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Abstract

Software integration is a crucial aspect of complex project development, enabling
disparate software systems to function seamlessly together. This thesis addresses the
challenges of integrating navigational software into middleware for aerospace projects,
focusing on achieving a high degree of automation within the MATLAB development
environment in terms of a C++ autogeneration workflow.

The complexity of today’s technological landscape necessitates the collaboration of
specialized teams working on different aspects of a project. Integrating their contri-
butions can be labor-intensive and time-consuming, particularly when dealing with
evolving revisions and requirements. To address this, automated integration techniques
have gained popularity for enhancing development speed and efficiency.

This thesis presents a (semi-)automated integration process designed for navigational
software within an aerospace project, utilizing a proprietary middleware called Si2.

The target platform for deployment is the DuraCOR 311 Mission Computer, manu-
factured by Curtiss-Wright, and destined for a flying testbed.

The development process of the navigational software adheres to the V-Model, with
all activities centered around an Interface Control Document (ICD) that defines the
interface, and hence, the data structures exchanged between the navigational software
and its sensors. The integration procedure leverages these ICD-based assumptions
to achieve, among others, these goals: A high degree of automation, integration of
the workflow within MATLAB, maintainability and adaptability, separation between
development and target platforms.

The final result is a user-friendly "drop and forget" solution for the integration
process, streamlining the generation of Si2 projects on the target platform. However,
this high level of automation relies on specific assumptions that must hold true and are
discussed in the thesis.

Additionally, the thesis presents a simple validation method using a specialized
model inside Si2 to replay test vectors and compare expected values against actual
output. Finally, a field test involving real sensors demonstrates the viability of the
integration approach in a real-world scenario.

This thesis provides insights into (semi-)automated software integration for aerospace
projects, offering a practical solution that balances automation and flexibility in the
development process.
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1 Introduction

Software integration is essential for the successful development of larger projects, as
it enables separate software (sub-)systems to work harmoniously together. In today’s
complex technological landscape, no single application can fulfill all the requirements
of a comprehensive project – especially not if highly specialized domain knowledge
and focus on key functionality are split to different teams with different skill sets.

One key challenge when developing large (software) projects is putting the single
pieces together so that they can run in tandem as planned. This can be a cumbersome
and time-consuming process, especially if this step has to be performed multiple times
in the course of the development process under changing revisions of implementations
or even requirements.

This is the reason why techniques like automated integration up to so-called continu-
ous integration are getting more and more popular (see: [Hil+16]). Additional benefits
of an integration process which can be performed ad-hoc as needed is that it supports
quick validation of the system as a whole. All of this increases development speed and
efficiency, taking tedious and repetitive tasks out of the equation, enabling developers
and engineers to focus on their actual work.

This thesis describes a (semi-)automated integration process for navigational software
in the area of an aerospace project into middleware called Si2 developed by Airbus De-
fence and Space GmbH which is then installed and run on a DuraCOR 311 Mission
Computer, which, in turn, is going to be deployed to a flying testbed.

1.1 Problem Statement

A (semi-)automated integration procedure for navigational software by Airbus shall
be developed which can be triggered ad-hoc by the developers of the mentioned
software on the development machines without leaving MATLAB, which is their
main development environment. Additionally, a method for validation and a final
demonstration test incorporating real sensors on the target platform had to be developed
and conducted, respectively.

Now follows a short overview of the development process into which the integration
procedure itself is to be integrated, then the requirements, restrictions, and goals are
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1 Introduction

defined, followed by short introductions of the middleware Si2 and the DuraCOR 311
target platform. Finally, the results of this thesis are summarized.

The whole project of the navigational software follows the well-known V-Model
which is commonly used in larger companies, especially when an interplay between
hardware and software is part of the project. For a thorough description of the activities
in the V-Model, see [BD04, p. 653f].

Figure 1.1: This thesis can be located on the "right arm" of the V – it incorporates the
integration and validation parts. Source: [Osb+05]

All development activities are centered around an Interface Control Document (ICD):
A document serving as the "single source of truth", describing data structures, signals,
sensors, and their parameters etc. All artifacts – be they code or other documents – are
derived from the ICD and must adhere to the information specified there. This is also
called ICD driven development.

This style of development not only benefits the fulfillment of requirements in all
parts of the final system, but also an automated integration process since the definitions
stemming from the ICD can be assumed to always hold. The procedure described in
this thesis makes heavy use of assumptions on the structure of the ICD in order to
reach, hold and/or maximize the following goals and restrictions:

• High Degree of Automation: The integration procedure shall be executable
without much manual labor

2



1 Introduction

• Integration into the already existing development process: The integration
procedure shall be executable alongside the already existing MATLAB code
generation workflow inside MATLAB

• Maintainability / Adaptability: If changes to the ICD or the code of the navi-
gational software are made such that the assumptions are violated, and hence,
the automated integration process breaks, it shall be possible for third parties
to adapt it to the new situation; C++ code has to adhere to the C++11 standard
since it has to be supported by different compilers on different platforms (e.g.,
Microsoft Visual C++ (MSVC), GNU Compiler Collection (GCC) on x86 platforms
or others in the future)

• Separation between development and target platforms: The integration process
shall run on the development machines in order to prevent switching between
the former and the target machine. Actions like copying files back and forth
between the development and target machines should therefore be minimized;
the need for such a separation arises due to constraints by company internal
security rules which prohibit the execution of arbitrary code outside of MATLAB
on the development machines

• Correctness

Some of these goals compete – for example, an increase in the degree of automation
usually leads to a decrease in maintainability since more complicated code might be
necessary to support the former. Finding a satisfactory balance between these goals is
a challenge ever to be passed before and after each design decision. Later on in this
thesis, some of these decisions are discussed (e.g. in Subsection 3.2.10 or Chapter 5).

1.2 Si2

"The Si2 simulation framework is a set of software tools that provides a
development, integration and execution platform for distributed simulation
environments." [23a, p. 4]

In this thesis, only the Si2 runtime environment is used, which offers a set of services
for (potentially) distributed applications in the form of "simulation models". These are
abstractions implemented “as shared objects and dynamically loaded by the runtime
during [the runtime’s] main initialization” [23b, p. 40] in Ada, C or C++ adhering to
one of a few model interface standards like AP2633, EXAP, ARINC653 or FMI2 in order
to be loadable by Si2.

Services offered by the runtime environment to the models include [23a, p. 4]:
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1 Introduction

• Model Loading

• Communication between different models via messaging channels

• Scheduling

• Logging

Figure 1.2: Overview of the architecture of Si2. Source: [23a, p. 5]

Therefore, by definition, Si2 can be understood and used as a middleware1.
It was decided to use the AP2633 interface standard throughout the whole project. A

short definition of such models is provided in Chapter 2. A thorough description of
their artifacts follows in Chapter 3.

1.3 DuraCOR 311 Embedded Computer

The DuraCOR 311 tactical mission computer by Curtiss-Wright features a quad-core
Intel Atom CPU [20, p. 8] and is used as the target platform for the integration
process. An advantage of featuring an Intel CPU is that it provides a standard x86
platform, which, in turn, allows it to run commonly used operating systems such as
Ubuntu Linux 20.04.6 LTS and to be targeted by standard compilers such as GCC.

During the integration, necessary additional software such as CMake or GNU Octave
and startup scripts running Si2 after booting the computer have been set up. As the
final step of the integration, a field test has been conducted with real sensors connected
to the DuraCOR, gathering real data in order to validate the whole process.

1See Chapter 2
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1 Introduction

1.4 Overview of the Results

The final result of this thesis is a "drop and forget" solution for the integration process:
A user can simply copy a set of input files to a directory, call the integration scripts and
then copy the resulting complete Si2 project – containing templates for every sensor,
full implementations of the two main models as well as configuration files for each of
them – to the target platform. There, the build process is triggered and the project can
be run after optionally changing some settings of the models. After that, the main step
of the integration is complete and the project is then ready for the (manual) integration
of actual sensors by filling the templates of their models with appropriate code.

However, this high degree of automation is only possible if a certain set of assump-
tions about the input and Si2’s build system hold true – if, for example, the syntax of
C struct definitions in the code of the navigational software changes, the integration
scripts have to be adapted accordingly2.

This is also true if the structure of the ICD changes – this requires adaptation of the
integration scripts as assumptions on the ICD structure are violated. However, it can
be assumed from domain knowledge that this most certainly won’t be the case.

Due to this, the integration script supports adding of new sensors, signals, etc. or
their removal to or from the ICD.

Later during the development of the integration process, it became clear that the
goal of complete separation into code generation on the development machine and
just running the project on the target machine is not completely achievable: Parts of
the generation of C++ code (specifically: The generation of JavaScript Object Notation
(JSON) macros providing conversion functions between JSON and Si2 data types)
depends on header files which are generated by the Si2 build system which is called on
the target machine. This problem could be mitigated without decreasing the amount
of automation by leveraging GNU Octave which runs the necessary scripts prior to
building the affected models automatically via a custom target in CMake. Other options,
possibly providing a cleaner design, are discussed in Chapter 5.

Another key result is a method for validation of the integration process: A special
AP2633 model has been implemented which supports replaying test vectors and
recording of the input passed to the navigational software as well as its output. The
resulting binary file can then be used to compare expected against actual values via a
MATLAB script, validating the flow of data.

Finally, a field test has been conducted, integrating real sensors and showing that the
approach works for a real scenario.

2The reason for this will be discussed in Chapter 3
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2 Terms and Definitions

2.1 ICD: Interface Control Document

An ICD defines data structures, their types, signals, and their relationships, and, as a
result, the interfaces to and from a given system. It is a document serving as the "single
source of truth" inside a project, following a certain structure and letting developers of
different subsystems know how to interoperate with each other.

In the case of this thesis, the ICD is an Excel file defining and describing the interface
of the navigational software.

2.2 Middleware

A middleware is a software layer running on top of an operating system. It offers
various services to applications running on top of it, e.g., scheduling, communication
or other services. It serves as a common base for the applications so that they can be
developed independent of the underlying operating systems.

Its position in a distributed system, like it is planned for the navigational software,
can be seen in Figure 2.1.

2.3 AP2633 Models

The Airbus Procedure 2633 (AP2633) is a model standard which “[...]defines the entry
point, control variables, inter-model communication and life cycle”1. These models can
be in different states during execution: Load, Initialize, Reinitialize, Running, Holding
and Unload; each of those requires a corresponding input and result variable.

In Si2, the model consists of a set of artifacts, which will be described in Chapter 3.

1See [23b, p. 41]
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2 Terms and Definitions

Figure 2.1: Position of a middleware in a distributed system. Adapted and translated
from [TB16, p. 685]
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3 Approach

First, this chapter gives an overview of the integration process developed during this
thesis in Section 3.1 alongside a description of the input files as well as of the flow
of events before, during and after executing the integration scripts. In Section 3.2, a
detailed description of the developed code as part of the integration process is given.

3.1 Overview of the Integration Process

The integration process can roughly be decomposed into three distinct steps:

1. Based on the ICD, all required files for a Si2 project are generated.

2. Based on these new files and the input configuration files, C++ code is generated,
supporting the conversion between data structure definitions in the navigational
software and those deduced from the files based on the ICD from step one (Si2

communication channels).

3. Si2’s build system generates necessary header files ("model adapter") and compiles
the models, which then can be executed inside its runtime environment.

A visual overview of the integration process and the artifacts taking part in and
resulting from the integration can be seen in Figure 3.1.

3.1.1 Artifact Overview

Now follows a description of the integration artifacts resulting from the integration
scripts. These can be grouped into three categories:

• Configuration files for Si2: Like the manifest files (manifest.mf) and their includes
(default.models, ...)

• Global data descriptions: Like the Global Simulation Data Description (GSDD)
(data.gsdd) or Data Definition (DD) (data.dd) files, which contain data structures
usable by all models

8



3 Approach

Figure 3.1: Overview of the Integration Artifacts. Note that integrateIntoSi2.m is
executed on the development machine but belongs to the integration.

• AP2633 models: A set of files making up a model for each sensor or data processor
(e.g., the model running the navigational software) defined in the ICD

9



3 Approach

•Manifest files: These are Extensible Markup Language (XML) files specifying
“which plugins, services and models are loaded within a Si2 Runtime”[23b, p. 14]. It
is also possible to specify preferences for the runtime environment regarding the log
level, clock, scheduling, transportation etc.

Two different manifest files are generated by the scripts: default.mf which will
be loaded if no other manifest file is specified when starting up Si2 and loads all
models apart from the validation model through default.models. The other one,
validation.mf, loads only the validation and KF models via validation.models. Its
use is described in Chapter 4.

•The DD: This is an XML file with the file extension .dd and contains data structure
definitions. “This[sic] definitions can be reused in a GSDD or an MLCD to avoid
multiple, redundant specifications of interface data”[23b, p. 55]. The DD supports
different data types, including primitive types like Boolean, Integer, FloatingPoint,
String and arrays. Number types are supported in different bit-widths. Multiple data
types can be grouped together in the form of StructureElements, which then map to C
structs later on.

A sample data.dd is shown in Figure 3.2.

<?xml version="1.0" encoding="UTF-8"?>
<DataDefinition xmlns="http://www.airbus.com/si2/icd" name="data">

<IntegerElement name="id" type="UINT8" value="1"/>
<StructureElement name="struct">

<FloatingPointElement name="t" unit="s"/>
<BooleanElement name="valid" value="true"/>

</StructureElement>
</DataDefinition>

Figure 3.2: Example data.dd

•The GSDD: The GSDD is an XML file with the file extension .gsdd. It contains
“the definition of communication channels for data exchange between models and/or
devices”[23b, p. 56]. The GSDD supports three different kinds of channels: Signal
channels which can reference elements defined in the DD, protocol channels, where
the exchanged data is described via a separate protocol and message channels which
exchange raw data. In the project generated via the integration scripts, only the first
type of channels is used.

A sample data.gsdd, referencing elements from a data.dd, is shown in Figure 3.3.
•The AP2633 Models: For a general description of what an AP2633 model is, see

Chapter 2. Here, the artifacts comprising an AP2633 model in Si2 are explained. Such a

10
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<?xml version="1.0" encoding="utf-8"?>
<GlobalSimulationDataDescription xmlns="http://www.airbus.com/si2/icd"

name="gsdd">
<Imports>

<DataDefinition href="data.dd#//@data"/>
</Imports>
<Channels>

<Channel name="struct">
<ReferenceElement name="struct" reference="struct"/>

</Channel>
</Channels>

</GlobalSimulationDataDescription>

Figure 3.3: Example data.gsdd

model consists of:

• The Model Interface Control Document (MICD): An MICD file is an XML file
with the extension .micd and contains “[...] the definition of a model component
with all its input or output variables or ports”[23b, p. 58]. Following Si2 runtime
manual’s description of the DD, it can also reference elements defined there, which
is what all MICDs in the generated project do in order to reduce redundancy.

A sample model.micd, referencing elements from a data.dd, is shown in Fig-
ure 3.4. The output variable specified by the ReferenceElement will be mapped
to a C variable named SENSOR1_out with the type struct by the Si2 build system.

• The Model Link Control Document (MLCD): An MLCD file is an XML file with
the extension .mlcd and contains “[...] the mapping of model inputs and outputs
defined in an MICD to channel signals from signal channels or protocol channels
defined in the GSDD”[23b, p. 59].

A sample model.mlcd, connecting the output defined in a model.micd to a channel
defined in the data.gsdd can be seen in Figure 3.5.

• The <Model>_main.cpp: This C++ file contains the implementation of a model. It
includes header files generated by the Si2 build system based on the other artifacts.
Input and output mapped to channels is easily accessible via C variables defined
in those header files. For a more thorough description of these header files and of
the control variables, states etc., see Chapter 2. An example IMU_main.cpp with a

11
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<?xml version="1.0" encoding="utf-8"?>
<ModelInterface xmlns="http://www.airbus.com/si2/icd" name="SENSOR1">

<Imports>
<DataDefinition href="../data.dd#//@data"/>

</Imports>
<Inputs/>
<Outputs>

<ReferenceElement name="SENSOR1_out" reference="struct"/>
</Outputs>

</ModelInterface>

Figure 3.4: Example model.micd

<?xml version="1.0" encoding="utf-8"?>
<ModelLink xmlns="http://www.airbus.com/si2/icd"

globalSimulationDataDescription="../data.gsdd#
GlobalSimulationDataDescription" modelInterface="model.micd#SENSOR1"
name="SENSOR1">

<Receives/>
<Sends>

<Link signal="SENSOR1" variable="SENSOR1_out"/>
</Sends>

</ModelLink>

Figure 3.5: Example model.mlcd

12



3 Approach

full implementation, hooking up a real device providing Inertial Measurement
Unit (IMU) and Global Positioning System (GPS) data, is shown in Chapter 4.

Another sample model_main.cpp, lacking an integration of a sensor, is shown in
Figure 3.6.

• The CMakeLists.txt: Each model needs a CMakeLists.txt file describing how it
should get built by CMake / Si2’s build system. The latter provides a function,
add_ap2633_model(), which adds a new CMake target based on the provided
MICD and source code, generating necessary header files containing data and
control variables. If external dependencies have to be built alongside the model,
these must be added here. A simple example of an CMakeLists.txt is given
in Figure 3.7. More complex ones (e.g., for the KF or validation models) will
be shown when they are discussed later in the thesis. Note that, due to the
naming of some data structures, the compiler option -fpermissive has to be
passed to each target so that compilers like GCC accept variable declarations like
FormationSensing FormationSensing; where the name of a data type is equal
to the name of a variable. The MSVC compiler accepts such declarations even if
they actually violate the C++ standard.

All artifacts regarding the validation process (the validation model, test vectors,
Recording.mat, Recording.csv and output.bin) are discussed in Chapter 4.

3.1.2 Description of the Input

Now follows a description of all files serving as the input of the integration process.
ICD.xlsm: This Excel spreadsheet contains abstract definitions about all sensors,

data structures, models, and their channels. Each sheet is converted to its own AP2633
model; all data structures are mapped to corresponding Si2 data types. All these
definitions serve as the "single source of truth" throughout the whole project. A valid
ICD.xlsm contains a set of sheets which can be categorized into two types: "definition
sheets" which must contain the columns Parameter and Value and define constants
and the like – these are currently not used for the integration process but may be in the
future. The other category of sheets describes models. These must contain the columns
structure name, signal name, type, dim, Unit and comment.

manifest_kf.json: This file contains configuration parameters for the Kalman Filter
(KF) model, which serves as the "processing unit" of the navigational software. It is
read during runtime by the KF model.

swarmMemberConfig.json: This file contains configuration parameters for the entire
system. It describes participating aircraft and their configuration: Which sensors they
have installed, etc. Additionally, it tells which sensor signals the KF model expects

13



3 Approach

#include <DATA_C_SENSOR1.h> // input/output variables
#include <CTRL_C_SENSOR1.h> // control variables

extern "C" void SENSOR1_main()
{

R_LOAD = R_INIT = R_REINIT = R_RUN = R_HOLD = R_UNLOAD = 0;

if(F_LOAD) {
R_LOAD = 1;

}
if(F_INIT) {

SENSOR1_out.t = 3.1415;

R_INIT = 1;
}
if(F_REINIT) {

R_REINIT = 1;
}
if(F_RUN) {

SENSOR1_out.t += 0.1;
SENSOR1_out.valid = true;

R_RUN = 1;
}
if(F_HOLD) {

R_HOLD = 1;
}
if(F_UNLOAD) {

R_UNLOAD = 1;
}

}

Figure 3.6: Example model_main.cpp

14



3 Approach

add_ap2633_model(SENSOR1
model_main.cpp
ICD model.micd
OUTPUT .

)
target_compile_options(SENSOR1 PRIVATE -fpermissive)

Figure 3.7: Example CMakeLists.txt

to read. It is used to generate channel assignments to pipe the correct data to the KF
model.

SensorFusion4Coder: This directory contains the actual navigational software. It is
C++ code generated via MATLAB Coder out of its native MATLAB code. This code will
be tightly integrated into and compiled with the KF model which calls its entry point
function and writes its output to the output channel of KF. It also contains header files
defining all C data structures corresponding to information in the ICD. Conversion
functions between these and those generated from Si2 are necessary and are created
during the integration process.

3.2 Description of the Code

In this section, all relevant code for the integration process is explained in detail.

3.2.1 integrateIntoSi2.m

This script is the main entry point to the automated integration process described in
this thesis. Its purpose is to read in the input described in Subsection 3.1.2, perform the
required generation of artifacts by calling the other scripts and store the resulting Si2

project in the output directory. It also generates additional code required by the used
C++ libraries for JSON and Comma-Separated Values (CSV) support which is needed
by the KF and the validation models.

It first declares some constants containing paths as well as jsonifyStructs which is
an array telling the scripts what data types (structs) to recursively generate to_json()
and from_json() functions for (if they’re not automatically targeted later on). These are
structs (defined in SensorFusion4Coder/SensorFusion4Coder_types.h) the call to the
entry point function of the SensorFusion4Coder code uses as parameters and contain
the C/C++ equivalent of the JSON configuration files from the input. Since the output

15



3 Approach

of the entry point function (in the form of a output_T struct) also needs to be stored
later on, it also requires JSON compatibility.

A call to setupSi2Skeleton() prepares the output directory structure while creating
"static" files which will be the same or similar for each possible input satisfying the
requirements imposed on the input, as well as empty files which will be filled by the
other functions later on.

Then, it reads in the sheets from ICD.xlsm and separates the two categories of sheets
mentioned earlier into two maps, datastructures and ms ("Models"), mapping their
name to their tabular data.

Subsequently, it proceeds to calling the other functions in sequence, generating and
filling all necessary files for the resulting Si2 project:

• generateSi2DataDefinition() which generates a data.dd based on the data
structures and models passed to it, returning an XML root node describing the
DD, which is reused in the following function calls.

• generateSi2ModelInterfaceControlDocuments() which generates MODELNAME-
.micds for each model.

• generateSi2GlobalSimulationDataDescription() which generates the data-
.gsdd file for the project.

• generateSi2ModelLinkControlDocuments() which generates MODELNAME.mlcds
for each model.

• generateModelMainCpps() which generates MODELNAME_main.cpps for each model
and fills in supporting code (JSON conversions, assignments between channels
and internal data types of the integrated navigational software, etc.) for the
navigational software. Specifically, it also generates the logic for initializing and
calling the navigational software, as well as recording its data and reading in test
vectors in the two models KF and validation.

After all these calls have returned successfully, a fully functional Si2 project is found
in the directory output.

3.2.2 setupSi2Skeleton.m

This file contains the setupSi2Skeleton() function which is responsible for setting up
the directory structure and necessary files for a Si2 project based on the given input
parameters project_name, sensorFusionPath, structDefs (not used now but may be
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output/
config/

manifest_kf.json
swarmMemberConfig.json

src/
MODELNAME/

CMakeLists.txt
MODELNAME.micd
MODELNAME.mlcd
MODELNAME_main.cpp

SensorFusion4Coder/
(all SensorFusion4Coder files)

validation/
CMakeLists.txt
generateJSON_macros.m
generateJSON_macrosForValidation.m
parseCStruct.m
validation.micd
validation.mlcd
validation_main.cpp

util/
conversions.h
csv.hpp
json.hpp
jsonStub.h

CMakeLists.txt
data.dd
data.gsdd

CMakeLists.txt
default.mf
default.models
validation.mf
validation.models

Figure 3.8: Structure of the output directory
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in the future) and models. After a call to this function, output should contain the
directory structure as seen in Figure 3.8.

First, the function appends validation to the models list because it is a separate
model not defined in the ICD and therefore not present in the list yet. Then, the function
checks whether the output directory already exists and, if not, creates it. It proceeds by
generating the static (in the sense that they need to be present and depend solely on
the names of the models) files output/CMakeLists.txt, output/default.models and
output/validation.models. The latter two are (as all XML files) created by leveraging
MATLAB’s XML support (via the com.mathworks.xml.XMLUtils Java interface) in the
form of creating and manipulating Document Object Model (DOM) nodes and their
attributes, building an XML tree in the process and finally writing them to the files via
xmlwrite(). An advantage of using this functionality is that these DOM root nodes
representing a file can (and will) be reused later on without the need of parsing the
XML files themselves again.

The function then proceeds to generate default.mf and validation.mf, which
define the runtime configurations for Si2 available for this project1. Then, it creates
the output/src directory which will contain all models in the form of subdirectories
alongside their source code as well as data.dd and data.gsdd.

Then, the function creates a CMakeLists.txt, model.micd, model.mlcd and model_-
main.cpp for each model by iterating over the list of models passed to the function. The
CMakeLists.txt is also filled out with additional information if the current model is
KF or validation, like including the SensorFusion4Coder code. The CMakeLists.txt
of the validation model also needs a custom target for executing some MATLAB
scripts on the target machine before being built. This is discussed in Chapter 4.
All model.micds, model.mlcds and model_main.cpps are filled with content in later
function calls.

Finally, the function copies the SensorFusion4Coder directory in place as well as
some libraries (csv.hpp and json.hpp) and stubs (conversions.h and jsonStub.h)
alongside the configuration files which also serve as input of the integration process.

3.2.3 generateSi2DataDefinition.m

This file contains the function generateSi2DataDefinition() which expects a target
path (for the .dd file), a map of data structures (ds) and a map of models (ms) as
input and generates a Si2 DD file as output, returning the XML root node (which is
constructed in ddRootNode) describing that file. It is responsible for mapping all signals,
structures, models etc. from the ICD to suitable representations available in Si2.

1These can be used as parameters for the Si2 executable.
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Again, the XML utilities of MATLAB are used to build the DOM tree by first iterating
over each key-value pair in ds, which represent data structures not directly stemming
from a sensor and which are possibly reused by many sensors. In each iteration, a
new node (curNode) is created and appended to the root node if it does not exist
yet. From each value (which is the table read from the current sheet in the ICD),
information like the struct name and all its signals are retrieved. All signals with the
same structure name are put together into a single StructureElement in Si2 by creating
appropriate child nodes for them, depending on their type in the ICD. This also applies
for "substructs" (structures inside a structure) and arrays (if the dimension of the signal
is greater than one).

Thereafter, a separator in the form of a comment node is appended to the root node
so that the nodes stemming from ds and those from ms are clearly separated in the
resulting file. The latter ones are now generated, again by iterating over key-value pairs
(now of ms). These represent models, primarily sensors. For each such model, a new
StructureElement is generated by the name of the current sheet ("sensorName").

At this point, mitigating a potential issue within the ICD was necessary: There were
two classes of discrepancies in it, redefinitions of structures (if one is defined in ds and
one in ms) or the usage of similar names (e.g., "DataPackage" and "datapackage") which
conflict with the current implementation of this function or with the idea of an ICD per
se. However, these all had equal definitions inside it, so the mitigation of this problem
was to just create a ReferenceElement to the already existing StructureElement instead
of creating another one by the same name which Si2 would not accept. It should be
noted that this approach would break if there would indeed be multiple definitions of
structures by the same name allowed. However, there would be no way of automatically
deciding which one to use without additional information.

If the current row is not of one of these discrepancies, the function continues by
appending the new StructureElement node to the root node and adding the appro-
priate child nodes to it, depending on the data type of the signal. If the current row’s
structureName is not empty, it checks if a node with the same name already exists
within the current node. If so, it sets curSubstructNode to point to it; otherwise, it cre-
ates a new StructureElement node with that name and appends it to the current node
and the new signal element to curSubstructNode. These represent nested structures.

After the last iteration, the generated XML document is finally written to the specified
ddPath using the xmlwrite() function.

3.2.4 generateSi2ModelInterfaceControlDocuments.m

The generateSi2ModelInterfaceControlDocuments() function accepts two arguments,
models (a map containing sheet names as keys and their corresponding tables as
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values) and dataDefinition (a DOM node representing a DD as returned from
generateSi2DataDefinition()) and generates an MICD for each model, returning
a cell array of DOM nodes representing these MICDs.

From domain knowledge we know the following facts: Every sensor model has
exactly one output which will be of the structure type by the name of the sensor as
defined in the DD. The model validation only contains outputs and no inputs since
its sole purpose is to read in test vectors from a CSV file, writing the read data to the
channels of the sensors, essentially emulating them2. The model KF receives all outputs
of the sensors as inputs and has one single output.

Keeping this in mind, the function iterates over each key-value pair in models. Again,
each key represents the name of an Excel sheet corresponding to the name of a model.
In each iteration, a new micdRootNode is created, which receives an Imports node as
a child, importing the DD created earlier. Then, empty Inputs and Outputs child
nodes are created and appended to the micdRootNode. If the current model is not
named validation, a ReferenceElement by the name of micdName_out is created and
appended to the Outputs node, referencing the structure of the model as defined in the
DD. Afterwards, the new MICD DOM node is added to the micds cell array and saved
to the path of the current model.

After processing all models in that way, the function iterates over the micds cell array
to add each output of the sensors to KF’s Inputs node by the name of micdName_in and
to validation’s Outputs node. This step establishes the required connections between
all models on a semantic level. The "real" links between channels and models are
implemented in generateSi2ModelLinkControlDocuments() which allows the actual
sending and receiving of data via the channels. After modifying the root nodes for KF
and validation, it saves the updated XML documents again.

3.2.5 generateSi2GlobalSimulationDataDescription.m

The generateSi2GlobalSimulationDataDescription() function is responsible for gen-
erating a GSDD XML document for the Si2 project. It expects one input argument:
micds, a cell array of DOM root nodes describing MICDs returned from the call to
generateSi2ModelInterfaceControlDocuments(). It returns a cell array containing all
channels created, which are accumulated in the variable channels.

It starts by creating a new XML document root node by the name of gsRootNode and
appending an Imports child node referencing the DD created earlier. Subsequently, it
creates a Channels child node and starts iterating over each MICD in the micds cell
array.

2See Chapter 4
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For each MICD, it extracts the name of the model from its attributes and searches for
the Inputs and Outputs nodes within it. Then, it creates a Channel node and sets its
name to match the model’s name. It proceeds by iterating over each child node of the
retrieved Outputs node, deep copies them3 via the function copyXmlNode(), removes
the "_out" suffix from the name of the element and appends them to the Channel node.

Finally, the Channel node is appended to the Channels node and added to the
channels cell array. Then, the XML file gets saved.

3.2.6 generateSi2ModelLinkControlDocuments.m

This function creates the MLCD XML documents for each model based on the pre-
viously generated GSDD channels. It has two parameters: models, as in previous
functions, and gsddChannels, a cell array of channels from the GSDD.

At first, an empty cell array named mlcds is created which is going to hold all the
MLCD’s root nodes again; additionally, validation is added to the cell array of keys
again, because it is a separate model not defined in the ICD.

The function then iterates over all keys, creating an MLCD for each model. This
is accomplished by first creating a new XML root node with the name of the model,
a reference to its MICD and a reference to the GSDD as its attributes. Then, a Sends
child node is created if the name of the current model is not validation since it does
not have its own channel but will reuse the channels of all sensors. When such a
child node is created, the function proceeds by searching the corresponding channel
node for the current model inside gsddChannels. After that node has been found, the
function begins iterating over the child nodes of that channel, creating Link nodes and
appending them to the Sends node. Their attributes connect signal names to variable
names with the suffix "_out" which are accessible in the model’s C++ code later on.
Finally, the new MLCD root node is added to mlcds and the new MLCD is saved to its
location in the directory of the model.

After processing all models in that way, the function starts creating links from all
other MLCDs – apart from KF itself – to KF. For that, it first retrieves the MLCD root
node of KF from mlcds and iterates over all created MLCDs. For each MLCD (except KF
and validation for which the iteration is simply skipped), it retrieves the new Sends
node, iterates over its children, and creates corresponding Receives nodes, linking
signal names to variable names with the suffix "_in", which, again, are accessible in the
C++ code of KF later on. This step connects the output of all sensors as input for KF.
After that, the updated MLCD root node for KF is replacing the old one in mlcds and is
stored to KF’s directory as KF.mlcd.

3This is necessary because the XML implementation MATLAB uses binds all nodes to the XML document
in which they were created initially and cannot be shallow copied to other documents by default
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As final post-processing, the function repeats this process for the validation model.
But instead of creating Receives nodes, it deep copies all the Sends nodes from the
MLCDs of all sensors as well as their child Link nodes without changing their names.
This is done so that the validation model has access to the variables and channels of
all sensors and can emulate them later on without the KF model knowing. Finally, the
old MLCD root node in mlcds is replaced by the new one and the new MLCD is stored
to validation’s directory as validation.mlcd.

3.2.7 generateModelMainCpps.m

This function fills the *_main.cpps for every model as well as supporting header files
like conversions.h and jsonStub.h by generating appropriate C++ code. Each sensor
model’s *_main.cpp will consist of an empty template for an AP2633 model, which
compiles but needs to be implemented manually depending on the physical sensors
used (or other data sources). An example for such an implementation is given in
Chapter 4. The KF and validation models consist of a full implementation after a call
to this function. Descriptions of their C++ code can be found in Subsection 3.2.15 and
Section 4.1, respectively. A high level description of how this C++ code is generated
follows.

The function expects three arguments: models, which, again, is a map of model names
to their corresponding tables in the ICD Excel file, sensorFusionPath, a path to the
directory containing the code of the navigational software, and jsonifyStructs, a cell
array / list containing the names of structures for which from_json() and to_json()
functions should be generated4.

It starts by retrieving the number of sensors used in the current revision of the
navigational software by looking up the length of the SensorList array contained
in swarmMemberConfig.json5. This number is used as the size of an array called
isNewSensorData which contains an entry for each sensor indicating whether new
sensor data is available to the navigational software ("SensorFusion4Coder").

Then, it defines several type names as constants which the SensorFusion4Coder code
exposes for and with its entry point function (SF_NAV::SensorFusion4Coder()). They
are defined by the developers of the navigational software and may or may not change.
Here, their names can be adapted, if needed. These constants are later inserted into the
C++ code at appropriate places via calls to sprintf().

After that, the function begins iterating over each name of the models (contained in
ks) and starts creating C++ code for each one of them by assembling strings containing

4These establish compatibility to the used JSON library explained in Subsection 3.2.13
5It should be noted that this number could be retrieved more easily by simply using
sizeof(isNewSensorData)
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that code.
When creating the C++ files for the models is done, the function proceeds with a few

post-processing steps regarding the automatic generation of JSON macros, conversion
functions between Si2 data types and those defined in the SensorFusion4Coder code
which are used to assign sensor data to the equivalent structs representing sensor
measurements.

Finally, the function generates the required assignments from CSV data representing
test vectors to the appropriate sensor types inside the validation model. All these
generated functions and stubs are inserted at special comments inside the C++ code
serving as markers.

3.2.8 generateJSON_macros.m

This file contains functions responsible for generating macros establishing JSON com-
patibility for the C++ code to allow serialization and deserialization of data. In order
to achieve this, macros are generated which expand to to_json() and from_json()
functions as required by the used JSON library discussed in Subsection 3.2.13.

The first function, generateJSON_macros() takes in three parameters: headerFile, a
path to a C++ header file to search structs in; struct, the name of a struct for which
JSON macros need to be (recursively) generated; and lookInStub, a boolean flag indi-
cating whether to look into jsonStub.h for already existing manual definitions of JSON
functions for struct. This function does not perform the actual work of generating
JSON macros but delegates it to a recursive helper function, generateJSON_macroRec().

The second function, generateJSON_macroRec(), takes in the same parameters, with
an additional fourth one, acc which is a string accumulating the resulting macros.
It returns a string of the assembled macros. This function first checks via calls to
isJsonFunctionDefined() if the current struct already has manual JSON functions de-
fined in jsonStub.h or automatically generated ones in acc. If so, it returns early. If not,
it parses the current struct using the parseCStruct() function which extracts informa-
tion about its members as triples of [ memberName, memberType, memberDim ] as well
as additional struct types used in the struct definition. It then proceeds to assemble
the macro call by concatenating the string NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE(
with the name of the struct followed by the comma-separated names of its members
and appends the resulting string to the cell array ret which is going to be returned
by the function. Finally, the function iterates over the cell array additionalStructs,
recursively calling itself on each identified struct type, constructing additional macro
calls for each of them.

The third function, isJsonFunctionDefined() takes in three parameters: struct, the
name of a struct for which the function searches already existing JSON functions; acc,
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the accumulator which is being filled by generateJSON_macroRec(); and lookInStub,
a boolean flag indicating whether to search in jsonStub.h, too.

It uses regular expressions to seek specific patterns within the jsonStub.h file (if
lookInStub is true) as well as in the accumulator acc. If it finds such a pattern, the
function returns true, otherwise it returns false.

3.2.9 generateJSON_macrosForValidation.m

In this file, only one function is defined: generateJSON_macrosForValidation(). It
is specifically used to update validation_main.cpp for the validation model by
generating additional JSON macros for converting test vectors to Si2 data types and is
not called directly from the integration script but is executed during the build process
on the target machine (see also Section 4.1).

This function takes in two parameters: pathToKFDataHeader, a path to DATA_C_KF.h
which is generated by Si2 during the build process of the KF model6; and pathTo-
ValidationMainCPP, a path to the validation_main.cpp of the validation model.

It first reads the contents of the C++ header file specified by pathToKFDataHeader
and then extracts all struct type names serving as the input for KF since these will be
the outputs of validation. This is done by matching everything between comments
/* input symbols */ and /* output symbols */ inside the header file via a regular
expression and transforming the result such that only a list of struct types remains.
These are then passed to the generateJSON_macros() function in order to generate the
required JSON macros.

Finally, the function inserts these macros at the right place inside the validation-
_main.cpp of the validation model, denoted by the comment /// MARK: autogenera-
ted_macros_si2 and saves the updated file.

3.2.10 parseCStruct.m

This file contains a function, parseCStruct() which accepts two arguments: filePath,
the path to a C/C++ source or header file; and structName, the name of a struct of
which the members shall be parsed into a list of triples [ memberName, memberType,
memberDim ] . The function returns these triples as well as a list of custom struct type
names encountered during this process (i.e. type names not considered as "basic C
types").

It first defines a list of what is considered basic C/C++ data types (like char, int,
uint8_t and the like). Thereafter, it checks for possible typedef definitions that could
alias the specified struct name to another one. This is done to resolve the "true" name

6Which is also the reason why this script needs to be run during build time.
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of the struct, so the function can match the actual structure definition. If such a typedef
is found via a regular expression, it updates structName accordingly.

The function then uses regular expressions to find and extract the definition of
the struct with the given structName from the provided file. It considers two cases:
First, C++ type struct definitions like struct structName { ... }; , second C type
"anonymous" struct definitions like typedef struct { ... } structName;. It then
makes sure, accidental matches due to a reuse of a struct’s name inside another struct,
are removed from the results in order to get only the relevant definition.

After that, it prepares the resulting string for tokenization by removing special
characters like curly and square brackets and splits the string on each occurrence of
a semicolon. Each element remaining is considered a member declaration, which is
then tokenized by splitting at spaces such that the type, name, and dimension (if it is
an array) of the member remain. If the current member is not an array, and thus has no
dimension, a dimension of 0 is added to the triple for consistency. It follows a check
whether the type of the current member is found inside ctypes and, if not, adds its
type to the cell array structNames.

Finally, it removes the name of the initial struct from structNames and removes any
potential duplicates.

There are a couple of facts that should be noted about the parser implemented in this
function. First, it only parses a subset of C++, namely definitions of structs generated
by MATLAB Coder or Si2, making the following assumptions:

• The code is valid C++.

• The struct members are POD (Plain Old Data).

• No qualifiers and specifiers (like __PACKED__, static, const, volatile, constexpr
etc.) are used.

• Inside a struct definition, no other aggregate types (like other structs, enums,
unions etc.) are defined. To be more precise, no curly brackets must be used
inside a structure definition.

• Members are never pointers – with the exception of arrays using "syntactic sugar"
syntax like double arr[5];.

• No multiline comments are used inside the definitions.

• Inside the parsed source or header file, typedefs must be at most one level
deep; id est, there must not be "transitive" typedefs like struct v; typedef v w;
typedef w x;.
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• No structure definitions should be commented out.

This parser breaks if code generation by MATLAB Coder or Si2 changes such that
any of the assumptions no longer hold true. Correct and more generalized parsing
requires a way more sophisticated parser; if it should work in all circumstances, a full
parser with access to the AST (Abstract Syntax Tree) would be necessary. C and – above
all – C++ have extremely complex syntax which cannot be parsed without enormous
and time consuming effort which is out of scope of this thesis. The method used in
this parser – based on (extended due to the use of lookarounds) regular expressions –
is, by definition, not powerful enough to work on arbitrary C++ code. However, due
to certain properties of the generated code which is parsed by this function, it should
work fine by greatly simplifying the grammar of the language this parser understands.

Finally, a simple grammar of that language in Backus-Naur form could be similar
to Figure 3.9, where NAME produces all valid names in C++, CTYPE produces all basic
types in C++ (i.e. int, unsigned int, double, ...) excluding user-defined types, and DIM
produces a positive integer (including 0).

<S> ::= ’struct’ <NAME> ’{’ <MEMBER> ’}’ ’;’
| ’typedef’ ’struct’ ’{’ <MEMBER> ’}’ <NAME>’;’

<MEMBER> ::= <TYPE> <NAME> ’;’ <MEMBER>
| <TYPE> <NAME>’[’<DIM>’]’’;’ <MEMBER>
| ϵ

<TYPE> ::= <CTYPE>
| <NAME> ’;’

Figure 3.9: A simple grammar producing the language parsed in parseCStruct.m

3.2.11 generateStructAssignment.m

This file contains the function generateStructAssignment() which generates C++ code
converting and assigning Si2 struct variables to their equivalents from the SensorFu-
sion4Coder code and takes in three parameters: toName, the name of the target member
within the allSensorMeasurements struct of the navigational software to which data is
to be assigned; toType, the data type of the toName member from which the function
extracts the appropriate channel name; and sensorIdx, an integer representing the
index of the sensor inside the isNewSensorData array.
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The generated code checks whether the time t of the sensor is newer than the time
b_time_t from the KF model7, and, if so, sets the appropriate slot in the isNewSensorData
array to true, then proceeds to convert the data from the channel to its equivalent from
the SensorFusion4Coder code and assigns it.

3.2.12 generateStructConversion.m

In generateStructConversion.m a function of the same name is defined, accepting
three parameters: sensorFusionPath, the path to the SensorFusion4Coder directory;
namespace the name of the namespace used in the latter; and toType, the name of the
struct type containing the substring Measurement_T defined in the SensorFusion4Coder
code to which the function generated by generateStructConversion() should convert
a Si2 type to.

First, the function calls parseCStruct() to parse the struct definition specified by
toType from the file SensorFusion4Coder_types.h at the given path and stores the
result in the variable parsedStruct. Afterwards it extracts the variable fromType from
the string toType by finding the index of the substring Measurement_T within it and
taking the part of the string before that index. This works because all structures inside
the ICD representing a sensor have a corresponding struct by the same name with the
suffix Measurement_T.

The function initializes a string in the accumulator acc and starts filling it with the
code for a C++ function converting fromType to toType. For that, it iterates through the
members of the parsed struct and generates one-to-one assignments to the members of
the struct toType as they are defined the same way and only differ in naming (they are
basically redefinitions of the same structure but a compiler needs such a conversion
in that case since it sees both types as different, and thus, cannot be assigned directly
to each other. This also has to happen on a per-member level since some of them
differ in type, like boolean_T, which is actually an unsigned char in the case of a
SensorFusion4Coder struct and bool in the case of a Si2 struct; both can be converted
implicitly, however). If the member is an array, it generates code to copy the contents
by calling std::memcpy() since assigning an array member to another would simply
let both arrays point to the same memory instead of copying the data.

Finally, code for returning a copy of the newly built struct is generated and appended
to the accumulator, which is then returned.

7This will be explained in Subsection 3.2.15

27



3 Approach

3.2.13 Includes - JSON and CSV Libraries

This subsection discusses, why JSON and CSV compatibility was needed and how it
was implemented.

First, the navigational software / SensorFusion4Coder code requires some initializa-
tion which is supplied in the form of *_.json files are read during runtime. Second,
the validation model has to read in test vectors and it was decided to supply those
in the form of *_.csv files containing rows with cells in JSON format (since JSON is
already used for initialization). However, C++ does not natively support JSON nor CSV.
For this reason, third party libraries were used with the following requirements: They
have to be header-only for ease of integration; they have to be written in plain C++,
requiring at most the C++11 standard; they must be licensed under the MIT license (or
similar) such that they are free to use within commercial products.

CSV Compatibility. For CSV compatibility, the choice has fallen on Vincent La’s
CSV Parser [La21] which is able to read in arbitrarily long files with streaming behavior
without loading the complete file into memory. The library can also directly convert
rows to JSON, which might be useful in the future.
JSON Compatibility. The choice of which JSON library to use fell on Niels Lohmann’s
"JSON for Modern C++" library [Loh22]. This library not only turns JSON into data
types usable just like standard C++ containers, but it also offers an easy way to make
user-defined types compatible to its full range of functionality. This is done via macros
which provide a good balance between ease of use and the need to parse structs in
order to automate the calls of these macros due to the lack of reflection capability in
C++11.

For that, macros like NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE(name, member1, mem-
ber2, ...) are available which simply require the name of a struct or class as well
as the names of its members as arguments. These macros expand to the required
from_json() and to_json() functions. Working together with the struct parser intro-
duced in Subsection 3.2.10, the automated generation of these macros is possible. The
manual creation of these macros would be an error-prone and tedious process since
there are numerous structures with many members in the need of JSON compatibility
in the SensorFusion4Coder code. Furthermore, all structs generated by Si2 needed such
compatibility as well.
jsonStub.h In order to make the code of the models requiring JSON support more clean,
most of the code establishing such compatibility is put into a file called jsonStub.h. It
contains manual definitions for certain types created by MATLAB Coder (explained
shortly) as well as markers after which generateModelMainCpps() places the auto-
generated JSON macros.
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As a representative example for a data type not directly supported by the JSON
macros, emxArray_char_T_1x64 shall serve. This is a struct, generated by MAT-
LAB Coder, representing basic strings / char arrays with a maximum length of 64.
These are used inside structs like swarmMemberConfig_T which represent configura-
tion data the navigational software needs during initialization. For some reason,
the developers of MATLAB decided to use such esoteric structs instead of using
standard C++ types. However, this means a basic JSON string – as found in, e.g.,
swarmMemberConfig.json – cannot be simply converted via the "standard" from_json()
function since emxArray_char_T_1x64 carries semantics the library cannot know about.
This implies that the user of the integration scripts has to manually provide imple-
mentations of these functions for all MATLAB types relevant to the call to the entry
point function of SensorFusion4Coder. For persistency, these functions go into this file.
All types encountered during the evaluation steps of this thesis, have already been
supplied with such implementations. In Figure 3.10 an example implementation is
illustrated.

void from_json(const json& j, emxArray_char_T_1x64& emx) {
auto data = j.template get<std::string>();
std::copy(data.begin(), data.end(), emx.data);
emx.size[0] = 1;
emx.size[1] = 64;

}

Figure 3.10: Example from_json() function

3.2.14 CMake Build Files

The basic CMakeLists.txt has already been explained in Subsection 3.1.1. However,
the CMake files for the KF and validation models require some further explanation
because they have additional tasks to perform.

The CMakeLists.txt of the KF model includes the complete SensorFusion4Coder
directory by finding all source and header files inside its folder via the file() function,
and also adds that directory to the include directories of the target.

The CMakeLists.txt of the validation model is a bit more elaborate because it
needs to call generateJSON_macrosForValidation() before building the validation
target. This is done by adding a custom target via add_custom_target() called
generateMacros which depends on the target KF (because the DATA_C_KF.h of the
KF model is read by the generateJSON_macrosForValidation() function) so that it is
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built after KF. Another dependency of validation on generateMacros is added so that
validation is built after that custom target.

Depending on the host platform, the target generateMacros executes either MATLAB
(on WIN32) or GNU Octave (on UNIX) running the required functions generating the
necessary JSON macros for validation to compile correctly.

3.2.15 The KF Model

Finally, a brief description of both the models for which a full implementation is
automatically generated by the integration process is provided. These are the KF and
validation models. The latter one is discussed in Section 4.1 to avoid redundancy.

The file KF_main.cpp first includes the necessary libraries, including jsonStub.h
discussed earlier. Moreover, variables are declared which are used throughout the
lifetime of the program, which is the reason they are marked as static (since they must
survive multiple calls of KF_main()). These involve both configuration variables for the
KF, swarmMemberConfig and manifest_kf; the inputs to the KF: b_time_t which stores
the last time of validity of the IMU sensor / model; isNewSensorData indicating which
sensors delivered new data; and allSensorMeasurements which is a structure contain-
ing the structs of all sensors representing their measurements. It also declares static
variables for the output of KF: output and datapackageOutput, as well as necessary
variables for the data recorder8 (which can be turned on and off via a preprocessor defi-
nition). After that, three utility functions are defined: printOutput() which converts the
output of the KF to JSON and pretty prints it to the console; loadSwarmMemberConfig()
which loads the file swarmMemberConfig.json from disk and parses its JSON content
directly to the type swarmMemberConfig_T; and loadManifestKf() which does the same
for the file manifest_kf.json.

Thereafter follows the main function of the model, which consists of the different
states explained in Section 2.3. In the LOAD state, all variables are first initialized with
zeros and the data recorder – if enabled – is set up, i.e., an output file by the name of
output_datarecorder_<timestamp>.bin is created. Both JSON configuration files are
loaded and parsed using the utility functions described earlier.

The INIT state initializes the data recorder’s file, sets b_time_t to 0.0 and calls
SensorFusion4Coder(), the entry point function of the navigational software. It should
be noted that MATLAB Coder merges the required initialization steps and those for
actually running the code into one single function. The first call to it simply initializes
everything; further calls to that function then actually run the code9. The REINIT state

8Which is a class provided with the navigational software.
9The code of the original SensorFusion4Coder.cpp is modified in such a way that it returns after

initialization in the first call to its entry function; subsequent calls then run the code. This modification

30



3 Approach

(as well as the HOLD and UNLOAD states) does nothing as of now.
Finally, the RUN state actually executes the model. It does so by first checking whether

the sensor channels contain new data (by checking whether the time is more recent)
and updates isNewSensorData as well as allSensorMeasurements accordingly. It then
updates b_time_t to be equal to the time of validity as provided by the IMU model
(since the IMU is acting as the clock of the whole system). A check for b_time_t being
greater than 0.0 is made to prevent the code of the KF from executing prematurely
without any actual sensor data. This is required from domain knowledge. If it exceeds
0.0, the actual call to SF_NAV::SensorFusion4Coder() is made, which executes the KF
using the new sensor data received from various Si2 channels. If the data recorder
is enabled, it appends a new record for this iteration with the inputs and outputs of
the navigational software to the already existing recording file. Before returning, the
function resets isNewSensorData and output to zeros.

is necessary because internal buffers of SensorFusion4Coder would otherwise be initialized with
erroneous values and stems from inconsistent behavior in the C++ code generation of MATLAB Coder
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This chapter describes the two ways how the integration process introduced in this thesis
has been validated, indicating that the navigational software is integrated correctly by
the developed automated integration process. For one, a special validation AP2633
model is implemented which allows the user to check whether the data flow functions
properly by replaying test vectors1 and – in addition – whether MATLAB Coder has
generated a working C++ version of the navigational software. The second way of
validation is the integration of a real sensor by plugging it into the DuraCOR 311
embedded computer and implementing the corresponding sensor models. After that,
a final field test has been conducted using this setup, showing that the integration
method indeed works.

4.1 The Validation Model and validateSi2Integration.m

The validation model is a special AP2633 model which is loaded into Si2 by using
the validation.mf configuration and is automatically generated by the integration
process. The validation model emulates all the sensors for which the navigational
software has been configured (as found in swarmMemberConfig.json. Its purpose is
to validate the correctness of the data flow through the generated channels for Si2 by
reading in test vectors from a CSV file, piping the data to the various sensor channels
which are received and processed by the KF model which then writes the output of the
navigational software into a binary file.

It follows a short description of the implementation of the model, respectively of
the structure of the validation_main.cpp file. As with all AP2633 models, the file
first includes all necessary header files, including those generated by Si2. It then
declares necessary variables for CSV compatibility using the library mentioned in
Subsection 3.2.13 as well as static variables for each sensor output.

The main function sets up the CSV reader and the format of the test vectors in its
LOAD state. If the model is in the RUN state, each call of the main function reads one
row of the CSV file. It proceeds to convert and assign the values to the corresponding

1These are CSV files with one column for each sensor measurement for a certain time step; each cell
contains a JSON encoded structure holding the sensor data as defined in the ICD
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channels for each sensor. All other states do nothing.
The user can copy the binary file saved by the KF model mentioned earlier to the

development machine, and perform the validation in MATLAB with the help of the
function validateSi2Integration().

This function is contained within validateSi2Integration.m and takes in three pa-
rameters: refFile, the path to a reference .mat file2; si2recordingFile, the path to a
binary recording generated by the data recorder3 of the KF model; and stopOnError
which tells the function to abort if a discrepancy between expected and actual recorded
values is detected.

First, the reference data is loaded from the .mat file via the load() function provided
by MATLAB as well as the recording data via binary2matRecording(), a function
provided by the developers of the navigational software. A tolerance threshold is set
which defines the maximum allowed difference (due to numerical errors or conversion
losses) between reference and values from Si2 to be considered equal.

The function then proceeds to compare the input data from both the reference
and recording files by iterating through the retrieved data structure fields. This is
accomplished by making use of the reflection capability of MATLAB using the eval()
function, putting together the "chain of accessors" throughout the structs, appending
their field names retrieved by a call to the function getFieldNamesRecursive()4. For
each field, validateSi2Integration() then iterates through the elements of the field
and checks if the absolute difference between the reference and recording values lies
within the set tolerance threshold. If a mismatch is found, an error message is printed
and the boolean flag hasPassedTest (which is also the return value of the function) is
set to false.

After processing the input data in that way, the function performs the same steps on
the output data.

Using this function, the user can determine the correctness of the integration pro-
cess (if no mismatch has been found during the validation of the input5), and the
correctness of the C++ code of the navigational software generated from native MAT-
LAB code by MATLAB Coder (if no mismatch has been found during the validation of

2Which is the recording of a previous test flight, also containing the expected output of the navigational
software

3This parameter is currently unused due to the implementation of the function binary2matRecording,
which searches for files containing the string "datarecorder" in their name instead.

4Which also has been supplied by the developers of the navigational software.
5Which indicates that either the conversion between data types has an issue or the piping of the input

data through Si2 went wrong and therefore the relevant code for model generation or the assignments
to the channels need to be corrected
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the output).

4.2 The Field Test

The final part of the thesis and its evaluation is a field test – for this, a real sensor, the
SBG Systems ELLIPSE2-N is plugged into the DuraCOR 311 via USB and integrated
into an AP2633 model via the manufacturer’s C library based on example code supplied
with it [22b]; the example was extended to also read out acceleration data from the IMU
and GPS data regarding position and velocity. All information regarding the sensor
and library protocol is found in its firmware manual [22a].

Due to the SBG Ellipse internally having an IMU as well as a Global Navigation
Satellite System (GNSS) receiver which is reflected also by the library and, respectively
the sensor protocol, the IMU and GNSS AP2633 models had to be merged – this just
meant copying the entries of the MICD and MLCD of the GNSS model to those of the
IMU model and removing the GNSS model’s entry in default.models.

A photo of the final setup is shown in Figure 4.1.

Figure 4.1: The DuraCOR 311 with the Ellipse sensor and a GPS antenna plugged in.
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A short overview of a IMU_main.cpp integrating the Ellipse sensor: After including
the necessary header files, the path to the USB device the sensor is bound to by Linux,
as well as the used baud rate are defined in preprocessor definitions. A couple of static
variables regarding the sensor library and holding the data for error codes, an interface
handle and a communication handle in memory are declared.

After that, a callback function, onLogReceived(), is defined, which is called every
time a new data frame is available from the sensor. First, this function checks the
message type of the frame according to the sensor protocol and assigns the read values
to the correct Si2 channels depending on the message type (in our case these may be
either IMU or GPS data) after converting them to the correct units.

The IMU_main() function is straight-forward. In its INIT state, it establishes a serial
connection to the sensor device via appropriate calls to the sensor library, configuring
the refresh rate to 50 Hz for the IMU and 5 Hz for the GPS. It also hooks up the
callback function described earlier. In its RUN state, the AP2633 model tries to read a
new data frame from the sensor and simply sleeps if no frame is available. The UNLOAD
state deinitializes the sensor’s library. All other states do nothing.

Finally, this setup of the embedded computer, the sensor device with the IMU in-
cluding the GNSS receiver as well as an GNSS antenna and power supply, has been
installed in a car6 in order to gather real world data of a dynamic trajectory. The IMU
has been mounted on the car roof with duct tape, the GPS antenna had an integrated
magnet for attaching it on the car roof.

The field test has shown that the developed integration method works for a real sce-
nario using physical sensors and may be used as a starting point for adding additional
physical sensors in the future. It should be noted that no manual changes to the KF
model have been necessary; the auto-generated AP2633 model worked as intended.

6Due to time constraints, the initially planned hexacopter flight could not be conducted
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5 Outlook

There are a couple of improvements and additions the integration process introduced
in this thesis could benefit from.

Regarding the generation of the C++ JSON macros, leveraging a complete compiler
with access to the Abstract Syntax Tree (AST) or libclang would enable the use of
arbitrary valid syntax for the structure definitions inside SensorFusion4Coder_types.h
and other header files parsed during the integration process instead of relying on
certain characteristica of the code generated by MATLAB Coder and Si2. This approach
also mitigates certain threats to the validity of the process: If the syntax of the generated
structure definitions changes, the parser has to be adopted accordingly. However, using
libclang or a similar solution introduces many dependencies which must be installed
on the target platform, increasing the complexity of the build process. Also, using such
a solution is a lot more complex compared to the parser introduced in this thesis.

Moreover, if at some point in the future, the restriction on using C++11 will drop,
one could make use of the reflection capability of C++17 or newer which allows a kind
of metaprogramming, e.g. iterating over the members of a struct at compile time which
makes the generation of the JSON macros easier if even necessary.

Another possible improvement regarding the generation of the C++ main files of the
models is to separate the C++ code from the MATLAB scripts; right now, they are built
"insitu" inside large strings; the static parts of the code could literally be outsourced to
their own files containing placeholders which the scripts then replace and/or fill. A
small downside which comes with this approach is that changes to these static parts
– possibly – require another editor besides MATLAB itself. It is up to the developers
what solution is more beneficial to them.

A significant, however time-consuming, improvement is to implement unit tests
for the integration scripts. This decreases risks of breaking the integration process if
changes to the scripts are made since any error can be quickly identified by running
the test suite.
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6 Conclusion

In this thesis an automated integration process for navigational software into the
middleware Si2 has been developed and introduced, pathing the way of putting the
navigational software onto an embedded computer and exposing it to the real world.

Looking back, such an endeavor requires understanding and knowledge of the whole
system; a lot of domain knowledge has been obtained by communicating with the team
responsible for the development of the navigational software. It also became clear that
there is no such thing as a "blueprint" for integration processes like this: Each one has
to be tailored to the specific needs and requirements by the developers as well as the
development and target systems.

However, certain patterns (like the need for parsing code and generating new code
out of it) emerged which could be promising targets for future research, possibly also
increasing the efficiency of developing such integration processes themselves.
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Abbreviations

AST Abstract Syntax Tree

CSV Comma-Separated Values

DD Data Definition

DOM Document Object Model

GCC GNU Compiler Collection

GNSS Global Navigation Satellite System

GPS Global Positioning System

GSDD Global Simulation Data Description

ICD Interface Control Document

IMU Inertial Measurement Unit

JSON JavaScript Object Notation

KF Kalman Filter

MICD Model Interface Control Document

MLCD Model Link Control Document

MSVC Microsoft Visual C++

XML Extensible Markup Language
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