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Abstract

Machine learning is an essential tool for the predictive modeling of complex phenomena
in a variety of fields, such as engineering, medicine, and finance. In addition to point
predictions provided by the model, knowledge about the uncertainty of these predic-
tions is crucial for informed decision-making. Due to their inherent ability to provide
probability distributions alongside their predictions, Gaussian processes are especially
well-suited for uncertainty quantification. This thesis explores various approaches to
this task in the context of Gaussian process models. First, we apply sensitivity analysis
to examine how the different input variables contribute to uncertainty in the prediction.
Second, we quantify the additional uncertainty arising from numerical approxima-
tions used in place of the full model. Finally, we calibrate the predicted probability
distribution to align more accurately with the empirical probability distribution. As an
illustrative case study, these approaches are applied to a Gaussian process regression
model built to predict the traction force on the wheels of a planetary exploration rover
driving on soft soil. The findings presented in this thesis can benefit both researchers
and practitioners aiming to enhance their knowledge of uncertainty in Gaussian process
models.

iv

Mobile User



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 3

2.1 Gaussian process regression . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Application for regression . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Modeling wheeled locomotion for a planetary rover . . . . . . . . . . . . 11
2.3 Uncertainty in machine learning . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Sources of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Aleatoric and epistemic uncertainty . . . . . . . . . . . . . . . . . 13
2.3.3 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Uncertainty quantification for Gaussian processes 19

3.1 Sensitivity analysis – methodical approach . . . . . . . . . . . . . . . . . 19
3.1.1 Methods for sensitivity analysis . . . . . . . . . . . . . . . . . . . 20
3.1.2 Variance-based sensitivity analysis . . . . . . . . . . . . . . . . . . 21

3.2 Computational uncertainty – methodical approach . . . . . . . . . . . . 26
3.3 Calibration – methodical approach . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Definitions of calibration for regression . . . . . . . . . . . . . . . 30
3.3.2 Methods for regression calibration . . . . . . . . . . . . . . . . . . 32
3.3.3 Quantile calibration based on isotonic regression . . . . . . . . . 34
3.3.4 Local calibration based on Gaussian processes . . . . . . . . . . . 35
3.3.5 Measures for calibration . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Data provision for wheeled locomotion . . . . . . . . . . . . . . . . . . . 42
3.5 Building the base Gaussian process model . . . . . . . . . . . . . . . . . 44
3.6 Sensitivity analysis – experimental setup and results . . . . . . . . . . . 45

3.6.1 Testing method assumptions . . . . . . . . . . . . . . . . . . . . . 45
3.6.2 Independent sampling . . . . . . . . . . . . . . . . . . . . . . . . . 46

v

Mobile User



Contents

3.6.3 Correlated sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 Computational uncertainty – experimental setup and results . . . . . . . 52
3.8 Calibration – experimental setup and results . . . . . . . . . . . . . . . . 56
3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Conclusions 63

List of Figures 65

List of Tables 66

Bibliography 67

vi

Mobile User



1 Introduction

In recent years, machine learning has emerged as a promising complement to con-
ventional data analysis and modeling techniques across various scientific disciplines.
Machine learning models offer the benefit of directly capturing real-world phenomena
from data without requiring an extensive modeling process. Additionally, they often
require less computation time than complex, simulation-based approaches. However,
their performance is intrinsically limited by the amount and quality of training data, as
well as the ability of the model architecture to capture the problem at hand. Therefore,
the predictions always entail uncertainty about the actual value.

Especially in high-stakes situations such as medical diagnosis, sociotechnical systems,
or space exploration, it is essential for decision-makers to know how reliable their
results are. For example, maneuvering a planetary rover in unknown terrain requires
high caution since the rover cannot be repaired or moved out of a precarious situation
with external help during the mission. The Mars rover Spirit, for instance, ended its
operation by getting stuck in soft soil in May 2009 [1]. One of its successors, Curiosity,
encountered multiple similarly critical situations in which its wheels were buried in
sand up to 30% of their diameter. Due to an automatic onboard stopping mechanism
and subsequent corrective maneuvers, immobilization was successfully averted on
every occasion [2]. In such a scenario, relying on uncertain predictions could be
detrimental to the mission’s success. Uncertainty quantification therefore aims to assess
the uncertainty associated with predictions and is as important as the predictions
themselves for guiding decisions.

As a machine learning model,Gaussian processes are especially well-suited for
handling uncertainty since they provide a normal probability distribution with each
prediction. In this work, we explore various uncertainty quantification techniques for
Gaussian processes that build on this probability distribution and provide additional
insight. The first method is sensitivity analysis. The goal is to examine which input
variables have the highest influence on the predictions and thus can have the most
significant impact on its uncertainty if their values are uncertain as well. Addition-
ally, identifying uninfluential variables enables to reduce the model’s complexity by
excluding them from the model. Moreover, Gaussian processes scale prohibitively
for large amounts of data, necessitating numerical approximations. These introduce
further uncertainty to the predictions, which is often overlooked but can be quantified
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1 Introduction

by extending existing approximation methods. Lastly, we improve the uncertainty
estimates of the model using calibration techniques. Since the predicted uncertainty is
only an estimate, it may not accurately represent the actual uncertainty. For example,
Gaussian processes tend to be overconfident.

We apply these uncertainty analysis methods to a practical case of modeling the
locomotion of a wheeled planetary rover. Through this application, we evaluate their
effectiveness in quantifying and understanding the inherent uncertainties of a Gaussian
process model constructed to predict the traction force on the rover’s wheels.

2
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2 Background

2.1 Gaussian process regression

Gaussian processes are a non-parametric, probabilistic regression tool. In the following,
we discuss what Gaussian processes are, how to use them for regression and why they
are useful for uncertainty quantification.

2.1.1 Gaussian processes

Gaussian processes are highly related to multidimensional Gaussian distributions. In
a multidimensional Gaussian distribution, each individual stochastic variable follows
a normal distribution, and their joint distribution is normal as well. Formally, X =
⇥
X1 · · · XD

⇤>
⇠ N (µ, S), where µ is the mean vector with µi = E[Xi] and S the

covariance matrix with entries Sij = Cov(Xi, Xj) = E[(Xi � µi)(Xj � µj)]. The variance
of each dimension is thus captured in the diagonal entries Sii, whereas the off-diagonal
entries Sij describe the correlation between dimensions i and j. S is always symmetric
and positive semi-definite.

Two important properties of Gaussian distributions are closure under conditioning
and marginalization, which means the resulting distributions from these two operations
are Gaussian as well [3]. Conditioning can be used to determine the distribution of a
subset of dimensions, given that the values of the other dimensions are already known
(but arbitrary). For a Gaussian distribution


X
Y

�
⇠ N (µ, S) = N

✓
µX
µY

�
,


SXX SXY
SYX SYY

�◆
, (2.1)

where X and Y represent subsets of the original random variable, the distribution for
X given the values of Y is [3]

pX|Y(x) =
pX,Y(x, y)

pY(y)
= N

⇣
µX + SXYSYY(Y � µY), SXX � SXYSYY�1SYX

⌘
. (2.2)

Marginalization is another method for obtaining the distribution for a subset of the
random variables. In this case, instead of fixing the other dimensions at specific values,

3

Mobile User



2 Background

their influence is eliminated by averaging over all possible values, weighted by their
probabilities [3]

pX(x) =
Z

pX,Y(x, y)dy =
Z

pX|Y(x)p(y)dy . (2.3)

Moving on to Gaussian processes, they can be interpreted as a generalization of
Gaussian distributions. As stochastic processes, they represent probability distributions
over functions. A multidimensional probability distribution assigns probabilities to
vectors in a D-dimensional space. Each dimension represents a variable that can take
on different values. A stochastic process, in contrast, is defined over functions. A
function can be seen as a vector of uncountably infinite dimensions, each dimension
representing a point in the input domain, such as the real numbers. The function is
defined by the values assigned to each element in the input domain, similar to how a
vector takes values in each dimension and a probability is assigned to each possible
combination of values, in other words, to each function.

A Gaussian process
f (x) ⇠ GP(m(x), k(x, x

0)) (2.4)

is fully specified by its mean function m(x) and covariance function or kernel k(x, x
0).

They are defined as

m(x) = E[ f (x)], (2.5)
k(x, x

0) = Cov( f (x), f (x0)) = E[( f (x)� m(x))( f (x0)� m(x0))] (2.6)

and can be interpreted as a generalization of mean and covariance to functions. The
defining property of a Gaussian process is that any finite collection of D of its random
variables follows a D-dimensional multivariate Gaussian distribution [4]. This means
the random variables representing function values at any finite set of points in the input
domain are distributed according to a joint Gaussian distribution when marginalizing
over all other input points. Formally, for the points X = {x1, . . . , xn}, the resulting
Gaussian distribution is given by

f (X) ⇠ N (m(X), K(X, X)) , (2.7)

where m(X) is the mean vector with entries m(X)i = m(xi) and K(X, X) is the Gram
Matrix of the kernel which is defined as K(X, Y)ij = K(xi, yj). Thus, even if not strictly
correct in a mathematical sense, Gaussian processes can be thought of as Gaussian
distributions over infinite-dimensional variables.

2.1.2 Application for regression

Regression is a form of supervised learning in which the training data comprises
input-output pairs, with the objective of predicting the output based on new input

4
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values. Hence, the nature of this problem is inductive, as predictions for all possible
input values are made based on a finite set of observations. The training data D :=
{(x1, y1), ..., (xN , yN)} is given by N observations, where x denotes the D-dimensional
input and y the continuous, scalar output. The relationship between x and y is
modeled by a function y = f (x) in a deterministic setting or as a conditional probability
distribution p(y|x) if randomness is involved. The latter representation already contains
information about the uncertainty of a prediction [5].

Generally, there exist infinitely many functions f (x) consistent with the available
training data. Therefore, searching the entire function space for the optimal fit is
impractical, and the problem must be simplified to make it solvable. A common
approach is parametric regression, where the set of possible functions is restricted to a
specific parametric class, such as linear functions. The parameters are then optimized
so that the resulting function best describes the training data. However, this method
only works if the underlying input-output relationship is well modeled by the chosen
class. For example, applying linear regression to highly nonlinear data will result in
poor predictions. Choosing classes with higher approximation capability does not
necessarily solve the problem since this increases the risk of overfitting, where the
model represents the training data well but generalizes poorly to unseen data. Gaussian
process regression uses a different approach, placing a probability distribution over all
functions based on prior knowledge, such as smoothness and the training data. An
advantage of this non-parametric approach is that matching the training data is always
possible without the risk of overfitting [4].

Specification of the prior

The first step in Gaussian process regression is choosing a Gaussian process that
encodes prior knowledge independent of any data, assigning higher probabilities to
functions considered more likely. This is similar to setting a prior for parameters
in Bayesian regression. The kernel determines the characteristics of the predicted
functions, such as smoothness or periodicity. As it provides a measure for similarity
between the function values at two points in the input space, it influences the shape
that functions from the distribution have. There are two general classes of kernels:
stationary kernels, such as the squared exponential and periodic kernels, which only
depend on the relative position of the input values and cannot model global trends,
and non-stationary kernels, like the linear kernel, where the input location influences
the result as well [3]. Figure 2.1 compares functions drawn from Gaussian processes
with different kernels. In general, any function for which the Gram matrix K is positive
semidefinite for all choices of input sets is a valid kernel [5]. In order to model more
complex characteristics, different kernels can also be combined. Adding or multiplying

5
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Figure 2.1: Samples drawn from Gaussian processes with different kernels.

two kernels always yields another valid kernel, but there are also more complex options,
like concatenation or composition with other functions. For example, adding a linear to
a periodic kernel can incorporate a global rising or falling trend into a periodic model
[3]. The last example in Figure 2.1 shows functions sampled from such a distribution.
Kernels usually depend on hyperparameters that can be optimized to fit the data. For
example, the length scale parameter of the squared exponential kernel determines the
scale over which function values change, and the periodic kernel has a parameter for
the period length of the oscillations [3]. For the optimization, a common approach is to

6
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use the logarithmic marginal likelihood

log p(y|X, q) =
Z

p(y|f, X)p(f|X)df , (2.8)

which represents the probability of the training data given the hyperparameters q and
can be computed in closed form [4]. f is the output of the Gaussian process model,
which can be different from the observed data y if the data is assumed to be noisy. This
will be discussed in more detail in the next part about Gaussian process inference.

In order to fully define the Gaussian process, a mean function has to be specified as
well. It is typically chosen to be m(x) = 0 for simplicity. Other common choices include
the statistical mean of all values in the training data or another regression model such
as linear regression [6].

Using this information, the Gaussian process representing all prior knowledge
about the predictions without having seen any training data can be constructed. For
a finite set of test locations X⇤ = (x⇤1, . . . , x

⇤
m) 2 Rm⇥D, their distribution can be

modeled by a multivariate Gaussian distribution obtained from the Gaussian process
by marginalization

f (X⇤) ⇠ N (m(X⇤), K(X⇤, X⇤)) (2.9)

using the previously chosen mean function and kernel. Note that for a fixed Gaussian
process, different queries for different sets of test locations will always be consistent [4].

Gaussian process inference

In the next step, knowledge about the training data X = (x1, . . . , xn) 2 Rn⇥D and
corresponding outputs y = (y1, . . . , yn)> 2 Rn is incorporated by restricting the set
of possible functions to those passing through the training points. Formally, the
distribution of interest is P( f (X⇤)| f (X)), where the values of f (X) = y are already
known. In order to calculate this, we first need to construct the joint probability
distribution 

f (X)
f (X⇤)

�
⇠ N

✓
m(X)
m(X⇤)

�
,


K(X, X) K(X, X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆
. (2.10)

Inserting in Equation 2.2, the conditional probability distribution or posterior is given
by [4]

f (X⇤)|X, y ⇠ N (m(X⇤) + K(X⇤, X)K(X, X)�1(y � m(X)),

K(X⇤, X⇤)� K(X⇤, X)K(X, X)�1K(X, X⇤)) .
(2.11)

In many real-world scenarios, there is uncertainty about the correctness of the
training data. This could be caused by imprecise measurements, modeling errors, or the
inherent probabilistic nature of the data-generating process. In these cases, it is helpful

7
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to allow predictions that deviate from the corresponding outputs in the training data.
Assuming all uncertainty comes from independent, identically distributed Gaussian
noise, the underlying input-output relationship can be modeled as y = f (x) + e, where
e ⇠ N (0, s2

n). Thus, the distribution of the training data is

f (X) ⇠ N (m(X), K(X, X) + s2
n I). (2.12)

The posterior

f (X⇤)|X, y ⇠ N (m(X⇤) + K(X⇤, X)[K(X, X) + s2
n I]�1(y � m(X)),

K(X⇤, X⇤)� K(X⇤, X)[K(X, X) + s2
n I]�1K(X, X⇤))

(2.13)

can be derived in the same way as above. Figure 2.2 illustrates the steps of Gaussian
process regression.

The predictions of the Gaussian process are given by a joint Gaussian distribution. In
many cases, point estimates for the predicted quantities are needed, and a probability
distribution is not sufficient. In order to compare different predictions, we first need to
define a loss function L(ytrue, yguess), which represents a loss or penalty for guessing
the value yguess when the true value is ytrue. The loss cannot be minimized directly
since ytrue is unknown, but the posterior describes a probability distribution for ytrue.
Therefore, a point estimate can be selected by minimizing the expected value of the loss

R̃L(yguess|x⇤) =
Z

L(y⇤, yguess)p(y⇤|x⇤, X, y)dy⇤ . (2.14)

The point estimate is then given by

yoptimal|x⇤ = argmin R̃L(yguess|x) . (2.15)

For the absolute difference loss |yguess � y⇤|, the minimum is the median of p(y⇤|x⇤, X, y),
for the squared loss (yguess � y⇤)2 it is the mean. Those two coincide for Gaussian
distributions; more generally, the mean is the optimum for any symmetric loss function.
Therefore, the mean is usually used as point estimate for each prediction [4].

Predictive uncertainty

The predictive probability distribution of a Gaussian process serves as an estimation
for the model’s uncertainty about the predictions. In the case of no input noise,
corresponding to Equation 2.11, this represents the epistemic uncertainty due to a
lack of training data [4]. Therefore, the uncertainty is low in proximity to the training
points, and it reaches zero exactly at those locations. In regions not well covered by
training data, the uncertainty is higher. Figure 2.2b illustrates this behavior. Including a

8

Mobile User



2 Background

noise term as in Equation 2.13 allows to model aleatoric uncertainty about the training
points y. Thus, the predictive uncertainty represents the combined epistemic and
aleatoric uncertainty. As can be seen in Figure 2.2c, the uncertainty at the training
locations is no longer zero in this case. Overall, Gaussian processes are particularly
useful for quantifying uncertainty, as they provide specific uncertainty estimates for
each prediction.

9
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Figure 2.2: The steps of Gaussian process regression. a) shows samples drawn from
the prior distribution before conditioning on data. b) and c) both show the
posterior mean and 95% confidence interval conditioned on the training
data in dark blue for no uncertainty about the data points and an included
noise term, respectively.
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2.2 Modeling wheeled locomotion for a planetary rover

When exploring planetary bodies, wheeled rovers are a useful tool for examining not
just the landing site but also the area around it. In such a scenario, the rover often
needs to traverse areas with soft, sandy ground. This is especially challenging because
of the risk of excessive slippage or sinkage of the wheels. If one or more wheels get
embedded in the ground, the rover is stuck and cannot be recovered or repaired during
the mission. Therefore, it is important to be able to analyze and simulate vehicle
locomotion. In the design phase, engineers can use this information to test the wheel’s
behavior during many different possible scenarios. Moreover, the future behavior of the
wheel can be predicted during operation and guide decisions in order to avoid critical
scenarios. However, capturing the dynamics of wheel locomotion on soft soil poses
difficulties, mainly due to the soil’s lack of strong internal cohesion and the inconsistent
non-proportional relation between the soil’s deformation and the shear stress applied
[7].

Therefore, simulation models that deliver results of high quality require a substantial
amount of computation time and are not suitable for on-board predictions in real-
time. A solution for this problem is building surrogate models based on machine
learning approaches that can deliver results of similar quality in a shorter time [7, 8,
9, 10]. Uncertainty quantification for these models is an important part of assessing
and preventing critical situations. Therefore, Gaussian processes with their built-in
uncertainty estimates are well suited for this task [7].

2.3 Uncertainty in machine learning

In order to understand and effectively quantify the uncertainty inherent in machine
learning model predictions, it is useful to differentiate between various sources and
types. This section provides an overview of these different aspects of uncertainty.

2.3.1 Sources of uncertainty

There are many sources of uncertainty that can contribute to the overall predictive
uncertainty of a machine learning model. In the following, we describe important
sources discussed in recent academic literature.

• Model uncertainty describes the uncertainty about the choice of a model class.
In machine learning, the set of possible models is usually restricted to a certain
pre-selected class, such as linear models or Gaussian processes, before choosing
one model from this class that fits the training data best. This class may not
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contain a model that is able to describe the true phenomenon well. Quantifying
this kind of uncertainty is very difficult and often infeasible since all possible
model classes would have to be considered and compared. Therefore, it is often
left out of the uncertainty analysis. For models with high capacity, such as
neural networks or Gaussian processes that can approximate many relationships
in practical applications extremely well, it can safely be assumed that model
uncertainty is low [11]. However, it is important to keep in mind that this type of
uncertainty exists and is not included in most uncertainty estimates.

• Approximation uncertainty denotes the uncertainty associated with choosing the
optimal model from the selected model class, usually by specifying the associated
parameters and hyperparameters. Ideally, the model is chosen by minimizing a
loss function over the whole space of input and output variables [11]. In practice,
only a finite set of training data is available, and the model that minimizes the
loss over this set does not necessarily coincide with the globally optimal model.
Moreover, the optimization problem is often not convex, and thus, optimization
algorithms may only find a local optimum even for the training data.

• The amount of training data determines how much knowledge the model has
about the real-world phenomenon. In input regions not well covered by training
data, the model relies on extrapolations, leading to higher uncertainty about the
prediction. Generally, the higher dimensional the input space is, the more data is
required to cover it well and reduce this type of uncertainty [11].

• Noisy or imprecise data, for example caused by measurements from inaccurate
sensors, can affect the predictive uncertainty in two ways. Uncertain training data
provide less accurate information for the model to learn from. Therefore, even
in regions where training data are available, the model remains uncertain about
predictions. Moreover, uncertainty in the test data is propagated through the
model and causes uncertainty about predictions as well, especially if the output
value is very sensitive with respect to the uncertain input variables [12].

• The information content of the input variables determines how much variability
in the output quantity can be explained by the available data. If the input
variables lack the predictive power to fully determine the output, the model
remains uncertain about the prediction even with enough training data [12].

• Numerical approximations are often necessary during optimization or inference if
the exact solutions are not analytically tractable or too computationally expensive
for a specific application. This introduces uncertainty about the exact quantity of
interest [11].

12
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2.3.2 Aleatoric and epistemic uncertainty

?

(a) Aleatoric uncertainty

?

(b) Epistemic uncertainty

Figure 2.3: Illustration of the difference between aleatoric and epistemic uncertainty
in a classification task. The overlapping classes in a) make it impossible
to determine the class of the test instance, marked by a question mark,
with certainty even for the optimal model. Conversely, in b), it is not clear
which model best represents the problem due to a lack of data, resulting
in epistemic uncertainty about the class of the test instance. Adapted from
[11].

For a comprehensive understanding of uncertainty, it is often useful to distinguish
between two inherently different types of uncertainty. Epistemic uncertainty is the part
of the total uncertainty that can be reduced given additional information. Conversely,
aleatoric uncertainty is the remaining, irreducible part. What is reducible highly depends
on the context since given enough effort, most sources of uncertainty can theoretically
be resolved. Therefore, the definition must be interpreted relative to the problem at
hand [13]. In practice, it is often necessary to view the setting consisting of the input
space X , output space Y , the set of possible models H and a probability measure P
on X ⇥ Y as fixed [11]. In such a setting, aleatoric uncertainty includes relationships
between input and output variables that need to be viewed as stochastic, such as the
outcome of a coin flip, noisy or imprecise data, and a lack of predictive power of the
selected input variables. The remaining sources of uncertainty, i.e., uncertainty about
the optimal parameters and hyperparameters, uncertainty from a lack of training data,
and uncertainty from numerical approximations, are reducible by either additional
data or more accurate computations, thus epistemic. Figure 2.3 illustrates the difference
between aleatoric and epistemic uncertainty in a classification task. Figure 2.4 demon-
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x1 x1

x 2

Figure 2.4: Depending on the problem setting, the classification of uncertainty as epis-
temic or aleatoric uncertainty changes. If the input variables are fixed to
only x1, predicting the class of a test instance entails aleatoric uncertainty
due to the overlapping classes. If a second input x2 can be added, the
classes become separable, making the uncertainty reducible, thus epistemic.
Adapted from [11].

strates how the classification of an uncertainty source as epistemic or aleatoric depends
on the problem setting. The uncertainty in the region where the two classes overlap
in one dimension x1 is of aleatoric nature if the input space X cannot be modified.
However, if the scenario allows for introducing the new input variable x2, it is of
epistemic nature since the classes become separable in two dimensions.

The distinction between aleatoric and epistemic uncertainty is especially useful in
settings such as active learning, where the goal is to reduce the overall uncertainty.
Since only epistemic uncertainty is of interest for this task, the performance can be
improved by only considering this type of uncertainty [14]. However, separating the
two is often difficult and may not be possible in cases where there are complicated
interactions between sources of aleatoric and epistemic uncertainty [12].

2.3.3 Uncertainty quantification

In order to assess the predictive uncertainty of a model, it is desirable to have an
uncertainty estimate in terms of a probability distribution or at least uncertainty
bounds for each prediction. For this task, probabilistic machine learning models such
as Bayesian linear regression, Bayesian deep learning, and Gaussian processes have
been developed. Their predictions not only consist of point estimates but also include
an estimate of the associated uncertainty. However, these uncertainty estimates usually
only represent the combined aleatoric and epistemic uncertainty and do not give
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Figure 2.5: The neural network EfficientNet [15] confidently misclassifies two test im-
ages from ImageNet. The predictions are "typewriter keyboard" with cer-
tainty 83.14% for the left image and "stone wall" with certainty 87.63% for
the image on the right. Source: [11].

information about its sources. Moreover, the predictions are only estimates and can be
unreliable. For example, neural networks, though able to accomplish very high accuracy
overall, tend to fail on specific instances while being confident in their prediction [11].
Two examples of this behavior are shown in Figure 2.5. Thus, additional methods for
uncertainty quantification that go beyond the capabilities of the model are required in
order to obtain more accurate representations of a model’s predictive uncertainty and
understand where this uncertainty is coming from [12].

2.4 Related work

In addition to the specific methods examined in depth in this thesis, the field of
uncertainty quantification offers many more methodologies that are highly relevant
to Gaussian process modeling. To give a broader picture of this field, we explore a
selection of such methods that have found widespread use in recent scientific work in
this section.

Heteroscedastic Gaussian processes

One basic assumption of Gaussian processes is that the data are generated by a deter-
ministic function f with additive, statistically independent, and identically distributed
Gaussian noise, that is,

y = f (x) + e, e ⇠ N (0, s2
n) . (2.16)

This assumption about the noise is necessary to make inference analytically tractable.
However, it is not always an accurate description of the data. Goldberg et al. [16] pro-
pose a heteroscedastic Gaussian process model which introduces an input-dependent
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noise variance modeled by another Gaussian process. Thus, the noise term becomes

e ⇠ N

⇣
0, eg(x)

⌘
, g(x) ⇠ GP

�
µ0, kg(x, x

0)
�

, (2.17)

where µ0 is a constant mean and kg(x, x
0) an arbitrary kernel function. The exponentia-

tion is introduced in order to enforce the positivity constraint for the noise variance.
Since no analytical solution for this model exists, Goldberg et al. [16] use a Markov
chain Monte Carlo-based approach for inference. Improvements to this have later been
developed using a most likely noise approach [17], expectation propagation [18] or
variational approximation [19].

Non-stationary Gaussian processes

Similar to introducing input-dependent noise, Gaussian process models can also be
adapted to use non-stationary kernel functions that vary in behavior across different
points in the input space. This is desirable if the similarity of two function values
depends on their location in the input space, as it is often the case for geostatistical
data. While kernel families such as dot product kernels are inherently non-stationary
[4], other kernels, such as the squared exponential kernel, can also be modified to
exert this behavior. The dependence on the input values is introduced by modeling
the kernel parameters as functions using a separate Gaussian process model, similar
to modeling the noise in heteroscedastic Gaussian processes. Tolvanen et al. [20]
model the variance parameter s(x) of a squared exponential kernel in this way using
expectation propagation for inference. Heinonen et al. [21] additionally model the
lengthscale l(x) as a function of the input and use a Hamiltonian Monte Carlo method
for inference. Patel et al. [22] follow a similar approach that includes both kernel
variance and lengthscale and use the inducing point method to speed up inference for
the latent Gaussian processes. Modeling the kernel variance s(x) as an input-dependent
function allows for a more nuanced depiction of uncertainty, as it can represent the
epistemic uncertainty at specific points in the input domain with greater flexibility than
a single, fixed parameter [22].

Gaussian processes with input noise

Another assumption in Equation 2.16 is that the input data is noise free. However,
this is not accurate for many use cases, for example, when the input values consist of
sensor measurements. Gaussian processes thus cannot capture uncertainty about the
input values propagated to the output, leading to overconfident predictions in scenarios
where this plays a relevant role [23]. Several methods have been proposed that model
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the input noise as additive Gaussian noise, leading to the extended model [24]

y = f (x + ex) + e, ex ⇠ N (0, Sx), e ⇠ N (0, s2
n) . (2.18)

In this approach, Sx is diagonal, so the input noise is independent across dimensions.
McHutchon et al. [24] use a Taylor expansion of first order to propagate the input

noise through f . This linear approximation offers the advantage of resulting in a
Gaussian posterior for which inference can be carried out analytically. The noise
variance for each input dimension can be inferred from the data by optimizing them as
additional hyperparameters [24].

Other approaches consider the full propagation of input noise by marginalizing
the output distribution over the uncertain inputs. Doing so generally leads to a non-
Gaussian posterior [25]. Girard et al. [23] propose both a Monte Carlo-based method
for obtaining the full posterior distribution as well as a method to analytically compute
only its mean and variance. They only consider noise in the test data, which must be
predetermined [23].

Dallaire et al. [26] avoid the problem of a non-Gaussian posterior by only incorporat-
ing the input noise into the kernel. Marginalizing the squared exponential kernel over
the input probability distributions yields another valid, analytically tractable kernel
that incorporates the input noise through hyperparameters. This approach can model
uncertainty in both the test data and the training data and learn the noise parameters
together with other kernel hyperparameters [26].

All these methods assume a constant noise across the input space. Wang et al.
[25] introduce a method for modeling heteroscedastic input noise by assigning a
separate variance to each point in the training set. Inference is again carried out using
marginalization and a Monte Carlo estimate. Imposing uncertainty on the test data
requires further estimations because the variance can differ throughout the input space
[25].

Quantifying uncertainty about model selection

All methods for uncertainty quantification covered so far assume an optimal choice of
the kernel and its hyperparameters. However, in practice, it is often not clear which
kernel and what hyperparameters are best suited for generalization to unseen data.

Bajgiran et al. [27] include uncertainty about the kernel parameters in the predicted
confidence intervals. They first restrict the set of possible parameters so that the
probability of the true parameters falling in the set is at least 1 � b for some confidence
level b with respect to the Gaussian process likelihood. The predictive confidence
interval is then constructed from the pointwise worst-case values that can be produced
by parameters within this set. Thus, this method balances accuracy, gained by making
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assumptions about the parameters, with robustness, achieved by considering worst-case
scenarios [27].

Stephenson et al. [28] examine the sensitivity of Gaussian process predictions under
changes of the kernel itself. Usually, there are uncountably many possible kernels that
align with prior knowledge, such as smoothness or stationarity. A robust Gaussian
process should not considerably change its predictions for different, qualitatively
equivalent kernels consistent with the prior knowledge. This is especially important if
critical decisions are based on the predictions, such as medical diagnosis. Stephenson
et al. propose a method to evaluate this robustness by exploring a range of appropriate
kernels around the original one and assessing the stability of the predictions [28].

Moreover, bounds on the squared predictive error can be derived under uncertainty
about the kernel or its hyperparameters. Wågberg et al. [29] introduce such a lower
bound for unknown kernel hyperparameters. An upper bound for the squared error
is derived by Beckers et al. [30] considering uncertainty about both the kernel and its
hyperparameters, given a set of possible kernels with corresponding hyperparameter
sets.

Frequentist uncertainty bounds

The built-in uncertainty estimates of Gaussian processes are of Bayesian nature. This
notion of uncertainty is not rigorous enough in applications such as learning based
control with safety guarantees, for example autonomous driving, where theoretical
guarantees in terms of frequentist bounds are required. These guarantees usually take
the form

P (| f (x)� µ(x)|  n(x)) � 1 � d (2.19)

for some d 2 (0, 1). Various methods for constructing such intervals have been devel-
oped [31, 32, 33, 34], depending on different assumptions about the true data generating
function, the noise, and the kernel. There also exist error bounds that are robust to
model misspecification. For example, the bounds introduced by Fiedler et al. [35] still
hold if the chosen kernel does not perfectly describe the ground truth but is sufficiently
close. Furthermore, Neiswanger et al. [36] construct frequentist confidence sequences
without assuming correctness of the prior, including the choice of the kernel and
hyperparameters.
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processes

3.1 Sensitivity analysis – methodical approach

Sensitivity analysis aims to identify how uncertainty in the individual model inputs
contributes to the output uncertainty [37]. Even though it is not directly involved in
the propagation and representation of uncertainty, sensitivity analysis should be a
fundamental part of any such analysis, as emphasized in [38].

In practice, the values of input variables in the training data as well as in the data
used for predictions are not known exactly. For instance, the accuracy of physical
measurements is often limited by the precision of available sensors. This uncertainty
about the input values is propagated to the model output, as different input values lead
to different predictions. The more sensitive the output is to changes in a certain input
variable, the stronger the uncertainty in this variable influences the output uncertainty.
Therefore, sensitivity analysis is a valuable tool for identifying which input variables
dominate the output uncertainty [38]. This is especially important for Gaussian process
models since they assume their input values to be noise free. Thus, this type of
uncertainty is not included in the predictive uncertainty unless it is explicitly accounted
for through changes in the model, as for example in heteroscedastic Gaussian processes
(see Section 2.4).

The results of sensitivity analysis not only provide insight into sources of the model
uncertainty but can also be used to reduce it. Indicating which factors benefit most from
further analysis or more accurate measurements, they can guide research prioritization
[37]. Moreover, low sensitivity for an input variable indicates that it does not contribute
much information and can potentially be excluded from the model. This reduction in
the model’s complexity leads to a lower cost of training and storage [39]. Moreover,
fewer input dimensions generally reduce the epistemic uncertainty associated with the
amount of training data since the input space is covered better by the same number of
samples [11]. Simpler models can also be easier to optimize, leading to less uncertainty
in the selection of optimal parameters or hyperparameters. For example, many common
Gaussian process kernels have individual parameters for each input dimension. Thus,
reducing the number of variables leads to fewer parameters that need to be optimized.
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3.1.1 Methods for sensitivity analysis

There are two general approaches among sensitivity analysis methods.
Local sensitivity analysis examines how the output changes if the input variables

are perturbed slightly with respect to a baseline value, usually in terms of partial
derivatives. While this approach requires only few model evaluations and is therefore
relatively cheap to compute, its expressiveness is limited. Derivative information in
nonlinear models is only useful for uncertainty that entails sufficiently small deviations
from the baseline value [37].

Therefore, the remaining part of this chapter focuses on the second approach, global
sensitivity analysis, which considers variations of the input variables across their whole
domain [40]. There are various methods for quantifying global sensitivity; this section
briefly introduces those frequently discussed in the literature.

• Regression analysis: Regression analysis studies the coefficients and other statis-
tics of a regression model fitted to an independent random sample of input-output
pairs. For example, the statistical significance and magnitude of standardized
regression coefficients, as well as the partial correlation coefficient (PCC), which
measures the sensitivity of the output to an input variable when the effects of
other variables have been canceled, can be used to characterize sensitivity [41,
42]. The method is only applicable if the conditions for linear regression are
met, limiting its use to linear models. For nonlinear, monotonic models, rank
regression can be used instead with the same sensitivity measures [42].

• Elementary effects: Similar to local sensitivity analysis, the elementary effects or
Morris method uses partial derivatives as a sensitivity measure. Instead of only
looking at derivatives at one baseline value, the method examines the distribution
of derivatives over the whole domain. It can be efficiently calculated by placing
a grid in the input domain and generating trajectories that change one variable
at a time [43]. Multiple trajectories starting at different points allow for an even
coverage of the input space. Being less computationally expensive than variance-
based approaches, the elementary effects method is well-suited for problems with
a large number of input variables. Consequently, it is often used in a preliminary
screening step intended to narrow down the set of variables before carrying out a
computationally more expensive analysis [44].

• Variance-based analysis: Variance-based methods express sensitivity as the
reduction of output variance if one or more values of the input variables are
known [45]. If the input variables are statistically independent, the output
variance can be decomposed into contributions by single input variables and
interaction effects between any combination of them [40]. Based on these variance
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contributions, sensitivity indices known as Sobol’ indices offer insights into how
the model is influenced by inputs and their interactions over the entire input
domain. However, the computational cost can be substantial as the model has to
be evaluated at a large number of points [37].

• Metamodel based methods or response surfaces: For models that are very
expensive to evaluate, simpler metamodels can be built from a set of model
evaluations and used in place of the original model in the subsequent analysis [42].
Popular choices of metamodels or emulators include linear regression models,
polynomial chaos expansion, Gaussian processes, neural networks, and boosting
regression trees [42, 46, 47]. Additional to being cheaper to evaluate, analytical
solutions often exist for common sensitivity measures such as Sobol’ indices,
eliminating the need to approximate them using sampling-based techniques. The
quality of results highly depends on the ability of the metamodel to approximate
the true model well [42].

3.1.2 Variance-based sensitivity analysis

In the following, the focus lies on variance-based sensitivity analysis since it provides
an in-depth view of how the output variance can be attributed to different input
variables and their interactions with only few assumptions about the model. For this
approach, the model inputs X1, . . . , XD are treated as random variables following some
specified distribution and, as a consequence, the output Y = f (X1, . . . , XD) becomes a
random variable as well. In the case of Gaussian process regression, Y is the posterior
mean. Therefore, only the variation of the posterior mean under variations of the
input variables is analyzed, discarding the information provided by the predicted
variance. However, variations of the method exist that use this additional information,
as discussed later in this section.

Variance decomposition and Sobol’ indices

In order to separate the effects of single variables and their interactions, f can be
represented as a sum of terms of increasing dimension

f (X1, . . . , XD) = f0 + Â
i

fi(Xi) + Â
i

Â
j>i

fij(Xi, Xj) + . . . + f1,2,...,D(X1, ..., XD) , (3.1)

called high dimensional model representation (HDMR). Such a decomposition is always
possible if f is square integrable over the D-dimensional unit hypercube [37]. In case
the features have different ranges, they can be scaled to this domain prior to the analysis.
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The individual terms in the decomposition are given by conditional expectations of Y

f0 = E(Y) , (3.2)
fi(xi) = E(Y|Xi = xi)� f0 , (3.3)
fij(xi, xj) = E(Y|Xi = xi, Xj = xj)� fi � fj � f0 , (3.4)

and so on [37]. Calculating the variance of each term yields a useful representation
of the output variance in terms of contributions by individual variables and their
interactions. For independent input variables, the partial variances add up to the total
variance of the output

VY = Â
i

Vi + Â
i

Â
j>i

Vij + . . . + V1,2,...,D , (3.5)

where
VI = V( f I) (3.6)

for I ⇢ {1, . . . , D} [37]. Each term VI represents the variance in the model output due
to the interaction effect within the set of variables described by the indices I, or by the
variable Xi alone for I = {i} [37].

Variance-based sensitivity analysis is often used in scenarios where the input variables
represent parameters with a fixed but unknown value. Hence, the variance of the output
VY can be interpreted as a measure of the uncertainty about the correct output due to
uncertainty about the true values of the parameters [37]. In the context of regression,
where the input variables are the inputs of the modeled function and thus have no
single correct value, the interpretation is different. Since there is no true value for Y
but one prediction per combination of inputs, VY is a measure for the variability of Y
over the whole input domain. The goal of sensitivity analysis is thus to find out which
input variables or combinations lead to large variations in Y when their values change.
If one of the components VI has a high value, it means that the interaction effect of the
corresponding variables explains a large amount of the total variability of Y. Thus, a
change in these variables is expected to significantly influence the prediction.

Dividing the partial variances by VY yields a scale-invariant sensitivity measure
known as Sobol’ indices. The first order Sobol’ index or main effect of input Xi

Si =
Vi
VY

=
V(E(Y|Xi))

VY
(3.7)

describes the fraction of the overall output variance VY due to not knowing the value of
Xi [37]. In other words, it is a measure of how much Y varies for different values of Xi.
The effects of other variables are eliminated by calculating the expected value over all
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their possible values before evaluating the variance. Thus, this Sensitivity index can be
used to identify highly influential inputs. However, a low main effect does not imply
low relevance since there could be significant contributions through interactions with
other variables [37].

Similarly, the second order Sobol’ index

Sij =
Vij

VY
=

V(E(Y|Xi, Xj))� V(E(Y|Xi))� V(E(Y|Xj))

VY
(3.8)

represents the fraction of variance due to interaction effects between Xi and Xj that
goes beyond the sum of contributions by Xi and Xj individually [37].

These sensitivity indices can in principle be calculated for all higher-order interactions
as well. However, since there are 2D

� 1 combinations in total, computing them becomes
expensive, and the analysis is usually limited to first order and sometimes second order
indices [37].

Another interesting sensitivity measure arising from the variance decomposition are
total effect indices

STi = 1 �
V(E(Y|X�i))

VY
, (3.9)

where �i denotes the set of all indices except i. They describe the variance left
unexplained in the output if all variables except Xi are known. If the input variables
are independent, STi is equivalent to the sum of all Sobol’ indices that contain the index
i, representing the fraction of output variance explained by the effect of Xi, including
all its interactions with other variables. Therefore, a total effect index close to 0 is
necessary and sufficient for Xi to be noninfluential [37].

Dependent variables

If the input variables are not independent, the partial variances in Equation 3.5 no
longer add up to VY. The variance-based sensitivity can still be applied, but the results
are more difficult to interpret.

Saltelli and Tarantola [48] suggest still using the first order Sobol’ indices Si as
measures for the relative influence of the individual variables on the output uncertainty
in this case. However, unlike for independent variables, these indices do not depend
only on one variable Xi. The variables correlated with Xi can not only influence
its probability distribution but also introduce interaction effects into the sensitivity
index by interacting with Xi or other variables. For example, in a setting where
Y = x1 + x2 + x3 + a23x2x3 and X1 and X2 are correlated, the sensitivity index S1
depends not only on X1 as would be the case for independent variables but also on
the distributions of X2 and X3, as well as on the factor a23 [48]. Another disadvantage
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of this approach is that the computational shortcuts for calculating the indices are not
applicable for dependent variables, resulting in a significantly higher computational
cost for estimating the sensitivity indices [48].

Another approach is grouping correlated input variables so that there are no correla-
tions between groups. The groups can thus be treated as independent, multidimensional
variables in the subsequent analysis. The Sobol’ indices for groups specified by sub-
sets of indices I, J ⇢ {1, . . . , D} can be defined analogously to the versions for single
variables [49]

SI =
V(E(Y|XI))

VY
, (3.10)

SI J =
V(E(Y|XI , XJ))� V(E(Y|XI))� V(E(Y|XJ))

VY
, (3.11)

STI = 1 �
V(E(Y|X Ī))

VY
. (3.12)

The advantage of this approach is that correlation effects do not influence the sensitivity
indices, so contributions between groups can be separated well. Additionally, more
efficient computational methods for independent inputs are applicable. However, the
downside is that the analysis offers no information about the effects of individual
variables inside a group.

Computation of Sobol’ indices

In order to compute the Sobol’ indices, multidimensional integrals have to be evaluated
for the expected values and variances. A common strategy is applying quasi-Monte
Carlo methods that use low discrepancy quasi-random sequences such as those sug-
gested by Faure, Niederreiter, Halton, Hammersley, Sobol, and others [50]. These
sequences are used in place of uniform random samples as they cover the unit hyper-
cube more uniformly and thus achieve faster convergence of the integral in O( 1

n log(n)D)

rather than the O(n�
1
2 ) in the Monte Carlo method with random samples [51, 40]. An-

other widely used method is Latin hypercube sampling, which divides the range for
each variable in M equally sized intervals and selects one random value in each interval.
In the second step, the values for different variables are combined randomly [52]. Both
classes of sampling methods result in an independent uniform distribution for all input
variables. In case a different distribution is more suitable, the samples for each variable
can subsequently be transformed using the inverse transform theorem [40]: If µ is a
measure in R and Fµ(x) its cumulative distribution function,

U ⇠ Uniform([0, 1]) =) F�1
µ (U) ⇠ µ . (3.13)
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Saltelli et al [53] propose an efficient method for computing first order and total Sobol’
indices, which avoids multiple stages of Monte Carlo samples in the nested integrals
for the case of independent input variables by recombining samples. An extension
requiring more samples additionally computes the second order Sobol’ indices [53].

For models that are expensive to evaluate, an alternative to Monte Carlo estimates
is the Fourier amplitude sensitivity test (FAST) developed by Cukier et al. [54] and
extended by Saltelli et al. [55], as it uses fewer model evaluations to calculate sensitivity
indices. The idea behind the method is to select points in the input domain by varying
each parameter at different frequencies wi. A high amplitude of the oscillations at the
same frequency wi in the model output, as determined through its Fourier spectrum,
indicates a strong influence of the corresponding input variable [37, 55].

When using Gaussian processes, the model output Y = f (X1, . . . , XD) is given
analytically by the posterior mean. In certain cases, this can be used to simplify
the integrals and use numerical integration techniques that are less computationally
demanding than Monte Carlo simulations or even find analytical solutions. For example,
if all variables are independent and the kernel function can be written as a product of
one-dimensional covariances, the calculation of sensitivity indices can be split into one-
and two-dimensional integrals [47, 45].

All approaches discussed so far treat Gaussian processes as a deterministic model by
only considering the predictive mean for the sensitivity analysis. Viewing the output as
the random variable it actually is, i.e.

Z(x) ⇠ GP(m(x), k(x, x
0)) , (3.14)

where m(x and k(x, x
0) denote the posterior mean and covariance, gives rise to sensitiv-

ity indices that are random variables themselves [56], such as

S̃i =
V(E(Z(X)|Xi))

V(Z(X))
. (3.15)

These probabilistic sensitivity indices contain information from the full probability
distribution of Z(X). Their variance thus represents the uncertainty in the sensitivity
index due to the predictive (epistemic and aleatoric) uncertainty of the Gaussian process
regression model. The distribution of the inner expected values

E(Z(X)|XI) ⇠ GP(E(m(X)|XI), E(E(k(X, X
0)|XI)|X

0

i)) (3.16)

is again a Gaussian process since it is a linear transformation of another Gaussian
process Z(X) [56]. However, taking the conditional variance of this random variable
is a nonlinear transformation and results in a distribution that cannot be established
analytically. Therefore, approximation methods such as Monte Carlo simulations are
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necessary, drawing different samples from the Gaussian process [56]. Alternatively,
under certain modeling restrictions, closed-form expressions for the expected value
E(S̃I) and variance V(S̃I) exist [45].

3.2 Computational uncertainty – methodical approach

The most computationally expensive step in Gaussian process regression is the inversion
of the matrix K̂ := K(X, X) + s2 I required for the calculation of the posterior in
Equation 2.13, which we restate here for convenience:

f (X⇤)|X, y ⇠ N (m(X⇤) + K(X⇤, X)[K(X, X) + s2
n I]�1(y � m(X)),

K(X⇤, X⇤)� K(X⇤, X)[K(X, X) + s2
n I]�1K(X, X⇤)) .

(3.17)

The matrix inversion with a runtime in O(n3) for n data points scales prohibitively for
large datasets, so it is necessary to use suitable approximations [4].

Various methods for this task have been proposed. One approach is to reduce
the number of training points with localized regression methods that train multiple
Gaussian processes, each on a subset of the training data [57, 58]. Inducing point
methods only consider one smaller set of m < n inducing points for inference that do
not necessarily coincide with the original data [59, 60, 61, 62]. Instead of reducing the
number of training points, the problem can also be simplified by approximating the
inverse of the full kernel matrix K̂ using iterative methods such as conjugate gradients
[63, 64, 65]. Alternatively, the inverse of a lower rank approximation of K̂ can be used,
for example with a partial, pivoted Cholesky decomposition [66, 67] or based on an
approximation of the kernel function by a finite basis [68, 69, 70]. Moreover, other
methods approximate the posterior based on stochastic variational optimization [71,
72, 73]. All of these methods usually compute an approximation to the mathematical
posterior and then use it as a direct replacement. However, doing so ignores the
additional uncertainty arising from the limited amount of computations expended [74].

Wenger et al. [74] propose a method to quantify this computational uncertainty.
Due to its general formulation, their method is applicable to multiple of the most
common iterative Gaussian process approximations, such as methods based on the
incomplete Cholesky factorization, conjugate gradients, and inducing points. These
methods estimate the computationally expensive part of the posterior mean, i.e., the
representer weights

v⇤ = K̂�1(y � m(X)) , (3.18)

by improving their approximation using a one-dimensional projection of the current
residual in each iteration. The idea of Wenger et al. is to treat the representer weights
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v⇤ as a latent random variable. Each iteration of the approximation algorithm performs
a Bayesian update on the belief about the representer weights, thereby obtaining both a
point estimate and the associated uncertainty. In the following, we describe this method
in more detail.

The first step is to define a prior distribution for v⇤. Since no computations were
performed yet, the prior represents the state of no knowledge about the data and
is chosen so that the marginal distribution

R
p( f (X⇤)|v⇤)p(v⇤)dv⇤ is equal to the

Gaussian process prior N (µ(X⇤), K(X⇤, X⇤)). The distribution of the Gaussian process
conditioned on v⇤ is

p( f (X⇤)|v⇤) = N (mX⇤ + K(X⇤, X)v⇤,

K(X⇤, X⇤)� K(X⇤, X)K̂�1K(X, X⇤)) .
(3.19)

The prior is then given by
v⇤ ⇠ N (0, K̂�1) . (3.20)

Note that K̂�1 remains unknown and does not need to be calculated explicitly at any
stage in the approximation algorithm. It is only used here to set up the mathematical
framework.

Each iteration then conditions v⇤ on a one-dimensional projection of the current
residual

ri�1 = K̂(v⇤ � vi�1) = y � m(X)� K̂vi�1 . (3.21)

The projections
ai := s

>

i ri�1 (3.22)

are defined by actions si, arbitrary vectors given by the approximation algorithm used.
For example, the partial Cholesky decomposition uses the unit vectors ei, targeting
exactly one data point at a time, and conjugate gradients with preconditioning uses
preconditioned conjugate gradients. Intuitively, the actions weight the approximation
error of different data points, and only data points xj with (si)j 6= 0 contribute to the
current iteration.

Using the distribution from the previous iteration p(v⇤) = N (v⇤; vi�1, Si�1) as prior,
the new distribution conditioned on ai can be obtained by performing a Bayesian
update

p(v⇤|{aj}
i
j=1, {sj}

i
j=1) =

p(ai|si, v⇤)p(v⇤|{aj}
i�1
j=1, {sj}

i�1
j=1)R

p(ai|si, v⇤)p(v⇤|{aj}
i�1
j=1, {sj}

i�1
j=1)dv⇤

. (3.23)

Since both distributions in the equation are Gaussian, the updated distribution

p(v⇤|{aj}
i
j=1, {sj}

i
j=1) = N (v⇤; vi, Si) (3.24)
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is again Gaussian and defined by

vi = vi�1 + Si�1K̂si(s
>

i K̂Si�1K̂si)
�1ai = Ci(y � m(X)) , (3.25)

Si = Si�1 � Si�1K̂si(s
>

i K̂Si�1K̂si)
�1

s
>

i K̂Si�1 = K̂�1
� Ci (3.26)

where Ci := Si(S>

i K̂Si)�1S>

i is a rank-i matrix. The most expensive computations in
one iteration are matrix-vector products, so the algorithm has a runtime in O(in2)
for a fixed number of i iterations and n training data points. If the actions si are
linearly independent, the method converges in at most n iterations, the convergence
rate depending on the choice of actions. This means after n iterations, Ci = K̂�1 and
the computational uncertainty about v⇤ in terms of the variance Sn is zero.

In practice, only a smaller number of iterations are carried out, considering the limited
computational budget. The resulting belief p(v⇤) = N (v⇤; vi, Si) can be incorporated
into the Gaussian process posterior by marginalization as follows:

p( f (X⇤)) =
Z

p( f (X⇤|v⇤))p(v⇤)dv⇤

= N ( f (X⇤); m(X⇤) + K(X⇤, X)vi, K(X⇤, X⇤)� K(X⇤, X)CiK(X, X⇤)) .
(3.27)

The resulting combined uncertainty is then given by

K(X⇤, X⇤)� K(X⇤, X)CiK(X, X⇤) =

K(X⇤, X⇤)� K(X⇤, X)K̂�1K(X, X⇤)

mathematical uncertainty

+ K(X⇤, X)SiK(X, X⇤)

computational uncertainty

(3.28)

and can be calculated without any knowledge of K̂�1, even if the individual components
for the mathematical and computational uncertainty depend on it.

While the mathematical uncertainty stems from a limited amount of data and is
high in regions of the input space not covered well by training data, computational
uncertainty is high in regions covered by training data that have not been targeted by
computations yet. This behavior is illustrated in Figure 3.1.

As stated above, the asymptotic runtime of the algorithm is O(in2) for all choices of
actions. Therefore, the explicit modeling of computational uncertainty does not affect
the asymptotic behavior of methods like Cholesky factorization and conjugate gradients.
Moreover, it eliminates the need for additional computations to obtain the posterior
covariance. For example, computing the posterior covariance with conjugate gradients
requires m additional linear solves, where m is the size of the test data set, and this
covariance does not contain information about computational uncertainty. In contrast,
inducing point methods can usually be computed in linear time, so their asymptotic
runtime increases using the algorithm discussed here. However, apart from offering
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information about the computational uncertainty, this algorithm can also significantly
improve accuracy in terms of NLL and RMSE, as demonstrated by Wenger et al. [74]
on various datasets. Thus, it can be the better choice if one can afford the increased
computational cost.

Figure 3.1: Distribution of mathematical and computational uncertainty over the input
space after four iterations of the respective iterative algorithms. Black dots denote
training points and red circles indicate where computation has been targeted, defined
by the magnitude of the actions si at the component corresponding to the training point.
While the variant for conjugate gradients (IterGP-CG) reduces uncertainty globally,
the other two variants for the incomplete Cholesky factorization (IterGP-Chol) and for
inducing point methods (IterGP-PI) target individual points at a time, thus reducing
uncertainty locally. The mathematical uncertainty is high in regions with no training
data, whereas computational uncertainty is high in regions with training data, where
computations have not yet been targeted. (Source: [74]).

3.3 Calibration – methodical approach

A regression model is usually not able to predict the target variable with perfect accuracy.
The same holds for the predicted uncertainty in the form of the output probability
distribution for probabilistic regression models. During training, the objective function
typically aims to minimize the prediction error but does not take into account the
calibration of the model, i.e., its ability to accurately predict uncertainty.

For Gaussian processes, the predictive quality for both the target variable and un-
certainty greatly depends on the choice of hyperparameters [75]. These are usually
optimized using the marginal log likelihood log p(y|X, q), where q denotes the hyper-
parameters. This approach consistently leads to a satisfactory mean square error on
test data [4]. However, the posterior variance tends to be too low in practice, leading to
overly confident predictions [76]. This problem is linked to the use of the log likelihood
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in the optimization objective. Since it only measures the predictive quality on the
existing data but not on unseen data, it cannot assess how well the posterior variance
explains the model error [75]. For example, if the predictive accuracy on the training
data is already high, the marginal log likelihood can be further improved by decreasing
the variance, a problem also observed in neural networks [77]. Therefore, to ensure
reliable predictions of uncertainty, methods to improve calibration are required.

3.3.1 Definitions of calibration for regression

In a classification setting, a model is said to be calibrated if, for any group of instances
receiving the same predicted probability p for some class, the fraction of instances
actually belonging to that class is close to p [78]. While this definition is generally
agreed upon in the literature [78, 79, 80, 81, 82], the same is not the case for calibration
for regression models. As this field is relatively new, there is no general consensus about
the definition and evaluation metrics [83]. This section summarizes three important
definitions currently used in the literature.

Quantile calibration

Quantile calibration stems from the idea that for a predicted 95% confidence interval, the
true value of y should fall within that interval for approximately 95% of all predictions
[84]. Such a definition is especially useful for forecasting tasks such as energy usage or
supply chain optimization [85]. Formally, a regressor is quantile calibrated if

1
N

N

Â
n=1

I{yn  F�1
n (p)} ! p for all p 2 [0, 1] as N ! • (3.29)

for a set of data {(xn, yn)}N
n=1, where Fn denotes the predicted cumulative distribution

at xn and F�1
n the corresponding quantile function [84]. This definition can also be

extended to two-sided confidence intervals. If a regressor is quantile calibrated,

1
N

N

Â
n=1

I{F�1
n (p1)  yn  F�1

n (p2)} ! p2 � p1 for all p1, p2 2 [0, 1] as N ! • (3.30)

holds as well. A sufficient condition for quantile calibration is

P
⇣

Y  F�1
Y|X(p)

⌘
= p for all p 2 [0, 1] (3.31)

if the (xn, yn) are i.i.d. realizations of random variables X, Y ⇠ P [84]. FY|X denotes the
predicted cumulative distribution of Y conditioned on X.
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Since this definition only considers marginal distributions, it represents a global view
of calibration. Hence, it is useful for making statements about all predictions together,
but the individual calibrated distributions at each location do not necessarily resemble
the true distribution of Y there [85].

Distribution calibration

The definition of distribution calibration focuses on making locally calibrated predic-
tions for each individual model output. This requirement is similar to calibration
in classification, which groups instances by their predicted probability and requires
each of these groups to match that probability. The idea of conditioning calibration
requirements on model predictions can also be applied to regression problems.

Let Y denote the set of all possible target values y and S the set of possible probability
distributions S : Y ! [0, 1] where fY|X(y) 2 S are densities predicted by a regression
model. Then, according to [85], the model is distribution calibrated if

p
�
Y = y| fY|X = s

�
= s(y) for all y 2 Y , s 2 S . (3.32)

This definition requires that for any predicted distribution, on average over all cases
receiving this prediction, the target value follows this distribution [85]. For regression
models that predict normal distributions, such as Gaussian processes, this means that
among all instances receiving the same predicted mean µ and variance s2, on average,
the target mean is µ and the target variance is s2. Song et al. show that a distribution
calibrated regressor is always quantile calibrated, but the inverse is not necessarily true,
making it a stronger calibration requirement [85].

Variance calibration

Variance calibration is also closely related to the definition of calibration for classification.
The difference to distribution calibration is the transfer of concepts from classification
to regression. Distribution calibration views the predicted probability p of a classifier
as the definition of a probability distribution over possible outcomes for the binary
target variable, making it equivalent to the predictive distribution over continuous
values for the target in the regression case. In contrast, variance calibration takes a
different perspective and interprets the information conveyed by p as the probability of
misclassification given by 1 � p [77]. Thus, the corresponding concept in regression is
the expected predictive error EX,Y[µ(x)� y]. The goal of calibration is then to make
the model predict its own error correctly so that the predicted variance s2 matches
the expected (squared) error at each location. Formally, a regression model is variance
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calibrated [77] if

EX,Y
⇥
(µ(x)� y)2

|s(x)2 = s2⇤ = s2 for all s2 . (3.33)

Since the predictions are grouped by their variance s2, this definition is local in a
similar sense as for distribution calibration. However, it only includes the variance and
not the mean of the prediction. Therefore, the calibration is entirely decoupled from
the predictive accuracy and changing the calibration of a model does not affect its point
estimates but only the model’s uncertainty about them [77].

3.3.2 Methods for regression calibration

There are two different approaches to obtaining a calibrated model. Post-hoc calibration
operates on a model that has already been trained and transforms its output distribution
so that it matches some calibration criteria. Conversely, loss-based methods are directly
incorporated into the training procedure, penalizing poorly calibrated models as part
of the loss function during the optimization of parameters or hyperparameters. In the
following, we give an overview of different calibration methods from both of these
categories.

Post-hoc calibration methods

Post-hoc calibration methods aim to transform the model output to improve its cali-
bration. Formally, given the output cumulative distribution function FY|X(y), the goal
is to find a mapping R : [0, 1] ! [0, 1] so that R � FY|X(y) is calibrated. For quantile
calibration, Kuleshov et al. suggest a method based on isotonic regression, which
applies the same mapping R to all predictions [84]. In order to achieve distribution
calibration, a more flexible, local approach is necessary, where R can vary across dif-
ferent predictions. Song et al. [85] use Gaussian processes to learn a mapping from
regression output to parameters of their transformation Rŷ. The Gaussian process
allows to estimate the distribution of target variables at each regression output using
just one sample per location by leveraging target values from nearby locations [85].
Both these methods make no assumptions about a parametric form of the calibrated dis-
tribution and represent it only through values of their cumulative distribution functions.
However, in some cases, such as Kalman filtering in object detection, a closed form of
the output distribution is required [83]. Methods based on variance scaling address
this issue by not changing the type of the predictive distribution but only adjusting its
variance. This has the additional benefit of decoupling the calibration of a model from
its accuracy since the predicted values remain the same after calibration [77]. A simple
approach for improving the variance calibration of models that systematically under-
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or overestimate their uncertainty is temperature scaling. A global scale factor s for the
predicted variance is introduced and optimized using the negative log likelihood on a
calibration set separate from the training data [77]. If one global scale parameter does
not suffice, an approach based on Gaussian processes analogous to the one introduced
by Song et al. [85] can be used to learn individual scale factors for each location [83].

In order to avoid overfitting during the calibration procedure, it is advisable to use a
set of calibration data separate from the training data for this task. Kuleshov et al. suggest
an approach inspired by cross validation, where K models are trained on different splits
of the data, and the hold-out serves as calibration set [84].

Loss-based calibration methods

A different approach for regression calibration is to integrate it directly into the training
procedure. This integration can be achieved by introducing a term in the loss function
that evaluates the calibration quality. For variance calibration, the calibration loss can
be employed, which measures the difference between the predicted variance and the
squared error [86]. The maximum mean discrepancy (MMD) loss targets quantile
calibration. It measures the distance between the distributions over the targets y and
predicted values ŷ in a reproducing kernel Hilbert space (RKHS) [87]. The distributions
can be embedded in this space using the mean embedding, which yields a unique
representation for each probability distribution. The distance between two distributions
in the RKHS norm becomes zero exactly if the two distributions are identical, making it
a measure for similarity [88]. If distribution calibration is desired, the f -cal framework
introduces a loss function that compares some statistic of standardized residuals to
its expected distribution if the model were perfectly calibrated using an f -divergence.
For example, for a Gaussian output distribution, the normalized residuals are given
by zi =

yi�µ(xi)
s(xi)

. If the true targets follow the individual output distributions at each
location, the residuals are expected to follow a standard normal distribution and
their sum of squares a Chi-squared distribution. Thus, the similarity of the empirical
distribution to a Chi-squared distribution can indicate how well the model is calibrated.
By standardizing the residuals, this method can evaluate the calibration at all locations
simultaneously even if the predicted distributions are different [89].

In their recent work, Capone et al. [75] introduce another loss-based method specifi-
cally built for Gaussian process regressors. They argue that one set of hyperparameters
does not suffice to represent both the predictions in terms of the posterior mean and
the uncertainty of the model given by the posterior variance. Thus, they suggest using
two different Gaussian process models, one for its mean and the other for its variance.
The first Gaussian process is trained regularly, for example, using the marginal log
likelihood on a set of training data. For the second model, a different objective function
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is introduced, with one term measuring how well the model is calibrated in terms of
quantile calibration and another term penalizing large variances in order to obtain a
sharp predictor. While this Gaussian process still uses the same set of training data for
inference, another set of calibration data is used to evaluate the objective function in
order to prevent overfitting [75].

Comparison of the two categories

Loss-based calibration methods can directly be integrated into the training procedure
and modify the model only through its parameters and hyperparameters, thus retaining
all its properties. Furthermore, they often do not require an additional calibration set.
However, modifying the objective function can also increase the computational cost of
the optimization [78]. Post-hoc methods offer greater flexibility since they introduce
further degrees of freedom and can modify the predictive distribution beyond the
capabilities of the original model. Due to this flexibility, the focus in the following will
be on post-hoc methods. The following sections describe three of these methods in
more detail, each targeting a different definition of calibration.

3.3.3 Quantile calibration based on isotonic regression

Kuleshov et al. [84] propose a simple method to achieve quantile calibration using
isotonic regression, inspired by similar procedures in classification such as Platt scaling.
The goal is to find a mapping R : [0, 1] ! [0, 1] so that R � FY|X is quantile calibrated.
Therefore, R needs to be constructed so that, given a predicted quantile q = F�1

Y|X(p),
the corresponding probability p is mapped to the true probability of Y falling below
that quantile value q [84]. That is,

R(p) := P
⇣

Y  F�1
Y|X(p)

⌘
. (3.34)

Since the distribution of Y can only be accessed through the available samples, it has
to be approximated. Given a calibration data set {(xn, yn)}N

n=1, the values of R at these
points can be estimated by

R̂(p) :=
1
N

|{yn|Fn(yn)  p, n = 1, . . . , N}| , (3.35)

the fraction of the data for which yn lies below its predicted p-quantile [84]. A continu-
ous map can now be constructed by fitting any regression algorithm to the recalibration
set {Fn(yn), R̂(Fn(yn))}N

n=1. Kuleshov et al. suggest using isotonic regression since it
only predicts monotonically increasing functions and does not assume a parametric
form, making it very flexible [84].
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The objective of isotonic regression on a set of pairs (xi, yi) 2 R ⇥ R is to find values
ŷi that minimize Âi(yi � ŷi)2 subject to ŷi  ŷj whenever xi  xj [90]. One commonly
used algorithm for this task is the Pool-Adjacent-Violators algorithm (PAVA) [91]. It
starts by assigning ŷi = yi for all i and ordering them by their x-values. Then, as long as
there are pairs ŷi, ŷi+1 so that ŷi > ŷi+1, violating the monotonicity condition, both are
replaced by their average ŷi�ŷi+1

2 . In the final step, the algorithm interpolates between
the existing values, usually by piecewise linear or constant interpolation [91].

While this calibration method has been shown to achieve good results in terms
of quantile calibration [84, 75, 83], it is also capable of perfectly calibrating random
uncertainty estimations that do not have any connection to the data, as demonstrated
both analytically and empirically by Levi et al. [77]. Therefore, it is not suitable for
safety-critical applications, where basing decisions on unreliable uncertainty estimates
can pose a significant risk [77]. Moreover, it is important to use a sufficiently large set
of calibration data since the method is prone to overfit for smaller datasets [85].

3.3.4 Local calibration based on Gaussian processes

Calibration according to the two local definitions, distribution and variance calibration,
is more difficult than the global quantile calibration. In order to achieve local calibration,
the calibration map R needs to be defined individually for each possible model output.
Because there is usually not more than one target value per predicted distribution in
the calibration set, it is not possible to estimate the empirical distribution based on
samples [85]. Therefore, Song et al. introduce a method based on Gaussian processes,
which utilizes the target values for predictions close by [85]. Their idea is a two-stage
procedure where they first specify a parametric class of functions for the calibration
map. In a second step, this calibration map is made dependent on the regression output
(µ, s) by modeling its parameters w as functions w(µ, s) using a Gaussian process.
As mentioned above, the choice of Gaussian processes makes it possible to use target
values y corresponding to similar regression output distributions for estimating their
local distributions through the choice of a suitable kernel. Since the Gaussian process
does not specify a single function but a distribution over functions, Song et al. choose
to treat w(µ, s) as a latent random variable and average over it in a Bayesian manner.

With this approach, the marginal likelihood of target values y is given by [85]

p(y|µ, s) =
Z

w

p(y|w, µ, s)

calibration map

p(w|µ, s)

GP model

dw =
Z

w

(
n

’
i=1

p(yi|wi), µi, si)p(w|µ, s)dw .

(3.36)
w = [w>

1 , . . . , w
>

N ] denotes the parameters for the calibration map at each point in
the calibration set, that may themselves be vectors if the calibration map has multiple
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parameters. (µ, s) = {(µ1, s1), . . . , (µN , sN)} are the outputs of the regression model at
the points in the calibration set. In this context, we identify the output distributions
by their mean µ and standard deviation s, assuming that they are normal, as it is
the case for Gaussian process models. However, it is worth noting that this method
can also be extended to regressors with different output distributions, parametric or
nonparametric. Moreover, the implied independence of the yi by their factorization
may not hold in general. For example, for a Gaussian process regression model, the
output values can be correlated. However, the definition of distribution calibration does
not take into account any dependencies between output values. Therefore, this method
only operates on marginal distributions, and the additional information from the joint
distribution is not used.

The calibrated density f̂⇤(y) given a new prediction (µ⇤, s⇤) can then be expressed as

f̂⇤(y) =
Z

w⇤

Z

w

p(y|w⇤)p(w⇤|w)p(w|µ, s)dwdw⇤ , (3.37)

where p(y|w⇤) is defined by the calibration map, p(w⇤|w) is the Gaussian process
posterior using the current value of w as training data. The term p(w|y, µ, s) is
proportional to the product of individual likelihoods and the prior, i.e.,

p(w|y, µ, s) µ (
n

’
i=1

p(yi|wi))p(w|µ, s) . (3.38)

Note that this approach does not use classic Gaussian process regression for the
parameters w, since there are no available ground truth values corresponding to the
training data (µ, s) from the calibration set. Instead, all possible values w for the
parameters in the training set are considered and marginalized according to their prior
distribution.

This method can also be extended to regressors with multidimensional output. By
jointly modeling the parameters w for each of the output dimensions with one extended
Gaussian process, their covariance structure can be taken into account for the calibration
[83]. In the following, we will focus on the one-dimensional case in accordance with
the scope of this thesis.

Beta map for distribution calibration

For distribution calibration, Song et al. suggest using functions from the beta family as
calibration map. They are defined by

cb : [0, 1] ! [0, 1], cb(p) = f (a ln(p)� b ln(1 � p) + c) , (3.39)
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Figure 3.2: Instances of the beta map family for different values of the parameters.

where f(z) = (1 + e�z)�1 is the logistic sigmoid function [85]. Beta functions are also
used in calibration for classification [92] since they are defined on the correct interval
[0, 1] and provide flexible shapes that can be controlled with the parameters a, b and c
[85]. Changing c pushes the distribution to the left for c < 0 or to the right for c > 0. If
a and b are both greater than one, the function takes on a sigmoid shape, decreasing
the variance, whereas a, b < 1 leads to an inverse sigmoid shape, which increases
the variance. Changing the balance between a and b creates a left skew for a < b or
a right skew for a > b. The configuration a = b = 1, c = 0 results in the identity
function, allowing to make no modifications in case the model is already calibrated [85].
Instances of functions from the beta family for different parameter values are shown in
Figure 3.2. In order for the mapping to yield a valid cumulative distribution function,
it must be monotonically increasing. For this requirement, a, b � 0 is necessary and
sufficient [85].

The beta calibration map cb is defined on the cumulative distribution function.
However, in order to compute the likelihood in Equation 3.36, an expression for the
transformed density is required. It is given by the derivative

d cb(FY|X(y))
d y

=
d cb(FY|X(y))

d FY|X(y)
d FY|X(y)

d y
= rb

�
FY|X(y)

�
fY|X(y) , (3.40)

where fY|X(y) is the predicted density and rb is defined in [85] as

rb(p) =
pa(1 � p)be�c(a � (a � b)p)
p(1 � p)(pa � (1 � p)be�c)2 . (3.41)

The next step is to model the parameters a, b, c as functions of the model output
using a Gaussian process. This Gaussian process needs to be defined over probability
distributions. Thus, a sensible choice for the kernel is a kernel mean map, which
uniquely represents any distribution in an infinite dimensional RKHS [93]. The feature
map is defined as p ! Ex⇠p(f(x)) for universal kernels of the form k0(x, x0) =
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hf(x), f(x0)i [93]. Since the distance between two embeddings in the RKHS can be
interpreted as a measure of similarity between the corresponding distributions [93],
this choice represents the initial assumption that the calibration map should be similar
for similar model outputs [85]. For normal distributions and the squared exponential
kernel as k0, an analytical solution for the embedding exists, and the resulting kernel is

k ((µ1, s1), (µ2, s2)) =
q

|s1 + s2 + q2|
1
2

e

✓
�

(µ1�µ2)
2

2(s1+s2+q2

◆

, (3.42)

where q is a hyperparameter [93, 85].
Moreover, since there are three potentially correlated parameters, Song et al. [85] use

a multi output Gaussian process. The Gaussian process prior is then given by

w =

2

4
wa
wb
wc

3

5 ⇠ GP(0, B ⌦ K) , (3.43)

where K is obtained by applying the previously chosen kernel to the calibration data
(µ, s) and B 2 R3⇥3 represents the correlation between a, b and c [85]. In order to
enforce the constraints on a and b and introduce additional flexibility through further
parameters, the output of the Gaussian process is transformed by

a = e(g
�1
a wa+da) ,

b = e(g
�1
b wb+db) ,

c = g�1
c wc + dc ,

before inserting the parameters in the beta link function. The exponential functions
ensure that a and b are always positive [85].

With these modeling choices, the likelihood in Equation 3.36 becomes

p(yi|wi, µi, si) = fY|xi
(yi)rb(FY|xi

(yi)) (3.44)

where µi and si define fY|xi
and FY|xi

and

p(w|µ, s) = N (w; 0, B ⌦ K) (3.45)

is the likelihood of the Gaussian process [85].

Variance scaling for variance calibration

Küppers et al. suggest another calibration method building on this principle, which
targets variance calibration [83]. Since only the variance needs to be modified, a simpler
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calibration map that acts directly on the density can be formulated by scaling the
predicted variance with a scaling parameter s. It is defined as

r(p) = N (µ, s · s2) , (3.46)

where µ and s are the model predictions, given that they define a Gaussian distribution
[83]. The method can also be applied to other distributions, for example the Cauchy
distribution, where the scale parameter is scaled instead of the variance [83].

Generally, this choice of distribution transformation interferes only little with the
predicted distribution, conserving its parametric form and not affecting the mean and,
thus, the point estimates. Since there is only one parameter, it can be modeled by a
single output Gaussian process

w ⇠ GP(0, K) , (3.47)

where the same kernel as above is used for constructing K. In order to ensure positive
variances, s has to be positive. Similar to the beta method, this is achieved through the
mapping

s = ew , (3.48)

here without introducing further hyperparameters [83]. Using this method, the likeli-
hood in Equation 3.36 is

p(yi|wi, µi, si) = N (µi, si · s2
i ) (3.49)

and
p(w|µ, s) = N (w; 0, K) . (3.50)

Parameter optimization and inference

Once a suitable model has been chosen, it remains to optimize the parameters and hy-
perparameters by maximizing the marginal likelihood in Equation 3.36. These include
the kernel hyperparameter q and for the beta calibration, additionally the correlation
matrix B and the link parameters g and d for each of the three beta parameters. In order
to reduce the computational cost of Gaussian process inference during optimization,
Song et al. suggest using a sparse Gaussian process approximation based on a set of
induced pseudo points [85, 59].

Moreover, the integrals for both the likelihood (Equation 3.36) and inference (Equa-
tion 3.37) are analytically intractable due to the nonlinearity introduced by the link
function [85]. Therefore, Song et al. [85] use an approximation based on variational
inference, optimizing the evidence lower bound (ELBO) with some further modifica-
tions instead of the likelihood directly. This technique stems from Gaussian process
classification, where similar integrals arise from transforming the regression output to
a class probability [94].
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3.3.5 Measures for calibration

This section provides an overview of metrics for assessing model calibration. Although
multiple metrics exist for each calibration definition, we will focus on one metric for
each.

The mean pinball loss (PBL) is a measure for quantile calibration. It is based
on the pinball loss commonly used to train quantile regression models [95]. The
asymmetric loss function is defined for each quantile individually and weights the
errors of overestimation and underestimation based on the quantile [85]. It is defined
as

LPin(t, y) =

8
<

:
t(y � F�1

Y|X(t)) y � F�1
Y|X(t)

(1 � t)(F�1
Y|X(t)� y) y  F�1

Y|X(t)
(3.51)

for a predicted inverse cumulative distribution function F�1
Y|X and quantile t 2 [0, 1] [85].

The average loss over all instances in the test set and a set of quantiles

PBL =
1

Nt

1
Ny

Â
t

Â
y
LPin(t, y) , (3.52)

where Nt denotes the number of quantiles and Ny the size of the test set, can then be
used as a measure for the overall quantile calibration [83]. In the following, we use
quantiles ranging from 0.05 to 0.95 in increments of 0.05 in order to capture the quality
of quantile calibration over a wide range of values.

The negative log likelihood (NLL) can be used to measure distribution calibration
as suggested by Song et al. [85], since it measures how likely the observed test data
was generated by the model taking into account the predictive distribution at each
individual point. It is defined by

NLL = �Â
y

log p
�

fY|X(y)
�

, (3.53)

where y are instances in the test set and fY|X denotes the predicted probability density
function.

The expected normalized calibration error (ENCE), proposed by Levi et al. [77],
measures calibration in terms of the scaled difference between the squared error and the
predicted variance. Hence, it serves as an indicator for variance calibration. Inspired by
similar methods in classification, the ENCE is based on a binning scheme. It divides
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the test data into N bins {Bj}
N
j=1 for the predicted variance s2(x). The instances are

ordered by variance and assigned consecutive subsets of the same size to each bin. The
root mean variance

RMV(Bj) =

s
1

|Bj|Âyt2Bj
s2(xt)

(3.54)

and the root mean square error

RMSE(Bj) =

s
1

|Bj|Âyt2Bj
(yt � ŷt)2 (3.55)

are then compared for each bin to assess the variance calibration. ŷt is the model
prediction at xt, for a Gaussian process, it is equal to the predicted mean µ(xt). Levi et
al. [77] suggest the metric

ENCE =
1
N

N

Â
j=1

RMV(Bj)� RMSE(Bj)

RMV(Bj)
(3.56)

as a summary of all bins. The calibration error in each bin is normalized by the
corresponding mean predicted variance since the expected error increases with greater
variances [77].

Apart from the quality of the calibration, another important property of a probabilistic
regression model is sharpness [84]. Calibration does not necessarily guarantee that the
model output is informative. For example, a model that always predicts P(y  Y) is
perfectly quantile calibrated but cannot be accurate since it does not depend on the
input value X [84]. The confidence intervals of a sharp model should be as narrow
as the aleatoric uncertainty allows [96, 75]. For a deterministic relationship between
input and output values, that means that the predicted probabilities should be close to
zero or one [84]. We examine the effect of each calibration procedure on the model’s
sharpness using the mean prediction interval width (MPIW). For a confidence level a,
it is defined as the width of the corresponding confidence interval [97],

1
N

N

Â
n=1

⇣
F�1

Y|X

⇣
1 �

a

2

⌘
� F�1

Y|X

⇣a

2

⌘⌘
. (3.57)

We use the common choice of a = 0.05 denoting a 95% confidence interval.
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3.4 Data provision for wheeled locomotion

In the following sections, the previously discussed methods for uncertainty quan-
tification are applied to a practical scenario. Specifically, we focus on modeling the
locomotion of a wheeled planetary rover. This section describes the data used for
building and evaluating the base Gaussian process model, on which we then perform
sensitivity analysis, quantify computational uncertainty, and apply calibration tech-
niques. Simulating the wheel’s movement involves forecasting the forces and torques
that will impact it along its intended path [7]. In the following, we focus on predicting
the traction force acting on the wheel in the direction of primary movement. The trac-
tion force is the force that the driven wheel momentarily exerts against all resistances
such as friction, inertial forces, and the downhill force if locomotion is uphill [98]. The
input variables for the Gaussian process model are chosen so that they can be provided
by the onboard sensors of a rover. Table 3.1 summarizes these variables and Figure 3.3
provides a physical representation.

Adopting the framework of [7], all quantities are represented in the wheel coordinate
system denoted by w, which is positioned at the wheel center. The y-axis is aligned
with the rotational axis of the wheel, and the x-axis is parallel to the wheel reference
plane in the direction of motion. This plane is constructed as the best-fit plane to the
ground for a circular area with a radius equal to the wheel radius.

The input variables are the wheel’s velocity ~vw, angular velocity ~ww and position ~pw.
The position is defined relative to the intersection between the wheel’s z-axis and the
reference plane. Additionally, we use the downhill force Fd in the driving direction as
input, which is proportional to sin

�
arctan

�
Fg,x, Fg,z

��
. Fg,x and Fg,z denote the gravity

Figure 3.3: Representation of the data available as input to the Gaussian process model.
The coordinate system in grey is the wheel coordinate system. The reference
plane and coordinate system are depicted in light blue. Adapted from [7].
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components in x and in z-direction relative to the wheel coordinate system. This choice
led to a lower generalization error on the validation set compared to directly including
the gravity components in the model.

The training data is generated using the soil contact model (SCM) [99]. As a semi
empirical model, it implements a trade-off between cheap to evaluate but less accurate
empirical models and computationally expensive, theoretical models that produce
higher quality results. SCM explicitly models the soil deformation by representing the
soil with an equidistant set of nodes and modifying their height throughout the course
of a simulation. Additionally, the soil has internal states to reflect the soil conditions
[99]. Figure 3.4 shows the path created by a rover in a SCM simulation.

The training data consist of independent runs, each representing movement in a
straight path over randomly generated terrain with slopes of up to 12 degrees. The
input variables and traction force are sampled ten times per second over the span of
15.1 seconds per run.

Prior to training the model, we apply some preprocessing steps to the data. Since
Gaussian process models do not perform well for input dimensions with different
scales, we first scale all input variables and the output to zero mean and unit variance.
Furthermore, frequencies higher than 2 Hz in the traction force are considered to be
noise and filtered out using frequency domain filtering.

Figure 3.4: Soil deformation by the rover in a SCM simulation. (Source: [100]).
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Table 3.1: Overview of the input variables.

Variable Description

~pw = [px, py, pz] Relative position of the wheel w.r.t. the surface
~vw = [vx, vy, vz] Velocity of the wheel
~ww = [wx, wy, wz] Angular velocity of the wheel
Fd Downhill force acting on the wheel against the direction of

motion

3.5 Building the base Gaussian process model

Based on the data detailed in the previous section, we build a Gaussian process model
as the foundation for performing uncertainty quantification techniques. The sets of
training data, validation data, and test data each consist of 67 independent runs,
resulting in 10,117 data points each. Moreover, we use additional sets of the same
size for calibration and model selection. Though more data is available for training
the model, increasing the number of training points would make exact inference
computationally infeasible and require approximation methods that introduce further
uncertainty. An exception to this is the section about computational uncertainty, where
we use a larger dataset for training the model and approximation algorithms for
inference.

Before training the Gaussian process model, we need to select a prior mean and
kernel. For simplicity, we choose a mean of 0. This choice is reasonable since a constant
term in the output is removed through standardization, and the prior mean plays no
significant role for predictions in regions where training data are available [6].

For the kernel selection, several commonly used kernels are compared. We consider
the squared exponential (SE), rational quadratic (RQ), and Matérn kernels. Due to their
universal property, they can be used to approximate any function given enough training
data [101]. All of these kernels have lengthscale parameters that determine the scale
over which the output value varies for changes in the input values and a global factor
for adjusting the overall variance, additional to other parameters specific to the kernel.
For the Matérn kernel, we restrict the parameter n to n = 1

2 , n = 3
2 and n = 5

2 , leading
to once, twice and three times differentiable predicted functions, respectively [4]. The
predictions for both the SE and RQ kernel are infinitely differentiable [4]. Moreover,
for each kernel, we test the isotropic variant with one global lengthscale as well as the
anisotropic variant with one separate lengthscale per input dimension [4].

In order to determine which kernel is the best choice, we train three Gaussian process
models on three independent datasets, each of size 10,117. We then compare their
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performance on the validation set in terms of RMSE. Throughout all experiments, the
Gaussian process implementation provided by GPflow (Version 2.8.1) [102] is used,
together with the L-BFGS-B optimizer by scipy (Version 1.7.3) [103] for hyperparameter
optimization, unless stated otherwise.

The anisotropic Matérn Kernel with n = 3
2 , in the following called Matérn 3

2 ker-
nel, performs best for all three training sets. Therefore, we adopt this kernel for all
subsequent experiments. It is defined by

k(x⇤, x) = s2

 
1 +

p

3

 
D

Â
m=1

(x⇤,m � xm)2

l2
m

!!
exp

 
�

p

3

 
D

Â
m=1

(x⇤,m � xm)2

l2
m

!!
,

(3.58)
where s is the global variance parameter and lm for m = 1, . . . , D are the lengthscales
for each dimension [4]. The stability of the optimized hyperparameters across the three
training datasets further supports our choice.

3.6 Sensitivity analysis – experimental setup and results

In this section, we apply variance-based sensitivity analysis as discussed in Subsec-
tion 3.1.2 to the Gaussian process model. We first perform an analysis assuming
independent input variables and compare the results to another variant, where mono-
tonic dependencies between the input variables are considered.

3.6.1 Testing method assumptions

In order to apply variance-based sensitivity analysis, two assumptions about the
model and the data have to be tested. The first assumption is that the function
Y = f (X1, . . . , XD) is square integrable over the D-dimensional unit hypercube WD

[37]. If f does not have this property, the expected value or variance might not exist.
However, numerical estimates of the integrals are still finite in this case and can give
plausible but wrong results [40]. For Gaussian Processes, f is the posterior mean given
by

f (x⇤) = K(x⇤, X)[K(X, X) + s2
n I]�1(y � m(X)) (3.59)

for a fixed set of training data X = {x1, . . . , xn}, y = [y1, . . . , yn]>, kernel k(., .) and a
zero-mean prior, evaluated at a test point x⇤ 2 RD. Since only the first part depends on
x⇤, the equation can be rewritten as

f (x⇤) = K(x⇤, X)a

=
n

Â
i=1

aik(x⇤, xi)
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where a = [K(X, X) + s2
n I]�1(y � m(X)) is some constant depending on the training

data. Therefore, the integral of | f |2 can be written as
Z

WD
| f (x⇤)|2dx⇤ =

Z

WD
(

n

Â
i=1

aik(x⇤, xi))
2dx⇤

=
n

Â
i=1

n

Â
j=1

aiaj

Z

WD
k(x⇤, xi)k(x⇤, xj)dx⇤

=
n

Â
i=1

n

Â
j=1

aiaj
1
2

✓Z

WD

�
k(x⇤, xi) + k(x⇤, xj)

�2 dx⇤

�

Z

WD
k(x⇤, xi)

2dx⇤ �

Z

WD
k(x⇤, xj)

2dx⇤

◆
.

If k(., x) is square integrable for any choice of x in the training set, each integral in the
sum is finite, as square integrable functions are closed under addition. Hence, the sum
itself is finite as well. It remains to show that the chosen kernel, the Matérn 3

2 kernel
defined in Equation 3.58, is square integrable. This kernel is continuous over x⇤ for
any choice of x since it consists of a product of a polynomial function and a chained
exponential and polynomial function. Its square k2 is thus also continuous, and since
continuous functions are bounded over a compact domain such as WD [104], also has
a finite integral. It follows that for the chosen kernel, the function of interest f (x⇤) is
square integrable over WD.

The second assumption, independence of the input variables, is more difficult to
verify without extensive knowledge of the application domain. In the case where the
variables represent different physical properties of one object, as examined here, it is
implausible that they are completely decoupled. This is also reflected in the empirical
Spearman correlation coefficients of the training data shown in Figure 3.7, which
indicate several significant interactions. Since the sensitivity analysis is considerably
more difficult in the case of dependent variables, as discussed in Subsubsection 3.1.2,
and the experiments presented here primarily serve demonstration purposes, results
for independent sampling will be discussed first, followed by a simple method for the
analysis of dependent variables.

3.6.2 Independent sampling

As a first step in the sensitivity analysis, distributions for the input variables must
be determined. The input variables are treated as independent in this section, so
it suffices to specify one marginal distribution per variable without considering any
interactions. If the actual distributions are unknown, one common approach is to choose
a theoretical distribution and fit its parameters to the available data [105]. In order to
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Figure 3.5: Main effects E(Y|Xi) for each input variable Xi. The values represent 200
points over the full range of each input and are rescaled to the interval [0, 1]
for comparability. Estimates for the expected values are calculated using
Monte Carlo integration with a Sobol’ sequence of size 212 for each point.

find optimal distributions, different distributions were fitted to each variable on the test
dataset and compared using the Kolmogorow-Smirnow test. However, this approach
did not yield useful results as all p-values were orders of magnitude lower than any
reasonable significance level. In this case, Helton and Davis [105] suggest specifying the
percentile function directly without assuming some closed form for the distributions
as an alternative approach. In this experiment, we use the empirical percentiles of all
samples in the test set and interpolate them with cubic splines, assuming the percentile
function is differentiable. This produces samples close to the training data distribution
but is also likely to overfit. Therefore, a more robust approach would be to consult
experts to specify the percentiles based on additional knowledge, as advised by Helton
and Davis [105].

In the following analysis, the sensitivity indices are calculated using the implementa-
tion provided by SALib (Version 1.4.7) [106, 107], adapted to transform the uniform
samples to any probability distribution using the method described in Subsubsec-
tion 3.1.2. The integrals are estimated using a Sobol’ sequence with 212 samples, the
number limited by the available RAM. In order to construct 95% confidence inter-
vals, we use the bootstrapping technique described in [108] with 2000 resamples per
sensitivity index.
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A useful tool for a preliminary, visual analysis is plotting the main effects E(Y|Xi) for
each input variable Xi [37, 45]. The main effect is the measure used in Sobol’ indices
before taking the variance over the expected values, resulting in a function of a single
feature Xi. Therefore, they give a more detailed picture of how the model output
responds to the different values for each input variable. As can be seen in Figure 3.5, vx,
wy, and Fd appear to have the most significant influence on the traction force when the
effects of other variables have been averaged out by integration. However, since these
plots only show first order effects, the other variables could still significantly influence
the model output through their interactions.

wy Fd vx
0

0.2

0.4

0.6

0.8

1

(a) First-order Sobol’ indices

wy vx Fd vz px pz vy py
0

0.2

0.4

0.6

0.8

1

(b) Total Sobol’ indices

Figure 3.6: Sobol’ indices for independently sampled data, including only significant
indices where 0 was not inside the 95% confidence interval.

The results for the first order and total Sobol’ indices are presented in Figure 3.6.
Table 3.2 additionally contains the values for all total indices since they span too many
orders of magnitude to be well represented in the plot. About 86% of the total variance
of the traction force is explained by the first order effects of wy, Fd and vx. The other
variables do not show any significant first order effect. These results are consistent with
the main effects in Figure 3.5, where all lines except those for wy, Fd, and vx appear to
be constant. The only significant second order effect arises from the interaction between
wy and vx, accounting for another 11.77% of the total variance. Hence, close to 98% of
the total variance can be attributed to the first and second order effects of the three
most important variables. While the first order effect dominates the contributions from
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Table 3.2: Total Sobol’ indices with their 95% confidence intervals for all input variables.

Variable Total Sobol’ Index 95% CI half width

w1 8.8198 ⇥ 10�1
±3.6124 ⇥ 10�2

vx 1.7694 ⇥ 10�1
±1.6755 ⇥ 10�2

Fd 1.0225 ⇥ 10�1
±6.5163 ⇥ 10�3

vz 8.3371 ⇥ 10�5
±1.8020 ⇥ 10�5

px 1.5179 ⇥ 10�5
±1.0138 ⇥ 10�6

pz 6.5795 ⇥ 10�8
±9.9538 ⇥ 10�9

vy 1.7464 ⇥ 10�8
±1.8678 ⇥ 10�9

py 6.2265 ⇥ 10�12
±8.7946 ⇥ 10�13

w0 0.0000 ±0.0000
w2 0.0000 ±0.0000

wy and Fd, vx is more influential through its second and higher-order interactions.
The remaining variables only contribute through higher-order interactions. wx and

wz have total indices of zero and thus have no effect on the traction force. Thus, they
can be excluded from the model without affecting the quality of predictions. Since
the total effects of the remaining variables are very close to zero as well, they can be
considered for exclusion as well.

To determine the variables to keep in the model, we train different versions with
varying numbers of variables according to their importance indicated by the total
Sobol’ indices and compare their RMSE on the validation set. Only including the three
most important variables increases the RMSE from 1.7855 to 2.2010. However, further
including vz and px with total effects in the order of magnitude of 10�5 slightly improves
accuracy compared to the full model, resulting in an RMSE of 1.7602. Including more
features beyond these leads to worse accuracy again. Therefore, for the following
experiments only wy, Fd, vx, vz, and px are used as input variables. The sensitivity
analysis thus enables us to cut the number of input variables in half.

3.6.3 Correlated sampling

In order to examine the effect of dependencies in the input variables, a suitable
probability distribution has to be chosen so that their relationship is reflected in
the samples. However, such a joint distribution quickly becomes complex and is
difficult to model if the input variables are not distributed close to some theoretical
distribution, such as a Gaussian distribution. Furthermore, most sampling schemes like
low discrepancy sequences or Latin hypercube sampling only generate independent
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variables, so their convergence benefits in the Monte Carlo estimates cannot be utilized
for distributions with arbitrary dependence structures. Therefore, in the following
we use the Iman-Conover transformation [109]. By only re-pairing the variables but
not changing their values, the method introduces correlation into a sample without
interfering with the properties of stratified sampling schemes like Latin hypercube
sampling. Moreover, it makes no assumptions about the marginal distributions for the
variables and does not alter them in the process. The limitation of the approach is that
it can only introduce dependencies in the form of Spearman rank correlations, which
correspond to monotonic relationships between variables [109].

Formally, given a N ⇥ D matrix of N D-dimensional samples, the goal is to reorder
the values in each column so that the resulting Spearman rank correlation matrix is
as close as possible to the desired matrix C. The theoretical basis of the method is the
Cholesky transformation, which can be used to transform an independent random
row vector X with correlation matrix I into a random vector X0 with any correlation
matrix C. Because C is positive definite and symmetric, it can be written as the product
of a lower triangular matrix P and its transpose C = PP>. Using this decomposition,
X0 is given by X0 = XP> [109]. Because the matrix multiplication alters the values
in X, the method cannot be applied directly to the sample without changing the
above-mentioned properties. Therefore, the Cholesky transformation is performed on
a score matrix R first, and the correlation is subsequently transferred to the sample
through reordering. The columns of R are formed by distinct random permutations
of the van der Waerden scores {F�1( i

N+1 )}, i = 1, . . . , N, where F is the cumulative
standard normal distribution function. Since R is generated randomly and may have a
different rank correlation than I, the inverse direction of the Cholesky transformation
RQ�> is used as a variance-reduction step first. QQ> is the Cholesky decomposition
of the Spearman rank correlation matrix of R. In the next step, R is multiplied by
P>, where C = PP> is the Cholesky decomposition of C. Hence, the resulting matrix
R⇤ = RQ�>P> has a rank correlation close to C. In order to transfer this correlation
structure to the sample, the columns of the sample are arranged so that they have the
same order as the corresponding column in R [109] in the final step.

The same empirical percentile functions as in the independent analysis are used
for the marginal probability distributions. Correlations are then imposed on samples
from these distributions using the Spearman rank correlation matrix of the training
data. In order to make the group-based sensitivity analysis feasible, features with a
correlation  0.4 are considered sufficiently small to treat the corresponding features
as independent. Figure 3.7 illustrates the resulting correlation structure. The connected
components in the graph give rise to six independent groups, to which the group-based
sensitivity analysis, as described in Subsubsection 3.1.2, can be applied. The sensitivity
indices presented in Figure 3.8 are obtained the same way as in Subsection 3.6.2, except
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Figure 3.7: Spearman rank correlation structure in the training data, including only
values with a p-value below 0.05 and absolute value greater than 0.4.

Table 3.3: Total Sobol’ indices with their 95% confidence intervals for all independent
groups of input variables.

Group Total Sobol’ Index 95% CI half width

{Fd, px, py, pz} 7.7039 ⇥ 10�1
±1.6330 ⇥ 10�2

{vx, ay} 2.8271 ⇥ 10�1
±8.3220 ⇥ 10�3

vz 6.0914 ⇥ 10�2
±3.9104 ⇥ 10�3

vy 6.6842 ⇥ 10�4
±4.7168 ⇥ 10�5

wz 9.1967 ⇥ 10�5
±9.1537 ⇥ 10�6

wx 5.9665 ⇥ 10�5
±5.2849 ⇥ 10�6

for the sampling scheme. Because reordering the columns would destroy the structure
of a Sobol’ sequence but not that of a Latin hypercube sample, the latter is used instead.
Furthermore, the reduced number of variables allows a greater sample size of 214.

Figure 3.8 shows the first and total Sobol’ indices obtained from the analysis with
dependent input variables. More details about the total indices are provided in Ta-
ble 3.3. The results are roughly consistent with those in the independent case with
some deviations. Fd, wy, and vx remain the most important variables, though their
contributions cannot be separated from those of the three position variables px, py and
pz anymore due to the grouping. Their first order effects and interactions within groups
account for about 91% of the total variance. In contrast to the analysis for independent
inputs, Fd together with the positions takes the first place for both first order and total
indices and significantly surpasses the effect of vx and wy.

While the order of the remaining variables remains the same compared to the
independent analysis, their total effects are all nonzero and make up a larger part of
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Figure 3.8: Sobol’ indices for correlated and grouped variables, including only signifi-
cant indices where 0 was not inside the 95% confidence interval.

the overall variance, with no total index falling below 10�5. Most notably, vz has a
nonzero first order index and the only significant second order index of 0.0164 for the
interaction with vx and wy. Its relatively high total index of about 0.0609 is two orders
of magnitude larger compared to all remaining variables. Therefore, these results can
better explain the benefit of including vz in the model. However, the method does not
offer specific insights into the contribution of px, since its effect cannot be separated
from the group.

3.7 Computational uncertainty – experimental setup and results

In this section, we apply the method for quantifying the computational uncertainty
arising from the matrix inverse approximation discussed in Section 3.2 and compare
the results to a similar state-of-the-art method, which does not take computational
uncertainty into account. Both methods are based on conjugate gradients and result in
the same prediction for the mean. They only differ in their predictive variance. For the
first method, in the following called IterGP, we use the implementation provided by
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the IterGP library (Version 0.1.dev42) [74] with the conjugate gradients approximation
method. It calculates the computational uncertainty according to Section 3.2 without
considerable additional computational cost. The second method, in the following called
CGGP, is for example used in the GPyTorch library [65]. It estimates the posterior
variance with the Lanczos Variance Estimate technique [110], which uses information
from the mean approximation to speed up the additional required linear solves. The
implementation was kindly provided by Jonathan Wenger [111].

The Gaussian process models for both IterGP and CGGP are trained on an extended
set of training data with 20,234 data points in order to more accurately represent a
scenario in which approximation methods are necessary. To ensure comparability, the
same kernel parameters optimized on the original training data with 10,117 instances
and an exact Gaussian process model are used for both methods. Moreover, the
isotropic variant of the Matérn 3

2 kernel is used because IterGP does not support
separate lengthscales for each dimension.

The generalization error in terms of RMSE across iterations is shown in Figure 3.9a.
As expected, it is identical for both methods everywhere due to their equivalent
computations for the mean approximation. After only 100 iterations, the RMSE of
1.6459 is comparable to the RMSE of 1.6264 of the model using the full conventional
matrix inversion and trained on half the data points (see Table 3.4, first column).
Figure 3.9b compares the mean values of the predicted variance over the test set.
Additionally, the standard deviation is depicted as shaded area in order to better
represent the distribution of variances at different points. While IterGP predicts a
significantly higher variance in the first few iterations, both its mean and standard
deviation quickly become similar between the two methods and converge to the same
value. This can also be observed in Figure 3.10, where the respective confidence
intervals are depicted after 3, 10, and 100 iterations. These plots show that the variances
become increasingly similar not only in their mean but also locally at every prediction
in the displayed portion of the test set.
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Figure 3.9: Comparison of CG approximation methods. CGGP is the method currently
used by GPytorch and does not estimate computational uncertainty. IterGP
is the equivalent instance from the IterGP package, explicitly modeling
computational uncertainty.

54

Mobile User



3 Uncertainty quantification for Gaussian processes

780 790 800 810 820 830 840 850 860 870 880

�20

0

20

40
i = 3

Time

Tr
ac

tio
n

fo
rc

e

780 790 800 810 820 830 840 850 860 870 880

�20

0

20 i = 10

Time

Tr
ac

tio
n

fo
rc

e

780 790 800 810 820 830 840 850 860 870 880
�10

0

10

20
i = 100

Time

Tr
ac

tio
n

fo
rc

e

True values IterGP 95% Confidence Interval,
Posterior mean CGGP 95% Confidence Interval

Figure 3.10: Comparison of the predictions for IterGP, which explicitly models compu-
tational uncertainty, and CGGP, which only approximates mathematical
uncertainty. Both methods are based on the conjugate gradient method
and always result in the same mean.
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3.8 Calibration – experimental setup and results

In this section, we apply three different calibration methods, one for each definition of
calibration, and compare the results. Isotonic calibration (Subsection 3.3.3) is used for
quantile calibration, beta calibration (Subsubsection 3.3.4) for distribution calibration,
and normal calibration (Subsubsection 3.3.4) for variance calibration. We only examine
post-hoc methods since they offer more flexibility than other methods and do not
require any modification of the Gaussian process model itself.

The following results use the implementation of calibration methods provided by the
net:cal package (Version 1.3.5) [83]. The training, validation, and test sets are the same
as in previous experiments. Additionally, another set of calibration data of the same size
as the training set is used for calibration. The kernel is a Matérn 3

2 kernel with separate
lengthscales for each input dimension. For both of the Gaussian process-based methods,
we use 1024 inducing points, a batch size of 256 and 256 Monte Carlo samples per
batch for computing the objective function and gradient. The parameters are optimized
using ADAM with a learning rate of 0.001.
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Figure 3.11: The reliability diagram illustrates the proportion of actual samples in the
test set covered by the predicted quantile for a specific value of t. If the
model is perfectly quantile calibrated, all predicted quantiles match the
empirical quantiles, resulting in a straight line.

The reliability plot in Figure 3.11 compares the predicted quantiles with the empirical
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Table 3.4: Comparison of error metrics for different calibration methods. The metrics
measure accuracy, quantile calibration, distribution calibration, variance
calibration, and sharpness, respectively. The best values are shown in bold.

Uncalibrated Isotonic calibration Beta calibration Normal calibration

RMSE 1.6264 1.6269 1.6272 1.6264

PBL 0.3059 0.2812 0.3232 0.3260
NLL 4.1017 1.5645 1.8423 1.6738
ENCE 0.6479 0.6360 0.6544 0.7010
MPIW 0.0766 0.0840 0.2579 0.2207

quantiles of the traction force in the test set. If a model is perfectly quantile calibrated,
these quantiles match exactly. The line corresponding to the uncalibrated model is
consistently below the diagonal. Hence, the model is overconfident in its predictions
on average over the whole test data. This observation is consistent with the plot of
the predictive distribution on a portion of the test data in Figure 3.13a, where the
confidence bounds are too narrow to reflect the model’s uncertainty almost everywhere.
For example, the true values of the traction force lie outside the 98% in significantly
more than 2% of the cases. While the isotonic regression is able to almost perfectly
calibrate the quantiles, as can be seen by the line close to the diagonal in Figure 3.11, the
other two calibration methods lead to a worse quantile calibration by making the model
underconfident instead of overconfident. This is also reflected in the PBL values of
each method in Table 3.4. While isotonic calibration improves the quantile calibration,
the other two methods lead to worse quantile calibration. The same holds for variance
calibration in terms of ENCE. All three methods significantly improve the distribution
calibration measured by the NLL. However, isotonic calibration still outperforms the
other two.

The accuracy of the model is not significantly different after calibration for any
method, as the RMSE remains nearly constant. While this is always the case for normal
calibration, which only scales the variance but does not affect the mean, the other two
methods could lead to worse accuracy. In this case, we observe no trade-off between
calibration and accuracy.

Furthermore, isotonic calibration only decreases sharpness in terms of MPIW by a
small amount. In contrast, for beta calibration and normal calibration, the mean width
of the 95% confidence interval becomes almost three times as large compared to the
uncalibrated case. An increase in the confidence interval width is generally necessary
for calibration in this case since the uncalibrated model is consistently overconfident. It
should also be noted that the value of this measure largely depends on the confidence
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interval under consideration. As can be seen in Figure 3.13, isotonic calibration places
more probability mass in the tails while keeping the center narrow, whereas normal and
beta calibration widen the center region but have shorter tails. Therefore, if for instance,
the width of the 98% confidence interval is considered instead, isotonic calibration may
even lead to less sharp predictions than the other two methods according to the MPIW.
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Figure 3.12: Calibration maps for the cumulative distribution of different calibration
methods. For isotonic calibration, the map is globally the same. For beta
and normal calibration, the maps are different for each output. Therefore,
three samples are displayed.
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Figure 3.13: Comparison of the calibrated probability distributions for a part of the test
data. The shaded regions show the predicted 98%, 95%, 90%, 85%, and 80%
confidence intervals, respectively.
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3.9 Discussion

Sensitivity analysis

The results from the analysis of independent variables and the analysis including
correlations are consistent with respect to the identification of the most important
input variables. These findings are confirmed by the changes in model accuracy for
different subsets of inputs and reflect the physical properties of the modeled wheel.
The downhill force Fd directly influences the traction force while the velocity vx and
angular velocity wy in the driving direction determine how the wheel interacts with
the soil.

However, there are some significant differences in the relative contributions of
each feature or group between the analysis of independent and correlated variables.
Therefore, the independent case provides enough information for the selection of
features but does not allow accurate insights into the sensitivity of the traction force
with respect to the individual input variables. Furthermore, it cannot be ruled out that
the rank correlation structure under consideration is not sufficient to represent the true
dependencies between input variables. In that case, a more sophisticated model for the
joint distribution of input variables would be necessary. However, this comes at the
expense of requiring larger sample sizes for the involved Monte Carlo integration, as
common sampling schemes to speed up the convergence can only be used to produce
independent samples for each variable. Increasing the number of Monte Carlo samples
could further improve the accuracy of the results.

Moreover, the sensitivity analysis only considers variations in the predictive mean but
not in the whole predictive distribution. In order to include this information, adaptions
such as the one discussed in Subsubsection 3.1.2 could be used.

Lastly, we only examine the model’s sensitivity with respect to the input features.
However, the same methods could also be used to investigate the impact of different
kernel parameters on the model output. Such an analysis would be considerably more
complicated due to the necessity of specifying a distribution for each parameter. The
computational cost would be substantially higher as well since each model evaluation
in the Monte Carlo integration requires a matrix inversion. The sensitivity analysis of
input variables allows to reuse the same model for all evaluations, requiring only one
matrix inversion in total.

Computational uncertainty

The results comparing IterGP to CGGP show that modeling computational uncertainty
only makes a difference for the first few iterations in this scenario. The predicted
variances of IterGP and CGGP produce increasingly similar predictions even before both
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converge to the exact solution. As expected, the variance predicted by IterGP decreases
for an increasing number of iterations as the part making up the computational
uncertainty decreases. Interestingly, the variance predicted by CGGP exhibits the
same behavior without explicitly taking into account the computational uncertainty.
Thus, especially for a larger number of iterations, the choice of the method does not
significantly affect the result. However, IterGP is able to calculate the variance without
a significant computational overhead, making it more efficient. Moreover, the method
guarantees to accurately represent the uncertainty due to approximations, whereas
CGGP has no such theoretical interpretation.

Calibration

Comparing all tested calibration methods, isotonic calibration performs better than
beta and normal calibration for all calibration metrics. This result is unexpected since
the method only targets the weakest calibration definition and is, unlike the other two
methods, restricted to one global calibration map. One possible explanation is that the
Gaussian process based methods perform worse for large amounts of training data,
as also observed by Song et al. [85] in their experiments. They suggest that using
a larger number of inducing points may help improve the results in such a scenario
[85]. However, changing the number of inducing points from 64 to 256 and 1024 did
not change the results significantly. Therefore, it is unlikely the cause of the worse
performance of these methods.

Another explanation of the better performance of isotonic calibration is the greater
flexibility of its calibration map. While beta and normal calibration are bound to
certain parametric functions, isotonic regression can approximate arbitrary functions.
Figure 3.12 shows a comparison of the calibration maps learned by the different
methods. The shape of the isotonic calibration map, deviating from the identity map at
the edges but being close to it in the middle section, is impossible to represent with a
function from the beta family or simple scaling of the variance. For instance, functions
from the beta family that show the same deviations in regions close to zero or one will
always have a significantly lower slope in the middle section than the identity function.
As a result, both beta and normal calibration broaden the distribution everywhere,
whereas isotonic calibration only widens the tails, and is consequently better able to
capture the actual uncertainty of the model. This can also be observed in Figure 3.13,
where the transformed distributions for normal and beta calibration have a wider 80%
but narrower 98% confidence interval than the one for isotonic calibration. Interestingly,
the results for beta calibration and normal calibration are very similar, evident from
both the metrics in Table 3.4 and the transformed distributions in Figure 3.13. The
calibration maps in Figure 3.12 look very similar as well for every combination of mean
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and standard deviation. This shows that the increased flexibility of the beta map does
not lead to an advantage in this scenario, and this model is not better suited to capture
the true distribution of target values compared to simply scaling the variance.

The global nature of isotonic calibration does not appear to be a problem in this
case as the local distributions of values for the traction force can be approximated well
by the marginal distribution. For instance, since the uncalibrated model seems to be
underconfident almost everywhere, the calibration map can improve calibration locally
everywhere by increasing the variance. This would not be possible if the model was
also underconfident in a significant portion of predictions. Therefore, for a scenario
such as the one examined here, isotonic regression is the best choice for all calibration
objectives. These findings are consistent with the results of Küppers et al. [83] on object
detection tasks.
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4 Conclusions

In this work, we explored three different techniques for uncertainty quantification in
the context of Gaussian processes. In order to evaluate how these methods can improve
the understanding of predictive uncertainty in a real-world problem, we applied them
to a Gaussian process model trained to predict the traction force on the wheel of a
planetary rover.

First, we used variance-based sensitivity analysis to assess how different input
variables contribute to the output and the associated uncertainty. We computed Sobol’
indices both under the assumption that the input variables are independent and
including dependencies in the form of rank correlations. While the latter method
represents the structure of the input variables more accurately, the analysis is less
specific as it compares groups of variables instead of all individual variables. Both
methods identified the same variables as the most influential, enabling us to cut the
number of input variables in half without losing accuracy. However, the relative
importance of these variables differed for the two approaches. Thus, if the relative
importance is of interest, for example, to prioritize the quality of sensors installed on
the wheel for measuring the input quantities, assuming the variables are independent
is not sufficient in this case. Moreover, more detailed modeling of the joint probability
distribution could be beneficial.

We also compared two approximate methods for calculating the matrix inverse
needed for Gaussian process inference and their uncertainty estimates. Both methods
are based on conjugate gradients and result in the same approximation for the posterior
mean but differ in their variance estimate. The first, recently developed method
explicitly models computational uncertainty. In contrast, the second method uses the
current state-of-the-art Lanczos variance estimate, treating the approximate mean as the
exact solution. While there were no significant differences in the predicted variances
after the first few iterations, the method including computational uncertainty offers
the advantages of being more computationally efficient and providing a theoretical
interpretation of the predicted uncertainty.

Finally, we examined the quality of the predicted uncertainty estimates of the Gaus-
sian process model. We found it to be consistently overconfident and compared three
different post-hoc methods to improve calibration. The simplest method, isotonic
regression, performed best for all our calibration metrics. This is likely due to the high
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flexibility of its calibration map and the model’s consistent overconfidence, which can
be effectively addressed with a single global calibration map to achieve good local
results.

These results provide insights into different areas of uncertainty. In addition to
the three techniques employed for uncertainty quantification in this study, further
areas remain for future research. In the problem at hand, including the uncertainty
about input values directly in the Gaussian process model would represent reality
more accurately since they come from possibly noisy sensor measurements. Moreover,
including the uncertainty about the choice of kernel and hyperparameters could make
the analysis more robust to model misspecification. In order to obtain theoretical
guarantees for uncertainty bounds, the predictive uncertainty estimates from the
Bayesian variance prediction the Gaussian process delivers could be extended to a
frequentist framework. By incorporating these elements into future work, we can obtain
a more complete picture of the uncertainties associated with our model.
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