
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Neural Network Hyperparameter
Optimization with Sparse Grids

Maximilian Michallik

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Neural Network Hyperparameter
Optimization with Sparse Grids

Parameteroptimierung von neuronalen
Netzen mit dünnen Gittern

Author: Maximilian Michallik
Supervisor: Dr. Felix Dietrich
Advisor: Dr. Michael Obersteiner
Submission Date: 14.08.2023

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 14.08.2023 Maximilian Michallik

Acknowledgments

First, I would like to thank my advisors, Dr. Felix Dietrich and Dr. Michael Ober-
steiner. In the regular meetings, they always helped me with questions about my work
and thesis. Whenever I ran into problems, they gave me very helpful advice and ideas
how to solve them. This made working on this thesis during the last six months a very
interesting time and I learned really much. This thesis would have never been possible
without them. Thank you!

I would also like to thank my parents and brother for their support, not only while
working on this thesis, but also during my whole studies for the last five years. Thank
you for always having my back!

Finally, I would like to thank all my friends who supported me during the work on
this thesis.

Abstract

In recent years, machine learning has gained significant importance due to the increas-
ing amount of available data. The numerous different model architectures share a
common characteristic - they have parameters or design decisions that are fixed before
being trained on data. The right choice of the so-called hyperparameters can have a
huge impact on the performance which is why they have to be optimized. Different
techniques like grid search, random search, and Bayesian optimization have been
developed to tackle this problem.

In this thesis, a new approach called adaptive sparse grid search for hyperparameter
optimization is introduced. This technique allows to adapt to the hyperparameter space
and the model which leads to less training and evaluation runs compared to normal
grid search. Additionally, we present an adapted random search approach which is also
adaptive to the data by iteratively adding sampled points. Three different refinement
strategies for the concrete sampling are introduced and analyzed.

We compare the newly proposed approaches to the aforementioned three techniques
with respect to both computational budget and resultant model performance. We
conduct experiments using diverse machine learning tasks and datasets. The findings
demonstrate that adaptive sparse grid search for hyperparameter optimization signifi-
cantly outperforms standard grid search, particularly in high-dimensional settings. The
comparisons show that each algorithm performs well for specific optimization settings.
The iterative sparse grid search approach shows promise, though it necessitates further
in-depth analysis.

iv

Zusammenfassung

In den letzten Jahren hat das maschinelle Lernen aufgrund der zunehmenden Menge
an verfügbaren Daten erheblich an Bedeutung gewonnen. Die zahlreichen unter-
schiedlichen Modellarchitekturen haben ein gemeinsames Merkmal - sie haben Parame-
ter oder Designentscheidungen, die vor dem Training auf Daten festgelegt werden. Die
richtige Wahl der so genannten Hyperparameter kann einen großen Einfluss auf die
Leistung haben, weshalb sie optimiert werden müssen. Verschiedene Techniken wie
Gittersuche, Zufallssuche und Bayes’sche Optimierung wurden entwickelt, um dieses
Problem zu lösen.

In dieser Arbeit wird ein neuer Ansatz, die adaptive Sparse-Grid-Suche für die
Hyperparameter-Optimierung, vorgestellt. Diese Technik ermöglicht die Anpassung an
den Hyperparameterraum und das Modell, was im Vergleich zur normalen Gittersuche
zu weniger Trainings- und Evaluierungsläufen führt. Zusätzlich wird ein angepasster
Zufallssuchansatz vorgestellt, der sich ebenfalls an die Daten anpasst, indem iterativ Zu-
fallspunkte hinzugefügt werden. Es werden drei verschiedene Verfeinerungsstrategien
für das konkrete Sampling vorgestellt und analysiert.

Wir vergleichen die neuen Ansätze mit den anderen drei genannten Techniken
hinsichtlich des Budgets und der resultierenden Modellleistung unter Verwendung
verschiedener maschineller Lernaufgaben und Datensätze. Die Ergebnisse zeigen, dass
die adaptive Sparse-Grid-Suche für die Hyperparameter-Optimierung deutlich besser
abschneidet als die normale Gittersuche in hohen Dimensionen. Die Vergleiche zeigen,
dass jeder Algorithmus für bestimmte Optimierungsprobleme gut abschneidet. Die
iterative Sparse-Grid-Suche zeigt vielversprechende Ergebnisse.

v

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 State of the Art 3
2.1 Introduction to Neural Networks . 3
2.2 Hyperparameter Optimization . 6

2.2.1 Grid Search . 7
2.2.2 Random Search . 7
2.2.3 Bayesian Optimization . 8
2.2.4 Other Techniques . 11

2.3 Sparse Grids . 11
2.3.1 Numerical Approximation of Functions 11
2.3.2 Adaptive Sparse Grids . 15
2.3.3 Basis Functions for Sparse Grids 17
2.3.4 Optimization with Sparse Grids 19

2.4 Adaptive Random Search . 23

3 Hyperparameter Optimization with Sparse Grids 25
3.1 Methodology . 25

3.1.1 Adaptive Grid Search with Sparse Grids 25
3.1.2 Iterative Adaptive Random Search 25
3.1.3 Evaluation Metrics . 26

3.2 Sparse Grid Optimization of Functions 26
3.2.1 Implementation . 26
3.2.2 Test Functions . 27
3.2.3 Sparse Grid Generation with different Adaptivities 29
3.2.4 Local and Global Optimization . 34

3.3 Hyperparameter Optimization with Sparse Grids 38
3.3.1 Optimization on Sparse Grid Points 39
3.3.2 Optimization on Sparse Grids . 42

vi

Contents

3.4 Comparison with Grid-, Random Search and Bayesian Optimization . . 48
3.4.1 Two-dimensional Experiment of Regression with Small Neural

Network . 48
3.4.2 Three- and Five-dimensional Experiments of Regression with

Small Neural Network . 53
3.4.3 Nine-dimensional Experiment with MNIST Dataset 56
3.4.4 Comparison with Implementation of other Authors 58

3.5 Iterative Adaptive Random Search . 60
3.5.1 Implementation . 60
3.5.2 Analysis of Parameters with Functions 66
3.5.3 Hyperparameter Optimization . 75
3.5.4 High-dimensional Optimization 78

3.6 Comparison and Discussion . 80

4 Conclusion and Outlook 83

Bibliography 85

vii

1 Introduction

Machine learning has gained enormous importance in many fields of application. In var-
ious areas of daily life, artificial intelligence can enhance productivity by autonomously
making decisions. There are numerous types of algorithms and architectures designed
to achieve this goal. They all have one thing in common, which is that they have to
be defined and trained on data. During this process, developers need to identify a
suitable configuration for the machine learning algorithm.Some configurations are
interdependent, and for many of them, expert knowledge can facilitate the identifi-
cation of appropriate values. Automating this task of hyperparameter optimization
or tuning can be done without expert knowledge or an approach called "babysitting"
which is just trying out different configurations until a reasonably good performance is
achieved. This is also called trial and error and is often applied as can be seen in [1,
2]. This method might consume a significant amount of time to discover an optimal
configuration, prompting the development of multiple algorithms designed to automate
this process.

All existing techniques, such as grid search, random search, and Bayesian optimiza-
tion, exhibit advantages and limitations contingent on the specific scenario. In the
scope of this thesis, a new approach is introduced which uses sparse grids. Theyoffer
a fundamental advantage over general homogeneous grids in higher dimensions, as
they do not succumb to the curse of the dimensionality. Unlike homogeneous grids, the
number of grid points does not grow exponentially. We present this new technique
and compare it across various machine learning models, datasets, and tasks, including
regression and classification.

We additionally introduce an iterative adaptive random search approach which
combines the advantages of random search and iterative methods like the Bayesian
optimization or the adaptive sparse grid search.

The implementation as well as all experiments conducted can be found on Github 1.

Therefore, in Chapter 2, we give a brief introduction to machine learning with neural
networks, present other well-analyzed hyperparameter optimization techniques like
grid-, random search, and Bayesian optimization, and explain the concept of adaptive

1https://github.com/Muxlll/Masterarbeit

1

1 Introduction

sparse grid which is the base for the new approach. In the following in Chapter 3, we
explain the Methodology and how the sparse grid optimization method works. First,
normal functions are optimized because we know the optimal points. Later on, we
transfer the findings to the machine learning model evaluation and further analyze the
behavior in different settings. After finding suitable configurations for the sparse grid,
we compare the implemented algorithms with different datasets and tasks followed by
an introduction of the iterative adaptive random search. This method is also analyzed
and compared to the existing approaches. In the end, we give a conclusion and outlook
in Chapter 4.

2

2 State of the Art

Machine Learning [3, 4] is a rapidly evolving field of artificial intelligence. There
are different types of algorithms that are used for specific tasks involving supervised
learning where the algorithm maps inputs to the given labels, unsupervised learning
where the labels to the input are not available, and semi-supervised learning which
combines labelled and unlabeled data. Additionally, there is reinforcement learning
where the model learns by observing the environment [5]. Specific tasks are e.g.
classification where the input has to be assigned to specific classes, regression where
the input has to be assigned to a continuous value (both supervised) and clustering
(unsupervised) where the goal is to group the input.

There are many different algorithms that accomplish these goals, for example support
vector machines [6], the tsetlin machine [7], and decision trees [8]. One very important
class of algorithms is artificial neural networks 2.1. After the introduction to neural
networks, hyperparameter optimization is presented with different techniques to
improve machine learning models. In the following, sparse grids are presented which
will be needed as a foundation for hyperparameter optimization of neural networks
with sparse grids.

2.1 Introduction to Neural Networks

Neural networks [9, 10] are very powerful for solving various tasks. They are very
versatile and they exist in very different variations, ranging from a very small size up
to very large networks for more complex tasks.

The smallest part of a neural network is the perceptron. A network consisting only of
one perceptron can be seen in Figure 2.1.

The output y is computed with

u =
n

∑
i=1

wi · xi − θ, y = g(u). (2.1)

The network has n inputs xi and weights wi. θ is the activation threshold (also called
bias), g is the activation function, and u is the activation potential [10].

This basic building block can then be used to build a more complex architecture
with multiple layers. All neural networks have an input layer consisting of n ∈ N

3

2 State of the Art

Figure 2.1: Neural network consisting of only one perceptron. The output is computed
according to Equation 2.1.

input neurons and an output layer with m ∈ N output values. Between them, there
can be multiple hidden neural layers. In deep neural networks, this number of layers
is very high as the name suggests. Each neuron of each layer again has weights of
the corresponding input and bias. The concrete values for them are important for the
behavior of the model and determine the performance. These values are learned during
the training phase of the model. There are two stages (forward and backward stage)
during the training phase as can be seen in Figure 2.2.

The figure shows a schematic neural network with two hidden layers and n1 neurons
in the first layer and n2 ones in the second layer. In the forward stage, an input x ∈ Rn

is put into the network and the output is computed by computing the corresponding
result of each neuron and feeding it into the next layer to the right according to the
connections. This output is then taken to update the weights of all neurons in the
backward stage. In the simple case depicted in Figure 2.1 with only one perceptron,
the weights are updated with

wcurrent = wprevious + η ·
(

d(k) − y
)
· x(k) (2.2)

where w = [θ w1 ...wn]T is the vector with all weights and the bias, x = [−1 x(k)1 ...x(k)n]T

is the kth training sample, dk the desired label, y the output of the perceptron and η the
learning rate. The choice of η is fixed before training and usually 0 < η < 1. For the
update of the weights of networks with multiple layers, refer to [10].

The perceptron and its training is the basic building block for most neural networks.
Based on this, the concrete architecture can still be adjusted. One first thing is to
increase the number of layers or neurons per layer. But also the choice of connections

4

2 State of the Art

Figure 2.2: Neural network consisting of two hidden layers. The connections between
the perceptrons are bidirectional. In the forward phase, the intermediate
results are given to the neurons to the right and in the backward phase from
right to left.

between layers can improve the performance of the network. Another thing that can
be done is to introduce connections from higher layers to lower layers which makes it
a recurrent neural network. They are especially suited for sequential or time-varying
patterns [11]. There is also a specific architecture for grid-structured data like images.
For them, convolutional neural networks are used to extract features [12–14]. For
further readings on different architecture choices, refer to [15].

In all cases, the weights of the network are updated automatically and it is impossible
to understand the concrete decision-making of the model. The weights are called
parameters of the network. Besides them, there are hyperparameters that have to be
fixed before training. They are design decisions on how the network should behave.
For some of them, experience can show which choices lead to better performances
of the model but in all cases, they can be optimized which will be discussed in the
following section 2.2. Some of the hyperparameters are

• Epochs: Number of times the training data is fed into the network and the weights
are updated

• Learning rate: η of Equation 2.2 defining how fast the model should learn

• Optimizer: Optimizer used to update the weights of the network

5

2 State of the Art

• Loss function: Concrete loss metric how the label and the output are compared in
Equation 2.2

• Batch size: Number of data samples processed in a batch

• Number of layers of the network

• Number of neurons in each layer

All these parameters can drastically influence the model performance. In the follow-
ing section, different techniques for the optimization are presented.

2.2 Hyperparameter Optimization

Most machine learning models have parameters that have to be defined before the
learning phase. They are called hyperparameters and strongly influence the behavior
of the model. One example is the number of epochs of the learning phase of a neural
network. There are different techniques for the optimization of hyperparameters
and they all define the machine learning model as a black box function f with the
hyperparameters as input and the resulting performance as output. The overall goal is
to find a configuration λmin from Λ = Λ1 ×Λ2 × ...×ΛN that minimizes the function
f with N hyperparameters with

λmin = arg min
λ∈Λ

f (λ). (2.3)

In our case, the function f is a machine learning algorithm that is trained on a training
set and evaluated on a validation set. With this, the minimization of e.g. the loss of
the model optimizes the decisions it is making which leads to better prediction results.
Note that one function evaluation of f is usually very expensive as the training of a
machine learning model with many parameters and weights takes much time. The
data set consists of {(xi, yi)|xi ∈ X, yi ∈ Y, 0 ≤ i ≤ m} with m being the number of data
samples. The xi is the input data to the model and the goal is that

∀i : M(xi) = yi. (2.4)

where M is the model. In the context of supervised learning, the whole data set is split
into a training set which is used to optimize the model and a testing set to evaluate the
performance on new, unseen data [16].

In summary, the goal is get evaluation scores on the testing data set which can be
achieved with Equation 2.3. [17–19]

In the following, different techniques for the optimization are presented and dis-
cussed with their advantages and disadvantages.

6

2 State of the Art

2.2.1 Grid Search

The idea of the first approach for optimization is to discretize the domains of each
hyperparameter and evaluate each combination. This suffers from the curse of the
dimensionality as it scales exponentially with the number of hyperparameters. For d
parameters and n values per hyperparameter, nd different configurations are possible
which all have to be evaluated.

One advantage of this method is that it is easy to implement and very simple. Also,
the whole search space is explored evenly.

On the other hand, the curse of the dimensionality makes it very slow if the function
evaluations are very expensive which is the case for most machine learning algorithms.
Another drawback is that each hyperparameter only takes n different values. The
comparison to random search can be seen in Figure 2.3.

2.2.2 Random Search

The next technique [20] is similar to the grid search because the idea is also to evaluate
different hyperparameter configurations. In contrast to the previous one, random
search generates for each run and for each parameter exactly one random value from
an interval which has to be specified. For this approach, a budget b has to be given.
This parameter determines the number of different combinations that are evaluated. A
direct comparison of grid search and random search can be seen in figure 2.3.

In this figure, a two-dimensional setting is depicted. For both techniques, 9 different
combinations are evaluated. In the case of grid search, only 3 distinct values are taken
for each hyperparameter while there are 9 different ones in the random search. In this
example, the better result is found in random search as more distinct values are taken
for the important parameter. Note that it is not always the case that random search
leads to better results.

Compared to the normal grid search, this is one advantage. For each hyperparameter,
b (budget) different values are taken into consideration which is much more compared
to the grid search with the same overall number of combinations. Additionally, this
technique is also easy to implement and relatively simple.

One disadvantage is that it is also very expensive if the budget is high because of the
long training times of machine learning models.

For the sampling in the implementation of random search, we used the functionality
given by the SciPy [21] statistical functions.

7

2 State of the Art

Important parameter

Grid Search
U

n
im

p
o
rt

a
n

t
p

a
ra

m
e
te

r

Important parameter

Random Search

U
n

im
p

o
rt

a
n

t
p

a
ra

m
e
te

r

Figure 2.3: Comparison of grid search (left) and random search (right) in the two
dimensional case. For both techniques, 9 different combinations are eval-
uated. In the left case, only 3 distinct values for each hyperparameter are
set whereas there are 9 different values for each parameter in the random
search. Adapted from [17].

2.2.3 Bayesian Optimization

Another possible technique for finding the best hyperparameters of machine learning
models is called bayesian optimization (BO) [22]. This is an iterative approach for
optimizing the expensive black box function by modelling it based on observations.
A so-called surrogate model f̂ is made with the help of the archive A which contains
observed function evaluations. This surrogate model is created by regression and
the technique which is most often used is the Gaussian process [18] which is only
suitable if the number of hyperparameters is not too high [23]. The problem of this
technique arises when some hyperparameters are categorical or integer-valued which
is the reason why extra approximations can lead to worse results and special treatment
is needed [24]. Another possible technique for the surrogate model is using random
forests [25]. All in all, this function estimates the machine learning model depending on
the hyperparameter configuration and also the prediction uncertainty σ(λ). A second
function called acquisition function u(λ) is built based on the prediction distribution. This
u is responsible for the trade-off between exploitation and exploration. This means that
configurations that lead to better model performances are exploited and values where
not much information is gathered are explored. There are many numerous different

8

2 State of the Art

possibilities for this function [26] but the most used one is the expected improvement (EI)
which is calculated with

E[I(λ)] = E [max (fmin − y, 0)] . (2.5)

If the model prediction y with configuration λ follows a normal distribution [17], it
leads to

E[max (fmin − y) , 0] = (fmin − µ(λ))Φ
(

fmin − µ(λ)

σ

)
+ σϕ

(
fmin − µ(λ)

σ

)
(2.6)

with ϕ and Φ being the standard normal density and standard normal distribution
and fmin the best result so far.

In each iteration, a new candidate configuration λ+ is generated by optimizing the
acquisition function u. This u is much cheaper to evaluate than the f which includes
learning of an expensive neural network which makes the optimization much easier.

The exact steps are presented in Algorithm 1 and Figure 2.4 shows schematic iteration
steps.

Algorithm 1 Bayesian Optimization for a black box function f. In each iteration, the
surrogate model is fitted on the current archive and an acquisition function is built.
The optimum of this acquisition function is evaluated and added to the archive.

Generate initial λ(1), ..., λ(k)

Initialize archive A[0] ←
((

λ(1), f
(

λ(1)
))

, ...,
(

λ(k), f
(

λ(k)
)))

t← 1
while Stopping criterion not met do

Fit surrogate model (f (λ), σ(λ)) on A[t−1]

Build acquisition function u(λ) from
(

f̂ (λ) , σ(λ)
)

Obtain proposal λ+ by optimizing u : λ+ ∈ arg maxλ∈Λ u(λ)
Evaluate f (λ+)

Obtain A[t] by augmenting A[t−1] with
(

λ(+), f
(

λ(+)
))

t← t + 1
end while
return λbest: Best-performing λ from archive or according to surrogates prediction

First, k initial hyperparameter configurations are sampled and evaluated. This set
is the starting archive A[0]. After that, the loop is executed as long as the stopping
criterion is not met. This can be for example a budget, meaning a maximum number

9

2 State of the Art

observation

acquisition max

new observation

objective function

acquisition function

posterior uncertainty

posterior mean

Iteration 2

Iteration 3

Iteration 4

Figure 2.4: Schematic iteration steps of the Bayesian optimization. The maximum of
the acquisition function determines the next function evaluation (red dot in
the middle). The goal is to find the minimum of the dashed line. The blue
band is the uncertainty of the function. Inspired from [17].

of function evaluations. The first step of the loop is to fit the surrogate model on the
current archive. Then the acquisition function is made and optimized to get the next
configuration λ+. This point is evaluated and added to the archive. The overall result
of the algorithm is the λ which is the hyperparameter configuration for the machine

10

2 State of the Art

learning model with the overall best result. The implementation of this optimization
method is based on the website "Bayesian optimization with scikit-learn" 1 which was
the subject of the talk [27].

2.2.4 Other Techniques

There are also other techniques for finding the best hyperparameters. Multi-fidelity
optimization [17] aims to probe the learning of a model on a task with reduced
complexity such as a subset of the data or fewer epochs for training the model for
discovering the best configurations. For example, the learning curve can be predicted
so that early stopping can be done if the prediction is not as good as the best model
so far. There are also bandit-based selection methods that do not predict the learning
curve but compare the different combinations on a small number of epochs and only
perform the best ones. This can be done iteratively like it is done in successive halving for
hyperparameter optimization [28]. The algorithm is very simple. It starts to evaluate
all different combinations with a very small budget. The best half of the candidates
are then evaluated in the next iteration with a double budget and so on until only
one combination is left. In [29], a similar algorithm is presented. The authors use a
model of the objective function (neural network depending on configurations) to find
candidate hyperparameters. Those are then trained on a smaller number of epochs and
the best ones are then evaluated with a higher budget. Also, neural networks can be
used for the optimization which was done by the authors in [30]. Also, the covariance
matrix adaptation evolution strategy was implemented as an alternative to Bayesian
optimization in [31].

2.3 Sparse Grids

Sparse grids are a useful tool to mitigate the curse of the dimensionality by reducing the
number of grid points. In the following, this technique is presented after the general
numerical approximation of functions.

2.3.1 Numerical Approximation of Functions

Let f : Ω → R be a function defined on the unit interval Ω = [0, 1]d in d dimensions.
For simplicity, we first set d = 1. Now this function can be represented on a grid of
level l ∈N0 with 2l + 1 grid points which are

xl,i = i ∗ hl , i = 0, ..., 2l , (2.7)

1https://thuijskens.github.io/2016/12/29/bayesian-optimisation/, accessed August 8, 2023

11

2 State of the Art

with i being the index and hl = 2−l being the distance between the grid points. Each
of them gets a basis function defined by

φl,i : [0, 1]→ R. (2.8)

There are different possibilities for the basis functions which will be presented later.
For the simplicity, we present a simple example being the hat function defined by

φl,i(x) = max
(

1−
∣∣∣∣ x
hl
− i

∣∣∣∣ , 0
)

. (2.9)

All in all, the space of functions that can be presented exactly by a linear combination
is called the nodal space Vl with the assumption that the basis functions form a basis:

Vl = span
{

φl,i|i = 0, ..., 2l
}

. (2.10)

Every function f : [0, 1]→ R can be interpolated by a the interpolant u defined by

fl =
2l

∑
i=0

αl,i φl,i, ∀i = 0, ..., 2l : fl(xl,i) = f (xl,i) (2.11)

for constants αl,i ∈ R. An example can be seen in Figure 2.5.

f(x)

u(x)

u(x) = Σiαiφi(x)

xi 10
0

1

2

3

h3=2-3

}

10
0

1

2

3

Figure 2.5: Interpolation of the function f (black line) by its interpolant u (red, dashed)
in the nodal basis. Level of the grid is 3 and hat functions are used. Inspired
from [32].

On the left side, the function f (black line) can be seen with a grid of level 3. On the
right side, the interpolant u as a linear combination of the basis functions (hat functions
centered on the grid points) can be seen. This approach is the nodal basis. The second

12

2 State of the Art

possibility is called hierarchical basis and the index set is Ih
l = {i ∈ N|1 ≤ i ≤ i ≤

sl − 1, i odd}. The hierarchical subspaces are then

Wl = span
{

φl,i(x)|i ∈ Ih
l

}
. (2.12)

The same nodal space Vl can be obtained with the hierarchical subspaces with

Vl =
⊕
i≤l

Wi. (2.13)

An example can be seen in Figure 2.6.

φ1,1

x1,1

l=1

l=2

l=3

x2,1 x2,3

x3,1 x3,3 x3,5 x3,7

φ2,1

φ3,1 φ3,3 φ3,5 φ3,7

φ2,3

x1,1

x2,1 x2,2 x2,3

x3,1 x3,2 x3,4 x3,6x3,3 x3,5 x3,7

}

} }
}

W1

W2 V3

V3

V2

V1

W3

Figure 2.6: Hierarchical subspaces up to level 3 on the left. On the right, nodal spaces
up to level 3. The combination of W1 up to W3 is the same space as V3.
Inspired from [32].

On the left, the hierarchical subspaces up to level 3 can be seen. All in all, combined
they span the same space as V3. In the hierarchical case, a function f can also be
interpolated by its interpolant u by

u = ∑
i∈Ih

l

αl,i φl,i, ∀i = 0, ..., 2l : u(xl,i) = f (xl,i). (2.14)

An example can be seen in Figure 2.7.
To get into higher dimensions d > 1, we use the tensor product. The domain

is now Ω = [0, 1]d and the level is defined by the level per dimension meaning
l⃗ = (l1, ..., ld) ∈Nd

0. The index set is then

I⃗l =
{⃗

i|1 ≤ ij ≤ 2lj − 1, ijodd, 1 ≤ j ≤ d
}

(2.15)

13

2 State of the Art

u(x) = Σiαiφi(x)
αiφi(x)

xi 10
0

1

2

3

h3=2-3

}

10
0

1

2

3

Figure 2.7: Interpolation of the function f (black line) by its interpolant u (red, dashed)
in the hierarchical basis. Level of the grid is 3 and hat functions are used.
Inspired from [32].

and the subspaces

W⃗l = span
{

φ⃗l ,⃗i(x⃗)|⃗i ∈ I⃗l

}
(2.16)

with the basis functions φ⃗l ,⃗i = ∏d
j=1 φlj,ij(xj) which are constructed with the tensor

product. The function space Vn is constructed by

Vn =
⊕
|⃗l|∞≤n

Wl (2.17)

with
∣∣∣⃗l∣∣∣ = max1≤i≤d |di|. Again, a function can be interpolated by its interpolant u with

u = ∑
|⃗l|∞≤n,⃗i∈ I⃗l

α⃗l ,⃗i φ⃗l ,⃗i, ∀⃗i ∈ I⃗l : u
(

x⃗l ,⃗i

)
= f

(
x⃗l ,⃗i

)
. (2.18)

The resulting regular grid has then (2n − 1)d basis points. An example of a basis
function in two dimensions can be seen in Figure 2.8. It is constructed by the tensor
product of two 1d hat functions.

In the higher dimensional case, the grid can also be constructed hierarchically. The
proof that the hierarchical splitting given by

V⃗l =
l⃗⊕

m⃗=0

Wm⃗ (2.19)

with W⃗l = span
{

φ⃗l ,⃗i |⃗i ∈ I⃗l

}
, I⃗l = Il1 × ...× Ild holds for the basis with hat functions

can be found in [34].

14

2 State of the Art

0
0.2

0.4
0.6

0.8
1

0
0.25

0.5
0.75

1

0

0.2

0.4

0.6

0.8

1

Figure 2.8: Example of a basis function in two dimensions. It is constructed with the
tensor product of two 1d hat functions. Inspired from [33].

2.3.2 Adaptive Sparse Grids

The problem of regular grids is the curse of the dimensionality because of the high number
of grid points in higher dimensions. This is tackled by sparse grids [35, 36] by reducing
this number. The first technique to achieve this is by just leaving out subspaces. The
resulting sparse function space is given by

V1
n =

⊕
|⃗l|1≤n+d−1

W⃗l ⊂ Vn. (2.20)

An example with n = 3 can be seen in Figure 2.9.
An interpolant un of a function f is then constructed by

ul = ∑
|⃗l|1≤l+d−1

∑
i⃗∈ I⃗l

φ⃗l ,⃗iα⃗l ,⃗i (2.21)

where the α⃗l ,⃗i are the coefficients of the basis functions [37].
A second approach for sparse grids exists. The so-called combination technique [38]

combines anisotropic full grids to get the same subspace as the conventional sparse grid

15

2 State of the Art

l1=1
l 2
=
1

l 2
=
2

l 2
=
3

l1=2

V3
(1)

l1=3

Figure 2.9: Two dimensional example of a sparse grid with n = 3. Left, the subspaces
W⃗l can be seen and on the right is the resulting sparse grid. Inspired from
[32].

approach. This has the advantage that we can use normal full grid operations on each
subspace which will then be combined. This implies the possibility of parallelization.
The combined solution can be computed with

uc
l = ∑

l⃗∈I

u⃗l c⃗l (2.22)

where l⃗ is the level vector of the full grid solution u⃗l , c⃗l is a scalar factor, and I is the
set of included level vectors. For a standard sparse grid, this evaluates to

uc
l =

d−1

∑
q=0

(−1)q
(

d− 1
q

)
∑

l⃗∈Il,q

u⃗l (2.23)

with Il,q =
{⃗

l ∈Nd
0 :

∣∣∣∣∣∣⃗l∣∣∣∣∣∣
1
= l + d− 1− q

}
[39]. An example of the 2-dimensional

combination technique can be seen on the left side of Figure 2.10.
With the normal combination technique, this grid is still symmetric and focuses on a

low global error. Especially in optimization or data-driven problems where the points
are not distributed equally in the domain, special regions are of interest. In the case of

16

2 State of the Art

optimization which is our focus, the errors around the extrema have to be interpolated
more exactly than other regions. This is the reason why we use refinement. In the case
of dimension-adaptive refinement [40], more grid points are added in the dimensions
of higher relevance.

l1=1 l1=2 l1=3 l1=4

l 2
=
4

l2

l 2
=
3

l 2
=
2

l 2
=
1

l1 l1=1 l1=2 l1=3 l1=4

l 2
=
4

l2

l 2
=
3

l 2
=
2

l 2
=
1

l1

+ +
- -

Figure 2.10: Example of the 2-dimensional combination technique. Here the blue
regular grids are added and the red ones are subtracted. On the left,
the normal combination technique can be seen and on the right is an
dimension-adaptive version. Inspired from [32].

In contrast to the previously mentioned refinement concentrating on whole dimen-
sions, the spatially adaptive refinement directly adds grid points where the discretization
error is still high. An example of the spatially adaptive combination technique pre-
sented by [39] can be seen in figure 2.11. In this example, the basis points of the
component grids are no longer equidistant because refinement was already made.

In summary, Table 2.1 shows the comparison of full grids, sparse grids, and the
combination technique in terms of number of the points and interpolation accuracy
[32].

2.3.3 Basis Functions for Sparse Grids

So far, we only considered the simple case of the hat function on the support points.
Besides them, there are other possibilities, for example piecewise d-polynomial, wavelet,
and B-spline basis functions. For the first two cases, refer to [32, 36, 41] for further

17

2 State of the Art

0.0

0 3 2 4 3 4 1 2 0

0.50.250.125 0.375

x1

0.625 0.75 0.875 1.0

0.0

0 3 2 3 1 2 0

0.50.250.125 0.375

x2

0.625 0.75 0.875 1.0

Figure 2.11: Example of the spatially adaptive combination technique in two dimensions.
Inspired from [39].

Table 2.1: Comparison of sparse grids, full grids, and the combination technique in
terms of number of grid points and the accuracy.

Grid Number grid points Error
Full grid O

(
2nd) O

(
h2

n
)

Sparse grid O
(

h−1
n

(
log h−1

n
)d−1

)
O
(

h2
n
(
log h−1

n
)d−1

)
Combination technique O

(
d
(
log h−1

n
)d−1

)
×O

(
h−1

n
)

O
(

h2
n
(
log h−1

n
)d−1

)
readings. In this thesis, we will concentrate on the B-spline basis for the sparse grids as
the hat function is not continuously differentiable [34]. This is the reason why we can
not compute globally continuous gradients which is a problem for the optimization.
The general cardinal B-spline with degree p ∈N0 is defined by

bp(x) =

{∫ 1
0 bp−1(x− y)dy p ≥ 1

χ[0,1[(x) p = 0
(2.24)

with χ[0,1[being the characteristic function of the half-open unit interval [42]. The bp as
defined above has the following 8 properties:

1. compactly supported on [0, p + 1]

2. symmetric and 0 ≤ bp ≤ 1

3. weighted combination of bp−1 and −bp−1

4. piecewise polynomial of degree p

18

2 State of the Art

5. d
dx bp is the difference of bp−1 and −bp−1

6. has unit integral

7. is the convolution of bp−1 and b0

8. hat function and Gaussian function are special cases

This is the case for uniform B-splines. For adaptive grids, the distances between
basis points are not always uniform. This is the reason why we need also non-uniform
B-splines. Let m, p ∈ N0 and ξ =

(
ξ0, ..., ξm+p

)
be an increasing sequence of real

numbers called knot sequence. For k = 0, ..., m− 1, the non-uniform B-spline is defined
by

bp
k,ξ(x) =

x−ξk

ξk+p−ξk
bp−1

k,ξ (x) + ξk+p+1−x
ξk+p+1−ξk+1

bp−1
k+1,ξ(x) p ≥ 1

χ[ξk ,ξk+1[(x) p = 0
(2.25)

This definition and the proof that the hierarchical splitting also holds for using the
B-splines for restricted functions can be found in [34].

2.3.4 Optimization with Sparse Grids

In general, an optimization problem can be constrained or unconstrained. In the first
case, additionally to finding an optimum, there is a constraint that has to be fulfilled. In
the case of sparse grids within the standard hypercube, the input values are restricted
to the interval [0, 1]d. The optimization problem which is called box-constrained can
be solved by defining the function outside the box as infinity with f (x) = +∞ for all
x /∈ Ω = [0, 1]d.

Depending on whether the optimization algorithm uses the gradient or not, it is
called a gradient-based method or a gradient-free method, respectively. In the following,
algorithms of both types are presented [34].

Gradient-Free Methods

Nelder Mead Method This iterative algorithm stores d+ 1 vertices of a d-dimensional
simplex in ascending order of function values. In each round, either reflection, expan-
sion, outer contraction, inner contraction or shrinking is performed on the vertices. In
this way, the simplex contracts around the optimum.

19

2 State of the Art

Differential Evolution This algorithm maintains a list of points which are iteratively
updated by the weighted sum of the previous generation. The mutated vector is crossed
over with the original vector entry by entry and the resulting points are only accepted
if they have better function values.

CMA-ES CMA-ES (covariance matrix adaption, evolution strategy) keeps track of
the covariance matrix of the Gaussian search distribution. After sampling m points
from the current distribution, the k best samples are used to calculate the distribution
of the next iteration as the weighted mean of them. Then the covariance matrix is
updated.

Gradient-Based Methods Important values for the following methods are the gradient
∇x f (xk) and the Hessian ∇2

x f (xk). Most methods of this type update the current
position in each iteration with

xk+1 = xk + δkdk (2.26)

where δk is the step size and dk is the search direction.

Gradient Descent This method uses the gradient and sets the search direction to
the standardized negative gradient at this point with dk ∝ −∇x f (xk). If the Hessian is
ill-conditioned, then the convergence is slow.

NLCG NLCG (non-linear conjugate gradients) is equivalent to the conjugate gradi-
ent method when optimizing function of the form f (x) = 1

2 xT Ax− bTx. It finds the
optimum after d steps for strictly convex quadratic functions. According to the Taylor
theorem, it converges also for non-convex functions that are three times continuously
differentiable with positive definite Hessian because those functions are similar to
strictly convex quadratic function in the region of the optimum.

Newton This method replaces the objective function with the second-order Taylor
approximation f (xk + dk) ≈ f (xk) + (∇x f (xk))

T dk +
1
2 (dk)

T (
∇2

x
)

f (xk) dk and sets
the search direction to dk ∝ −

(
∇2

x f (xk)
)−1∇x f (xk). This way xk + dk is the minimum

of the approximation.

BFGS BFGS (Broyden, Fletcher, Goldfarb, Shanno) is a quasi-newton method. The
previous technique has the disadvantage that the Hessian has to be evaluated which
is expensive. BFGS approximates this matrix by a solution of ∇2

x f (xk) (xk − xk−1) ≈
∇x f (xk)−∇x f (xk−1).

20

2 State of the Art

Rprop Rprop (resilient propagation) is not dependent of the exact direction of the
gradient of the function but often works robustly in machine learning scenarios. The
gradient entries are considered separately for each dimension and the entries of the
current point xk are updated depending on the sign of the gradient entry. Also the step
size is adapted dimension-wise.

For constrained optimization methods, refer to [34]. There, the optimal point has to be
found while constraining another function g with xopt = argmin f (x), so that g(x) ≥ 0.

One application of the optimization with sparse grids is presented in [43]. The
goal was to solve forward-dynamics simulations of three-dimensional, continuum-
mechanical musculoskeletal system models. The authors use B-splines on sparse grids
for surrogates of the muscle model and use it in simulations that are subject to con-
straint optimization.

An alternative approach for global optimization of a function is presented by [44].
One application is dealing with induction motor parameter estimation [45]. There, the
search space is discretized using the hyperbolic cross points (HPC). In one dimension,
the points of level k are defined with

x = ±
k

∑
j=1

aj2−j, aj ∈ 0, 1. (2.27)

The representation of those points (but not 0) is unique, for example 0.375 = 0× 2−1 +

1× 2−2 + 1× 2−3. The level of a three-dimensional point [0.25, 0.375, 0] is 5. Figure 2.12
shows the HPC for k = 5.

A full grid of this level has 1089 points, whereas the number of HPCs is 147 which
is much less, although the accuracy is nearly as good as using the full grid with
O
(

N−2 · (log N)d−1
)

with N being the number of grid points in one dimension. Now
with the reduced number of search points, the optimization is made faster while still
getting accurate results.

The optimization problem generally applies in various scientific fields. The authors
of [46] present an application for path planning of car-like robots. The same global
minimization approach based on sparse grids is used as in the previous application
using the HPCs [44, 45].

Another method for optimization is presented in [47]. The authors introduce an
optimization scheme based on sparse grids and smoothing that is derivative-free. It is

21

2 State of the Art

0.0

0.25

-0.25

0.5

-0.5
0.0 0.25-0.25 0.5-0.5

Figure 2.12: HPC of level k = 5 (red stars) and full grid (black dots). A full grid would
have 332 = 1089 and this grid has 147 points. Inspired from [45].

an iterative algorithm for finding a local optimum.
Similar to this method, the authors of [48] also present a derivative-free optimization

based on sparse grid numerical integration. Their technique applies to smooth nonlinear
objective functions where the gradient is not available and point evaluations are very
expensive.

Also, the authors of [49] present an optimization algorithm with the help of sparse
grids. They use the collocation scheme and it can be used in a wide range of applications.
Examples that are presented include stochastic inverse heat conduction problems and
contamination source identification problems.

22

2 State of the Art

2.4 Adaptive Random Search

As well as the sparse grid optimization, an adapted random search approach can also
be used for finding the minimum of arbitrary functions. The so-called adaptive random
search was also already used in different settings and multiple variations.

One example is presented in [50]. The authors introduce Adaptive Random Search
Technique (ARSET) and compare its performance with other optimization approaches.
The algorithm dynamically adapts the search space depending on the current and new
function value, as well as the one from two epochs before. The authors describe that
with their algorithm, not only local optima but also the global optimum can be found.
Benchmark tests are presented that show that other techniques are outperformed. Note
that the authors used up to 50000 epochs to find the best solution. This number is way
too high for hyperparameter optimization because of the high cost of model training
and evaluation.

The authors of [51] also introduce an alternative approach to making the random
search adaptive. The search space in each iteration is adapted by changing the standard
deviation. For the exact algorithm, refer to [51]. The authors present tests that illustrate
that the adaptive approach accelerates convergence compared to the standard random
search optimization.

In the context of hyperparameter optimization, where neural networks are initial-
ized with random weights, evaluating the same configuration can yield stochastic
results. To address this issue, various techniques can be employed, such as setting
the seeds of random functions. However, in their work [52], the authors introduce
three different adaptive random search approaches for tackling stochastic optimization
problems. The first approach is called Adaptive Search with Resampling (ASR), which
aims to reduce the noise in the objective function by resampling already evaluated
points. The other two methods, Deterministic Shrinking Ball (DSB) and Stochastic
Shrinking Ball (SSB) mitigate this noise by averaging the function values within a
specific ball. The authors demonstrate that ASR is a highly promising algorithm, partic-
ularly in situations where normal random search struggles to identify optimal solutions.

Also, the authors of [53] introduce an algorithm for adaptive random search. Their
approach is to make the step size adaptive with the so-called adaptive step size random
search (ASSRS) as an approximation of the optimum step size random search (OSSRS).
Also, the fixed step size random search (FSSRS) is described. A comparison with the
fixed step size gradient method is provided which shows that the FSSRS performs

23

2 State of the Art

better than the gradient-based method for problems of dimension 5 or higher and a
sufficiently small ratio of step size to distance to the minimum.

In our case for the hyperparameter optimization, we try to keep the number of
function evaluations very small because of the time-consuming training and evaluation
of the models. In [54], the adaptive partitioned random search (APRS) is presented
which is at least 100 times more efficient compared to the normal random search in
terms of the number of function evaluations. The authors present the simplicity and
robustness of the algorithm. It partitions the search space into regions with function
evaluations and estimates how "promising" each region is. Depending on this metric,
more points are evaluated in more promising ones.

One other important point of hyperparameter optimization that we have to keep in
mind is that we sometimes have variables that are not continuous e.g. the choice of the
type of optimizer of a neural net or even integer parameter like the number of epochs
to train. This also applies to other optimization problems. The authors of [55] mention
the example of a heat exchanger with parameters like discrete tube diameters and
lengths. This is why they apply the adaptive random search to four different problems
with discrete and mixed parameters. They show that their approach is more efficient
than previously applied algorithms and even new optima could be found.

24

3 Hyperparameter Optimization with
Sparse Grids

3.1 Methodology

In the scope of this thesis, we implemented two new approaches for hyperparameter
optimization. The first one is using sparse grids and the second one is based on the
idea of random search.

3.1.1 Adaptive Grid Search with Sparse Grids

The first new approach is using an adaptive sparse grid for the optimization. The idea
is similar to conventional grid search because a grid is generated on the hyperparameter
space and the machine learning model is evaluated with the configuration given by
the grid points. However, there are major differences to the conventional grid search.
The first one is the location and generation of the basis points. As described in Chapter
2, sparse grids need fewer points to achieve similar accuracy for certain functions.
Additionally, the grid is generated iteratively and can be adaptive to the underlying
function. This adaptivity can be set with a specific parameter. For our implementation,
we utilize the functionality given by the SG++ toolbox [56]. It allows to additionally
interpolate the function given by the grid points with B-splines and apply several
different kinds of optimization algorithms to find the best configuration.

3.1.2 Iterative Adaptive Random Search

Another new technique is based on the random search. For the optimization with
the iterative adaptive random search, a fixed number of initial points are sampled
in the hyperparameter space. In the following iterations, already existing points are
refined meaning that points are sampled in the neighboring region. We implemented
three different refinement strategies that determine, how points are refined. The
main differences are the probability distribution and the intervals of the new search
region. For this algorithm, we can also balance the trade-off between exploration and
exploitation. A similar adaptivity parameter as introduced in the adaptive sparse grid
search, is used to define which point is selected to be refined in each iteration step.

25

3 Hyperparameter Optimization with Sparse Grids

3.1.3 Evaluation Metrics

For this comparison, we used several kinds of artificial neural networks such as fully
connected or convolutional ones. Additionally, multiple datasets of different sizes and
with categorical or numerical features are being used. General tasks like for example
regression with mean average percentage error as metric and object detection with
accuracy as metric are optimized. To validate a hypothesis, more than one experiment
with e.g. different data sets are used.

3.2 Sparse Grid Optimization of Functions

3.2.1 Implementation

The implementation was done in Python (version 3.10.6) and two main classes are
introduced. The first is the Dataset encapsulating the input and target data of the
dataset used for the machine learning model. One can either instantiate an object with
a given X and Y vector for the data and target or by giving a task id. This identification
number is used to instantiate both arrays with the dataset that can be fetched with the
functionality given by OpenML [57]. Each task has a unique id, we first concentrate on
Regression tasks with small neural networks.

The second class introduced is the Optimization class. The abstract super class has 5
concrete implementations, one for each of grid-, random search, Bayesian optimization,
the sparse grid search and iterative adaptive random search. In all cases, a dataset object
has to be given. Additionally, the machine learning model as a function depending on
the hyperparameters is required. For the sparse grid search, the functionality of the
SG++ [56] is used. The function has to inherit the class ScalarFunction and the concrete
model evaluation is done in the member function eval(x). Also, the hyperparameter
space has to be defined. This is a dictionary with information about the names and
the types of parameters. Possible types are list for categorical ones, interval (int) for
continuous (or integer) parameters, and log interval for ones that should be sampled
logarithmically. Additionally, the lower and upper bound for each of them has to be
provided. The next parameters are the budget defining the upper bound for function
evaluations and the verbosity for outputs.

For the sparse grid optimization, the hyperparameters have to be scaled to the
standard interval [0, 1] and back to the original one for interpretation. Therefore, the
functions to_standard, from_standard, to_standard_log and from_standard_log are intro-
duced for the linear and logarithmic scaling as presented in Figure 3.1.

26

3 Hyperparameter Optimization with Sparse Grids

1 def to_standard(lower, upper, value):
2 return (value − lower) / (upper − lower)
3

4 def from_standard(lower, upper, value):
5 return value * (upper − lower) + lower
6

7 def to_standard_log(lower, upper, value):
8 a = math.log10(upper / lower)
9 return math.log10(value / lower) / a

10

11 def from_standard_log(lower, upper, value):
12 a = math.log10(upper / lower)
13 return lower * 10 ** (a * value)

Figure 3.1: Scaling to and from the standard interval [0, 1] for the sparse grid optimiza-
tion.

The parameters lower and upper from the functions in Figure 3.1 are the bounds of
the original hyperparameter interval. The value argument is then scaled to or from the
standard domain [0, 1], respectively.

Due to many stochastic influences in the scope of neural networks, reproducibility is
not always given by default. Examples are the network’s weight initialization, random
dataset splitting, and shuffling during the training phase. To overcome this problem,
the seeds of random functions can be set to be deterministic and reproducible.

3.2.2 Test Functions

Before optimizing the configurations of machine learning models, simple functions are
used. This has the advantage that the optimal point is already known in advance and a
function call is much faster than evaluating a neural network. Therefore, three different
test functions are given with the following properties [56]:

Table 3.1: Three test functions and their properties.
Function Domain xopt f (xopt)

Eggholder [−512, 512]2 (512, 404.2319) −959.6407
Rosenbrock [−5, 10]2 (1, 1) 0

Rastrigin [−2, 8]d 0⃗ 0

27

3 Hyperparameter Optimization with Sparse Grids

The Eggholder function is defined with [58]

f (x0, x1) = −x0 ∗ sin(
√
|x0 − (x1 + 47)|)− (x1 + 47)sin(

√
|x1 + 47 +

x0

2
|). (3.1)

The second function (Rosenbrock) [59] is calculated with

f (x0, x1) = (1− x0)
2 + 100(x1 − x2

0)
2. (3.2)

and the third one (Rastrigin) [59] is defined with

f (x⃗) = 10d +
d

∑
i=1

(x2
i − 10cos(2πxi)) (3.3)

where d is the dimensionality of the input vector x⃗. Figure 3.2 shows the functions in
two dimensions.

x0

−400
−200

0
200

400

x1

−400
−200

0

200

400

y

−500

0

500

1000

−750

−500

−250

0

250

500

750

x0
−400 −200 0 200 400

x1

−400

−200

0

200

400

y

−750

−500

−250

0

250

500

750

(a) Eggholder.

x0

−2
0

2
4

6
8

x1

−2
0

2

4

6

8

y

−1
0

1

2

3

4

5

1

2

3

4

5

x0
−2 0 2 4 6 8

x1

−2

0

2

4

6

8

y

1

2

3

4

5

(b) log10(f) of Rosenbrock.

x0

−2
0

2
4

6
8

x1

−2
0

2

4

6

8

y

20

40

60

80

100

120

140

20

40

60

80

100

120

140

x0
−2 0 2 4 6 8

x1

−2

0

2

4

6

8

y

20

40

60

80

100

120

140

(c) Rastrigin.

Figure 3.2: Test functions used for evaluating the sparse grid optimization. Each one
is plotted with 200 samples in each dimension. Note that the function
values of the Rosenbrock function are transformed with log10(f (x)) for
better visualization.

The Eggholder function (see Figure 3.2a) is oscillatory and the optimal point xopt

lays at the border of the domain. Additionally, it is multi-modal. The second one (see

28

3 Hyperparameter Optimization with Sparse Grids

Figure 3.2b) is plotted with the function values additionally transformed with log10(x)
for better visualization. The last one is also multi-modal (see Figure 3.2c).

As a first step, the sparse grid generation which is done with the Ritter Novak
refinement criterion [34] is evaluated. In each iteration, the grid point xl,i that minimizes
the product

(rl,i + 1)1−γ · (||l||1 + dl,i + 1)γ (3.4)

is refined. In this case, rl,i = |{(l′, i′) ∈ K| f (xl′,i′) ≤ f (xl,i)}| ∈ {1, ..., |K|} is the rank
of the grid point with K being the current set of level-index pairs of the grid. This
rank denotes the place of the function value in the ascending order of all values of
the current grid. On the other hand, the degree of the point dl,i ∈ N0 is the number
of previous refinements at this point. One important choice has to be made for the
adaptivity parameter γ. This value has to be between 0 and 1 and the smaller this value
is, the more adaptive is the sparse grid. With this value, a trade-off between exploration
and exploitation can be balanced. The optimal value generally depends on the function
that has to be optimized.

3.2.3 Sparse Grid Generation with different Adaptivities

In the following, the behavior of the sparse grid generation is analyzed with the help
of the three test functions. In each case, 3 different values for the adaptivity parameter
γ ∈ {0.0, 0.5, 1.0} are used and the resulting sparse grid with the triangulated function
values is plotted. The first test case is the Eggholder function and the result is depicted
in Figure 3.3.

29

3 Hyperparameter Optimization with Sparse Grids

−400 −200 0 200 400

x0

−400

−200

0

200

400

x
1

x0
−400 −200 0 200 400

x1

−400

−200

0

200

400

−600

−400

−200

0

200

400

600

(a) γ = 1.0

−400 −200 0 200 400

x0

−400

−200

0

200

400

x
1

x0
−400 −200 0 200 400

x1

−400

−200

0

200

400

−400

−200

0

200

400

600

(b) γ = 0.5

−400 −300 −200 −100 0 100 200

x0

−200

−100

0

100

200

300

400

x
1

x0
−400−300−200−100 0 100 200

x1

−200

−100

0

100

200

300

400

−400

−200

0

200

400

(c) γ = 0.0

Figure 3.3: Sparse grid generation depending on the adaptivity parameter γ for the
Eggholder function. In all cases, the same number of grid points is used.
Here, in each of the 249 iterations, 4 new grid points are added resulting in
a overall number of 997 function evaluations.

In the first case with γ = 1.0, the grid is homogeneous and not adaptive at all. The
grid points are distributed over the whole domain and the interpolated function looks
very similar to the real plot from Figure 3.2a.

The other extreme case is depicted in Figure 3.3c. There, the grid is maximally
adaptive and really concentrated at the top left corner around (−260, 280). As it is
known from Table 3.1, this is not where the optimal point is located. This behavior
can be explained by the high exploitation throughout the iterations. With such a low
adaptivity parameter, the grid points with low function values in the first iterations are
mostly refined in the other iteration steps.

The middle case with γ = 0.5 depicts a case where exploitation and exploration are
more balanced. The grid points are more distributed than in the case of γ = 0.0 but
there are also some regions where they are more refined, e.g. in the top left corner of
the domain.

Note that in all three cases, the exact same number of grid points are evaluated. In
this case, it is very hard for the sparse grid to find the real optimum because it is located
at the border of the domain and it does not use grid points at the border. Also, the
oscillatory nature of the function makes it hard to not concentrate on a local optimum
which can happen in case of too high adaptivity.

30

3 Hyperparameter Optimization with Sparse Grids

The next function used is the Rosenbrock function (see Figure 3.2b). Again, three
different values for the adaptivity parameter are used. The results are depicted in
Figure 3.4.

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

x0
−4 −2 0 2 4 6 8 10

x1

−4

−2

0

2

4

6

8

10

100000

200000

300000

400000

500000

600000

700000

(a) γ = 1.0

−4 −2 0 2 4 6 8

x0

−4

−2

0

2

4

6

8

10

x
1

x0
−4 −2 0 2 4 6 8

x1

−4

−2

0

2

4

6

8

10

50000

100000

150000

200000

250000

(b) γ = 0.5

−1 0 1 2 3 4 5 6

x0

0

2

4

6

8

x
1

x0
0 2 4 6

x1

0

2

4

6

8

10000

20000

30000

40000

50000

60000

70000

80000

(c) γ = 0.0

Figure 3.4: Sparse grid generation depending on the adaptivity parameter γ for the
Rosenbrock function. In all cases, the same number of grid points is used.
Here, in each of the 249 iterations, 4 new grid points are added resulting in
a overall number of 997 function evaluations.

The first fact that can be observed is that the sparse grid in the first case (Figure 3.4a)
is exactly the same as the one for the Eggholder function (Figure 3.3a). This is due to
the fact that this value of γ leads to a homogeneous sparse grid which is not dependent
on the function used but rather the number of iterations for the grid generation. In this
case, the interpolated function looks similar to the real function (Figure 3.2b).

Now with decreasing value of γ, the grid gets more and more inhomogeneous, while
concentrating to refine smaller function values. The extreme case can be seen in Figure
3.4c, where the most grid points are next to the point (2.5, 6.25). After refining the
first point in the middle, the one on top of it is getting refined all the time for the case
γ = 0.0. Again, the sparse grid with γ = 0.5 is more balanced with more grid points
on the left where the real optimum is located.

The last function used is the Rastrigin function (see Figure 3.2c for the plot of the

31

3 Hyperparameter Optimization with Sparse Grids

function and 3.5 for the resulting sparse grids).

−2 0 2 4 6 8

x0

−2

0

2

4

6

8

x
1

x0
−2 0 2 4 6 8

x1

−2

0

2

4

6

8

20

40

60

80

100

120

(a) γ = 1.0

−1 0 1 2 3 4 5

x0

−1

0

1

2

3

4

5

x
1

x0
−1 0 1 2 3 4 5

x1

−1

0

1

2

3

4

5

10

15

20

25

30

35

40

45

50

(b) γ = 0.5

1 2 3 4 5

x0

1

2

3

4

5

x
1

x0
1 2 3 4 5

x1

1

2

3

4

5

20

25

30

35

40

45

50

(c) γ = 0.0

Figure 3.5: Sparse grid generation depending on the adaptivity parameter γ for the
Rastrigin function. In all cases, the same number of grid points is used.
Here, in each of the 249 iterations, 4 new grid points are added resulting in
a overall number of 997 function evaluations.

As in the previous two cases, the sparse grid is exactly the same for γ = 1.0. We can
also see the same behavior for a decreasing adaptivity parameter. For γ = 0.0, only the
grid point in the center is refined in all steps. In the middle case, the grid looks more
balanced with a tendency to the bottom left corner.

In conclusion, these experiments show that the value for the adaptivity parameter
strongly influences the grid generation and the resulting optimal value found by the
algorithm. In general, this trade-off between exploitation with trying to find a solution
fast and exploration with reconstructing the function in the whole domain can be
balanced with this adaptivity parameter.

In the following, the goal is to further analyze this adaptivity parameter. For each of
the three test functions, experiments with γ ∈ {0.0, 0.25, 0.5, 0.75, 1.0} are made. The
error of the optimum found by the grid is calculated depending on the number of grid

32

3 Hyperparameter Optimization with Sparse Grids

points used. It is evaluated with

Error = f (x∗opt)− f (xopt) (3.5)

where x∗opt is the optimal point found by the sparse grid and xopt is the real optimum.
Figure 3.2 shows the resulting Errors depending on the number of grid points used.
The top left plot is for the Eggholder function, the one on the top right belongs to the
Rosenbrock function and the bottom one corresponds to the Rastrigin function.

0 500 1,000

200

400

600

800

1,000

Number of grid points

Er
ro

r
(E

gg
ho

ld
er

)

0 500 1,000

10−1

100

101

102

103

Number of grid points

Er
ro

r
(R

os
en

br
oc

k)

0 500 1,000

0

5

10

15

Number of grid points

Er
ro

r
(R

as
tr

ig
in

)

γ = 0.0
γ = 0.25
γ = 0.5

γ = 0.75
γ = 1.0

Figure 3.6: Influence of the adaptivity parameter on the error (difference to the actual
optimal value) of the optimum found by the sparse grid.

For all three test functions, a value 0.75 ≤ γ ≤ 1.0 leads to the smallest error with
higher number of grid points. This means that a fast exploitation is not good for finding
the global optimum. For the Rastrigin function, the most adaptive sparse grid does not
even lead to a smaller error with up to 1000 grid points. This is the same example as in
Figure 3.5c, where only the center point is refined. Note that by now, no optimization

33

3 Hyperparameter Optimization with Sparse Grids

algorithm is applied on top of the sparse grid. For further experiments, the adaptivity
parameter will be set to γ = 0.85.

3.2.4 Local and Global Optimization

The next improvement is to add optimizers after the grid generation phase. There are
two different types of algorithms. The first one is local optimization, for example, based
on the gradient like the gradient descent. The second one is global optimization. An
example therefore is to use a multi-start approach by trying out multiple different start-
ing points for the algorithm. These various initial values can be uniformly distributed
in the domain. The following experiments show how the error (difference between
optimum found by the algorithm and actual optimal function value) behaves with a
higher number of grid points of the underlying sparse grid. As a local optimization
algorithm, gradient descent is used. The starting point for this algorithm is set to the
point of the sparse grid where the smallest function value was found. For the global
optimization, a multi-start approach with 20 equally distributed starting points is used.
The concrete algorithm is the nelder mead optimization as described in 2.3.4. The
number of function evaluations used in this method, as well as the number of steps
for gradient descent is set to 1000. One important parameter for the optimization is
the degree of the B-splines used on the sparse grid. The resulting errors depending
on the number of grid points for the degrees 2, 3, and 5 can be seen in Figure 3.7. The
Rosenbrock function is used in all cases.

34

3 Hyperparameter Optimization with Sparse Grids

0 200 400 600 800 1,000

0

20

40

60

80

Number of grid points

Er
ro

r
(d

eg
re

e
2)

Before Optimization
Local Optimization

Global Optimization

0 200 400 600 800 1,000

0

20

40

Number of grid points

Er
ro

r
(d

eg
re

e
3)

Before Optimization
Local Optimization

Global Optimization

0 200 400 600 800 1,000

0

20

40

60

80

Number of grid points

Er
ro

r
(d

eg
re

e
5)

Before Optimization
Local Optimization

Global Optimization

Figure 3.7: Optimization error for different algorithms depending on the number of
grid points in two dimensions. The plots show the results with degree 2
(top left), degree 3 (top right) and degree 5 (bottom). The Rastrigin function
was used.

In all three cases, the errors of the local and global optimizers first increase with
increasing number of grid points until about 100 to 200 function evaluations are done.
After that, both local and global optimization algorithms are at least as good as the
result found by the sparse grid. With increasing number of grid points, the global
optimization finds the best solution in all cases with degrees 2, 3, and 5.

The visualization in Figure 3.8 indicates why the global optimizer achieves the best
results for a high number of sparse grid points.

35

3 Hyperparameter Optimization with Sparse Grids

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

0

20

40

60

80

100

120

140

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

6

24

42

60

78

96

114

132

150

168

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

0

30

60

90

120

150

180

210

240

270

Figure 3.8: Resulting optimal points from local (red points) and global (black points)
optimization algorithm. In the background, the contour of the interpolated
function is depicted with the corresponding sparse grid points in white. The
left one has 5 grid points, the one in the center 77, and the right one 997.
The degree of the B-splines on the sparse grid is 2.

In the left example of Figure 3.8 with 5 sparse grid points, the result of the local
optimizer is at the left border of the domain as indicated by the red line which connects
the different steps of the algorithm. All resulting optimal points found by the multi-start
approach are located in the lower left corner. Note that the interpolated function is not
very similar to the original one (see Figure 3.2c) because of the low number of grid
points.

With an increasing number of these basis points, both algorithms find a better
solution to the problem. In the center plot of Figure 3.8, 77 grid points were used
and the interpolated contour looks more oscillatory and more similar to the original
function. The local and global algorithms find different optimal points in this case.

In the right example of Figure 3.8, 997 grid points were used and the contour already
looks very similar to the function plot. There are many candidates of the global
optimizer and so me of them are near to the actual optimal point which is located at
(0, 0).

The exact solutions of each algorithm can be seen in Table 3.2.

36

3 Hyperparameter Optimization with Sparse Grids

Table 3.2: Overview over the exact solutions found by the local and global optimizer
for the same problem as in Figure 3.8. The actual optimum is at (0, 0), with
function value 0 (see Table 3.1).

Number grid points Optimizer Coordinates Interpolated value Actual value
5 Local (-5,2.5) 23.125 51.25
5 Global (-4.998,-4.971) -6.191 49.862
77 Local (-1.25,-1.016) 12.642 12.642
77 Global (0.157,-1.006) 5.756 5.514

997 Local (-1.990,-0.994) 4.975 4.975
997 Global (-0.014,-0.002) 0.151 0.042

The big advantage of the global optimizer is that multiple starting points are used
so that the chance of reaching the global minimum is very high. Especially for a high
number of grid points used, this is the case. While the local optimizer only finds a local
minimum (see Figure 3.8, red dot at (-1.99, -0.994)), the global optimizer finds multiple
candidates at more than one local minimum. One of them is very near to the global
optimal point in this case (see Figure 3.8, black dot at (0.002, 0.013)).

One approach is to combine all three resulting points with their corresponding
function value. The overall optimal point is then just set to the one with the smallest
function value.

The inputs of the previous experiments were all just two-dimensional. The following
ones analyze the impact of the dimension on the performance of the algorithm. There-
fore, the Rastrigin function is optimized, again with increasing number of grid points.
The degree of the B-splines used on the sparse grid is set to 5 and for the adaptivity
parameter, we set γ = 0.85. The results are depicted in Figure 3.9.

37

3 Hyperparameter Optimization with Sparse Grids

0 1,000 2,000 3,000 4,000 5,000

0

20

40

60

80

Number of grid points

Er
ro

r
Dimension 2
Dimension 4
Dimension 6
Dimension 8
Dimension 10

Figure 3.9: Error of the optimization depending on the number of grid points used for
different dimensions of the Rastrigin function.

The results show that with increasing dimensionality of the problem, more grid
points are needed in order to reduce the error. The metric was again defined as the
optimum found by the algorithm subtracted by the actual optimal value.

In conclusion, the adaptivity parameter, the degree of the B-splines on the sparse
grid, and the dimensionality of the problem that is optimized, strongly influence
the behavior of the sparse grid optimization. For the adaptivity parameter, a value
with about γ = 0.85 is in general a good choice for a function that is not known in
advance. With a higher degree, we can find the optimum a bit faster and for higher
dimensionality, more refinement iterations of the sparse grid are needed.

3.3 Hyperparameter Optimization with Sparse Grids

Now we replace the function, where we know the analytical optimum with the evalu-
ation of a machine learning model. The biggest change is the much higher duration
of one function call and the complexity of finding the analytical solution which is
impossible due to the high number of network weights in neural networks.

38

3 Hyperparameter Optimization with Sparse Grids

3.3.1 Optimization on Sparse Grid Points

The following plots show an example of a small neural network being evaluated on
the diamonds dataset which is available on OpenML [57]. We used a model consisting
of two fully connected layers, each made up of 30 neurons. In one batch, 100 data
samples are processed. The two-dimensional plot (see Figure 3.10) depicts the network
evaluation depending on the number of epochs used and the value for the learning
rate of the Adam optimizer of the model. The loss of the network is calculated with
the mean squared error. As pre-processing of the data, the numeric features of the
input data are scaled with a standard scaler and the categorical features are one hot
encoded. The target values are also scaled separately. For the evaluation metric, we
chose the average result of 2-fold cross validation with the mean absolute percentage
error (MAPE). This metric is defined as

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣yi − yi
pred

yi

∣∣∣∣∣ (3.6)

where yi is the target value and yi
pred is the predicted value of data point xi.

The interval of the epochs is [1, 40] and the learning rate is sampled equidistant and
logarithmic between [10−10, 10−1]. The resulting plot with the result depending on the
epochs and the log10(learning rate) can be seen in Figure 3.10.

epochs
0 10 20 30 40

lo
g(
le
ar
n
in
g
ra
te
)

−10

−8

−6

−4

−2

log(M
A
PE)

−0.4

−0.2

0.0

0.2

0.4

epochs

0
10

20
30

40 lo
g(
le
ar
ni
ng
ra
te
)

−10
−8
−6
−4
−2

R
es
u
lt

−0.5

0.0

0.5

1.0

1.5

−0.4

−0.2

0.0

0.2

0.4

Figure 3.10: 2-layer (with 30 neurons each) fully connected network evaluation on the
diamonds dataset depending on the number of epochs and learning rate
of the Adam optimizer. The result is plotted with log10(MAPE) for better
visualization.

39

3 Hyperparameter Optimization with Sparse Grids

In the plot in Figure 3.10, for each epoch and learning rate, 100 different, equidistant
values are sampled from the corresponding interval (linear sampling for epochs and
log sampling for learning rate). All different combinations are evaluated leading to
1002 = 10000 function evaluations. This took about 45 hours on a normal machine. Re-
garding the goal of hyperparameter optimization, this technique of trying all different
combinations of distinct values is comparable to the grid search approach which is not
very efficient. Although, the rough behavior of the machine learning model can be
analyzed. The function is nearly constant for the learning rate between 10−6 and 10−10.
This is caused by the Adam optimizer adjusting the weights of the network too slowly
in order to minimize the error. In the other half of the domain (learning rate between
10−1 and 10−5), a blue region where the smallest errors are achieved can be observed.
This is where the combination between epochs and the learning rate is very good for
achieving good results. With this plot, a general observation can be made. However, it
takes far too much time to analyze each problem with a plot like this. Additionally to
the high effort, only the region of the minimum can be determined, not the optimal
point itself.

With this knowledge about the underlying function that has to be minimized, the
behavior of the sparse grid can be analyzed. Figure 3.11 depicts the generated grid
colored corresponding to the function value for different adaptivity values and the
number of grid points. Note that the scale of the learning rate is the one interpreted by
the sparse grid. The actual scale is logarithmic between 10−10 for 0.0 and 10−1 for 1.0.

40

3 Hyperparameter Optimization with Sparse Grids

epochs
5 10 15 20 25 30 35 40

lo
g
10
(l
ea
rn
in
g
ra
te
)

−10

−8

−6

−4

−2

0.4

0.6

0.8

1.0

1.2

epochs
5 10 15 20 25 30 35 40

lo
g
10
(l
ea
rn
in
g
ra
te
)

−10

−8

−6

−4

−2

0.4

0.6

0.8

1.0

1.2

(a) Sparse grid generated with adaptivity parameter γ = 0.85 and number of grid points of 29
(left) and 77 (right). Most points are in the upper half for higher values of the learning rate.

epochs
5 10 15 20 25 30 35 40

lo
g1
0(
le
ar
n
in
g
ra
te
)

−10

−8

−6

−4

−2

0.3

0.4

0.5

0.6

0.7

0.8

epochs
5 10 15 20 25 30 35 40

lo
g1
0(
le
ar
n
in
g
ra
te
)

−10

−8

−6

−4

−2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Sparse grid generated with adaptivity parameter γ = 0.5 and number of grid points of 29
(left) and 77 (right). Most points are in the upper right half for higher values of the learning
rate and epochs between 25 and 30.

Figure 3.11: Analysis of sparse grid with machine learning evaluation for different
adaptivity parameters (0.85 3.11a and 0.5 3.11b), each with 29 and 77 grid
points.

In the first case with γ = 0.85, more grid points are generated in the upper half of
the domain. A similar behavior can be observed for a higher number of grid points
(3.11a, right). Especially in regions where the learning rate is about 0.0002 to 0.0003
(scale marked at 0.7), many grid points are refined. From the analysis in Figure 3.10,
there might be the optimal value.

41

3 Hyperparameter Optimization with Sparse Grids

For a smaller adaptivity value of γ = 0.5, the sparse grid is much more adaptive
as depicted in Figure 3.11b. For both the number of grid points 50 and 100, the most
refined part of the sparse grid is at the same region. One important thing to observe
here is that with higher adaptivity, a lower number of grid points is necessary to find
one candidate of the optimum value. On the other hand, with lower adaptivity, more
grid points are needed to find a good minimal value.

However, as shown in Table 3.3, the best value is found with the configuration
γ = 0.85 and number of grid points of 100. This means that lower adaptivity leads to
better results.

Table 3.3: Best hyperparameter configuration found by the sparse grid with different
adaptivity parameters and number of grid points. The best result is found
with γ = 0.85 and 77 grid points.

γ N Epochs Learning rate Result
0.85 29 27 0.00056 0.32599
0.85 77 35 0.00029 0.26339
0.5 29 26 0.00015 0.26837
0.5 77 26 0.00015 0.26837

The results shown in this table prove that too high adaptivity is not good for finding
the smallest function value. However, when using higher adaptivity, the number of grid
points has no big impact on finding the best solution in this case. This is because of
the function shown in Figure 3.10. In general, a higher adaptivity is good for finding a
configuration faster. This can be useful in cases of hyperparameter optimization where
not much time is available and a relatively good solution is enough.

3.3.2 Optimization on Sparse Grids

By adding optimization methods like gradient descent or evolutionary algorithms, an
even better approximation of the optimum might be found if enough grid points are
available. If this number is too small then the interpolant is not precise enough and the
solution of the optimizer is not the real optimum. One example is depicted in Figure
3.12. The steps of the normal gradient descent optimization algorithm are depicted and
connected with arrows. In the background, the interpolated function is shown. The
problem is the same as in Figure 3.10. The degree of the B-splines on the grid is 2 and
the sparse grid points are shown in white.

42

3 Hyperparameter Optimization with Sparse Grids

5 10 15 20 25 30 35 40

Epochs

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g
1
0(
L
ea
rn
in
g
ra
te
)

0.660

0.705

0.750

0.795

0.840

0.885

0.930

0.975

1.020

1.065

5 10 15 20 25 30 35 40

Epochs

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g
10
(L

ea
rn
in
g
ra
te
)

−0.96

−0.72

−0.48

−0.24

0.00

0.24

0.48

0.72

0.96

5 10 15 20 25 30 35 40

Epochs

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g1
0(
L
ea
rn
in
g
ra
te
)

0.2

0.8

1.4

2.0

2.6

3.2

3.8

4.4

5.0

5 10 15 20 25 30 35 40

Epochs

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g1
0(
L
ea
rn
in
g
ra
te
)

0.00

0.75

1.50

2.25

3.00

3.75

4.50

5.25

6.00

Figure 3.12: Optimization steps of gradient descent algorithm for 5 (top left), 9 (top
right), 29 (bottom left) and 49 (bottom right) grid points. In the background
of each plot, the contour of the interpolated function is shown. The function
evaluated is the same as depicted in Figure 3.10.

In Figure 3.12, the solution of the gradient descent optimization algorithm is analyzed
with 5, 9, 29 and 49 grid points on the top left, top right, bottom left and bottom
right, respectively. The minimal interpolated function values and the actual function
evaluations can be seen in Table 3.4.

43

3 Hyperparameter Optimization with Sparse Grids

Table 3.4: Exact values for the optima found by the sparse grid points and the gradient
descent algorithm. The values for xgrid

min are the configurations evaluated by
the sparse grid during the generation and the coordinates in column xopt

min are
found by the optimizer. In bold, the best function values of the optimum
found by the sparse grid and gradient descent algorithm, respectively.

N xgrid
min f (xgrid

min) xopt
min f (xopt

min) finterpolated(xopt
min)

5 (30.25, 3.162 ∗ 10−6) 0.729 (40, 3.162 ∗ 10−6) 0.668 0.670
9 (30.25, 5.623 ∗ 10−4) 0.353 (40, 1 ∗ 10−1) 1.257 −0.950

29 (27.81, 5.623 ∗ 10−4) 0.326 (27.81, 5.623 ∗ 10−4) 0.326 0.326
49 (20.5, 2.129 ∗ 10−4) 0.267 (21.72, 2.094 ∗ 10−2) 0.524 −0.247

In the first case, the optimizer starts at the right grid points and makes one step
towards the right boundary of the domain. In the top right case with 9 grid points, the
solution of the optimizer is at the right top corner of the domain. With 29 basis points
in the left lower case, the solution of the optimizer is the same as the grid point with
the smallest evaluated function value and in the right lower plot, the optimizer first
takes a step to the right and then a second step up to a higher learning rate.

As illustrated in Table 3.4, the optimizer does not always find an actual better solution.
While the interpolated function value actually decreases, the evaluation of the network
with the given configuration results in a higher value which is worse. This behavior is
the same as in Figure 3.7 where both optimizers lead to a higher error than the smallest
value found by the sparse grid. This is due to the small number of function evaluations
made so far and the interpolant of the function being too inaccurate. Also the visual
comparison of the interpolant plots in Figure 3.12 and Figure 3.10 shows that there
are still big differences. Nevertheless in the scope of this thesis, further increasing the
number of grid points is infeasible because of the high costs of one single function
evaluation which is the training and evaluation of a machine learning model.

Note that the additional optimization is very cheap compared to generating the
adaptive sparse grid because the algorithm uses the interpolated function and does not
have to train and evaluate whole machine learning models. In Figure 3.13, the different
algorithms for optimization based on the sparse grid are compared. The same neural
network with the same dataset is used for the comparison.

44

3 Hyperparameter Optimization with Sparse Grids

0 20 40 60
0

2

4

6

8

Number of grid points

M
A

PE
(2

d)
without opt

adaptive gradient descent
adaptive newton

bfgs
differential evolution

gradient descent
multi start

nlcg
nelder mead

newton
rprop

0 20 40 60
0.2

0.4

0.6

0.8

1

1.2

1.4

Number of grid points

M
A

PE
(3

d)

without opt
adaptive gradient descent

adaptive newton
bfgs

differential evolution
gradient descent

multi start
nlcg

nelder mead
newton
rprop

Figure 3.13: Comparison of optimization algorithms on the sparse grid with increasing
number of grid points in two and three dimensions. Epochs, learning rate,
and the batch size of a two-layer neural network on the diamonds dataset
for regression are optimized. Result is the mean absolute percentage error.

For both cases, the solution found by the sparse grid without the optimization step
decreases with increasing number of basis points. For the optimizers, this is not always
the case. The resulting machine learning performance with the configuration found
by the respective algorithm is even much worse than the one found by the sparse grid
in some cases. In comparison to Figure 3.7, we are only using a small number of grid

45

3 Hyperparameter Optimization with Sparse Grids

points and get the same result in this situation. But further increasing the number of
grid points is not feasible because of the high evaluation cost of the neural network.

One thing that has to be taken into consideration is that e.g. the epochs hyperpa-
rameter is not continuous. The values for the number of epochs are always integers
converted with int(). This means that all values in the interval [x, x + 1] for any x ∈N

are interpreted as the smaller integer x. This means that there are regions in the interval
that have the exact same function value because they are evaluated with the same
configuration. This fact might impact the behavior of a gradient-based optimizer. If
the function values in an interval are exactly the same then the gradient is zero in this
interval. This would make it impossible to find the real optimum if the optimizer gets
stuck. In the experiment shown in Figure 3.14, an extreme example is tried out. We
use two hyperparameters with three distinct values each. The first one is the batch size
with values from 100, 400, 2000 and the second one is epochs taking values from 1, 5, 13.
In two dimensions, nine different configurations are then possible. We used B-splines
of degree 0 and a regular sparse grid with the smallest adaptivity possible. As the
machine learning model being evaluated, we took a 2-layer network with 30 neurons
each and a learning rate of 10−5. As dataset, the diamonds regression set is used.

46

3 Hyperparameter Optimization with Sparse Grids

1 5 13

Epochs

100

400

2000

B
a
tc
h
si
ze

0.644

0.680

0.716

0.752

0.788

0.824

0.860

0.896

0.932

0.968

1 5 13

Epochs

100

400

2000

B
a
tc
h
si
ze

0.644

0.680

0.716

0.752

0.788

0.824

0.860

0.896

0.932

0.968

1 5 13

Epochs

100

400

2000

B
at
ch

si
ze

0.736

0.752

0.768

0.784

0.800

0.816

0.832

0.848

0.864

0.880

1 5 13

Epochs

100

400

2000
B
at
ch

si
ze

0.736

0.754

0.772

0.790

0.808

0.826

0.844

0.862

0.880

0.898

Figure 3.14: Sparse grid optimization with the interpolated function in the background,
the white grid points, and the optimizer steps in red. Four different
budgets are used (30: top left, 50: top right, 100: bottom left, 200: bottom
right. Only three different configurations with values for batch size from
100, 400, 2000 and values for epochs from 1, 5, 13.

In Figure 3.14, four different budgets (30, 50, 100, 200) which are shown top left,
top right, bottom left and bottom right, respectively, are depicted. In each case, the
interpolated function is shown in the background with the grid points from the sparse
grid. In red, the steps of the gradient descent optimizer are shown.

We can observe one tendency. The more grid points are used, the more clear it gets
that there are 9 different configurations and corresponding function values. For the
first two cases in the top, the gradient descent still makes steps towards the bottom
right corner of the domain. The interpolated function also still looks smooth. In the
other two cases with a budget of 100 and 200, the optimizer does not take any steps

47

3 Hyperparameter Optimization with Sparse Grids

because the grid points located next to the one with the smallest value also have the
same smallest value.

Now in this case with only 9 distinct values, the sparse grid with its optimizer is
finding the global optimum. But in other cases where there are more distinct configura-
tions, this might lead to the optimizer not finding the global optimum.

We can conclude that the use of any optimizer is not very promising for finding an
improved solution in our case. However, we will still use a local and global optimizer
because it is very cheap compared to the sparse grid generation and in some cases, the
solution is improved. The resulting configuration returned by the algorithm will just
be the best of the three alternatives.

3.4 Comparison with Grid-, Random Search and Bayesian
Optimization

Now with the sparse grid search being analyzed with defined functions and a small
neural network, this algorithm will be compared to the already existing optimization
methods presented in Chapter 2. We will always compare the algorithms depending
on some given budget. This is the upper bound for the number of function evaluations
the algorithm is allowed to make. For the grid search, this budget is always nd where d
is the number of hyperparameters or dimension of the problem. Therefore, n different
values are taken for each hyperparameter. On the other hand, for the sparse grid search,
the highest number of grid points is budget− 2 because we have to evaluate the point
of the local and global optimization for comparison.

3.4.1 Two-dimensional Experiment of Regression with Small Neural
Network

The first experiment is using a two-layer neural network with 40 neurons in each layer.
A batch size of 100 is used and as datasets, 4 different tasks from OpenML are taken.
Table 3.5 gives an overview of the datasets.

48

3 Hyperparameter Optimization with Sparse Grids

Table 3.5: Overview over the datasets used for the first comparison of the optimization
algorithms. They are all available on OpenML [60].

Number of features
Dataset numeric categorical Number of instances

diamonds 7 3 53940
house_16H 17 0 22784

sensory 11 1 576
house_sales 16 2 21613

Brazilian_houses 9 3 10692

All the categorical features are transformed with one hot encoding and the numeric
as well as the target values are scaled using the StandardScaler from the scikit-learn
library [61]. Both transformers are trained on the training set and used for both training
and test set. We used 2-fold cross-validation with the mean absolute percentage
error as the metric. Before each run, the seeds for getting the random values are
reset. This is necessary because the evaluation of the neural network with a specific
configuration should always return the same value. For the B-splines on the sparse
grid, we use a degree of 2 and the grid is generated with an adaptivity value of 0.85.
Two hyperparameters, the number of epochs and the learning rate for the neural
network’s optimizer, are optimized. The first one is linear from 1 to 40 and the second
hyperparameter is logarithmic from 10−9 and 10−1. The resulting performance can be
seen in Figure 3.15.

49

3 Hyperparameter Optimization with Sparse Grids

20 40 60

0.3

0.4

0.5

Cost

M
A

PE
(d

ia
m

on
ds

)

20 40 60

0.4

0.5

0.6

0.7

Cost

M
A

PE
(h

ou
se

_1
6H

)

20 40 60

4.3

4.4

·10−2

Cost

M
A

PE
(s

en
so

ry
)

20 40 60

0.14

0.15

Cost

M
A

PE
(h

ou
se

_s
al

es
)

20 40 60

5 · 10−2

0.1

0.15

Cost

M
A

PE
(B

ra
zi

lia
n_

ho
us

es
)

Grid search
Random search

Bayesian optimization
Sparse Grid Search

Figure 3.15: Comparison of grid-, random search, Bayesian optimization and sparse
grid search for the datasets shown in Table 3.5. Two hyperparameters,
epochs and learning rate of the neural network’s optimizer, were optimized.

50

3 Hyperparameter Optimization with Sparse Grids

It can be seen that in almost all cases, the result is decreasing with increasing cost.
For the house_sales and Brazilian_houses datasets, the sparse grid optimization is
performing best for a cost which is higher than 20. For the sensory dataset, all four
optimization algorithms already get very good results with small costs. This is due
to the small number of data entries. This is not representative of general behavior.
When comparing the normal grid search and the sparse grid optimization, the second
one performs better in most cases. Figure 3.16 shows the behavior for the house_sales
dataset and an upper bound of 10, 30, and 50 for the cost.

51

3 Hyperparameter Optimization with Sparse Grids

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g1

0(
L
ea
rn
in
g
ra
te
)

0.2

0.3

0.4

0.5

0.6

0.7

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g1

0(
L
ea
rn
in
g
ra
te
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g1

0(
L
ea
rn
in
g
ra
te
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Grid search with 9 (left, f (xopt) = 0.14393), 25 (center, f (xopt) = 0.14080), and 49 (right,
f (xopt) = 0.14393) grid points.

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g1

0(
L
ea
rn
in
g
ra
te
)

0.2

0.3

0.4

0.5

0.6

0.7

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g1

0(
L
ea
rn
in
g
ra
te
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g1

0(
L
ea
rn
in
g
ra
te
)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) Random search with 10 (left, f (xopt) = 0.14141), 30 (center, f (xopt) = 0.13526), and 50 (right,
f (xopt) = 0.13619) samples.

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g1

0(
L
ea
rn
in
g
ra
te
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g1

0(
L
ea
rn
in
g
ra
te
)

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g1

0(
L
ea
rn
in
g
ra
te
)

0.5

1.0

1.5

2.0

2.5

3.0

(c) Bayesian Optimization with 10 (left, f (xopt) = 0.13926), 30 (center, f (xopt) = 0.13877), and
50 (right, f (xopt) = 0.13542) samples.

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g
10

(L
ea
rn
in
g
ra
te
)

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g
10

(L
ea
rn
in
g
ra
te
)

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25 30 35 40

Epochs

−9

−8

−7

−6

−5

−4

−3

−2

−1

lo
g
10

(L
ea
rn
in
g
ra
te
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Sparse grid optimization with 5 (left, f (xopt) = 0.14393), 25 (center, f (xopt) = 0.13739), and
45 (right, f (xopt) = 0.13533) grid points.

Figure 3.16: Comparison of the grids generated for the house_sales dataset. The best
configuration found xopt is marked with a white cross.

52

3 Hyperparameter Optimization with Sparse Grids

The big difference between grid search and sparse grid optimization is the adaptivity
and the location of grid points. In Figure 3.16, this can be seen very clearly. While
the grid generated for the grid search (see Figure 3.16a) is very homogeneous and
spread over the whole domain, the grid points are more gathered for the sparse grid
optimization (see Figure 3.16d). For these upper bounds for the cost and for this dataset,
the sparse grid optimization finds configurations with a bit better performance.

3.4.2 Three- and Five-dimensional Experiments of Regression with Small
Neural Network

While the two-dimensional case is good for the visualization of the approaches, one is
often interested in the optimization of more hyperparameters. In the following, we will
focus again on regression problems, but this time we will include the batch size, the
number of neural layers, and the number of neurons per layer in the hyperparameter
space.

For the three-dimensional case, we first use the same network with fixed architecture
again, consisting of 2 layers with 40 neurons each. The hyperparameter space consists
of the epochs, the batch size and the learning rate of the neural network. The first two
are linear integers from 1 to 40 for the epochs and the batch size has 100 and 2050 as
bounds. The learning rate is again logarithmic from 10−9 to 10−1. We used the three
datasets house_16H, house_sales, and Brazilian_houses (see Table 3.5). The resulting
performance can be seen in Figure 3.17.

53

3 Hyperparameter Optimization with Sparse Grids

20 40 60 80 100

0.4

0.6

0.8

Cost

M
A

PE
(h

ou
se

_1
6H

)

20 40 60 80 100

0.13

0.14

0.14

Cost

M
A

PE
(h

ou
se

_s
al

es
)

20 40 60 80 100
5 · 10−2

0.1

0.15

0.2

Cost

M
A

PE
(B

ra
zi

lia
n_

ho
us

es
)

Grid search
Random search

Bayesian optimization
Sparse grid optimization

Figure 3.17: Comparison of grid search, random search, Bayesian optimization and
sparse grid search. The model optimized consists of two layers with 40
neurons each. The number of epochs, batch size, and learning rate are
optimized.

The advantage of adaptive sparse grid optimization compared to a homogeneous
grid is adaptivity meaning that more evaluations are done in a region of already small
values. Especially with the house_sales dataset, the sparse grid optimization achieves
good results already with a small cost. Although in general, this method needs at
least some cost to generate a grid that is precise enough to find the optimal point.
This can be seen in the case of the house_16H dataset. At first, the resulting mean
average percentage error is very high compared to the other three techniques but after
a cost of 69, the sparse grid optimization achieves the best results with the smallest error.

To also analyze the behavior in settings of higher dimensionality, we now also add

54

3 Hyperparameter Optimization with Sparse Grids

the number of layers and the number of neurons per layer as the fourth and fifth
variables to the hyperparameter space. The other variables and their intervals stay the
same. The number of layers can now range from 2 to 21 and each layer can have 1 to 20
neurons. The resulting errors depending on the cost for the same three datasets as in
Figure 3.17 can be seen in Figure 3.18.

40 60 80 100 120

0.34

0.36

0.38

0.4

Cost

M
A

PE
(h

ou
se

_1
6H

)

40 60 80 100 120

0.14

0.16

Cost

M
A

PE
(h

ou
se

_s
al

es
)

40 60 80 100 120

5 · 10−2

0.1

0.15

0.2

Cost

M
A

PE
(B

ra
zi

lia
n_

ho
us

es
) Grid search

Random search
Bayesian optimization

Sparse grid optimization

Figure 3.18: Comparison of grid search, random search, Bayesian optimization and
sparse grid search. The number of epochs, batch size, and learning rate
are optimized as well as the number of layers and number of neurons per
layer.

The big advantage of the sparse grid is the efficiency in higher dimensions. This can
be seen in Figure 3.18. Here with 5 dimensions and a maximum limit for a cost of 130,
the normal grid search can only use 2 different values for each hyperparameter leading
to 32 function evaluations. That is the reason why we can only see one point in each of
the three plots for the datasets. The big advantage of sparse grid optimization is that

55

3 Hyperparameter Optimization with Sparse Grids

fewer grid points are needed and those basis points generated are also adaptive to the
problem leading to a fast decrease of error. For almost all three datasets, the sparse grid
optimization finds the configuration leading to the smallest mean absolute percentage
error.

3.4.3 Nine-dimensional Experiment with MNIST Dataset

To also compare the different approaches with a convolutional neural network for
object detection, we use a small model with the MNIST dataset. Nine different hyper-
parameters are optimized. An overview of the type and the ranges can be seen in Table
3.6.

Table 3.6: Hyperparameters with their type and interval for the nine dimensional space.
The values for the Int-Interval are discretized with Python’s int() function.
The learning rate is sampled logarithmic and the dropout probability can
take continuous values between 0 and 1.

Hyperparameter Type Interval
Epochs Int-Interval [1, 10]

Batch size Int-Interval [200, 1000]
Learning rate Log-Interval [10−10, 10−1]

Number conv layers Int-Interval [1, 3]
Number fully connected layers Int-Interval [1, 3]

Kernel size Int-Interval [1, 4]
Pool size Int-Interval [1, 3]

Neurons in fully connected Int-Interval [1, 7]
Dropout probability Interval [0, 0.999]

The input shape is always (28, 28, 1) which defines the first layer of the network.
After that, blocks consisting of convolutional and pooling layers are added. The number
of blocks is defined by the hyperparameter number of convolutional layers. The kernel
and pool size of the 2D convolution and the following pooling layer is defined by the
kernel size and pool size and they are optimized. After that, fully connected layers are
added. The number of layers as well as the number of neurons per layer are optimized
with the two hyperparameters. Between the convolutional part and the fully connected
layers, a dropout layer is added. The probability is optimized as well. The other
hyperparameters like epochs, batch size, and learning rate are optimized like in the
previous experiments. As an optimizer, we used the Adam optimizer and the loss
function is the categorical cross-entropy.

56

3 Hyperparameter Optimization with Sparse Grids

The evaluation of the network is done as follows. The dataset is fetched with the
predefined training and test set from keras [62]. The model is fit on the training set
with a validation split of 10%. It is not shuffled as we want to have reproducibility
because the same hyperparameter configuration should produce the same result. This
is also the reason why we reset the seeds of Python’s random functions to always have
the same weight initialization of the network. After the training step, we evaluate the
model using the test set. As an optimization metric, we use the negative accuracy of
the prediction as we still minimize. The resulting accuracy depending on the increasing
cost is depicted in Figure 3.19.

0 20 40 60 80 100 120

0.2

0.4

0.6

0.8

1

Cost

A
cc

ur
ac

y

Grid search
Random search

Bayesian optimization
Sparse grid optimization

Figure 3.19: Hyperparameter optimization of a convolutional neural network on the
MNIST dataset with different algorithms. The hyperparameter intervals
are presented in Table 3.6.

Again, with increasing cost, the algorithms find better configurations leading to
higher accuracy. In this example, the grid search can only evaluate the model with one
single configuration. This is due to the reason that the next step would be 29 = 512
different configurations where it would try out 2 different values for each hyperparam-
eter.

The first points for sparse grid optimization and Bayesian optimization are also very
low, but with a bit higher cost, the performance increases very much. For the random
search, even the first point with a budget of 5, the best accuracy is already at about
79%.

For the sparse grid search, the advantage compared to the normal grid search is that
there is no curse of the dimensionality. The performance is comparable with the other

57

3 Hyperparameter Optimization with Sparse Grids

two algorithms, random search and Bayesian optimization.

The best configurations found by each algorithm for the problem are depicted in
Table 3.7.

Table 3.7: Overview over the best configurations found by the different algorithms grid
search (GS), random search (RS), Bayesian optimization (BO) and sparse grid
optimization (SG). The configuration is given as tuple (epochs, batch size,
learning rate, number conv layers, number fully connected layers, kernel size,
pool size, neurons per fc layer, dropout probability).

Algorithm Configuration Accuracy Cost
GS (5, 600, 10−6, 2, 2, 2, 2, 4, 0.5) 10.1% 1
RS (9, 975, 0.0173, 2, 1, 3, 1, 6, 0.619) 97.4% 80
BO (6, 584, 10−2.17, 2, 1, 3, 1, 5, 0.281) 97.5% 80
SG (7, 400, 10−2, 2, 2, 2, 2, 5, 0.5) 97.5% 93

We can observe that the algorithms find different best configurations for the convolu-
tional model. However, the resulting best accuracy is very similar. This is normal for
many machine learning problems. There are many different possibilities for very good
model performances. In this case, we already achieve a high accuracy of about 97%.
However, it is still possible to further increase this performance by e.g. increasing the
number of epochs or using a more complex neural network. But this is not what we
want to analyze in this thesis.

3.4.4 Comparison with Implementation of other Authors

A similar experiment with the same dataset is presented in [63]. The authors concentrate
on Bayesian optimization and optimize two hyperparameters. The first one is the batch
size with an interval [20, 2000]. The second one is the learning rate which can take
values from [0, 1]. The network that is used for predicting the class of the images is a
small convolutional neural network. The architecture can be seen in Table 3.8.

58

3 Hyperparameter Optimization with Sparse Grids

Table 3.8: Architecture used in [63] for MNIST image classification.
Type Filters Kernel size Activation function

Convolutional 2D 32 (5, 5) ReLU
Max Pooling 2D (2, 2)

Convolutional 2D 32 (5, 5) ReLU
Max Pooling 2D (2, 2)

Dense Softmax

As an optimizer, they used the gradient descent and the loss function is the categori-
cal cross-entropy. The metric to be optimized is accuracy.

In [63], it is not described for how many epochs they train the neural network which
makes it hard to directly compare the algorithms. Additionally, we set the interval of
the batch size to [20, 1020] because of hardware limitations. The learning rate is in our
case again a logarithmic hyperparameter with a lower bound of 10−16 and an upper
bound of 1. For the neural network evaluation, we train the model on the training set
with a validation split of 10%. The resulting score is then defined as the accuracy of
the predictions of the test set. The result of the experiment with our four different
algorithms is presented in Figure 3.20.

0 20 40 60
0

0.5

1

Cost

A
cc

ur
ac

y

Grid search
Random search

Bayesian optimization
Sparse grid optimization

Figure 3.20: Resulting accuracy with increasing budget for the grid search, random
search, Bayesian optimization and sparse grid optimization. The MNIST
dataset and a small convolutional neural network were used.

Again, with increasing cost, the performance of the optimization techniques improves.
The absolute highest accuracy is achieved by the Bayesian optimization with 98.96%

59

3 Hyperparameter Optimization with Sparse Grids

followed by the sparse grid optimization with 98.83%, and random search with 98.52%.
The lowest accuracy is achieved by grid search with a value of 97.64%. The authors
of [63] reach an accuracy of 99.14% with a budget of 50, however, we do not know for
how many epochs they trained the network. For the evaluation of our four algorithms,
we always used exactly ten epochs. The best configurations found by the techniques
are depicted in Table 3.9.

Table 3.9: Best configurations and corresponding test accuracy found by the four algo-
rithms for the MNIST dataset.

Algorithm Batch size Learning rate Accuracy
Grid search 91 0.01000 0.9764

Random search 42 0.03448 0.9852
Bayesian optimization 57 0.1979 0.9896

Sparse grid optimization 270 0.3162 0.9883

The results shown in Table 3.9 indicate that in this case, a rather small batch size
leads to better testing results. This shows that the reduced interval is not restricting
the performance of our algorithms. For this experiment, the authors in [63] do not
provide the configuration found by their algorithm which makes it hard to compare
the performances.

3.5 Iterative Adaptive Random Search

In the previous analysis of the sparse grid optimization for finding suitable hyperparam-
eter configurations, we have seen that using sparse grids has advantages compared to
the other algorithms in some situations. However, pure random search is very powerful
in most cases. One possible adaption of this method is to add iterative refinement like
it is done in the grid generation of sparse grids. This is a promising way of combining
the advantages of iterative methods and random search which allows to evaluate many
different values for each hyperparameter. This is why we introduce a new algorithm
for optimizing the hyperparameters of machine learning models in an efficient manner.

3.5.1 Implementation

The algorithm starts with initial points that are distributed randomly in the whole
search space. The number of these first points is variable and can be given by the user.
A suitable value is dependent on the problem and the number of hyperparameters

60

3 Hyperparameter Optimization with Sparse Grids

to be optimized. In each following iteration, one point is selected to be refined. The
refinement criterion is similar to the Ritter-Novak criterion used for the sparse grid
generation. The point i that minimizes

(ranki + 1)1−γ · (leveli + re f inementsi + 1)γ (3.7)

is refined. Here, the rank is the position of the point in the list of all points with ascend-
ing function values. The adaptivity parameter γ can be used to balance exploration
and exploitation. Each point additionally has an attribute level which is 0 for the initial
points. In each iteration, the level of the added points is one higher than the level
of the refined point. The refinements attribute is increased each time the point is refined.

For the refinement strategy, meaning where the points are added, random points
are sampled following a distribution on a specific domain. There are different possible
techniques for refinement. In general, the algorithm takes the steps as depicted in
Algorithm 2. The iterations take place as long as the number of points where the
function is evaluated is smaller or equal to the budget which has to be given.

Algorithm 2 Iterative adaptive random search for hyperparameter optimization. In
each iteration, a random point is sampled following a specific distribution depending
on the refinement criterion.
Input m: number of initial points, n: number of refinements per iteration, budget:
upper bound for evaluations, γ: adaptivity parameter
Output points: Array of all evaluated points

for min(m, budget) do
sample point uniformly in search space

add point with level 0 to array

end for
while Number of points + n <= budget do

sort points with ascending function value

select point p_ref according to refinement criterion

for n do
sample point according to refinement strategy

add point with level p_ref.level + 1

increase p_ref.refinements

end for
increase number of points by n

end while
return array of points

61

3 Hyperparameter Optimization with Sparse Grids

As input, the algorithm 2 expects the number of initial points m, the number of points
to be added in each iteration, the upper bound for the number of function evaluations
called budget and the adaptivity parameter γ. The overall output is the array of all
points where the function was evaluated.

The first loop is for sampling the initial points. The number of iterations is defined
with min(m, budget) to assure that the number of function evaluations is smaller or
equal to the budget. All initial points have level 0.

In the following, the refinements are done in the loop as long as the budget is not
exceeded. First, the array is sorted with the ascending function value. Then, one point
is selected based on the refinement criterion 3.7. The rank of the point is then just the
index in the sorted array.

In the next loop which is iterated n times, a new point is sampled according to the
concrete refinement strategy. This point is then added with a level which is one higher
than the one selected to be refined. Additionally, the refinements parameter of the
point selected is increased by one.

The general idea of the refinement strategy is to sample points which are near to the
point that is being refined because this point is either promising due to a small function
value and thus rank, or it has not been refined that often. Concretely, we provide three
different strategies which are presented in the following.

Interval Based Refinement Strategy

For this first refinement strategy, intervals in each dimension are used. The bounds are
defined by neighboring points with and the sampling is done uniformly. An example
for such a refinement is presented in Figure 3.21.

62

3 Hyperparameter Optimization with Sparse Grids

−4 −2 0 2 4 6 8 10

−4

−2

0

2

4

6

8

10

Figure 3.21: Example for the interval based refinement strategy. The point being refined
is indicated with the blue cross and the lines show the upper and lower
boundary in each direction. The sampling is done uniformly in the blue
area.

In the example in Figure 3.21, the number of initial points is 5. The point with the
blue cross is selected by the refinement criterion defined with 3.7. In each dimension,
an interval is defined with the bounds from the next points in each dimension. In
this case, the interval in the horizontal direction is [−4.151, 5.045] and in the vertical
dimension [−0.3779, 6.039]. Note that only points with the same or smaller level are
considered when building the interval.

Uniform D-Ball Sampling Strategy

This strategy is based on uniform sampling inside a multi-dimensional ball. The point
that is refined is the center of this ball and we define a certain radius of the ball. For
the uniform sampling, multiple possible algorithms exist [64]. Some of them suffer
from the curse of the dimensionality. One example is the rejection method where a
value from [0, 1]d is sampled and rejected if it is not inside the ball. The probability of a
sample being rejected increases with higher dimensionality. Another method is using
the normal distribution. For a random variable Y ∼ Nd(0d, 1d), Sn = Y

||Y|| is uniformly

63

3 Hyperparameter Optimization with Sparse Grids

distributed on the d-sphere which is the surface of the ball. The last step is to multiply
Sn by U

1
d where U has the uniform distribution on the interval between 0 and 1. Now

the sampling is done inside the standard d-ball with a radius of 1. The final value just
has to be multiplied by the radius to change the sampling to a d-ball with an arbitrary
size. One two-dimensional example can is presented in Figure 3.22.

−4 −2 0 2 4 6 8 10

−4

−2

0

2

4

6

8

10

Figure 3.22: Example for the uniform d-ball sampling strategy. The point being refined
is indicated with the blue cross and the circle is the area where the uniform
sampling is done.

In the example depicted in Figure 3.22, five initial points (colored in red) are sampled.
The one marked with the blue cross is chosen to be refined in this iteration. The radius
is depending on the level of the point and the smallest and maximum distance to other
points. It is computed with

r =
distmax + distmin

(level + 2) · 2 (3.8)

where distmax and distmin are the highest and lowest distance to other points, respec-
tively. The level is the level of the current point that is refined. With this, the radius
of the ball at points with higher levels is smaller leading to samples near to the point
being refined.

64

3 Hyperparameter Optimization with Sparse Grids

Normal Distribution Sampling Strategy

The last alternative is not sampling uniformly but based on the normal distribution.
The idea behind this strategy is that we might be interested in sampling new points
near the one that has to be refined in this iteration. This might lead to better results
because the point that is refined might already be very promising. Therefore, in each
dimension, the coordinate is sampled. A two-dimensional example is presented in
Figure 3.23.

−4 −2 0 2 4 6 8 10

−4

−2

0

2

4

6

8

10

0.0000

0.0012

0.0024

0.0036

0.0048

0.0060

0.0072

0.0084

0.0096

0.0108

Figure 3.23: Example for the normal distribution sampling strategy. The point being
refined is indicated with the blue cross and contour represents the likeli-
hood of samples.

The example in Figure 3.23 shows five initial points in red. The point marked with
the blue cross is refined in this iteration step. The contour plot in the background
indicates the probability distribution for new points. In each dimension, a normal
distribution is constructed with mean and standard deviation with

dist =
distmax + distmin

(level + 2) · 2
lower = min(max(coord− dist, boundlower), boundupper)

upper = max(min(coord + dist, boundupper), boundlower).

(3.9)

65

3 Hyperparameter Optimization with Sparse Grids

Here, coord is the coordinate of the point refined in the corresponding dimension,
boundlower and boundupper represent the bounds of the interval of the hyperparameter
in this dimension and the distance dist is calculated the same way as the radius of the
second refinement strategy. Additionally, after sampling a point, it is ensured that the
point lays inside the search space with

coordinate = max((coordinate, boundlower))

coordinate = min((coordinate, boundupper)).
(3.10)

This is done for each dimension so that for all coordinate variables drawn, the sam-
ple is not higher than the upper bound and not lower than the lower bound in each
dimension.

For the implementation, we added a new subclass inheriting Optimization. It has
an additional parameter for the choice of refinement strategy.

3.5.2 Analysis of Parameters with Functions

In this case, we also have the problem that the optimal configuration of hyperparameters
for the model evaluation is not known in advance. This is why we first analyze the
algorithm with functions where we know the optimum. We will especially focus on the
following parameters of the adaptive random search:

• Adaptivity parameter

• Number of initial points

• Number of refinements per iteration

• Refinement criterion

• Budget

We will optimize the Rosenbrock function (see Table 3.1 and Figure 3.2) in two
dimensions for additional visualization. The optimal point is at (1, 1) with a function
value of 0.

Adaptivity Parameter

The first parameter we want to analyze is the adaptivity parameter γ to check if the
algorithm behaves as expected. Especially the refinement criterion and strategy are

66

3 Hyperparameter Optimization with Sparse Grids

influencing the behavior depending on this parameter. Therefore, we want to visualize
how the points are distributed depending on the concrete value. We optimize the
Rosenbrock function (see Table 3.1 and Figure 3.2) in two dimensions to visualize the
resulting points. The optimal point is at (1, 1) with a function value of 0. The results
with a 200 budget and 5 initial points are depicted in Figure 3.24.

67

3 Hyperparameter Optimization with Sparse Grids

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

100000

200000

300000

400000

500000

600000

700000

800000

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

100000

200000

300000

400000

500000

600000

700000

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

100000

200000

300000

400000

500000

600000

(a) Resulting points for the interval based refinement strategy. Adaptivity parameter γ: 1.0
(left), 0.75 (center), 0.0 (right).

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

200000

400000

600000

800000

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

100000

200000

300000

400000

500000

600000

700000

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

100000

200000

300000

400000

500000

600000

(b) Resulting points for the uniform d-ball sampling strategy. Adaptivity parameter γ: 1.0
(left), 0.75 (center), 0.0 (right).

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

0.2

0.4

0.6

0.8

1.0

×106

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

0.2

0.4

0.6

0.8

1.0
×106

−4 −2 0 2 4 6 8 10

x0

−4

−2

0

2

4

6

8

10

x
1

200000

400000

600000

800000

(c) Resulting points for the normal distribution sampling strategy. Adaptivity parameter γ:
1.0 (left), 0.75 (center), 0.0 (right).

Figure 3.24: Generated points for optimizing the Rosenbrock function with interval
based refinement strategy (3.24a), uniform d-ball sampling strategy (3.24b),
and normal distribution sampling strategy (3.24c). In each case, the left
one has adaptivity parameter γ = 1.0 which distributes the points most
homogeneous. In the center with γ = 0.75, they are concentrated on few
areas and in each right case where γ = 0.0, the grid is most adaptive and
almost all points are in the same region.

68

3 Hyperparameter Optimization with Sparse Grids

The resulting points in Figure 3.24 show the behavior of the algorithms depending
on the adaptivity parameter γ. In all three cases, the points are most distributed in the
whole domain for γ = 1.0 (left grids). This is due to the refinement criterion 3.7 which
then selects the candidates in that way, that all points are refined as equally as possible
which makes the distribution very homogeneous. In the center cases with γ = 0.75,
the trade-off between selecting points that have low rank and ones that have not been
refined that often is balanced. The second extreme case is with γ = 0.0. This always
leads to the candidate point with the smallest rank (smallest function value). This can
be seen in the grid because the points are not distributed at all. Note that you can
directly see the difference between the uniform d-ball sampling strategy (3.24b, right
grid) and the normal distribution sampling strategy (3.24c, right grid) because in the
first case, the points are distributed uniformly in this circle and in the lower strategy,
the density of points is higher in the center of the region around (1, 1).

The concrete optimum found in each case is presented in Table 3.10.

Table 3.10: Resulting optimum found by the three different refinement strategies in-
terval based refinement strategy (1), uniform d-ball sampling strategy (2),
and normal distribution sampling strategy (3). The best of each refinement
algorithm is marked in bold.

Alternative Adaptivity parameter Coordinates Error
1.0 [0.4059, -0.04055] 4.566

1 0.75 [1.039, 1.080] 0.001519
0.0 [2.159, 4.618] 1.517
1.0 [-0.1135, -0.7218] 55.21

2 0.75 [1.627, 2.625] 0.4376
0.0 [0.9542, 0.9028] 0.008060
1.0 [1.305, 1.598] 1.208

3 0.75 [1.465, 2.265] 1.651
0.0 [1.098, 1.194] 0.02369

Table 3.10 shows that each of the algorithms finds a point very near to the optimum
which is at (1, 1). The table also indicates that each refinement strategy has a different
best adaptivity parameter. For the second two alternatives, the most adaptive grid
achieves the best result while a more homogeneous one is better for the first algorithm.

The experiments by now were only made with 3 distinct values for the adaptivity
parameter and this only leads to assumptions that the evaluated parameters are the

69

3 Hyperparameter Optimization with Sparse Grids

best in each case. To further analyze this parameter, the Rosenbrock and additionally,
the Rastrigin function were solved with 11 different adaptivity parameters between 0
and 1 with a step size of 0.1. The results for each of the three algorithms are presented
in Figure 3.25.

0 0.2 0.4 0.6 0.8 1
10−3

10−2

10−1

100

101

102

Adaptivity parameter γ

Er
ro

r
(R

os
en

br
oc

k
2d

)

0 0.2 0.4 0.6 0.8 1

10−1

100

101

Adaptivity parameter γ

Er
ro

r
(R

as
tr

ig
in

2d
)

0 0.2 0.4 0.6 0.8 1

101.5

102

Adaptivity parameter γ

Er
ro

r
(R

as
tr

ig
in

10
d)

Strategy 1
Strategy 2
Strategy 3

Figure 3.25: Error of the found optimum by the different refinement strategies for
the Rosenbrock (2d) and the Rastrigin (2d and 10d) functions. For the
two-dimensional case, the budget is 200 and for the 10-d optimization the
budget is set to 5000.

The results in Figure 3.25 confirm that each strategy has its own "sweet spot" for the
adaptivity parameter. Additionally, the best value depends on the function used as
you can see in the upper row (Rosenbrock and Rastrigin 2d). For strategy 1, the best
result is achieved with γ = 0.7 for Rosenbrock, and for Rastrigin, the best value is 0.8.
Furthermore, the value not only depends on the function but also on the dimension of

70

3 Hyperparameter Optimization with Sparse Grids

the input. For example for strategy 2, very good results are achieved with small values
0.0 ≤ γ ≤ 0.4 and γ = 0.6 in two dimensions. However, in the ten-dimensional case,
the best value is γ = 0.7. This is due to the behavior of the probability distributions in
higher dimensions. We can roughly follow that for higher dimension, we need lower
adaptivity (higher adaptivity parameter γ).

Number of initial points

The second parameter we want to analyze is the number of initial points. Intuitively,
a high value for this parameter makes the algorithm behave more similarly to the
normal random search because more random points on the whole domain are sampled
and fewer refinement steps are done. We, therefore, optimize the three test functions
Rosenbrock, Rastrigin, and Eggholder with a different number of initial points and
compare the Errors of the optimum found. The overall budget is 200 and the results
are shown in Figure 3.26. In each case, 10 runs are evaluated and the average error is
plotted. For the adaptivity parameters, we set γ1 = 0.75, γ2 = 0.35, and γ3 = 0.6 for
the two-dimensional cases and the three refinement strategies, respectively. For d = 4,
we have γ1 = 0.85, γ2 = 0.45, and γ3 = 0.7 and for d = 6, we set γ1 = 0.9, γ2 = 0.65,
and γ3 = 0.8

71

3 Hyperparameter Optimization with Sparse Grids

0 10 20 30 40 50
0

10

20

Initial points

Er
ro

r
(R

as
tr

ig
in

2d
)

0 20 40 60 80 100

10

20

30

40

Initial points

Er
ro

r
(R

as
tr

ig
in

4d
)

0 20 40 60 80 100

20

40

60

Initial points

Er
ro

r
(R

as
tr

ig
in

6d
)

0 10 20 30 40 50

10−1

100

101

102

Initial points

Lo
g

of
er

ro
r

(R
os

en
br

oc
k

2d
)

0 10 20 30 40 50

100

200

300

400

Initial points

Er
ro

r
(E

gg
ho

ld
er

2d
)

Strategy 1
Strategy 2
Strategy 3

Figure 3.26: Error of the optimum found by the algorithm depending on the number of
initial points. The budget is 200 in all two dimensional cases and 400 in the
4- and 6-dimensional problem. Each point is the average of 10 evaluations.

72

3 Hyperparameter Optimization with Sparse Grids

For the Rastrigin function, the problem was solved for two (Figure 3.26, top left), four
(Figure 3.26, top right), and six (Figure 3.26, center left) dimensions. In all three cases,
similar behavior can be observed for each refinement strategy. For the first algorithm,
the error decreases with increasing number of initial points. This is the same for the
second strategy but with the difference that it is increasing much faster and seems to
be saturated with a sufficiently high number of initial points. For strategy 3, a lower
value compared to the other strategies results in smaller errors of the optimum. As
depicted in the upper left plot, a minimal number is also not perfect for this parameter.
Good results are achieved with 5 to 15 initial points for the two-dimensional case.

For the Rosenbrock and Eggholder function, the behavior is the same for all alterna-
tive refinement strategies. The error decreases with a higher number of initial points.
Note that these two test functions are very hard to optimize and a generally high
number of function evaluations would lead to better results. In this case, the budget
was only 200.

For the behavior on the Rastrigin function, we can conclude that strategy 1 is not the
best because the results are getting better when the number of refinements decreases.
This means that the algorithm is not performing well. The results for the second and
third refinement strategies are very promising as they perform well already for a small
number of initial points which means that the refinements are finding good optima.

We can conclude that for higher dimension, higher number of initial points works
best for strategy 1 and strategy 2.

Number of refinements per iteration

The next parameter that is influencing the performance of the algorithm is the number
of refinements per iteration. Intuitively, a higher value for this parameter makes the
algorithm less adaptive because the point that has to be refined is chosen fewer times.
To analyze this parameter, again the three functions (Rastrigin in 2, 4, and 6 dimensions
and Rosenbrock and Eggholder in 2 dimensions) are optimized with a budget of 200
in the case of the 2-d problems and 400 for 4 and 6 dimensions. The resulting errors
which are the averages of ten runs with up to 50 refinements per iteration are presented
in Figure 3.27. The adaptivity parameters are set as in the previous experiment where
the number of initial points is analyzed.

73

3 Hyperparameter Optimization with Sparse Grids

0 10 20 30 40 50

2

4

6

8

Refinements per iteration

Er
ro

r
(R

as
tr

ig
in

2d
)

0 10 20 30 40 50

10

20

30

Refinements per iteration

Er
ro

r
(R

as
tr

ig
in

4d
)

0 10 20 30 40 50

20

40

60

Refinements per iteration

Er
ro

r
(R

as
tr

ig
in

6d
)

0 10 20 30 40 50
10−1

100

101

102

Refinements per iteration

Lo
g

of
er

ro
r

(R
os

en
br

oc
k

2d
)

0 10 20 30 40 50

100

200

300

Refinements per iteration

Er
ro

r
(E

gg
ho

ld
er

2d
)

Strategy 1
Strategy 2
Strategy 3

Figure 3.27: Error of the optimum found by the algorithm depending on the number of
points added per refinement step. The budget is 200 in all two dimensional
cases and 400 in the 4- and 6-dimensional problems. Each point is the
average of 10 evaluations.

74

3 Hyperparameter Optimization with Sparse Grids

As depicted in Figure 3.27, this parameter does not have the biggest impact on
the performance. However, especially for the first refinement strategy, smaller values
sometimes lead to better results as can be seen on the top left (Figure 3.27) and center
right (Figure 3.27).

We can conclude that for this parameter, suitable values have to be found depending
on the concrete optimization problem. However, we can see tendencies. For example,
fewer refinements per iteration for 2-dimensional problems are better for strategy 1.
For the second strategy, this parameter has no big influence on the overall performance.
For the third strategy, more refinements lead to better results in our 6-dimensional test
case with the Rastrigin function.

3.5.3 Hyperparameter Optimization

The first application on machine learning hyperparameter optimization is the same as
depicted in Figure 3.10. A two-layer fully connected neural network is used to solve
the task of regression on the diamonds dataset. As optimizer, Adam is chosen with
learning rate that is optimized. This hyperparameter is locarithmic. The second one is
the number of epochs and is an integer between 1 and 40. The resulting points for a
budget of 10, 50, and 100 and the three different refinement strategies, respectively, are
depicted in Figure 3.28.

75

3 Hyperparameter Optimization with Sparse Grids

15 20 25 30 35 40

Epochs

−10

−8

−6

−4

−2

0

L
o
g
o
f
le
a
rn
in
g
ra
te

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40

Epochs

−10

−8

−6

−4

−2

0

L
og

o
f
le
ar
n
in
g
ra
te

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0 5 10 15 20 25 30 35

Epochs

−8

−6

−4

−2

0

L
o
g
o
f
le
a
rn
in
g
ra
te

50

100

150

200

(a) Sampled points for refinement strategy 1. The budget is 10 (left), 50 (center), and 100 (right).

5 10 15 20 25 30 35 40

Epochs

−8

−6

−4

−2

0

L
og

of
le
ar
n
in
g
ra
te

10

20

30

40

50

60

5 10 15 20 25 30 35 40

Epochs

−10

−8

−6

−4

−2

0

L
og

of
le
a
rn
in
g
ra
te

20

40

60

80

100

10 15 20 25 30

Epochs

−10

−8

−6

−4

−2

0

L
o
g
o
f
le
a
rn
in
g
ra
te

5

10

15

20

25

30

35

40

(b) Sampled points for refinement strategy 1. The budget is 10 (left), 50 (center), and 100 (right).

10 15 20 25 30 35

Epochs

−8

−6

−4

−2

0

L
og

of
le
ar
n
in
g
ra
te

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Epochs

−8

−6

−4

−2

0

L
og

of
le
ar
n
in
g
ra
te

2

4

6

8

10

5 10 15 20 25 30 35 40

Epochs

−8

−6

−4

−2

0

L
og

of
le
ar
n
in
g
ra
te

5

10

15

20

(c) Sampled points for refinement strategy 1. The budget is 10 (left), 50 (center), and 100 (right).

Figure 3.28: Visualization of the sampled points for the regression problem of the
diamonds dataset solved by a two-layer neural network. The influence
of the choice of the refinement strategy can be seen in 3.28a, 3.28b, and
3.28c. The adaptivity parameters are γ1 = 0.75, γ2 = 0.35, and γ3 = 0.6
and 20, 16, and 14 initial points are sampled, respectively. The number of
refinements per step are 4 in each case.

Most points in Figure 3.28b and 3.28c are at the boundary of the domain with a value
for learning rate of 10−1 or 10−10. However, the points are more gathered for strategy 2.
In contrast, for alternative 1 in Figure 3.28a, the points are more evenly distributed in
the domain.

76

3 Hyperparameter Optimization with Sparse Grids

The exact optima found by each refinement strategy and for each budget are pre-
sented in Table 3.11.

Table 3.11: Best configurations found by the adaptive iterative random search with
three different refinement strategies and budgets 10, 50, and 100.

Strategy Budget Coordinates Function value
10 [38, 0.0001404] 0.2706

1 50 [22, 0.0003172] 0.2538
100 [12, 0.0002233] 0.2588
10 [5, 4.712 · 10−8] 0.5883

2 50 [25, 0.0001037] 0.3183
100 [18, 0.1] 0.3595
10 [35, 0.0009751] 0.5973

3 50 [10, 0.009276] 0.4416
100 [38, 0.0001735] 0.2436

The overall best function value is found by the third alternative with 100 budget.
However, the values of the first one are very similar to the best one and it achieves
already very good results with a budget of 10.

We finally want to compare all different algorithms presented so far. The optimization
problem is two-dimensional and the number of epochs (from 1 to 20) and the learning
rate (logarithmic from 10−10 to 10−1) are the hyperparameters. The model is a simple
two-layer network with 30 neurons in each layer and the batch size is set to 400.
As dataset, the diamonds regression problem is used. The resulting mean average
percentage error for increasing cost is presented in Figure 3.29.

77

3 Hyperparameter Optimization with Sparse Grids

20 40 60 80

0.4

0.6

Cost

M
A

PE
Strategy 1
Strategy 2
Strategy 3

Grid search
Random search

Bayesian Optimization
Sparse grid search

Figure 3.29: Mean average percentage error depending on the cost for the different
optimization algorithms. The diamonds regression task and a simple two-
layer neural network are used.

As depicted in Figure 2.3, the iterative adaptive random search performs worse than
the normal random search approach with all three refinement strategies. With a cost of
at least 50, the third strategy has a lower error than the conventional random search
approach meaning that a better optimum can be found. The overall best solution is
found with the sparse grid optimization with a cost of about 60 and higher.

3.5.4 High-dimensional Optimization

The last thing we want to analyze is the adaptive iterative random search in settings
of higher dimensions. In the following, we optimize the regression problem with
the Brazilian_housing dataset and a simple fully-connected neural network. The
hyperparameter space is 6-dimensional and the parameters presented in Table 3.12.

Table 3.12: Hyperparameters with their type and interval for the 6-dimensional opti-
mization problem solved with the iterative adaptive random search.

Hyperparameter Type Interval
Epochs Int-Interval [1, 30]

Batch size Int-Interval [100, 1000]
Learning rate Log-Interval [10−10, 10−1]

Number of layers Int-Interval [1, 10]
Neurons per layer Int-Interval [1, 40]

Dropout probability Interval [0, 0.999]

78

3 Hyperparameter Optimization with Sparse Grids

As optimizer of the network, Adam is used and the mean squared error is the loss
function. We used 2-fold cross-validation and the mean average percentage error as
metric. The results with increasing budget are depicted in Figure 3.30.

50 100 150 200

8 · 10−2

0.1

0.12

0.14

Cost

M
A

PE

Strategy 1
Strategy 2
Strategy 3

Random search

Figure 3.30: Resulting mean average percentage error for the 6-dimensional optimiza-
tion problem with hyperparameters from Table 3.12. The iterative adaptive
random search with three different refinement strategies depicted in differ-
ent colors. The Brazilian_housing dataset was used and each point is the
average of 10 runs.

We can observe that in this setting of the 6-dimensional optimization problem, the
iterative adaptive random search almost always performs worse than the conventional
random search. One reason can be that the d-dimensional ball has way less area volume
than the d-dimensional hypercube for higher dimensions d.

For comparison, Table 3.13 shows the mean percentage error of all other optimization
algorithms for up to a cost of 100. Only the best performing alternative of the refinement
strategies is represented.

79

3 Hyperparameter Optimization with Sparse Grids

Table 3.13: Comparison of the optimization algorithms in terms of mean average per-
centage error for the 6-dimensional optimization problem.

Algorithm Cost Mean average percentage error
Grid search 64 21.64%

Random search 100 5.758%
Bayesian optimization 100 7.874%

Sparse grid search 99 6.949%
Adaptive random search (strategy 1) 80 8.252%

The overall best optimization algorithm for up to 100 function evaluation is the
conventional random search in this case.

3.6 Comparison and Discussion

The numerical results showed that each optimization algorithm has advantages and
disadvantages in different problem settings. This depends on the hyperparamater
space, e.g. the dimension and type of hyperparameters and also the model used, as
well as the dataset. We want to summarize the behaviors of the algorithms and compare
them.

Sparse grids are normally used to interpolate functions with a high number of grid
points compared to hyperparameter optimization. The high cost for a function evalua-
tion does not make it practically possible for a high number of grid points. This leads
to the first problem we encountered when using the sparse grid for hyperparameter
optimization. The interpolation with B-splines and the additional application of an
optimization algorithm are not precise enough to get better results in all settings. As
we have seen for example in Figure 3.12, the gradient descent takes steps towards
the boundary of the domain because the interpolated function has its minimum there.
However, in most cases, the optimal point is somewhere else. We finally decided to
apply two different types of optimizers, anyways. A local and a globalized optimization
algorithm are applied after the grid generation. The application of them is relatively
cheap compared to one function evaluation as they only work with the interpolated
function which is much cheaper to evaluate. The final result of the sparse grid hyperpa-
rameter optimization is then the minimum of the best grid point found, the minimum
of the local, and the globalized optimization algorithms. This way, we only have two
additional expensive function evaluations from the optimizers and sometimes, the
result is better than the best grid point from the grid generation.

80

3 Hyperparameter Optimization with Sparse Grids

In the context of hyperparameter optimization, we can have very different types of
hyperparameters. In this thesis, the focus was on integer, continuous, and logarithmic
ones. A short analysis was also conducted with categorical hyperparameters with
Figure 3.14. However, further analysis can be done in the settings of other examples.
One such scenario is the choice of optimizer or loss function of the neural network.
With such examples, Bayesian optimization has problems in interpreting the different
choices. When using sparse grids, the standard domain in this dimension would be
separated into intervals just like it is done in Figure 3.14. Further analysis can be
conducted on how well the optimization can work with such a setting. A question is
for example if the order or number of categories has an impact on the performance.

The numerical results showed that especially for high dimensions, the sparse grid
hyperparameter optimization performs well compared to other techniques. What we
have also seen is that in many situations, there is more than one configuration leads to
the best performance. This can be seen in Table 3.7 where Bayesian optimization and
sparse grid hyperparameter optimization reach an accuracy of 97.5% with different
configurations. In most cases, there is a region with very good results as can be
seen in Figure 3.10. There, a learning rate of 10−4 with high epochs leads to very
small error values. However, with a smaller number of epochs, the learning rate has
to be set to higher values. In such settings, it is important to find the tendencies
because the functions are not very multi-modal in the case of integer or continuous
hyperparameter types. The sparse grid hyperparameter optimization performs well
in those aspects. Note that the problems in this thesis are made deterministic for
the sparse grid optimization, in real-world applications, randomnesses such as the
network’s weight initialization, dataset splitting or dropout influence the behavior. This
means that optima are not always fixed. Rather the region where the tendency shows
good results is important to be found fast which is why the sparse grid performs well.

In summary, the sparse grid hyperparameter optimization is a good choice for prob-
lems of high dimension where the hyperparameter types are combinations of integers,
continuous, and logarithmic ones.

The second new algorithm, iterative adaptive random search, was based on the
idea to improve the conventional random search by making it adaptive. The first
two-dimensional analysis showed that the optimization is very promising in small
dimensions. In Figure 3.24, we can see that the generated points are gathered around
the real optimum of the Rosenbrock function for adaptivity parameter 0.0 which is
at (1, 1). The numerical results from Figure 3.29 indicated that the iterative adaptive
random search performs better than the conventional one in some cases. However,
in higher dimensions, the refinement strategies have a problem. The d-ball sampling
covers a very small region compared to the d-hypercube. This is also the reason why

81

3 Hyperparameter Optimization with Sparse Grids

rejection sampling gets very inefficient in higher dimensions [64]. This means that there
is not much exploration in high dimensions meaning that not many new configurations
are evaluated. Also, the first refinement strategy can have high exploitation if the
intervals for refinement are very small. This can happen if neighboring points have
a similar coordinate in a specific dimension. This can also be seen in Figure 3.24a
(left) where no points are added in the top left corner of the domain for the adaptivity
parameter 1.0.

There are more questions that have to be analyzed for this hyperparameter optimiza-
tion algorithm. Conventional random search is convergent for increasing cost meaning
that the optimum will be found with a sufficient number of trials. We concentrated on
a rather fast time to solution which is more important for hyperparameter optimization
with expensive function evaluations. However, this convergence analysis still has to
be made. One important aspect referring to the convergence is that in the current
algorithm, no new points with level 0 are added after the initial ones are drawn. Besides
this question, the search radius is also one thing that could be changed. It might change
the performance in higher dimensions if the radius is set to a higher value to increase
the exploration. It could be dependent on the dimension and the adaptivity parameter.
Of course, other refinement strategies can be introduced which do not have the problem
of low exploration in high dimensions. Additionally, the refinement criterion can be
adapted for the selection of the point. The function value could for example also be
included in the term.

In summary, the iterative adaptive random search shows promising results in small
dimensions. However, more analysis is needed to further improve this optimization
algorithm.

In comparison to the most intuitive algorithm, the grid search, sparse grid hyperpa-
rameter optimization is much more efficient in high dimensions. The reduced number
of grid points makes finding the optimum much faster. The numerical results of Figures
3.15, 3.17, 3.18 and 3.19 showed that the sparse grid optimization is very competitive.

In most cases not depending on the concrete setting, the Bayesian optimization and
also the conventional random search perform very well which makes them good choices
for any optimization problem setting.

In lower dimensions, the iterative adaptive random search shows promising re-
sults, however, further investigation is needed to also achieve good results in higher
dimensions.

82

4 Conclusion and Outlook

In this work, two new approaches for hyperparameter optimization are introduced.
They are compared to grid search, random search, and Bayesian optimization. In
the following, the results are summarized and ideas for further improvements are
presented.

The first approach uses sparse grids to approximate the function depending on
the hyperparameters. The idea is to adaptively generate the grid and finally find a
hyperparameter configuration that leads to good model performance. The application
of an additional optimization algorithm on the interpolated function turned out to be
inaccurate in most cases. This is due to the small number of grid points we are using
because of the high cost for one single function evaluation. However, the adaptivity of
the grid generation phase already makes use of previously evaluated configurations
leading to more points in regions where promising results are found. This makes it
very efficient especially in higher dimensions of the hyperparameter space.

The second approach presented is based on the conventional random search with the
addition of an iterative adaptive phase. After sampling initial random points, we added
iterations where promising regions are preferred for new points. We present three
different refinement strategies for the adaptive sampling and promising results are
achieved in smaller dimensions. However, with a higher number of hyperparameters,
we encounter the problem of too small exploration which is due to the behavior of the
refinement strategies in higher dimensions.

We compared the two approaches to grid search, conventional random search, and
Bayesian optimization for different types of neural networks and machine learning
tasks. The results show that sparse grid hyperparameter optimization performs well for
most problem settings compared to the other approaches. Especially in high dimensions
for our problems chosen, the new approach performs better than grid search, random
search, and Bayesian optimization.

For the iterative adaptive random search, promising results are achieved for small
dimensions. In some cases, the conventional random search is outperformed. However,
in higher dimensions, the refinement strategies encounter problems of too small explo-

83

4 Conclusion and Outlook

ration.

In future work, especially the iterative adaptive random search has to be further
analyzed and investigations are necessary for the refinement strategies. Possible
improvements are for example to use a different, new refinement strategy or to adapt
it by changing the radius. Also, the refinement criterion which selects the point to be
refined can be changed. The function value itself could e.g. be included instead of only
the rank of a point.

In general, the focus of this thesis was on integer, logarithmic, and continuous
hyperparameters. Only a few thoughts on categorical ones were presented for the
sparse grid optimization. Further investigations are still necessary as categorical
hyperparameters appear often for machine learning models.

84

Bibliography

[1] S. M. Malakouti, “Babysitting hyperparameter optimization and 10-fold-cross-
validation to enhance the performance of ml methods in predicting wind speed
and energy generation,” Intelligent Systems with Applications, vol. 19, p. 200 248,
2023, issn: 2667-3053. doi: https://doi.org/10.1016/j.iswa.2023.200248.

[2] N. Gorgolis, I. Hatzilygeroudis, Z. Istenes, and L.-.-G. Gyenne, “Hyperparameter
optimization of lstm network models through genetic algorithm,” in 2019 10th
International Conference on Information, Intelligence, Systems and Applications (IISA),
IEEE, 2019, pp. 1–4.

[3] H. Wang, Z. Lei, X. Zhang, B. Zhou, and J. Peng, “Machine learning basics,” Deep
learning, pp. 98–164, 2016.

[4] B. Mahesh, “Machine learning algorithms-a review,” International Journal of Science
and Research (IJSR).[Internet], vol. 9, pp. 381–386, 2020.

[5] T. O. Ayodele, “Types of machine learning algorithms,” New advances in machine
learning, vol. 3, pp. 19–48, 2010.

[6] W. S. Noble, “What is a support vector machine?” Nature biotechnology, vol. 24,
no. 12, pp. 1565–1567, 2006.

[7] O.-C. Granmo, “The tsetlin machine–a game theoretic bandit driven approach to
optimal pattern recognition with propositional logic,” arXiv preprint arXiv:1804.01508,
2018.

[8] L. Rokach and O. Maimon, “Decision trees,” Data mining and knowledge discovery
handbook, pp. 165–192, 2005.

[9] C. M. Bishop, “Neural networks and their applications,” Review of scientific
instruments, vol. 65, no. 6, pp. 1803–1832, 1994.

[10] I. N. Da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, S. F. dos
Reis Alves, I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni,
and S. F. dos Reis Alves, Artificial neural network architectures and training processes.
Springer, 2017.

[11] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and Applications,
vol. 5, pp. 64–67, 2001.

85

https://doi.org/https://doi.org/10.1016/j.iswa.2023.200248

Bibliography

[12] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural
networks: Analysis, applications, and prospects,” IEEE transactions on neural
networks and learning systems, 2021.

[13] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G.
Wang, J. Cai, et al., “Recent advances in convolutional neural networks,” Pattern
recognition, vol. 77, pp. 354–377, 2018.

[14] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,”
arXiv preprint arXiv:1511.08458, 2015.

[15] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep
neural network architectures and their applications,” Neurocomputing, vol. 234,
pp. 11–26, 2017.

[16] P. Cunningham, M. Cord, and S. J. Delany, “Supervised learning,” Machine
learning techniques for multimedia: case studies on organization and retrieval, pp. 21–49,
2008.

[17] M. Feurer and F. Hutter, “Hyperparameter optimization,” Automated machine
learning: Methods, systems, challenges, pp. 3–33, 2019.

[18] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann,
M. Becker, A.-L. Boulesteix, et al., “Hyperparameter optimization: Foundations,
algorithms, best practices, and open challenges,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, e1484, 2021.

[19] L. Yang and A. Shami, “On hyperparameter optimization of machine learning
algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020.

[20] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.,”
Journal of machine learning research, vol. 13, no. 2, 2012.

[21] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[22] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of
machine learning algorithms,” Advances in neural information processing systems,
vol. 25, 2012.

86

https://doi.org/10.1038/s41592-019-0686-2

Bibliography

[23] R. Andonie, “Hyperparameter optimization in learning systems,” Journal of
Membrane Computing, vol. 1, no. 4, pp. 279–291, 2019.

[24] E. C. Garrido-Merchán and D. Hernández-Lobato, “Dealing with categorical
and integer-valued variables in bayesian optimization with gaussian processes,”
Neurocomputing, vol. 380, pp. 20–35, 2020.

[25] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based optimiza-
tion for general algorithm configuration,” in Learning and Intelligent Optimization:
5th International Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers
5, Springer, 2011, pp. 507–523.

[26] J. Wilson, F. Hutter, and M. Deisenroth, “Maximizing acquisition functions for
bayesian optimization,” Advances in neural information processing systems, vol. 31,
2018.

[27] T. Huijskens, “Bayesian optimisation with scikit-learn,” PyData London 2017,
2017.

[28] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification and hy-
perparameter optimization,” in Artificial intelligence and statistics, PMLR, 2016,
pp. 240–248.

[29] G. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, and H. Samulowitz, “An effective
algorithm for hyperparameter optimization of neural networks,” IBM Journal of
Research and Development, vol. 61, no. 4/5, 9:1–9:11, 2017. doi: 10.1147/JRD.2017.
2709578.

[30] S. C. Smithson, G. Yang, W. J. Gross, and B. H. Meyer, “Neural networks de-
signing neural networks: Multi-objective hyper-parameter optimization,” in 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), IEEE, 2016,
pp. 1–8.

[31] I. Loshchilov and F. Hutter, “Cma-es for hyperparameter optimization of deep
neural networks,” arXiv preprint arXiv:1604.07269, 2016.

[32] D. M. Pflüger, “Spatially adaptive sparse grids for high-dimensional problems,”
Ph.D. dissertation, Technische Universität München, 2010.

[33] J. Garcke, “Sparse grids in a nutshell,” in Sparse grids and applications, Springer,
2013, pp. 57–80.

[34] J. Valentin, “B-splines for sparse grids: Algorithms and application to higher-
dimensional optimization,” arXiv preprint arXiv:1910.05379, 2019.

[35] C. Zenger and W. Hackbusch, “Sparse grids,” in Proceedings of the Research Work-
shop of the Israel Science Foundation on Multiscale Phenomenon, Modelling and Compu-
tation, 1991, p. 86.

87

https://doi.org/10.1147/JRD.2017.2709578
https://doi.org/10.1147/JRD.2017.2709578

Bibliography

[36] H.-J. Bungartz and M. Griebel, “Sparse grids,” Acta numerica, vol. 13, pp. 147–269,
2004.

[37] M. Obersteiner and H.-J. Bungartz, “A spatially adaptive sparse grid combination
technique for numerical quadrature,” in Sparse Grids and Applications-Munich 2018,
Springer, 2022, pp. 161–185.

[38] M. Griebel, M. Schneider, and C. Zenger, “A combination technique for the
solution of sparse grid problems,” 1990.

[39] M. Obersteiner and H.-J. Bungartz, “A generalized spatially adaptive sparse
grid combination technique with dimension-wise refinement,” SIAM Journal on
Scientific Computing, vol. 43, no. 4, A2381–A2403, 2021.

[40] M. Hegland, “Adaptive sparse grids,” Anziam Journal, vol. 44, pp. C335–C353,
2002.

[41] H.-J. Bungartz, “Finite elements of higher order on sparse grids,” Ph.D. disserta-
tion, Technische Universität München, 1998.

[42] K. Höllig and J. Hörner, Approximation and modeling with B-splines. SIAM, 2013.

[43] J. Valentin, M. Sprenger, D. Pflüger, and O. Röhrle, “Gradient-based optimiza-
tion with b-splines on sparse grids for solving forward-dynamics simulations
of three-dimensional, continuum-mechanical musculoskeletal system models,”
International journal for numerical methods in biomedical engineering, vol. 34, no. 5,
e2965, 2018.

[44] E. Novak and K. Ritter, “Global optimization using hyperbolic cross points,” State
of the art in global optimization: computational methods and applications, pp. 19–33,
1996.

[45] F. Duan, R. Živanović, S. Al-Sarawi, and D. Mba, “Induction motor parameter esti-
mation using sparse grid optimization algorithm,” IEEE Transactions on Industrial
Informatics, vol. 12, no. 4, pp. 1453–1461, 2016.

[46] M. Saska, I. Ferenczi, M. Hess, and K. Schilling, “Path planning for formations
using global optimization with sparse grids,” in Proc. of The 13th IASTED Interna-
tional Conference on Robotics and Applications (RA 2007), 2007.

[47] M. Hülsmann and D. Reith, “Spagrow—a derivative-free optimization scheme
for intermolecular force field parameters based on sparse grid methods,” Entropy,
vol. 15, no. 9, pp. 3640–3687, 2013.

[48] S. Chen and X. Wang, “A derivative-free optimization algorithm using sparse
grid integration,” 2013.

88

Bibliography

[49] S. Sankaran, “Stochastic optimization using a sparse grid collocation scheme,”
Probabilistic engineering mechanics, vol. 24, no. 3, pp. 382–396, 2009.

[50] C. Hamzaçebi and F. Kutay, “A heuristic approach for finding the global mini-
mum: Adaptive random search technique,” Applied Mathematics and Computation,
vol. 173, no. 2, pp. 1323–1333, 2006.

[51] S. Masri, G. Bekey, and F. Safford, “A global optimization algorithm using
adaptive random search,” Applied Mathematics and Computation, vol. 7, no. 4,
pp. 353–375, 1980, issn: 0096-3003. doi: https://doi.org/10.1016/0096-
3003(80)90027-2.

[52] S. Andradóttir and A. A. Prudius, “Adaptive random search for continuous sim-
ulation optimization,” Naval Research Logistics (NRL), vol. 57, no. 6, pp. 583–
604, 2010. doi: https : / / doi . org / 10 . 1002 / nav . 20422. eprint: https : / /

onlinelibrary.wiley.com/doi/pdf/10.1002/nav.20422.

[53] M. Schumer and K. Steiglitz, “Adaptive step size random search,” IEEE Transac-
tions on Automatic Control, vol. 13, no. 3, pp. 270–276, 1968.

[54] Z. B. Tang, “Adaptive partitioned random search to global optimization,” IEEE
Transactions on Automatic Control, vol. 39, no. 11, pp. 2235–2244, 1994.

[55] R. Kelahan and J. Gaddy, “Application of the adaptive random search to discrete
and mixed integer optimization,” International Journal for Numerical Methods in
Engineering, vol. 12, no. 2, pp. 289–298, 1978.

[56] J. Valentin and D. Pflüger, “Hierarchical gradient-based optimization with b-
splines on sparse grids,” in Sparse Grids and Applications-Stuttgart 2014, Springer,
2016, pp. 315–336.

[57] M. Feurer, J. N. van Rijn, A. Kadra, P. Gijsbers, N. Mallik, S. Ravi, A. Müller,
J. Vanschoren, and F. Hutter, “Openml-python: An extensible python api for
openml,” arXiv:1911.02490, 2019.

[58] D. Whitley, S. Rana, J. Dzubera, and K. E. Mathias, “Evaluating evolutionary
algorithms,” Artificial intelligence, vol. 85, no. 1-2, pp. 245–276, 1996.

[59] X.-S. Yang, Engineering optimization: an introduction with metaheuristic applications.
John Wiley & Sons, 2010.

[60] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, “Openml: Networked science
in machine learning,” SIGKDD Explorations, vol. 15, no. 2, pp. 49–60, 2013. doi:
10.1145/2641190.2641198.

89

https://doi.org/https://doi.org/10.1016/0096-3003(80)90027-2
https://doi.org/https://doi.org/10.1016/0096-3003(80)90027-2
https://doi.org/https://doi.org/10.1002/nav.20422
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.20422
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.20422
https://doi.org/10.1145/2641190.2641198

Bibliography

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[62] F. Chollet et al., Keras, https://keras.io, 2015.

[63] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng, “Hyperparame-
ter optimization for machine learning models based on bayesian optimization,”
Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, 2019, issn:
1674-862X. doi: https://doi.org/10.11989/JEST.1674-862X.80904120.

[64] R. Harman and V. Lacko, “On decompositional algorithms for uniform sampling
from n-spheres and n-balls,” Journal of Multivariate Analysis, vol. 101, no. 10,
pp. 2297–2304, 2010, issn: 0047-259X. doi: https://doi.org/10.1016/j.jmva.
2010.06.002.

90

https://keras.io
https://doi.org/https://doi.org/10.11989/JEST.1674-862X.80904120
https://doi.org/https://doi.org/10.1016/j.jmva.2010.06.002
https://doi.org/https://doi.org/10.1016/j.jmva.2010.06.002

	Acknowledgments
	Abstract
	Contents
	Introduction
	State of the Art
	Introduction to Neural Networks
	Hyperparameter Optimization
	Grid Search
	Random Search
	Bayesian Optimization
	Other Techniques

	Sparse Grids
	Numerical Approximation of Functions
	Adaptive Sparse Grids
	Basis Functions for Sparse Grids
	Optimization with Sparse Grids

	Adaptive Random Search

	Hyperparameter Optimization with Sparse Grids
	Methodology
	Adaptive Grid Search with Sparse Grids
	Iterative Adaptive Random Search
	Evaluation Metrics

	Sparse Grid Optimization of Functions
	Implementation
	Test Functions
	Sparse Grid Generation with different Adaptivities
	Local and Global Optimization

	Hyperparameter Optimization with Sparse Grids
	Optimization on Sparse Grid Points
	Optimization on Sparse Grids

	Comparison with Grid-, Random Search and Bayesian Optimization
	Two-dimensional Experiment of Regression with Small Neural Network
	Three- and Five-dimensional Experiments of Regression with Small Neural Network
	Nine-dimensional Experiment with MNIST Dataset
	Comparison with Implementation of other Authors

	Iterative Adaptive Random Search
	Implementation
	Analysis of Parameters with Functions
	Hyperparameter Optimization
	High-dimensional Optimization

	Comparison and Discussion

	Conclusion and Outlook
	Bibliography

