
Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Distributed Training of Transformer Neural
Networks

Carlos Adrian Salas Cedillo

Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Distributed Training of Transformer Neural Networks

Author: Carlos Adrian Salas Cedillo
Examiner: Dr. Felix Dietrich
Submission Date: June 30th, 2023

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

June 30th, 2023 Carlos Adrian Salas Cedillo

Acknowledgments

I would like to thank Dr. Felix Dietrich for his support and constructive feedback
throughout my thesis.

Special thanks to ITK Engineering for sponsoring my research. I want to thank Stefan
Held for showing interest in working with me and helping me develop the thesis topic.
I would also like to thank Jan Linus Steuler for guiding me in every step of the way and
motivating me during the project’s most challenging parts. I would especially like to thank
Leonardo Muffato for acting as a mentor and friend during my time at the company.

I would also like to thank my close friends Ashwanth, Anirudh, Itzel, Nigel, Manoj, and
Karen, who were always ready to help whenever needed. Finally, I would like to thank
my partner Kateryna for her most loving support during this time.

vii

Abstract

The Transformer is a Deep Learning model that uses a self-attention mechanism to keep
track of global dependencies in large data sequences. These properties have led Transform-
ers to be adopted as the backbone for modern foundation models. These are large-scale
general models that can perform a wide range of tasks due to the large amounts of data
that they are trained on. However, their many parameters represent a challenge to individ-
uals without high-end specialized hardware. The training of such models can be enabled
and sped up by applying distributed training techniques. In this thesis, synchronous Data
Parallelism and asynchronous Data Parallelism were used to speed up the training of the
EVA model, a state-of-the-art foundation model based on the Vision Transformer capable
of performing several vision tasks. In particular, the EVA is used as a case study for object
detection on low-resolution gray-scale images. The chosen distributed training techniques
were implemented using Horovod, a distributed training framework based on MPI, to
perform communication between nodes. The performance of the methods was evaluated
using two machines, each with one GPU, connected over the organization’s network us-
ing MPI. The lack of adequate HPC communication hardware resulted in a high variation
of communication overhead. Under high traffic conditions, the communication overhead
overshadowed the benefits of parallelization for the available number of workers. How-
ever, under suitable conditions, the parallelization resulted in a speedup of 1.6164 for syn-
chronous Data Parallelism. At the same time, asynchronous Data Parallelism achieved a
speedup ranging from 1.961 to 1.988 depending on the weight synchronization frequency
every 2 to 64 iterations.

ix

Contents

 Acknowledgements vii

 Abstract ix

 1. Introduction 1

 2. State of the Art 3
 2.1. Transformer Networks . 3

 2.1.1. Self-attention . 3
 2.1.2. Vision Transformers . 4
 2.1.3. EVA . 6

 2.2. High Performance Computing and MPI . 7
 2.3. Distributed Training Techniques . 9

 2.3.1. Data Parallelism . 9
 2.3.2. Model Parallelism . 11

 3. Thesis Development 13
 3.1. Methodology . 13

 3.1.1. Research Design . 13
 3.1.2. Data Collection . 13
 3.1.3. Experimental Setup . 14
 3.1.4. Training Procedure . 16
 3.1.5. Evaluation Metrics . 16

 3.2. Preparation . 17
 3.2.1. Building the Dataset . 17
 3.2.2. Setting up the cluster . 19

 3.3. Sequential baseline . 20
 3.3.1. Training script . 20
 3.3.2. Model configurations . 23
 3.3.3. Training . 24
 3.3.4. Short note on accuracy improvements 24

 3.4. Data Parallelism . 26
 3.4.1. Analysis of the communication overhead 30
 3.4.2. The importance of adequate communication hardware 31

 3.5. DP with delayed weight updates . 32

xi

Contents

 4. Conclusion 35
 4.1. Discussion . 35
 4.2. Outlook . 35

 Appendix 36
 A. EVA hyper-parameters for object detection 37
 B. Dataset annotations distribution . 38

 Glossary 41

 Bibliography 41

xii

1. Introduction

The relevance of Deep Learning in recent years has been increasing. Namely, the field of
 Natural Language Processing (NLP) has hit some significant milestones with the surge of
foundation models like BERT [6] and GPT-3 [2]. The field of Computer Vision has also ben-
efited from the use of foundation models like Contrastive Language-Image Pre-Training
(CLIP) [26] and GPT-4 [25]. What all these models have in common is the use of Trans-
formers, a model architecture with a mechanism of self-attention that keeps track of data
relations better than some older models based on recurrence.

The ground-breaking results of transformers have inspired researchers to develop much
more transformer-based models over the last few years. Figure 1.1 shows some milestones
in the development of transformers.

Figure 1.1.: Timeline of transformer models (image from [11]).

In computer vision, models that use transformers as backbones compete against other
state-of-the-art Convolutional Neural Network (CNN) models. They implement a multi-
head self-attention mechanism that keeps track of long-term dependencies. Vision Trans-
former (ViT) [8] had a fantastic success and set the path for researchers to build new
general-use vision transformer backbones and architectures [21]. These advancements can
be used in object detection, image classification, and semantic segmentation applications.
An exciting example of transformer-based models is the EVA , which has a billion-scale [10]
and a million-scale [9] model variants as visual representation foundation models. They
both rank as State of the Art or top 10 for some of the leading computer vision benchmarks.

However good these models sound, their large size makes them hard for smaller orga-
nizations to compete against. Figure 1.2 provides a visual representation of the number
of parameters that make up some of the machine learning models created in the last two
decades (up until 2021) [28]. The number of parameters has grown exponentially, espe-
cially in the last five years. The use of Graphical processing unit (GPU) s to accelerate the

1

1. Introduction

training of models is a standard in the field. However, unless a high-end GPU like the
NVIDIA A100 or the AMD Radeon Instinct MI100 is used, the model will either not fit the
memory of a single GPU or the training time will be extremely long.

This is why, even since the beginning of the 2010’s decade, distributed training tech-
niques have been adopted to enable and accelerate the training of such models [5 , 4 , 19].
Moreover, foundation models are trained using a huge amount of data to be able to use
the model for a wide variety of applications. This leads to extremely long training times,
even when using a large number of high-end GPU s.

Figure 1.2.: Timeline of the number of parameters in machine learning models from 2002-
2021 (image from [28]).

There is a large gap between the capability to train large models between big companies
and smaller organizations. The CO2 emissions generated by the training of foundation
models is a big concern [31 , 1]. Luckily, pre-trained foundation models can be used to
perform different tasks with just some fine-tuning. This is a much more viable option for
smaller organizations that want to use state-of-the-art models, making it feasible to apply
transfer learning and train the model in a smaller-scale distributed system.

In an attempt to decentralize the use of large-scale models, this thesis explores the use
of distributed training techniques applied to the particular case of the vision transformer
and foundations models based on it.

2

2. State of the Art

2.1. Transformer Networks

Transformers were originally proposed for the field of NLP . Previous approaches that try
to understand the dependencies in data sequences, like Long short-term memory (LSTM)

and Recurrent Neural Network (RNN) have a sequential nature. Transformers eliminate
this recurrence and use instead an attention mechanism that can learn the dependencies of
the global context while allowing parallelization for more efficient processing [32].

2.1.1. Self-attention

Attention is a function that maps an input vector, transformed into query (Q) and key
(K) value (V) vector pairs, to an output which measures the compatibility to each value
given its corresponding query and key. The resulting attention represents the focus that
these vectors will receive later on. Attention is calculated as a weighted sum of the values,
whose weights are computed as a probability function P = softmax(Sn), where Sn is the
normalized score between the input vectors as the dot product of Q and K. The attention
function is simplified as

Attention(Q,K,V) = softmax
(

QK⊤
√
dk

)
V, (2.1)

where dk is the dimension of queries and keys. This is known as scaled dot-product at-
tention, which can be visualized on the left side of Figure 2.1 . This mechanism, however,
limits the ability to consider information from different positions at the same time. To im-
prove this, multiple attention heads can be incorporated in a single Multi-Head Attention
layer, as seen on the right side of Figure 2.1 . In this layer, the queries, keys, and values
are linearly projected h times into Q’ = {Qi}hi=1, K’ = {Ki}hi=1 and V’ = {Vi}hi=1. The
attention function is computed for each of these projections in parallel, and they are then
concatenated and linearly projected once more. This process is summarized as

MultiHead(Q’,K’,V’) = Concat(head1, ...,headh)WO,

where headi = Attention(Q,K,V), (2.2)

and WO is the projection’s weight of dimensions dmodel × dmodel.

3

2. State of the Art

Figure 2.1.: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of
several attention layers running in parallel (image from [32]).

The original transformer uses these attention layers in an encoder-decoder structure, as
seen in Figure 2.2 . The encoder is made up of N layers consisting of a multi-head attention
mechanism and a fully connected feed-forward network. Each of the sub-layers has a
residual connection with its original input. The decoder layer has an extra multi-head
attention sub-layer that takes as input matrices K and V from the output of the encoder
layer, as well as Q from the initial multi-head attention sub-layer. Since the self-attention
mechanism does not have any positional information about the data, the architecture used
a positional encoding stage at the beginning of the form

PE(pos,2i) = sin(pos/10002i/dmodel),

PE(pos,2i+1) = cos(pos/10002i/dmodel). (2.3)

2.1.2. Vision Transformers

The success of transformers also permeated the field of computer vision, where the strong
representation capabilities of the transformer are useful for a set of tasks. In this case, most
transformers use the original encoder as a feature extractor that captures long-term global
dependencies. Here, vision transformer backbones have performed similarly or better
than other networks like CNN s or RNNs [11]. While transformers are used alongside
popular CNN architectures in some cases, there are some pure-transformer examples.

4

2.1. Transformer Networks

Figure 2.2.: Original transformer architecture (image from [32]).

Such is the case of the Vision Transformer (ViT) [8]. Figure 2.3 shows an overview of the
model. It uses a very similar structure to the original transformer, using visual tokens as
inputs taken from patches of size (P, P) of an image of size (H,W) and C channels. The 2D
image x ∈ RH×W×C is reshaped into a sequence of flattened patches xp ∈ RN×(P 2C), where
N = HW/P 2 is the total number of patches. A learnable linear embedding to class tokens
z00 = xclass is included, as well as some positional embedding to the surrounding patches
that can be used to represent the connection to a different part of the image depending on
the given task. A Multi-Layer Perceptron (MLP) block, used as the classification head, is
attached to the linear embedding at the output of the encoder z0L.

While the results of the ViT are excellent, the global attention mechanism can be ex-
tremely expensive for high-resolution images. For this reason, researchers have come up
with some alternatives like the SWIN [21], and more recently, the CWIN [7]. These mod-
els rely on window-based multi-head self-attention, where the attention is restricted to
patches inside a given window, after which the window is shifted to be able to learn infor-
mation about the global context. This reduces the complexity of the attention mechanism

5

2. State of the Art

Figure 2.3.: ViT architecture (image from [8]).

Table 2.1.: Architecture details of the EVA model
patch size #layers hidden dim MLP dim attn heads #params
14×14 40 1408 6144 16 1011M

from quadratic complexity to near-linear

1
 .

An advantage of pure transformer-based architectures over CNN models is that they
can take any images of any resolution as input, without extra padding or augmentations.
However, they lack the inductive bias that CNN s have and must therefore be trained on
larger datasets to obtain comparable results. This is why some approaches use both CNN

and transformer layers in conjunction.

2.1.3. EVA

 EVA [10] is a large-scale open-source foundation model based on the ViT. It is pre-trained
on public data to align image-text data, which can be used for vision tasks like object
detection, image segmentation, and video action classification, as well as scaling up other
models like CLIP and outperforming some state-of-the-art results. It uses Masked image
modeling (MIM) without relying on supervised learning. The architecture of the model
can be seen in Table 2.1 .

For the case of object detection, EVA uses Cascade Mask R-CNN to perform the initial
detection. The original hyper-parameters used for training can be found in appendix A .

1To better understand this process, it is recommend to follow this very well-made visual guide: https://
towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

6

https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

2.2. High Performance Computing and MPI

The implementation details are available on the author’s repository

2
 .

2.2. High Performance Computing and MPI

 Message Passing Interface (MPI) [23] is the industry standard specification when it comes
to parallel computing on distributed memory systems. It is used to perform message pass-
ing, point-to-point communication, and collective communication operations. It is imple-
mented as a library, which has the advantage of the implementation not being bound to
the programming language. This means that MPI can be used as a general tool and can
have new features added to it without compiler modifications [17].

 MPI is mainly intended for distributed-memory systems and networks, although shared-
memory systems are not excluded. It provides features to do message-passing between
nodes. Nodes are independent units that do not share computational and memory re-
sources between them. Each node contains ranks, which are individual processes. Typi-
cally, ranks are bound to a Central processing unit (CPU) inside the node and can be further
parallelized among the CPU ’s threads. Together, all ranks make up the MPI_COMM_WORLD.
Figure 2.4 shows an overview of these concepts.

Rank ID:

MPI_COMM_WORLD

CPU 0
CPU 1

CLUSTER

CPU 0

0

2

1

node 1

node 2

Figure 2.4.: Visual representation of the elements that make up the MPI_COMM_WORLD.

The communication can be done point-to-point and can be blocking or non-blocking.

2
 https://github.com/baaivision/EVA/tree/master/EVA-01/det

7

https://github.com/baaivision/EVA/tree/master/EVA-01/det

2. State of the Art

This type of communication is performed with send and receive operations. These opera-
tions are done pairwise, using the functions MPI_SEND() and MPI_RECV(), where the
send buffer, message size, data type, and destination/origin ranks must be specified.

 MPI also includes collective operations, where the communication is done for groups of
processes rather than pairwise, as in point-to-point communication. All the basic opera-
tions can be seen in Table 2.2 .

Table 2.2.: MPI basic collective communication operations
Collective operation Description
MPI_BARRIER() Synchronization barrier.
MPI_BCAST() Broadcast identical copies of data from one to all mem-

bers of the group.
MPI_GATHER() Gather data from all members to one member of the

group.
MPI_SCATTER() Scatter parts of the data of one member to all members

of the group.
MPI_ALLGATHER() Gather data from all members on all members of the

group.
MPI_ALLTOALL() Scatter and gather data from all to all members of the

group.
MPI_ALLREDUCE() Reduce operation (sum, max, min, etc.) of the data

of all members. All members receive a copy of the
reduced data.

MPI_REDUCE_SCATTER_BLOCK() Combined reduce and scatter.
MPI_SCAN() Scan across all members of a group.

8

2.3. Distributed Training Techniques

2.3. Distributed Training Techniques

2.3.1. Data Parallelism

 Data Parallelism (DP) [5 , 18] is a distributed training technique that splits the training data
across multiple workers, each with an exact model copy. Each worker processes a smaller
batch of the data to calculate the model’s gradients, which are then broadcasted and ag-
gregated across the rest of the nodes. Figure 2.5 (left) depicts the DP training process.

Its use is straightforward and usually does not require changes in the model, which is
why DP has become the default distributed training technique used by most deep learning
frameworks. Typically DP performs synchronous gradient synchronization. This is done
by doing a complete forward pass and backward propagation of the mini-batch to compute
the model’s gradients, which are then synchronized with the rest of the workers using an
allreduce operation. This brings the possibility of scaling the training using a large number
of nodes. Synchronous DP has the advantage of updating weights using the entire data
set. However, it performs excessive synchronization, and if (a) the model is too big and
(b) the number of nodes is not enough to overcome the communication overhead, DP can
lead to longer training times. As a general rule, models with high computation per weight
benefit the most from DP [18].

It is possible to mitigate this overhead using asynchronous DP approaches such as
 Stochastic Gradient Descent (SGD) with delayed updates [30] and Asynchronous Dual
Averaging [24]. The choice of asynchronous techniques needs to be done carefully since
they can affect the convergence of the optimization process.

Figure 2.5.: Representation of Data Parallelism (left) and Model Parallelism (right) in a
setup consisting of one CPU and two GPU nodes (image from [3]).

Optimizers

Optimizers are a crucial part of the training of neural networks. They are used to itera-
tively find the (minimizing) solution of a loss function l(X,Y,W) for N data points. The
optimization problem in DP is very similar to common SGD scenarios. This is convenient
for quick implementation and is therefore solved using some optimizer of the SGD family.

9

2. State of the Art

 SGD consists in splitting the data into mini-batches of size N/num batches and solving
a mini-batch loss function L(x, y,W) computed with the mini-batches portion of the data.
The mini-batches are fed in a round-robin manner until all batches have been used, having
completed an epoch. A gold standard family of optimizers is the Adam optimizers, a
variation of SGD that performs updates by adapting the learning rate with estimators of
first and second moment of the gradients [16].

In particular, AdamW [22] decouples the weight decay from the gradient update in
Adam. L2 regularization is typically used as weight decay, but in the case of Adam, this
does not hold and leads to bad convergence. Instead, the moving averages do not include
the weight decay term, and it is added later on the parameter update as

xt = xt−1 − ηt

(
αm̂t/(

√
ν̂t + ϵ) + wxt−1

)
, (2.4)

where x denotes the parameter vector, t the time step, η the learning rate multiplier, α the
learning rate, and m̂ and ν̂ the first and second moment vectors. Here, the term in the box
is the weight decay.

In the case of DP with delayed weight updates, the convergence of SGD optimizers is
affected since each worker usually updates its local weights with different sets of data.
Overlap Local- SGD [33] is an algorithm proposed to mitigate this effect by adding an an-
chor model z to each node that performs the communication every τ local updates, while
the local model x(i), where i ∈ {1, ...,m} for m nodes, continues to perform its local up-
dates. The anchor model saves the average model across all workers and is then used to
pull the local model toward the global average as

x
(i)
k+1 =

x
(i)

k+ 1
2

− α

(
x
(i)

k+ 1
2

− zk

)
(k + 1)modτ = 0

x
(i)

k+ 1
2

otherwise,
(2.5)

where x
(i)

k+ 1
2

is computed by the local optimizer’s (SGD , Adam) update rule, and α is a

tunable parameter. The anchor model computes the global model average as

zk+1 =

{
1
m

∑m
i=1 x

(i)
k+1 (k + 1)modτ = 0

zk otherwise.
(2.6)

This reduces the communication latency significantly compared to synchronous DP while
improving the convergence of other asynchronous DP optimizers. This optimizer is par-
ticularly useful for arrangements with small communication bandwidth and large models
like transformers.

Higher-order optimizers are available, such as Newton, which contain information about
the function’s curvature and converge faster. The downside is that they rely on the com-
putation of the Hessian, which is highly costly in the context of deep learning. A sophis-
ticated approach uses a quasi-Newton matrix-free conjugate gradient method of second

10

2.3. Distributed Training Techniques

order [27]. The original authors of this method propose defining a cheap Hessian as a vec-
tor product using the Pearlmutter approach. After this, a Newton step is applied using
CG-iterations that use matrix products only. The resulting method has O(bn) complexity
for the evaluation of the gradients, where n is the number of weights and b the size of the
mini-batch, as well as O(2mbn) for the computation of the Hessian and the solution of the
Newton equation, where m is the number of CG-iterations.

2.3.2. Model Parallelism

 Model Parallelism (MP) originated back when GPU s did not have enough memory to store
medium to large-sized models. Compared to DP , it requires a higher level of understand-
ing of the model’s architecture. But if done right, it can lead to great results, as was the case
of the training of the highly influential AlexNet [19]. Some early work proposed distribut-
ing different parts of the model across a set of machines to distribute the computational
workload of training [5]. This was done purely in CPU nodes, but since then, MP has been
done using GPU s instead.

Model parallelism is a distributed training technique in which the model is split across
the available GPU s. The splitting can be done into subnets containing part of the layers
of the original model as seen in Figure 2.5 (right), or splitting a layer’s neurons as seen in
the horizontal direction of Figure 2.6 . Each GPU will do the updates for its portion of the
layers. However, since the nature of the forward and backward pass is sequential, the data
must be pipelined in mini-batches to avoid idle workers [3 , 13].

Figure 2.6.: Model Parallelism with different splitting directions. The thick connection
lines represent the nodes that need to be synchronized (image from [5]).

On the downside, naive pipelining like PipeDream [12] has the problem of weight stale-
ness. Imagine a setup of two GPU s gpu0 and gpu1 containing two parts of a model, where

11

2. State of the Art

the output of each group of layers is F0 = f0(x) and F1 = f1(x) respectively. A mini-batch
xi is fed through Fi

0 = f0(x
i) and then forwarded to Fi

1 = f1(F
i
0). At the second state,

gpu1 starts to compute Fi
1, while gpu0 will compute Fi+1

0 using the following mini-batch
xi+1. This is a problem because, in SGD , Fi+1

0 should be computed after the layer’s weights
have been updated using ∇Fi

0. By the time this weight update happens, xi+1 and xi+2 will
already be down the pipeline. This is a problem that drags and scales when using more
 GPU s, which can lead to instability in the optimization process and affect convergence.

Some approaches have been proposed to solve this problem. One straightforward op-
tion is to split the mini-batches into micro-batches and only do the weight update once
all micro-batches have been processed [15]. However, this gravely affects the pipeline’s
throughput. Another approach [3] involves some predicting weights to avoid staleness by
using Momentum SGD with smoothed gradient. This model achieves similar throughput
as PipeDream while maintaining the convergence of DP .

As mentioned, MP is not straightforward and requires deep knowledge of the model
architecture. A few interesting solutions have been proposed for the specific case of trans-
formers. One of them, the PipeTransformer [14], uses elastic pipelining by doing on-the-fly
layer freezing during training and combines this with data parallelism. Another interest-
ing method, Oases [20], uses automated tensor model parallelism to schedule the model
updates cleverly. Both methods achieve more remarkable speedups than DP and naive
 MP while preserving the convergence of the model.

12

3. Thesis Development

3.1. Methodology

3.1.1. Research Design

This thesis evaluates the possibility of enabling the training of foundation models based
on the transformer architecture on lower capacity hardware that small-to-midsize organi-
zations or institutions might have available and achieving a speed-up on the training time.
For this, both synchronous data parallelism and asynchronous data parallelism have been
chosen to assess the training performance of the model. In the end, the results of the ex-
periments will be used to define a methodology that other artificial intelligence developers
can use to improve the training performance of their own models. Since the main goal is
to provide developers with available tools to speed up the training of their own models,
model parallelism was not implemented since it is particular to the model used.

The model chosen as a case study is the EVA model for object detection. The size of the
model allows a wide variety of scenarios one can face while trying to train large models.
On the one hand, its large size already represents a challenge since the model, especially its
gradients, might not fit in the memory of a single GPU . On the other hand, if the available
hardware cannot fit large batch sizes, the training time on a dataset of significant size will
be infeasible.

These challenges were approached by performing transfer learning on a new dataset of
smaller size and different characteristics using the model’s pre-trained weights, training
just a few last layers of the model for several epochs, and evaluating its training using

1. a sequential approach,

2. data parallelism,

3. data parallelism with delayed weight updates.

3.1.2. Data Collection

The dataset used is a portion of the Objects365 dataset [29], resized and color space con-
verted to emulate grayscale security camera footage of low resolution (320x198). Refer
to section 3.2.1 to see the detailed image preprocessing steps. The goal is to use the EVA

model to detect particular objects of interest on security cameras. The categories of interest
are: Chair, Bicycle, Luggage, Stroller, and Wheelchair. Figure 3.1 gives an overview of the

13

3. Thesis Development

images used in the dataset. It is important to note that EVA expects annotation data with
bounding boxes and masks. Since the original Objects365 dataset does not contain mask
data, weak masks

1
 were added as a workaround since the evaluated task is object detec-

tion and not segmentation. This could still impact the model’s overall accuracy because
both tasks are embedded in the same architecture. Still, since accuracy is not the main
focus of this thesis, this is overlooked.

Figure 3.1.: Sample images of the used dataset, with annotations of categories: Chair, Bi-
cycle, Luggage, Stroller, Wheelchair.

3.1.3. Experimental Setup

The experiments are performed on a GPU cluster consisting of two independent nodes,
each with ten Intel(R) Xeon(R) Gold 6334 CPU s, 128GB RAM, and one NVIDIA A40 GPU

with 24GB memory. Both nodes have a 10G Ethernet and 16G FC connection. The com-
munication between nodes is implemented with OpenMPI through network access with
 Secure Shell Protocol (SSH) via Ethernet. Figure 3.2 shows a visual representation of the

1Masks of the exact shape of the bounding box

14

3.1. Methodology

arrangement. The detailed setup steps are described in section 3.2.2 . Compared to an High
performance computing (HPC) configuration consisting of Non-uniform memory access
(NUMA) nodes, our setup does not share a common memory pool between nodes or allow
direct access to each other’s memory. The network connection between nodes introduces
additional latency and communication overhead.

Computer node 1 / Primary

Nvidia A40 / 24 GB
GPU

Organization Network

Computer node 2 / Worker

Nvidia A40 / 24 GB
GPU

Figure 3.2.: Topology representation of the GPU cluster used.

Horovod was chosen as the framework to implement the distributed training. It pro-
vides MPI support as a backend. Compared to PyTorch’s distributed implementations, it
uses more efficient communication protocols, such as the NVIDIA Collective Communica-
tion Library (NCCL) for NVIDIA GPU s, to speed up the communication between different
nodes during distributed training. This can lead to faster training times and better scala-
bility on large clusters. Besides all this, Horovod is framework agnostic and can work with
different DL frameworks, giving future developers more versatility.

At the same time, the detection application of EVA is built upon Facebook’s Detectron2.
Detectron2 is a popular open-source computer vision library developed by Facebook AI
Research (FAIR). It is written in Python and is built on top of PyTorch. Detectron2 pro-
vides a flexible and modular framework for training and deploying state-of-the-art object
detection, instance segmentation, and keypoint detection models. It is usually as simple as
creating a configuration file with all of the model’s parameters and details, which is then
invoked by the training script. There are two standard training script formats: Lazyconfig
and plain training. The configuration file’s format depends on the training script. While
the plain training script uses dictionaries stored in.YAML files, lazyconfig training, uses
lazyconfig dynamic dictionaries stored in .py files. These dynamic dictionaries can store
complex objects instead of raw text, which must be instantiated later by the training script.

However, even if the lazyconfig training script is a more practical option, it uses many
built-in functions to perform the training process. Implementing a different distributed
backend would mean modifying the source code, which could lead to higher implemen-

15

3. Thesis Development

tation complexity and unexpected problems. Instead, the plain training script executes a
straightforward training loop which is more friendly for hackers. For this reason, the plain
training implementation was chosen while modifying it to support layzconfig files since it
is the configuration file that the original authors provided.

3.1.4. Training Procedure

The model is used strictly as provided by the original authors. While there probably is
some fine tuning that can (and should) be done to improve the model’s accuracy to the
new dataset, this is outside the scope of this thesis, so it was decided not to do anything
with it. Only some slight configuration modifications were done to use the custom dataset.
To see all changes, please refer to section 3.3 .

All but the last 10% of the model’s layers were frozen. This number was chosen arbi-
trarily and is a hyper-parameter that should be tuned in the future if the accuracy wants
to be improved. The model uses AdamW as an optimization algorithm, with an adaptive
learning rate of 2.5e−5. The dataset is fed through batch sizes of 8 per GPU , the maximum
batch size that the GPU can fit in its memory with this given dataset. The model is trained
for a total of five epochs. This is mainly done to perform some uncertainty quantification
in the training time of a whole epoch.

3.1.5. Evaluation Metrics

Three main metrics were observed during the experiments:

• Elapsed time per epoch

• Training loss

• Communication overhead

It is important to note that the primary metric is the time per epoch. However, observing
the training loss helps us monitor if the model’s convergence is preserved while applying
a given distributed training technique.

16

3.2. Preparation

3.2. Preparation

3.2.1. Building the Dataset

It was intended to use the EVA model for object detection using security camera footage
to detect objects of the categories Chair, Bicycle, Luggage, Stroller, and Wheelchair. The
camera produces grayscale images of resolution (320x198). The Objects365 dataset was
chosen to emulate this scenario. Since the model was pre-trained on the same dataset, part
of the learned characteristics learned by the model should be preserved even if the images
are modified.

The original dataset contains 2 million RBG images with 30 million bounding boxes
of 365 categories. The whole dataset is not needed since only transfer learning is done.
A custom dataset was built from the first ten patches of the Objects365 training dataset,
containing 380 thousand images. The original metadata file includes the image’s metadata
and the annotations for the whole training set. The first step is to filter out all information
of images not present in the portion of the dataset used.

Once this was done, all the annotations not part of the interest categories were removed.
At this point, all images containing no annotations from the newly filtered ones were also
removed. The next step is to resize the images to the desired resolution and turn them into
grayscale. For simplicity, the images were all resized to the exact resolution, regardless of
their original proportions. All images with a height larger than the width were removed
to avoid harmful distortions that could affect the model’s performance. At the same time,
the scaling factor for the width and the height was stored in the image’s metadata so that
it could be used to scale the annotations’ bounding boxes at a later point. The before and
after of how these images look can be seen in Figure 3.3 . In the same figure, it can be seen
that there is a bounding box around a person. This is because the category ”Person” was
initially also of interest but was removed later.

0 100 200 300 400 500 600

0

100

200

300

400

500
0 50 100 150 200 250 300

0

25

50

75

100

125

150

175

Figure 3.3.: Image with annotations before and after preprocessing.

17

3. Thesis Development

As mentioned, the category ”Person” was also of interest originally. However, after
comparing the distribution of categories from the filtered annotations, the distribution is
highly skewed towards the categories ”Person” and ”Chair.” This unbalance can lead to
the model being biased to learn just for these two categories while completely ignoring
the rest of the categories. Since the frequency of ”Person” is far greater than the rest of the
categories, it was removed entirely to avoid biases. The rest of the annotations were also
balanced by limiting the number of images where only annotations of the type ”Chair”
are present. As seen in Figure 3.4 , the distribution after balancing the annotations is much
more suitable for training.

Wheelchair Luggage Stroller Person Bicycle Chair
Category

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
eq

ue
nc

y

1e6

1003 3793 3612

1164510

12772

277244

Unbalanced annotations

Wheelchair Luggage Stroller Bicycle Chair
Category

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

1003

3793 3612

4350

8810
Balanced annotations

Figure 3.4.: Comparison of categories distribution present in the dataset’s annotations be-
fore and after balancing.

18

3.2. Preparation

After all preprocessing, the resulting training dataset consists of 6711 images and a val-
idation and test dataset of ∼ 890 images each. The final distribution of the categories in
each dataset can be seen in Appendix B .

3.2.2. Setting up the cluster

The distributed training is performed using Horovod for Pytorch. Horovod supports a
wide range of backends to perform communication and GPU operations. Before installing
Horovod, the backends must be installed. Connecting two nodes and performing col-
lective operations directly in the GPU is desired. MPI was chosen as a backend as the
controller and NCCL

2
 for tensor operations.

The GPU computers used do not have any specialized hardware to communicate with
each other; the only way to do it is through an SSH connection. OpenMPI was chosen as
the MPI implementation, but this could also be done with other open-source or proprietary

 MPI implementations. First of all, OpenMPI needs to be installed in each node. Before
running MPI commands, SSH access between nodes must be granted without a password.
Please refer to OpenMPI’s documentation about this process

3
 . Once this is done, MPI jobs

can be run as

1 mpirun -np 2 --host <ip_node_1>:1,<ip_node_2>:1 <parallel script>

To avoid typing the IP addresses and number of processes per node every time, a host
file that includes all of the nodes’ information can be created. All that is left now is to
install NCCL . The NCCL version must be chosen accordingly to the Compute unified
device architecture (CUDA) version available in the system.

Finally, Horovod can be installed. This can be done with pip install horovod after
specifying the backends with the flags

• HOROVOD_GPU_OPERATIONS=NCCL

• HOROVOD_WITH_PYTORCH=1

• HOROVOD_WITH_MPI=1

• (optional) HOROVOD_NCCL_HOME=<NCCL_home_directory>

The last flag is optional and must only be included if NCCL was installed in a different
location than the default one. If everything is done correctly, Horovod can be used for
distributed training as

1 horovodrun -np 2 -H server1:1,server2:1 python <train_script>.py

2https://developer.nvidia.com/nccl
3https://www.open-mpi.org/faq/?category=rsh

19

3. Thesis Development

3.3. Sequential baseline

In this section, the process of adapting the training script and model configurations to be
able to train on our custom dataset is described. After this, the model is trained on the
dataset to obtain a baseline to compare the distributed training.

3.3.1. Training script

When using custom datasets with Detectron2, the first thing that needs to be done is to
provide a function to read the dataset, returning it in a specific format. Detectron2 already
provides many built-in functions to work with COCO-style data, so the data loading func-
tion was built to return the dataset in such a format. Additionally, the same function is
in charge of creating the weak masks out of the bounding box shapes to be able to feed
them to the Mask R- CNN detection layers. This is done as shown in Source Code 3.1 . The
returned data is a list of dictionaries of each image, with its annotations in a list inside the
image dictionary.

1 def load_objects_camera(which_dataset):
2 dataset_dir = os.environ.get('DATASET_DIR')
3 filename = dataset_dir + which_dataset + ".json"
4

5 with open(filename, "r") as f:
6 data = json.load(f)
7 for image in data:
8 for anno in image['annotations']:
9 x,y,w,h = anno['bbox']

10 anno['segmentation'] = [[x,y, x+w,y,
11 x,y+h, x+w,y+h]]
12 anno['area'] = w*h
13 return data

Source Code 3.1.: Custom data loading function.

20

3.3. Sequential baseline

To use the dataset, it needs to be registered to the framework’s DatasetCatalog first with
its name and loading function. At this point, the categories and the evaluator dataset type
must also be set in the MetadataCatalog. Since the loading function returns the dataset in
COCO format, the predefined COCO evaluator can also be used. This is all done in the
main function shown in Source Code 3.2 .

1 categories = ["Chair", "Bicycle", "Luggage",
2 "Stroller", "Wheelchair"]
3

4 for d in ["train", "test"]:
5 DatasetCatalog.register(d,
6 lambda d=d: load_objects_camera(d))
7 MetadataCatalog.get(d).set(thing_classes=categories)
8 MetadataCatalog.get(d).set(evaluator_type="coco")

Source Code 3.2.: Lines of coded included in main() to enable the use of the custom
dataset.

Finally, the original plain training script is meant to get its configurations from a .YAML
configuration dictionary. However, the authors of EVA only provide a .py dynamic con-
figuration dictionary meant to be a lazy configuration file. The lazy config dictionary has
a different structure than the regular one. Therefore, special attention must be taken to all
lines of the code that invoke an element from the config file. In particular, dynamic ele-
ments must be instantiated with Detectron2’s instantiate() function. The setup()
function must also be modified to resemble the one in the lazyconfig train net.py script.

The epoch time was measured explicitly in the training loop. This is done using Python’s
time() module at the beginning and at the end of each epoch. Source Code 9.6 shows an
overview of how the time is measured in the actual code.

21

3. Thesis Development

1 import time
2

3 epoch = 0
4 epoch_iteration = -1
5

6 st = time.time()
7 for data, iteration in zip(data_loader, range(start_iter, max_iter)):
8 epoch_iteration += 1
9 ... # Training

10 if ((epoch_iteration+1) % iterations_per_epoch==0 or
11 iteration == max_iter-1):
12 et = time.time()
13 epoch_time = et - st
14

15 st = et
16 epoch += 1
17 epoch_iteration = -1

Source Code 3.3.: Training loop with epoch timing functions.

22

3.3. Sequential baseline

3.3.2. Model configurations

This thesis focuses on the parallelization results rather than the model’s accuracy. Because
of this, only a few model configurations need to be modified. Table 3.1 shows the complete
list of modified parameters. Other parameters would make sense to change, but at this
point, the only goal is to make the model able to take the custom data set as input.

Table 3.1.: List of modified configuration parameters used in the model for the custom
dataset.

parameter value explanation
dataloader

image size 320 Used to perform automatic data
augmentations in relation to the im-
age size

train.dataset.names ”objects camera train” Specify name of the train dataset
test.dataset.names ”objects camera test” Specify name of the test dataset
evaluator COCOEvaluator(...) Specify COCOEvaluator as the eval-

uator type for the test dataset. The
dataset name and output directory
must be given as an input

train.total batch size 8 Batch size per GPU

train
num epochs 5 Number of epochs to train for
max iter num epochs *6711/to-

tal batch size
Total number of iterations for the to-
tal amount of epochs. 6711 is the
dataset size

lr multiplier
scheduler.milestones[0] train.max iter * .89 First milestone set at 89% of the

training process
warmup length .0112/45000*train.max iter Scaled to the size of the current

max iter from the original max iter
model

backbone.square pad 320 Square padding to match the size of
the dataset

roi heads.num classes 5 Specify the number of classes to de-
tect

23

3. Thesis Development

3.3.3. Training

The training was done for five epochs and was only done on the last four layers of the
model. The training process was repeated several times to rule out variation. Figure 3.5

displays the training loss evolution for the five epochs. It can be appreciated that the
training loss stagnates around 1.14. It is hard to say if this means convergence since no
attention is paid to the prediction’s precision. Also, it is unknown if the loss will continue
decreasing if the model is trained for more epochs.

0 1 2 3 4 5
Epochs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

1.141

Training Loss

Figure 3.5.: Training loss for sequential training during five epochs.

The resulting average epoch time is of 15.98 minutes.

3.3.4. Short note on accuracy improvements

This section presents the results of some modifications that improved the ability of the
model to make accurate predictions on the custom dataset. This is only meant as additional
information for future work and it was not used in the next parts of this thesis.

As discussed in Section 3.3.2 , the dataloader performs augmentations in relation to the
image size of 320. However, the model is pre-trained on images of higher resolution and
uses patch sizes relative to this sizes.

24

3.3. Sequential baseline

One experiment that achieved good accuracy results was doing data augmentations to
an image size of 1333. Training on the augmented data, the model showed good signs
of generalization even when training on a small number of epochs, as seen in Figure 3.6 .
Additionally, the obtained average precision at Intersection over Union 0.50 (AP50) of the
model’s prediction was 68.190, compared to 3.522 of the non-tuned model. On the down-
side, the increase of the image size reduced the possible batch size per GPU to 1 and dras-
tically increased the time per iteration.

0 1 2 3 4 5
Epochs

1

2

3

4

5

6

Lo
ss

Training Loss
Baseline
Large augmentations

Figure 3.6.: Training loss comparison of the baseline used and an additional experiment
using larger data augmentations.

However, better results could be obtained by modifying some backbone parameters to
match the actual resolution of the images, such as the patch size, window dimension,
embedded dimension and MLP ratio. The choice of which layers to train will also play
an important role in the model’s accuracy. This is all fine-tuning that is left for future work
to other engineers if using the model for a similar application.

25

3. Thesis Development

3.4. Data Parallelism

This section implements synchronous DP to compare its performance against the original
sequential version. As many frameworks do, Detectron2 has distributed training func-
tionalities built with Pytorch. As of the time this thesis was written, there is no way
to choose a different backend, which would involve changing the source code, which
is not advisable. Instead, some of these functions are replaced with Horovod functions
or self-made ones built with Horovod commands. First, it needs to be defined how the
synchronization will be done. This can be done manually with collective operations, but
since a Pytorch optimizer (AdamW) is used initially, it makes more sense to wrap it with
Horovod’s DistributedOptimizer(). This new optimizer will synchronize the gradient once
the step() method is called. The configurations are not configured directly; thus, some
parameters must be updated for the number of workers. Since each GPU has a batch
size of 8, the model will train on a super-batch of size 16 per iteration when using two
nodes. Therefore the max number of iterations must be scaled by the number of workers
as max_iter / horovod.size(). At the same time, the learning rate is scaled to the
number of workers to make up for the change in batch size. Before the training loop be-
gins, the parameters must be broadcasted to all workers to ensure consistent initialization.
This is done with Horovod’S broadcast parameters() and broadcast optimizer state() func-
tions. Finally, when doing intermediate testing, a synchronization operation is included
so that all workers continue the training simultaneously. Horovod does not have a barrier
operation by default, but it can be easily implemented with a collective dummy operation,
as seen in Source Code 3.4 .

1 def hvd_barrier():
2 barrier_tensor = torch.tensor(0.0)
3 barrier_tensor = barrier_tensor.cuda()
4 barrier_op = hvd.allreduce(barrier_tensor, average=False)
5

6 barrier_op.item()

Source Code 3.4.: Barrier implemented with Horovod using an allreduce operation.

One last detail is that if checkpoints are used, all the checkpointing and writing opera-
tions must be performed by rank 0 to avoid file corruption. The overview of the parallel
training function’s most important details can be seen in Source Code 3.5 . The resulting
training script can be used for any number of nodes and could even be used by different
Detectron2 models.

26

3.4. Data Parallelism

1 def do_train(cfg, model, resume=False):
2

3 model.train()
4

5 optimizer = hvd.DistributedOptimizer(...)
6

7 ... # Other parameters initialization
8

9 hvd.broadcast_parameters(model.state_dict(), root_rank=0)
10 hvd.broadcast_optimizer_state(optimizer, root_rank=0)
11

12 for iteration in range(start_iter, max_iter):
13

14 ... # Other training steps
15

16 optimizer.step()
17

18 if iteration==eval_iteration:
19 do_test(cfg, model)
20 hvd_barrier()
21

Source Code 3.5.: Main components of DP training function.

A first run was performed using the DP script for a single node to see if Horovod intro-
duces some overhead. As seen in Figure 3.7 , neither the execution time per epoch nor the
training loss seems to be affected.

27

3. Thesis Development

Sequential DP -n 1
Implementation

15.875

15.900

15.925

15.950

15.975

16.000

16.025

16.050

Ti
m

e
pe

r e
po

ch
 [m

in
]

0 1 2 3 4 5
Epochs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Training Loss
Sequential
DP -n 1

Figure 3.7.: Execution time and training loss comparison of baseline with a single node DP

run.

Next, two cases are used to evaluate the effects of the parallelization. First, the training
is done on a batch size of 8 per node (super-batch 16). This also means that the num-
ber of iterations per epoch will be less. The learning rate is increased to 5e−5 since the
size of the super-batch was doubled. The speedup of this experiment is 0.8053, a total
of 19.84 minutes per epoch. This was expected since synchronous DP performs excessive
synchronization. The communication overhead overshadows the speedup obtained by the
parallelization. However, it is most likely that using a few more nodes will already show
improvements. On the other hand, the training curve loss in Figure 3.8 clearly shows that
the loss decreases faster than the sequential training. Even if the time per epoch is less,

28

3.4. Data Parallelism

convergence may be reached faster. This is likely caused by (a) the increase in the certainty
since more data is shown in each SGD step and (b) the increase in the learning rate. At
the same time, to see the effects of the communication overhead, one more experiment is
done with a batch size of 4 (super-batch 8). The convergence of the optimization algorithm
should be equivalent to the original sequential run, but this helps us to see the synchro-
nization overhead. The resulting speedup is 0.6932, with an epoch execution time of 23.05
minutes.

Sequential -n 2 batchsize 8 -n 2 batchsize 4
Implementation

16

17

18

19

20

21

22

23

Ti
m

e
pe

r e
po

ch
 [m

in
]

x1

x0.8053

x0.6932

0 1 2 3 4 5
Epochs

1

2

3

4

5

Lo
ss

Training Loss
Sequential
-n 2 batchsize 8
-n 2 batchsize 4

Figure 3.8.: Execution time and training loss comparison of baseline with DP run using
two nodes and different bath sizes.

29

3. Thesis Development

3.4.1. Analysis of the communication overhead

The parallelization results show that even with double the number of workers, the com-
munication overhead is more than the speedup obtained. This was expected because the
current setup used does not have the proper hardware to do low-latency communication.
Therefore, some analysis of the communication overhead introduced by the parallelization
was performed to determine the minimum number of nodes to observe some speedup.

Horovod has a built-in tool that records a timeline of the communication activity. This is
all recorded for one node, but it also contains some valuable information to understand the
behavior of the rest of the nodes. To use this, the argument --timeline-filename must
be passed to the horovodrun command. This generates a trace file containing information
on the communication activity on every tensor, as seen in Figure 3.9 . This is mainly split
into blocks of types:

• negotiation A phase where the worker notifies that it is ready to perform the collective
operation.

• processing Collective operation phase (for example, allreduce).

At the same time, these blocks contain sub-blocks with more specific information about
what is happening at a given point in time. To read more about this, please refer to
Horovod’s official documentation

4
 .

Figure 3.9.: Communication timeline example.

This information was used to estimate the total communication overhead. To do this, the
timeline for a total of 20 iterations with the same setup as the DP experiment for a batch
size of 8 per node was recorded. The information used comes from all tensor operations of
the model, from the beginning of the first negotation phase to the end last allreduce block.
The average processing time of the negotiation and allreduce is computed using this data.

4https://horovod.readthedocs.io/en/stable/timeline.html

30

3.4. Data Parallelism

Both times make up the whole communication overhead time, while the rest of the time in
the time window is considered the actual training iteration time. The results can be seen
in Figure 3.10 .

0.0 0.2 0.4 0.6 0.8 1.0

0.21 0.11 0.67
Negotiation
Allreduce
Actual Work

Figure 3.10.: Portion of execution time needed.

The estimated communication overhead makes up 33% of the total training time. When
scaling to a more significant number of nodes under the same communication conditions,
the data processed during the work phase will improve the speedup even further.

3.4.2. The importance of adequate communication hardware

An event in the companies’ network infrastructure occurred where all connections had to
be restored after a downtime. All experiments before the event showed a negative effect
of parallelization because of the communication overhead. Still, after the system went
back online, the results of the same experiments changed drastically. This new round
of measurements resulted in an average epoch time of 9.88 minutes and a speedup of
1.6164, as seen in Figure 3.11 . The unexpected event could have led to a decrease in the
network’s traffic, significantly decreasing the communication overhead introduced by the
parallelization. In this instance, the speedup is better, but nothing guarantees that these
good overhead conditions will persist. Rather than invalidating the previous experiments,
this shows the high variance of communicating through an insecure network instead of us-
ing adequate communication hardware and protocols like Remote Direct Memory Access
(RDMA) with Infiniband.

31

3. Thesis Development

Sequential DP before event DP after event
Implementation

10

12

14

16

18

20
Ti

m
e

pe
r e

po
ch

 [m
in

]

x1

x0.8053

x1.6164

Figure 3.11.: Speedup comparison of DP before and after the network event.

The results of the remaining experiments are compared only against the results of the DP

experiment after the event since comparing them with the results before the event would
be unfair as the conditions were not the same.

3.5. DP with delayed weight updates

Asynchronous DP was also implemented to reduce the communication overhead caused
by excessive collective operations. DP with delayed updates was chosen because of its
implementation simplicity. No changes to the optimizer were made on this occasion since
no measure of convergence other than the training loss was considered. The gradients
are synchronized manually instead of letting the step() method handle it automatically.
The synchronization is done every given number of iterations specified by the user. The
weights are updated on every iteration using the step() method, setting the optimizer to
skip the synchronization since this is done differently, as shown in Source Code 3.6 . Ad-
ditionally, the argument backward passes per step must be set to the update frequency
when building the DistributedOptimizer. Another meaningful change is the way the gra-
dients of the model are set to zero on every iteration. The built-in method zero grad() does
this for the gradients of all ranks, which can cause race conditions if one rank does this
before the other rank can update its weights. Instead, a new function async zero grad() is
defined. This function allows each rank to zero only the local gradients. The process can
be seen in Source Code 3.7 .

32

3.5. DP with delayed weight updates

1 if (epoch_iteration % synch_frequency==0 or
2 (epoch_iteration+1) % iterations_per_epoch==0 or
3 iteration == (max_iter-1)):
4 optimizer.synchronize()
5

6 with optimizer.skip_synchronize():
7 optimizer.step()
8

Source Code 3.6.: Asynchronous weight updates implementation.

1 def async_zero_grad(optimizer):
2 for group in optimizer.param_groups:
3 for param in group['params']:
4 if param.grad is not None:
5 param.grad.detach_()
6 param.grad.zero_()

Source Code 3.7.: Function that allows asynchronous gradient zeroing on the local copy of
the model.

The experiment is done using update frequencies ranging from 2 to 64. Figure 3.12 dis-
plays the experiment results. The speedup graph shows that the delayed weight updates
achieve a more significant speedup than synchronous DP (update frequency of 1). How-
ever, the further improvement when decreasing the update frequency is not as significant
as the change from update frequencies 1 to 2. At the same time, it is likely that this slight
improvement significantly affects the convergence of the optimization process. Besides,
the training loss curve is immediately affected when performing delayed weight updates
compared to synchronous DP . While the effect on the training loss is apparent, this does
not necessarily reflect the convergence since the model and hyper-parameters are not fine-
tuned.

33

3. Thesis Development

Sequential freq 1 freq 2 freq 4 freq 8 freq 16 freq 32 freq 64
Implementation

8

9

10

11

12

13

14

15

16
Ti

m
e

pe
r e

po
ch

 [m
in

]

x1

x1.616

x1.916 x1.935 x1.963 x1.987 x1.984 x1.988

0 1 2 3 4 5
Epochs

1

2

3

4

Lo
ss

Training Loss
Sequential
freq 1
freq 2
freq 4
freq 8
freq 16
freq 32
freq 64

Figure 3.12.: Execution time and training loss comparison of DP with delayed updates us-
ing different update frequencies.

34

4. Conclusion

Distributed training was used to parallelize the training process of the last layers of the
 EVA foundation model, applied for object detection in low-resolution grayscale images.
Both synchronous and asynchronous Data Parallelism were proven to be viable options to
enable the training of large-scale models without extensive alterations to the model’s struc-
ture and training scripts. Other developers can follow the work of this thesis to speed up
the training of their own models. The chosen techniques were implemented and evaluated
on a GPU cluster setup with two nodes connected over the organization’s network.

4.1. Discussion

The results showed that the overhead communication could cause a slowdown rather
than a speedup for the available nodes depending on the network’s traffic. If distributed
training is intended to be used as a standard technique to train large-scale deep learning
models, it would be reasonable to make use of proper HPC communication protocols like

 RDMA , which allows direct access to a node’s GPU . Under suitable conditions, the par-
allelization resulted in a positive speedup. Synchronous DP obtained a speedup of 1.6164
while also resulting in a higher convergence rate reflected in the training loss curve. Asyn-
chronous DP was implemented using different weight synchronization frequencies rang-
ing from every 2 to 64 iterations. It achieved speedups ranging from 1.961 to 1.988, while
the training loss curves were similar to that of the baseline. Compared to synchronous

 DP , asynchronous DP achieved a noticeable speedup. However, further increasing the
number of iterations without synchronization did not result in a significant speedup and
could impact the convergence of the learning process. Overall, synchronous DP showed
less speedup than asynchronous DP , but it showed better convergence since the SGD op-
timizer is not being modified. The speedup obtained by asynchronous DP was better than
the synchronous implementation, but the training loss curve shows underperforming re-
sults. The choice of the weight synchronization frequency is a hyper-parameter that should
be fine-tuned. To better evaluate the convergence of all techniques, they should be evalu-
ated on a fine-tuned model for a complete training process instead of just a few epochs.

4.2. Outlook

The work of this thesis showcased how an organization can make use of distributed train-
ing techniques to enable the training of large-scale models. While the evaluated techniques

35

4. Conclusion

are good enough in most cases, there are some cases in which further improvements would
be beneficial. Because of time constraints, the focus of this thesis was only limited to the
parallelization of a model’s training process without paying attention to hyperparameter
tuning and its prediction accuracy. This also limits the ability to observe if the conver-
gence of such techniques is consistent with sequential implementations. If the model were
fine-tuned, some interesting experiments to explore further are discussed next.

• Implementation of higher-order optimizers: The work proposed in [27] presents a
cheap second-order optimizer that avoids the explicit computation of Hessian matri-
ces. Implementing an optimizer of this type combined with Data Parallelism could
not only speed up the execution time of each epoch but also reduce the number of
epochs needed to converge due to the curvature information that the optimizer con-
siders.

• Improve weight synchronization in asynchronous DP : The convergence of data
parallelism with delayed weight updates can be further improved by using different
weight synchronization rules, such as Overlap Local-SGD [33].

• Explore model parallelism: The size of the model limited the number of layers that
could be trained simultaneously using the available hardware. If more or all lay-
ers were to be trained, model parallelism and dynamic layer freezing promise good
results. The state-of-the-art approaches presented in Section 2.3.2 should be further
investigated for the specific case of transformers

Some points would be interesting to explore if the possibility of scaling to a large num-
ber of nodes were to arise. For instance, it would be meaningful to analyze how the com-
munication overhead scales, if it presents linear behavior, or if it will stay constant after
some point. In the case of asynchronous DP , it would be interesting to explore different
synchronization techniques. One possibility is to divide the nodes into groups that will
synchronize frequently across the nodes in the group while performing less frequent up-
dates across the groups. Depending on the number of nodes available, the groups can
keep getting subdivided. This would allow testing different configurations depending on
the exact hardware, the topology of each node, their different computation capabilities,
and the physical communication conditions between the nodes. Additionally, MP can be
combined with DP for large transformer-baser models. It would be reasonable to apply
 MP to enable the training of such models on a set of nodes and replicate this on multiple
sets to speed up the training using DP .

36

Appendix

A. EVA hyper-parameters for object detection

Table A.1.: Original EVA hyper-parameters for object detection using the Objects365
dataset.

config value
optimizer AdamW
optimizer hyper-parameters β1, β2, ϵ = 0.9, 0.999, 1e−8
learning rate 1e−4
layer-wise lr decay 0.9
training steps 380k
training input resolution 10242 → 12802

batch size 128
weight decay 0.1
drop path 0.6

37

Appendix

Table A.2.: Original EVA hyper-parameters for object detection using the COCO and LVIS
datasets.

config COCO value LVIS
optimizer AdamW
optimizer hyper-parameters β1, β2, ϵ = 0.9, 0.999, 1e−8
learning rate 2e−5
learning rate schedule step decay
training steps 45k 75k
learning decay step 40k 70k
batch size 64
training input resolution 12802

weight decay 0.1
layer-wise lr decay 0.9
drop path 0.6
repeat threshold - 0.001
frequency weight power - 0.5
mas number of detection 100 1000

B. Dataset annotations distribution

Figure B.1 gives an overview of the distribution of the annotation categories for the train,
val, and test datasets.

38

B. Dataset annotations distribution

Wheelchair Luggage Stroller Bicycle Chair
Category

0

1000

2000

3000

4000

5000

6000

7000

Fr
eq

ue
nc

y

821

3026 2893

3483

7028
Training set

Wheelchair Luggage Stroller Bicycle Chair
Category

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

93

408
355

436

791
Validation set

Wheelchair Luggage Stroller Bicycle Chair
Category

0

200

400

600

800

1000

Fr
eq

ue
nc

y

89

359 364
431

991
Test set

Figure B.1.: Distribution of the annotation categories in the dataset.

39

Glossary

CLIP Contrastive Language-Image Pre-Training. 1 , 6

CNN Convolutional Neural Network. 1 , 4 , 6 , 20

CPU central processing unit. 7 , 9 , 11 , 14

CUDA compute unified device architecture. 19

DP Data Parallelism. 9 , 10 , 11 , 12 , 26 , 27 , 28 , 29 , 30 , 32 , 33 , 34 , 35 , 36

EVA Explore the limits of Visual representation at scAle. 1 , 6 , 13 , 14 , 15 , 17 , 21 , 35

GPU graphical processing unit. 1 , 2 , 9 , 11 , 12 , 13 , 14 , 15 , 16 , 19 , 23 , 25 , 26 , 35

HPC high performance computing. 15 , 35

LSTM Long short-term memory. 3

MIM Masked image modeling. 6

MLP Multi-Layer Perceptron. 5 , 6 , 25

MP Model Parallelism. 11 , 12 , 36

MPI Message Passing Interface. 7 , 8 , 15 , 19

NCCL NVIDIA Collective Communication Library. 15 , 19

NLP Natural Language Processing. 1 , 3

NUMA Non-uniform memory access. 15

RDMA Remote Direct Memory Access. 31 , 35

RNN Recurrent Neural Network. 3

SGD Stochastic Gradient Descent. 9 , 10 , 12 , 29 , 35

SSH Secure Shell Protocol. 14 , 19

ViT Vision Transformer. 1

41

Bibliography

[1] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Syd-
ney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brun-
skill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chat-
terji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Don-
ahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin
Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel,
Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Hender-
son, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard,
Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith
Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Is-
abelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D.
Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika
Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed
Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung
Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich,
Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré,
Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan,
Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William
Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Ji-
axuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang,
Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foun-
dation models, 2022.

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners, 2020.

[3] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. Efficient and robust paral-
lel dnn training through model parallelism on multi-gpu platform, 2019.

[4] Dan C. Cireşan, Ueli Meier, Jonathan Masci, Luca M. Gambardella, and Jürgen

43

Bibliography

Schmidhuber. High-performance neural networks for visual object classification,
2011.

[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew
Ng. Large scale distributed deep networks. In F. Pereira, C.J. Burges, L. Bottou,
and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, vol-
ume 25. Curran Associates, Inc., 2012.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

[7] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan,
Dong Chen, and Baining Guo. Cswin transformer: A general vision transformer back-
bone with cross-shaped windows, 2021.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale, 2021.

[9] Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao.
Eva-02: A visual representation for neon genesis, 2023.

[10] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun
Huang, Xinlong Wang, and Yue Cao. Eva: Exploring the limits of masked visual
representation learning at scale, 2022.

[11] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu,
Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang, and
Dacheng Tao. A survey on vision transformer. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(1):87–110, 2023.

[12] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Deva-
nur, Greg Ganger, and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel
dnn training, 2018.

[13] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. Pipetrans-
former: Automated elastic pipelining for distributed training of transformers. CoRR,
abs/2102.03161, 2021.

[14] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. Pipetrans-
former: Automated elastic pipelining for distributed training of transformers, 2021.

[15] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen.
Gpipe: Efficient training of giant neural networks using pipeline parallelism, 2019.

44

Bibliography

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

[17] Michael Klemm and Jim Cownie. High Performance Parallel Runtimes. De Gruyter
Oldenbourg, Berlin, Boston, 2021.

[18] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks,
2014.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

[20] Shengwei Li, Zhiquan Lai, Yanqi Hao, Weijie Liu, Keshi Ge, Xiaoge Deng, Dongsheng
Li, and Kai Lu. Automated tensor model parallelism with overlapped communication
for efficient foundation model training, 2023.

[21] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted win-
dows, 2021.

[22] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017.

[23] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version
4.0, June 2021.

[24] Ivano Notarnicola and Giuseppe Notarstefano. Asynchronous distributed optimiza-
tion via randomized dual proximal gradient. IEEE Transactions on Automatic Control,
62(5):2095–2106, 2017.

[25] OpenAI. Gpt-4 technical report, 2023.

[26] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual models from natural lan-
guage supervision, 2021.

[27] Severin Reiz, Tobias Neckel, and Hans-Joachim Bungartz. Neural nets with a newton
conjugate gradient method on multiple gpus, 2022.

[28] Jaime Sevilla. Parameter counts in machine learning, Jul 2021.

[29] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing
Li, and Jian Sun. Objects365: A large-scale, high-quality dataset for object detection.

45

Bibliography

In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 8429–8438,
2019.

[30] Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework:
Better rates for sgd with delayed gradients and compressed communication, 2021.

[31] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy consid-
erations for deep learning in nlp, 2019.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[33] Jianyu Wang, Hao Liang, and Gauri Joshi. Overlap local-sgd: An algorithmic ap-
proach to hide communication delays in distributed sgd, 2020.

46

	Acknowledgements
	Abstract
	Introduction
	State of the Art
	Transformer Networks
	Self-attention
	Vision Transformers
	EVA

	High Performance Computing and MPI
	Distributed Training Techniques
	Data Parallelism
	Model Parallelism

	Thesis Development
	Methodology
	Research Design
	Data Collection
	Experimental Setup
	Training Procedure
	Evaluation Metrics

	Preparation
	Building the Dataset
	Setting up the cluster

	Sequential baseline
	Training script
	Model configurations
	Training
	Short note on accuracy improvements

	Data Parallelism
	Analysis of the communication overhead
	The importance of adequate communication hardware

	DP with delayed weight updates

	Conclusion
	Discussion
	Outlook

	Appendix
	EVA hyper-parameters for object detection
	Dataset annotations distribution

	Glossary
	Bibliography

