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Abstract

Metal-organic frameworks (MOFs) are a class of porous crystalline materials that are used in various tasks
such as catalysis, gas storage, gas separation. In the chemical synthesis of MOFs one of the objectives is
to find reaction conditions under which the MOF formed during the reaction process fulfills certain criteria
that can be formulated as optimization objectives. As the reaction process is time-consuming and costly,
the number of failed experiments should be minimized along with the other optimization objectives.

Bayesian optimization has been found to be a sample-efficient strategy applicable to the optimization of
an unknown black-box function. It iteratively suggests new points at which an improvement may occur. As
such, it is a promising technique regarding the optimization of reaction conditions.

The objective of this work is to establish a framework that makes state-of-the-art Bayesian optimization
accessible to chemists trying to optimize a MOF. The MOF that guided the design of the system is UiO-66,
but the rich feature set provided by the framework is also applicable to other MOFs. In addition to single-
and multi-objective Bayesian optimization, data processing capabilities, reaction kinetics, and human-in-
the-loop functionality have been implemented in an straightforward-to-use manner.
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1 Introduction

In chemistry, metal-organic frameworks (MOFs) are a class of materials used, among other, in catalysis,
gas storage, gas separation, and membranes [17]. In the design of MOFs, finding reaction conditions
at which a certain outcome is achieved is often a costly and time-consuming process. As such, one of
the aims is to have to perform as few failing experiment iterations as possible until successful reaction
conditions are found. This problem has proven to be non-trivial, and various optimization techniques have
been applied to tackle it.

One of the techniques applicable to such a scenario is Bayesian optimization (BO). It has been found
to provide a sample-efficient strategy for optimizing an unknown black-box function in an iterative manner.
The inputs to this black-box function, in the case of reaction optimization, are the reaction conditions, the
black-box function is the experiment performed in reality which then yields the output of some evaluation
criteria that rate the outcome produced for the given reaction conditions. Bayesian optimization iteratively
suggests new points that are likely to yield an improvement or that give information relevant for subsequent
iterations.

In a work prior to this, Ortner had applied Bayesian optimization to the reaction process in her bache-
lor’s thesis [14]. The objective of this work is to develop the approach further by providing a modularized
framework that offers an accessible set of features useful for further research and the MOF design pro-
cess. Among the features is Bayesian optimization, human-in-the-loop functionality that can be coupled
with it, and the framework furthermore formulates a foundation for the integration of reaction kinetics into
the optimization process. The main design objective was to implement features relevant for Bayesian
optimization in a way that their application is straightforward to use for chemists to enable independent
research while remaining efficient, modular, and extensible. Another objective was to lay a foundation for
further development.

The main question at hand is whether Bayesian optimization is a suitable optimization approach, to
compare different approaches – also among the various Bayesian optimization approaches available –
and to make further research tractable and lessen the time and cost for further research.

The project was performed in cooperation with Lena Pilz and Dr. Manuel Tsotsalas from the Karlsruhe
Institute of Technology (KIT). Both gave valuable insight into MOFs, the chemistry and theoretical back-
ground involved in them, and the current optimization procedure. In the prior work by Ortner, Lena Pilz
had conducted experiments and provided data reused for this work.

The paper is organized in the following manner: Section 2.1 gives a short overview of the chemical back-
ground, section 2.2 explains Gaussian processes and Bayesian optimization that employs them. Section
2.3 gives a short overview of related work. Section 3 then describes the current state of the framework
and its core components.

2 Background

2.1 Chemistry Background

2.1.1 Metal-organic Frameworks

The substances of particular interest in this work are metal-organic frameworks (MOFs). They form a
class of crystalline, yet porous materials that exhibit properties applicable in, for example, gas storage,
gas separation, or catalysis. [17]

MOFs are constituted of metal clusters which are also referred to as secondary building units (SBUs),
and organic linkers. A MOF is built by metal clusters that are connected by the organic linkers to form a
porous crystal (see figure 1). This formation is not a reaction but an aggregation. This type of bonding is
a reversible process.

SBUs, organic linkers, and the crystal structure formed by them can be viewed as graphs where the
nodes are the atoms connected by edges, the bonds. An important property about these SBUs is the
number of points of extension (POE) at which an SBU allows bonding with other SBUs via the organic
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linkers. Schoedel and Rajeh [17] give an overview of different types classified by the number of POE. By
the overall SBU topology, certain molecular symmetries are established that influence the layout of the
MOF resulting after reaction.

Figure 1 Crystal formation: The metal clus-
ters (blue) and organic linkers (orange) form a
smallest unit that then aggregates into a larger
structure. Image kindly provided by Lena Pilz
(KIT)

The MOF of particular interest to this work is UiO-66 (the
UiO stands for ‘University of Oslo’) which has four POE (see
figure 2).

However, not only the topology of the SBU leads to differ-
ent outcomes but also the different reaction conditions un-
der which an aggregation happens. After a reaction process
is performed with a certain configuration of reaction condi-
tions, the MOF gets characterized. In the case of this work,
this was performed via two criteria: phase identity and crys-
tallinity. Phase identity is a binary value determined via x-
ray diffraction (XRD). It indicates whether the intended sub-
stance emerged in synthesis. Crystallinity describes the ratio from crystalline to amorphous material –
the objective is to obtain a high value for crystallinity. It is a continuous percentage value. The evaluation
was performed by the KIT using the software DIFFRAC.EVA by Bruker [2] that computes crystallinity as a
percentage value c and amorphousness which is 100% − c.

(a) UiO-66, single unit (b) UiO-66, single unit, rotated

(c) UiO-66, crystal (d) UiO-66, crystal, rotated

Figure 2 Four images of UiO-66. 2a and 2b show a single unit from two sides, 2c and 2d show a crystal comprised
of multiple such units connected at the points of extension. Plot generated by [11] (identifier: RUBTAK01, the reader
is encouraged to have a look at this 3D view of UiO-66).

The reaction conditions to optimize over are the temperature value at which to perform the reaction,
the time for which to perform the reaction, the metal rate, and the modulator rate. Each are constrained
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independently to a specific region. The specific value ranges are not seen as important for this work since
the actual experiments will be performed in a follow-up work.

The overall objective however will be to predict reaction conditions such that crystallinity is maximized
and phase identity established.

2.1.2 Chemical Kinetics of Metal-organic Frameworks and UiO-66

This section’s aim is to shortly introduce chemical kinetics (also referred to as reaction kinetics) as required
by this work. For a more in-depth introduction the user is referred to, for example, [19]. In the context of
MOFs, ideas from polymerization have been applied [4].

The field of chemical kinetics is concerned with the rate at which reactions take place. These rates of
reactions are based also on the reaction conditions discussed in section 2.1.1 that influence quantity and
quality of the MOF. Chemical kinetics will however not be able to provide a qualitative insight as described
by crystallinity and amorphousness – the objective rather is to attain quantitative insights by achieving a
certain crystal size.

For the MOF reactions described in section 2.1.1, the initial reaction can be denoted as follows [4]:

mM + lL
kinit−−→ P1

M and L are the metal clusters and organic linker, respectively, m and l are referred to as their respective
stoichiometric coefficients. So, m units of metal M and l units of organic linker L bond together to form
one unit of P1, the smallest growth unit. From P1, larger oligomers Ph, built from h smallest growth units,
form up to a certain maximum size N . For i, j ∈ N, i + j ≤ N, j ≤ i:

Pi + Pj
kij−−→ Pi+j

kinit is the temperature-dependent reaction rate constant for the initial reaction, kij is the reaction rate
constant of the reaction between Pi and Pj . Dighe et al. [4] used the Arrhenius equation to estimate
the reaction rate constants for reactions at new temperatures from a set of performed experiments. They
furthermore argue for Flory’s approximation, an approximation from polymerization that chooses kij = κ
for all pairs of oligomers Pi, Pj in the above set of reactions. κ was obtained from experiments.

Let [M ](t), [L](t), [P1](t), ..., [PN ](t) denote the concentrations of metal, organic linker, and the respec-
tive oligomers over time. The rate of change of the concentration d[Q]

dt (t) of a substance Q at time t is
determined by the reaction rates of all reactions in the system involving Q, and the amount of Q being
consumed or produced in each reaction as indicated by the respective stoichiometric coefficient. In the
setting at hand, [M ](0) and [L](0) are initialized to a certain concentration, and the oligomers Ph each
initially have concentration [Ph](0) = 0

Therein, the rate of the initial reaction rinit and the reaction rates rij between Pi and Pj are described
in terms of the reaction rate constants kinit and kij respectively and the concentrations of the substances
involved in each reaction.

Upadhyay [19] describes the reaction rate for a reaction aA + bB
k−→ . . . with reaction rate constant k as

r = k · [A]x · [B]y

where [A], [B] are the concentrations of the respective substances.
However, for UiO-66 Dighe et al. [4] suggest that the reaction rate is affected by the build-up of oligomers

Ph from latter reactions due to a phenomenon termed autocatalysis – a form of catalysis where a catalyst
is formed as a product in the reaction chain [19]. The catalyst’s presence increases the reaction rate which
then additionally depends on its concentration. Dighe et al. determined that the initial reaction rate rinit
of metal and organic linker is affected by such an autocatalytic behavior (see [4] and its supplementary
information for detailed information and choices for the parameters of the reactions).

The idea is that knowing the concentration of the oligomers may make it possible to predict a distribution
over the grain sizes of the crystals for certain reaction times. Having an analytical formulation of part of
the problem also allows the augmentation of the the Bayesian optimization or solving inverse problems.
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2.2 Mathematical Background

2.2.1 Gaussian Processes

In many typical scenarios, only a finite number of points are observed but the function of interest is actually
defined for an infinite set of points. There are a lot of approaches to deal with such a problem, the idea of
Gaussian processes is one such approach and based on a probabilistic model [20].

A Gaussian process (GP) is defined via two functions: the mean function m(x), and the covariance
function κ(x, x′). Both are defined for a function f(x) of interest and are choices for the assumptions the
GP makes. The mean function and covariance function are defined as follows:

m(x) = E[f(x)]
κ(x, x′) = E[(f(x) − µ(x)) · (f(x′) − µ(x′))]

The Gaussian process is then denoted as

f(x) ∼ GP(m(x), κ(x, x′))

The Gaussian process defines a prior over functions [13]. Often, the covariance function is directly
modeled via a kernel κ over a pair x, x′, and the mean function is set to 0. Due to the use of the probabilistic
framework, the choice for the mean function will not obstruct the predictive capabilities of the model.
An overview over common kernel functions is given in [13] and [8]. The kernels aim to compute the
covariance over the inputs x, x′ rather than relying on their corresponding values f(x), f(x′) in the co-
domain. Many kernels come with hyperparameters that can either be defined beforehand or trained for as
more observations become available.

The idea of Gaussian processes is that a finite set X = {x1, x2, ..., xn} of random variables defines a
joint probability distribution over the function values y1, ..., yn corresponding to each input, respectively. To
model this joint distribution, the mean and kernel function are used to form a normal distribution:y1

...
yn

 ∼ N (µ, Σ)

where the covariance matrix Σ ∈ Rn×n is described via the covariance function κ and the mean µ ∈ Rn

via the mean function m from the definition of the Gaussian process:

Σij = κ(xi, xj)
µi = m(xi)

So, the parameters of the normal distribution are computed over the inputs in X and define the distribu-
tion over the function values.

From this joint distribution other distributions can be derived such as the posterior distribution that allows
the incorporation of observations, or the posterior predictive distribution that allows prediction for a new
data point that has no observation.

A remarkable feature of Gaussian processes is that they inherently provide a measure for uncertainty
due to the reliance on probability distributions. In the following sections this property will play a significant
role.

A more in-depth introduction to Gaussian processes is given in [20].

2.2.2 Bayesian Optimization

Bayesian optimization (BO) is an approach based on a wider concept referred to as surrogate modeling
[8]. In surrogate modeling one performs the optimization of an expensive black-box function f : Rn → R
by employing a surrogate model that is, in comparison, cheap to optimize.
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The expensive black-box function can, for example, be experiments to be performed by a chemist that
gets the reaction conditions and returns some evaluation criteria. The goal would be to optimize these
criteria.

The general approach is typically to first perform a couple of experiments by employing some space-
filling approach to create data the surrogate model is based on. The surrogate model is then used to
obtain new points (or one new point) at which to evaluate the expensive black-box function.

In the context of Bayesian optimization (BO), Gaussian process regression (see section 2.2.1) is typically
used as a probabilistic surrogate model, and an acquisition function is used to obtain the new experiments
[8].

The Bayesian optimization step is iterated, for example, by a fixed number of iterations:

• Optional: Optimize acquisition function hyperparameters

• Maximize the acquisition function α(x) to obtain a batch x′
1, ..., x′

q of batch size q of new candidates
at which to evaluate

• Evaluate the expensive black-box objective f(x) at these new candidates to obtain y′
1, ..., y′

q

• Add these data points to the dataset. This causes the posterior of the surrogate model to update.

As more data is acquired, the posterior of the underlying model will change based on the data. There-
fore, the underlying Gaussian process learns with each iteration via the definition of its posterior. The
acquisition function makes use of this posterior distribution to yield new candidates. If the batch size q is
greater than 1, multiple candidates that should be performed in parallel can be determined. These experi-
ments are performed without including the evaluations obtained from other values from the same batch on
f . If q is chosen as 1 the candidates will include the results from the prior step. So, a batch size of 1 would
be the typical choice if only a single evaluation can be performed at the same time.

The acquisition function itself is a heuristic that assigns a utility to each point in the space. This utility
is to be maximized. Therefore, an optimization problem is solved over the acquisition function – which
in return is based on the cheap surrogate model – in each iteration. The acquisition function performs
a trade-off between exploration and exploitation: It aims to explore points where the uncertainty of the
underlying model is high (exploration) or to optimize found optima even further (exploitation). There are,
also depending on the scenario, different choices for acquisition functions that may weight points of the
input space differently according to the two criteria, but there are also so-called non-myopic acquisition
functions that do not only look at the utility assigned to the current step but rather also decide what may
be a good choice of candidates regarding follow-up iterations [21]. Acquisition functions themselves can
have further parameters that can be optimized – even during the execution of the algorithm as described
in the optional step.

An influence neglected so far is that caused by noisy observations. If only noisy observations of f(x)
are observed it may be necessary to include this noise in the model of the problem. Such statistical noise
can, for example, occur due to errors in the sensors, limitations on the number of observations, etc.

A more in-depth introduction to Bayesian optimization is given in [8].

2.2.3 Multi-objective Bayesian Optimization

So far, only a single objective f : Rn → R has been taken into consideration. In a multi-objective scenario,
the codomain of f has a dimensionality m > 1, i.e., f : Rn → Rm. In the following, the component
functions of f(x) are going to be denoted as f1(x), ..., fm(x).

The objectives may be contradictory in the sense that choosing a new point x′ that increases one objec-
tive’s value fi(x′) may worsen another objective’s value fj(x′). The points where none of the objectives
can be improved without worsening another is called Pareto frontier. Figure 3 shows an example of what
such a Pareto frontier may look like.



8

𝑓1 𝐱

𝑓2 𝐱

Pareto fron�er

Figure 3 An example for a 2-objective min-
imization problem. The gray area and blue
curve are the values f(x) plotted for all x in
the input domain. The blue curve shows the
Pareto frontier of all the non-dominated ob-
jective values f(x), i.e., the inputs x corre-
sponding to the points f(x) on the curve are
Pareto-optimal for f . The gray area consists
of points that are not Pareto-optimal: An x′

can be found for any point x in it such that
fi(x′) < fi(x) for some objective but none of
the other objective values decrease for x′. For
example, a Pareto improvement for the gray
point would be to find points such that their ob-
jective values are moved along the blue arrows
towards the frontier.

A solution f that cannot be improved in any component
without worsening another component is called Pareto opti-
mal. Typically, there is a whole set of such Pareto optimal
points. This set is called Pareto frontier. The points not on
the Pareto frontier are said to be dominated by some points
that are on it.

In multi-objective Bayesian optimization, the goal is to ap-
ply the idea of Bayesian optimization in the multi-objective
scenario.

The approach this work uses is called noisy expected hy-
pervolume improvement (NEHVI) [3]. The approach it takes
is to model each objective as a separate Gaussian process.
The acquisition function NEHVI aims to maximize the ex-
pected hypervolume spanned by the estimated Pareto fron-
tier and a user-specified reference point that must be dom-
inated by all points on the frontier. In simpler terms its ob-
jective is to make the expected hypervolume dominated by
the Pareto frontier as large as possible. This causes more
values that are dominated by the actual Pareto frontier to
be also dominated in the approximate Pareto frontier. As
stated before, the surrogates for the objectives are modeled
as Gaussian processes. So, an expected hypervolume is be-
ing computed using the observations that the Gaussian pro-
cesses’ posteriors take into consideration. NEHVI further-
more assumes that the observations of the objective values
themselves are noisy.

2.3 Related Work

In the design of experiments (DOE) many techniques from
machine learning have been applied to the field of reaction condition optimization. In this section, a short
overview over machine learning approaches in the field of reaction optimization is given with special focus
on Bayesian optimization and metal-organic frameworks.

Two major types of machine learning approaches have been found in the literature: predicting the un-
known reaction conditions for a new reaction from a set of reaction conditions known to be successful, and
learning from a sequence of failed experiments until success. In the following, the main focus will be on
the latter since learning from failed experiments is the aim of this paper.

Raccuglia et al. [15] built a kernel-based support vector machine (SVM) over the reactants’ properties to
predict experimental results and derived a decision tree from that. Raccuglia et al. compared various mod-
els and determined that such SVMs yield the highest accuracy among the compared models. Compared
to the other approaches, there is no active learning strategy being followed.

Reker et al. [16] employed an adaptive random forest approach that allows an iterative adaptation to
new data. They built a reaction optimization framework with the objective to minimize the number of
experiments to be performed and found that the performance is comparable to that of human experts in
their performed experiments.

Moosavi et al. [12] used a robot to reconstruct a series of failed experiments for the MOF HKUST-1
and used a genetic algorithm to predict the next batch of experiments to perform. After the sequence
of experiments, an analysis was performed using random forests to describe the relative impact of the
reaction conditions to the criteria used to evaluate the outcome, crystallinity and phase purity. The overall
objective of the random forest approach was to learn chemical intuition that was then transferred to a
similar material. Domingues et al. [6] extended on the work by Moosavi et al. [12] and used a genetic
algorithm to optimize the reaction conditions for the MOF Al-PMOF.
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Felton et al. [7] performed a benchmark of various techniques on multi-objective reaction optimization.
While unrelated to MOFs, the paper may give evidence about the performance of the different approaches.
It concluded that multi-objective Bayesian optimization outperformed the other algorithms in the test setup.

Greenhill et al. [10] give an overview on the usage of Bayesian optimization with respect to experimental
design and, among other, give suggestions on how to incorporate prior knowledge.

Shields et al. [18] used Gaussian process-based single-objective Bayesian optimization for reaction
optimization. They compared various techniques and in the end employed reaction descriptors obtained
from density functional theory and the parallel expected improvement acquisition function. They found that
Bayesian optimization on average outperformed human experts in a game and consistently achieved high
results.

Xie et al. [22] used single-objective Bayesian optimization over a random forest together with a robotic
platform to optimize a MOF. The decision to use random forests and not Gaussian processes was made
to deal with categorical variables that were part of their model.

In the bachelor’s thesis preceding this work, Ortner [14] applied single- and multi-objective Bayesian op-
timization with a focus on the MOF ZiF-8. In her work, kernel optimization was performed for the Gaussian
process used by the single-objective Bayesian optimization approach and a second Gaussian process
was used to approximate an outcome if a chemist were to do it. Due to the sparsity of the available data
the predictive capability of this external Gaussian process was however deemed low. Both, the single-
and multi-objective approach successfully predicted a reaction condition on the Pareto frontier. However,
a comparison of the two approaches was found to be not possible.

To the best of our knowledge, Bayesian optimization has not been augmented by simulation data in the
field of design of experiments regarding MOFs. However, reaction kinetics has been used to characterize
the reaction process by Dighe et al. [4, 5]. Raccuglia et al. [15] shortly describe that the prediction of crystal
structures is a complicated problem and emphasized that the use of physical models characterizing the
crystal formed by a chemical reaction is not tractable so far.

3 Framework

The objective of this work is to provide a Python-based framework that can easily be extended by computer
scientists yet remains straightforward to use by chemists and integrate into their workflow. Furthermore, it
should be applicable to different MOFs or chemical processes and serve as an accessible assistant during
reaction optimization.

The framework is comprised of the following core components:

• Performing single-objective or multi-objective Bayesian optimization

• Handling reactions and corresponding differential equations

• Human-in-the-loop functionality and user interaction

The main focus was on Bayesian optimization which was realized in BoTorch [1], a framework that
uses the Gaussian process implementation of GPyTorch [9]. Both, BoTorch and GPyTorch, are based on
PyTorch1 and are thus capable of being executed on both, CPU or GPU.

The experimentation for UiO-66 is located in the project.guided_research package that can be run via
the main.py script located in the project root.

In the following, an overview of the provided functionality is provided. For a more in-depth report, the
reader is referred to the code documentation that also explains class members and method parameters left
out for legibility. The following sections provide an overview of the framework. A more in-depth treatment
can be found in the software and its documentation.

1PyTorch: https://pytorch.org/

https://pytorch.org/
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3.1 Data Loading and Preparation

The data used in the framework was provided in the form of an Excel-document. To integrate well into
the workflow, functionality to load documents of this type and further process the provided data was imple-
mented. An abstraction away from the file structure was performed since it is expected that optimization will
be performed over different reaction conditions and results are evaluated with different evaluation criteria.
The data package provides generic data management for a Pandas2-data frame based data organization.
The data, as in Pandas’s data frames, is organized in columns and rows. The columns indicates the cate-
gory of data being stored in the rows. So, each row has data for each column. For each such data table,
metadata can be indicated that is equal for all entries in it.

For example, each performed experiment is described in a row. There are columns for each reaction
condition parameter and for each evaluated criterion. The reactants being used can also be stored in the
table. If the same reactants were used in each experiment, it is good practice to treat them as metadata,
as they are not an experiment-specific property.

Data can, for example, be grouped by the general setup (these could be, e.g., organic linker type, metal
type, MOF type), columns can be removed, rows from separate datasets can be concatenated, etc. At the
same time, access to the underlying data remained straightforward and, to the outside, is provided as a
NumPy3 array.

While this is rather a wrapper for the functionality provided by Pandas, it is a suitable adjustment to the
requirements of the project by providing frequently used operations in an organized and straightforward-to-
use manner and integrating well into the experimentation pipeline. It is furthermore a standalone package
not strictly required by the other parts of the framework but allows unified access and transformation of
data, and is a helpful addition for chemists to organize the data.

3.2 Optimization Functionality

Defines the general
optimization setup
(technique,
technique
parameters, …)

Performs the actual
optimization of an Objective
with data.
Created by an instance of the
Optimizer class

The objective to optimize.
Evaluation by single element
via __call__ or in a batched
manner.

Objective <TInput, TOutput>

__call__(x: TInput) : TOutput
batched(x: Sequence<TInput>) : Sequence<TOutput>

OptimizerInstance <TInput, TOutput>

optimize_batch(batch_size : int) : Sequence<TInput>
with_data(x : Sequence<TInput>,

y : Sequence<TOutput>,
inplace : boolean,
…) : OptimizerInstance <TInput, TOutput>

Optimizer <TObjective, TInput, TOutput>

create_instance(objective: TObjective,
optimizer_mode: OptimizationMode,
x: Sequence<TInput>,
y: Sequence<TOutput>,
…) : OptimizerInstance<TInput, TOutput>

uses data to create

suggests new points
to sample

Figure 4 Class diagram of the core base classes used by the optimization framework, adjusted for the purpose of
showing the most relevant components. A description can be found in the text.

2Pandas: https://pandas.pydata.org/
3NumPy: https://numpy.org/

https://pandas.pydata.org/
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Figure 4 shows the relationship between the various classes.
The optimization package is organized around the class Objective which, derived in a base class,

represents a function to evaluate. This could, for instance, be a function that waits for a chemist performing
the evaluation. An objective takes a certain input and produces its corresponding output – both types are
indicated by the generic arguments they get. Objectives can be added, subtracted, multiplied, divided, or
transformed in various ways.

The goal in optimization is to optimize such an objective, either via minimization or via maximization.
Different optimization approaches exist even in the Bayesian optimization family. For example, Gaussian
process-based single-objective and multi-objective optimization can be adjusted by parameters such as
kernels or the used acquisition function. To cope with the wide variety of possible optimizers, the Optimizer
class provides a base class that defines the used technique and its parameters. On an abstract level, it de-
scribes everything needed to create an OptimizerInstance (by the create_instance-function) that applies
the approach to a concrete dataset. An existing OptimizerInstance furthermore provides functionality to
add further data obtained from subsequent evaluations of the objective over which optimization is per-
formed (by the with_data-function that, by default, returns a new OptimizerInstance unless inplace is set
to True).

All three classes are abstract, i.e., they provide only the definitions that any actual optimizer should
implement. An actual optimizer can be swapped as each such optimizer provides the same basic func-
tionality, only the approach varies. Optimizers provide the create_instance-function that creates an
OptimizerInstance from the objective to optimize (the class of objectives supported depends on the opti-
mizer), an optimization mode (maximization or minimization), and some sequences of input x1, x2, ..., xn

and output data y1, y2, ..., yn.

3.2.1 Usage

The optimizers implemented so far are both Bayesian optimization-based: the single-objective Bayesian
optimizer SingleTaskGPOptimizerInstance in package optimization.bo.sobo.single_task and the qNEHVI-
based qNEHVIOptimizer in package optimization.bo.mobo.nehvi.

The SingleTaskGPOptimizerInstance is to be used if only a single objective should be optimized, the
qNEHVIOptimizer if there are multiple conflicting objectives.

To use an optimizer, an instance must first be created. Depending on the optimizer, various parameters
are provided that affect the way, the optimizer instance performs its task (optional parameters are in italics):

• input_bounds: The hyperrectangle in which the input data lies.

• output_bounds: The hyperrectangle in which the output data lies.

• fit_upon_new_data: Set to True to fit the parameters of the underlying model(s) as new data is
acquired.

In addition to that, the qNEHVIOptimizer provides the reference_point-parameter that is a point that
should be dominated by any point on the Pareto frontier (see section 2.2.3).

If hyperrectangles are defined for input or output bounds, the respective input or output data is scaled
by the provided bounds before being used. The goal is to provide bounds such that each feature lies in
the range [0, 1]. Note that while optional, this choice affects the performance of the Bayesian optimization
as well as the statistical properties of the input and output data.

The following example shows an example of the usage of the optimization functionality. The optimizer
is given some input boundaries, output boundaries, and a reference point as explained above. The
optimizer.create_instance method receives the optimization mode (maximization/minimization), and in-
put and output data.

In line 9, the new optimum candidates are returned. For the Bayesian optimization, the candidates are
the points at which to sample next as obtained via the internally used acquisition function.
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� �
1 # I n i t i a l i z e the op t im ize r w i th the i npu t boundaries , output boundaries , and the re ference
2 # po in t dominated by a l l po in t s on the f r o n t i e r
3 op t im ize r = qNEHVIOptimizer ( input_bounds , output_bounds , re fe rence_po in t )

5 # create the maximizing op t im ize r ins tance from inpu ts x and observat ions y
6 op t im ize r_ ins tance = op t im ize r . c rea te_ ins tance ( OptimizationMode . maximize , x , y )

8 # get a batch o f candidates a t which to sample next
9 candidates = op t im ize r_ ins tance . opt imize_batch ( batch_s ize )� �
3.2.2 Remarks

An approach that was chosen by Ortner in her bachelor’s thesis was the use of an external Gaussian pro-
cess that was used to simulate the real world [14]. The optimization procedure would then suggest points
that could be evaluated on the external Gaussian process instead of being realized by a chemist perform-
ing the actual experiment. With the framework, this idea can be realized by implementing a respective
objective that acts as a surrogate for the chemist (not to be confused with the surrogate model used by
Bayesian optimization!) and internally uses a Gaussian process as, for example, provided by GPyTorch.

3.3 Reactions and Differential Equations

During the decision process it was hypothesized that simulating the reaction process via reaction kinetics
would proof beneficial as an augmentation to the Bayesian optimization. As pointed out in section 2.1.2,
the concentration changes over time can be described as a differential equation system – more specifically
as an ordinary differential equation system in the case at hand. As such, a package was implemented that
would allow the definition of reactions and the computation of differential equations from it.

The output of the simulation may be used to augment the Bayesian optimization or to narrow the space
explored by Bayesian optimization if it is already known that a reaction will not yield the desired results.

It should be noted that, at this stage, solving the differential equations symbolically is not yet possible as
the initial assumption that SymPy4 could solve them did not hold (see below).

An alternative to this framework would be the use of ChemPy5 which does however not offer symbolic
solutions either which was one of the reasons that the development of a custom framework was made. If
a symbolic solution were possible, computations would be highly efficient and accurate thus reducing the
amount of time of the Bayesian optimization. The numerical solution of the ordinary differential equation
for the vast number of reactions was found to be very inefficient.

3.3.1 Setting up Reaction Systems

The package for describing reactions is located in the chem.reactions package. Figure 5 gives an overview
over the most important classes used in the reaction modeling. A substance is seen as a basic unit.
Substances can be elements, aliases, compounds, or any other representation. They are used for the
identification of equal substances in reactions. The StoichiometricSubstance then represents a multiple
of a substance. For example, in some hypothetical reaction 3M + 2L → P , the substances M , L, and P
have the respective stoichiometric coefficients 3, 2, and an implicit 1.

The StoichiometricSubstance instances are then used in ReactionParts that are composed of multiple
such substances (and due to their simplicity omitted in the diagram). In the above example, 3M + 2L and
P are the reaction parts that form the overall reaction. A set of such Reactions is then represented by a
ReactionSystem.

In the case of MOFs, the reaction system would contain the initial reaction and its subsequent reactions.
An example for setting up a reaction system would be the following:

4SymPy: https://www.sympy.org/
5ChemPy: https://pypi.org/project/chempy/

https://www.sympy.org/
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StoichiometricSubstance

substance: Substance
stoichiometric_coefficient: int

Substance

name: string

ReactionSystem

reactions: tuple<Reaction, …>

Reaction

reactants: ReactionPart
products: ReactionPart
metainfo: Mapping<ReactionMetaInfo, Any>

Consists of

*

1

Has multiple
reactants and
products

1

*

Figure 5 Class diagram of the most important reaction modeling classes, adjusted for the purpose of showing the
most relevant components. A description can be found in the text.

� �
1 import chem . reac t i ons as reac t

3 M, L , P = reac t . substances ( ’M ’ , ’ L ’ , ’P ’ )
4 r eac t i ons = [ ]

6 r eac t i ons . append (3 * M + 2 * L >> P)

8 system = reac t . ReactionSystem ( * reac t i ons )� �
First, the package chem.reactions is imported by with an alias react. Then, the substances M, L, P are

created as in the above example. reactions is a list to which reactions can be appended. In line 5, the
example reaction is then added to this list of reactions and in line 7, the reaction system is created.

In the mof.reactions-package a convenience method create_mof_reaction_system is provided that cre-
ates a whole system of reactions for MOFs such as the UiO-66.

3.3.2 Differential Equations

The chemmath.solver.symbolic and chemmath.solver.numerical packages contain code for the symbolic
and numerical modeling and solution of the differential equations. The chem.simulation package contains
the to_symbolic-function that is intended to convert a ReactionSystem into a form that can be used to set
up the equations of the symbolic solver.

A ReactionSystem can also be directly used by the numerical reaction solver, ReactionSolver, in pack-
age chemmath.solver.numerical. For the large number of reactions typical to MOFs, this approach was
however found to be rather inefficient – a problem an analytical solution would not have.

An overview of the most important classes of the symbolic solver is given in Figure 6. The solver’s setup
is very similar to that of the reaction modeling. The WeightedSymbol is a product between a coefficient
and a SymPy-Symbol. Contrary to the reaction modeling, the coefficient now can be an arbitrary SymPy-
expression and the result of a computation, but constant values such as int and float are also possible
values.

The SymbolicReaction-class again consists of reactants and products as tuples of arbitrary length, and
the SymbolicReactionSystem collects such reactions. The most important function defined on it is the
setup_differential_equation_system-function that returns an instance of the
ReactionDifferentialEquationSystem-class. Therein, the overall symbolic differential equation system
has been created ready to be solved by SymPy’s dsolve-function. However, contrary to what prior experi-
ments seemed to have shown, SymPy was not able to symbolically solve the given equation systems.
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WeightedSymbol

symbol: Symbol
coefficient: float | int | Expr

SymbolicReactionSystem

reactions: tuple<Reaction, …>

setup_differential_equation(
t: Symbol,
…) : ReactionDifferentialEquationSystem

SymbolicReaction

reactants: tuple<WeightedSymbol, …>
products: tuple<WeightedSymbol, …>

Consists of

*

1

Has multiple
reactants and
products

1

*

ReactionDifferentialEquationSystem

assign(symbol : Symbol, expression : Expr)
solve_symbolic(

initial_values: Mapping<Expr, Expr>
) : DifferentialEquationSolution

Is used to create

Figure 6 Class diagram of the most important simulation classes, adjusted for the purpose of showing the most
relevant components. A description can be found in the text.

The initial idea was to support both, symbolic and numerical solution. For that reason, the
WeightedSymbol would also support non-constant expressions so that parameters could be optimized over
the solution of the differential equation system. By that, models or parameters used to predict inputs to the
Bayesian optimization could independently be optimized while being straightforward to define.

A workflow applicable in a scenario where an analytical solution is unavailable would be to compile the
symbolic equations from Python-code as provided by SymPy’s lambdify-function and hand that function to
a numerical solver. However, the code generated by lambdify was found to be rather inefficient. A solution
to the translation of SymPy’s generated expressions to Python as well as numerical solution based on it
would require further investigation and work.

Due to its code length, an example would be beyond scope for this report and is provided in the tutorials
of the application.

3.4 Other

The framework provides functionality for user interaction to perform a human-in-the-loop or, in the future,
robot-in-the-loop workflow. This kind of interaction loop is necessary to inform the human or robot chemist
about an experiment to perform and to await the experiment’s outcome.

While the chemist performs their task, the application is expected to be shut down. This requires,
however, that the previous state is recovered when the application is next executed. A foundation has
been implemented in the stateful.persistence package that allows file-bound object persistence in the form
that after a sequence of changes is performed on an object or objects contained in it, the object is saved
to a file and reloaded the next time it is created. The stateful package further provides a class for tracking
and persisting tasks to be performed.

An example experiment-suggestion application was implemented in the project.guided_research pack-
age. The NEHVI-based Bayesian optimization and, in parts, persistence functionality have been applied
in this package.

A more in-depth description is beyond the depth this report is to provide. It is provided in the documen-
tation.
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4 Conclusion

In this report the current state of the framework developed for MOF reaction condition optimization has
been described. The current main features are single- and multi-objective Bayesian optimization using
BoTorch, a modern Bayesian optimization-framework, human-in-the-loop functionality and object persis-
tence, as well as a foundation for symbolic or numerical solution of differential equations.

While the Bayesian optimization framework is in an operable state and was tested, it has not been
applied to a real-world problem, yet. The human-in-the-loop functionality requires further integration and
testing.

The solutions from the (symbolic or numerical) differential equation solver still must be combined with the
Bayesian optimization modules. As argued in section 3.3.2, symbolic solutions may provide fast and accu-
rate results but their solution has not been achieved, yet. Autocatalysis has, so far, not been implemented
and requires further investigation and development. The framework design should make integrating it a
straightforward procedure. Maybe an even more sophisticated simulation mechanism would furthermore
be beneficial to further bound the space Bayesian optimization explores.

If such a simulation system were to provide a sufficiently efficient and accurate simulation for reality, it
could furthermore act as a benchmark for the optimization procedure enabling testing algorithms without
the expensive feedback procedure of algorithm and chemist interacting or as a rejection criterion for the
Bayesian optimization’s suggestions.

Due to the characteristics it comes with, Bayesian optimization promises to be a good tool for the de-
sign of experiments. In the case of metal-organic frameworks, vast numbers of experiments have been
conducted to perform optimization tasks – a number that reflects also the number of failed experiments
and the cost incurred for them. Making optimization procedures accessible to chemists that do not have
a strong background in application development, and providing tools that integrate well into their workflow
are promising assets to decrease the cost of attaining a successful experiment and the time needed to
complete it. As such, implementing a powerful realistic framework that makes the experimentation pro-
cess more accessible or even automated is expected to proof beneficial to the successful discovery of new
materials. From a computer science perspective, the evaluation of Bayesian optimization on an empirical
basis should also be possible if the framework were to be applied to a larger number of MOFs.
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