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MCMC computationaly expensive model

■ Sample from a density function which is computationally expensive.

■ Becomes challenging for complicated domain/ high-dimensional problems

■ Gradient based methods (HMC, NUTS etc.) can help

□ Need Gradient
□ Gradient evaluation is needed at multiple points =⇒ Infeasible for computationally

expensive models

■ Task: Alleviate this issue using Multi-fidelity.

Kislaya Ravi | Multi-fidelity No-U-Turn Sampling | 19/07/2022 2



MCMC computationaly expensive model

■ Sample from a density function which is computationally expensive.

■ Becomes challenging for complicated domain/ high-dimensional problems
■ Gradient based methods (HMC, NUTS etc.) can help

□ Need Gradient
□ Gradient evaluation is needed at multiple points =⇒ Infeasible for computationally

expensive models

■ Task: Alleviate this issue using Multi-fidelity.

Kislaya Ravi | Multi-fidelity No-U-Turn Sampling | 19/07/2022 2



MCMC computationaly expensive model

■ Sample from a density function which is computationally expensive.

■ Becomes challenging for complicated domain/ high-dimensional problems
■ Gradient based methods (HMC, NUTS etc.) can help

□ Need Gradient
□ Gradient evaluation is needed at multiple points =⇒ Infeasible for computationally

expensive models

■ Task: Alleviate this issue using Multi-fidelity.

Kislaya Ravi | Multi-fidelity No-U-Turn Sampling | 19/07/2022 2



Multi-fidelity

■ Supoose we are given ordered set of
models as:

F = {f1, f2, · · · , fL}

where, fi : Rd → R is the ith model

■ The models are ordered in:

□ Ascending order of computational
intensity or cost of getting results or

□ Decreasing error

■ In multi-fidelity methods, we try to solve
given problem in hand by transferring
maximum workload to lower fidelity
models
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Flowchart

Create surrogate Generate proposals Accept /reject
using

Samples Accept /reject
using
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Multi-fidelity implementation1

■ High fidelity function contains features
from the low-fidelity function and some
additional new features.

■ Write high-fidelity function as composite
function

fh(x) = g(fl(x), x)

■ Some information is carried over from
the low-fidelity function

■ In this work, we use Gaussian Process
for g

fl
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1Perdikaris, Paris, et al. ”Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.” Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 473.2198 (2017): 20160751.
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Gaussian Process 2

■ Gaussian Process is a bayesian model

■ Assume prior
f ∼ N (0, K)

■ Prediction at X∗ after observing data (X, y) with
noise σ2

p(f∗|y, X, X∗) ∼ N (µ̂, Σ̂)
µ̂ = K(X∗, X)[K(X, X) + σ2IN ]−1y

Σ̂ = K(X∗, X∗)
− K(X∗, X)[K(X, X) + σ2IN ]−1K(X, X∗)

■ Kernel hyperparameters can be trained by
maximizing likelihood
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2Rasmussen, Carl Edward. ”Gaussian processes in machine learning.”
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Multi-fidelity in GP implementation

■ Expand the kernel 1:

K(X, X ′) = Kδ(X, X ′; θ1) + Kρ(X, X ′; θ2)Kf (fl(X), fl(X ′))

■ Variation to include derivative term by using lag term to mimic derivative 3:

fh(x) = g(fl(x), fl(x − τ), fl(x + τ), x)

■ Adaptively add points where gain of information is maximized:

Xnew = arg max
x∈Ω

I = arg max
x∈Ω

Σ̂

1Perdikaris, Paris, et al. ”Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.” Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 473.2198 (2017): 20160751.

3Lee, Seungjoon, et al. ”Linking Gaussian process regression with data-driven manifold embeddings for nonlinear data
fusion.” Interface focus 9.3 (2019): 20180083.
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Example: Adaptivity
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Hamilton Monte Carlo 4

■ Gradient based method to incorporate some geometrical information.

■ Intoduce a momentum term p representing kinetic energy (K(p)) and imagine that the
negative log of target density represent the potential term (U(x)) = −log(f(x)).

■ Sample from the joint canonical distribution H(x, p) = K(p) + U(x)
■ For the (i + 1)th sample:

□ Randomly sample p ∼ N (0, Id)
□ Solve the Hamiltonian system for some time steps to propose a new point (x′, p′)
□ Accept/Reject based on Metropolis-Hasting criterion

α((x′, p′), (xi, p)) = min [1, exp(H(x′, p′) − H(xi, p))]

■ Issues:

□ What is the time integration technique ? → Leap-frog method
□ What should be the step size? → Dual Averaging
□ How long should we perform the fictious time integration?

4R. Neal. ”Handbook of Markov Chain Monte Carlo”, chapter 5: MCMC Using Hamiltonian Dynamics. CRC Press, 2011.
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No-U-Turn Sampling 5

■ Stopping criterion : Stop fictious time stepping when U-turn is observed:

(x − x′).p′ < 0

■ Sample in both directions of the momentum (p and −p) by building a balanced tree and
avoiding repetitive calculations.

■ Select the next point using slice sampling.
■ For the (i + 1)th sample :

□ Randomly sample p ∼ N (0, Id)
□ Draw a number from uniform distribution ∆ ∼ U [0, exp(H(xi, p))]
□ Solve the Hamiltonian system until U-turn and create a set of explored states.
□ Select the states that satisfy the criterion exp(H(x′, p′)) < ∆
□ Select one of the states from the above based on uniform distribution which become next

sample.

5Hoffman, Matthew D., and Andrew Gelman. ”The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian
Monte Carlo.” J. Mach. Learn. Res. 15.1 (2014): 1593-1623.
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Multi-fidelity No-U-Turn Sampling
■ We can directly sample from the multi-fidelity surrogate

□ Surrogate is cheap to evaluate
□ Gradient is available

■ But, the samples obtained the not invariant for the highest fidelity models.
■ We follow the approach of Delayed acceptance 6

■ H(x, p) = K(p) + U(x) = K(p) − log(fsurr(x))
■ For the (i + 1)th sample:

□ Randomly sample p ∼ N (0, Id)
□ Generate a proposal using NUTS (x′, p′)
□ Accept/Reject based using delayed rejection

ρ(x′, xi) = min

[
1,

α((x′, p′), (xi, p))fL(x′)
α((xi, p), (x′, p′))fL(xi)

]

6Christen, J. Andrés, and Colin Fox. "Markov chain Monte Carlo using an approximation." Journal of Computational and
Graphical statistics 14.4 (2005): 795-810.
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□ Randomly sample p ∼ N (0, Id)
□ Generate a proposal using NUTS (x′, p′)
□ Accept/Reject based using delayed rejection

ρ(x′, xi) = min

[
1,

α((x′, p′), (xi, p))fL(x′)
α((xi, p), (x′, p′))fL(xi)

]

6Christen, J. Andrés, and Colin Fox. "Markov chain Monte Carlo using an approximation." Journal of Computational and
Graphical statistics 14.4 (2005): 795-810.
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Rosenbrock function

Log of the density function:

pl(x1, x2) ∝ fl(x1, x2) = exp(−12(x2 − x2
1 − 1)2 + (x1 − 1)2)

ph(x1, x2) ∝ fh(x1, x2) = exp(−15(x2 − x2
1)2 + (x1 − 1)2)
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Samples
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mESS vs Computational cost
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8 dimensional correlated Gaussian

HF function: 8 dimensional correlated gaussian with zero mean
LF function: 8 dimensional gaussian with identity matrix as covariance
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Conclusion and Future works
Conclusion
□ MF-NUTS outperforms traditional single fidelity methods.
□ We were able to save considerable computational resources by delegating the gradient

evaluation to the surrogate

Future Works

□ Create Bayesian Inverse pipeline.
□ Test performance for Bayesian Inverse problems.
□ Add physics information in gaussian process 7.
□ Implement Multi-Output gaussian process for multi-fidelity.

7Swiler, Laura P., et al. "A survey of constrained Gaussian process regression: Approaches and implementation
challenges." Journal of Machine Learning for Modeling and Computing 1.2 (2020).
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Thank You!
Questions and Feedbacks
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