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Abstract

Kernel methods have been widely acknowledged for their effectiveness in capturing com-
plex nonlinear patterns and structures. However, the computational requirements asso-
ciated with the kernel matrix have hindered their practical applicability, particularly in
large-scale scenarios.

To overcome this limitation, this thesis introduces an approach that utilizes random fea-
tures to create a feature map. This feature map enables the transformation of training data
into a different feature space, facilitating the use of efficient linear learning algorithms
while preserving the nonlinear characteristics of traditional kernel methods. By adopting
this strategy, the thesis aims to address the computational challenges encountered in the
conventional kernel methods.

A detailed implementation strategy for constructing a feature map using random fea-
tures is presented. The thesis demonstrates the capability of random features by compar-
ing approximated kernel values to exact values. Simulated kernel ridge regression exper-
iments illustrate the reliability of the kernel approximation method, with empirical and
theoretical results supporting its effectiveness. However, the limitations of specific fea-
ture maps for diverse datasets are also discussed. In addition, a performance comparison
between approximated kernels and exact kernels shows the advantage of using the ap-
proximation approach. Overall, this thesis offers insights into the use of random features
to enhance the practicality and scalability of kernel methods.
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1. Introduction

Kernel methods have long been recognized for their capacity to capture complex nonlinear
patterns and structures. However, their practical utility has been constrained by the com-
putational demands associated with the kernel matrix. This thesis addresses this limitation
by proposing the use of random features to construct the feature map. By employing this
approach, it becomes possible to transform the training data into a different feature space
and leverage efficient linear learning algorithms while retaining the nonlinear properties
of the original kernel methods. This strategy offers a promising solution to the computa-
tional challenges faced by traditional kernel methods, enabling their effective application
in large-scale problems.

In chapter  2 , this thesis delves into the utilization of kernel methods in machine learning
algorithms, focusing on prominent techniques like Kernel Ridge Regression and Support
Vector Machines. The chapter provides a comprehensive overview of the kernel method
by illustrating its application through a specific example using Kernel Ridge Regression.
Additionally, it explores the use of kernels in various other renowned applications within
the field of machine learning. By presenting the versatility and effectiveness of kernel
methods, this chapter lays the foundation for the subsequent research and experimenta-
tion conducted in the thesis.

In chapter  3 , a detailed implementation strategy for constructing a feature map for ran-
dom features such as random Fourier features and random bin features is illustrated. Due
to the fact that sometimes an explicit expression of the probability distribution function be-
tween a random feature and the approximated kernel does not exist, a numerical scheme
for approximating the probability distribution of the parameters of the random features is
provided as well. After the critical steps for building a feature map are presented, this the-
sis demonstrates the ability of the random features by comparing the approximated kernel
values to the exact kernel values. Through simulated kernel ridge regression experiments,
it is presented that the kernel approximation method is reliable and capable of replacing
complex nonlinear learning algorithms with empirical and theoretical results. However,
the limitation of a specific feature map for learning various datasets is shown as well. In
addition, a performance comparison between random Fourier features approximated Ker-
nel Ridge Regression and exact Kernel Ridge Regression is presented to demonstrate the
efficiency of using random features.

Finally, in chapter  4 , a comprehensive summary of the results obtained in this thesis
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1. Introduction

is provided. The key findings and contributions of the research are highlighted, empha-
sizing the advancements made in utilizing random features to address the computational
challenges associated with kernel methods. Moreover, the conclusion chapter offers in-
sightful reflections on potential avenues for further improvement and development of the
presented techniques.
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2. State of the art method for approximation
of covariance kernel

In this chapter, we start by providing a comprehensive understanding of kernels and their
significance in the kernel method used in machine learning algorithms. The kernel method
allows us to capture nonlinear patterns and structures in the data by implicitly mapping
the input data to a higher-dimensional feature space. We explore the concept of positive
definite kernels and their role in defining the similarity between data points.

In Section  2.2 , we delve into the problem of scalability in kernel methods, specifically
the challenges associated with computing the kernel matrix or approximating the kernel
function. We present several methods to address these challenges, including the Nyström
method, which approximates the kernel matrix by sampling a subset of the training data.
We also discuss explicit approximation techniques, such as using Taylor series expansions
to approximate the kernel function directly.

One prominent approach for kernel approximation is the use of random features. We
provide a detailed explanation of this method, which involves generating random fea-
tures based on the Fourier transform of the kernel function. These random features enable
us to approximate the kernel function and transform the input data into a feature space
where linear algorithms can be applied. We also introduce an extended method called
the Leverage-score-based random Fourier feature, which improves the effectiveness of the
random feature selection.

In section  2.3 , we showcase the application of kernels in various machine learning al-
gorithms, with a focus on Kernel Ridge Regression and Support Vector Machines. We
demonstrate how these algorithms utilize the kernel method to capture complex relation-
ships and make accurate predictions. By using kernels, we can handle diverse data types
and exploit nonlinear structures in the data, enhancing the performance of the learning
algorithms.

2.1. Kernel

In machine learning algorithms, the prediction accuracy of the model relies heavily on the
similarity between the input data points. To quantify this similarity, a kernel or covariance
function is utilized to express the statistical relationship between two inputs. Since the
kernel function is symmetric and positive definite, it satisfies the requirements of Mercer’s
theorem. By employing such kernel function, we can effectively and efficiently compute
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2. State of the art method for approximation of covariance kernel

the similarity of inputs, even after transforming them into a higher-dimensional space.
This circumvents the need to project the data points to a higher-dimensional space and
evaluate dot products, which can be computationally expensive. This technique, known
as the kernel method or kernel trick, is widely used in machine learning algorithms. In
this section, we will provide an in-depth explanation of the kernel method with a ridge
regression problem and introduce several commonly used kernels.

2.1.1. Definition of covariance kernel

Let X be any space. A symmetric function k : X × X → R is called a kernel function if
∀n ≥ 1, x1, x2, . . . , xn ∈ X and c1, . . . , cn ∈ R we have

n∑
i,j=1

cicjk(xi, xj) ≥ 0. (2.1)

Given a set of points x1, . . . , xn ∈ X , we define the corresponding kernel matrix as the
Gram matrix K with entries kij = k(xi, xj). The condition above is equivalent to saying
that c′Kc ≥ 0 for all c ∈ Rn [ 14 ].

2.1.2. Kernel method

To demonstrate the kernel method and show its advantage, we illustrate it with a Kernel
Ridge Regression problem [  21 ,  5 ]. In a ridge regression problem, we are provided with
a set of data (xi, yi)

n
i=1, where xi represents the input data points and yi denotes the cor-

responding targets. The task is to find a linear function y that models the relationship
between xi and yi. The model is given by

y = wTx, (2.2)

where x,w ∈ Rd and y ∈ R. A simple way to find the function is to minimize the squared
error loss,

L(w) =
1

2

n∑
i=1

(yi − wTxi)
2 +

1

2
λ∥w∥2, (2.3)

where λ is the regularization parameter to prevent overfitting and is commonly chosen by
using the cross-validation algorithm. After taking the derivatives and equating them to
zeros gives, ∑

i

(yi − wTxi)xi = λw (2.4)

⇒ w = (
∑
i

xix
T
i + λI)−1(

∑
j

yjxj), (2.5)
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2.1. Kernel

this can be shown in matrix form as,

⇒ w = (XTX + λI)−1XTY, (2.6)

and if we replace the x with the feature map ϕ(x) ∈ Rm and change the linear model to,

y = wTϕ(x), (2.7)

the derived weights become,

w = (Φ(x)TΦ(x) + λI)−1Φ(x)TY. (2.8)

Computing the term Φ(x)TΦ(x) can be computationally expensive, especially when the
dimensionality of the feature space is large. To avoid this computational burden, we can
derive a new format for the loss function that generates the repetitive term Φ(x)Φ(x)T .
This term is commonly referred to as the Gram Matrix or Kernel Matrix and is obtained by
substituting Φ(x) for x at the beginning. As a result, the new derivation gives,

w = Φ(x)T (Φ(x)Φ(x)T + λI)−1Y (2.9)

= Φ(x)T (K + λI)−1Y. (2.10)

Since the Φ(x)Φ(x)T is symmetric and positive-definite, based on Mercer’s Theorem, it can
be expressed as follows,

k(x, y) = ⟨ϕ(x), ϕ(y)⟩. (2.11)

Thus, K can be computed using the original data points without transforming them to the
feature space or having knowledge of the feature map ϕ(x). This is possible because the
Gram Matrix is computed solely based on the inner products of the data points, which can
be efficiently calculated using the kernel function.

By formula  2.7 , we can now make prediction using,

y = Y T ((ΦΦT + λI)−1)TΦϕ(x) (2.12)

= Y T ((ΦΦT + λI)−1)Tkx, (2.13)

where kx = Φϕ(x).

2.1.3. Examples of kernels

In addition to the theoretical introduction of kernels and their application in the kernel
method, it is important to discuss some common kernels that are frequently used in ma-
chine learning algorithms. They have been studied extensively and have been shown to
perform well in various applications. Some of the standard kernels include the Gaussian,
polynomial, Laplacian, and spline kernels [ 9 ].
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2. State of the art method for approximation of covariance kernel

Polynomial kernels

The polynomial kernel is defined as the dot product of two data points raised to a certain
power. A homogeneous polynomial kernel k (x, x′) = ⟨x, x′⟩p is positive definite ∀p ∈ N
and x, x′ ∈ Rd. An inhomogeneous polynomial kernel is

k
(
x, x′

)
= (⟨x, x′⟩+ c)p, (2.14)

where p ∈ N and c ≥ 0.

Gaussian kernels

It is one of the Radial basis functions(RBF). An RBF is a real-value function whose value
depends on the distance between the two inputs. One input is usually a fixed point called
the center. Define

ϕc(x) = ϕ(∥x− c∥), (2.15)

where x ∈ Rn is a data point and c ∈ Rn is the center.
The Gaussian kernel is a popular choice and is defined as the exponential of the negative

squared Euclidean distance between two data points. It is sometimes called ”Exponential
Quadratic”. Since the Gaussian kernel has nice properties such as it can be integrated
against most functions, it becomes the default kernel for Gaussian Process and Support
Vector Machine [ 7 ]. It is given by

k(x, x′) = σ2e−γ∥(x−x′)∥22 , (2.16)

where x, x′ ∈ Rn are data points, γ = 1/2l2 is lengthscale, and σ2 is output variance which
is a scale factor every kernel has in front.

Laplacian kernels

The difference between Laplacian kernels and Gaussian kernels is that instead of using the
square of 2-norm for calculating the distance, it uses 1-norm. It has the form,

k(x, x′) = σ2e−γ∥(x−x′)∥1 . (2.17)

2.2. Approximation of covariance kernels

Kernel methods are widely recognized for their ability to learn nonlinear structures, but
their practical utility can be limited by scalability issues in large-scale problems due to the
high time and space complexities involved. Kernel machines such as Kernel Ridge Re-
gression (KRR) and Support Vector Machines (SVMs) offer the attractive feature of being
able to approximate any function or decision boundary arbitrarily well given sufficient
training data. However, methods that operate on the kernel matrix (Gram matrix) of the
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2.2. Approximation of covariance kernels

data are known to scale poorly with the size of the training dataset. For example, KRR
requires a training time of O(n3) and space complexity of O(n2) to store the kernel matrix.
These computational demands can render the approach computationally infeasible, par-
ticularly when dealing with large n. In addition, training a nonlinear SVM on a dataset
with half a million training examples can be a time-consuming process, even on powerful
workstations, often taking several days to complete.

To tackle the scalability issue, a series of kernel approximation algorithms have been de-
veloped in the past years. One way is designed to approximate the kernel matrix while an-
other way aims to approximate the kernel function directly. Methods designed to approxi-
mate the kernel matrix includes greedy basis selection techniques [  19 ], divide-and-conquer
approaches [ 10 ], and Nyström methods [ 22 ]. These methods provide a data-dependent
vector representation of the kernel. Another way that approximates the kernel function
directly includes random features [  16 ] for kernel approximation and explicit approxima-
tion with Taylor series [ 6 ]. In particular, the random features method has a widespread
impact on kernel approximation.

To reduce the poor scalability of kernel methods, methods approximating the kernel
function directly take advantage of the fast linear models by constructing explicit map-
ping. The linear models can be learned after transforming the training data into a relatively
low-dimensional randomized feature space. This reduces the time and memory required
while maintaining the power of using the nonlinear kernel method.

In this section methods for kernel approximation are presented. Nyström Method which
is one of the popular methods that approximate the kernel matrix is first introduced. It is a
data-dependent approach by randomly sampling the training data. Methods that approx-
imate the kernel functions directly such as Explicit approximation with Taylor series are
also presented. In subsection  2.2.2 , a detailed explanation of random features for kernel
approximation is given and followed by a more sophisticated approach called leverage
scored-based sampling in subsection  2.2.3 .

2.2.1. Kernel approximation methods

Introduction to Nyström Method

The Nyström method is a commonly used technique for approximating kernels with low
rank. By subsampling the data on which the kernel is evaluated, an approximation to the
eigendecomposition of the Gram matrix can be obtained. This is accomplished by per-
forming an eigendecomposition on a smaller system of size m < n, and expanding the
results back up to n dimensions [ 22 ].

One benefit of the Nyström method is that it only requires computing and storing an
m× n portion of the Gram matrix, rather than the whole matrix. For large-scale problems,
good performance can be achieved by using values of only a few hundred. As n grows
larger, the ratio m/n can be made even smaller. In addition, kernels with rapidly decay-
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2. State of the art method for approximation of covariance kernel

ing eigenvalues, such as the Gaussian kernel, are expected to yield particularly accurate
approximations.

Introduction to Explicit approximations with Taylor series

Monomial features are obtained by taking a low-order Taylor expansion of the exponen-
tial, which results in features that are scaled monomials in the coordinates of the input
vectors. The quality of this approximation is evaluated based on its computational cost
and is particularly effective for sparse datasets with a moderate number of non-zero di-
mensions per data point, instead of evaluating the approximation quality by the number
of features. This method can be utilized wherever l2 regularization is used [ 6 ].

2.2.2. Random features for kernel approximation

Different from explicit approximations with Taylor series, which selects scaled monomials
as features, Rahimi and Recht [  16 ] propose to approximate the target function by randomly
selecting finite nonlinear basis functions as features. Here we define the estimator first
and then construct the fitting problem with the defined estimator. Consider an estimator
approximated by the random features

f̂ =
K∑
i=1

ciϕ(x;wi), (2.18)

where ϕ(x;w) : X ×Ω → R is the nonlinear basis function, w ∈ Ω are the parameters of the
basis functions, K is the number of the randomly selected features, and c : C → R are the
weights of the estimator.

Given a training data set of N pairs of input and target {xi, yi}i=1...N which are sampled
from a target distribution P (x, y) with xi ∈ X and yi ∈ R. Consider finding an estimator
f : X → R to capture the relationship between inputs and targets given by P , the problem
becomes minimize the empirical risk

R[f ] ≡ 1

N

N∑
i=1

l(yi, f(xi)), (2.19)

where l is a loss function that represents the deviation between the estimated results
and targets. In Linear Regression, l is the quadratic loss (yi − f(xi))

2, in Support Vector
Machines, l is the hinge loss, max(0, 1 − yif(xi)), and in Adaboost, it is the exponential
loss e−yif(xi).

Substitute estimator ( 2.18 ) into the empirical risk ( 2.19 ) we get

argmin
wi∈Ω,ci∈C

R

[
K∑
i=1

ciϕ(x;wi)

]
. (2.20)
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2.2. Approximation of covariance kernels

There are two approaches to minimizing the empirical risk, one is first randomly se-
lect the parameter w and optimize over c, and another way is jointly optimizing w and c.
Here we present the algorithm [ 18 ] which first draws w from a distribution p(w) and then
optimizes c with fixed w using a convex optimization.

Algorithm 1 The Weighted Sum of Random Kitchen Sinks fitting procedure
Input: Given a data set of N points {xi, yi}i=1...N , an integer K, a scalar C, and a bounded
feature function |ϕ(x;w)| ≤ 1 with probability distribution p(w) on the parameters of ϕ.
Output: An estimator f̂(x) =

∑K
j=1 cjϕ(x;wj).

1. Draw w1, . . . , wK iid from p(w).

2. Mapping the input data points to the feature space: zi = [ϕ(xi, w1), . . . , ϕ(xi, wK)]T .

3. With w fixed, solve the empirical risk minimization problem

argmin
c∈RK

1

N

N∑
i=1

l(yi, c
T zi), (2.21)

s.t. ∥c∥∞ ≤ C/K. (2.22)

To state that Algorithm  1 has a high probability to return a function, which has a true
risk R [f ] near the lowest true risk achievable by an infinite-dimensional class of functions
in set Fp, a theorem [ 18 ] is provided below. Here the true risk of a function means the ex-
pected loss on the unseen test data set generated from the same distribution as the training
data set.

Theorem 2.1. Define the set

Fp ≡

{
f(x) =

∫
Ω
c(w)ϕ(x;w)dw

∣∣∣∣∣|c(w)| ≤ Cp(w)|

}
, (2.23)

where p(w) is a distribution on Ω, and ϕ satisfies supx,w|ϕ(x;w)| ≤ 1.
Suppose c(y, f(x)) = c(yf(x)), with c(yf(x)) L-Lipschitz. Then for any δ > 0, if the training
data {xi, yi}i=1...N are drawn iid from some distribution P, Algorithm  1 returns a function f̂ that
satisfies

R
[
f̂
]
− argmin

f∈Fp

R [f ] ≤ O

((
1√
N

+
1√
K

)
LC

√
log

1

δ

)
(2.24)

with probability at least 1−2δ over the training data set and the choice of the parameters w1, . . . , wK .

The set Fp consists of functions whose weights c(w) decay faster than p(w), which can
be illustrated with ϕ(x;w) as sinusoids features and the Fourier transform of the functions
decay faster than Cp(w).
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2. State of the art method for approximation of covariance kernel

A more theoretical analysis for the guarantees of finding a nonlinear function f̂ is con-
ducted by using techniques from probability on Banach Spaces [ 17 ]. It provides two theo-
rems of L2 and L∞ error bounds respectively for approximating functions in Reproducing
Kernel Hilbert Spaces.

The theorems define a new set of mixture of ϕ with finite ∥ · ∥p norm

F(X,Θ, ϕ, p) ≡

{
f(x) =

∫
Θ
c(θ)ϕ(x; θ)dθ

∣∣∣∣∣∥f∥p < ∞

}
, (2.25)

where X ⊂ Rd, Θ = Rd × [−π, π], ϕ(x; θ) = cos(w′x+ b), θ = (w, b), p is a fixed probability
distribution on Θ, and ∥f∥p := supθ

∣∣ c(θ)
p(θ)

∣∣.
By assuming throughout that |ϕ(x; θ)| ≤ 1 for all x and θ, the two theorems show that a

given f ∈ F can be approximated to resolution O(∥f∥p/
√
K) by a function

f̂(x) =

K∑
i=1

ciϕ(x; θi) := zx(θ)
T c, (2.26)

where θ1, . . . , θK are sampled iid from p(θ). It is different from equation  2.18 with a shift
parameter b.

Up until this point, we have covered the fitting process for obtaining the estimator as
well as the theoretical guarantees associated with it. In order to construct the randomized
feature map zi outlined in Algorithm  1 , three distinct feature functions, random Fourier,
random bin, and random stump denoted as ϕ are introduced [ 16 ,  17 ]. These feature func-
tions play a crucial role in the construction of the randomized feature map and contribute
to the overall performance of the linear learning algorithms.

Among the three features discussed, random Fourier features have gained significant
popularity due to their ability to find a suitable probability distribution by leveraging the
Fourier transform of the approximated kernel. This concept has served as a foundation for
numerous research endeavors in kernel approximation. The survey paper [ 12 ] primarily
centers on random Fourier features and classifies kernel approximation algorithms into
two main categories: data-independent algorithms and data-dependent algorithms. The
classification is based on whether the selection of feature parameters θ is independent of
the training data.

On the one hand, in the data-independent algorithm category, different sampling strate-
gies are employed, including Monte Carlo sampling, Quasi-Monte Carlo sampling, and
Quadrature-based methods. On the other hand, data-dependent algorithms utilize in-
formation from the training data to guide the selection of feature parameters, aiming to
enhance the quality of approximation and potentially improve the generalization perfor-
mance of learning algorithms based on these features. This category can be further subdi-
vided into three classes: Leverage score sampling, Re-weighted random feature selection,
and Kernel learning by random features. In this thesis, particular emphasis is placed on
the leverage score sampling method, and a comprehensive theoretical background of this
approach will be presented in the subsequent subsection.
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2.2. Approximation of covariance kernels

2.2.3. Leverage score-based sampling of random features

In addition to sampling parameters from the plain RFF sampling scheme with the prob-
ability distribution function p(θ), another approach is to sample the parameters from an
importance-weighted probability distribution function q(θ). This is known as the weighted
RFF sampling scheme.

f̂q(x) =
K∑
i=1

αiϕq(x; θi) := zq,x(θ)
Tα, (2.27)

which is similar to Equation  2.26 , except that the feature vectors are sampled from q(θ) in-
stead of p(θ). Specifically, ϕq(x; θi) =

√
p(θi)/q(θi)ϕ(x; θi) and zq,x(θ) = [ϕq(x; θ1), . . . , ϕq(x; θK)]T .

Therefore, a kernel matrix K ∈ Rn×n can be approximated by

Kq = ZqZ
T
q , (2.28)

where Zq ∈ Rn×K with zq,x(θ)
T as its rows.

In contrast to the plain RFF sampling scheme, which primarily aims to approximate the
leading eigenvalues of the kernel matrix, sampling from a weighted distribution like q(θ)
is designed to generate Fourier features that cover the entire eigenspectrum of K.

The objective is to ensure that the weighted RFFs capture a broader range of eigenvalues,
rather than focusing solely on the dominant ones. This can be beneficial in applications
where a more comprehensive representation of the kernel matrix is desired, allowing for
a richer approximation of the kernel function. By sampling from a weighted distribution
that spans the eigenspectrum, the weighted RFFs provide a more balanced and diverse
set of features, leading to improved approximation capabilities across the entire range of
eigenvalues.

In order to create an importance-weighted probability distribution q(θ) for random Fourier
features, the concept of leverage scores, originally introduced for landmark selection in the
Nyström method is utilized. The leverage score function of the integral operator given by
the kernel function and the data distribution, as proposed by Bach and Jordan [ 2 ], provides
a measure of the contribution of each data point to the kernel matrix. Building upon this
notion, Avron and Toledo [ 1 ] developed the ridge leverage score function based on relat-
ing the sampling density to an appropriately defined ridge leverage function with respect
to a fixed input data set. The definition of the ridge leverage function is given by

lλ(θ) = p(θ)zθ(x)
T (K + nλI)−1 zθ(x), (2.29)

where zθj (x) is the j-th column of Z ∈ Rn×s with zp,x(θ)
T as its rows and λ is the regular-

ization parameter.
A notable characteristic of the function lλ(θ) is its correlation with the effective number

of parameters,

dλK :=

∫
Θ
lλ(θ)dθ = Tr

[
K (K + nλI)−1

]
, (2.30)
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2. State of the art method for approximation of covariance kernel

where dλK is recognized as a factor in determining the effective number of independent
parameters in a learning problem.

With the above notations, the weighted probability distribution q(θ) in [ 1 ] is given by

q(θ) = lλ(θ)/d
λ
K . (2.31)

The leverage-scored sampling scheme has primarily focused on providing a faster al-
gorithm to approximate the kernel matrix, as Equation  2.29 involves the inversion of an
n× n kernel matrix. This scheme offers the advantage of requiring fewer Fourier features
while still providing theoretical guarantees. It has been shown to converge for learning
risk rates in various algorithms, including kernel ridge regression, kernel support vector
machines, and kernel logistic regression. In the study conducted by [ 11 ], a fast algorithm is
proposed that only requires the inversion of a smaller s×s kernel matrix, enabling efficient
generation of samples from the approximated leverage distribution.

A later approach, known as Surrogate Leverage Score-RFF, introduces a surrogate lever-
age function that avoids the need for matrix inversion altogether [ 13 ]. This technique
further enhances the efficiency of leverage-scored sampling in approximating the kernel
matrix.

2.3. Applications in machine learning

Kernel methods are widely utilized in various machine learning algorithms to capture the
nonlinear characteristics of data in higher-dimensional spaces. While several algorithms
make use of the kernel method, this section specifically highlights Kernel Ridge Regression
(KRR) and Support Vector Machines (SVM) due to their prominence in leveraging kernel
methods. However, it is important to note that other popular algorithms, such as Ker-
nel Principal Component Analysis (PCA), Kernel Canonical Correlation Analysis (CCA),
Kernel K-means, and Gaussian Process, also heavily rely on the kernel method for their ef-
fective operation. These algorithms demonstrate the versatility and effectiveness of kernel
methods in various domains and provide powerful tools for capturing complex patterns
and structures in data.

2.3.1. Kernel ridge regression

In this section, we give an overview of Kernel Ridge Regression since in section  2.1.2 we
have demonstrated the kernel methods by using it as an example.

KRR is a popular regression algorithm that extends linear ridge regression to nonlinear
problems using kernel methods. It combines the principles of ridge regression with the
ability of kernel methods to capture complex relationships in the data. In traditional ridge
regression, the goal is to find a linear function that minimizes the sum of squared errors
between the predicted values and the actual values. However, in KRR, nonlinear map-
ping is applied to transform the original data into a high-dimensional feature space. This
transformation allows for the use of a wider range of functions to model the data.
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2.3. Applications in machine learning

The key idea behind KRR is to introduce a kernel function that computes the similarity
between pairs of data points in the feature space. This kernel function implicitly maps the
data into a higher-dimensional space, where linear regression can be performed efficiently.
By incorporating the kernel function into the regression framework, KRR is able to capture
nonlinear relationships between the input variables and the target variable.

To prevent overfitting and ensure robustness, KRR introduces a regularization term that
controls the complexity of the model. This regularization term, similar to ridge regres-
sion, helps to balance the trade-off between fitting the training data well and maintaining
generalization performance on unseen data.

KRR offers several advantages, including its flexibility in capturing nonlinear patterns,
its ability to handle high-dimensional feature spaces, and its effectiveness in dealing with
small and noisy datasets. It has been successfully applied in various domains, including
finance, bioinformatics, and image processing, where complex relationships and nonlin-
earity are common.

2.3.2. Support vector machines

Support Vector Machines (SVM) are widely recognized as one of the most prominent ap-
plications of kernel methods. By leveraging the kernel method, SVM extends traditional
linear classification to non-linear classification tasks. It is highly effective for both classi-
fication and regression problems. In Figure  2.1 , we visualize a linearly separable dataset
in a 2D space, there are numerous lines that can accurately separate the data. However,
SVM selects the line with the maximum distance to the nearest data point, aiming to find
the optimal decision boundary. The intuition behind this approach is that by maximizing
the margin, which stands for the distance between the decision boundary and the nearest
data point, SVM enhances its ability to make accurate predictions. In higher-dimensional
spaces, the decision boundaries in SVM are known as hyperplanes. These hyperplanes
are defined by a set of points, called support vectors, which are the data points closest
to the decision boundaries. The support vectors play a crucial role in SVM because they
determine the location and orientation of the hyperplanes.

Consider a training set with two classes composed of N input-output pairs (xi, yi)
N
i=1,

where xi represents the input data points and yi ∈ {−1, 1} denotes the corresponding
labels [ 3 ]. The task is to find a hyperplane y that is able to separate xi into the correct label.
The decision function is given by

y = sgn (⟨w, x⟩+ b) , (2.32)

where w and b is the parameter of the hyperplane, and by calculating the value, (⟨w, x⟩+ b),
we can decide the label of the input x based on whether the value is negative or positive.
We define the margin on either side of the hyperplane to satisfy ⟨w, x⟩ + b = ±1, and we
can derive the margin between two classes is at least 2

∥w∥ .
To have the correct condition of classification by having a hyperplane with the largest

margin, the following constraints need to be added to make the data points on the correct
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2. State of the art method for approximation of covariance kernel

(a) All hyperplanes that are able to separate the
data. (b) The hyperplane with the largest margin.

Figure 2.1.: This figure was generated by the gene data of ZYX and MARCKSL1 for illus-
trating the concept of hyperplanes [ 15 ] .

side and outside of the margin. Thus, searching for the optimal hyperplane turns out to be
an optimization problem of the following form:

argmin
w,b

1

2
∥w∥2, (2.33)

subject to
yi (⟨w, xi⟩+ b) ≥ 1, (2.34)

which is referred to as the primal problem. To solve an optimization problem with in-
equality constraints, the Lagrange method is adopted, and the new problem formulation
is given by

argmax
α

(
argmin

w,b
L(w, b, α)

)
, (2.35)

where

L(w, b, α) ≡ 1

2
∥w∥2 −

N∑
i=1

αi (yi (⟨w, xi⟩+ b)− 1) , (2.36)

with αi ≥ 0. In the formulation, we have N Lagrange multipliers for each inequality
constraint. In the end, solving the dual optimization problem by plugging the result of the
partial derivative of Equation  2.36 with respect to w and b back to itself, we can have the
decision function as

f(x) = sgn

(
N∑
i=1

αiyi ⟨x, xi⟩+ b

)
. (2.37)
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The value of αi can be interpreted as that data points with αi > 0 are the support vectors
and data points with αi = 0 are ignored by the hyperplane. We can further replace the dot
product with a kernel to find a nonlinear hyperplane or use the feature map discussed in
this thesis to transform the data points to other features space and then apply this linear
SVM. The decision function with a covariance kernel is given by

f(x) = sgn

(
N∑
i=1

αiyik(x, xi) + b

)
. (2.38)
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3. Efficient approximation of random basis
functions for covariance kernels

In this chapter, we begin by establishing the quantitative metrics that will be utilized in
our experiments. To provide clarity regarding the implementation of these experiments,
we present a detailed description of the crucial steps involved in constructing specific
feature maps for each random feature in section  3.2 . In order to showcase the ability of
random features to approximate the corresponding feature maps, in section  3.3 , we com-
pare the kernel values computed using the constructed feature maps with the exact kernel
values. Moreover, we employ the feature maps in linear ridge regression to validate the
convergence of the excess risk. Simultaneously, depending on the required accuracy of
each learning task, we demonstrate that the kernel approximation method is reliable and
capable of replacing complex nonlinear learning algorithms with empirical and theoretical
results.

3.1. Definition of performance and efficiency measurements for
feature mapping

3.1.1. Root-Mean-Square-Error

In section  3.3 , the primary objective of this thesis is to generate a precise approximation of
a kernel value using a feature map ϕ(x). However, the effectiveness of these algorithms
can only be evaluated if we can assess the error between the exact kernel and its approx-
imation. In general, various types of errors are employed to measure this discrepancy. In
this chapter, we specifically consider the following error metric:

RMSE =

√√√√∑(
k(x, y)− k̂(x, y)

)2
N

. (3.1)

The exact kernel value is represented as k(x, y), while its approximation is denoted as
k̂(x, y) = ⟨ϕ(x), ϕ(y)⟩.

The absolute error measure alone may be challenging to interpret without considering
the scale of the data. To address this, the evaluations described in section  3.3 are using a
normalized form of error as well. This normalized error is obtained by dividing the error
from equation  3.1 by the mean of the exact kernel values k̄. By employing the normalized
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3. Efficient approximation of random basis functions for covariance kernels

error, we can better understand the error in relation to the scale of data. The complete
expression for the normalized error is provided below:

Normalized RMSE =
RMSE

k̄
. (3.2)

These error metrics allow us to quantify the dissimilarity between the exact kernel value
and its approximation, enabling us to assess the accuracy and fidelity of the proposed
methods.

3.1.2. Coefficient of determination

In section  3.3.3 , the Coefficient of determination R2 is used as a metric to evaluate how well
the model is trained with the data. The R2 score provides a measure of the proportion of
the variance in the dependent variable that is predictable from the independent variables.
It indicates the goodness of fit of the model and represents the percentage of the response
variable’s variance that is explained by the predictor variables. By calculating the R2 score,
we can gauge how well the model predicts the observed data. It provides valuable infor-
mation about the model’s ability to capture the underlying relationships and patterns in
the data. The R2 score ranges from 0 to 1, where a score of 0 indicates that the model can-
not predict the response variable, a score between 0 and 1 suggests partial predictability
and a score of 1 signifies a perfect prediction. It is given by

R2 = 1− RSS

TSS
(3.3)

= 1−
∑

i(yi − fi)
2∑

i(yi − ȳ)2
, (3.4)

where RSS is the residual sum of squares, TSS is the total sum of squares, yi is the ground
truth of observed data, fi is prediction, and ȳ denotes the mean of the ground truth values.

Compared to other metrics like Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE), the R2 score offers additional insights by expressing the prediction per-
formance as a percentage. This makes it more interpretable and facilitates comparisons
between different models.

3.2. Approximation of covariance kernels with random features

In this section, we delve into the implementation details of the approximation process.
Specifically, we showcase the methodology for approximating various kernels through the
utilization of random Fourier features and bin features. To accomplish this, we define
the features and their corresponding parameters. Subsequently, following Algorithm  1 , it
becomes necessary to establish an appropriate probability distribution, denoted as p(θ), to
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facilitate the random sampling of a specific number of features for constructing the feature
map z.

The determination of the probability distribution can vary depending on the specific
features employed. One approach involves obtaining an explicit solution for p(θ) by solv-
ing the predefined relationship between the kernel and the features. This allows for direct
characterization of the probability distribution, ensuring its suitability for the random fea-
ture selection process. Thus, the kernel can be approximated by

k(δ) =

∫
Θ
p(θ)ϕ(δ; θ)dθ, (3.5)

where δ = x− y and θ ∈ Θ is the parameter of the nonlinear feature function ϕ.
The second approach involves calculating the convolution of the target kernel and the

selected features. This can be achieved by either finding an explicit solution or resorting to
numerical integration methods if an explicit solution is not available. As an example, this
section introduces Gaussian quadrature, a numerical integration technique, and provides
its implementation details.

Upon obtaining the feature map, the next step involves transforming the original data
points into the feature space. This transformation enables various applications, such as
approximating the desired kernel or utilizing the transformed features for linear learning
algorithms.

3.2.1. Probability distribution of random feature parameters

The probability distribution p(θ) for random Fourier features and bin features has been
explicitly derived in previous research. However, for features without a theoretical deriva-
tion, we can approximate the distribution by convolving the desired kernel with the fea-
tures.

When it comes to generating parameters from a normal or uniform distribution, we can
readily utilize the available scientific packages in Python. However, generating parame-
ters from an arbitrary distribution poses more challenges. Initially, we need to construct
a histogram of the distribution, which is straightforward for distributions with explicit
expressions. In cases where an explicit form is unavailable, the histogram must be gen-
erated using numerical methods. It’s important to note that the quality of the numerical
approximation can significantly impact the resulting histogram and subsequent usage.

Finally, the generated histogram can serve as input for creating a continuous distribution
using a SciPy module specifically designed for creating univariate distributions [ 20 ]. This
allows us to work with the desired distribution for further computations and analyses.

Random Fourier features

This feature first projects the data point to a randomly chosen line drawn from p(w) and
then passes the result scalar from the inner product to a sinusoid after plus an offset to it.
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3. Efficient approximation of random basis functions for covariance kernels

With Bochner’s theorem, if the approximated kernel is properly scaled, its Fourier trans-
form is a proper probability distribution. Then, we can use its Fourier transform as the
distribution p(w) and define [ 16 ]

k(x− y) =

∫
Rd

p(w)ejw
′(x−y)dw = Ew [ζw(x)ζw(y)

∗] , (3.6)

where ζw(x)ζw(y)
∗ is an unbiased estimate of k(x− y) when w is drawn from p.

Since both the kernel value k(∆) and the probability distribution p(w) are real values,
ejw

′∆ can be replaced with cos(w′∆). To give a real-valued mapping, the unbiased estimate
can be defined as either ϕw(x) = [cos(w′x) sin(w′x)]′ since ϕw(x)

′ϕw(y) = cos(w′∆) or
ϕw(x) =

√
2cos(w′x+ b), where b is drawn uniformly from [0, 2π].

Random bin features

The underlying concept of the algorithm involves repeatedly dividing the input space us-
ing a randomly shifted grid, with a resolution that is randomly selected. Each point in the
input space, denoted as x, is then encoded as a binary indicator ϕ(x) over the bins [ 16 ].

In the context of a one-dimensional kernel, the approach involves partitioning the real
number line using a grid with a randomly drawn pitch δ as the grid resolution. The grid
is also randomly shifted by an amount u within the range of [0, δ]. As a result, the real line
is divided into intervals such as [u+ nδ, u+ (n+ 1) δ] for all integers n.

For each data point, we can determine the bin it falls into by calculating the bin number
using x̂ =

⌈
x−u
δ

⌉
. This leads to the definition of a hat kernel k̂(x, y; δ) = max

(
0, 1− |x−y|

δ

)
,

which represents the likelihood of two data points falling within the same bin. It is defined
as follows:

Pru = [x̂ = ŷ|δ] = k̂ (x, y; δ) . (3.7)

The hat kernel k̂ indicates the probability that x and y fall in the same bin, given a particular
value of δ.

By repeatedly dividing the input space using the described grid construction, we can
approximate the shift-invariant kernel, denoted as k(x, y). This approximation is obtained
by integrating the hat kernel over a range of pitch values δ, weighted by the probability
density function p(δ):

k (x, y) =

∫ ∞

0
k̂ (x, y; δ) p (δ) dδ. (3.8)

In this equation, δ is sampled from the probability density function p(δ), and u is sam-
pled from the range [0, δ]. The resulting probability of x and y falling into the same bin
corresponds to the kernel value k(x, y). The choice of p(δ) can be determined by setting
p(δ) = δk̈(δ), based on Lemma 1 in the proof [ 16 ].

For separable multivariate data points x ∈ Rd, the shift-invariant kernel can be ex-
pressed as the product of individual kernel functions k(x, y) in each dimension. In other
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3.2. Approximation of covariance kernels with random features

words, if x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd), then the shift-invariant kernel k(x,y)
is given by

k(x,y) =
d∏

i=1

k(xi, yi). (3.9)

This formulation allows for the independence of each dimension when evaluating the ker-
nel function.

3.2.2. Implementation of feature mapping

The construction of the feature map z in Algorithm  1 can be adapted to various formats
depending on the chosen nonlinear function and its variations. In this thesis, we present
step-by-step algorithms for each random feature to illustrate the implementation of creat-
ing a feature map.

By following these algorithms, researchers and practitioners can easily replicate the pro-
cess and generate the desired feature maps. The step-by-step instructions provide clarity
and facilitate the implementation of different nonlinear functions and their variations, en-
abling further experimentation and exploration in the field.

Random Fourier features

To decrease the variance, we can sample multiple times to obtain more feature functions
and normalize the resulting vector. Specifically, we can concatenate D randomly selected
ϕw functions into a column vector z and then divide each component by

√
D. Algorithm  2 

describes each step to generate a feature map with ϕw(x) =
√
2cos(w′x+ b) for data point

transformation [ 16 ,  4 ].

Algorithm 2 Random Fourier feature map
Input: A positive-definite shift-invariant kernel k(x,y) = k(x− y).
Output: A feature map with randomly chosen parameters z(x) : Rd → RD.

1. Compute the cosine transform p(w) of the kernel

p(w) =
1

2π

∫
cos(w′∆+ b)k(∆)d∆.

2. Draw D iid samples w1, . . . , wD ∈ Rd from the probability density function p in
cosine space and b uniformly from [0, 2π].

3. Let z(x) ≡
√

2
D [cos(w′

1x+ b1), . . . , cos(w
′
Dx+ bD)]

′.
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3. Efficient approximation of random basis functions for covariance kernels

After creating the feature map according to Algorithm  2 , the kernel approximation is
given by the sample average of ϕwj (x)ϕwj (y) over all wj in the feature space. As a result,
the approximation is given by

z(x)′z(y) =
1

D

D∑
j=1

ϕwj (x)ϕwj (y). (3.10)

Random bin features

Using the same method as in the implementation of a random Fourier feature map, we can
reduce the variance of the estimated result by concatenating D binary indicator vectors

ϕ(x) into a list of binary indicators z and scaling them by
√

1
D . This normalization helps to

ensure that the resulting feature map has a unit norm and reduces the impact of variations
in the number of features.

Algorithm 3 Random bin feature map
Input: A positive-definite shift-invariant kernel k(x,y) = k(x − y) given in equation  3.9 

with data points x ∈ Rd and p(δ) ≡ δk̈(δ) is a proper probability distribution on δ > 0.
Output: A feature map with randomly chosen parameters z(x) : Rd → RD×d.

1. Draw grid parameters ∆,u ∈ Rd with the pitch δi from p(δ) and ui from the uniform
distribution within the range [0, δi].

2. Let the feature be the coordinate of the bin containing x as a vector ϕ(x) ≡(⌈
x1−u1

δ1

⌉
, . . . ,

⌈
xd−ud

δd

⌉)′
.

3. Repeat the process for D time and concatenate D feature ϕ(x) into

z(x) ≡
√

1
D [ϕ1(x), . . . , ϕD(x)]

′.

To utilize the feature map defined in Algorithm  3 , instead of creating a binary indicator
vector, we can calculate the approximated kernel value by comparing the values in two
feature maps element-wise to determine if the corresponding data points are in the same
bin. This comparison results in a binary map indicating bin equality. We then sum up
the elements in each dimension of the map separately, scale the sums by 1

D to obtain the
individual approximations k(xi, yi), and finally calculate the product of all dimensions to
obtain the overall approximation result. This approach allows us to compute the approx-
imation of the kernel value based on the binning of data points and their corresponding
feature maps.
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3.3. Evaluation of approximation result

3.3. Evaluation of approximation result

The quality assessment of the feature map has been a focus of several studies, with an em-
phasis on determining the number of random features necessary to achieve a satisfactory
approximation of the target kernel value. This evaluation metric serves as a quantitative
measure of the feature map’s ability to capture the essential characteristics of the kernel.

Another evaluative approach involves assessing the number of random features re-
quired to achieve a comparable expected risk to that of a learned estimator while main-
taining accuracy and precision. This evaluation criterion provides valuable perspectives
into the efficiency and performance of the feature map relative to other learning algo-
rithms [ 12 ].

Furthermore, these evaluations shed light on the trade-off between computational com-
plexity and approximation accuracy in kernel approximation methods. They also provide
practical guidance regarding the number of random features needed to achieve desired
levels of performance in various application scenarios.

In addition to the aforementioned evaluation metrics, it is also common to analyze the
behavior of the approximation error as the number of data points increases. This analy-
sis helps to understand how the approximation performance scales with the dataset size
and provides insights into the limitations and generalizability of the kernel approximation
methods.

By considering these evaluation approaches and metrics, we can gain a comprehensive
understanding of the capabilities and limitations of random feature methods in capturing
the properties of kernels. This knowledge is valuable for selecting appropriate methods
and determining the necessary computational resources for specific applications.

3.3.1. Comparison with exact kernels

In this section, our experiments focused on assessing the ability of random features to
capture the characteristics of kernels. To accomplish this, we calculated the probability
distribution of feature parameters using either an explicit form or Gaussian quadrature as
an approximation method. The primary goal was to approximate the kernel values using
the induced feature map and compare the effectiveness of different features in approx-
imating the same kernel. In the case of random Fourier features, two approaches were
employed: the plain method and the leverage score method, as discussed in subsection

 2.2.3 with modified source code [ 11 ].
We can gain an understanding of the strengths and weaknesses of different approaches

in capturing the essential properties of kernels by comparing the results obtained from var-
ious feature representations. This analysis enables us to understand which feature maps
are better suited for specific types of kernels and provides valuable information for select-
ing appropriate feature representations in practical applications.

For these experiments, 200 one-dimensional samples were drawn uniformly from the
interval [0, 1]. The evaluation of kernel values was performed by computing them for each
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3. Efficient approximation of random basis functions for covariance kernels

pair of samples in the dataset. We then compared the obtained kernel values with the
desired values and measure the accuracy of the approximation using root-mean-square
error (RMSE) and normalized RMSE (NRMSE) metrics. These metrics provide insights
into the quality of the approximation as the number of feature components increases.

To compare the plain RFF method and the leverage score RFF method, a pool of weights
was created at the beginning. In the plain method, the features were selected based on
the original order of the weights. However, in the leverage score method, the weights
were sorted according to the weighted probability distribution q(θ) mentioned in Equa-
tion  2.31 . The features were then selected based on this new order of weights. By using
different selection strategies, the leverage score method aims to improve the effectiveness
and efficiency of the feature selection process in approximating the kernel matrix.

Through tracking the RMSE and NRMSE values across different numbers of feature
components, we can analyze how the accuracy of the approximation improves with the
inclusion of more features. This information allows us to understand the trade-off between
computational complexity and the accuracy of the kernel approximation.

We present the results of the evaluation, including plots and quantitative analysis of the
RMSE and NRMSE values, as the number of feature components varies. This analysis pro-
vides a comprehensive understanding of how the approximation performance evolves and
whether increasing the number of feature components leads to significant improvements.
By conducting these experiments, we can assess the effectiveness of random features in
approximating kernel values and acquire observation into their ability to capture the es-
sential properties of the kernels. The results of these experiments will be presented and
analyzed in subsequent sections.

Gaussian kernel

The Fourier transform of a Gaussian kernel, defined as k(x, y) = e−γ|x−y|22 , can be obtained
by taking the Fourier transform of the Gaussian function. The Fourier transform p(w) of
a Gaussian kernel is known to be a Gaussian distribution with mean 0 and covariance
2γI , where I represents the identity matrix. This distribution can be simply emulated by
using API in the Numpy library [  8 ]. The feature map, in this case, was generated using
the RBFSampler from the scikit-learn library [ 4 ] with γ = 0.5. RBFSampler is a feature
map that approximates the Radial Basis Function (RBF) kernel. It is commonly used for
dimensionality reduction and non-linear feature transformation in machine learning tasks.
RBFSampler works by randomly generating a set of weights and offsets for each dimension
of the input data. It then applies a nonlinear transformation to the input data using the
generated feature map.

In Figure  3.1 , the results demonstrate that as the number of components increases, the
approximation accuracy improves. This indicates that using more random features in the
feature map leads to a better approximation of the target kernel. Both the plain method and
the leverage score method show that random Fourier features can effectively approximate
the Gaussian kernel. The key factor for achieving a good approximation is ensuring a
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3.3. Evaluation of approximation result

(a) RMSE (b) Normalized RMSE

Figure 3.1.: Approximation error of Gaussian Kernel value with random Fourier features.

sufficient number of random features.
Furthermore, the leverage score method, which is a specific approach for selecting ran-

dom features, exhibits a superior ability to capture the essential characteristics of the ker-
nel. This method achieves comparable accuracy with fewer components compared to the
plain method. By utilizing the leverage scores, the feature selection process is optimized
to choose the most informative features, resulting in a more efficient and effective approx-
imation of the kernel. However, as the number of components increases, the plain RFF
method outperforms the leverage score RFF method. Eventually, both methods utilize all
the weights in the pool and achieve the same approximation accuracy. An interesting ob-
servation is that since the leverage score method changes the order of the weights w, the
pairing with offsets b is also different, resulting in different results despite using the same
weights in the end.

Laplacian kernel

Both random Fourier features and bin features are capable of finding a suitable probability
distribution for the Laplacian kernel, which ensures that the resulting function is positive
everywhere and can be used to construct a random feature map. In the case of random
Fourier features, the Fourier transform can be directly computed to determine the appro-
priate probability distribution. On the other hand, for bin features, Algorithm  3 can be
used to calculate the probability distribution based on the derived formula p(δ) = δk̈. This
formula enables the generation of bin features that accurately capture the characteristics
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3. Efficient approximation of random basis functions for covariance kernels

Figure 3.2.: The probability distribution p(w) of the Laplacian kernel is generated by cre-
ating a histogram of its Fourier transform values. The Fourier transform is
sampled evenly on the interval [−50, 50] with 101 sampled values.

of the Laplacian kernel.
In Figure  3.2 , the Fourier transform of the Laplacian kernel, which is given by 1

π(1+ω2)
,

is utilized to generate a probability distribution. This is achieved by using the sampled
values as a histogram with the help of the SciPy random variate histogram module [ 20 ].
By using a sufficient number of sampled values and a suitable range, the histogram can
provide an approximation of the true probability distribution. The histogram captures the
frequency of occurrence of different values in the Fourier transform, giving insights into
the shape and characteristics of the probability distribution. The resulting distribution
represents the desired probability distribution for generating random Fourier features that
approximate the Laplacian kernel.

To verify the generated distribution, it can be compared to the probability density func-
tion (PDF) and cumulative distribution function (CDF) of the generated distribution func-
tion. The PDF represents the probability density at each point, while the CDF provides
the probability of observing a value less than or equal to a given threshold. By compar-
ing the generated distribution with the PDF and CDF, we can assess the accuracy of the
generated distribution and ensure that it closely matches the desired distribution. This
comparison serves as a validation step to confirm that the generated distribution aligns
with the expected properties of the Laplacian kernel.

Figure  3.3 illustrates that while both methods achieve accurate approximations of the
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(a) RMSE (b) Normalized RMSE

Figure 3.3.: Approximation error of Laplacian Kernel value with random Fourier features.

Laplacian kernel in the end, the leverage score RFF method does not initially outperform
the plain RFF method in terms of capturing the characteristics of the kernel. However,
an interesting observation is that there is a distinct transition point at around using 500
components in the experiment where the LS-RFF method starts to demonstrate better per-
formance compared to the previous approximation.

Figure  3.4 displays the probability distribution of the pitch δ for bin features employed
in the approximation of the Laplacian kernel. The distribution initiates from zero due to
the restriction that the pitch δ must be positive and exhibits a peak in density near zero.
Subsequently, it experiences a sharp decline and diminishes towards zero as it is based on
the exponential function δe−δ.

Figure  3.5 illustrates the convergence behavior of the approximation error when using
bin features to approximate the Laplacian kernel. The normalized root mean square error
(NRMSE) of the bin feature decreases rapidly and reaches 10 percent with approximately
10 components. In contrast, in Figure  3.3 , the Fourier feature method requires approxi-
mately 10 times the number of components to achieve the same level of accuracy. How-
ever, it is important to note that the bin feature approximation reaches a saturation point
and cannot further improve the accuracy by increasing the number of features.

This observation suggests that when the desired accuracy level is relatively lower, using
bin features can offer computational resource savings compared to Fourier features while
still providing reasonable approximation quality.
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Figure 3.4.: This probability distribution p(δ) of Laplacian kernel is generated by the his-
togram of the derived formula in Algorithm  3 . The derived distribution is
sampled evenly on the interval [0, 30] with 31 sampled values.

(a) RMSE (b) Normalized RMSE

Figure 3.5.: Approximation error of Laplacian Kernel value with random bin features.
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Induced kernel

The induced kernel [ 17 ] is derived through decision stumps commonly used with the Ad-
aboost algorithm. We first define the kernel k on X × X as

k(x, y) =

∫
Θ
p(ω)ϕ(x, θ)ϕ(y, θ)dθ, (3.11)

where the given function ϕ(x; θ) : X ×Θ → R and probability distribution p(θ) is on Θ. By
setting the form of the decision stump as ϕ(x; θ) = sgn(xi − t) with θ = (t, i), where t is a
real number and i ∈ [1, . . . , d] is some integer that indexes a component of x ∈ Rd, we can
have the following derivation,

1

b− a

∫ b

a
sgn(x− t)sgn(y − t)dt = 1− 2

y − x

b− a
, (3.12)

supposing t is selected uniformly at random on [a, b] and a ≤ x < y ≤ b for a one-
dimensional case. A multi-dimensional induced kernel can be further given by

k(x, y) = 1− 1

a
∥(x− y)∥1. (3.13)

by assuming t is sampled on [−a, a] and X is contained in a hypercube [−a, a]d.

Figure 3.6.: This probability distribution p(w) of Induced kernel is generated by the his-
togram of its Fourier transform.
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3. Efficient approximation of random basis functions for covariance kernels

(a) RMSE (b) Normalized RMSE

Figure 3.7.: Approximation error of Induced Kernel value with random Fourier features.

Since the induced kernel does not have an explicit Fourier transform, the probability dis-
tribution in Figure  3.6 was generated using fixed-order Gaussian quadrature. The prob-
ability density of each sampled w was approximated by evaluating the definite integral
of the convolution between e−jw(x−y) and induced kernel over the interval [−10, 10]. We
sampled 101 values of w within the range [−10, 10] using Gaussian quadrature with an
order of 300. This numerical integration method allows us to approximate the probability
distribution of the induced kernel efficiently and accurately.

Figure  3.7 illustrates the performance comparison between the Plain RFF and LS-RFF
methods for approximating the induced kernel. The Plain RFF method consistently out-
performs LS-RFF, except for a few initial components where LS-RFF shows slightly lower
approximation errors. However, as the number of features increases, both methods con-
verge to a similar NRMSE of around 15 percent. It is worth noting that the approximation
accuracy saturates for both methods, indicating that further increasing the number of fea-
tures does not significantly improve the accuracy. This result highlights the efficiency and
effectiveness of the Plain RFF method for this particular approximation task.
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3.3. Evaluation of approximation result

Spline kernel

Spline kernel is usually considered to use for simulated experiments in other research as
well [ 11 ] and is given by

k2r(x, y) = 1 +
M∑

m>0

1

m2r
cos2πm(x− y). (3.14)

Figure 3.8.: This probability distribution p(w) of Spline kernel is generated by the his-
togram of its Fourier transform.

The distribution shown in Figure  3.8 was approximated using Gaussian quadrature.
The probability density of each sampled value of w was obtained by evaluating the defi-
nite integral of the convolution between e−jw(x−y) and the spline kernel over the interval
[−20, 20] with r = 1 and m from 1 to 10. To ensure accurate approximation, we sampled
101 values of w within the range [−20, 20] using Gaussian quadrature with an order of
800. A finer sampling with 201 values of w has been tested as well; however, the result
was worse. The choice of the order was based on the Nyquist-Shannon sampling theorem,
which states that in order to accurately reconstruct a continuous-time signal from its sam-
ples, the sampling rate should be at least twice the highest frequency component present
in the signal. Therefore, considering the range l and the highest frequency M , we need a
total of 2lM points, which in this case was 2 × (2 × 20) × 10 = 800. This choice of order
helps avoid aliasing and ensures the accurate representation of the distribution.

In Figure  3.9 , LS-RFF initially demonstrates better performance compared to Plain RFF,
which is a common observation. However, a notable difference is that LS-RFF achieves
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3. Efficient approximation of random basis functions for covariance kernels

(a) RMSE (b) Normalized RMSE

Figure 3.9.: Approximation error of Spline Kernel value with random Fourier features.

significantly better results toward the end of the approximation process. This finding sug-
gests that the relationship between the frequency and offset may play a crucial role in
determining the accuracy of the approximation. To further enhance the results, it is worth
investigating the sampling strategy for the offsets b instead of uniformly sampling them
from the interval [0, 2π]. By exploring different sampling strategies for b, we may be able
to achieve even better approximation accuracy. While the results in Figure  3.9 exhibit a
general trend of decreasing error, the approximation of the spline kernel highlights the
limitations of random Fourier features in certain cases. Despite the decreasing error, it is
evident that the approximation error saturates, indicating that the random Fourier features
may struggle to capture the intricate characteristics of the spline kernel. This observation
suggests that for kernels with more complex structures, alternative approaches or feature
representations may be necessary to achieve higher approximation accuracy. It is possible
that the generated probability distribution used to represent the relationship between the
random Fourier features and the spline kernel may not be sufficient to create a feature map
to capture the characteristics of the kernel.

The first challenge encountered when using random features to construct a feature map
is determining the probability distribution for each feature. The choice of an appropri-
ate probability distribution is crucial for the feature to accurately approximate the target
kernel. For random Fourier features, the probability distribution is given by the Fourier
transform of the kernel, while for bin features, it is defined by δk̈(δ). However, if the
resulting distribution is not valid, such as not being positive everywhere, then the corre-
sponding feature may not be suitable for approximating the kernel. In cases where there
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3.3. Evaluation of approximation result

is no explicit form of the distribution function for a kernel-feature pair, numerical inte-
gration methods like Gaussian quadrature can be employed to sample the approximated
distribution.

The experiments with the spline kernel highlight that not all kernels can be effectively
approximated by random Fourier features, even when a probability distribution is gen-
erated. This emphasizes the need for considering alternative feature representations or
methods when dealing with kernels that exhibit more complex structures. Otherwise, we
have to refine the numerical scheme we use to increase the accuracy of the approximated
distribution, which plays an important role in creating a quality feature map.

Furthermore, the comparison between different types of features suggests that when
approximating the same kernel, the choice of feature depends on the trade-off between
computational cost and accuracy, as demonstrated in the experiments with the Laplacian
kernel. Random Fourier features show that utilizing the leverage score method can pro-
vide advantages in terms of accuracy with a potentially reduced number of components.
However, in most cases, the accuracy of the leverage score method saturates early and
was surpassed by the plain RFF method. In the case of the induced kernel, the plain RFF
method even outperforms the leverage score method.

3.3.2. Convergence rate of excess risk on Kernel Ridge Regression

Kernel ridge regression involves computing the Gram matrix, which can be computation-
ally expensive and memory-intensive, especially when dealing with large datasets. The
Gram matrix is a pairwise similarity matrix that contains the inner products between all
pairs of data points in the feature space induced by the kernel function.

The size of the Gram matrix grows quadratically with the number of data points, mak-
ing it challenging to handle large-scale datasets. Computing and storing this matrix can
consume a significant amount of memory resources, which can become a bottleneck for
practical applications.

In order to address the computational challenges associated with kernel ridge regres-
sion, an effective approach is to approximate the feature map associated with the kernel
and subsequently transform the training data points into the corresponding feature space.
This transformation enables us to leverage linear ridge regression to learn the underlying
relationship between the transformed data points and their corresponding targets. By do-
ing so, we are able to preserve the desirable learning properties of nonlinear algorithms
while significantly reducing the computational burden.

To demonstrate the ability of kernel approximation of random features, we referred to
and modify the experiments of the simulated experiment [ 11 ] using spline kernel approx-
imation, which is defined in Equation  3.14 with r = 2 and M = 10, in ridge regression and
verified the convergence of excess risk at the same time. In this experiment, we demon-
strated that the excess risk converged at a rate of O(n−1/2), where n was the number of
training data points, when the number of features was proportional to dλK , and λ was
proportional to n−1/2. This result was obtained using the leverage score RFF method.
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3. Efficient approximation of random basis functions for covariance kernels

The convergence rate of O(n−1/2) indicated that as the number of training data points in-
creased, the excess risk decreased at a slower rate, but still converged to a finite value. The
data points X was sampled on [0, 1] and targets y was a Gaussian random variable with
mean f(x) = kt(x, x0) (for some x0 ∈ [0, 1]), variance σ2 = 0.01, and t = 3. For the prob-
ability distribution p(w) and feature map z(x), we used the same algorithm as we used to
approximate the spline kernel in the previous section. This was different from the referred
experiment in [ 11 ], where p(w) was uniform on [0, 1] and z(x) = kr(w, x). The generated
dataset was divided into a training set and a testing set using a ratio of 2:1. We conducted
experiments with varying values of x0 and obtained the following results.

Figure 3.10.: The plot of the spline kernel used as the target values y.

Figure  3.10 depicts the spline kernel on the interval [−1, 1] using the same sampling
scheme as in Figure  3.8 . This sampling scheme is employed to prevent aliasing and ensure
the accurate representation of the complete spline kernel. Since the range of the input vari-
able X is constrained to [0, 1] and the shift parameter x0 takes values in the interval [0, 1],
it can be interpreted as sliding a window of width 1 over the spline kernel and shifting it
to the left based on the value of x0. This allows us to capture a portion of the spline kernel
as illustrated in Figure  3.10 .

In Figure  3.11 , we observe the right part of the spline kernel in Figure  3.10 , specifically
the interval [0, 1], which exhibits a convex curve. The predicted results closely resemble
the ground truth in many cases, particularly in the linear portion of the convex curve.
The convergence rate of the risk aligns with the theoretical expectation until training with
approximately 1000 data points. This suggests that the number of features employed in
the model might not be sufficient to capture the complexity of the data distribution.

In Figure  3.12 , we examine both parts of the spline kernel displayed in Figure  3.10 , focus-
ing on the interval [−0.2, 0.8], where a cubic curve is observed. It becomes apparent that the
feature map is inadequate for accurately representing a dataset in this form. Interestingly,

34



3.3. Evaluation of approximation result

(a) Fitting result with shift x0 = 0. (b) Fitting error with shift x0 = 0.

Figure 3.11.: Kernel ridge regression results using approximated feature map of spline ker-
nel with the LS-RFF method. The fitting target y is shifted by x0 = 0.

(a) Fitting result with shift x0 = 0.2. (b) Fitting error with shift x0 = 0.2.

Figure 3.12.: Kernel ridge regression results using approximated feature map of spline ker-
nel with the LS-RFF method. The fitting target y is shifted by x0 = 0.2.
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3. Efficient approximation of random basis functions for covariance kernels

(a) Fitting result with shift x0 = 0.6. (b) Fitting error with shift x0 = 0.6.

Figure 3.13.: Kernel ridge regression results using approximated feature map of spline ker-
nel with the LS-RFF method. The fitting target y is shifted by x0 = 0.6.

the convergence rate does not decrease as the number of training data points increases;
instead, it even shows an increasing trend. This further underscores the limitations of the
feature map in capturing the underlying relationship in this particular scenario.

In Figure  3.13 , we analyze a significant portion of the left part of the spline kernel de-
picted in Figure  3.10 , specifically focusing on the interval [−0.6, 0.4], which exhibits a con-
cave curve. It is observed that the feature map is relatively more suitable for approximat-
ing this particular data form compared to the cubic curve case. However, the approxima-
tion is still not accurate enough to capture the true underlying relationship. The conver-
gence rate of the risk aligns with the theoretical expectation until training with approx-
imately 300 data points, suggesting that the number of features employed in the model
may not be sufficient to adequately capture the complexity of the data distribution with
the given dataset size.

In Figure  3.14 , we analyze the left part of the spline kernel depicted in Figure  3.10 ,
specifically focusing on the interval [−1.0, 0.0], which exhibits a convex curve similar to
Figure  3.11 . The convergence rate of the risk aligns with the theoretical expectation un-
til training with approximately 1000 data points, yielding similar results as observed in
Figure  3.11 .

In the simulated ridge regression experiments, the convergence of the excess risk was
highly dependent on the choice of shift parameter, indicating that the feature map had
limitations in accurately capturing the underlying relationship across different datasets.
The performance of the feature map in terms of risk reduction may vary significantly de-
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(a) Fitting result with shift x0 = 1.0. (b) Fitting error with shift x0 = 1.0.

Figure 3.14.: Kernel ridge regression results using approximated feature map of spline ker-
nel with the LS-RFF method. The fitting target y is shifted by x0 = 1.0.

pending on the specific shift value used. This observation highlights the limitations of
the feature map design in Algorithm  2 ineffectively capturing the complex patterns and
dynamics present in diverse datasets. As a result, the performance in terms of risk con-
vergence may be unsatisfactory. To address this issue, it is necessary to either modify the
design of the feature map based on prior analysis of the dataset or increase the number of
random Fourier features to enhance the representation capabilities of the model.

In Figure  3.15 , Figure  3.16 , and Figure  3.17 , we present the best results obtained by
varying the shifting parameter for different kernels. The results for other parameter values
can be found in Appendix  A.1 . It can be observed that the excess risk saturates at around
0.01 for all the kernels at certain points.

In terms of convergence rate, the spline kernel demonstrated the best performance com-
pared to the other kernels. Surprisingly, the Gaussian kernel, which is typically popular
and widely used, exhibits the worst performance. It required approximately 10,000 data
points to achieve the lowest possible error, while the Laplacian kernel and induced kernel
required only half that amount. Remarkably, the spline kernel required even fewer data
points, less than 1000, to reach optimal accuracy.

The choice of the kernel can have a significant impact, and determining the most suitable
kernel for different scenarios can be explored in a chapter discussing this technique in [ 7 ].
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(a) Fitting result with shift x0 = 0.0. (b) Fitting error with shift x0 = 0.0.

Figure 3.15.: Kernel ridge regression results using approximated feature map of Gaussian
kernel with the LS-RFF method. The fitting target y is shifted by x0 = 0.0.

(a) Fitting result with shift x0 = 0.0. (b) Fitting error with shift x0 = 0.0.

Figure 3.16.: Kernel ridge regression results using approximated feature map of Laplacian
kernel with the LS-RFF method. The fitting target y is shifted by x0 = 0.0.
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(a) Fitting result with shift x0 = 0.0. (b) Fitting error with shift x0 = 0.0.

Figure 3.17.: Kernel ridge regression results using approximated feature map of Induced
kernel with the LS-RFF method. The fitting target y is shifted by x0 = 0.0.
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3.3.3. Performance of the random feature approximation

To assess the efficiency improvement gained from utilizing random features for approxi-
mating kernels in learning algorithms, a comparison was made between the feature map
of each kernel and the approximated kernel obtained by training on the same dataset us-
ing Kernel Ridge Regression. In order to demonstrate this improvement, a small dataset
was chosen from scikit-learn called ”Diabetes” [ 4 ], as it contains a manageable number of
samples compared to the resource-intensive ”California housing” dataset. The ”Diabetes”
dataset consists of 442 samples, where each sample consists of 10 independent variables
ranging from -0.2 to 0.2, along with a dependent variable ranging from 25 to 346.

In order to perform learning with feature maps, the input data needs to be transformed
before being used as input for Linear Ridge Regression. In this study, plain Random
Fourier Features (RFF) were employed for each kernel, with the maximum number of com-
ponents limited to approximately 5% of the total number of data points. This restriction
ensures that the approximation is applied while conserving storage space. It is important
to note that the Kernel Ridge Regression (KRR) implementation in scikit-learn only sup-
ports certain metrics for popular kernels such as the Gaussian and Laplacian kernels. For
other kernels like the induced kernel and spline kernel, a precomputed kernel matrix must
be provided to the API.

To measure the computational time of each algorithm, the processes were repeated five
times under the same settings, and the average duration was recorded. The timing of the
random feature approximation process encompasses the generation of random variates for
the features, the transformation of the original input into the feature space, and the fitting
of a linear Ridge Regression model. As for Kernel Ridge Regression, the time spent by
the ”fit” API in generating the model was measured. This comprehensive timing analysis
allows for a thorough understanding of the computational costs associated with both the
random feature approximation and Kernel Ridge Regression approaches. The experimen-
tal results are presented in three plots to analyze the relationship between the number of
components in the feature map, the R2 score, and the computational time.

The first plot illustrates how increasing the number of components in the feature map
affects the R2 score. The dimensionality of the original data is also specified to examine the
impact of the dimensionality of the representation of the data, which depends on the num-
ber of components of the feature map. The second plot displays the training time usage
of both the random feature approximation and Kernel Ridge Regression algorithms. This
comparison allows for a straightforward understanding of the computational efficiency of
each method. In the last plot, the trade-off between accuracy and time is analyzed. It com-
pares the training time and score of the two algorithms, dividing the plot into four regions
using two lines. The upper-left region represents cases where the approximated feature
map is highly efficient, surpassing Kernel Ridge Regression in terms of both score and
training time. Conversely, the lower-right region indicates cases where the approximated
feature map yields worse results than Kernel Ridge Regression and requires more time for
training. The remaining part of the plot demonstrates that better results can be achieved

40



3.3. Evaluation of approximation result

with increased training time, which is not the primary concern of this experiment.
Figure  3.18 demonstrates that the score achieved by using KRR with the Gaussian ker-

nel is relatively low, around 0.25. However, when employing the RFF approximation for
Gaussian KRR, the score surpasses that of KRR with just a few components, even fewer
than the original number of features (dimensionality) of the data.

Both methods exhibited fast training times in this case, with the approximated KRR
being approximately three times faster than the original KRR. Furthermore, the time usage
slightly increased as more features were used. Consequently, the trade-off between time
and accuracy was negligible, as using only 20 components could yield a higher accuracy
score of approximately 0.5 while saving training time.

(a) Relationship between the number of com-
ponents used in the feature map, computa-
tional time, and accuracy.

(b) Trade-off between computational time and
accuracy.

Figure 3.18.: Performance comparison of Kernel Ridge Regression using Gaussian kernel
and Ridge Regression using approximated feature map.

Figure  3.19 illustrates that the score achieved by using KRR with the Laplacian kernel is
0.44. After employing the RFF approximation for Laplacian KRR with only 7 components,
the score improves slightly and reaches around 0.5. Notably, the time usage of the approx-
imated KRR is significantly less than that of the original KRR. As a result, the trade-off
between time and accuracy was not a significant concern in this case, as the approximated
KRR achieved a similar score to the original KRR while requiring less training time.

In Figure  3.20 , it is observed that the score achieved by using KRR with the induced
kernel is 0.34. However, after employing the RFF approximation for induced KRR with
only 7 components, the score improves significantly to over 0.4. Eventually, with a larger
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3. Efficient approximation of random basis functions for covariance kernels

(a) Relationship between the number of com-
ponents used in the feature map, computa-
tional time, and accuracy.

(b) Trade-off between computational time and
accuracy.

Figure 3.19.: Performance comparison of Kernel Ridge Regression using Laplacian kernel
and Ridge Regression using approximated feature map.

number of components, the score reaches around 0.5. The time usage of the approximated
KRR is around one-fourth of the time required by the original KRR. This indicates that
in terms of the trade-off between time and accuracy, the RFF approximation is a superior
learning algorithm in this particular case.

Since the spline kernel was not defined for multivariate [ 11 ], here we used L2-norm to
calculate. In Figure  3.21 , it is observed that for the multivariate spline kernel, KRR achieves
a higher score compared to the RFF approximation. However, there is an exception when
using 17 components for the RFF approximation, where the score briefly surpasses that of
KRR. In terms of time usage, the RFF approximation requires less training time compared
to the original KRR. However, the trade-off between time and accuracy was not favorable
in this case. To achieve a higher score with the RFF approximation, it was necessary to
increase the number of components and sacrifice storage space.

In summary, the performance experiment demonstrated that the RFF-approximated KRR
generally outperforms the original KRR. Among the kernels used in KRR, the spline ker-
nel achieved the highest score, while the Gaussian kernel performed the worst. However,
when using the RFF approximation, the Laplacian kernel showed the best performance,
while the spline kernel performed relatively worse.

In terms of efficiency, the RFF approximation significantly improved the performance of
the Gaussian kernel and induced kernel compared to their respective original KRR algo-
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(a) Relationship between the number of com-
ponents used in the feature map, computa-
tional time, and accuracy.

(b) Trade-off between computational time and
accuracy.

Figure 3.20.: Performance comparison of Kernel Ridge Regression using Induced kernel
and Ridge Regression using approximated feature map.

rithms. This suggests that the RFF approximation can provide substantial computational
advantages without sacrificing accuracy.

In addition, since the score of both methods was relatively low, the choice of using the
”Diabetes” dataset might not be the best. Dataset plays a crucial role in evaluating the
performance and generalization of learning algorithms. To enhance confidence in the ex-
perimental results, it is suggested to select a larger dataset with more informative features,
as long as the storage space can accommodate it. Considering benchmark datasets specif-
ically designed for testing purposes can be an option. It offers standardized evaluation
metrics and established baselines for better comparisons with existing methods. Besides,
opting for a dataset that is representative, diverse, and better aligned with the problem
domain, the evaluation becomes more comprehensive.
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(a) Relationship between the number of com-
ponents used in the feature map, computa-
tional time, and accuracy.

(b) Trade-off between computational time and
accuracy.

Figure 3.21.: Performance comparison of Kernel Ridge Regression using Spline kernel and
Ridge Regression using approximated feature map.
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4. Conclusion

In this thesis, we address the scaling issue of kernel methods in machine learning algo-
rithms when applied to larger datasets. To overcome this problem, a kernel approximation
method using random features is proposed. The effectiveness of this method is demon-
strated through the approximation of kernel values, showing its capability to replace the
computationally demanding kernel methods. Moreover, the convergence of the excess risk
is empirically and theoretically verified, highlighting the trustworthiness and utility of the
kernel approximation method, particularly in the context of Kernel Ridge Regression.

This thesis begins by explaining the application of kernel methods in algorithms such
as Kernel Ridge Regression and Support Vector Machines, highlighting their potential for
capturing complex patterns and structures in data. To address the computational chal-
lenges associated with these methods, an efficient approximation technique utilizing ran-
dom features is introduced. The thesis provides a detailed description of the implemen-
tation process, including the generation of probability distributions for random feature
parameters. It presents both random Fourier features and random bin features, along with
algorithms for constructing specific feature maps suitable for kernel approximation tasks.

The experiments conducted with the spline kernel underscore the fact that not all kernels
can be accurately approximated using random Fourier features, even when a probability
distribution is generated. This highlights the importance of exploring alternative feature
representations or methods when dealing with kernels that possess more intricate struc-
tures. Additionally, the comparison between different types of features reveals that the
choice of feature depends on the trade-off between computational cost and accuracy. Ran-
dom Fourier features, specifically the leverage score method, offer advantages in terms of
accuracy with a potentially reduced number of components. However, the accuracy of the
leverage score method often saturates early and is surpassed by the plain RFF method.
These findings emphasize the need to carefully select the appropriate feature represen-
tation and consider the computational resources available to achieve the desired balance
between accuracy and efficiency in kernel approximation tasks.

The simulated ridge regression experiments reveal that the convergence of the excess
risk is heavily influenced by the choice of the shift parameter, indicating limitations in the
feature map’s ability to accurately capture the underlying relationships across different
datasets. The performance of the feature map in terms of risk reduction varies significantly
depending on the specific shift value used, highlighting the inadequacy of the feature map
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design in capturing the complexity of diverse datasets. To overcome this limitation, po-
tential solutions include modifying the feature map design based on dataset analysis or
increasing the number of random Fourier features to improve the representation capabili-
ties of models and enhance risk convergence.

The performance experiment conducted in this study highlighted the superiority of the
RFF-approximated KRR compared to the original KRR. The RFF-approximated KRR con-
sistently outperformed its original counterpart across different kernels. The spline kernel
achieved the highest score in KRR, while the Gaussian kernel performed the worst. How-
ever, when utilizing the RFF approximation, the Laplacian kernel exhibited the best per-
formance, while the spline kernel performed relatively worse. In terms of efficiency, the
RFF approximation proved to be highly beneficial for the Gaussian and induced kernels,
significantly enhancing computational efficiency without compromising accuracy.

To gain deeper insights, it is valuable to explore the performance of different feature
maps using a well-performing kernel and investigate the impact of approximation schemes.
For example, one can examine the Laplacian kernel with bin features or random Fourier
features and compare their performance in learning tasks. Even when using the same ker-
nel, different feature maps can lead to significant variations in learning outcomes, espe-
cially when dealing with large-scale datasets. Additionally, it is recommended to extend
the experiments beyond Kernel Ridge Regression and includes a classification problem
using Kernel Support Vector Machines. This allows for testing the effectiveness of feature
maps across various learning algorithms and problem domains. Lastly, it is advisable to
choose a larger and benchmark dataset for the experiments, as opposed to relying solely
on simulated or provided datasets like ”Diabetes” from Scikit-learn. This ensures the gen-
eralizability of the findings and provides a more realistic evaluation of the performance of
kernel methods and their feature maps.

To sum up, this thesis provides a clear introduction to understanding the mechanism of
random features approximation of covariance kernels and demonstrates the capability of
this method with step-by-step implementation details, kernel value approximation, and
Kernel Ridge Regression experiments. Apart from that, it provides directions for future
researchers to extend the work.
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A. Appendix

A.1. KRR convergence rate of excess risk

A.1.1. Gaussian kernel

(a) Fitting result with shift x0 = 0.2. (b) Fitting error with shift x0 = 0.2.

Figure A.1.: Kernel ridge regression results using approximated feature map of Gaussian
kernel with the LS-RFF method. The fitting target y is shifted by x0 = 0.2.
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A. Appendix

(a) Fitting result with shift x0 = 0.6. (b) Fitting error with shift x0 = 0.6.

Figure A.2.: Kernel ridge regression results using approximated feature map of Gaussian
kernel with the LS-RFF method. The fitting target y is shifted by x0 = 0.6.
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A.1. KRR convergence rate of excess risk

A.1.2. Laplacian kernel

(a) Fitting result with shift x0 = 0.2. (b) Fitting error with shift x0 = 0.2.

Figure A.3.: Kernel ridge regression results using approximated feature map of Laplacian
kernel with the LS-RFF method. The fitting target y is shifted by x0 = 0.2.
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A. Appendix

(a) Fitting result with shift x0 = 0.6. (b) Fitting error with shift x0 = 0.6.

Figure A.4.: Kernel ridge regression results using approximated feature map of Laplacian
kernel with the LS-RFF method. The fitting target y is shifted by x0 = 0.6.
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A.1. KRR convergence rate of excess risk

A.1.3. Induced kernel

(a) Fitting result with shift x0 = 0.2. (b) Fitting error with shift x0 = 0.2.

Figure A.5.: Kernel ridge regression results using approximated feature map of Induced
kernel with the LS-RFF method. The fitting target y is shifted by x0 = 0.2.
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A. Appendix

(a) Fitting result with shift x0 = 0.6. (b) Fitting error with shift x0 = 0.6.

Figure A.6.: Kernel ridge regression results using approximated feature map of Induced
kernel with the LS-RFF method. The fitting target y is shifted by x0 = 0.6.
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