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Abstract

This thesis presents a numerical investigation of the wave reversal technique using the
Instantaneous Time Mirror method in the simulation software SeisSol. Earthquakes
produce two different kinds of waves i.e., P- and S-waves. The focus of the study is
to develop a novel approach to accurately determine the source of an earthquake by
analyzing the time evolution of the seismic waves in both the forward and time-reversed
directions. We analyse the application of an Instantaneous Time Mirror (ITM) on a
planar travelling wave and spherical waves produced by point sources. We then refocus
each of the P- and S-waves separately to the source location. We demonstrate the
application of the ITM on different types of point sources and show that the ITM is able
to refocus the waves to the source location.
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1 Introduction

Studying seismic phenomena provides valuable insights and potential techniques for
identifying areas that are more susceptible to earthquakes, mitigating economic impacts,
and reducing casualities.

The field of earthquake simulation has seen significant advancements in recent years,
thanks to the availability of powerful supercomputers [Cui+10], [Bre15], [Käs+10].
With these resources, it has become possible to model realistic 3D earthquake events on a
large scale, something that was not feasible until a few decades ago. Today’s simulation
software heavily relies on numerical methods to approximate real-life physics. In this
process, the volume of the problem is discretized into smaller elements, and numerical
solvers are employed in each element to obstain a solution. A few examples out of these
wide range of numerical methods used to solve wave equations are finite differences,
finite volumes and finite elements. These numerical methods have played a crucial role
in advancing the field of earthquake simulation and are continuously being improved to
produce more accurate and efficient simulations.

SeisSol1 is a scientific software that enables the simulation of seismic waves and
earthquake phenomena. However, the modelling of complex 3D geometries can be com-
putationally intensive. To address this challenge, SeisSol implements an efficient way to
optimally utilize the computing resources. The software allows for the study of various
scenarios, including adjusting material properties to exhibit elastic, viscoelastic and
viscoplastic behaviour. SeisSol utilizes a combination of Discontinuous Galerkin (DG)
method and Arbitrary high-order schemes using DERivates (ADER) time-integration ap-
proach to solve the problems. This combination is called ADER-DG approach [Dum03].
[DK06] extended this approach to solve the elastic wave equations in three dimensions.
The ADER-DG approach provides arbitrary high-order accuracy in space and time, with
the solution in each element approximated by polynomials. The degrees of freedom
are expressed through the coefficients of the polynomial, which are advanced in time
during simulation, allowing for discontinuities across element boundaries [KD06].

In this thesis, we extend SeisSol with the implementation of Wave Reversal of Seismic
waves using the Instantaneous Time Mirror (ITM). Time-reversal techniques have been
researched in the field of acoustic media, primarily in order to focus the wave below the
diffraction limit [Fin+89]. This methodology may be applied, for instance, to improve

1https://seissol.org
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1 Introduction

the detection of gallstones within the human body [Fin97]. In the context of seismic
waves, time-reversal methods may be employed to investigate the source and origin
of the seismic waves. The work by [FF17] describes two techniques for wave reversal.
The first approach is the time-reversal mirror approach, which involves recording the
wavefield at some receiver locations and reversing the wavefield. This approach has been
used experimentally to reverse wavefields in elastic solids [Cat+08]. [Wei16] describes
a Loschmidt’s demon as something which reverses the momentum/velocity of each
particle instantaneously such that the state of the system is reversed from a fibrillated
state to a less fibrillated, smoother state. The second approach for wave-reversal is called
the Instantaneous Time Mirror (ITM) approach, which involves mimicking Loschmidt’s
Demons for waves [FF17]. While both techniques generate time-reversed waves, we
specifically focus on the ITM approach. This method involves manipulating waves on
time boundaries by sudden modifications of the wave properties like wave speed or
impedance in the whole medium, effectively mimicking the Loschmidt point of view.
This approach is very efficient for radiating time-reversed waves without the use of
any antennas or receivers. The first approach, which utilizes "time-reversal mirrors"
with wave manipulation along a spatial boundary sampled by a finite number of anten-
nas, has numerous applications in telecommunication, imaging, therapy, and defense
[FF17]. [Bac+16] have experimentally demonstrated the instantaneous time mirrors on
surface waves on water by manipulating the wave speed for a period of time using a ver-
tical jolt. This is shown to refocus the waves at the source position before diverging again.

To achieve ITMs in a simulation environment, we modify the impedances of seismic
waves for a short period of time tITM to tITM + τ by manipulating the material properties
λ, µ, ρ. As the impedances of seismic waves depend on these three properties, this
manipulation is sufficient to achieve wave reversal using ITMs.

It is important to note that the time-reversal presented here, in its simplest form, may
not be directly useful in experimental investigations, as we cannot directly modify the
material properties. However, it does provide an approach to approximately locate the
source of an earthquake when successfully reversed.

The thesis is organized as follows: Chapter 2 focuses on the fundamental theory of
elastic wave propagation and the presentation of the numerical ADER-DG scheme as
used in SeisSol. The equations of motion in elastic media is derived, and the wave
equation is presented in the velocity-stress formulation. Chapter 3 outlines the theory
of time-reversal, briefly discussing the wave reversal approach before delving into a
more detailed explanation of the ITMs concept. Section 3.4 describes the method and
implementation details of ITMs in SeisSol. Chapter 4 discusses the different studies and
results obtained in the process for different scenarios. Finally, we discuss the conclusions
and possible future research directions in Chapter 5.
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2 Seismic Waves and ADER-DG formulation

In this chapter, the necessary theoretical foundations for this thesis are established
through the derivation of fundamental equations governing the propagation of elastic
waves. The equation of motion corresponding to this will be presented later on in the
velocity-stress formulation. We only consider isotropic media and utilize this assumption
in particular symmtery arguments. The restriction to isotropic media is a commonly
employed simplification, as seen in works such as [DK06].

Section 2.2 discusses the fundamental framework of SeisSol, the numerical tool
employed for simulating seismic wave phenomena. SeisSol is a combination of the
Discontinuous Galerkin Finite Element (DG-FE) method and a time integration scheme
based on the solution of ADER, as described in previous works [DK06], [Käs+10]. This
approach, known as ADER-DG will be introduced in more detail.

2.1 Elastic Wave Equation

An elastic medium is characterized by an undeformed state, in which stresses and
strains are zero, to which it will return to in the absence of outer forces. If the stresses
and strains the medium experiences are infinitesimal, the theory of linear elasticity
applies. We define the displacement vector, U, describing the shortest distance between
the initial and current position of a point. The particle velocities u, v and w in x, y and z
direction, respectively, can then be defined as the temporal derivative of U

∂Ux

∂t
= U̇x = u,

∂Uy

∂t
= U̇y = v,

∂Uz

∂t
= U̇z = w,

(2.1)

where the subscript denotes the coordinate direction and a dot over a variable represents
its partial time derivative leading to the following notation:

∂Ui

∂t
= U̇i = Vi, (2.2)

where the velocity vector, V, is introduced for convenience. V = [V1, V2, V3] = [u, v, w]

are used analogously.

3



2 Seismic Waves and ADER-DG formulation

In the context of linear elasticity, the following extension of Hooke’s law to generalize
linear elasticity holds

σij = cijklϵkl , (2.3)

with the medium specific constants cijkl . The Einstein summation convention is followed,
where an index appearing twice is summed over all possible values. In this context, σij
represents the stress tensor and ϵkl represents the strain tensor. Hooke’s law expresses
that stress tensor components are linear combinations of strain tensor components. For
infinitesimally small perturbations, the strain tensor components ϵkl are defined as
follows

ϵkl =
1
2
(∂kUl + ∂lUk) , (2.4)

where ∂k represents the spatial derivative in k-direction and Ui represents the dis-
placement in i-direction. Previously, we mentioned our focus on the velocity-stress
formulation rather than the displacement-stress formulation. To eliminate the displace-
ments Ui, we introduced velocities Vi in equation 2.2. Consequently, this leads to the
time derivative of the strain tensor

∂tϵkl =
1
2
(∂kVl + ∂lVk) , (2.5)

expressed in terms of the spatial derivatives of the velocities Vi. Here, ∂t denotes the
time derivative. As the constants cijkl remain constant over time,

∂tσij = cijkl∂tϵkl . (2.6)

We can apply symmetry considerations of the stress tensor i.e., σij = σji to the term
cijkl in equation 2.3 and reduce the number of independent components from 81 to
21 [AR02, Cha. 2]. This in turn lets us define the tensor in terms of two constants in
isotropic media with the general form of

cijkl = λδijδkl + µ
(
δikδjl + δilδjk

)
, (2.7)

where δ is the Kronecker delta function and λ, µ are the Lamé parameters.

We now write a force balance in a volume V within a surface S. The momentum
within the volume changes at a rate equal to the forces acting on that volume. Therefore,
the forces acting on these comprise a body force and a surface force, which result from
the presence of normal and shear stresses. This can be written mathematically as

∂

∂t

∫
V

ρ
∂U
∂t

dV =
∫

V
fdV +

∮
S

T (n)dS, (2.8)

where ∂
∂t

∫
V ρ ∂U

∂t dV, is the momentum of the control volume with density ρ, and T is the
traction vector which is related to the stress tensor by Cauchy’s stress theorem

Tj (n) = σijni, (2.9)
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2.1 Elastic Wave Equation

with the normal vector ni. Applying Gauss’ divergence theorem∮
S

T (n)dS =
∮

S
σijnidS =

∫
V

∂jσijdV, (2.10)

Replacing T in equation 2.8 using equations 2.9 and 2.10 and reordering the terms
gives us

∫
V

(
ρ

∂2Ui

∂t2 − fi − ∂jσij

)
dV = 0. (2.11)

Here we assumed that the stress tensor is symmetric, i.e., σij = σji. As it is true for
any general volume, we can equate the integrand to zero. This gives us the equation

ρ
∂2Ui

∂t2 = fi + ∂jσij. (2.12)

Expanding equation 2.12 in j and using Vi =
∂Ui
∂t , we get

ρ
∂Vi

∂t
= fi + ∂xσxi + ∂yσyi + ∂zσzi, (2.13)

The body force fi will be discussed later in terms of the source terms.

Combining equations 2.6, 2.7 and 2.13, we obtain the final 3D wave elastic equation
for an isotropic medium in velocity-stress formulation as follows

∂σxx

∂t
− (λ + 2µ)

∂u
∂x

− λ
∂v
∂y

− λ
∂w
∂z

= S1,

∂σyy

∂t
− λ

∂u
∂x

− (λ + 2µ)
∂v
∂y

− λ
∂w
∂w

= S2,

∂σzz

∂t
− λ

∂u
∂x

− λ
∂v
∂y

− (λ + 2µ)
∂w
∂z

= S3,

∂σxy

∂t
− µ

(
∂v
∂x

+
∂u
∂y

)
= S4,

∂σyz

∂t
− µ

(
∂v
∂z

+
∂w
∂y

)
= S5,

∂σxz

∂t
− µ

(
∂u
∂z

+
∂w
∂x

)
= S6,

ρ
∂u
∂t

− ∂σxx

∂x
−

∂σxy

∂y
− ∂σxz

∂z
= ρS7,

ρ
∂v
∂t

−
∂σxy

∂x
−

∂σyy

∂y
−

∂σyz

∂z
= ρS8,

ρ
∂w
∂t

− ∂σxz

∂x
−

∂σyz

∂y
− ∂σzz

∂z
= ρS9,

(2.14)
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2 Seismic Waves and ADER-DG formulation

where Sp, p = 1, . . . 9, are the source terms. The source terms are used to describe the
common sources of seismic events like double couple or force couple moments. These
are often used to approximate the faults and slips in Earth’s structure [She19].

Another important term for consideration with this system is the propagation speed
of elastic-acoustic waves. In elastic media, we observe two kinds of waves, a primary
compression wave and a secondary sheer wave which are called P- and S-waves respec-
tively.

For the investigation of the eigenstructure of the systems, we need to transform it into
a more compact form of hyperbolic equations

∂Qp

∂t
+ Apq

∂Qq

∂x
+ Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z
= 0, (2.15)

where Q is the state vector with p unknown variables which contains the stresses and
velocities, i.e.,

Q =
(
σxx, σyy, σzz, σxy, σyz, σxz, u, v, w

)T (2.16)

and Apq, Bpq, Cpq are space-dependent flux matrices. Where

Apq =



0 0 0 0 0 0 − (λ + 2µ) 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −µ

− 1
ρ 0 0 0 0 0 0 0 0

0 0 0 − 1
ρ 0 0 0 0 0

0 0 0 0 0 − 1
ρ 0 0 0


, (2.17)

Bpq =



0 0 0 0 0 0 0 −λ 0
0 0 0 0 0 0 0 − (λ + 2µ) 0
0 0 0 0 0 0 0 −λ 0
0 0 0 0 0 0 −µ 0 0
0 0 0 0 0 0 0 0 −µ

0 0 0 0 0 0 0 0 0
0 0 0 − 1

ρ 0 0 0 0 0
0 − 1

ρ 0 0 0 0 0 0 0
0 0 0 0 − 1

ρ 0 0 0 0


, (2.18)
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2.1 Elastic Wave Equation

Cpq =



0 0 0 0 0 0 0 0 −λ

0 0 0 0 0 0 0 0 −λ

0 0 0 0 0 0 0 0 − (λ + 2µ)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 −µ 0 0
0 0 0 0 0 − 1

ρ 0 0 0
0 0 0 0 − 1

ρ 0 0 0 0
0 0 − 1

ρ 0 0 0 0 0 0


, (2.19)

The eigenvalues of the flux matrices Apq, Bpq, Cpq determine the propagation velocities
of elastic waves. These velocities can be expressed as

s1 = −vp, s2 = −vs, s3 = −vs, s4 = 0, s5 = 0, s6 = 0, s7 = vs, s8 = vs, s9 = vp, (2.20)

where

vp =

√
λ + 2µ

ρ
, vs =

√
µ

ρ
. (2.21)

These two velocities are the propagation velocities with vp as the propagation velocity
of the P-wave and vs as the propagation velocity of the S-wave.

The elastic wave propagation is simplified to an acoustic wave propagation when we
set µ = 0. Further simplifications like

σij = 0, ∀i ̸= j (2.22)

can be derived from the set of equations 2.14. All the diagonal elements σii = λ∂juj are
equal to each other which is analogous to the physical pressure in acoustic media.

−p = σxx = σyy = σzz. (2.23)

This condenses the equations of motion as

∂p
∂t

+ λ
∂u
∂x

+ λ
∂v
∂y

+ λ
∂w
∂z

= S1,

ρ
∂u
∂t

+
∂p
∂x

= ρS2,

ρ
∂v
∂t

+
∂p
∂y

= ρS3,

ρ
∂w
∂t

+
∂p
∂z

= ρS4.

(2.24)

When equation 2.24 is written in the form of equation 2.15, we get

Apq =


0 λ 0 0
1
ρ 0 0 0
0 0 0 0
0 0 0 0

 , (2.25)

7



2 Seismic Waves and ADER-DG formulation

Bpq =


0 0 λ 0
0 0 0 0
1
ρ 0 0 0
0 0 0 0

 , (2.26)

Cpq =


0 0 0 λ

0 0 0 0
0 0 0 0
1
ρ 0 0 0

 , (2.27)

with eigenvalues
s1 = −vp, s2 = 0, s3 = 0, s4 = vp , (2.28)

with

vp =

√
λ

ρ
. (2.29)

This shows that there is only kind of propagating wave in the acoustic case with µ = 0.

2.2 ADER-DG

In this section, we outline the fundamental framework of SeisSol. Our aim is provide a
concise understanding of the framework avoiding excessive detail.

2.2.1 Discontinuous Galerkin Method

We have earlier formulated the elastic wave equation as a system of linear hyperbolic
Partial Differential Equation (PDE)s in equation 2.14. [TMN01] formulated the idea of
arbitrary high order generalized Riemann Solvers in a finite volume framework and
coined the approach ADER. Here, the combination of the generalized Riemann Solvers
with DG methods is explained, resulting in ADER-DG approach [DM06]. In practice,
we use a time-averaged normal Riemann problem where we first predict the solution in
time and then solve a Riemann problem making it in practice a time-averaged Riemann
problem which is equivalent to the generalized Riemann solver.

Higher-order piecewise polynomial approximations are used along with the theory
of fluxes across element boundaries from the finite volume methods. The ADER-DG
scheme is an explicit one step scheme. It advances the solution by a full time step and
needs the computation of inter-cell fluxes once per timestep.

To solve the 3D elastic wave equation with the ADER-DG method, we use the compact
form as in equation 2.15. We use an unstructured mesh and thus divide our compu-
tational domain Ω ∈ R3 into tetrahedral elements T (m), with unique indices m ∈ N.

8



2.2 ADER-DG

Apq, Bpq, Cpq are assumed to be piecewise constant. We now introduce a new coordi-
nate system of (ξ, η, ζ) with the frame of reference as a tetrahedron as shown in figure 2.1

Figure 2.1: Transforming tetrahedron into a reference frame.(Figure taken from Figure 1
in [DK06])

As we are dealing with a new transformed coordinate system, we would need a
Transformation matrix to transform the vector Qp from the global Cartesian system to
the vector Qn

q in the normal, face-aligned frame. The transformation would be of the
form

Qp = TpqQn
q . (2.30)

[DK06] calculates the transformation matrix Tpq as

Tpq =



n2
x s2

x t2
x 2nxsx 2sxtx 2nxtx 0 0 0

n2
y s2

y t2
y 2nysy 2syty 2nyty 0 0 0

n2
z s2

z t2
z 2nzsz 2sztz 2nztz 0 0 0

nynx sysx tytx nysx + nxsy sytx + sxty nytx + nxty 0 0 0
nzny szsy tzty nzsy + nysz szty + sytz nzty + nytz 0 0 0
nznx szsx tztx nzsx + nxsz sztx + sxtz nztx + nxtz 0 0 0

0 0 0 0 0 0 nx sx tx

0 0 0 0 0 0 ny sy ty

0 0 0 0 0 0 nz sz tz


, (2.31)

where n =
(
nx, ny, nz

)T are the components of the normal vector, and s =
(
sx, sy, sz

)T

and t =
(
tx, ty, tz

)T are the tangential vectors of the boundary face of the tetrahedron.
n, s, t are orthogonal to each other. To represent the numerical solution Qh as a linear
combination of pure space-dependent but time-independent polynomial basis functions
with time-dependent coeeficients, we introduce the time-dependent degrees of freedom
Q̂m (t).

Q(m)
p (x, y, z, t) = Q̂(m)

pl (t)Ψl (x, y, z) , (2.32)

9



2 Seismic Waves and ADER-DG formulation

where Ψl (x, y, z) are spatial polynomial basis functions defined on the physical element.
As it is more practical to define the polynomial basis functions on the reference element
so that we can pre-calculate the integrals, we express equation 2.32 in the frame of
the reference element using a suitable coordinate transformation M which maps the
physical coordinates (x, y, z) with the reference element (ξ, η, ζ)

Q(m)
p (x, y, z, t) = Q̂(m)

pl (t)Ψl (M (x, y, z)) . (2.33)

This formulation allows us to define the polynomial basis functions on the reference
element Φl (ξ, η, ζ). As we can compute the integrals in the reference system before-
hand, the coordinate transformation makes our implementation more computationally
efficient. This allows us to express Qh in each tetrahedron after the transformation of
the coordinates as [

Q(m)
H

]
p
(ξ, η, ζ, t) = Q̂m

pl (t)Φl (ξ, η.ζ) , (2.34)

where l denotes the lth basis function. Multiplying equation 2.15 with the test function
Φk [CKS11] and integrating over our tetrahedral element T (m) gives

∫
T (m)

Φk
∂Qp

∂t
dV +

∫
T (m)

Φk

(
Apq

∂Qq

∂x
+ Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z

)
dV = 0. (2.35)

We add fluxes Fh
p at the boundaries of the tetrahedron to equation 2.35 to include

discontinuities in Qh and we integrate by parts to obtain the weak form as

∫
T (m)

Φk
∂Qp

∂t
dV +

∫
∂T (m)

Fh
p dS −

∫
T (m)

(
∂Φk

∂x
ApqQq +

∂Φk

∂y
BpqQq +

∂Φk

∂z
CpqQq

)
dV = 0.

(2.36)
The flux between the tetrahedron T (m) with the boundary extrapolated numerical

solution Q̂slΦ
(m)
l and one of its neighboring tetrahedra T (mj) (j = 1, 2, 3, 4) is computed

in the global, coordinate system using the flux matrix Apq from equation 2.17

Fh
p =

1
2

Tpq

(
A(m)

qr +
∣∣∣A(m)

qr

∣∣∣) (Trs)
−1 Q̂(m)

sl Φ(m)
l

+
1
2

Tpq

(
A(m)

qr −
∣∣∣A(m)

qr

∣∣∣) (Trs)
−1 Q̂(mj)

sl Φ(mj)
l ,

(2.37)

where ∣∣∣A(m)
qr

∣∣∣ = RA
qp
∣∣Λps

∣∣ (Rsr)
−1 , (2.38)

and Λ is a diagonal matrix with eigenvalues of Apq and Rpq is a matrix with right
eigenvectors of Apq stacked in columns. The next step is inserting fluxes from equation
2.37 and Qh from equation 2.34 into the weak formulation in equation 2.36. But as the

10



2.2 ADER-DG

basis functions Φl are defined on (ξ, η, ζ), we need to transform the resulting equation
with the transformation

dx dy dz = |J|dξ dη dζ, (2.39)

where |J| is the determinant of the Jacobian matrix of the coordinate transformation and
linear combination of the flux matrices to create transformed flux matrices

A∗
pq = Apq

∂ξ

∂x
+ Bpq

∂ξ

∂y
+ Cpq

∂ξ

∂z
,

B∗
pq = Apq

∂η

∂x
+ Bpq

∂η

∂y
+ Cpq

∂η

∂z
,

C∗
pq = Apq

∂ζ

∂x
+ Bpq

∂ζ

∂y
+ Cpq

∂ζ

∂z
.

(2.40)

We finally get the semi-discrete DG formulation of the ODE system within the
reference tetrahedron TE

∂Q̂(m)
pl

∂t
|J|

∫
TE

ΦkΦldξdηdζ

+
4

∑
j=1

T j
pq

1
2

(
A(m)

qr +
∣∣∣A(m)

qr

∣∣∣) (
T j

rs

)−1
Q̂(m)

sl

∣∣Sj
∣∣ F−,j

kl

+
4

∑
j=1

T j
pq

1
2

(
A(m)

qr −
∣∣∣A(m)

qr

∣∣∣) (
T j

rs

)−1
Q̂(mj)

sl

∣∣Sj
∣∣ F+,j,i,h

kl

− A∗
pqQ̂(m)

ql |J|
∫
TE

∂Φk

∂ξ
Φldξdηdζ

− B∗
pqQ̂(m)

ql |J|
∫
TE

∂Φk

∂η
Φldξdηdζ

− C∗
pqQ̂(m)

ql |J|
∫
TE

∂Φk

∂ζ
Φldξdηdζ = 0,

(2.41)

where

F−,j
kl =

∫
∂(TE)j

Φk

(
ξ(j) (χ, τ)

)
Φl

(
ξ(j) (χ, τ)

)
dχdτ, ∀1 ≤ j ≤ 4,

F+,j,i,h
kl =

∫
∂(TE)j

Φk

(
ξ(j) (χ, τ)

)
Φl

(
ξ(i)

(
χ̃(h) (χ, τ) , τ̃(h) (χ, τ)

))
dχdτ, ∀1 ≤ i ≤ 4, 1 ≤ h ≤ 3.

(2.42)

F−,j
kl accounts for the contribution of the element(m) itself to the fluxes over face j

and F+,j,i,h
kl accounts for the contribution of the element’s direct side neighbor

(
k j
)

to the
fluxes over the face j and

∣∣Sj
∣∣ is the area of the face j of the tetrahedron [DK06].

We have not considered the source terms in the final formulation given in equation
2.41. The source terms are dealt with as presented in [KMD07].
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2 Seismic Waves and ADER-DG formulation

2.2.2 ADER Time Discretization

Instead of now utilizing the Runge-Kutta method to derive a limited fourth-order in
time Runge-Kutta DG scheme, we adopt the ADER approach to achieve an arbitrary
high-order accuracy in both spatial and temporal dimensions. Runge-Kutta schemes
of order higher than 4 tend to become inefficient as the number of calculation steps
required exceeds the order of accuracy due to the Butcher barriers [But87].

By applying the ADER scheme to the DG formulation described in equation 2.41,
we obtain the ADER-DG scheme. The crucial step in this approach involves using the
Cauchy-Kovalewski procedure to replace time-derivatives with pure space derivatives.
As a consequence, the Cauchy-Kovalewski procedure provides the kth time-derivative as
shown in equation 2.43 in the face-aligned coordinate system, allowing us to achieve
higher accuracy without the limitations of tradiational Runge-Kutta schemes

∂kQp

∂tk = (−1)k
(

A∗
pq

∂

∂ξ
+ B∗

pq
∂

∂η
+ C∗

pq
∂

∂ζ

)k

Qq. (2.43)

Qp can be expanded in a Taylor series with respect to time, and then the time
derivatives can be substituted with space derivatives using the equation 2.43 [DK06, Sec.
3.2]. By adopting this approach, we can achieve arbitrary high-order accuracy in both
spatial and temporal dimensions. As previously mentioned, the ADER-DG schemes
conduct time integration within a single time step, considering only the current element
and its neighboring elements, making it well-suited for parallelization. Moreover, studies
have demonstrated that the ADER-DG method outperforms traditional schemes such as
Runge Kutta Discontinuous Galerkin (RK-DG) scheme [DM05].

2.2.3 Boundary Conditions

Up until now, we have explored the time-discretization and space-discretization aspects
of our problem. To complete our numerical solver, we must establish suitable boundary
conditions for the problem. We mainly have two kinds of boundaries in consideration.

Absorbing Boundaries

With the implementation of absorbing boundary conditions, the physical volume is
enclosed by such boundaries in the forward direction. This means that no waves
enter the computational domain, and any outgoing waves smoothly pass through the
boundary without experiencing reflection. A careful examination of equation 2.37
reveals that its first term on the right-hand side corresponds to the outflow from the
current element, while the second term represents the inflow from neighboring elements.
To prevent incoming waves from affecting the solution, we set the second term to zero.
Consequently, the flux at all absorbing faces of the respective tetrahedral elements is
then appropriately set to

12



2.3 Summary

FAbsorbBC
p =

1
2

Tpq

(
A(m)

qr +
∣∣∣A(m)

qr

∣∣∣) (Trs)
−1 Q̂(m)

sl Φ(m)
l . (2.44)

Free-Surface Boundaries

At a free-surface boundary, the elastic medium is in contact with the surrounding air or
void. In this scenario, there are no external forces acting on the outside of the elastic
medium. To ensure that normal and shear stresses vanish at the free surface, a technique
involving ghost cells is employed. These ghost cells are used to mirror the stresses, such
that their values have the same magnitude as the actual stresses but with the opposite
sign. This approach effectively satisfies the condition of stress equilibrium at the free
surface, allowing for an accurate treatment at the boundary. We implement this using
the flux function [DK06]

FFreeBC
p =

1
2

Tpq

(
A(m)

qr +
∣∣∣A(m)

qr

∣∣∣) (Trs)
−1 Q̂(m)

sl Φ(m)
l

+
1
2

Tpq

(
A(m)

qr −
∣∣∣A(m)

qr

∣∣∣) Γrs (Tst)
−1 Q̂(m)

tl Φ(m)
l ,

(2.45)

where Γrs = diag (−1, 1, 1,−1, 1,−1, 1, 1, 1) is the matrix which mirrors the normal and
shear stresses.

2.3 Summary

In this chapter we have discussed the governing equations of linear elasticity as a sytem
of hyperbolic PDEs. We then discussed the ADER-DG method for numerically solving
this system of equations. We have also looked at the boundary conditions that we will
use in our numerical solver.
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3 Time Reversal

Time-reversal methods involve mirroring the propagation of waves in time, aiming to
converge the resulting wave back to its source. [FF17] mentions two ways to achieve
time-reversal. The first method involves Time Reversal Mirror (TRM)s, which rely on
Cauchy boundary conditions. If the wavefield and its normal derivative are known
at the entire surface S surrounding the volume V at all times t, the wavefield inside
the entire volume can be computed. In this approach, the outgoing wave is initially
recorded on S, then time-reversed and finally emitted from S.

Alternatively, time-reversal can be achieved with manipulation of the initial condi-
tions. In this case, the wavefield and its normal derivative are known inside the entire
volume but only for a specific time. [Wei16] describes Loschmidt’s demon as something
hypothetical which reverses the momentum/velocity of each particle instantaneously
such that the state of the system is reversed from a fibrillated state to a less fibrillated,
smoother state. By emulating Loschmidt’s demons [Wei16], which act on the whole
space simultaneously, it is possible to instantly reverse the velocity of each particle
[FF17]. This leads to the creation of a time-reversed wave. This approach is commonly
referred to as the Instantaneous Time Mirror (ITM).

This thesis primarily focuses on the ITM approach for seismic waves. In this method, a
time-reversed wave is generated through a sudden modification of the wave propagation
properties of the medium [Bac+16]. Section 3.1 delves into the theoretical foundation
behind the ITM, providing a comprehensive understanding of its principles. In the
latter part of the chapter, we present the implementation of ITM within the numerical
simulation software SeisSol. The description of the implementation is kept as general as
possible, allowing for a broad grasp of the method’s application and utility.

3.1 Theory of Instantaneous Time Mirrors

Time-reversal methods for waves are based on the time-reversal invariance of wave
equations. They rely on the fact that any wave-field can be completely determined
within a volume by knowing the field(and its normal derivative) on any enclosing
surface [Bac+16]. We write the elastic wave equation in its second order vector form
[AR02, Cha. 2] as

ρÜ (x, t)− (λ + 2µ)∇ (∇ · U (x.t)) + µ∇× (∇× U (x, t)) = S (x, t) , (3.1)

with the source function S (x, t). This implies that if Û (x, t) is a solution, then Û (x,−t)
is also a solution, if S is symmetric in time such that S (x, t) = S (x,−t).
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3 Time Reversal

The ITM approach is closely connected to the Cauchy theorem, which states that
the wave field evolution can be deduced from the knowledge of the wave field and
its derivative at one single time, i.e., the initial conditions. By inducing a sudden
modification of the wave propagation properties(such as impedance) in the medium, we
change the initial conditions at two different instances creating a time-reversed wave.
This modification, referred to as the ITM, does not require the use of antennas or the
entire wave field’s memory [Bac+16]. [Bac+16] demonstrated this for water waves with
physical and numerical experiments resulting in successful refocusing of the generated
waves into their sources’ shapes. This was achieved by introducing a temporal slab in
the wave velocities as shown in figure 3.1.

Figure 3.1: Rectangular profile for the wave velocity. Properties of the wave are changed
during the duration of ITM. (Figure taken from Figure 1 in [Bac+16, Supple-
mentary Material])

In the context of elastic waves, as we have seen in equations 2.14 and 2.21, there are
two propagating waves, i.e., P- and S-waves. [LeV02, Sec 9.6-Sec 9.8] shows that in case
of spacial material interfaces, a discontinuity in the quantity called Impedance Z = ρv
causes reflections across the material interface. [KL05, Eq. 1.66 and 1.180] show that
impedances of P- and S-waves are defined analogously as Zp = ρvp and Zs = ρvs.

3.2 ITM on a one-dimensional acoustic planar wave

In this section, we calculate the analytical solution for a one-dimensional acoustic wave
when an ITM is applied from t−ITM to t+ITM. For this, we consider a one-dimensional
acoustic equation [LeV02, Sec. 2.8] linearized about the motionless state

pt + K0ux = 0,

ut +
1
ρ0

px = 0,
(3.2)
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3.2 ITM on a one-dimensional acoustic planar wave

where p is the pressure perturbation, K0 is the bulk modulus of the material and u is the
velocity perturbation. This can be written in consolidated matrix vector form as done
for first order hyperbolic systems of equations as follows

∂

∂t

[
p
u

]
+

[
0 K0
1
ρ0

0

]
∂

∂x

[
p
u

]
= 0. (3.3)

The flux matrix of equation 3.3 has two eigenvalues

λ1 = −c0, λ2 = c0, (3.4)

where

c0 =

√
K0

ρ0
(3.5)

is the speed of sound. Waves can propagate in either direction with this speed. The
eigenvectors for this coefficient matrix are

r1 =

[
−ρ0c0

1

]
, r2 =

[
ρ0c0

1

]
. (3.6)

The impedance as mentioned in section 3.1 is defined as

Z0 = ρ0c0. (3.7)

Using these parameters, [LeV02, Sec. 2.8] calculates the solution of the acoustic
equation depending on the initial conditions p0(x), u0(x) as:

p(x, t) =
1
2
[
p0 (x + c0t) + p0 (x − c0t)

]
− Z0

2
[
u0 (x + c0t)− u0 (x − c0t)

]
,

u(x, t) = − 1
2Z0

[
p0 (x + c0t)− p0 (x − c0t)

]
+

1
2
[
u0 (x + c0t) + u0 (x − c0t)

]
.

(3.8)

We use this solution to find the analytical solution of a 1D acoustic wave after the
ITM is applied in two different ways. First we ensure we use initial conditions which
give rise to only one forward wave. We simply use a sinusoidal wave multiplied with
one eigenvector r2. This defines our initial conditions as

p0 (x) = ρ0c0 cos (kx) ,

u0 (x) = cos (kx) ,
(3.9)

where k is the wave number of the wave. To ensure that our domain is periodic, we
defined our domain to be between two wavelengths, i.e., from

[
−π

k , π
k

]
. The energy of

the system is defined in this domain as [KGN21]

E1 =
∫ π

k

− π
k

(
1

2K
p2 +

1
2

ρu2
)

dx, (3.10)
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3 Time Reversal

which simplifies to

E1 =
πρ0

k
, (3.11)

for phase 1. Energy defined in equation 3.10 is conserved for a particular phase as the
system of equations are conservative for every phase [KGN21].

3.2.1 Impedance Changing ITM

Using the conditions given by equation 3.9, we calculate the solution at t−ITM and
use them as initial conditions for the new equation where the material properties are
changed. In this case, we modify the material properties such that the velocities are
scaled while the impedance also changes. This is achieved by modifying the bulk
modulus while keeping the density constant. Using 3.8, we get the initial conditions for
the next phase of the simulation

(
t−ITM ≤ t ≤ t+ITM

)
at t−ITM as

p0
t−ITM

(x) = c0ρ0 cos
(
kx − c0kt−ITM

)
,

u0
t−ITM

(x) = cos
(
kx − c0kt−ITM

)
.

(3.12)

We now use these initial conditions and equation 3.8 with the updated wave velocity
and constant density to get the evolved solution for t−ITM ≤ t ≤ t+ITM. We used [The] to
perform the arithmetic simplifications. We obtain the solution for this period as

p2 (x, t) = −1
2
(n − 1) c0ρ0 cos

(
kx + c0knt − (c0kn + c0k) t−ITM

)
+

1
2
(n + 1) c0ρ0 cos

(
kx − c0knt + (c0kn − c0k) t−ITM

)
,

u2 (x, t) =
1
2
(n − 1) cos

(
kx + c0knt − (c0kn + c0k) t−ITM

)
+

1
2
(n + 1) cos

(
kx − c0knt + (c0kn − c0k) t−ITM

)
,

(3.13)

where n is the velocity scaling factor. We now use these expressions to calculate the
energy as we have already done in equation 3.10. This gives us the energy in the second
phase, i.e., t−ITM ≤ t ≤ t+ITM to be

E2 =
1
2

(
1 + n2) πρ0

kn2 . (3.14)

This shows that the energy drops when the velocity is scaled up. We then check the
relative drop in energy for different scaling factors and see that it asymptotes to 0.5 for
higher scaling factors. The variation of the ratio with the scaling factor can be seen in
figure 3.2.

Now, the velocity is scaled back to its initial value at t = t+ITM. By defining τ =

t+ITM − t−ITM, a similar calculation is performed to acquire the solution for the final phase,

18



3.2 ITM on a one-dimensional acoustic planar wave
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Figure 3.2: Relative Energy
(

E2
E1

)
in t−ITM ≤ t ≤ t+ITM.

i.e., t ≥ t+ITM, and the resulting solution is

p3 (x, t) = −
1
4 c0ρ0

(
−n2 + 1

)
cos

(
kx + c0kt − 2 c0kt−ITM − (c0kn + c0k)τ

)
n

−
1
4 c0ρ0

(
n2 − 1

)
cos

(
kx + c0kt − 2 c0kt−ITM + (c0kn − c0k)τ

)
n

−
1
4 c0ρ0

(
n2 − 2n + 1

)
cos (kx − c0kt + (c0kn + c0k)τ)

n

−
1
4 c0ρ0

(
−n2 − 2n − 1

)
cos (kx − c0kt − (c0kn − c0k)τ)

n
,

u3 (x, t) = −
1
4

(
n2 − 1

)
cos

(
kx + c0kt − 2 c0kt−ITM − (c0kn + c0k)τ

)
n

−
1
4

(
−n2 + 1

)
cos

(
kx + c0kt − 2 c0kt−ITM + (c0kn − c0k)τ

)
n

−
1
4

(
n2 − 2n + 1

)
cos (kx − c0kt + (c0kn + c0k)τ)

n

−
1
4

(
−n2 − 2n − 1

)
cos (kx − c0kt − (c0kn − c0k)τ)

n
.

(3.15)

Using these quantities, we now calculate the energy using the equation 3.10

E3 = −πρ0

(
1 + n4 − 2 n2) cos2 (c0knτ)−

(
1 + n4)

2 kn2 . (3.16)

The final energy E3 is dependent on the parameters: k, n, τ and is bounded as

πρ0

K
≤ E3 ≤ πρ0

2K

[
n2 +

1
n2

]
. (3.17)
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3 Time Reversal

This demonstrates that the application of ITM leads to a change in the energy of our
system. We compare the worst case scenario, i.e., what would be the maximum energy
increase after the ITM is applied. For that, we take the upper bound and plot the ratio
E3
E1

with n as we did before in figure 3.3.
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Figure 3.3: Maximum Relative Energy
(

E3
E1

)
in t ≥ t+ITM

The minimum value for this energy jump lies at n = 1, which means no velocity
scaling and no reflections. This particular scenario does not offer any practical utility or
relevance to our objective.

3.2.2 Constant Impedance ITM

We know that there is no reflected wave in space interfaces when the impedance stays
constant [LeV02, Sec 9.7]. Here, we test out the same with a time interface, i.e., we
perform ITM such that the velocities scale but the impedance stays constant. This is
achieved by scaling the wave speed by n and the density by 1

n . Similar to section 3.2.1,
we choose the initial conditions as

p0 (x) = Z0 cos (kx) ,

u0 (x) = cos (kx) .
(3.18)

Using these parameters, the energy is once again computed as in equation 3.10 and is
found to be

E1 =
πZ0

c0k
. (3.19)

Using the conditions given in equation 3.18, we calculate the solution at t−ITM and use
them as initial conditions for the new equation where the wave velocities are scaled.
In this case, we scale the velocities such that the impedance does not change. This is
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3.3 ITM on a 3D acoustic planar wave

achieved by scaling the density down. Using 3.8, we get the initial conditions for the
next phase of the simulation

(
t−ITM ≤ t ≤ t+ITM

)
at t−ITM as

p0
t−ITM

(x) = Z0 cos
(
kx − c0kt−ITM

)
,

u0
t−ITM

(x) = cos
(
kx − c0kt−ITM

)
.

(3.20)

We now use these as the initial conditions and equation 3.8 with the updated wave
velocity and constant density to get the evolved solution for t−ITM ≤ t ≤ t+ITM. We used
[The] to perform the simplifications for the arithmetic. We obtain the solution for this
period as

p2 (x, t) = Z0 cos
(
kx − c0knt + (c0kn − c0k)t−ITM

)
,

u2 (x, t) = cos
(
kx − c0knt + (c0kn − c0k)t−ITM

)
,

(3.21)

where n is the velocity scaling factor. We now use these expressions to calculate
the energy using equation 3.10. This gives us the energy in the second phase, i.e.,
t−ITM ≤ t ≤ t+ITM to be

E2 =
πz0

c0kn
. (3.22)

We obverse that there is no extra reflected wave and the wave speed is just increased
with a phase shift and that the energy is directly scaled down by the velocity scaling
factor.

Now, the velocity is scaled down again to its original value at t = t+ITM and defining
τ = t+ITM − t−ITM, we do a similar calculation to obtain the solution for the final phase,
i.e., t ≥ t+ITM as

p3 (x, t) = Z0 cos (kx − c0kt − (c0kn − c0k)τ) ,

u3 (x, t) = cos (kx − c0kt − (c0kn − c0k)τ) .
(3.23)

Using these quantities, we now calculate the energy using equation 3.10

E3 =
πZ0

c0k
, (3.24)

which is equal to E1. This shows that there is no final energy increase when the
impedance is kept constant. The final solution also has no reflected wave and has the
same wave speed as the initial wave and has a phase shift in time. This confirms that
even in time interfaces, similar to space interfaces there is no reflection.

3.3 ITM on a 3D acoustic planar wave

In this section, we calculate the analytical solution for a 3D Acoustic wave when an ITM
is applied from t−ITM to t+ITM.
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3 Time Reversal

To do this, we consider a three dimensional acoustic equation linearised over the
stationary state, where p is the pressure perturbation, K0 is the bulk modulus of the
material and u, v, w are the velocity perturbations in x, y, z respectively. This can be
written in consolidated matrix vector form as done for first order hyperbolic systems of
equations as

∂

∂t
q + A

∂

∂x
q + B

∂

∂y
q + C

∂

∂z
q = 0, (3.25)

where

q =


p
u
v
w

 , A =


0 K0 0 0
1
ρ0

0 0 0
0 0 0 0
0 0 0 0

 , B =


0 0 K0 0
0 0 0 0
1
ρ0

0 0 0
0 0 0 0

 , C =


0 0 0 K0

0 0 0 0
0 0 0 0
1
ρ0

0 0 0

 .

(3.26)

We assume an ansatz of

q (x, t) = q0 cos (k · x − ωt) , (3.27)

where k = (k1, k2, k3) is the wave number of the planar wave. Using the derivatives of
equation 3.25,

∂q
∂t

= ωq0 sin (k · x − ωt) ,

∂q
∂x

= −k1q0 sin (k · x − ωt) ,

∂q
∂y

= −k2q0 sin (k · x − ωt) ,

∂q
∂z

= −k3q0 sin (k · x − ωt) .

(3.28)

Substituting these back in the equation we get

(ω − Ak1 − Bk2 − Ck3) q0 sin (k · x − ωt) = 0. (3.29)

Dividing by sin (k · x − ωt) and rearranging the terms, we get

(Ak1 + Bk2 + Ck3) q0 = ωq0. (3.30)

This shows that ω is an eigenvalue of Â = Ak1 + Bk2 + Ck3 and q0 is an eigenvector.
The modified matrix Â would then be

Â =


0 K0k1 K0k2 K0k3

k1
ρ0

0 0 0
k2
ρ0

0 0 0
k3
ρ0

0 0 0

 , (3.31)
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3.3 ITM on a 3D acoustic planar wave

with the set of eigenvalues after replacing
√

K0
ρ0

with c

ω1 = −c
√

k2
1 + k2

2 + k2
3, ω2 = 0, ω3 = 0, ω4 = c

√
k2

1 + k2
2 + k2

3, (3.32)

and the eigenvectors after replacing ρ0

√
K0
ρ0

with Z0,

r1 =


1

− k1

Z0
√

k2
1+k2

2+k2
3

− k2

Z0
√

k2
1+k2

2+k2
3

− k3

Z0
√

k2
1+k2

2+k2
3

 , r2 =


0
1
0

− k1
k3

 , r3 =


0
0
1

− k2
k3

 , r4 =


1
k1

Z0
√

k2
1+k2

2+k2
3

k2

Z0
√

k2
1+k2

2+k2
3

k3

Z0
√

k2
1+k2

2+k2
3

 . (3.33)

For the sake of simplicity, we choose (k1, k2, k3) = (k, 0, 0) inducing our wave to
travelling along the x-axis. This makes our eigenvalues

ω1 = −kc, ω2 = 0, ω3 = 0, ω4 = kc. (3.34)

We get our eigenvectors as

r1 =


1

− 1
Z0

0
0

 , r2 =


0
0
0
1

 , r3 =


0
0
1
0

 , r4 =


1
1

Z0

0
0

 . (3.35)

We pick an initial condition that enforces that the wave travels in only one direction
at t = 0 i.e.,

q1 (x, t) =


1
1

Z0

0
0

 cos (kx − kct) . (3.36)

This wave form satifies our PDE in equation 3.25.
Now, applying ITM in phase 2 leads to a modified Â, as we make specific changes to

our material properties, specifically replacing K0 with n2K0. The modified matrix would
then be

Â2 =


0 K0n2 0 0
1
ρ0

0 0 0
0 0 0 0
0 0 0 0

 , (3.37)

with eigenvalues

ω2
1 = −nkc, ω2

2 = 0, ω2
3 = 0, ω2

4 = nkc, (3.38)
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and eigenvectors

r2
1 =


1

− 1
nZ0

0
0

 , r2
2 =


0
0
0
1

 , r2
3 =


0
0
1
0

 , r2
4 =


1
1

nZ0

0
0

 . (3.39)

At t = t−ITM, the solution is

q
(
x, t−ITM

)
=


1
1

Z0

0
0

 cos
(
kx − kct−ITM

)
. (3.40)

We use this solution as the initial condition for the next phase with the modified PDE.
We split this into a linear sum of the eigenvectors of the new flux matrix as

q1
(
x, t−ITM

)
= α2

1r2
1 + α2

2r2
2 + α2

3r2
3 + α2

4r2
4, (3.41)

with

α2
1 =

1
2

cos
(
kx − kct−ITM

)
(1 − n) ,

α2
2 = 0,

α2
3 = 0,

α2
4 =

1
2

cos
(
kx − kct−ITM

)
(1 + n) .

(3.42)

[LeV02, Sec 18.5] states that the solution for a linear hyperbolic system with an
eigenvector q̂ and an initial condition q0 = q̂ f (n · x) and eigenvalues of the system
would be q (x, t) = q̂ f (n · x − st). Using initial conditions from equation 3.40 and the
linear combindation of the eigenvectors, we get the solution for the second phase as

q2 (x, t) =
1
2


1

− 1
nZ0

0
0

 (1 − n) cos
(
kx + nkc

(
t − t−ITM

)
− kct−ITM

)

+
1
2


1
1

nZ0

0
0

 (1 + n) cos
(
kx − nkc

(
t − t−ITM

)
− kct−ITM

)
.

(3.43)
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We define the duration of ITM as τ = t+ITM − t−ITM, this makes the initial conditions
for our final phase as

q2
(
x, t+ITM

)
=

1
2


1

− 1
nZ0

0
0

 (1 − n) cos
(
kx + nkcτ − kct−ITM

)

+
1
2


1
1

nZ0

0
0

 (1 + n) cos
(
kx − nkcτ − kct−ITM

)
.

(3.44)

The flux matrix, eigenvalues and eigenvectors of the final phase are identical to those
of the first phase. We use the initial conditions in equation 3.44 and split the initial
conditions into a linear sum of the eigenvectors of the flux matrix similar to what we
have done in equation 3.41. We get the new coefficients for this phase as

2n
n2 − 1

α3
1 (kx) = cos (kx) sin (knτc) sin

(
kt−ITMc

)
− cos

(
kt−ITMc

)
sin (knτc) sin (kx),

α3
2 = 0,

α3
3 = 0,

2nα3
4 (kx) =

(
2 n cos (knτc) cos

(
kt−ITMc

)
−

(
n2 + 1

)
sin (knτc) sin

(
kt−ITMc

))
cos (kx)

+
((

n2 + 1
)

cos
(
kt−ITMc

)
sin (knτc) + 2 n cos (knτc) sin

(
kt−ITMc

))
sin (kx) .

(3.45)

The final solution for the third phase is then given by

q2 (x, t) =


1

− 1
Z0

0
0

 α3
1
(
kx + kc

(
t − t+ITM

))
+


1
1

Z0

0
0

 α3
4
(
kx − kc

(
t − t+ITM

))
. (3.46)

This shows that the final wave solution obtained after ITM has both a forward and a
backward going component. This is similar to the solution obtained in section 3.2.1.

3.4 Implementation

This section outlines the extension incorporated into SeisSol required for the implemen-
tation of ITM. The implemenetation has been designed in a generic way, ensuring that
the current code can be easily reused for future experiments.

In order to create a time-reversed wave, the material properties of the medium
must be altered as described in the previous sections. This can be accomplished via
modifications to the Lamé parameters and density from t−ITM to t+ITM that correspond
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3 Time Reversal

with the intended reflection. As previously discussed, an alteration to the impedance
is required to guarantee the presence of a reflected wave component [LeV02, Sec 9.8].
Consequently, we will present various techniques for achieving this impedance change.

3.4.1 Reflecting both P- and S-waves by changing their velocities

The first approach is to change the velocities of both P- and S-waves. This is accomplished
by modifying the Lamé parameters λ and µ from t−ITM to t+ITM as

λ̂ = n2λ,

µ̂ = n2µ,

ρ̂ = ρ.

(3.47)

This changes the velocities and impedances of both the waves during the duration of
the ITM as

v̂p = nvp,

v̂s = nvs,

Ẑp = nZp,

Ẑs = nZs.

(3.48)

where v̂p, v̂s, Ẑp, Ẑs are the velocities and impedances of the P- and S-waves during the
ITM duration and vp, vs, Zp, Zs are the velocities and impedances of the P- and S-waves
outside of the ITM duration.

3.4.2 Reflecting both P- and S-waves by keeping their velocities constant

Here, we keep the velocities of both P- and S-waves constant but yet change their
impedance by manipulating density along with the Lamè parameters. This is achieved
by the following manipulation of the material properties

λ̂ = nλ,

µ̂ = nµ,

ρ̂ =
ρ

n
.

(3.49)

This changes the impedances of both the waves during the duration of the ITM as

v̂p = vp,

v̂s = vs,

Ẑp = nZp,

Ẑs = nZs.

(3.50)
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3.4 Implementation

3.4.3 Reflecting only P-wave

This is achieved by changing the Lamé parameter λ and keeping µ constant from t−ITM
to t+ITM

λ̂ = nλ,

µ̂ = µ,

ρ̂ = ρ.

(3.51)

The scaling of velocities and impedances of the P-wave in this case are not straightfor-
ward

v̂p =

√
λ̂ + 2µ

ρ
,

Ẑp =
√

ρ
(
λ̂ + 2µ

)
,

v̂s = vs,

Ẑs = Zs.

(3.52)

Although the specific scaling relationship is not clear, as observed in previous cases, it
is evident that there is a difference in impedance of P-wave during ITM, resulting in its
reflected component whilst leaving the S-wave unaffected.

3.4.4 Reflecting only S-wave

Ensuring that the impedance of S-wave changes while not affecting the P-wave’s
impedance is essential for reflecting only S-waves. This is the trickiest reflection we try
to achieve. The solution to this is not unique but the one that worked for us the best is

λ̂ =
λ + 2µ

n
− 2nµ,

µ̂ = nµ,

ρ̂ = nρ.

(3.53)

The scaling of velocities and impedances of both the waves in this case are

v̂p =
vp

n
,

Ẑp = Zp,

v̂s = vs,

Ẑs = nZs.

(3.54)

This case is a demonstration where the speed of the wave changes and yet, there will
be no reflection of the wave in time as the impedance is constant. Similarly, for the
S-wave, even though there is no change in the wave speed, the change of impedance
causes the reflection of the wave in time.
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3 Time Reversal

3.4.5 Time Step Size

Courant-Friedrichs-Lewy (CFL) condition is generally used to limit the maximum time
step of an element for explicit time integration schemes. These are influenced by the
order of convergence, occuring wave speeds and size of the considered element.

SeisSol uses Local Time Stepping (LTS) schemes for explicit time-stepping. The LTS
scheme uses different time steps for different elements in our mesh. SeisSol clustures
the elements to reduce the heterogeneity of the LTS algorithm. The clusters summarize
the elements in the computational domain advancing with a common time step. We
need to modify this common time step of all the clusters accordingly when the material
properties are changed as this modification changes the speeds of propagation of the
waves. For more details on LTS schemes, interested readers are referred to [Bre15],
[DKT07], [CKT09], [Rie+15], [Sen+14], [GLM08], [WK14], [Sch+09].

If the cluster i has the time step dti, this is how the time step is modified for the ITM
duration in different cases

Reflecting both the P- and S-waves by changing their velocities or reflecting just the
P-wave

In this case, we just need to scale down the time step by the same factor as the velocities
of the waves. So, the time step for the cluster i is scaled as

d̂ti =
dti

n
, (3.55)

where d̂ti is the time step of cluster i during the ITM duration.
Here, we notice that in case of reflecting just the P- wave, we still scale by the factor

n even though the velocity is not exactly scaled by n. This is to maintain simplicity
in the code as the scaling of the velocities of just the P-wave is not straightforward.
Nevertheless, CFL condition is still satisfied with this scaling.

Reflecting both the P- and S-waves by keeping their velocities constant

In this case, we do not need to scale down the time step by the factor n as the velocity is
not scaled here but only the impedance of the waves. So, the time step for the clusters
are unchanged in this scenario.

d̂ti = dti. (3.56)

Reflecting only the S-wave

Here, we need to scale up the time step by the factor n as the velocity of the P-wave is
scaled down by the factor n to ensure that the simulation still follows CFL condition in
case of a scaling factor less than 1, i.e., n < 1. So, the time step for the cluster i is scaled
as

d̂ti = n dti. (3.57)
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3.5 Summary

3.4.6 Summary of the Implementation

The implementation of ITM in SeisSol is done in a generic way such that it can be used
for any of the above mentioned scenarios. Material modifications for ITM for different
scenarios are discussed and the corresponding time step size modifications to keep the
simulation stable are also presented. Material modifications are done such that the
impedance of only the wave(s) we intend to reflect is changed. The time step size is
modified such that the CFL condition is satisfied for every phase of the simulation.

3.5 Summary

In this chapter we have discussed the theory of time reversal in the context of seismic
waves. We have looked at how an ITM affects a travelling acoustic wave in one dimension
and three dimensions. We concluded that we need a shift in impedance rather than
velocity of the wave to have a time reflection. We then discussed the implementation of
the ITM method in SeisSol.
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4 Results and Discussion

This chapter presents and analyses the results obtained from applying the ITM on
seismic waves. We begin by examining the travelling planar wave before addressing
point sources. As a starting point, the time-reversal is analysed in an acoustic media
with an initial condition as a travelling planar P-Wave in section 4.1. The second part
deals with the time-reversal of a velocity impulse point source in an acoustic medium.
The third part deals with the time-reversal of a velocity impulse point source in an elastic
medium with refocusing of both P- and S-waves together and separately in sections
4.2 to 4.5. In sections 4.6 and 4.7, we demostrate the application of ITM in reversing
waves generated by moment tensors. In all the cases, we check if the refocused wave
will converge to the location of the source with the same speed as the original wave. We
analyse all cases with a homogenous medium to deliver on a sound proof of concept of
the ITM being useful to refocus different kind of waves. We used a modification of our
benchmark test problem, WP2-LOH1 to show refocusing in realistic media.
To wrap up, we perform a convergence test to check the correctness of our ITM imple-
mentation with the analytical solutions derived in section 3.3.

4.1 Time-reversal of a travelling planar P-wave

The acoustic case is a simplification of propagation in an elastic medium. The second
Lamé parameter µ is set to zero. The medium is characterized by

ρ = 4, µ = 0, λ = 1. (4.1)

The propagation speed of the P-wave in this case is given by

vp =

√
λ + 2µ

ρ
=

√
1
4
=

1
2

. (4.2)

We impose an initial condition such that there is a P-Wave travelling towards the
negative x-axis. The details on how the initial conditions are set up to ensure a left
going P-wave is discussed in Travelling Wave: SeisSol1. We impose a P-Wave with
a wavelength of λ = 1.0. This gives us a timeperiod of T = 2.0. We choose a cubic
computational domain of [-1, 1] in all three directions with periodic boundary conditions
with the triangular mesh shown in figure 4.1 which contains 163840 triangular elements.

1https://seissol.readthedocs.io/en/latest/initial-condition.html#travelling-wave
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4 Results and Discussion

Figure 4.1: Mesh used for the simulation of a travelling planar wave in acoustic medium
with ITM

We start our initial travelling wave at the origin and our wave travels to the boundary
in t = 1

2 . We start our ITM at t = 2 such that the reversed wave will travel back to the
origin at t = 4.0 to meet the forward going wave.

Figure 4.2 shows the evolution of the wavefield in time. We notice that there is a
reflection of the forward going wave and it meets the forward going wave at the origin
at t = 4.0. This is a proof of concept that the ITM can be used to refocus waves in an
acoustic media.

To observe the refocusing in a clearer way, we choose a slice perpendicular to the
z-axis at the origin and plot the wavefield in terms of u-velocity along the x-axis at
different times in figure 4.3. We can see that at t = 2.0, there is a reflected component
along with the forward component. At t = 3.0, i.e., half the time-period after the
application of the ITM, the reflected component interacts with the forward wave for the
first time. This shows that in half the time-period, the reflected wave travelled half the
wave length interacting with the forward travelling wave. At t = 4.0, the reflected wave
has travelled the entire wave length and is refocused at the origin.

4.2 Time-reversal of wave created by a velocity impulse point
source in acoustic media

We now consider a velocity impulse point source in an acoustic medium. We pick the
Lamé parameter λ, density ρ from the half-space of the benchmark case WP2-LOH11 to

1https://seissol.readthedocs.io/en/latest/pointsource.html
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4.2 Time-reversal of wave created by a velocity impulse point source in acoustic media

(a) t=0

(b) t=1.0 (c) t=2.0

(d) t=3.0 (e) t=4.0

Figure 4.2: ITM applied on a travelling planar wave in an acoustic media.
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Figure 4.3: Space-time plot for Acoustic Travelling Wave with ITM. We take a slice
perpendicular to the z-axis at the origin and plot the u-velocity along the
x-axis at different times.

make it a homogenous acoustic medium. The medium is characterized by

ρ = 2700.0,

µ = 0.0,

λ = 3.24038016 · 1010.

(4.3)

This makes the velocity of the P-wave to be

vp =

√
3.24038016 · 1010

2700
≈ 3464. (4.4)

We choose a computational domain of [−26000, 32000]× [−26000, 32000]× [0, 34000]
and a simulation time of t = 10.0 with ITM applied at t = 5.0 such that the origi-
nating waves do not reflect back from the boundaries at the x- and y-axis ensuring
that reflections due to ITM are clearly noticeable. Our velocity impulse source is at
(3000, 3000, 17000), the center of the domain. We have used an unstructured tetrahedral
mesh with around 1.4 million elements. We have used more refinement in the region
close to the source to capture the steep gradients as in figure 4.4.

The source term is given as

Ṡ =
1

T2 te−
t
T ,

Si = Ṡ × Ci,
(4.5)
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4.2 Time-reversal of wave created by a velocity impulse point source in acoustic media

Figure 4.4: Example mesh for simulations with a point source acting as a velocity pulse.
We have a finer mesh near the source and a coarser mesh away from the
source.

where T is a constant to decide the duration of the source approximately. This source is
then applied to equations 7 to 9 in equation 2.14 as per the direction i. i is the direction
of the source. i = 7 is a source applied in x-direction, i = 8 is a source applied in
y-direction and i = 9 is a source applied in z-direction.

We choose T=0.1 and the source to be in the z-direction with C7 = 0, C8 = 0, C9 =

1.2 · 1016. With this, our source looks like in figure 4.5
We pick a slice at (3000, 3000, 20000), i.e., 3000 away from the source location in

z-direction. We plot the u-velocities along the x-axis at different times on this slice. With
this setup and velocity impulse, we see that the velocity in x-direction looks like in
figure 4.6.

We notice that we have only one wave propagating in time as expected as we have
an acoustic medium and it reaches our slice around t = 1.5. We have observed an
unexpected stationary velocity in the vicinity of the source, which requires a thorough
investigation with SeisSol. But it does not affect our refocusing and has nothing to do
with our application of ITM. We now apply ITM on the same setup at t = 5.0. The
wavefield looks like in figure 4.7.

We notice that there is a reflected wave travelling back to the source which leaves our
slice around t = 8.5, showing that the reflected wave is reflected along the line t = 5.0,
which is our point in time when we applied the ITM. In figure 4.7b, we plot the expected
location of the wave front from the forward going and reflected waves assuming that
they are spherical waves and they have equal speeds but in opposite directions. It is
clear that the reflected wavefronts coincide with the expected locations of the wavefronts.
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Figure 4.5: Source term used for velocity impulse point source applied to z-velocity
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Figure 4.6: Space-time plot for wave produced by velocity impulse point source in
acoustic media. We take a slice at (3000, 3000, 20000) perpendicular to the
z-axis and plot the u-velocity along x-axis at different times.
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(a) Wave produced by velocity impulse in acous-

tic media with ITM
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(b) Expected location of forward and reflected
waves in time. The dashed lines denote the
expected location of the wavefronts at given
time.

Figure 4.7: Space-time plot for wave produced by velocity impulse point source in
acoustic media with ITM. We take a slice at (3000, 3000, 20000) perpendicular
to the z-axis and plot the u-velocity along x-axis at different times.

This confirms our hypothesis that the reflected wave has the same speed as the forward
going wave. This also confirms that the application of ITM produces a reflected wave
successfully in acoustic media.

4.3 Time-reversal of waves created by a velocity impulse point
source in elastic media

Here, we apply a velocity impulse point source like in section 4.2 but on an elastic
medium. We choose the material parameters from the half-space of the benchmark case
WP2-LOH11 to make it a homogenous elastic medium. The material parameters are
characterized by

ρ = 2700.0,

µ = 3.23980992 · 1010,

λ = 3.24038016 · 1010,

(4.6)

which makes the velocities of P- and S-waves to be

vp = 6000.0,

vs = 3464.0.
(4.7)

In this case we extend our computational domain even further to [−104000, 128000]×
[−104000, 128000]× [0, 136000] and a simulation time of t = 18.0 with ITM applied at

1https://seissol.readthedocs.io/en/latest/pointsource.html
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t = 9.0 such that the originating waves do not reflect back from the boundaries at the x-
and y-axis ensuring that reflections due to the ITM are clearly noticeable. Our velocity
impulse source is at (12000, 12000, 68000), the center of the domain. We chose to analyse
the simulation for a longer time in this scenario such that the S-wave reaches the slice.
We choose an unstructured tetrahedral mesh with around 13 million elements similar to
the acoustic case. We apply a source which has already been discussed in equation 4.5
and figure 4.5.

We pick a slice at (12000, 12000, 40000) and visualise the wavefield with velocity in
x-direction and the displacement along the x-axis. With this setup and velocity impulse,
we see that the velocity in x-direction looks like in figure 4.8.
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Figure 4.8: Space-time plot for waves produced by velocity impulse point source in
elastic media. We take a slice at (12000, 12000, 40000) perpendicular to the
z-axis and plot the u-velocity along x-axis at different times.

We integrate the obtained velocity field to plot displacement field in x-direction as
shown in figure 4.9.

We can clearly notice two propagating waves as expected as we are dealing with an
elastic medium now. We notice a static displacement field in between the two waves.
This is a common phenomenon in displacement fields built with simulation codes in
seismic simulations. We now apply ITM on the same setup at t = 9.0. The wavefield
with the application of the ITM looks like in figure 4.10.

We notice that there are two clearly reflected waves travelling back to the source. The
faster moving wave i.e., P-wave leaves our slice around t = 13.0 which is around 4
seconds after the application of ITM which is the time it travelled through the slice just
before the application of ITM. The slower moving wave, i.e., S-wave also has a reflection
symmetric about line t = 9.0. We now plot the displacement plot in x-direction on the
slice just like we did in figure 4.9 in figure 4.11.
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Figure 4.9: Space-time plot for waves produced by velocity impulse point source in
elastic media. We take a slice at (12000, 12000, 40000) perpendicular to the
z-axis and plot the displacement in x-direction along x-axis at different times.
We integrate the velocity field to obtain the displacement field.

100000 50000 0 50000 100000
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

tim
e

10

5

0

5

10

u-
ve

lo
cit

y

Figure 4.10: Space-time plot for waves produced by velocity impulse point source in
elastic media with ITM. We take a slice at (12000, 12000, 40000) perpendic-
ular to the z-axis and plot the u-velocity along x-axis at different times.
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Figure 4.11: Space-time plot for waves produced by velocity impulse point source in
elastic media with ITM. We take a slice at (12000, 12000, 40000) perpendic-
ular to the z-axis and plot the displacement in x-direction along the x-axis
at different times. We integrate the velocity field to obtain the displacement
field.

We see two reflections even in case of the displacement wavefield too and the static
displacements between the two waves persist. But we see extra features here in case
of the displacement wavefield. We obtain extra static displacements in time as vertical
streaks which originate from the point where the waves meet the slice at ITM. These
are not yet explained but we suspect they may be explained either by the physical
phemonenon or due to the numerical implementation or due to errors produced to
numerical integration of the velocity wavefields.

This shows that both the waves can be reflected simultaneously by scaling the material
parameters to change their impedance to obtain a component which is reflected back to
its source.

4.4 Time-reversal of P-wave created by a velocity impulse point
source in elastic media

We now demonstrate the reflection of just the P-wave by scaling the Lamé parameter λ

and keeping the second Lamé parameter µ constant.
The same setup is used as in section 4.3 and we try to reflect just the P-wave while

letting the S-wave travel unaffected in time. The slice and everything else about the
simulation setup remain the same. The wavefields without ITM are given in figures 4.8
and 4.9
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4.5 Time-reversal of S-wave created by a velocity impulse point source in elastic media

After the application of the ITM, we see a reflection in the wavefield in figure 4.12.
As the reflection in figure 4.12 is visible but is faint, we plot the same with a different
colorbar just to show the reflection in a clearer way as depicted in figure 4.13
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Figure 4.12: Reflection of P-wave in elastic Media with ITM. We take a slice at
(12000, 12000, 40000) perpendicular to the z-axis and plot the u-velocity
along the x-axis at different times.

We can clearly see here in this plot that there is a P-wave which is reflected without
affecting the S-wave. This provides us a proof of concept where we can reflect one wave
by changing its impedance while maintaining the other wave’s impedance constant.

We plot the displacement wavefield in figure 4.14 and we can see the reflected P-wave
in displacement wavefield and the static displacement is noticed in this case too just like
in the case of reflecting both the waves.

4.5 Time-reversal of S-wave created by a velocity impulse point
source in elastic media

In this section, we demonstrate the reflection of just the S-wave by modifying the Lamé
parameters such that P-wave does not get reflected but the S-wave does. The same setup
is used as in section 4.3. The wavefields without ITM are given in figures in 4.8 and 4.9.

After the application of the ITM, we see reflections in the wavefield in figure 4.15
showing the zoomed version near the ITM so that the reflected part is clearly visible in
figure 4.15b.

We plot the displacement wavefield in figure 4.16 and we can see the reflected S-wave
in displacement wavefield and the static displacement like in previous section persists.
We need more investigation into this to understand this static displacement.
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Figure 4.13: Reflection of P-wave in elastic media with ITM. We take a slice at
(12000, 12000, 40000) perpendicular to the z-axis and plot the u-velocity
along the x-axis at different times. We use a different colorbar from figure
4.12 to show the reflection more clearly.
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Figure 4.14: Reflection of P-wave in elastic media with ITM. We take a slice at
(12000, 12000, 40000) perpendicular to the z-axis and plot the displacement
in x-direction along the x-axis at different times. We integrate the velocity
field to obtain the displacement field.
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(a) Reflecting S-wave in elastic media. We take a
slice at (12000, 12000, 40000) perpendicular
to the z-axis and plot the u-velocity along
the x-axis at different times.
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(b) Zoomed cut section of figure 4.15a to show
the reflected S-wave more clearly.

Figure 4.15: Reflection of S-wave in elastic media with ITM. We take a slice at
(12000, 12000, 40000) perpendicular to the z-axis and plot the u-velocity
along the x-axis at different times.
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Figure 4.16: Reflection of S-wave in elastic media with ITM. We take a slice at
(12000, 12000, 40000) perpendicular to the z-axis and plot the displacement
in x-direction along the x-axis at different times. We integrate the velocity
field numerically to obtain the displacement field.
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4 Results and Discussion

We see here in figure 4.15 that there is a S-wave which is reflected without affecting
the P-wave. This provides us a proof of concept where we show that we can reflect
one wave by changing its impedance while maintaining the other wave’s impedance
constant.

4.6 Time-reversal of wave created by a pressure impulse point
source in acoustic media

We choose the same material and mesh as in section 4.2 and change the source term to
a pressure impulse. A pressure impulse source term is a moment tensor with all non-
diagonal elements zero and equal diagonal elements [She19, Cha. 9]. These are applied
to the first three equations of the set of equations 2.14. An exponentially decaying source
is chosen similar to the source in section 4.2. With this setup, the normal propagation of
the wave looks at a slice which is already explained in section 4.2 like in figure 4.17.
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Figure 4.17: Space-time plot for wave produced by pressure impulse point source in
acoustic media. We take a slice at (3000, 3000, 20000) perpendicular to the
z-axis and plot the u-velocity along the x-axis at different times.

We notice that we have only one wave propagating in time as expected as we have an
acoustic medium and it reaches our slice around t = 1.5. We now apply ITM at t = 5.0
and the wavefield looks like in figure 4.18.

We notice that there is a reflected wave travelling back to the source. The reflected
wave leaves our slice around t = 8.5, showing that the reflected wave is reflected along
the line t = 5.0, which is our point in time when we applied the ITM. This confirms that
the application of ITM produces a reflected wave successfully in acoustic media even
when the waves are created by pressure impulse point sources.
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Figure 4.18: Space-time plot for wave produced by pressure impulse point
source in acoustic media with ITM. We take a slice at
(3000, 3000, 20000)perpendicular to the z-axis and plot the u-velocity along
the x-axis at different times.

4.7 Time-reversal of waves created by a force couple moment
tensor in elastic media

We now apply a force couple moment tensor as a source term in an elastic medium. [She19,
Sec. 9.2] defines a force couple moment tensor as

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (4.8)

where Mij is a pair of opposing forces pointing in i-direction, separated in the j-
direction. The condition that angular momentum is conserved requires that Mij = Mji.
As a consequence, M has only six independent elements. The moment tensor is applied
to the first six equations of the set of equations 2.14 as per the direction it is to be
applied [KMD07].

4.7.1 Moment tensor with non-diagonal elements zero

We begin with a moment tensor which has only diagonal elements not equal to each
other. The material parameters and simulation setup are the same as in section 4.3. The
moment tensor chosen is
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4 Results and Discussion

M =

0.9 0.0 0.0
0.0 0.1 0.0
0.0 0.0 −0.1

× 1019. (4.9)

With this setup, the space-time plot at the slice chosen looks as shown in figure 4.19.
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Figure 4.19: Space-time plot for waves produced by force couple moment tensor

with non-diagonal elements zero in elastic media. We take a slice at
(12000, 12000, 40000) perpendicular to the z-axis and plot the u-velocity
along the x-axis at different times.

We now apply ITM at t = 9.0 and notice that both the waves are reflected as expected
in figure 4.20.

As expected, there are two reflections in the wavefield. This confirms that ITM could
be used to obtain a reversed wave in case of waves generated by a force couple moment
tensor.

4.7.2 Moment tensor with non-diagonal elements non-zero

We now use a moment tensor obtained from a seismic event that occured near Tori
Shima, Japan [Kan+93], [She19]. To obtain stable results, the isotropic component is
constrained to zero as

M =

 −1.8 −0.38 −0.96
−0.38 −1.9 0.62
−0.96 0.62 3.7

× 1017. (4.10)
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Figure 4.20: Space-time plot for waves produced by force couple moment tensor with
non-diagonal elements zero in elastic media with ITM. We take a slice
at (12000, 12000, 40000) perpendicular to the z-axis and plot the u-velocity
along the x-axis at different times.
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Figure 4.21: Space-time plot for waves produced by force couple moment tensor
with non-diagonal elements in elastic media. We take a slice at
(12000, 12000, 40000) perpendicular to the z-axis and plot the u-velocity
along the x-axis at different times.
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With this setup, the space-time plot at the slice chosen looks as shown in figure 4.21.
We now apply ITM at t = 9.0 and notice that both the waves are reflected as expected

in figure 4.22.
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Figure 4.22: Space-time plot for waves produced by force couple moment tensor with
non-diagonal elements in elastic media with ITM. We take a slice at
(12000, 12000, 40000) perpendicular to the z-axis and plot the u-velocity
along the x-axis at different times.

As expected, there are two reflections in the wavefield. This confirms that ITM could
be used to obtain a reversed wave in case of waves generated by a force couple moment
tensor even when there are non-zero non diagonal elements.

4.8 Convergence Test

We now perform a convergence test to verify that our ITM implementation is accurate
and converges with our ADER-DG scheme. We check the error between our numerical
implementation and the analytical solution developed in section 3.3. The mesh is setup
with equal triangular elements on a cubic domain of [−1, 1]× [−1, 1]× [−1, 1] with the
number of elements in each direction varying in [4, 8, 16, 32, 64, 128]. We calculate the L2

error of u-velocity of the solution with respect to the analytical solution as per section
3.3. We calculate this error for different polynomial orders within [1, 2, 3, 4, 5] used in
the reference element of the DG scheme. We expect a convergence order of p + 1 where
p is the polynomial order used in the DG scheme used [CKS11]. We now plot the L2

error norm of u-velocity in figure 4.23.
We notice that the slope of the curve increases as expected with increasing order of

the polynomial. In case of order 5, there is a slight increase of error for grid size 128.
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Figure 4.23: Convergence plot for L2 norm of u-velocity for acoustic travelling wave
with ITM. The error is calculated with respect to the analytical solution in
section 3.3.

This is suspected to be due to the error plateauing as the precision hits the floating point
precision. We perform a linear fit on the log-log plot to get a slope such that we can
check the convergence order of the plot. We remove the last point from the fit for p = 5
as it is suspected to be an outlier. We get the following convergence orders for different
polynomial orders shown in table 4.1 and figure 4.24.

Table 4.1: Convergence order vs polynomial order obtained from the convergence study
of acoustic travelling wave with ITM

.

Polynomial Order Convergence Order
1 2.13
2 3.15
3 4.00
4 5.03
5 5.77

We now plot the expected error with the expected convergence order vs the actual error
during the simulations in figure 4.25.

We notice that our numerical error agrees with the expected theoretical error well.
This concludes the correctness of our implementation of ITM in SeisSol with ADER-DG.
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Figure 4.24: Linear fit of log
(

L2) and log (gridsize) plot for acoustic travelling wave
with ITM. Dashed lines denote the linear fit of the logarithms. The slope of
the dashed lines denotes the obtained convergence order. The outlier for
p = 5 is removed from the fit.
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Figure 4.25: Expected L2 norm vs actual L2 norm for acoustic travelling wave with
ITM. Solid lines denote the original error where as the dashed lines are
the expected error. The expected error is calculated with the expected
convergence order as the slope and the mean of logarithms of errors as the
intercept of the line.
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4.9 Discussion

4.9 Discussion

In this chapter, we looked at the results obtained from applying the ITM on seismic
waves. We began with the reflection of a travelling planar wave in acoustic media and
then moved on to spherical waves generated by a velocity impulse point source in acous-
tic and elastic media. We then looked at the reflection of just the P-wave and S-wave
separately to show that we can reflect just one wave by changing its impedance while
keeping the other wave’s impedance constant. In the end, we ran a convergence study
of our implementation with the analytical solution obtain in section 3.3 to conclude that
our implementation is convergent with the expected convergence order.
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5 Conclusion and Future Research Outlook

In this thesis, we implemented and analysed the wavefield reversal method ITM in the
numerical simulation software SeisSol. We first presented the basic theory of elastic
wave propagation and the numerical ADER-DG scheme used in SeisSol in chapter 2. We
then presented the theoretical foundation of the ITM method in chapter 3, the expected
solutions for a simple one dimensional case in section 3.2 and the wavefield reversal for
a three dimensional wave in acoustic medium in section 3.3. The energy behaviour of
the ITM method was analysed for different phases of the ITM. We then presented the
implementation details of the ITM method in SeisSol in section 3.4. The implementation
details for different wave reversal scenarios were discussed in sections 3.4.1, 3.4.2, 3.4.3,
3.4.4 and the required modifications for the time step size were discussed in section 3.4.5.

Finally, we presented the results of various studies conducted to analyse the effects
of different scenarios on the wavefield reversal in chapter 4. We first reverse a planar
acoustic wave in a homogeneous medium in section 4.1 and analyse the reversal to
verify that the reversed and forward waves have identical speeds as expected from the
analytical soutions. We later reverse spherical waves generated by point sources in
WP2-LOH1 case, modified to make the medium homogeneous, in acoustic and elastic
media in sections 4.2 and 4.3. We verify that the reversal of just one wave is possible
while letting the other wave stay forward propagating in sections 4.4 and 4.5. We then
verify that our implementation in SeisSol is converging by verifying the numerical
results with the analytical solutions developed is increased in section 4.8. We notice
that the numerical results are converging faster to the analytical solutions as the poly-
nomial order of the DG scheme increases. This verifies that the ITM method proposed
by [Bac+16] on waterwaves can be applied analogously on seismic waves to obtain a
reversed component retracing them to the source.

Currently, the ITM parameters are heuristically determined. As part of future research,
analytical solutions for the spherical waves produced by point sources may be calculated
to select the appropriate parameters for ITM. More complex scenarios and wavefield
reversal in heterogeneous media can be studied. The ITM method may be used to study
the effects of different wave propagation properties on the wavefield reversal. ITM
approach and its implementation for other scenarios like anisotropic, viscoelastic and
poroelastic media can be studied. Noise in the simulation data obtained during the
reversal process could be filtered out to obtain a clearer refocusing pattern and more
accurate analysis in the phase shift could be performed.
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Abbreviations

TRM Time Reversal Mirror

ITM Instantaneous Time Mirror

DG Discontinuous Galerkin

ADER Arbitrary high-order schemes using DERivates

DG-FE Discontinuous Galerkin Finite Element

RK-DG Runge Kutta Discontinuous Galerkin

CFL Courant-Friedrichs-Lewy

LTS Local Time Stepping

PDE Partial Differential Equation
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