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Abstract

Mathematical models which take the observed data into account provide favourable
insights for dynamical systems. In this project, we identify and model the behaviour
of coarse-grained particles in dynamical crowd setting from data which we observed
through number of experiments. The dynamical system we study focuses on the spread
of a contagious disease. We represent the behaviour of the coarse-grained particles -
which are infectious agents in this case- by stochastic differential equations (SDE). In the
first place, we gather corresponding agent-based simulation data for different scenarios
which the spread of the virus is probable in daily life cycle through our simulation
tool ’Vadere’. We then approximate the drift and diffusivity functions of SDEs through
Artificial Neural Networks (ANN) which can be considered as effective stochastic ResNets.
In our ANN structure, our loss function is inspired by low order approximators , namely,
Euler Maruyama and Milstein methods. We then identify the surrogate models for virus
spread/coarse grained particles in a stochastic crowd dynamics setting with the learned
model. The infected rate for each individual is learned through the model and used to
predict the likelihood of the viral infection spreading to other individuals in the crowd. We
then visualized the spread of the infection through the crowd using a network with nodes
representing population in an environment. The results of this study provide valuable
insights into the potential spread of a viral infection in a crowd.
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1 Introduction

In this study, we worked on the spread of infections. Our goal was to model infection spread
through representing the spread with stochastic differential equations and learning them
with machine learning and finally constructing a graph for this representation.

The document consists of a couple of chapters:

• Chapter State of The Art : It is literature research part which mainly focuses on
simulation modeling, SIR model, stochastic differential equations, artificial neural
networks and modeling dynamics of infection spread on graphs. The chapter mentions
about the main topics which this study is mostly related.

• Chapter Main Part: This chapter constitutes the body of the document. It includes task
description and motivation, general overview to the process, experiments and graph
construction to combine local infection models.

• Chapter Conclusion & Future Work : This chapter summarizes the work and mentions
about the obstacles during the work, possibilities to widen the domain for future studies.
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2 State of The Art

2.1 Simulation Modelling

Modeling real-world dynamical systems is a complicated task to achieve. Throughout history,
many methods proposed to tackle the problem of having a general framework for mapping
these systems. Mathematically modeling a complex system which is the spread of viral
disease in our case through simulation is the core of this project. Current research areas on
that subject could be classified into 3 categories.

2.1.1 System Dynamics

This method is first created by MIT professor Jay Forrester in the 1950s. His idea was to use
electric circuits and the law of Physics to investigate the behavior of economics, stocks, and
flows where a flow is the accumulation of stock prices. It is a differential equation-based
model [1]. Feedback effects and delays are major System Dynamics elements. These models
are known for strategic decisions or decision problems affecting a population [2, 1].

Figure 2.1: How the resources flow in System Dynamics [3].

2.1.2 Discrete Event Simulation

Another method whose first implementation roots go back to the 1960s by a former IBM
engineer Geoffrey Gordon. [4] Discrete Event Simulation models the dynamical systems as
operations which are a sequence of events in time. The states change at each event occurrence
at a particular instant time. To simply put, the system is considered a process being performed
through entities. They are suitable for modeling resource availability. [5] Typical use cases
of the methods include the utilization of resources, time spent in the system or its part by

2



2 State of The Art

an agent, waiting times, queue lengths, system throughput, bottlenecks, cost of the agent
processing, and its structure. [4]

Figure 2.2: Discrete event simulation

2.1.3 Agent Based Modelling

Agent-Based Modelling(ABM) is another simulation modeling technique that is relatively
new compared to System Dynamics or Discrete Event Models. In ABM, a dynamical system
is modeled as a structure consisting of autonomous entities called agents [6]. In other words,
it is a computational model for simulating the actions and interactions of autonomous agents
in order to understand the behavior of a system and what governs its outcomes [7].

Why is ABM becoming widespread?

1. We live in a complex world. The dynamical systems we analyze are complex enough
that we apply some assumptions due to interdependencies. ABMs allow us to flex these
assumptions by inspecting individual agents rather than system-wide assumptions. [8]

2. Data collected for these systems are becoming more fine-grained. ABMs provide
computing individual based simulations. [8]

3. By recent advancements I computational powers for CPU and memory it is now more
efficient to model large-scale social interactions.

4. Advancements in theoretical computer science research and its applications for software
development pipelines, UML diagrams, charts and etc. allow us to take more benefits
from new technologies. [4]

5. Availability to have deeper insights into the system behavior which is not possible
through traditional approaches. [4]

What is ’Agent’?

There are varying definitions of agents in the ABM setting, however, we could consider
an agent as the main component which behaves based on certain set of rules in a dynamical
system. For practical reasons it could be simplified in Table 2.1 and Table 2.2

3



2 State of The Art

Must-have agent features Explanation
Autonomous andself-directed Agent functions independently.

Modular or self-contained Agent is a identifiable, discrete
individual which could be differed
from its characteristics,behaviorr,
decision-making capability.

Social Agent interacts with other agents and
could change its or system’s state
based on these interactions.

Table 2.1: Must-have Agent Features

Optional agent features Explanation
Live in an environment Agent may be situated in the

environment which it changes its state.

Have explicit goals that drive its
behaviour

The goals may or may not be objectives
to maximize.

Have the ability to learn Agent adapts its behavior based on its
experience.

Have the resource attributes which
indicate its current stock of resources

For example, wealth, information,
health condition, energy, etc.

Table 2.2: Optional Agent Features

2.1.4 An ABM Example:

Simulation of Boids (Birds) could be considered a good and mainstream example to examine
how an agent interacts with other agents and the environment within. It was first proposed
by Craig Reynolds to analyze the organized behavior of leaderless flocks [10]. Modeling it
from the perspective of ABM provides good insights into the movement patterns of birds and
their flocking behavior in a structured and organized manner. A bird which is an agent has
predefined rules to follow in the simulation environment.

4



2 State of The Art

Rules Behavior
Separation Each agent steers to avoid local

flockmates.
Cohesion Each agent steers to move towards the

average position of its nearby
flockmates (set by a predefined region
area).

Alignment Each agent steers towards the average
heading of its local flockmates.

Table 2.3: Rules of a Boid

Other rules such as predator avoidance, obstacle avoidance or more complex ones such as
the direction while encountering other flocks could also be applied to enrich the complexity
of the model. However, even applying these 3 basic individual rules is enough to recognize
the collective movement of the boids and patterns for flocking behavior in ABM setting.
Interaction between agents without a lead and behaving as a group is one of the major
takeaways from the model to understand what ABMs could offer. Figure 1 shows the start
of the simulation of boids with no flocking formation. Figure 2 shows the end state of the
simulation with the applied 3 basic rules. The formation of flocking behavior could be noticed
through the use of ABM simulation.

Figure 2.3: Boids simulation at start

5



2 State of The Art

Figure 2.4: Boids simulation after certain time t

2.1.5 Vadere and ABM Simulation

Vadere is an open-source framework for the simulation of microscopic pedestrian and crowd
dynamics. It provides generic model classes and visualization and data analysis tools for
two-dimensional systems. It is developed by Kleinmeier et. Al. at Technical University of
Munich and Munich University of Applied Sciences [9]. In our work for simulations of viral
spread disease in crowds, we use Vadere. It is open source, has user friendly GUI, has many
modeling options and it offers much flexibility when it comes to creating scenarios containing
short term basis pedestrian movements. The fact that focus of Vadere researchers is walking
behaviour of a pedestrian while implementing the framework makes it focus on locomotion
models. Therefore it offers useful and reliable simulation models for a viral infection which is
affected mainly by movement of individual pedestrians in the crowd. Namely, Optimal Steps
Model (OSM) by Gerta Köster et. al. [10], gradient navigation model which is first proposed
by Dietrich and Köster [11], Social Force Model which was proposed by Helbing et. al. [12]
are the examples for available locomotion models in Vadere. These models are also the basis
for simulation studies.
In our current work, we focus on Optimal Steps Model. OSM defines motion by a series of
discrete footsteps [9].To simply put, in OSM, agents (pedestrians in our case) are attracted
by targets and repulsed by obstacles and other agents. Agents maximize their utility which
is based on distance to the targets and to other agents (negatively affecting) . Agents move
on the available optimal position in a circular region set by their current spot. The circular
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2 State of The Art

region’s radius is agent’s maximum stride length [13]. Agents’ movements in OSM are
motivated by ‘target orientation’, ‘pedestrian avoidance’ and ‘obstacle avoidance’ [14].

Figure 2.5: Dynamical simulation of a crowd moving out from a source towards a destination
region in Vadere at an instant time.

7



2 State of The Art

Blue dots Each agent steers to avoid local flockmates.

Orange Square Each agent steers to move towards the
average position of its nearby flockmates
(set by a predefined region area).

Green Square Each agent steers towards the average
heading of its local flockmates.

Gray Areas Walls, or other types of obstacles.

Note : Other individual agents are also considered as obstacles and agents try to avoid from
collisions.

Table 2.4: Legend in Figure 2.5

2.2 SIR Model

SIR model is one of the simplest variations of Compartmental Models which are mainly
used in epidemiology to mathematically model an infectious disease. It was first published
by McKendrick and Kermack in 1926 [15, 16]. In SIR, the population is assigned to 3
compartments with labels as S, I, R (Susceptible, Infectious, Recovered). To further explain
the model, suppose a population of size of N with only one infectious state. Also assume that
an agent or a person could be either susceptible, infected or recovered. If the disease is fatal
recovered means death. Let S(t), I(t) and R(t) be the number of people in each state. The SIR
model proposes 3 nonlinear ordinary differential equations,

dS
dt

= −αSI, (2.1)

dI
dt

= αSI − βI, (2.2)

dR
dt

= βI, (2.3)

where t is time α is infection rate and β is the recovery rate. There are a couple of assumptions
in this, first one is population size N is fixed and probability of having infection of an
individual is the same for each individual.
The key value governing the time evolution of the equations is R0 = αS

β , which is basic
reproduction number.

There are models which include E (Exposed), D (Deceased), V (Vaccinated), M (Maternally-
derived Immune) states. In our work, we mainly use SIR/SEIR models in the simulations.

8



2 State of The Art

Figure 2.6: Flow of SIR model.

2.3 Stochastic Differential Equations

In this study Stochastic differential equations (SDEs) play role in modelling the spread of
the viral study. In order to better understand SDEs, we need to mention about stochastic
processes, stochastic systems and will come back again to SDEs.

Stochastic differential equations (SDEs) are differential equations that include one or more
random or noisy variables. Models which display randomness or stochasticity could be
represented by SDEs. They are used in various fields such as physics, engineering, economics
to model systems that are subject to random fluctuations.

2.3.1 Stochastic Process

A formal definition of a stochastic process is a collection of random variables (Xθ), indexed
by a parameter θ where θ belongs to index set Θ. Stochastic processes have applications in
many fields including biology, chemistry, ecology,neuroscience, physics, computer science.
Usually index set displays time steps. There are different ways to classify stochastic processes.
If the index set is a set of integers, the process is called discrete time stochastic process. If it
is a line of time or an interval of time, it is called continuous time stochastic process. In our
study, time steps are discrete to show the spread of the disease. There are different types of
specific stochastic processes such as :

• Random walks

• Bernoulli process

• Wiener process

• Poisson process

• Markov processes

• Lévy processes

2.3.2 Stochastic Process Application Examples:

• Epidemic models

9



2 State of The Art

Another application area of stochastic processes that would be helpful for understanding our
study is epidemic models.

Figure 2.7: Covid cases in Germany for the period between March 2021 - November 2022 the
period 1/1/02-31/7/04. [17]

Here in Figure 2.7, both the time and the number of cases are discrete. The number of
infectious cases, probability of infection spread in a region or specific population could be
modeled as a stochastic process.

2.3.3 Stochastic Differential Equations

A stochastic differential equation (SDE) is a differential equation in which at least one term is
a stochastic process. Even though they might be random functions, their statistical properties
(e.g. underlying assumptions, coefficients ) should be given. [18] What mainly makes SDEs
different than Ordinary differential equations (ODE) is SDEs involve random processes unlike
ODEs. Thus, the solution to SDEs includes probability density functions. A typical SDE could
be shown as :

dXt = µ(Xt, t)dt + σ(Xt, t)dBt, (2.4)

where Xt is random variable, Bt is a Wiener process ( standard Brownian motion). The
function µ corresponds to drift coefficient and σ corresponds to diffusion coefficient. The drift
term represents the deterministic part of the solution, while the diffusion term represents the
random part.

2.3.4 Euler-Maruyama Scheme

One of the methods to solve an SDE is Euler-Maruyama method. It approximates the solution
with any level of accuracy. In this study, we take the advantage of Euler method for loss
functions in neural network training, which was proposed by Dietrich et. al. [19]. Other
methods for numerically solving an SDE include Milstein and Runge-Kutta methods.

10



2 State of The Art

Figure 2.8: Deterministic vs. Stochastic Difference Example

2.4 Artificial Neural Networks

Artificial Neural Networks are computing systems inspired by the function and structure
of biological neural networks of an animal brain. The first attempts of ANN architectures
copied the mechanism of the nature of the brain in a way of simulating the electrical activity
of the brain and nervous system. Each node carries the information to its adjacent nodes
in the following layer through connections and gives an output which is analogous to that
each neuron transmits the electrical signal through synapses to its adjacent neurons and gives
firing frequency. The information that nodes in ANN convey possess weight which affects
the influence of the nodes on the next nodes.

The idea of combining processes into a network was drilled back in the 40s by the perceptron
algorithm which is one of the first examples of the simplest neural networks. It was first
proposed by McCulloch and Pitts as artificial neuron then developed by Rosenblatt as the
first perceptron learning algorithm [21, 22].

2.4.1 Training

Neural networks learn the most likely outcome by iterating the input data with weighted
connections. Training is the process to decide the parameters that have most likely match
between the observed data and prediction. After training, we evaluate the difference between
the prediction from the model we trained with training data for unseen data and its true
values.

2.4.2 Hyperparameters

Hyperparameters are constant parameters whose values are set before the training process.
The word hyper refers that they are top level. Typical hyperparameters are as such :

11



2 State of The Art

Figure 2.9: ANN Archhitecture Example [20]

• Optimization algorithm (Stochastic gradient descent, Adam , AdaMax , Adagrad etc.)

• Learning rate in the chosen optimization algorithm

• Type of loss function

• Number of layers

• Type of activation function

• Number of Epochs/Iterations

• Batch size

• Dropout rate

• Pooling size

• Filter/Kernel size

The examples could be added or removed depending on the model’s usage. As an example,
decision for number of clusters is a hyperparameter in a clustering task. Fine-tuning of these
hyperparameters which give better results for the specific data and model structure plays a
key role in having the best results.

12



2 State of The Art

2.4.3 Loss Function

Loss function or sometimes called the cost function is one of the most important hyperparam-
eters which needs to be decided. It is the function to measure the difference between the true
output and the training model. Based on the difference result, the parameters are adjusted
iteratively to have the optimally least difference. In this project, we use a loss function inspired
by Euler-Maruyama Scheme.

2.4.4 Euler-Maruyama inspired Loss Function

As stated earlier, the loss function used in this study is inspired from Euler-Maruyama scheme
by the work from Felix et. al. [19] The explanation for it is as such in the training dataset
D we don’t have access to drift f or diffusivity σ. However, we have access to the variables
x0, s1 and h. x1 is the points which are drawn from the multivariate normal distribution
conditioned on x0 and step size h.

x1 ∼ N (x0 + h f (x0), hσ(x0)
2) (2.5)

To approximate drift and diffusivity, we define a probability density pθ of the normal
distribution then we take the log-likelihood of the data D under the assumption in equation
2.5. When we put the network weights θ we get the log-likelihood equation as such:

θ := arg max
θ

E[log pθ̂(x1|x0, h)] ≈ arg max
θ

1
N

N

∑
k=1

log pθ̂(x(k)1 |x(k)0 , h(k)) (2.6)

Since now we set the log-likelihood of our loss function, we could take the derivative of it
to get the point where the likelihood is high. Constant terms are also removed because they
do not affect the minimum likelihood points. In the end, we have a loss function as such:

L(θ|x0, x1, h) :=
(x1 − x0 − h fθ(x0))2

hσθ(x0)2 + log | hσθ(x0)
2 | +log(2π) (2.7)

13



2 State of The Art

2.5 Modelling dynamics of infection spread on graphs

Modelling infection spread is a complex task which requires that a number of variables must
be taken into account. A part of this study focuses on modelling the spread of the disease
in a location that covers certain area where the population commute for work, visit social
places, stores, use transportation channels. In a recent study, this type of modelling is done
for the German city of Tübingen. The sites include educational institutions (universities,
public schools),social places(restaurants, bars, cafes),bus stops, supermarkets, offices. The
viral disease in this case is COVID-19. The research spotlights an epidemic model which was
benefitted by spatiotemporal data for Tübingen. The research also takes a couple of different
variables such as mobility, testing, tracing, social distancing into account while modelling the
epidemics. [23]

Figure 2.10: Distribution of sites for the city of Tübingen (Germany). [23]

At Figure 2.10, schools, universities and research institutes are blue, offices are red, bus
stops are green, social places are orange and supermarkets are purple.

There are also other ways to model physical contact patterns of disease spread. For instance,
Eubank et al. created bipartite contact graph to apply agent-based modelling and simulation.
The graphs are generated by large-scale individual based urban traffic simulations built on
actual census, land-use and population-mobility data. They find that the contact networks
among people is a strongly connected small-world-like graph with a well-defined scale for the
degree distribution. They find that the contact networks among people are strongly connected
graphs which display small-world effect and suit for the degree distribution with wide range
of scalability options. [24]

14



2 State of The Art

Figure 2.11: An example of a small social contact network. "a" depicts a graph GPL with
4 people (black circles), 4 locations (white squares). If person visits a location,
there is an edge between them in the graph. Vertices labelled with available
demographic or geographic information and edges contain arrival and departure
times. "b", "c" are two disconnected graphs GP and GL induced by connecting
vertices that were separated by exactly two edges in GPL. "d" is static projections
ĜP and ĜL resulting from ignoring time labels in GP and GL. [24]
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3 Main Part : Machine Learning of Stochastic
Differential Equations for Infection Models
using Neural Networks

This chapter constitutes the body in the study. It focuses on motivation while working on the
study, methods which were attempted through the path of solving the Stochastic Differential
Equations and Infection Models, data generation and preprocessing for the movements of
pedestrians for infection, computational experiments in general and lastly the results.

3.1 Task Description and Motivation

In the study, the main problem we tackle is analyzing the dynamics of the spread of a
contagious viral disease. There are multiple different relatively small problems around
understanding the behavior of a viral spread in a population.

Nowadays, as the population from almost all countries, all continents we have been dealing
with a pandemic called COVID-19. To our current knowledge, COVID-19 is air transmitted
viral disease which stems from SARS-CoV-2 virus. In a couple of months, the disease turned
into an epidemic and then shortly after pandemic throughout the globe and caused millions
of deaths up till now and counting. This is only one example of how an infectious deadly
virus could affect millions of lives from every corner of the world in a relatively short of time.

On one hand, relieving the effects of such disease after the spread arises must be prioritized
before it turns into such a critical incident which has that much influence. On the other
hand, if such an incidence occurs, having estimate of the direction of the spread could play a
key role for the mitigation efforts. With the lights of these concerns, modeling such disease
would contribute to solution of removing and easing the influence of such disaster. The
main motivation for this study is to be able to model the spread through solving stochastic
differential equations and coming up with a method to model the populations during the
spread as well.
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3 Main Part : Machine Learning of Stochastic Differential Equations for Infection Models using Neural Networks

Figure 3.1: WHO Covid-19 Cases Statistics (Last updated on 08.03.2023) [25]

3.2 General Overview To The Process

As mentioned earlier, we identify Stochastic Differential Equations for coarse observables
of fine grained particles. These observables are done by agent based simulations. We took
advantage of the method proposed by Felix et. al. [19] for mathematically modeling a viral
disease spread. In this study, one of the few important assumptions we make is that the
distribution of disease spread could be predicted stochastically through learning the variables
in the equations.

Here, the bird-eye of the process for the study could be seen. We will give a short
explanation for each step at this section.

17



3 Main Part : Machine Learning of Stochastic Differential Equations for Infection Models using Neural Networks

Figure 3.2: Overview of the process of the study

18



3 Main Part : Machine Learning of Stochastic Differential Equations for Infection Models using Neural Networks

3.2.1 Data Generation of Fine Grained Particles

At this step, we generate data points for infection spread of a population in a closed area
at a certin time. We used an open-source simulation software for agent-based modelling
which is called ’Vadere’ and is written in Java. It is a tool developed by the teams at Technical
University of Munich and The Munich University of Applied Sciences. It allows us to display
instantaneous rate of infected/susceptible populations in a crowd for a desired custom
scenario.

Figure 3.3: Example View of a Scenario Run in Vadere

In our simulation case, we needed to simulate the crowd for an infection spread which
means that there should be 2 different states for a pedestrian. However, the latest ver-
sion of Vadere does not allow this feature. We changed the code to include SIR Model
(Susceptible-Infectious-Recovered Model). In our environment, we focus on infection rate,
and for the sake of simplicity we included Susceptible and Infectious states, did not
include Recovered state. Then in order to have multiple scenarios, we automated the
process of running a simulation with a Python script. Vadere has many options for output
processors which the desired data depending on the types wanted such as timely state of
a pedestrian’s location, a pedestrian’s target object, nearby pedestrians etc. We added the
FootStepGroupID Processor that tracks the current infection state of a pedestrian in timely
mannner.

19



3 Main Part : Machine Learning of Stochastic Differential Equations for Infection Models using Neural Networks

After we decided on the scenarios which best represent the real life cases in order to
generate sample datasets for our neural network training, we simulated them for 4 days
interval which were run from Console for 1500 different iterations.

Figure 3.4: Summary of Data Generation Process

Above, the summary of data generation process could be seen. We will explain each steps
in the following sections elaborately.

20



3 Main Part : Machine Learning of Stochastic Differential Equations for Infection Models using Neural Networks

3.2.2 Data Processing of Simulations

The data which Vadere provides, includes only the information of a pedestrian’s current
infection state at a certain time point. To train our data, we need to train the model with
cumulative information of a crowd at a certain time point. Hence, we calculated the cumulative
states of the crowd till the end of the simulation for each simulation. Then, we made it
prepared for the learning part to be as training data. The training data stores 1-D information
which takes the infected rate of a crowd at the start of a simulation as input data and the rate
at the end as output data (labels).

Below, a short summary of data processing phase is displayed.

Figure 3.5: Summary of Data Processing

3.2.3 Preparing Input Data

After having the data points, Splitting data into training, validation and test sets is required.
In total there are 6000 datapoints (1500 simulations with 4 days of iteration each).
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Figure 3.6: Distribution of Datapoints
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3.2.4 Learning Local Infections with Neural Network

After the input data was prepared to be used as training and validation data, there comes
the part where the drift and diffusivity coefficients are learned. After spending much time
on hyperparameter tuning, 5 hidden layers have been chosen for the structure. The network
architecture was inspired by the work from Felix Dietrich from Technical University of Munich
[26].

Figure 3.7: Neural Network Architecture

3.2.5 Graph Construction to Combine Local Infection Models

Since at this phase, having the model to estimate the next state of the infection spread is
possible, we create a network topology represented with graphs which could be considered
as a small village network where 3 nodes exist. Then we analyze the behavior of this network
based on the movements of the crowd during a day for two different scenarios.
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Figure 3.8: Example Visual of 3-Node Network Topology
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3.3 Computational Experiments

Computational experiments of our study include the complete process which leads to predic-
tion of an infection spread. These steps are as such:

• Data Generation

• Data Processing

• Input Data

• Neural Network Learning

• Results

3.3.1 Data Generation

At this section, what was Vadere settings, how it was simulated, selected scenarios, and the
data generated through Vadere will be explained.

Vadere Setting

There are couple of models which decide the movements of pedestrians namely, Cellular
Automation, Gradient Navigation, Social Force Model, Optimal Velocity, Reynolds Steering,
Behavioral Heuristics, Biomaechanics Model, Self Cat Threat Model. These models set couple
of parameters such as velocity behaviours, movement types, step length , obstacle features,
target features etc. For our study, we chose Optimal Steps Model since it best suits our
social distancing needs in pedestrians.

We use SIR Model to represent the states of a pedestrian and evolution of spread by time.
In the Vadere version, it was not included. Thus, we added SIR Group Model class to
the models. Since Vadere is open source, it is possible to fork from the project and build
internally.
distanceFunction is set to 1.0. infectionRadius is set to 1.5. infectionLikelihood

is set to 0.001. Other numbers such as 0.01 or less than 0.001 has been tried. However this is
the one which gives more regular results based on the experiments.

Another point to mention is that since we simulate a scenario for 6000 times, it was
not possible to do it through Vadere GUI. For that, we used Python script which sets the
environment each time with different seeds, and other parameters through an API called suq
to run the simulations from the console.

Bottleneck Scenario

Bottleneck scenario is a custom scenario made in Vadere in which we simulated a serious of
times for our data generation. During the scenario, pedestrians try to reach a target object
stemming from the same destination object passing a bottleneck where there intensity of
pedestrians and hence high likelihood of infection. The reason why it was decided as go-to
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scenario is because it could represent many cases where there is high likelihood of infection
such as public closed areas (transportation, cafes, schools, offices etc.)

Figure 3.9: View of Pedestrians passing through Bottleneck in the Scenario in Vadere
(red:Infectious, green:Susceptible Pedestrians)

We set finishTime parameter to 150.0 seconds, simTimeStepLength to 0.4, visualizationEnabled
to false to simulate faster. We also set useFixedSeed to true to be able to control seed
number. fixedSeed and simulationSeed are set to a different number at each simulation
by the Python script we wrote. There are 200 pedestrians at each simulation, 2 of whom
are infected. The infected people are set randomly by Vadere. For the source object which
the pedestrians go out from, spawnAtRandomPositions is set to true to have random
positions for pedestrians and spawnAtRandomPositions is set to false to have random
creation and movement time of a pedestrian to the target. We simulate the scenarios for 4
days for 1500 different simulations. The total infected number at the end of a day is the one
at the start of the following day until the next 4 day cycle. A point to mention here is that, the
positions of the pedestrians are set randomly through Vadere. Hence the positions and ids of
infected and susceptible pedestrians are not kept for the following day but only the amount
of infected population. In order to have the information of pedestrians’ instant SIR state,
FootStepGroupIDProcessor has been added to the processors and other unnecessary
default output files except a file called ’SIRInformation.txt’ were removed, since we only need
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time, pedestrian id and pedestrian state.
Below, example output for Bottleneck scenario from Vadere could be seen.

Figure 3.10: Snapshot of Vadere Output for Bottleneck Scenario

Supermarket Scenario

Another point to mention is that after having data for Bottleneck scenario, we went for a
couple of different scenarios including Supermartket scenario to try out the generated data
and other real world scenario. However, since both the time for running a single simulation
at this scenario is much beyond than expected and there was more complexity and concerns
such as the size/type/decoration of a supermarket varies much we decided to go on with
Bottleneck scenario as the baseline.
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Figure 3.11: View of Pedestrians passing through Supermarket in the Scenario in Vadere
(red:Infectious, green:Susceptible Pedestrians)
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3.3.2 Data Processing

At this section, how the generated data was processed, the data which was used for training,
what type of decisions have been made will be explained.

Since we have the data of a pedestrian’s instant state, we calculated cumulative infected and
total number of pedestrians at an instant time point. Then we calculated the normalized rates
for a day. To keep the track of infection during a day, we stored the information of infected
rates both at the start and at the end. The infected of the start day of a 4 day simulation phase
is set to 0.01, since it gives the best results to track the evolution of infection. If it is not the
first day, then the infected rate at start is the infected rate at the end of the previous day.

Below you could see the snapshot of the processed data. What is worth mentioning here is
that at some days there is no change in infection rates. Below, snapshot of the processed data
could be seen. Columns represent a day’s infected rate at start,susceptible rate at start,infected
rate at end and susceptible rate at end respectively.

Figure 3.12: View of a Part of the Processed Data

3.3.3 Input Data

Since we have processed data, it is now possible to have datasets for training, validation and
test. There are 6000 datapoints consisting of infected/susceptible rates at start/end of the

29



3 Main Part : Machine Learning of Stochastic Differential Equations for Infection Models using Neural Networks

(a) At Starts (b) At Ends

Figure 3.13: Distribution of Infected Numbers of Days

days in total. 4500 datapoints for training, 500 datapoints for validation and the rest 1000
datapoints for test datasets were used. Below, the distribution of the processed data could be
seen.

Since susceptible rate at a certain day is equal to 1 - infected rate of the same day, we see
that the data is symmetrical for Infected/Susceptible numbers respectively. Another attribute
is that intensity of the rate for 0.01 is much higher than the others for infected. This is because
a, rates of the first days start at 0.01 and at some cases there is no change in rates.
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(a) At Starts (b) At Ends

Figure 3.14: Distribution of Susceptible Numbers of Days

3.3.4 Learning Local Infections with Neural Network

Machine learning of the SDE variables was achieved through Neural Network Training. After
processed data is ready to be used as training and validation datasets, the next task is to set
up the model architecture for training. At this section, Loss Function, Activation Function,
Optimizer, other hyperparameters and tuning process, model architecture, libraries and tools
used, which type of experiments conducted will be explained.

Loss Function

As we mentioned before, to solve the drift and diffusivity function of SDE, we use a specific
type of Loss Function which was inspired by Euler-Maruyama scheme.

Libraries and Tools Used

There have been a couple of libraries and tools used during NN training and this study in
general. It was written in Python. For model architecture, TensorFlow and Keras were used.
TensorFlow is a free and open-source library for machine learning and artificial intelligence
first released by Google Brain team. Keras is a deep learning API written in Python, running
on top of the machine learning platform TensorFlow [27]. It was first published as part of
TensorFlow, then became a separate library. In our study, Keras was used for model creation
and training. Its internal functions such as fit, history were used. tf.keras.Model
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is the model we used in training. During experiments, Anaconda Navigator distribution,
Jupyter Notebook were used for coding NN learning. Anaconda Navigator is an
application allowing to managing applications and packages, environments through its
graphical user interface (GUI). Jupyter Notebook is a service to execute Python, Julia or
R codes.

Figure 3.15: Libraries and Tools Used During Learning

Activation Function

Activation functions are crucial parts of neural networks which transform the input signals
to output signals. It usually gives nonlinearity to the network. Nonlinearity is the essential
feature of neural networks since the network learns through nonlinear relations. On one hand,
there is linear activation function, namely Identity Function or Linear Function. It is simply
the function of f (x) = x. It does not add nonlinearity hence complexity to the network. On the
other hand, nonlinear activation functions are the ones which add complexity to the network.
There are a couple of examples to that. In this study, during training phase, most possible ex-
amples have been tried such as relu,elu,gelu,selu,sigmoid,softmax,softplus,softsign,swish,tanh.
After seeing the results for each function, ’tanh’ has been chosen which gave the best results
for our case. Tanh pushes the output values to be between [-1, 1].
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f (x) =
ex − e−x

ex + e−x (3.1)

Figure 3.16: Tanh Activation Function

Hyperparameters

Hyperparameter tuning, is the process of searching for optimal parameters which give the
best results for training. After couple of experiments, the parameters we went for are below:

Batch Size 512
Epoch Number 40
Optimizer Adamax
Number of Layers 13
Neurons Per Layer 25

Batch size is the number of samples which will be sent at one time through the network.
Depending on the network, batch size of 32 is common. In our network, higher batch size
worked better. Epoch number is the one full cycle of the data used for training. In order for
the network to learn, more than one time of data is used. In our network, we saw not much
significant change in results after 40 epochs. Optimizer is another significant hyperparameter
which affects the results, the speed of the convergence. It is an algorithm to search for
optimal results for minimizing error function. Depending on the type of data and network
structure, there are a couple of options for optimizers. We used Adamax optimizer with 0.01
learning rate.
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Figure 3.17: Neural Network Architecture
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Neural Network Structure

we have 5352 parameters in total. Here we have 13 layers including input and output layers.
The model is inspired by Gaussian Processes having a mean and a standard deviation values
as output. In our case, they are drift and diffusivity coefficients.

Experiments

During hyperparameter tuning and training, we first started with using 2-D input data which
consists of instant infected and susceptible rates for start and end of a day. Susceptible rate is
simply 1 − in f ectedrate. Hence it should add up to 1.0. After couple of trials, we noticed that
the model attempts to learn both variables and the rates don’t add up to 1.0. We then decided
to move on 1-D input data which consists only of infected rate for start and end of a day. We
had better results this way. NN learns the variable and loss values decreased dramatically.

3.3.5 Results

After training, we have an average loss of -1.14 after 40 epochs.

Figure 3.18: Average Loss

After learning the variables, we created network paths for our model. This is where we
used the test datasets including 1000 datapoints. Since test datasets consist of the simulation
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information of 250 different iterations for 4 days, we got estimates from our model for the
same setting.

Figure 3.19: Generated Path

Above, generated paths from our learned model could be seen. One thing worth mentioning
is that generated paths fluctuate between 0 and 1. Whereas, our test data points are between 0
and 1. Hence on the second visual, the comparison between generated paths from the model
and test cases for the values between 0 and 1 could be seen.
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Figure 3.20: True vs Generated Path

3.4 Graph Construction to Combine Local Infection Models

Since we have the model of learned SDE variables which predict the next state of infected rate
of the crowd at an instant time given the current infected rate, we could use it to estimate
spread evolution for a region where there is a crowd living. In order to achieve that, we
created a small network topology, a small town network to put it differently. Our network is
represented by a graph, consists of 3 nodes. These nodes represent the high likely places a
person could visit during a day. The nodes are decided as Transportation, School or Work, and
Market. At each iteration for a scenario, first there is initial condition, afterward, movement
between each tuple happens, then the crowd has new infected rate at each node based on the
new number of populations at nodes. This new infected rate is received by get_estimate
function. There are a couple of limitations applied for prediction. The first one is to have a
rate of more than 0.01 which is our infected rate at start and a prediction could not be below
that. This limitation fixes the problem of having negative values as well. Another one is to
have a rate not much different than the current state since it should be closer to real-time
scenarios this way.
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Figure 3.21: get_estimate Function

Scenario 1

This scenario is simulation of movement and infection in a small place during daytime
consisting of supermarket, school/work, and transportation nodes. At initial condition,
there are 200 people at transportation node, 100 people at market node and 700 people at
work/school node with 0.01 infection rate each. At the second iteration, the movement of the
people between tuples is displayed. From market 50 people go to transportation, 50 people
go to work. From transportation 180 people go to market and 20 people go to work. Lastly,
from work 50 people go to transportation, 50 people go to market. chosen to be reasonable
and consistent with real daytime scenarios. During the daytime for a person, probabilistically
there is not much time spent at market than transportation or work. People use transportation
either to reach work or the market and vice versa. Hence we picked these numbers. At the
end of these movements, the new population becomes 100 for transport, 230 for market and
670 for work. Then, we predict new infected numbers at each node through get_estimate
function. Since the function gives results stochastically, at each run we could receive different
numbers.
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(a) Initial Iteration (b) Movement Iteration

Figure 3.22: Scenario 1 after infection
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Stochastic Matrix

The stochastic process we used in our modeling is Markov process or Markov chain in other
words. Markov process is simply a stochastic model describing events which the probability
of each event depends only on the state by the the previous event. As we showed, we get
results from our model stochastically. At the scenario we mentioned, we made assumptions
about the number of people at each node. However, only the probabilities of movements
would be enough to have the distribution of the infected people at each through iterating
Stochastic Matrix infinitely many times. Stochastic Matrix is a square matrix used to describe
transitions of Markov chain with probabilities.

Market Work/School Transportation
Market 0.0 0.5 0.5
Work/School 0.07 0.86 0.07
Transportation 0.9 0.1 0.0
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4 Conclusion & Future Work

4.1 Conclusion

In the study, we model the coarse-grained particles in dynamical crowd setting. We use agent
based modelling simulation systems. For that, during computational experiments Vadere is
used. It is strong for some aspects that you have the flexibility to simulate pedestrians and
have instant infection state of a pedestrian. We had the requirement of recurring times of
simulations to see the evolution of the spread. However, the destination and target locations of
pedestrians for the next simulations are not controllable by the user. This was a limitation for
us. We then learned the variables of stochastic differential equations though neural networks
with Euler-Maruyama inspired loss function. The data we generated through Vadere had
more simulations which have no change than expected. This situation affected the distribution
of the data. All in all, it was achieved to have learning SDE variables with consistent results
with the generated results. Then we managed to construct a graph network which shows
local infection spread in a small town scenario.

4.2 Future Work

The possible new directions and methodologies for the purpose of the study vary.

• Other software tools which allow more flexibility could be used.

• New scenarios which include more buildings or complex cases could be included.

• Since it is likely to have similar behaviors of infection spread for the same type of
buildings (schools, restaurants, supermarkets etc.) in a region, it is possible to work on
bigger graphs which represent more populations such as cities, countries etc.

• During our study, working with real world data was not possible due to the lack of
available data. In the future, such data which represent recent cases as well could be
used.

41



Bibliography

[1] C. S. Currie, J. W. Fowler, K. Kotiadis, T. Monks, B. S. Onggo, D. A. Robertson, and
A. A. Tako. “How simulation modelling can help reduce the impact of COVID-19”. In:
Journal of Simulation 14.2 (2020), pp. 83–97. doi: 10.1080/17477778.2020.1751570.
eprint: https://doi.org/10.1080/17477778.2020.1751570. url: https:
//doi.org/10.1080/17477778.2020.1751570.

[2] W. O. Kermack and À. G. Mckendrick. “A contribution to the mathematical theory of
epidemics”. In: Proceedings of The Royal Society A: Mathematical, Physical and Engineering
Sciences 115 (1927), pp. 700–721.

[3] S. D. Group. System Dynamics. url: https://www.uib.no/en/rg/dynamics/
39282/what-system-dynamics (visited on 03/20/2023).

[4] D.-L. Ngo-Hoang. “The three methods in simulation modeling [Chapter 2. The three
methods in simulation modeling]”. In: (May 2020). doi: 10.13140/RG.2.2.29143.
09125.

[5] W. Foundation. Discrete Event Simulation. url: https://en.wikipedia.org/wiki/
Discrete-event_simulation (visited on 03/20/2023).

[6] E. Bonabeau. “Agent-based modeling: Methods and techniques for simulating human
systems”. In: Proceedings of the National Academy of Sciences 99.suppl_3 (2002), pp. 7280–
7287. doi: 10.1073/pnas.082080899. eprint: https://www.pnas.org/doi/
pdf/10.1073/pnas.082080899. url: https://www.pnas.org/doi/abs/10.
1073/pnas.082080899.

[7] W. Foundation. Agent Based Model. url: https://en.wikipedia.org/wiki/
Agent-based_model (visited on 03/20/2023).

[8] C. Macal and M. North. “Agent-based modeling and simulation”. In: Dec. 2009. doi:
10.1109/WSC.2009.5429318.

[9] B. Kleinmeier, B. Zönnchen, M. Gödel, and G. Köster. “Vadere: An open-source simula-
tion framework to promote interdisciplinary understanding”. In: CoRR abs/1907.09520
(2019). arXiv: 1907.09520. url: http://arxiv.org/abs/1907.09520.

[10] M. J. Seitz and G. Köster. “Natural discretization of pedestrian movement in continuous
space.” In: Physical review. E, Statistical, nonlinear, and soft matter physics 86 4 Pt 2 (2012),
p. 046108.

[11] F. Dietrich and G. Köster. “Gradient navigation model for pedestrian dynamics”. In:
Physical Review E 89.6 (June 2014). doi: 10.1103/physreve.89.062801. url:
https://doi.org/10.1103%2Fphysreve.89.062801.

42

https://doi.org/10.1080/17477778.2020.1751570
https://doi.org/10.1080/17477778.2020.1751570
https://doi.org/10.1080/17477778.2020.1751570
https://doi.org/10.1080/17477778.2020.1751570
https://www.uib.no/en/rg/dynamics/39282/what-system-dynamics
https://www.uib.no/en/rg/dynamics/39282/what-system-dynamics
https://doi.org/10.13140/RG.2.2.29143.09125
https://doi.org/10.13140/RG.2.2.29143.09125
https://en.wikipedia.org/wiki/Discrete-event_simulation
https://en.wikipedia.org/wiki/Discrete-event_simulation
https://doi.org/10.1073/pnas.082080899
https://www.pnas.org/doi/pdf/10.1073/pnas.082080899
https://www.pnas.org/doi/pdf/10.1073/pnas.082080899
https://www.pnas.org/doi/abs/10.1073/pnas.082080899
https://www.pnas.org/doi/abs/10.1073/pnas.082080899
https://en.wikipedia.org/wiki/Agent-based_model
https://en.wikipedia.org/wiki/Agent-based_model
https://doi.org/10.1109/WSC.2009.5429318
https://arxiv.org/abs/1907.09520
http://arxiv.org/abs/1907.09520
https://doi.org/10.1103/physreve.89.062801
https://doi.org/10.1103%2Fphysreve.89.062801


Bibliography

[12] D. Helbing and P. Molnár. “Social force model for pedestrian dynamics”. In: Physical
Review E 51.5 (May 1995), pp. 4282–4286. doi: 10.1103/physreve.51.4282. url:
https://doi.org/10.1103%2Fphysreve.51.4282.

[13] C. M. Mayr and G. Köster. “Social distancing with the Optimal Steps Model”. In: CoRR
abs/2007.01634 (2020). arXiv: 2007.01634. url: https://arxiv.org/abs/2007.
01634.

[14] I. von Sivers and G. Köster. “Dynamic stride length adaptation according to utility
and personal space”. In: Transportation Research Part B: Methodological 74 (Apr. 2015),
pp. 104–117. doi: 10.1016/j.trb.2015.01.009. url: https://doi.org/10.
1016%2Fj.trb.2015.01.009.

[15] K. Kermack. Proceedings of the Royal society of London. VOL115. Royal Society of London,
1927.

[16] N. Bacaër. “McKendrick and Kermack on epidemic modelling (1926–1927)”. In: A
Short History of Mathematical Population Dynamics. London: Springer London, 2011,
pp. 89–96. isbn: 978-0-85729-115-8. doi: 10.1007/978-0-85729-115-8_16. url:
https://doi.org/10.1007/978-0-85729-115-8_16.

[17] W. H. Organization. Coivid Cases. url: https://covid19.who.int/region/euro/
country/de (visited on 03/20/2023).

[18] N. Van Kampen. “Stochastic differential equations”. In: Physics Reports 24.3 (1976),
pp. 171–228. issn: 0370-1573. doi: https://doi.org/10.1016/0370-1573(76)
90029-6. url: https://www.sciencedirect.com/science/article/pii/
0370157376900296.

[19] F. Dietrich, A. Makeev, G. Kevrekidis, N. Evangelou, T. Bertalan, S. Reich, and I.
Kevrekidis. “Learning effective stochastic differential equations from microscopic simu-
lations: Linking stochastic numerics to deep learning”. In: Chaos: An Interdisciplinary
Journal of Nonlinear Science 33 (Feb. 2023), p. 023121. doi: 10.1063/5.0113632.

[20] S. Walczak and N. Cerpa. “Artificial Neural Networks”. In: Dec. 2003, pp. 631–645. isbn:
9780122274107. doi: 10.1016/B0-12-227410-5/00837-1.

[21] F. Rosenblatt. “The perceptron: A probabilistic model for information storage and
organization in the brain.” In: Psychological Review 65 (1958). Place: US Publisher:
American Psychological Association, pp. 386–408. issn: 1939-1471(Electronic),0033-
295X(Print). doi: 10.1037/h0042519.

[22] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous activ-
ity”. In: The bulletin of mathematical biophysics 5.4 (Dec. 1943), pp. 115–133. issn: 1522-9602.
doi: 10.1007/BF02478259. url: https://doi.org/10.1007/BF02478259.

[23] L. Lorch, H. Kremer, W. Trouleau, S. Tsirtsis, A. Szanto, B. Schölkopf, and M. Gomez-
Rodriguez. Quantifying the Effects of Contact Tracing, Testing, and Containment Measures
in the Presence of Infection Hotspots. 2020. doi: 10.48550/ARXIV.2004.07641. url:
https://arxiv.org/abs/2004.07641.

43

https://doi.org/10.1103/physreve.51.4282
https://doi.org/10.1103%2Fphysreve.51.4282
https://arxiv.org/abs/2007.01634
https://arxiv.org/abs/2007.01634
https://arxiv.org/abs/2007.01634
https://doi.org/10.1016/j.trb.2015.01.009
https://doi.org/10.1016%2Fj.trb.2015.01.009
https://doi.org/10.1016%2Fj.trb.2015.01.009
https://doi.org/10.1007/978-0-85729-115-8_16
https://doi.org/10.1007/978-0-85729-115-8_16
https://covid19.who.int/region/euro/country/de
https://covid19.who.int/region/euro/country/de
https://doi.org/https://doi.org/10.1016/0370-1573(76)90029-6
https://doi.org/https://doi.org/10.1016/0370-1573(76)90029-6
https://www.sciencedirect.com/science/article/pii/0370157376900296
https://www.sciencedirect.com/science/article/pii/0370157376900296
https://doi.org/10.1063/5.0113632
https://doi.org/10.1016/B0-12-227410-5/00837-1
https://doi.org/10.1037/h0042519
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.48550/ARXIV.2004.07641
https://arxiv.org/abs/2004.07641


Bibliography

[24] S. Eubank, H. Guclu, V. S. Anil Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai, and
N. Wang. “Modelling disease outbreaks in realistic urban social networks”. In: Nature
429.6988 (May 2004), pp. 180–184. issn: 1476-4687. doi: 10.1038/nature02541. url:
https://doi.org/10.1038/nature02541.

[25] W. H. Organisation. Weekly epidemiological update on COVID-19 - 8 March 2023. url:
https://www.who.int/publications/m/item/weekly-epidemiological-
update-on-covid-19---8-march-2023 (visited on 03/20/2023).

[26] F. Dietrich. Felix Dietrich Gitlab Repositories. url: https://gitlab.com/felix.
dietrich/sde-identification (visited on 03/20/2023).

[27] Keras. Keras About. url: https://keras.io/about/ (visited on 03/20/2023).

44

https://doi.org/10.1038/nature02541
https://doi.org/10.1038/nature02541
https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-march-2023
https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-march-2023
https://gitlab.com/felix.dietrich/sde-identification
https://gitlab.com/felix.dietrich/sde-identification
https://keras.io/about/

	Acknowledgments
	Abstract
	Contents
	Introduction
	State of The Art
	Simulation Modelling
	System Dynamics
	Discrete Event Simulation
	Agent Based Modelling
	An ABM Example:
	Vadere and ABM Simulation

	SIR Model
	Stochastic Differential Equations
	Stochastic Process
	Stochastic Process Application Examples:
	Stochastic Differential Equations
	Euler-Maruyama Scheme

	Artificial Neural Networks
	Training
	Hyperparameters
	Loss Function
	Euler-Maruyama inspired Loss Function

	Modelling dynamics of infection spread on graphs

	Main Part : Machine Learning of Stochastic Differential Equations for Infection Models using Neural Networks
	Task Description and Motivation
	General Overview To The Process
	Data Generation of Fine Grained Particles
	Data Processing of Simulations
	Preparing Input Data
	Learning Local Infections with Neural Network
	Graph Construction to Combine Local Infection Models

	Computational Experiments
	Data Generation
	Data Processing
	Input Data
	Learning Local Infections with Neural Network
	Results

	Graph Construction to Combine Local Infection Models

	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography

