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Abstract

Structural defect detection is an important problem in civil engineering. Full Waveform
Inversion (FWI) recently has been further developed to address this problem by emitting
waves to the building attached with sensors and reconstructing sensor signals-much like
a CT scan. However, decoding the defects from sensor signals is much time consuming
and mathematically impossible, since the corresponding inverse problems are difficult
to solve and usually are ill-posed in real engineering applications. To solve these issues,
data-driven approaches from deep learning have been investigated by researchers.
Data-driven surrogate models like DeepONets, Fourier Neural Operators, and PINNs
show strong strengths in computational efficiency than the classical wave equation
solvers. Additionally, a well-designed regularization network is also able to address the
ill-posedness of wave inversion. Thus, it will be promising to solve the wave equation
by combining the surrogate models and different Machine Learning approaches. In this
master thesis, we focus on applying DeepONets architecture to wave equations and
analyzing the results acquired by it. Initially, various information about wave equations
and traditional solvers is introduced. Moreover, we get our data from simulations
executed at high-capacity GPU servers. Different DeepONets architectures (Stacked
and Unstacked) with various subnetworks (FCNN, CNN) are afterwards implemented
to solve the equation. In the end, each approach is evaluated and subsequently, the best
one is emphasized.

iv



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 3
2.1 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Numerical Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Neural Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Operator Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 DeepONets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Fourier Neural Operator . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Difference between FNOs and DeepONets . . . . . . . . . . . . . 15

3 Approximation Solutions of Wave Equation Using DeepONets 17
3.1 Selection of the right DeepONet . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 DeepONet Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Metrics - Evaluating DeepONets . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Experiment 1 : Complete Wave Equation . . . . . . . . . . . . . . 26
3.4.2 Experiment 2 : Mapping from one to another timestep . . . . . . 43

4 Conclusion 61
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

List of Figures 63

List of Tables 65

Bibliography 66

v



1 Introduction

In this thesis, we focus on approximating the acoustic wave equation, a specific type
of partial differential equation (PDE), using Deep Neural Networks. We explore the
utilization of DeepONet, a network architecture proposed by Prof. Karniadakis from
Brown University [25], which is designed to tackle the problem of learning nonlinear
operators. This architecture consists of two parts, the Branch and Trunk neural net-
works, which work together to approximate the solution. Furthermore, we investigate
the application of various neural networks (FNN, CNN) as components of DeepONet
to evaluate its capabilities. This Master’s Thesis serves as the first step in exploring
methods for detecting cracks in solid materials, focusing on the forward pass of this
process. In future approaches, Full-waveform inversion will be required for calculations.
This thesis is organized into four sections: Introduction, Background, Approximation
Solutions of Wave Equation using DeepONets, and Conclusion.

The Introduction provides an overview of the problem, the structure of the thesis,
and the intentions of each section. The Background section offers a comprehensive
review of related work and the knowledge required to get a better understanding of the
topic. It begins with a description of the Wave Equation and related physics concepts,
with a particular focus on the Acoustic Wave Equation, which is central to solving our
problem. We discuss various initial and boundary conditions relevant to this topic and
present our idea for using the Wave Equation to address the problem at hand.
In the next section 2.2, we explore state-of-the-art numerical solvers for approximating
PDEs, with a primary focus on the Finite Difference Method. This method will be used
to generate ground truth data for training our network. We discuss its application to
the "perfect" Acoustic Wave Equation. Additionally, we present various metrics used
for generating this data. Prof. Karniadakis’ work [25] serves as the foundation for the
DeepONet formulation and architecture.

The core of this thesis lies in the section on Approximation Solutions of Wave Equa-
tion Using DeepONets, where we detail the application of the presented methods to
our specific problem. We begin by describing our training dataset, which is generated
using numerical simulations as the state-of-the-art solution. We have two different
datasets, one for the complete wave equation without cracks and one where the cracks
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1 Introduction

are modeled. We then present the full DeepONet architecture tailored to our problem
and describe the Branch and Trunk networks’ configurations.
In the following subsections, we explore different approaches for achieving optimal
results in this domain. We discuss the various Branch and Trunk network configura-
tions we examined and the challenges we encountered. This section concludes with a
presentation of the metrics and experimental evaluations, providing a comprehensive
understanding of the training and test losses, as well as a comparison of our approxi-
mation results with the actual wave equation propagation through time.
The final chapter concludes the work done in this thesis and suggests potential future
work to improve results or apply the methods to real-life data.

We discovered that utilizing unstacked DeepONet demonstrates the potential for
solving the wave equation problem and learning neural operators. The most promising
architecture used convolutional layers within the Branch network, and Fully connected
layers within the Trunk network, enabling us to generate reasonably accurate predictions
on the testing dataset. Moreover, using Dropout layers on the dataset with cracks
improved validation loss significantly. However, we have confirmed that the network
can be affected by the overfitting problem, and this concern should be explored in
future work.
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2 Background

In this chapter, we aim to present all related work that has been conducted and which
will be required to achieve the solution to our problem statement. We will put the most
focus on defining the wave equation from a physics perspective. Additionally, we define
the acoustic wave equation, which serves as the basis for our example. Furthermore,
we will discuss the available numerical solvers for solving partial differential equations.
In our case, as a state-of-the-art solution, we will employ the finite difference method.
Finally, we will explain the concept of the DeepONet and Fourier Neural Operator
(FNO) and provide an overview of their respective architecture.

2.1 Wave Equation

The wave equation is a mathematical model for waves that describes the behavior
of waves in specified medium. It is a second-order partial differential equation that
governs the propagation of waves by relating the double time derivative to the second
derivative of a function with respect to all other spatial variables. The wave equation
has applications in different fields, including acoustics electromagnetism, and fluid
mechanics [31].

The wave equation can be derived from Maxwell’s equations, which describe the
behavior of electromagnetic waves [31]. However, it also can be utilized to model other
types of waves, such as sound waves or water waves. The equation is a second-order
partial differential equation, meaning that it includes both a second-order time deriva-
tive and a spatial derivative of the function.

In this particular case, our focus will be on the two-dimensional wave equation,
which is an important concept in the study of wave propagation and the behavior of
waves, particularly for the case we are presenting. We will use x and y as the spatial
variables and t as the time variable so that the wave function is represented as u(x, y, t).
This representation enables us to investigate the behavior of waves in two-dimensional
space, such as the propagation of surface waves with bodies with material boundaries
[32].
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2 Background

For a better understanding of the wave equation, we need to define the Laplace
Operator. The Laplace Operator is a differential operator and can be denoted as
∆2 = ∂2

∂x2 + ∂2

∂y2 . It can be applicable in many areas of mathematics and physics,
including the study of partial differential equations and electromagnetism [39].

The Laplace Operator measures the difference between a function’s value at a given
point and the average value of the function at the neighboring points. Intuitively, it
represents the evaluation of the curvature of the function in the spatial domain. In the
context of our example with the wave equation, it characterizes the spatial behavior of
the wave.

The wave equation can be written as utt = c2∆2u [19].
The c in our case refers to the constant speed of the wave propagated, and u is the
function we already mentioned. This equation describes the relationship between the
temporal acceleration of the wave function u(x, y, t) and the spatial Laplacian of the
same function.

For easier understanding, the Laplacian can be seen as a measure of how much one
point of the function u(x, y, t) differs from its neighboring points. For example, if ∆2u
is positive, that implies that it is smaller than the average value of u at the neighboring
points [19]. In the context of the wave equation, the Laplacian provides insight into the
spatial distribution of energy within the wave, and how this energy propagates over
time.

In conclusion, the two-dimensional wave equation is an important tool for studying
the behavior of waves in various physical systems. By using the Laplace Operator, we
can gain a better understanding of the spatial and temporal properties of the wave
function u(x, y, t), which eventually helps us to analyze and predict the behavior of
waves in different scenarios.

In order to have the solution properly posed, additional boundary and initial condi-
tions are imposed, which tend to describe the environment in which our wave equation
should be propagated. Moreover, these conditions should enable the uniqueness of
the solution. On the one hand, if we define the region Ω as an open, connected set
with a piecewise smooth boundary δΩ, then we can describe the boundary condition
as an additional equation that defines the value of the function u and a subset of its
derivatives within δΩ.
It could be specified as

u = f (x, y)

on δΩ or
ux = g(x, y)

on δΩ as the boundary condition [19].
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2 Background

On the other hand, the initial condition determines the value of the function u and
its derivatives at the initial timestep t0.
Similarly, they could be defined as

u(x, y, t0) = f (x, y)

on Ω or
ut(x, y, t0) = f (x, y)

on Ω [19].

Typically, boundary conditions for partial differential equations can be classified into
three distinct categories:

• Cauchy conditions,

• Dirichlet conditions,

• Neumann conditions.

The Cauchy condition defines the values of the function u and several of its normal
derivatives within a specified smooth coordinate area in the space of all independent
variables. For a partial differential equation (PDE) of dimension k, the values of u and
its first k− 1 derivatives should be defined within the specified area. Cauchy conditions
are particularly relevant for hyperbolic PDEs, as they help in providing a well-posed
initial boundary value problem.

The Dirichlet condition specifies the value of the function u on the boundary δΩ of
the region. It can be thought of as a constraint imposed on the data at the boundary.
This condition is particularly useful when the boundary values of the solution are
known, which then influences the behavior of the solution within the domain.

The Neumann condition defines the value of the normal derivative of the function
u on the boundary δΩ. It is often applied when the rate of change of the function
normal to the boundary is known, rather than the function’s value itself. The Neumann
condition characterizes the flow across the boundary.

These conditions can also be combined to create mixed boundary conditions, which
help ensure the existence of unique and well-behaved solutions to the mathematical
problem. The choice of boundary conditions depends on the physical context of the
problem and the desired properties of the solution. Properly specifying boundary
conditions is essential for guaranteeing that the resulting mathematical problem is well-
posed and that its solution accurately represents the underlying physical phenomenon
[19].
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2 Background

2.2 Numerical Solvers

In this section, we will describe numerical solvers for Partial Differential Equations
(PDEs), highlighting their key principles, advantages, and applications in solving
the wave equation problem. The primary focus will be on the Finite Difference
Method(FDM).

The FDM is a widely used technique for solving Partial Differential Equations (PDEs)
due to their simplicity and flexibility in solving various types of problems. FDM works
by approximating the differential operator by replacing the derivatives in the equation
with differential quotients. The domain is discretized in both space and time, and the
approximation is calculated at those points in either space or time [26].

To illustrate the FDM, let’s consider the wave equation, which is formulated as

∂2u
∂t2 (x, y, t) = α2

(
∂2u
∂x2 (x, y, t) +

∂2u
∂y2 (x, y, t)

)
.

The wave equation describes the movement of a wave function u in time and space
with a propagation speed of α. The discretization process transforms the continuous
wave equation into a set of algebraic equations, which can be combined to simulate
wave propagation [2].

In the discretization process, we define hx and hy as the spatial grid spacings and
ht as the timestep between two evaluations. By approximating the second derivatives
using finite differences, we obtain

∂2u
∂x2 =

u(i + 1, j, t)− 2u(i, j, t) + u(i− 1, j, t)
hx

,

∂2u
∂y2 =

u(i, j + 1, t)− 2u(i, j, t) + u(i, j− 1, t)
hy

,

∂2u
∂t2 =

u(i, j, t + ∆t)− 2u(i, j, t) + u(i, j, t− ∆t)
ht

.

Here, u(i, j, t) represents the value of the wave equation at time t, and spatial grid
points (ihx, jhy), where we assume that hx = hy. By substituting these approximations
into the wave equation, by following [23], we can derive the following iterative scheme:
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2 Background

u(i, j, t + ∆t) = 2u(i, j, t)− u(i, j, t− ∆t) + α2 ht
hx
(u(i + 1, j, t)− 2u(i, j, t) + u(i− 1, j, t)

+u(i, j + 1, t)− 2u(i, j, t) + u(i, j− 1, t)).

The obtained grid and grid points typically resemble the environment illustrated
in Figure 2.1.

Figure 2.1: Finite Difference Method Grid, taken from [2].

This discretization of the wave equation allows for iterative calculations of u(i, j, t +
∆t) at each spatial grid point, which depends on the previous solutions of u(i, j, t) and
u(i, j, t− ∆t).

Besides the discretization of the wave equation, it is essential to discretize the initial
and boundary conditions using the FDM. In the case of Dirichlet boundary conditions,
the values at the boundary points should be equal to the given values, and the FDM
is used to approximate the derivatives at the interior points. For Neumann boundary
conditions, the FDM approximates the derivatives at the boundary points, which are
subsequently employed to obtain the equations necessary for solving unknown values
at interior grid points.

An important aspect of the FDM is that the accuracy of the solutions depends on the
grid spacing h. Smaller grid spacings generally yield more accurate solutions, but they
may also increase the computational cost of the simulations. When implementing the
FDM, it is important to have a balance between accuracy and computational efficiency.
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In conclusion, the finite difference method provides an effective and widely used
approach for solving partial differential equations, such as the wave equation. By
discretizing the domain and carefully considering initial and boundary conditions, the
FDM allows for accurate and efficient numerical simulations of wave propagation and
other physical phenomena.

2.3 Neural Operators

In this section, we aim to provide a comprehensive introduction to the concept of Oper-
ator Learning, depicting its fundamental characteristics and the underlying principles
that govern its functioning. This discussion will encompass an overview of the key
components and theoretical frameworks that contribute to the development of this
field.

Subsequently, we explore the specific neural networks that have emerged within
the domain of Operator Learning, namely DeepONets and Fourier Neural Operators,
as well as engage in a comparative analysis to elaborate on the differences between
DeepONets and Fourier Neural Operators.

2.3.1 Operator Learning

In the context of Operator Learning, physical systems comprising multiple interdepen-
dent functions are often considered. These functions typically predict or influence one
another. A representative example of such a problem statement involves a physical
system governed by a partial differential equation. The solution to this equation is
expressed by the function u(x, y, t), which includes a forcing term f (x, y, t), initial
conditions u0(x, y), and boundary conditions ub(x, y, t). Here, the variables x and y
denote the spatial domain, while t signifies the time domain.

Let us represent the input function as v, defined on the domain D ⊂ Rd, such that

v : D 3 x 7→ v(x) ∈ R.

Similarly, following [27], let the output function u be defined on the domain D′ ⊂ Rd′ :

u : D′ 3 ξ 7→ u(ξ) ∈ R.

Let V and U represent the spaces of v and u, respectively, while D and D′ denote the
two distinct domains. Given this problem setup, we can now define the mapping from
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2 Background

the input function v to the output function u by means of an operator G:

G : V 3 v 7→ u ∈ R.

In order to facilitate the operator’s learning of the mapping between the two function
spaces, it is imperative to define an appropriate function to minimize the approximation
error. This function, referred to as the error metric, describes the difference between
the predicted and true output values. A popular choice for this error metric is the L2

norm, which is particularly well-suited for approximating continuous functions. Given
a vector X of the form:

X =


x1

x2
...

xn

 (2.1)

the L2 norm can be defined as:

|X| =
√

n

∑
k=1
|x2

k |.

This norm measures the Euclidean distance between two points in the function space,
providing a measure of the overall error magnitude.

Because we need to work with our data numerically, we can assume that our ac-
cess to these evaluations is pointwise. This means that the available data comprises
discrete samples, rather than continuous functions. Therefore, in the subsequent sub-
section, we will elaborate on various approaches to handling different dataset setups,
taking into consideration the discretized nature of the data. Moreover, Chapter 3
will discuss the specifics of the data collection process employed in this study and
discuss how the obtained data is incorporated into the DeepONets architecture. This
will include an examination of the preprocessing steps, data normalization, and the
procedure for partitioning the data into training, validation, and testing datasets, all of
which are of big importance for the effective training and evaluation of the DeepONets
model.

2.3.2 DeepONets

In this subsection, we will introduce the concept of DeepONets, a deep learning-based
approach to approximate nonlinear operators. We will discuss the underlying prin-
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ciples, architecture, and applications of DeepONets, highlighting their advantages in
addressing complex mathematical problems. The content of this section is primarily
based on the paper by Lu et al. (2021) [25].

The primary foundation for this thesis is based on the DeepONet Deep Neural
Network introduced in the work by Lu et al. (2021) [25]. This approach focuses on
learning nonlinear operators for identifying differential equations, which is grounded
in the universal approximation theorem of operators [8]. In this section, we will review
the content of this paper and its applications in greater detail.

On one hand, according to the universal approximation theorem, it has been proven
that neural networks can be utilized to approximate any continuous function to an
arbitrarily high accuracy, provided that no constraint is imposed on the depth and
width of the hidden layers [9]. On the other hand, the works published in [7], [37], [30],
[25], and [6] assert that any nonlinear continuous functional (a mapping from a space
of functions into real numbers) and nonlinear operator (a mapping from a space of
functions into another space of functions) can be approximated with a single hidden
layer. In this paper, the operator G is related to an input function u, and consequently,
G(u) corresponds to the output function. Assuming that y is a point in the domain of
G(u), the output value of the function G ◦ u(y) is a real number. Therefore, the neural
network in this case takes two input values: one for the function u and the other for
the grid point y. Since the function u is continuous, it is necessary for this input to
be discretized and then considered as the input value. To accomplish this, the values
at finite locations x1, x2, ..., xn are taken, and we refer to them as "sensors". A better
overview of this configuration can be observed in Figure 2.2.

10



2 Background

Figure 2.2: Illustration of the problem setup and architecture of DeepONets, taken from
[25].

In this figure, we can identify several different architectures. For example, the
stacked DeepONet architecture takes the function evaluations at m locations as input
and implements a separate branch net for each of these values. In contrast, the
unstacked DeepONet feeds the Branch net with the values [u(x1), u(x2), ..., u(xm)] as a
single vector input. Furthermore, in Figure 2.2(A), the trunk net input y and inputs of
the function u are directly propagated through a common network.

In the following text, we present the theorem from Chen’s paper [8]:

Theorem 1 (Universal Approximation Theorem For Operator) Suppose that δ is a con-
tinuous non-polynomial function, X is a Banach Space, K1 ⊂ X, K2 ⊂ Rd are two compact sets
in X and Rd, respectively, V is a compact set in C(K1), G is a nonlinear continuous operator,
which maps V into C(K2). Then for any ε > 0, there are positive integers n, p, m, constants
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ck
i , ξk

ij, θk
i , ζk ∈ R, wk ∈ Rd, xj ∈ K1, i=1,...,n, k=1,...p, j=1,...,m, such that

|G(u)(y)−
p

∑
k=1

n

∑
i=1

ck
i σ(

m

∑
j=1

ξk
iju(xj) + θk

i )︸ ︷︷ ︸
branch

σ(wk · y + ζk)︸ ︷︷ ︸
trunk

| < ε

holds for all u ∈ V and y ∈ K2.

The theorem stated above suggests that neural networks have potential applications
for learning nonlinear operators directly from evaluated data. The works presented in
papers [16], [24], and [5] discuss various challenges that arise during the training of
neural networks. Consequently, three main factors should be considered: approxima-
tion, optimization, and generalization. High-quality neural networks typically exhibit
low prediction error, easy network training, i.e., low optimization error, and robust
performance on unseen data, i.e., low generalization error.

Various neural network architectures have been applied to problems concerning dy-
namic systems, including Fully Connected Neural Networks (FNNs), Recurrent Neural
Networks (RNNs), Residual Networks, and Autoencoders, as presented in papers [36],
[25], [35], and [10], respectively. The selection of the appropriate architecture depends
on the problem at hand, and in many cases, a combination of architectures may offer
an optimal solution. Another approach involves using input or output functions as an
image, enabling the use of CNN architecture to learn image-to-image mapping [40, 43].
We now provide a more detailed examination of the branch and trunk branches that
constitute DeepONet. The branch sub-network takes evaluations at m "sensors" spe-
cific to the problem. These can be represented as a vector [u(x1), u(x2), ..., u(xm)]T,
which serves as input and propagates through the initial network, yielding a specific
p-dimensional output [b1, b2, ..., bp]T. In addition to the branch network, the trunk
input only monitors inputs at grid points. This input can be d-dimensional, allowing
it to be adjusted for different dimensional problems or to accommodate additional
variables. This sub-network also outputs a p-dimensional vector, which can be written
as [t1, t2, ..., tp]T. It is essential to note that these two sub-network outputs must have the
same dimension, as they need to be merged for the complete DeepONet to be trained,
as depicted in Figure 2.2.

Subsequently, the output of the DeepONet looks like the following

G(u)(y) =
p

∑
k=1

bktk.
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Although Theorem 1 states that bias is not necessary to achieve sufficient results, using
bias can improve generalization error, which in turn enhances overall performance on
unseen data. The proposed formula for the final prediction, assuming b0 ∈ R, can be
presented as

G(u)(y) =
p

∑
k=1

bktk + b0.

According to the paper [25], in practice, the dimension to which sub-networks are
propagated is p=10 or more. Additionally, their research group implemented both
versions of "unstacked DeepONet" and "stacked DeepONet," and this framework is
available as a Python library designed for scientific machine learning. The paper that
supports this library, named DeepXDE, is presented in the work [28].

However, the library is constantly updated with new functionalities, and support for
the Pytorch Framework [34] is still under development at this time. Therefore, in this
master’s thesis, we implement the network "from scratch." In addition to the proposal
of DeepONet architecture, the authors of this work describe the generation of data for
specific problems. They consider two function spaces: Gaussian Random Field (GRF)
and orthogonal (Chebyshev) polynomials.

One additional issue that could arise during the implementation of DeepONets is
the number of dimensions. Because the inputs are sensor values at different points in
the grid, the network cannot be directly applied to grids that are discretized differently
from the one on which the model was trained. This problem can be solved by down-
sampling or up-sampling the grids depending on the case presented. Furthermore, one
approach can involve inputting an additional layer at the branch network, which will
scale the image appropriately before training the image further. However, an approach
introduced in the paper [3] proposes PCA-based operator approximation, so that the
function space becomes finite-dimensionalized. This discretization, as well as graph-
based ones, are discussed in more detail in the paper [18]. Graph Neural Operator
(GNO) is a neural operator that approximates integrals by combining a Nyström
approximation with domain truncation and is based on the idea of graph neural
networks. This network was originally constructed and proposed by [22]. Additional
approaches presented include Low-rank Neural Operators (LNO) and Multiple Graph
Neural Networks (MGNO), which utilize the idea of imposing the kernel of a tensor
product form and combining it with graph neural networks.
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2.3.3 Fourier Neural Operator

Fourier Neural Operator (FNO) is a deep learning method that combines the power of
neural networks and the Fourier transform to approximate nonlinear operators. The
FNO method was introduced in a paper by Li et al. in 2020 [21].

In traditional numerical methods, PDEs are usually discretized into a finite difference
or finite element system and then solved numerically. This can be computationally ex-
pensive, especially for high-dimensional problems. FNO offers an alternative approach
that is faster and more accurate in certain cases.

FNO works by representing the solution to a PDE as a neural network that takes the
input data (e.g., boundary conditions) and outputs the user-defined query points in the
domain. The neural network architecture is designed to exploit the Fourier transform
to efficiently encode the spatial information of the solution. The Fourier transform
breaks down the solution into a set of frequency components, and the mapping in those
components is learned by the neural network.

The architecture of an FNO can be depicted similarly to the one in Figure 2.3. Initially,
the input function a(x) is lifted to a higher-dimensional channel space using a neural
network. Subsequently, multiple integral operators and activation functions are applied.
In the next step, the neural network, represented as Q in Figure 2.3, is used to project
the target dimension to the desired one. These results can then be used to train the
complete neural operator with the ground truths u(x). The subnetwork shown in
2.3(b) depicts the Fourier layers, which are the main characteristics of the Fourier
Neural Operator. At the top of this architecture, a Fourier transformation F, a linear
transformation R on the lower Fourier modes, filtration on the higher modes, and
finally the inverse Fourier transformation F−1 are applied. In the lower part, a local
linear transformation W is applied, and these two parts are then dot-multiplied before
using the activation function.
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Figure 2.3: Illustration of the problem setup and architecture of FNO, taken from [21].

The FNO method has proven effective in solving a wide range of PDEs, including the
heat equation, wave equation, and Schrödinger equation. It has also been applied to
problems in fluid dynamics and image processing [21]. It can be considered a natural
extension of the idea of making neural operator function spaces finite-dimensional.

Overall, FNO represents a promising new direction for using deep learning to solve
PDEs, with the potential to offer significant improvements in accuracy and efficiency
over traditional numerical methods.

2.3.4 Difference between FNOs and DeepONets

The main difference between DeepONets and FNOs is the representation of the input
space. DeepONets use an input space that is not in the finite dimension and can be
observed differently depending on the number of grid points used during the simula-
tion. On the other hand, FNOs use Fourier Transformation to propagate input values
through the neural network.

Let us now introduce the Discretization-Invariant models [18]. For a mathemat-
ical model to be discretization-invariant, we need a model with a fixed number of
parameters that satisfy the following rules:

• It can be applied to any discretization of the input function, i.e., any set of points
in the input domain can be used.

• It can be evaluated at any points that lie in the output domain.

• It converges to a continuum operator as the discretization is refined.
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2 Background

Figure 2.4: Comparison of Approximation Techniques, taken from [18].

The first two requirements are standard, while the third enables consistency in
the limit as the refinement of the discretization is increased. Thus, it imposes the
requirement that the number of parameters is fixed. If the number of parameters is
unbounded, then the limit of discretization becomes unbounded.

Figure 2.4 compares four different Approximation Techniques: CNNs, DeepONets,
Interpolation, and Neural Operators. In addition to the properties discussed in the pre-
vious section, the property of the Universal Approximation Theorem for the Operator
is also evaluated. The reference to this theorem can be found in the DeepONets section
2.3.2.
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3 Approximation Solutions of Wave
Equation Using DeepONets

In this chapter, we first discuss the various considerations involved in the selection of
appropriate DeepONet architecture. Afterwards, we present the architecture, complete
implementation, and training of the DeepONet network for the problem at hand, as
well as the numerical simulations of the wave equation used for dataset generation and
experiments conducted.

3.1 Selection of the right DeepONet

In this subsection, we discuss the typical problem formulation associated with the
utilization of DeepONets, as well as examine various considerations when implement-
ing and employing these networks. Furthermore, we expound upon the methodology
selected in our work and the rationale behind this choice.

The research article presented by [27] proposes multiple potential metrics for en-
hancing the efficacy of DeepONet networks and explores possible improvements.
Additionally, the authors implement various benchmarks and compared the results
with those of Fourier Neural Operators, as shown in Section 2.3.4. As previously
discussed, the theorem published by [8] asserts that the universal operator approxima-
tion utilizing a single-layer neural network is achievable, given theoretically infinite
computational resources.

The implementation of Deep Operator Networks (DeepONets), as introduced in
the paper [27], involves several key considerations and modifications to enhance the
model’s performance and capabilities:

• The inclusion of new features that enhance the trunk and branch networks’
capacity for representation and allow for the approximation of increasingly
complex functions.

• Hard limitations are imposed for Dirichlet and periodic boundary conditions
where necessary. These limitations help the model better reflect the underlying
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3 Approximation Solutions of Wave Equation Using DeepONets

physics of the issue, producing predictions that are more precise and physically
consistent.

• The creation of a unique extension termed POD-DeepONet, which feeds the
trunk network data from the training dataset’s Proper Orthogonal Decomposition
(POD) modes. By utilizing the data’s natural low-dimensional structures, this
method improves the model’s capacity for learning.

• Analysis and optimization of DeepONet scaling to enhance accuracy. By investi-
gating the scalability of the model, potential bottlenecks and the learning process
can be identified, leading to improved performance.

• Introduction of a fast implementation strategy, drawing inspiration from Fourier
Neural Operators (FNOs). This approach aims to reduce computational complex-
ity and expedite the training and inference processes, making DeepONets more
practical for large-scale problems and real-time applications.

In the study presented in the paper [25], four slightly distinct versions of DeepONets
were developed to explore various architectural choices and their implications on the
model’s performance. To enable a numerical analysis of the data, the input function
u is discretized and represented as values at points within a two-dimensional grid.
The function u is partitioned into a set of locations x1, x2, ..., xn, where each point
corresponds to the point-wise evaluation of the function u. The trunk network receives
the exact coordinates of these points as input, along with the time step, depending on
the problem statement. The output of this network can be expressed as:

G(u)(y) =
p

∑
k=1

bktk + b0,

where b0 ∈ R represents a bias term. The points b1, b2, ..., bp correspond to the p outputs
of the branch network, while t1, t2, ..., tp denote the p outputs of the trunk network.
This type of architecture, when employed for solving problems using DeepONets, is
referred to as "Vanilla" DeepONet. By examining the performance of various architec-
tural designs and configurations, one can identify the most effective approaches for
specific problem domains and further advance the state-of-the-art in Operator Learning.

In order to enhance the prediction performance of neural networks, it can be useful to
consider multiple factors that can contribute to a more comprehensive understanding
of the problem. One approach involves considering not only the dataset but also
the prior knowledge about the underlying system, which exists in many application
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domains. The method of incorporating additional parameters into the existing dataset
is known as Feature expansion, which seeks to improve the model’s learning capacity
by leveraging domain-specific information.

Feature expansion can prove beneficial when encoding prior knowledge directly into
the DeepONet by modifying its architecture. While there are numerous approaches
to achieving this, we will discuss some of the techniques proposed in the paper [27]
that exemplify the benefits of incorporating domain-specific knowledge into the neural
network architecture.

Figure 3.1: Architecture of DeepONet. (A) DeepONet architecture. If the trunk net is
a feed-forward neural network, then it is a vanilla DeepONet. (B) Feature
expansion of the trunk-net input. Periodic BCs can also be strictly imposed
into the DeepONet by using the Fourier feature expansion. (C) Dirichlet
BCs are strictly enforced in DeepONet by modifying the network output,
taken from [27].

In papers examining Physics-Informed Neural Networks (PINNs) [41] and [42],
the concept of feature expansion was initially introduced as a means to improve the
model’s ability to capture complex relationships between input and output variables.
This approach involved extending the input of the function u(ξ) to the expression
(e1(ξ), e2(ξ), ...) for the input of the trunk network. By doing so, the network can better
adapt to the intrinsic structure of the problem and generate more accurate predictions.
A visualization of this process can be observed in Figure 3.1B, which demonstrates the
application of feature expansion to the trunk network input.

The utilization of feature expansion, as demonstrated in the example provided by
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3 Approximation Solutions of Wave Equation Using DeepONets

[20], addresses problems involving oscillating solutions by applying a harmonic feature
expansion on the input ξ of the trunk network.

The transformation is defined as:

ξ 7→ (ξ, cos(ξ), sin(ξ), cos(2ξ), sin(2ξ), ...).

This expanded input is subsequently used as the actual input for the trunk network,
effectively increasing its capacity to model complex patterns and relationships. Another
approach to enhance the performance of the network involves leveraging historical
data as a feature. However, in our work, we encountered challenges with many inputs
being equal to or very close to zero, prompting us to explore alternative methods.

We proposed a method involving the downsampling of input condition values with
dimensions (x, y). These values, represented as images, are downsampled to sizes
of ( x

2 , y
2 ) and ( x

4 , y
4 ). Subsequently, the downsampled images are upsampled back to

the original image size and stacked into a single matrix with three channels. This
three-channel matrix is then employed as the input for the branch network, effectively
adding an additional layer of information to enhance the model’s learning capacity.

Regarding the feature expansion of the branch network, as depicted in Figure 3.1A,
an additional input function can be considered to serve as a branch input.

The next proposition for improving the performance of the DeepONet for certain
applications where the imposition of the system’s boundary conditions is essential.
The primary objective is to configure the network in such a manner that the boundary
conditions are integrated during the execution of the product between the branch
and trunk networks, ensuring compliance with the boundary conditions. While this
approach is not employed in the current study, an explanation of this concept can be
found in the paper [27].

The "Vanilla" DeepONet uses the trunk network to autonomously learn the basis of
the output function from the data. In contrast, the concept proposed by [27] introduces
the POD-DeepONet, in which the basis is computed through the application of proper
orthogonal decomposition (POD) on the training data. Initially, the existing mean of
the training data is eliminated, followed by the calculation of the POD. Subsequently,
the POD basis is used as input for the trunk network, while the branch network is
exclusively used for learning the coefficients of the POD basis (Figure 3.1A).
The output value can be expressed as follows:

G(v)(ξ) =
p

∑
k=1

bk(v)φk(ξ) + φ0(ξ),

where φ0(ξ) denotes the mean function of u(ξ), calculated using the training dataset.
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Furthermore, the variables b1, b2, ..., bp represent the outputs of the branch network,
while φ0, φ1, ..., φp constitute the p precomputed POD modes of the function u(ξ).

Another concept originates from the challenge of vanishing or exploding gradients
of the variance, which prevent the effective training of neural networks [11][29]. To
solve this issue, various initialization methods have been developed, one of which is the
Glorot initialization method [11]. In our work, we opted to utilize this particular method
for initializing the neural network during the training process of our DeepONet.

In a separate paper, [13] presented the He initialization for ReLU activation functions
as an alternative approach to facilitate the efficient training of DeepONets. Although
this type of initialization offers potential benefits, we did not incorporate it into our
current work. Nonetheless, it could be considered for implementation in future research
endeavors.

An additional challenge arises when the output function cannot be represented as a
single function. Assuming there are n output functions, the paper [27] proposes the
following approaches:

1. Training n distinct DeepONets, with each being responsible for only one function
output.

2. Dividing the branch and trunk network into n groups, where the output of the
kth group represents the kth solution. This implies that every kth segment of the
output weights corresponds to the kth function output.

3. Similarly to the second approach, the branch network can be divided into k
groups while sharing the trunk network, thereby separating the k different
function outputs.

4. Similarly, the trunk network inputs can be divided into k groups and share the
branch network.

In our case, for instance, we have multiple initial condition grids as input, which need
to be mapped to another grid at a different timestep. However, the output grid has an
output size of (x, y), and since we consider the function evaluation of the function at
each point on the grid, we needed to address a similar issue. Therefore, we adopted
the idea of dividing the grid in each timestep by a multiple of x and y to obtain a
single function output. These outputs are utilized as inputs to our training data, and
subsequently, only one DeepONet is trained.

It is also worth mentioning a scenario in which the efficiency of computational
cost and memory usage should be considered. By observing these factors, important
benefits could be achieved in terms of accelerating the model training process.
In summary, this subsection has presented various considerations that were taken into
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account while seeking the most suitable features for implementing DeepONet. In the
following subsection, our attention will be directed toward the actual implementation
of the branch and trunk networks, wherein we will discuss the specific network
architecture and discuss the training process of our models.

3.2 DeepONet Implementation

In this subsection, we discuss the architecture, comprehensive implementation, and
training of the DeepONet network for our problem. We present the architecture of
both branch and trunk networks, as well as the input and output specifications of
the DeepONet implementation. It is important to note that the framework employed
for training the model is PyTorch [34], and we have implemented the entire network
independently.

The process of selecting the optimal functioning model is divided into three distinct
stages: data preparation, model selection, and prediction generation. Initially, we load
our data into the dataset, where we also conduct some preprocessing depending on the
case and experiment with its impact on the network’s performance. Consequently, the
input on the branch network is either a tensor with the shape (1 x X x Y) or (3 x X x
Y). We will now examine the first case of input and investigate its network architecture.
For the trunk network, we consider only the inputs of tensors with the shape (1 x m),
where m represents the number of parameters taken into consideration. Depending on
the experiments detailed in Sections 3.4.1 and 3.4.2, the input of the branch network can
represent either a single point on the grid used in the training sample or, additionally,
the timestep. Furthermore, we divided our dataset into batches of size 4 to accelerate
the model training process, achieve better generalization, and prevent overfitting.

As is every usage of DeepONet, we consider two distinct networks(branch and trunk)
that are combined to produce the final result. For the implementation of the branch
network, we employ Convolutional Neural Network (CNN) layers [33] to effectively
extract the underlying structure of the input signals.

Table 3.1: Overview of Branch Network Convolution Layers
DeepONet Branch Network

Input Channels Output Channels Kernel Size Stride
1 8 5 2
8 16 3 2
16 8 2 1
8 4 3 2
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An overview of all the convolutional layers used in our model is presented in
Table 3.1. Between all convolutional layers, we employ the ReLU activation function.
Subsequently, the tensor obtained after propagating through these layers is converted
into a one-dimensional tensor, which then passes through an additional Fully Connected
Layer (FC Layer). This tensor is subsequently utilized for multiplication with the trunk
network. The overall architecture of the DeepONet used in this implementation can be
seen in Figure 3.2.

1 20
0

Linear

8 98

ReLU

16 48

ReLU

8 47

ReLU

4 23

ReLU

184
64

ReLU

1 40
0

ReLU

Linear Linear ReLU ReLU

Concat

Figure 3.2: Architecture of DeepONet. Branch Network uses Convolution Layers,
while Trunk Network uses Fully Connected Layers.
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The trunk network receives a one-dimensional tensor as input, and we propagate it
through three fully connected layers before merging it with the branch network.

In order to improve the training of the model and achieve convergence, we employ
Xavier Initialization (alternatively known as Glorot Initialization) for initializing the
weights of the neural network. The chosen loss function for calculating the difference
between our model’s predictions during training and the corresponding ground truths,
which we seek to minimize, is the Mean Squared Error (MSE). The MSE loss function
is known to be a popular choice in regression problems because it aims to effectively
penalize large errors and ensure a smoother convergence to the optimal solution. For
the optimization algorithm in our training process, we utilize the Adam Optimizer, a
widely-used, adaptive gradient-based optimization technique. The parameters specified
for the Adam Optimizer are delineated in Table 3.2.

Table 3.2: Parameters used for Adam Optimizer during training
Adam Optimizer parameters

Learning Rate Betas Epsilon
0.00001 (0.9, 0.999) 1e-8

In the context of the Adam optimizer, the beta values represent the coefficients for
computing the running averages of both the gradient and its square. These coefficients
influence the step sizes during the optimization process. The epsilon term serves as the
term added to the denominator to improve numerical stability.

On one hand, in our implementation, we adhere to the default settings for beta values
and epsilon, as defined in the PyTorch implementation of the Adam optimizer. This
decision is based on the extensive empirical success of these default settings across a
wide range of problems. On the other hand, we alter the learning rate from the typical
value by setting it to be significantly smaller than usual. This choice was motivated
by the challenges we encountered during training, where numerous wave propagation
values were approximately zero. By utilizing a smaller learning rate, our model can
gradually adjust its parameters and better overcome this issue, ultimately leading to
more accurate predictions and improved generalization.
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3.3 Metrics - Evaluating DeepONets

In completing the final step of our process, it is required to identify a suitable method
for evaluating the performance of DeepONets. Therefore, this section presents a
thorough discussion of the appropriate metrics that can be employed to ensure a fair
comparison of the model’s performance.

In this work, the decision was made to adopt the L2 metric, also known as the
Euclidean distance, as the primary criterion for evaluating the performance and efficacy
of our proposed model. The L2 metric offers an advantageous method for effectively
and intuitively quantifying and representing the degree of similarity between the
generated outputs of the model and the actual ground truth values obtained from the
dataset under examination.

The selection of the L2 metric as the evaluation method was based on several notable
benefits that it provides. Firstly, the L2 metric is robust to minor variations and potential
errors that may be present in the data or the model output, therefore enabling a more
reliable and stable evaluation of the model’s performance. Secondly, the L2 metric can
be easily and fast calculated, which offers a huge advantage when performing extensive
assessments of the model.

The performance of our model, as evaluated using this metric, will be demonstrated
through a series of experiments that will be presented in the next section.
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3.4 Results

This section presents a comprehensive examination of the various DeepONet archi-
tectures employed on our datasets, as well as a thorough analysis of the approaches
that did not meet the necessary requirements. Our experimentation is conducted on
two discrete datasets, which will be introduced in this Chapter. Following this, we
implement distinct yet analogous models to tackle the complexities within the datasets.
Furthermore, we elucidate the conceptual framework and design of the training pro-
cedure, as well as the hyperparameter optimization is undertaken. Subsequently, we
exhibit the outcomes of each experiment and discuss the potential improvements.
More information about the hardware employed for the training process can be found
in Figure 3.3.

(a) CPU Information
(b) GPU Information

Figure 3.3: The specification of the system used for experiments.

3.4.1 Experiment 1 : Complete Wave Equation

In this subsection, we initially describe the first numerical simulations and the dataset
derived from them. We simulate the propagation of the wave equation over time, which
is defined as:

∂2u
∂t2 (x, y, t) = α2(

∂2u
∂x2 (x, y, t) +

∂2u
∂y2 (x, y, t)).

Here, x and y represent the points in the spatial domain, while t represents the timestep
during which the wave is being propagated. The signal evaluated at the given position
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and timestep is denoted by variable u, and α represents the velocity of the wave. The
velocity is usually dependent on the spatial parameters, but we define it as constant.
This solution is highly inspired by the work [4].
The initial condition defined for spatial variables x, y, and the timestep t = 0 is as
follows:

u(x, y, t = 0) = 0.2e−((x−1)2/0.1+(y−1)2/0.1).

The spatial domains are divided into 100 areas for both x and y, with a spa-
tial increment of 0.05 in both directions. Consequently, they lie within the array
[0, 0.05, 0.10, ..., 4.95]. The wave speed is defined as a constant with α = 1. The duration
of the simulation is set to 5 seconds, with each timestep equivalent to 0.005 seconds. The
complete simulation, therefore, has 1000 timesteps, and the propagation of the wave
at different timesteps in the domain. The Neumann boundary condition is selected
for this simulation. The simulation is conducted employing the formula presented in
Section 2.2.

The dataset produced as a result of the numerical simulation can be found in Figure
3.4, which provides a comprehensive visualization of the wave function values through-
out the simulation. These values are sampled at regular intervals of 62 timesteps,
facilitating a detailed analysis of the temporal evolution of the wave. Consequently, this
allows for a more thorough understanding of the wave’s behavior and properties as
they change over time.

To create these visualizations, the widely-used Matplotlib library [14] was employed,
specifically utilizing heatmaps to effectively display the variations in the wave function
values. This choice of representation ensures that the data is both accessible and easily
interpretable for the user for the examination of the simulation results.

In the heatmap, the color scheme is designed to highlight the differences in mag-
nitude, with black representing values that are close to zero and yellow signifying
increased magnitude. This color-coding system allows for a more intuitive understand-
ing of the distribution of wave function values within the simulation, as well as the
identification of any notable patterns or trends that may emerge as the wave evolves.

In this work, our primary goal was to systematically examine the performance
of our proposed model by initiating the training process from a single timestep and
progressively incorporating subsequent timesteps. This approach allowed us to examine
the model’s adaptability and learning capabilities over time. One of the key objectives
was to assess the model’s performance on unseen timesteps that followed the final step
in the training dataset, thereby evaluating its generalizability.
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Figure 3.4: Wave function propagation during the time.
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The first experiment is based on the wave equation simulation where we generate
our dataset which is described previously.

For the model presented in this work, we selected Timestep 200 as the starting point
of our training dataset. This choice was based on the consideration of minimizing the
number of values equal to zero in the dataset. The values of the wave propagated at
this timestep are comprehensively illustrated in Figure 3.5, which can be regarded as
the initial condition for our training process. These initial values provide a baseline for
further model development.

Subsequently, we methodically incorporated the following 200 timesteps into our
training dataset, specifically selecting the steps with indices [200, 201, ..., 399].

Initially, our primary focus was on utilizing 50 timesteps as the test dataset. This
selection was intended to provide a representative sample for evaluating the model’s
performance in a defined setting. However, we also extended our analysis to include
the entire dataset, aiming to investigate the impact of training on 200 samples with
respect to the prediction performance on the remaining 600 timesteps (ranging from
400 to 999). This extensive evaluation allowed us to thoroughly assess the model’s
capabilities and identify potential areas for improvement or further research.

By adopting this extensive approach, we sought to provide a thorough and rigorous
evaluation of our proposed model.

(a) TIMESTEP 0 (b) TIMESTEP 200

Figure 3.5: Different Timesteps considered as the initial condition.

All different matrices for each timestep are stored using the Numpy library [12].
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In order to incorporate our solution into the Pytorch framework, we develop the new
Dataset which aims to the values of each entry of the dataset and then store them as
the Tensors. Afterwards, in order to enable the model to better generalize data and not
to learn in a specific order, we use the shuffle method, which executes the randomizing
of the access indices.
In addition to considering only the initial conditions assessed at each grid point, we
addressed the issue of numerous points exhibiting values close to zero by employing
downsampling techniques. Specifically, we utilized downsampling scales of 0.5 and 0.25
to mitigate this problem. Subsequently, we upsampled the data to restore the original
values and introduced the input via three distinct channels, potentially enhancing the
network’s learning capabilities. This can then be used to serve as our new dataset.

As a result, in these instances, the input can be characterized as a matrix with
dimensions (3, 100, 100), effectively representing the spatial and multi-scale information.

In the analysis of branch networks, a critical aspect involves accurately representing
the spatial and temporal components of the network. For this purpose, we adopt a
vector notation that incorporates the precise coordinate values (xi, yi) and the corre-
sponding time step (ti), depending on its usage in the context of the dataset being
examined. This representation facilitates a complete understanding of the network and
its various attributes.

For this dataset, we employ the following vector format:

[xi, yi, ti]

This format encompasses the spatial coordinates (xi, yi) and the temporal component
(ti). It captures the dynamics of the branch network, accounting for changes over time.

During the practical implementation, we opted to employ the Unstacked DeepONet
architecture, as depicted in Figure 2.2. This choice was made primarily because the
initial condition serves as the sole input to the branch network, thereby allowing us to
obtain the evaluation of each point at the precise timestep specified.

The code snippet responsible for generating the input vector is as follows:

// loop through the whole grid
for i in range(100):

for j in range(100):
// set initial condition at the timestep 200
initial_condition_array[i][i] = u[i][j][200]

In this context, the matrix ’u’ represents all the evaluated values of the wave equation,
propagated throughout the spacetime domain.

Furthermore, the output variable for each data sample is derived from the value
of the wave function, evaluated precisely at the grid points and the timestep defined
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within the trunk network. Consequently, for each timestep of the simulation, we obtain
a set of values in the training dataset with dimensions corresponding to the product of
xsize and ysize.

The primary objective of this experiment was to design a DeepONet capable of oper-
ating with a small dataset, which could then be further refined and developed. We
initiated the process by working with a dataset that had a batch size of one, wherein
each entry in the group of entries utilized the initial condition as input for the branch
network and a single grid coordinate as input for the trunk network. This was em-
ployed as a single input entry in the training data. For output, we employed the
evaluation at input coordinates, thus allowing us to configure the initial architecture
for our DeepONet.

The initial architecture comprised of Fully Connected Layers for both branch and
trunk networks. While we experimented with various neuron sizes in each layer, we
were unable to easily identify a reasonably large network capable of learning our
patterns. In our assessment, the primary challenge for the network was the prevalence
of near-zero values in the dataset. Consequently, we explored several potential solutions
to this issue.

Our initial approach included transforming the input data to reduce the proportion of
zero values. To achieve this, we applied the downsampling and upsampling techniques
previously described in this work. We attempted to downsample the input image of
the initial condition by coefficients of 0.5 and 0.25, followed by upsampling to the
original size and conversion to a single tensor with three channels. This method
exhibited significant benefits, as our network began to learn patterns and overcame
the persistent issue of zero tensor outputs. To implement this function in PyTorch, we
utilized the provided function TORCH.NN.FUNCTIONAL.INTERPOLATE with suitably
defined inputs, scale factor, and mode. We persisted in exploring further potential
improvements.

However, the complexity of the problem necessitated a more complex network that
could be supported solely by Fully Connected Layers. Thus, we explored alternative
network types. It is important to note that for the trunk network, which featured a
one-dimensional vector representing a point on the coordinate system, we maintained
the use of Fully Connected Layers and experimented with varying sizes of this FNN
network. Contrary to initial expectations that the trunk network would not require
a large size, we had to implement a reasonably large neural network in order to
successfully captured our operator pattern.

Subsequently, we investigated the potential influence of incorporating convolutional
neural layers into the overall network. Initially, we used the input as the initial
condition with a single channel, without applying the prior transformation. As a result,
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we started with a single-channel input and assessed various architectures to evaluate
their performance. Our experiments indicated that the most promising outcomes were
achieved with approximately three distinct convolutional layers. It is important to
acknowledge that an increased number of layers might result in impractical training
times, thereby constraining exploration opportunities. A comprehensive depiction
of the initial experimental model’s architecture can be found in Table 3.3. In this
overview, we illustrate the size of the training dataset, as our initial goal was to
attain good performance on a smaller dataset. Additionally, we employed varying
numbers of epochs to train our network to observe the impact of the new architecture
on performance and subsequently determine if the experiment showed promising
results. Initially, we also intended to implement the Xavier Initialization for several
convolutional layers.

Table 3.3: Configuration for the First Experiment
First experiment

Training Dataset Size 30
Epochs 5
Batch Size 1
Transformation True
Initialization Xavier Initialization for 2 convolution layers
Optimizer SGD(lr=0.0001, momementum=0.8)
Loss function Mean Square Error
Branch Network Conv2d(in_channels=3, out_channels=3, kernel_size=80,

stride=1)
Conv2d(in _channels=3, out_channels=3, kernel_size=10,
stride=1)
Conv2d(in_channels=3, out_channels=3, kernel_size=10,
stride=2)
Linear(12, 16)

Trunk Network Linear(3, 8)
Linear(8, 8)
Linear(8, 16)

To determine whether the architecture needs further exploration or modification, we
also plotted the ground truth of the solution alongside the prediction generated by the
model during training with the presented configuration. This prediction is illustrated
in Figure 3.6.
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Figure 3.6: Failed Prediction for First Experiment.

Typically, the number of channels in the convolutional layers we used did not exceed
16, but we had to increase it as we observed that the model underperformed when
trained on a smaller number of channels, such as up to 3. Incorporating larger channel
sizes would result in a substantial increase in training time, which we leave for future
work. Regarding the kernel size in filters, we primarily employed sizes ranging from
2 to 5, although we also experimented with larger kernel sizes without observing
significant improvements. In terms of stride parameters in convolutions, we aimed
to maintain a range of 1 to 2 to avoid excessive filter compression in a single step.
While we did not observe any notable performance differences between data with and
without down- and upsampling transformations, this method could be employed in
future iterations without negatively affecting results.

The trunk network maintained its original fully connected layers format, and we
did not implement any significant modifications in this aspect. Another critical factor
that substantially influenced our model was the incorporation of weight initialization,
specifically the Xavier (Glorot) method explained in the previous chapters. After
propagating the weights through the convolutional layers in the branch network, we
collapsed the tensor into a one-dimensional vector form. This one-dimensional tensor
was then propagated through an additional fully connected layer to achieve the same
dimensions as the trunk network’s output. Moreover, the activation functions employed
for handling non-linear relationships were ReLU [1]. We did not conduct any significant
experiments concerning the modification of the activation functions.

An additional consideration for the hyperparameters used in our model involved
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identifying the most suitable optimizer and loss function. Initially, we explored the
basic stochastic gradient descent (SGD) with various parameters. During our experi-
ments, we concluded that the learning rate needed to be significantly smaller than in
typical models due to the dataset’s specific characteristics. Consequently, the optimal
parameters for this type of optimizer were a learning rate of 0.00001 and a momentum
of 0.8.

However, the model’s performance did not meet our expectations, which necessitated
the exploration of an alternative solution. We subsequently used the well-known Adam
Optimizer [17]. Certain parameters required consideration during the utilization of the
Adam optimizer, namely the learning rate, betas, and epsilon.

As mentioned previously, the Adam optimizer’s performance with a larger learning
rate was unsatisfactory. Consequently, we employed the same learning rate as in
Stochastic Gradient Descent, specifically 0.00001. We also experimented with various
values for the hyperparameters betas, the initial decay rates used when estimating the
first and second moments of the gradient. These rates are squared at the conclusion
of each training step. However, our results indicated superior performance when the
values were greater than or equal to 0.9. Therefore, we opted to use the default betas
in the PyTorch implementation, betas=(0.9, 0.999). For the epsilon configuration, we
selected the value eps=1e−08.

Details regarding the experiment conducted in this manner are provided in Table
3.4. The configuration was largely similar to that of the previous experiment, with the
exception of the optimizer. In this instance, the Adam optimizer was utilized, resulting
in a notable improvement. Figure 3.7 illustrates the visible improvement in learning
the initial input. The prediction successfully captured the overall area of the wave
propagation. Despite these advancements, the model’s performance on the test data
remained suboptimal.
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Table 3.4: Configuration for the Second Experiment
Second experiment

Training Dataset Size 30
Epochs 100
Batch Size 1
Transformation True
Initialization Xavier Initialization for 2 convolution layers
Optimizer Adam(lr=0.001, betas=(0.9, 0.999), eps=1e-08)
Loss function Mean Square Error
Branch Network Conv2d(in_channels=3, out_channels=8, kernel_size=70,

stride=1)
Conv2d(in _channels=8, out_channels=4, kernel_size=10,
stride=2)
Conv2d(in_channels=4, out_channels=4, kernel_size=10,
stride=2)
Linear(16, 16)

Trunk Network Linear(3, 8)
Linear(8, 8)
Linear(8, 16)

Figure 3.7: Failed Prediction 2.
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During the training of our model, we encountered the challenge of extended pro-
cessing time. Completing a single pass through the entire training dataset, known as
an epoch, took over an hour. This necessitated the identification of a new approach to
address this issue.

An optimal strategy involved increasing the number of samples used during a single
forward pass of our network, before updating the weights. This was achieved by
dividing the dataset into smaller subsets, known as batches, and presenting these as a
new dataset.

We experimented with various batch sizes, all being powers of two, and ultimately
concluded that to avoid overfitting, the batch size should not be excessively large. As a
result, our model was trained using a batch size of four.

The experiments were then conducted with this batch size, facilitating a more efficient
hyperparameter tuning process. The configuration of the experiment, as displayed
in Table 3.5, provides specifics for this process. However, in contrast to previous
experiments, we applied the Xavier Initialization to all weights within the neural
network.

In this experiment, we refrained from performing the transformation as we previously
did, as we aimed to observe its performance with the original data. Additionally, we
increased the size of the linear layers in the trunk network, leading us to conclude that
a significantly larger number of neurons in these layers would be required.

We trained this model for 100 epochs. It performed satisfactorily on the training data.
However, it produced unsatisfactory results when applied to the test data. Despite

this, the results showed a significant improvement, and the model began to capture the
wave propagation over time and its movement. An example of the model’s performance
on a single data entry from the test dataset is displayed in Figure 3.8.
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Table 3.5: Configuration for the Third Experiment
Third experiment

Training Dataset Size 30
Epochs 100
Batch Size 4
Transformation False
Initialization Xavier Initialization
Optimizer Adam(lr=0.001, betas=(0.9, 0.999), eps=1e-08)
Loss function Mean Square Error
Branch Network Conv2d(in_channels=1, out_channels=8, kernel_size=70,

stride=1)
Conv2d(in _channels=8, out_channels=4, kernel_size=10,
stride=2)
Conv2d(in_channels=4, out_channels=4, kernel_size=10,
stride=2)
Linear(16, 32)

Trunk Network Linear(12, 8)
Linear(8, 8)
Linear(8, 32)

Figure 3.8: Failed Prediction on Test Data.
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In order to improve the performance of our model, we decided to continue the
training process with a larger dataset. This expanded dataset incorporated 200 different
timesteps from wave propagation. We maintained the batch size of four and continued
to use Xavier initialization. As previously noted in this work, we sought to avoid issues
with values around zero by applying a smaller learning rate, thereby ensuring we did
not overlook the optimal solution.

Furthermore, after experimenting with different architectures, we opted to proceed
with the one depicted in Table 3.6. A notable change was the increase in the size of
the linear layers, which significantly contributed to the improvement of the model’s
performance.

Table 3.6: Configuration for the Final Experiment
Final experiment

Training Dataset Size 200
Epochs 15
Batch Size 4
Transformation False
Initialization Xavier Initialization
Optimizer Adam(lr=0.00001, betas=(0.9, 0.999), eps=1e-08)
Loss function Mean Square Error
Branch Network Conv2d(in_channels=1, out_channels=8, kernel_size=5,

stride=2)
Conv2d(in _channels=8, out_channels=16, kernel_size=3,
stride=2)
Conv2d(in_channels=16, out_channels=8, kernel_size=2,
stride=1)
Conv2d(in _channels=8, out_channels=4, kernel_size=3,
stride=2)
Linear(1600, 400)

Trunk Network Linear(12, 1024)
Linear(1025, 512)
Linear(512, 400)

To assess the performance of our model at various timesteps, we provide multiple
figures to illustrate the predictions generated by the model. On one hand, Figures
3.9, 3.10, and 3.11 represent the predictions of our model on the timesteps 201, 298,
and 333 respectively, which are all stored in our training dataset. On the other hand,
Figures 3.12, 3.13, 3.14, and 3.15 depict the evaluation of how our model performs on
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the samples of timesteps 400, 450, and 550 respectively.
All these entries are contained within our test dataset, and we can conclude that

our model successfully learned the initial pattern of wave propagation over time.
Additionally, we observe that as we progress further in time, our model’s performance
declines compared to the initial timesteps immediately following timestep 399 (which
concludes our training data). This issue could potentially be attributed to overfitting,
which we did not prevent as effectively as possible. Hence, future work may consider
employing different mechanisms.

One approach could involve training the model for fewer epochs, sacrificing perfor-
mance on the training data but potentially improving performance on the test data.
Furthermore, we could increase the size of the dataset, providing our model with more
timesteps necessary to learn how the wave would react when reaching all boundaries,
thereby addressing these cases.

Another suggestion would be to incorporate dropout layers into our architecture,
which randomly set the input units to 0 with a frequency of a defined rate at each step
during training time, thus preventing overfitting [38].

Lastly, to stabilize the learning process and reduce the number of training epochs
required to train the network, we could employ the batch normalization technique [15].

Figure 3.9: Timestep: 201
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Figure 3.10: Timestep: 298

Figure 3.11: Timestep: 333
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Figure 3.12: Timestep: 400

Figure 3.13: Timestep: 450
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Figure 3.14: Timestep: 550

Figure 3.15: Timestep: 650
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3.4.2 Experiment 2 : Mapping from one to another timestep

In this subsection, we describe the methodology employed for modeling cracks in the
surrogate model of wave propagation through the medium. This dataset was kindly
provided by Rahul Manavalan, and the source code can be accessed on his GitHub
repository at https://github.com/dynamic-queries/FullWaveformInversion.jl.

In this numerical simulation, various cracks are modeled, and the wave is propagated
for 100 timesteps. Figure 3.16 displays the different modeled cracks, with 50 distinct
instances present in our dataset. Taking these initial conditions into account, we capture
the different evaluations of the wave function at timestep 50. Consequently, these
evaluations will be considered as ground truth outputs for their corresponding initial
conditions.
These outputs are illustrated in Figure 3.17.

This experiment presents a different set of challenges to address. Our primary
objective is to identify and understand the various neural operators that exist between
distinct timesteps within this particular dataset. To achieve this, we have embarked
on an exploration of the ways in which the initial time step of the simulation can
be associated with the different timesteps observed throughout the entire simulation
process.

As the basis for our initial condition, we utilize the first sample in the simulation,
which serves as a representation of the modeled crack. In order to generate accurate
and reliable results, we evaluate the values for each point on the grid and subsequently
align them with the appropriate surrogate model. This approach is necessary to
accommodate the described variations in crack configurations that may be encountered.
This model is designed to address the complexities and challenges that are inherent in
the diverse crack formations that may be encountered.

As a result of our methodology, in these specific instances, the input can be character-
ized as a matrix with dimensions (1, xsize, ysize), which effectively represents the spatial
and multi-scale information inherent in the dataset.
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(a) Initial Condition 1 (b) Initial Condition 3

(c) Initial Condition 5 (d) Initial Condition 7

(e) Initial Condition 9

Figure 3.16: Different Initial Conditions representing modeled cracks.
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(a) Ground Truth 1 (b) Ground Truth 3

(c) Ground Truth 5 (d) Ground Truth 7

(e) Ground Truth 9

Figure 3.17: Ground Truths at the timestep 50 for respective Initial Conditions.
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In order to ensure compatibility with the used PyTorch framework [34], it is necessary
to convert our input values into Tensors. As the branch network input, we employ 30
distinct initial conditions of the sizes (1, 200, 200), each of which represents a unique
crack formation in our surrogate model. For the trunk network input, we adopt a
simplified vector format, specifically denoted as

[xi, yi].

In this particular case, the representation concentrates exclusively on the spatial co-
ordinates (xi, yi), purposefully excluding the temporal aspect (ti) due to its lack of
relevance to the analysis of this specific dataset.

It is important to note that, within the context of vector notation, both xi and yi
represent the grid points on a predefined scale. By utilizing a matrix with dimensions
(200, 200), we aim to discretize the grid in a slightly different manner, allowing for the
establishment of a distribution on the grid that ranges between 0 and 5. With these
inputs serving as the foundation for the branch network, we represent the inputs as all
possible combinations of the vector [0, 0.025, 0.050, ..., 4.975].

In order to train our model for this dataset, we employed similar concepts as pre-
sented in the first experiment. However, in this case, our objective was to learn the
neural operator between two spaces. The first space was defined by the initial condition,
representing the crack modeled with our surrogate model. For the second space, we
initially used the wave function evaluated at timestep 50, intending to assess how our
model performs with different cracks.

In this experiment, we utilized 30 distinct initial conditions and trained the model
for 15 epochs. The batch size was set to four to accelerate the process, and no trans-
formations were applied to the data. The weights were initialized using the Xavier
Initialization method and the chosen optimizer was Adam, with the parameters de-
picted in Table 3.7. It is important to note here that we changed the value of the learning
rate in the Adam optimizer to 0.001. Since our input data was presented on a grid with
a shape of (200, 200), we needed to make slight modifications to our network compared
to the first experiment described in subsection 3.4.1.

Lastly, we employed the Mean Square Error as the loss function for training our
model.
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Table 3.7: Configuration for Operator Learning
Operator Learning Experiment

Training Dataset Size 30
Epochs 15
Batch Size 4
Transformation False
Initialization Xavier Initialization
Optimizer Adam(lr=0.0001, betas=(0.9, 0.999), eps=1e-08)
Loss function Mean Square Error
Branch Network Conv2d(in_channels=1, out_channels=8, kernel_size=5,

stride=2)
Conv2d(in _channels=8, out_channels=16, kernel_size=3,
stride=2)
Conv2d(in_channels=16, out_channels=8, kernel_size=2,
stride=1)
Conv2d(in _channels=8, out_channels=4, kernel_size=3,
stride=2)
Linear(8464, 400)

Trunk Network Linear(8, 1024)
Linear(1025, 512)
Linear(512, 400)

In addition to the training data, we opted to use a validation set to evaluate the
performance of the network and identify at which point our network encounters the
issue of overfitting.

Initially, we aimed to divide our dataset into mini-batches of size 2000, and after
training each batch of 2000, we calculated the average loss and plotted it. Upon
examining the loss function illustrated in Figure 3.18, we can conclude that our model
performed well, and the loss consistently decreased.
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Figure 3.18: Logarithm of Training loss for 15 epochs.

To address the potential overfitting issue, we also utilized a validation set. We
employed validation for five distinct timesteps and tracked the value of the loss
function for both the training and validation sets. This loss function was calculated
after one iteration through the entire dataset, thus recording the values after each epoch.
Upon examining Figure 3.19, which displays these errors, we can conclude that the
validation loss begins to increase significantly after the fifth epoch. Consequently, we
will use the model saved after this iteration.
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Figure 3.19: Training and Validation loss for 15 epochs.

For the evaluation of the performance of our model, we plot the predictions next to
the actual ground truth of the wave function. We use three samples from the training,
as well as from the test dataset, in order to also display the performance on the unseen
data. On one hand, Figures 3.20, 3.22, and 3.23 represent the evaluations of the function
for the entries used in the training dataset. On the other hand, Figures 3.24, 3.25, 3.26,
and 3.27 display the performance of our trained model within the test data.
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Figure 3.20: Training Dataset; Crack: 0

Figure 3.21: Training Dataset; Crack: 7
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Figure 3.22: Training Dataset; Crack: 20

Figure 3.23: Training Dataset; Crack: 24
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Figure 3.24: Test Dataset; Crack: 32

Figure 3.25: Test Dataset; Crack: 35
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Figure 3.26: Test Dataset; Crack: 43

Figure 3.27: Test Dataset; Crack: 48
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When comparing the performance of the model on training and test data, we can
observe that the evaluation of the function on the training data is considerably better
than that on the test data. Nonetheless, it is evident that the primary patterns within
the wave propagation across different timesteps are learned, and the performance on
the test data is rather satisfactory. Our model particularly excels in distinguishing
between larger values (depicted in yellow) and smaller values (represented in black).
Although this demonstrates that the primary barrier in the crack is well-captured, we
still encounter challenges in making accurate predictions within the section divided
by the crack. Since we have shown that the loss function consistently decreases, we
could approach the overfitted model and achieve better performance at the crack with a
similar formation. A more significant issue arises with cracks that are entirely different
from those in the training data.

Figure 3.28: Logarithm of Training loss for 15 epochs (With Dropout layer).
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In order to prevent overfitting, Dropout layers are incorporated into the network, and
the model is retrained with the modified architecture. In the branch network, a Dropout
layer with a defined probability of p = 0.5 is applied after the second convolution layer,
as well as after the final Linear layer, with an identical probability. Additionally, a
similar Dropout layer is applied to the trunk network following the second linear layer.
Upon training this network for 15 epochs, Figures 3.28 and 3.29 depict the loss function
values for the mini-batches and after each epoch, respectively. It can be concluded that
the Dropout layer significantly reduces the validation loss for the model and improves
the stability of model training.

Figure 3.29: Training and Validation loss for 15 epochs (with Dropout layer).

Furthermore, two predictions are plotted, as illustrated in Figures 3.30 and 3.31.
These predictions are derived from the model generated after the 8th epoch, as this
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model displays the lowest validation loss. In comparison with the preceding model, it
can be concluded that the current model demonstrates better performance, with the
improvements slightly visible in the plots.

Figure 3.30: Training Dataset; Crack: 7 (with Dropout layer).

Figure 3.31: Test Dataset; Crack: 43 (with Dropout layer).
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Moreover, an additional experiment was conducted to assess the performance of the
DeepONet architecture on a dataset containing mappings of wave-propagated values
from time step 0 to 30. The new network was trained for 30 epochs, incorporating the
same Dropout layers as previously described. Figures 3.32 and 3.33 present the loss
function values for both mini-batch and epoch, respectively. Upon examination, it is
evident that the training loss consistently declines, while the validation loss ultimately
decreases and exhibits stability.

Figure 3.32: Logarithm of Training loss for 30 epochs (with Dropout layer, new map-
ping).
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Figure 3.33: Training and Validation loss for 30 epochs (with Dropout layer, new map-
ping).

Two predictions are plotted, as illustrated in Figures 3.34 and 3.35. These predictions
are derived from the model generated after the 17th epoch, as this model displays
the lowest validation loss. It can be observed that the model effectively captures the
contrast between areas with considerable differences in wave-propagated values.

On one hand, the performance on the training data is very good, and it is evident
that the crack is accurately captured. On the other side, the performance on the test
data does not meet expectations. However, this model demonstrates the promising
potential for enhanced performance with future architectural adjustments.
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Figure 3.34: Training Dataset; Crack: 7 (with Dropout layer, new mapping).

Figure 3.35: Test Dataset; Crack: 43 (with Dropout layer, new mapping).
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To address the challenge of overfitting prevention, various techniques can be em-
ployed to enable extended training of the model across more epochs while preserving
enhanced generalization on unseen data. This improvement is evident when multiple
Dropout layers are applied, resulting in a notable reduction in validation loss. Ad-
ditional strategies may include the implementation of Batch Normalization or data
augmentation. Furthermore, an exploration into deepening the Branch network with a
greater number of convolution filters and training the model on the modified architec-
ture could be conducted.

In conclusion, the model demonstrates very good model’s performance on the
training samples, while encountering some issues with the test data.
However, it can be asserted that the DeepONet displays the potential to be utilized in
problems with similar problem statements.
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4 Conclusion

In this thesis, we implement the DeepONet neural network based on the paper by Lu et
al. (2021) [25]. We evaluate the performance of our models in two different experiments,
the first with complete wave propagation during the time and the second with the
mapping of the spaces from one to another timestep.

4.1 Summary

Chapter 2 introduces the formulation of the problem statement for the wave equation
and introduces the numerical method for solving partial differential equations, specifi-
cally the Finite Difference Method. Subsequently, the concept of neural operators is
presented, outlining the basics of operator learning problem formulation. Here we
aimed to introduce neural operators DeepONets [25] and FNOs [21], where we mostly
concentrated on the DeepONet architecture, as this neural network type represents the
core of the present work. We continue in Chapter 3 by discussing the idea of various
DeepONet considerations when implementing the network. Furthermore, we present
the two experiments which are executed and discuss the network implementation in
each of them. Lastly, we plot the predictions and evaluate our model’s performance.

4.2 Discussion

In the main section of this Master’s thesis, various considerations and modifications
are presented in order to improve the model’s performance, and capabilities are dis-
cussed, primarily based on the paper [27]. These considerations include the addition
of features in both branch and trunk networks, imposition of boundary conditions,
utilization of Proper Orthogonal Decomposition, DeepONet scaling, and the adoption
of fast implementation strategies, predominantly drawing inspiration from Fourier
Neural Operators. Furthermore, the actual architecture of the DeepONet is introduced,
detailing the parameters employed for training the network and the used metrics for
evaluating the model’s performance.
Throughout this work, two distinct experiments were conducted. The first experiment’s
dataset was obtained from the complete numerical simulation of the wave equation,
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which was simulated for 1000 timesteps. Timesteps 200 to 399 were used as the training
dataset and we evaluate the performance of our model. The DeepONet architecture
utilized in this context initially explored Fully Connected Layers. The complete neural
network was implemented "from scratch" using the Pytorch framework [34]. After
concluding that the FCL implementation would not succeed, Convolutional layers
were introduced to enhance performance, displaying significant improvement. Data
augmentation for the branch network input was achieved through down and upsam-
pling and showed potential, but was not used in all cases. Furthermore, the Adam
optimizer demonstrated superior performance compared to the Stochastic Gradient
Descent. The most influential change implemented in the model involved increasing
the number of neurons in the Linear Layers of the trunk network, which exhibited
greater capability in capturing wave movement over time. The model’s evaluation
revealed excellent performance on the training dataset and satisfactory performance
on timesteps immediately following the training dataset. However, as the timesteps
increased, the model’s performance declined.
In the second experiment, a surrogate model was used, where various cracks within
the medium were modeled. The model’s performance was evaluated when applied as
a neural operator for mapping the function of the wave propagated from one time step
to another. The branch network input comprised different cracks modeled as initial
conditions at time step 0, while the output was the function evaluated at time step 50.
In addressing this problem, the model exhibited great performance, with the issue of
overfitting. Validation loss increased, prompting the proposal to implement Dropout
layers in the network. This consideration significantly improved the validation loss on
the data and demonstrated the potential for addressing such problems. Additionally,
we used the mapping timestep 0 to timestep 30, as our new dataset, and promising
results were obtained.

4.3 Outlook

The DeepONet was capable of learning the problem statement for both experiments and
displayed promising results for the application of the problems of similar statements.
Although performance on unseen data was lacking, various techniques, such as Dropout
layers, contributed to significant improvement. Additional strategies may include the
implementation of Batch Normalization or data augmentation. Further exploration into
deepening the Branch network with a greater number of convolution filters and training
the model on the modified architecture could be conducted, as well as additional
hyperparameter tuning. The DeepONet has potential for future application in similar
problems, and may be used to solve more complex, multi-dimensional problems.
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