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Abstract

Scientific machine learning (SciML) involves the use of machine learning (ML) in solving various problems
in computational science and engineering, that can often be described by ordinary and partial differential
equations (ODEs and PDEs). One approach is the physics-informed neural networks (PINNs) which
embeds physical laws into the loss function of the neural network (NN) to determine the solution of
PDEs. This approach has been studied extensively to solve both forward and inverse problems in diverse
scientific and engineering applications since its introduction.

However, a new approach that was recently introduced, involves learning operators that map be-
tween infinite-dimensional function spaces using NNs. The purpose of this thesis is to study one specific
architecture for operator learning called deep operator networks (DeepONets). The focus lies on the
use of DeepONet models to solve a common PDE in science and engineering, the heat conduction
equation. We employ data-informed and physics-informed DeepONets to solve three different parametric
heat conduction problems subjected to different initial and boundary conditions (IBCs) using the Modulus
framework developed by NVIDIA. We discuss how the training data-set is generated, and compare the
differences in data-set size required by each DeepONet variant. We also provide details of the loss
function definitions for each DeepONet, and its implementation. We also show that after sufficient training,
each DeepONet is able to predict, with reasonable accuracy, the parametric solutions for each heat
conduction problem.

PINNs and classical numerical solvers can only provide solutions for a specific set of input param-
eters, and any modifications requires either retraining the model or running a new numerical simulation.
DeepONets, however, can provide different PDE solution function spaces when trained using parametric
functions as inputs. This new approach is rather exciting as it is capable of predicting parametric solutions
orders of magnitude faster than traditional solvers and without further training.





xi

Contents

Abstract ix

1 Introduction 1

2 State of the Art 3
2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Introducing Deep Operator Networks (DeepONets) . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Deep Dive into DeepONets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Modulus Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Modulus Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Modulus Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Solving Heat Conduction Problems with DeepONets 15
3.1 Heat Conduction Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Initial and Boundary Conditions (IBCs) . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Types of Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Heat Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.4 Test Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 1D Transient Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Data-set Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.6 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.7 Activation Functions (AFs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.8 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 2D Steady-State Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Data-set Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.6 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 2D Axisymmetric Transient Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Data-set Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.3 Non-dimensionalizing the Axisymmetric Heat Equation . . . . . . . . . . . . . . . . 47
3.4.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



xii

3.4.7 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Conclusion 63

Bibliography 65

A Appendix 69
A.1 Activation Functions (AFs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1.1 Activation Function Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.2 Activation Function Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2 2D Steady-State Heat Equation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.3 Heat Equation 2D Transient Axisymmetric Results . . . . . . . . . . . . . . . . . . . . . . 78



1

1 Introduction

Artificial neural networks (ANNs) are known to be highly efficient approximators of continuous functions,
i.e. functions with no sudden changes in values such as discontinuities, holes or jumps. Recent advances
in machine learning (ML), particularly in science and engineering, has garnered a lot of popularity among
researchers lately driven by its success in approximating highly complex and nonlinear functions. One
advancement came in 2018, when Raissi et al. [18] introduced the concept of physics-informed neural
networks (PINNs) for solving ordinary differential equations (ODEs) and partial differential equations
(PDEs) using neural networks (NNs).

However, NNs can also be used to learn operators instead of functions. In 2020, Lu Lu et al. [17]
developed deep operator networks (DeepONets), inspired from the Universal Approximation Theorem
for Operators [3], capable of learning both linear and nonlinear continuous operators from data. A
physics-informed variant, inspired by how the physical laws are embedded into the network’s loss function
in PINNs, was later introduced by Wang et al. [28]. The main difference between PINNs and DeepONets
is that networks trained to learn functions (PINNs) can only be used to map between finite-dimensional
vector spaces, whereas those trained to learn operators (DeepONets) can be used to map between
infinite-dimensional function spaces [28]. Both concepts leverage the Universal Approximation Theorem
that states that NNs can approximate any continuous function (PINNs) or operator (DeepONets) to
arbitrary accuracy if no constraint is placed on the width and depth of the network’s hidden layers [17].

This study will focus on the application of DeepONets, both a data-informed and physics-informed
variant, on the heat conduction equation. This equation has significant importance in diverse scientific
and mathematical fields. DeepONets is a fairly new ML concept with limited research studies (to the
author’s knowledge) focused on its application towards solving physics-based problems described by the
heat conduction equation, outside of the very simple examples presented in [17] and [28]. The goal of
this thesis is to gain a deeper understanding of DeepONets, and its implementation in NVIDIA’s Modulus
framework [22]. In particular, we aim to understand the approximation capabilities of DeepONets for a
range of steady-state and transient heat conduction problems subject to various material conductivities,
boundary and initial conditions. Data-informed and physics-informed versions of DeepONets will be
implemented, for simulating both data-rich and data-sparse regimes.

This thesis is structured as follows. In section 2.1.1, we introduce the concept of neural networks
(NNs) and provide an example on how these networks are trained. We then discuss the concept and
architecture of DeepONets, and describe the differences between data-informed (DI-DeepONet) and a
physics-informed (PI-DeepONet) versions in section 2.2.1. Section 2.3 briefly describes the Modulus
framework, its components and a common workflow used to develop physics-informed networks, as well
as a brief overview of the different activation functions (AFs) provided. In section 3.1, we introduce the
heat conduction equation, and the types of boundary conditions (BCs) that will be used throughout our
study. This is followed by section 3.2, 3.3 and 3.4, each discussing the implementation of DeepONets
for solving a transient one-dimensional, steady-state two-dimensional, and a transient axisymmetric heat
conduction problem respectively.
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2 State of the Art

2.1 Theoretical Background

This section introduces the concept of neural networks, DeepONets and the heat equation. It is intended
to aid the reader in understanding the concept of DeepONets, its subsequent implementation and analysis,
and interpretation of the results.

2.1.1 Neural Networks

Architecture

Neural networks (NNs) consist of a bunch of neurons working together and performing some mathematical
transformation of its inputs, in order to solve complex problems. These networks are extensively used in
deep learning and machine learning as a part of artificial intelligence. ANNs consist of an input layer, one
or more hidden layers, and an output layer as shown in figure 2.1. The network consists of nodes arranged
into parallel layers, where each node is connected to nodes in an adjacent layer, with this connection
having an associated weight wl

ij ∈ R.

Figure 2.1 An illustration of a Feed Forward Neural Network [9].

Each node then performs a weighted sum of its inputs and produces an output depending on its associated
activation function σ as shown in equation 2.1, where Nl represents the number of nodes in layer l,
{xi}

Nl−1
i is the input from node i in the previous layer, Nl−1, and bl is the bias associated with layer l. The

bias is introduced to each node to offset the activation function in order to produce the desired output.
The final prediction of the network is referred to by ŷ. This mathematical procedure is often referred to as
forward propagation, and given by

ŷ = σ

( Nl∑
j=1

Nl−1∑
i=1

wl
ijxi + bl

j

)
. (2.1)
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The activation function introduces non-linearity into the network, allowing it to estimate complex nonlin-
ear functions. These function are crucial in determining the accuracy of a model and the computational
efficiency of training a model. They have major effect on the network’s ability to converge (by finding the
optimal weights w and biases b). Without this non-linearity, a multilayered network would act equivalent to
a single layered network, as the network would become a linear combinations of linear functions. Refer to
section 2.3.3 for a discussion on different types of activation functions.

Training

Training a network consists of tuning the weights wl and biases bl in each layer l, which are randomly
initialised during the first iteration of forward propagation, such that the network output ŷ matches the
desired output y, as given by the network’s loss function L. The weights and biases are often referred to
as network parameters θ = (w, b), and tuned by back-propagation.

During each iteration of forward propagation, we obtain the network output ŷ. The error (or loss) is
then calculated with respect to the actual objective y, since for DeepONets, we are performing supervised
learning (i.e. training through the use of a labelled training data-set of size n). The total error L ∈ R
is then computed, with the aim to minimize this loss, L → 0, by tuning the network parameters θ by
performing an iteration of back-propagation. The loss function indicates how well these parameters allow
the network to produce the desired result. A generic loss function for a training data-set of size n is

L(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2, (2.2)

where yi, ŷi are the actual objective and network prediction, respectively, for training sample i.

The optimal parameters θ are obtained by gradient descent, which is an optimization algorithm
used to find a local minimum of a differentiable function, by propagating the gradient of L with respect to θ
(i.e. dL

dθ ) through the network in the reverse direction. In each iteration, the partial derivatives of the loss
function, with respect to each network parameters, is computed by the chain rule, as shown in equation
2.3, for w.

dL(y, ŷ)
dw

= dL(y, ŷ)
dŷ

× dŷ

dz
× dz

dw
, (2.3)

where z = wx + b is a linear combination of input x with parameters w, b.

The model parameters θ in each layer are then updated by taking a step into the opposite direc-
tion of the gradient (i.e. descent) for each training iteration, i.e.

θn+1 = θn − α

(
dL(y, ŷ)

dθ

)
. (2.4)

α is a hyper-parameter often referred to as the learning rate and n represents the total number of training
iterations.

α controls how much change is applied to the parameters during each training iteration. Training is
thus an iterative process, where in order to obtain better results, multiple training iterations are required.
Each iterations should reduce the total error L by updating θ, so that the network produces a more
desirable output, i.e. ŷ ≃ y.

Example

Consider a NN with one input neuron (grey), one hidden layer neuron (orange), and one output neuron
(green) as shown in figure 2.2. During forward propagation, the network’s input or output of the node in the
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previous layer x is passed to the neuron in the next (hidden) layer which then performs a weighted sum,
θ1 · x, before applying the activation function g. The output of this neuron, a(2), is then passed as input
to the neuron in the next layer to perform the same operation by applying its own weight θ2 and activation
function g. The output from this neuron, a(3), is the final prediction for the true objective, y, by the network.

Figure 2.2 A training iteration performed by a Neural Network [11].

To assess the network’s performance (i.e. minimize the difference between a(3) and y), the loss function
J is computed. Note that the output of J depends on the network’s prediction a(3), which depends on the
current version of the network’s parameters θ = {θ1, θ2}. The partial derivative of J is then determined for
each network parameter {θ1, θ2} by

dJ(θ)
dθ1

= dJ(θ)
da(3) × da(3)

dz(3) × dz(3)

da(2) × da(2)

dz(2) × dz(2)

dθ1
, (2.5)

dJ(θ)
dθ2

= dJ(θ)
da(3) × da(3)

dz
× dz

dθ2
, (2.6)

respectively.

Each parameter, θ1, θ2, is then updated by gradient descent and the learning rate α before performing a
next training iteration by the following operation,

θ1 = θ1 − α

(
dJ(θ)
dθ1

)
, (2.7)

θ2 = θ2 − α

(
dJ(θ)
dθ2

)
, (2.8)

respectively. This process is repeated until J(θ) → 0.
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2.2 Introducing Deep Operator Networks (DeepONets)

In 2020, Lu Lu et al. introduced the scientific ML community (SciML) to DeepONets [17, 16], developed
from the Universal Approximators Theorem for Operators of Chen and Chen [3], to learn continuous op-
erators from data. They showed the capability and robustness of DeepONet models to learn linear and
nonlinear operators from dynamic systems, and physics-based systems described by ODEs and PDEs.
They then conducted a series of numerical investigations using several examples to assess the perfor-
mance of DeepONets, of which, the main conclusions are listed below.

1. Anti-Derivative Operator: Both stacked and unstacked DeepONet models (refer to section 2.2.1)
were capable of learning the one-dimensional linear anti-derivative operator with reduced general-
ization error, when compared to a fully-connected neural network (FNN) trained to learn the same
as shown in figure 2.3. They also showed that the stacked DeepONet performed the best out of all
the trained networks, which required less memory and compute power to train, when compared to
the unstacked variant.

Figure 2.3 Training/test error for stacked/unstacked DeepONets compared to a FNNs [17].

2. Gravity Pendulum with an External Force: In this example, they investigated the effects of (1) the
number of sensors m, (2) training data-set size n × p, and (3) network architecture on the accuracy
of the DeepONet models to learn required operator. The researchers showed that:

a) Increasing the number of sensors led to improved network performance.

b) Increasing the training data-set size led to improved generalization accuracy.

c) Increasing the width of the branch and trunk networks does not automatically result in a de-
crease in model error, as the mean-squared error (MSE) of the model’s predictions would first
decrease up to a certain width before increasing.

Figure 2.4 Training/test error for (B) different number of u and (C) different number of p [17].
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3. Diffusion-Reaction System with a Source Term: In this scenario, different forcing terms (input
function) u was used as input to the branch net. The researchers showed that increasing the num-
ber of input functions u with a fixed number of evaluation locations p, or the number of evaluation
locations p with a fixed number of input functions u, led to improved network performance as shown
in figure 2.4.

In 2021, Wang et al. expanded upon the primarily data-driven DeepONet models introduced by Lu Lu et al.
to include a physics-informed variant [28] by drawing inspiration from PINN [18]. These physics-informed
networks offer several advantages over the conventional data-informed networks by:

• Reducing the network’s dependence for large training data-sets, and

• Allowing the networks to better capture the physical constraints of the underlying PDE, that was used
to generate this data (refer to section 2.2.1).

Remarkably, the researchers showed that the physics-informed DeepONet achieved adequate predictive
accuracy with almost no training data, except for the input-output data-set pairs for the initial and boundary
conditions (IBCs).

The SciML community has mainly focused on learning functions through the use of PINNs [18, 29, 33].
Several studies focused on advancing the predictive accuracy of the PINNs ML model towards solving
several heat conduction problems [21, 8, 31, 27, 10, 1, 33]. In this thesis, we investigate the effectiveness
of DeepONets on learning the heat operator (section 3.1.3) on a series of one- and two-dimensional
steady-state and transient heat conduction problems, subjected to different IBCs. The papers by Lu Lu et
al. and Wang et al. investigated the robustness of the proposed networks on a series of simple examples,
without focusing on its application on a specific physical problem. Additionally, the ability of PINNs to learn
the heat function has already been extensively studied since its introduction in 2017, but limited studies,
such as [13] and more recently [14] have investigated learning the heat operator with DeepONets.

2.2.1 Deep Dive into DeepONets

This section provides an overview of the model architecture of DeepONets [17, 16] with a focus on learning
the solution operators of parametric partial differential equations (PDEs), i.e. a PDE system where some
parameters are allowed to vary over a certain range. These parameters may determine the shape of
the physical domain, the initial or boundary conditions (IBCs), constants or variable coefficients, etc. that
define the system. The aim of DeepONets is to solve problems that can be described by a parametric
nonlinear PDE of the form

N(u, s) = 0, (2.9)

where u is the variable parameter (input functions), and s is the corresponding unknown solutions. For
each u, we assume that there exists a unique solution s = s(u), subject to equation 2.9 and appropriate
IBCs.

Problem Setup

Following the formulation provided in [17], let G : u → G(u) be a solution operator that takes an input
function u to the corresponding output function G(u) = s(u). Then for any evaluation point y in the domain
of G(u), the output is a real number given as G(u)(y) ∈ R. The DeepONet predicts the solution map G,
which we denote as Gθ, where θ represents the trainable parameters of the network. Thus DeepONets
require two inputs, u and y in order to output the predicted solution map Gθ(u)(y).

As shown in figure 2.5, the input functions u are discretely represented at m consistent locations
{xi}m

i , referred to as sensors. No constraint, however, is placed on the number and location of the
evaluation points y which can vary for evaluating the output function G(u) (defined for different u).



8

Figure 2.5 Illustration of training data where each input function u, which is represented at consistent m sensor
locations, x1, x2, ..., xm, and the output function G(u) is evaluated at evaluation point y, which can vary in number
and location per u [17].

Theorem 1 (Universal Approximation Theorem for Operator [3]) Suppose that σ is a continuous non-
polynomial function, X is a Banach Space, K1 ∈ X, K2 ∈ Rd are two compact sets in X and Rd,
respectively, V is a compact set in C(K1), G is a nonlinear continuous operator, which maps V into
C(K2). Then for any ϵ > 0, there are positive integers n, p, m, constants ck

i , ξk
ij , θk

i , ζk
i ∈ R, wk ∈ Rd,

xj ∈ K1, i = 1, ..., n, k = 1, ..., p, j = 1, ..., m, such that

∣∣∣∣G(u)(y) −
p∑

k=1

n∑
i=1

ck
i σ

( m∑
j=1

ξk
iju(xj) + θk

i

)
σ(wk · y + ζk)

∣∣∣∣ < ϵ, (2.10)

holds for all u ∈ V and y ∈ K2.

Network Architecture

The network architecture for DeepONets is inspired by the Universal Approximation Theorem for
Operator of Chen and Chen (theorem 1) [3]. Following this theorem, two separate input components
[u(x1), u(x2), ..., u(xm)]T and y are required by the network. However, we must consider that each u(xi)
and y cannot be treated equally as y can be a vector with d components for high dimensional problems.
Two sub-networks are therefore required to handle each component separately, which are referred to as
the branch and trunk networks.

As shown in figure 2.6c, the branch net takes u, evaluated at sensors {xi}m
i , as input, and outputs

a p dimensional feature embedding {bk}p
k ∈ R (each bk is an output from p branch nets). The

trunk net takes the coordinates y as the input and also outputs a p dimensional feature embedding
[t1, t2, ..., tp]T ∈ Rp. The final output of DeepONet Gθ is then obtained by merging the outputs of the
branch and trunk nets via a dot product, i.e. Gθ =

∑p
k=1 bktk.

To reduce the computational and memory expensive requirements of p different branch nets, each
having its own unique trainable network parameters, a single network is proposed that produces a p
dimensional feature embedding [b1, b2, ..., bp]T ∈ Rp as shown in figure 2.6d, where the branch nets
now share network parameters. Note that the network architecture of the branch and trunk nets are not
defined, and can be chosen to solve different problems allowing for improved flexibility and more efficient
training.

Data-Informed vs Physics-Informed DeepONet

A conventional data-informed DeepONet is a data-driven method that requires large annotated data-sets
of input-output triplets {{u(i), y

(i)
j , G(u(i))(y(i)

j )}n
i=1}p

j=1 to predict the target output operator G. This
data-set consists of n different input function {u(i)}n

i=1, each evaluated at m sensors {xk}m
k=1. Each u(i)
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Figure 2.6 (c) Stacked DeepONet, where each branch net has unique network parameters, vs (d) Unstacked Deep-
ONet, where the branch nets share network parameters [17].

and corresponding output function G(u(i)) is then evaluated at p different evaluation locations {yj}p
j=1.

Thus the data-set for training a DeepONet [u, y, G(u)(y)] is of size (n × p, m), (n × p, d) and (n × p, 1)
respectively.

However, the learned operator Gθ may not be consistent with the underlying physics (PDE and ap-
propriate IBCs) that generated the data-sets [28]. Additionally, the network outputs Gθ(u)(y) are
differentiable with respect to their inputs [u(x1), u(x2), ..., u(xm)]T and y, thus allowing for automatic
differentiation to be used as a regularization mechanism to bias Gθ to satisfy the underlying PDE
constraints. Thus, similar to PINNs [18], the physics-informed DeepONet makes use of the observed
data and the physical laws provided by the PDE system, by penalizing a composite loss function L. L is
composed of a loss term, Ldata, representing the observed data while the other, Lphysics, represents the
underlying physics.

Figure 2.7 Making a DeepONet physics-informed [28], where the composite loss function is a linear combination of
Lphysics representing the underlying physics, and LBC , LIC representing the training data sampled from the initial
and boundary conditions.

The loss function for the data-informed DeepONet, Ldata, is defined as

L(Gθ) = Ldata(Gθ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(u(i))(y(i)
j ) − G(u(i))(y(i)

j )
∣∣∣∣2, (2.11)

which requires the data-set of input-output triplets [u, y, G(u)(y)] obtained by the underlying parametric
PDE.
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The loss function for the physics-informed DeepONet is defined as

L(Gθ) = Ldata(Gθ) + Lphysics(Gθ), (2.12)

where Lphysics is given by

Lphysics(Gθ) = 1
nqm

n∑
i=1

q∑
j=1

m∑
k=1

∣∣∣∣N(u(i)(xk), Gθ(u(i))(y(i)
j )

∣∣∣∣2, (2.13)

which aims to satisfy the parametric PDE as defined by equation 2.9. Ldata, in this case, can be defined
similarly as above, or with minimal data, i.e. only from the IBCs.

To showcase the inconsistency of the learned operator Gθ with the underlying physics, the researchers
in [28] attempted to learn the anti-derivative operator G : u(x) → s(x) using only a data-informed
DeepONet. The problem was defined by

ds(x)
dx

= u(x), x ∈ [0, 1], (2.14)

with an initial condition s(0) = 0. The loss function, L = Ldata, was defined by equation 2.11, with the
data-set generated as per [28].

Figure 2.8 Learning the anti-derivative operator by data-informed DeepONet. The predicted solution s(x) (left) and
residual u(x) (right) throughout the domain x, are shown for networks trained using different activation functions,
ReLU (orange) and Tanh (green), with the ground truth solution and input functions (blue), respectively, provided as
reference [28].

As shown in figure 2.8, good agreement between the predicted and the exact solution s(x) is observed
with a network using the ReLU activation function (orange), while poor performance is obtained when using
the tanh activation function (green). The predicted residual ds(x)

dx for the ReLU network is approximated
with the input function u(x) represented by step functions, while the tanh version predictions are largely
inaccurate. As a result, both the ReLU and tanh data-informed DeepONet was not able satisfy the anti-
derivative problem, even though they were trained using data generated from equation 2.14.
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Figure 2.9 Learning the anti-derivative operator with physics-informed DeepONet. The predicted solution s(x) (left)
and residual u(x) (right) throughout the domain x, are shown for networks trained using the Tanh activation function
(orange), with the ground truth solution and input functions (blue), respectively, provided as reference [28].

By adding the physical constraint, Lphysics, to the loss function L as defined by equation 2.13 and
2.12, respectively, the researchers observed excellent agreement with both s(x) and u(x) when using
tanh activation functions as shown in figure 2.9. Thus the physics-informed DeepONet was capable of
satisfying equation 2.14.
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2.3 Modulus Framework

This section provides a brief overview of the deep learning framework called Modulus that is developed
and maintained by NVIDIA for PINNs and Neural Operators (such as DeepONets) [22]. This framework
provides various tools to quickly develop machine learning (ML) or NN models that can be applied to
physics-based systems described by ODEs and PDEs. For our purposes, we focus on the key aspects
necessary for the development of DeepONet models. As this type of network is a new development in the
scientific machine learning group, the latest Modulus, version 22.09, provides limited resources for their
implementation.

2.3.1 Modulus Building Blocks

Modulus provides several physics-informed and data-driven components that can be used to express the
physics-based problem to be simulated. The components used during the development of a standard
DeepONet model is listed below.

1. Geometry and Data: The physical domain of the problem being solved for can be expressed by ei-
ther a particular geometric shape or a set of data points. Although the geometry module provided by
Modulus allows us to develop complex shapes using basic primitives, the development of DeepONet
models are primarily data-driven, and our geometry is created from the data-set.

2. Nodes: Nodes are components executed during forward propagation when training, and extend the
torch.nn.Module class from Pytorch [23] (which is Pytorch’s base class for NN models). As a result,
Modulus is able to construct the computational graphs of our physics-based system and compute
the required derivatives needed for backward propagation (refer to section 2.1.1). We use Nodes to
generate the branch and trunk networks for the DeepONet models, as well as, to represent the heat
PDE and more complex BCs such as Neumann and Robin BCs (see section 3.1.2), which are not
easily implemented in Modulus for physics-based DeepONets.

3. Constraints: Constraints are used to represent the training objectives that comprise our loss func-
tion in Modulus. These objectives represent the ground-truth data G(u)(y) that the network is pre-
dicting Gθ(u)(y), as well as, the PDE and IBCs that comprise our loss function (refer to section
2.2.1). Constraints are necessary to properly define the physical problem.

4. Domain: The Domain stores the Constraints, and additional Modulus components used during the
training process. The additional components used in this thesis include Inferencers, Validators, and
Monitors.

5. Solver: The Solver is an instance of the Modulus trainer that manages the optimization loop during
the training process (refer to section 2.1.1). It uses the Domain to call the various components it
has stored, such as Constraints, Inferencers, Validators, and Monitors, when required. During each
training iteration, the Solver computes the total loss from all Constraints, then optimizes the network
parameters in the Nodes that were passed to the Constraints.

6. Validators: Validators perform only the forward pass on a set of Nodes during training using only
the validation data. They are used to assess the accuracy of the model during training by validating
the network’s prediction ŷ against the ground truth data y.

7. Monitors: Monitors also perform only the forward pass on a set of Nodes during training, but are
used to calculate specific measures, such as the PDE residual. For example, we use it to determine
how well the heat PDE constraint is satisfied during training using training quantities, such as ut and
uxx, for example.



13

8. Inferencers: An Inferencer also performs only the forward pass on a set of Nodes during training.
It is used to monitor certain training quantities, such as the temperature derivatives, ut and uxx, for
example.

9. Hydra: Hydra is a configuration package required by Modulus [19]. It is used to set various hyper-
parameters that govern the network’s training, such as the scheduler and loss function, using a
YAML configuration files.

2.3.2 Modulus Workflow

A complete workflow for developing a NN model for physics-based systems is shown in figure 2.10, where
Nc, Ni, Nv and Nm represent the number of Constraints, Inferences, Validators and Monitors used in the
network’s development.

Figure 2.10 A typical workflow for developing NN in Modulus [22].

2.3.3 Activation Functions

Modulus provides different activation functions (AFs) that can be used to introduce non-linearity into NNs.
As discussed in section 2.1.1, AFs are crucial in allowing a NN to learn abstract features of the input
by performing non-linear transformations between the layers. In this study, we investigate the choice
of AFs on the performance of DeepONets, with a particular interest on the physics-informed variant as
embedding the physics in Lphysics requires higher derivative terms. Further details are provided in section
3.2.7.

In this section, we provide a summary of the formulas for the different AFs used in the study in
table 2.1. An illustration of each function, along with its first derivative can be seen in Appendix A.1.2.
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Table 2.1 Formulas for the different AF provided in Modulus [22].

Name Formula

Rectified Linear Unit (ReLU) R(z) =
{

z z > 0
0 z ≤ 0

Leaky ReLU R(z) =
{

z z > 0
αz z ≤ 0

where α = 0.01 is the default hyper-parameter.

Exponential Linear Unit (ELU) [4] R(z) =
{

z z > 0
α(ez − 1) z ≤ 0

where α is a neuron-wise parameter to be optimized.

Scaled Exponential Linear Units (SELU) [12] R(z) =
{

λz z ≥ 0
λ · α(ez − 1) z < 0

where α = 1.673 and λ = 1.051 are the default parameters from [12], that are optimized during training.

Sigmoid R(z) = 1
1 + e−z

Gaussian Error Linear Unit (GELU) [7] R(z) = z · Φ(z)
where Φ(z) = P (Z ≤ z), Z ∼ N(0, 1) is the cumulative distribution function of the standard normal distribution.

Tanh R(z) = tanh(z)

Softplus R(z) = ln(ez + 1)

Mish [20] R(z) = z · tanh · ln(1 + ez)

Self-scalable Tanh (Stan) [24] R(z) = tanh(z) + β · z · tanh(z)
where β is a neuron-wise parameter to be optimized.

Sigmoid Linear Units (SiLU) [6] R(z) = z · 1
1 + e−z

Sin R(z) = sin(z)

Squareplus R(z) = 1
2(z +

√
z2 + b)

where b is a neuron-wise parameter to be optimized.
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3 Solving Heat Conduction Problems with
DeepONets

In this section, we test the effectiveness of DeepONets to learn the heat conduction operator by performing
a series of numerical studies on different heat conduction problems. We create both a data-informed and a
physics-informed DeepONet model, which we will refer to by DI-DeepONet and PI-DeepONet respectively.

3.1 Heat Conduction Equation

The heat conduction equation is a PDE that describes the temperature field in a body [5]. The general
form of the heat equation in one spatial dimension bounded in the interval [a, b] is given by

ρ(x)Cp(x)du

dt
= d

dx

(
k(x)du

dx

)
+ Q̇(x, t), x ∈ (a, b), t > 0, (3.1)

where u(x, t) is the temperature at any point x at time t, ρ(x) is the density, Cp(x) is the specific heat
capacity (the amount of heat energy required to raise one unit of mass by one unit of temperature), k(x)
is the coefficient of thermal conductivity (the ability to conduct heat), and Q̇ is the internal heat generation
rate per unit volume. Note that equation 3.1 can easily be extended to higher spatial dimensions.
Additionally, Cp, ρ and k are functions of x, but can also be functions of u or t, and that Q̇ is a function of
both x and t.

The examples presented in this thesis uses uniform Cp, ρ and k. Thus equation 3.1 can then be
simplified to

ρCp
du

dt
= k

d2u

dx2 + Q̇(x, t). (3.2)

Equation 3.2 represents a one-dimensional transient case. However, a steady-state problem can also be
defined, where the transient term du

dt is set to 0. Equation 3.2 thus becomes

−k

(
d2u

dx2

)
= Q̇(x, t). (3.3)

Note that the term, k
ρc , is referred to as thermal diffusivity, α (rate of heat transfer of a material from the hot

region to the cold region).

3.1.1 Initial and Boundary Conditions (IBCs)

In order to solve the transient heat equation, appropriate IBCs must be specified for the temperature field
u(x, t). The initial conditions (ICs) specifies the values of u at the initial time t = 0, while the boundary
conditions (BCs) specifies some condition on u at the boundary of the domain x ∈ [a, b]. For example, the
BCs on the interval [a, b] may take the form

u(a, t) = 0 and u(b, t) = 0, for t > 0, (3.4)
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and the ICs may be specified by a function f(x) defined only at t = 0, i.e.

u(x, 0) = f(x). (3.5)

The solution u(x, t) must therefore satisfy the PDE equation (3.1, 3.2 or 3.3) in the entire domain (x ∈ [a, b]
and t > 0), as well as, the IBCs. The solution domain for this one-dimensional example can be interpreted
by having three sides: x = a, x = b, and t = 0, with the top side open as the solution progresses i.e.
t → ∞. An illustration is shown in figure 3.1.

Figure 3.1 Illustration of the Solution Domain for the One-Dimensional Heat Equation [30]. The boundary conditions,
u(a, t) = 0 and u(b, t) = 0 are shown in blue, the initial conditions, u(x, 0) = f(x) is shown in black, while the PDE
constraint is imposed on the inner domain.

3.1.2 Types of Boundary Conditions

There are three basic types of BCs that we considered when solving the series of heat equation problems
in this thesis. These are:

1. Dirichlet: Specifies the value that the unknown temperature field u takes on the boundary of the
domain Γd given by

u(x, t) = g(x), ∀x ∈ Γd, (3.6)

where g(x) is a scalar function defined on Γd.

2. Neumann: Specifies the value that the derivative of the temperature field u takes on the boundary
of the domain Γn given by

n̂ ·
(

k
du

dx

)
= g(x), ∀x ∈ Γn, (3.7)

where g(x) is a scalar function defined on Γn and n̂ is the unit normal to the boundary Γn. It is
commonly used to represent an insulated boundary where g(x) = 0.

3. Robin: Consists of a linear combination of the values of the temperature field u and its derivatives
on the boundary of the domain Γr. In the context of the heat equation, it can be referred to as the
convective boundary condition and is given by

n̂ ·
(

k
du

dx

)
= h(uamb − u), ∀x ∈ Γr, (3.8)

where n̂ is the unit normal to the boundary Γr, h is the convective heat transfer coefficient, and uamb

is the ambient temperature.
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3.1.3 Heat Operator

The heat conduction equation is a linear equation for u, and contains a linear operator G that our Deep-
ONet models will attempt to learn. Equation 3.1, for example, can be reduced to its operator form as

G(u) = Q̇(x, t), x ∈ (a, b), t > 0, (3.9)

where G(u) is given as

G(•) = ρ(x)Cp(x)d•
dt

− d

dx

(
k(x) d•

dx

)
. (3.10)

3.1.4 Test Error Analysis

We compare the predicted solutions ŷ from each DeepONet model, to the true ones y obtained from the
analytical equation, where available, or from a highly accurate numerical solver, using the relative root
mean squared error (RRMSE) [2] as our evaluation metric. The RRMSE is defined as the root mean
squared error (RMSE) of the predicted and true solution, ŷi and yi respectively, divided by the average
value of the predicted solution ŷi, i.e.

RRMSE =

√
1
n

∑n
i=1

(
ŷi − yi

)2

1
n

∑n
i=1 ŷi

. (3.11)

The RMSE is sensitive to outliers, where a few terrible y samples or predictions ŷ can result in a larger loss,
thereby forcing the model to learn outliers more rather than the majority. The RMSE is also dependent on
the scale of each y sample, increasing in magnitude if the scale of the error increases. This is undesirable
when the errors for lower scaled y samples have less effect on the model’s predictions when compared to
errors for higher scaled y samples. To mitigate these effects, we divide the RMSE by the average value of
the predicted solution ŷi, making the models more robust to outliers and scale-independent.
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3.2 1D Transient Heat Equation

3.2.1 Problem Definition

The heat conduction problem presented in this section is inspired by an example from DeepXDE [15]. We
employ both a DI-DeepONet and a PI-DeepONet to learn the heat operator G given by the heat equation
with a parametric thermal diffusivity α

du

dt
= α

d2u

dx2 , x ∈ [0, 1], t ∈ [0, 1]. (3.12)

Additionally, each DeepONet must also satisfy the Dirichlet BCs

u(0, t) = u(1, t) = 0, (3.13)

and periodic (sinusoidal) ICs

u(x, 0) = sin(nπxL), 0 < x < L, n = 1, 2, ..., (3.14)

where L is the length of the bar, n is the frequency of the sinusoidal IC.

The exact solution is given by

u(x, t) = e
−n2π2αt

L2 · sin(nπx

L
). (3.15)

The parameters used for defining the heat conduction PDE are shown in table 3.1. α will represent a
spatially constant input function for the branch net of the DeepONet models, and takes a value within the
specified range.

Table 3.1 PDE parameters for the heat conduction problem given by equation 3.12.

Parameter Value
α 0 - 2
n 1
L 1

The aim is to learn the heat operator G that maps α to the corresponding PDE solutions u(x, t), i.e.
G : α → G(α), where G(α) = u(α), and for any (x, t) in the domain, G(α)(x, t) = u(x, t).

3.2.2 Data-set Generation

The training and test data-sets consists of input-output triplets [α, (x, t), G(α)((x, t))], where α is a
constant function, (x, t) is an evaluation location within the problem domain and G(α)((x, t)) = u(x, t) is
the temperature value to be predicted by the network for the given α at the (x, t) coordinate.

To generate the training and test data-sets, we first sample 2 × n = 1000 different α values uni-
formly between the range specified in table 3.1. Then for each α, we use the formula for exact solution
(equation 3.15) to generate the temperature solutions u for different (x, t) locations. The evaluation
locations, (x, t), to be passed to the trunk network during training were randomly selected for p = 100 for
the residual, p = 100 for the ICs, as well as, p = 100 for the Dirichlet BCs. Each temperature solution u(i)

is then obtained for each randomly generated collocation point (x(i), t(i)).

In summary, for the DI-DeepONet, for each α(i),
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•
{
(x(i)

r,j , t
(i)
r,j)

}p=100
j=1 are uniformly sampled within the domain [0, 1] × [0, 1] (residual),

•
{
(x(i)

b,j , t
(i)
b,j)

}p=100
j=1 are uniformly sampled from the left and right boundaries, each, at times [0, 1]

(Dirichlet),

•
{
(x(i)

ic,j , 0)
}p=100

j=1 are uniformly sampled within the domain [0, 1] at time t = 0 (IC).

This data-set is used when computing the data loss, Ldata(θ) (see section 3.2.3). Thus the training
data-set contains [α, (x, t), G(α)(x, t)] of size (1000 × 400, 1), (1000 × 400, 2) and (1000 × 400, 1)
respectively.

For generating the training data-set for the PI-DeepONet,

•
{
(x(i)

b,j , t
(i)
b,j)

}p=100
j=1 are uniformly sampled from the left and right boundaries, each, at times [0, 1]

(Dirichlet),

•
{
(x(i)

ic,j , 0)
}p=100

j=1 are uniformly sampled within the domain [0, 1] at time t = 0 (IC).

In order to satisfy the data loss, Ldata(θ). The training data-set contains [α, (x, t), G(α)(x, t)] of size
(1000 × 300, 1), (1000 × 300, 2) and (1000 × 300, 1), for the IBCs, and is only required for computing
Ldata(θ).

Additionally, we need to randomly select q = 100 different collocation locations, (x, t), to satisfy
the PDE residual for Lphysics (see sections 3.2.3 and 3.2.3). Thus,

•
{
(x(i)

r,j , t
(i)
r,j)

}q=100
j=1 are collocation points sampled within the domain [0, 1] × [0, 1] for computing the

residual loss, Lphysics(θ), to satisfy the PDE constraint.

For testing, we use the entire domain [0, 1] × [0, 1], each possessing 200 equally spaced collocation points
in [0, 1]. The testing data-set contains [α, (x, t), G(α)(x, t)] of size (1000 × 40000, 1), (1000 × 40000, 2)
and (1000 × 40000, 1) respectively.

The parameters used for generating the data-sets are shown in table 3.2.

Table 3.2 Parameters used for generating the training and test data-sets.

Parameter DI-DeepONet PI-DeepONet
n 1000 1000
p 400 300
q - 100

Note that the DI-DeepONet is trained on paired input-output measurements within the domain, as well as,
for the IBCs, but the PI-DeepONet is trained without any paired training data (except for the IBCs). As
a result, the PI-DeepONet contains 25% less training data (for predicting G(α)(x, t) within the domain)
when compared to the DI-DeepONet. Additionally, as the IBCs are known a priori, the training data
for the PI-DeepONet can be assembled without first solving time-consuming FEA models or sensor
measurements (in cases where an analytical solution is not available). However, this is not possible with
the DI-DeepONet as the temperatures, u, within the domain at randomly generated collocation points,
(xr, tr), are needed. Thus, G(α)(x, t) in the training data for the ICs and Dirichlet BCs are not obtained
from the analytical solution, as its value is already known.
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3.2.3 Loss Function

Recall that Gθ represents the approximation of the heat operator G by both DeepONet variants. The loss
function for the DI-DeepONet is given by

L(θ) = Ldata(θ) = Lr,data(θ) + Ldc,data(θ) + Lic,data(θ), (3.16)

to satisfy the constraints for the residual r, the Dirichlet dc, and the IC ic respectively. Each term is given
by

Lr,data(θ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(α(i))(x(i)
r,j , t

(i)
r,j) − G(α(i))(x(i)

r,j , t
(i)
r,j)

∣∣∣∣2, (3.17)

Ldc,data(θ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(α(i))(x(i)
dc,j , t

(i)
dc,j) − G(α(i))(x(i)

dc,j , t
(i)
dc,j)

∣∣∣∣2, (3.18)

Lic,data(θ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(α(i))(x(i)
ic,j , t

(i)
ic,j) − G(α(i))(x(i)

ic,j , t
(i)
ic,j)

∣∣∣∣2. (3.19)

Let Rθ be the heat PDE residual which is given by

R
(i)
θ (x, t) = dGθ(α(i))(x, t)

dt
− α(i) d2Gθ(α(i))(x, t)

dx2 . (3.20)

The loss function for the PI-DeepONet can then be defined as

L(θ) = Ldata(θ) + Lphysics(θ),

with Lphysics(θ) as

Lphysics(θ) = 1
nq

n∑
i=1

q∑
j=1

∣∣∣∣R(i)
θ (x(i)

j , t
(i)
j )

∣∣∣∣2, (3.21)

and Ldata(θ) is composed of only the collocation points sampled on the boundaries of the domain for the
Dirichlet and ICs, i.e.

Ldata(θ) = Ldc,data(θ) + Lic,data(θ). (3.22)

Defining PDE Loss, Lphysics(θ)

In listing 1, we define the PDE loss Lphysics(θ) in Modulus using a torch.nn.Module, and a class called
HeatPDE, which uses the input and output tensors of our PI-DeepONet to compute the residual Rθ within
its forward method. This module is then incorporated into the computational graph created by Modulus
using a Node as shown in listing 2. The PDE loss Lphysics(θ) is then added as an additional constraint
using Modulus’ DeepONetConstraint as shown in listing 3.
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class HeatPDE(torch.nn.Module):
"Custom 1-dimensional Heat PDE definition for PI-DeepONet"

def __init__(self):
super().__init__()

def forward(self, input_var: Dict[str, torch.Tensor])
-> Dict[str, torch.Tensor]:
# Get inputs
u = input_var["u"]
alpha = input_var["alpha"]
# Compute gradients
dudt = input_var["u__t"]
dduddx = input_var["u__x__x"]
# Compute Heat equation
heat = (dudt - alpha*dduddx)

# Return heat
output_var = {

"heat": heat,
}
return output_var

Listing 1 Defining the Heat PDE in Modulus.

# Incorporate Heat module into Modulus using a Node
heat_node = Node(

inputs=["u", "alpha", "u__t", "u__x__x"],
outputs=["heat"],
evaluate=HeatPDE(),
name="Heat Node",

)

nodes = [deeponet.make_node('deepo'), heat_node]

Listing 2 Adding the Heat Node into the computational graph.

residual = DeepONetConstraint.from_numpy(
nodes=nodes,
invar={

"alpha": a_r_train,
"x": x_r_train,
"t": t_r_train,

},
outvar={

"heat": np.zeros_like(u_r_train),
},
batch_size=cfg.batch_size.interior,
lambda_weighting={

"heat": 0.01*np.ones_like(u_train),
},

)
domain.add_constraint(residual, "Residual")

Listing 3 Adding the Heat PDE loss Lphysics(θ) as an additional constraint.
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Defining the Dirichlet BCs in Modulus

The Dirichlet BCs for the left and right boundaries, and the ICs are easily added as constraints using
Modulus’s DeepONetConstraint for the DI-DeepONet and PI-DeepONet. The heat PDE residual for the
DI-DeepONet, is similarly enforced. An example is shown in listing 4 for the left boundary.

# Dirichlet boundary condition 1
DBC_1 = DeepONetConstraint.from_numpy(

nodes=nodes,
invar={

"alpha": a_train,
"x": np.zeros_like(x_train),
"t": t_train,

},
outvar={"u": np.zeros_like(u_train)},
batch_size=cfg.batch_size.BC,
lambda_weighting={"u": 1.0*np.ones_like(u_train)},

)
domain.add_constraint(DBC_1, "DBC_1")

Listing 4 Adding the Dirichlet BC constraint Ldc,data(θ) in Modulus.

3.2.4 Training

Recall (refer to section 2.2.1) that the branch network takes α as input and returns a features embedding
vector br as output, and the trunk network takes x and t as input and returns a features embedding vector
tr as output. These outputs are then merged together by a dot product to produce the final prediction of
the heat operator by each DeepONet, i.e. Gθ = br · tr. The network architecture and training parameters
used are summarized in table 3.3.

Table 3.3 Network architecture and training parameters used by each DeepONet.

Name Value
Architecture Fully-connected Neural Network
Depth 4
Width 64
Optimiser Adam
Learning Rate 1.0 × 10−3 with decay
Training Steps 100000
Activation Function TANH (DI-DeepONet) / SILU (PI-DeepONet)

Training

The PI-DeepONet loss function Lθ is computed in Modulus as a sum of point-wise differences (equation
2.2) for:

• Predicting the temperature u for the IBCs, as given by the data loss Ldata,

• Predicting the PDE residual for the heat equation, Rθ, as given by the physics loss Lphysics.

As a result, we apply lambda weightings to the loss function for each objective, i.e.

L(θ) = λdataLdata(θ) + λphysicsLphysics(θ), (3.23)
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Table 3.4 Lambda weightings used by the PI-DeepONet.

Name Value
λdata 1.0
λphysics 0.01

where λdata and λphysics are given in table 3.4.

These lambda values were determined by first training the network with λdata = 1.0 and λphysics = 1.0.
The ratios between the magnitudes of the different loss terms, Ldata or Lphysics, were then computed
to determine which term was dominating the overall loss. These ratios are then applied as the lambda
weightings. These weightings are useful in training the network as it ensures that no one loss term
dominates the parameter updates, and that each term contributes equally.

The DI-DeepONet loss function Lθ is computed as a sum of point-wise differences for predicting
the temperature u for the IBCs, as well as, within the domain, as given by the data loss Ldata. However,
we apply uniform lambda weightings to the loss function for each objective.

3.2.5 Results

The temperature field û predicted by the DI-DeepONet and PI-DeepONet are compared to the true u given
by the analytical solution (equation 3.15) using Validators from Modulus. The results are shown for α = 0.4
for both the DI-DeepONet and the PI-DeepONet as shown in figure 3.2. The RRMSE for the validation
data-set at 6 different α values are also provided in table 3.5.

(a) DI-DeepONet at α = 0.4.

(b) PI-DeepONet at α = 0.4.

Figure 3.2 Temperature Field Predicted by DI-DeepONet (top) and PI-DeepONet (bottom), with True Temperature
Field utrue (left), Predicted Temperature Field upred (center), and Absolute Difference in Temperature udiff (right).
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Table 3.5 RRMSE for DI-DeepONet and PI-DeepONet at 6 different α.

α DI-DeepONet PI-DeepONet
0.2704 1.94 × 10−3 1.57 × 10−3

0.4000 2.28 × 10−3 2.10 × 10−3

0.6694 3.42 × 10−3 1.86 × 10−3

0.8582 3.43 × 10−3 2.27 × 10−3

1.2682 7.25 × 10−3 1.37 × 10−3

1.7086 8.46 × 10−3 3.88 × 10−3

(a) DI-DeepONet at α = 0.4.

(b) PI-DeepONet at α = 0.4.

Figure 3.3 PDE Residual (left), ut (middle), and uxx (right) predicted by DI-DeepONet (top) and PI-DeepONet
(bottom) at α = 0.4.

We observe that both DeepONets predict the temperature field u with reasonable accuracy, however,
the PI-DeepONet performs better than the DI-DeepONet for each α. Additionally, the prediction accuracy
of the DI-DeepONet decreases consistently as α increases, which is not observed for the PI-DeepONet.
As α increases, the temperature u changes more rapidly over time producing larger temperature gradients
ut which may be more difficult for the DI-DeepONet model to learn and predict.

We then compared how well the PDE residual, Rθ (3.20), is satisfied by each DeepONet. As de-
scribed in section 3.2.3, the PI-DeepONet is trained with Rθ as an additional objective, which acts
as a regularization mechanism that biases the network’s output to satisfy this PDE constraint, while
the DI-DeepONet is trained only using data. The PDE residual is satisfied more accurately by the
PI-DeepONet, resphys, by 2 orders of magnitude better than the DI-DeepONet, resdata, as shown in figure
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3.3. An Inferencer was used to track the PDE partial derivatives, ut and uxx within the domain during
training, in order to produce these plots.

ut and uxx over x ∈ [0, 1] and t ∈ [0, 1] is also provided for each DeepONet. We observe that
ut and uxx have a more similar shape for the PI-DeepONet, as compared to the DI-DeepONet. By
comparison, the DI-DeepONet is unable to adequately predict uxx, particularly at early time steps where
we expect higher temperature gradients. Recall that Lphysics (3.21) for the PI-DeepONet is composed
of these gradient terms for satisfying the heat PDE residual, Rθ (3.20), while Lr,data (3.17) for the
DI-DeepONet is composed of only training data, and not directly related to these gradients. As a result,
the inability of the DI-DeepONet to adequately satisfy uxx is expected.

3.2.6 Data Quality

The training and test data-sets consists of input-output triplets [α, (x, t), G(α)((x, t))]. In our previous
analysis, G(α)((x, t)) = u(x, t) is the temperature value determined using the analytical solution
(equation 3.15). However, to assess the impact of the quality of our training data-set on the DI-DeepONet,
we use the backward time central difference (BTCS) scheme on a 200 × 200 fine grid to generate the
temperature solutions u for different x and t locations. The collocation points, α(i),

{
(x(i)

d,j , t
(i)
d,j)

}p=100
j=1 and

α(i),
{
(x(i)

b,j , t
(i)
b,j)

}p=100
j=1 are similarly sampled as described in section 3.2.2. Each temperature solution u(i)

is then obtained from the fine grid solution by cubic interpolation for each randomly generated collocation
point.

We then compared the results for the networks trained using the analytical solution and the BTCS
scheme as shown in figures 3.2a and 3.4 respectively. We observed that the model trained using the
analytical solution provides better prediction accuracy than the one trained using the numerical solution.
This may be due to the network learning a different solution operator Ĝ than the true solution operator G.
As a result, special care should be taken when computing the training data numerical, in cases where an
analytical solution is not available.

Figure 3.4 Temperature Field Predicted by DI-DeepONet at α = 0.4 when trained using Numerical data, with the True
Temperature Field utrue (left), Predicted Temperature Field upred (center), and Absolute Difference in Temperature
udiff (right).

3.2.7 Activation Functions (AFs)

In this section, we study the effects on the choice of different AFs, provided by Modulus (refer to section
2.3.3), on the prediction accuracy and training efficiency on the DI-DeepONet and PI-DeepONet. The
architecture of the DeepONets is kept the same, except for the choice of AF applied to both the branch
and trunk networks. We then compute the RRMSE to assess the performance of each DeepONet defined
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using the various AFs.

The PI-DeepONet has a loss term, Lphysics(θ) (equation 3.21), that directly embeds the physical
constraints given by the heat PDE (3.12). Computing Lphysics(θ) requires the network to compute the
derivatives of the output with respect to the inputs , x and t, (by automatic differentiation) i.e. dGθ

dt and
d2Gθ
dx2 respectively, to determine Rθ (3.20) during each training iteration i. In contrast, the DI-DeepONet

has a similar term, Lr,data(θ) (equation 3.17), that indirectly satisfies the heat PDE. It is computed as the
sum of point-wise difference for predicting u directly through training data. This term is determined without
the need to compute the derivatives dGθ

dt and d2Gθ
dx2 .

Recall that the gradients of the loss function are used in back-propagation (see section 2.1.1) for
the optimization of model parameters, θ. As a result, the PI-DeepONet requires the second and third
derivatives, d2Gθ

dt2 and d3Gθ
dx3 , while the DI-DeepONet only requires the first derivatives, dGθ

dt and dGθ
dx , during

optimisation. A poorly chosen AF can cause (1) loss of information of the input during forward propagation
(see section 2.1.1) and (2) vanishing or exploding gradients during back-propagation, which results in
poor convergence.

Ranking the Activation Functions

For each AF, we compute the RRMSE of the differences between the network’s predicted temperature,
upred, and true temperature, utrue, i.e. udiff = np.abs(upred − utrue), made using DeepONets at 10
different α values as input to the branch network. This metrics is then used to rank the AFs in terms of
predictions over the entire domain.

The RRMSE is visualized using a bar graph at α = 0.4 in figure 3.5 for the DI-DeepONet and PI-
DeepONet. For the DI-DeepONet, we observed that squareplus and sigmoid AFs produce the highest
RRMSE consistently across 10 different α values, where as, the remaining AFs produced lower RRMSEs,
with no set of AFs performing best across the set. For the PI-DeepONet, we observed that stan, mish
and silu AFs produce the lowest RRMSE consistently across 10 different α values, where as, relu, lrelu,
selu and sigmoid AFs produce the highest RRMSE consistently. The remaining AFs produce satisfactory
RRMSE.

The range for the RRMSE for a DI-DeepONet trained with the best and worst AFs is 1 order of
magnitude less, when compared to the same for the PI-DeepONet. Thus, the PI-DeepONet is more
susceptible to performance variations based on the choice of AF used for the branch and trunk networks.
Additional RRMSE bar graphs at 5 different α between the range given in table 3.1, is provided in
Appendix A.1.2.

PI-DeepONet Analysis

For the PI-DeepONet, the worst performers are the relu, leaky relu, and selu AFs, while the best performers
are mish, silu, and stan AFs. Some possibilities for their performance are listed below.

• The relu, leaky relu, and selu AFs are monotonic functions, i.e. these functions move in one direction
(from left to right, the functions trend upwards as shown in figures A.1a, A.1b, A.1d). As a result, the
derivatives are always positive and may limit the learning capacity of the neural network. However,
mish, silu, and stan AFs are non-monotonic functions, i.e. these functions move in two direction (from
left to right, the functions trend downwards then upwards as shown in figures A.2e, A.3b, A.3a). Thus
we obtain positive derivatives for certain inputs and negative derivatives for others thereby improving
the model’s expressivity.
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(a) DI-DeepONet at α = 0.4.

(b) PI-DeepONet at α = 0.4.

Figure 3.5 RRMSE Bar Graphs for the DI-DeepONet (top) and PI-DeepONet (bottom) with different AFs at α = 0.4.

• All AFs are unbounded above and do not suffer from gradient saturation, i.e for large inputs, the
outputs do not saturate to some max value (as opposed to sigmoid (figure A.2a) and tanh (figure
A.2c) AFs), thus the gradients are never 0.

• Relu suffers from vanishing gradients for negative inputs and does not utilize these negative values
producing outputs and gradients with a value of 0, thus resulting in no weight updates during back-
propagation, negatively impacting the learning capacity of the model. All other AFs make use of
a limited range of negative inputs before saturating to some constant value, except for leaky relu
and stan which both utilize values up to −∞ and produces a non-zero output. However, leaky relu
produces large negative outputs while stan produces large positive outputs, as the input tends to
−∞. The use of a small amount of negative inputs improves the expressivity of the model and
allows for inputs to flow through the network during forward propagation.

• All AFs, except stan and leaky relu are bounded below, thus as the input tends to −∞, the output
tends to some constant value and the gradients become 0. This makes these AFs noise-robust
whereby large negative inputs saturate to some constant reducing the impact of noisy inputs. This
introduces a strong regularization effect while training.

• Mish, silu, and stan AFs are smooth, continuously differentiable functions, i.e. they do not change
direction suddenly like relu, leaky relu, and selu but bend smoothly near 0. Smoother transition
results in a smoother loss function allowing the optimizer to go through fewer oscillations which
helps in faster convergence, effective optimization and generalization.
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• Selu and stan AFs are adaptive activation functions with one or more neuron-wise parameters that
are optimized during training. This controls the slope of the AFs and their derivatives, which that can
improve the flow of gradients through the model.

3.2.8 Summary of Findings

Important findings we observed for the DI-DeepONet and the PI-DeepONet is given below.

• DI-DeepONet contains 100% training data for the IBCs and within the domain.

• PI-DeepONet has only 75% training data for the IBCs.

• PI-DeepONet has a more complex learning task, as compared to the DI-DeepONet, as it has to
satisfy the heat PDE constraint through physics, as opposed from data.

• Both DI-DeepONet and PI-DeepONet reach reasonable accuracy in their predictions, with the PI-
DeepONet performing one order of magnitude better, even though it lacks training data.

• The gradient terms, ut and uxx, are more similar in shape for the PI-DeepONet, as opposed to the
DI-DeepONet.

• The quality of the training data has an impact on the solution operator G learned by the DI-
DeepONet.

• Different AFs have a greater impact on the accuracy and training efficiency for the PI-DeepONet,
where as, a lesser impact is observed for the DI-DeepONet.

3.2.9 Conclusions

The results highlight the ability of the DI-DeepONet and the PI-DeepONet to learn the heat operator G,
that maps α to the corresponding PDE solutions u(x, t), for the heat equation (3.12). The PI-DeepONet
performed better than the DI-DeepONet, even though it was trained with 25% less training data (for satisfy-
ing the heat PDE constraint). This constraint is enforced by defining a custom Pytorch module and adding
an additional Node to the computational graph generated by Modulus. This ensures that the PI-DeepONet
is more consistent with physics of the defined problem (3.2.1).
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3.3 2D Steady-State Heat Equation

In this example, we perform a numerical study on the steady-state 2D heat transfer test case, with-
out the radiation BC, provided by WolframAlpha [32], in section HeatTransfer-FEM-Stationary-2D-Single-
HeatTransfer-0002 as shown in figure 3.6. We attempt to learn the heat PDE operator, G, using a DI-
DeepONet and two versions of a PI-DeepONet, where the input functions h alter the convective heat
transfer coefficient for the Robin BC. The training and test data-sets are generated using the FEM solver,
FEniCS [26, 25].

Figure 3.6 Illustration of the 2D Steady-State Heat Transfer Problem [32].

3.3.1 Problem Definition

Here we solve the heat conduction equation with an parametric convective heat transfer coefficient h
[W/m2K] given by equation 3.24. The aim is to learn the heat operator G that maps h to the corresponding
PDE solutions u(x, y) using a DI-DeepONet and two versions of a PI-DeepONet, Gθ. The difference
between the two versions is given below.

• The first version, the PI-DeepONet, is trained with its physics defined by the heat conduction equation
(3.24), as well as, for the Neumann and Robin BC as given by equations 3.26 and 3.27 respectively.

• The second version, the HPI-DeepONet, is trained with all BCs supplied by data, and the physics
defined only by the heat conduction equation (3.24).

The problem to be solved is steady-state and given by

−k

(
d2u

dx2 + d2u

dy2

)
= 0, x[m] ∈ [0, 0.02], y[m] ∈ [0, 0.01], (3.24)

where k [W/mK] is the thermal conductivity of the material domain.

The left and right boundaries are Dirichlet BCs,

u(0, y) = u(0.02, y) = 1173K, ∀y ∈ [0, 0.01], (3.25)

the bottom boundary is Neumann BC,

n̂ · k

(
du

dx
+ du

dy

)
= 0, ∀x ∈ [0, 0.02] ∪ y = 0, (3.26)
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and the top boundary is Robin BC

n̂ · k

(
du

dx
+ du

dy

)
= h(uamb − u), ∀x ∈ [0, 0.02] ∪ y = 0.01. (3.27)

The table below provides the parameters used for defining the heat conduction PDE. h will represent a
constant input function for the branch net of the DeepONet models, and will take a value within the range
specified in table 3.6.

Table 3.6 PDE parameters for the heat conduction problem given by equation 3.24.

Parameter Value
k [W/mK] 3
h [W/m2K] 5 - 180
uamb [K] 323

3.3.2 Data-set Generation

The training and test data-sets consists of input-output triplets [h, (x, y), G(h)((x, y))], where h is a
constant function, (x, y) is an evaluation location within the problem domain and G(h)((x, y)) = u(x, y)
is the temperature value to be predicted by the network for the given h at the (x, y) coordinate. The
FEM solutions for u was generated using a FEniCS python solution file, provided to me by Hitachi.
Additional steps, highlighted below, were then performed to format the generated results file for training
the DeepONet models.

To generate the training and test data-sets, we first sample 2 × n = 500 different h values uni-
formly between the range [5, 180]. Using these values, we generate the FEM solutions for the temperature
values u at 23000 different (x, y) coordinates. This was written to a file, where the first two columns
provide the x and y coordinates, the third column provides the temperature values u and the fourth the
specific h value used. We then reduce the number of evaluation locations (x, y) to be passed to the trunk
network during training by randomly selecting p = 100 for the residual, and p = 100 for each BC, from
each of the n = 500 files.

In summary, for the DI-DeepONet, for each h(i),

•
{
(x(i)

r,j , y
(i)
r,j)

}p=100
j=1 are uniformly sampled within the domain [0, 0.02] × [0, 0.01] (residual),

•
{
(x(i)

b,j , y
(i)
b,j)

}p=100
j=1 are uniformly sampled from the left and right boundaries, each, (Dirichlet),

•
{
(x(i)

b,j , y
(i)
b,j)

}p=100
j=1 are uniformly sampled from the bottom and top boundaries, each, (Neumann and

Robin respectively),

for computing the data loss, Ldata(θ) (3.28). Thus the training data-set contains [h, (x, y), G(h)(x, y)] of
size (500 × 500, 1), (500 × 500, 2) and (500 × 500, 1) respectively.

For generating the training data-set for the PI-DeepONet,

•
{
(x(i)

b,j , y
(i)
b,j)

}p=100
j=1 are uniformly sampled from the left and right boundaries, each, (Dirichlet),

In order to satisfy the data loss, Ldata(θ) (3.40). The training data-set contains [h, (x, y), G(h)(x, y)] of
size (500 × 200, 1), (500 × 200, 2) and (500 × 200, 1), for the Dirichlet BCs (where x = 0 and x = 0.02),
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and is only required for computing Ldata(θ).

We then randomly select q = 100 different (x, y) coordinates from the n different fine grid loca-
tions to satisfy the Neumann and Robin BCs, as well as, the PDE residual for Lphysics(θ) (3.36).
Thus

•
{
(x(i)

r,j , y
(i)
r,j)

}q=100
j=1 are uniformly sampled within the domain [0, 0.02] × [0, 0.01] (residual),

•
{
(x(i)

b,j , y
(i)
b,j)

}q=100
j=1 are uniformly sampled from the bottom and top boundaries, each, (Neumann and

Robin respectively).

For generating the training data-set for the HPI-DeepONet,

•
{
(x(i)

b,j , y
(i)
b,j)

}p=100
j=1 are uniformly sampled from the left and right boundaries, each, (Dirichlet),

•
{
(x(i)

b,j , y
(i)
b,j)

}p=100
j=1 are uniformly sampled from the bottom and top boundaries, each, (Neumann and

Robin respectively),

in order to satisfy the data loss, Ldata(θ) (3.42). The training data-set contains [h, (x, y), G(h)(x, y)] of
size (500×400, 1), (500×400, 2) and (500×400, 1) for the BCs, and is only required for computing Ldata(θ).

We then randomly select q = 100 different (x, y) coordinates from the n different fine grid locations to
satisfy the PDE residual for Lphysics(θ) (3.41). Thus,

•
{
(x(i)

r,j , y
(i)
r,j)

}q=100
j=1 are collocation points sampled within the domain [0, 0.02]× [0, 0.01] for computing

the residual loss, to satisfy the heat PDE constraint.

For testing, we use the entire data-set generated on a fine-grid with 23000 (x, y) coordinates. The testing
data-set contains [h, (x, y), G(h)(x, y)] of size (500 × 23000, 1), (500 × 23000, 2) and (500 × 23000, 1)
respectively.

The parameters used for generating the data-sets are shown in the table 3.7.

Table 3.7 Parameters used for generating the training and test data-sets.

Parameter DI-DeepONet PI-DeepONet HPI-DeepONet
n 500 500 500
p 500 200 400
q - 300 100

We also augment the data-set by applying scaling factors to the evaluation points (x, y) and the tempera-
ture u values, which are of order of magnitude 10−2 and 103 respectively, to bring them closer to unity. In
addition, we also center the (x, y) points around 0. For example,

• To unity: x ∈ [0, 0.02] × 10−2 = [0, 2.0].

• Centering: x ∈ [0, 2.0] − (2.0−0)
2 = [−1.0, 1.0].

The h and k values are then adjusted as these values are derived from the spatial and temperature
values. This augmentation was performed to make training the DeepONet models easier.

Note:

• DI-DeepONet: Trained on paired input-output measurements for the domain, Dirichlet, Neumann
and Robin BCs.
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• PI-DeepONet: Trained without any paired training data (except for the Dirichlet BCs).

• HPI-DeepONet: Trained without any paired training data (except for the Dirichlet, Neumann and
Robin BCs).

As a result, the PI-DeepONet contains 60% less training data (for predicting G(h)(x, y) within the domain,
as well as, the top and bottom boundaries), while the HPI-DeepONet contains 20% less training data
(for predicting G(h)(x, y) within the domain), when compared to the DI-DeepONet. Additionally, as the
Dirichlet BCs are known a priori, the training data for the PI-DeepONet can be assembled without first
solving time-consuming FEA models or sensor measurements. However, this is not possible with the
DI-DeepONet as the temperatures, u, within the domain, and along the top and bottom boundaries at
randomly generated collocation points, (x, y), are needed. The HPI-DeepONet also requires the use of
these time-consuming methods as u is required for (x, y) along the top and bottom boundaries. Thus,
G(h)(x, y) in the training data for the Dirichlet BCs are not obtained from the numerical solution, as its
value is already known.

3.3.3 Loss Function

Recall that Gθ represents the approximation of the heat operator by each DeepONet.

DI-DeepONet Loss Function

The loss function for the DI-DeepONet is given by

L(θ) = Ldata(θ) = Lr,data(θ) + Ldc,data(θ) + Ln,data(θ) + Lc,data(θ), (3.28)

to satisfy the constraints for the residual r, Dirichlet dc, Neumann n, and Robin c boundaries respectively.
Each term is defined as

Lr,data(θ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(h(i))(x(i)
r,j , y

(i)
r,j) − G(h(i))(x(i)

r,j , y
(i)
r,j)

∣∣∣∣2, (3.29)

Ldc,data(θ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(h(i))(x(i)
dc,j , y

(i)
dc,j) − G(h(i))(x(i)

dc,j , y
(i)
dc,j)

∣∣∣∣2, (3.30)

Ln,data(θ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(h(i))(x(i)
n,j , y

(i)
n,j) − G(h(i))(x(i)

n,j , y
(i)
n,j)

∣∣∣∣2, (3.31)

Lc,data(θ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(h(i))(x(i)
c,j , y

(i)
c,j) − G(h(i))(x(i)

c,j , y
(i)
c,j)

∣∣∣∣2. (3.32)

PI-DeepONet Loss Function

Let Rθ be the heat PDE residual which is given by

R
(i)
θ (x, y) = −k

(
d2Gθ(h(i))(x, y)

dx2 + d2Gθ(h(i))(x, y)
dy2

)
, (3.33)

let Nθ be the residual for the Neumann BC given by

N
(i)
θ (x, y) = n̂ · k

(
du(i)(x, y)

dx
+ du(i)(x, y)

dy

)
, (3.34)
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and let Cθ be the residual for the Robin BC given by

C
(i)
θ (x, y) = n̂ · k

(
du(i)(x, y)

dx
+ du(i)(x, y)

dy

)
− h(i)(uamb − u(i)(x, y)). (3.35)

The loss function for the PI-DeepONet can then be defined as

L(θ) = Ldata(θ) + Lphysics(θ),

where Lphysics(θ) is given by

Lphysics(θ) = Lr,physics(θ) + Ln,physics(θ) + Lc,physics(θ), (3.36)

with each term given as

Lr,physics(θ) = 1
nq

n∑
i=1

q∑
j=1

∣∣∣∣R(i)
θ (x(i)

r,j , y
(i)
r,j)

∣∣∣∣2, (3.37)

Ln,physics(θ) = 1
nq

n∑
i=1

q∑
j=1

∣∣∣∣N (i)
θ (x(i)

n,j , y
(i)
n,j)

∣∣∣∣2, (3.38)

Lc,physics(θ) = 1
nq

n∑
i=1

q∑
j=1

∣∣∣∣C(i)
θ (x(i)

c,j , y
(i)
c,j)

∣∣∣∣2. (3.39)

Ldata(θ) is composed of only the collocation points of the Dirichlet boundaries, i.e. (x(i)
dc,j , y

(i)
dc,j), and is

given by

Ldata(θ) = Ldc,data(θ). (3.40)

HPI-DeepONet Loss Function

The loss function for the HPI-DeepONet is defined as

L(θ) = Ldata(θ) + Lphysics(θ),

where Lphysics(θ) is defined only for the heat PDE residual, i.e.

Lphysics(θ) = Lr,physics(θ). (3.41)

Ldata(θ) is composed of the collocation points of the boundaries of the domain for the Dirichlet, Neumann
and Robin BCs, and is given by

Ldata(θ) = Ldc,data(θ) + Ln,data(θ) + Lc,data(θ). (3.42)

Defining the heat PDE Loss, Lr,physics(θ), in Modulus

In listing 5, we define the PDE loss Lr,physics(θ) in Modulus using a torch.nn.Module, and a class called
HeatPDE, which uses the input and output tensors of our DeepONet model to compute the residual Rθ

within its forward method. This module is then incorporated into the computational graph created by
Modulus using a Node as shown in listing 6. The PDE loss Lr,physics(θ) is then added as an additional
constraint using Modulus’s DeepONetConstraint as shown in listing 7.
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class HeatPDE(torch.nn.Module):
"Custom 2-dimensional Heat PDE definition for PI-DeepONet"

def __init__(self, K):
super().__init__()
self.K = K

def forward(self, input_var: Dict[str, torch.Tensor])
-> Dict[str, torch.Tensor]:
# Get inputs
u = input_var["u"]
h = input_var["h"]
# Compute gradients
dduddx = input_var["u__x__x"]
dduddy = input_var["u__y__y"]

# Compute Heat equation
heat_pde = (-self.K*(dduddy + dduddx))

# Return heat residual
output_var = {

"heat": heat_pde,
}
return output_var

Listing 5 Defining the Heat PDE in Modulus.

# Incorporate Heat module into Modulus using a Node
heat_node = Node(

inputs=["u", "h", "u__x__x", "u__y__y"],
outputs=["heat"],
evaluate=HeatPDE(K),
name="Heat Node",

)

Listing 6 Adding the Heat Node into the computational graph.

# Residual
residual = DeepONetConstraint.from_numpy(

nodes=nodes,
invar={

"h": h_r_train,
"x": xx_r_train,
"y": yy_r_train,

},
outvar={

"heat": np.zeros_like(u_r_train),
},
batch_size=cfg.batch_size.interior,
lambda_weighting={

"heat": 1.0*(np.ones_like(u_train)),
},

)
domain.add_constraint(residual, "residual")

Listing 7 Adding the Heat PDE loss Lr,physics(θ) as an additional constraint.
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Defining the Neumann and Robin BCs for the PI-DeepONet in Modulus

In listings 8 and 11, we define the Neumann and Robin BCs in Modulus using a torch.nn.Module and
two classes called NeumannBC and RobinBC respectively, which use the input and output tensors of our
DeepONet model to compute Nθ and Cθ respectively, within their forward methods. In order to obtain
the unit normal vectors, n̂, for the derivatives of u on the bottom and top boundaries, du

dx and du
dy , we use

the ’sample boundary’ method from the ’rectangular geometry’ instance representing our domain, created
using Modulus’ geometry module. These module are then incorporated into the computational graph
created by Modulus using a Node for each BC as shown in listings 9 and 12 respectively. NeumannBC
and RobinBC are then added as additional constraints using Modulus’s DeepONetConstraint for computing
the losses, Ln,physics(θ) and Lc,physics(θ), respectively, as shown in listings 10 and 13 respectively.

class NeumannBC(torch.nn.Module):
"Custom Neumann BC for 2D Heat Equation"

def __init__(self, K, geo):
super().__init__()
self.K = K
self.geo = geo

def forward(self, input_var: Dict[str, torch.Tensor])
-> Dict[str, torch.Tensor]:
# Get inputs
u = input_var["u"]
h = input_var["h"]
# Compute gradients
dudx = input_var["u__x"]
dudy = input_var["u__y"]
# Get normals
y = Symbol("y")
samples = self.geo.sample_boundary(10, Eq(y, 0))
normal_x = samples["normal_x"][0, 0]
normal_y = samples["normal_y"][0, 0]

# Compute Neumann BC
normal_gradient_u = (self.K)*(normal_x*dudx + normal_y*dudy)

# Return Neumann BC
output_var = {

"normal_gradient_u": normal_gradient_u,
}
return output_var

Listing 8 Defining the Neumann BC in Modulus.

# Neumann BC
NBC_node = Node(

inputs=["u", "h", "u__x", "u__y"],
outputs=["normal_gradient_u"],
evaluate=NeumannBC(K, geo),
name="Neumann Node",

)

Listing 9 Adding the Neumann Node into the computational graph.
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# Neumann boundary condition 1, y=0, bottom wall
NBC_1 = DeepONetConstraint.from_numpy(

nodes=nodes,
invar={

"h": h_train,
"x": xx_train,
"y": y_range[0]*np.ones_like(yy_train),

},
outvar={"normal_gradient_u": np.zeros_like(u_train)},
batch_size=cfg.batch_size.NBC,
lambda_weighting={"normal_gradient_u": 1.0*(np.ones_like(u_train))},

)
domain.add_constraint(NBC_1, "NBC_1")

Listing 10 Adding the Neumann loss Ln,physics(θ) as an additional constraint.

class RobinBC(torch.nn.Module):
"Custom Robin BC for 2D Heat Equation"

def __init__(self, T_amb, K, geo):
super().__init__()
self.T_amb = T_amb
self.K = K
self.geo = geo

def forward(self, input_var: Dict[str, torch.Tensor])
-> Dict[str, torch.Tensor]:
# Get inputs
u = input_var["u"]
h = input_var["h"]
# Compute gradients
dudx = input_var["u__x"]
dudy = input_var["u__y"]
# Get normals
y = Symbol("y")
samples = self.geo.sample_boundary(10, Eq(y, 1))
normal_x = samples["normal_x"][0, 0]
normal_y = samples["normal_y"][0, 0]

# Compute Robin BC
## [normal_x * u__x + normal_y * u__y] - [(h/k)*(T_amb - T)]
normal_gradient_rbc = (

(self.K)*(normal_x*dudx + normal_y*dudy) - (h)*(self.T_amb - u))

# Return Neumann BC
output_var = {

"normal_gradient_rbc": normal_gradient_rbc,
}
return output_var

Listing 11 Defining the Robin BC in Modulus.
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# Robin BC
RBC_node = Node(

inputs=["u", "h", "u__x", "u__y"],
outputs=["normal_gradient_rbc"],
evaluate=RobinBC(T_amb, K, geo),
name="Robin Node",

)

Listing 12 Adding the Robin Node into the computational graph.

# Robin boundary condition 1, y=0.01, top wall
RBC_1 = DeepONetConstraint.from_numpy(

nodes=nodes,
invar={

"h": h_train,
"x": xx_train,
"y": y_range[1]*np.ones_like(yy_train),

},
outvar={"normal_gradient_rbc": np.zeros_like(u_train)},
batch_size=cfg.batch_size.RBC,
lambda_weighting={

"normal_gradient_rbc": 1.0 * (np.ones_like(u_train))},
)
domain.add_constraint(RBC_1, "RBC_1")

Listing 13 Adding the Robin loss Lc,physics(θ) as an additional constraint.

Defining the Dirichlet BCs in Modulus

The Dirichlet BCs for the left and right boundaries are easily added as constraints using Modulus’s Deep-
ONetConstraint for each DeepONet. Note that the Neumann and Robin BCs are similarly enforced for the
DI-DeepONet and HPI-DeepONet, as well as, the heat PDE residual for the DI-DeepONet. An example is
shown in listing 14 for the left boundary.

# Dirichlet boundary condition 1, x=0, left wall
DBC_1 = DeepONetConstraint.from_numpy(

nodes=nodes,
invar={

"h": h_train,
"x": x_range[0]*np.ones_like(xx_train),
"y": yy_train,

},
outvar={"u": T_hot*np.ones_like(u_train)},
batch_size=cfg.batch_size.DBC,
lambda_weighting={

"u": 1.0*(np.ones_like(u_train)),
},

)
domain.add_constraint(DBC_1, "DBC_1")

Listing 14 Adding the Dirichlet BC constraint Ldc,data(θ) in Modulus.

3.3.4 Training

Recall (refer to section 2.2.1):



38

• The branch network takes h as input and returns a features embedding vector br as output.

• The trunk network takes (x, y) as input and returns a features embedding vector tr as output.

• These outputs are then merged together by a dot product to produce the final prediction of the heat
operator by each DeepONet, i.e. Gθ = br · tr.

The network architecture and training parameters used are summarized in table 3.8.

Table 3.8 Network architecture and training parameters used by each DeepONet.

Name Value
Architecture Fully-connected Neural Network
Depth 4
Width 128
Optimiser Adam
Learning Rate 1.0 × 10−3 with decay
Training Steps 100000
Activation Function MISH (DI) / SILU (PI, HPI)

PI-DeepONet Training

The PI-DeepONet loss function, Lθ, is computed as a sum of point-wise differences (equation 2.2) for:

• Predicting the temperature u for the Dirichlet BCs, as given by the data loss Ldata,

• Predicting the PDE residual for the heat equation, Rθ, the Neumann residual for the Neumann BC,
Nθ, and Robin residual for the Robin BC, Cθ, as given by the physics loss Lphysics (3.36).

As a result, we apply lambda weightings to the loss function for each objective, i.e.

L(θ) = λdc,dataLdc,data(θ)+λn,physicsLn,physics(θ)+λc,physicsLc,physics(θ)+λr,physicsLr,physics(θ), (3.43)

where λdc,data, λn,physics, λc,physics, and λr,physics are given in table 3.9.

Table 3.9 Lambda weightings used by the PI-DeepONet.

Name Value
λdc,data 70.0 + 100.0 ∗ y, (y ∈ [−0.5, 0.5])
λn,physics 1.0
λc,physics 1.0
λr,physics 1.0

These lambda values were selected by training the network with uniform lambda weightings and observing
the loss obtained from each loss term on the validation data-set. The Dirichlet BCs proved most difficult
for the PI-DeepONet to approximate to reasonable accuracy, especially around the upper portion of the
domain. The function, λdc,data, in the table 3.9 was used to ensure that the parameter updates, θ, during
training weighed Ldc,data more as compared to the other loss terms, and more around the upper portion
of the domain. This function was obtained by trial and error.
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HPI-DeepONet Training

The HPI-DeepONet loss function is computed similar to the PI-DeepONet, however, the point-wise differ-
ences is computed for:

• Predicting the temperature u for the Dirichlet, Neumann and Robin BCs, as given by the data loss
Ldata (3.42),

• Predicting the PDE residual for the heat equation, Rθ, as given by the physics loss Lphysics.

We apply lambda weightings to the loss function for each objective as

L(θ) = λdc,dataLdc,data(θ) + λn,dataLn,data(θ) + λc,dataLc,data(θ) + λr,physicsLr,physics(θ), (3.44)

where λdc,data, λn,data, λc,data, and λr,physics are given in table 3.10.

Table 3.10 Lambda weightings used by the HPI-DeepONet.

Name Value
λdc,data 2.0 + 100.0 ∗ ∥y∥, (y ∈ [−0.5, 0.5])
λn,data 5.0
λc,data 30.0 + 20.0 ∗ ∥x∥, (x ∈ [−1.0, 1.0])
λr,physics 1.0

These lambda values were selected by training the network with uniform lambda weightings and observing
the loss obtained from each loss term on the validation data-set. The Dirichlet, Neumann and Robin BCs
proved difficult for the HPI-DeepONet to approximate to reasonable accuracy, with the Robin BC proving
most difficult followed by the Dirichlet BC. We observed that both the Robin and Dirichlet BCs had a higher
loss around the corners of the domain. The functions, λdc,data and λc,data, in the table 3.10 was used to
ensure that the parameter updates θ during training weighed Ldc,data and Lc,data more as compared to the
other loss terms, and more around the corners. These weightings were obtained by trial and error.

DI-DeepONet Training

The DI-DeepONet loss function Lθ is computed as a sum of point-wise differences for predicting the
temperature u for the BCs, as well as, within the domain, as given by the data loss Ldata (3.28). However,
we apply uniform lambda weightings to the loss function for each objective.

3.3.5 Results

The temperature field û predicted by the DI-DeepONet, PI-DeepONet, and HPI-DeepONet are compared
to the true u, obtained from the FEM solution (see section 3.3.2), using Modulus’ Validators. These results
are shown for a convective heat transfer coefficient h = 47.1846 for the DI-DeepONet, PI-DeepONet and
HPI-DeepONet, as shown in figure 3.7. The RRMSE for the validation data-set at 6 different h coefficients
are also provided in table 3.11. We observe:

• DI-DeepONet (3.7a) achieved reasonable accuracy throughout the domain, except at the upper
corners of the domain. The accuracy also degrades as h increases.

• PI-DeepONet (3.7b) achieved reasonable accuracy throughout the domain, except at the left and
right boundaries of the domain, which degrades as we approach the upper corners of the domain.
The accuracy also degrades as h increases.
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(a) DI-DeepONet at h = 47.1846.

(b) PI-DeepONet at h = 47.1846.

(c) HPI-DeepONet at h = 47.1846.

Figure 3.7 Temperature Field Predicted by DI-DeepONet (top), PI-DeepONet (middle) and HPI-DeepONet (bottom),
with True Temperature Field utrue (left), Predicted Temperature Field upred (center), and Absolute Difference in
Temperature udiff (right).

• HPI-DeepONet (3.7c) achieved reasonable accuracy throughout the domain, except at the top, left
and right boundaries of the domain, which degrades as we approach the corners of the domain.
Similar to the PI-DeepONet, the temperature field u in the upper portion of the domain proves to be
more difficult for the networks to predict. The accuracy also degrades as h increases.

Table 3.11 RRMSE for DI-DeepONet, PI-DeepONet and HPI-DeepONet at 6 different h.

h DI-DeepONet PI-DeepONet HPI-DeepONet
16.2291 0.656 × 10−4 1.341 × 10−4 1.825 × 10−4

47.1846 0.985 × 10−4 3.629 × 10−4 3.903 × 10−4

69.0142 1.199 × 10−4 5.329 × 10−4 5.241 × 10−4

87.1556 1.583 × 10−4 6.787 × 10−4 6.607 × 10−4

141.3821 2.594 × 10−4 11.44 × 10−4 10.62 × 10−4

156.2909 2.879 × 10−4 13.10 × 10−4 11.81 × 10−4
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Each DeepONet achieved reasonable accuracy on the validation data-set, however, the DI-DeepONet
performed best which is likely due to the simplicity of its loss function L (section 3.3.3) comprised of only
training data for the entire domain and the BCs. The HPI-DeepONet was second, with a loss function L
(section 3.3.3) comprised of mostly training data for all the BCs and a smaller portion for the physics for
the heat PDE. Lastly, the PI-DeepONet has the most complex loss function L (section 3.3.3 where a small
portion is obtained from training data for the Dirichlet BCs, and a larger portion obtained from physics for
the Robin and Neumann BCs, as well as, the heat PDE.

The accuracy of all DeepONets degrade as h increases, particularly towards the upper boundary
of the domain. The HPI-DeepONet is greater affected by this increase compared to the other variants, as
shown in the figure 3.7c, with both the Robin and Dirichlet BCs showing larger differences between the
true and predicted temperatures udiff . udiff for the PI-DeepONet along the upper boundary (figure 3.7b)
is not as prominent, and indicates that learning the heat operator G, for this boundary, from data is more
challenging for the DeepONets. This conclusion is further extended to all boundaries as we had to apply
stronger lambda weightings to the HPI-DeepONet loss function for the Neumann and Robin BCs to be
predicted to reasonable accuracy, when compared to the similar terms in the PI-DeepONet loss function.

Additionally, as h increases, the effect of convective heat transfer along the upper boundary in-
creases which results in larger temperature gradients in the y-direction, uyy, within the domain towards
the upper portion. The left and right sides of the domain are also at higher temperatures u, due to the
Dirichlet BCs, which also results in higher uyy. As a result, uyy increases to a maximum as we approach
the upper left and upper right corners. These large gradients may pose a challenge for the DeepONet
models to learn when trying to satisfy the heat PDE and Robin BC. It may also explain the higher loss
observed at the upper corners of the domain for the PI-DeepONet when compared to the other variants,
as it is attempting to satisfy uyy from the heat PDE and the Robin BC.

We then compared how well the PDE residual, Rθ (3.33), is satisfied by each DeepONet. As de-
scribed in section 3.3.3, the PI-DeepONet and the HPI-DeepONet is trained with Rθ as an additional
objective, which acts as a regularization mechanism that biases the network’s output to satisfy the heat
PDE constraint, while the DI-DeepONet is trained only with data. Also note that, Nθ and Cθ are also
additional regularization mechanisms added to the PI-DeepONet, as opposed to the HPI-DeepONet, to
satisfy the Neumann and Robin constraints respectively.

The PDE residual is satisfied more accurately by the PI-DeepONet and HPI-DeepONet by 4 orders
of magnitude better than the DI-DeepONet as shown in figure 3.8. Both the PI-DeepONet and HPI-
DeepONet perform similarly in satisfying this constraint. An Inferencer was used to track the PDE partial
derivatives, ux and uy, uxx and uyy within the domain during training, in order to produce these plots.

uxx and uyy within the domain are also provided for each DeepONet in figure 3.8. We observe
that uxx and uyy have a more similar profiles for the PI-DeepONet and HPI-DeepONet, as compared
to the DI-DeepONet. By comparison, the DI-DeepONet is unable to adequately predict uxx and uyy,
particularly at the upper corners of the domain, where higher temperature gradients are observed.
Additionally, the areas with larger udiff , as shown in figure 3.7, match closely with the areas where uxx

and uyy differ (3.8a) for the DI-DeepONet, or have high gradients (3.8b and 3.8c) for the PI-DeepONet
and HPI-DeepONet respectively.

uy along the Neumann (bottom) boundary is also satisfied more closely for the PI-DeepONet with
a value more consistently near 0 as opposed to DI-DeepONet and HPI-DeepONet. uy along the Robin
(top) boundary is also satisfied more closely for the PI-DeepONet with an isosceles triangle profile that
peaks at the center of the domain that steady declines towards the corners, in order to negate the term
h(uamb − u). This is opposed to DI-DeepONet and HPI-DeepONet, which appear to have a saw-tooth
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(a) DI-DeepONet at h = 47.1846.

(b) PI-DeepONet at h = 47.1846.

(c) HPI-DeepONet at h = 47.1846.

Figure 3.8 PDE Residual (left), uxx (middle), and uyy (right) predicted by the DI-DeepONet (top), PI-
DeepONet(middle), and HPI-DeepONet (bottom).
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profile as we move towards the corners of the domain.

The temperature field ũ predicted for 2 convective heat transfer coefficients h at the extremes of
the range given in table 3.6 for the DI-DeepONet, PI-DeepONet and HPI-DeepONet respectively, are
provided in Appendix A.2.

3.3.6 Summary of Findings

Important findings we observed for the DI-DeepONet, PI-DeepONet and HPI-DeepONet is given below.

• DI-DeepONet contains 100% training data for the BCs and within the domain.

• PI-DeepONet has 60% less training data, only 40% for the Dirichlet BCs, with the remainder of the
constraints obtained by physics for the heat PDE, Neumann and Robin BCs.

• HPI-DeepONet is trained from 80% training data for the Dirichlet, Neumann and Robin BCs, with the
remainder obtained by physics for the heat PDE.

• PI-DeepONet has a more complex learning task, when compared to the DI-DeepONet and HPI-
DeepONet, as it has to satisfy the heat equation, as well as, the Neumann and Robin BC constraints
without any data.

• PI-DeepONet is more consistent with the underlying physics as Rθ, Nθ and Cθ, are added as addi-
tional objectives, which act as a regularization mechanism biasing the network’s output to satisfy the
heat PDE, Neumann and Robin BCs constraints.

• HPI-DeepONet is only biased to satisfy Rθ for the heat PDE constraint.

• The upper corners of the domain are challenging for each DeepONet to learn to reasonable accuracy
due to high thermal gradients, uxx and uyy, due to convective heat transfer and the Dirichlet BCs.

• Each variant reached reasonable accuracy in their predictions, with DI-DeepONet performing the
best, followed by the HPI-DeepONet.

3.3.7 Conclusions

The DI-DeepONet, PI-DeepONet and HPI-DeepONet are able to learn the solution operator that maps h to
the corresponding PDE solutions u(x) for the heat equation (3.24). Additionally, although not as accurate
as the DI-DeepONet, the PI-DeepONet achieved comparable accuracy with only 40% training data for
the Dirichlet BCs, and the remaining constraints satisfied through physics for the heat PDE, Neumann
and Robin BCs. These constraints are defined using custom Pytorch modules and enforced by adding
additional Nodes for each to the computational graph generated by Modulus. This ensures that the PI-
DeepONet is more consistent with physics of the defined problem. The HPI-DeepONet, with 80% training
data for the BCs and physics defined for the heat PDE, also achieves comparable accuracy. This variant
is also more consistent with the defined problem (3.3.1).
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3.4 2D Axisymmetric Transient Heat Equation

In this example, we perform a numerical study on a modified version of the 2D axisymmetric transient heat
conduction test case provided by WolframAlpha [32], in section HeatTransfer-FEM-Transient-2DAxisym-
Single-HeatTransfer-0001, with a source term q̇. We attempt to learn the heat PDE operator, G, using a
DI-DeepONet, a PI-DeepONet and a HPI-DeepONet, where the input functions q̇ alter the source term.
The training and test data-sets are supplied by Hitachi.

Figure 3.9 Illustration of the 2D Axisymmetric Transient Heat Transfer Problem.

3.4.1 Problem Definition

Here we solve the axisymmetric transient heat conduction equation with an parametric source q̇ [W/m3].
The problem domain is shown in figure 3.9. The aim is to learn the heat operator G that maps q̇ to the
corresponding PDE solutions u(x, y, t) using a DI-DeepONet, a PI-DeepONet and a HPI-DeepONet, Gθ.
The main differences between the PI-DeepONet and HPI-DeepONet is given below.

• PI-DeepONet is trained with its physics defined by the heat conduction equation (3.45), and by the
Neumann BC as given by equation 3.48.

• HPI-DeepONet is trained with all BCs supplied by data, and the physics defined only by the heat
conduction equation (3.45).

The problem to be solved is transient and given by

ρCp
du

dt
+ 1

x

d

dx

(
− k · x

du

dx

)
+ d

dy

(
− k

du

dy

)
= q̇,

x[m] ∈ [0.2, 0.3], y[m] ∈ [0, 0.4], t[s] ∈ [0, 200],
(3.45)

where ρ is the material density [kg/m3], Cp is the specific heat in constant pressure [Ws/kg◦C], and k
[W/m◦C] is the thermal conductivity of the domain.

The top, bottom and right boundaries are Dirichlet BCs,

u(x, 0.0, t) = u(x, 0.4, t) = 20◦C, ∀x ∈ [0.2, 0.3] ∪ ∀t ∈ [0, 200], (3.46)
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u(0.3, y, t) = 20◦C, ∀y ∈ [0.0, 0.4] ∪ ∀t ∈ [0, 200], (3.47)

respectively. The left boundary is Neumann BC,

n̂ · k

(
du

dx
+ du

dy

)
= 0, x = 0.2 ∪ ∀y ∈ [0.0, 0.4] ∪ ∀t ∈ [0, 200], (3.48)

with ICs given as
u(x, y, 0) = 20◦C∀x ∈ [0.2, 0.3] ∪ ∀y ∈ [0.0, 0.4]. (3.49)

Table 3.12 provides the parameters used for defining the axisymmetric transient heat conduction PDE. q̇
will represent a constant input function for the branch net of the DeepONet models, and will take a value
within the given range.

Table 3.12 PDE parameters for the heat conduction problem given by equation 3.45.

Parameter Value
k [W/m◦C] 200
ρCp [Ws/◦Cm3] 2.403 × 106

q̇ [W/m3] (2 − 8) × 106

uinit [◦C] 20

3.4.2 Data-set Generation

The training and test data-sets consists of input-output triplets [q̇, (x, y, t), G(q̇)((x, y, t))], where q̇ is a con-
stant function, (x, y, t) is an evaluation location within the problem domain and G(q̇)((x, y, t)) = u(x, y, t)
is the temperature value to be predicted by the network for the given q̇ at the (x, y) coordinate at time t.
This data-set was obtained from Hitachi.

To generate the training and test data-sets, we first sample n = 85 and n = 15 different q̇ values
respectively, uniformly between the range specified in table 3.12. Using these values, we obtain the
solutions providing the temperatures u at different (x, y) coordinates, and at different times t. This initial
data-set is of size (341097, 4) for (t, x, y, u), for each q̇. We reduce the number of evaluation locations
(x, y, t) to be passed to the trunk network during training by randomly selecting p = 1000 for the residual
and ICs, p = 400 for the left and right boundaries, and p = 100 for the top and bottom boundaries, from
each of the n files (a specific q̇).

In summary, for each q̇(i),

•
{
(x(i)

r,j , y
(i)
r,j , t

(i)
r,j)

}p=1000
j=1 are uniformly sampled within the spatial domain [0.2, 0.3] × [0.0, 0.4] at times

[0, 200] (residual),

•
{
(x(i)

b,j , y
(i)
b,j , t

(i)
b,j)

}p=400
j=1 are sampled from the left and right boundaries, each, at times [0, 200] (Neu-

mann and Dirichlet respectively),

•
{
(x(i)

b,j , y
(i)
b,j , t

(i)
b,j)

}p=100
j=1 are sampled from the bottom and top boundaries, each, at times [0, 200]

(Dirichlet),

•
{
(x(i)

ic,j , y
(i)
ic,j , 0)

}p=1000
j=1 are uniformly sampled within the spatial domain [0.2, 0.3] at time [0] (IC).

This data-set is used by the DI-DeepONet when computing the data loss, Ldata(θ) (3.52), and contains
[q̇, (x, y, t), G(q̇)(x, y, t)] of size (85 × 3000, 1), (85 × 3000, 3) and (85 × 3000, 1) respectively.

For generating the training data-set for the PI-DeepONet,
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•
{
(x(i)

b,j , y
(i)
b,j , t

(i)
b,j)

}p=400
j=1 are sampled from the right boundary at times [0, 200] (Dirichlet),

•
{
(x(i)

b,j , y
(i)
b,j , t

(i)
b,j)

}p=100
j=1 are sampled from the bottom and top boundaries, each, at times [0, 200]

(Dirichlet),

•
{
(x(i)

ic,j , y
(i)
ic,j , 0)

}p=1000
j=1 are uniformly sampled within the spatial domain [0.2, 0.3] at time [0] (IC),

in order to satisfy the data loss, Ldata(θ) (3.62). The training data-set contains [q̇, (x, y, t), G(q̇)(x, y, t)] of
size (85 × 1600, 1), (85 × 1600, 3) and (85 × 1600, 1) for the Dirichlet BCs and ICs, and is only required
for computing Ldata(θ).

We then randomly select q = 400 different (x, y, t) coordinates to satisfy the Neumann BC, as well
as, q = 1000 different (x, y, t) coordinates to satisfy the PDE residual for Lphysics(θ) (3.59). Thus,

•
{
(x(i)

b,j , y
(i)
b,j , t

(i)
b,j)

}q=400
j=1 are collocation points sampled from the left boundary at times [0, 200] (Neu-

mann).

•
{
(x(i)

r,j , y
(i)
r,j , t

(i)
r,j)

}q=1000
j=1 are collocation points sampled from within the spatial domain [0.2, 0.3] ×

[0.0, 0.4] at times [0, 200] for computing the residual loss.

For generating the training data-set for the HPI-DeepONet,

•
{
(x(i)

b,j , y
(i)
b,j , t

(i)
b,j)

}p=400
j=1 are sampled from the left and right boundaries at times [0, 200] (Neumann

and Dirichlet respectively),

•
{
(x(i)

b,j , y
(i)
b,j , t

(i)
b,j)

}p=100
j=1 are sampled from the bottom and top boundaries, each, at times [0, 200]

(Dirichlet),

•
{
(x(i)

ic,j , y
(i)
ic,j , 0)

}p=1000
j=1 are uniformly sampled within the spatial domain [0.2, 0.3] at time [0] (IC),

in order to satisfy the data loss, Ldata(θ) (3.64). The training data-set contains [q̇, (x, y, t), G(q̇)(x, y, t)] of
size (85 × 2000, 1), (85 × 2000, 3) and (85 × 2000, 1) for the Neumann and Dirichlet BC, as well as the
ICs, and is only required for computing Ldata(θ).

We then randomly select q = 1000 different (x, y, t) coordinates to satisfy the PDE residual for
Lphysics(θ)(3.63). Thus,

•
{
(x(i)

r,j , y
(i)
r,j , t

(i)
r,j)

}q=1000
j=1 are collocation points sampled from within the spatial domain [0.2, 0.3] ×

[0.0, 0.4] at times [0, 200] for computing the residual loss.

For testing, we use the entire spatial domain [0.2, 0.3] × [0.0, 0.4] at 3 time-steps t = [0, 100, 200]s. The
testing data-set contains [q̇, (x, y, t), G(q̇)(x, y, t)] of size (15 × 1697 × 3, 1), (15 × 1697 × 3, 3) and
(15 × 1697 × 3, 1) respectively.

The parameters used for generating the data-sets are shown in the table 3.13.

Table 3.13 Parameters used for generating the training and test data-sets.

Parameter DI-DeepONet PI-DeepONet HPI-DeepONet
n 85 85 85
p 3000 1600 2000
q - 1400 1000
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We also augment the training data-set by non-dimensionalizing the spatial and time coordinates
(x, y, t), the source terms q̇, and the temperature u values respectively, in order to make training the
DeepONet models easier. The procedure used to non-dimensionalize the data-set is section 3.4.3. Note
that for training the DI-DeepONet, the dimensional time coordinate t was used as it was observed to make
training easier and improve prediction accuracy. This, however, was not observed for the PI-DeepONet or
HPI-DeepONet.

Note:

• DI-DeepONet: Trained on paired input-output measurements for the domain, ICs, Dirichlet and Neu-
mann BCs.

• PI-DeepONet: Trained without any paired training data (except for the ICs and Dirichlet BCs).

• HPI-DeepONet: Trained without any paired training data (except for the ICs, Dirichlet and Neumann
BCs).

As a result, the PI-DeepONet contains 47% less training data (for predicting G(q̇)(x, y, t) within the
domain, and left boundary), while the HPI-DeepONet contains 33% less training data (for predicting
G(q̇)(x, y, t) within the domain), when compared to the DI-DeepONet. Additionally, as the ICs and Dirichlet
BCs are known a priori, the training data for the PI-DeepONet can be assembled without first solving time-
consuming FEA models or sensor measurements. However, this is not possible with the DI-DeepONet
as the temperatures, u, within the domain, and along the left boundary at randomly generated collocation
points, (x, y, t), are needed at t > 0. The HPI-DeepONet also requires the use of these time-consuming
methods as u is required for (x, y, t) along the left boundary at t > 0. Thus, G(q̇)(x, y, t) in the training
data for the ICs and Dirichlet BCs are not obtained from the numerical solution, as its value is already
known.

3.4.3 Non-dimensionalizing the Axisymmetric Heat Equation

To non-dimensionalize the heat equation given in equation 3.45, we first define new non-dimensional
variables for the spatial terms x, y and temperature term u, i.e.

x̂ = x

X
, ŷ = y

X
, û = u

U
.

X is chosen to be the maximum value within the spatial domain, 0.4m, and U is chosen to be the
maximum value expected within the temperature domain, 150◦C.

The first derivative terms dx, dy, and du are thus,

dx = Xdx̂, dy = Xdŷ, du = Udû.

The time, t, and source term, q̇, are non-dimensionalized by first dividing throughout by k,

ρCp

k

du

dt
− 1

x

d

dx

(
x

du

dx

)
− d

dy

(
du

dy

)
= q̇

k
.

We then observed that the term k
ρCpX2 has units 1/s and can be used to non-dimensionalize t to t̂, i.e.

t̂ = k

ρCpX2 t,

with first derivative,

dt = ρCpX2

k
dt̂.
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Similarly, for q̇ to β,

β = X2

U

q̇

k
.

By substitution, we arrive at the non-dimensional axisymmetric heat equation,

U

X2 · dû

dt̂
− U

X2 · 1
x̂

d

dx

(
x̂

dû

dx̂

)
− U

X2 · d

dy

(
dû

dŷ

)
= U

X2 · β, (3.50)

or simply,
dû

dt̂
− 1

x

d

dx

(
x̂

dû

dx̂

)
− d

dy

(
dû

dŷ

)
= β. (3.51)

3.4.4 Loss Function

Recall that Gθ represents the approximation of the non-dimensional heat operator by each DeepONet,
using the non-dimensional spatial and time coordinates (x̂, ŷ, t̂), the source terms β, and the temperature
û values respectively. Note that the DI-DeepONet uses dimensional time t for training, but this not reflected
in equations 3.52 to 3.56 for ease of notation.

DI-DeepONet Loss Function

The loss function for the DI-DeepONet is given by

Ldata(θ) = Lr,data(θ) + Ldc,data(θ) + Ln,data(θ) + Lic,data(θ), (3.52)

to satisfy the constraints for the residual r, Dirichlet dc, and Neumann n boundaries, and the ICs ic. Each
term is defined as

Lr,data(θ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(β(i))(x̂(i)
r,j , ŷ

(i)
r,j , t̂

(i)
r,j) − G(β(i))(x̂(i)

r,j , ŷ
(i)
r,j , t̂

(i)
r,j)

∣∣∣∣2, (3.53)

Ldc,data(θ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(β(i))(x̂(i)
dc,j , ŷ

(i)
dc,j , t̂

(i)
dc,j) − G(β(i))(x̂(i)

dc,j , ŷ
(i)
dc,j , t̂

(i)
dc,j)

∣∣∣∣2, (3.54)

Ln,data(θ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(β(i))(x̂(i)
n,j , ŷ

(i)
n,j , t̂

(i)
n,j) − G(β(i))(x̂(i)

n,j , ŷ
(i)
n,j , t̂

(i)
n,j)

∣∣∣∣2, (3.55)

Lic,data(θ) = 1
np

n∑
i=1

p∑
j=1

∣∣∣∣Gθ(β(i))(x̂(i)
ic,j , ŷ

(i)
ic,j , 0) − G(β(i))(x̂(i)

ic,j , ŷ
(i)
ic,j , 0)

∣∣∣∣2. (3.56)

PI-DeepONet Loss Function

Let Rθ be the heat PDE residual which is given by

R
(i)
θ (x̂, ŷ, t) = dGθ(β(i))(x̂, ŷ, t̂)

dt̂
− 1

x

(
x̂ · d2Gθ(β(i))(x̂, ŷ, t̂)

dx̂2 + dGθ(β(i))(x̂, ŷ, t̂)
dx̂

)
− d2Gθ(β(i))(x̂, ŷ, t̂)

dŷ2 − β(i),

(3.57)

and let Nθ be the residual for the Neumann BC given by

N
(i)
θ (x̂, ŷ, t̂) = n̂ · k̂

(
dû(i)(x̂, ŷ, t̂)

dx̂
+ dû(i)(x̂, ŷ, t̂)

dŷ

)
, (3.58)
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where k̂ is a scaling factor chose to be k̂ = 1.

The loss function for the PI-DeepONet can then be defined as

L(θ) = Ldata(θ) + Lphysics(θ),

where Lphysics(θ) is given by

Lphysics(θ) = Ln,physics(θ) + Lr,physics(θ), (3.59)

with each term given as,

Ln,physics(θ) = 1
nq

n∑
i=1

q∑
j=1

∣∣∣∣N (i)
θ (x̂(i)

n,j , ŷ
(i)
n,j , t̂

(i)
n,j)

∣∣∣∣2, (3.60)

Lr,physics(θ) = 1
nq

n∑
i=1

q∑
j=1

∣∣∣∣R(i)
θ (x̂(i)

r,j , ŷ
(i)
r,j , t̂

(i)
r,j)

∣∣∣∣2. (3.61)

Ldata(θ) composed of the collocation points for the ICs and Dirichlet boundaries given by

Ldata(θ) = Ldc,data(θ) + Lic,data(θ). (3.62)

HPI-DeepONet Loss Function

The loss function for the HPI-DeepONet is given by

L(θ) = Ldata(θ) + Lphysics(θ),

where Lphysics(θ) is defined only for the heat PDE residual, i.e.

Lphysics(θ) = Lr,physics(θ). (3.63)

Ldata(θ) is composed of the collocation points for the ICs, as well as, Dirichlet and Neumann boundaries
given by

Ldata(θ) = Ldc,data(θ) + Ln,data(θ) + Lic,data(θ). (3.64)

Defining the heat PDE Loss, Lr,physics(θ), in Modulus

In listing 15, we define the heat PDE loss Lr,physics(θ) in Modulus, using a torch.nn.Module, and a class
called HeatPDE, which uses the input and output tensors of our DeepONet model to compute the residual
Rθ within its forward method. This module is then incorporated into the computational graph created by
Modulus using a Node as shown in listing 16. The PDE loss Lr,physics(θ) is then added as a constraint
using Modulus’s DeepONetConstraint as shown in listing 17.
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class HeatPDE(torch.nn.Module):
"Custom 2-dimensional Heat PDE definition for HPI-DeepONet"

def __init__(self):
super().__init__()

def forward(self, input_var: Dict[str, torch.Tensor])
-> Dict[str, torch.Tensor]:
# Get inputs (non-dimensional)
x = input_var["x"]
hq = input_var["hq"]
# Compute gradients (non-dimensional)
dudt = input_var["u__t"]
dudx = input_var["u__x"]
dduddx = input_var["u__x__x"]
dduddy = input_var["u__y__y"]

# Compute (non-dimensional) Heat equation
heat_pde = ((dudt) - (1/x)*(x*dduddx + dudx) - dduddy - hq)

# Return heat
output_var = {

"heat": heat_pde,
}
return output_var

Listing 15 Defining the Heat PDE in Modulus.

# Incorporate Heat module into Modulus using a Node
heat_node = Node(

inputs=["x", "hq", "u__t", "u__x", "u__x__x", "u__y__y"],
outputs=["heat"],
evaluate=HeatPDE(),
name="Heat Node",

)

Listing 16 Adding the Heat Node into the computational graph.

# Residual
residual = DeepONetConstraint.from_numpy(

nodes=nodes,
invar={

"hq": hq_pi_train_nd,
"x": xx_pi_train_nd,
"y": yy_pi_train_nd,
"t": tt_pi_train_nd,

},
outvar={"heat": np.zeros_like(hq_pi_train_nd)},
batch_size=cfg.batch_size.interior,
lambda_weighting={

"heat": 1.0*(np.ones_like(hq_pi_train_nd)),
},

)
domain.add_constraint(residual, "residual")

Listing 17 Adding the Heat PDE loss Lr,physics(θ) as an additional constraint.
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Defining the Neumann BC for the PI-DeepONet in Modulus

In listing 18, we define the Neumann BC in Modulus, using a torch.nn.Module, and a class called Neu-
mannBC, which uses the input and output tensors of our DeepONet model to compute Nθ, within the
forward method. In order to obtain the unit normal vector, n̂, for the derivatives of u on the left boundary,
du
dx and du

dy , we use the ’sample boundary’ method from the ’rectangular geometry’ instance representing
our domain, created using Modulus’ geometry module. This module is then incorporated into the compu-
tational graph created by Modulus using a Node as shown in listing 19. NeumannBC is then added as a
constraint using Modulus’s DeepONetConstraint for computing the loss, Ln,physics(θ) as shown in listing
20.

class NeumannBC(torch.nn.Module):
"Custom Neumann BC for 2D axisymmetric Heat Equation"

def __init__(self, geo, surf, K):
super().__init__()
self.geo = geo
self.surf = surf
self.K = K

def forward(self, input_var: Dict[str, torch.Tensor])
-> Dict[str, torch.Tensor]:
# Compute gradients (non-dimensional)
dudx = input_var["u__x"]
dudy = input_var["u__y"]
# Get normals
xx = Symbol("x")
samples = self.geo.sample_boundary(10, Eq(xx, self.surf))
normal_x = samples["normal_x"][0, 0]
normal_y = samples["normal_y"][0, 0]

# Compute Neumann BC
normal_gradient_u = -(self.K)*(normal_x*dudx + normal_y*dudy)

# Return Neumann BC
output_var = {

"normal_gradient_u": normal_gradient_u,
}
return output_var

Listing 18 Defining the Neumann BC in Modulus.

# Neumann BC
NBC_node = Node(

inputs=["u__x", "u__y"],
outputs=["normal_gradient_u"],
evaluate=NeumannBC(

geo=geo,
surf=xx_range_scaled[0],
K=k_nd,

),
name="Neumann Node",

)

Listing 19 Adding the Neumann Node into the computational graph.
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# Neumann boundary condition, x=0.2, left wall
NBC_1 = DeepONetConstraint.from_numpy(

nodes=nodes,
invar={

"hq": hq_train_nm_nd,
"x": xx_train_nm_nd,
"y": yy_train_nm_nd,
"t": tt_train_nm_nd,

},
outvar={"normal_gradient_u": np.zeros_like(hq_train_nm_nd)},
batch_size=cfg.batch_size.NBC,
lambda_weighting={

"normal_gradient_u": 1.0*np.ones_like(hq_train_nm_nd),
},

)
domain.add_constraint(NBC_1, "NBC_1")

Listing 20 Adding the Neumann loss Ln,physics(θ) as an additional constraint.

Defining the Dirichlet BCs in Modulus

The Dirichlet BCs for the top, bottom and right boundaries are easily added as constraints using Modulus’s
DeepONetConstraint for each DeepONet. Note that the Neumann BC for the right boundary is similarly
enforced for the DI-DeepONet and HPI-DeepONet, as well as, the heat PDE residual for the DI-DeepONet.
An example is shown in listing 21 for the right boundary.

# Dirichlet boundary condition 1, x=0.3, right wall
DBC_1 = DeepONetConstraint.from_numpy(

nodes=nodes,
invar={

"hq": hq_train_dbR_nd,
"x": xx_train_dbR_nd,
"y": yy_train_dbR_nd,
"t": tt_train_dbR_nd,

},
outvar={"u": np.ones_like(hq_train_dbR_nd)*T_dbc_scaled},
batch_size=cfg.batch_size.NBC,
lambda_weighting={

"u": 1.0*(np.ones_like(hq_train_dbR_nd)),
},

)
domain.add_constraint(DBC_1, "DBC_1")

Listing 21 Adding the Dirichlet BC constraint Ldc,data(θ) in Modulus.

3.4.5 Training

Recall (refer to section 2.2.1):

• The branch network takes q̇ as input and returns a features embedding vector br as output.

• The trunk network takes (x, y, t) as input and returns a features embedding vector tr as output.

• These outputs are then merged together by a dot product to produce the final prediction of the heat
operator by each DeepONet, i.e. Gθ = br · tr.

The network architecture and training parameters used are summarized in table 3.14.
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Table 3.14 Network architecture and training parameters used by each DeepONet.

Name Value
Architecture Fully-connected Neural Network
Depth 10
Width 128
Optimiser Adam
Learning Rate 1.0 × 10−3 with decay
Training Steps 50000
Activation Function SILU

DI-DeepONet Training

The DI-DeepONet loss function is computed as a sum of the point-wise differences (2.2) for:

• Predicting the temperature u for the Dirichlet BCs as given by the data loss Ldc,data,

• Predicting the temperature u for the Neumann BC as given by the data loss Ln,data,

• Predicting the temperature u for the ICs as given by the data loss Lic,data,

• Predicting the PDE residual for the heat equation as given by the data loss Lr,data.

As a result, we apply lambda weightings to the loss function for each loss term, i.e.

L(θ) = λdc,dataLdc,data(θ) + λn,dataLn,data(θ) + λic,dataLic,data(θ) + λr,dataLr,data(θ), (3.65)

where λdc,data, λn,data, λic,data, and λr,data are given in table 3.15.

Table 3.15 Lambda weightings used by the DI-DeepONet.

Name Value
λdc,data 2.0
λn,data 1.0
λic,data 1.0
λr,data 1.0 + 2x̂, x̂ ∈ [0.5, 0.75]

PI-DeepONet Training

The PI-DeepONet loss function is computed as a sum of the point-wise differences for:

• Predicting the temperature u for the Dirichlet BCs as given by the data loss Ldc,data,

• Predicting the temperature u for the Neumann BC, Nθ, as given by the physics loss Ln,physics,

• Predicting the temperature u for the ICs as given by the data loss Lic,data,

• Predicting the PDE residual for the heat equation, Rθ, as given by the physics loss Lr,physics.

As a result, we apply lambda weightings to the loss function for each loss term, i.e.

L(θ) = λdc,dataLdc,data(θ) + λn,physicsLn,physics(θ) + λic,dataLic,data(θ) + λr,physicsLr,physics(θ), (3.66)

where λdc,data, λn,physics, λic,data, and λr,physics are given in table 3.16.
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Table 3.16 Lambda weightings used by the PI-DeepONet.

Name Value
λdc,data 1.0
λn,physics 1.0
λic,data 1.0
λr,physics 1.0 × 10−3

HPI-DeepONet Training

The HPI-DeepONet loss function is computed as a sum of the point-wise differences for:

• Predicting the temperature u for the Dirichlet BCs as given by the data loss Ldc,data,

• Predicting the temperature u for the Neumann BC as given by the data loss Ln,data,

• Predicting the temperature u for the ICs as given by the data loss Lic,data,

• Predicting the PDE residual for the heat equation, Rθ as given by the physics loss Lr,physics.

As a result, we apply lambda weightings to the loss function for each loss term, i.e.

L(θ) = λdc,dataLdc,data(θ) + λn,dataLn,data(θ) + λic,dataLic,data(θ) + λr,physicsLr,physics(θ), (3.67)

where λdc,data, λn,data, λic,data, and λr,physics are given in table 3.17.

Table 3.17 Lambda weightings used by the HPI-DeepONet.

Name Value
λdc,data 1.0
λn,data 1.0
λic,data 1.0
λr,physics 1.0 × 10−3

These lambda values were selected by training the network with uniform lambda weightings and observing
the loss obtained from each loss term on the validation data-set. For the DI-DeepONet, we observed
higher loss along the Dirichlet boundaries, as well as, within the domain with a drop in performance as we
move towards the right boundary. λdc,data and λr,data (table 3.15) are chosen to ensure that the parameter
updates, θ, during training weighed Ldc,data and Lr,data more for the DI-DeepONet, as compared to the
other loss terms. λr,data represents a monotonically increasing function with output ranging between
[2.0, 2.5] as we move towards the right boundary.

Similarly for the PI-DeepONet and HPI-DeepONet, we observed that the residual dominated the
predictions made by the network, with high losses observed along the boundaries and the ICs. λr,physics

(tables 3.16 and 3.17) is chosen to ensure that the parameter updates, θ, during training weighed
Lr,physics less for the PI-DeepONet and HPI-DeepONet, as compared to the other loss terms. These
lambda weightings were obtained by trial and error.

3.4.6 Results

The temperature field ũ predicted by the DI-DeepONet, PI-DeepONet and HPI-DeepONet are compared
to the true u, given by the FEM solution using Modulus’ Validators. The results are shown for 1 source
q̇ = 6.940 × 106, at 3 different time-steps t = [0, 100, 200]s in the figures 3.10, 3.11, and 3.12 for the
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DI-DeepONet, PI-DeepONet and HPI-DeepONet respectively. We also determine the RRMSE between
ũ and the ground truth temperature u throughout the domain at 6 different sources q̇, at 3 different
time-steps t = [0, 100, 200]s as shown in tables 3.18, 3.19, and 3.20 for the DI-DeepONet, PI-DeepONet
and HPI-DeepONet respectively.

We observe:

• DI-DeepONet (3.10) achieved reasonable accuracy throughout the domain, which degrades as we
approach the boundaries of the domain. The accuracy also degrades as q̇ increases for each time-
step in t = [0, 100, 200]. The accuracy also degrades as t increases.

• PI-DeepONet (3.11) achieved reasonable accuracy throughout the domain, which degrades as we
approach the right boundary. The accuracy also degrades as q̇ increases for each time-step in
t = [0, 100, 200]. The accuracy improves as t increases.

• HPI-DeepONet (3.12) achieved reasonable accuracy throughout the domain, which degrades as
we approach the boundaries of the domain. The accuracy also degrades as q̇ increases for each
time-step in t = [0, 100, 200]. The accuracy improves as t increases.

Table 3.18 RRMSE for DI-DeepONet at t = [0, 100, 200]s for 6 different q̇.

q̇ × 106 t = 0 t = 100 t = 200
2.138 5.305 × 10−3 9.572 × 10−3 15.46 × 10−3

3.544 5.758 × 10−3 12.98 × 10−3 20.36 × 10−3

3.841 6.007 × 10−3 13.62 × 10−3 21.21 × 10−3

6.073 8.778 × 10−3 16.53 × 10−3 25.05 × 10−3

6.940 10.06 × 10−3 17.32 × 10−3 25.97 × 10−3

7.193 10.53 × 10−3 17.54 × 10−3 26.21 × 10−3

Table 3.19 RRMSE for PI-DeepONet at t = [0, 100, 200]s for 6 different q̇.

q̇ × 106 t = 0 t = 100 t = 200
2.138 7.211 × 10−3 2.580 × 10−3 1.616 × 10−3

3.544 11.78 × 10−3 1.575 × 10−3 1.192 × 10−3

3.841 12.66 × 10−3 1.658 × 10−3 1.209 × 10−3

6.073 19.26 × 10−3 1.916 × 10−3 1.616 × 10−3

6.940 21.80 × 10−3 2.031 × 10−3 1.634 × 10−3

7.193 22.47 × 10−3 2.069 × 10−3 1.647 × 10−3

Table 3.20 RRMSE for HPI-DeepONet at t = [0, 100, 200]s for 6 different q̇.

q̇ × 106 t = 0 t = 100 t = 200
2.138 9.065 × 10−3 1.600 × 10−3 2.723 × 10−3

3.544 14.62 × 10−3 1.326 × 10−3 1.630 × 10−3

3.841 15.81 × 10−3 1.489 × 10−3 1.435 × 10−3

6.073 24.45 × 10−3 2.228 × 10−3 1.386 × 10−3

6.940 27.49 × 10−3 2.627 × 10−3 1.517 × 10−3

7.193 28.40 × 10−3 2.831 × 10−3 1.612 × 10−3
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(a) q̇ = 6.940 × 106 and t = 0

(b) q̇ = 6.940 × 106 and t = 100

(c) q̇ = 6.940 × 106 and t = 200

Figure 3.10 Temperature Field Predicted by DI-DeepONet at t = [0, 100, 200]s, with True Temperature Field utrue

(left), Predicted Temperature Field upred (center), and Absolute Difference in Temperature udiff (right)
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(a) q̇ = 6.940 × 106 and t = 0

(b) q̇ = 6.940 × 106 and t = 100

(c) q̇ = 6.940 × 106 and t = 200

Figure 3.11 Temperature Field Predicted by PI-DeepONet at t = [0, 100, 200]s, with True Temperature Field utrue

(left), Predicted Temperature Field upred (center), and Absolute Difference in Temperature udiff (right)
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(a) q̇ = 6.940 × 106 and t = 0

(b) q̇ = 6.940 × 106 and t = 100

(c) q̇ = 6.940 × 106 and t = 200

Figure 3.12 Temperature Field Predicted by HPI-DeepONet at t = [0, 100, 200]s, with True Temperature Field utrue

(left), Predicted Temperature Field upred (center), and Absolute Difference in Temperature udiff (right)
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Each DeepONet achieved reasonable accuracy on the validation data-set, however, the PI-DeepONet
performed best and closely followed by the HPI-DeepONet. This indicates that the heat operator predicted
by the networks, Gθ, is better satisfied by composing the loss function, L, with objectives for satisfying
the physics of the axisymmetric transient heat conduction equation defined in section 3.4.1. L (section
3.4.4) for the PI-DeepONet is composed of almost 50% from physics for the heat PDE and the Neumann
BC, while the remaining is supplied by data for the ICs and Dirichlet BCs. L (section 3.4.4) for the
HPI-DeepONet is composed of 33% from physics for the heat PDE and the remainder supplied by data
for the ICs, Neumann and Dirichlet BCs. L (section 3.4.4) for the DI-DeepONet has 0% from physics and
is composed only of data for satisfying the heat PDE, ICs, Neumann and Dirichlet BCs. This may explain
the reduced performance compared to the PI-DeepONet and HPI-DeepONet.

The accuracy for all DeepONets degrades as q̇ increases, which may be due to larger temperature
gradients generated within the domain ux, uy, uxx, uyy, and across time ut. These large gradients could
pose a challenge for the DeepONet models to learn when trying to satisfy the transient heat equation.
In particular, Lphysics (3.59), for the PI-DeepONet is composed of these gradient terms for satisfying
the heat PDE residual, Rθ (3.57), and the Neumann residual, Nθ (3.58), while Lphysics (3.63) for the
HPI-DeepONet only has to satisfy the heat PDE residual, Rθ. Note that the heat PDE residual is satisfied
by Lr,data (3.52) for the DI-DeepONet which composed of training data, and not directly related to these
gradients.

As the time, t, increases, the performance of the DI-DeepONet decreases, where as the perfor-
mance of the PI-DeepONet and HPI-DeepONet improves. This indicates that ut is better satisfied by
incorporating physics (PI-DeepONet and HPI-DeepONet) into the models, as opposed to from data (DI-
DeepONet). However, at t = 0 (ICs), the DI-DeepONet performs consistently better, which indicates that
there may be a conflict with the heat PDE loss term, Lr,physics (3.61), for PI-DeepONet and HPI-DeepONet
and the IC loss term, Lic,data (3.56), even though Lr,physics is supplied collocation points where t > 0.

The PDE residual, Rθ, within the domain, at 3 time-steps t = [0, 100, 200]s for each DeepONet is
shown in figure 3.13. Recall that the PI-DeepONet and HPI-DeepONet is trained with this loss term
which acts as a regularization mechanism biasing our output to satisfy this heat PDE constraint, while the
DI-DeepONet is not, and trained only using data. Also note that, Nθ is also an additional regularization
mechanism added to the PI-DeepONet, as opposed to the HPI-DeepONet, to satisfy the Neumann
constraint. After training, the PDE residual is satisfied more accurately for the PI-DeepONet and
HPI-DeepONet by 2 orders of magnitude better than the DI-DeepONet at each t. An Inferencer was used
to track the PDE partial derivatives, ut, ux, uy, uxx and uyy within the domain during training, in order to
produce these plots.

ut, ux, uy, uxx and uyy at t = 200 within the domain is also provided for each DeepONet in figure
3.14. We observe that ux, uy, uxx and uyy have a more similar profiles for the PI-DeepONet and
HPI-DeepONet, as compared to the DI-DeepONet which is unable to adequately predict these terms. In
particular, the higher derivatives, uxx and uyy, are unable to be formed by the DI-DeepONet, with ux, uy

having dull profiles. The PI-DeepONet and HPI-DeepONet are able to form sharp clear profiles for each
term. As previously mentioned, Lphysics for the PI-DeepONet and HPI-DeepONet is constrained to learn
these terms, where as Lr,data for the DI-DeepONet is only required to satisfy u. As a result, the inability of
the DI-DeepONet to adequately satisfy these terms is expected.

ux ̸= 0 for the HPI-DeepONet at the left corners of the domain as compared to the PI-DeepONet
where ux = 0. This term is required for the Neumann BC, which is an added constraint, Nθ, for the
PI-DeepONet, as opposed to the HPI-DeepONet which enforced this term through data.

The temperature field ũ predicted for 2 sources q̇ at the extremes of the range given in table 3.12,
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(a) DI-DeepONet at q̇ = 3.544 × 106.

(b) PI-DeepONet at q̇ = 3.544 × 106.

(c) HPI-DeepONet at q̇ = 3.544 × 106.

Figure 3.13 PDE Residual at t = 0 (left), t = 100 (middle), t = 200 (right) for the DI-DeepONet (top), PI-DeepONet
(middle) and HPI-DeepONet (bottom).
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(a) DI-DeepONet at q̇ = 3.544 × 106 and t = 200.

(b) PI-DeepONet at q̇ = 3.544 × 106 and t = 200.

(c) HPI-DeepONet at q̇ = 3.544 × 106 and t = 200.

Figure 3.14 PDE partial derivatives, ut, ux, uy, uxx, and uyy, at t = 200 for the DI-DeepONet (top), PI-DeepONet
(middle) and HPI-DeepONet (bottom).



62

at 3 different time-steps t = [0, 100, 200]s for the DI-DeepONet, PI-DeepONet and HPI-DeepONet
respectively, are provided in Appendix A.3. ut, ux, uy, uxx and uyy at t = [0, 100, 200] within the domain
is also provided.

3.4.7 Summary of Findings

Important findings we observed for the DI-DeepONet, PI-DeepONet and HPI-DeepONet is given below.

• DI-DeepONet contains 100% training data for the ICs, BCs and within the domain.

• PI-DeepONet has only 53% training data for the ICs and Dirichlet BCs, with the remainder of the
constraints obtained by physics for the heat PDE and Neumann BC.

• HPI-DeepONet is trained from 67% training data for the ICs, Dirichlet and Neumann BCs, with the
remainder obtained by physics for the heat PDE.

• PI-DeepONet has a more complex learning task, when compared to the DI-DeepONet and HPI-
DeepONet, as it has to satisfy the heat equation, as well as, the Neumann BC constraints without
any data.

• PI-DeepONet is more consistent with the underlying physics as Rθ and Nθ are added as additional
objectives, which act as a regularization mechanism biasing the network’s output to satisfy the heat
PDE and Neumann BC constraints.

• HPI-DeepONet is only biased to satisfy Rθ for the heat PDE constraint.

• The gradient terms, ut, ux, uy, uxx and uyy, are clearly formed by the PI-DeepONet and HPI-
DeepONet as opposed to the DI-DeepONet.

• Each variant reached reasonable accuracy in their predictions, with PI-DeepONet performing the
best, followed by the HPI-DeepONet.

3.4.8 Conclusions

The DI-DeepONet, PI-DeepONet and HPI-DeepONet are able to learn the solution operator that maps q̇ to
the corresponding PDE solutions u(x, y, t) for the heat equation (3.45). The PI-DeepONet performed best
with 47% less training data (for the heat PDE residual and Neumann BC). This was closely followed by
the HPI-DeepONet with 33% less training data (for the heat PDE residual). These constraints are defined
using custom Pytorch modules and enforced by adding additional Nodes for each to the computational
graph generated by Modulus. This ensures that the PI-DeepONet and HPI-DeepONet is more consistent
with physics of the defined problem (3.4.1).
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4 Conclusion

After discussing the DI-DeepONet and PI-DeepONet architectures (2.2.1), and their use for learning con-
tinuous operators for solving PDEs, we investigated their use for solving the heat conduction equation (3.1)
for three different scenarios:

1. 1D transient heat equation (3.2) with parametric thermal diffusivity α, periodic ICs and Dirichlet BCs,

2. 2D steady-state heat equation (3.3) with parametric convective heat transfer coefficient h for the
Robin BC, with additional, Dirichlet and Neumann BCs,

3. 2D axisymmetric transient heat equation (3.4) with a parametric source term q̇, with ICs, Dirichlet
and Neumann BCs.

We constructed DI-DeepONets and PI-DeepONets using NVIDIA’s Modulus framework, and investigated
their performance to learn the heat PDE operators, G, for the three different scenarios. We determined
that each DeepONet can reasonably learn to solve the temperature field u, with the PI-DeepONet
performing better in two of the three cases investigated. Recall that the DI-DeepONets require 100%
training data to adequately learn G, where as the PI-DeepONets require training data only for some
combination of the ICs and BCs, which in some cases (i.e. ICs and Dirichlet BCs), may be known a priori.

In scenario 1, we investigated the impact of the quality of the training data used for training the DI-
DeepONet, by using two different data-sets generated from the analytical solution and the BTCS scheme.
We found that the accuracy of the DI-DeepONet degrades using the numerical data, as compared to the
one trained with the analytical data. We then investigated the impact of different AFs on the performance
of the DI-DeepONet and PI-DeepONet, and determined a more severe impact on performance for the
PI-DeepONet as compared to the DI-DeepONet.

In scenarios 2 and 3, we introduced a hybrid PI-DeepONet, HPI-DeepONet, where all BCs are de-
fined by training data, where as the PI-DeepONet has only a portion of the BCs defined by data with the
remainder supplied by physics. As a result, the amount of data required by each DeepONet drops from
100% for the DI-DeepONet, to a smaller portion for the HPI-DeepONet, and less for the PI-DeepONet.
Each variant was able to adequately learn G, with the DI-DeepONet performing better in 2, while the
PI-DeepONet performing better in 3.

Before closing, we must stress that not only is the PI-DeepONet trained to satisfy the heat equa-
tion with much less training data when compared to the DI-DeepONet, but is also constrained to satisfy
the physics of the problem, thereby producing a solution operator Ĝ that is more consistent with the
underlying physical constraints. Additionally, the PI-DeepONet training data can be assembled without
first solving time-consuming FEA models or from field sensor measurements, however, these methods
are required for the DI-DeepONet and HPI-DeepONet.

Despite the performance of DeepONets for solving the heat conduction problems, more work is
needed to address some open questions that we noticed during our studies. The lambda weightings we
applied to each objective of the DeepONet loss function were obtained manually by trial and error. The
weightings were based on our observations on the localisation of the errors throughout the spatial and
time domains using the validation data-set. To enhance the trainability of DeepONets, an in-depth study
on the selection of these weights is required, particularly to determine if there is an adaptive method that
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can be implemented for various problem domains. Additionally, the input functions used for the trunk
networks were constant functions, that were easily represented using a single point, allowing for further
studies using non-constant input functions.

Domain decomposition is a technique where the problem domain is divided into several subdo-
mains that only interact along their shared boundaries, where some continuity conditions are enforced
[10]. This technique has been extensively studied for heat conduction problems with composite material
with PINNs [8, 29, 8, 10, 1], and is achieved by training separate sub-networks for each subdomain. A
larger network is then used to combine each sub-network’s total loss, with an additional interface loss,
for the shared boundaries. The interface loss is then enforced, through physics, by ensuring that the
temperatures and heat fluxes along the shared boundaries are similar. The use of composite material
domains with added constraints for the interfaces has yet to be investigated with DeepONets, allowing for
further investigations.
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A Appendix

A.1 Activation Functions (AFs)

A.1.1 Activation Function Graphs

In this section, we provide graphs for the AFs and their first derivatives introduced in section 2.3.3 in
figures A.1, A.2, and A.3.

(a) ReLU and its first derivative.

(b) Leaky ReLU and its first derivative.

(c) ELU and its first derivative.

(d) SELU and its first derivative.

Figure A.1 Graphs of ReLU, Leaky ReLU, ELU, and SELU AFs with their first derivatives.
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(a) Sigmoid and its first derivative.

(b) GELU and its first derivative.

(c) Tanh and its first derivative.

(d) Softplus and its first derivative.

(e) Mish and its first derivative.

Figure A.2 Graphs of Sigmoid, GELU, Tanh, Softplus, and Mish AFs with their first derivatives.
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(a) Stan and its first derivative.

(b) SiLU and its first derivative.

(c) Sin and its first derivative.

(d) Squareplus and its first derivative.

Figure A.3 Illustrations of Stan, SiLU, Sin, and Squareplus AFs with their first derivatives.
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A.1.2 Activation Function Results

The RRMSE (3.11) and temperature differences, udiff , for the DI-DeepONet and PI-DeepONet for 4 dif-
ferent α functions used for the 1D transient heat conduction problem (section 3.2) is provided in figures
A.4, A.5, A.6, and A.7.

(a) RRMSE for different AFs at α = 0.1194.

(b) RRMSE for different AFs at α = 0.8582.

(c) RRMSE for different AFs at α = 1.2682.

(d) RRMSE for different AFs at α = 1.7086.

Figure A.4 DI-DeepONet: RRMSE Bar Graphs for different AFs at α = [0.1194, 0.8582, 1.2682, 1.7086] respectively.
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(a) udiff for different AFs at α = 0.1194.

(b) udiff for different AFs at α = 0.8582.

(c) udiff for different AFs at α = 1.2682.

(d) udiff for different AFs at α = 1.7086.

Figure A.5 DI-DeepONet: udiff for different AFs at α = [0.1194, 0.8582, 1.2682, 1.7086] respectively.
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(a) RRMSE for different AFs at α = 0.1194.

(b) RRMSE for different AFs at α = 0.8582.

(c) RRMSE for different AFs at α = 1.2682.

(d) RRMSE for different AFs at α = 1.7086.

Figure A.6 PI-DeepONet: RRMSE Bar Graphs for different AFs at α = [0.1194, 0.8582, 1.2682, 1.7086] respectively.
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(a) udiff for different AFs at α = 0.1194.

(b) udiff for different AFs at α = 0.8582.

(c) udiff for different AFs at α = 1.2682.

(d) udiff for different AFs at α = 1.7086.

Figure A.7 PI-DeepONet: udiff for different AFs at α = [0.1194, 0.8582, 1.2682, 1.7086] respectively.
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A.2 2D Steady-State Heat Equation Results

The temperature field ũ predicted by the DI-DeepONet, PI-DeepONet and HPI-DeepONet are compared
to the true u, given by the FEM solution using Modulus’ Validators. The results are shown for 2 convective
heat transfer coefficients h at the extremes of the range given in table 3.6 in figures A.8 and A.9.

(a) DI-DeepONet at h = 16.2291.

(b) PI-DeepONet at h = 16.2291.

(c) HPI-DeepONet at h = 16.2291.

Figure A.8 Temperature Field Predicted by DI-DeepONet (top), PI-DeepONet (middle) and HPI-DeepONet (bottom),
with True Temperature Field utrue (left), Predicted Temperature Field upred (center), and Absolute Difference in
Temperature udiff (right).
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(a) DI-DeepONet at h = 156.2909.

(b) PI-DeepONet at h = 156.2909.

(c) HPI-DeepONet at h = 156.2909.

Figure A.9 Temperature Field Predicted by DI-DeepONet (top), PI-DeepONet (middle) and HPI-DeepONet (bottom),
with True Temperature Field utrue (left), Predicted Temperature Field upred (center), and Absolute Difference in
Temperature udiff (right).
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A.3 Heat Equation 2D Transient Axisymmetric Results

The temperature field ũ predicted by the DI-DeepONet, PI-DeepONet and HPI-DeepONet are compared
to the true u for 2 sources q̇ at the extremes of the range given in table 3.12, at time-steps t = [0, 100, 200]s
in figures A.10 to A.15. ut, ux, uy, uxx and uyy at t = [0, 100, 200] within the domain are also shown in
figures A.16 to A.16.
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(a) q̇ = 2.138 × 106 and t = 0.

(b) q̇ = 2.138 × 106 and t = 100.

(c) q̇ = 2.138 × 106 and t = 200.

Figure A.10 Temperature Field Predicted by DI-DeepONet at t = [0, 100, 200]s, with True Temperature Field utrue

(left), Predicted Temperature Field upred (center), and Absolute Difference in Temperature udiff (right).
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(a) q̇ = 2.138 × 106 and t = 0.

(b) q̇ = 2.138 × 106 and t = 100.

(c) q̇ = 2.138 × 106 and t = 200.

Figure A.11 Temperature Field Predicted by PI-DeepONet at t = [0, 100, 200]s, with True Temperature Field utrue

(left), Predicted Temperature Field upred (center), and Absolute Difference in Temperature udiff (right).
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(a) q̇ = 2.138 × 106 and t = 0.

(b) q̇ = 2.138 × 106 and t = 100.

(c) q̇ = 2.138 × 106 and t = 200.

Figure A.12 Temperature Field Predicted by HPI-DeepONet at t = [0, 100, 200]s, with True Temperature Field utrue

(left), Predicted Temperature Field upred (center), and Absolute Difference in Temperature udiff (right).
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(a) q̇ = 7.193 × 106 and t = 0.

(b) q̇ = 7.193 × 106 and t = 100.

(c) q̇ = 7.193 × 106 and t = 200.

Figure A.13 Temperature Field Predicted by DI-DeepONet at t = [0, 100, 200]s, with True Temperature Field utrue

(left), Predicted Temperature Field upred (center), and Absolute Difference in Temperature udiff (right).
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(a) q̇ = 7.193 × 106 and t = 0.

(b) q̇ = 7.193 × 106 and t = 100.

(c) q̇ = 7.193 × 106 and t = 200.

Figure A.14 Temperature Field Predicted by PI-DeepONet at t = [0, 100, 200]s, with True Temperature Field utrue

(left), Predicted Temperature Field upred (center), and Absolute Difference in Temperature udiff (right).
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(a) q̇ = 7.193 × 106 and t = 0.

(b) q̇ = 7.193 × 106 and t = 100.

(c) q̇ = 7.193 × 106 and t = 200.

Figure A.15 Temperature Field Predicted by HPI-DeepONet at t = [0, 100, 200]s, with True Temperature Field utrue

(left), Predicted Temperature Field upred (center), and Absolute Difference in Temperature udiff (right).
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(a) DI-DeepONet at q̇ = 3.544 × 106 and t = 0.

(b) PI-DeepONet at q̇ = 3.544 × 106 and t = 0.

(c) HPI-DeepONet at q̇ = 3.544 × 106 and t = 0.

Figure A.16 PDE partial derivatives at t = 0, ut, ux, uy, uxx and uyy for the DI-DeepONet (top), PI-DeepONet
(middle) and HPI-DeepONet (bottom).
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(a) DI-DeepONet at q̇ = 3.544 × 106 and t = 100.

(b) PI-DeepONet at q̇ = 3.544 × 106 and t = 100.

(c) HPI-DeepONet at q̇ = 3.544 × 106 and t = 100.

Figure A.17 PDE partial derivatives at t = 100, ut, ux, uy, uxx and uyy for the DI-DeepONet (top), PI-DeepONet
(middle) and HPI-DeepONet (bottom).
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(a) DI-DeepONet at q̇ = 3.544 × 106 and t = 200.

(b) PI-DeepONet at q̇ = 3.544 × 106 and t = 200.

(c) HPI-DeepONet at q̇ = 3.544 × 106 and t = 200.

Figure A.18 PDE partial derivatives, ut, ux, uy, uxx and uyy, at t = 200 for the DI-DeepONet (top), PI-DeepONet
(middle) and HPI-DeepONet (bottom).
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