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Abstract

Problem: In the context of traffic networks, determining the perfect path for a single
traveler is a daunting task. Navigating a human necessitates an understanding of the in-
dividual’s short-term and long-term aspirations intertwined with the current state of the
world around them. This translates into a multi-dimensional utility function composed
of an unpredictable number of relevant variables. Financial costs, travel comfort, route
scenery, stress, or required physical activity are just a few variables influencing our travel
behavior. To complicate this issue, travelers weigh these variables subjectively, further
individualizing the equation. This means that each traveler’s understanding of a ”ratio-
nal” travel behavior is, in part, catered to their personal preferences. Depending on the
extent to which travelers are able to empathize with another traveler’s preferences, they
will find rationality in that behavior or not. When the results of all these individual
travel preferences then collide in a network with limited capacities, the limited supply
to meet the compound traveler demands results in traffic congestion.

Description: To efficiently solve this issue, most navigation systems simplify the prob-
lem by focusing on universally significant variables. Navigation algorithms like Google
Maps or Apple Maps mostly optimize routes for travel duration and distance. However,
pursuing low-dimensional optimization assumes that human routing preferences follow
similarly low-dimensional utility functions. In reality, human utility functions are high-
dimensional, including the traveler’s current situation, general personality, and physical-
ity. This causes low-dimensional routing algorithms to underfit the multi-dimensional
potential of human travel preferences. Underfitting human travel preferences causes
conflicts that could have been avoided in higher dimensionality. Similar to how adding
lanes to roads (2nd dimension) or building bridges instead of crossroads (3rd dimension)
reduces conflicts, adding more optimization dimensions to routing algorithms also re-
duces conflicts.

Results: Delving into this issue, we propose a novel concept demonstrating how includ-
ing human ”irrationality” in routing benefits all network participants. The dissertation
details the development and implementation of a software architecture that supports the
transition from Navigation 2.0 (current) to Navigation 3.0 (future). A primary feature
of this work is the construction of a simulation environment that compares the behaviors
of Navigation 2.0 and Navigation 3.0. The development of an algorithm for Navigation
3.0, capable of integrating user-specific needs into the routing process and manipulating
network supply, along with adjustments in physical, psychological, and situational opti-
mization variables, is a key contribution.
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The simulation demonstrates how individual travel needs affect travel behavior within
a network. Utilizing an Origin-Destination Matrix (ODM), the simulation provides a
detailed representation of travel behavior for both individual travelers and network-wide
patterns. The research highlights the effects of psychological, physiological, and situ-
ational changes on travel patterns, as well as the influence of structural or regulatory
modifications in traffic flow.

Another focus of the work is on the effects of implementing navigation algorithms based
on the newly developed principles for Navigation 3.0. This includes the impact of network
adjustments (edges/nodes) and their influence on various travel needs. The research
aims to ensure that the enhancements from these customizations are greater than their
associated costs. The dissertation offers insights into balancing the maximization of
benefits against the interaction and computational expenses, aiming to prevent a shift
from underfitting to overfitting in navigation algorithms.
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Zusammenfassung

Problem: Im Kontext von Verkehrsnetzen ist die Bestimmung des perfekten Weges
für einen einzelnen Reisenden eine gewaltige Aufgabe. Die Navigation eines Menschen
erfordert ein Verständnis der kurz- und langfristigen Ziele des Einzelnen, die mit dem ak-
tuellen Zustand der Welt um ihn herum verwoben sind. Daraus ergibt sich eine mehrdi-
mensionale Nutzenfunktion, die sich aus einer unvorhersehbaren Anzahl von relevanten
Variablen zusammensetzt. Finanzielle Kosten, Reisekomfort, landschaftliche Gegeben-
heiten, Stress oder erforderliche körperliche Aktivität sind nur einige Beispiele für Vari-
ablen, die unser Reiseverhalten beeinflussen. Hinzu kommt, dass Reisende diese Vari-
ablen subjektiv gewichten, was die Gleichung weiter individualisiert. Das bedeutet, dass
das Verständnis eines jeden Reisenden von einem ”rationalen” Reiseverhalten zum Teil
auf seine persönlichen Präferenzen abgestimmt ist. Je nachdem, inwieweit ein Reisender
in der Lage ist, sich in die Präferenzen eines anderen Reisenden hineinzuversetzen, wird er
dieses Verhalten als rational empfinden - oder eben nicht. Wenn die Ergebnisse all dieser
individuellen Reisepräferenzen in einem Netz mit begrenzten Kapazitäten aufeinandertr-
effen, führt das begrenzte Angebot zu Verzögerungen.

Beschreibung: Um dieses komplexe Problem efficient zu lösen, vereinfachen die meis-
ten Navigationssysteme das Problem, indem sie sich auf die allgemeingültigsten Vari-
ablen zu konzentrieren. Navigationsalgorithmen wie Google Maps oder Apple Maps
optimieren Routen meist nach Reisedauer und Entfernung. Eine niedrigdimensionale
Optimierung setzt jedoch voraus, dass die menschlichen Routingpräferenzen ähnlich
niedrigdimensionalen Nutzenfunktionen folgen. In Wirklichkeit sind die menschlichen
Nutzenfunktionen hochdimensional, einschließlich der aktuellen Situation des Reisenden,
seiner allgemeinen Persönlichkeit und seiner körperlichen Verfassung. Dies führt dazu,
dass niedrigdimensionale Routing- Algorithmen das mehrdimensionale Potenzial der
menschlichen Reisepräferenzen nicht ausreichend berücksichtigen. Die unzureichende
Berücksichtigung dieser Präferenzen führt zu Konflikten, die bei höherer Dimension-
alität hätten vermieden werden können. Ähnlich wie das Hinzufügen von Fahrspuren zu
Straßen (2. Dimension) oder der Bau von Brücken anstelle von Kreuzungen (3. Dimen-
sion) Konflikte reduziert, werden Konflikte ebenfalls durch das Hinzufügen zusätzlicher
Optimierungsdimensionen in Routenfindungsalgorithmen reduziert.

Ergebnisse: Um dieses Thema zu vertiefen, schlagen wir ein neuartiges Konzept vor,
das zeigt, wie die Einbeziehung menschlicher ”Irrationalität” in das Routing für alle
Netzwerkteilnehmer von Vorteil ist. Die Dissertation beschreibt die Entwicklung und
Implementierung einer Softwarearchitektur, die den Übergang von Navigation 2.0 (ak-
tuell) zu Navigation 3.0 (zukünftig) unterstützt. Ein wesentliches Merkmal dieser Arbeit
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ist der Aufbau einer Simulationsumgebung, die das Verhalten von Navigation 2.0 und
Navigation 3.0 vergleicht. Die Entwicklung eines Algorithmus für die Navigation 3.0, der
in der Lage ist, benutzerspezifische Bedürfnisse in den Routingprozess zu integrieren und
das Netzangebot zu manipulieren, sowie Anpassungen der physischen, psychologischen
und situativen Optimierungsvariablen, ist ein wesentlicher Beitrag.

Die Simulation zeigt, wie sich individuelle Reisebedürfnisse auf das Reiseverhalten in
einem Netzwerkt auswirken. Unter Verwendung einer Start-Ziel-Matrix (ODM) bietet
die Simulation eine detaillierte Darstellung des Reiseverhaltens sowohl für individuelle
Reisende als auch für netzweite Muster. Die Untersuchung zeigt die Auswirkungen psy-
chologischer, physiologischer und situativer Veränderungen auf das Reiseverhalten sowie
den Einfluss struktureller oder regulatorischer Veränderungen im Verkehrsfluss.

Ein weiterer Schwerpunkt der Arbeit liegt auf den Auswirkungen der Einführung von
Navigationsalgorithmen, welche auf den neu entwickelten Prinzipien für Navigation 3.0
aufbauen. Insbesondere auf den Auswirkungen von Netzwerkanpassungen (Kanten/-
Knoten) und deren einfluss auf unterschiedliche Reisebedürfnisse. Die Forschung zielt da-
rauf ab, sicherzustellen, dass die Verbesserungen durch diese Anpassungen größer sind als
die damit verbundenen Kosten. Die Dissertation bietet Einblicke in die Abwägung zwis-
chen Nutzenmaximierung und Interaktions- und Rechenaufwand, um eine Verschiebung
von Underfitting zu Overfitting bei Navigationsalgorithmen zu verhindern.
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1 Introduction

We often assume that others think rationally. Especially when traveling, we assume
that everyone’s goal is to reach their destination as quickly as possible. But each per-
son’s reasoning can take a unique path. Financial costs, travel comfort, route scenery,
stress, or required physical activity are just a few examples of other influences on our
travel behavior. This means that our understanding of rational travel behaviors is, in
part, catered to our preferences. Depending on the extent to which we are able to em-
pathize with another traveler’s preferences, we will find rationality in that behavior or
not. This means that we are left uncertain of the motives and reasons for somebody’s
travel behavior unless they match ours or we are able to empathize with their preferences.

But how do we humans cope with people whose behaviors do not fit into our own range
of rational behaviors? How do we classify a person who prefers to ride their bike 30
kilometers to work every day instead of using public transport or a car?

1.1 Societal Interpretation of Behavioral Variety

Once somebody else behaves so differently from our own expectations that we can no
longer identify the reasoning behind it, we tend to label their actions as irrational, crazy,
or erratic. In German, terms for crazy, like ”verrückt” and ”wahnsinning” are used to
describe such behaviors, framing them as irrational. However, the literal translation of
these words provides insight into how craziness was initially depicted in the German
language. ”Verrückt” literally means shifted, explaining a typification of irrationality in
which a shown behavior is ”shifted” outside the normative range of behaviors.

But how is a normative behavior defined? There are two perspectives: the individual’s
and the population’s. For any individual, the range of rational behaviors is defined from
their own perspective. When we, as individuals, classify behaviors as rational or irra-
tional, we consider our own experiences, knowledge, physical ability, and values in this
process. The more closely the exerted behavior aligns with our own perspective, the
more likely it is that we see it as rational. If a chosen strategy diverts from our personal
perspective, we use a skill called empathy to switch to the other person’s perspective.
Using this skill, we can extend our range of acceptable behaviors. Here, the rule is: The
further another person’s experiences, knowledge, physical ability, and values differ from
our own, the more empathy we must utilize to take their perspective. In return, the more
closely we are aligned with people’s perspectives around us, the less empathy is required.
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1 Introduction

From the perspective of an entire population, these individual perspectives are summa-
rized and normally distributed. In such normal distributions, the peak describes the
most commonly held perspective of a population. Further strafing to the left and right,
we find less and less popular opinions on rational behavior. This means that from the
perspective of an entire population, the ends of the distribution are where irrationality
is found. Similarly to before, more and more empathy is required for the center of the
distribution to find rationality in the behavior of the distribution’s ends.

This relation is depicted in Figure 1.1 (left), symbolically showing how the likelihood for
the majority in the center (µ) to classify an individual as irrational increases with the
individual’s distance (+σ or -σ) to the center (µ) of the normal distribution, as more
and more empathy is required. What defines the previously mentioned normative per-
spective can be described as the areas close to the center (µ) of the normally distributed
perspectives of the relevant population. Similarly, an individual placed at the edge
of a normal distribution (based on experiences, knowledge, physical ability, and values)
will require much empathy to understand the perspective of the seemingly shifted center.

The term ”wahnsinning” provides a different interpretation, assuming false informa-
tion instead of false interpretation. When translated literally, ”wahnsinning” can be
expressed as ”delusional sensing”. Here, the German language takes a different route,
implying that it’s not the person’s knowledge, background, or values that are causing
irrational behavior but their false perception of facts. This perspective on irrationality
does not target a difference in interpretation but rather suggests a difference in the initial
recording of reality using our biological sensors of vision, hearing, smell, touch, or taste.
The assumption here is that the individual making a judgment is operating on false data
and, therefore, never had the chance to make a rational choice. It thereby assumes that
the person is not generally shifted but they are merely misinformed. People operating
under this assumption of irrationality will try to inform the other person, relying on
their own perception of reality. However, there is potential for both perceptions to be
correct.

To further illustrate the possibility of both individuals sensing correctly, consider the
image created by W.E. Hill in 1915 (Figure 1.1, right). Depending on one’s perspective,
the image could depict either an old or a young woman. The picture hosts two similar
truths that are difficult to perceive simultaneously, forcing us to take one perspective
at a time. This demonstrates how our senses, here vision, can be deceived, reporting
different versions of truth depending on our perspectives.

1https://en.wikipedia.org/wiki/Standard deviation Accessed: 15.11.2023
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1.2 Exploration of Behavioral Variety

Figure 1.1: Visual depiction of ”delusional sensing” and ”shifted”, using W.E. Hill’s cartoon
(My Wife and My Mother-In-Law, 1915, right) to demonstrate delusional sensing
and an extended version of a normal distribution1 (left). The cartoon displays
both an old and a young woman, causing observers to question each other’s sanity
as they see opposing versions of reality. On the left, our extension of the normal
distribution showcases how the likelihood of the majority of the population (µ) to
consider a person or group to be ”shifted”, or in other words crazy, increases with
their distance (+σ or -σ) from the population’s mean (red curve).

1.2 Exploration of Behavioral Variety

While differences in truth generally cause conflicts between individuals, they can also
cause the precise opposite and prevent conflicts. In eco-systems, different species can
benefit from shifted strategies, either by directly helping them, a concept called symbiosis
[5, 6] (Figure 1.2) or by targeting a different food source, called coexistence. Symbiotic
relationships mark a trade between two entities in which both entities have a positive
return from engaging in the trade. So, while a Water Buffalo sees flies as parasites, it
does not mind the Oxpecker Bird eating them off its back. The Oxpecker Bird, in re-
turn, sees them as a food source. While an Oxpecker eating flies might appear irrational
to a Water Buffalo, it actively benefits from the bird’s behavior. The second concept
is coexistence, in which two entities do not interfere with the other’s strategy, causing
no conflicts between them [7]. Both concepts advertise a heterogeneity of strategies to
spread the demand evenly across a provided supply and maximize the total number of
animals occupying the ecosystem.

Both symbiosis and coexistence allow for a wider range of different entities to exist
without causing additional conflicts [8, 9, 10]. Bascompte et al. even describes that
when habitats are initially homogeneous, the homogeneous population will eventually
become scattered over different strategies in a heterogeneous pattern, causing patchy
distributions, each focused on their own supply niches [10]. In their book Animal Con-
flict, Huntingtonford describes how conflicts between animals only revolve around either
resources (e.g., food) or outcomes (e.g., killing or survival of prey) [11]. One way to
alleviate conflict is, for example, achieved through the utilization of uncontested food

3



1 Introduction

sources, leading to an increase in ecosystem heterogeneity. A logical consequence of such
heterogeneity is a normal distribution of preferences, demonstrating the rationality of
irrationality.

Figure 1.2: Symbiotic relationships in nature, showcasing advantages of diverting strategies.
Water Buffalo and Oxpecker Bird (parasite control/food source), Bee and Flower
(food source/reproduction), Clown Fish and Sea Anemone (protection/cleaning),
Shark and Remora Fish (food source/cleaning). 2345

1.3 Behavioral Variety in Traffic Networks

From a game theoretical perspective, traffic networks show similarities to ecosystems.
Both are seen as non-cooperative n-person games. Such games provide a range of sup-
plies (e.g., network paths or food sources) that are fought over by a range of different
demands (e.g., travelers or animals). When traveling from an origin to a destination,
travelers fight over the existing supply resources, trying to find a subjectively optimal
path. In homogeneous traffic systems, all travelers share the same definition of opti-
mal, similar to an ecosystem consisting of just a singular animal species, forcing them
to fight over the same path or food source, leading to a supply shortage and unused

2https://www.scuba.com/blog/5-marine-symbiotic-relationships/ Accessed: 15.11.2023
3https://animalsymbiosis.weebly.com/cattle-egrets.html Accessed: 15.11.2023
4https://sharktourshawaii.com/blog/shark-remora-fish-unique-relationship/ Accessed: 15.11.2023
5https://www.earth.com/news/how-do-symbiotic-relationships-evolve-between-species/ Accessed:
15.11.2023
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supply sources. In traffic networks, we call these supply shortages congestion. Heteroge-
neous systems contain a variety of traveler types or animal species, each with different
preferences for different resources. Here, resource preferences are distributed between
travelers or species, allowing for larger populations before resource limits are met. In
traffic networks, this means that a larger distribution of traveler preferences results in a
larger total amount of travelers traveling from origin to destination before congestions
emerge.

In this dissertation, we argue that reasons for unusual travel choices that might seem
irrational to others are actually beneficial as long as they utilize otherwise vacant sup-
plies. Similar to the Water Buffalo not minding the Oxpecker Birds’ ”irrational” hunger
for the flies on its back, a car commuter using the highway will not mind his neighbor’s
”irrational” preference to walk to work, consequently leaving more space on the highway
for the commuter.

Yet, technological advances in traveler navigation have caused a growing homogeneity
of traveler strategies, mostly optimized for the fastest or shortest routes. Instead of
optimizing an individual’s routing preferences, modern navigation solutions like Google
Maps or Apple Maps focus on singular optimization variables for routing, causing an
undesirable centralization.

Building upon these principles, this dissertation will demonstrate how heterogeneously
distributed strategies for public transportation may be perceived as irrational on an indi-
vidual level but are rational on a systemic level, spreading the demand more evenly over
the available network supply. A new approach to navigation will be introduced through
a simulation tool using a new type of navigation algorithm optimized for individualized
routing. This, in turn, possesses the potential to alleviate congestion on the more con-
ventionally logical and efficient routes (fastest and shortest) by allowing travelers to opt
for personalized routes.
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2 Principles of Navigation

2.1 Determinants of Human Behavior: Past Actions,
Emotions, Norms, and Personality

In the previous chapter, we mentioned how technological advances in traveler navigation
contribute to an increase in traveler homogeneity, thereby fostering resource conflicts.
Before discussing how technology caused this effect, we first introduce the basic prin-
ciples constituting routing decisions. Aarts et al. have delved into the prediction of
human behavior based on past actions, emphasizing whether these predictions result
from repeated decision-making or if they stem from established habits [12]. This work
aligns closely with the research conducted by Ouellette and Wood, where they explored
the multi-faceted processes through which past behavior influences future actions, high-
lighting the significant role that habits play [13]. Furthermore, Ronis et al. stress the
importance of attitudes, decisions, and habits in determining recurring behavior [14].

Parker et al. expanded the theory of planned behavior by introducing the role of per-
sonal norms. Their study adds depth to our understanding of how personal norms play
an integral role in determining behavior [15]. Similarly, Biddle et al. discuss the in-
fluence of norms, preferences, and identities on retention decisions, emphasizing how
these aspects impact decision-making processes [16]. Charng et al. delve deeper into
the role of identity, specifically role identity, and its importance in predicting repeated
behavior [17]. Richard et al. looked into the influence of anticipated emotional reac-
tions on the prevention of AIDS, shedding light on how emotions play a pivotal role in
decision-making, especially when it comes to vital decisions concerning health [18]. This
is somewhat connected to Tessler and Schwartz’s exploration of help-seeking behaviors
in relation to self-esteem and achievement motivation, discussing how the anticipation
of societal judgments can influence an individual’s actions [19].

Roccas et al. investigated the interplay between the big five personality factors and
personal values. Their research provides insights into individual personalities and how
these can influence and be influenced by personal values, thus playing a crucial role in
shaping behavior [20]. In a related context, Cobb-Clark and Schurer delved into the
stability of the big five personality traits, offering an understanding of the consistency
and changes in these traits over time [21].
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2.2 Supply, Demand, and Situation

In any given network, travelers can choose from many routes to reach their destination.
Each person ranks these paths using their subjective ”utility function” that considers a
potentially endless list of factors such as travel time, comfort, or emissions. To pick the
best path, we have identified three clusters or types of information that travelers base
their decisions on:

Concept 1: Supply Information
Supply Information provides insights into the routes, roads, and public transportation
options available within the transportation network, representing the theoretical avail-
ability. Additionally, weights on edges and nodes are provided, indicating distances and
expected travel times without demand. To do so, speed limits, traffic light sequences,
and public transport operation schedules are used to assume an ”unobstructed” travel
time for actions performed (e.g., traveling an edge, waiting at a node) on the network.

Background: Supply information, as the backbone of understanding transportation
infrastructure, has been widely studied in transportation research. Ortuzar and Willum-
sen (2011) offer comprehensive insights into the planning and modeling of transporta-
tion systems. Their work showcases the importance of understanding the routes, roads,
and available public transportation options within any given network, underscoring the
essence of supply information [22]. Similarly, Rodrigue et al. (2016) delve deeper into
the spatial structures and patterns of transportation systems, discussing the various
components that form the transportation supply [23]. Hall and Tewdwr-Jones (2019)
emphasize how the supply of transportation infrastructure, for example, the rail net-
works or ports, directly influences the socio-economic trajectory of regions, emphasizing
its critical role in urban planning and development [24]. Winters et al. [25] highlight
how built environment influences can sway the route selection for both bicycles and cars,
indicating the complexity of choices. Borst et al. [26] emphasized how environmental
street characteristics can significantly impact the walking routes chosen by the elderly.
Meanwhile, Moran et al. [27] investigated the role of trip destinations and neighborhood
attributes in shaping the route choices of children, emphasizing the importance of un-
derstanding diverse environmental influences.

Concept 2: Demand Information
In addition to this theoretical availability of supply information, demand information
offers details about the current traffic situation. This information is based on data re-
flecting the current distribution of travelers across the network. From this, one can infer
the anticipated travel speed on all network sections based on the current balance of the
traffic network’s supply and demand.

Background: Winters et al. also addressed demand information, stating that traffic
demand is the cumulative outcome of countless intersecting paths chosen by travelers,
navigating the networks that connect their current location to their preferenced endpoint
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[25]. Mahmassani elaborates that transportation system analysis, especially in urban ar-
eas, needs accurate demand data to anticipate travel speeds and network congestions
[28]. Similarly, Ben-Akiva and Lerman highlight the significance of capturing real-time
demand information for traveler’s route choice behavior modeling [29]. They contend
that the accuracy of travel demand models improves with the incorporation of real-time
traffic information. Furthermore, the work by Nagurney and Dong supports Concept
2 by emphasizing the importance of understanding the current distribution of travelers
(or demand information) and how this can influence traffic dynamics and route choice
behaviors in a network [30].

Figure 2.1: Left: An example for supply information in Munich6, graphically visualized as a 2
dimensional map. Right: Demand information in Munich7, visualized as expected
travel speeds (Dark Green: 80 km/h, Bright Green: 61-80 km/h, Yellow: 41-60
km/h, Orange: 21-40 km/h, Red: 0-20 km/h)

Concept 3: Situational Information
Situational information contains additional meta-data that may or may not influence a
traveler’s route choice, such as the current weather conditions, the financial price of a
route, the expected emissions for a transport connection, or the proximity of fast food
restaurants near the selected route. Situational information is usually required by the
traveler’s current circumstances, such as hunger, lack of money, or unfitting clothing for
heavy rain.

Background: Situational information is an often underappreciated component that
significantly impacts travel behaviors and choices. Liu et al. describe the influence of
weather information on travel behavior [31]. Cools and Creemers investigate the impact
of weather forecasts on travel behavior, identifying a significant effect. Consequently,

6https://www.openstreetmap.org/#map=11/48.1420/11.547 Accessed: 15.11.20233
7https://www.br.de/nachrichten/verkehr/index.html (Data: 13.10.2023, 08:30:00) Accessed:
13.10.2023
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they suggest the implementation of a road weather information system that is directly
linked to the weather forecasts. However, the impact of situational information on rout-
ing behavior contains more variables than the weather conditions. Franken and Lenz
describe that in the everyday context, people often act as they did before in the same or
similar situations, meaning that without a situational change, travelers are likely to stick
to established behavior patterns. Yet, they (re)consider how they act only if situations
are completely new or unknown so that previous behavioral patterns do not fit [32].
However, a new situation may only be identified and incorporated if information about
the situation changes reaches the traveler.

Figure 2.2: An example for situational weather influences on cyclists’ travel behavior, published
by Ahmed et al. [1].

An example of both supply- (left) and demand information (right) is provided in Figure
2.1. An example of situational information influences is provided in Figure 2.2, demon-
strating how factors such as the weather forecast, work-related factors, activities before
and after work, and other situational factors each impact the decision to cycle to work.
Based on this information, either the travelers themselves, a person they have put in
charge, or a navigation device they are using calculate various routes to their destina-
tion. Optimally, the calculated route will pay full respect to the information described
in concepts 1-3. From the available options, the traveler then selects the route that
will maximally satisfy the traveler’s current routing preferences. Whether the selected
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route will actually result in the highest satisfaction remains uncertain, as the network,
its demand, the current situation, and the traveler’s needs constantly change with time
passing. Yet, at the moment of decision-making, the traveler will always opt for the
route they currently perceive as subjectively optimal to them.

2.3 The Evolution of Navigation

But how does the traveler select the route with the greatest satisfaction? Before we
answer this question, we first need to look at the previously mentioned types of routers:
The traveler themselves, a human representative (e.g., taxi drivers, tour guides, parents,
etc.), and a digital representative (e.g., Google Maps, Apple Maps, built-in car naviga-
tion systems, etc.).

2.3.1 Game Theoretical Concepts

As we move from the individual to the collective, we transition to the realm of game the-
ory, where these individual choices intersect with broader societal patterns. Navigation
3.0, encapsulated in Concept 9, advocates for a balanced diversity in routing, reminiscent
of the stability found in ecosystems abundant with biodiversity. This concept resonates
with game-theoretical principles, especially when considering the multi-dimensional Nash
Equilibrium. In this equilibrium, individuals’ pursuit of personal utility contributes to
an overarching system balance, much like the bio-diverse routes contribute to a resilient
navigation system.
The forthcoming section on Game Theoretical Concepts seeks to unravel the strategic
interplay that underpins the traffic market theory. Here, we are not just observers of
traffic as a flow of vehicles or pedestrians but as a strategic game played by rational
actors. These actors, or travelers, though often modeled simplistically as uniformly
rational, are anything but homogenous. They bring with them the complexities of their
physical, psychological, and situational realities into a strategic environment where not
just the fastest route but the most balanced and resilient system is the ultimate goal.
In the realm of traffic market theory, travelers behave in a manner that’s analogous to
participants in financial markets. These travelers, often perceived as rational, are char-
acterized by a model built on a few assumptions [33]. However, this simplicity often
leads to the neglect of essential variables. Although this makes it straightforward to
model, the end results tend to diverge from reality.

When examining the supply, we primarily consider the underlying networks [34]. In
contrast, the demand side encapsulates all travelers as a collective unit. Within this
framework, univariate optimization stands out. It focuses solely on travel time, pro-
viding calculations that are easier to compute. Nevertheless, this simplicity offers no
mechanism to bypass potential bottlenecks.
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Moving on to traffic psychology, there’s a distinct parallel between financial markets
and the behaviors of what we term the ”irrational traveler”. This category of traveler
presents a more complex modeling challenge but results in outcomes closer to real-world
behaviors [35]. One key aspect is the motivation system. An analogy can be drawn from
lab experiments where rats pull on springs. These experiments yield a singular value as
a result, even when influenced by numerous inputs. Similarly, human route choices are
motivated by multiple factors, which become nearly impossible to deduce solely from
the chosen route.

In the context of information arbitrage, the absence of complete information often paves
the way for decisions that aren’t optimal. It’s akin to a scenario where an incomplete
understanding of better alternatives leads individuals to settle for the ”best known”
choices contentedly. Further complicating the picture is the concept of multivariate
optimization, which requires the understanding of theories like the Nash Equilibrium
[36, 37]. The Nash Equilibrium describes, in part, how the introduction of subjective
utility functions contributes to alleviating bottlenecks by creating a wider range of sub-
jective optima.

Addressing complexity reveals that an increase in available options also demands an
increase in the volume of subjective user information that needs to be input into the
algorithm. These input variables need to be computational and comparable to optimize
effectively. Here, the challenge lies in translating human preferences into feasible, calcu-
lable solutions.

2.3.2 Navigation 1.0

Before the advent of computers, route determination rested with individual travelers
or the designated navigator within a traveling group, a human representative. This
direct involvement made it easier for travelers to customize their routes based on their
needs. Either the travelers were in charge themselves, only requiring them to be aware
of their own needs, or they would have to communicate their needs to their human
representative. Either way, the interfaces for communicating personal routing preferences
were close to ideal. The issue with such navigation resides in the responsible human’s
informedness and ability to calculate routes based on traveler preferences and their
knowledge of the network. Before the advent of automated and interconnected navigation
devices, acquiring the necessary information was a challenge. Relying primarily on static
information sources like maps or personal memories, these sources were often incomplete.
In a similar inefficient fashion, information about roadblocks, congestion, or delays was
drawn from radio broadcasts (if already available) or other travelers, forcing the travelers
themselves to connect this information with their planned path.
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In the 1800s, John, departing from Harrington to Crestwood, unfolded his weathered
map, tracing the route with his finger. Recognizing key landmarks, occasionally
asking passersby to confirm his direction, and retrieving information about the
current road quality, he navigated the maze of dirt roads. At crossroads, he’d gauge
the sun’s position or study the moss on trees to ascertain his heading. Despite the
absence of clear signposts, John’s keen observational skills and prior knowledge of
the terrain ensured he stayed on course, leading him to Crestwood by evening’s fall.

If all this information is indeed available, humans run into another issue: their calcu-
lation capabilities. The human capacity to calculate the optimal route from available
information is limited. Experienced travelers within a particular network traditionally
have an advantage due to their prior knowledge. Local taxi drivers are an example of
such local experts who utilize their extensive training and resulting knowledge of the
traffic network to calculate routes quickly. Only new information has to be processed,
while static knowledge is automatically included using self-established patterns.

Figure 2.3: Navigation 1.0: Sextants8, maps9, and individual knowledge10 as typical represen-
tatives of navigation prior to the invention of satellite-connected devices (GPS and
mobile internet)

8https://de.wikipedia.org/wiki/Datei:US Navy 031025-N-8955H-
005 Quartermaster 2nd Class Martineau, from Ft. Lauderdale, Fla., uses a sextant
to shoot the sun line from the port bridge wing of USS Blue Ridge (LCC 19).jpg
Accessed: 15.11.2023

9https://thewalkingmermaid.com/blog/things-to-do-before-going-on-a-road-trip Accessed: 15.11.2023
10https://www.universaltaxidispatch.com/blog/2015/08/taxi-etiquette-is-it-okay-to-strike-a-

conversation-with-the-cab-driver/ Accessed: 15.11.2023
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In contrast to these local experts, tourists and other types of travelers who are unfa-
miliar with local static knowledge lacked this advantage, resulting in long calculation
times and sub-optimal routes. Researchers of this era, like Vetta [38], Roughgarden
and Tardos [39], or Golledge [40] argued that this method of route determination was
sub-optimal due to travelers’ inability to optimize their routes. They, too, identify a
lack of information or ability to process said information as a source for this issue. They
proposed central control mechanisms as a solution to manage traffic more intelligently
and prevent such inefficiencies. We call this type of Navigation, which does not utilize
automated digital support systems ”Navigation 1.0”.

In the 1970s, John, departing from Harrington to Crestwood, pulled out his well-
folded paper map from the glove compartment of his classic sedan. As he drove along
the asphalt roads, he’d tune in to the local radio stations, listening for any traffic
updates or reports of road closures. Occasionally, he’d pull over at gas stations,
not just to refuel but to ask attendants about the best routes or any recent changes
in the roadways. The highway signs, now more prevalent, guided him at major
junctions. Although there were no GPS devices or digital maps to rely on, John’s
trust in his paper map, his sense of direction, and occasional interactions with locals
ensured a smooth journey, leading him to Crestwood by evening’s fall.

2.3.3 Navigation 2.0

With the digital age and the rise of the internet, we also witnessed a surge in digi-
tized information, computational power, and, eventually, semi-autonomous navigation
systems. While initially overshadowed by local experts, the competence of these systems
has increased with digitization.

In the year 2000, John, setting out from Harrington to Crestwood, powered on his
car’s early-model GPS navigation system. The device, with its pixelated screen,
plotted a clear route for him. As he drove along the modern highways, John occa-
sionally glanced at the GPS, appreciating the satellite-assisted precision it offered.
However, for real-time traffic updates, he still relied on the radio, tuning into local
stations broadcasting any traffic jams or roadwork ahead. Sometimes, he’d have
to cross-reference the radio updates with his GPS, making manual detours when
necessary.

In places with frequent traffic data capture, local experts have little to no advantage
over these systems. Unlike these experts, digital navigation systems can access multiple
data sources simultaneously. Additionally, local experts have to rely on their senses, ex-
tended by radio broadcasts, past experiences, and their own assumptions. Applications
like Google Maps or Apple Maps instead utilize real-time data drawn from all active
users’ current locations and movements. The more users participate, the more accurate
the representation of the traffic situation becomes. So, with the continuous digitization
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of real-world data, we can also see a shift in the most efficient tactic available for naviga-
tion. As this shift describes a substantial change to the navigational process, away from
local knowledge experts and Navigation 1.0 toward computerized navigation systems,
we frame this type of Navigation: ”Navigation 2.0”.

In 2020, John, embarking on his journey from Harrington to Crestwood, connected
his smartphone to his car’s infotainment system. As he input the destination into
his preferred navigation app, it instantly calculated the quickest route, factoring
in current traffic conditions sourced from the real-time data of millions of users.
The high-resolution display showed turn-by-turn directions, with voice assistance
guiding him at every junction. Along the way, the system alerted him of any
upcoming congestion, suggesting alternate routes when beneficial. Additionally,
if there was an accident or unexpected road closure, the app would reroute him
automatically. On the highway, digital signs overhead complemented his app’s info,
providing speed limit changes and traffic updates

Figure 2.4: Apple Maps11 as a typical representation of modern navigation applications repre-
senting Navigation 2.0.

As the change from 1.0 to 2.0 is continuous and yet substantially different, we chose to
take the approach used for labeling versions of software increments in computer science.
By showing that versions 1.x, and 2.x of navigation in between these hard version clusters

11https://www.apple.com/newsroom/de/images/product/apps/standard/Apple-Maps-update-2022-
DE-hero big.jpg.large.jpg Accessed: 15.11.2023
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do exist, we intend to highlight the gradual change in the dominance of each system using
this labeling approach. While computers today can rapidly process vast amounts of data
to continuously calculate an optimal route for bike rides, walks, public transport, or car
rides, this was not the case at the start of this transition process. Instead, their ability to
outperform local knowledge experts gradually evolved over time, growing from support
systems that were handy yet regularly overruled by local experts to the now dominant
method for navigation in sufficiently digitized areas of the world.

In a potential future, John, setting off from Harrington to Crestwood, activated
his car’s Navigation 3.0 system. Inputting his destination, the system, familiar
with John’s habits, crafted a personalized route. Prioritizing scenic views, as it
had learned he preferred. It avoided crowded highways, guiding him along tranquil
countryside roads instead, as John did not mind slight delays if the scenery was
compensating. Recognizing the current light autumn rain and John’s unusual fear
of slipping on wet leaves, the system chose to avoid paths along wooded areas. When
traffic issues arose, it rerouted, factoring in John’s dislikes and likes. If fitting, the
voice guidance offered suggestions: ”John, a viewpoint is nearby. Interested?” To
John, the journey was as much about the experience as his timely arrival at his
destination. While others might not like the route John chose, finding the suggestion
of a viewpoint unnecessary and invasive and regretting an untimely arrival, to John,
it felt just right.

2.4 Navigation 2.0: An Underfitting Solution

Navigation 2.0 brings about an issue that was less prominent before. While it greatly
improves the ability of travelers to calculate optimal routes using a vast amount of data,
it falls short in integrating the traveler’s personal routing preferences into the process.
We previously mentioned that travelers will always select a route they think will leave
them most satisfied. The following concepts 4, 5, and 6 extend the initial concepts and
illustrate in which categories travelers’ routing preferences may be clustered.

Concept 4: Physical Routing Preferences
Physical Routing Preferences represent a traveler’s individual physical capabilities. For
example, stairs or long distances can be challenging for some travelers, depending on
their physical condition. Injuries, young age, old age, and disabilities are typical exam-
ples of such physical conditions. Travelers with unusual physical traits may also have
unusual routing preferences, making them a relevant factor for their navigation.

Background: Physical Routing Preferences address the tangible constraints a traveler
may experience due to personal physical limitations. Musselwhite and Shergold delved
into the transportation needs of older people, emphasizing how physical impairments
cause these individuals to eventually give up driving cars. Their findings suggest that
although a similar pattern was found between the trigger and life post-car, not all older
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people go through the stages of giving up driving in the same way [41]. Hakamies-
Blomqvist and Wahlstrom, and Marottoli et al. make similar observations, explaining
that declining health is often a predictor for a reduction in driving, ending in giving
up driving entirely [42, 43]. Tsai discusses the environmental factors that impact the
mobility of people with disabilities, providing insight into how physical aspects influ-
ence routing choices [44]. Similarly, Card et al. highlight the mobility challenges faced
by disabled travelers, recommending travel providers consider the travel intentions and
health conditions of the physically disabled [45].

Concept 5: Psychological Routing Preferences
Psychological aspects, like a traveler’s personality, also influence route choice and are
rather consistent. Measures, such as the Big Five personality traits, capture these con-
sistent personality traits in categories, suggesting that travelers who differ in these per-
sonality traits value the quality of a route differently. For example, a strongly neurotic
traveler will perceive travel risks differently than their hardly neurotic counterpart by
preferring safer routes and planning longer time buffers. A hardly neurotic traveler, in
return, is likely to accept higher risks in their routes.

Background: Travelers’ psychological makeup undeniably impacts their route selection.
Costa and McCrae’s work on the NEO Personality Inventory, often referred to as Big
Five Factors of Personality, offers a detailed analysis of their measurement and reliability
[46]. Jani explores the relationship between the Big Five Factors of personality and travel
personality [47, 48]. Their findings suggested that travelers with different personality
traits exhibit distinct preferences and aversions, shaping their route decisions. Dahlen
et al. look into correlations between Big Five Factors, trait driving anger, and sensation
seeking, finding consistent correlations to unsafe and aggressive driving [49]. Morar et
al. investigated changes in travel behavior during the COVID-19 pandemic and the role
of tourists’ personalities. The results of their study suggest that specific information
about COVID-19, coping mechanisms, fear of travel, and neuropsychological personality
traits may affect travel behavior in the pandemic period [50]. Terzić et al. also utilized
the COVID-19 pandemic to investigate human psychology in relation to travel behavior.
Using a random sample of roughly 50.000 participants from 29 European countries, they
conclude that risk perceptions and behavioral responses of travelers differ significantly
between individuals, groups, and even nations [51]. Prevendouros also investigates po-
tential associations between personality and individual travel behavior characteristics.
Prevendouros concludes that personality characteristics tend to correlate well with resi-
dence location selection, automobile ownership, and travel characteristics [52].

Concept 6: Situational Routing Preferences
Situational factors include things like the traveler’s current clothing, their current fi-
nancial situation, their current stress levels, or their current preference for scenic views.
Major events, like the SARS-CoV-2 pandemic in 2020, also fall under situational in-
fluences that can change how travelers choose their routes. While the physical and
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psychological factors come from the travelers themselves, situational ones are external.

Background: Situational factors, whether predictable like weather or unforeseeable
like pandemics, sway route choices. A recent event, the COVID-19 pandemic, made this
quite clear. Various researchers described the influence of the prevailing situation on
travel behaviors and routing preferences. Bratic et al. focused on observed changes in
travel risk perception and vacation travel behavior [53]. Thomas et al. and Harrigton et
al. looked into changes in commuting behaviors during and after the pandemic [54, 55].
Lancée et al. revealed that the effect of different ways of commuting differs across situ-
ations, especially with regard to commuting mode, concluding that there is no one way
of commuting that is optimal for everybody [56]. So and Lehto investigate situational
differences between Japanese travelers by comparing travel with friends, traveling with
family members, and traveling alone. Their results indicate unique situational character-
istics during family travel but similarities in travel behaviors for friend groups and solo
travelers [57]. Endsley’s works on situational awareness in aviation and other domains
illustrate how the Traveler’s current situation impacts decisions [58, 59].

Figure 2.5: Study data from the Master’s thesis of Bayram Ahmadov, showcasing the distribu-
tion of planned in buffer time depending on the travel purpose [2].

17



2 Principles of Navigation

In the context of an ongoing Master’s thesis by Bayram Ahmadov (publication in
progress), we asked students of the Technical University and the Ludwig Maximilian
University in Munich to estimate how much additional time they would plan as a
safety measure when traveling [2]. We then faced these students with various events
of different severity that they know from their daily lives. A trip to the airport, a
university lecture, a university exam, a study group meeting, a leisure activity, and
some more. Provided five answer options, the student answers generally resulted
in normal distributions. However, the center of each normal distribution would
shift based on the event type, causing students to include more additional time
when traveling to the airport or for an exam and much less for leisure activities or
lectures. The results are visualized in Figure 2.5. Similarly, we also asked students
how other factors would affect their travel choices (Figure 2.6), such as travel time
constraints, developing body odor, their own physical conditions, or route safety.
Here again, we found that students’ answers are normally distributed with shifts
to the left or right based on the event type. The idea of the study is to showcase
how physical, psychological, and situational preferences impact travelers (in this
case, students) differently, showing how they each follow their own multi-varied
equations when evaluating the quality of a route. With 476 participating students
for a population of 100,000 students studying at TUM and LMU worldwide, the
study is representative at an error span of 5% and a confidence level of 95%.

Figure 2.6: Study data from the Master’s thesis of Bayram Ahmadov, showcasing the distribu-
tion of travel behavior considering more or less affecting factors [2].
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All these physical, psychological, and situational factors add complexity to routing. To
simplify things, current routing algorithms tend to focus on singular optimization goals:
Finding the fastest, shortest, or cheapest route. What these optimization variables share
is their situational nature. None of them take the traveler’s psychological or physiologi-
cal biases into account. So even though Navigation 2.0 finds faster, cheaper, and shorter
routes than most travelers using Navigation 1.0 can, it brings up a new issue: Navigation
2.0 hardly accounts for personal routing preferences. To better understand this issue,
we draw parallels to the concepts of overfitting and underfitting that are prominent in
statistics and machine learning.

Figure 2.7: Overfit (Navigation 1.0), underfit (Navigation 2.0), and optimal fit (Navigation 3.0)
as an exemplary parallel to flaws in Navigation 1.0 and 2.0 and setting a goal for
navigation 3.0.12

Overfitting occurs when a model (representation of reality) studies the training data too
well, reaching a point where it becomes overly complex. It captures noise and nuances
in the data that aren’t necessarily representative of the broader data set, leading to poor
generalization of new data. Similarly, Navigation 1.0 can be seen as an ”overfitted” sys-
tem. The route determination, based largely on personal memories and static sources,
was intimately tailored to the individual’s experiences and biases. Local taxi drivers
and seasoned travelers, with their intricate knowledge of specific areas, would navigate
the terrain with a depth of detail akin to an overfitted model. Their decisions were,
however, heavily based on the small details of their experiences, which might not have
been optimal or relevant when new or unexpected travel challenges arose.

The term underfitting is used when a model is too simple, failing to capture underlying
patterns in the data. This results in a model that neither performs well on the training
data nor on new data. Navigation 2.0, with its reliance on broad computational data,
can be thought of as ”underfitting” the navigational challenge. While these systems

12https://www.fastaireference.com/overfitting Accessed: 15.11.2023
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excel at aggregating vast amounts of data to quickly calculate and suggest routes, they
often overlook the nuances and personal preferences that individual travelers might have,
be they physical, psychological, or situational.

In Figure 2.7, the differences between these two states of fitting are visually represented,
with the suggestion that a potential Navigation 3.0 might find the optimal balance.
Just as the ideal model in machine learning strikes a balance between complexity and
simplicity, the ideal navigation system balances the broad computational prowess of
Navigation 2.0 with the intricate personalization of Navigation 1.0.

The journey from overfitting to underfitting, or from Navigation 1.0 to Navigation 2.0,
has been one of refining the balance between personal preferences and generalized com-
putational power. The challenge that remains is finding the ”just right” fit - a Navigation
3.0, perhaps - that combines the depth of personal preferences with the informational
breadth and computational power of digitized navigation systems.

2.5 Homogeneity of Navigation 2.0

The previous section discussed how current navigation systems tend to oversimplify and,
therefore, underfit human complexity in navigation. Navigation algorithms show a ten-
dency to prefer rational and easily measurable variables of a situational nature over
psychological and physiological aspects. When travelers interact with a Navigation 2.0
device, they are usually just required to provide the starting (or current location) and
destination, along with their preferred mode of transportation and departure time. The
navigation device will then calculate routes for all typically available modes of transport
connecting start and destination while focusing primarily on the traveler’s initially pre-
ferred mode of transport. Options for other routes are not displayed on the map, but in
most cases displayed by indicating the travel time with other modes of transport. For
such routing solutions, the minimal travel time is generally equated with their traveler’s
satisfaction. Due to the success of solutions like Google Maps, Apple Maps, and other
representatives of Navigation 2.0, equating travel time and travel satisfaction seems to
be a sufficient solution for many travelers. But it is also an efficient solution for the
routing algorithms as calculating travel times for routes is straightforward to compute if
data about network supply and demand are available. But, in the process of calculating
routes, these algorithms must make various assumptions about the traveler, for example,
their travel speed using each transportation mode. These assumptions cause centraliza-
tion of routes as each traveler, independent of their situation, physiology, or psychology,
will receive the same routes, solely depending on their routing origin, destination, mode
of transport, and departure time.
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2.5.1 From Water’s Behavior to ”The Law of the Fastest Route”

As every participant in the traffic network using Navigation 2.0 is forced to compete
for the same resource, the fastest route connecting their origin and destination, more
conflicts are caused as mostly one variable is optimized: The travel time. While conflicts
are hardly avoidable in traffic systems, causing travelers to interfere with other travelers’
paths, they are reduced by spreading travelers evenly across the entire traffic network.
However, if every traveler optimizes their routes for the fastest connection between their
origin and destination, then they are likely to choose similar routes. Chosen routes are
then filled until another route becomes more time-efficient. Navigation 2.0 devices then
identify this congestion as travelers’ travel speeds start to decline on certain edges in the
network graph. This change is then included in route calculations for following travelers
by increasing the expected travel time on a congested route. Similar to prices in markets
that increase when a good is strongly requested but supply remains limited, the expected
travel time of a route will increase if it is strongly requested.

In this sense, obeying their navigation devices makes traveler behavior more predictable.
With closer adherence to navigator instructions, rising informedness of the devices, and
uni-dimensionality of optimization variables, traffic shows traits of fluids like water. The
behavior of water, always seeking the path of least resistance, also follows this singu-
lar optimization method. As every water particle adheres to the same laws of physics
without any deviations in psychology, physical composition, or situational preferences, it
does not show any deviations along these dimensions. So, while simulating them is com-
plex, it mostly follows rationally observable rules. So the better informed Navigation 2.0
devices are, and the more reliably travelers adhere to the device’s instructions, the more
the traveler neglects their individual preferences, replacing them with the commonly
shared preference for the quickest route. In this regard, traffic flow in Navigation 2.0 is
comparable to the way water fills a river with multiple channels. Just like water follows
gravity, filling the lowest channels first, travelers, increasingly relying on navigation de-
vices, follow what might be termed as ”The Law of the Fastest Route.” However, this
focus on speed might not always equate to traveler satisfaction, ignoring the potential
for distributing travelers along other optimization variables. As we have already shown,
in Figure 2.5 and 2.6, many other influences exist and are relevant to travelers. So,
in reality, a traveler’s genuine optimization goal is not their travel time. It’s actually
their individual travel satisfaction, which involves a multi-variate equation, of which one
variable is travel time. This equation uses a multitude of variables (xi), each with an
individual weight (wi), to compute the highest possible satisfaction value (ysatisfaction)
for the traveler. Here, travel time is a variable among others that is to be optimized
according to the weight placed on it by each traveler.

ysatisfaction = w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x3 + . . . .wn ∗ xn (2.1)
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Yet, current navigation systems, emphasizing minimal interaction, are not tailored for
this holistic approach. The challenge lies in crafting a navigation system that integrates
individual needs without adding significant interaction burdens. Subsequent sections
will explore potential solutions for a more inclusive and efficient navigation system.
Publication 1 discusses solutions for minimizing costs for the traveler that come along
with the benefits of customized routing. Alongside a theoretical analysis, approaches for
the cost-efficient inclusion of travelers’ situations, physical conditions, and psychological
constitutions are presented.

2.5.2 Game Theoretical Issues

Critics like Vetta [38] correctly explain that travelers make suboptimal path choices due
to a lack of knowledge or limited computational abilities. Critics of Navigation 1.0 also
describe that the overall travel time for all travelers is minimized if all act to minimize
their own travel time in synchronization with current traffic information. It is, however,
not correct to assume that a minimization of travel time results in a maximization of
overall traveler satisfaction. As previously explained, the actual goal of a traveler is not
to minimize their time spent traveling but their individual satisfaction with the route.
While travel time is an important element of this satisfaction function, it’s just one of a
potentially endless list of variables that the traveler wishes to optimize and weigh sub-
jectively. This centralizes previously distributed travel interests, causing an unnecessary
reduction in travel flow. As human navigation was flawed and highly individualized, this
individuality led to a more even distribution of travelers across various routing options,
thereby reducing the stress on the theoretically fastest route. In the era of Navigation
2.0, knowledge and calculation errors are eliminated, but the multi-dimensionality of
travel needs is also lost in the process. In relation to the concept known as ”the tragedy
of the commons”, there were many different types of commons in the times of Navigation
1.0 that were each operated inefficiently [60]. While a distribution across many commons
is desirable, their inefficient operation is undesirable. Navigation 2.0 forces all travelers
to use the same, single common, operating it most efficiently.

2.5.3 Supply- and Demand Distortion

While under Navigation 1.0 traffic jams may arise because travelers don’t know how
to bypass them, under Navigation 2.0, traffic jams arise because travelers’ subjective
preferences are neglected. Looking at a traffic jam, both systems can cause them. In
Navigation 1.0, because travelers don’t know how to get around them, and in 2.0, all
travelers take the same route until a faster route is found. It’s unclear whether a traffic
jam that occurred under the reign of the one system would also have occurred under the
other.

So, paradoxically, the apparent solution to the supply distortion problem of Navigation
1.0 leads to the emergence of a new problem in the form of demand uncertainty in Nav-
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igation 2.0. If we view road traffic in the age of Navigation 1.0 or 2.0 from an economic
perspective, we would have to describe it as an ”inefficient” market in which either large
arbitrage opportunities (Navigation 1.0) remain untapped or the market does not reflect
the actual demand (Navigation 2.0). A frequently cited concept in this context is the
”Efficient Market Hypothesis,” which states that in an efficient market, prices reflect
all available information at all times [61]. This information includes both the currently
available knowledge as well as the prevailing needs of all market participants. If this is
not the case, there is a market inefficiency.

Consequently, the individualization of navigation algorithms contributes to a more re-
alistic representation of supply and demand in the transportation market. While it is
expected that this approach will increase the average travel time, it is conversely antic-
ipated to enhance the overall travel satisfaction of all travelers.

2.5.4 Evolution of Navigation Strategies

However, this gain in utility comes at a cost, as greater individualization requires the
identification and consideration of more variables from the traveler during route calcu-
lation. From a univariate optimization equation, a multivariate optimization equation
emerges. Imagine a traveler asking a taxi driver to get them to their destination as
quickly as possible but to avoid traffic jams and choose routes with as many green
spaces along the roadside as possible. As these objectives can contradict each other, the
taxi driver is forced to calculate various routes and have the traveler evaluate them to
get a ”feel” for their preferences. This process is laborious for both the taxi driver and
the traveler. The same problem exists in the interaction with the navigation system.
The key here is to primarily place the costs of enhancing individualization on the device
and the algorithm so that the user is disproportionately less affected by the cost increase.
To be more concrete, we formulate the following concept descriptions for Navigation 1.0,
2.0, and 3.0.

Concept 7: Navigation 1.0 - Unnecessary Conflicts
Drawing from the ecological concept of competitive exclusion[55], two species cannot
coexist in a habitat if they are competing for exactly the same resources. In the era
of Navigation 1.0, individuals operated based on personal knowledge and individual-
ized strategies. Just like species that haven’t found their specific niches, travelers often
overlapped in their choices of routes. This overlap created unnecessary congestion and
conflicts. Even if satisfying solutions existed, the travelers lacking knowledge of their ex-
istence left these options vacant, creating room for arbitrage. Just as two similar species
might fight over the same territory or food source without a clear division of ecologi-
cal roles, travelers jostled over the same popular routes without a systematic distribution.

Background: Just as species might clash for resources when their ecological roles aren’t
clearly defined, travelers often grapple over the same popular routes due to a lack of in-
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formation dissemination. Helbing et al. [62] discussed traffic dynamics and related them
to concepts from social science. They found that individual strategies based on limited
knowledge can lead to sub-optimal route choices, echoing the conflicts seen in competi-
tive exclusion.

Concept 8: Navigation 2.0 - Homogeneity
Moving to Navigation 2.0, the scenario can be liked to a monoculture in ecology. When
a single species dominates a habitat, it leads to a lack of ecological diversity. With Nav-
igation 2.0, introducing a universally ”optimal” path determined by algorithms forced
everyone onto the same route, just as a dominant species in a monoculture outcompetes
or replaces other species. While this might seem efficient, it creates vulnerabilities. In an
ecological monoculture, if a pest or disease targets the dominant species, it can devastate
the entire habitat. Similarly, if an issue arises on the ”optimal” route (like a roadblock or
an accident), it can cause disproportionate disruptions as everyone is funneled through
that path.

Background: Navigation 2.0’s framework can be related to ecological monocultures,
where a single species or approach dominates the landscape, leading to vulnerabilities.
Barabasi and Albert [63], in their pioneering work on network dynamics, emphasized the
fragility of networks dominated by highly connected nodes. This is analogous to the idea
that when everyone follows the same ”optimal” route in Navigation 2.0, disruptions to
that route can have cascading effects. Research by Goodchild on spatial cognition and
GIS sheds light on how geospatial technologies influence (and are influenced by) human
cognition [64].

Concept 9: Navigation 3.0 - Balance
In the concept of Navigation 3.0, we look towards the principles of ecological stability
and resilience derived from biodiversity. In a diverse ecosystem, various species have
carved out their niche, coexisting without direct competition and ensuring the system’s
overall health. If one path gets disrupted, only a subset of travelers is affected, just as
if one species in a diverse ecosystem faces a threat, the entire system doesn’t collapse.

Background: Drawing inspiration from the stability offered by biodiversity, Naviga-
tion 3.0 aims for a balance in route choices among travelers. Page [65] highlighted the
strengths of diversity in problem-solving and decision-making. In terms of navigation,
a diverse set of routes taken by different travelers ensures better resilience against dis-
ruptions. This diversity also aligns with the concept of a multi-dimensional Nash Equi-
librium, where travelers make decisions based on personal optimizations rather than a
singular META-Strategy, as discussed by Nash himself [36, 37].

From the perspective of the Nash Equilibrium [36, 37], Navigation 1.0 describes a non-
equilibrium state in which ”players” have room for optimization, as information arbitrage
between travelers exists. Navigation 2.0 mostly eliminates information arbitrage between
”players” by providing a META-Strategy (Most Efficient Tactic Available). This causes
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all players to optimize for the same strategy, achieving a one-dimensional Nash Equilib-
rium. Navigation 3.0 adds subjectivity to the definition of a META-Strategy, thereby
allowing for a multi-dimensional Nash Equilibrium.

A Nash equilibrium refers to a situation in game theory where each player’s strat-
egy is optimal given the strategies chosen by the other players [36, 37]. No player
can benefit by changing their strategy, while the other players keep their strategies
unchanged. The concept can be applied to games with different dimensions in terms
of strategy space. Here’s the distinction between a unidimensional and multidimen-
sional Nash equilibrium:

1. Unidimensional Nash Equilibrium:
The strategy space of the game is one-dimensional for each player. This means
a single scalar value can describe each player’s strategy. An example might be a
game where players decide how much to invest, with the investment amount ranging
from $0 to $100. The equilibrium would be a certain amount where neither player
has the incentive to change their investment given the choice of the other player.
Graphically, this can often be represented on a single line or curve.

2. Multidimensional Nash Equilibrium:
The strategy space for at least one player is multi-dimensional. A vector rather than
a scalar describes a player’s strategy in such games. Consider a game where a com-
pany decides on both the price and the quantity of a product it will produce. Both
the price and quantity constitute the strategy, making it two-dimensional. Finding a
Nash equilibrium in multidimensional spaces can be more complex because one has
to consider changes in multiple dimensions and how they interact. Graphically, the
strategy space might be represented by a surface or a region in higher-dimensional
space. In such games, the equilibrium is a point (or set of points) in this multi-
dimensional space where no player is incentivized to change their strategy in any
dimension, given the strategies chosen by the other players. In essence, the differ-
ence between unidimensional and multidimensional Nash equilibria boils down to
the complexity of the strategy space and the number of dimensions in which players
can make decisions.

Navigation 3.0, therefore, aims to embrace the individualized nuances of Navigation
1.0 but with the informed structure of Navigation 2.0. By allowing for diverse travel
routes that cater to individual preferences yet are optimized to prevent overlapping and
congestion, it finds a balance. It’s analogous to a mature ecosystem where each species,
while following its evolutionary strategy, coexists in balance with others, leading to a
stable and resilient environment.
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2.5.5 Traffic Planning Methods

While different forms of navigation propagate a demand distortion, different forms of
traffic planning may result in a supply distortion. A common yet controversial process
of traffic planning is opinion-based decision-making. Here, individuals or groups dis-
cuss plans for structural network changes, either through construction or ruling. While
decision-making based on a representative sample of the population is scientifically
sound, it is hardly met in practice. The process has a tendency to be driven by mi-
norities of deeply affected individuals or by politicians championing personal endeavors
and not by a representative sample of the population. Relying on strongly biased and,
therefore, non-representative minorities or on a single politician’s vision is problematic,
likely resulting in adaptions of the traffic network that do not properly reflect the pop-
ulation’s needs. The result is a supply distortion. However, a realistic representation
based on statistical concepts is ideally rooted in comprehensive data samples that cor-
rectly represent an underlying population.

An additional oversight in current traffic planning is focusing on vehicular flow rather
than the individual travelers causing the flow. At best, planners base decisions on ob-
served traffic patterns. While this is scientifically sound, this method does not provide
insights into travelers’ actual motivations, origins, and destinations, as exerted behaviors
are influenced by the available options provided by the network supply. This symptom-
based approach, while quantifiable, is akin to treating the symptoms of a disease while
possibly not addressing the underlying cause.

Current simulation systems for traffic flow fail to cater to the vast differences in trav-
eler profiles. Instead, they focus on fluid mechanical flow optimization, which is an
important aspect of traffic analysis but caters to a different problem. If fluid-based
simulations are used to determine traffic flow, then the resulting optimization will, in
return, be optimized for fluid-like behaviors. While Navigation 2.0 does promote fluid-
like behaviors, Navigation 3.0 does not. For a successful transit from Navigation 2.0
to Navigation 3.0, the network supply in the form of streets, sidewalks, bike lanes, and
transit options requires aid from a new type of simulation, including traveler preferences.
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2.6 Research Approach

• Goal: Transition from Navigation 2.0 to Navigation 3.0

– Develop a software architecture for Navigation 3.0.

– Implement the architecture in a functional prototype.

– Identify and explore traveler preferences

• Goal: Build a Simulation Environment

– Compare behaviors of Navigation 2.0 and Navigation 3.0.

– Develop an algorithm for Navigation 3.0 that integrates user-specific needs.

– Ensure the algorithm can manipulate network supply (e.g., avoidance, block-
ing, prioritizing nodes/edges).

– Include physical optimization variables (e.g., walking speed).

– Incorporate psychological variables (e.g., buffer times during transfers).

– Factor in situational variables (e.g., weather conditions).

• Goal: Simulate Realistic Traveler Behaviors and Networks

– Utilize an Origin-Destination Matrix (ODM) for a detailed representation of
daily travel behavior.

– Simulate behaviors of travelers using various navigation algorithms.

– Demonstrate interaction of different need groups (Demand) with transport
network (Supply).

– Highlight differences from the standard algorithm (Navigation 2.0).

• Goal: Analyze Impact of Changes in Navigation Algorithms

– Simulate effects of structural or regulatory changes in traffic flow.

– Analyze and compare impacts according to Navigation 2.0 and 3.0.

– Evaluate effects on different interest groups and individual travelers.

– Focus on depicting consequences arising from changes towards Navigation 3.0.

• Goal: Optimize Simulation Customization

– Allow adjustments to the network (edges/nodes) and to demand (optimization
variables of the algorithm).

– Ensure gains from customization exceed costs to prevent overfitting.

– Aim for optimizing benefit increase while minimizing interaction and calcu-
lation costs.
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Description:

The objective of this dissertation is to support a transition from Navigation 2.0 to Navi-
gation 3.0. To achieve this, a software architecture for Navigation 3.0 will be developed.
To prove that this architecture actually works, it needs to be implemented in a func-
tional prototype. The goal is to build a simulation environment capable of comparing
behaviors from Navigation 2.0 and Navigation 3.0 against each other. For this purpose,
an algorithm must be developed that is capable of Navigation 3.0, i.e., capable of in-
tegrating user-specific needs into the routing process. To do this, the algorithm must
be able to manipulate the network supply (avoidance, blocking, or prioritizing certain
network nodes/edges). Additionally, physical optimization variables, such as walking
speed, must be adjustable. The same applies to psychological variables, e.g., longer
buffer times during transfers and situational variables like the weather.

At the same time, the simulation should also be able to simulate not only individual
travelers but entire networks. For this, the simulation must realistically simulate trav-
elers. To approach realism, a detailed representation of daily travel behavior in the
form of an Origin-Destination Matrix (ODM) is needed. Based on this ODM, various
forms of navigation algorithms should then simulate the behavior of the travelers. The
aim of simulating a traveling network is to demonstrate how travelers (Demand) from
different need groups (Navigation 3.0) interact with an existing transport network (Sup-
ply), thereby highlighting differences to the standard algorithm (Navigation 2.0). These
differences describe the effect of psychological, physiological, and situational changes
previously made to the algorithm. In addition, the simulation should also allow the sim-
ulation of the effect of structural or regulatory changes in traffic flow. These can then
be analyzed and compared both according to Navigation 2.0, i.e., without individual
adaptation of the algorithm to the traveler, and with Navigation 3.0. This makes it
possible to simulate the effect of such a change in the transport network for different
interest groups and, if necessary, even for the individual traveler.

The aim of the simulation is to depict general behaviors and travel needs. The goal
is not the fluid representation of travel flows. Instead, the focus is on depicting the
consequences that arise from a change in navigation algorithms towards Navigation 3.0.
The completed simulation should allow adjustments to the network (edges/nodes) and
adjustments to demand (manipulation of the optimization variables of the algorithm).
Any gains achieved through this customization must exceed the costs to avoid a switch
from under- to overfitting. Therefore, the aim is to optimize the benefit increase while
minimizing the interaction and calculation costs that arise simultaneously.
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2.7 Research Questions

RQ1: How can a navigation algorithm be individualized?

RQ2: How can costs associated with improved individualization be minimized for trav-
elers?

RQ3: How can the impact of such individualization on traffic planning and travel be-
havior be communicated?
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The iterative process of the scientific method suggests a repetition of creating new hy-
potheses, designing experimental environments, conducting experiments, and analyzing
the results as visualized in Figure 3.1 [3]. Based on the analysis step, two actions may
be invoked. If the experiment was conducted without any issues, then hypotheses are
rejected, approved, or devised. However, if the experiment shows signs of contamination
through unintended influences, the experiment’s design or its implementation is revised.
This cycle may be repeated indefinitely.

Figure 3.1: The iterative process of the scientific method, visualized by Vestin [3].

In this dissertation, we initiated this process by formulating new hypotheses and theories
about traffic systems formalizing them as concepts. These concepts are accumulated in
the idea of a more balanced type of navigation called Navigation 3.0. We derive the idea
of Navigation 3.0 by picturing traveling as a non-cooperative n-person game. By draw-
ing parallels to other types of n-person games like biological ecosystems and extending
principles such as the Nash-Equilibrium, we cluster the currently dominant navigation
solutions as Navigation 2.0 solutions, leaving room for optimization. Adhering to the
principles of non-cooperative n-person games, we describe a path for improving Naviga-
tion 2.0 solutions to approach Navigation 3.0. The core idea is to improve the fitness of
routing algorithms to traveler preferences yet with a disproportionately smaller increase
in costs for the traveler (e.g., interaction time, interaction complexity, or route calcula-
tion time).

After formulating hypotheses, design concepts for a traffic simulation are developed to
test said hypotheses. In Section 3.1.1, a first design concept for navigation theory (Fig-
ure 3.2 is introduced, which is then further formalized into a software architecture for
an aligned simulation tool in Figure 3.3. The alignment between theory and software
architecture is highlighted in Figure 3.14.
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Within this architecture, the first implementation of the traffic simulation is approached
by a customizable navigation algorithm. This algorithm considers traditional navigation
factors but also supports dimensions drawn from Navigation 3.0, such as the traveler’s
psychology, physical condition, and current situation. A practical prototype is imple-
mented and published, simulating the impact of cautious travelers avoiding crowded
public transport stations in the city of Munich (Publication 1). To assess the potential
impact of this algorithm at the market level, it is embedded in the traffic simulation
architecture. By extending the first concept from Publication 1, other types of traveler
groups are simulated next. Special emphasis is placed on certain groups – such as chil-
dren, elderly, and physically impaired individuals. While the manipulation of routing
algorithms is successfully demonstrated in Publication 1, the origin and destination pairs
used in the demonstration are selected randomly.

To address the issue of unrealistic origin-destination pairs, Publication 2 introduces a
statistical approach for correctly transforming standardized German traffic surveys into
Origin-Destination-Matrices (ODMs).

To conduct the analysis phase, additional information outside the simulation results is
required. Publication 3 presents an algorithm that allows travelers to automatically
collect and label their travel behavior, requiring minimal user input. This behavioral
data can then be compared to simulated behaviors, allowing us to analyze differences
and either repair the experimental setup or update the initial hypotheses.

3.1 The Traffic Simulation Tool ”TrafSim”

Congruent to these publications, a Traffic Simulation WebApp was implemented, allow-
ing operators (like us) to simulate travel behaviors based on Navigation 3.0 principles.
”TrafSim” offers a Graphical User Interface (GUI), including the following functionali-
ties:

1. GUI for the manipulation of traffic network supply: Allows users of Traf-
Sim to manipulate uploaded GTFS files freely. This includes adding new public
transportation connections, including existing lanes and transportation types, but
also any imaginable new types of public transport (hyperloop, air taxi, cable car,
...). Deleting any existing public transportation connections (Bus, Tram, Train,
Subway, ...). Editing existing connections, for example, by changing departure and
arrival times of transport connections or changing transportation frequencies, with
both effectively increasing or reducing the travel time.

2. GUI to manipulate traveler demand: This functionality is met by allowing
simulation operators to manipulate traveler’s routing preference-related variables
such as their walking speed, biking speed, allowed modes of transport, avoided
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stations and lanes, a maximum of changes between transport vehicles, perceived
costs for changing lane or mode of transport, maximum and minimum walking
distance, maximum and minimum biking distance, and many more variables.

3. GUI for simulation comparisons: Allows TrafSim users to compare multiple
simulations against each other and download the results as CSV files or compare
them directly in the GUI of the WebApp (Map plotting and tabular format).
Comparisons are done both on a collective level by comparing changes in average
routing and also on an individual level, comparing differences between the same
individual under different supply, demand, or both at the same time. Used com-
parison metrics are differences in travel time by mode of transport, travel distance
by mode of transport, lane changes, and more.

4. GUI for data import: TrafSim users may either use pre-installed default data
in the form of existing Origin-Destination-Matrices (ODMs) of Munich, network
supply data of Bavaria from OpenStreetMap (Roads, sidewalks, bike lanes, etc.),
public transportation data (GTFS) from Munich, or upload their custom ODMs,
OpenStreetMap network data, or GTFS public transportation data.

5. GUI for change management: To save and manage changes to the transporta-
tion graph, the traveler demand, and the underlying data, sessions have been in-
troduced. Any alteration of the just mentioned factors may be saved and loaded at
any time. This allows TrafSim operators to compare saved changes to one another.

Following, we will first explain the underlying theory and software architectural impli-
cations of that theory before diving deeper into the actually implemented architecture.
Finally, we will compare the actual implementation to the initially described theory to
verify how well the implementation meets the theoretical requirements.

3.1.1 A Model for Navigation Theory

To build a simulation architecture that meets the navigation behavior of every type of
traveler, we must first understand and define relevant elements of navigation. To do
so, we provide a general concept of navigation. Figure 3.2 illustrates our theoretical
understanding of human navigation, which was inspired by existing concepts [66, 67,
68]. We expand these concepts by dividing the overarching idea of navigation into
four interacting subsystems that we call Traffic Simulations, Navigation Solutions,
Network Graphs, and Traffic Participants.

32



3.1 The Traffic Simulation Tool ”TrafSim”

Figure 3.2: Generalized concept of navigation, including human, automated, and distributed
navigation.

These four subsystems constitute the basis of navigation that we intend to include in
a simulation. Each subsystem consists of elements that describe the processes inside
the subsystem, as shown in Figure 3.2. Some of these elements may be prioritized or
neglected in individual navigation processes, but each presented element remains fun-
damental to navigation. In this context, Figure 3.2 serves as a universal blueprint,
showcasing all relevant factors affecting navigation. This blueprint is designed to facili-
tate the creation of technology-based navigation solutions.

To accurately describe as many types of navigation as possible, the model is kept corre-
spondingly general. To demonstrate its range, we showcase how two opposing extremes
of navigation are depicted using this model. The first extreme, which we call ”Fully
Isolated Navigation”, is a process that involves no external tools, solely depending on
the human navigator’s senses. Essentially, this type of navigation relies on the traveler’s
innate sense of orientation and prior knowledge, devoid of other navigational aids. On
the contrary, the other extreme could be called ”Fully Distributed Navigation”, repre-
senting the utmost integration of available distributed knowledge sources and computing
aids into the navigation process. In the following two examples, we will briefly demon-
strate how Figure 3.2 incorporates both navigation styles. However, it is applicable to
any other kind of navigation between these two extremes.

Applying the model presented in Figure 3.2, a traveler adhering to the ”Isolated Intu-
itive Navigation” approach would possess Routing Preferences that require a clearer
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expression through constraints. Let’s consider such a traveler currently residing in a re-
mote area in Canada. The preference to travel to a destination, starting at their present
location (Origin and Destination), possibly keeping certain Optimization Goals in
mind (e.g., avoid wildlife, avoid hills, travel in daylight, use the shortest route, ...). They
next proceed to select a mode of transport (e.g., ski-doo, walking, dog-sled, ...), thereby
also selecting an available set of paths that form a Network Graph. As this traveler
doesn’t utilize external knowledge, they depend on their own understanding of the local
environment to develop said Network Graph. This graph, comprising Nodes, Edges,
and Weights on the Edges, represents their personal estimation of possible routes and
travel costs for each Edge. Using this graph, the Origin and Destination, and the
Optimization Goals, the traveler formulates a preliminary set of potential Routes.
Considering potential wildlife encounters, the traveler would benefit from live knowl-
edge of the routes of other traffic participants. But, as the traveler is fully isolated,
they cannot aggregate such knowledge into a Live Traffic Data set. Instead, they
solely rely on their own senses to adapt a route, utilizing their Live Traffic Model to
respond quickly if wildlife is encountered. The traveler can, however, use their aggre-
gated knowledge of past encounters (Live Traffic Data), predicting wildlife movements
during the current season (Long Term Traffic Data). Experiences that can be gener-
alized into a Generalized Traffic Data facilitate Network Adjustments, ultimately
updating their Network Graph. Live Traffic Data, on the other hand, is utilized to
directly modify a route based on current network knowledge, such as a bear obstructing
the intended path. Similarly, the model accommodates the other extreme — ”Fully Dis-
tributed Navigation”. Let’s consider a commuter in San Francisco who needs to navigate
to their workplace. Their requirements are conveyed as Routing Constraints, which
may include needing a coffee stop, avoiding construction areas, and a preference for bike
lanes. This commuter utilizes an automated Navigation Solution - a mobile app - that
translates these constraints into a route. This requires an Origin and Destination
(their home and workplace), an Optimization Goal (such as the fastest or least con-
gested route), and a chosen Mode of Transport (in this case, a bicycle). The selected
transport mode dictates the Network Graph, which in this scenario, is collated from
multiple distributed data sources - city biking maps, current roadwork data, and local
business locations - and merged into one. The outcome - a set of Routes - is influenced
by traffic flow hypotheses formulated in a Live Traffic model. The model incorporates
Live Traffic Data, sourced from real-time traffic reports or user data. This data is also
archived as Long Term Traffic Data. The data then aids in identifying patterns, like
increased congestion on specific routes at certain times, that are expressed in aGeneral-
ized Traffic Model. Based on these insights, Network Adjustments such as traffic
rules or construction changes to the infrastructure are made. These adjustments are
then reflected in the updated Network Graphs and influence future route suggestions.

As previously mentioned, any other type of navigation can be expressed along the mod-
eled relations in Figure 3.2, similar to these two extremes. Building upon this model,
we next introduce our traffic simulation tool.
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3.1.2 An Architecture for a Preference-Oriented Navigation Simulation

To communicate the concept illustrated in Figure 3.2, we have developed the TrafSim
simulation tool that assists individuals, researchers, and decision-makers by visualizing
the Individual Routing Preferences of travelers within a network.

To accomplish this, every aspect that leads from the Individual Routing Preferences
to an update of the Network Graph must be formally implemented. In the subsequent
chapters, we introduce the underlying software architecture capable of fulfilling the re-
quirements set by Figure 3.2. We split the subsequent software architecture into the
subsystems described in Figure 3.2 (highlighted in different colors).

Figure 3.3: Overview of the different subsystems and support layers used by the Traffic Simu-
lation WebApp.

In Figure 3.3, we demonstrate how these subsystems are connected to the three ”sub-
interfaces” that, when combined, constitute the simulation’s GUI: the Graph Manip-
ulation Tool, the Traffic Demand Visualizer, and the Constraint Manipulation
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Tool. These, in turn, function based on information sourced from four distinct layers,
namely the Network Layer, the O-D Layer, the Routing Layer, and the Con-
straint Layer. Everything is combined into a single user interface, which we term
the Traffic Simulation WebApp. This interface enables devices equipped with web
browsers to interact with and control the simulation tool.

To comprehend how the three user sub-interfaces operate, we will first address the four
underlying layers.

3.1.3 The Network Layer

The Network Layer can be considered as the storage for available knowledge about the
Network Graph (refer to Figure 3.2). If a Network Graph is constructed for a public
transportation mode, then the departure times and the routes operated are additionally
stored in the form of a Public Transportation Schedule. As illustrated in Figure 3.2,
the Network Graph itself comprises nodes, edges, and weights. Nodes are connected via
edges, and weights offer supplementary information about nodes and edges. A typical
example of weight is the expected travel time.

To the navigation algorithm utilized by the traveler, whether it is in their heads or in
an external device, edges and nodes constitute a geographic network that is defined as
”known”. As long as the traveler is geographically on this network, their routing algo-
rithm remains fully operational. If the traveler departs from this network, they enter
”unknown” territory. In these scenarios, any type of navigation will resort to estimating
the general direction that the traveler should follow, hoping they will sooner or later
encounter a part of the ”known” network. This implies that the quality of a Net-
work Graph depends on its information-completeness, indicating that every piece of
available information that exists in reality is included in this modeled graph of reality.
We choose the term information-completeness to create a clearer distinction from game
theoretical completeness, which pertains to a different concept. Achieving information-
completeness, however, is unattainable and will always be so, as acquiring this knowledge
would necessitate an instantaneous connection to reality, which is unfeasible due to com-
munication delays. Even if we were able to recognize all changes occurring in a network,
we would still be hindered by the time the information needs from its occurrence to
our observation and then to our publication of this change into the Network Graph.
Even in the absence of processing delays, the flow of information is still restricted by
the speed of light. This extreme example demonstrates that graph networks can never
be an information-complete representation of reality. However, they can approximate
information-completeness. This proximity to information-completeness is the quality
measure by which the value of a graph network is determined.
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3.1 The Traffic Simulation Tool ”TrafSim”

Figure 3.4: Graphical Model visualizing data sources and data formats used to build the graph
file in the Network Layer.

Unless researchers have access to unique additional information sources, they are solely
reliant on the best, publicly available information sources to construct a network graph.
Therefore, to create our network graph, we utilize OpenStreetMap (Figure 3.4), as it
is arguably the most information-complete publicly available graph. A Network Layer
using the OpenStreetMap graph could, however, be improved if knowledge from local
experts or data from companies such as Google or Apple were incorporated. In addition
to OpenStreetMap, we also employ publicly available transportation schedules in the
GTFS format published by German travel agencies. These schedules are utilized to gen-
erate public transportation network maps for major German cities, including departure
and arrival times (Figure 3.4).

To construct a graph file from this data, we employ a combination of Maven1 and Java2,
together with OpenTripPlanner3. The said Graph file is then provided to the Graph
Manipulation Tool and the Traffic Demand Visualizer in the form of a .jar file4. Using
the Graph Manipulation Tool also allows simulation operators to create modified versions
of the graph file. These altered versions are stored, along with the original, unaltered

1https://central.sonatype.com Accessed: 15.11.2023
2www.java.com Accessed: 15.11.2023
3www.opentripplanner.org Accessed: 15.11.2023
4https://docs.oracle.com/ Accessed: 15.11.2023
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graph file, in the Network Graphs Database. This database is subsequently used by the
operator in the Traffic Demand Visualizer to simulate how a selected graph influences
traffic behavior. The resulting user interface for operators of the WebApp is shown in
Figure 3.5.

Figure 3.5: Graphical user interface for selecting a GTFS and OSM source. In combination
with a router configuration, a network graph is built.

In addition to loading and using existing network layers, TrafSim allows operators to
manipulate any uploaded GTFS files and add, edit, or delete public transportation
connections. As GTFS files can be quite complex to understand, TrafSim provides a GUI,
visualizing the existing content in a provided GTFS file. Along with the visualization,
TrafSim also provides the previously mentioned functionalities. A small example snippet
of this visualization is presented in Figure 3.6. While Figure 3.6 only shows the edit
function for trips operating on Route ”U6” in Munich, similar functionality is provided
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3.1 The Traffic Simulation Tool ”TrafSim”

on the ”Route” and ”Stop” levels, giving operators the freedom to change and delete or
extend any entries in the File. Due to the large number of entries, the GTFS-Visualizer
section of WebApp is generally difficult to display in the format constraints of this
dissertation.

Figure 3.6: Example snippet of the GTFS-Visualizer, along with the edit functionality. Due
to the large number of entries, this section of WebApp is difficult to display in the
format constraints of this dissertation.
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3.1.4 The O-D Layer

The foundation for any traffic simulation is a realistic representation of demand. This
demand stems from travelers who traverse paths from an origin to a destination (O-D) at
a specific time. However, our simulation tool is not designed to showcase conflicts caus-
ing congestion and delays. Instead, we simulate how travelers would utilize the traffic
system if they could move freely without causing conflicts with other travelers. This is
achieved by calculating routes determined by the travelers’ Routing Preferences, in-
troduced in Figure 3.2. The goal is to generate a representative data set of travelers that
contains realistic travel origins and destinations, including their travel time and selected
modes of transport. Additional meta-information about the travelers’ optimization goals
will be incorporated in the Constraint Layer.

Figure 3.7: Model visualizing the concept behind the O-D Layer, describing the used data
sources and format.

To construct the O-D Layer, we produce large origin-destination matrices (ODMs) for
each city, commencing with realistic origin-destination pairs for a standardized day. Since
our aim is not to simulate traffic but instead the absence of traffic, the O-D Layer does
not delve into further detail. The core of these ODMs is a set of traffic data collated by
the German Federal Ministry of Transport and Digital Infrastructure in a study known
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as the MiD-Study. For instance, in Munich, the study gathered 48,627 travel routes from
15,693 participants in the city alone, as well as 41,404 additional routes from 13,660 par-
ticipants in areas surrounding Munich. The study is not a one-time effort; it is replicated
periodically across various German cities [69, 70]. As the data collected in each city and
in each cycle of the study is similarly structured, the methods utilized here could effort-
lessly be applied to other cities in Germany.

The deliberate absence of a comprehensive representation of travelers’ mindset, physical
condition, and current situation serves a purpose. The intention is to provide researchers
the opportunity to test hypotheses by adjusting these variables in the Constraint Layer,
which will be discussed in the following chapter. Publication 1 in Section 4.1.2 describes
this process in greater detail.

Figure 3.8: GUI for selecting an O-D Matrix, and a source graph, together with individual
routing parameters called ”constraints” (e.g. walking speed, biking speed, maxi-
mum walking distance, ...).
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3.1.5 The Constraint Layer

In the preceding chapter, we noted that supplemental meta-information about the trav-
elers’ optimization objectives would be incorporated into the Constraint Layer. Ideally,
this meta-information would encompass a comprehensive snapshot of the traveler’s men-
tal and physical condition, along with their current situation. Given that such detailed
information is generally unavailable, we adopt a more streamlined approach. The Con-
straint Layer confers the responsibility of including this information to the researcher or
traffic planner utilizing the simulation tool.

The sole aim of the Constraint Layer is to enable the simulation operator to inject hy-
potheses about the simulated travelers’ condition (mental, physical, situational) into the
routing algorithm, facilitating the examination of implications on the network. We term
these settings as routing constraints, and their assembly in a set of constraints is referred
to as a policy.

Figure 3.9: Snippet from the Constraint Manipulation Tool user interface, showcasing editable
constraints in a policy termed ”Client Application”.

What exactly constitutes a policy? In our system, a policy entails constraints with cus-
tomized settings tailored to suit a researcher’s hypothesis concerning a group’s travel
behavior. Within this framework, a policy can also be perceived as a persona - a pro-
totype character symbolizing typical behavior for a cluster of individuals. This enables
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simulation operators to assimilate the routing preferences of a particular group of indi-
viduals and convert them into a set of constraints. Figure 3.9 exhibits a snippet from
the Constraint Manipulation Interface, presenting some of the adjustable routing con-
straints. The constraint selection is toggled by pressing the ”Show Request Parameter”
button in Figure 3.8. The duty lies with the person currently steering the simulation
to bridge the gap between the routing preferences of a group and the presumed routing
constraints they might utilize for navigation. An instance of a constraint is the walking
speed assumed by the simulation’s routing algorithm. Altering this variable permits
operators to simulate the travel behavior of travelers with lower walking speeds, such as
children or the elderly. The operators can subsequently scrutinize the simulation results
to observe how the simulated travelers utilizing this policy interact with the transport
network and how the network caters to their requirements. The purpose of the Con-
straint Layer is to facilitate the process of adjusting policies for the simulation operator.

Figure 3.10: Model illustrating the concept behind the Constraint Layer, outlining the user
interface and data storage.

Figure 3.10 offers a concise graphical synopsis of the Constraint Layer. The Layer
delivers a graphical user interface designated as the Constraint Manipulation Tool. This
interface enables operators to construct policies. These policies are stored in a central
database to be employed by the other layers to buttress the Traffic Demand Visualizer
(Figure 3.3), which allows simulation operators to simulate, display, and compare the
impact of a policy on travel behavior.

3.1.6 The Routing Layer

While we have previously mentioned the Traffic Demand Visualizer (Figure 3.3) in the
preceding chapter, we must take a moment to briefly describe the last key functional
layer before diving into the intricacies of the Visualizer: The Routing Layer.
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The Routing Layer, though relatively simple in design, plays a crucial role within the
simulation tool. It calculates routes for each Origin-Destination (O-D) pair provided by
the O-D Layer using OpenTripPlanner, effectively simulating the likely path a traveler
might choose. In the route computation process, OpenTripPlanner considers the Net-
work Graph and Public Transport Schedule from the Network Layer. Additionally, it
integrates a chosen policy set, outlined by the Constraint Layer, to tailor the routes in
line with these optimization goals. This architectural framework is graphically depicted
in Figure 3.11. As the routing itself is a process run in the system backend, this process
is not graphically visualized but instead triggered by pressing the ”Send Request” but-
ton in Figure 3.8. The resulting paths are then stored in the ”Simulations” table below
the button.

Figure 3.11: Model illustrating the architecture of the Routing Layer, inclusive of the utilized
routing library and its integration with data from other layers.

Each simulation produces a list containing a summary of routing results. These may be
compared to other simulations using TrafSim’s compare function. The comparison can
either be done in the tools web interface or by downloading a simulation CSV file to con-
duct comparisons manually. An example of a comparison using TrafSim’s comparison
interface is shown in Figure 3.12. Here again, we just show an example snippet of the
entire functionality, as the comparison data is quite extensive and, therefore, visually
separated into multiple tabs.
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Figure 3.12: Screenshot of the Comparison View provided in the WebApp.
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The comparison tool provides the functionality to compare the overall travel behavior
between both simulations (”Routing Statistics” tab), as well as differences in singular
travelers (”Itinerary Statistics” tab), for example, identical O-D pairs that were simu-
lated in both simulations. If different Graphs were used in the compared simulations,
these differences are also highlighted in the ”Global Statistics” tab. Differences in trav-
eler utilization of lanes and stations between both simulations are displayed in the tabs
”Station Statistics” and ”Lane Statistics”.

Figure 3.13: Screenshot of the Traffic Visualizer View provided in the WebApp.

In addition to a tabular comparison, a graphical visualization is provided, allowing
simulation operators to visually compare the utilization of various public transportation
routes in the network. For visual discrimination, operators may toggle lane, station, and
utilization data on or off as needed. The GUI of this Visualizer is displayed in Figure
3.13.

3.1.7 The Traffic Simulation WebApp

In the architectural design of the Traffic Simulation WebApp, we adhere to the gener-
alized concept of navigation, introduced in Figure 3.2. Figure 3.14 displays an updated
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version of Figure 3.2, delineating how the architecture’s layers and subsystems align
with the concept. For consistency, we’ve maintained the visual elements introduced in
Figure 3.3. Nevertheless, we introduce a new element, the ”Operator Hypothesis”. This
element indicates that the individual or group operating the simulation may introduce
a hypothesis in this section of the model.

Figure 3.14: Generalized concept of navigation, encompassing human, automated, and dis-
tributed navigation.

This implies that commencing with the Routing Preferences, the simulation operator
may introduce a hypothesis about these preferences into the simulation. Utilizing the
Constraint Manipulation Tool’s user interface, this hypothesis is then emulated as
a set of Routing Constraints named policy. The constraints contained within this
policy are employed as Optimization Goals for route calculation on the Routing
Layer. The Origins and Destinations are supplied by the O-D Layer, along with
the Modes of Transport used for each O-D Pair in the ODM. To simulate the routes, a
Network Graph is selected, which is supplied by the Network Layer. Subsequently,
the Routes connecting each O-D Pair are simulated.

Given that we don’t work with real-time observational traffic data but rather with data
derived from travel behavior questionnaires, the Traffic Simulation WebApp does not of-
fer Live Traffic Data or a Live Traffic Model that updates traveler routes. Since the
MiD-Study only provides information about an ”average day” with no further insights
into travel times, we lack reliable data about travel times throughout the day. We also
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don’t possess information about the capacity limits of edges and nodes in the network,
which means we can’t model when a capacity limit is reached and how this would affect
traffic flow. As previously stated, the goal of this traffic simulation tool isn’t to analyze
live observational traffic data. Traffic simulations based on observational data excel at
identifying and describing actual behavior in response to a network’s design and traffic
demand.

Our simulation tool bypasses the distinction between Live and Long Term Traffic
Data. Hence, all generated Routes are directly conglomerated to form Long Term
Traffic Data. This data is then presented to the simulation operator using the Traf-
fic Demand Visualizer, who may use this information to incorporate it explicitly or
implicitly into a Generalized Traffic Model. If done explicitly, then a formalized
physical object (e.g., map, simulation, or other) is updated. If done implicitly, only the
operator’s own mental model of the network is updated.

In addition to, or instead of, hypotheses about travelers’ Routing Preferences and
Routing Constraints, the operator may also have hypotheses about the Network
Graph. This signifies the second possibility for the simulation operator to introduce
hypotheses into the simulation tool. The Graph Manipulation Tool provides an in-
terface to the operator, allowing them to implement their hypotheses into the Network
Graphs. The adjusted, or any other Network Graph, may be selected for subsequent
simulation iterations, enabling the operator to test and compare their hypotheses against
the simulated results.

48



4 Content

4.1 Publications

4.1.1 Publication 1, None-Core-Publication: A Practical Prototype

Table 4.1: Publication 1: Published.

Title Introducing a Navigation Algorithm for Reducing the Spread

of Diseases in Public Transport Networks

Authors Jens Klinker (jens.klinker@tum.de)

Mohamed Hechem Selmi (selmi@in.tum.de)

Mariana Avezum (m.avezum@tum.de)

Stephan Jonas (stephan.jonas@ukbonn.de)

Full Text The full text of this publication is included in the Appendix in

Section 8.1

Publication dHealth 2021, Vienna, Austria

Status Published

First Author Problem definition, literature analysis, interpretation, management,

Contribution result validation

Abstract: Reducing passenger flow through highly frequented bottlenecks in public
transportation networks is a well-known urban planning problem. This issue has become
even more relevant since the outbreak of the SARS-CoV-2 pandemic and the necessity
of retaining safe distances between passengers. We propose an approach that allows
to dynamically navigate passengers around crowded stations to better distribute the
passenger load across an entire urban public transport network. New constraints are
introduced into routing requests that enable the avoidance of specific nodes in a network.
These requests consider walks, bikes, metros, subways, trams, and buses as possible
modes of transportation. An implementation of the approach is provided in cooperation
with the Munich Travel Corporation (MVG) for the city of Munich to simulate the effects
on a real city’s urban traffic flow. The impact on travel time was simulated, given that
the two major exchange points in the network were to be avoided. With an increase
from 26.5 to 26.8 minutes in average travel time, the simulation suggests that the time
penalty might be worth the safety benefits.
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Summary

Introduction: This paper was written during the Sars-Cov-2 pandemic. It uses this
event to illustrate how travel behavior changed during this period. Due to the increasing
importance of social distancing, there was a need to avoid certain stations, as they were
prone to overcrowding and thus presented a higher risk of infection. In this context, a new
navigation algorithm was developed and integrated into a simulation that allows for the
simulation of avoiding (Avoidance) one or more specific stations. In collaboration with
the Munich Transport Corporation (MVG), an implementation for Munich is presented,
showing that the average travel time increased only slightly, while a second optimization
variable - in this case, the risk of infection – was improved.

• Case Study of Avoidance: A case study is presented to demonstrate how the
algorithm works. A trip in the Munich network is compared with and without the
avoidance function during peak times. The route from Nordfriedhof to Theresien-
straße is examined. The route calculated without the avoidance function uses the
subway to Sendlinger Tor, and a line change is made there. The avoiding route,
on the other hand, uses a bus. The travel time is extended by one minute.

• Network-Wide Effect of Using Avoidance: Avoiding a station affects both
travel time and passenger distribution. The aim is to ensure that other stations
are not overloaded. The analysis is based on 1,000 random routes in Munich. It is
demonstrated that by avoiding Sendlinger Tor and Hauptbahnhof, the passenger
load is distributed more evenly.

• Impact of Avoidance on Travel Time: Isochrones are used to visualize how
avoidance affects travel time in the Munich network. Accessibility within 20 min-
utes remains almost the same. However, an increase in travel time for destinations
30 to 40 minutes away is observed.

Concluding Remarks: However, uncertainties remain, as the actual willingness of
people to ignore safer routes and the actual increase in safety can only be estimated at
present. Moreover, the results are based solely on data from Munich, so it is unclear
whether they can be transferred to other cities. The biggest limitation is the generation
of 1,000 random routes to illustrate a potential network effect of this behavior. Since
travelers do not travel randomly but follow specific patterns, it is advisable to improve
the realism of these routes.
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4.1.2 Publication 2, Core-Publication: An Improvement in the Realism of
the Data

Table 4.2: Publication 2: Published.

Title Presenting a Statistical Approach for Transforming Standardized

German Traffic Surveys into Origin-Destination Matrices

Authors Jens Klinker (jens.klinker@tum.de)

Joe Yu (joe.yu@tum.de)

Mariana Avezum-Mercer (m.avezum@tum.de)

Stephan Jonas (stephan.jonas@ukbonn.de)

Full Text The full text of this publication is included in the Appendix in

Section 8.2

Publication 2023 IEEE International Conference on Mobility, Operations, Services

and Technologies (MOST), Detroit, USA

Status Published

First Author Problem definition, literature research and analysis, interpretation,

Contribution writing

Abstract: This paper presents a method for generating Origin-Destination Matrices
(ODMs) for the city of Munich using traffic count data from a Germany-wide study
conducted by the German Federal Ministry of Transport and Digital Infrastructure
(MiD-Study). The results show that the data provided by the MiD-Study was cor-
rectly translated into an ODM, thereby providing an interpretable demand format for
traffic simulations. Due to the consistent design of the MiD-Study, the approach is also
applied to Hamburg and is extensible to 18 further cities and one city-state (Bremen)
covered in the MiD-Study. The produced ODMs for Munich and Hamburg are accessible
for researchers at: https://nextcloud.in.tum.de/index.php/s/gT48xDzT88YJGQK
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Summary

Introduction: Changes in transport networks are costly. They bring financial burdens,
worsen travel times, cause environmental pollution, and other inconveniences. At the
same time, adjustments are necessary to meet the requirements of the network. To be
able to represent the consequences of a change without causing the aforementioned costs,
traffic simulations can be used. This paper supports traffic simulations by providing them
with more realistic datasets. To interpret traffic data, such simulations require so-called
Origin-Destination Matrices (ODMs). This paper deals with the generation of ODMs
from Munich traffic count data. A dataset collected by the German Federal Ministry of
Transport and Digital Infrastructure (MiD study) is used for this.

• Data Basis: The MiD study contains 48,627 travel routes from 15,693 participants
in Munich and 41,404 travel routes from 13,660 participants from the surrounding
suburbs.

• Assumptions: Since the study does not provide exact origin and destination in-
formation for individual journeys, assumptions were made. It is assumed that all
journeys start and end at a residential address in Munich, with travelers eventu-
ally returning to their places of residence. This excludes potential intermediate
destinations. Each journey must either start directly at a residential address or
return to one.

• Population Distribution: The probability of a journey starting or ending at a
residence is estimated based on the distribution of apartments in Munich’s districts.
The total number of daily trips in Munich is estimated at 4.8 million.

• Forming Origins: The number of journeys in the population (4.8 million) is
halved (2.4 million) and then allocated proportionally to the city districts in Mu-
nich. The MiD study provides additional information about travel purposes, which
are included in the analysis.

• Adding Destinations: To complete the first 240,000 journeys, only one desti-
nation is needed. Since the MiD study does not provide destinations, these are
estimated based on the information stored in the incomplete journeys. For this, a
journey distance for each trip is first required.

• Calculating Distances: Distance groups were reduced and adapted to travel
purposes.

• Determining Destinations: For each journey, a search for suitable destinations
is conducted. This is based on a mixed dataset that matches the travel purpose
of the journey. The distance is calculated using an API provided by the OSRM
project.
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• Creating Return Journeys: After destinations have been assigned to all jour-
neys, their reversals are created by swapping the origin and the destination to
represent the return journeys, representing the other half of the total dataset.

Concluding Remarks: Overall, this approach provides a systematic way to create
ODMs for Munich using specific assumptions and data from the MiD study. The method
can also be applied to other cities in Germany where MiD studies have been conducted.
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4.1.3 Publication 3, Core-Publication: An Approach for Further Validation

Table 4.3: Publication 3: Published.
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Full Text The full text of this publication is included in the Appendix in
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Publication 2023 IEEE International Conference on Mobility, Operations, Services

and Technologies (MOST), Detroit, USA

Status Published

First Author Problem definition, data collection, literature research and analysis

Contribution interpretation, implementation, writing

Abstract: This paper presents an extension to existing GPS-based approaches for track-
ing modes of transportation in multimodal trips. The extension focuses on analyzing
stops and mapping them to surrounding public transport stations in order to improve
the accuracy of the mode of transport detection. The proposed method is evaluated
using data from the city of Munich, resulting in a 17% improvement of the F1-Score,
from 73% to 90%. It is applicable to any GPS-based mode of transport detection system
to improve their accuracy potentially.
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Summary

Introduction: This paper introduces an algorithm for the automatic detection of modes
of transportation. This approach has been tailored specifically for the city of Munich
but is expandable to other cities. The algorithm aims to capture GPS traces in the form
of routes and subsequently segment these into various transportation modalities. This
allows researchers to automatically track and categorize the chosen routes of travelers.
Potential applications include the validation of ODMs (Publication 1) and primarily the
validation of simulated routes.

• Concept: The paper extends existing transportation classification algorithms
with the so-called ”Stop Analysis.” Here, data segments in GPS traces, in which
little or no movement occurred are closely examined to derive information about
the used mode of transport.

• New Stop Features for Proposed Segments: Five new characteristics are
introduced, including the number of stops, duration of stops, and the number of
stops identified as bus, tram, or train stops.

• Assignment of Stops to Stations: The paper initially clarifies that public trans-
port stops are timeless objects possessing a geolocation, name, and type instead
of a GPS position. To learn more about stops in a GPS trace, nearby stations
are sought. These stations are retrieved from an OpenStreetMap database. A
bounding box demarcates a geographic area within which stations are fetched. For
Munich, this results in a list of 6,966 stations categorized into tram, train, and
bus. This list is advised to be updated weekly, given the infrequency of station list
changes.

• Impact of Avoidance on Travel Time: To efficiently filter this list and select
only those stations proximate to a stop, a technique was developed that employs
decimal degrees of latitude and longitude. This method employs a grid, where each
cell varies in size due to its earthly position. The algorithm rounds both the list of
stations and the stops to 3 decimal places. As a result, similar values are rounded
to the same value. A challenge arises when stations in close proximity could be
overlooked due to rounding. To counter this, all rounded cells immediately sur-
rounding the stop cell are also considered. This ensures that all relevant candidates
are considered and the number of candidates for which the distance needs to be
calculated is reduced. Every station that passes the distance test conveys its type
to the stop, determining its transportation modality.

• Merging Data Windows into Segments: This section demonstrates how ad-
jacent data windows are fused into segments. The approach relies on labeling
data windows as ”Walking” or ”Not-Walking” since a walking segment typically
separates transitions between modes of transport.
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Results and Concluding Remarks: The paper presents a new approach to recogniz-
ing modes of transport in multi-modal routes by utilizing stops and public transportation
stations. The average F1-Score across all modes of transport was 90%, marking a 17%
improvement over a previous approach by Avezum. A comprehensible decision tree has
been developed, which could be applied in other cities. However, it is recommended to
adapt the tree to account for the idiosyncrasies of other transport networks, especially
in countries differing significantly from German infrastructure. The automatic labeling
of GPS data by modes of transport has various applications, such as the automatic cal-
culation of CO2-equivalents or for traffic simulations. Manual labeling by travelers is
prone to errors, making the presented automated approach, which offers high accuracy,
especially valuable. Nevertheless, it’s recommended to tailor the algorithm to the spe-
cific region, ensuring high-quality and effortless data acquisition for traffic research and
subsequent labeling of collected GPS data.
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5 Summary of Results

The objective of this dissertation was to improve the individualization of travel routes,
maximizing the benefits for travelers while minimizing the interaction costs. Addition-
ally, it aimed to illustrate how individualization and changes in transportation offerings
influence network effects and various travel needs.

Publication 1 outlines the theoretical foundation upon which this objective is based
and addresses issues arising from our ability to navigate. It delves into a fundamental
trade-off between computational ability, data availability, and their individual impor-
tance to travelers. It concludes that navigation before the age of navigation systems
(Navigation 1.0) and navigation with the assistance of digitally connected devices (Nav-
igation 2.0) are both insufficient in their own ways. The solution proposed is Navigation
3.0, which combines the data quality and computational capability of Navigation 2.0
with the incorporation of individual preferences in the route calculation from Naviga-
tion 1.0. This concept extends prior research, such as the commuter satisfaction model
introduced by St.Louis et al. shown in Figure 5.1

Figure 5.1: Commuter satisfaction model by St-Louis et al. [4]

Publication 1 demonstrates an initial approach to Navigation 3.0 by developing a Con-
straint Language for the open-source routing tool OpenTripPlanner. Using this Con-
straint Language, the study simulates how people’s travel behavior changes during the
Sars-Cov-19 pandemic when avoiding certain transportation hubs in Munich. 1000 routes
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for randomly selected O-D pairs were calculated, comparing the effects of avoidance on
travel behavior to unchanged route calculations. The results are visualized in Figure 5.2.

Figure 5.2: Compares the results of traveling with avoidance feature (right) and without avoid-
ance feature (left). The above figures use isochrones to visualize the impact on
travel time, while the below figures compare heat maps to visualize the impact on
station utilization.

Publication 2 addresses the quality of the O-D pairs, which were randomly generated
in Publication 1. Since travelers exhibit certain patterns due to factors like living and
working locations, these aren’t random. To improve this data and make it more realis-
tic, Publication 2 uses a representative study for larger German cities. By statistically
transforming the results of this study into an Origin-Destination matrix, the quality of
traffic simulations can be made more realistic, but only for cities covered in the study.
A visualization of this transformation process is summarized in 3.7.

Our traffic simulation prototype: TrafSim (Section 3.1), integrates concepts in-
troduced in Publication 1 (customizable routing algorithm) and Publication 2 (more
realistic ODMs) as components in a complete traffic simulation. It also introduces en-
hancements to these components, visualization systems, and a user interface. The foun-
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dation for this architecture is derived from a newly established navigation theory that
is shown in Figure 3.2. It defines four basic systems required to represent navigation
entirely.

Figure 5.3: Documentation and onboarding page for setting up the Navigation 3.0 oriented
Traffic Simulator TrafSim.

These basic systems are implemented as layers in the coherent traffic simulation. The
traffic simulation’s architecture is depicted in Figure 3.3. The lowest level consists of
the fundamental subsystems that are described in Figure 3.2. The middle level provides
user interfaces to interact with the below subsystems. Each middle layer provides a
functional benefit to the user by itself. The top layer combines all user interfaces into
one comprehensive Traffic Simulation WebApp, allowing users to manipulate the supply
and demand of a traffic system and visualize the results of said manipulation.

Publication 3 provides an algorithm for validating simulation results within user stud-
ies. User studies capturing travel behavior involve significant effort from participants
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since they must track their routes via GPS and label them. Consequently, participants
make labeling mistakes or quit the study due to its demands. The algorithm introduced
in this paper achieves approximately 90% labeling reliability, surpassing the data quality
produced by an inexperienced test group. Moreover, the algorithm is implemented in
Swift and Python, making it compatible with both iOS and Android applications. The
resulting precision values for detecting each mode of transport in GPS traces are shown
in Figure 5.4.

Figure 5.4: Confusion matrix showing the prediction precision in the diagonal (sum of column
= 100). The respective recall values are, Car: 73%, Walk: 100%, Bike: 95%, Train:
85%, Bus: 96%, Tram: 94%.
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5.1 Concise Answers

5.1 Concise Answers

RQ1: How can a navigation algorithm be individualized?

A1: By developing a Constraint Language interacting with routing algorithms like Open-
TripPlanner, route requests can be tailored more personally. Some functions are used
as provided by OpenTripPlanner itself, while others are added to the algorithm either
before or after the main processing to filter routes based on specific parameters. An
example is incorporating a minimum or maximum walking distance as a routing param-
eter, enabling individuals with health goals to efficiently integrate them into their travel
or those with mobility restrictions to minimize these distances.

RQ2: How can costs associated with improved individualization be minimized for trav-
elers?

A2: Actively tracking route selection, travel speeds, and clustering situational behavior
profiles as route options can reduce costs for users. To also protect the traveler’s pri-
vacy, anonymizing techniques like Federated Learning are suggested, which perform this
optimization locally on users’ devices and only communicate the resulting model, not
the original user data.

RQ3: How can the impact of such individualization on traffic planning and travel be-
havior be communicated?

A3: Traffic simulation is especially suitable for this approach. In Publication 1, we refer
to this type of data communication as a ”Level 3” solution, which is associated with
the most development effort but achieves the maximum knowledge transfer. Knowledge
transfer costs are borne by the simulation developer, not the information consumer or
emitter.
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6 Discussion

This dissertation demonstrates the core principles of scientific rigor. It begins by formu-
lating hypotheses grounded in reasoned chains of arguments, a technique prevalent in
humanities and theoretical research. These hypotheses are then tested through experi-
ments designed to be repeated until enough data is collected. This data, assessed using
statistical measures, helps determine the probability of observed patterns occurring by
chance. The process involves creating experimental setups with tools for empirical vali-
dation, a practice typical in engineering sciences. These tools aim to reduce extraneous
variables, enhancing the impact of the variables under study. The dissertation introduces
the simulation tool TrafSim, designed to aid researchers in conducting experiments that
validate both their hypotheses and the tool’s effectiveness.

TrafSim is introduced as an initial prototype for simulating concepts of Navigation 3.0,
including a foundational software architecture. The development process was primar-
ily focused on internal testing and refinement, leading to iterative improvements in the
system. External testing with operators has recently commenced, recognizing that this
is an essential step in the evolution of any scientific tool. At this stage, TrafSim is not
presented as a comprehensive and finished solution for individual travel navigation but
rather as a prototypical framework subject to further improvements.

In line with common practices in research and development, TrafSim is in an ongoing
process of optimization. The current limitations, including the presence of errors in
simulation results, are primarily attributed to the system’s recent inception and the
extensive range of functionalities integrated at an early stage. This approach facilitated
the rapid incorporation of diverse concepts, albeit with a trade-off in the granularity of
detail. Future versions of TrafSim will focus on enhancing robustness and the refinement
of these functionalities based on feedback from both internal and external testing.

6.1 Contribution to Research

This dissertation contributes to the scientific discourse by providing a simulation tool
based on theoretical concepts described as Navigation 3.0. Providing a technical solution
for conducting experiments is a common practice for advancing the scientific iterative
process. For instance, the proof of gravitational waves, which Albert Einstein theoreti-
cally described in 1916, was only achieved 99 years later in 2015, as the development of
a corresponding experimental setup to control for confounding variables was complex.
In recognition of overcoming this complexity, Rainer Weiss, Kip Thorne, and Barry Bar-
ish received the Nobel Prize in Physics for this achievement. While this is an extreme
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case, it demonstrates that scientific contributions are rarely finished results but rather
processes that are constantly refined and improved.

This dissertation provides two theoretical problem descriptions and pairs those with a
testing environment for empirical validation. The first theoretical contribution encour-
ages viewing traffic as a market-economic optimization problem, where travelers combine
the benefits of individual actions with the advantages of machine calculation efficiency
and data access.

The second theoretical contribution lies in the development of a ”Generalized Concept of
Navigation” (Figure 3.2), which systematically describes navigation behavior and thus
provides a formal reference point for its implementation as a software system. Both
principles are practically implemented, aiming to verify their correctness through exper-
iments. Both concepts are reflected in the implemented traffic simulation. The market-
economic theory forms the basis for adding the sub-levels ”Graph Manipulation Tool”
and ”Constraint Manipulation Tool”. This allows researchers to modify and simulate
both the traffic system and travelers’ needs. Additionally, this perspective led to the
visualization of the simulation not focusing on fluid mechanics concepts of traffic flow
but instead highlighting utilization. The Generalized Concept of Navigation was the
basis for constructing the system architecture. It clarifies which aspects of a navigation
process are represented by which subsystems. It also points out when an aspect is not
or inadequately represented. Thus, it serves as an objective for the quality of navigation
solutions since they can be compared against the ideal state described by the model.
Lastly, we devoted ourselves to measuring actual travel behavior data to improve the
associated data collection process. The goal was to facilitate the collection of travel data
by automating the labeling process of collected GPS traces. One reason is the effort
associated with collecting data for test subjects, and another is the reduction of labeling
errors. The quality of the algorithm was experimentally confirmed for the city of Munich.

The fit of the traffic simulation to the requirements defined in the Generalized Concept of
Navigation (Figure 3.2) is visualized in Figure 3.14. Even though most requirements set
by the model were addressed, Live Traffic Data and Live Traffic models were excluded,
as no live traffic data could be obtained. Although the addition of live data offers in-
teresting potential, it also was of a lower priority for this traffic simulation. The reason
is that it is not supposed to visualize current traffic behavior but rather general trends
to aid in structural decision-making. While the simulation’s code is not yet free of en-
gineering mistakes, most have been addressed over many such iterative refinement cycles.

Currently, TrafSim is being tested by an external research group from the Chair of Auto-
motive Technology at the TUM School of Engineering and Design. In collaboration with
this research group, we are currently also initiating the first external validation of Traf-
Sim by comparing simulation results to travel data in Munich. To optimize the testing
process, different-sized ODMs for the city of Munich were provided along the simulation,
containing 96 (small), 960 (medium), 9.600 (large), and 96.000 (extreme) representative
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origin-destination pairs for travelers in Munich. Depending on the complexity of a route
and the number of selected routing constraints, it is able to calculate between 10 and 100
routes per minute using a Linux server with 16 GB of available RAM. This means that
running a simulation roughly ranges between (format: dd.hh.mm) 00.00.01 - 00.00.10
(small), 00.00.10 - 00.01.40 (medium), 00.01.40 - 00.16.00 (large), 00.16.00 - 06.16.00
(extreme).

6.2 Limitations, Problems, and Assumptions

TrafSim still contains some unresolved issues and assumptions. For instance, the encod-
ing of the start and end station in a GTFS file. Even though the GTFS file structure is
standardized, the data contained inside this standardized structure is not. This causes
hard-coded decoders to function on one provider’s GTFS files but might fail on others
simply because the data is decoded incorrectly. Currently, the start and end locations
of certain public transport lines are retrieved manually from GTFS data files. These
endpoints are required for visualizing the GTFS files in TrafSim. Our current solution
extracts the start and end stations directly from the routes.txt file present in any GTFS
file. However, the solution is generic, yet. It is not able to adapt to alterations in the
data formatting inside a routes.txt file. To be able to work with custom formats from
different GTFS data providers, we are still looking for a more generic and resilient solu-
tion that identifies the data formatting in a GTFS file and adapts to it.

Another limitation is that the default settings and data sets of TrafSim are currently
focused on Munich and Bavaria. The used OpenStreetMap data (roads, intersections,
sidewalks, ...) currently only contains information about the region of Oberbayern. To
simulate other regions, they must be added to the database and selected during Graph
building. However, simulation operators adding new data should be aware of the region’s
size. The more nodes and edges a region contains, the longer the graph-building process
is going to take. Similarly, the GTFS data contained in TrafSim is from the municipality
of Munich.

We are also aware of some technical issues that are still present in the current version
of TrafSim. For example, docker images are not deleted when a graph is deleted by the
operator, causing the hard drive to gradually fill up until a manual wipe of all docker
images is administered. We are also experiencing a bug causing newly built docker
images to initially generate 50 requests to the internal docker-utils server, unintentionally
slowing down the graph-building process. Due to the complexity of the graph-building
process and its many dependencies, we are unable to dash out precise error messages to
the operator in the GUI of TrafSim, forcing us to display a rather generic error message
like ”Error in Graph building, please try again”. If the issue persists, the operator is,
therefore, forced to investigate the log files for debugging.
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7 Outlook

The goal of this dissertation was to aid both individuals and collectives by providing
a more comprehensive and less biased view of travel behavior. This issue arises as the
constructional design and the policies that govern traffic are not based on representative
statistics but on biased sampling. Even if a traffic decision is based on the structural
load on the network, both the existing supply and the reduction of demand on singular
variables have an impact on exerted behaviors. To address this issue, we implemented
a layered architecture that allows individuals to describe their preferred travel behavior
more closely. Simultaneously, we provide tools to test hypotheses about the traffic net-
work to simulate their effect on different travel behaviors. This allows individuals and
groups to showcase and compare the effect of a policy or constructional change to the
network to their own exerted behavior, allowing them to express realistic and measurable
concerns with said changes.

The simulation provides a first prototype along with a theoretical structure and a
blueprint for designing this type of traffic simulation. To further improve the simu-
lation, the next steps could include the possibility of altering the road network graph
on top of the existing solution for GTFS-graph manipulations. While the addition of
live traffic data is intriguing, it would most likely be reduced to validating the ODMs,
as its live component has little practical use for this kind of traffic simulation. However,
traffic simulations focusing on traffic flow would profit severely from such data. Adding
more routing constraints to the existing list of constraints is also recommended to allow
for further individualization of traveler preferences. This would be done by extending
the existing constraint language with additional variables.

7.1 Technical Improvements

To improve the simulation’s predictive power, the next steps could also revolve around
improving the data quality. Currently, the ODMs only provide information about daily
travel routines without discriminating by the time of the day. However, to showcase
potential risks for congestion and other types of influences, it is also required to know
at which times travelers are expected to travel. While we did find assumptions and es-
timates for travel densities in various cities, we could not determine which paths would
be invoked at which times. As we could not pinpoint if adding these estimates would
improve or harm the realism of the simulation, we had no ground for adding them to
the ODMs. We generally advise sticking to this design concept and refraining from
adding any additional discriminators if their positive impact on the predictive power of
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the simulation is not calculable. Economists have shown again and again that adding
such ”guesses” leads to more harm than gain. Instead, we advise simply treating such
elements as what they are: unpredictable.

The routing layer is functional yet slow. While this can be solved with hardware, it is
likely to be attributed to the increases in routing complexity due to the addition of con-
straints. An additional issue in this regard is the usage of OpenTripPlanner 1.x. While
it does not pose any issues at the current point in time, it will likely cause them in
the future. It is advisable to either use a custom-created routing algorithm to decouple
ourselves from this dependency entirely or update the latest version of OpenTripPlanner
2.x. Both solutions pose similar threats. While decoupling creates independence, it also
neglects the benefits of an open-source solution with multiple independent contributors
from around the world. On the other hand, relying on an OpenTripPlanner creates a
permanent dependency on an external piece of code that is placed in the heart of the
traffic simulation.

Further validations against reality are required for all system components to improve
their predictive power and test their resilience. Currently, the traffic simulation is bi-
ased towards German cities, particularly Munich. While Germany is a great example of
the described problems of Navigation 2.0, we recommend extending the traffic simulation
and its algorithms to other countries as well. To do so, the most important dependency
to obtain are ODMs of other cities, as both GTFS-Data and traffic network data are
easier to obtain. This is mostly due to the success of OpenStreetMap, providing open
access to network data, as well as the worldwide dominance of the GTFS-Formatting
standard for public transport schedules.

Finally, the quality of the constraint language is to be validated. This validation could
be approached in various ways, either by interviewing experts, representatives of certain
behavior groups (e.g., wheelchair users), or randomly selected individuals. The goal of
these interviews is to identify ideal routing constraints for individuals and verify if the
constraint language meets these requirements.

7.2 Digital Representation

One novel concept introduced in this dissertation is a trainable system to represent the
user digitally. While most humans are being represented daily by other humans, such
as politicians, friends, family members, or colleagues, digital representatives have hardly
been explored. Interestingly, adjusting or training a digital representative, as demon-
strated for routing algorithms in this dissertation, offers an unusual potential.

We discussed how even taxi drivers, who function as human champions of a network’s
various supply and demand streams, have resorted to utilizing automated support in the
form of navigation devices. We also explained that even though these algorithms only
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offer limited customization, they are mostly preferred over the traveler’s routing ability.
This is due to the algorithm’s ability to incorporate a much larger mass of information
in their decision processes, leading to better-informed routing suggestions. This demon-
strates how most humans prefer a well-informed decision over a highly customized one.

But what about a highly informed and highly customized decision? Here, our theory
of Navigation 3.0 suggests that an optimal representative is both maximally informed
yet also maximally customized to the traveler. As rising customization further reduces
the number of individuals fitting said customization, maximizing both values will lead
to a digital representative for each individual. At this point, the advantages of such
a representative become quite clear. If the representative is fully informed and fully
incorporates the preferred behavior of an individual, then the representative would be a
perfect digitized copy of said individual, but with access to all advantages of digitized
routing algorithms.

However, a truly perfect representation of an individual is impossible to reach. In Nav-
igation 3.0 we describe how a training process to increase the adaption of said digital
representative from Navigation 2.0 to the needs of the traveler further improves its value
to them. However, it also translates cost structures from exponential to linear. Us-
ing TrafSim, travelers may participate in any number of traffic votes or decisions just
by keeping their travel profile up-to-date. In TrafSim, their participation is automized
simply by running simulations based on the traveler profiles that have been provided
without adding the effort of voting. TrafSim also does not require travelers to inform
themselves, as their behavior in accordance with the status of the network is similar to
the traveler’s actual behavior. This way, travelers do not have to compute the potential
impacts of a traffic network change on them. They only need to describe their own
behavior. So, while consuming all available information becomes an evermore complex
task, as over time more and more information is accumulated, understanding our own
desires may be a challenge, yet a linear one.

Hence, it is easier for humans to teach their digital representatives who they are, what
they want, and how they behave than trying to compete with the digital representative’s
ability to consume and process information to form a decision. We thereby imply that
for humans to navigate through an ever-growing landscape of information, they will have
to rely more and more on digital representatives. Here, we draw a connection to any
other type of navigation or representation currently existing. Geographical navigation
through traffic systems is, in essence, no different from any other form of navigation
through information. Search engines like Google or large language models like chatGPT
are also navigators, using different forms of models for decision-making. While human
representatives may hold an emotional importance, we see greater potential for digital
representatives. We therefore deem it likely that the principles of Navigation 3.0 are
applicable to other systems of representation, too.
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TrafSim is an example of such a solution. It enables travelers of a transport network to
create a digital representative of themselves. This representative can then be integrated
into traffic simulations to more realistically determine which travelers would be affected
in which way by changes in the transport network. This way, travelers can participate in
any number of traffic decisions simultaneously simply by keeping their travel profile up-
to-date. Compared to a system based on human representatives, systems like TrafSim
are more informed and more representative while retaining a low level of effort for the
individual traveler.

7.3 Closing Thoughts

This leads us to conclude that from a purely rational perspective, digital representatives
outperform human representatives with further progressing digitization. However, the
moral implications of this conclusion remain unresolved. We do not and can not an-
swer if other aspects outside geographical navigation should be surrendered to digitized
efficiency. But in the realm of geographical navigation, the transformation to digital
representation seems irreversible. Bans on the use of existing navigation algorithms
would likely meet resistance from the public, as they have become accustomed to their
benefits. An attack on data storage in the form of bans is conceivable, but here, too,
a contrary trend seems to be observable. Therefore, if both the data storage and the
algorithms remain intact, a return to ”Navigation 1.0” seems unlikely. Thus, the choice
remains between Navigation 2.0 - efficient but impersonal - and Navigation 3.0 - efficient
and personal. In this dissertation, we advocate for Navigation 3.0, which caters more
closely to individual preferences and follows statistical principles. We show that includ-
ing the supposedly irrational preferences of individuals using the principles of Navigation
3.0 may lead to an overall increase in travel satisfaction. We thereby demonstrate how
multi-dimensional navigation can be used to utilize supposed irrationality to alleviate
stress on the network.
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[10] J. Bascompte and R. V. Solé. Spatiotemporal patterns in nature. 1998.

[11] F. A. Huntingford. Animal conflict. Springer Science & Business Media, 2013.

[12] H. Aarts, B. Verplanken, and A. Van Knippenberg. Predicting behavior from actions
in the past: Repeated decision making or a matter of habit? Journal of applied
social psychology, 28(15):1355–1374, 1998.

[13] J. A. Ouellette and W. Wood. Habit and intention in everyday life: The multiple
processes by which past behavior predicts future behavior. Psychological bulletin,
124(1):54, 1998.

69



BIBLIOGRAPHY

[14] D. L. Ronis, J. F. Yates, and J. P. Kirscht. Attitudes, decisions, and habits as
determinants of repeated behavior. Attitude structure and function, 213:39, 1989.

[15] D. Parker, A. S. Manstead, and S. G. Stradling. Extending the theory of planned be-
haviour: The role of personal norm. British journal of social psychology, 34(2):127–
138, 1995.

[16] B. J. Biddle, B. J. Bank, and R. L. Slavings. Norms, preferences, identities and
retention decisions. Social psychology quarterly, pages 322–337, 1987.

[17] H.-W. Charng, J. A. Piliavin, and P. L. Callero. Role identity and reasoned action
in the prediction of repeated behavior. Social psychology quarterly, pages 303–317,
1988.

[18] R. Richard, J. van der Pligt, and N. de Vries. Anticipated affective reactions and
prevention of aids. British Journal of Social Psychology, 34(1):9–21, 1995.

[19] R. C. Tessler and S. H. Schwartz. Help seeking, self-esteem, and achievement mo-
tivation: an attributional analysis. Journal of personality and social psychology,
21(3):318, 1972.

[20] S. Roccas, L. Sagiv, S. H. Schwartz, and A. Knafo. The big five personality factors
and personal values. Personality and social psychology bulletin, 28(6):789–801, 2002.

[21] D. A. Cobb-Clark and S. Schurer. The stability of big-five personality traits. Eco-
nomics Letters, 115(1):11–15, 2012.

[22] J. d. D. Ortuzar and L. G. Willumsen. Modelling transport. John Wiley & Sons,
2011.

[23] J.-P. Rodrigue, C. Comtois, and B. Slack. The Geography of Transport Systems.
Routledge, 2016.

[24] P. Hall and M. Tewdwr-Jones. Urban and regional planning. Routledge, 2019.

[25] M. Winters et al. How far out of the way will we travel? built environment influ-
ences on route selection for bicycle and car travel. Transportation Research Record,
2190(1):1–10, 2010.

[26] H. C. Borst et al. Influence of environmental street characteristics on walking route
choice of elderly people. Journal of Environmental Psychology, 29(4):477–484, 2009.
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[69] B. Lenz, C. Nobis, K. Köhler, M. Mehlin, R. Follmer, D. Gruschwitz, B. Jesske,
and S. Quandt. Mobilität in deutschland 2008. 2010.

[70] C. Nobis and T. Kuhnimhof. Mobilität in deutschland- mid: Ergebnisbericht. 2018.

73

https://www.science.org/doi/abs/10.1126/science.162.3859.1243
https://www.science.org/doi/abs/10.1126/science.162.3859.1243
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.162.3859.1243
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.162.3859.1243
http://dx.doi.org/10.1126/science.162.3859.1243
https://doi.org/10.1007/978-1-349-20213-3_13
http://dx.doi.org/10.1007/978-1-349-20213-3_13
http://dx.doi.org/10.1007/978-1-349-20213-3_13
http://dx.doi.org/10.1017/CBO9780511610448.008


8 Appendix: Full-Text Publications

8.1 Full-Text Version of Publication 1

Suggested Citation: Klinker, J., Selmi, M. H., Avezum, M., Jonas, S. M. (2021,
May). Introducing a Navigation Algorithm for Reducing the Spread of Diseases in Pub-
lic Transport Networks. In dHealth (pp. 113-121).

Copyright: © 2021 The authors, AIT Austrian Institute of Technology and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the
terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC
4.0). doi:10.3233/SHTI210097.

License - CC BY-NC 4.0: Introducing a Navigation Algorithm for Reducing the
Spread of Diseases in Public Transport Networks © 2021 by Klinker, J., Selmi, M. H.,
Jonas S. M. is licensed under CC BY-NC 4.0. To view a copy of this license got to the
next page or visit: https://creativecommons.org/licenses/by-nc/4.0/?ref=chooser-v1.

Status: Published.

74

https://pubmed.ncbi.nlm.nih.gov/33965927/
https://pubmed.ncbi.nlm.nih.gov/33965927/
https://creativecommons.org/licenses/by-nc/4.0/?ref=chooser-v1
https://creativecommons.org/licenses/by-nc/4.0/?ref=chooser-v1


8.1 Full-Text Version of Publication 1

75



Introducing a Navigation Algorithm for 

Reducing the Spread of Diseases in Public 
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Abstract. Reducing passenger flow through highly frequented bottlenecks in public 

transportation networks is a well-known urban planning problem. This issue has 
become even more relevant since the outbreak of the SARS-CoV-2 pandemic and 

the necessity for minimum distances between passengers. We propose an approach 

that allows to dynamically navigate passengers around dangerously crowded 
stations to better distribute the passenger load across an entire urban public transport 

network. This is achieved through the introduction of new constraints into routing 

requests, that enable the avoidance of specific nodes in a network. These requests 
consider walks, bikes, metros, subways, trams and buses as possible modes of 

transportation. An implementation of the approach is provided in cooperation with 

the Munich Travel Corporation (MVG) for the city of Munich, to simulate the 
effects on a real city's urban traffic flow. Among other factors, the impact on the 

travel time was simulated given that the two major exchange points in the network 

were to be avoided. With an increase from 26.5 to 26.8 minutes on the average travel 
time, the simulation suggests that the time penalty might be worth the safety benefits. 

Keywords. Physical Distance, Social Control, Social Distancing, COVID-19 

Pandemic, Risky Health Behavior, Outbreaks, Prevention and Control  

1. Introduction 

Conventional navigation systems like Google Maps offer a number of fastest or shortest 

routes to get to a destination. While these options were sufficient in the past, the outbreak 

of the SARS-CoV-2 pandemic led to a new requirement. Since then, travelers have also 

been looking for safe routes through cities, that could lower the risk of an infection with 

the virus. In the case of SARS-CoV-2, one effective measure to reduce this risk is to keep 

a safe distance to other humans [1, 2].  

In Germany, the minimal required safety distance in public places was set to 1.5 meters 

by the Federal Ministry of Health [3]. Any distance below that threshold is considered 

unsafe from a social distancing perspective. 

Fulfilling these social distancing requirements turns out to be a challenging task for 

passengers in urban public transportation networks. This is mostly due to overcrowded 

transportation vehicles and exchange stations during rush-hour times that force people to 

break social distancing rules. Relatively in the beginning of the outbreak, public 
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authorities in Germany took action to prohibit any events with more than 100 people. 

However, when considering that the average Munich subway has capacity for over 900 

people, any public transportation ride operating at over 11% of its total capacity can 

already be considered a large event [4]. This issue is even more critical at the central 

exchange points in Munich's public transportation network. 

 In exchanges with city planners form the Munich Transport Corporation (MVG), it 

was explained that congestions rarely occur at most public transport stations. Instead, 

there is a small number of stations in Munich’s public transportation network that get 

overcrowded reliably and predictably on a daily basis, due to their centrality in the 

network. Such stations, like “Sendlinger Tor” or “Hauptbahnhof”, that are mainly used 

to change between public transport lines, pose a constant infection risk. At “Sendlinger 

Tor” for example, an average of 250.000 passengers board, alight or change public 

transport every day [5]. While this is an unusual threat during a pandemic, it is a constant 

threat to people in high-risk groups. 

To solve this issue, new solutions have to be implemented that reduce the passenger 

load on central traffic nodes, so that safety distances can be established again [6]. The 

goal of such an optimization problem is to fulfill the safety requirement while causing 

the minimal necessary impact on other travel goals such as minimizing overall travel 

time to a destination. 

2. Methods 

To tackle this issue, we introduce a new routing algorithm that offers a safer route to a 

traveler’s destination by avoiding highly congested stations in the public transport 

network. As the congestion level of a node is not constant, but depends on a large number 

of factors, a collaboration with the Munich Transport Corporation (MVG) was 

established. Using insights provided by the MVG, public transport stations can be 

dynamically toggled on and off before they reach a dangerously high congestion level in 

which safe distances can no longer be maintained. Currently, the assessment whether a 

station is considered safe or overcrowded is delegated to the MVG. To make this 

assessment as transparent and scientific as possible, it is advisable to take a closer look 

at parameters influencing the spreading risk in public transport stations. Due to its 

complexity, we haven’t included this additional step in the scope of this publication. 

 

The avoidance algorithm then uses the information about the available and unavailable 

stations to calculate a safer route with less congested exchange points, giving the control 

for social distancing back to the travelers. To simulate the impact on the travel time and 

other important features, the MVG provided a dataset containing the scheduled departure 

and arrival times of all public transport lines in Munich. Both the data and the congestion 

knowledge are used to simulate the results produced by an avoidance algorithm for safer 

routes.  

To evaluate the performance the avoidance algorithm is compared to the results of 

the same algorithm without the avoidance feature. Core features like the change in travel 

time are then used to measure how the convenience of a route is impacted by the feature. 

As the convenience of a route is highly subjective, no final measure for the convenience 

could be produced. Instead, some underlying factors that partially correlate with a route’s 

perceived convenience are presented.  
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As the proposed solution was developed with data from- and in cooperation with 

public authorities in Munich, the researched results and examples use cases are limited 

to the city of Munich. 

2.1. Foundations 

Public transportation has long been suggested as an alternative for road bottlenecks. 

During rush-hour, however, these are already overcrowded, and some cities thus prefer 

to limit passenger flow in bottleneck stations. In order to motivate passengers to consider 

going around an overcrowded station, two main reviews are presented: (1) Providing 

passengers with personalized multi-modal routing options and (2) calculating routes 

which have further advantages than a fastest travel time. 

Review (1) is based on the work of Bucher et al. who describe how to integrate 

personal constraints on calculation of multi-modal routes [7]. To incorporate more 

travelling options into the multi-modal route calculation, the authors save a series of 

constraints in the form of a user profile.  

As far as multi-modal routing goes, the state-of-the-art implementation is provided 

by OpenTripPlanner [8]. The open-source project uses public transportation schedules 

formatted as General Transit Feed Specification (GTFS) to calculate multi-modal routes 

that, among others, can combine cycling and public transportation segments. Since the 

consideration of multi-modal routes can be seen as an interesting approach to reduce the 

load of overcrowded public transportation intersection, OpenTripPlanner contains a 

“bannedStop” parameter that can be passed through a route request. 

While the calculation of routes is a technical challenge, actually ensuring that the 

passengers use that route is a social one. Review (2) mentioned above relates to providing 

route advantages other than simply travel time. The basis for this is the work of Bunds 

et al. who analyzed how different route attributes were perceived by travelers and how 

these affected the choice of route [9]. Bunds et al. showed how air pollution, traffic, and 

noise level are the determining factors when deciding which route to walk through [9]. 

This allows us to infer that if a traveler can control for these variables during a route 

calculation, they can be more likely to accept longer walking segments. Furthermore, the 

fact that traffic and noise levels are directly correlated with overcrowded regions (even 

in public transportation), means that presenting this information to the traveler can serve 

as an important motivation for them to avoid these regions. 

 

2.2. Constraint-based route personalization 

OpenTripPlanner calculates multi-modal routes in the network based on a routing request 

that consists of a list of query parameters. In order to define the context of the route 

search, the request must specify the following information: 

� fromPlace: Latitude and longitude of the start location. 

� toPlace: Latitude and longitude of the end location 

� date: Date on which the trip should depart. 

� time: Time when the trip should depart. 

� mode: Set of modes that a commuter is willing to use. The main modes 

supported by the system are walk, bike, car, and transit (buses, trains, trams).  
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In addition, the existing system supports multiple optional parameters that can be 

used to further manipulate the results. The most useful parameters for the problem at 

hand are: 

� bannedRoutes: A comma-separated list of banned public transportation lines. 

� bannedStops: Banned stations cannot be used to board or alight from a public 

transportation mode, but it is still possible to travel through them. This is 

achieved by blocking the pre-board and pre-alight edges that connect the transit 

network to the street network. 

� bannedStopsHard: Stations that are removed from the network. It is no longer 

possible to board, alight or travel through these stations. 

 

While the bannedStops parameter realizes the avoidance that the system aims to 

achieve for crowded stations, the time aware usage of this parameter to automatically 

avoid the stations during rush hour periods is still to be implemented. 

2.3. Constraint integration in multi-modal routing 

Similar to most state-of-the-art route planning services, OpenTripPlanner uses the A* 

algorithm to search for routes in the transportation network [10]. This algorithm keeps 

track of an ordered list of tentative routes and during each iteration the one with the 

smallest weight is extended. In order to achieve multi-modal routes, the algorithm is 

modified to loop over the available transportation modes during each iteration. For all 

outgoing edges of the last node, each mode that matches the type of the edge is used to 

traverse it. For instance, edges from the street network can be used for walking, biking, 

or driving, whereas edges of the transit network are restricted to a specific public 

transportation mode. 

3. Results 

3.1. Example use case 

The following use case exemplifies how the avoidance algorithm calculates routes. We 

consider a trip in the Munich transit network and compare the route generated by the 

system with and without the automatic avoidance during rush-hour periods. For this 

demonstration, the experts from the Munich Transport Corporation (MVG) 

recommended to use the Sendlinger Tor, as it is one of the most congested stations in the 

network. In this case the routing request sent to the trip planner could, for example, use 

the following parameters: 

� fromPlace: Nordfriedhof station with latitude 48.17312 and longitude 1.59686. 

� toPlace: Theresienstraße station with latitude 48.15139 and longitude 11.56444. 

� date: May 5th 2020. 

� time: 08:00 am. 

� mode: Walk, transit (buses, trains, trams) 

 

This trip starts near a dorm for students and ends at a station used to access the 

technical university in the city, which makes it a realistic trip that students take on a daily 
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basis. The time of the request is within the morning rush-hour period from 07:00 am to 

09:00 am. 

 

Figure 1. Route from Nordfriedhof to Theresienstraße. Left: Without automatic rush-hour avoidance.  

Right: With automatic rush-hour avoidance.  

 

The route generated without avoidance can be seen in Figure 1 (left). It uses the 

subway from the origin, marked with a green flag, to get to Sendlinger Tor station. From 

there, a different subway line is used to get to the destination marked with a red flag. 

Including the time-aware avoidance results in a route that successfully avoids changing 

lines at Sendlinger Tor station as shown in Figure 1 (right). The new route cuts the 

subway part short before reaching banned stations and instead uses a bus to get to the 

destination. With activated avoidance, the travel time increases by one minute from 23 

to 24 minutes. 

3.2. General effect of avoidance on line changes 

In this section we analyze how avoiding one station would affect the travel time and 

passenger distribution. The goals are to avoid overcrowding other stations in an attempt 

to scatter passengers to other stations and to maintain a reasonable travel time. To do so, 

we analyze the number of routes that use these stations to board, alight, or change lines. 

This can be considered as an estimation of the number of passengers at the stations. The 

analysis is based on a set of 1000 random routes located in the city of Munich. For each 

route, coordinates for the origin and the destination are sampled from an area centered at 

Sendlinger Tor with a radius of 4 kilometers. In addition, the following parameters are 

used for all routes: 

� date: May 5th 2020 

� time: 08:00 am. 

� mode: Bicycle, walk, transit (buses, trains, trams) 
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The coordinates of the stops used to board, alight, or change lines are then extracted 

from each route and used to generate two heat maps. The first heat map shown in Figure 

2 (left) summarizes the routes where no stops were avoided. The heat map in Figure 2 

(right) considers the routes where Sendlinger Tor and Hauptbahnhof were automatically 

avoided during rush hour periods. 

 

Figure 2. Heat maps showing how often transit stations are used to board or alight public transportation 

vehicles based on 1000 random routes. Left: Without activated avoidance feature. Right: With activated 

avoidance feature. 

 

The left image in Figure 2 visualizes how Hauptbahnhof and Sendlinger Tor are 

originally the most used stations in the network, indicated through the dark red color of 

theses hot spots. While some areas on the outskirt of the network have similar size and 

darkness, they represent stations where commuters mostly board or alight a transit line 

but do not change them. With the automatic avoidance feature activated, the heat 

signature at the Sendlinger Tor and Hauptbahnhof both brighten up, while the direct areas 

around them darken slightly. This effect visualizes the distribution of the passenger load 

from these two stations to other nearby stations in the network. Instead of overcrowding 

a new station in the network, the load was distributed rather evenly over multiple 

surrounding stations located in close vicinity of the banned ones. 

Aside the distribution of line transfers, the avoidance did not have notable effects on 

other route characteristics. The mean biking distance per route rose from 959 to 976 

meters and the average walking distance slightly shrank from 469 meters to 468 meters. 

The mean waiting time at public transportation stations also remained unchanged at 

around 3.8 minutes per route. The mean runtime required to calculate a route decreased 

from 4.7 seconds to 3.7 seconds when the avoidance was activated. Finally, we consider 

the travel time of the routes used for the creation of the heat maps. The mean travel time 

increased from 26.5 minutes without avoidance to 26.8 minutes with avoidance.  

3.3. Effect of avoidance on travel time 

In this section we use isochrones to visualize the effect of the avoidance on the travel 

time in Munich's traffic network. Isochrones are graphs that measure location 

reachability from a specific origin. They consist of curves with equal travel time (Figure 
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3). OpenTripPlanner provides a service for generating isochrones out of the box by 

sending a request to the system similar to how routes are generated. In Figure 3 

Sendlinger Tor was picked as the origin parameter for calculating the isochrones. 

The generation of an isochrone starts by calculating a shortest path tree. 

OpenTripPlanner then builds a regular grid of samples covering the whole shortest path 

tree area. Finally, the sample points are connected based on their travel time to form the 

curves of the isochrones. The isolines are computed with the help of the Delaunay 

Triangulation Algorithm [11]. 

 

Figure 3. Isochrone of the travel time. Left: Without avoidance of Sendlinger Tor and Hauptbahnhof. Right: 

With avoidance of Sendlinger Tor and Hauptbahnhof. 

 

Comparing the yellow and green areas in Figure 3 (left) and Figure 3 (right), shows 

that the avoidance of Hauptbahnhof and Sendlinger Tor did not have a noticeable effect 

on the area reachable within 20 minutes of the origin Sendlinger Tor. However, the 

curves that were affected the most are the ones from 30 to 40 minutes (blue and purple 

areas). When the crowded intersections are avoided, these areas became noticeably 

smaller. This reflects an increase in travel time for the destinations located within these 

areas. The last two curves that represent 50 and 60 minutes were also affected by the 

avoidance. In general, the areas reachable within 50 and 60 minutes are very similar in 

both isochrones, with a small decrease in reachability when avoidance is included.  

4. Discussion 

4.1. Result interpretation 

Deleting two critical stations in the transportation network results in an overall increase 

in travel time, particularly for medium long routes. However, this increase is to be 

expected since the deleted nodes represent important connections in the transit network. 

Also, for most routes, the increase was so small that it is neglectable. This is specifically 

true for the random test set presented in Figure 2, where the average travel time for 1000 

randomly generated routes only increased by 0.3 minutes. For longer routes, avoiding 

the central exchange points in Munich’s traffic network usually results in less direct 
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routes with more line changes and an increase in waiting time. Regarding the travel time, 

the increase is rather small, when compared to the potential crowd reduction benefits 

presented in Figure 2. In contrast to our own expectations, passengers were evenly 

distributed by the algorithm, thereby preventing neighboring stations from overcrowding. 

However, this method could still pose a risk, if those neighboring stations are much 

smaller than the avoided station and therefore could be overloaded even by a comparably 

small number of passengers. Assuming that this is not the case, the changes to the overall 

travel time, as well as the stable physical activity level (walk/bike distance) required for 

a route, would be small enough to compensate for the potential health benefits. This is 

specifically the case for high-risk groups with a higher need for a safe passage. 

4.2. Limitations 

The greatest threat lies in the theoretical conception of the motivational aspects.  Without 

real data from travelers, the true threshold for individuals to ignore a safe route can only 

be estimated. Also, a safety increase through the navigation around congested 

bottlenecks, can only be assumed but not measured yet. Hence, we do not know how 

effective such a measure could be unless it has been tested. Another bias lies in the 

selection of one single city to serve as a prove of concept. Even though the simulation 

produces promising results in Munich, there is currently no foundation on which the 

results could be compared to other cities. 

4.3. Outlook 

We suggest repeating the same evaluation with other cities in Germany, or even Europe, 

to understand how different transportation networks respond to the avoidance feature. 

With this measure, it could be determined whether the simulated results of this research 

are generalizable or whether they merely occurred due to the specific layout of Munich's 

traffic network. To reproduce these results in other cities, the public transport schedule 

data and position of traffic hot spots would be required. The format and accessibility of 

the public transport schedule data may vary between cities. During first investigations, 

we were able to obtain similar data sets for Nuremburg, Berlin and Duesseldorf. The 

second requirement for the extension of this work is to obtain the city specific knowledge 

about the most frequented nodes. For this knowledge a cooperation with local traffic 

experts would have to be established. 

The results presented in the previous sections leave room for a variety of subsequent 

research areas. As hinted before, our research so far focused on simulations with planned 

trips. Consequently, the next step could be a comparison of these results to the real travel 

behavior of Munich's citizens. Currently such a data set does not exist, as there is no 

technological solution yet that can reliably track the lines, change points and modes of 

transport a traveler used in a route. Given such a solution was implemented, it could be 

used to compare the schedule data to the real travel behavior of passengers who are given 

the chance to test the avoidance router. 

Finally, this router could not only be used to prevent infections with contagious 

diseases, but also to individualize routes to fit to the needs of physically impaired 

passengers. Firsts test with our algorithm have shown that it is possible to tailor the 

amount of physical activity through steps in a route to the settings of a passenger. Given 

that a passenger struggles with walking, it would be possible to generate routes that 

minimize the number of steps. Vice versa it is also possible to create routes that contain 
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a minimum number of steps for passengers who need or want to include more physical 

activity in their daily routines. 

5. Conclusion 

The presented approach simulated how safer routes that avoid overcrowded nodes in the 

traffic network of Munich could be generated, without causing the travel time to increase 

significantly. Even though it could not be determined how much safer such routes are, 

our simulations suggest that it could dissolve existing congestions without causing new 

ones at neighboring stations. This would allow passengers to maintain a safe distance to 

other passengers while they are in a public transport station. Determining when a node 

is at risk of being too congested was established through a collaboration with city specific 

transportation flow experts. In the here presented use case for the city of Munich, this 

knowledge was provided by the MVG who already monitor the public transportation 

network but required additional tools to steer the passenger flow and prevent congestions. 
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Abstract—This paper presents a method for generating Origin-
Destination Matrices (ODMs) for the city of Munich using traffic
count data from a Germany-wide study conducted by the German
Federal Ministry of Transport and Digital Infrastructure (MiD-
Study). The results show that the data provided by the MiD-
Study was correctly translated into an ODM, thereby providing
an interpretable demand format for traffic simulations. Due to
the consistent design of the MiD-Study, the approach is also
applied to Hamburg and is extensible to 18 further cities and
one city-state (Bremen) covered in the MiD-Study. The produced
ODMs for Munich and Hamburg are accessible for researchers
at: https://nextcloud.in.tum.de/index.php/s/gT48xDzT88YJGQK

Index Terms—traffic intensity, ODM, data analysis, data pro-
cessing, traffic data

I. INTRODUCTION

Structural modifications to traffic networks are costly.
Amongst financial costs, they include deteriorations in travel
time, pollution, noise, and other inconveniences to travelers
and citizens [1] [2]. On the other hand, structural modifications
to traffic networks a required to accommodate changes in
the demand on the network. City planners and politicians try
to negotiate between both the required network changes and
the costs linked to their implementation. They thereby try to
estimate a break-even point between the long-term benefits of
the network improvement and the costs for the affected part
of the public.

Sander summarizes that the “currently existing measures to
inform the public and collect potential disagreement are based
on classical media and require to lookup plans and project
descriptions during the opening hours of municipal offices
where those materials are at display [3].” They further describe
that “a promising approach to overcome these problems is to
involve inhabitants in public processes actively [3].”

This paper will contribute to the active involvement ap-
proach Sander describes by aiding traffic simulations with
origin-destination matrices (ODMs) for cities in Germany.
These ODMs are required to simulate how a traffic network
is currently used by travelers, thus providing the so-called
demand on the network. ODMs also help identify which

parties might be affected to which extent by the gains and
costs of a structural change.

II. FUNDAMENTALS

If an active involvement of stakeholders is a promising
approach, why is it not the go-to solution for city planning?
The reason becomes apparent once the effort for creating a
traffic simulation is considered. When traffic simulations are
compared to other options by their communication effective-
ness for the public and implementation effort for the city,
interactive solutions rank the highest in effort.

A. Data Communication Levels

For an easier understanding, we cluster approaches into
three ”Levels” of increasing implementation effort.

• Level 1 Solutions - Raw Data:
Properties: (Low effort, low effectiveness)
Visualization: (Lists of values, usually in tabular formats)

• Level 2 Solutions - Visualized Charts:
Properties: (Low effort, mediocre effectiveness)
Visualization: (Charts, figures, images, videos)

• Level 3 Solutions - Interactive Simulations:
Properties: (High effort, high effectiveness)
(“Games” showing the impact of a stakeholder’s decision
in the simulated environment)

Level 1 solutions are the easiest to generate, but also
the hardest to process for humans. They are comparable to
displaying the source code of a program to a user instead of
the graphical user interface (GUI). Only trained experts will
be able to understand this level of communication.

Level 2 solutions provide a decent level of abstraction
compared to level 1, but reduce the raw data to a selection of
snapshots. This could be compared to showing screenshots of a
program to a user. Researchers such as Rosling developed tools
like Gapminder to increase the frame rate of these snapshots
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to maximize their communicative power, bringing them to the
very edge of a Level 2 solution. [4].

But even if the frame rate is increased to a level where the
screenshots turn into a video, a lack of interactability for the
involved individual remains. Users might grasp the nature of
the presented data but can not directly interact with the raw
data. It may be compared to watching videos on how to fly a
plane. Even though a theoretical concept is communicated, an
interactive exercise would provide new insights that viewers
are not able to derive from a video. For similar reasons, pilots
train in flight simulators and as co-pilots before flying an actual
plane by themselves. For this purpose Level 3 solutions were
established. They offer an interactive simulation to the users,
allowing them to select and interact with the raw data, visually
showing them the effect of their actions. Referring back to
traffic networks, this would mean releasing an interactive
traffic network simulation to decision-makers.

Level 3 solutions are the most effective form of communi-
cation, but they are also significantly harder to build. Due to
the involved effort, most communicators seem to prefer level
2 solutions. Nonetheless, if a simulation is available, it is the
best tool for the active involvement of all stakeholders in the
decision process.

B. Traffic Networks

To support city planners and decision-makers in the process
of finding an optimal solution for structural changes to a
traffic network, this paper contributes to the implementation
of a realistic traffic simulation. While a visual simulation is
nothing more than a computer game, it is the word “realistic”
that carries complexity and can never be fully achieved. To
approach an acceptable level of realism in the simulation of
a city’s traffic network, four different building blocks are
required:

1) Traffic Network Data: Expressed through nodes,
edges, weights, and the modes of transport that operate
on each graph element. This builds the “supply” that is
provided by the network.

2) Travel Behavior Data: Expressed by the travelers’
origin, destination, departure times, and chosen modes
of transport. This results in the “demand” on the
network, generated by its users.

3) Route Planning: An algorithm to calculate routes that
are most likely taken by an individual, given an origin,
destination, and choice of transportation mode. The
algorithm effectively finds a balance between the supply
offered by the network and the individual demand of a
traveler.

4) Traffic Load Balancing: If multiple individuals travel a
network, the Route Planning is affected, as the demand
influences travel time (weights) on the edges of the
network. Point 3) expresses the optimal route in the

traffic network’s default state, Traffic Load Balancing
adapts 3) to the current state of the network based on
how the travelers occupy its capacities.

Traffic simulations are mathematical models that are used
to represent and analyze traffic patterns, behaviors, and their
impact on a given transportation system. Like any other opti-
mization model, traffic simulations are based on assumptions
and approximations, and they may not accurately reflect all of
the complex and dynamic factors that influence traffic in the
real world. As a result, traffic simulations are not perfect and
may not always provide accurate or reliable predictions.

However, traffic simulations can be useful tools for un-
derstanding and analyzing traffic patterns, but should not be
relied upon exclusively or treated as a substitute for real-
world data and observations. Instead, the goal of optimization
is to constantly reduce differences between real and modeled
behaviors. The accuracies of both 3) Route Planning and 4)
Traffic Load Balancing depend on the underlying accuracy
of the used data. While 1) Traffic Network Data is already
openly and quite accurately available through platforms like
OpenStreetMap. But 2) Travel Behavior Data is still scarce,
decentralized, low resolution, or not obtainable at all. One
reason for this discrepancy is the difference in privacy invasion
in the generation of the two datasets. 1) Traffic Network Data
is an objective fact, that may be generated without interference
with personal privacy. In comparison, 2) Travel Behavior Data
is highly subjective data that could potentially be used to
derive delicate information about a person’s private life.

The objective of this paper is to improve 2) Travel Behavior
Data by providing a system for generating data sets. These
data sets also called “origin-destination matrices” (ODMs),
are generated based on available research that is published
in a Level 1 or Level 2 format. These studies are then trans-
formed into a statistically representative ODM to build Level
3 formats. These ODMs consist of an origin, a destination, a
departure time, and a selected mode of transport. The approach
is demonstrated for the greater areas of Munich, Hamburg, and
Bonn. As the approach is kept generic, it is extensible to most
other cities in Germany. It is based on a Germany-wide study,
which is addressed in the Methods section.

III. RELATED WORK

Traffic networks unite different research areas. Graph the-
ory, game theory, and psychology are required to understand
and describe the network, the travelers, and path optimization
methods.

A. Game Theory: Supply

Probabilistic risk analysis and game theory, such as the
work of Hausken, have shown that “introducing the behavior
dimension into Probabilistic Risk Analysis (PRA) is impor-
tant because players in a dispersed system expend valuable
resources trying to increase system reliability interpreted as
a public good. Risk is affected by behavioral, technological,
and natural factors, controllable to different extents. Individual
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strategies at the component or unit level do not always match
collective desires at the system level” [5].

Transferred to traffic networks, the set of nodes, edges, and
weights that form the network are the grounds for a game’s
theoretical optimization. If Hausken’s analysis is correct, a
game’s theoretically optimal solution is nonetheless influenced
by the behavior of the individuals in the game. In traffic
networks, this means that traveler goals, such as their travel
path’s origin, destination, and departure time add subjectiv-
ity to the question of which route is optimal. Additionally,
the travelers’ personal preferences like the selected mode
of transport further influence a rationally optimal solution.
This leads to the observation that an optimal travel route is
influenced by objective factors (lowest travel time between
origin and destination), as well as subjective factors (individual
preferences).

The basis for any game theoretical optimization is 1) Traffic
Network Data, which is nowadays obtainable using publicly
available open-source solutions such as OpenStreetMap. Due
to this data’s high level of detail and obtainability, it is
comparably easy to find rationally optimal routes for any
provided set Origin-Destination Pairs (O-D-Pairs) 1.

B. Psychology: Demand

On the other hand, obtaining these sets of O-D-Pairs is
significantly harder. Battigalli describes how motivations for a
game’s theoretical action can be influenced by a multitude of
“belief-dependant motivations” [6]. They argue that traditional
game theory, which assumes that individuals make decisions
based solely on their own preferences and beliefs about
the payoffs they will receive, is incomplete. Instead, they
propose an extension of game theory that takes into account
belief-dependent motivations, which are motivations that are
influenced by beliefs about others’ motivations.

This concept of belief-dependent motivations can be applied
to the behavior of individuals in traffic networks and to
designing policies and interventions that take into account the
role of beliefs and motivations in transportation decisions.

C. ODMs: Measuring and Modeling Demand

Due to the complexity added by these psychological influ-
ence factors, researchers building data sets containing realistic
ODMs, resort to observation instead of intelligent design. An
approach for observation-based ODMs that has been used for
over 4 decades now is traffic counts. Erlander used traffic
counts in 1979 to build unique optimal solutions based on
the assumption that traffic counts are available for all edges
in the network.

To generally estimate an ODM based on traffic counts,
researchers first collect traffic count data at a number of
locations in the network. These data are used to estimate the
flow of traffic between pairs of locations in the network. To
then build an ODM for the entire network, approaches start
differing slightly. Yang used the priorly described information,

1www.openstreetmap.org

along with assumptions about the distribution of traffic within
the network, to estimate the ODM [7]. Erlander used traffic
counts in 1979 to build unique optimal solutions, based on the
assumption that traffic counts are available for all edges in the
network [8]. Van Zuylen (1980) and Fisk (1988) built mod-
els taking congestions in these networks into consideration.
Like Erlander, they based their models on traffic counts [9]
[10]. Spiess (1987) used traffic counts to create a maximum-
likelihood model. They then used the model to reproduce the
originally observed traffic count data and derive an optimal
path solution [11]. Kawakami also used traffic counts to
construct ODMs while taking choices for different modes of
transportation into account, but neglecting congestions [12].

Bera describes a shift in ODMs, now splitting them into
two types: Static and dynamic. Bera explains that “in static
methods, the traffic flows are considered as time-independent
and an average O-D demand is determined for long-time
transportation planning and design purpose. Whereas from
last two decades, different dynamic approaches are proposed
which are meant for short-term strategies like route guidance,
traffic control on freeways, intersections, etc” [13].

Today, differences are more distinct, as most traffic simu-
lations include departure times in their ODM making them
mostly dynamic ODMs. The differences are rather found in
the way 2) Travel Behavior Data is used to build an ODM,
and the choice of methods to perform 3) Route Planning and
4) Traffic Load Balancing.

Yadav (2020) designed a traffic estimation framework gener-
ated from open traffic cameras using deep learning technology.
As a basis for their traffic network, they relied on Open-
StreetMap while exposing their results through visualizations
back to OpenStreetMap [14].

The German Aerospace Center (DLR) spent the last 20
years developing an open-source traffic simulation package
called SUMO, thereby making it one of the longest research-
based simulation tools. Behrisch provided a status update in
2011, describing how it is a purely microscopic traffic simula-
tion, as each vehicle is uniquely represented in the system.
Like Yadav, they mostly use OpenStreetMap as a source
for their network’s underlying graph of nodes and edges.
The system’s traffic behavior models were evaluated against
footage of actual traffic cameras at certain intersections. At this
stage, they have also been working on the integration of other
modes of transport, such as walking, biking, and buses. In
2018 Lopez published an update on the SUMO system. They
describe how SUMO is still using OpenStreetMap to build
network graphs. To add further convenience to users of the
system, they are featuring an additional download and import
functionality for OpenStreetMap data. Also, SUMO tools such
as OD2TRIPS have been added to support the integration of
network demand data in the form of ODMs. Additionally,
SUMO further includes rail traffic and its intersections with
the road network in its calculations [15] [16].
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IV. METHODS

This paper introduces an approach for generating ODMs
from traffic count data for the city of Munich. The basis for
the ODMs is provided by a traffic data set collected in a
study conducted by the German Federal Ministry of Transport
and Digital Infrastructure (MiD-Study). The study consists
of 48.627 travel paths collected from 15.693 participants in
Munich and 41.404 travel paths from 13.660 participants from
the outskirts surrounding Munich. The study is reproduced
in regular time intervals for multiple cities in Germany [17]
[18]. As the studies produce data in a similar structure in each
iteration and for each city, the approach is generally extensible
to other cities in Germany.

The study generally provides statistics and insights about
travel behaviors, including mode of transport choice, travel
purpose, and travel distance. It does however not provide spe-
cific information about the origins or destinations of individual
trips.

In the following sections, both the approach and the under-
lying study data are introduced in greater detail.

A. Scope and Assumptions

Since the study does not provide an actual ODM, certain
assumptions had to be made to translate the data into an
ODM format. The goal is to translate the provided statistics
from the MiD report into a realistic set of Origin-Destination-
Pairs (O-D-Pairs), which are then agglomerated to an Origin-
Destination-Matrix (ODM) representing the demand on Mu-
nich’s traffic network.

The study was generated by conducting interviews with
citizens of the respective city, meaning that it does not in-
clude tourism or routes starting outside the city boundaries.
There was also no clear data source obtainable describing the
percentage of touristic trips in Munich. Hence, the influence
of tourism is neglected in the ODM.

The scope for this paper was also narrowed down to trips
originating in the city of Munich, excluding the greater Munich
municipality.

As no knowledge about actual origins or destinations was
provided in the study, the assumption was made that all trips
start and end at a residential address in the city of Munich,
thereby assuming that travelers eventually return to their
homes. This approach however neglects potential intermediate
travel destinations. Obeying this assumption, any taken trip
starts from a citizen’s home to a purpose-driven destination.
The consecutive trip will have the inverse direction, starting
from the purpose-driven destination, and ending at the citizen’s
home again. This means that, for example, a trip to work,
then to the supermarket, and finally, home is not considered.
Instead, the path from work must directly go to the person’s
home before a following trip to the supermarket can be
conducted.
Allowed trip structure:

• Home to Point of interest
• Point of interest to Home

This leads to the rule that a trip must always start at a
residential address unless it is a direct return trip.

B. Specifying the Population

Given this scope, the likelihood of a trip starting or ending
at a home location based on the distribution of homes in
Munich’s districts is estimated. As precise data about Munich’s
population spread across districts was obtainable, as displayed
in Figure 1, this proportion of citizens was utilized to attribute
a similar proportion of trips to each district2. If further data
with an even higher level of detail is found, it could be used
to determine the travel origin more precisely.

Fig. 1. Considered city districts in Munich, by total population and percentage
of the total population.

According to the MiD-Study, an estimated total of 4.8
million daily trips are taken in Munich every day. As men-
tioned in the previous subsection only the city of Munich was
considered, excluding the extended municipal public transport
area ”MVV” (an additional 4.6 million trips) that describes
travel behavior in the suburban districts surrounding Munich.
Instead, the scope was set to the city, using it as the statistical
trip population for our ODM. The system could however be
extended to also include these areas in the calculations.

The previous subsection mentioned how the ODM is built
on the assumption that every trip must start at a home address

2https://suedbayerische-immobilien.de/Einwohner-Muenchen-Stadtteile
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unless it is a direct return trip. This means that for every trip
away from someone’s home, there must be exactly one return
trip back home. This means that every trip in the resulting
ODM must either start directly at a residential address or
return to one, creating a 1:1 relationship. Following this
principle, the chosen population of 4.8 million trips, must
consist of 2.4 million trips starting at a residential address.
Following this logic, the other half of the trips must have one
of these residential addresses as its return destination. The
initial assumption also dictates that these two partitions can
not overlap one another.

Extending this thought leads to the conclusion that only
the origin-destination pairs for half the population have to be
determined, as the other half must be the inverted version of
these pairs.

C. Building Origins

Based on the previous section’s logic, the number of trips
in the population (4.8 million) is split in half (2.4 million).
Next, they are fractionally assigned to city districts in Munich,
based on the percentages shown in Figure 1. This splitting
process is visualized in Figure 2.

Fig. 2. Visualization of how trips (ways) are assigned to city districts

The MiD-Study offers additional information about travel
purposes. These purposes are split into work, business, educa-
tion, shopping, errands, leisure, and escorting, as displayed in
the lower half of Table 1. For this analysis step, we are mostly
interested in the ”Munich City” column, nested in the ”Trips
in MM per day” column, as it provides us with the number
of trips that are daily taken in Munich’s city and how many
of these trips are linked to the each row’s travel purpose.

To show how these travel purposes are taken into consider-
ation, we next focus on one district at a time. Figure 3 shows
how percentages are used to build a relationship between
travel purposes and the chosen mode of transport. To build
an example, we are initially interested in the route percentages
for public transportation, displayed in green on the left half of
the Figure.

We then take these distributions into consideration to cal-
culate a precise percentage of trips starting in a specific
district, with a specific purpose, taken by public transport. For
example, we could take the city district of Ramersdorf-Perlach
which makes up 7.39% of the households in Munich.

For Ramerstdorf-Perlach, we multiply the remaining 2.4
million trips of our population by the percentage of total
households in this district (7.39%). We then apply a travel

TABLE I
TABLE SHOWING TRAVEL PURPOSES (LOWER HALF, ROWS) AND TRIPS IN

MUNICH (LEFT THIRD, COLUMNS) [17].

Fig. 3. Visualization mapping travel purpose to used modes of transport for
the given purpose [17].

purpose, for example, “work”, which represents 18.75% of
trips, and multiply it with the previous values. Finally, we
multiply everything by the number of people who are using
public transport. For the travel purpose “work” this is 38%.
As a result, we end up with roughly 0.28% (= 13440 trips)
of all trips that have their origin in Ramersdorf-Perlach, the
purpose “work”, and the travel mode “public transport”. This
procedure is then repeated for the remaining travel purposes
and modes of transport. A visualization of this process for all
purposes is provided in Figure 4.

This rather simple formula allows us to estimate a trip’s
origin on the district level, for any city in which a MiD-Study
has been conducted. If information should become available
describing residence distributions at a higher resolution, it may
be included by replacing the districts. The same rule may
be applied to the other abstraction layers such as the travel
purpose or the mode of transportation.

As we currently do not have data available at higher res-
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Fig. 4. Explains how trips in city districts are fractionally broken down by
travel purpose and mode of transport.

olutions than the district level we randomly select residential
addresses that are located in the requested district. To find
candidate nodes we use a combination of tools working with
data from OpenStreetMap.

First, we select all residential addresses in the respective
district and save them in a randomly shuffled list. Next, we
draw addresses from this list and add them as origins to
the ODM. This process can be continued until the required
number of addresses has been distributed. For the district
of ”Ramersdorf-Perlach”, the travel purpose ”work”, and the
travel mode ”public transport” resulted in 13440 trips (0.28%
of 4.8 million).

While this method allows us to create realistic origins based
on the MiD-Study, it also introduces biases. One consequence,
for example, is the underrepresentation of multi-family homes
in comparison to single-family homes as both are only repre-
sented with a single address in the shuffled list but have large
differences in the number of inhabitants.

The same procedure is next carried out for the other modes
of transport, travel purposes, and city districts. We additionally
decided to work with just 10% of the actual number of trips
in Munich, shrinking down the final ODM to 480.000 trips
instead of 4.8 million. Based on this reduction we eventually
finish this step with roughly 240,000 trips with assigned
origins. Thereby, the desired 50% of trips for the ODM is
reached. Each of these 240,000 trips now contains a designated
origin, meta-information about its assigned travel purpose, and
the chosen mode of transportation that will be required in the
following destination estimation.

D. Adding Destinations

To complete the first 240,000 trips, only a destination
is required. As destinations are not provided in the MiD-
Study, they are approximated based on the information stored
in the uncompleted trips. To estimate a destination, first, a
travel distance is required for each trip. This distance is
approximated using the values provided in Figure 5.

Figure 5 matches a mode of transport to a distribution
of travel distances covered with it. Previously we already
matched travel purposes to a distribution of modes of transport
used to fulfill the given travel purpose. Therefore, the distance
distribution for modes of transportation also includes the travel
purpose for our set of 240,000 trips. As no exact percentages

Fig. 5. Depiction describing which mode of transport is used to which degree
for altering travel distances [17].

were provided in Figure 5, we developed a simple algorithm
to reverse engineer the percentages based on the area of the
circles. We also reduced the distance classes to “below 2km”,
“2 – 5km”, “5 – 10km”, “10 – 20km”, and “20 – 50km”.
Figure 6 displays this process visually for the transportation
mode “Public Transport”.

Fig. 6. Provides a visual example for the adapted distance classes.

Once every trip has been assigned a range group we search
for fitting destinations. This search is done on a shuffled data
set fitting to the travel purpose of the trip. For example, for
a trip with the travel purpose of “shopping” (referring to
groceries shopping), we collect all nodes in Munich marked
as supermarkets in the set for potential destinations. Next,
we randomly pick a supermarket from the list and calculate
whether the distance from the trip’s origin to this destination
falls into the travel distance interval assigned to the trip. If
it does, it is saved as the trip’s destination. If it does not,
a new trip is selected and put through the same process. To
measure the distance, we use an API provided by the OSRM
project, which calculates the driving distance between two
nodes3 [18]. Even though this solution is slightly inaccurate for
transportation modes aside from cars, we considered it to be a
better approximation than, for example, a distance calculation
as the crow flies using the haversine distance.

Once all trips have been assigned a destination, we generate
their inverses by swapping the origin and destination to build

3http://project-osrm.org
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the return trips representing the other half of the total dataset.

V. RESULTS

The goal of this paper was to produce an ODM that correctly
represents the findings of the MiD-Study. Figures 7, 8, and
9 compare the distributions described (target value) in the
MiD-Study to ODM produced with the method introduced in
the previous chapter (actual value). A closer look reveals that
the values for the ”actual value” always exceed those of the
”target value”. The reason for this is the way the translation
method was implemented. Since this process is supposed to
act completely random, to avoid introducing undesired biases,
trips with their specific properties are produced until they met
or exceeded the target value. Since this is an expensive com-
putational process, queries are batched to calculate multiple
routes at once. Thus, there is only a small probability that the
target value is hit precisely. In fact, it is much more likely that
it will be slightly exceeded, as can be observed in the figures.
In Figure 7, combining all errors results in an overall deviation
of 2.08% from the target values set by the MiD-Study.

Fig. 7. Matches the targeted percentage of trips with a travel purpose to the
actual number of trips with that travel purpose in the newly created ODM.

The relative distribution for transport modes was calculated
by multiplying the percentage of the individual travel purposes
(above) with the respective shares of the travel mode in modal
split statistics below. For example, for Public Transport, the
calculation looks like this: 23.92% = (18.75% ∗ 0.38%) +
(8.33%∗0.26%)+(6.25%∗31%)+(16.67%∗13%)+(12.5%∗
24%)+ (29.17% ∗ 23%)+ (6.25% ∗ 13%) Figure 8 shows the
resulting percentages for all modes of transport.

Fig. 8. Matches the targeted percentage of trips with a mode of transport to
the actual number of trips with that mode of transport in the newly created
ODM.

Figure 9 visualizes the deviation of trips in a defined travel
distance cluster. Again the target value is slightly exceeded
but by a neglectable amount.

Fig. 9. Matches the targeted percentage of trips within the travel distance
cluster to the actual number of trips within that travel distance cluster in the
newly created ODM.

Figures 7 to 9 show that the insights of the MiD-Study
were correctly transformed into an ODM. Next, we validate
this ODM against another ODM. To do so, we used an existing
data set obtainable through TomTom move, to extract an ODM
recorded traffic data in Munich4. TomTom itself is a company
that specialized in building navigation systems for cars. So, the
GPS data used to generate the TomTom ODM was collected
from cars using the TomTom navigation system5. To now
generate a comparable dataset, we selected all trips that were
performed in the same geographical boundaries as in our data
set. The selected boundary areas are presented in Figure 10 and
match precisely the boundaries used in our approach. Next, a
data sample was created as a basis for the TomTom ODM by
agglomerating all trips in one week of January 2021 resulting
in 1,018,950 trips. The reason for this setting is to have a
similar basis to the data provided by the MiD-Study which
also based its statistics on a full week that was then combined
to express travel behaviors on an average travel day.

To compare both data sets, we generated a list of possible
O-D combinations between the 25 different city districts,
resulting in 625 possible combinations. Even though a usual
handshake problem with 25 participants would result in 300
possibilities, in an O-D scenario two additional alterations are
to be considered. First the ”direction of the handshake” matters
meaning that switching the origin and the destination of an
existing possible connection results in a new O-D-Pair, adding
300 more O-D-Pairs to the existing 300. Second, reflexive O-
D-Pairs are also relevant meaning that a traveler’s origin and
destination may lie in the same district (e.g from ”Laim” to
”Laim”). To include these options, 25 additional O-D-Pairs
are added, resulting in 625 possible district O-D-Pairs. We
next use a reverse geocoding API, to assign each trip stored
in both data sets to one of these 625 O-D-Pairs. The result is
a side-by-side comparison of absolute trips of our data set to
the TomTom data set as displayed in Figure 11.

As the sum of the total trips differs between both data sets,
we converted the absolute trip values to relative percentages.

4https://move.tomtom.com
5https://support.move.tomtom.com/od-analysis-introduction
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Fig. 10. Snapshot showing the selected regions for both the TomTom ODM
and our ODM based on the Munich MiD-Study.

Fig. 11. Snapshot of the 625 entry long list of possible O-D-Pairs, with Trips
(TomTom), Trips Simulation (MiD based), and the Deviation between these
two columns.

The column ”Trips” in Figure 11 shows the percentage of trips
for this O-D connection in the TomTom data set. The values
in the column are generated by dividing the number of trips
for that connection by the total number of trips in the TomTom
data set. The column ”Trip Simulation” refers to our data set
that was generated from the MiD-Study data. The ”Deviation”
column shows the deviation between the ”Trips” and ”Trips
Simulation” columns for each row. A value of 1 means that no
deviation was observed. A value larger than one means that
more trips were recorded in our data set for the given O-D-Pair
than in the TomTom data set. Negative deviation values mean
that fewer trips were observed by comparison. For example,
a positive deviation of 1.3 means that the smaller value (for
positive values the ”trips” value) deviates by a multiplicator of
1.3 from the larger value. Negative values are used to indicate a
change in the direction of the deviation, but function similarly
(here: ”Trips Simulation” multiplied by ”Deviation” results in
”Trips”). The resulting spread for deviations is visualized in
Figure 12.

For Figure 11 and Figure 12, all modes of transport were
used from our MiD-based data set, while the TomTom data

Fig. 12. Boxplot for the deviations between TomTom Trips and Simulation
trips for all modes of transport in the newly created ODM.

set only provides car data. To also show how the two data
sets compare solely on car data, an additional comparison was
created in which all modes of transport except for cars were
excluded. The resulting deviations are shown in Figure 13.

Fig. 13. Boxplot for the deviations between TomTom Trips and Simulation
Trips (MiD based) for cars in the newly created ODM.

A. Interpretations

The median value for the deviation shown in Figure 12
(TomTom car set’s deviation to the MiD set’s with all modes
of transport included) is roughly 1.165, meaning that a median
deviation of 16.5% was observed. However, when comparing
the TomTom car set’s deviation to the MiD car set’s deviation
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a slightly higher value of 23.2% is observed. This observation
is surprising, as we expected to see a reduction in the deviation
when noise modes of transport are excluded. We also measured
an increase in the variance from 13.37 to 16.63 (std: 3.66 and
4.08) indicating an increase in volatility by the exclusion of
other modes of transport. Our best explanation for this increase
in variance and median deviation is that generally, a reduction
in sample size can lead to greater variances. This, however, is
rather speculative. The variance also shows that both data sets
are quite different.

To improve our understanding of the differences between the
TomTom based and the MiD-based data sets, we used precisely
the same methodology to produce two additional data sets
for the city of Hamburg. The first is TomTom based and the
second is MiD-based. This was done by consulting an external
company (vay.io) that had priorly analyzed TomTom data in
Hamburg. They explained that TomTom clustering data origins
and destinations based on hexagonal grids before publishing
it, as shown in Figure 14.

Fig. 14. Map of Hamburg showing the raw data provided by the TomTom
data set. Lines are O-D-Pairs. The line thickness represents the number of
underlying trips. Origins are in blue, and destinations are in green. Trips run
from hexagon to hexagon.

Each line in Figure 14 stands for an O-D connection from
one hexagon to another. The blue end of the line represents
the origin and the green end the destination. The thickness
visually indicates the number of trips that are attributed to
each connection. So, while TomTom expresses raw data as
trips from hexagons to hexagons, we instead provide individual
trips from building address to building address. The result of
our approach for the city of Hamburg is shown in Figure 15.

As these approaches are not comparable due to the different
resolutions (hexagons vs address to address), we next clustered
the raw data from our MiD ODM into similar hexagons, used
by the TomTom data set. The results are shown in Figure 16.

When comparing Figure 14 to Figure 16, two things can
be observed. First, the TomTom data seems to be more

Fig. 15. Map of Hamburg showing the raw data provided by the MiD-
based data set. Lines are O-D-Pairs. The line thickness represents the number
of underlying trips. Origins are in blue, and destinations are in green. Trips
run from address to address.

Fig. 16. Map of Hamburg showing the MiD-based data transformed into a
hexagonal representation. Lines are O-D-Pairs. The line thickness represents
the number of underlying trips. Origins are in blue, and destinations are in
green. Trips run from address to address.

biased towards highways. Second, the MiD data set seems to
be more evenly distributed. In addition to that, it becomes
apparent that clustering hexagons into city districts might
lead to serious biases when compared to an approach that
is clustering addresses to city districts. The reason is that by
pre-clustering data into hexagons and then into districts, the
number of trips in a district could be over- or underrepresented
due to the prior reduction in resolution. Vay.io came to the
same conclusion as us, recommending rather make use of the
MiD-based ODM than the TomTom ODM, as it seemed to
be more detailed and less biased. We, therefore, conclude that
the comparison to TomTom data should be treated carefully
as both the population and data format differ.

185

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on December 23,2023 at 11:27:51 UTC from IEEE Xplore.  Restrictions apply. 



VI. CONCLUSION

In conclusion, this paper presents an approach for generating
origin-destination matrices (ODMs) from traffic count data for
the city of Munich. The approach is based on data from a study
conducted by the German Federal Ministry of Transport and
Digital Infrastructure, which includes data on travel behavior
in Munich and the surrounding suburbs (MiD-Study). The
paper explains how the data from this study was used to create
realistic O-D-Pairs and how these pairs were then aggregated
to create an ODM representing the demand on Munich’s
traffic network. The approach is limited to trips originating
in the city of Munich and excludes tourism, as well as trips
starting outside the city boundaries. The paper also discusses
how the likelihood of a trip starting or ending at a home
location was estimated based on the distribution of homes in
different districts of Munich, and how the ODM was generated
based on this information. While the approach was developed
specifically for the city of Munich, it is generally extensible
to other cities in Germany.

The results show that the insights generated by the MiD-
Study were successfully and correctly translated into an ODM,
thereby making the data interpretable for traffic simulations
using the Sumopy simulation suite for SUMO as demonstrated
by Schweizer [20]. A comparison to an external ODM ob-
tained from TomTom showed significant deviations between
both datasets. The differences are attributed to different pop-
ulations and vastly altering collection methods. In addition,
a third party (vay.io) was asked to evaluate two new data
sets for the city of Hamburg. To create both data sets the
same methodology was used. Vay.io conclude that the data
set produced by this paper’s approach seems to lead to more
reliable results. They explain that compared to the ODMs
generated from the TomTom data, the results are more detailed
and less biased towards highways.
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Abstract—This paper presents an extension to existing GPS-
based approaches for tracking modes of transportation in multi-
modal trips. The extension focuses on analyzing stops and
mapping them to surrounding public transport stations in order
to improve the accuracy of the mode of transport detection. The
proposed method is evaluated using data from the city of Munich,
resulting in a 17% improvement of the F1-Score, from 73%
to 90%. It is applicable to any GPS-based mode of transport
detection system to potentially improve their accuracy.

Index Terms—GPS, Labeling, Data Processing

I. INTRODUCTION

Balancing a group and its individual benefits is a delicate
act. Things that are best for the group may hurt some indi-
viduals, and vice versa. One scenario to which this applies is
public and private transport in urban areas, expressed through
traffic jams and overcrowded public transport vehicles. John
Nash’s ”Equilibrium points in n-person games” offers a game
theoretical description, explaining the strategic interactions
between individuals and groups [1]. In the context of public
transportation, this branch of game theory is used to analyze
the demand on traffic networks and adapt the network’s
infrastructure to the demand. These theories need to be based
on and validated against the real travel behavior of agents
in the system to prove their correctness. This agent behavior
is often expressed in the form of trips from an origin to a
destination using several modes of transport. To analyze such
multi-modal trips, methods for tracking and observing them
in the real world are required.

One method utilizes wearable devices. For this purpose
researchers developed techniques to passively track individ-
uals’ travel behavior using the sensors embedded in these
devices. Even though travelers could be asked to manually note
and share their travel behavior, they are unlikely to perform
this task reliably. For this reason, automatic solutions were
developed that identify used modes of transport from device-
specific data.

Some of the first publications in this field reach back over
two decades. Wolf, for example, looked into inferring modes of
transport from data traces in 2000, followed by others such as
Chung in 2005 and Tsui in 2006, all focusing on GPS traces
[2] [3] [4]. However, the field gained most of its attraction
with the introduction of smartphones, as these offer a more

user-convenient way to track movement behaviors through
embedded sensors. Since then, different smartphone sensors
have been tested to predict modes of transport with mixed
results, due to differences in the used data sets, used sensors,
and used detection algorithms. One of the most promising
approaches is achieved through sensor fusion as different
sensors have different strengths and weaknesses depending
on the circumstances of the traveler [5] [6]. Accelerometers,
for example, are specifically potent for tracking physically
active modes of transport like walking or riding a bike, but
lack accuracy when noise is generated through the user (e.g
holding the phone instead of placing it in a pocket). GPS on
the other hand is not susceptible to how the traveler handles
the phone but requires an unobstructed satellite connection.
This connection is easily hindered by tall buildings, trees, or
tunnels, causing gaps in the collected data [7] [8]. While most
sensors are already well-researched, GPS data offers additional
perks. In contrast to accelerometers or gyroscopes, GPS values
are represented on a latitude and longitude grid with a time
stamp, making this data comparable to context data stored
on the latitude and longitude grid. From this connection, a
constantly growing amount of information may be derived
depending on the amount of available context. Nowadays,
websites like google maps or OpenStreetMap constantly add
new context to the latitude and longitude network giving
researchers the opportunity to add additional context to GPS
data (e.g. nearby stores, houses, stations, schools, ...).

Stops in trips are both seen as a nuisance and a carrier
of information. On the one hand, they contain no movement
behavior and hence no mode of transport-specific movement is
detectable. As no movement is recorded, all sensors produce
the same data despite the currently used mode of transport.
On the other hand, stops are also an indication of forced
interaction with the environment surrounding the traveler at
the location and time of the stop. For this reason, the exact
location and time of a stop are of severe importance when
compared to surrounding environmental factors that might be
able to explain the stop’s occurrence.

This paper introduces an approach that utilizes stops as a
source of information, by connecting them to available context
to further improve approaches using GPS data to detect modes
of transport. This is done by mapping stops in GPS traces to
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nearby public transport stations. They are thereby used as an
indicator for the used mode of transport. The hypothesis is that
the more reliably a GPS trace stopped close to a certain type
of public transportation station, the more likely it becomes
that the GPS trace was generated by that type of transport. As
most trips use a combination of modes of transport, the goal
is to detect all modes of transport used in a multi-modal trip
and to assign them to the correct segment of the GPS trace. In
the following sections, an approach for the integration of stops
and stations into a mode of transportation prediction algorithm
is introduced. It builds upon the approach of Avezum to show
how the inclusion of stations as context for stops improves the
prediction quality [10]. Similar to Avezum, the approach and
data collection conducted in this paper will also focus on the
city of Munich.

II. COMMON PROCEDURES FOR GPS-BASED MODE OF
TRANSPORT PREDICTION

Before engaging into the benefit of a stop to station map-
ping, some of the existing GPS-based processes for predicting
modes of transport are presented.

A. From Uni-Modal to Multi-Modal

Compared to a trip with more than one mode of transport,
inferring the used mode of transport from a uni-modal trip is
relatively simple. Multi-modal trips can be seen as a sequence
of uni-modal trips. But, as the information about a switch from
one mode of transport to the next is not provided, an additional
dimension for labeling errors is added. This means that the
underlying sequence of uni-modal trips inside the multi-modal
trip (=: segments) no longer has clear start and end points for
each mode of transport. To solve this problem, Zheng proposes
a solution that first focuses on identifying the change points
from one mode of transport to another before predicting the
modes of transport themselves [9]. The reasoning is, that these
change points can be used to break up a multi-modal trip into
a sequence of uni-modal trips and thereby compressing the
complexity back to the uni-modal level.

B. Splitting Multi-Modal Trips into Fixed Segments

To describe multi-modal trips, the term segment is com-
monly used. A segment is part of a multi-modal trip that was
performed using only one mode of transport. Additionally,
the term ”real segment” will be used to describe the actual
segment as it was labeled by the traveler, while the term
”suggested segment” describes the segment that was calculated
by the researchers’ algorithms.

To identify the change points in a trip, Bolbol uses a fixed
data window of three data points to iterate over the trip data,
with a collection frequency of one data point per minute, which
leads to a data window duration of roughly three minutes
[12]. The window size may vary, as Bolbol uses GPS sensors
to generate data points, which require a satellite connection
to produce a data point [12]. If no GPS connection can be
established, the window size increases until the connection
is re-established and a new data point is recorded. Using

this method, Bolbol then cut the trip into a list of 3-minute
windows. They do not further specify how the last window is
handled in the case that only one data point is left in the trip
[12].

Each window is then directly treated as a ”suggested seg-
ment” and additional features (e.g. average speed) are created
for each suggested segment. As a suggested segment is sup-
posed to contain just one mode of transport, it can be treated
like a uni-modal trip. As described in the previous section,
there are several machine learning models for interpreting
uni-modal trips. Bolbol chooses a smart vectoring machine
to predict the modes of transport to label each ”suggested
segment” [12]. The procedure is repeated until all modes of
transport in all suggested segments have been predicted.

A potential weakness of this method may lie in its in-
flexibility. From a statistical standpoint, each of the real
segments in a trip is a population from which samples are
drawn. To maximize a sample’s significance, an ideal sample
would exactly cover the considered population. On a trip level
that means having a matching start and end point for the
real segment and the suggested segment. Having a perfectly
sized suggested segment allows the algorithm to consider the
maximal number of data points for predicting the used mode
of transport. It also prevents the overlap of two different real
segments which could result in misleading data.

Assuming that a real segment of 120 minutes was observed,
and the ”suggested segment” drawn from this population was
limited to 3 minutes, it would slice the real segment into 40
”suggested segments”. Of these 40 segments, each has a higher
chance of being misclassified as fewer data are contained
increasing the impact of outliers.

If instead one window of 120 minutes was created, perfectly
matching the ”real segment”, the data amount would increase
simultaneously decreasing the likelihood of misclassification.
On the other hand, if a ”real segment” of 1 minute is observed
using a ”suggested segment” of 3 minutes, two-thirds of the
”suggested segment” now covers data from other modes of
transport. These observations can be formalized:

1) The smaller the size of a fixed window, the more likely
it is to under-represent the ”real segment” size

2) The larger the size of a fixed window, the more likely
it is to exceed the ”real segment” size

This leads to the conclusion that algorithms using a fixed
suggested segment size only perform well on data in which the
real segment size fits well to the fixed suggested segment size.
Therefore, approaches using fixed data windows are likely to
overfit if their window size is tailored to the training data and
likely to underfit if the window size is not adapted.

C. Dynamic Suggested Segments

As fixed data windows are likely to overfit or underfit,
Zheng and Avezum offer a different solution to this problem,
based on the high reliability at which walk segments can be
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predicted with any sensor or model [9] [10]. Both Zheng and
Avezum use a fixed data window to iterate over trip data,
but instead of differentiating between all modes of transport,
they first perform a classification between the classes walk and
non-walk in every data window. This means, that they do not
automatically generate a ”suggested segment” for every data
window [9] [10]. Instead, they add this additional analysis step,
that allows them to dynamically adapt a suggested segment’s
size to more accurately match the ”real segment” size.

Once a trip (GPS trace) has been divided into data
windows with fixed sizes, both approaches start iterating
chronologically over these data windows. In the process, each
data window is either labeled as walk or non-walk. Once
a change from walk to non-walk or vice versa is detected,
a change point in modes of transport has supposedly been
detected. When a change is detected, the current data window
marks the start of a new ”suggested segment”, while the
previous ”suggested segment” is closed. Below an example
of this process is displayed:

• Walk (w) and non-walk (n-w) labeling:
( n-w / w / w / n-w / n-w / n-w / w )

• Resulting suggested segments:
( 1st / 2nd / 2nd / 3rd / 3rd / 3rd / 4th )

This approach makes use of a correlation identified by
Zheng, in which they describe that most changes from one
mode of transport to another are separated by a walk segment
[9]. Fortunately for this approach, walking is a mode of
transport that behaves quite differently than other modes of
transport, making it reliably detectable with comparably low
effort. This is due to the low travel speed when walking and
the lack of spikes in maximum speeds.

Zheng and Avezum test different window sizes ranging from
30 to 120 seconds [9] [10]. While Zheng got the best results
for a window size of 120 seconds, Avezum peaked at a window
size of 60 seconds [9] [10]. This can partially be explained by
differences in the data sets, as they were recorded in different
countries and with different devices. The advantage of this
approach is, that it dynamically matches a suggested segment
to the real segment sizes, and therefore has the potential to
choose the optimal sample for each real segment.

The risk of this method is that it also has the potential to
cause large overlaps if two modes of transport aren’t separated
by a walk segment, or if walk segments aren’t detected reliably
enough. On the other hand, it can also lead to an over-
segmentation, if the sensitivity for predicting walks is too
high. This can occur in slow traffic situations with many stops,
which are typical for traffic jams or densely populated areas
with more traffic control measures (e.g. traffic lights).

D. Predicting Modes of Transport

After completing the segmentation process, the multi-modal
trip has been broken down into a set of uni-modal trips, the
”suggested segments”. For predicting the mode of transport,

Bolbol then use Support Vector Machines (SVMs), while
Avezum chooses Decision Trees. Zheng compares four dif-
ferent machine learning models including both SVMs and
Decision Trees [9] [10] [12]. The resulting accuracies of
Zheng’s comparison are displayed in Figure 1 [9].

Fig. 1. Comparison of different machine learning models for the prediction
of modes of transport in multi-modal trips [9].

According to Zheng, Decision Trees performed best on their
data set, combined with their selected segmentation method.
As the observed differences were small, they are to be treated
with care [9].

E. Likelihood Analysis

Eventually, all segmentation methods result in a list of
suggested segments regardless of the priorly applied meth-
ods. Additionally, some approaches also perform a secondary
analysis based on the conditional likelihood of one suggested
segment following the other. In this context, Bolbol, and Zheng
analyze whether the sequence of suggested segments is likely
to be correct. [9] [12].

III. STOP ANALYSIS

The process of mapping network context to collected GPS
traces has already been performed in previous publications.
Stenneth was among the first in 2011 to consider public
transport as a source of input to improve the mode of transport
detection accuracy. They used live location data of buses,
trams, and trains in combination with random forests to
improve the accuracy of their algorithm from 76% to 93%
[14]. This paper will consider static data sources instead, as
they are more commonly available than live position data. In
the city of Munich for example, live public transport location
data is only provided for the S-Bahn, while locations of
subways, busses, and trams aren’t published.

A. Creating Basic Features

All GPS-based approaches introduced in the previous
section agree on four basic features for inferring modes of
transport in any kind of trip. Therefore, in addition to the
latitude, longitude, and timestamp, the following features are
added to each GPS location in the trips’ GPS log:

1) Durations - list of durations (seconds) between GPS
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locations

2) Distances - list of haversine distances (meters) between
GPS locations

3) Speeds - list of speeds (km/h) between two GPS
locations

4) Accelerations - list of speed changes (m/s2) between
three GPS locations.

In preparation for the stop analysis, a fifth and new
feature is created:

5) isStop - is set to True if the speed of a GPS log
element is equal to or smaller than 2 km/h

This new feature indicates if a GPS location is considered
to be a stop or not. If the speed value assigned to a GPS
location is equal to or smaller than 2 km/h, it is labeled as
a stop.

B. Creating Data Window and Suggested Segment Features

Similar to the approaches of Zheng and Avezum dynamic
suggested segments are created, by dynamically merging
60-second data windows based on a walk / non-walk
discrimination [9] [10]. Sticking to the approach of Avezum,
the following features are created to describe a 60-second
data window [10]:

1) TotalDuration - Sum of the Durations

2) TotalDistance - Sum of the Distances

3) MedianSpeed - Median of the Speeds

4) AvgAcceleration - Mean of the Accelerations

5) SpeedPercentile85 - 85th quantile of the Speeds

6) SpeedPercentile99 - 99th quantile of the Speeds

7) StartLat - Latitude of first element in data window

8) StartLong - Longitude of first element in data window

9) EndLat - Latitude of last element in data window

10) EndLong - Longitude of last element in data window

When data windows are eventually merged by the walk / non-
walk discrimination method these values are agglomerated
and used in a similar fashion to describe the resulting
suggested segment.

As Avezum reports, the maximum value of a speed carries
outliers so the 99th and 85th percentile are used instead [10].

These outliers tend to occur due to connection issues caused by
line-of-sight obstruction. When such obstructions occur, GPS
signals are displaced in position, causing unnatural jumps in
calculated distances and speeds. The impact of such events
is lessened by considering the 99th percentile instead of the
maximum value. This effect is even stronger for the 85th
percentile, which is why it was added as an additional backup.

C. Creating new Stop Features for Suggested Segments

In addition to features used by Avezum, the following
five features are newly introduced in preparation for the stop
analysis:

11) NumberOfStops - Summed number of all stops in
the data window

12) StopDuration - Summed duration of all stops in
the data window

13) NumberOfbusStops - Summed number of stops
that were labeled as bus stops

14) NumberOftramStops - Summed number of stops
that were labeled as tram stops

15) NumberOftrainStops - Summed number of stops
that were labeled as train stops

The NumberOfStops feature is determined by iterating
over the part of the GPS trace that was assigned to each data
window and counting the number of times that the isStop
flag was set to True. The StopDuration feature is calculated
by summing up the values stored in the Durations variable,
only considering the values that are flagged as a stop. The
creation of features 13), 14), and 15) is achieved by mapping
the GPS location that is flagged as a stop, to nearby public
transport stations of the types bus, tram, and train. As this
mapping of stops to stations is a complicated process, it is
thoroughly explained in the following section.

D. Mapping Stops to Stations

Stations are timeless objects. They either exist or do
not. Therefore, they do not have a GPS location but rather
a geolocation. Each station also has a name and a type.
Possible station types are train, tram or bus. New stations are
created by accessing the open-source traffic network database
provided by OpenStreetMap1, using the Overpass-API2. To
get all stations, first, a boundary box is defined. The boundary
box is a square that is determined by selecting a latitude
and longitude for the southwest corner and the northeast
corner. For the Greater Munich area, the southwest corner
was placed at a latitude of 47.867 and a longitude of 11.224.
The northeast corner was placed at a latitude of 48.356 and
a longitude of 11.963. The given boundary box is next used

1www.OpenStreetMap.org
2www.overpass-api.de
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to request specific node points that lie inside the box. The
following nodes are requested:

a) [”railway”=”tram stop” ] - Gets all tram stations
from the railway network

b) [”train”=”yes” ] - Gets all train stations from the
railway network

c) [”subway”=”yes” ] - Gets all subway stations from
the subway net- work

d) [”highway”=”bus stop” ] - Gets all bus stations
from the road network

All stations received from a) and d) are directly assigned the
types of tram and bus. The stations received in requests b)
and c) are both assigned the type train. Each value already
contains latitude, longitude, and a station name. Duplicate
values of type train are reduced to one value. For the defined
boundary box, this results in a list containing 6966 stations
and the following distribution:

• Tram: 175
• Train: 769
• Bus: 6022

This list is produced once and can be updated regularly if
needed. The update frequency can be set independently, but it
is recommended to update the list at most once a week, as the
list of stations does not change that regularly.

E. Threshold Determination

Previous sections explain how stops are identified in a data
window. Given a stop’s latitude and longitude, the next task is
to map the stop to nearby stations. The goal of the mapping
process is to produce a list of stations that are close to a
given stop. Several distance thresholds were first tested to find
an optimal discrimination value. The best-performing distance
thresholds were 60 meters for buses as well as trains and
70 meters for trams. The difference for trams is likely to be
caused by dataset specifics as we were not able to come up
with a logical explanation for it. Performance differences for
distances between 50 and 70 meters were generally similar,
with a slight outperformance for the selected values. We,
therefore, recommend considering distance values for stop
station mapping that lie between 50 and 70 meters. However,
these values might differ for other cities.

F. Efficient Mapping

Previously, a list of stations was created that contains nearly
7000 entries. Different approaches were tested to efficiently
filter the stations’ list for all stations that are close to a given
stop. As the operation for calculating the haversine distance
for every entry in the stations’ list is not only highly inefficient
but also not scalable, a solution was required that reduces the
usage of this function by efficiently reducing the number of
stations a stop is compared to. To solve this issue, we derived

an approach that uses the special traits of the decimal degrees
of latitudes and longitudes. The grid that is placed over the
earth’s globe has cells of different sizes depending on the
number of decimal degrees for the latitude and longitude. All
stations and all GPS locations in the CEC are created with
5 decimal places, leading to a cell side length of up to 1.1
meters. The grid size varies depending on the latitude position.
The closer to the equator, the larger the side length of the
grid elements. At a latitude of 0°, the side length of a cell is
1.1 meters. The closer the cell is to the poles, the smaller its
side length will become. For this thesis, a minimal side length
of 0.43 meters is assumed, which is reached at a latitude of
67°. Our algorithm uses this property to generate a rounded-
up version of the stations’ list and the stops with 3 decimal
places. This means that a cell on the rounded precision level
has a side length of 111 to 43 meters. In Munich, where all of
our tests were conducted, the side length is roughly 77 meters.
With this method, values that have slightly different values are
rounded to the same value in the rounded value.

Fig. 2. Cell sizes for a varying number of latitude and longitude decimal
places.

This approach makes it possible to simply compare the
rounded latitude and longitude of a stop to the rounded latitude
and longitude of a station without having to calculate the
haversine distance between them. All the indices of the stations
found with this method are then used to add the corresponding
station from the un-rounded station to a list of candidates. The
haversine distance is then calculated for each station in the
candidate list. Depending on the station’s type a threshold is
chosen to determine, if it is close enough to change the stop’s
”is(tram/bus/train)Stop” feature to True. Figure 2 visualizes
the stop-to-station mapping process.
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Figure 2 does not only visualize the rounding and mapping
process but also unveils a problem with the current approach.
In the visualized example, the stop is correctly mapped to
station (1) and drops station (2) as it exceeded the threshold.
But it did not consider station (3) even though it is actually
closer to the stop than station (1). The consequence of the
rounding process is a fixed boundary. If a stop and a station
are in reality close to each other but were assigned to different
cells, then this relation is missed.

To solve this problem, all rounded cells that directly sur-
round the stop’s rounded cell are also considered. This is
done by adding and subtracting 0.0005 to the 4th decimal of
the stop’s latitude and longitude before rounding it. With this
method 3 to 8 more rounded cells are considered, depending
on the stop’s position in its rounded cell. Figure 4 shows how
this influences the mapping process.

Fig. 3. Cell selection with adapted rounding.

As the stop in Figure 3 is located very close to the top and
left rounding boundaries, it is easily pushed into the center-
left cell by subtracting 0.0005 from its longitude and adding
nothing to its latitude. The top-left tile is reached by again
subtracting 0.0005 from the longitude and adding 0.0005 to the
latitude before rounding them. The center-top cell is reached
by adding nothing to the longitude, and 0.0005 to the latitude
before rounding. This procedure is repeated for all of the 9
possible combinations. Only 4 cells were added in Figure 3, as
the stop’s location inside its rounded cell in this example was
too far away from the right and bottom boundaries. Instead
of selecting all 9 cells by default, the addition and subtraction
ensure to only consider rounded cells that are likely to be
inside the distance threshold. Including this method thereby
lowers the number of candidates that are on average considered

to be close to a stop, while considering all relevant candidates.
This then lessens the number of candidates for which the
haversine distance needs to be calculated, thereby enhancing
the performance of the algorithm and making it scalable to
any number of stations in the stations’ list.

Every station candidate that also passed the distance test
passes its type to the stop. Corresponding to the type the stop’s
isbusStop, istrainStop or istramStop variable is set to True.
This means that the number of stops of the same type nearby
does not further influence the result. On the other hand, a stop
can be of just one, two, or all of the public transport types.
At the same time, a stop can also be of no type.

IV. MERGING DATA WINDOWS INTO SEGMENTS

This section shows how adjacent data windows are merged
into segments. The approach of Avezum labels data windows
as a walk or non-walk [10]. This theory is based on insights of
both Bolbol and Zheng who observed that transitions from one
mode of transport to another are nearly always separated by
a walk segment [11] [12]. By detecting these walk segments,
the changing point from one mode of transport to another can
be identified reliably. According to both Bolbol and Zheng,
in GPS-based approaches, walk segments are best detected by
looking at the average speed [11] [12]. These results were also
reproduced by Avezum [10]. On the other hand, Avezum had
issues with over-segmenting their trips due to stops in the data
[10]. As any data window with an average speed below 8.8
km/h is predicted to be a walk data window, stops caused
the average speed to regularly drop below that threshold. Vice
versa, every data window with an average speed above 8.8
km/h is labeled as a non-walk segment. All data windows
are iteratively predicted. As long as the predicted class doesn’t
change, the data windows are added to the same segment.
When a change occurs, the current suggested segment is closed
and a new suggested segment starts. As this entire process
simply distinguishes the two suggested segment types by a
speed threshold of 8.8 km/h, the consequence can be the
initialization of a new suggested segment whenever a long
enough stop occurs that lowers the average speed enough to
fall below the threshold.

For this reason, we implemented a new solution that builds
up on this concept but adds stop detection to reduce this
over-segmentation. The stop detection uses the new data
window feature 12) ”StopDuration”. The StopDuration saves
the summed duration of all GPS locations in a given data
window that is flagged as stops.

If that duration exceeds one-third of feature 1) ”TotalDu-
ration” of the data window, then the window is considered
to be a ”stop window”. As previously described stops are
easily mislabeled because a stop looks similar in any mode
of transport. If a window is flagged as a ”stop window”
it is assigned to the same suggested segment as its prede-
cessor without predicting it as walk or non-walk. With this
addition, stops no longer influence the segmentation process,
thereby reducing noise generated through over-segmentation.
Once a suggested segment is closed, the features of its data
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windows are agglomerated again using the same statistical
methods for each feature, as already used in the data win-
dows themselves. An exception is the 5) SpeedPercentile85
and 6) SpeedPercentile99. These two values were previously
determined by selecting the 85th and 99th percentile from
the data window’s Speeds list. On the segment level, the
average of the SpeedPercentile85 of all data windows is
used to create the segment’s SpeedPercentile85. The same
is done for the SpeedPercentile99. As both values already
select the highest speed values in their data frames, it would
be counterproductive to select the highest values yet again.
Instead, choosing the mean created more stable results that
were less affected by noise outliers in the data.

The values 13) NumberOfbusStops, 14) NumberOftram-
Stops and 15) NumberOftrainStops are also altered for the
suggested segment. Previously, they counted the number of
stops for which the corresponding label was set to True.
In the suggested segment, they are altered to now store the
percentage of train, tram, or bus stops in the given segment,
by first summing up the values from all data windows
and next dividing it by the total 11) NumberOfStops in
the suggested segment. The result is a stop percentage for
each the public transport types in the suggested segment.
Additionally, two new features are introduced that calculate
the average distance between stops and the number of stops
per kilometer in the suggested segment:

16) AvgDistBetweenStops - Average distance between
the stops in a suggested segment

17) NumberOfStopsPerKilometer - Number of stops
per kilometer in a suggested segment

Once all features have been added to the suggested
segment, it is labeled using a decision tree.

V. RESULTS

To test the introduced methodology a new data set was
collected in the city of Munich. Then two tests were performed
on the data set, one using stop analysis and one without stop
analysis.

A. Data Collection

The results of the data collection are presented in Figure 4.
The data were collected from 13 different test participants

over the course of 6 weeks during the months of June and July
2019. GPS points were generated at a frequency of 1 data
point per second, which resembles the maximum frequency
for GPS. Even though lower frequencies were tested to be
equally accurate, the maximum frequency was chosen, as
an artificial reduction of data points can still be performed
in later processing steps. Figure 4 shows the distribution of
”real segments” in the recorded multi-modal trips by mode of
transport. When comparing the different modes of transport
it is visible that car data are overrepresented, while bikes are
underrepresented. Even though this might appear to be the

Fig. 4. Results of data collection sorted by real segments (uni-modal) of
multi-modal trips as labeled by the study participants.

result of a random collection, this was done deliberately. When
looking at possible movement behaviors, cars have the widest
range. A car can be as slow as a pedestrian if it is stuck in
a traffic jam. Yet, it can also go as fast as a train. Second, a
car’s movement behavior is far more dependent on the driver
than it is on public transport modes. The public transport
modes have drivers that were trained to have similar driving
behaviors, to be able to stick to specific travel timetables.
Third, cars can move freely while public transports have
to stick to the road or track network they were assigned
to. Finally, cars also differ in their fabrications, leading to
further differences in travel speed and acceleration. Overall
this leads to a greater variety of behaviors observable in cars,
while public transport moves more reliably and thus in clearer
patterns. higher speeds or faster accelerations. To take these
variations into account, a larger data set was required for
cars. In addition to that, different car types were paired with
different drivers throughout the data collection period. Among
the used car types were a Ford Galaxy, an Audi A4, a BMW
Mini Countryman, a Tesla Model 3, a Skoda Oktavia, a BMW
1 and a Mercedes E 220.

Nearly the same arguments that were used for cars could
also be applied to bikes. Yet, they are only represented with
a 3.4% share in the data set. The reason this collection
focuses on cars much more than on bikes is that no CO2
equivalent can be calculated for bikes, while cars are the main
emitter in the transportation sector. Also, the city of Munich
is not a particularly bike-friendly city. Therefore, it was more
challenging to find test participants that regularly use a bike
in the city. It was also not an option to artificially increase
the number of trips by asking one or two participants that
regularly use a bike to focus on collecting more data. Even
more than cars, bikes are susceptible to the rider’s movement
behavior. Consequently, it was not an option to overload the
data with bike rides of just two individuals.

Walks were the easiest to record as they occur before and
after any mode of transport. To avoid an over-representation
of transitioning walks in the data set that only connects two
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goals, some test participants were randomly selected to also
collect independent walk data from aimless shopping trips or
strolls in and around Munich.

In contrast to that, it was comparably easy to collect travel
data for the public transport, as the individual’s behavior, has
hardly any impact on the recorded movement behavior of a
bus, tram, or train. To increase variance, test participants were
asked to even alter their behavior by changing seat positions
inside the vehicles between different trips, or to move during
a trip.

B. Predicting Modes of Transport using Stop Analysis

After several training iterations on the collection data, the
decision tree shown in Figure 5 was produced. Child nodes to
the right of a parent node are larger or equal to the value in
the parent node, while child nodes to the left are smaller.

Fig. 5. Decision tree for suggested segments. (Left child smaller than Parent
value — Right child larger or equal to Parent value)

An 8-fold cross-validation was used in the training process
to avoid overfitting the tree to the data sample. The result-
ing tree first splits data with respect to MeanDuration. Any
suggested segment with a mean duration equal to or larger
than 4 seconds is predicted as a train. As the application used
for data collection attempts to collect a GPS location every

second this indicates severe connection issues to the satellite
network. As Munich does not have many long tunnels for cars,
buses, trams, or bicycles, this is a telling phenomenon. Neither
does Munich have a dense and tall skyline, explaining these
connection issues. This means that most modes of transport do
not have regularly occurring connection losses. The exception,
however, is Munich’s train network (Subway and S-Bahn)
operates mostly underground in Munich’s inner city area.
For train trips passing through this area, it is impossible to
establish a GPS connection. This is the reason why the mean
duration between data point collections is the most reliable
discriminator between a train segment and any other mode of
transport (except walking). But as the other half of Munich’s
train network operates above ground this value alone is not
sufficient to reliably detect all train segments. Segments by
train could also be entirely above ground or a mixture between
both above and underground. These hybrids of above and
below-ground trips are also the reason for the low mean
duration value of 4 seconds.

The 85th speed percentile turned out to be the second node,
as it reliably separates a car from a bike trip. Interestingly,
the 85th percentile and not the 99th percentile was chosen
by the algorithm, indicating that it provides a more reliable
discriminator for cars and bicycles. However, for all public
transportation modes, this discriminator does not suffice. To
separate them from one another and bicycles they were addi-
tionally filters for the newly introduced stop type percentages.
If 80% of the stops or more were labeled as ”trainStops” the
suggested segment is labeled as a train ride. Similarly, trams
(50%) and then busses (also 50%) are checked. If none of these
checks is larger or equal to the checked value, the suggested
segment is labeled as Bike.

If the 85th speed percentile was larger than 26 km/h, then
the same procedure is conducted for cars. In contrast to the
left side of the tree, cars are additionally discriminated by the
AvgDistanceBetweenStops. This variable was required as cars
may by chance stop close to a public transport station. This
regularity increases in the inner city. However, as cars tend to
skip some public transport stations while public transport is
obliged to stop, an alternation in behaviors was detected. Even
though a car may have stopped 3 times in total, each close to a
bus, tram, or train station, the distance covered between these
stops is rarely comparable due to the previously stated station
skipping. This leads to cars having a higher average distance
between stops. However, this variable is highly dependent on
Munich’s transportation network. It is therefore recommended
to retrain this value for other cities or neglect it.

C. Prediction Accuracy

The precision values shown in Figure 6 are based on
overlapping durations. This means that the duration of a trip
is selected as the ground truth for the prediction precision. For
example, a value of 0.9 means that out of 100 minutes that
were predicted to be car minutes, 90 actually were completed
in a car. This value can be derived from summing up the
values in the vertical columns. The recall can be observed
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Fig. 6. Confusion matrix showing the precision at which suggested segments
labeled correctly.)

by summing the horizontal lines, excluding the cells where
the predicted mode of transport and actual mode of transport
cross over (values in diagonal running from top left to bottom
right). So the recall values were for car 72%, walk 100%, bike
95%, train 85%, bus 96%, tram 94%.

To properly represent the predictive power combining both
recall and precision in one variable for each mode of transport
we use the F1-Score.

The resulting F1 values are 80% for car, 93% for walk,
96% for bike, 86% for train, 94% for bus and 91% for tram.
The resulting average F1-Score is 90%. However, transport
modes are not evenly distributed across the dataset (see
Figure 4). The following value visualizes the effect of this
distribution on the average F1-Score:

(345 minutes * 93% + 75 minutes * 96% + 775 minutes *
80% + 525 minutes * 86% + 230 minutes * 94% + 230
minutes * 91%) / 2180 minutes = 86.7%

VI. CONCLUSION

This paper presents a new approach using stops and public
transport stations for the detection of modes of transport in
multi-modal routes. The average F1-Score, combining preci-
sion and recall for all modes of transport, was 90%. Based on
a prior approach from Avezum, the F1-Score was increased
by 17% from 73% to 90% [10].

A humanly readable decision tree was produced that may
be applied by other researchers in other cities. However, it is
recommended to retrain the node values in the tree for the
specifics of traffic networks in other cities. Most likely, the
values for each decision node will vary for other cities, as
some discriminating values are likely to be overfitted to Mu-
nich’s transportation network. Nonetheless, we do recommend

adhering to the tree’s general structure and the used features as
their discriminatory power are logically sound for other cities,
too. However, the applicability in countries that majorly differ
from the German infrastructure should be reassessed before
implementing the tree structure.

The resulting automatic labeling of GPS traces by mode of
transport has various use cases. It could be used to automati-
cally calculate a CO2 equivalent for commuters and travelers,
but it could also be used for further research about movement
behaviors.

Traffic simulations for example rely on real data to assess
their correctness. But obtaining this data is complicated as
manual labeling by the traveler is required. From past data
collections, we also experienced labeling mistakes caused
by careless or unattentive participants. For this reason, we
paid special attention to obtaining a small and well-trained
participant group for this study, to ensure the correctness of
the ground truth. Due to this natural error, using an automated
algorithm with an F1-Score close to 90% is likely to be as
precise or even more precise than user-based labeling. But,
as previously hinted, we do recommend first adapting the
algorithm to the specifics of the considered region. This com-
bination of higher data quality and effortless collection from
the user’s perspective makes automatic detection algorithms
quite applicable for other traffic research relying on a ground
truth to refer to. It also adds the possibility to label GPS
data by mode of transport that was collected in the past. This
effectively offers the possibility to transform any existing set
of unlabeled GPS traces into a user study that asked travelers
to label the mode of transport they were using during their
trip.
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