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Abstract

Engineering design benefits from computational fluid dynamics simulations since they
give detailed information on a system’s or product’s performance without the requirement
to build and test physical prototypes. However, running them requires substantial com-
putational power. Super-resolution methods have shown promising results in upsampling
data from low-resolution simulations; however, less effort has been made in coupling these
technologies efficiently. In this work, a system for coupling the SRCNN model with a two-
dimensional fluid simulation using the preCICE coupling library is proposed. Results of
experiments have found that this method creates more accurate upsampled simulations
than regular interpolation methods without deep learning methods, although the limita-
tions of higher scale factors and more complex meshes show a substantial decrease in ac-
curacy. The coupling approach indicates the possibility to not only apply super resolution
but also combine other simulation-improving techniques arbitrarily and rapidly.
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1 Introduction

Recent years have seen a sharp increase in the amount of research being done on deep neu-
ral networks, which has even helped fields like generative neural networks gain widespread
attention due to innovations like OpenAI’s ChatGPT and other technological develop-
ments. Questions about which practical sectors this technology may help and enhance are
raised as research on deep learning-based AI continues to spread into many application
fields. Upsampling images to a greater resolution using convolutional neural networks
is one application called image super-resolution. Although this technology is mostly ap-
plied to regular images taken by camera, drawn, or otherwise created to be observed by
human eyes, it poses the question if it would be possible to use such techniques to up-
sample data from simulations beyond the limitations of regular interpolation methods. It
has already been shown that it is feasible to do so with cosmological simulations [ 13 ], and
further viable for fluid simulations as well. Some research has already shown promis-
ing results on training generative adversarial networks with temporal coherence [ 19 ] and
physics informed networks [ 12 ] to perform super resolution on fluid simulations, how-
ever this research neglects the coupling possibilities between solvers and artificial neural
networks.

This study aims to determine if upsampling of fluid simulations is possible using convo-
lutional neural networks by coupling them to low-resolution simulations using preCICE
and comparing upsampled simulations to conventionally calculated high-resolution sim-
ulations. A successful application of this method would reveal the possibility of saving
on computation resources while performing detailed fluid simulation upsampling in par-
allel to the low resolution calculations, as super resolution requires much less time than
calculating a full-scale simulation at the same resolution.

As mentioned previously, to help in this endeavor and possibly allow for real-time sim-
ulation and super-resolution combination, the coupling library preCICE is used. Although
originally applied to couple various simulation solvers in space or time, it might be possi-
ble to treat the super resolution process as a kind of solver that performs the upsampling.
This coupling would also show the capabilities of utilizing preCICE not only for solver-to-
solver communication but for the connection of different kinds of technology with simu-
lations as well.

To achieve the set goals, the first  chapter 2 includes a brief introduction and summary
of fluid simulations, super resolution technology using convolutional neural networks,
and the preCICE library. Afterwards, the proposed theories are explained, set up, and
finally tested through computational experiments in chapter  chapter 3 . The results of these
experiments are concluded in chapter  chapter 4 .
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2 Fluid Simulations and Upsampling
Background

2.1 Fluid Simulation and Finite Element Method

2.1.1 Navier-Stokes

An accurate method of mathematically describing the physical properties of a fluid are
the Navier-Stokes equations. In the formulation of the equations, the fluid is treated as a
continuous material, represented by functions of space and time. They only describe the
effect of local properties in such a material and are not a detailed representation of singular
physical particles. The equations are a set of coupled partial differential equations that
describe the relations of pressure, temperature, and density of a moving incompressible
fluid. They are split into two parts: conservation of mass and conservation of momentum.
Conservation of mass ensures that no mass is created or destroyed and that the difference
between the inflow and outflow of mass in any given system is zero. Mathematically, it is
expressed as

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

describing u as the fluid velocity and ρ fluid density. The second equation represents
conservation of momentum and is based on Newton’s second law of motion, adapted for
fluids. It encompasses inertial, pressure, viscous, and external forces acting on the fluid
and expresses an incompressible three-dimensional flow as

ρ(
∂u

∂t
+ u · ∇u) = −∇p+∇ · (µ(∇u+ (∇u)T )− 2

3
µ(∇ · u)I) + F (2.2)

with p being fluid pressure, µ the viscosity, and F external forces, which are applied to
the fluid [ 17 ]. Although these partial differential equations are mainly used in this thesis,
there are other PDEs often used to describe fundamental physical properties including:

• The heat equation that models the diffusion of heat through a given region.

• The wave equation, that describes waves, whether as sound or water mechanical
waves, or electromagnetic waves like light.
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2 Fluid Simulations and Upsampling Background

• The Schrödinger’s equation, which describes the wave function in a quantum me-
chanical system and is used to find the allowed energy levels of quantum mechanical
systems.

• Maxwell’s equations, which are governing the behaviour of electromagnetism, used
to describe generation of electric and magnetic fields by charges, currents and chang-
ing fields.

2.1.2 Computational Fluid Dynamics

To compute a PDE in a system, like the pressure and flow of a chosen continuum nu-
merically, the problem is generally approached using the Finite Element Method (FEM). It
can be used in various applications for the computation of more complex fluid, heat, and
structural problems that cannot be solved analytically. The main approach of FEM is to
first discretize the continuum into finite elements, connected by nodes, that represent the
original system as a discrete mesh.

Figure 2.1: The discretization of a 2D object into a mesh [ 15 ].

There are two main discretization approaches for fluid simulations, namely the Eulerian
and the Lagrangian approaches. The Eulerian approach discretizes the whole domain as
a grid, on which, following the Navier-Stokes equations, the velocity values are gradually
updated step-by-step. This approach enforces the incompressibility of fluids, preserving
the volume of the fluid. It also allows for an accurate evaluation of spacial derivatives like
gradient, divergence, and the Laplacian on account of the static grid points of the domain.
An example of such a discretization of a 2-dimensional structure can be seen in  Figure 2.1 .
The Lagrangian approach, in contrast, defines fluid volumes as a set of particles, or parcels,
with stored physical quantities, or labels, and the simulation is forwarded by advecting
these physical variables in accordance with the Navier-Stokes equations. Since the do-
main is not completely discretized as a static mesh in itself but rather only where the fluid
exists, the particle calculations do not need to be performed where the fluid is absent, re-
ducing memory usage and computational costs compared to the Eulerian approach. This,
however, also makes ensuring fluid compressibility harder, as spacial derivatives need to
be computed on irregularly moving particles, making the calculations more difficult and
thus less precise [ 2 ].
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2.1 Fluid Simulation and Finite Element Method

After discretizing the system, the underlying PDEs are then approximated with a linear
combination of basis functions at each discrete triangular area in the mesh. They are then
combined into the initial boundary value problem, which consists of the partial differential
equations themselves as well as the initial conditions and boundary conditions. Boundary
conditions are the constraints in a domain on whose boundary a set of conditions is placed,
and they can be set in multiple forms, whereas the initial values are conditions set in time-
direction. The Dirichlet boundary condition prescribes set values for dependent variables
within the system, while the Neumann boundary condition prescribes the derivatives of
the dependent variables. These two are the most commonly encountered conditions in
PDE solutions, together with the Robin boundary condition, which is a weighted combi-
nation of the Dirichlet and the Neumann conditions.

To perform a finite element analysis, the following five steps are performed:

1. Prepare the model. This includes creating the geometry of the model, defining the
properties of the material, choosing the actual initial boundary conditions and other
conditions of the system, and finally discretizing the model into a mesh of discrete
points.

2. Formulate the partial differential equation in its weak form, in which certain condi-
tions can be relaxed, simplifying the solving process.

3. Set up the global problem as a set of linear equations for each element.

4. Solve the linear equations. To obtain the values of the unknowns in the equation,
direct methods, like Gaussian elimination, or iterative methods, like the conjugate
gradient method, can be used.

5. Apply post-processing, like obtaining visualizations for the result and check if the
calculated values correspond to ones from the analytical solution if it is available, or
otherwise check the correctness and plausibility of the output.

The FEM method can be used for various types of multiphysics problems involving
heat transfer, fluid dynamics, and electric fields, with a main focus on the three types of
problems:

1. Static problems, which usually exclude motion, are used as structural analyses of
structures like bridges or buildings to locate stress high- and low-points.

2. Dynamic problems, which describe situations that change over time, like heat trans-
fer or fluid flow.

3. Modal problems, which simulate vibrational effects on a system.
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2 Fluid Simulations and Upsampling Background

More specialized and advanced FE methods have also been introduced over the years,
including Extended FEM to analyze systems with discontinuities like crack propagation
and fractures and Generalized FEM, which combines regular FEM with meshless methods.
[ 15 ]. Another possibility for computing numerical solutions for PDEs is the finite volume
method. Contrary to FEM, this method splits the surface into finite volumes, as the name
suggests, and evaluates average values for these volumes [ 16 ]. This paper, however, will
mainly make use of FEM.

2.2 Super-Resolution

Upsampling of coarse-scale data is the process of increasing the count of observations or
data points in a data set or signal. Super resolution is the process that attempts to upsample
data while keeping certain features like structure, sharpness, texture preservation, and
geometric invariance. It is often used to specifically increase image resolution.

2.2.1 Interpolation

Interpolation is one of the methods focusing on determining values between data points in
a given data set. While simple methods like piecewise or linear interpolation are a fast way
to estimate data, they often do not reflect the real underlying function, so more sophisti-
cated methods, like splines, are used. Spline interpolation essentially utilizes polynomial
interpolation, but instead of fitting a single high-degree polynomial to all values, multiple
polynomials, or splines, are applied to sub-segments of the original value set.

Figure 2.2: Types of 1D and 2D interpolation in comparison [ 4 ].

Bicubic interpolation is a method of using cubic spline interpolation in a two dimen-
sional space, thus using 16 samples in a grid of 4x4 as the kernel shape, as seen in  Figure 2.2  
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2.2 Super-Resolution

and iterating it over the image. The resulting image is smoother than bilinear or nearest
neighbor interpolation, which only use two data points per dimension. Although this
method can be used to attempt to super-sample a set of data points very quickly, results
may still contain artifacts, appear coarse, and change the underlying structures of the data,
like blurring sharp borders.

2.2.2 Neural Networks

To achieve the above-mentioned sharpness and detail for an image through super res-
olution, often neural networks are used in combination with, or without, regular inter-
polation. The first method to utilize deep learning for super resolution was the Super
Resolution Convolutional Neural Network (SRCNN), which consists of convolutional lay-
ers to extract details of the original image. These convolutional layers use a set of filters
with learnable parameters that iterate over an image or grid-like set of input neurons and
compute a feature map. An example can be seen in figure  2.3 

Figure 2.3: The workings of a convolutional layer [ 7 ].

Before running an image through the SRCNN model, the input is upsampled using bicu-
bic interpolation to the desired output resolution as the pre-processing step. The complete
structure of the model consists of three steps: patch extraction and representation, non-
linear mapping, and reconstruction. A representation of the structure is shown in figure

 2.4 .

1. Patch extraction and representation creates overlapping patches from the interpo-
lated low-resolution image, which are composed of feature maps.

2. Non-linear mapping projects each vector of the previous layer onto another high-
dimensional vector, representing patches of the high-resolution image.

3. Reconstruction aggregates the high-resolution patches and reconstructs them back
into the final high-resolution image.

During training, the loss between the high-resolution image and the output of the SR-
CNN is calculated using the mean square error [ 5 ]

MSE =
1

n

n∑
i=1

(Xi −Yi)
2 (2.3)
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2 Fluid Simulations and Upsampling Background

Figure 2.4: The architecture of the SRCNN model shows the three layers. [ 5 ]
.

where Y is the matrix of n predictions and X are the actual observed values. It should
also be mentioned that for tasks that include image transformation besides super resolu-
tion, the perceptual loss function may be used. It calculates the MSE not only between in-
and output images but also combines it with samples from the intermediate layers of the
network, extracting features and representations of the image and minimizing the differ-
ence between them [ 8 ]. To evaluate the results on a higher than pixel-to-pixel level, the
peak signal-to-noise ratio (PSNR) is often used as an image quality metric and calculated
as

PSNR = 10 log10

(
R2

MSE

)
(2.4)

with R being the maximum of the input range, so for an image of pixel values as 8-
bit unsigned integers, it would be 255. Although PSNR is used as the de facto metric in
modern super-resolution research, it is considered a poor image quality metric for visual
characteristics. This prompts the utilization of better visual quality metrics, like the struc-
tural similarity index (SSIM), which often accompanies PSNR in super-resolution quality
measurement. SSIM is calculated pixel-wise for two images X and Y with the equation

SSIM(x,y) = l(x,y)c(x,y)s(x,y) (2.5)

where the vectors x and y represent the k-pixel local neighbors of images X and Y and
l represents luminance, c contrast, and s structural similarity of the pixel neighborhood,
and these terms are defined as
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2.2 Super-Resolution

l(x,y) =
2µgµd + c1
µ2
g + µ2

d + c1

c(x,y) =
2σgσd + c2
σ2
g + σ2

d + c2

s(x,y) =
2σgd + c3
σgσd + c3

where µg,µd,σg,σd and σgd are local statistics and estimated from a neighborhood of 11 x
11 pixels. They are defined as

µg =
k−1∑
i=0

wigi

σg =

(
k−1∑
i=0

wi(gi − µg)
2

) 1
2

σgd =

k−1∑
i=0

wi(gi − µg)(di − µd)

where k is the length of the vectors x and y respectively, and w a circular-symmetric
Gaussian window with a standard deviation of 1.5 samples and normalization to unit sum.
This computes the SSIM pixel-wise and locally for parts of an image, and to acquire the
SSIM for any image, the mean MSSIM is used. It is also just referred to as SSIM, as the
local SSIM values serve no real purpose in the context of image comparison metrics [ 18 ].

Although the SRCNN has already achieved remarkable results, there have been many
adaptations to improve quality and performance, like Very Deep Super Resolution (VDSR).
As the name suggests, it uses more hidden convolutional layers with smaller 3x3 filters, ex-
tracting features from the residual of the interpolated input instead of the direct mapping
[ 9 ]. Since the feature extraction of the SRCNN, or VDSR, occurs in the already interpo-
lated image, other methods utilize post-upsampling to improve performance, as the lower
initial input size decreases the required computational power. For example, the FSRCNN
skips the pre-processing bicubic interpolation step and instead implements a deconvolu-
tional layer at the end of the model to expand the image to the intended size [ 6 ]. Further
approaches to SR include skip connections. The SRResnet, or further EDSR networks,
involve residual blocks, which feed the input of the block through convolutional layers,
ReLU layers (and for the SRResnet batch normalization), and then combine it together
with the original input of the block, ”skipping” the layer and thus containing the original
information as part of the output, as shown in figure  2.5 [ 14 ].
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2 Fluid Simulations and Upsampling Background

Figure 2.5: Residual blocks utilizing skip connections, with a) as the originally proposed
residual block, b) a block in the SRResNet and c) being a block in the EDSR
model [ 14 ].

To upscale images with even larger scale factors of 8x or more, the regular SRCNN and
other variants might perform worse, as their architecture constrains the feasible quality
of such a task and a method of increasing resolution in steps is employed. For example,
the LAPSRN consists of a Laplacian pyramid structure, which increases resolution to 2x,
4x, 8x, etc. after each step. The extracted residual images after each layer are also added
to the interpolated input of the next layer, resulting in a shared learning process between
layers and improving image quality at higher scales [  10 ]. In many cases, super resolution
does not just intend to generate a sharper image based on pixel-by-pixel differences but
rather create an image perceptually pleasing to the human eye. To improve quality in this
regard, an adversarial approach can be used, utilizing not only the previously discussed
loss functions but combining them with the adversarial loss of the discriminator. Such a
GAN-based architecture is used by SRGAN, EnhanceNet, and ESRGAN. Although they
result in lower PSNR scores, these models achieve a higher MOS and better visual quality
[ 11 ].
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2.3 preCICE

2.3 preCICE

Coupling simulations in space and time can be achieved using preCICE, an open-source
coupling library for partitioned multi-physics and multi-scale simulations written in C++
and available through the GNU Lesser General Public License. Currently, it supports com-
monly used simulation software programs, including OpenFOAM, SU2, Code Aster, Cal-
culiX, Nutils, and more. A general conceptual overview of the capabilities can be seen in

 Figure 2.6 .

Figure 2.6: An overview of the capabilities of preCICE [ 3 ]

preCICE offers parallel communication between solvers as well as data mapping schemes
for coupling. Coupling between solvers and neural networks works by projecting the data
that is to be transferred onto a mesh, which is then mapped onto the receiving mesh and
can afterwards be used by the receiving participant. The structure of coupling, including
participants, transfer directions, data types, and mapping styles, is defined in a configu-
ration file using XML. Furthermore, the configuration includes the time frame and time
steps for coupling, allowing for synchronization of solvers in time, even allowing for time
interpolation, and through the periodic nature of the data exchange, allowing the cou-
pled solvers to run independently. Other key features of preCICE include mechanisms to
robustly ensure the convergence of coupled simulations, load balancing, and error estima-
tion for improved stability of the simulations [ 3 ].
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3 Upsampling fluid dynamics with CNNs via
preCICE

3.1 Problem Statement

The purpose of this project can be expressed as a major research question and a minor one.

1. Is it possible to apply super-resolution through the use of convolutional neural net-
works to computational fluid simulations?

2. Can preCICE be used to couple simulation programs/solvers and neural networks?

The first question attempts to answer the possibility of improving otherwise computa-
tionally expensive and time-consuming high-resolution fluid simulations through super-
resolution methods. To aid in this combination of technologies, the second question also
possibly provides a solution for coupling and streamlined implementation through preCICE.
This would also show a modular approach to effortlessly coupling any type of fluid simu-
lation to any pre-trained neural network, as well as data-independent training and testing
of such a network.

3.2 Neural Network Architecture and Similarity Metrics

The deep neural network used in this thesis is a super-resolution convolutional neural
network, as it is a rather simple model with some range of flexibility in general image
super-resolution. For more complex fluid simulations, more advanced networks may be
considered, as well as LAPSRN architecture for super resolution of higher scale values,
though the simple fluid simulation starting at a base resolution of 60x16 does not neces-
sitate the utilization of such models. Generative adversarial models have already proven
the capability to upsample fluid simulations while outperforming standard non-machine
learning-related methods [ 19 ,  12 ]; however, since this specific field is currently not par-
ticularly well-researched, the SRCNN creates an adequate baseline for testing the super
resolution as well as coupling.

The output of fluid simulation solvers at each time step is represented in a grid of points,
each of which contains the density of the substance inside the fluid, as will be explained in
detail later. Since this grid is equivalent to an image with a single channel (or color value)
for each point (or pixel), this structure can be seen as an image and treated as such in the
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3 Upsampling fluid dynamics with CNNs via preCICE

context of super-resolution. Therefore, the simulation output at certain time steps and the
inputs and outputs of the neural network will be referred to as images in this paper.

As per the original SRCNN paper [ 5 ] the model structure is built using three convolu-
tional layers. The first takes an input channel size of 1, as the density of the species at every
discrete position is represented using one value, and the output channel count is 64 for the
extracted patches. The kernel size in this layer is 9, with a padding of 4, and the result is
passed through the ReLU activation function. Next for the non-linear mapping step, the
convolutional layer narrows the output channel size down to 32, this time with a 5x5 ker-
nel, padding of 2, and once again concluded by the ReLU. Finally, the last convolutional
layer reconstructs the image back to a single channel, again with a 5x5 kernel and padding
of 2 pixels. There are two pre-processing steps required for this structure: the conversion
of data and interpolation.

1. While the data is being gathered, it has to be converted to a rectangular format, as
convolutional layers require it to parse the image using a squared kernel. Therefore,
pixels of zero density species have to be inserted into the mesh where the channel
contains the obstacle, creating images of rectangular shape and without holes.

2. The stage before the image can be used as an input for the SRCNN is the bilinear
interpolation step. Since the model requires equal input and output dimensions, the
images are scaled to their desired output size.

The loss function used for backpropagation is MSE loss, and the model is initialized
using the Adam optimizer with a learning rate of 0.0001. Training the model utilizes the
complete dataset over 100 epochs, splitting the whole set randomly into 70% training data
and 30% evaluation data. Each epoch, first the model is trained on all of the training
data, then in the evaluation step, the average PSNR and SSIM are calculated, and the best
weights are selected based on the highest average PSNR value of that epoch.

It should be noted that bilinear interpolation tends to keep the structured similarity of
images close to the original, usually lowering the SSIM to no less than 0.95. This results in
a generally high SSIM for the SRCNN output as well and makes the SSIM rather unsatis-
factory for evaluation, thus establishing PSNR as the metric to determine the best weights
for the model. There are of course other metrics that can be used, including adversarial
loss if the model is trained in an adversarial approach; however, for the scope of this thesis
and considering the usage of a simpler SRCNN, more advanced loss functions do not add
a significant improvement and only complicate the presented scenarios. PSNR is not con-
sidered a high visual quality metric, though perceptual image quality is of less importance
in the context of fluid simulations, and since it is still used as a very common measure, it
will also be the main comparison point in the following simulations. Other metrics such as
the Visual Saliency-induced Index, Spectral Residual Based Similarity, and other more re-
cently developed methods of visual quality benchmarking, including deep learning-based
similarity, heavily focus on subjectively finer visual comparisons and are, as previously
stated, of minor to no importance for simulation evaluation.
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3.3 Coupling and Data Generation

3.3 Coupling and Data Generation

The coupling schemes and preCICE configurations differ between training and evaluation
runs. As the SRCNN model is trained on a fixed set of time steps over multiple epochs
and iterations, the training data is gathered from the solvers before the training process
begins. For any given timestep of the simulation, first the fluid solver calculates the fluid
velocity fields and sends the information through preCICE over to an instance of a course
solver and one of a fine solver for the transport problem. The coupling scheme hereby
described is serial-explicit, meaning there is a one-way data flow from fluid solvers to
transport solvers. The mapping between the meshes is based on the C2-polynomial radial
basis function to approximate the values to the mesh of the receiver at a different resolu-
tion. After the advection-diffusion calculations for a timestep are complete, the substance
densities are further forwarded in the same way as the velocity values to the SRCNN par-
ticipant, which gathers both solutions for a timestep and stores them in a dataset. This
process is repeated for the predetermined number of time steps until there is a data pair
with a high resolution and a low resolution solution for each step. The coupling scheme
for this is shown in  Figure 3.1 .

After completion of gathering the data, the preCICE interface is finalized and the model
trained as described in the SRCNN and Similarity Metrics  section 3.2 . Since the data
collection process and model training are run sequentially, the training process can be
run after an arbitrary amount of time after collection. Collecting the training data using
preCICE coupling is a convenient method of modularly attaching it to any type of solver.
It should also be noted that another possibility for generating data for network training
could be to only generate the high-resolution data, downsample it to a lower resolution,
and use that as an input for the model, as is commonly used in model training for image
super-resolution. This method, however, might not necessarily create the same kind of
low-resolution data a course-scale solver would create because downsampling does not
consider physical constraints like conservation of mass while decreasing the number of
data points. To utilize and evaluate the trained model without the pre-calculated higher-
resolution data, a slightly different scheme is used, as the integration of the second fine
solver is no longer necessary. The configuration of fluid and transport solvers is kept as in
the training step, excluding the fine solver, as shown in  Figure 3.2  . For this, the model is
simply initialized with the saved weights at the beginning of the program on the SRCNN
participants side. During coupling, the SRCNN participant then receives the data once
again from the transport solver, except this time it is directly interpolated and fed into the
neural network, allowing for parallel simulation and interpolation in real-time.
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3 Upsampling fluid dynamics with CNNs via preCICE

Figure 3.1: The coupling scheme for data gathering.

Figure 3.2: The coupling scheme for SRCNN evaluation.
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3.4 Computational Experiments

3.4 Computational Experiments

To test the proposed theory through computational experiments, the previously described
coupling and super-resolution structure is applied to the CFD problem as described in the
preCICE tutorial library “Channel transport” [ 1 ]. The original simulation is a CFD prob-
lem, coupled to a transport problem in a unidirectional way. Originally, a two-dimensional
incompressible fluid flowing through a channel with an obstacle at the bottom of the chan-
nel was modeled, and a circular blob of substance in proximity to the inflow was placed in
the channel as shown in  Figure 3.3 .

Figure 3.3: Regular channel modeled in a 60x16 grid with a step in the middle.

The flow of the blob species is simulated over up to 200 timesteps, flowing left to right
with boundaries at the top and bottom, including the step. After gathering the data for the
60x16 low-resolution and the higher-resolution simulation of 120x32 points, the SRCNN
is initialized. The model is then trained on all 200 timesteps over 100 epochs. The best-
performing weights, determined by the highest PSNR from all epochs, are used further for
general evaluation in different scenarios.

Figure 3.4: Solver output at timestep 17 with 60x16 resolution.

The color in all figures represents the density of the species in the fluid channel. Higher
red values depict a higher density, while blue values show the fluid containing less or none
of the species’ particles. For further comparisons, figure  Figure 3.4 shows the simulated
location of the species at timestep 17 with a baseline resolution of 60x16.

17



3 Upsampling fluid dynamics with CNNs via preCICE

Figure 3.5: Solver output at timestep 17 with 120x32 resolution.

Figure 3.6: SRCNN output at timestep 17 with 120x32 resolution.

Figure 3.7: Bilinear interpolation output at timestep 17 with 120x32 resolution.
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3.4 Computational Experiments

Doubled resolution simulations, which are also the training set for the SRCNN, have
their outputs compared in  Figure 3.5 for the fine resolution solver and  Figure 3.6 showing
the output of an already trained network. Visually, there are only a few differences that
are recognizable, and the SRCNN achieves an average PSNR over all 200 timesteps at
double resolution of 48.86 dB as well as a SSIM of 0.997. Comparatively, the bilinearly
interpolated simulation shown in  Figure 3.7 , which also serves as the input of the model,
merely achieves an average PSNR of 33.99 dB and a SSIM of 0.986. This already shows
a major improvement of the SRCNN model over the interpolation method. Measuring
the time required to calculate the coarse simulation, interpolation, and SRCNN output
combined, as well as the fine calculation, reveals that the super-resolution setup on average
requires 45.36% less time to compute the double resolution images. The interpolation and
SRCNN only require 0.15% of the computational time of the whole process, while the rest
is used by the low-resolution solver.

Although the simulations focus on concrete data-point generation for further use with
less emphasis on visual quality, it is still advantageous to look at the generated output
comparisons, as this might give useful insights on what causes errors or irregularities be-
tween the images.

The next experiment is performed at a higher resolution to test the scalability of the
model. In this case, the resolution is increased to x3, or more specifically, 180x48 pixels.

 Figure 3.8 ,  Figure 3.9 and  Figure 3.10 show examples of the conventional solver’s solution,
the model output, and the interpolated solution, respectively, at timestep 17. As expected,
the interpolation method shows rough edges and a blocky gradient visually and only
reaches an average PSNR of 31.85 dB and a SSIM of 0.969 compared to the solver’s output.
In comparison, the SRCNN model shows a much smoother distribution and achieves an
average PSNR of 37.16 dB and a SSIM of 0.988. While the metrics do show a significant
decrease in quality, time efficiency seems to improve on larger scales. The triple resolution
super-resolution, including the low-resolution solver, interpolation, and SRCNN, now on
average performs 76.46% faster than the conventional fine-scale solver. Most of the time
is again used by the low-resolution solver, as interpolation and SRCNN require less than
0.2% of the time.
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3 Upsampling fluid dynamics with CNNs via preCICE

Figure 3.8: Solver output at timestep 17 with 180x48 resolution.

Figure 3.9: SRCNN output at timestep 17 with 180x48 resolution.

Figure 3.10: Bilinear interpolation output at timestep 17 with 180x48 resolution.

A further computational experiment intends to examine the capability of the SRCNN to
upsample a non-unified set of conditions. For this, instead of using a singular placement
of the species as a starting point, two smaller concentrations of the same species are placed
in the channel next to each other, as shown in  Figure 3.11 . This is then equally simulated
over 200 timesteps, and the performance of the super-resolution process is evaluated.

20



3.4 Computational Experiments

Figure 3.11: Solver starting position of two blobs with 120x32 resolution.

Figure 3.12: Solver output at timestep 17 with 120x32 resolution using two blobs as a start-
ing condition.

Figure 3.13: SRCNN output at timestep 17 with 120x32 resolution using two blobs as a
starting condition.
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3 Upsampling fluid dynamics with CNNs via preCICE

This particular experiment shows the difficulty for the SRCNN to predict the correct
values at the edges of the simulations. As seen in  Figure 3.13 the model predicts smaller
values at the top and bottom of the channel than are actually calculated by the high resolu-
tion solver in  Figure 3.12 . Noticeably, the PSNR of the SRCNN averages at 36.80 dB, only
barely increasing from the interpolation average PSNR of 35.61 dB.

The last scenario considered in this thesis involves simulating a different mesh. Similar
to the other scenarios, a species is placed in the channel with a fluid running through it
from left to right. Here, however, the obstacle in the channel is placed in the middle of the
channel, with the fluid flowing around it and causing sharper gradients.

Figure 3.14: Solver output at timestep 23 using 180x48 resolution and including an obstacle
in the middle.

Figure 3.15: SRCNN output at timestep 23 using 180x48 resolution and including an ob-
stacle in the middle.
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3.4 Computational Experiments

 Figure 3.14  and  Figure 3.15  compare the results of the solver and SRCNN, respectively,
at triple resolution. A visual comparison shows the model’s inability to consider the shape
of the underlying structure. Since the input for the model necessitates the conversion to an
image and the model receives no additional information on the specific shape or forces, be-
sides the low resolution density values, the model output in  Figure 3.15 seemingly allows
for the substance to move while clipping through the obstacle in the top left corner. In con-
trast, the solver’s output in  Figure 3.14 correctly moves the substance along the side of the
obstacle. In terms of metric comparison for this simulation, the SRCNN performed with
an average PSNR of 39.03 dB for 2x resolution and 32.04 dB for triple resolution. This com-
pares to the interpolated values of 33.19 dB for double and 29.76 dB for triple resolution.
SSIM values once again stay above 0.96 for both methods.

In conclusion, the following  Table 3.1 can be created for comparison. Hereby, experi-
ment Normal refers to the original channel transport simulation; Two blobs is the run with
two separate smaller instances of the species; and Obstacle shows the values for the exper-
iment with the block placed in the middle of the channel. The shown values of PSNR and
SSIM are averages and comparisons to the high-resolution simulations. The rightmost data
labeled “Time as % of solver” shows the average computation time taken by the super-
resolution process as a percentage of the time taken by the higher precision solver. The
time measured for super-resolution includes low resolution solver calculations, interpola-
tion, and SRCNN. It should be mentioned that the interpolation and SRCNN calculations
combined take a negligible 0.1% to 0.25% of the total super-resolution time, essentially
making this data a comparison of the low resolution solver to the high resolution solver.

As expected, higher scale values for the simulations result in lower PSNR ratings and a
slightly lower SSIM, although this metric is barely influenced over all simulations. Since
most of the computation time is utilized by the solvers, super-resolution drastically in-
creases the speed compared to the regular solver.

Table 3.1: Comparison of the SRCNN and interpolation methods to the solver in PSNR,
SSIM and computation time.

PSNR in dB SSIM Time as % of solver
Experiment SRCNN Interpolation SRCNN Interpolation SuperRes

Normal x2 49.61 35.01 0.99 0.99 54.68%
Normal x3 36.71 31.85 0.99 0.97 23.53%

Two blobs x2 36.80 35.62 0.99 0.99 63.93%
Obstacle x2 48.54 33.69 0.99 0.98 60.9%
Obstacle x3 32.04 29.76 0.97 0.97 12.76%
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4 Conclusion

The objective of this thesis is to investigate the feasibility of utilizing super-resolution tech-
niques in fluid simulations and demonstrate the possibility of coupling simulations and
solvers with convolutional neural networks in the process using preCICE. It has is demon-
strated that applying super-resolution to low-resolution fluid simulations is possible and
drastically increases computation time, with the drawback of less precise data. It can also
be concluded that coupling simulations to super-resolution is viable by using preCICE.
This process allows for the connection of arbitrary solvers to any kind of upsampling tech-
nology very quickly. These conclusions are drawn from training an SRCNN on fluid sim-
ulations and performing computational experiments on it. Results of these experiments
indicate decreased precision in upsampled simulations compared to high-resolution sim-
ulations, especially when increasing the resolution above 2x, as is the expected case in
regular image super-resolution using SRCNN. Triple resolution in this case shows a re-
duction of up to 34% in PSNR values compared to double resolution simulations. Further
drops in data precision occur when changing the geometry of the underlying mesh in the
simulation and setting different initial conditions for simulations, especially for different
amounts and positions of substances. Evidently, the SRCNN’s missing input of underly-
ing structure results in less accurate super-resolution when utilizing complex meshes and
sharper gradients. However, the steadily high SSIM shows that the model is capable of
keeping structure in simulated and upsampled results, making it a good solution for es-
timating fluid density at higher resolutions without the need to compute high-resolution
simulations themselves. Other benefits include a shorter computation time. Training the
SRCNN only takes constant time and is required once, while the evaluation computations
for the model require little time compared to low-resolution simulations, essentially de-
creasing the effort required for a higher-resolution simulation to that of a lower-resolution
one.

A way of improving correctness and scaling in future work might be to use more sophis-
ticated models and larger datasets, even on three-dimensional data. The most effective
model choice would be dependent on the type of simulation and desired result, like using
LAPSRN for higher scale factor values. Additionally through the capabilities of preCICE
coupling it is possible to rapidly interchange solvers and upsampling frameworks, allow-
ing for quick testing capabilities when researching in this field.
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[18] Ansse Saarimäki. Single image super-resolution using convolutional neural net-
works, 2018.

[19] You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. Tempogan: A temporally co-
herent, volumetric gan for super-resolution fluid flow. ACM Trans. Graph., 37(4), jul
2018.

28


	Abstract
	Introduction
	Fluid Simulations and Upsampling Background
	Fluid Simulation and Finite Element Method
	Navier-Stokes
	Computational Fluid Dynamics

	Super-Resolution
	Interpolation
	Neural Networks

	preCICE

	Upsampling fluid dynamics with CNNs via preCICE
	Problem Statement
	Neural Network Architecture and Similarity Metrics
	Coupling and Data Generation
	Computational Experiments

	Conclusion
	Bibliography

