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INTRODUCTION: The plant root grows indeter-
minately. Continual birth and maturation of
cells in a gradient along the root longitudinal
axis requires tissue-wide coordination of cell
division with cell differentiation. Within the
root, a single cell file of developing proto-
phloem is surrounded by other tissues, with
each cell type differentiating at its character-
istic pace. Despite communication of
protophloem cellswith the surrounding
environment, the developmental program
of phloem, within the plant’s vascula-
ture, is accelerated compared with cer-
tain surrounding cell types.Here,we take
advantageof the fast paceofprotophloem
differentiation and the cellular changes
that it undergoes to dissect its develop-
mental trajectory using high-resolution
imaging and single-cell omics.

RATIONALE: Single-cellRNA-sequencing
(scRNA-seq) analysis as applied to the
study of organogenesis typically creates
mapsof transcriptomeactivity in various
tissue types. Although these approaches
characterize gene expressionwithin cells
of an organ, the ability to reconstruct the
step-by-stepchanges incellsduringmatu-
ration is often limited. High-resolution
profiling will sample each cellular state
along a developmental trajectory and
associate each state with developmental
changes that lead to cellular specializa-
tion. To understand the developmental pro-
gression of root phloem cells at a single-cell
resolution as related to cellular specializations,
we used cell sorting to profile Arabidopsis
thaliana root tissue and map protophloem-
specific transcripts, scRNA-seq to identifymolec-
ular transition as cells mature, and live-cell
imaging tomapmolecular states tomorphologi-
cal and cellular events during differentiation.

RESULTS: Long-term live imaging enabled us
to determine the duration of the developmen-
tal stages and the time one cell spends in each
position of the trajectory during protophloem

sieve element maturation. We then mapped
single-cell transcriptomes corresponding to
the 19 cell stages of protophloem development
from birth to enucleation. Combining single-
cell transcriptomics with cell behavior data
from live-imaging experiments, we established
seven developmental phases of protophloem
development, including early lineage bifur-

cations, transition from proliferation to dif-
ferentiation, and, finally, cell enucleation.
The ability to connect cellular development

such as lineage bifurcation and enucleation to
molecular states using scRNA-seq allowed us
to uncover genetic mechanisms that coordi-
nate cellular maturation. First, our analysis
revealed the importance of RHO OF PLANTS
(ROP) GTPase signaling during early phloem
developmentwhen the protophloem cell lineage
bifurcates to generate metaphloem sieve ele-
ment and procambium. We found that the ex-
pression of the phloem-enriched components of
ROP GTPase signaling is triggered by lineage-

specific PHLOEMEARLYDNA-BINDING-WITH-
ONE-FINGER (PEAR) transcription factors.
PEARs also promote phloem differentiation by
transcriptional activation of the gene encoding
ALTERED PHLOEMDEVELOPMENT (APL),
which regulates protophloem sieve element
enucleation. In the absence of PEARs, tran-
scription ofAPL,NACDOMAINCONTAINING
PROTEIN 45/86 (NAC45/86), and NAC45/
86-DEPENDENT EXONUCLEASE-DOMAIN
PROTEIN4 (NEN4) is not activated in the proto-
phloem cell lineage and cell enucleation fails.
The genetic cascade, with PEARs handing off

late maturation to APL, represents a largely au-
tonomous phloem-specific circuit regulating
maturation. However, we could also connect the
timing of the genetic cascade to broadly ex-
pressedmaster regulators of meristemmatura-
tion. Protophloem sieve element differentiation
program is temporally coordinatedwith the rest
of themeristemby thebroadlyactingPLETHORA
factors emanating from the stem cell niche. We
showed that, although distributed across differ-
ent tissues, PLETHORA factors directly repress
expression ofAPL, counteracting PEARs close to

the stemcell niche. The precise timing of
developmental mechanisms was critical
for proper phloem development; “fail-
safe” mechanisms ensured orderly de-
velopmental transitions. For example,
activation of late genes accompanied
repression of early genes of the phloem
differentiation program. Ectopic expres-
sion of selected late phloem genes in
early dividing cells inhibited cell divi-
sion and promoted cell expansion, two
features that characterize late phloem.

CONCLUSION: Using cell sorting, live-
microscopy lineage tracing, and tran-
scriptomics, we built a high-resolution
blueprint of the genetic program that
guides protophloem development. We
document even short developmental
phases such as cell enucleation, which
takes place every 2 hours. Deep, high-
resolution single-cell sequencing of the
underlying gene-regulatory network re-
vealed a “seesaw”mechanism of recipro-
cal genetic repression that triggered rapid

developmental transitions. Further analysis of this
network revealed an interaction of broad versus
tissue-specific transcription factors that orches-
trates timing of sieve element differentiation.▪
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Developmental trajectory of protophloem sieve element. Interactions
between transcription factors guiding protophloem sieve element
development and the length of the identified developmental phases
(I to VII). Arrows indicate transcriptional activation. T bars indicate
transcriptional inhibition. Colored arrows depict positive and inhibitory
interactions identified for early and late factors, respectively, underlying a
“seesaw” model. Gray bar indicates PEAR expression domain. Wedge
indicates the PLETHORA protein gradient.
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Cell-by-cell dissection of phloem development links
a maturation gradient to cell specialization
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Ben Scheres23,24, Guido Grossmann12,13, Ari Pekka Mähönen2, Philipp Denninger11,
Berthold Göttgens8, Rosangela Sozzani7*, Kenneth D. Birnbaum25*, Yrjö Helariutta1,2*

In the plant meristem, tissue-wide maturation gradients are coordinated with specialized cell networks to
establish various developmental phases required for indeterminate growth. Here, we used single-cell
transcriptomics to reconstruct the protophloem developmental trajectory from the birth of cell
progenitors to terminal differentiation in the Arabidopsis thaliana root. PHLOEM EARLY DNA-BINDING-
WITH-ONE-FINGER (PEAR) transcription factors mediate lineage bifurcation by activating guanosine
triphosphatase signaling and prime a transcriptional differentiation program. This program is initially
repressed by a meristem-wide gradient of PLETHORA transcription factors. Only the dissipation of
PLETHORA gradient permits activation of the differentiation program that involves mutual inhibition of
early versus late meristem regulators. Thus, for phloem development, broad maturation gradients
interface with cell-type-specific transcriptional regulators to stage cellular differentiation.

R
oots consist of several concentric layers
of functionally distinct cell files, which
initially bifurcate and establish distinct
identities around the quiescent center
and its surrounding stem cells. Cells

within each file mature through the distinct
zones of cell proliferation and differentiation
(1). For example, in Arabidopsis thaliana, the
development of the protophloemsieve elements
involves a transient period of cell proliferation
during which, in addition to amplification of
cells within the file, two lineage-bifurcating
events take place (Fig. 1A) (2). Soon after the
cell proliferation ceases, cells of theprotophloem
sieve element lineage initiate a differentiation
process that culminates in enucleation, an ir-
reversible process that gives rise to the mature
conductive cells (3). Because of specific mod-
ulation of the graded distribution of the key
phytohormonal cue auxin, the differentiation
of protophloem sieve elements occurs faster
than that of the other cell files (4). Therefore,

protophloem sieve element development offers
a tractable scheme to understand how the two
processes of cell specialization and maturation
interact.

Phloem developmental trajectory at
single-cell resolution

To understand the process of protophloem
sieve element development at a high resolution,
we used a combination of approaches based on
time-lapse confocal imaging (5) and single-cell
transcriptomics (6). Using the phloem-specific
marker pPEAR1::H2B-YFP pCALS7::H2B-YFP,
we precisely mapped cellular behavior of
the 19 cells that constitute the protophloem
sieve element developmental trajectory until
enucleation, which takes place every 2 hours
in the final cell position. The passage of the
cell from its “birth” at the stem cell until its
enucleation took a minimum of 79 hours (fig.
S1 and movies S1 and S2). To dissect the ge-
netic control underlying this temporal pro-

gression, we opted for deep profiling of the
19 cells that represent the developmental tra-
jectory of protophloem sieve element using
cell sorting andwell-based single-cell sequenc-
ing over higher-throughput but shallower
droplet-based profiling (6–12). We used fluo-
rescent reporter lines with expression that
represents various spatiotemporal domains
within the developmental trajectory of the
protophloem sieve element (fig. S2, A and B).
The single-cell profiles allowed us to cluster
cells together with known protophloem sieve
element markers to identify 758 cells that
densely sampled the 19 cell positions and cap-
tured the span of protophloem sieve element
maturation (Fig. 1B and fig. S2, C to G).
We sought to use the high-resolution profile

of the protophloem sieve element lineage to
determine how cell passage through stable sig-
naling gradients in the meristem controls the
stages of cellular specialization. In particu-
lar, whereas a number of regulators of either
phloem cell identity ormeristem zonation have
been described (13, 14), little is known about
how these two regulatory processes interact
to control organogenesis. Using Monocle 2
(15, 16), we projected the 758 protophloem
sieve element lineage cells into a pseudotem-
poral order and investigated transcriptional
transitions along the developmental trajec-
tory (Fig. 1, B to D). Rather than gradual
changes, we observed four transcriptomic do-
mains separated by three narrow transition
zones (Fig. 1, D and E, and table S1). On the
basis of the alignment with the temporal
expression patterns of selected genes, wewere
able to determine that these domains corre-
spond approximately to cells at positions 1 to
7 [a], 8 to 11 [b], 12 to 15 [c], and 16 to 19 [d],
respectively (Fig. 1, D and E, and fig. S3). To
further understand which aspects of proto-
phloem sieve elementmaturation these various
positions represent, we extended time-lapse
confocal imaging with the more temporally
specific marker lines pNAC86::H2B-YFP and
pNEN4::H2B-YFP, which are active at later
developmental stages (3). We found that the
differentiation time, measured from the last
cell division to enucleation, took ~20 hours
with some variation up to the final stage de-
fined by expression ofNAC45/86-DEPENDENT
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EXONUCLEASE-DOMAINPROTEIN4 (NEN4)
(active in positions 18 and 19) (Fig. 1E; fig. S1, D,
H, and I; andmovies S1 to S12). In summary, on
the basis of the high congruence of the single-
cell transcriptome and live imaging data, we
were able to assign seven distinct develop-
mental phases along the protophloem sieve
element trajectory: (I) “stem cell,” position 1;
(II) “transit amplifying,” positions 2 to 9; (III)
“transitioning,” positions 8 to 11; (IV) “early
differentiating,” positions 10 to 15; (V) “late
differentiating,” positions 16 and 17; (VI) “very
late differentiating,” positions 18 and 19; and
(VII) “enucleating,” position 19 (Fig. 1, F andG;
fig. S1; and table S2).

PEARs promote lineage bifurcation through
GTPase signaling

Proximal to the stem cell (I) developmental
phase, the first distinctive feature of the proto-
phloem sieve element lineage is the bifurcation

of the procambial and metaphloem cell files
from the progenitor protophloem sieve ele-
ment lineage through a pair of subsequent
periclinal (asymmetric) cell divisions in the
domain of transit amplifying cells (II). Using
the single-cell lineage and imaging analysis,
we sought to precisely map these divisions
(Fig. 2A). We observed that the first periclinal
division followed exclusively a rare event of
phloem stem cell division (movie S13 and fig.
S4A). The second, more frequent, periclinal
division was observed predominantly at posi-
tion 3 (Fig. 1F). We have recently shown that
the PHLOEM EARLY DNA-BINDING-WITH-
ONE-FINGER (PEAR) transcription factors
(TFs) (transcribed in domains I to IV) mediate
early asymmetric divisions in the phloem line-
age and laterally adjacent procambial cells in
a cell-autonomous and non-cell-autonomous
manner, respectively (17).To identify poten-
tial downstream effector genes for this PEAR

function, we focused on the genes enriched in
the expression domain of pPEAR1D::erVenus
marker line (see the materials andmethods),
capturing the bifurcation events and the re-
sulting protophloem, metaphloem, and pro-
cambium cell lineages (Fig. 2B and fig. S4B).
Among the sieve element–enriched genes

that were highly expressed in single-cell pro-
files preceding and during the bifurcation
(domain II), we identified and validated the
protophloem sieve element abundant expres-
sion of Rho-related guanosine triphosphatase
(GTPase), Rho of plants 9 (ROP9) (18), aswell as
several genes encoding PRONE-type ROP gua-
nine nucleotide exchange factors (ROPGEF)
(Fig. 2, B to D, and fig. S4, B, C, and F) (19). ROP
GTPase signaling controls the polarity of the
multiple cell types during cell differentiation
(20–22) and specific cell division events (23–25).
Subsequently, we determined that ROPGEF3
and ROPGEF5 expression in the protophloem
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Fig. 1. Phloem development at single-cell resolution. (A) Schematic of the
Arabidopsis root tip depicting the positions of the protophloem sieve element,
metaphloem sieve element, and procambium cell lineages originating from a single
phloem stem cell. (B) t-distributed stochastic neighbor embedding (t-SNE) plot of
1242 transcriptomes of cells sorted with P1D, P1D, CD, P1, N57, CALS7, and N73
reporter lines specific to the different domains of the developing phloem. Indicated
protophloem sieve element cells were used for the pseudotime trajectory analysis
(fig. S2, supplementary materials). (C) Protophloem sieve element transcriptomes
ordered along developmental trajectory using Monocle 2. (D) Heatmap of
Pearson correlation along the pseudotime trajectory. Vertical lines indicate the
three strongest correlation drops and separate four groups of transcriptomes
with higher similarity [a], [b], [c], and [d]. (E) Gene expression heatmap of

protophloem sieve element regulators and the 10 most specific genes from the
four groups defined in (D) and the nested PLT1 (“PLT1-like”) or NEN4 (“NEN4-like”)
expression domains in pseudotime-ordered protophloem sieve element
transcriptomes. (F) Histogram of cell behavior based on long-term live imaging.
(G) Seven domains and the time cells spent in each position of the developing
protophloem sieve element as determined by the transcriptomics (above)
and live imaging (below): (I) “stem cell,” position 1 [a], t > 60 hours; (II) “transit
amplifying,” positions 2 to 9 [a], t = 58 hours, SD ± 8.1 hours; (III) “transitioning,
positions 8 to 11 [b]; (IV) “early differentiating,” positions 10 to 15 [c], t = 12 hours;
(V) “late differentiating,” positions 16 and 17 [d], t = 4 hours; (VI) “very late
differentiating – NEN4-like,” positions 18 and 19 [d], t = 4 hours; and (VII)
“enucleating,” position 19 [d], t = 2 hours (movies S1 and S2).
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Fig. 2. PEARs control asymmetric divisions by promoting ROP signaling in
the phloem pole. (A) Schematic indicating position of the two periclinal divisions
in the phloem cell lineage. (B) Expression of ROPGEF2 and ROPGEF3 at the
time of phloem lineage bifurcation. (C) Peak expression of ROPGEF2, ROPGEF3,
and ROP9 in the early phloem cells as detected in the pseudotime-ordered single-
cell protophloem sieve element transcriptome data. (D) Expression pattern of
phloem-enriched ROPGEFs. ROPGEF3, and ROPGEF5 share similar expression
domains, which are enriched in protophloem sieve element and adjacent vascular
cell files; ROPGEF2 is expressed in protophloem sieve element but also in other
outer procambial cells and pericycle (fig. S4D). Scale bars, 25 mm. (E) Expression

of ROPGEF2, ROPGEF3, and ROPGEF5 in the pear sextuple mutant background.
Scale bars, 25 mm. (F) Protein localization of pROPGEF5::Cit-ROPGEF5 during
anticlinal (f′) and periclinal (f″) cell division. Gaps in ROPGEF5 signal are indicated
with an asterisk. Scale bars, 25 mm. (G) Depletion of Cit-ROPGEF5 membrane
signal at the cortical division zone (CDZ) during cell division. CDZ is marked by
accumulating cortical microtubules (mCherry-TUA5) forming a pre-prophase
band (white arrowheads). Scale bars, 25 mm. (H) Time course analysis of the
dynamic pattern of active ROP signaling in the dividing phloem cells. Depletion of
pPEAR1::mScarlet-I-MIDD1DN signal at the CDZ in the anticlinally (upper row)
and periclinally (lower row) dividing cells (yellow arrowheads). Quantification of
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sieve element lineage is dependent upon PEAR
factors, based on the spatiotemporal correla-
tion as well as the analysis of transcriptional
reporters in the pear sextuple mutant back-
ground (Fig. 2E). In addition, functional anal-
ysis of the PEAR-binding sites previously
indicated by the DNA affinity purification
sequencing (DAP-seq) technique (26) in the
promoter region of ROPGEF genes affected
their expression level (fig. S4D) (17), suggesting
a direct interaction.
In the dividing cells, ROPGEFs accumulated

broadly at the cellmembranebutweredepleted
from the expected position of the cortical
division zone, which demarcates the future
division plane (Fig. 2F) (25). Indeed, observed
gaps in ROPGEF localization coincided with
the position of microtubule array called the
preprophase band, the earliest marker of the
cell division plane in plants (Fig. 2G and fig.
S4E) (25). ROPGEFs catalyze the disassociation
of GDP from an inactive ROP-GDP complex
that enables quick binding of free cytosolic GTP
and thus activates ROP signaling. In the active
state, ROP-GTP interacts with a number of
different effector proteins to mediate down-
stream signaling (27). To detect the cellular
position of the active ROP signaling in relation
to the periclinal and anticlinal cell division
planes in phloem, we used a molecular bio-
sensor of ROP signaling that consists of the
fluorescently tagged, ROP-GTP–binding do-
main from the MICROTUBULE DEPLETION
DOMAIN1 (MIDD1DN) effector protein (28).
Similar to the localization of ROPGEFs, sub-
cellular localization of active ROP signaling
was detected on the cell membrane and was
absent in the cortical division zone of proto-
phloem sieve element cells during mitosis
(Fig. 2H).
To test whether ROP signaling plays a de-

cisive role in the selection of the cell division
plane, we generated an inducible line express-
ing the constitutively active form of ROP9
(ROP9CA) (see thematerials andmethods) and
lines ectopically expressing phloem-enriched
ROPGEFs. Accumulation of ROP9CA-3xYFP on
the radial walls of the protophloem sieve ele-
ment lineage correlated with cell expansion to
the radial direction and reorientation of the
cell division plane (Fig. 2I and fig. S4F). Ec-
topic expression of ROPGEFs resulted in ec-
topic periclinal cell divisions in the outer root
layers and pericycle, which rarely undergo
such division (Fig. 2, J and K, and fig. S4, G

andH).Members of the PRONE-typeROPGEF
gene family in Arabidopsis have previously
been proposed to act redundantly in a number
of processes in which they activate ROP sig-
naling (29). However, loss of SPIKE1 (SPK1),
encoding a single-copy ROP-interactingDOCK
family GEF, causes phenotypes mimicking the
combinatorial ropmutants (30–32). Therefore,
we focused on the loss-of-function alleles of
SPK1, one of whichwe identified in the genetic
screen for factors promoting formative (peri-
clinal) cell divisions (see the supplementary
materials). In the spk1 loss-of-functionmutant,
we detected a reduction in periclinal divi-
sions in several tissues, including the proto-
phloem sieve element cell lineage (Fig. 2, L and
M, and fig. S4, I to K).We conclude that in the
transit amplifying cells (domain II, positions 2
to 9), PEAR function promotes the bifurcation
involving the emergence of the protophloem
sieve element cell lineage by switching the
orientation of the cell divisions at least par-
tially through the activation of ROPGEF-ROP
signaling module.

PLETHORAs stage APL expression and
phloem differentiation

Another distinctive feature of the early proto-
phloem sieve element developmental trajec-
tory is the transition from cell division to cell
differentiation (domain II to III to IV). This
transition mapped closely to the first major
change in the protophloem sieve element
transcriptome. In the first transcriptomic do-
main (domain I to II), we detected transcripts
of the PLETHORA gene family (Fig. 1E), the
relatively persistent proteins ofwhich are known
to spread shootward through cell-to-cell move-
ment. This movement, together with a mitotic
dilution effect, contributes to the formation of
the shootward protein gradient of PLETHORAs
(14). Prior work has shown that PLETHORA
TFs broadly regulate meristem development,
promoting cell division at moderate concen-
trations, and then permitting elongation and
differentiation as levels drop (14, 33, 34). How-
ever, it is not clear how individual cell files
interpret the meristem-wide PLETHORA gra-
dient for their own specialized differentiation.
We hypothesized that the PLETHORA gra-

dient might mediate the first transcriptional
shift (from domain II to III) toward proto-
phloem sieve element differentiation by per-
mitting a new set of transcripts to be expressed
(Fig. 3A). We tested this hypothesis by driving

PLETHORA2 (PLT2) under several promoters
that extended its expression in the protophloem
sieve element in latermaturation stages than its
native domain (Fig. 3B and fig. S5A). When
using the pNAC86::XVE inducible promoter,
which is active in domains V to VII (3, 35),
ectopic PLT2 delayed protophloem sieve ele-
ment enucleation (Fig. 3B and fig. S5A). Tran-
scriptional profiling of phloem cells expressing
the construct showed an up-regulation of genes
(table S3) that mapped to the early stages of
the protophloem sieve element single-cell tra-
jectory (from domain I to II), the known PLT2
protein gradient (Fig. 3C). These results suggest
that extending the PLT2 gradient is sufficient
to prolong the early stages of meristem matu-
ration within the protophloem sieve element
lineage, providing a connection between the
maturation of a specific cell file and ameristem-
wide protein gradient. In addition, in the
pseudo-time ordered single cells, we could de-
tect complementary oscillatory patterns of the
putative S-phase and G2- to M-phase genes that
were also among the up-regulated PLETHORA
targets, apparently corresponding to regular
progressions through the cell cycle (Fig. 3C
and fig. S5B). Furthermore,ALTEREDPHLOEM
DEVELOPMENT (APL), NAC45/86, and NEN4,
known key regulators of the protophloem sieve
element enucleation pathway (3), were among
the PLT2–down-regulated genes (fig. S5C and
table S3). This is consistentwith the presence of
APL in the large set of genes down-regulated
by PLETHORA overexpression (33). We vali-
dated the down-regulation of APL andNEN4
by ectopic PLT2 expression with in situ hy-
bridization (Fig. 3D and fig. S5D). We also
monitored a shootward shift of APL expres-
sion domain in the roots after conditional
ectopic induction of PLT2 expression. The
induction of PLT2 in the phloem cells beyond
its native domain confirmed that activation of
APL-dependent genetic program requires dis-
sipation of the PLETHORA gradient (Fig. 3E).
To determine the role of PLETHORAs in con-
trolling the transition between transit am-
plification and differentiation in phloem, we
used an inducible, tissue-specific CRISPR/Cas9
approach to mutate PLT2 specifically in the
protophloem sieve element cell file (36). We
observed an acceleration of the protophloem
sieve element differentiation, as well as the
expression of pAPL::erTurq reporter, toward
the quiescent center without affecting the
broadermeristem size or root growth, showing
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fluorescence signal intensity in the periclinally dividing cells. Scale bars,
10 mm. (I) Quantification of asymmetric cell divisions (red arrowheads) in the
protophloem sieve element cell lineage after expression of constitutively
active ROP9 (Q64L) (pPEAR1::XVE>>ROP9CA). Scale bars, 25 mm. (J) Ectopic
asymmetric cell divisions (red arrowheads) 24 hours after induction of
ectopic Cit-GEF5 expression (pRPS5A::XVE>>Cit-GEF5). Scale bars, 25 mm.
(K) Toluidine blue staining of resin sections of a Cit-GEF5–overexpressing

line (pRPS5A::XVE>>Cit-GEF5) 24 hours after induction. Red arrowheads
indicate ectopic periclinal cell divisions in epidermis, endodermis, and
pericycle. Scale bars, 25 mm. (L) Identification of spk1 allele in the mutant
screen of pRPS5A::PEAR1-GR parental line. Presented are images from
noninduced plants. Scale bars, 10 mm. (M) Quantification of vascular cell files
in the spk1 mutant and its parental line pRPS5A::PEAR1-GR. Neither line
was induced, t test indicates statistical difference.
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that loss of PLETHORA function in its native
domain allows precocious expression of mid-
to late-stage protophloem sieve element differ-
entiation regulators (Fig. 3F and fig. S5, F toH).
We sought to further test whether PLT2 di-

rectly regulates the protophloem sieve element–
specific differentiation program because we
found AP2 (a member of the PLETHORA fam-
ily) family–binding sites in the APL promoter
region, as determined by theDAP-seq technique
(26). Indeed, we confirmed the direct bind-
ing of PLT2 to several regions of the APL pro-
moter by chromatin immunoprecipitation
(ChIP) followed by quantitative PCR (qPCR)
(Fig. 3G). Furthermore, along with AP2 sites,
the APL promoter is also enriched for binding

sites of HANABA TANARU (HAN), a GATA
TF. In turn,HAN is a PLETHORA target (33)
and, accordingly, upon ectopic PLT2 expres-
sionwe detectedHAN transcripts expressed in
late protophloem sieve element development
(fig. S5, C and I). Ectopic HAN expression
under pNAC86:XVE led to a delay in enuclea-
tion (fig. S5J), similar to PLT2 overexpression
in the same domain. We conclude that the
PLETHORA gradient directly (and possibly in
a feedforward manner with HAN) orchestrates
protophloem sieve element differentiation by
cell autonomously repressing transcription of
the phloem regulatorAPL. Overall, our results
show how the PLETHORA gradient first pro-
motes cell proliferation in the protophloem

sieve element lineage and then helps to time
the later stages of cellular maturation.

PEARs promote APL to orchestrate
phloem differentiation

Given the results above, we reasoned that an
early phloem-specific TF must activate APL
expression. To identify genes that could fill
that role, we first generated a list of sieve ele-
ment genes enriched in our bulk-sorted cells
from that tissue compared with published
data profiling other tissue types of the root
meristem [(37); fig. S6A and table S4]. We fur-
ther narrowed the list by intersecting it with
sieve element–enriched genes identified in the
cluster analysis of single-cell RNA-sequencing
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Fig. 3. PLT2 inhibits phloem
differentiation by directly
repressing APL expression.
(A) Quantification of the
fluorescent intensity of PLT2-YFP
in protophloem sieve element
cells of nine roots indicated
with dots of different colors.
Percentage of roots expressing
APL in a given protophloem
sieve element cell is indicated as
a red line (n = 9). Onset of APL
expression coincides with
diminishing level of PLT2 protein.
Arrowhead indicates the onset
of APL expression in the
protophloem sieve element.
(B) Ectopic expression of PLT2
under the pNAC86::XVE promoter
delays protophloem sieve
element enucleation. Square
brackets indicate extended
expression domain of pCALS7::
H2B-RFP, a reporter used for
monitoring enucleation. (C) Native
expression profile of PLT2 targets
in protophloem sieve element
cells ordered in pseudotime.
Genes up-regulated after 6 hours
of induction of the line shown
in (B) are plotted. Upper panel
shows gradually diminishing
expression of target genes,
which reflects the PLT2 protein
gradient. Lower panel shows PLT2
up-regulated cell cycle genes
with an oscillatory expression
pattern. (D) In situ hybridization
of APL before and 6 hours
after ectopic expression of PLT2-
3xYFP. Arrowheads indicate the
positions of protophloem sieve
element enucleation beyond which point APL is expressed in the phloem pole pericycle, companion cells, and the metaphloem sieve element (fig. S5E). Brackets
indicate the pNAC086 activity domain. (E) Time course of transcriptional repression of APL in cells ectopically expressing PLT2-RFP under the inducible pPEAR1::XVE
promoter. (F) Early activation of APL expression 48 hours after phloem-specific knockout of PLT2. (G) ChIP-qPCR of PLT2-3xYFP on the APL promoter revealing
the PLETHORA-binding region –2204 to –1439 bp upstream of the APL ORF. All scale bars, 25 mm.
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Fig. 4. PEARs orchestrate phloem differentiation. (A) Force-directed clustering
of 272 single-cell transcriptomes obtained using the pPEAR1D::erVenus reporter.
Plotted is the expression of stem cell–abundant PLT1. Arrows indicate cellular
trajectories inferred from known gene expression patterns (fig. S6). (B) Strong
enrichment of PEAR1 expression in protophloem sieve element and metaphloem
sieve element trajectories confirmed by the pPEAR1::erVenus reporter line.
White arrowheads indicate the protophloem sieve element and red arrowheads
the metaphloem sieve element. (C) Expression heatmap. PEAR genes are
among the earliest phloem-specific TFs. (D) Lack of protophloem sieve element
differentiation in the mature part of the pear sextuple mutant root. Arrowheads

indicate the protophloem sieve element position. (E) Lack of APL pathway
activation in the roots of pear sextuple mutant based on RNA-seq analysis.
(F) Inducible expression of PEAR1-mTurq is sufficient to activate transcription of
APL and NAC86 reporters in the pear sextuple mutant background. (G) ChIP-qPCR
of PEAR1-YFP shows a direct interaction of PEAR1 with APL promoter at
multiple positions. Two prominent PEAR1-binding sites are indicated with red
dashed rectangles. (H) Expression patterns of modified pAPL reporter lines.
Length of the “3kb” promoter equals 2962 bp. DOF(I) and DOF(II) correspond
to the two enhancer elements indicated in (G). Details of this modification are
provided in fig. S7C. (I) Quantification of the onset of pAPL expression after
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(scRNAseq) profiles of the pPEAR1D::erVenus
reporter line (table S5; Fig. 4, A and B; and fig.
S6, B to H). From this analysis, we identified
542 sieve element–enriched genes (table S6)
and corroborated their specificity in the pub-
lished whole-root scRNAseq atlas (table S7)
(12). We modeled gene regulation using a
machine-learning approach on the pseudotime-
ordered 758 single-cell profiles and 4924 high-
ly variable genes. Among the 208 TFs in
this dataset, most of the known protophloem
sieve element TFs (such as APL,NAC045, and
NAC086) were among the top 20 regulators
(table S8). We validated the model by com-
paring predicted targets with genes induced
by in vivo ectopic expression of the same TFs,
confirming a significant overlap of targets in
three of five cases (table S8). Among the top 20
regulators, we also identified four related genes
that encode early sieve element–abundant
PEAR TFs (PEAR1, PEAR2, DNA BINDING
WITH ONE FINGER6 , and TARGET OF
MONOPTEROS6) (Fig. 4C).We recently showed
that simultaneous loss of six PEAR genes re-
sults in defects in protophloem sieve element
differentiation (17). We subsequently pro-
filed the transcriptomes of wild-type and
pear sextuple mutant (Fig. 4D) root meri-
stems and identified 203 down-regulated
genes overlappingwith our protophloem sieve
element–specific gene list (table S9). The ex-
pression of APL, as well as its downstream
targets NAC045, NAC086, and NEN4, was
lost in the protophloem tissue of the pear
sextuple mutant (Fig. 4, E and F, and fig. S7A).
Subsequently, expression of APL and NAC086
reporter lines was restored in the pear sex-
tuple mutant upon induction of PEAR1, cor-
roborating that transcriptional activation
of APL in the protophloem sieve element is
dependent on the activity of PEAR factors
(Fig. 3F).
To test whether PEAR1 can directly regu-

late the expression of APL in its endogenous
expression domain (cells 1 to 14), we performed
ChIP followed by qPCR using pPEAR1::PEAR1-
GFP protein fusion and identified multiple
PEAR1-binding sites within the APL promoter
(pAPL) (Fig. 4G). Truncation analysis of pAPL
indicated the presence of an enhancer element
responsible for the expression of APL in the
cells transitioning from cell division to cell
differentiation within the 2039- to 2962-bp
regionupstreamof theAPL open reading frame
(ORF) (Fig. 4H). Our ChIP analysis detected a

single strong PEAR1-GFP peak in the promoter
sequence beyond 2039 bp from the ORF and
another strong peak at the upstream end of
the 2-kb region, both of which were also de-
tected in the publicly available DAP-seq data
(Fig. 4G and fig. S7C) (26). Furthermore, within
the detected regions (–2672 to –2512 and –1946
to –1844), we identified multiple clusters of
DOF-binding motifs (AAAG) (26) that con-
stitute an enhancer element required for the
transcriptional activation of APL in the phloem
transition zone (domain III) (Fig. 4, H and I,
and fig. S7C). Although the expression of APL
in the protophloem sieve element is dependent
on PEARs (Fig. 4F), APL expression domain
extends beyond PEAR domain (cells 15 to 19;
Fig. 1E and fig. S3A). It is possible that either
the PEAR proteins and/or APL mRNA persist
during this period ~10 hours before enuclea-
tion. Alternatively, theremay be intermediate
factors acting downstream of PEARs to pro-
mote APL expression during late stages of
phloem development. Collectively, the data
support a role for PEARs in controlling the
onset of APL expression to regulate a tran-
sition in phloem differentiation. The transi-
tion is controlled by the PLETHORAs, which
dissipates its own gradient by promoting cell
division. When PLETHORA levels decline
sufficiently, PEARs can then effectively up-
regulate APL. The opposing regulation of APL
by positively regulating PEARS and inhibitory
PLETHORAs illustrates how antagonisticmech-
anisms, one forming amorphogen-like gradient
across the meristem, orchestrate developmen-
tal timing within a cell file.

Sequential mutual inhibition directs
developmental transitioning

The final major transcriptional transition in
the phloem lineage occurs between domains
IV and V. To explore this transition, we ec-
topically expressed NEN4 and PLT2 at various
developmental stages. When expressed in early
ectopic domains, NEN4 expression caused cell
death, whereas PLT2 expression forced cells
back into the cell cycle. However, later expres-
sion of these two TFs had little or no visible
effect on cells, showing that the developmental
program of domain V appears to be resilient to
these perturbations (Fig. 3B and figs. S5A and
S9). This indicates that the high number of
protophloem sieve element–specific genes
during the final 8 hours of differentiation re-
model the cellular behavior in an irreversible

manner. We next sought to explore how widely
the PEARs control transcriptional programs
related to this final stage of sieve element de-
velopment. We combined a gene-regulatory
analysis in the pearmutant with systematic
overexpression and modeling approaches (fig.
S7, A and B, and fig. S8). Our analysis revealed
that, in addition to the known phloem regu-
lators APL, NAC045, NAC086, and NAC028,
10 of 13 newly validated phloem-enriched
TFs were dependent on PEARs (fig. S7, A and
B, and Fig. 4F). Overexpression of two of
these, ZAT14 (AT5G03510), which was also
the third most important TF in the machine-
learning model, and its close homolog ZAT14L
(AT5G04390), led to the arrest of cell cycle and
premature cell elongation (Fig. 4, J and K).
Transcriptional profiling provided further evi-
dence for a putative dual role in timing cell
division and cell expansion (that occurred
largely after enucleation in this cell lineage)
(tables S10 to S14). In addition, the gene-
regulatory network model predicted a pattern
of sequential mutual inhibition in the target
sets of high-scoring transcriptional regulators
(table S15); for example, genes repressed by
ZAT14 significantly overlapped with genes
activated by the earlier expressed PEARs and
vice versa (Fig. 4L). Overexpression analysis
confirmed a significant overrepresentation
in the overlap between genes up-regulated
by PEARs and down-regulated by ZAT14
(table S16) (17).
By combining single-cell transcriptomics

with live imaging, we have mapped the cellu-
lar events from the birth of the phloem cell to
its terminal differentiation into phloem sieve
element cells spanning a time frameof 79hours.
In the early part of the developmental trajec-
tory, where cells are proliferating, the PEAR
factors promote the asymmetric periclinal di-
visions that result in lineage bifurcation. We
pinpoint the ROPGEF-ROP–regulatory module
as an effector of early PEAR function in pro-
moting the periclinal cell divisions central to
vascular development. In addition, the PEARs
activate the final 20-hour terminal differentia-
tion program, which highlights them as central
integrators that connect early and late phloem
development. Our high-resolution phloem de-
velopmental trajectory reveals three abrupt
transitions in the gene expression program.
The late, PEAR-regulated protophloem sieve
element program is directly and antagonis-
tically controlled by the broad PLETHORA
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modification of DOF-binding motives. Statistically significant differences between
groups were tested using Tukey’s post hoc test, P < 0.05. Different letters indicate a
significant difference at P < 0.05. (J) Expression of ZAT14 and ZAT14L during late
differentiation of protophloem sieve element. Arrowheads indicate the last cell
before enucleation. (K) Ectopic expression of ZAT14 and ZAT14L under pPEAR1::XVE
results in cell elongation and inhibition of cell division. Arrowheads indicate the
last cell before enucleation. The pPEAR1::H2B-YFP line shows the regular number of

protophloem sieve element cells. (L) Heatmap showing significantly overlapping and
oppositely regulated target sets of the 20 most important TFs from the gene-
regulatory network model. Color intensity shows the fraction of overlapping target
sets. The colormap represents significantly overlapping sets (Fisher’s exact test,
if P < 0.05, value = 1) multiplied by the fraction of overlap. Asterisk indicates
experimental validation of up- and down-regulated sets from TF overexpression
in vivo (tables S15 and S16). All scale bars, 25 mm.
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gradient, which connects this morphogen-like
gradient to cellular maturation. We propose
that mutual inhibition of target genes by se-
quentially expressed TFs represents a “see-
saw” mechanism (fig. S10) that allows rapid
transitions and prevents gene expression pro-
grams with conflicting effects on cellular
physiology (e.g., division versus enucleation).
Similar models have been implicated in so-
called attractor states in cell fate decisions in
animals (38). In the future, it will be interest-
ing to determine how conserved these prin-
ciples of sieve element differentiation are in
an evolutionary context, as well as how ex-
tensively they apply to other differentiation
trajectories in plants.

Methods summary

The single-cell transcriptomic data described
herein were generated from the protophloem
andmetaphloem sieve element, and procambial
cells, whichwere sorted using tissue-specific fluo-
rescent reporter lines. Root tips of 5-day-old
Arabidopsis plants were used as a tissuemate-
rial for protoplasting. RNA sequencing of the
sorted cells was performed following a well-
based Smart-seq protocol. Obtained transcrip-
tomes, corresponding to the cells from the
protophloem cell lineage, were ordered in
pseudotime using the Monocle 2 package,
which generated a single linear protophloem
developmental trajectory. Expression profiles
and pseudotime coordinates of the known
phloem-expressed genes were further con-
firmedwith in situ and reporter line analyses.
The gene-regulatory network was modeled

using a random forest machine-learning ap-
proach. Selected interactions, representing
mutual inhibition (the seesaw model), were
confirmed by the transcriptome analysis of
lines overexpressing a candidate gene or pro-
filing of the loss-of-function lines.
To understand cell behavior at different de-

velopmental phases, confocal long-term live
imaging was performedwith the protophloem
sieve element–specific and nuclear localized
reporter line. Up to 5-day-long movies were
recorded, and cell behavior, including the num-
ber and position of cell divisions, enucleation,
and times of these events were recorded.
All details of the methods, including those

summarized above, are provided in the sup-
plementary materials.
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Cell-by-cell dissection of phloem development links a maturation gradient to cell
specialization
Pawel Roszak, Jung-ok Heo, Bernhard Blob, Koichi Toyokura, Yuki Sugiyama, Maria Angels de Luis Balaguer, Winnie W.
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Hugo Tavares, Kevin Verstaen, Jos Wendrich, Charles W. Melnyk, Yoshihisa Oda, Dennis Shasha, Sebastian E. Ahnert,
Yvan Saeys, Bert De Rybel, Renze Heidstra, Ben Scheres, Guido Grossmann, Ari Pekka Mähönen, Philipp Denninger,
Berthold Göttgens, Rosangela Sozzani, Kenneth D. Birnbaum, and Yrjö Helariutta

Science 374 (6575), eaba5531.  DOI: 10.1126/science.aba5531

Root meristem controls
The plant meristem, a small cluster of stem cells generates all of the cell types necessary for the plant’s indeterminate
growth pattern. Roszak et al. use single-cell analyses to follow development from the stem cell to the enucleated cell of
the phloem vasculature. In the root of the small mustard plant Arabidopsis, this process takes just over 3 days, and the
developmental trajectory spans more than a dozen different cell states. A transcriptional program initially held under
repressive control is released as those initial repressors dissipate. Reciprocal repression by regulators early and late in
the developmental trajectory control a rapid switch in the differentiation program. —PJH
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