth data over long roll-
outs

of large amounts of data. This result strengthens the hypothesis that integrating the
incomplete PDE solver into the neural network training yields a learning signal that
fundamentally differs from that produced by training with pre-computed data. The
purely data-driven models cannot achieve the same level of accuracy even in the presence
of large amounts of data.

Effect of temporal coarsening Table 7.4 compare the MAPE of temperature
field predictions at time-step ∆tc, for all three scenarios. The hybrid NN-PDE approach
consistently performs better than both the baselines for all three scenarios considered.
Higher standard deviations in table 7.4 indicate the large differences in the prediction of
flame temperatures for baseline approaches. The multi-physics systems we study provide
a substantially more difficult environment than regular fluids: the chemical reactions
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are numerically very stiff, and the resulting dynamic interactions are difficult to capture
by numerical solvers. To further illustrate the temporal behaviour of the simulations,
we perform additional experiments with the baseline approaches using twice the time-
step size of the complete solver (2∆tc). As shown in figure 7.20, for the Planar-v0
and uniform-Bunsen case, PDD catches up with the hybrid approach whereas the PDD
approach completely fails to predict the dynamics of the nonUniform-Bunsen32 case. We
further investigate the performance of the PDD approach on the nonUniform-Bunsen32
case with larger time-steps (2 times, 4 times and 8 times) as shown in figure 7.19 (B).
PDD achieves a higher MAPE of 22.44 % for 8∆tc setup as compared to the MAPE of
12.48 % for ∆tc setup. The PDD approach does not predict the dynamics accurately
for any of the larger time-steps considered. We can not showcase the performance of
the hybrid NN-PDE solver for time steps greater than 2∆tc as it is restricted by the
underlying incomplete PDE solver. Figure 7.21 visualize these results over different
time-steps for one of the test cases. The predictions made by FNO, PDD and hybrid
NN-PDE model for the nonUniform-Bunsen32 case at twice the time-step of 2∆tc, are
compared with the ground truth solutions coming from the complete PDE solver at
time-step of ∆tc. FNO and PDD (upper two rows) fail to recover the correct flame
shapes over 250 simulation steps. The hybrid NN-PDE model (second row from below)
predicts the flame shape accurately, thus relaxing the temporal stiffness of the complete
PDE solver.

7.6 Controlling Flame Dynamics

To demonstrate the flexibility of the hybrid NN-PDE solver developed in this , we
consider a multi-physics system control problem. We test the joint applicability of a
neural network with a pre-trained hybrid reactive flow solver to obtain the desired flame
shape. We integrate the hybrid solver as a layer into the neural network model to enable
the training of a flame shape controller. As a result, physics knowledge from the hybrid
solver can be embedded into the optimization problem by matching observations coming
from the solver. The hybrid solver provides the agent with feedback on how interactions
at any point in time affect the flame shape. We consider a physical system of reactive
flows where the agent can interact with the system by controlling the inlet velocity of
fuel-air flow.

We use a predictor-corrector approach [26] with a supervised loss function and control
sequence refinement for the nonUniform-Bunsen case with 32 × 32 resolution. A pre-
trained hybrid solver from section 7.4.2.2 is used as a reactive flow solver. This hybrid
model consists of an incomplete PDE solver along with an UNet model detailed in section
7.2.3, section 7.2.4 and figures 7.2, 7.3. It is first trained using training instances of the
uniform-Bunsen32 case described in section 7.3. Additionally, it is further trained on
the training data of flame shape transitions from an arbitrary flame shape to any other
arbitrary flame shape. Once trained, the weights of the hybrid solver are frozen and
used as a layer into the predictor-corrector approach. It is differentiable by construction,
when combined with the deep neural networks is shown to learn a policy to control flame
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shapes. The learning objective is to arrive at a target temperature field (T∗) with the
desired flame shape from an arbitrary, given initial configuration (T0) by controlling the
velocity field (uci ). We consider a real-world setting where only few states of the reactive
flow system are observable and controllable: the temperature and mass-fraction fields are
observable, and only the inlet of the velocity field is controllable. The predictor-corrector
approach consists of two neural network models. First, an observation predictor network
(OP), predicts the intermediate states of the observable quantity i.e. temperature in
this case (T pi ). The corrector (CFE) network predicts the control force (uci ) required
to follow the trajectory predicted by OP network. The inlet velocity field predicted
by the CFE network is used by the pre-trained hybrid solver to compute the corrected
temperature field (T ci ). Figure 7.22 shows the sequence of OP-CFE network used to
control the flame shape T∗ given the initial flame shape T0, over the trajectory of 4 time-
steps. The OP network is modelled as a temporal hierarchical process to incorporate
knowledge about longer time spans. Therefore, OP networks are trained to predict the
optimal center point between two time steps instead of predicting the state of the next
time step. The recursive call to the OP network enables the prediction of observable
quantities at every time step (T pi ). Using Ti−1 and OP prediction at step i, i.e. T pi ,
CFE network predicts the control force at step i, uci . Once uci is predicted, the learned
hybrid solver can be used to advance the simulation to next time step and obtain the
actual state T ci . Using this sequence of OP-CFE network, we can obtain T cn with n
CFE evaluations, which matches target flame shape T∗ very closely. This sequence
can be generalized to any arbitrarily long length of sequences. OP-CFE networks are
trained using the supervised loss function on the target temperature field achieved and
inlet velocity predicted, respectively. The loss function formulations for OP and CFE
network are,

Lop = |OP [Ti, Tj ] − TGT (
i + j

j
)|2 LCFE =

n∑
i=1

|uci − u∗i |2, (7.9)

where TGT and u∗ indicate the ground truth temperature field and inlet velocity, respec-
tively. The simplest technique to obtain the optimal trajectory, given an initial state
is to use the chain of CFE networks followed by the solver. CFE, modelled using deep
neural network, predicts the control force required to predict the transition to the next
observable state. Therefore, as a baseline model, we consider the CFE only approach.
All neural networks used in this work are modified UNet architectures [148].

Figure 7.23 (b-e) shows examples of the transition achieved and compares the target
flame shape obtained using the neural network model with the target flame shape (T∗).
All three cases are test cases, i.e. were not seen at training time, and have a sequence
length of 64 simulation steps. It is visible that the neural network model succeeds
at controlling the inlet velocity of fuel-air mixture flow to obtain the desired flame
shapes. To quantify these results, the learned model achieves MAPE of 1.34 ± 0.41%
over 50 test cases considered. It achieves an improvement of 65.7% compared to a
baseline model of the CFE-only approach, without a predictor network for the long term
prediction of temperature fields. This baseline model has a MAPE of 3.91 ± 2.19%. This
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Figure 7.22: Details of the OP-CFE prediction sequence
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Figure 7.23: Temperature field predictions achieved by the neural network model T̃NN
∗ from

given initial flame shape T0 to achieve target flame shape T̃∗ by controlling flow
velocity

case highlights the capabilities of differentiable hybrid NN-PDE multi-physics solvers.
Specifically, the hybrid solver helps the OP-CFE networks to yield controllers that steer
the complex physics of the reactive flow over long time spans.
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8
Conclusion & Outlook

In this dissertation, we focus on modelling flame dynamics using deep learning-based al-
gorithms. In the following, we will summarize all methods discussed in previous chapters.
Afterwards, limitations and future directions are presented.

8.1 Summary

In the previous chapters, we have presented the ability of neural networks to model
nonlinear flame dynamics in various applications, such as nonlinear flame response, the
temporal evolution of reactive flow simulations and control of reactive flow simulations.
We demonstrated the ability of the neural networks to accurately and efficiently model
the nonlinear flame response compared to the conventional methods. It requires data
from only one CFD simulation, which is excited with a broadband signal characterized
by a uniform distribution of all amplitudes of interest. Our neural network modelling
approach offers a significant advantage in capturing the flame response not only at the
input frequency but also at higher harmonics. This is reflected in further evaluations;
when coupled with an acoustic solver, the trained neural network accurately predicts
self-excited thermo-acoustic oscillations. We tackle the challenge of the reconstruction
of unmeasured quantities in reacting flows. The convolutional neural network-based
model can be used to reconstruct the heat release rate from velocity measurements in a
methane/air premixed flame under harmonic excitation, thus reducing the complexity of
measuring the heat release rate for unseen operating points. In addition, another work
shows how we can combine a neural network model with a non-reactive PDE solver to
obtain the solutions of reactive flow simulation. The problem deals with the modelling
of the complex reactive flow dynamics when complete information on the physics of the
system is missing. We propose a hybrid NN-PDE solver which learns to complete an
incomplete PDE solver (i.e. non-reactive flow solver) when the underlying chemistry is
unknown. The incomplete PDE solver helps the neural network model recover the target
simulation with a significantly improved accuracy. We showcase the applicability of this
framework to the problem of controlling an arbitrary flame shape to achieve a desired
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target flame shape. All methods developed in the present thesis are formulated in a very
general way and can easily be applied to a variety of other problems.

8.2 Outlook

We have demonstrated the effectiveness of deep learning methods in modelling flame
dynamics. We believe that combining the advantage of physical simulations and neural
network models is a promising direction. While achieving superior performance over ex-
isting methods, we are aware of the limitations, including loss of interpretability (black
box nature of the model), the large training time required, sub-optimal results for ex-
trapolated operating points. These limitations can be an inspiration for future work.

Uncertainty Quantification Thermo-acoustic stability analysis is essential to the
gas turbine design process. We showcase the ability of neural network models to capture
the flame response for variations in SISO systems. To extend this approach to MISO
or MIMO systems, multiple CFD simulations could potentially be used to capture the
variance in multiple input systems. The NN inputs need to be modified to account for
multiple lags associated with such systems. Additionally, a lack of exact knowledge of op-
erating conditions (such as inlet flow velocity, equivalence ratio, wall temperature) yields
uncertainties in the flame response model. Therefore, neural network models need to be
adapted to quantify these uncertainties. The NN model for flame describing function
has aleatoric uncertainty arising from the data with combustion noise and epistemic
uncertainty caused by a lack of knowledge of operating or boundary conditions. The
Bayesian framework is capable of providing uncertainty analysis. Bayesian neural net-
work [149, 150] can be used to encode the aleatoric and the epistemic uncertainty [151].
Monte Carlo dropout [152, 153] is a simple to implement method to model uncertain-
ties, as no changes to the standard deep learning training procedure are required. Other
methods, such as mixture density networks [154], deep ensembles [155], deep Gaussian
mixture ensembles [156], can be used to estimate both types of uncertainties. These
models enable ways to incorporate prior domain information and may lead to better
interpretability.

Differential reactive flow solvers We have demonstrated the applicability of
the hybrid NN-PDE approach on laminar, Bunsen-type flames. However, turbulent
flames are more common in typical combustion systems. Therefore, applying the pro-
posed methods to the turbulent flame systems would be an interesting future direction.
Combining a neural network model with a differentiable PDE solver has exciting ap-
plications [27, 28]. A coarse mesh reactive flow solver can be integrated with a neural
network model to obtain the fine mesh solutions. These methods have shown to be faster
than the fine mesh solver for turbulent flow simulations [28, 95]. ReacTorch [157] and
JAX-reactor [158] are packages for simulating chemically reacting flows in PyTorch and
Jax respectively. These packages are aimed at providing differentiating capabilities for
chemically reactive flow simulations. It would be beneficial to drive the development of
these packages and existing differentiable solvers, such as PhiFlow [84], SU2 [85], SciML
[86], to include reactive flow simulations. The differential PDE solver for reactive flows
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can be integrated with neural network model for multiple applications. The neural net-
work can be effectively trained to correct for sub-grid scale reaction rates when combined
with a low-resolution reactive flow solver, thus improving approximations inside CFD.
As an extension to the flow control application demonstrated in Section 7.6, the differ-
entiable reactive flow solver can be integrated with NN model to control inlet conditions
to avoid thermoacoustic instabilities or flashbacks.
Handling of real-world, sparse, noisy data This study has developed methods

to predict thermoacoustic instabilities in the design phase of the combustor. This work
focuses on enhancing solutions of numerical simulations using neural network models.
Going forward, it would be beneficial to extend these methods for experimental evalua-
tions. Applying the proposed approach to cases, where a limited amount of experimental
data is available would be a very interesting step. Especially if the data is very sparse
and contains noise, learning meaningful dynamics could become excessively challeng-
ing. Therefore, combining structured knowledge and learning-based methods has the
potential to create meaningful representations.
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[109] N. Tathawadekar, A. Ösün, A. J. Eder, C. F. Silva, and N. Thuerey. Linear
and nonlinear flame response prediction of turbulent flames using neural network
models. International Journal of Spray and Combustion Dynamics, 2024. doi:

10.1177/17568277241262641.

[110] F. Nicoud and F. Ducros. Subgrid-Scale Stress Modelling Based on the Square of
the Velocity Gradient Tensor. Flow Turbulence and Combustion, 62(3):183–200,
1999. doi:10.1023/A:1009995426001.

[111] O. Colin, F. Ducros, D. Veynante, and T. Poinsot. A Thickenend Flame Model
for Large Eddy Simulation of Turbulent Premixed Combustion. Physics of Fluids,
12(7):1843–1863, 2000. doi:10.1063/1.870436.

[112] B. Franzelli, E. Riber, L. Y. Gicquel, and T. Poinsot. Large Eddy Simulation of
combustion instabilities in a lean partially premixed swirled flame. Combustion and
Flame, 159(2):621–637, February 2012. doi:10.1016/j.combustflame.2011.08.
004.

[113] H. Weller, G. Tabor, H. Jasak, and C. Fureby. A Tensorial Approach to Compu-
tational Continuum Mechanics Using Object-Oriented Techniques. Computers in
physics, 12:620–631, 1998. doi:10.1063/1.168744.

[114] A. J. Eder, C. F. Silva, M. Haeringer, J. Kuhlmann, and W. Polifke. Incompressible
versus compressible large eddy simulation for the identification of premixed flame
dynamics. International Journal of Spray and Combustion Dynamics, 15(1):16–32,
2023. doi:doi.org/10.1177/17568277231154204.

[115] G. E. Hinton. A practical guide to training restricted boltzmann machines. Neural
Networks: Tricks of the Trade: Second Edition, pages 599–619, 2012.

[116] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. Interna-
tional Conference on Learning Representations, 2015.

[117] W. Polifke. Black-box system identification for reduced order model construction.
Annals of Nuclear Energy, 67:109–128, 2014.

[118] A. K. Tangirala. Principles of system identification: theory and practice. Crc
Press, 2018.

[119] R. S. Blumenthal, P. Subramanian, R. Sujith, and W. Polifke. Novel perspectives
on the dynamics of premixed flames. Combustion and flame, 160(7):1215–1224,
2013.

96

http://dx.doi.org/10.1177/17568277241262641
http://dx.doi.org/10.1177/17568277241262641
http://dx.doi.org/10.1023/A:1009995426001
http://dx.doi.org/10.1063/1.870436
http://dx.doi.org/10.1016/j.combustflame.2011.08.004
http://dx.doi.org/10.1016/j.combustflame.2011.08.004
http://dx.doi.org/10.1063/1.168744
http://dx.doi.org/doi.org/10.1177/17568277231154204


BIBLIOGRAPHY

[120] B. Schuermans, H. Luebcke, D. Bajusz, and P. Flohr. Thermoacoustic analysis of
gas turbine combustion systems using unsteady CFD. In ASME Turbo Expo 2005:
Power for Land, Sea, and Air, pages 287–297. American Society of Mechanical
Engineers, 2005.
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