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Abstract

With the ability to obtain sufficiently accurate and computationally accessible solutions to
the many-body Schrödinger equation most of modern chemistry and material science could
renounce phenomenology and enter the era of ab-initio modeling. Since its publication in
1926, the equation received a lot of attention with regards to finding an accurate, yet efficient
approximation which would capture the most relevant quantum behavior while remaining
polynomial in computational complexity. To this end, one often resorts to methods based
on the mean-field approximation, in particular Hartree-Fock (HF) or the highly popular
and flexible Kohn-Sham density-functional theory (DFT). Central to both methods lies the
interpretation of the nonlinear eigenvalue problem constituted by the stationary Schrodinger
equation for the ground state energy as variational minimization procedure. Both methods,
in order to tackle that minimization analytically, restrict their computational basis to a linear
combination of orthogonal one-electron wave functions only, which has a severe impact on
the overall efficacy of those algorithms. A different family of electronic structure methods
known as Quantum Monte Carlo (QMC), overcomes this limitation allowing for an arbitrarily
complex wave function ansatz which in recent years has led to a surge in interest from deep
learning community which lead to formulation of so called Neural Quantum States (NQS).
The price one pays for this freedom, however, is the necessity of solving high-dimensional
integrals in order to evaluate the energy expectation objective and a subsequent stochastic
optimization procedure of the variational parameters. Given the flexibility of neural networks,
that is, their inherent lack of any underlying discretization, other than, perhaps the machine
precision, of crucial importance becomes performance of the Monte Carlo simulation, which
determines which regions of the wave function get assigned most representational resources.
In this work, we address the topic of sampling using physics-aware deep learning surrogates
of the wave function Ψ within the Quantum Monte Carlo framework, in particular our aim
was to develop a sampling algorithm which could deal with the pathologies of the so called
Born probability density |Ψ|2. As a secondary endeavour, we have gone to great lengths in
providing an extensive, although not exhaustive, review of the state-of-the-art methodology
of this young field alongside the traditional, computational approaches of quantum chemistry
and physics of fermionic systems published hitherto. Through this work, we wish to improve
upon prevailing accuracy-efficiency dilemma in computational quantum mechanics and to
further tighten the progressing integration of deep learning and scientific computing which
promises significant improvements over the often purely phenomenological elements of
the current state-of-the-art methods, closing the gap to the elusive problems of practical
significance encountered in engineering, chemistry or medicine.
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1. Introduction

Crucial to the understanding of emergence of macroscopic properties of matter is the knowl-
edge of its electronic structure. It has proven instrumental in developing theories like the
free-electron model of A.Sommerfeld and H.Bethe explaining conductivity in crystalline
solids, the molecular orbitals theory description of covalent bonding of atoms developed by
Hund, Muliken, Hueckel and others or the theoretical underpinnings of magnetic, thermal
and optical properties to name the few [1]. The outburst of successful material models in
the second half of the twentieth century has been completely facilitated by the revolutionary
ideas that came to be known as quantum physics. By the year 1929, three years after the
publication of the much celebrated wave equation by Erwin Schrödinger, the field has not
only had thorough experimental underpinnings but also a successful theoretical description,
leading Paul Dirac to utter the following words:

"The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems without
too much computation." - P.Dirac (1929)

Although quantum mechanics has been first consistently formulated by Werner Heisenberg,
Max Born and Pascual Jordan in 1925 using the language of matrix algebra [2] it is usually
the so-called Schrödinger picture which we assimilate with the theory of quanta. Its general
form reads:

ih̄
∂

∂t
Ψ(r, t) = ĤΨ(r, t) =

−h̄2

2m
∇2Ψ(r, t) + U(r)Ψ(r, t) (1.1)

and describes time evolution of a complex-valued wave function Ψ(r, t) : Rn → C. In the
above, Ĥ is the system’s Hamiltonian - the total energy operator introduced by R. Hamilton
in his alternative formulation of classical mechanics [3] and consists of the kinetic (ih̄∂x)2

2m
and potential U(r) energy terms which are themselves quantum operators. Hamiltonian
mechanics will be dealt with in greater detail in later sections with regards to Hamiltonian
Monte Carlo, an efficient sampling technique used as a subroutine in the Quantum Monte
Carlo method. For now, it is only important to realize it is a system-dependent, hermitian
operator which generates its evolution in time.

With no reference to the underlying physics, the wave function is supposed to represent,
one can further state that equation 1.1 [4]:

1



1. Introduction

• is a linear differential equation - if Ψ1(r, t), Ψ2(r, t) solve the equation αΨ1(r, t)+ βΨ2(r, t)
does too,

• is unitary - time evolution of Ψ preserves its "length" since a complex exponent of a one
parameter hermitian operator is unitary (denoted Û) [5]

Ψ(r, t) = Ψ(r, 0)e
−i
h̄ Ĥt = Û(t)Ψ(r, 0) (1.2)

• is deterministic - given unique initial conditions and evolution equation unambiguously
determines future states.

To further elaborate on Schrödinger’s equation, it shall be mentioned that he himself
actually did not have an interpretation for his own creation, this is perhaps best attested by
existence of mockery like:

"Gar Manches rechnet Erwin schon
Mit seiner Wellenfunktion.
Nur wissen m’ocht man gerne wohl,
Was man sich dabei vorstell’n soll"

Indeed, he was not found of the already existing Heisenberg’s matrix formulation of
quantum mechanics which treated nature as discrete and hoped to prove him wrong by
working with smooth waves instead of vectors, an intuition induced by de Brogile’s idea of
wave-particle duality and motivated by the lack of a corresponding equation for their evolution
[6]. He obtained his equation from exceptionally beautiful, although considered unneeded,
yet another reformulation of classical mechanics - the Hamilton-Jacobi partial differential
equation. As reported by Cornelius [3], the path to the formulation of wave equation
led from the Hamilton’s opto-mechanical investigations, through Delunay’s treatment of
separable, multiply-periodic mechanical systems, Sommerfeld-Wilson quantum conditions,
their invariant formulation by Einstein, de Brogile’s resonance interpretation thereof and
finally Schrödinger’s logarithmic transformation from the phase function S to the wave
function Ψ.

Although Schrödinger wanted his wave to have physical meaning, he could not find one,
and a common interpretation nowadays is that there is none, at least in Copenhagen school
of quantum mechanics, with N. Bohr at its forefront [7]. The wave function is thought to
describe the state of a quantum system, that is, it contains all the necessary information, but
a one-to-one correspondence with the actual behavior of matter is not present - instead it
is defined only probabilistically. According to so called Born rule, the modulo squared of Ψ
represents the probability density function of observing a system in any particular eigenstate
of a quantum operator Ô associated with a physical observable o [8]:

|Ψ(r, t)|2 = Re(Ψ(r, t))2 + Im(Ψ(r, t))2 = p(r, t) (1.3)

2



1. Introduction

More explicitly, by considering the energy norm of Ψ under Ô 1 we obtain [4]:

Ψ(r) =
∫

O
do coϕo(r) or ∑

o
coϕo(r)

⇓

⟨Ψ| Ô |Ψ⟩ =
〈∫

O
do coϕo

∣∣∣∣ Ô ∣∣∣∣∫O
do coϕo

〉
=
∫

O
do |co|2o ⟨ϕo|ϕo⟩ =

∫
O

do |co|2o := E[Ô]

(1.4)

where ϕo is an eigenstate corresponding to any particular realization of Ô. The above, begs
an interpretation of the modulo squared of the expansion coefficients |co|2 as the probability
density function of a random variable O with realizations o.

Since co contain the same information as the wave function does - indeed, they are the
wave function, simply expressed in different basis - the above conveys unsettling results,
namely that talking about properties of matter is generally meaningless. What we call a
property is instead an incompletely defined potentiality realized in more definite form only
via interaction with other systems, such as a measuring apparatus [4]. In the words of N.
Bohr:

"It is wrong to think that the task of physics is to find out how Nature is. Physics
concerns what we say about Nature"

Such an interpretation came much to everyone’s despise, especially Schrödinger’s, because
not only did his equation failed at getting rid of the discreteness of quantum mechanics but
also turned out to yield probabilistic outcomes. This, gave rise to a furry of philosophical
debates regarding the nature of reality and the role of physics, very much unsettled to this
day [6]. Einstein and Schrödinger stood in firm opposition to Bohr’s epistemological claims,
especially the absurdity of including an observer in a physical theory, insisting quantum
mechanics in such form cannot be considered complete [9]. Although certain strides towards
ontological theory of quanta have been made, most notably by D. Bohm [7], they will not
be covered within this thesis. So won’t the further developments of Quantum Mechanics
sometimes referred to as second quantization. The group theoretic language thereof, the
inclusion of relativistic effects or quantization of the electromagnetic field, developed to a
large extent by P. Dirac himself [10], are not of crucial importance for development of the
electronic structure methods covered in the following chapters.

The pragmatic success of the wave equation formalism left philosophical unease behind, and
with an exception of spin introduced by W. Pauli in 1929, the theory of quantum mechanics
took its final form. It not only yields correct description of the seemingly discrete, quantum
behavior occurring at length scales on the order of the Planck’s constant h ≈ 6.63× 10−34[m2kg

s ],
but also remains consistent in classical limit, a feature known as the correspondence principle
[4].

Let us now turn to the many-body Schrödinger equation, which is considered relevant
for the description of virtually all of chemistry and material science and per se plays central

1which is equivalent to the L2 norm of Ψ expressed in eigenbasis of Ô

3



1. Introduction

role in all that is to come in the remainder of this thesis. First and foremost, consider that
the "waves" of the wave equation live in an abstract phase space - or more technically, a
submanifold of the cotangent bundle of the configuration manifold the dimensionality of
which is determined by the number of degrees of freedom present in the system. Contrary to
classical mechanics, quantum systems are characterized by the non-commutativity of certain
operators, like the momentum and position, and therefore, a complete description of the wave
function requires only the mutually commutative subset of the phase space. Such formulation
however, in which each significant co-ordinate is assigned a unique dimension, is responsible
for so-called curse of dimensionality and lies at the heart of the practical difficulties in applying
quantum mechanics to many-body systems.

Furthermore, before formulating the many-body Schrödinger equation it is important to
realize the following, in a system of many identical particles we have no means to practically
distinguish which particle we are talking about. Hence, the joint probability distribution of
finding any particle in a given place must be invariant with respect to permutation P of its
arguments. Considering a minimal example of two identical particles we have:

Pr(r1, r2) = Pr(r2, r1) = PPr(r1, r2) (1.5)

It is obvious that swapping any two arguments twice yields the initial function back, it is
therefore convenient to think of P2 as of identity operator. Now, recalling that the probabilistic
interpretation of the wave function involves taking the square of the modulus, and since P is
commutative with that operation, the above invariance condition leaves us with two cases to
consider:

PΨ(r1, r2) = ±Ψ(r1, r2) (1.6)

A simple separable wave function Ψ(r1, r2) = ϕ1(r1)ϕ2(r2) clearly does not fulfill it, but an
(anti)symmetrized product of one-electron wave functions does:

Ψ(r1, r2) =
1√
2

(
ϕa(r1)ϕb(r2)∓ ϕa(r2)ϕb(r1)

)
(1.7)

and whether it is symmetric (+) or antisymmetric (-) has profound physical implications. On
the one hand we have to do with bosons, which tend to group together - the probability of
finding two bosons at the same position r is twice the probability of finding them spread
apart. Antisymmetric wave functions on the other hand corresponds to fermions which behave
in an exactly opposite way:

Ψ(r, r) =
1√
2

(
ϕa(r)ϕb(r)− ϕa(r)ϕb(r)

)
= 0 → |Ψ(r, r)|2 = 0 (1.8)

whereby for simplicity of this particular argument we have ignored the spin eigenstates σ.
A rigorous treatment of the connection between spin and antisymmetry is only possible
within the framework of quantum field theory. There, the so-called spin statistics theorem states
that the particles of integer spin - bosons - are described by symmetric wave functions and
obey Bose-Einstein statistics, on the contrary, particles with half integer spin - fermions - are
described by antisymmetric wave functions and obey Fermi-Dirac statistics [11].

4



1. Introduction

Electrons, are 1/2-spin particles and are therefore described by wave functions which are
antisymmetric with respect to the interchange of any two particles. This, leads to yet another
computational issue, the usual treatment of which, although expensive, is to represent the
many body wave function in terms of a so called Slater determinant, we shall deffer a detailed
discussion to section 2.1.1, where we introduce the Hartree-Fock method.

Finally, the last challenge from the point of view of physics of the many-body Schrödinger
equation is to define the energy operator - the Hamiltonian - which determines what kind
phenomena can be modelled provided a perfect solution could be obtained. Considering
systems of interacting atoms - either ordered in a lattice or bounded into molecules - there
is a number of sophisticated Hamiltonians that can be formulated for the study of various
properties, from electromagnetic to superconductivity, usually however, one only focuses on
the Coulomb interactions due to electric charge of both the nuclei and the surrounding them
electrons [12]:

Ĥ = −∑
i

h̄2

2me
∇2

i︸ ︷︷ ︸
Ek electrons

−∑
I

h̄
2M

∇2
I︸ ︷︷ ︸

Ek nuclei

+
1
2 ∑

i ̸=j

e2

4πϵ0|ri − rj|︸ ︷︷ ︸
Ep el−el

−∑
i,I

e2ZI

4πϵ0|ri − RI|︸ ︷︷ ︸
Ep nuc−el

+
1
2 ∑

I ̸=J

e2ZI ZJ

4πϵ0|RI − RJ|︸ ︷︷ ︸
Ep nuc−nuc

(1.9)
where i, j and I, J are the electron and nuclei indices respectively, Z is the atomic number,
e ≈ −1.67 · 10−19C is the charge of an electron and the 1

2 factor in front of the 3rd and 5th term
is there in order not to count electron interactions twice.

Furthermore, for the study of the ground state properties of mater we consider only the
time-independent Schrödinger equation which is essentially nothing but a nonlinear, energy
eigenvalue problem:

ĤΨ(r1, ..., rN , R1, ..., RM) = EΨ(r1, ..., rN , R1, ..., RM) (1.10)

It might seem like a very rigid formulation, but it has sufficient complexity to provide
a faithful model for i.a. establishing equilibrium compositions, studying band structures
or strength properties of crystalline solids as well as chemical bounding mechanisms and
therefore formation of molecules. The accuracy with which we are able to capture these
phenomena, however, resides ultimately in the scope of the treatment of mutual interaction
between electrons, which due to Born’s rule is often also refered to as the electronic correlation
[13, 14]. Below we list some of the most common approximations which will define utility of
the methods we shall present shortly in the chapter to follow:

• Born-Oppenheimer approximation (adiabatic approximation) - Nuclei are large, heavy
and almost static compared to electrons, due to this discrepancy in scales we can
decouple the Schrödinger equation into two terms:

Ψ(r1, ..., rN , R1, ..., RM) = Ψe(r1, ..., rN |R)Ψion(R1, ..., RM) (1.11)

The rationale is that since the electrons are so nimble, they always have enough time
to readjust their lowest energy state to any movement of atomic nuclei. The mutual

5



1. Introduction

evolution of nuclei and electrons is hence adiabatic, the energy exchange between them
is negligible. Provided we consider dynamics at reasonably cold temperatures it is a
reasonable assumption, otherwise we need to resort to ab-initio molecular dynamics
[15]. The conditioning on R indicates that the electron wave function still depends
parametricaly on the positions of ions.

• Clamped nuclei approximation - We can further diminish the role of nuclei by ignoring
their kinetic energy - again provided we consider sufficiently cold systems. Since the
potential energy due to nuclei-nuclei interactions becomes a constant now, we move it
over to the other side, for brevity, since electrons are indistinguishable, we also replace
Ψ(r1, ..., rN) with Ψ(r):[

−∑
i

h̄2

2me
∇2

i︸ ︷︷ ︸
Ek electrons

+
1
2 ∑

i ̸=j

e2

4πϵ0|ri − rj|︸ ︷︷ ︸
Ep el−el

−∑
i,I

e2ZI

4πϵ0|ri − RI |︸ ︷︷ ︸
Ep nuc−el

]
Ψ(r) = EΨ(r)

(1.12)

– Only valence electrons - Since the valence electrons have the largest impact on the
reactivity of atoms via covalent bonding [16], one often incorporates the electrons
occupying the inner shells into the nuclei, creating so called pseudopotentials. This
way the number of degrees of freedom is reduced to just the electrons on the
valence orbitals.

• Independent electrons approximation - It is possibly the harshest approximation and
if used, will require introduction of certain corrections to reintroduce the electron
interactions responsible for most of the interesting behavior of matter. Nonetheless, it is
an efficient cure for the curse of dimensionality for it reduces the computational effort
from solving a 3N dimensional problem to solving N, decoupled, three-dimensional
ones. It treats the many-electron wave function as a product of one-electron wave
functions and therefore makes it separable:

Ψ(r1, ..., rN) = ϕ1(r) · · · ϕN(r) (1.13)

and the many body Schrödinger equation simplifies even further to:[
−∑

i

h̄2

2me
∇2

i︸ ︷︷ ︸
Ek electrons

−∑
i,I

e2ZI

4πϵ0|ri − RI |︸ ︷︷ ︸
Ep nuc−el

]
Ψ(r) = EΨ(r)

(1.14)

From the point of view of probability theory, this approximation makes the joint, Born
probability density completely independent.

Lastly, let us touch upon the topic of electronic correlations more elaborately, since their
faithful resolution is indeed what we aim to target with our improved sampling algorithms.
Physically, there are only two mechanisms through which electrons get correlated: the

6



1. Introduction

correlation due to Fermi-Dirac statistics and due to Coulomb repulsion [14], both manifest
themselves marvellously through mathematical peculiarities of the Schrodinger’s equation.
On the one hand, the former, known as Fermi correlation, arises solely from the antisymmetry
requirements and can be readily seen by computing the Born probability density of the
simplest, valid wave function from eq. 1.7, upon doing so it’s apparent it must contain a
mixed term ±ϕa(r1)ϕb(r2)ϕa(r2)ϕb(r1) and therefore the joint probability density will not be
independent. Importantly this has nothing to do with the charge of the electrons, but rather
the fact they are identical fermions. Because, electrons are thought to occupy so called spin
orbitals, that is a spatial function ϕ(r) with an attached spin indicator σ, in order to comply
with the antisymmetry requirements, symmetric spatial configurations may be only combined
with antisymmetric spin factors, and vice versa. Depending on the spin therefore, this will
lead to either so called Fermi holes - where the spatial probability density decreases to zero
when the electrons approach each other - or conversely, Fermi heaps - a bosonic-like behaviour
where the probability density actually doubles. On the other hand, second mechanism of
correlation - the Coulomb correlation - is a result of singularity of our Hamiltonian, eq. 1.9,
whenever two charged bodies approach each other, that is, whenever the denominators in
the potential energy function: |ri − rj| or |ri − RI| go to zero. Unless the wave function at
such a spot equals zero itself 2, the only possibility for the eigenvalue problem 1.10 to remain
defined, is to have an "equal" and opposite infinity in the kinetic energy term. Since, the
kinetic energy operator is a Laplace operator, infinity can occur only if the first derivative of
the wave function is discontinuous - we call such places cusps. Practically, cusps will arise
asymptotically, through considerations of energy minimization when the function is expanded
as a superposition of all possible virtual excitations which is often referred to as configuration
interaction. Inclusion of other symmetrized orbital products of course also refines the nodal
structure of the wave function 3, a faithful resolution of which, is particularly important
for accurate representation fermionic systems [13, 17], but as discussed, it can only occur
approximately. Finally, for historical reasons one sometimes distinguishes between static and
dynamic Coulomb correlations although physically they are not any different. What we have
just described is essentially the case of dynamic correlation, whereas static correlation occur
whenever there are degeneracies among orbitals, resulting in configurations of very similar
energies but different orbital occupations. In mathematical terms, it corresponds to geometric
multiplicity of the energy eigenvalues and requires specialized, multi-configuration methods
to deal with.

2which is the case for antisymmetric spatial orbital i.e. the case of a Fermi hole, which will, however, nonetheless
lead to a discontinuity in the wave function, just in its second, not first, derivative

3A node of a wave function is generally nothing else than a node of any other wave, a place where Ψ(x) = 0 but
Ψ′(x) ̸= 0

7



2. State of the art

This review aims to present the current, although not-comprehensive, landscape of first-
principle simulations for prediction and design of material properties - so called electronic
structure methods. The major challenge is to find approximations to the exponentially hard,
multi-body Schrödinger equation 1.10 that, in the best case would have only polynomial
scaling, yet could capture the most important correlations between electrons. In the words of P.
W. Anderson, more is different [18]; scale therefore, somewhat ironically, is the major roadblock
as well as the key to understanding the emergent properties of solids [1], chemical compounds
[19] and therefore virtually all phenomena of interest in molecular biology, material science
or nanotechnology [20].

Figure 2.1.: Rotor of a ATP synthase, known to consist of 16649 atoms. Source: [12]

In the first part, the well established and widely used self-consistent-scheme methods will
be presented as well as the variational approach of Quantum Monte Carlo, the latter actually
builds on the developments of the former and in turn defines theoretical grounds for what is
to come in the second part, namely the recent approaches utilizing deep learning. Only a
relatively brief account of utility of all these methods will be presented and we shall focus
primarily on computational issues leaving the applicability domains - which are indeed broad
- aside. An inquisitive reader is advised to consult the various reviews [21–23] and further
resources cited in the sections to follow.

2.1. Classical electronic structure methods

A common example given when introducing electronic structure methods are the two ap-
proaches to the study of molecular hydrogen H2. The prior, by Heitler and London, treated

8



2. State of the art

the two electrons of the system as being highly correlated by explicitly excluding the ionic
configurations in their ansatz i.e. those with both electrons on the same hydrogen:

ΨHL =
1√
2

(
ϕ1,↑(r1)ϕ2,↓(r2) + ϕ2,↑(r2)ϕ1,↓(r1)

)
(2.1)

with ϕ(r) taken as the 1s orbital function. Hartree, Fock and Slater, gave an alternative
approach in which the electrons are treated as independent and the ansatz is taken as the
product of linear combination of spin up and spin down atomic orbitals:

ΨHF =
1√
2

(
ϕ1,↓(r1) + ϕ2,↓(r2)

) 1√
2

(
ϕ1,↑(r1) + ϕ2,↑(r2)

)
(2.2)

Since ΨHL involves only non-ionic configurations it becomes accurate as the distance
between both atoms diverges to infinity, that is not the case for the Hartree-Fock ansatz which
includes both ionic and non-ionic configurations and it becomes accurate when the electron
electron repulsion is ignored [24]. In conclusion, the exact result must lie somewhere in
between these two extremes, it turns out however, that many chemically bounded systems
are weakly bounded and so the latter is a good starting point [21].

2.1.1. Hartee-Fock and post Hartee-Fock methods

The most important conceptual features of the Hartree-Fock (HF) theory are perhaps the
introduction of the mean field approximation and an iterative scheme to obtain the lowest
energy, single-particle wave functions subsequently combined using the formalism of Slater
determinant. As discussed before a general separable wave function does not obey the
antisymmetry requirement for fermionic systems. In mathematical terms, a correct ansatz
for a system with N valence electrons is obtained with the exterior product ∧ of singe-particle
wave functions ϕi(r) [25]. Using determinant definition of ∧ [26] it reads:

ΨHF(r) = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕN(r1, r2, ..., rN) := det(Φ), where Φij = ϕi(rj) (2.3)

and it is also known under the name of Slater determinant.
For the derivation of Hartree-Fock method we start our discussion at the stationary,

many body Schrödinger equation 1.10 with the Born-Oppenheimer and clamped nuclei
approximations as in eq. 1.12. Furthermore we consider the problem of obtaining just the
lowest energy eigenstate of Ĥ and use the Slater ansatz outlined above. The main challenge
remains in establishing the actual functional form of the single-particle wave functions ϕ(r)
and the answer lies in so called variational principle which plays a central role in all electronic
structure approaches outlined in this and following sections. The key insight is that ΨHF is
not any wave function but one corresponding to the minimal energy state, therefore we can
perform an explicit variational minimization of energy as a functional of ΨHF [12]:

δE
δϕi

= 0 where E =
⟨ΨHF| Ĥ |ΨHF⟩
⟨ΨHF|ΨHF⟩∫

ϕ∗
i (r)ϕj(r)dr = δ

j
i

(2.4)

9



2. State of the art

where the definition of energy, expressed using Dirac notation, follows exactly from the
stationary Schrödinger equation and the orthonormality constraint between single-particle
wave functions is introduced for pragmatic reasons.

Substituting 2.3 into 2.4 and performing the variational minimization using the Euler-
Lagrange formula and the formalism of Lagrange multipliers to enforce orthonormality [3]
leads to [12]:[

− h̄2

2me
∇2 + UH(r) + Uion(r)

]
ψi(r) +

∫
UX(r, r′)ψi(r′)dr′ = ε iψi(r) i = 1, ..., N (2.5)

which concludes the variational minimization problem.
Notice, the single-particle wave functions have been renamed to ψi(r), that is due to

diagonalization of the system of non-linear equations in Lagrange multipliers λij which we
obtain from the above minimization procedure. It is a crucial and computationally demanding
step, which needs to be performed numerically every iteration of so called self-consistent
scheme. The energy eigenvalues ε i as well as ψi(r) of the new of the decoupled system are
obtained from:

S

λ11 · · · λ1N
...

...
λN1 · · · λNN

 S−1 =


ε1 0 · · · 0
0 ε2
...

. . .
...

0 · · · εN


ψi = ∑

j
Sijϕj

(2.6)

and since Ĥ is hermitian the matrix of Lagrange multipliers also is, and according to spectral
theorem, it has orthonormal eigenvectors SST = I and real eigenvalues ε i. The total electron
energy is simply given as the sum:

E =
N

∑
i

ε i (2.7)

The new potential energy terms introduced in the process, UH(r) and UX(r, r′), define
the "Hartree" and "exchange" potential energies respectively and are a direct result of the
electron-electron Coulomb interactions and the antisymmetric ansatz used. The Uion term is
simply a restatement of the nuclei-electron interaction already present in eq. 1.12 but here as
mentioned earlier we include also the inner shell electrons.

Uion(r) = −∑
I

e2ZI

4πϵ0|r − RI|
UX(r, r′) = − e2

4πϵ0
∑

j

ψ∗
i (r

′)ψj(r)
|r − r′| dr′

UH(r) =
e2

4πϵ0

∫ n(r′)
|r − r′|dr′ n(r) = ∑

j
|ϕj(r)|2

∫
n(r)dr = N

(2.8)

It has been mentioned in the introduction that the independent electron approximation is
too drastic, here we see one possible remedy, the Hartree potential, introducing what is known
as the mean field approximation. It defines electron density n(r) - a probability density function of

10
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finding any electron - treated classically - at r and therefore simplifies the electrons’ potential
energy from all-to-all to a potential energy of an electron submerged in a "charge cloud".
The crucial aspect is that we maintain the computational advantages of the independent
electron approximation but at the same time include at least rudimentary interaction between
electrons. Somewhat problematic, however, is that circular dependence of n(r) on ψj(r), this
leads to a fixed-point like iterative scheme - the self-consistent scheme - which will be covered
soon, in section 2.1.2.

Post Hartree-Fock methods

The single determinant ansatz ΨHF of the HF theory gave rise to a mean field approximation
in which only the average effect of all electrons is considered. Although this simplification
reduces the computational effort from exponential to polynomial, it completely disregards
the electronic correlations, which although usually amount to just a small fraction of total
energy E are crucial in explaining chemical bounding or properties of metals [21].

The unifying idea behind all post HF methods is the usage of more Slater determinants,
or more precisely, a linear combination thereof. Previously, the Slater determinant det(Φ)
for a system of N valence electrons has been introduced as an exterior product of N single-
particle wave functions ϕi(r), one can therefore think of it as of a differential N-form on a
M-dimensional manifold M, whereby for HF Slater determinant, M = N. In general, however,
nothing restricts the number of wave-functions ϕi(r) used, in the language of differential
geometry, we can increase M and obtain a generic expression for such a differential form by
[26]:

Ψ(r1, ..., rN) = ∑
I

αIϕ
I (2.9)

where ϕI correspond to the basis N-forms, which together span the space of all differential N-
forms on M denoted

∧
N T∗M, or equivalently, the space of all antisymmetric (0, N)-tensors

denoted Ω(M). The capital index I is a multi-index running over all combinations (M
N) :

ϕI := ϕI1 ∧ · · · ∧ ϕIN (2.10)

s.t. the indices Ii are the elements of the I-th combination ordered increasingly.
Bringing the discussion back to electronic structure, equation 2.9 defines the ansatz of so

called configuration interaction family of methods and in particular, if all possible configu-
rations are exhausted - so called full configuration interaction (FCI) - it is capable of exactly
capturing all electronic correlations. It should be clear though, that this approach has a
rather unfavourable scaling, first of all, because the binomial coefficient scales approximately
exponentially with M, secondly, because every determinant itself is an effort on the order
of O(N3), and most importantly, the achieved increase in the correlation energy does not
scale consistently with M but more like O(

√
M) [21]. Nonetheless, the above approach

allows for theoretically exact solution of the many-electron Schrödinger equation 1.10 and
in a multi-reference configuration interaction variant establishes the state-of-the-art baseline,
especially for quantum chemical applications [27]. For more details, as well as the omitted,
but related coupled cluster expansions, refer to [19] or [28].
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2.1.2. Density Functional Theory

Density Functional Theory (DFT) is another, and perhaps the most popular electronic structure
method owing to its flexibility and its formal exactness. The core contribution of the method is
the result of the so called Hohenberg-Kohn theorem which states that if E is the ground state
energy of a system, then E is a functional of electron density n(r) only [12]. The repercussions
of this statement are profound, it implies one can obtain many ground state properties of a
many-body system by considering an auxiliary, non-interacting one with the same electron
density as the real system. On a flip side however, we do not obtain the corresponding ground
state wave function, we can only use the single-electron orbitals ψi(r) which correspond to the
auxiliary system and define the density n(r). Nonetheless, these orbitals are sometimes used
as the basis for the Quantum Monte Carlo method covered shortly, but by themselves are not
particularly useful. The Hohenberg-Kohn theorem is remarkable also because, as presented
in eq. 2.4, total energy is in general a functional of Ψ(r1, ..., rN) which is a function of 3N
variables whereas the electron density is a function of merely 3 spatial coordinates.

The Hohenberg-Kohn energy functional reads:

E[n(r)] = e
∫

n(r)Uion(r)dr︸ ︷︷ ︸
Ep el-nuc

− h̄2

2me

N

∑
i

∫
ϕ∗

i (r)∇2ϕi(r)dr︸ ︷︷ ︸
Ek

+
e2

8πϵ0

∫ ∫ n(r)n(r′)
|r − r′| drdr′︸ ︷︷ ︸

Hartree potential energy

+EXC[n(r)]

(2.11)
which to a large extend is analogous to the Hartree-Fock functional with an exception
that it is defined almost explicitly in terms of n(r), but also, it unifies all the problematic,
non-local exchange energy UX(r, r′) and the additional correlation energy UC(r) into one
exchange-correlation energy functional EXC[n(r)]. The accuracy with which this functional can
be approximated defines eventually the accuracy of the DFT itself.

Using the variational principle again, but this time in electron density:

δE[n(r)]
δn(r)

!
= 0 (2.12)

and minimizing, leads to the famous Kohn-Sham equations [12]:

"Kohn-Sham Hamiltonian" ĤKS︷ ︸︸ ︷[
− h̄2

2me
∇2 + UH(r) + Uion(r) + Uxc(r)

]
ψi(r) = ε iψi(r) ∀i

UH(r) =
e2

4πϵ0

∫ n(r′)
|r − r′|dr′ Uxc(r) =

δEXC[n(r)]
δn(r)

(2.13)

for which, all of the considerations regarding diagonalization and fixed-point iteration as in
the case of the HF method also apply, in particular, let us now investigate the later in more
details.
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Self-consistent scheme

Although direct optimization approaches for optimization of the DFT or HF single-electron
wave functions are conceivable by constraining the updates of ϕi(r) to the Stiefel manifold
[29], we shall focus on the usual approach of fixed point iteration here. Moreover without
loss of generality we cover explicitly only the DFT iteration scheme for the sake of brevity.

The starting point is always the atomic structure, which needs to be known apriori either
from modelling, X-ray crystallography or simulation - it sets up the potential due to electron-
nuclei interaction Uion. Secondly, we need an initial guess for electron density n(r)(0) to
compute UH and Uxc and start the iteration. A good initial guess could be a sum of electron
densities around each nuclei as if completely isolated from one another [12]. Having calculated
the entire Kohn-Sham Hamiltonian we can then solve the resulting eigenvalue problems and
obtain first approximation for ψ

(1)
i , which we use to calculate new electron density n(r)(1)

and the entire process repeats. A pseudo algorithm is outlined in Figure 2.2. The moment the
eigensolutions ψi we have used to obtain n(r) and set up the Kohn-Sham equations coincide
with the ones that we get as the solution of these equations, we have reached convergence or
self-consistency and the iteration terminates.

Figure 2.2.: Self consistent DFT algorithm. Source: [30]

Chosing the basis

To solve the Kohn-Scham equations we need to settle for certain functional representation
of ϕi. In periodic systems, abundant in solid-state physics, this is usually means a plane
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wave expansion, for molecular systems, of interest in quantum chemistry, we wish to provide
more freedom to each individual electron and therefore resort to an atom centered basis
like the Slater type orbitals (STO) or the Gaussian type orbitals (GTO). Surely, one can also
resort to traditional mesh discretization within some computational cell Ωi with either
periodic or "infinite-well" boundary conditions and resort to finite difference approximation
of the Hamiltonian, but this choice is a rarity [12]. Nonetheless, what we are left with, is a
generalized eigenvalue problem in the coefficients of the basis expansion, and if we consider
for example the case of molecular systems, this yields so called Roothan equations:

Hcm = εmScm (2.14)

Hij = ⟨ϕi| Ĥ
∣∣ϕj
〉

Sij =
〈
ϕi
∣∣ϕj
〉

(2.15)

⟨ψm| = ci
m ⟨ϕi| (2.16)

These equations need to be solved, every iteration of the self-consistent scheme, but
fortunately, the Hamiltonian matrix H is usually endowed with either a band or an orthogonal
structure, so it can be dealt with efficiently.

Exchange-correlation potentials

In the language of probability theory, the mean field approximation decorrelates the electrons
forming the electron cloud. In reality, however, as we have discussed in the introduction,
electrons do interact and they correlate their movement via two mechanisms: the Coulomb
repulsion and the Pauli’s exclusion principle. Both of these terms are thought to be encapsu-
lated in the exchange-correlation functional, whereby the non-local interactions are further
simplified so that we have to deal with just the electron cloud of one argument.

A standard approach is the so called Local density approximation (LDA) which assumes a
suitable approximation can be obtained from a volumetric integral of the exchange-correlation
energy per electron ϵhom

xc (n) which is in turn established from calculations of an uniform
electron gas enclosed in some volume V such that its density is n [12]:

ELDA
xc [n(r)] =

∫
ϵhom

xc (n)n(r)dr (2.17)

If that is not sufficient a Generalized gradient approximation (GGA) is used which additionally
takes into account the gradient information of ∇n(r). More sophisticated approximations also
exist [31] e.g. including higher derivatives of the electron density, non-local effects or even
deep learned exchange-correlation functionals utilizing a fully differentiable self-consistent
schemes [32]. Nonetheless, even the best exchange-correlation functional yield usually orders
of magnitude lower accuracy than good Quantum Monte Carlo results [21], which shall be
covered next.
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2.1.3. Quantum Monte Carlo

Quantum Monte Carlo (QMC) is a family of Monte Carlo methods capable of approximating
the lowest energy eigenstate of a quantum system through the process of variational mini-
mization. There are many advanced and specialised methods within the QMC framework
i.a. the auxiliary-field or path-integral QMC for model Hamiltonians and bosonic systems
respectively; there is also the Diffusion Monte Carlo algorithm generating trajectories which
sample the ground state wave function without the need for its explicit representation [17]. In
this section, however, we will focus on the baseline Variational Monte Carlo (VMC) approach
which is restricted to zero-temperature simulations only, but which provides a good template
for a review of major components of every Quantum Monte Carlo approach. It is the starting
point and the unifying framework for all further approaches presented in this chapter, as well
as for the body of this thesis, in which we will consider its unification with machine learning,
it is therefore instrumental to understand it thoroughly.

Compared to the two previous electronic structure methods, QMC is the most accurate
one, capable of achieving chemical accuracy usually defined as within 1 kcal per mole error in
total energy, or about 0.04 eV per molecule. In fact, it is even used as reference for designing
DFT exchange-correlation functionals [21]. To better comprehend QMC, it should be realized
it is much more of a correction on top of mean-field approaches, rather than an electronic
structure method on its own - especially for continuum models - and to fully appreciate
how meticulous an endeavour it is, one should bear in mind that for most systems, the
uncorrelated energy contribution amounts already for well over 90 % of total energy [21].
Nonetheless, these few percent account for virtually all electronic phenomena and hold the
key not only to addressing interatomic forces and chemical reactions, but further down the
line, phenomena such as superconductivity too.

In a nutshell, VMC is concerned with establishing parameters of a trial wave function Ψθ

s.t. the expectation value of the energy operator Ĥ is minimized:

θopt = arg min
θ

< Ĥ >= arg min
θ

∫
Ψ∗

θ ĤΨθdr∫
Ψ∗

θ Ψθdr
= arg min

θ

∫
ρ(r)Eloc(r)dr (2.18)

where ρ(r) is the normalized |Ψθ(r)|2 and Eloc(r) = Ψ−1
θ ĤΨθ is the local energy [21]

Physically, equation 2.18 expresses the same variational principle presented when considering
the HF theory, eq. 2.4, a key distinction, however, is that in the case of Quantum Monte
Carlo the expectations are evaluated numerically via Monte Carlo sampling. To confirm
such minimization would indeed yield the ground state wave function Ψ0 consider an
energy eigendecomposition of Ψθ with the energy eigenvalues ordered increasingly i.e.
E0 < E1 < ... < En, then:

Ψθ(r) = ∑
n

anΨn(r) → < Ĥ >=
∑n,m anam

∫
Ψ∗

nĤΨmdr
∑n,m anam

∫
Ψ∗

nΨmdr
=

∑n a2
nEn

∑n a2
n

≥ E0 (2.19)

hence if an = 0 ∀n ̸= 0 but a0 = 1 corresponding to the case of Ψθ = Ψ0, the above expectation
will be minimal and equal E0.
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The so called zero variance principle shall be mentioned at this point, the minimum possible
value of the variance of energy σ2

E is zero and will be obtained if and only if the Ψθ is an
energy eigenstate, in particular the ground state. Energy variance therefore, may be used as
an alternative objective function for the minimization procedure and is in fact often favoured
due to its stability [21]:

σ2
E =

⟨Ψθ | (Eloc− < Ĥ >)2 |Ψθ⟩
⟨Ψθ |Ψθ⟩

(2.20)

Lastly, it shall be clear that the VMC method in not merely suitable for energy ground state
approximations. By restricting the the Hilbert space to a subspace, orthogonal to the ground
state, the minimization will yield an eigenstate corresponding to the next smallest energy
level - the first excited state.

Wave function ansatz

The crucial design decision in VMC is the choice of the variational ansatz which would
account for antisymmetry and restrict the complete Hilbert space to a tractable subset, yet
expressive enough to capture the most important electron correlations. A common choice
is the so called Slater-Jastrow ansatz [33] - a linear combination of Slater determinants of
one-electron wave functions, denoted ΨMF, with an additional multiplicative term to account
for short range correlations [21]:

Ψθ(x1, ..., xN) = ΨMF(x1, ..., xN)eJ(x1,...,xN) (2.21)

where xi = {ri, σi}, that is, coordinates involving spin σi ∈ {↑, ↓} alongside the usual position
in physical space ri ∈ R3.

For observables which are not directly dependent on spin, the mean-field part can be
decomposed into a product of only spin up and only spin down determinants and still yield
correct energy expectation, although the wave function becomes antisymmetric only under
exchange of electrons with the same spin [21]:

ΨMF(x1, ..., xN) = ∑
I=1

αIϕ
↑
I (r1, ..., rN′)ϕ↓

I (rN′+1, ..., rN) (2.22)

and ϕI are the basis Slater determinants defined as in eq. 2.10.
Similarly, the correlation term - defined in terms of so called Jastrow factor J - can be also

written in terms of spatial coordinates only and usually takes the form:

J(r1, ..., rN) =
N

∑
i=1

χ(ri|R)− 1
2

N

∑
i=1

N

∑
j=1

u(ri, rj) (2.23)

with the first term modelling the electron-nuclear, and the latter for electron-electron correla-
tions, both reducing the magnitude of the many-body wave function whenever two particles
approach each other creating so called cusps. Introduction of just the two-body term u reduces
the total energy but unfavourably distorts the charge density by diffusing electrons away
from regions with high charge density, introduction of χ counteracts this mechanism and
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further reduces the energy thereby improving the quality of the optimum while preserving
qualitative features of a many-body wave function. A common treatment, which allows for
significantly faster convergence, is the explicit introduction of cusp conditions γ into u(ri, rj)

by expanding the set of arguments with the electronic distances |ri − rj|, sometimes referred
to as the r12 modification [14]. On an example of an electron-electron cusp it yields:

γ(|ri − rj|) = ∑
i<j

−
cij

1 + |ri − rj|
(2.24)

where the coefficients ci j are either 1
2 or 1

4 depending on the spin of electrons i and j. Although
instead of using fixed values, one could define cij as a variational parameter, practical results
show that they very rarely converge to different quantities [21].

For more complicated wave functions, very successful, and particularly useful in fermionic
systems, is the technique of backflow introduced by Feynman to deal with excitations in liquid
helium H4 [34, 35]. Although computationally expensive it can yield very accurate results
and it does so by replacing the electron coordinates ri in eq.2.21 with quasi particle coordinates:

r̄i = ri +
N

∑
j ̸=i

(ri − rj)η(|ri − rj|) (2.25)

with the function η optimized variationally.
Of course, many different possibilities are also conceivable, for example geminal wave

functions, when used inside Slater determinant ansatz, have the advantage of being equivalent
to multi-configuration wave function which turns out useful in studying nearly degenerate
ground states [36]. Lately also highly flexible neural network ansaetze have been investigated,
we will devote an entire next chapter to this topic, for now however let us proceed to the
topic of evaluation of energy expectation through sampling.

Sampling

Although Quantum Monte Carlo owes its accuracy to the flexibility in the choice of the wave
function ansatz, that freedom does however come at a price, namely, the integrals appearing
in the expressions for energy expectation eq. 2.18 - alternatively its variance eq. 2.20 - are no
longer analytically tractable. Approximating expectation values under any general, possibly
high dimensional and unnormalized, probability density function (PDF) is in the first place
dictated by the ability to generate accordingly distributed samples, then:

Eρ[Eloc] =
∫

ρ(r; θ)Eloc(r; θ)dr ≈ 1
N

N

∑
i

Eloc(ri; θ), ri ∼ ρ(r; θ) (2.26)

and arguably one of the most successful and influential algorithms for this purpose belong to
the family of Markov Chain Monte Carlo techniques (MCMC) [37].

The idea behind the basic MCMC is to define a Markov random process with a limiting
distribution which coincides with the PDF we wish to obtain samples from, then, under some
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constrains on the transition kernel and the Markov Chain itself, the ergodic theory ensures the
distribution of samples over time will match the desired PDF. For a typical, discrete valued,
time-homogeneous (stationary) Markov Chain, the limiting distribution p∗ is defined as a
fixed point of its transition matrix, thus also called its invariant distribution:

p∗ = Mp∗ (2.27)

where M is a left stochastic matrix with columns summing to unity and p∗ is a vector with
entries corresponding to the values of a probability mass function over the nodes of the chain.
When it comes to sampling, however, the interest lies predominantly in continuous random
variables, as it is the case with the wave function too. By analogy, we define a continuous
transition kernel function T(x, x′) defining the conditional probability density q(x′|x) under
which the expression for a limiting distribution takes the following form [38]:

p(x)∗ =
∫

T(x′, x)p∗(x′)dx′ (2.28)

To ensure a desired PDF is an invariant one for particular time-homogeneous transition
kernel, it is sufficient to satisfy so called detailed balance [38]:

T(x′, x)p∗(x′) = T(x, x′)p∗(x) (2.29)

which ensures reversibility of the Markov Chain. Further properties it should satisfy are
irreducibility - the possibility to reach any state from any other in finite time - and aperiodicity -
absence of dead loops.

Considering all of the above, the celebrated Metropolis-Hastings algorithm, postulated
by N.Metropolis in 1953 and extended by W.K.Hastings in 1970 [38], generates proposals
x′ according to a transition distribution q(x′|x) which are subsequently either accepted or
rejected as a sample with acceptance probability:

A(x′|x) = min{1,
p(x′)q(x|x′)
p(x)q(x′|x) } (2.30)

whereby q(x′|x) is commonly chosen as an isotropic, multivariate Gaussian centered on the
current state N (x, σI). The choice of standard deviation σ of the proposal distribution defines
a crucial trade-off between the speed of exploration of the state space and the fraction of states
that get accepted. Indeed, in the above formulation we have to do with a random walk with
an effective step size regulated by σ. If we consider a highly correlated, multivariate target
distribution - a case of considerably different length scales on which the entries of x can vary
- it is clear that in order to maintain reasonable acceptance rates one should match σ with
the smallest length scale σmin of the target distribution, which greatly decreases exploration
efficiency.

Except from the random walk behaviour and the slow convergence rates it might imply, the
Metropolis-Hastings algorithm suffers from additional disadvantage - high autocorrelation be-
tween samples due to the "locality" of the mechanism that generates them. A straightforward
remedy is to pick only every i − th entry of the generated chain - so called thinning - but it has
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obvious consequences in efficiency. We shall elaborate on the topic of sampling and introduce
more intelligent remedies to the above problems in the main section of this thesis as by the
account of many researchers, QMC is bugged by the poor efficiency of sampling, in some
cases with MCMC acceptance rates as low as 0.1% [39]. This becomes particularly problematic
when the goal is an accurate resolution of the correlation energy, which as already mentioned,
in spite of its immense significance, accounts for only a small portion of the total energy.

Variational optimization

Having sampled the parametric wave function Ψθ we can evaluate the optimization objective
and approximate the parameter update δθ hoping that such a procedure will be sufficiently
well behaved to eventually lead to converge towards the ground state. Traditionally, QMC
methods only optimize the variational parameters belonging to the correlation envelopes
introduced e.g. with the Jastrow factor - functions χ(x) and u(xi, xj) - or the backflow trans-
formation. The single-electron wave functions ϕ(x) which constitute Slater determinants in
equation 2.21 are usually obtained a priori from the Hartree-Fock or DFT self-consistent-field
calculations and remain unchanged during the variational optimization procedure [21]. This
in not a necessity but rather a pragmatic compromise, the very complex energy landscape of
many-body Hamiltonians, especially those describing fermionic systems, poses a formidable
challenge in obtaining reasonable updates, and keeping the dimensionality of the optimization
problem low is a straightforward way to simplify it. Further still, this complexity leads to
very poor results of naive attempts to use stochastic gradient descent [40], which tends to get
stuck oscillating back and forth along steep energy wells. Instead, an optimization method
of choice is the so called stochastic reconfiguration, proposed by Sorella and Capriotti [17, 41],
which was de facto developed to stabilize the "sign problem" in Diffusion Monte Carlo (DMC)
simulations.

Let us consider an imaginary time Schrödinger equation:

−h̄
∂

∂τ
Ψ(x1, ..., xN , τ) = (Ĥ − ET)Ψ(x1, ..., xN , τ) (2.31)

which is nothing but a change of variables τ = it, t ∈ R from the original Schrödinger
equation eq. 1.1. It has a curious property that its solution is no longer oscillatory but rather
an exponentially decaying superposition of the eigenstates. This fact can be leveraged to
obtain the ground state ψE0 , since if we chose the energy offset ET = E0 := 0, it will be the
only state that remains stable as τ → ∞ - in other words, it gets "projected out" 1 of the
complete solution:

Ψ(x1, ..., xN , τ) = ∑
n

cne−ωnτψEn(x1, ..., xN) ωn =
En

h̄
(2.32)

1Due to that projection mechanism, diffusion Monte Carlo is often used after optimization of the trial wave
function using VMC to further purify the ground state out of the other contaminating eigenstates and even
break through the ansatz limit provided it has been able to faithfully capture the true nodal surface of the true
ground state.
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The stochastic reconfiguration technique, begins with considering a small variation of the
variational parameters δθ, the corresponding change in the value of our parametric wave
function upon such variation will therefore read:

∣∣Ψ′
θ

〉
= |Ψθ⟩+ ∑

k=1
δθk

∂

∂θk
|Ψθ⟩ (2.33)

which for the sake of convenince is usually reformulated to:∣∣Ψ′
θ

〉
= ∑

k=0
δθkOk |Ψθ⟩ (2.34)

with O0 being an identity and Ok have been slightly reformulated to logarithmic derivative
for stability considerations.

At this point we return to the projection property of DMC, from eq. 2.31 we deduce that the
exponential map of (Ĥ − ET) indeed is responsible for the infinitesimal projection of |Ψtheta⟩
onto a configuration that has a suitably lower energy in accordance to the energy shift Λ = ET

chosen. This projection, we wish to assimilate with the variation of parameters δθ which
would hence define a well-founded iterative scheme to reach the minimum possible energy
from parameters θ exploring their linear neighbourhood. In conjunction with eq. 2.34, this
defines the stochastic reconfiguration relations [36, 41]:

δθ = S−1f (2.35)

where Sij = ⟨Ψθ |OiOj |Ψθ⟩ are elements of the covariance matrix and fi = ⟨Ψθ |Oi(ΛiĤ) |Ψθ⟩,
both being computed stochastically from the Monte Carlo samples we obtain during the
evaluation of the energy expectation.

Notice the exact correspondence of the form of above equation with the second order
optimization schemes like e.g. the Quasi-Newton methods, in which case the matrix S−1

would be a preconditioner of the gradient based on the local curvature of the parameter space.
It turns out, such an analogy can indeed be made [42] and the matrix S actually corresponds
to the Fisher Information Matrix of the natural gradient method postulated by Amari et al. [43,
44]:

Sαβ =
〈

O†
αOβ

〉
−
〈

O†
α

〉 〈
Oβ

〉
with Oα |x⟩ =

∂ log Ψθ(x)
∂θα

|x⟩ (2.36)

The stochastic reconfiguration, therefore gains a new interpretation of a second order opti-
mization algorithm on stochastic manifolds, that is, manifolds where each point corresponds
to a parametric probability distribution. The step directions it defines correspond to geodesics
of that manifold with a distance determined by the Kullback-Leiber divergence between Ψθ

and Ψ{θ+δθ}.
The only problem with natural gradient is that it requires an inverse of the Fisher informa-

tion matrix (FIM) which quickly becomes computationally intractable whenever the number
of variational parameters grows. As a remedy, Martens et al. proposed a Kronecker-factored
Approximate Curvature [42] approximation, aimed primarily at optimization of the neural
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network quantum states which shall be covered soon. Without focusing on too many com-
putational details, the gist of the method they propose is based on the reasoning that in
trying to predict a sensitivity with respect to some parameter θl

α belonging to l-th layer of
the network, the most useful seem to be the parameters from the same layer. Hence the FIM
matrix can approximated as a block diagonal one, with block sizes corresponding to widths
of individual layers, and computing its inverse requires only computing l inverses of smaller
matrices. Alternatively, including also the adjacent layers l − 1 and l + 1 offers more accurate
but more expensive trade-off motivated by the information flow in the forward and backward
pass during the process of training a neural network.

This section concludes our discussion of classical electronic structure methods, in what
follows we present the state-of-the-art approaches utilizing neural networks as a variational
ansatz within the Quantum Monte Carlo framework.
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2.2. Machine learning quantum states

In this section we discuss the state-of-the-art methodology of utilizing deep learning in
electronic structure calculations. It has been stated previously that all information about
a quantum system is probabilistically contained within the highly multidimensional wave
function. Given the success of neural networks in approximating even very high dimensional
mappings, it is not completely unjustified to apply the proven methods of information theory
to obtain reliable approximations in the realm of quantum mechanics. Of crucial importance
is the representational power and training efficiency. In the case of the former, utilizing
physically motivated symmetries to introduce weight sharing [45] or model transparency in
order to gain physical insight from the structure of the model itself are obvious considerations.
Regarding training, speed of convergence as well as quality of the optima are fundamental,
but also here one can consider physically motivated update schemes.

In this review, we focus mainly on the self-supervised, or variational approach, capable of
modelling the wave function directly - surrogates of other kind, like those trained on data sets
of electronic structure calculations for various properties [46–49] or generative approaches for
inverse material design [50–53] are not considered. The main aim of the variationally trained
neural networks for wave function approximation - which bear similarity to reinforcement
learning [54] - is to obtain chemically accurate solutions to the many-body Schrödinger
equation, eq. 1.10, which is hoped to further improve on the accuracy and fidelity of QMC
methods covered so far.

We start with the in-depth coverage of foundational work of Carleo & Troyer [54] on
neural quantum states which could be classified as a Fock space approach for lattice models.
Only later, we will focus on the more recent PauliNet [55] and FermiNet [56] which both
approximate the wave function variationally in the real space of electron coordinates. They
represent the current state-of-the-art for approaches not constrained to a lattice but vary
vastly in terms of their design philosophy. The following material in this chapter will be
mostly structured according to the reviews by [57] and [58] but completed with additional
details relevant for each chapter.

2.2.1. Restricted Boltzman Machine

The RBM architecture is by far the best studied method with regards to neural quantum states
(NQS), mostly due to its precedence since its publication by Carleo and Troyer [54], but also
because it is a reasonably simple, graphical model, which in fact, already has some relation
to physics - it belongs to a class of energy-based models [59]. Generally speaking, Boltzmann
Machines represent the joint probability distribution over N visible σj, and M hidden hi,
mutually interconnected, binary random variables as a Boltzmann (isothermal) distribution:

p(σσσ, h) =
1
Z

e−E(σσσ,h) (2.37)
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whereby σj, hi ∈ {−1, 1}, Z is the partition function accounting for proper normalization and
the energy function E(v, h) is given by:

E(σσσ, h) = −
M

∑
j=1

ajσj −
N

∑
i=1

bi Hi −
N

∑
i=1

M

∑
j=1

hiWijσj (2.38)

In our setting, visible variables σσσ represent the spin occupations on the nodes of a lattice
and the trainable model parameters {aj, bi, Wij} ∈ C determine the magnitude of interactions
between the spin states, through the auxiliary hidden layer. It is exactly the presence of h that
distinguishes the Boltzmann Machine from an Ising model, furthermore a restricted Boltzmann
machine (RBM) removes any connections among the hidden and visible variables themselves
making the probabilistic graph a bipartite one, in which entanglement between the spin states
states is mediated through the hidden variables only [57]. Such formalism makes training not
only easier but also provides a straightforward control over the expressiveness of the model
- the larger the hidden variables count, the more sophisticated correlation features can be
captured.

Figure 2.3.: General architecture of a Restricted Boltzmann Machine, source [54]

It is important to realize that the RBM, as proposed by [54], does not represent the wave
function |Psi⟩ itself but rather the expansion coefficients, or amplitudes ψ, of the linear
combination of tensors spanning a subspace of so called Fock space. For a system of identical
spin particles, in particular bosons, described by model Hamiltonians such as the transverse-
field Ising or the antiferromagnetic Heisenberg models covered in the original publication, we
can explicitly list all the discrete degrees of freedom and so, the full configuration interaction
ansatz reads:

|Ψ⟩ = ∑
σσσ

ψσσσ |σσσ⟩ (2.39)

with |σσσ⟩ being a vector with N elements representing any particular configuration where each
entry corresponds to a particular site on the lattice. The sum runs over all 2N configurations
since each state can be either occupied with a spin up σi = 2Sz

i = 1 or spin down σi = Sz
i = −1

particle 2.

2whereby peculiarities of the implementation depend on the use case, here we consider the S = 1
2 Hubbard

model
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Importantly - although it is clear from the above that the problem size grows exponentially
in M - RBMs require only a polynomial number of parameters O(NM + N + M) which is a
great advantage. Notice, however, that for a complete description of a quantum state, both
the amplitude and the phase factor of the wave function are needed, therefore the coefficients
ψσσσ and hence all parameters must admit complex values [54]. Some extensions, however,
like the Deep Boltzmann Machines, can explicitly model the phase and amplitude of a wave
function coefficients and therefore, get away with only real parameters [57].

Finally, to obtain ψσσσ we need to marginalize the hidden units out and, up to a normalization
factor, we obtain:

|ψσσσ⟩ ∼
M

∏
j=1

eajσj
N

∏
i=1

2 cosh

(
bi +

M

∑
j=1

Wijσj

)
(2.40)

Due to the their proven universality for representing discrete probability distributions [60]
as well as precedence in learning neural quantum states, many further investigations have
been based on the RBM architecture. The success of the above ansatz is its flexibility, |ψσσσ⟩
already has the representational power to reproduce the common correlation factors like the
the Jastrow or the Gultzwiller ones [61], nonetheless one of the first improvements of the
original work was its extension by Nomura et al. [61]. They introduced an additional factor〈
σσσ
∣∣ϕre f

〉
choosing the reference state

∣∣ϕre f
〉

as a pair-product (or geminal) wave function to
capture some of the non-local entanglement crucial in describing strongly correlated systems.
Such modification already allowed the treatment of not only bosonic but also fermionic
systems by enabling the ansatz to optimize the nodal structure of |Ψ⟩ which in case of
fermions is crucial and naively doubling the number of visible units to allow for double
occupations would lead to poor results. Nonetheless, encoding fermionic asymmetry directly
into the ansatz does restrict the freedom of the nodal structure to some extend and therefore
the exact ground state cannot, in principle, be achieved, even in the limit of infinitely many
variational parameters. With a similar goal, but a slightly different approach, Valenti et al. [62]
extended the energy functional, eq. 2.38, by explicitly adding visible neurons corresponding
to certain spin products σl · ... · σk. In effect, a Jastrow-factor-like term has been added to the
ansatz enabling flexibility and transparency in capturing those many-electron correlations
which might be of most interest according to physical intuition.

The representation of fermionic quantum states has been further explored by Choo et at.
[39] who ingeniously mapped the fermionic problem to an equivalent spin one with the help
of the Jordan-Wigner transformation often used in fermionic simulations on quantum computers.
Using a minimal basis set STO-3G with 20 spin-orbitals their results on dissociation curves
of C2 and N2 molecules surpassed the standard quantum chemical methods of CCSD and
CCSD(T) reaching almost perfect agreement with the exponentially scaling FCI. Using the
same technique Yoshioka et al. [63] studied crystalline solids, in particular the 1D hydrogen
chain, 2D graphene lattice and the 3D lithium hydride crystal and again, reached very good
agreement with FCI. Moreover, they performed first NQS simulation of excited states beyond
the first excited state performed primarily by Choo et al. [64]. Under the assumption that
single quasiparticle excitations dominate the low-lying band spectrum, they computed the
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band structure from linear-response behaviour of the ground state represented with RBM and
reported good agreement with standard methods for the first valence and conduction bands.

Turning to publications which focus more on the physics of the model itself, Deng et al.
[65] studied entanglement properties of RBM quantum states, in particular entanglement
entropy and spectrum. They were able to prove all short-range RBM states satisfy area-law of
entanglement and bipartition geometry [66] as well as that unlike for tensor networks, the
(volume-law) entanglement was not a limiting factor for the efficiency of RBM representation.
Park and Kastoryano [67] investigated the geometry of the parameter space of complex-
valued RBM. Their analysis revealed that the weights of the model do not reveal much insight
because of the multitude of equivalent representations near the ground state, however the
spectrum of the quantum Fisher information matrix used in stochastic reconfiguration, c.f. sec.
2.1.3, does convey interesting information about the electronic entanglement. In particular -
somewhat analogously to what is often observed in dimensionality reduction with PCA - the
largest eigenvalues corresponded to eigenvectors dominated by first moments and hence did
not contain much information about correlations in the system.

Regarding extensions to deep architectures, Gao and Duan [68] proved inefficiency of RBM
to represent certain quantum states like those originating from constant-depth quantum
circuits or ground states of gaped Hamiltonians, unless #P ⊂ P. They proposed a Deep
Boltzman Machine with one more layer of hidden states, which was able to overcome that
limitation, but at the same time complicated the inference due to the need of additional
Monte Carlo sampling of the hidden spin states. With applications to spin-1/2 Heisenberg
model, Kochkov et al. [69] proposed a graph neural network architecture reminiscent of an
auto-encoder which, given the spin configuration σσσ and the sublattice encoding, computes
the latent representations of the wave-function and eventually, returns the wave function
logarithmic amplitudes separately to its phase. They argued that keeping the two apart,
apart from having the benefit of real variational parameters, was critical to enable effective
generalization of the learned sign structure. Furthermore, the distributed treatment of the
lattice, enhanced with the information about its local symmetries as well as the sum-based
reduction across graph vertices made the model readily applicable to a large variety of lattice
shapes and sizes. On a final note, the work of Sharir et al. [70] could be regarded as a
paradigm shift which gets rid of the undesirable features of the Monte Carlo sampling which
hinder the applicability of deep architectures in Neural Quantum States. Virtually all of the
approaches utilizing machine learning follow the same sampling scheme as VMC (see sec.
2.1.3), which despite being asymptotically well-behaved, in practice suffers from long burn-in
times and struggles with multimodal or sharply peaked distributions. In contrast to that,
they proposed an autoregressive model, adjusted accordingly to treat complex-valued wave
functions, and reported not only its qualitative and quantitative advantage over the original
work of Carleo and Troyer [54] but also at much shorter simulation times when applied to
transverse field Ising and antiferromagnetic Heisenberg models.
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2.2.2. FermiNet

It has been previously stated that any antisymmetric function can be represented by an
infinite linear combination of Slater determinants built from single-particle wave functions
ϕi(x) but that unfortunately leads to exponential asymptotic complexity. An alternative is to
allow ϕi(x) to be a function of all variables, in which case every antisymmetric function can
be represented with just a single determinant, which can be computed in O(N3) time [56, 71]:

Φ[ϕI1 , ..., ϕIN ](x1, ..., xN) = det

 ϕ1(x1|{x ̸=1}) · · · ϕN(x1|{x ̸=1})
...

. . .
...

ϕ1(xN |{x ̸=N}) · · · ϕN(xN |{x ̸=N})

 (2.41)

where {x ̸=i} := {x1, ..., xi−1, xi+1, ..., xN} and if we assume ϕi(xj|{x ̸=j}) is symmetric in all
but the j-th variable 3 - hence the notation - exchanging xi and xj will remain equivalent to
exchanging rows of i and j in the above matrix and therefore Φ remains antisymmetric.

This is exactly the idea postulated by Pfau et al. [56], which they called generalized Slater
ansatz and which by the argument of Hutter [71] is able to represent any antisymmetric
function of n electrons, for all cases where xi ∈ Rd, d > 1, however, the proof necessitates
discontinuous ϕi(xj|{x ̸=j}). Recently, Huang et al. [72] undermined the representational
power of such an ansatz by considering its algebraic-geometric structure. Although restricting
ϕi(xj|{x ̸=j}) to finite-degree polynomials only, by providing a bound on the dimensions of
the target and source spaces they postulated the necessity of at least O(N3N−N) determinants
like the above in order to represent a generic, totally antisymmetric polynomial. Although
their result remains of limited practicality when the orbitals are modelled by neural networks
- dubbed universal function approximators [73] - it hints, however, that approximating
a continuous, antisymmetric wave function may be better behaved when more than one
determinant is used. This has been also empirically confirmed in the implementation of
FermiNet [56, 74] which in practice, performed better with a small (8 to 32) linear combination
of determinants. The FermiNet ansatz therefore reads:

ΨF(x1, ..., xN) = ∑
I=1

αIΦ
↑
I (r1, ..., rn↑)Φ↓

I (rn↑+1, ..., rN) (2.42)

and the functions ϕIα
i (rα

j |{rα
̸=j}) constituting every Φα

I are modelled by a neural network as
presented eq. 2.45 , where α stands for spin and I is the combination index as explained in
section 2.1.1.

The architecture of FermiNet is centered around two streams of information flow, the
electron-nuclei and electron-electron interaction, whereby the initial features h0

i and h0
ij

respectively are just a concatenation of the relative position vectors ri − Rk, ∀k and ri − rj their
absolute lengths. The latter are fed explicitly as additional inputs because, as the authors
argue, that removes the need to separately include Jastrow factor after the determinant, which

3which can be trivially achieved by defining it in terms of their pairwise distances as it was done in eq. 2.25.
Note also, that rigorously, one should be using the term multi-symmetry or block-symmetry here, as symmetry
under exchanging components of any xi ∈ Rd, d > 1 is not provided
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Figure 2.4.: The FermiNet architecture. Top: Global architecture, bottom: detailed view on information streams in
each layer. Source: [56]
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was found to be extremely unstable when used with orbitals initialized not from Hartree-Fock
calculations but from random initial weights. Notice also, that such an explicit incorporation
of nuclei positions Rk, although defined invariantly of external coordinate systems, makes
the network single purpose i.e. not generalizible across different molecules.

The features are then feed through a standard feed forward neural network with tanh
non-linearity and residual connection [75]:

hl+1
i = hl

i + tanh
(

Vlfl
i + bl

)
, hl+1

ij = hl
ij + tanh

(
Wlhl

ij + cl
)

(2.43)

and we observe the electron-electron interaction streams hij are just propagated forward
to the next layer without much information exchange whereby the electron-nuclei streams
accumulate all the information via concatenation of simple, sum-based reductions of features
sorted by spin:

hl
i → fl

i = concat

hl
i ,

1
n↑

n↑

∑
j=1

hl
j,

1
n↓

N

∑
j=1+n↑

hl
j,

1
n↑

n↑

∑
j=1

hl
ij,

1
n↓

N

∑
j=1+n↑

hl
ij

 (2.44)

After a series of L layers the final one electron features hL
i undergo one last linear transfor-

mation and a multiplication with a number of exponential envelopes to enforce correct boundary
conditions of each orbital at infinity distance from every nuclei:

ϕIα
i (rα

j |{rα
̸=j}) =

(
wI

i · hL
j + gI

i

)
× ∑

k
π I

ike−σI
im|rj−Rk | (2.45)

with wI
i , gI

i , π I
ik, σI

im being further learnable parameters, whereby the last one is an isotropic
decay rate of the exponential envelope - a simplification introduced in [74] instead of an
anisotropic, 3x3 coefficient matrix ΣI

im. Also, compared to the original publication we have
dropped the spin indices α, because it is obvious from the ordering rule of electrons i.e. α =↑
if 0 < i ≤ n↑ and α =↓ if n↓ ≤ i ≤ N with n↓ = N − n↑.

The orbitals are then finally assembled into a linear combination of spin-up and spin-down
Slater determinants of equation 2.42 as depicted schematically in fig. 2.4 and the entire
ansatz is trained variationally in accordance to the general QMC scheme covered in section
2.1.3. For numerical reasons, the determinants were computed in the log domain, therefore
yielding log wave function amplitudes, furthermore, only a block diagonal Kronecker-factored
Approximate Curvature [42] optimization scheme has been used due to the sheer number of
parameters.

Regarding the results, FermiNet approximates wave functions directly in the anti-symmetrized
Hilbert space and therefore, it is independent of any restrictions an incomplete basis set
might have induces. This flexibility really unfolds when considering systems with significant
electron correlations. In particular the H4 rectangle, the dissociation of N2 and the H10 chain
have been studied, in all cases consistently beating the accuracy of the standard quantum
chemical methods, like the unrestricted CCSD(T), coming close to the highly specialized,
multi-reference methods like R12-MR-ACPF, yet at only polynomial scaling.

28



2. State of the art

Nonetheless, the constant prefactor of computational complexity remains high and training
times vary between a few hours for the smaller systems, up to a month for bicyclobutane
using 8 to 16 GPUs. It has been meaningfully decreased in a follow up paper [74] in which
the network architecture has been simplified and implemented efficiently in JAX [76] leading
to a much larger GPU utilization and altogether to an order-of-magnitude reduction in the
compute time. Moreover, due to that increase in efficiency, better results could have been
obtained by increasing the network width which aligns with the theoretical guaranties of
universality of such an ansatz [71] but perhaps more importantly, increasing the number
of Slater determinants as well as the MCMC steps did prove even more significant. The
latter hints that perhaps not only the brute force computational power but also physical
priors do matter, which shall be demonstrated even more vividly in the next section. Lastly,
regarding efficiency, the work of Ren et al. [77] must be mentioned, in which Diffusion
Monte Carlo simulation using the FermiNet ansatz for systems exhibiting various degree and
kind of electron correlation has been performed. Crucially, they demonstrated that even an
undertrained network captures the nodal surface of the ground state exceptionally well and
as an effect, with significantly smaller overall computational effort, FermiNet-DMC can not
only be applied to larger systems, but converges to much better results - in the case of the
dissociation of the N2 molecule for example, the most accurate ever reported.

2.2.3. PauliNet

FermiNet is completely general, in the sense that it does not include any known physical
features of the wave function besides the antisymmetry and appropriate boundary condi-
tions. Hermann et al. [55] proposed a more traditional VMC approach, where the deep
neural network is used only to modify the ansatz, obtained otherwise from self-consistent
calculations like Hartree-Fock or CASSCF ϕIα

i (rα
j ). In particular, the proposed model named

PauliNet, implements a backflow transformation (cf. sec. 2.1.3) using a deep neural network,
generalizing the original idea of neural network backflow proposed by Luo and Clark [78]
to continuous space. The major advantage of such an approach is the ability to explicitly
encode arbitrarily complex electron correlations, as well as the sign structure, at a relatively
small cost. Instead of returning the wave function amplitudes directly, as in the previous two
approaches, here we transform the single-electron orbitals in a configuration dependent way,
therefore, efficiently and systematically expanding on the bulk information contained within
the mean-field approximation. The PauliNet ansatz therefore reads:

Ψ(r) = eγ(r)+J(r;θ) ∑
I=1

αIΦ
↑
I (r1, ..., rn↑)Φ↓

I (rn↑+1, ..., rN), (2.46)

and the one-electron wave functions which constitute each Slater are given by:

ϕ̃Iα
i (rα

j ) = ϕIα
i (rα

j ) f Iα
ij (r; θ) (2.47)

Both, the Jastrow factor J(r; θ) as well as the multiplicative backflow coefficients f Iα
ij (r; θ)

corresponding to each ij-th entry of I-th, α-spin Slater matrix are functions of all electrons
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Figure 2.5.: PauliNet architecture, the "Equivariant interaction block" is a layer of an appropriately adapted SchNet
architecture [49] to establish electron embeddings xL subsequently fed into Jastrow and backflow
neural networks as described in the text. Source: [55]

and modelled by deep neural networks. Additionally, explicit cusp conditions are enforced
by the γ(r) function with fixed coefficients as explained in sec. 2.1.3. Within the described
architecture, to retain antisymmetry and correct behaviour at cusps, both the Jastrow as well
as the backflow neural functions must be modelled as cuspless and invariant, respectively
equivariant, to exchange of same-spin electrons. To achieve this goal, Hermann et al. adapted a
neural network architecture from a slightly different area of supervised learning of electronic
properties on molecules, so called SchNet [79] neural network.

A traditional convolutional filter [80], for grid-ordered data, would be a D × W × B tensor
where W × B defines, a usually square, receptive field and D is the number of channels in the
input, after applying K such filters the output will have K channels and appropriately smaller
size based on the size of the receptive field and padding used. A continuous convolution
filter, proposed by Shutt et al. [49], aggregates and applies a transformation to input features
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across continuous directions from the kernel’s centre, unrestricted to any grid. A certain
simplification is to only consider the radial distance between feature positions rij = |ri − rj|,
another one is to only consider a so called depth-separable convolutions, in which the F-
dimensional feature vectors xi at any point of the D-dimensional space are only multiplied
element-wise (and aggregated), and therefore remain constant in size. That amounts to the
following:

xl+1
i = ∑

j
xl

j ⊙ Cl(ri, rj), Cl : RD × RD → RF (2.48)

where l is the layer index and Cl is a filter-generating function, which outputs a filter vector
based on the relative positions of the current kernel centre ri and position of the j-th feature
rj. In actual implementation, Cl is not, however, a map RD × RD → RF, nor is it R → RF

which the discussion on radial distance would have suggested. Since we want to model Cl

with a feed forward neural network, inputting just a single scalar seems unreasonable, we
therefore discretize the radial axis (up until some cutoff radii) and additionally use a distance
featurization using some radial basis function e(rij) (in the PauliNet, constrained be cuspless
at 0) and use that as an input.

With all these considerations, the "Equivariant interaction block" of PauliNet which learns
electron embeddings looks as follows:

zl,α
i = ∑

j ̸=i
Bl,α(xl

j)⊙ Cl,α(e(rij))

zl,nuc
i = ∑

k
Xk ⊙ Cl,nuc(e(Rik))

xl+1
i = xl

i + Al,↑
(

zl,↑
i

)
+ Al,↓

(
zl,↓

i

)
+ Al,nuc

(
zl,nuc

i

) (2.49)

where A, B, C are small, feed forward neural networks, l is the layer index, α is the spin
index, Xk are fixed nuclei embeddings, xl

i are the iterated electron embeddings, Rik is the
electron-nuclei distances and rij are electron-electron distances. The sum in the first row is
implicitly taken only over indices corresponding to electrons with the same spin. Notice
the three independent streams of information flow, separately for interactions with other
spin-up/down electrons and nuclei and a final sum based reduction accompanied with a
residual connection in the spirit of ResNet [75].

The final electron features xL
i are subsequently used to predict the Jastrow and backflow

coefficients, but overall PauliNet remains a rather small model, with only around 100k
trainable parameters compared to over 700k of FermiNet [81]. Although FermiNet manages
to achieve slightly better results, it does so, even in the highly optimized version, at more
than 5x the computational cost of PauliNet [74]. Still, PauliNet is able to recover between 97%
and 99.9% of the correlation energy for a number of atomic and diatomic systems, such as H2,
LiH, Be as well as meet the accuracy of the "gold standard" quantum chemical methods on
dissociation of H10 chain or automerization of cyclobutatiediene. This emphasizes what can
be gained in terms of efficiency when we bias a flexible deep learning ansatz with physical
intuition.
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Gerard et al. [81], in a model which could be considered a hybrid of the two aforementioned
ones, further investigated the role of physical priors. They found that explicit symmetries or
cusp conditions generally aid performance which should not be surprising as e.g. explicit
cusps were already a well established treatment to accelerate and improve convergence
of the standard electronic structure methods [14]. Also, short supervised pre-training or
physics-inspired initialization of certain parameters, like those in the envelope, does accelerate
optimization but taken too far may lead to detrimental biases. In particular, replacing the
exp(γ(r) + J(r; θ)) factor in PauliNet with a physically inspired CASSCF-envelopes led to
strong bias that could not have been overcome during training. Altogether, they obtained
the best results up to date, on par or better with the aforementioned Ferminet-DMC [77]
or specialized chemistry standards MRCI-F12(Q) [27], with 4-6x fewer compute resources
compared to the original FermiNet [56] and 5-10x compared with Ferminet-DMC [77].
According to their ablation studies, after proper hyperparameter tuning, the second most
important improvement was using a SchNet-like convolution in a FermiNet-like ansatz,
hinting that not only what, but also where the electron features are, matters.
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with physics aware surrogate models

It is a strong conviction of the author that modern deep learning should raise above the
stigma associated with neural networks as being solely black box models. Although, a
generic guarantee on the representational power of neural networks is perhaps impossible,
just their universality in approximating virtually any arbitrarily complex, possibly discontin-
uous mapping, merely through manipulation of relevant information [73], makes them an
indispensable tool in the hands of science provided we use it intelligently. In particular, if in
conjunction with providing basic uncertainty quantification [82], the field shifts its focus from
"generalizability" by extrapolation and turns instead towards generalizability through group
equivariance [45], the reluctance of scientific applications will be completely dispelled.

To fully comprehend this claim, consider the role of an ansatz in scientific computing.
Virtually all of what could be described as variational numerics takes place in a subspace
of the complete Hilbert space defined apriori and the subsequent solution process aims at
minimizing some sort of residual - an error with respect to the the true solution, which in
general, lives outside of the computational basis chosen. Over the years, much has been ac-
complished in terms of extending the flexibility and representational power of this procedure,
to name a few, the hierarchical basis provided a computationally efficient mechanism for
extendability of the ansatz, sparse grids offered improved asymptotic complexity thanks to
a principled accuracy trade-offs which enabled tackling higher-dimensional problems [83,
84] and lately, wavelets gained in popularity, thanks to the ability to construct non-trivial,
problem-specific basis functions with desirable properties like orthogonality [85]. What we
postulate, is popularizing the usage of neural networks as a computational ansatz - and
whithin scientific realms, only as an ansatz - which encompasses all the benefits of the
aforementioned methods. Indeed, what is refered to as transfer learning in deep learning
community [86] can be seen as a parallel of the mechanism provided by hierarchical basis,
like sparse grids, we can allocate computational resources to only what we deem to be the
most important details, and finally, they are essentially basis-free i.e. the granularity of the
approximation of the Hilbert space will be guided in the end only by machine precision
which makes them inherently problem-specific.

First applications of neural networks in such a framework have already proven succesfull,
as one of the first examples one should not forget to mention the Physics-Informed Neural
Networks (PINN) by Maziar Rassi et al. [87], but important for us, are the FermiNet [56, 74]
and PauliNet [55] networks which we elaborated on in the previous chapter and which also
follow this philosophy. Since we became accustomed to neural networks being used in massive
regression or classification tasks, seeing one, trained to represent a single, particular solution
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of some partial differential equation might appear very inefficient. We belive, however, this is
where group equivariance can prove very succesful facilitating well founded "generalizibility
by construction". Most physically motivated problems are characterised by relatively simple
principles which govern their behaviour, that is at least the hope, the entire scientific effort of
humanity has been conditioned upon to this day. Conservation principles, symmetries and
invariances are all different names for what physics has been able to come up with so far and
what is comonly refered to as the laws of physics, their proper mathematical treatment, which
has established geometry as the unifying language of physics, did not appear until the early
nineteen hundrets under the name of the Noether’s theorem [88].

In the early days of deep learning, similar ideas were nonetheless already present, this is
probably best asserted by the publication of the first convolutional neural network (CNN) -
the LeNet-5 [80] - in the eighties. It successfully applied a neural network to learn translation
invariant, local receptive field, later also called convolution filter, which could sense meaning-
ful, visual features such as oriented edges or corners from a 2D pixel array. Accounting for
the deficiency of the feed forward network architecture in respecting topology of the input
has been fairly well developed since, with examples beeing the recurrent neural networks [89]
for sentences, more recently also graph neural networks [90, 91] which could be regarded as
an extension of CNNs to non-uniform/non-euclidean grids or even the attention mechanism
[92] which essentially "learns" the topology of the input itself. Extending group equivariance
aspects to the outputs of the network, however, did not experience such fruitful development.
Only very recently, due to Cohen and Welling [93, 94] as well as Worrall et al. [95] the trans-
lational invariance of CNN filters has been extended to rotational invariance by leveraging
an old concept of filter steerability [96]. Later, publications on full SO(3) group equivariance
for volumetric data such as voxels [97] and point clouds followed [48], culminating in the
appearance of SO(3) equivariant graph neural networks like the already covered SchNet [49,
79], DimeNet [46, 98], and others [47, 99].

Briefly commenting on the latter, when trained on datasets of ab-initio calculations con-
taining various electronic properties with formation energies as a target, thanks to the
differentiability of the network also with respect to its inputs, the energy conserving intra-
and inter-molecular forces could have been readily obtained. Leveraging the "hard-coded",
directional equivariance of the learned features such models could have been directly applied
to ab-initio molecular dynamics (AIMD) simulations [15] like in the work of Li et al. [100].
Crucially, provided obviosuly the network has been trained on atoms constituting molecules
in the AIMD simulation, virtually no concerns of its generalizibility must have been consid-
ered. Another marvelous account on how equivariance can lead to meaningful generalization
is the work of Lie et al. [101] which proposed a rotationally equivariant graph neural network
trained to represent the DFT Hamiltonian of crystalline materials in order to bypass the
expensive self-consistent-field calculations. In one example, they studied twisted van der
Waals materials, in which at certain “magic Moire angle", exotic quantum phases such as
correlated insulation or topological superconductivity start to appear. Their network trained
on a dataset of DFT calculations of untwisted materials was able to successfully, and virtually
for free, explore desired properties at arbitrary twist angles, in particular, also reproduce the
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characteristic effects occurring at the "magic angle" which, due to broken symmetry between
the twisted lattices, would have otherwise require an enormous computational effort using
the common plane-wave basis.

All of the above, we hope, was enough to convince the reader that our initial claim was
indeed well founded and that already, a trend at the intersection of scientific computing and
machine learning has been started. The goal of this thesis, however, couldn not have possibly
been developing a new model capable of competing with the state-of-the-art deep learning
algorithms for quantum chemistry and physics. Considering that every QMC algorithm
consists of three major components: wave function ansatz, optimization and sampling, we
have decided to focus on the latter, being the most underrated and underdeveloped one. The
main body of this chapter has been therefore devoted to investigations of sampling algorithms
which could deal with the singularities of the Born probability density - the modulo squared
of the wave function |Ψ|2. For our final experiments we have chosen PauliNet as the wave
function surrogate because of the physical priors it utilizes, which not only is in line with the
aforementioned philosophy but additionally offers much faster training times compared to
its competition. The majority of experiments, however, have been performed on synthetic
examples meant to mimic certain challenging aspects of sampling from the wave function
in order to thoroughly investigate the adequacy of various sampling techniques, which
themselves, rely on interesting physically-aware techniques.

3.1. Improved sampling of Born probability density

Sampling efficacy is the major bottleneck of QMC’s accuracy, which with the advent of
expressive, deep learning wave function ansätze became even more pronounced [39, 55,
56, 63, 81]. Indeed, any neural network, although expressive, is eventually limited in its
represetational power by the obvious limitations of memory required to store all its parameters.
When used in a highly-dimensional, variational optimization task, which will undoubtely
require expectation (or simply integration) of the objective functional under the function being
optimized, the fidelity of monte calro approximation will directly and inevitably influence
where that representational power is spent. This kind of neural network optimization is
actually prevalent in reinforcement learning (RL) and the problem described here bears
similarity to the so called exploration-exploitation dilema, which has no obvious remedies
[102]. For variationally optimized wave functions, as a scientific application, we aim however
at the most extensive, but at the same time, detailed sampling resolution with an aim of
faithfully capturing the electronic correlations, which in practical terms means maintaining
sampling precission even in the most constrained regions of Ψ in order to achive high
agreement of its nodal hypersurface with reality, so crucial for fermionic systems [17, 41].

After the somewhat naive MCMC method,Hamiltonian/Hybrid MC (HMC) [103] is usually
the first resort, because thanks to the energy-conserving property of Hamiltonian dynamics
and the usage of sympletic integrators (see appendix A), one can successfully follow the flow
of the sympletic manifold 1 associated with a specially crafted Hamiltonian, generating in the

1also referred to as the phase space
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process even distant proposals in the state/configuration space, yet at very high acceptance
rates. The process described requires, computation of the gradients of the Hamiltonian
function corresponding to the negative log probability density of the desired distribution,
therefore making some assumptions on the smoothness and differentiablity thereof. The Born
probability distribution |Ψ|2 for multi-electron systems is however, infested with numerous
cusps - points with discontinuous derivative in places where two or more electrons would
coincide - and therefore not quite well suited even for HMC. To this end, Liu and Zhang [104]
proposed a version of HMC, called Quantum-Inspired HMC (QHMC), with randomized mass
matrix guided by the Heisenberg’s uncertainty relations. The approach can be implemented
at almost no extra cost compared to the standard HMC yet provides substantial improvements
in the cases considered and is easily combined with other HMC improvements. In particular,
with the Riemannian Manifold HMC proposed by Girolami et al. [105], which provides
dynamic adaptation mechanisms essential when sampling from strongly correlated and
highly dimensional target densities circumventing the need for costly pilot runs required in
standard HMC, which in the end can only provide static adaptation. In what follows, we
describe the methods mentioned and present their advantages on representative toy problems
before benchmarking their efficiency when applied to sampling the many-electron wave
function in section 3.2

Throughout our tests we have used both, qualitative and quantitative analysis of the
sampling algorithms we studied. Considering the latter we have mostly relied on the effective
sample size (ESS) per computation time, as a relevant metric [37, 106]. The rationale behind
ESS is that since all MCMC techniques rely on a stochastic process to generate samples from
a desired target distribution, their quality can be assessed on the basis of autcorrelations
between subsequent realizations. In the end, if the generated samples are very close to one
another, even extensive thinning will not redeem the fact that only a small portion of the
domain has been explored. The relevant formula reads:

ESS = N

(
1 + 2

N

∑
i=1

ρi

)−1

(3.1)

where N is the total sample count and ρi are autocorrelations between subsequent samples,
commonly computed in the spectral domain. To this end, one usually performs utilizes the
Fast Fourier Transform (FFT) [107, 108], takes the modulo squared of the frequency spectrum,
and transforms the result back into the time domain with inverse FFT. The code used in
this chapter, including all the algorithms and i.a. the aforementioned utility will be made
available on a github repo

3.1.1. Hamiltonian Monte Carlo

As already mentioned in sec. 2.1.3, the standard Metropolis-Hastings algorithm exhibits
random walk behaviour making the exploration of high-dimensional spaces inefficient, high
correlation only exacerbates the problem since obtaining reasonable acceptance rates requires
using small step sizes. Proposing smaller transitions, however, solves the problem only
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seemingly, because it leads to highly autocorrelated trajectories implying small effective sample
size and hinders sampling of multimodal distributions. Guaranteeing detailed balance and
ergodicity of the chain limits what can be achieved to alleviate the mentioned problems,
nonetheless, major progress has been achieved by including the gradient information of
the target density. In particular, the Metropolis Adjusted Langevin Algorithm (MALA) uses a
discretized Langevin diffusion process with an appropriately defined drift term to guide the
exploration. Although some success has been reported by Scemama et al. [109] in sampling
the Born probability density using this method with Ricci-Ciccotti discretization, due the
further extensions we wish to implement however, we shall focus on a different approach,
namely, Hamiltonian Monte Carlo (HMC). We motivate it also with the claim that HMC is in
fact a preconditioned equivalent of MALA (under certain choice of integrators) and therefore
more general [105].

The discussion of Hamiltonian Monte Carlo, or Hybrid Monte Carlo as it was originally
called [110], usually starts with the introduction of the canonical equations of Hamiltonian
mechanics as well as some numerical integrators designed specifically for their solution while
preserving certain desirable properties. We refer such discussion to app. A and instead focus
here on just how it can be used for the purpose of sampling.

Instead of directly sampling a configuration q Hamiltonian Monte Carlo introduces an
auxiliary momentum variable p, which is required to fully specify the energy function which
defines Hamiltonian equations of motion. The connection to the target distribution, is then
facilitated by the concept of canonical ensemble from statistical physics [111]:

p(q, p) =
1
Z

e−H(q,p)/kBT (3.2)

where H(q, p) defines the Hamiltonian, Z is the partition function which provides necessary
normalization, T is temperature and kB is the Boltzmann constant. For general purpose, one
usually disregards the kBT by setting it to unity.

Notice, however, that the above defines a joint probability distribution over the entire phase
space whereas we are interested only in the distribution over q. To achieve the desired
behaviour, we partition the Hamiltonian into potential U(q) and kinetic T(p) energy terms
and furthermore define them as follows [103]:

H(q, p) = U(q) + T(p) = − log p(q) +
1
2

pTM−1p (3.3)

where p(q) is the target probability density function we wish to obtain samples from, and the
kinetic energy term takes a quadratic form which leads to p having zero-mean, multivariate
Gaussian distribution with a covariance matrix given by the so called mass matrix M (provided
correct normalization is accounted for in the partition function Z). With a formulation like
the one above, the variables of the joint probability density become independent and the
momentum variable p accounts only for exploration, which can be additionally biased by
M−1, an intelligent choice thereof is however no easy task.

The sampling process then occurs as follows, first, provided an initial position q is already
given, a momentum variable is drawn from its Gaussian distribution - notice that this already
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determines the total energy value H(q, p). Then a number of steps according to discretized
Hamiltonian dynamics is performed:

dq
dt

:=
∂H
∂p

= M−1p
dp
dt

:= −∂H
∂q

= −∇qU(q) (3.4)

whereby for numerical solution of the above system of equations one usually uses the
sympletic, second-order Störmer-Verlet method, also called Leapfrog, covered in appendix A,
eq.A.25. Notice also, that in order to simulate Hamiltonian dynamics the target probability
must be continuously differentiable.

The above dynamics generate a new proposal state q′ (and momentum p′) which then, just
like in the standard Metropolis algorithm (see sec. 2.1.3), gets accepted with probability:

A(q′|q) = min{1,
p(q′)

p(q)
} = min{1, exp

(
−H(q′, p′) + H(q, p)

)
} (3.5)

and the process repeats. Here, two properties of the Hamiltonian dynamics become particu-
larly prominent, due to time reversibility, the Hastings correction is not needed - the proposals
are symmetric, and more importantly, due to conservation of energy the new proposal will
be accepted with almost 100% probability since p(q′)

p(q) ≈ 1, with perfect acceptance rates
undermined only by the accuracy of the sympletic integrator. The former property also means
Hamiltonian proposals will satisfy the detailed balance which as already covered, is a sufficient
condition in order for a MCMC process to converge to the desired target PDF [103], the later,
on the other hand, indicates the importance of random momentum resampling, without it
HMC would only sample constant energy hyper-surfaces (if simulated exactly) i.e. regions of
the target distribution with equal probability density.

The genius of HMC resides in how it utilizes a random walk in momentum space to
cover the entire spectrum of energy - that is, probability density - while exploiting efficient
exploration of the state space degeneracy - that is, the ensemble of states with same energy -
proposing nearly independent samples. Still, it suffers from several problems:

• it requires computation of gradients of the potential energy term which is costly but can
also be problematic when the target distribution has some form of "spikes" or "cusps",

• typically HMC will be ergodic i.e. it will not get trapped in any subset of the state
space [103, 104], nonetheless it might be hard to explore multimodal distributions by
resampling the momentum only,

• it introduces additional hyper-parameters controlling the Hamiltonian dynamics, the
step size ε, number of steps L and mass matrix M, with no obvious way to tune them
[103, 105, 112]

Much can be achieved by appropriately tuning the metric M but we postpone its discussion
to later sections, focusing now on more straightforward approaches and heuristics for the
purpose of tuning ε and L. When introducing MCMC we mentioned that in order to avoid
large rejection rates, the standard deviation σ of the proposal distribution ought to be chosen
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Figure 3.1.: Illustration of the slow, diffusive exploration of space with a 400 standard normal random "walkers"
over 10000 steps. Horizontal axis represents time, the bold solid line indicates the ±1σ bounds given
by equation 3.6

on the scale of the width of the target distribution in the most constrained dimension, that
is, the one corresponding to the smallest singular value of its covariance matrix σmin. Notice
however, how it influences the ability of the MCMC sampler to explore the remaining
dimensions which might vary on scales, orders of magnitude larger than σmin. Due to its
random walk behaviour, the typical distance covered after L steps, will only scale as

√
L, in

accordance with the formula below:

σ2
X̂ = E

[
X̂2] = E

[( L

∑
i

Xi

)2]
= E

[ L

∑
i

X2
i + 2

L

∑
i,j>i

XiXj

]
= Lσ2

X (3.6)

where all Xi ∼ N (0, σ2
X I) are the random variables corresponding to the steps taken under

the proposal distribution of MCMC and the expectation over the sum of mixed terms XiXj
vanishes because they are all i.i.d.

In HMC, the general heuristic on the choice of step size on the order of σmin also holds,
however here due to considerations of the accumulated error in energy caused by discretiza-
tion of Hamiltonian dynamics - which eventually determines the acceptance rate from eq. 3.5.
When the Hamiltonian is separable, as it is often the case in HMC, the leapfrog integrator
becomes explicit and therefore only conditionally stable, considering a dummy Gaussian target
distribution with particular σ, that condition for stability becomes ε < 2σ [103], motivating
the ε ≈ σmin rule. Still, since the steps taken by HMC tend to follow one direction, the effective
distance covered will scale proportionally to the number of steps taken and the advantage
of that becomes very apparent when sampling from high-dimensional, highly-correlated
distributions. To validate that experimentally, we consider a common, 100-dimensional
multivariate Gaussian benchmark with the square roots of the eigenvalues of the covariance
matrix chosen as 0.01, 0.02, ..., 0.99, 1 - the simplest way to construct it, is with a diagonal
matrix with entries equal to the square of those values. We chose the step size ε ≈ 0.01 in
accordance with what has just been discussed and sufficient L ≈ 100 to match the total HMC
path length εL with σmax. Precise values of the parameters have been chosen in accordance
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Figure 3.2.: Comparison between MCMC and HMC of sample expectation values for each dimension of a 100-
dimensional Gaussian distribution. Standard deviation of the proposal distribution of MCMC iteration
was chosen uniformly from the interval [0.0176, 0.0264], whereas for HMC, the leapfrog stepsize was
sampled from the interval [0.0104, 0.0156] for each trajectory (not iteration) anew. The number of
leapfrog steps was L = 150 and the number of MCMC iterations was also scaled accordingly by L to
roughly match the effective path length with σmax under the step sizes chosen. The acceptance rates
were 0.2477 and 0.6610 for MCMC and HMC respectively which is very close to the optimum and
the single-thread runtime for the latter was roughly 2.5 times greater, it is however mostly due to
inefficient gradient computation in our particular implementation. It is clear HMC produces superior
results, avoiding the inefficiency of random walks in exploring high dimensional distributions which
led to insufficient coverage and therefore poor estimate in the case of MCMC.

with an equivalent experiment by Neal et al. [103] and have been stated, together with the
results in figure 3.2.

The step sizes of MCMC and HMC have significantly different meaning, the former
regulates a random walk whereas the latter, discretization size of deterministic differential
equation. This deterministic nature can lead to certain undesirable artifacts like periodicity of
sample proposals if the total path length generated by leapfrog updates happen to coincide
with the scale of the distribution in particular dimension. To avoid that, a common practice is
to let the step sizes vary from trajectory to trajectory [103, 106] - so called step size jittering. To
illustrate its importance we conceived a pathological example with fixed leapfrog stepsize
for a 2D Gaussian distribution illustrated in figure 3.3. The expectation estimates with
one sigma confidence intervals for a) MCMC sampler, b) HMC sampler with constant step
size and c) HMC sampler with random step size were [-0.0026 -0.0443] ± [0.0163 0.0724], [
0.0011 -0.0217] ± [0.0097 0.03705] and [ 0.0095 -0.0221] ± [0.0097 0.02867] respectively with
corresponding acceptance rates 0.6482, 0.7557 and 0.8208. At a first glance, these values
do not indicate anything wrong about the constant-size HMC estimation which, however,
upon qualitative investigation are obviously wrong. Periodicity therefore, may pose a serious
threat, reminiscent of the famous Anscombe’s quartet [113], which might be hard to discover
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Figure 3.3.: Histograms of 5000 samples for a 2D Gaussian distribution with σ1,1 = 0.5, σ2,2 = 1, σ1,2 = σ2,1 = 0.
From the left: a) MCMC sampler, b) HMC sampler with constant step size and c) HMC sampler with
random step size. In figure b) the fixed, total path length matched with the standard deviation of the
horizontal axis in such a way that the leapfrog trajectories always ended up bouncing periodically
from one side to the other, producing very unreliable samples.

post-factum, when all we have is the numerical estimation of expectation value of the highly
dimensional target pdf. In fact, the loss in accuracy around σ = 0.3 in the previous experiment
fig. 3.2, despite random step size, could be attributed to exactly this phenomena but we can
claim so only because we know the exact scales of this synthetic problem.

Crucially however, in practical situations we often do not have apriori knowledge about the
scales at which the target distribution may vary, a common practice is perform few preliminary
("pilot") runs and monitor the influence of hyperparameters on various convergence and
sample quality indicators and tweak them accordingly. In fact, this process can be automated,
and performed in an online learning fashion throughout entire Monte Carlo simulation with
stochastic approximation techniques, provided sufficient care is taken to preserve the ergodic
properties of the Markov Chain. Indeed hyperparameters like the step size ε, number of steps
L or even the mass matrix M can be learned from the samples generated during the sampling
process, if only one ensures the values of those parameters depend less and less on the
recently visited states of the chain - a process known as vanishing adaptation [114]. In particular
Andrieu and Thoms [114] proposed using the well known Robbins-Monro algorithm [40] for
the purpose of MCMC step size adaptation in which the acceptance probability objective is
optimized against ε to achieve certain desired target acceptance A∗:

εt+1 = εt + ηt(At(ε)− A∗) (3.7)

where At(ε) denotes the acceptance probability for t-th sample of the chain defined as in eq.
2.30 and etat = t−κ, 0.5 > κ ≥ 1 is the learning rate schedule satisfying the usual convergence
criteria. Acceptance rate is a good optimization objective, because there usually exist well
founded analysis of its optimality based on the minimization of cost to obtain independent
sample, for example for MCMC A∗ = 0.23, whereas for standard HMC A∗ = 0.65 [103]. In the
context of HMC, Hoffman and Gelman [112] proposed an improved update scheme, so called
dual averaging method, based on the Nestrov’s primal-dual algorithm in which, in contrast
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to the above formulation, the most recent samples are given most importance, which lets it
adapt to the samples coming from the equilibrium region of the target distribution rather the
ones obtained in the transient stages of sampling. Notice however, that these approaches are
well founded only provided the autocorrelation between samples of the chain are small, at
best when the samples are i.i.d.

Also autocorrelation, guides the choice of the number of steps L during leapfrog integration,
too short paths will produce essentially random-walk-like behaviour. Too long paths however,
except from obvious computational overheads - and perhaps sizable error propagation - might
also lead to the trajectory reversing its direction, as it can be observed e.g. in figure 3.4. Once
that happens we start visiting regions we could have reached with just a fraction of steps
taken. To overcome this, Hoffman and Gelman, in the same paper, introduced an adaptation
mechanism for L called No-U-Turn (NUTS) in which adaptation is achieved by a recursive
algorithm that follows the energy level set to a turning point, doubles that path for time-
reversibility reasons, and finally samples a point along that path with weights proportional to
the target density. This unfortunately, introduces a very blatant bottleneck when it comes to
practical implementations, namely, since each path requires different amount of computation,
the parallelization is only possible within SPMD paradigm which means we cannot efficiently
leverage vectorization or GPU computing. This has been overcome more recently by Hoffman
and Suntsonov [115], which proposed a completely tuning free (generalized) HMC, designed
to make good use of SIMD hardware accelerators allowing most chains to be updated in
parallel in each iteration.

Returning to step adaptation mechanisms, one particularly important aspect have not been
taken into account, the condition on stability of the leapfrog integrator, and hence step size,
might vary from one place to another. The "Neal’s funnel" distribution [116], is the best
benchmark for this phenomena:

p(x, v) =
n

∏
i=1

N (xi|0, e−v)N (v|0, 3) (3.8)

It emulates many pathological features of popular distributions like those arising in hier-
archical Bayesian or latent variable models and inevitably, also the Born distribution |Ψ|2
e.g. along intersections of nodal hypersurfaces. Additionally, it automatically provides a
simple diagnostic for the bias in sampling through the marginal distribution of v which by
construction is given as N (0, 1). Figure 3.4 illustrates leapfrog trajectories with four different
step sizes on a two dimensional version of the funnel given by p(x, v) = N (x|0, ev)N (v|0, 1).
It seems obvious, some sort of adaptivity in step size over space is required to avoid divergence
in highly constrained regions, this brings us to the mass matrix.

3.1.2. Riemannian HMC

Recall the general form of the Hamiltonian function for Hamiltonian Monte Carlo:

H(q, p) = U(q) + T(p) = − log p(q) +
1
2

log
(
(2π)D|M|

)
+

1
2

pTM−1p (3.9)
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Figure 3.4.: Hamiltonian trajectories integrated with leapfrog method for a two dimensional "funnel", horizontal
axis corresponds to v and vertical to x. Starting from the left, experiments were performed with step
sizes: 0.02, 0.05, 0.1 and 0.25 respectively, all trajectories were initialized with the same state and
momentum and iterated over 500 steps. It is clear from the last figure, how once (and if at all) the
trajectory reaches a highly constrained region, the chosen step size might turn out too be no longer
within stability bounds and the trajectory diverges.

43



3. Approximating many-electron wave function with physics aware surrogate models

Compared to the earlier definition there is an additional normalization term 1
2 log

(
(2π)D|M|

)
which completes the analogy of the quadratic form of the kinetic energy to a Gaussian
distribution of momenta upon exponentiation e−H as explained previously. The term is usually
omitted since it is just a constant and can be incorporated into the overall normalization factor
of the joint distribution p(q, p) which HMC does not require either way. Situation changes
however, when M varies with q which is what we are about to postulate as a remedy for
sampling from highly correlated distributions.

If for a moment we assume our target distribution is a multivariate Gaussian with covariance
matrix Σ, that is, the potential energy is a quadratic form:

U(q) =
1
2

qTΣ−1q (3.10)

then, an estimate of its covariance matrix Σ̃ could be utilized in order to unscale and
uncorrelate the individual dimensions of the distribution by accordingly transforming either
q or p. Before one can proceed with any linear transformations, however, it is necessary to
ensure they do not modify the overall dynamics. Indeed, transforming the configuration q
with some non-singular matrix A, is only allowed as long as a corresponding transformation
of momenta with p with (AT)−1 also takes place [103]. In such a case the potential and kinetic
energies expressed in terms of the new variables q′ and p′ read:

U′(q′) = U(A−1q′) + log |A| T′(p′) = T(ATp′) =
1
2

p′T(AM−1AT)p′ (3.11)

where we have used the fact U = − log p(q) and we define M′ := AM−1AT.
Now, provided we have access to Σ̃, we can leverage the information it provides in two

ways, either transforming configuration e.g. with q′ = L−1q, where L is obtained from the
Cholesky decomposition LLT = Σ̃ and keeping M′−1 = I or alternatively keeping original
q and instead taking M′−1 = Σ̃. Important for the discussion to come is the equivalence of
both approaches, it can be confirmed easily by plugging A = L−1 into the expression for
effective mass in T′(p′) in eq. 3.11 which yields M′−1 = AM−1AT = L−1(LL)T(L−1)T = I
[103]. Nonetheless, in both cases, HMC should perform very well with just a handful of
leapfrog steps sufficing to obtain an independent proposal because the target distribution has
been effectively turned into a standard multivariate normal.

It follows that a proper choice of the mass matrix can provide beneficial preconditioning of
the dynamics while at the same time preserving the equilibrium properties of the original
system. Such ideas were in fact proposed in the context of molecular dynamics simulations
already almost 50 years ago by Bennett [117], where replacing classical point masses mi with
a positive definite mass tensor Mij has proven effective in slowing down the high frequency
motions and speeding up the low frequency ones, increasing the overall computer time effi-
ciency with which configuration space can be explored. The problem we are faced with could
be described as an inverse problem of statistical mechanics, that is, we are trying to engineer a
Hamiltonian, and hence a respective Markov Chain, with an ergodic distribution consistent
with the desired target, but also one which is "well-behaved" for HMC simulation. In our case,
that means accounting for spatial variation in scale of the target distribution, a characteristic

44



3. Approximating many-electron wave function with physics aware surrogate models

of strong correlations, which may catastrophically affect the quality of numerical integration
or even entirely miss certain regions of non-negligible contribution to the expectation value.
In essence, what we are looking for is a smoothly varying, positive definite mass tensor which
would locally standardize any generic distribution - what we are looking for is a Riemannian
metric tensor.

The first account of Riemannian Manifold Hamiltonian Monte Carlo (RMHMC) was by
Girolami et al. [105], the particular metric they have used, however, was specific to the task
of Bayesian inference and in fact approximated empirically during sampling. Following the
paradigm of information geometry [44], they have used the Fisher information metric I|θθθ
2 which is a relevant Riemannian metric on statistical manifolds as we alluded to before in
section 2.1.3. A typical setting is rather different though, most importantly the space over
which the target probability distribution is defined is assumed to be euclidean - that holds at
least for the Born probability distribution over electronic coordinates xi

3. On this account,
Betancourt et al. [124, 125] provide a more principled, geometric treatment.

We should first address the fact that a covariance matrix has meaning only as long as we
consider a multivariate Gaussian distribution, more precisely when the energy landscape is a
convex quadratic form. Although that is rarely the case globally, in a convex neighbourhood
the potential energy can always be approximated with:

U(q) ≈ 1
2

qTHq (3.12)

where Hij =
∂2U

∂qi∂qj define the elements of a Hessian matrix. One quickly runs into troubles
when the signature of the Hessian changes and the log determinant log |H| becomes undefined.
If the target distribution is endowed with some natural conditioning variables, like in the case
of bayesian posterior, marginalizing over these variables does guarantee to yield a positive
(semi)definite metric - indeed, a Fisher information metric. For general usage, Girolami
[125] proposes using the exponential map [126] - a mapping from the space of all matrices to
elements of the general linear group GL(n), which in the case of a symmetric matrix like
the Hessian, is isomorphic to the space of positive-definite matrices. Upon considerations of
numerical stability, a particular combination of exponential maps can ensure less distortion
of the spectral decomposition and additionally provides necessary regularization of small
eigenvalues, which turn the Hessian into a theoretically well-behaved metric for RMHMC:

M′|q = H̃ = QΛ̃QT, Λ̃ii = SoftAbs(λi, α) (3.13)

2Just like when talking about differential geometric concepts in the appendix A we follow here the vertical bar
notation to indicate the evaluation of the metric tensor field at ` when expressed in some local coordinates.
The usual parenthesis notation is reserved for the action of the tensor and in the case of a (0, 2) metric tensor it
means a bilinear transformation V × V → R on elements of a vector space V.

3This claim is a rather imprecise one even disregarding the undertakings of unifying general relativity with
quantum physics. The notion of a position vector has long been disregarded as meaningless in physics,
whereas the wave function is not really a function, but rather a section of a complex line bundle over the
configuration manifold. We shall however leave these concerns unaddressed and refer the reader to the
literature on geometric quantization [118, 119] and geometric physics in general [120–123]
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Figure 3.5.: SoftAbs function. The parameter α controls the "smoothness" of the approximation of the actual
absolute value and in practical terms, limits the scaling of the integration step size which bears
similarity to the trust region for step size adaptation [127]. In our experiments, setting α < 1e2 usually
provided most stable results.

with Q being the matrix of orthogonal eigenvectors of H, which remain unaffected by the
mapping, and Λ̃ a diagonal matrix of appropriately "softened" real eigenvalues with a SoftAbs
map defined as SoftAbs(xi, α) = xi coth αxi, see figure 3.5.

From geometric perspective, the Riemannian metric defined in this way provides informa-
tion on the curvature of the graph of the potential U(q), that is, an n-dimensional submanifold
in the (n+1)-dimensional manifold with coordinates (q, U(q)). Hamiltonian evolution in such
a setting locally parallels its geodesics [121], which could be given as a reason for the superior
efficiency of RMHMC approach, which on the first sight may not be obvious. In the end,
the usefulness of this technique is limited by the computational cost of matrix operations
which introduce a number of complications, so it must be handled carefully. A primary
concern is obtaining partial derivatives with respect to positions and momenta for the Hamil-
tonian evolution, which now requires third derivatives of the potential function. Provided
sufficient continuity, and with a careful numerical treatment [125], the total computational
effort can be kept at O(N3), matching the cost of the eigendecomposition of the Hessian.
Furthermore, dependence of M′ on position variables means the Hamiltonian is no longer
separable H(q, p) = U(q) + T(q, p) and the leapfrog integration becomes implicit, requiring
fixed point iteration for both pn+ 1

2
and qn+1 c.f. eq. A.24. Still, despite its complexity, the

method does produce correct results which can be quickly asserted on a two dimensional
Gaussian, see fig. 3.6.

Before investigating the viability of RMHMC on more challenging benchmarks let us
consider a particular modification of the presented approach, which constitutes our small
contribution. As mentioned before, a linear transformation of the variables q or p can occur in
different ways [103], choosing to modify just the momenta by a spatially varying mass matrix
is just one possibility. Nothing prevents the opposite, that is, a transformation of the position
q. Such approach would have the big advantage of keeping the leapfrog integration explicit
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Figure 3.6.: Comparison of a) "euclidean" and b) riemannian HMC on a two dimensional Gausian distribution
with non-isotropic covariance. Plots show histograms for 100,000 samples and Hamiltonian trajectories
for certain random, but same initial conditions. The RMHMC method successfully standardises the
distribution and as a result makes the trajectories much better behaved. Also, compared to figure
3.3, the overall quality of sampling has significantly improved, that is thanks to gains in efficiency
that could not have been achieved without the just-in-time compilation of JAX. Indeed, on this
two-dimensional Gaussian example, the total runtimes were 2.4s for HMC and 22,3s for RMHMC,
whereas the implementation used to create the histogram in fig. 3.3 took around 5min and only for a
fraction of the total number of samples.

so it is almost surprising the research community has overlooked this possibility focusing so
much on finding a mass preconditioner instead. As far as our simplistic experiments went,
however, we did observe the desired behaviour with improved performance and stability
thanks to the removal of fixed point iteration, the transformation we propose reads:

q′ = Aq =
√

Λ̃QTq (3.14)

where Q and Λ̃ are defined as before. The kinetic energy remains unchanged i.e. takes the
simplest possible form T′(p′) = T(p) = pTp and distribution of q′ becomes locally standard
normal which follows directly by construction from equations 3.12 and 3.11:

U′(q′) = U(Q
√

Λ̃−1q′) + log |
√

Λ̃QT|

≈ 1
2

q′T
√

Λ̃−1QTQΛ̃QTQ
√

Λ̃−1q′ + log |
√

Λ̃|

= q′Tq′ + ∑
i

log λ̃i

(3.15)

where we have dropped the 1
2 factor in the last line as well as leveraged the fact the determinant

of an orthogonal matrix is unity, its inverse is equal to its transpose and a transpose of a
diagonal matrix is equal to itself.

What remains to be shown is the viability of RMHMC, for this purpose we turn back to
the funnel example. Figure 3.7 presents the samples and autocorrelations of the v variable
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obtained with MCMC, HMC and RMHMC algorithms respectively for a 20-dimensional
funnel as given by eq. 3.8. For the experiment we have used a diagonal version of RMHMC,
that is, with diagonal Hessian computed efficiently in JAX utilizing the jacobian-vector-
product operation on a gradient vector. All runs were performed for the same number of
samples and we have used dual averaging for HMC and RMHMC to establish the best step
size automatically, for MCMC it has turned out detrimental as it would decrease the step size
virtually to zero as the sampler got stuck in the narrow region and could not leave without
access to any directional information. For diagnostic purposes, autocorrelations up to 1000
steps back (lags) were computed with a Fast Fourier Transform as described at the beginning
of this chapter and plotted together with their 95% confidence intervals. A descriptive metric
for comparing different chains is the lag for which the autocorrelation markers cross with the
lines of their confidence interval bounds, upon investigation it is obvious RMHMC produces
virtually decorrelated samples whereas MCMC suffers from the random walk behaviour as
expected.

Table 3.1 compares all three approaches in a more quantitative manner. In the first column
we list the expectations of the v variate together with a 95% confidence bounds on the estimate,
since the true expectation equals exactly zero, this value provides a good measure on how
biased a sampler is, that is, how well can it explore the highly constrained region of the
funnel. Although MCMC manages to do so reasonably well, it does so at the expense of
very high autocorrelation. Furthermore, its high acceptance rate is an indicator that the
random walk leaves large regions of the configuration space largely unexplored, so even
the ESS metric should not be trusted too much in this case. With HMC, we can once again
observe how too large step sizes lead to certain regions of space being completely missed,
this manifests itself in the high bias of the estimation of v. The step size could not have
been chosen differently though, it has been stochastically optimized to meet the desired
acceptance rate on the basis of an average trajectory, if we forced it to be smaller the behaviour
in all variates other than v would have been essentially turned into a random walk. Finally,
RMHCM seems to perform best, both in terms of ESS per computation time and estimate of
the expectation, the remaining bias, we believe, can be attributed to a relatively large alpha
parameter for the SoftAbs function, α = 10, which was necessary to obtain stable trajectories
for our implementation.

Although the comparison based on efficient sample size per computation time clearly
favours RMHMC, it must be noted that with growing dimensionality this advantage might
suffer from its cubic asymptotic complexity compared to MCMC but also HMC, Betancourt
[125] however does report similar results for a 100-dimensional case. Despite the potential
efficiency gains we found the RMHMC method can be very fragile, that is because instabilities
may arise from very different mechanisms and it is unclear how to deal with them in an
automated manner. This fact is also a reason for a rather poor reception of this approach in
probabilistic programming languages (PPL) like Stan [106]. In the next section we will briefly
cover another, much more straightforward extension of Hamiltonian Monte Carlo, which we
have empirically confirmed to have a stabilizing effect on RMHMC.
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Figure 3.7.: Scatter plots of the v variate of a 20-dimensional funnel together with corresponding autocorrelations
for a) MCMC b) HMC and c) RMHMC. The remaining bias in figure c) does probably arise from the
inaccuracy of reparametrization in the almost singular narrow neck region of the funnel. Quantitative
results can be compared in table 3.1.
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Algorithm Expectation
Final

step size
Acceptance

rate
ESS ESS/s

MCMC 0.2893 ± 0.0283 0.1 0.8092 96.81 26.5938
HMC 1.4181 ± 0.0258 0.3 0.6772 2051.6 70.7448

RMHMC 0.0745 ± 0.0137 0.1 0.9101 18234.1 246.4068

Table 3.1.: Result comparison for a 20-dimensional funnel benchmark. All runs were performed for 2 · 104 samples
with 5 · 103 initial warm up iterations. In spite of increased computational effort of RMHMC, comparison
of effective sample size per second reveals its superiority in practical terms. The initial step size for
dual averaging was 0.1 for all cases and the target acceptance rates 0.25, 0.65 and 0.85 respectively in
accordance with the conditions discussed earlier in the text and empirical recommendation for higher
acceptance rates for RHMMC by Betancourt [125].

Algorithm Final step size Acceptance rate Expectation
HMC, M=1 0.5375 0.5802 3.8535 ± 0.070
HMC, M=2 1.2064 0.5767 11.4073 ± 0.0676

HMC, M=0.5 0.0657 0.5122 -4.2613 ± 0.0313
QHMC 0.2798 0.6325 2.0012 ± 0.0621

Table 3.2.: Comparison of results for a 2D funnel distribution obtained with HMC for various values of mass and
D-QHMC. All runs were performed for 50 leapfrog steps with the initial step size ε0 = 0.25 which has
been adjusted with dual averaging with the same target acceptance A∗ = 0.65 during the simulation.
Runtimes for all methods with 1000 burn-in steps and 20,000 samples were virtually equal ≈ 5s

3.1.3. Quantum-inspired HMC

Proposed by Liu and Zhang [104], Quantum-Inspired Hamiltonian Monte Carlo (QHMC)
promises to improve the performance of HMC when sampling from "spiky" and multimodal
distributions by leveraging the energy-time uncertainty relations of Quantum Mechanics.
Their key contribution is allowing the mass of the virtual particle in phase space to admit
random values rather than having fixed value throughout the simulation, which could be
seen as employing varying simulation time scales.

In effect, this modification finds a good trade-off between extended exploration of the
configuration space facilitated by simulating the dynamics of a light particle and a slow and
careful probing of highly constrained regions when using a heavy particle c.f. equation 3.4.
Although interestingly, using dual averaging we have observed an exactly opposite behaviour,
that is, on a 2D funnel benchmark using small mass led to exploration of its narrow neck
whereas simulation with large mass explored mostly its flat region. This, we believe, can be
attributed to the interplay of the step size and mass in the explicit leapfrog integration when
step size is not fixed, eq.A.25. Since mass appears only in one out of three operations per
iteration its effects gets overcompensated by step size, this can be readily confirmed upon
investigation of the final step sizes for each case presented in table 3.2.

In its last column we present expectation values of the v variable which is indicative of the
bias in sampling, the indicated bounds correspond, again, to 95% confidence intervals. The
differences between different mass settings are significant and discernible with naked eye,
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Figure 3.8.: Samples from a 2D funnel distribution obtained with HMC for various values of mass and QHMC
with anisotropic but uncorrelated mass distribution. For visual clarity the sample count has been
thinned to every fifth. Qualitative results were provided in table 3.2 but it is obvious QHMC offers
smaller bias thanks to its improved penetration of the narrow neck of the funnel.

c.f. fig. 3.8 but perhaps surprisingly in neither case did we observe random walk behaviour
as it was the case with MCMC, fig. 3.7 a). Even for m = 0.5 the Hamiltonian dynamics
remained unaffected and well conditioned, they just occurred at a much smaller scale. In the
rightmost plot of the aforementioned figure we see samples from the implementation of a
random, diagonal mass matrix, dubbed originally D-QHMC [104]. The mass values were
chosen according to the distribution log mi ∼ N (−0.1, 0.3) to maintain positive definiteness.
In higher dimensions we did not observe the robustness to the choice of µi and σi parameters
Liu and Zhang allude to, hence the restriction to this particular distribution with expectation
value approximately equal to unity. Importantly, the mass resampling process occurs for
every trajectory, not the leapfrog step, implementing the latter would lead to a random walk.

QHMC promises also to be useful for multimodal distributions thanks to an analogy
to quantum tunnelling. Quantum objects can climb over potential barriers even with an
insufficient total energy because of inherent uncertainty as postulated by the Heisenberg’s
relations ∆q∆p ∝ h̄ or equivalently ∆E∆t ∝ h̄. In relation to Plank’s time and an interpretation
of step size ε as a "quantized" unit of time one can rewrite these relations to ∆q∆p ∝ ε and
since momenta are Gaussian distributed like ∝ exp

(
−p2

i /2mi
)

their uncertainty is given by√
mi and the uncertainty in position therefore ∆qi ∝ ε/∆pi = ε/

√
mi.

Considered generally, if isolated modes are found to exist, one cannot naively combine
the results of various HMC runs because they are each confined to just a single mode,
there is therefore no principled way in which one could perform such combination without
introducing an "inter-modal" bias [103]. A traditional way of dealing with multiple modalities
is achieved with tempering, which in analogy to statistical mechanics varies the temperature
parameter from the original formulation of the potential energy function from eq. 3.2. This
modification allows for larger fluctuations in potential energy - and hence probability density
- beyond random momentum resampling, which by itself introduces only a ≈ N/2 variation
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Figure 3.9.: Comparison of sample distributions between HMC with various mass values and the diagonal version
of QHMC for a mixture of two Gaussians. The apparent, increased spread of QHMC samples
compared to the density plot, we recon, is just a visual artifact of plotting the density with a specific
cutoff.

since pTM−1p is a χ2 variate. As described, QHMC utilizes a slightly different mechanism
compared to tempering, but it nonetheless induces the same behaviour and in end effect
even produces arguably better results as measured by the Wasserstein distance between the
multimodal sample distribution [104].

Figure 3.9 contains scatter plots of samples obtained with QHMC and HMC for various
constant masses. Again, as far us our tests went, we’ve observed best behaviour when the
mass expectation value was kept around one. In the following section, we will provide more
details on our final implementation utilizing both QHMC and RMHMC adjustments and test
its performance as a sampling subroutine in PauliNet.
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3.2. Sampling the PauliNet wave function

As already mentioned at several occasions, we have chosen to implement our algorithms in
JAX [128]. This way rather than being tied to any probabilistic programming language (PPL)
like PyMC, Pyro or Stan we could have focused solely on the design and performance of
the sampling algorithms themselves. Moreover, since the negative log probability density
function - as defined by the PauliNet ansatz - has also been implemented in JAX it was
very straight forward to insert our code as its subroutine. The strengths of JAX further
include its support for reverse- and forward-mode differentiation [129], which was required
for simulating Hamiltonian dynamics, its just-in-time compilation into highly optimized
computational XLA (Accelerated Linear Algebra) kernels, and automatic parallelism, both at
instruction and processor level - that is, the SIMD (vectorization) and SPMD paradigms [130,
131] - which we have made extensive use of thanks to the fact that sampling is in general
embarrassingly parallel.

Regarding our methodology, we motivate combining the QHMC and RMHMC methods
as follows. The Born probability distribution is highly multimodal and infested with very
constrained regions similar to those which we extensively studied on the funnel benchmark.
Although QHMC could seemingly deal with both of these issues alone, we have seen in the
previous section that particles of different masses require on average orders of magnitude
different step sizes if we wish to maintain desired acceptance rates, c.f. table 3.2. This
observation was only possible when the step size was admitted as another hyperparameter
and optimized stochastically online, during the sampling process. This, conveys an insight
about the "preferred" regions of the negative log probability landscape where particles of
various masses tend to reside. When mass becomes a random variate itself, however, even
though dual averaging can be used just as before, it can only account for the behaviour of
an averagely massive particle. It becomes apparent, that even though QHMC can lead to
improved exploration of both, the flat as well as the constrained regions of the wave function,
due to this permeability, it is even more reliant on spatial adaptivity than the baseline HMC.
The combined approach we postulate should therefore lead to more accurate sampling near
the singularities and nodes of the wave function - so important for capturing the elusive
correlation energy - and in effect, assignment of adequate resources for their representation
with the highly flexible neural network ansatz during variational optimization.

Although we have also undertaken initial research into replacing the internal electron
interaction network of PauliNet with an adaptation of DimeNet - a directional message passing
graph neural network conceived by Klicpera et al. [46, 98] - this goal has been ultimately
abandoned for the following reason, which we include here with a hopefully pedagogic
effect. FermiNet [56, 74] builds its wave function ansatz on the information contained within
electron-nuclei and electron-electron interactions but it largely ignores the spatiality of this
information with the only exception of including it in the initial embeddings. PauliNet
[55] used continuous convolution adapted from SchNet [49] which enabled construction of
electronic features respecting their radial environment. Later, Gerard et al. [81] successfully
adapted continuous convolutions from PauliNet into a FermiNet like ansatz, their modifica-
tions did improve performance but have unfortunately occluded the spatial dependence of
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the filter generating function due to the usage of distance embeddings instead of distances
themselves as its inputs. We hypothesised, based on the discussion on electronic correlations
so far, that further incorporation of directionality of information exchange should lead to
gains in accuracy. Concretely, including angular convolutional filters in addition to radial
ones with a successor of SchNet - the DimeNet network - seemed promising in capturing even
more correlation energy which in the end, is purely spatial. Explicit feature conditioning on
the angles between triplets of electrons should have not only improved their interpretability
and provided useful implicit bias, but propagating this information through subsequent
layers of the network should have had in effect a gradual encapsulation of information
beyond pairwise correlations. This approach shared therefore design philosophy with the
CI or CC-expansions which explicitly extend the basis set with doubly-, triply-, and higher
excited configurations [13] but the choice of how many electrons to consider at each particular
instance would have been guided by the spatial extent of the graph convolution and in totality,
by the overall number of interaction layers. An already excellent performance of PauliNet,
time restrictions and the realization that when considered all together, just the pairwise,
inter-electronic distances already do contain all the spatial information present in the system,
prevented further investigations.

Considering all of the above, for our final experiments, we have used the PauliNet network
with multiple-determinant ansatz and pretrained it for 500 iterations using its original
Metropolis-adjusted Langevin sampler (MALA) before switching to our Quantum Riemannian
Hamiltonian Monte Carlo (QRHMC) sampler. All default hyperparameters provided by the
authors have been used and the optimization was performed with the second-order KFAC
optimizer[42]. The training curves for a totality of 10,000 iterations can be seen in figure 3.10.
The reason for pretraining was that considering curvature of the wave function as represented
by a barely trained network could have been hardly justified and we have found it to provide
very unreliable information.

The basic building block of our algorithm has been the HMC kernel, which in the spirit of
functional programming, has been then decorated with the random mass and riemannian
metric functionalities using the factory design pattern. This enabled an end-to-end just-in-
time compilation of the entire sampling routine using the jax.lax.scan command, without
any need for explicit for loops and therefore allowing the XLA compiler to perform low
level optimizations which alone, has lead to thousandfold speedups over our initial naive
implementation. Furthermore, vectorization of our kernel with jax.vmap on a GPU for 100
parallel chains brought additional 5x speedup and to ensure proper parallel random number
generation, the JAX implementation of Threefry hash function [132] has been used. Naturally,
step size jittering and dual averaging with target acceptance rate of A∗ = 0.8 have been used,
we have also decided to use only the diagonal versions of the QHMC and RMHMC, mostly
for keeping the runtime manageable and stability considerations, for the same reason the
number of leapfrog steps has been kept low at only 5 with appropriate NaN checks to avoid
wasting computation. Our complete implementation is available online on github.

Commenting on the results we were able to obtain, it is hard to confirm whether our
modifications indeed led to an improvement. Compared to the runs we have performed with

54

https://github.com/dawidpasterny/Quantum-Riemannian-Manifold-HMC-in-JAX


3. Approximating many-electron wave function with physics aware surrogate models

Figure 3.10.: Training curves for Boron, Beryllium, Lithium hydride and Dilithium. Depicted in gray are the
pretraining steps using MALA sampler, blue are the iterations performed with our sampling
algorithm. Notice, the horizontal axes have been represented in a logarithmic scale.
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the MALA sampler, noticeable differences on the final energy could have been observed only
for the case of Boron and Dilithium, although even those, oscillated randomly about not more
than several mH from the baseline. The reasons may be plenitude, conceivably, the need for
pretraining could have biased the network in an unrecoverable manner, also the performance
of this particular ansatz might have not been limited by the sampling inefficiencies in the first
place, of which there are some empirically supported reasons too [81]. In the end, we believe it
has been the overall system interaction, which however, could not have possibly been resolved
any better in the time available, which prevented observing significant improvements. It is
always disappointing to report underperformance, although truthfully, our results match
those published by Hermann et. al [55] which considering the novelty of our sampling
methodology, should be consider a success in itself. Indeed, to the best of our knowledge it is
one of the first works investigating impacts of sampling on variational optimization of wave
function to date. We remain positive that further investigations along this line of research will
eventually lead to meaningful progress and hopefully tighter collaboration at the intersection
of statistics, artificial intelligence and the rich family of Quantum Monte Carlo methods.
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In this work we have covered the topic of Quantum Monte Carlo with physics-aware, deep
learning surrogates for the study of fermionic systems. Having provided an extensive
state-of-the-art review of electronic structure methods, both traditional and those using
machine learning, we hope to have conveyed not only the immense depth and intricacy of
computational quantum chemistry and physics but also have left the reader convinced that
as much as the field of deep learning can benefit the field of scientific computing, sufficient
care must be undertaken and the prevailing knowledge may not simply be disregarded.

Our main contributions were restricted to the topic of sampling from the variationally
optimized wave function, the importance of which becomes apparent when one considers the
flexibility of this ansatz and how inappropriate coverage of the narrow valleys of the Born
probability density, characteristic of strong correlations, will inevitably lead to sub optimal
allocation of the network’s limited representational power. Upon through investigations of
the Hamiltonian Monte Carlo family of sampling algorithms, especially from the analytic
mechanics point of view, we have considered a number of improvements and extensions that
have made it better suited for the task at hand. Concretely, we focused on a geometrically-
motivated Riemannian Hamiltonian Monte Carlo [105, 125] we have shown to offer improved
performance for ill-conditioned and highly-correlated probability density functions thanks its
locally-standardising effect, which in practical terms prevents catastrophic instabilities in the
sympletic integration of Hamiltonian dynamics. We have further extended our algorithm by
introducing randomized mass tensor in accordance with the Quantum-Inspired Hamiltonian
Monte Carlo [104], which we have found not only to stabilize the geodesic flow i.e. the
trajectories of the aforementioned method but also enabled better treatment of multimodalities
of any particular probability density. Finally, with an efficient implementation in JAX [128],
we have employed all considered improvements for sampling the PauliNet wave function
ansatz [55].

Despite the ambiguity of our final results, we believe this line of research should not be
disregarded and definitely deserves more attention. The reasons for the poor performance
we have observed may undoubtedly lie in the particular way we have chosen to convey our
numerical experiments, but may just as well point to deeper problems. In particular, we
believe the AI community should pay more attention to the efforts of statisticians, especially
when it comes to variational neural network training. More principled studies of how to
improve the resolution of the nodal hypersurface of the wave function are definitely a topic
which will benefit not only deep learning ansätze but all Quantum Monte Carlo methods
in general. Detailed investigations of how the electronic correlations can be better extracted
from the sampling approach itself are just as well needed, the first steps toward this goal has
already been taken when we consider how Riemannian Hamiltonian Monte Carlo utilizes
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local correlations i.e. the curvature of the negative log probability density to guide exploration
of the configuration space. Surely, a geometric quantum theory [118, 119], with an explicit
treatment of the uncertainty relations between state and momenta should provide beneficial
insights too.

If one considers our work in totality, what we have attempted was obtaining samples
through ergodicity of classical evolution which were nonetheless meant to represent quantum
reality. Although stating it this way is not completely right, it would be definitely interesting
to explore whether Hamiltonian Monte Carlo algorithms could indeed reproduce quantum
expectations through some sort of quantum ergodicity. Indeed, little care is taken nowadays in
considering the origins of Schrodinger’s wave equation from Hamilton treatment of analytical
mechanics and the ideas of stochastic mechanics [133] - that is, treating the Born probability
density as if coming from an underlying statistical process, not an underlying quality of nature
- are generally not considered sound. Although very controversial, with the Copenhagen
interpretation of Quantum Mechanics firmly entrenched in academic communities, many
researchers have nonetheless undertaken purely computationally oriented theories of quanta
of this sort [134, 135].

Lastly, let us touch on the possible benefits of wider adoption of other deep learning
methods. Indeed, much success have been seen recently with autoregressive, diffusion or
energy based models for generation of highly-dimensional and intricate content, if only
could it be adapted to respect the antisymmetry of the wave function, orders of magnitude
improvements regarding the size of the systems we can study are conceivable. Surely,
attention mechanism, also seems alluring but is at the same time immensely expensive,
nonetheless its ability to infer the topology of the input by itself could enable predictions
way beyond mean-field approximation, capturing even all-to-all electronic interactions when
needed. In effect, performance exceeding chemical accuracy should be attainable, opening up
the realms of computational superconductivity research where the increased computational
effort would be well justified. Meanwhile, the initial research into the regularity of wave
functions and hence, the transferability of deep QMC models across quantum systems [136,
137] has already opened up a promising avenue for expanding the impact of deep learning in
quantum chemistry and solid-state physics. To this end, the concepts and challenges covered
in this thesis will continue to extend its impact, particularly, the tighter marriage of physical
priors and symmetries with flexible neural network ansätze or efficient and scalable sampling
and optimization algorithms.

Undoubtedly, the very large scale implementations of the new algorithms, sufficiently
optimized and integrated into existing HPC standards and other areas of research such as ab-
initio molecular dynamics [15, 138] might prove as much, if not more influential. Indeed, what
can be gained through intelligent modelling usually corresponds to a technical improvement,
either in HPC hardware or compiler optimization, of which, let the excellent performance
gains we have obtained using just-in-time compilation be the best account. One can also
expect quantum computation to eventually enter the arena of electronic structure calculations,
provided it can overcome its accuracy and scalability issues [139]. It’s conceivable, the
improvements we see today in the methodology of computational quantum physics on
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classical computers will directly translate into better design of quantum devices which in
turn will increase their utility and adoption. Ultimately, the exponential advantage promised
by quantum computing may lead to a singularity-like event after which the entirety of
nanotechnology, chemistry, and material science will stand wide open in front of the new
generations of engineers. In the words of Feynman, "there is plenty of room at the bottom"
[140], and by unlocking new insights into the behavior of quantum systems, we may gain a
better understanding of the fundamental laws of nature and be able to design and engineer
new materials and technologies that were previously thought to be impossible.
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A. Hamiltonian mechanics

Analytical mechanics is a completely mathematical science, taking place in an abstract realm
of quantities called generalized coordinates qi of the so called configuration space Q. This space is
a in a "well behaved", bijective correspondence to the three dimensional space in which the
evolution of any physical system occurs. Although any analytical approach to mechanics is,
mathematically, merely a restatement of Newton’s laws of motion postulated in 17th century,
physically it conveys a truly philosophical significance almost at odds with causality. Two
fundamental concepts of analytical mechanics are those of work function (negative potential
energy) and kinetic energy - two scalar quantities fully determining motion and replacing
Newton’s force and momentum respectively. As proposed in the revolutionary work of
Lagrange, Mecanique Analytique, the evolution of the system then follows from the so called
principle of stationary action which asserts that the path taken by nature is the one which
minimizes a functional of energy - so called action S:

S :=
∫ t2

t1

dt L(q, q̇), where L = T − U (A.1)

where L is a Lagrangian, defined as the difference between the kinetic and potential energy
terms for a system at hand. In Lagrange’s formalism there is therefore no need for arbitrary
postulates like "action equals reaction", nothing is caused by anything, everything just follows
minimization principle - perhaps the closest physics has gotten to the theory of everything.

Lagrange and Euler developed a completely new branch of calculus to treat problems of
this nature - the calculus of variations - in which a trial path can be varied between points P1

and P2 till a stationary path is found. Later Hamilton expanded on it allowing the variation
to not be restricted to paths between points P1 and P2 but rather between times t1 and t2

extending the principle to non-conservative systems. Also the action functional has not
initially been defined in the above manner, for a detailed explanation as well as historical
perspective, inquisitive reader is encouraged to refer to [3].

Using the above analytical formalism it is particularly convenient to deal with any con-
straints, any mechanical system with N degrees of freedom constrained by m additional
conditions, will translate to a study of motion of a single, free particle in an abstract, non-
euclidean and n = N − m dimensional space. It also provides freedom in the choice of
coordinate system in which the equations of motion are represented - a recognition which
eventually led physics to study natural phenomena in terms of their co- or equivariance under
various transformations, indifferent to any special reference frame - of crucial importance in
both, quantum mechanics as well as Einstein’s relativity [120] [3]. It should be mentioned
however that, such a variational treatment of physics does restrict the nature of force to only
those which can be derived from a scalar work function, leaving e.g. frictional forces outside
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its realm capabilities.
Hamilton’s canonical equations of motion can be obtained by applying Legendre transfor-

mation T Q → T ∗Q to the Lagrangian function L considered as the function of generalized
coordinates qi and their time derivatives q̇i. Such transformation introduces new variables,
dual to q̇ which we shall call generalized momenta, with components:

pi =
∂L
∂q̇i (A.2)

For the purpose of this introduction we shall, however, follow a different path, one centered
more around the geometric structure it carries, which will prove itself useful when considering
the Hamiltonian Monte Carlo sampling algorithm.

As already mentioned, Hamiltonian mechanics introduces new set of conjugate variables
pj, the direct consequence thereof will be the decomposition of the second order ordinary
differential equations describing motion in some potential field into a set of first order ones
instead. Mathematically, to each point on the configuration manifold qi ∈ Q we associate a
covector pi and therefore, in the language of differential geometry, the relevant geometric
structure M of Hamiltonian mechanics is the cotangent bundle T ∗Q, which is itself a
manifold of twice the dimension of Q.

Every point on any cotangent bundle xi ∈ M, by construction, can be decomposed into a
direct sum of local coordinates {qi, pi}, to this fact, cotangent bundles attribute their sympletic
structure which is characterised by existence of a closed, non-degenerate 2-form - to be
defined shortly - everywhere on M. "Sympletic", from Greek sym-plektikos stands for "braided
together" and is a calque of its Latin equivalent co-plexus, meant to highlight the dual nature
of {qi, pi}.

A.1. Sympletic geometry

A closed, non-degenerate 2-form also known as sympletic form is an invertible, bilinear
transformation ω - or equivalently an anti-symmetric (0, 2)-tensor - whose exterior derivative
dω = 0. It arises naturally in Hamiltonian mechanics by the following consideration [124].

Consider a point transformation of the configuration space Q (not M), that is, a bijective,
continuous transformation of a space onto itself f : Rn → Rn. The new coordinates Qi

obtained in that process are given by:

Qi = fi(q1, q2, ..., qn) with det
(

J f (q)
)
̸= 0 ∀q (A.3)

where J f (q) is the Jacobian matrix of f evaluated at point q
Furthermore, consider any generic covector field, assigning a covector p ∈ T ∗Q|q to every

point q ∈ Q:
p = pidqi (A.4)

where pi are the components and the 1-forms dqi should be though of as a basis. We’ve
used the Einstein’s summation formula over repeated indices and we shall continue using it
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throughout this entire chapter. By the rules of tensor calculus, pi will transform co-variantly
whereas it’s basis 1-forms dqi, contra-variantly:

Pi =
∂qj

∂Qi pj dQi =
∂Qi

∂qj dqj (A.5)

that in turn trivially implies existence of a natural object, independent of the manifold
coordinates - the tautological one-form θ, known also as sympletic potential [118]:

θ = pidqi qi→Qi

−→ PidQi =
∂qj

∂Qi
∂Qi

∂qk pjdqk = δ
j
k pjdqk = pkdqk (A.6)

and by taking an exterior derivative of θ, defined using the wedge product ∧, we automatically
obtain an invariant 2-form ω = dθ which is also closed since ddθ = 0 [141]:

ω := dθ = dpi ∧ dqi =
∂pi

∂qj dqj ∧ dqi (A.7)

A.2. Canonical equations

Equipped with the knowledge of the sympletic geometry of the phase space M = T ∗Q,
consider any function H(q, p) on M. Given the duality of the differential forms and vector
fields, in the sense that members of the former serve as linear transformation on elements of
the latter and vice versa, we can implicitly define a vector field X⃗H on T M corresponding to
H

dH(⃗v) = ω(X⃗H, v⃗) (A.8)

where dH is the differential of H and v⃗ is an arbitrary vector field, in essence, an argument of
dH. Since ω is a 2-form it could act on two vector fields to produce a scalar field, but it can
just as well act on a single vector field, to produce a 1-form - a mechanism similar to rising
and lowering indices with a metric tensor [26].

The integral curves of such a vector field, referred to as hamiltonian flow X⃗H cover the entire
phase space without intersection and uniquely determine the evolution of a classical system.
In local coordinates 1, the vector field can be represented as [118]:

X⃗H =
∂H
∂pi

∂

∂qi −
∂H
∂qi

∂

∂pi
(A.9)

Since a vector field is an operator, we can compute the rate of change of any tensor field on
M using the Lie derivative formalism [5], for example for a scalar function f : M → R:

d f
dt

:= LX⃗H
( f ) := X⃗H( f ) =

∂H
∂pi

∂ f
∂qi −

∂H
∂qi

∂ f
∂pi

(A.10)

1Notice some ambiguity of indexing of the basis vectors ∂
∂xi , normally, local coordinates of a manifold would be

denoted with an upper index but since we have to do with a cotangent bundle and xi := {qi, pj}, half of the
coordinates are also the covector components and shall therefore be indexed with a lower index
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notice that X⃗H( f ) ≡ d f (X⃗H) ≡ ω(X⃗ f , X⃗H) := { f , H} defines the Poisson bracket and if
{ f , H} = 0 the function f is said to be invariant under H.

When applied to the coordinate curves, the Hamiltonian vector field acts as an infinitesimal
generator [3, 5] for the system’s evolution in time and yields the much celebrated canonical
differential equations of Hamilton:

dqi

dt
= X⃗H(qi) =

∂H
∂pi

dpi

dt
= X⃗H(pi) = −∂H

∂qi
(A.11)

A.3. Properties of Hamiltonian dynamics

Time reversibility: Since Hamilton’s canonical equations of motion define really an in-
finitesimal, bijective change of coordinates in agreement with the time evolution of a time-
homogenous system, nothing prevents us from application thereof in reverse direction.

Energy conservation: Let’s investigate the time rate of change of a time-homogenous Hamilto-
nian function itself:

dH
dt

=
∂H
∂qi

dqi

dt
+

∂H
∂pi

dpi

dt
=

∂H
∂qi

∂H
∂pi

− ∂H
∂pi

∂H
∂qi = 0 (A.12)

where the first equality is simply the total derivative formula and the latter follows from the

substitution of eq. A.11 for dqi

dt and dpi
dt .

Sympleticity: Let’s consider two, 2n dimensional, arbitrary vector fields v⃗, u⃗ at the tan-
gent bundle of the phase manifold T M. Expressed in local coordinates we have:

v⃗ = νi
q

∂

∂qi + νi
p

∂

∂pi
, u⃗ = µi

q
∂

∂qi + µi
p

∂

∂pi
(A.13)

The sympletic form ω defined in eq. A.7, as any 2-form is a bilinear map, it takes two vector
fields and produces a scalar, here we obtain:

ω(⃗v, u⃗) :=
(

dpi ∧ dqi
)
(⃗v, u⃗) =

n

∑
i

dpi (⃗v)dqi(u⃗)− dqi (⃗v)dpi(u⃗) =
n

∑
i

νi
pµi

q − νi
qµi

p

ω(⃗v, u⃗) =
n

∑
i

det

(
νi

p µi
q

νi
q µi

p

) (A.14)

from which, the matrix representation of a sympletic form ω, usually denoted J, follows as:

ω(⃗v, u⃗) = v⃗T Ju⃗, J =
[

0 −In

In 0

]
(A.15)

where In is n × n identity matrix. Verbosely, the above results represent the sum of areas
of the parallelograms defined by projections of vectors v⃗|{q,p}, u⃗|{q,p}

2 onto the coordinate

2We follow the common differential geometric notation [5, 26] with a vertical bar v⃗|x to denote evaluation of the
vector field at x instead of v⃗(x) common in vector calculus. Since tensor fields are operators we reserve the
latter for the action of the vector field on any other tensor.
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planes {qi, pi}, i = 1, ..., n. Sympletic form can be therefore regarded as a measure of volume
and by definition, it’s a globally invariant one on M.

Now, consider a coordinate transformation on M, that is, a diffeomorphism which maps the
phase space back to itself F(q, p) : M → M. A pushforward or differential dF it induces, at any
given point {q, p} ∈ M, is a mapping between the tangent spaces T M|{q,p} → T M|{F(q,p)},
and it simply follows as the Jacobian of the transformation evaluated at that point [26]:

dF(⃗v|{q,p}) := JF(q,p)v⃗|{q,p}
abbr.≡ JFv⃗ (A.16)

The transformation T is said to be sympletic if it leaves the value of the sympletic form ω(⃗v, u⃗)
unchanged, notice, we do not mean the sympletic form ω(·, ·) itself - it is guaranteed to be
invariant by construction. Considering all of the above, the condition of symplecity reads:

(JFv⃗)T
[

0 −In

In 0

]
(JFu⃗) = v⃗T

[
0 −In

In 0

]
u⃗ ∀v⃗, u⃗ (A.17)

It remains to be shown that the infinitesimal coordinate transformation corresponding to
the time evolution, as defined by the canonical equations of motion eq. A.11, is sympletic.
We might actually get away without computing the Jacobian if we consider an equivalent
condition that the Lie derivative of ω(⃗v, u⃗), ∀v⃗, u⃗ under the Hamiltonian vector field X⃗H

should vanish:
LX⃗H

(ω) = 0 (A.18)

To show that, we first make use of the Cartan formula [26]:

LX⃗H
(ω) = d(iX⃗H

(ω)) + iX⃗H
(dω) (A.19)

By construction dω = 0, thus what remains to be shown is that the exterior derivative d of the
interior product iX⃗H

(ω) equals zero or conversly, that it is locally exact, i.e. it can be written as
the exterior derivative of some 0-form. That actually holds trivially by the definition of the
Hamiltonian vector field in eq. A.8 and the definition of interior product of a 2-form with a
vector field [26]: (

iX⃗H
(ω)

)
(⃗v) := ω(X⃗H, v⃗) := dH(⃗v) ∀v⃗ (A.20)

which concludes the proof.

Volume preservation: Although symplecity is more general, the volume preservation it im-
plies can be also shown by a more straightforward computation, namely, that the Hamiltonian
vector field X⃗H is divergence free:

∇ · X⃗H =
∂2H

∂pi∂qi −
∂2H

∂qi∂pi
= 0 (A.21)

In statistical mechanics, this result is also known as Liouville’s theorem [111]
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A.4. Sympletic integrators

Hamiltonian vector field X⃗H defines an infinitesimal coordinate transformation on the sym-
pletic manifold which corresponds to the evolution of the system in time. These dynamics, as
was shown in the previous section, have the property of leaving the sympletic form ω(⃗v, u⃗)
invariant and as a result, conserve the phase space volume. For the purpose of numerical
solution of the canonical equations of motions we require time discretization, thus it becomes
important to determine what other transformations qn, pn → qn+1, pn+1 - which are by
necessity not infinitesimal - also maintain the desirable geometric properties of Hamilton’s
equations.

In particular, we will require that the numerical integrators for the solution of Hamiltonian
equations of motion meet the condition A.17 and if that’s the case we, shall call them sympletic
integrators [142]. Nonetheless, even if the sympletic and time reversibility conditions can be
met, the energy conservation property can be guaranteed only to an extend governed by the
order of the method. This will lead to a slight, although permanent, energy drift and for
obvious reasons will play a particularly important role in simulations over long time intervals.

First order integrators: Implementing naively the explicit Euler scheme for Hamiltonian
dynamics would not lead to desired results as it’s known to exhibit only conditional stability.
Better results can be obtained by utilizing an implicit scheme which defines the sympletic
Euler method [142]:

qn+1 = qn + ε
∂H
∂p

(qn, pn+1)
abbr.≡ pn + εHp

pn+1 = pn − ε
∂H
∂q

(qn, pn+1)
abbr.≡ pn − εHq

(A.22)

with ε being the step size. The sympletic Euler method is really nothing more than the Taylor
expansion of the Hamiltonian equations up to first order (just evaluated at particular points),
it’s therefore obvious it’s a first order method i.e. we incur error of the order O(ε2). The
Jacobian of this transformation JSE = ∂(qn+1,pn+1)

∂(qn,pn)
follows as [142]:[

I −εHpp

0 I + εHqp

]
∂(qn+1, pn+1)

∂(qn, pn)
=

[
I + εHqp 0
−εHqq I

]
(A.23)

from which the Jacobian can be evaluated and the sympletic condition A.17 verified to hold,
refer to [142] for more details.

Second order integrators: Composition of two sympletic Euler methods, by their symmetry
leads to cancellation of certain terms and defines a time-reversible, second order method, so
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called Störmer-Verlet method [142]:

pn+ 1
2
= pn −

ε

2
∂H
∂q

(qn, pn+ 1
2
)

qn+1 = qn +
ε

2

(
∂H
∂p

(qn, pn+ 1
2
) +

∂H
∂p

(qn+1, pn+ 1
2
)

)
pn+1 = pn+ 1

2
− ε

2
∂H
∂q

(qn+1, pn+ 1
2
)

(A.24)

Depending on the field, the method goes under the name of Störmer in astronomy, Verlet in
molecular dynamics or leapfrog in the context of partial differential equations, also notice that
for separable Hamiltonians i.e. H(q, p) = U(q) + T(q) the method becomes explicit:

pn+ 1
2
= pn −

ε

2
∂U
∂q

(qn)

qn+1 = qn + ε
∂T
∂p

(pn+ 1
2
)

pn+1 = pn+ 1
2
− ε

2
∂H
∂q

(qn+1)

(A.25)

Moreover, in actual implementation, if one is not interested in momentum at time n, the first
and last equations in the above definition can be combined after an initial half-step is taken
and from then on, its updates will follow for the half-integer time only pn+ 1

2
, making the

updates in q and p "leaping" over each other.

Higher order schemes can be obtained within the Runge-Kuta family of methods by imposing
certain conditions on the slope coefficients, these conditions read [142]:

biaij + bjaji = bibj ∀ i, j = 1, ..., s (A.26)

The principles guiding the design of higher order methods and from which the above condi-
tion ultimately stems rely fundamentally on direct numerical treatment of the principles of
analytical mechanics, in particular the generating functions and variational principles. The former,
are solutions to the Hamilton-Jacobi partial differential equation and high order sympletic
integration schemes follow from their solution using particular ansatz of the numerical flow.
In the case of variational principles the method requires numerical approximation of the
action integral (eq. A.1) from which discrete Euler-Lagrange conditions follow. Depending on
the quadrature scheme used we then end up with various sympletic integrators, in particular,
the trapezoidal rule leads to the already covered Störmer-Verlet method [142].
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