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Abstract

This thesis explores the problem of finding an optimal kernel for Gaussian Process Regres-
sion. Gaussian Process Regression is a widely used technique for modeling nonlinear re-
lationships between variables. The choice of kernel function is critical to the performance.
However, the search for an optimal kernel is a challenging task due to the high-dimensional
parameter space and the lack of a universal criterion for kernel selection. In this thesis, we
propose multiple ways to search for an optimal kernel. To evaluate the proposed methods,
we conduct experiments on two datasets. Data that will be used is a wheel-soil interaction
data, with the task of predicting the force acting on the wheels. The results show that the
automated methods can be effective in finding good kernels and may significantly reduce
the time and effort required for kernel selection. Overall, this thesis provides insights into
the problem of kernel selection for Gaussian Process Regression and proposes multiple ways
to tackle this problem. The proposed methods can be applied to various applications. To
summarise the thesis, the final section will conclude our results and provide directions for
the further development.

The dataset has multiple overlapping features present, in order to address the problem of
performance and combat memory dimensionality reduction techniques are implemented.
We will try to use different methods to choose the best possible kernel for given data. Those
will be based on the data and its specifics. In order to get results as good as possible
at the later phases we will look into combinations of kernels. The final models that are
benchmarked and compared according to their accuracy, the number of required data points,
and possible further improvements.
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1 Problem introduction

Over the last few decades, among everything two very important phenomena have been
happening, and with each passing year, they are advancing exponentially even further. The
first one is the realization of how much potential is hidden within the data. Humans have
understood the importance of generating, gathering, and analyzing data, and as a result,
there has been explosive growth in the amount of data that is being produced each day. With
the appearance of more data, the natural need for storage and fast access to it has appeared
to. The second phenomenon is the popularisation of data-driven solutions to problems. The
copious amounts of data have given rise to new methods and techniques to leverage it. One
way of utilizing the data is to create a machine learning system that takes all the data in and
gives beneficial information that can improve or even replace existing mechanisms. Machine
learning algorithms can learn from the data and improve their performance over time. With
more data coming in, machine learning models become more accurate and reliable. This led
to a lot of new applications that were not possible before, including self-driving cars, image
and speech recognition, and predictive analytics. One of many examples of machine learning
is the Gaussian processes, one of their advantage is their reliability and the ability to include
uncertainties, they can be also coupled with other methods such as neural networks or even
stacked together to work on multiple levels of data fidelity to achieve better performance
and solve problems for easily.

Machine learning can be applied to a wide variety of fields, starting from chatbots to self-
driving cars. I chose to apply machine learning for space rovers, because the high cost
of space exploration is well-known, with each mission often requiring billions of dollars
and extensive preparations before they even start. To drive technological progress forward,
scientists and engineers have devised various experiments that are supposed to reduce costs.
Even more, researchers have attempted to replicate the environment of a different planet in a
laboratory setting to enable relatively low-cost and frequent experiments. Fortunately, both
simulated and real-world experiments can yield vast amounts of data.

The motivation behind our work is quite simple and comes from the need to solve a very
crucial problem. The goal of this thesis is to develop a method for selecting the optimal
kernel for the Gaussian process regression models. In our case, we aim to predict the traction
force for a wheel of a Mars rover by using Gaussian processes and try to find the best possible
kernel for this. The Gaussian process regression is a powerful tool that can be used to model
and predict the motion of the Mars rovers. However, the accuracy of said model is heavily
dependent on the selection of the right kernel function. Therefore, the main objective of our
work is to identify the best kernel function for the Gaussian process regression model, the
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1 Problem introduction

results are simply presented on this data.

In section 2 at the beginning, we take a closer look at the mechanics of the rover machines to
have a basic understanding of the physics problem behind our code. After that, we make an
introduction to the Gaussian processes starting with statistics and going deeper. In the end,
we give an example of the practical usage of those to help the reader visualize their work.
After that, we get to a mathematical explanation of kernels, and how they are incorporated
into Gaussian processes, and at the end we give an overview of an automatic kernel selection
process based on an article. In the end, we give an introduction to embedding methods such
as principal components analysis and t-distributed stochastic neighbor embedding, as they
are used in our work.

Section 3 describes the work done and the results of this thesis. At first, we write the
motivation behind the work, and after that, we introduce the task at hand. We then approx
the datasets that are being used in our work, and we describe which metrics will be used
in the experiments. After that we start describing the work done, firstly the exploratory
data analysis that allowed us to understand the data more deeply and decide for example
which features to use later on and which to omit and far more. Later on, we introduce our
algorithmic approaches for the solutions of our search in descriptions. Next, we present
the way we have decided to implement them and after that, we show the results of the
experiments performed followed by a comparison of the results achieved.

In the end, we summarise the thesis by concluding our results and suggesting the next steps
that can be performed to achieve more.
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2 Theoretical background

2.1 Wheel locomotion model

2.1.1 History

The problem of wheel-soil interactions has been present since the first developments of un-
manned rovers used in space research. Mars has been a major point of interest for space
exploration since the 1960s [1]. With the technological development, the goal has become
closer as the Mars Pathfinder was deployed on December 4, 1996, successfully landing on
Mars 7 months later. Since then multiple rovers have explored Mars’ soil. The major chal-
lenge for successful travel on the planet is the uncertainty of wheel interactions with soft
soils such as sand or mud. With the latest rover landing in the Jezero crater, the problem of
efficient traversal became crucial [2]. With the experience gained from multiple previous mis-
sions as well as experiments performed on Earth, the physics model and properties of wheel
interactions are being analyzed utilizing multiple ground contact models in various levels
of detalization. Machine learning and models combining could provide useful, real-time
locomotion predictions [3]. Example of a rover presented in figure 2.1.

Figure 2.1: Mars Science Laboratory (MSL) engineering model tested on dry, loose sand
taken from [4].

3



2 Theoretical background

2.1.2 Terramechanics for Real-time Application (TerRA)

One of the wheel locomotion models that is used in this thesis is called Terramechanics for
Real-time Application or shortcut TerRA and is described by Barthelmes [5]. The developed
model can simulate traction force acting on the wheel, which we will use as a target function
in our predictions. The model was developed with a focus on the forces of wheeled mobile
robots especially in sandy terrains such as Mars soil. TerRA is a one-point model that should
be much faster than real-time models evaluated on standard personal computers.

The need for a model that simulates and allows for corrections to be made is visible from
the fact that even in successful missions such as:

• Spirit described in [6],

• Opportunity described in [7],

• Curiosity described in [8],

There was still a lot of uncertainty regarding the wheel’s interaction with the sandy soil.
Those three missions despite being regarded as huge successes had their share of technical
problems. Each of the rovers has bigger or smaller problems with slippage and sinkage on
sandy surfaces. Those problems are described in [6, 7, 8, 9]. Even a decision was made to
avoid certain areas known to be problematic, which results in less data being collected for
some places.

TerRA has specified goals and to meet those certain properties were picked and they are
mandatory for the model to be relevant as written in [5]. In table 2.1 we can see all those
effects with their description.

Table 2.1: Properties of TerRA data presented with descriptions.
Property Description
Plastic sinkage Results from deformation of sand when a wheel moves in it
Slip-sinkage Sinkage developing with wheel slippage can result in embedding
Slip and traction force Forces that are responsible for the positive acceleration
Resistance force Resistance of the soil counteracts the traction force
Convergence Stable and reproducible state has to be achieved after transient phase

4



2 Theoretical background

The task in terms of predicting here is to predict the traction force 2.1. Which is given by:

Ftr =
∫ xe

x0

∫ w/2

−w/2
τmax(1 − e(j(t)/k j))dy dx, (2.1)

where:

• τmax - maximum stress that the soil can bear, formula taken from [10],

• j(t) - slip length from [10],

• k j - soil parameter from [10].

In 2.1 the first integration is over the length of a chord of the wheel between the two points
of intersection with sand, so it is the area where the traction force is generated. The second
integration is over the wheel width. The function that we integrate over is the formula for
stress that the soil can withstand.

We can also look at the slippage and sinkage graphs of an example run of a rover. It will
show us if and how those two effects are connected. It will also help to visualize how the
parameters of the model and environment affect the work of our rover.

In figure 2.2 we can see an example of slippage in one run of a rover, it is visible that it
depends on the angle of the slope and at the start of the simulation is equal to one, before
the rover can grip some traction.

Figure 2.2: Presented example of slippage through the time taken from [5].
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2 Theoretical background

If we look at figure 2.3 and then at figure 2.2 we can see that there is a link between sinkage
and slipage. The bigger the slippage gets the lower the rover sinks into the sand. It means
that it digs itself into the ground.

Figure 2.3: Presented example of a sinkage through the time taken from [5].

Figures 2.2 and 2.3 show that the situation of a rover can change drastically in a matter of
moments in the TerRA model. That is a reason why there is a big need for a valid and
accurate prediction model, that will help with modeling based on the incoming terrain data.
It can help in avoiding situations such as the rover burying itself or slipping off a hill, by
allowing to simulation of similar situations and providing a pattern of behavior that is right
for each action and situation.

6



2 Theoretical background

2.1.3 Soil Contact Model (SCM)

The second wheel locomotion model used in this thesis is called Soil Contact Model or SCM
for a shortcut. It is described in [11]. Nearly all of the numerical solutions of the simulation
of plastic soil can be divided into two main categories:

1. semi-empirical models,

2. physics-based models.

The soil contact model is semi-empirical, it is based on a small number of parameters, that
through experimentation are cheap to get. Once the model has parameters like:

• soil strength,

• stress distributions,

it predicts pressure in the contact patch and traction performance using empirically known
relations based on assumptions that make the problem analytically available.

The theoretical model aims at simulating the real physical phenomena at the interface of
the tire and terrain with the help of complex and much more computationally demanding,
numerical approaches. This approach in general lead to more detailed results, but the down-
side is that they require much more computational power. Another upside is that they do
not have the same limitations as semi-empirical models.

The soil contact model is based on a semi-empirical model with a minimal amount of param-
eters for it to be easy to adjust and fast to do computations. SCM maybe understood as a
more general version of the Bekker - Wong model in terms of the wheels’ interactions. There
is a formula called the Bekker formula presented in equation 2.2, which gives the movement
of the wheel on deformable soil as sand. The relationship between pressure and sinkage is
given by an equation of σ, which is the contact patch pressure:

σ = (
kc

b
+ kϕ)yn, (2.2)

where:

• kc - an empirical coefficient representing the cohesive effect of the soil,

• b - the length of the shorter side of the rectangular contact area,

• kϕ - is an empirical coefficient representing the stiffness of the soil,

• y - wheel sinkage,

• n - the exponent of sinkage.

7



2 Theoretical background

We can see in figure 2.4 the dynamic of the movement of a body in plastic soil and how the
process runs.

(a) 3D view of the movement and soil deformation. (b) Cross section of the movement and soil deformation
with variables.

Figure 2.4: Object movement and soil deformation that is caused by it taken from [12].

The implementation of the soil contact model, we are using is slightly different in terms of
the mesh of the grid that is being used. Instead of the standard rectangles we are using
triangles, which is helpful in certain examples such as along roads, in our case of Martian
travel it is relevant. We can see the difference in figure 2.5.

(a) Standard grid used in SCM. (b) Triangle grid used in our implementation of SCM.

Figure 2.5: Different mesh grids used in SCM taken from [12].

The upsides of this model are that it supports an optional refinement of the gird mesh to
be able to introduce fine details like tire threads and lugs. Furthermore, it can work with
tiers that change shape and generate basic obstacles. The biggest minus is the fact that the
model has problems with the occurrence of wheel steers happening in a place and pushing
material apart.

8



2 Theoretical background

2.2 Gaussian processes

Gaussian processes are the basis of models created in this thesis, so it is necessary to un-
derstand what is their basis, how they are created, how the training is done and what is
Gaussian process regression.

2.2.1 Gaussian distribution

The Gaussian distribution 2.3 know also as normal distribution was introduced by Carl
Gauss in 1809 in [13]. In one dimension density function, it is given by equation:

f (x) =
1

σ
√

2π
exp

(
−1

2

(
x − µ

σ

)2
)

, (2.3)

where:

• µ - mean of the distribution, responsible for where the middle of the distribution curve
is,

• σ - standard deviation of the distribution, responsible for the width spread of the
distribution curve.

When we are speaking of a random variable we can use the notation X ∼ N(µ, σ) it means
that the random variable X is from a normal distribution with a mean equal to ν and standard
deviation equal to σ. The most popular normal distribution is a standard normal distribution,
meaning it has a mean equal to 0 and a standard deviation equal to 1 - X ∼ N(0, 1). We can
transform any one-dimensional normally distributed random variable to standard by using
this transformation: Xnew = Xold−µ

σ .

In figure 2.6 we can see how the parameters such as mean and standard deviation affect the
density function of a Gaussian distribution.

9



2 Theoretical background

Figure 2.6: Standard normal distribution taken from [14].

Once we are familiar with the one-dimensional Gaussian distribution we can move on to
multi-dimensional Gaussian distributions. This is relevant because a Gaussian process is a
stochastic process in which every finite subset of random variables has a multivariate normal
distribution.

In the case of a d dimensional normal distribution, its density function is given by equation:

f (x) =
1√

(2π)d|Σ|
exp(−1

2
(x − µ)TΣ−1(x − µ)). (2.4)

In equation 2.4 we can name three parameters:

1. d - number of dimensions,

2. µ - vector of expected values (means) of each distribution,

3. Σ - covariance matrix.

10



2 Theoretical background

2.2.2 Bayesian probability theory

The whole idea behind the Gaussian process regression is based on the Bayesian inference
problem as stated in [15]. In statistics inference is the process of concluding a parameter
or parameters one is seeking to measure or estimate as said in [16]. Bayesian probability
theory gives us the tools for performing mathematical inference using probability. The whole
concept is based on the joint probability of two events, which equation is given by:

P(AB) = P(A|B)P(B) = P(B|A)P(A). (2.5)

Based on 2.5 and naming H as a hypothesis and D as data we can get the formula for the
probability of a hypothesis given the data, given by:

P(H|D) =
P(D|H)P(H)

P(D)
, (2.6)

like in [17].

The equation presented in 2.6 is called Bayes’ rule, in which we have different entities such
as:

• P(H|D) - posterior probability, it reflects the probability of the hypothesis after consid-
ering the data,

• P(D|H) - likelihood function, it gives the probability of the data arising from the tested
hypothesis,

• P(H) - prior probability, it reflects the prior knowledge before the data is taken into
consideration,

• P(D) - normally plays the part of a normalizing constant and is integrated out by
integrating P(D|H) ∗ P(H) over all H using the Bayesian rule in 2.6

as explained in [17].

11



2 Theoretical background

2.2.3 Stochastic processes

Stochastic process X = X(t) where t ∈ T is a collection of random variables. T is an index
set and for each t ∈ T a X(t) is a random variable. A common interpretation is for t to be
regarded as time and then we can understand the X(t) as the state of our process at the time
t. If the index set is countable we call the X(t) a discrete-time stochastic process and when
the index set is a continuum we call the X(t) a continuous time process [18].

An example realization of a stochastic process X(t) is called a sample path. Those can
model real-life events like stock exchange share prices or epidemic parameters like new
daily infections. In figure 2.7 we can see the exchange rate between the British pound (GBP)
and Japanese yen over (JPY) from January first, 2002 till July thirty-first, 2004.

(a) True exchange rate from GPY to JPY. (b) Simulation of exchange rate from GPY to JPY
created using stochastic process.

Figure 2.7: Example occurrence of stochastic processes in exchange rate taken from [19].

If we consider a continuous time stochastic process X(t), where ti ∈ T, we can say that
it has independent increments if for all ti ∈ T t0 < t1 < t2 < ... < tn random variables
X(ti+1)− X(ti) are independent. Furthermore, it is said that a stochastic process possesses
stationary increments if X(t + s) − X(t) has the same distribution for all t ∈ T. Meaning
that the stochastic process possesses independent increments if the changes in the processes’
value over nonoverlapping time intervals are independent random variables and it possesses
stationary increments if the distribution of the change in value between any two points
depends only on the distance between those points [18].

12



2 Theoretical background

2.2.4 Gaussian Processes

We want to model output force as a function of different parameters of the rover, to do so
we can consider giving a prior probability to every possible function that can fit, and we can
give a higher probability to functions that in our consideration are more likely to be correct.
The functions that will have a higher probability can be found by looking at our data and
analyzing some patterns along with factoring in the knowledge of the problem. This way of
thinking can be problematic as we can have a problem with an uncountable set of functions
that we want to process in a finite possibly the lowest possible time. The answer to this
problem can be presented in Gaussian processes because standard machine learning ideas
like deep neural networks, random forests, or linear regression do not work well with the
infinity concept [15]. Gaussian process Z depends on two functions:

1. mean function m(x) = E(Z(x)),

2. covariance function k(x, x′) = cov(Z(x), Z(x′))

based on [20]. The covariance function is also called a kernel, more on that in 2.3.

We can consider Gaussian processes as the generalization of Gaussian distribution. Probabil-
ity distributions are used in describing random variables, which are scalar or vector values
respectively for one-dimensional and multi-dimensional distributions. When we want to
describe functions accurately we shall use stochastic processes.

In general Gaussian process is a non-parametric model that can be used to represent the
distribution of functions. Contrary to parametric models like decision trees or neural net-
works, a non-parametric model cannot be represented by using a fixed set of parameters,
because of this we use distribution functions to sample the parameters. Another way of
looking at a Gaussian process is a collection of random variables, where any subset of them
has multivariate Gaussian distribution [15].

Creating a regression model base on Gaussian processes is based on the idea of Bayesian
inference. Where the data information is just the training data. We can also understand
the kernel function as the prior, more on kernel functions in section 2.3. To visualize the
prior distribution of the functions, which is determined by the kernel, we can sample several
functions. Once the training data is taken into account then the Gaussian process makes the
prediction based on the posterior distribution.

In figure 2.8 we can observe the process of training the Gaussian process regression. Figure
2.8 depicts the process of sampling from prior distribution and also depicts functions sam-
pled from posterior distribution (dashed line) and their mean (solid line). On both of those
figures, the grey zones are confidence intervals, we can see that they are only points in the
points of training data.
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2 Theoretical background

(a) Prior function distribution (b) Posterior function distribution

Figure 2.8: Gaussian process regression training process taken from [15].

The training process is commonly done by the maximization of the log-likelihood function
of the training data concerning each hyperparameter of the model. In this process there is
a similarity to the optimization of artificial neural networks, a gradient-based algorithm is
most likely used [21, 22].

2.2.5 Examples of practical use

Gaussian processes can be used likewise for regression and classification problems and
achieve excellent results. In this thesis, we are making a predictor where a target variable is
a force, so we have a regression problem, that is why we will use a regression example in
this subsection.

A good example of the usage of kernels in models is presented in [23]. This article explores
the impact of the composition of concrete on its strength. Concrete strength is how much
pressure it can withstand before crashing. Trying to model the strength of the concrete by
using the physical process of creating the concrete, which is just adding elements together,
because of that it is relevant to use a simple additive model. In this example the strength is
a function of different components, those being: the number of ingredients used, the age of
the concrete, and noise like in [24].

14



2 Theoretical background

The output function is the sum of 8 different functions of one-dimensional features and noise
as presented in 2.7 from [24].

f (x) = f1(cement) + f2(slag) + f3( f lyash) + f4(water)

+ f5(plasticizer) + f6(coarse) + f7( f ine) + f8(age) + noise (2.7)

All the functions were modeled using a Gaussian process with a squared exponential kernel.
If we add them all together with the noise then we get a single Gaussian process model in
which the kernel has nine additive components. The last thing that we can look at is figure
2.9 in which we can see the models after the process of learning, which was done by the
maximization of the marginal likelihood.

Figure 2.9: Posterior distributions of Gaussian processes models taken from [24].
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2 Theoretical background

2.3 Kernels

2.3.1 Mathematical background

A positive definite kernel is a generalization of a positive definite function. Symmetric func-
tion f is positive 2.8 when it fulfils the equation:

n

∑
i=1

n

∑
j=1

cicj f (xixj) ≥ 0, (2.8)

on a non empty indexed set X for every x1, . . . , xn ∈ X, given n ∈ N, c1, . . . , cn ∈ R.

When we consider a family of kernels then we get two important properties that will allow
us to combine kernels. Those are that if (Ki)i∈N then:

• ∑n
i=1 λiKi given λ1, . . . , λn ≥ 0 is also a kernel,

• ∏n
1 Kai

i given a1, . . . , an is also a kernel.

In this thesis, the x and x’ will be vectors in Euclidean space, but in general, kernels can
be defined on text, graphs, or even images [24]. Euclidean space is a space over the real
numbers such that the associated vector space, is a space with an inner product and has
a finite number of dimensions. Gaussian process models use kernels to define the prior
distribution by its covariance 2.9 between any two function values shown in equation:

Cov[ f (x), f (x′)] = k(x, x′). (2.9)

We will examine basic kernels, their covariance function, plots of those functions, and func-
tions sampled from a Gaussian process with this prior distribution. All three different types
of kernels can be distinguished and more can be achieved by creating a combination of those
three. Those three are:

1. Squared exponential,

2. Periodic,

3. Linear.

This distinction is taken from [24].

The squared exponential kernel 2.10 has a covariance function presented in equation:

k(x, x′) = σ2
f exp(− (x − x′)2

2l2 ). (2.10)
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2 Theoretical background

We can also see a plot of the covariance function in figure 2.10 (a) in the upper graph and
some functions sampled form a Gaussian process with this prior distribution in figure 2.10
(a) in the lower graph.

The periodic kernel 2.11 has a covariance function presented in equation:

k(x, x′) = σ2
f exp(− 2

l2 sin2(π
x − x′

p
)). (2.11)

We can also see a plot of the covariance function in figure 2.10 (b) in the upper graph and
some functions sampled form a Gaussian process with this prior distribution in figure 2.10
(b) in the lower graph.

The linear kernel 2.12 has a covariance function presented in equation:

k(x, x′) = σ2
f (x − c)(x′ − c). (2.12)

We can also see a plot of the covariance function in figure 2.10 (c) in the upper graph and
some functions sampled form a Gaussian process with this prior distribution in figure 2.10
(c) in the lower graph.

(a) Plot of covariance func-
tion and sample func-
tions of a squared expo-
nential kernel from equa-
tion 2.10.

(b) Plot of covariance func-
tion and sample func-
tions of a periodic kernel
from equation 2.11.

(c) Plot of covariance func-
tion and sample func-
tions of a linear kernel
from equation 2.12.

Figure 2.10: Presentation of examples of different kernels taken from [24].
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Often there is a need to use more complicated kernels, one way to achieve it is to combine
kernels using addition and multiplication. Those operations keep the property of positive
definite of a function, so there is no need of checking if the final kernel is still a kernel.

2.3.2 Kernels in Gaussian processes

As mentioned before the kernel in the Gaussian process is the covariance function. It gives
us the prior distribution and has a part in the posterior distribution as presented in 2.6.

In figure 2.11 we can see that it is extremely important to choose the right kernel as it has a
big impact on the confidence intervals.

Figure 2.11: Impact of the kernel on the Gaussian process taken from [20].

In the exponential kernel part of figure 2.11 we can see that the confidence intervals outside
of the interpolation points are widely inaccurate when compared to the Gaussian kernel part.
We need to answer the following questions among others to find the best suiting kernel for
a given situation:

• is the function stationary, meaning it is a realization of a stationary stochastic process
[18],

• is the function differentiable and what is its regularity,

• do we expect particular patterns in the function,

• do we expect particular trends in the function?

Like presesnted in [20].

Once we answer those questions we may be able to greatly improve the accuracy of our
model when compared to a random kernel.
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2.3.3 Automatic kernel selection

The most important part of this thesis will be about trying to find the best suitable kernel for
the data provided by the TerRA model [5]. The usage of Gaussian processes regression and
Bayesian formulation is becoming more and more popular thanks to the fact that it not only
incorporates uncertainty but also allows for the avoidance of all the undesirable features of
artificial neural networks [25]. One of the most time-consuming aspects of neural networks
is looking for the best hyperparameters and the best starting condition. Thanks to the fact
that Gaussian processes are computationally effective and that non-linear learning is easy
the processes gain more popularity [25].

Selection of the kernel shall be greatly important as it affects the mean prediction, accuracy
of the model, but also confidence intervals of our prediction. This is the reason that selecting
an appropriate kernel is so important, it gives way to a problem in which we need to select a
kernel, then evaluate the Gaussian process, and at the end compare the results. This specific
problem may get extremely complicated as more than one kernel can accurately represent
the data, much like more than one artificial neural network can have high accuracy for a
given problem. This problem has an additional difficulty as most of the Gaussian process
regression models are treated as black boxes, meaning we do not understand the model’s
reasoning for decision-making [25].

The method for the kernel selection is the approximate Bayesian computation like said in
article [25]. One advantage of this method is that it is very general, there is no need for any
assumptions about the likelihood functions and also there is no need for any extra evaluation
that can discriminate some kernels. Another advantage is that the algorithm is not affected
by the dimensionality of the kernels and can deal even with kernels of different dimensions
comparing them on the go. In this algorithm the goal is to obtain the best and most efficient
approximation of the posterior distribution [25].

The algorithm is based on comparing the simulated data and the observed data and accept-
ing the simulation if it is close enough to the real data, the distance threshold is set by the
user. All the mathematical formulas along with two examples of usage are presented in
[25]. In one of those examples, the difference between the different kernels is not signifi-
cant enough to create a distinguishable difference, hence the algorithm chooses the simpler
one. In the second example with the progress of the work and with the minimization of
the threshold, the algorithm begins to discard the simpler kernels as they are not able to
model the data properly. This method gives a way to choose kernels by following steps in a
systematic and somewhat consistent way for different situations.

The examples illustrate that for not too complicated data standard simple kernels can be
enough to reach satisfactory results, but it also shows that in examples that have underlying
difficulties, there is a need for complicated kernels. When the threshold parameters are tight-
ened then the more complicated kernels are getting a lead in case of complicated underlying
relationships in the dataset.
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2.4 Embedding methods

2.4.1 Principal Components Analysis

Principal component analysis was created before the 1940s but had to wait for the possibility
of width application because the computations were too complicated for the times, similar
to artificial neural networks. Thanks to the advancement of computers and their calculation
power a lot of statistical methods become popular such as principal components analysis
[26]. This method gives the possibility of reducing the high dimensionality of a dataset to
only a few without losing too much information, by projecting data points onto principal
components [27]. The basis of the principal components is the same as the major axis re-
gression, because of that the two methods share the same problems and restrictions, for
example, the need for normality. Before applying the method the variables should be from a
normal distribution and if they are not they should be transformed so that they have it. One
important thing to look out for is outliers that can highly dominate and distort the results
[28].

Dimensionality reduction in this case is gained by obtaining new variables that are linear
combinations of the old ones. Those new variables are called principal components and they
must satisfy specific mathematical conditions for them to be valid. We have the dataset in a
matrix form X [26].

X =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n
...

...
...

. . .
...

xp1 xp2 xp3 . . . xpn


From this matrix, each of the columns represents a point in the p-dimensional space. Since
the matrix is finite the goal of the principal component analysis is to find linear combinations
such as their variance is the maximum possible while still fulfilling certain properties. If we
denote the covariance matrix of X as S then we can get the principal components from the
equation:

V = A′X, (2.13)

where:

• V - the matrix with new variables,

• A - the matrix of orthonormal eigenvectors of the matrix S,

• X - the matrix with data,

like in [26].
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To find what principal components that we looking for in equation 2.13, firstly we need to
solve equation:

|S − lI| = 0, (2.14)

where:

• S - the variance-covariance matrix of order p,

• l - the characteristic root of the determinant equation,

• I - the unit matrix of order p.

The form of equation 2.14 is a polynomial equation with degree p with the unknown variable
being l, hence it has p distinctive roots which can be ordered in a nonincreasing way: l1 ≥
l2 ≥ l3 ≥ · · · ≥ lp ≥ 0. In matrix A there is a pair of an orthonormal column vector A

and root li. From equation 2.13 we can take the vector V1 and it has the maximum variance
equal to l1 and it is the first principal component, each next column of V is the next principal
component with variance equal to the corresponding li [26].

When we compare this fact with the fact that l1 + l2 + · · · + lp = trace(S) and that it
is also equal to the variance of the matrix S, then the single l’s are the shares of the
variance explained by each of the principal components. Now if we look at the values

l1
trace(S)100, l2

trace(S)100, . . . , lp
trace(S)100 we get the percentage share of the variance. The algo-

rithm that is used for the calculation of the principal components is devised in such a way
that this is a decreasing sequence. The last important fact is that the number of principal
components is the same as the number of starting variables, but we can exclude some of
them and lose next to nothing in terms of variance [26].
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2.4.2 t-distributed Stochastic Neighbour Embedding

t-SNE is a technique for high-dimensionality data visualization. It was first proposed in [29].
It allows to give points two or three-dimensionality points for visualization and checking if
there are some groups of points. This method is an upgrade from simple stochastic neighbor
embedding and is easier to optimize and has one other important upgrade, it does not tend
to focus the points in the center of the map in a single cluster. This characteristic is important
for data that is high dimensional, but some subgroups are in the same lower dimensionality
[29].

In the case of the t-distributed Stochastic Neighbour Embedding we have a conversion
of the high dimensional dataset X = {x1, x2, . . . , xn} into a low dimensional data Y =

{y1, y2, . . . , yn}, this means two or three dimensions that can be plotted on a scatterplot
[29].

The basis of t-SNE is as mentioned the Stochastic Neighbour Embedding it converts the dis-
tance between points in original space into probabilities that can be interpreted as similarities
[29].

We can calculate the similarity of point xj to point xi is the conditional probability given by
P(j | i). The meaning behind this is the probability that xi would pick xj as its neighbor if the
picking was based on proportion to their probability density under Gaussian distribution 2.3
with center at xi. If we denote the standard deviation of the Gaussian distribution as σ, then
the probability 2.15 is given by equation:

P(j | i) =
exp(−||xi−xj||2

2σ2
i

)

∑k ̸=i exp(−||xi−xk ||2
2σ2

i
)

. (2.15)

If we look at the points yi and yj, that is corresponding to xi and xj, we can calculate a similar
quantity that is denoted as Q(j | i) 2.16, in this instance the standard deviation is set to 1√

2
.

The equation for Q(j | i) is then given by the equation:

Q(j | i) =
exp(−||yi − yj||2)

∑k ̸=i exp(−||yi − yk||2))
. (2.16)

Now if the points x’s and y’s are matched correctly then the probabilities p and q will be the
same. Based on that the SNE algorithm aims to minimize the error between those two while
finding the low-level representation of the data. In this case, the function that is the error
function is the Kullback-Leibler divergence and it is minimized over all the points with the
usage of the gradient descent with the cost function 2.17 given in equation:

C = ∑
i

KL(Pi||Qi) = ∑
i

∑
j

log(P(j | i)
P(j | i)
Q(j | i)

). (2.17)
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The things that are done differently in t-SNE are that there is a change in the assumed
distribution and a change in the cost function. The cost function here is symmetrical and
also has gradients that are easier to calculate, it solves the problem of cost efficiency. The
second change is using the t-student distribution 2.18 function:

f (t, n) =
Γ( n+1

2 )

Γ( n
2
√

nπ)
(1 +

t2

n
)−

n+1
2 , (2.18)

instead of the Gaussian distribution. This procedure gives us a distribution that has heavy
tails, meaning the probability of being far from the center is higher than in the case of the
Gaussian distribution, so the crowding in the middle problem vanishes. It also helps with
the optimization [29].

Where the Γ is the gamma function, that is the extension of the factorial Γ(n) = (n − 1)!. For
real numbers it is defined as Γ(x) =

∫ ∞
0 tx−1e−tdt.

We can use a simple example to show how effective is the t-SNE in real-life situations. We
will look at the MNIST dataset, which is a set of handwritten digits. Techniques there were
used four mapping techniques: t-SNE, Sammon mapping, Isomap, and LLE presented in
[29]. The results are presented in 2.12. We can see that the visualization that is the result of
the t-SNE is better at visually separating different clusters in the data.

(a) t-SNE visualisation. (b) Sammon visualisation.

(c) Isomap visualisation. (d) LLE visualisation taken.

Figure 2.12: The results of different mapping techniques presented from [29].
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3 Gaussian process models for wheel
locomotion

3.1 Motivation

Firstly before starting the main part of the thesis, we will explain the goal of this project,
write about the underlying motivation, short overview of the data and steps that will be
taken.

The goal of this project is to find a way of automatically choosing the optimal kernel for
a Gaussian process regression model on the example of data regarding the movement of a
rover on Mars. We have available two datasets that are independently describing the move-
ment of the rover in different qualities [30]. Both of the datasets have variables such as forces,
torques, velocities, positions, angular velocities, and gravities that the robot experiences as
well as the height map of the soil beneath the rover. The prediction task is to predict the
force based on the information from the other variables and the photo.

The underlying motivation in this thesis is to enable finding the best kernels for physical
phenomena hidden behind certain datasets. In our case the data is part of a bigger problem,
a multi-fidelity problem of finding the forces of wheels. Optimizing the kernels will allow
us to create better Gaussian processes regressions and that can lead to a better architecture
of the multi-fidelity model and that finally can enhance the overall performance.

Simulations of runs of the Mars Rover have been conducted using different terra-mechanical
models. One simulation consists of 151 rows of data and each row is composed of the phys-
ical parameters of the rover at a given moment and a height map of the surface below. Each
record has parameters that describe output forces, output torques, coordinates, velocities,
angular velocities, and gravity normal. The variables listed above all are present in three
directions:

1. X,

2. Y,

3. Z.
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This means that there is a total of 18 variables. Additionally to the columns from 18th to the
4112 is the image, which is a 64 x 64 picture of a 15 cm x 15 cm surface below the wheels
with an example shown in figure 3.1.

Figure 3.1: Presentation of an example of soil photo.

In the following sections, firstly we will look into the data with greater detail and then move
on to the different implementations of the search. Once the implementations are detailed
we will move on to experiments in different circumstances. Those will help us find the
strong and weak sides of the solutions and give quantitative results for comparison. In the
comparison of the results, we will look into parameters such as the error on different metrics
and the time needed for evaluation.
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3.2 Task description

As stated before we have two tasks. The first one is more visible that can be quantified with
an error measure like MAE (Mean Absolute Error) 3.1 presented in equation:

MAE(y, ŷ) =
∑N−1

i=0 |yi − ŷi|
N

, (3.1)

where:

• n - number of samples,

• yi - true values,

• ŷi - predicted values.

or RMSE (Root Mean Squared Error) 3.2 presented in equation:

RMSE(y, ŷ) =

√
∑N−1

i=0 (yi − ŷi)2

N
, (3.2)

where:

• n - number of samples,

• yi - true values,

• ŷi - predicted values.

or time spent on learning and evaluation. This task is the prediction of the force of the
rover’s wheels.

This measure treats all errors the same, so we will know in general how good our prediction
is.

This measure penalizes the big errors more as there is a squared formula. It means that by
pairing it up with MAE 3.1 we will know if our model is making some predictions that are
far away from the truth.

Another important metric is time, it does not validate the accuracy of the model, but is very
important. For all the calculations done in this thesis, the hardware is a personal computer
with a 2.3 GHz 8-Core Intel Core i9 and 16GB of RAM. A significant problem of Gaussian
process regression is the cubic computation complexity, which means we have to monitor the
time of the training as it can be unacceptable in cases of big data usage. The time measuring
technique will simply subtract the timestamp of the start from the timestamp of the start.
All the computations will be done more than once and then an average will be taken across
all the simulations.
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The second task is what is more important here - finding a way to automatically select a
kernel for Gaussian processes regression given the dataset. In completion of this task, the
first task will be helpful as it will allow us to have a measure of correctness of the kernel that
we have chosen. More on the background of the actions are in the subsections of 3.5. Mainly
why every attempt at finding the solution, what is the reasoning and mathematical theory
behind it?

3.3 Dataset description

In this task alongside the surface height map, we have 18 features describing the rover and
its state as the result of the TerRA or SCM model simulations. Those are force, torque,
coordinate, velocity, angular velocity, and gravity in three directions.

Those 18 features can be divided into two main categories: passive and active. Passive
features are those that are not directly controlled by the rover and in fact, those are treated
as explanatory variables. Those features come from the readings of the external sensors
and in our example features like coordinate, velocity, angular velocity, gravity as well as
surface photo are included in that. If we had more sensors then features like the speed of
the wind, atmospheric pressure, air temperature, humidity, or even magnetic field can be
added as such features. Active features are force and torque, which are directly controlled
by the rover mechanics, so we can treat them as dependent variables, as they depend on the
passive features. In this thesis, we have decided to choose the force alongside the x-axis as
the main variable to predict. More on the data operations and decisions will be in section
3.4.

An important aspect of this thesis is the data split. One of the common approaches is to
just randomly divide data into train, validation, and test sets. After long deliberations, we
decided to simply take 70% of runs as the training dataset, 20% as the validation dataset,
and the last 10% as the test dataset. In the 3.4 we will show the distribution of the target
variable across all the sets. The ideal situation would be for the distribution to be similar.
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3.4 Exploratory data analysis

3.4.1 Introduction

The first part of this project is exploratory data analysis in which we closely examine the data
and look for correlations between the variables and see how we can find maybe potential
similarities and clues to look for the best-fitting kernels. Data from both models are created
in the same way. Simulations of runs of the Mars Rover have been conducted using different
terra mechanical models, those are TerRA and SCM. The data generated with the soil contact
model is more precise, but it uses more computational power to generate.

The TerRA method has been used to generate what we would consider low-fidelity data for
the multi-fidelity task. Despite that fact it can be valuable to the final model, that is because
it was proven that low computational power is required to work with data coming from this
model, so it is necessary to work with the best we can while trying to compose it into the
final data.

SCM produces more precise data. This model results in more reliable and more accurate
data points, but because of that working with them requires more computational power. To
simulate a real-world scenario in our implementation, modeling, and experiments there are
fewer medium fidelity points, than low fidelity.

For this part of the thesis, we have decided to use 500 simulations from each fidelity. This
comes up to 151000 records used, which is the maximum amount that fits in our hardware.
This can change in the experimental part of the thesis to keep the medium fidelity data count
lower than the low fidelity as it is done in real life.

As the goal of the prediction task, we decided to predict the force along the x-axis. As
forces and torques are correlated with coefficient one, we decided to drop all three variables
describing torque, to avoid overfitting of the models. We also decided to remove two other
force variables from the model as those are outputs of the Mars rover and will not be given
in a real-life scenario.

In the following sections, we will consider firstly the data generated by the Terramechanics
for Real-time Application model and after that, we will work with the data generated by the
Soil Contact Model. We will at the beginning try to analyze standard position statistics of
the whole data and after that, we will work on the densities of different variables. After that,
we will work with correlations and new variables. More on what will be done will be in
subsections 3.4.2 and 3.4.3.

It is important to highlight that even though those two data sets are a part of a multi-fidelity
machine learning process we will be considering them alone.
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3.4.2 Analysis of TerRA data

In the given Terra data, the following statistical values have been analyzed.

• Mean,

• Standard deviation,

• Minimum,

• Median,

• Maximum.

This analysis resulted in table 3.1, it helped detect variables that had zero or close to zero
variance, meaning they would not be of much help in the models. Hence we decided to elim-
inate: coordinate_y, coordinate_z, velocity_y, angular_velocity_x, angular_velocity_z, and
gravity_y from further work.
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Table 3.1: Show of positional statistics for TerRA data.
force_x force_y force_z

mean -1.68 0.42 38.64
std 8.52 5.75 9.48
min -31.79 -61.60 0.0
max 29.77 40.58 99.43

torque_x torque_y torque_z
mean 0.05 0.21 -0.0
std 0.72 1.06 0.0
min -7.70 -3.72 -0.0
max 3.97 3.97 0.0

coordinate_x coordinate_y coordinate_z
mean -0.00 0.0 0.12
std 0.02 0.0 0.0
min -0.06 -0.0 0.11
max 0.05 -0.0 0.14

velocity_x velocity_y velocity_z
mean 0.11 0.0 0.0
std 0.08 0.0 0.01
min -0.07 0.0 -0.04
max 0.31 0.0 0.05

anqular_velocity_x anqular_velocity_y anqular_velocity_z
mean 0.0 0.98 0.0
std 0.0 0.67 0.0
min 0.0 0.0 0.0
max 0.0 2.0 0.0

gravity_x gravity_y gravity_z
mean 0.00 0.0 -0.99
std 0.14 0.0 0.01
min -0.42 0.0 -1.0
max 0.47 0.0 -0.88
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The next step was to visualize the distributions of all the chosen variables, it is presented in
figure 3.2. We opted for density plots, as they depict the tendencies in the data in a good
manner.

(a) Density for forces. (b) Density for coordinates.

(c) Density for velocities. (d) Density for forces and torques.

Figure 3.2: The result of density analysis for TerRA data.

From 3.2 subplot we can see that there is a lot of change in all three of the forces. Both in
velocity and coordinate variables the x coordinate is spread out. The last subplot d is placed
here to show why we decided to opt out of working with torques, they are too similar to
the forces for us to get meaningful results. Keeping them in the training dataset may lead to
overfitting.
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For further analysis of the relationships between variables, we decided to do a correlation
analysis of the remaining dataset. We present the results in figure 3.3.

Figure 3.3: Show of correlation plot for TerRA data.

This allowed us to decide on the final set of features we will choose from this level of fidelity.
Those are: coordinate_x, velocity_x, velocity_z, angular_velocity_y, gravity_x, gravity_z.
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The next thing we should check is if, after the division of data, the distribution of the target
variable is the same in different sets. In our case, the similarity must be there. We have three
datasets: training, validation, and testing. We will check only for the distribution of training
and validation as the test dataset should be something that imitates new data, so it has to be
unseen. In figure 3.4 we can see that in fact, the densities are very similar, so it can point us
to the conclusion that the task is well formed. There is a slight difference in the two plots,
for example in the height of the peak, but it is negligible.

(a) Density for target variable in train and test sets

Figure 3.4: The result of comparison of target variable density for TerRA data.

In this case, it means that the model will operate on a similar dataset that it was trained on.
It is not always the case and not always the goal, but in our case, it is both.

The next step is to look for some dimension reduction. Firstly we tried t-SNE to see if there
is some hidden structure in the data. The results of 2d and 3d efforts can be seen in figure
3.5. We can see that there are no subgroups in the data that we were able to find out. Both
of those attempts were done on 1000 iterations and considered 40 nearest neighbors in the
calculation of the loss function.
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(a) 2D t-SNE for TerRA data. (b) 3D t-SNE for TerRA data.

Figure 3.5: The result of t-SNE analysis on TerRA data.

After consideration, we decided to try and reduce the amount of data that we give to the
model without reducing the amount of information, so the last step is to do a principal com-
ponent analysis on the dataset. In the previous step, we selected six variables to be the input
of our models. Those variables are: coordinate_x, velocity_x, velocity_z, angular_velocity_y,
gravity_x, gravity_z.

After running the algorithm on the training set without the target variables we get the fol-
lowing results, presented in figure 3.6.

Figure 3.6: Semilogy plot of variance explained by principal components in TerRA data.

From a closer examination we can get that the percentage of explained variance in the data
is the following:

• 90,43% - if we take the first three principal components,

• 99,14% - if we take the first four principal components,
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• 99,99% - if we take the first five principal components.

This observation suggests that it has the sense to try working with principal components, as
we drastically change the size of the data, but we keep almost all of the information. We will
later try to work on the version with three and four components.

3.4.3 Analysis of SCM data

In the given SCM data, the following statistical values have been analyzed.

• Mean,

• Standard deviation,

• Minimum,

• Median,

• Maximum.

This analysis resulted in table 3.2, it helped detect variables that had zero or close to zero
variance, meaning they would not be of much help in the models. Hence we decided to
eliminate: coordinate_y, velocity_y, angular_velocity_x, angular_velocity_z, and gravity_y
from further work.
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Table 3.2: Show of positional statistics for SCM data.
force_x force_y force_z

mean 0.16 0.68 38.78
std 6.84 0.33 13.96
min -38.60 -5.07 -0.21
max 39.07 14.05 120.09

torque_x torque_y torque_z
mean 0.08 -1.11 0.02
std 0.14 1.00 0.02
min -0.96 -5.64 -0.48
max 1.56 4.03 0.39

coordinate_x coordinate_y coordinate_z
mean -0.00 0.0 0.10
std 0.02 0.0 0.1
min -0.06 -0.0 0.07
max 0.04 -0.0 0.14

velocity_x velocity_y velocity_z
mean 0.11 0.0 0.0
std 0.08 0.0 0.02
min -0.08 -0.1 -0.24
max 0.33 0.04 0.09

anqular_velocity_x anqular_velocity_y anqular_velocity_z
mean 0.0 0.98 0.0
std 0.0 0.67 0.0
min 0.0 0.0 0.0
max 0.0 2.0 0.0

gravity_x gravity_y gravity_z
mean -0.00 0.0 -0.99
std 0.16 0.0 0.02
min -0.47 0.0 -1.0
max 0.47 0.0 -0.88
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The next step was to visualize the distributions of all the chosen variables, it is presented in
figure 3.7. We opted for density plots, as they depict the tendencies in the data in a good
manner.

(a) Density for forces. (b) Density for coordinates.

(c) Density for velocities. (d) Density for forces and torques.

Figure 3.7: The result of density analysis for SCM data.

From 3.7 subplot we can see that there is a lot of change in some of the three forces compared
to others. Both in velocity and coordinate variables the x coordinate is spread out, but the
y coordinate has visible change also. The last subplot d is placed here to show why we
decided to opt out of working with torques, they are too similar to the forces for us to get
meaningful results. Keeping them in the training dataset may lead to overfitting.
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For further analysis of the relationships between variables, we decided to do a correlation
analysis of the remaining dataset. We present the results in figure 3.8.

Figure 3.8: Show of correlation plot for SCM data.

This allowed us to decide on the final set of features we will choose from this level of fidelity.
Those are: coordinate_x, coordinate_z, velocity_x, velocity_z, angular_velocity_y, gravity_x,
gravity_z.
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The next thing we should check is if, after the division of data, the distribution of the target
variable is the same in different sets. In our case, the similarity must be there. We have three
datasets: training, validation, and testing. We will check only for the distribution of training
and validation as the test dataset should be something that imitates new data, so it has to be
unseen. In figure 3.9 we can see that in fact, the densities are very similar, so it can point us
to the conclusion that the task is well formed. There is a slight difference in the two plots,
for example in the height of the peak, but it is negligible.

(a) Density for target variable in train and test sets.

Figure 3.9: The result of comparison of target variable density for SCM data.

In this case, it means that the model will operate on a similar dataset that it was trained on.
It is not always the case and not always the goal, but in our case, it is both.

The next step is to look for some dimension reduction. Firstly we tried t-SNE to see if there
is some hidden structure in the data. The results of 2d and 3d efforts can be seen in figure
3.10. We can see that there are no clear subgroups in the data that we were able to find out,
but some structure can be seen. Both of those attempts were done on 1000 iterations and
considered 40 nearest neighbors in the calculation of the loss function.
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(a) 2D t-SNE for SCM data. (b) 3D t-SNE for SCM data.

Figure 3.10: The result of t-SNE analysis on SCM data.

After consideration, we decided to try and reduce the amount of data that we give to the
model without reducing the amount of information, so the last step is to do a principal
component analysis on the dataset. In the previous step, we selected seven variables to
be the input of our models. Those variables are: coordinate_x, coordinate_z, velocity_x,
velocity_z, angular_velocity_y, gravity_x, gravity_z.

After running the algorithm on the training set without the target variables we get the fol-
lowing results, presented in figure 3.11.

Figure 3.11: Semilogy plot of variance explained by principal components in SCM data.

From a closer examination we can get that the percentage of explained variance in the data
is the following:

• 79,53% - if we take the first three principal components,

• 92,85% - if we take the first four principal components,
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• 99,32% - if we take the first five principal components.

This observation suggests that it has the sense to try working with principal components, as
we drastically change the size of the data, but we keep almost all of the information. We will
later try to work on the version with four components as it provides a reduction in size and
not much loss of information in contrast to three losing out a lot of variation and five not
reducing the size that much.
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3.5 Approach

In this section, we will discuss the reasoning and mathematical background behind all the
approaches that will be used to find the optimal kernels.

3.5.1 Halving the interpolation points

An interesting understanding of machine learning, which states that we can view the process
of learning as estimating an unknown function using data as interpolation points is shown in
[31]. A method in statistics called kriging assumes that we have to specify the kernel before
action. This approach showed a lot of promise and gives good results, but the problem is
to select the correct kernel for a given data. To tackle this problem our work looks for a
numerical solution to selecting a suitable kernel.

The goal of this research is to find a way for identifying a kernel that is a good fit for a given
dataset. To try and see if a testes kernel is relevant, we propose a method that halves the
number of interpolation points and compares the performance before and after that. If the
performance is similar in both cases then the kernel can be deemed effective.

This approach gives us a way for somewhat systematic testing of all the possible kernels to
find the best one for a problem. It can lead to saving time and computation power when we
compare it to a simple experiential method of checking each one on a full model. One more
important perk of this is that it can show us some properties and applications of certain
kernels.

For the process of determining if the kernel is valid in our case, we will use Gaussian process
regression. We will estimate the validity of the kernel by the performance of my Gaussian
process regression on datasets, using root mean squared error and mean absolute error.
Firstly we create and train based on the whole dataset, after that, we repeat the steps with
half the data, and both times we use the same kernel. Once we have both models, we test
their performances and compare if they are close. If they are, we deem the kernel valid.

Once we find a kernel that we think performs well on only half of the data we can assume
that it will do well on all the data. This process can be repeated with multiple kernels to
select a subset of those that are working well. After that, we can even create combinations
and test them further with the same approach. This way of working gives way to a lot of
possibilities that can speed up the process of creating a sufficient regression model.

The way we will be removing points is at random, to make it as general as possible.
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3.5.2 Comparing kernel evaluations of principal components to target function

We performed a principal component analysis in the exploratory data analysis. As men-
tioned before it worked as intended with a sufficient reduction of dimensions, because of
that we decided to use the resulting principal components in the following way. We take
each one, transform them with kernel function, and compare the results to the target vari-
able.

At the start of this method, we will select the principal components that explain a certain
portion of the variance in the dataset that we have agreed upon. We can determine the
appropriate number of principal components to use by looking at the scree plot or by setting
a threshold for the percentage of variance we want to explain. We decided to set it to a
threshold of 80%.

Using the technique explained above we will have selected the principal components. With
them, we will evaluate how they are transformed. One by one we will go through principal
components and transform them by using the kernel function K(x, 0), after that we compare
it to the target variable. We decided to use the root means squared error. This will be done
for all the kernels.

For available kernels in the package that we will be using testing will be done to find the
ones that fit the best. We will use different types of kernels. Using the simple comparison
to the target variable with the metric of root mean squared error between points, we will be
able to identify which kernels are performing well.

One more thing that we can do is that if for different principal components, different kernels
will be deemed the best, we can try to create combinations. This could be a simple mech-
anism for performance improvement. For example, if kernel A performs best for the first
principal component, and kernel B performs best for the second principal component, we
can try combining them using additivity to create a new kernel.

This approach will enable us to identify all of the best kernel functions, but also unveil some
information about the data that we have, that may have been unknown beforehand. We need
to remember that the task of choosing the correct kernel is not that straightforward and can
be hard for certain datasets. It means that a situation in which non of the basic kernels are
good may happen. In such a situation this method may not be that good.
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3.5.3 Greedy approach with information criteria

We decided to use an approach that is presented in [32]. It is based on the information
criterion, to be more precise on the Bayesian information criterion. We will be using this as
a determinant of how good a model is, so basically how goodly the kernel fits into the data.
This approach is concentrated on balancing the complexity of the model and its performance.
It means that we are punishing the model for being too complex in terms of a number of its
parameters. It will also help with the problem of overfitting and will enable a more robust
model. The resulting final model will then be both accurate and not too big, it may allow it
to capture the underlying relations and not adjust to the training set.

This approach is based on a tool of a criterion. This criterion takes into account the model
performance, but also looks at the complexity and the size of the training set, as factors that
if are bigger are not advisable. There is more than one criterion. We decided to use this one,
as we see it as the best solution here because the data is close to the assumptions made in
this method.

The BIC 3.3 is defined by equation:

BIC = 2ln(L) + kln(n), (3.3)

where:

• ln(L) - the natural logarithm of the maximum likelihood,

• k - the number of parameters in the model

• n - the number of data points.

The formula is composed of two things. The first one is the punishment for being off with the
predictions, the second one is the punishment for having too many parameters. Generally if
one goes up the second goes down and vice versa.

This criterion is punishing our model for having too many parameters in comparison to the
data, it is understandable as it may lead to overfitting. It also gives a nice measurable way
of comparing models based on something more than just performance, the true goodness
of a model with taking the dataset into account. We aim to minimize the criterion, as it
provides the balance between the performance and the model complexity while looking at
both things.

One of the reasons we decided to choose this criterion over for example the Akaike criterion
is the stronger punishment for the complexity. It results in the final model being potentially
simpler, so less training time, which can be good in our situation since we are looking for
the best kernel and not the best model.
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3.6 Implementation

3.6.1 Halving the interpolation points

This subsection of the thesis is dedicated to the implementation of the idea of halving the
training points and seeing if it diminishes the performance significantly or not. This ap-
proach is a generalization of an idea presented in an earlier-mentioned paper. We have
described the algorithmic approach behind it, now we can look at how this methodology
works in real-world scenarios.

The implementation is based on the sklearn.gaussian_process library and assistance of stan-
dard libraries like: numpy, pandas, and math [33, 34, 35, 36]. In algorithm 1 we can see a
pseudocode of our algorithm.

Algorithm 1 Algorithm based on halving training data.

Require: Checking if kernels are fitted to data X
Input: input features X ∈ Rn×m, target y ∈ Rn

Output: Information about which kernel is fit according to this method
1: kernels = list_of_all_kernels()
2: scores_full, scores_half = []
3: X_half, y_half = random_half(x), random_half(y) = []
4: for kernel in kernels do
5: gpr_full = create_and_fit_model(X, y, kernel)
6: gpr_half = create_and_fit_model(X, y, kernel)
7: add_scores(scores_full, scores_half)
8: end for
9: for i in range(length(kernels) do

10: if score_half[i].is_close(scores_full[i]) then
11: print(kernels[i] is within the 80% confidence interval)
12: else
13: print(kernels[i] is NOT within the 80% confidence interval)
14: end if
15: end for

We first create a list of all possible kernels from the package, that we will later use to iterate
over. After that, we create placeholders for the results. Then iterating over all the kernels we
fit the models with all the data and half the data. Testing and saving the results are done
later. Once we go through all the kernels we can test if the closeness of the result is there
and show which kernels are deemed suitable by this algorithm.
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3.6.2 Comparing kernel evaluations of principal components to target function

This subsection of the thesis is dedicated to the implementation of the comparison of the
principal components transformed by the kernel functions to the target variable to find a
better kernel. We have described the algorithmic approach behind it, now we can look at
how this methodology works in real-world scenarios.

We will have to implement our version of the kernel functions that are suitable for our
idea. After that, we will be able to search. In algorithm 2 we can see a pseudocode of our
algorithm.

Algorithm 2 Algorithm based on principal components compared to target.

Require: Looking for the kernels that best transform the PCs to target X
Input: input features X ∈ Rn×m, target y ∈ Rn

Output: results for each kernel and principal component
1: function_dict = create_dictionary(make_kernel_functions())
2: target_column = ’force_x’
3: results =
4: for function_name, function in function_dict.items() do
5: for column in X.columns do
6: if column != target_column then
7: answer = evalaute_kernel_function(column)
8: rmse = compare(answer, target)
9: results[(function_name, column)] = rmse

10: end if
11: end for
12: end for
13: results = transform(pd.DataFrame(results))
14: list_of_best_kernels = []
15: for column in results.columns do
16: best_kernel = where_min(results[column])
17: list_of_best_kernels.append(best_kernel)
18: end for
19: list_of_best_kernels = [kernel[1] for kernel in list_of_best_kernels]
20: return results, list_of_best_kernels
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3.6.3 Greedy approach with information criteria

This subsection of the thesis is dedicated to the practical implementation of the greedy
Bayesian Information Criterion search for the optimal kernel. In the previous sections, we
have discussed the theoretical foundations of this approach and its potential advantages in
the context of machine learning and data analysis. Now, it’s time to demonstrate how this
methodology can be put into practice in real-world scenarios.

To achieve this goal, we will delve into the technical details of the search process and pro-
vide a comprehensive overview of the implementation process. We will showcase the steps
involved in executing the algorithm, including the tools and technologies used. In algorithm
3 we can see a pseudocode of our algorithm.

Algorithm 3 Algorithm based on greedy information criteria search.

Require: Looking for the kernel with the best information criteria X
Input: input features X ∈ Rn×m, target y ∈ Rn

Output: model with the best kernel according to information criteria
1: kernels = list_of_all_kernels()
2: number_of_kernels = length(kernels)
3: gpr = create_and_fit_model(X, y, kernels)
4: bic = calculate_bic(gpr)
5: while TRUE do
6: bics = []
7: for i in range(number_of_kernels) do
8: new_kernels = kernels[:i] + kernels[i+1:]
9: new_kernel = sum(new_kernels)

10: gpr = create_and_fit_model(X, y, new_kernel)
11: bic = calculate_bic(gpr)
12: bics.append(bic)
13: end for
14: min_idx = where_minimum(bics)
15: if bics[min_idx] < bic then
16: kernels = kernels.remove(min_idx)
17: number_of_kernels -= 1
18: bic = bics[min_idx]
19: else
20: break
21: end if
22: end while
23: final_kernels = kernels
24: final_kernel = sum(final_kernels)
25: final_gpr = create_and_fit_model(X, y, final_kernel)
26: return final_gpr
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3.7 Experiments

3.7.1 Halving the interpolation points

In this section, we will look into the experiments done to test the halving of the training
dataset. The compared elements will be performed based on the root mean squared error,
mean absolute error, and time of training. We will compare the performance of three models:

1. Base model - model with a standard kernel and no hyperparameter tuning,

2. Found model - model with the kernel that has been found by our algorithm and no
hyperparameter tuning,

3. Final model - model with the kernel that has been found by our algorithm and tuned
hyperparameters.

Terramechanics for Real-time Application

As we remember from earlier the data was divided into three subsets: train, validation, and
test. The first one was used for training and searching purposes. The second one was used
for the hyperparameter tuning. The last one was used only once at the end to verify the
performance and calculate the statistics. Results are shown in table 3.3.

Table 3.3: Experiment result for halving train data approach for TerRA data.
RMSE MAE Training time [s]

Basic model 2.181 1.168 76.5
Found model 2.292e-04 1.736e-03 98.7
Final model 1.691e-05 7.281e-04 125.4

Soil Contact Model

In this case, the data was also divided into three subsets: train, validation, and test too. The
first one was used for training and searching purposes. The second one was used for the
hyperparameter tuning. The last one was used only once at the end to verify the performance
and calculate the statistics. Results are shown in table 3.4.

Table 3.4: Experiment result for halving train data approach for SCM data.
RMSE MAE Training time [s]

Basic model 47.63 24.46 172.1
Found model 1.846 1.196 215.8
Final model 1.491 1.037 279.5
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3.7.2 Comparing kernel evaluations of principal components to target function

In this section, we will look into the experiments done to test the comparison approach. We
will once more follow all the steps as in the last cases. We will also compare the performance
of the three models as before. Those three are:

1. Base model - model with a standard kernel and no hyperparameter tuning,

2. Found model - model with the kernel that has been found by our algorithm and no
hyperparameter tuning,

3. Final model - model with the kernel that has been found by our algorithm and tuned
hyperparameters.

Terramechanics for Real-time Application

The setup in terms of data division and the purpose of each set is the same as in section 3.7.1.
Results are shown in table 3.5.

Table 3.5: Experiment result for comparison approach for TerRA data.
RMSE MAE Training time [s]

Basic model 2.685 1.426 78.3
Found model 7.849e-04 5.901e-04 101.7
Final model 2.414e-05 1.8511e-05 121.9

Soil Contact Model

The setup in terms of data division and the purpose of each set is the same as in section 3.7.1.
Results are shown in table 3.6.

Table 3.6: Experiment result for comparison approach for SCM data.
RMSE MAE Training time [s]

Basic model 51.85 11.39 154.5
Found model 2.009 1.378 196.8
Final model 1.958 1.341 250.1
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3.7.3 Greedy approach with information criteria

In this section, we will look into the experiments done to test the greedy search algorithm
implementation. We will once more follow all the steps as in the last cases. We will also
compare the performance of the three models as before. Those three are:

1. Base model - model with a standard kernel and no hyperparameter tuning,

2. Found model - model with the kernel that has been found by our algorithm and no
hyperparameter tuning,

3. Final model - model with the kernel that has been found by our algorithm and tuned
hyperparameters.

Terramechanics for Real-time Application

The setup in terms of data division and the purpose of each set is the same as in section 3.7.1.
Results are shown in table 3.7.

Table 3.7: Experiment result for greedy search for TerRA data.
RMSE MAE Training time [s]

Basic model 3.124 1.614 154.5
Found model 1.203e-05 8.865e-05 196.8
Final model 1.101e-06 8.071e-06 250.1

Soil Contact Model

The setup in terms of data division and the purpose of each set is the same as in section 3.7.1.
Results are shown in table 3.8.

Table 3.8: Experiment result for greedy search for SCM data.
RMSE MAE Training time [s]

Basic model 42.13 25.03 185.9
Found model 1.256 1.069 231.5
Final model 0.972 0.841 286.1
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3.8 Comparison of the results

3.8.1 Explicit results of algorithms

In this section we will present what each algorithm returns, so it will be a final kernel.
The fact that the methods have different builds, sometimes it will be a single kernel, and
sometimes a kernel composed of a sum of basic kernels. This comparison will be divided
into the two datasets that we have, as those were two different sets of experiments.

Terramechanics for Real-time Application

In table 3.9 we can see the results given by all the methods. They are in the form of a
parameter that is given into the Python class and interpretation.

Table 3.9: Kernels found by the methods for the TerRA data.
Method Result Interpretation
Halving train data DotProduct() + WhiteKernel() Dot product kernel
Comparing PC’s DotProduct() + WhiteKernel() Dot product kernel
Greedy RBF() + DotProduct() + WhiteKernel() Dot product and RBF kernel

We can see that the two methods returned a kernel that is a dot product. We know that the
dot product kernel measures the similarity between the two input vectors by calculating their
dot product of them. The resulting value tells us how similar the two input vectors are to
each other. When we use the dot product kernel in Gaussian process regression, we end up
with the resulting covariance matrix as typically diagonal one, meaning that the correlation
between different input dimensions is not taken into account that much. This can make the
dot product kernel useful in cases of high-dimensional input spaces where the correlations
between dimensions are weak or not even there. Which is something we observed a little
in our 3.4. While it is a simple kernel that only models linear correlations between input
variables, it can be combined with other kernels to capture more complex relationships in
the data. It is something worth exploring more.

As we can see from table 3.9 the greedy search found a different solution than the other
two methods. The reason behind this is the fact that it is constructed in other ways than the
remaining two. The RBF kernel is often a very popular choice in Gaussian process regression
as it covers smooth and continuous functions. The combination of the two kernels means that
the resulting combination will allow our model to approximate functions that are smooth
and non-smooth with different levels of noise.
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Soil Contact Model

In table 3.10 we can see the results given by all the methods. They are in the form of a
parameter that is given into the Python class and interpretation.

Table 3.10: Kernels found by the methods for the SCM data.
Method Result Interpretation
Halving train data DotProduct() + WhiteKernel() Dot product kernel
Comparing PC’s Matern() + WhiteKernel() Metern kernel
Greedy Matern() + RBF() + WhiteKernel() Matern and RBF kernel

In this case, we can see that we have three different kernels found. As in the case of the last
time, the result of the greedy search is more complex than others. Once again we can see
that the result of one algorithm is the dot product. The interpretation of this is the same as
before.

A new interesting kernel that was found is the Matern kernel. It gives representation to
a big family of a lot of different functions that are defined by two parameters, those are
smoothness and length scale. The first one we manipulate if we want to play with the ability
to differentiate functions and the second one is responsible for what we call decay. We can
increase the smoothness of the function by increasing the first parameter. The second is for
the correlation between points, if it is big the correlation will not be. The Matern kernel is
generally a good choice for working with spatial data. We may say that it is close to the topic
that we are dealing with, so we should not be too surprised for it to come up in the search.

The RBF kernel, which is also often named the Gaussian kernel, is widely used in this field
for its smoothness and ability that it has to capture complex patterns. It assigns higher
similarity or in other words correlation to data points that are closer to each other and gets
lower exponentially as the distance increases just as in Gaussian distribution. On the one
hand this kernel is dependent on only a single length scale parameter, which determines
the rate of decay, similar to the Matern kernel. On the other hand, the Matern kernel,
as mentioned earlier, is a flexible kernel that can capture both smooth and non-smooth
variations in the data. It allows for differentiability of high or low orders based on the value
of the smoothness parameter. By combining the two kernels, we can use the smoothness
and flexibility of both functions at the same time. This new combination kernel can detect
complex patterns in the data while also allowing for adaptability to varying length scales.
The RBF component contributes its ability to model intricate local relationships, while the
Matern component adds the flexibility to capture broader variations and account for different
degrees of smoothness. The resulting RBF + Matern kernel provides a powerful tool for
analyzing data that exhibits both local and global structures. Its combination of smoothness,
adaptability, and flexibility allows it to effectively model a wider range of data.

52



3 Gaussian process models for wheel locomotion

3.8.2 Impact of train set size on performance

In this section, we will look at how the training sample size affects the performance of our
final models. It will help us in many ways understand the importance of data and show if
there is a possibility of using fewer data points and achieving the same results.

Terramechanics for Real-time Application

We can see in figure 3.12 that all three models achieved by all three methods are achieving
the maximal performance just from a training sample of size 20. It means that in the case
of this data, we do not need that much training data to get the best results achievable. The
score that is specified in those plots is what part of the performance can be recreated using
the given size of a training dataset.

(a) Plot for comparing PCs method. (b) Plot for halving training data method.

(c) Plot for greedy search method.

Figure 3.12: Plots of score vs. training data size for TerRA data.
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Soil Contact Model

In figure 3.13 we can see that the situation is different than in the case of the figure 3.12. As
little as 20 training samples are not enough to get the full performance of the models. It
varies from model to model, but non get to full score even with 100 training samples. The
score is the same thing as before.

(a) Plot for comparing PCs method. (b) Plot for halving training data method.

(c) Plot for greedy search method.

Figure 3.13: Plots of score vs. training data size for SCM data.

We know that the model obtained by the greedy search is the most complex one, it is backed
up by the fact that the score from the plot c in 3.13 is the lowest. We also observe that there
is no plateau as in the case of figure 3.12 and terra data. It proves that the more complex
data obtained from a more accurate model needs more computation power than a model to
be reasonably predicted.
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4 Conclusions

In this project, we have employed a wide range of techniques to enhance the performance of
our final model and, more importantly, to identify the most effective method for determining
the optimal kernel. Our approach involved several key components, including exploratory
data analysis (EDA), principal components analysis (PCA), Gaussian process regressions,
and more. Firstly, EDA enabled us to gain valuable insights into the dataset, uncovering
patterns, trends, and potential outliers. This process helped us understand the underlying
structure of the data, identify important variables, and make informed decisions during
model development. Helped us select the correct subset of features for each dataset.

Using principal components analysis to try and reduce the dimensionality of the data even
more or try more techniques than we did. Just like PCA worked and t-SNE did not, there
may be a technique that will work even better. This step may be useful in cases when we
decide we still have too many dimensions, but we suspect that some of them are irrelevant
to the target variable prediction, like it was with our data. In our case, it helped reduce the
number of dimensions by a lot. By reducing the dimensionality of the data we eliminated
irrelevant or redundant features and focused on the more informative ones. This can lead
to more efficient and accurate analysis, particularly in cases where the original dataset has a
high number of dimensions. It will also tackle the problem of the need for a lot of points to
fill a high-dimensional space.

We have compared the results of all three implemented methods in terms of root mean
squared error, mean absolute error, and training time. Based on that, we can make assump-
tions about which one of them worked the best. We tried to perform the experiments in a
manner that diminished the influence of randomness on the results. In terms of performance
the method that resulted in the lowest error both RMSE and MAE, was the greedy informa-
tion criterion search. In terms of training and searching time, all three methods had similar
results. The visible difference can be caused by the nature of the results of each algorithm,
as the greedy search returns a combination of kernels, that can be more than one kernel.
This flexibility provides an obvious advantage over the other methods. Despite similar train-
ing and searching times across all three methods, it has performance advantages over the
remaining methods. Another important observation is that the selection of a relevant kernel
is far more important than fitting the hyperparameters of a kernel. We can see that by com-
paring the difference in the results of all three models that were used in the experiments for
each method.
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4 Conclusions

Future work

Many steps can be done further in this work. Firstly in our opinion, the most important
step is to incorporate more data into the deliberations. It will allow for more testing of the
methods and seeing if they are resulting in relevant conclusions. Secondly maybe using
more data can result in improving the performance.

Another thing that can be done is to improve the existing methods in a manner of broadening
the search area. For this to be done new kernels would have to be implemented in the
sklearn.gaussian_process.kernels package or another package would have to be used. If the
answer to the shortage of kernels is a usage of another package, for example, GPy, then the
implementation would have to change but the algorithmic idea behind the methods can stay
the same.

One more thing that can be done is to widen the searched subspace of the greedy search
algorithm by allowing the exclusion of subsets of more than one at a time. In the present
version, the search starts from the full model and kernels are taken away, an option for
starting it from the null model can be implemented to have it checked both ways. One last
change that can be made is a change of the information criterion from Bayesian information
criterion to Akaike information criterion, it takes into account different parameters that may
be more important.
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