
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Converting Neural Networks to Sampled
Networks

Dhia Bouassida

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Converting Neural Networks to Sampled
Networks

Umwandlung von neuronalen Netzwerken
in abgetastete Netzwerke

Author: Dhia Bouassida
Supervisor: Dr. Felix Dietrich
Advisor: Erik Lien Bolager
Submission Date: 16.10.2023

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 16.10.2023 Dhia Bouassida

Abstract

Neural networks have become dominant in machine learning due to their ability to
automatically learn complex patterns. They are often trained using iterative gradient-
based optimizers, with Adam being one of the most widely used methods. Sampled
Networks, introduced by Bolager et al., offer an alternative method where network
parameters are constructed directly by sampling data point pairs, eliminating the need
for iterative optimization and enhancing efficiency and interpretability.

The primary contribution of this thesis is an algorithm to convert traditionally
trained neural networks into equivalent sampled networks, in order to provide the
interpretability and transparency that come with these networks. The emphasis is on
converting a two-layer neural network employing the ReLU activation function into a
sampled network. The main objective for the converted sampled network is to closely
match the trained neural network in terms of its parameters, namely weights and biases,
as well as its output. For the conversion algorithm, we introduce multiple approaches
for converting both the hidden and the output layer parameters of the trained network.
Numerical experiments provide a comparative analysis of each proposed approach,
comparing the network parameters and outputs between the original trained network
and the converted sampled network, as well as the runtime of the conversion algorithm.

iii

Contents

Abstract iii

1 Introduction 1

2 Neural Networks 3
2.1 Modelling a single neuron . 3
2.2 Multilayered Neural Networks . 5
2.3 Training Neural Networks . 6

2.3.1 Classical Gradient Descent . 7
2.3.2 Adam . 8

3 Sampled Networks 10
3.1 Introduction to Sampled Networks . 10
3.2 Constructing Sampled Networks . 11

3.2.1 Definition of a Sampled Network 11
3.2.2 SWIM Algorithm . 11

4 Converting Neural Networks to Sampled Networks 14
4.1 Motivation . 14
4.2 Implementation . 15

4.2.1 Sampling for the Hidden Layer . 15
4.2.1.1 Lowest Angle Approach 16
4.2.1.2 Threshold Ratio and Weight Norm Preservation Approach 18
4.2.1.3 Pair Selection with Proximity Optimization 20
4.2.1.4 Minimizing the Bias Shift 23
4.2.1.5 Input Dataset Augmentation 24

4.2.2 Updating the Second Layer . 25
4.2.2.1 Only Bias Update of the Output Layer 25
4.2.2.2 Weight and Bias Update with Linear Regression 26

5 Experiments and Results 29
5.1 Experimental Setup and Evaluation Metrics 29

5.1.1 Input Framework . 29

iv

Contents

5.1.2 Evaluation Metrics . 30
5.2 Results and Analysis . 31

5.2.1 Lowest Angle Approach . 32
5.2.2 Weight Norm Preservation Approach with Threshold ratio r . . 32
5.2.3 Pair Selection with Proximity Optimization 34

5.2.3.1 Minimizing the Bias Shift 36
5.2.3.2 Input Dataset Augmentation 37

6 Conclusion and Future Work 40
6.1 Conclusion . 40
6.2 Future Work . 41

List of Figures 42

List of Tables 44

Bibliography 45

v

1 Introduction

Machine Learning is a subfield of Artificial Intelligence. It enables computer systems
to learn patterns and make decisions without setting up rules or being explicitly
programmed [MM97]. A machine learning model uses statistical techniques to draw
insights and make predictions or decisions based on given data [DHS01]. Among
the various techniques in machine learning, neural networks have gained significant
attention due to their versatility and robustness.

Neural networks, inspired by the structure and function of the biological neural
circuits of the brain [Ako13], have become dominant in machine learning due to their
ability to automatically learn complex patterns from data. They have proven very
effective for tasks such as image recognition [Agg18], bioinformatics [LLB09], and
medical diagnostics [Ama+13], to name a few examples.

Interconnected neurons are the core component of artificial neural networks. Each
neuron receives input from the prior neurons, processes it, and produces an output.
This output derives from a weighted sum of the inputs, adjusted by a certain bias, after
which a nonlinear activation function is applied. Neurons are organized into sequential
layers, with each layer’s input being the output of the preceding layer.

The parameters of a neural network are essentially the weights and biases of its neu-
rons. Training a neural network on a set of input and output data involves determining
the optimal weights and biases, so that the discrepancy between the neural network’s
output and the given output is minimal.

Neural networks are often trained using iterative gradient-based optimization meth-
ods. These methods start with a random initialization of the network parameters.
Iteratively, these parameters are updated to minimize a loss function, which quantifies
the difference between the model’s predictions using these parameters and the true
outputs. One of the most commonly used optimizers is Adam [KB14].

However, this iterative training process can be computationally expensive for large
neural networks. Furthermore, neural networks with many hidden layers, also referred
to as deep learning models, are often called "black boxes" due to their inherent com-
plexity and the difficulties in understanding their inner workings and mechanisms.
This terminology stems from the fact that while we can input data and examine the

1

1 Introduction

output, the inner learned relationships and parameters, such as the weights, are not
directly interpretable [Cas16].

Sampled networks, proposed by Bolager et al. [Bol+23], offer an alternative method
to learning these parameters. Sampled networks construct the weights and biases
of a neural network by directly sampling points from the input dataset, instead of
relying on iterative optimization. This not only enhances efficiency compared to the
traditional gradient-based optimizers but also increases interpretability, as it offers
a clearer connection between the model’s parameters and the dataset that it is trained on.

In this thesis, we aim to develop an algorithm to convert a traditionally trained neural
network into a sampled network. The goal is for the converted sampled network to
closely match the original trained network in terms of both its parameters and output.
The main motivation is that the converted sampled networks can provide, by design,
more insight into the models’ parameters, making these models more interpretable and
transparent.

Our implementation focuses on converting a traditionally trained neural network
with one hidden layer that uses the ReLU activation function into a sampled network.
For the conversion, we introduce different techniques to convert the network into a
sampled network, by providing multiple approaches to sample data points for deter-
mining the sampled network’s parameters.

In Chapter 2, we will provide background on neural networks, including their
architecture, training methods, and relevant concepts. Chapter 3 will introduce sampled
networks, how they are defined, and the algorithm to construct them. Our proposed
conversion algorithm will be detailed in Chapter 4, where we present various techniques
to sample data points and convert the hidden and output layer parameters. The results
from numerical experiments comparing the different proposed approaches will be
analyzed in Chapter 5.

2

2 Neural Networks

Artificial neural networks, also known as ANNs, have recently gained significant at-
tention and popularity due to their learning capabilities and accurate prediction over
diverse applications. They have the ability to learn directly from data without being
explicitly programmed. This gives them great flexibility in solving problems that are
difficult with algorithmic approaches. In this section, we give a brief introduction to
their architecture and functioning, as well as some training algorithms.

2.1 Modelling a single neuron

Artificial neural networks are systems inspired by the human brain structure and func-
tion [Ako13]. The core components of neural networks are interconnected processing
elements called nodes or neurons. Understanding the mechanism of biological neurons
can help us comprehend the functioning of neural networks. Biological neurons receive
input signals through branch-like structures called dendrites. The dendrites detect
neurotransmitters released from other neurons. The neuron then internally processes
the input signals using its biological mechanisms. If the input is sufficiently strong, the
neuron will fire an output signal, neurotransmitters are then released. These neurotrans-
mitters can then be picked up by dendrites on other neurons, propagating the signal
through the network [Ako13]. Analogously, artificial neurons are the computational
units of an artificial neural network that receive a set of inputs, process them, and
output a signal to other neurons.

Each node in an artificial neural network receives its input from other nodes, and
its computation is typically broken into a linear combination of inputs and a simple
typically non-linear activation function. Formally, an artificial neuron N performs a
mapping from an n-dimensional input feature vector to a real number, as N : Rn → R.
This process involves taking each feature in the input vector and multiplying it by a
corresponding weight. The products are then summed up, a bias is subtracted, and the
resulting sum is passed through an activation function ϕ to give the final output. The

3

2 Neural Networks

output is given by

ϕ

(
n

∑
i=1

xiwi − b

)
,

where n is the number of features in the input vector x, b is the bias, wi’s are the
weights, and ϕ is the activation function. A model of a single neuron is presented
in Figure 2.1. The activation function ϕ is a continuous, typically non-linear function
ϕ : R→ R. Common activation functions are the following:

• Sigmoid: The sigmoid activation function is a smooth function ϕSigmoid : R →
(0, 1). Its graph has an S-shape that is similar to the biological S-shaped growth
curve [SSA20]. The mathematical expression is

ϕSigmoid (x) =
1

1 + e−x .

• tanh: The hyperbolic tangent function ϕtanh : R→ (−1, 1) is similar to the sigmoid
function but it is symmetric to the origin [SSA20]. It is defined as

ϕtanh(x) =
ex − e−x

ex + e−x .

• ReLU: ReLU stands for Rectified Linear Unit activation function. The ReLU
function ϕReLU : R → R≥0 is recognized as one of the most commonly used
activation functions in neural networks today [SSA20]. The function is defined by

ϕReLU (x) =

{
x, if x ≥ 0

0, otherwise
.

The nonlinearity of these functions ensures that the system can learn complex pat-
terns and relationships between the inputs and outputs. In each neuron of a neural
network, a weighted sum of the inputs is applied. If, hypothetically only these linear
operations were performed, the entire system would remain linear, since consecutive
linear operations are performed by sequential neurons. Consequently, the system
would not be able to represent more complex structures or learn intricate patterns in
the data. This is where activation functions come into play.

4

2 Neural Networks

x1

x2

· · ·

xn

w1

w2

wn

b

∑ xiwi − b ϕ(∑ xiwi − b)

Output of the neuron

input vector x

Figure 2.1: A simple diagram illustrating the structure of a single neuron

2.2 Multilayered Neural Networks

The nodes in a neural network are arranged in a sequential order called layers, where
the output of a layer is the input of the next layer. A neural network typically consists
of three main types of layers: input, hidden, and output layers.

The input layer receives the raw data from the input and propagates it further into
the network. Each node or neuron in the input layer corresponds to a single feature of
the data.

The hidden layers are intermediate layers between the input and the output. De-
pending on the problem’s complexity and the network’s design, both the number
of hidden layers and the number of neurons in each layer can vary. Hidden layers
convert the inputs into more abstract representations. Through a series of non-linear
transformations made possible by the neurons’ activation functions, they are able to
capture and learn complex patterns and features from the input data. The output of
each hidden layer serves as the next layer’s input, enabling the network to create a
hierarchical understanding of the data. This computation is later forwarded to the
output layer, which produces the prediction/classification.

In the following, we establish certain notations and present a mathematical framework
that will be utilized throughout this paper. We denote the neural network as Φ. We
denote the number of its hidden layers as L, which means the total number of layers,
including the input and output layers, equals L + 2. Let Nl be the number of neurons
in each layer, where l ∈ {0, 1, 2, · · · , L + 1}.

We use X ⊆ RD to denote the input space. Consequently, it follows that the number
of neurons in the input layer, N0, equals the dimension D of the input space.

The output of the lth layer of this neural network can be described as a mapping

5

2 Neural Networks

Φ(l) : RN0 → RNl . We denote Φ(0)(x) = x. For the hidden layers, given an input
x ∈ RN0 , the output of the lth layer Φ(l)(x) ∈ RNl is

Φ(l)(x) = ϕ
(

Φ(l−1)(x)Wl − bl

)
,

where Wl ∈ RNl−1×Nl is the weight matrix for the lth layer, bl ∈ RNl is the bias vector
for the lth layer, and ϕ is the activation function.

The process of obtaining the output of the neural network Φ(L+1) from the input
layer is referred to as a forward pass. During this pass, the network takes the input
vector x ∈ RN0 and transforms it iteratively through each layer to produce the final
output Φ(L+1)(x) ∈ RNL+1 . More concretely, the output of the neural network is

Φ(L+1)(x) = ϕ (ϕ (· · · ϕ (xW1 − b1)W2 − b2) · · ·)WL+1 − bL+1.

Note that in out model the activation function is not applied on the output layer. Figure
2.2 shows the hierarchy of an example of a multi-layered neural network.

...
...

...

...

x1

x2

x3

xN0

Φ(1)
1

Φ(1)
2

Φ(1)
N1

Φ(2)
1

Φ(2)
2

Φ(2)
N2

Φ(3)
1

Φ(3)
N3

Input
layer

1st hidden
layer

2nd hidden
layer

Output
layer

Figure 2.2: This diagram illustrates the hierarchy of layers in a neural network.

2.3 Training Neural Networks

Training a neural network on a dataset that consists of input-output pairs (xi, yi), where
each xi ∈ X (a subset of the input space X) is associated with an output yi ∈ Y,

6

2 Neural Networks

involves learning the general patterns and relationships between inputs and their
respective outputs. This enables the system to generate automated outputs for inputs
not present in the training dataset. To achieve this, the neural network learns the
optimal parameters Wl and bl for each layer such that the output of the system closely
matches the original target outputs. The discrepancy between the system’s predictions
and the target outputs is measured using a loss function. For regression tasks, for
example, the mean squared error (MSE) is commonly used, while for classification
problems, cross-entropy loss is used. In this section, we provide examples of algorithms
for neural network training.

2.3.1 Classical Gradient Descent

Training a neural network entails finding the parameters Wl and bl of each layer, such
that the loss between the network’s output and the actual data is minimized. An
important algorithm for learning these weights and biases is gradient descent, which
was first introduced by Rumelhart, D.R. et al. [RHW86]. Gradient descent works as
follows: The gradient of the loss function with respect to the weights and biases of
the network is calculated using the chain rule. The negative direction of this gradient
indicates the direction of steepest descent. Taking a step in that direction goes into the
direction of minimizing the loss of the function [RHW86]. The general formula for this
algorithm is

w(t+1) = w(t) − α∇L(w(t)), t = 0, 1, 2, . . . , (2.1)

where w(t) refers to the parameter vector w at iteration t, L refers to the loss function
that we are trying to minimize and takes w as parameter, ∇L(w(t)) calculates the
gradient of the function L with respect to w at the current parameters w(t), and α is the
learning rate. The learning rate α controls the length of the step taken in each iteration.
In other words, we update the parameters, w, of the network by taking a step in the
negative gradient direction L(w(t)), that is the direction of the steepest descent.

However, classical gradient descent has several limitations. First, for a function with
multiple local minima, the gradient descent may get trapped in one local minimum
and thus not reach the global minimum, since the iterations stop when the gradient’s
magnitude is zero or below a certain threshold. The same is true for saddle points,
since the gradient at these points is zero and they do not represent minima. In larger
dimensions, saddle points occur more frequently than local minima, and the gradient
descent can be blocked in these cases. In addition, the gradient descent algorithm can
suffer from slow convergence. The reason is that the learning rate α is constant during
the iterations [GBC16].

7

2 Neural Networks

2.3.2 Adam

Several optimizers, primarily based on the concept of gradient descent, have been
developed to enhance performance and address issues associated with the classical
gradient descent method used in training neural networks. A relevant algorithm in our
paper is the Adam (short for Adaptive Moment Estimation) optimization algorithm
[KB14]. Essentially, it combines the benefits of two previous extensions of gradient
descent: Momentum [Pol64] and RMSProp [HSS12]. Adam addresses issues such as
noise and sparsity in gradients, meaning that the gradients have a lot of unwanted
fluctuations or that most of the elements of the gradient vector are zero, both of which
are known to hinder the performance of the classical gradient descent method. Adam
also utilizes an adaptive learning rate α during training iterations to make the search
for the minimum more effective[KB14].

For this, Adam maintains two moving averages for each parameter to adaptively
update the learning rates during training. The first one is for the gradients and the
second one is for the square of gradients. Moreover, it has hyperparameters that control
the exponential decay rates of these moving averages. The update rule of Adam follows

m(t) = β1m(t−1) + (1− β1)∇L(w(t)),

v(t) = β2v(t−1) + (1− β2)(∇L(w(t))2),

m̂(t) =
m(t)

1− βt
1

,

v̂(t) =
v(t)

1− βt
2

,

w(t+1) = w(t) − α
m̂(t)

√
v̂(t) + ϵ

.

Here, w(t) represents the parameters of the model at the tth step and ∇L(w(t)) is the
gradient of the loss function with respect to the parameters at the tth step. m(t) is the
estimate of the first moment of the gradients, which is computed as a decaying average
of past gradients. v(t) is the estimate of the second moment of the gradients, which is
computed as a decaying average of the squared gradients. The decay rate in m(t) and
v(t) are respectively β1 and β2. m̂(t) and v̂(t) are bias-corrected versions of the first and
second moment estimates, and α is the learning rate. And finally ϵ is a small constant
to prevent division by zero.

In this chapter, a general introduction to neural networks and optimizers was given.
In the following chapter, we will discuss a novel method of finding the parameters of a

8

2 Neural Networks

neural network that is not based on gradient descent.

9

3 Sampled Networks

Artificial neural networks, as mentioned in the previous chapter, have mostly been
trained using iterative gradient-based methods to find and optimize weights and biases.
The sampled networks approach, introduced by Bolager E. et al. in the paper "Sampling
weights of deep neural networks," represents a paradigm shift [Bol+23]. It allows for
more efficient construction of neural networks without relying on iterative optimization
of internal network parameters. The method uses both input and output training data
points from the supervised learning problem to construct the weights and biases of the
network.

3.1 Introduction to Sampled Networks

At its core, a sampled network links data points from the input to the weights and
biases of hidden layers in the network. Instead of randomly initializing and iteratively
optimizing the weights and biases, a sampled network uses pairs of data points from
the input space to determine these parameters. This data-driven approach ensures the
constructed network is inherently connected to the given dataset.

This method, which directly links data points to the network’s parameters, offers
several benefits [Bol+23]:
Efficiency and accuracy: Sampled networks avoid extensive iterative optimization,
allowing for quicker construction of deep neural networks. And compared to data-
agnostic sampling methods, this sampling schema gives a more accurate and width-
efficient approximation.
Interpretability: With weights and biases derived directly from data points, sampled
networks offer a clearer connection between both the model’s decisions and functioning
and the dataset it is trained on. This helps with understanding the model’s workings
and reasoning.

10

3 Sampled Networks

3.2 Constructing Sampled Networks

In a sampled network, the weight vector and bias of every neuron in each hidden layer
are determined by two distinct points from the input space. The weight is derived from
the difference between these two points divided by the square of their distance. The
bias is computed as the inner product of the derived weight and one of the two points.
This relationship between the weights, biases, and data points forms the foundation for
sampled networks. After the weights and biases of all hidden layers are established,
the only remaining task is to solve an optimization problem to find the parameters
of the final linear layer. In the following, we cite the formal definition of a sampled
network and present the proposed algorithm for creating one [Bol+23].

3.2.1 Definition of a Sampled Network

A neural network Φ with L hidden layers, having an input space X ⊆ RD, is termed a
sampled network if, for each layer l ranging from 1 to L and for every neuron i from 1
to Nl , the weights and biases are defined by pairs of data points, (x(1)0,i , x(2)0,i), sampled
from X ×X , as

wl,i = s1
x(2)l−1,i − x(1)l−1,i∥∥∥x(2)l−1,i − x(1)l−1,i

∥∥∥2 , bl,i =
〈

wl,i, x(1)l−1,i

〉
+ s2,

where s1 and s2 are scalar constants, x(1)l−1,i and x(2)l−1,i are Φ(l−1)
(

x(1)0,i

)
and Φ(l−1)

(
x(2)0,i

)
,

respectively, and x(1)l−1,i ̸= x(2)l−1,i. The weights and biases of the output layer, WL+1 and
bL+1, are chosen to minimize a designated loss function L.

The scalars s1 and s2 influence the mapping of the points after applying the activation
function. For ReLU, s1 and s2 are set as s1 = 1 and s2 = 0, causing x(1) to map to zero
and x(2) to one. With tanh, the values are s1 = 2s2 and s2 = ln(3)

2 , mapping x(1) and x(2)

to − 1
2 and 1

2 respectively, with their midpoint to zero.

3.2.2 SWIM Algorithm

The proposed method to create sampled networks is named "Sampling Where It Mat-
ters" or SWIM. The name suggests that the method focuses on effectively sampling the
input space in regions where it is crucial for learning. For each hiddel layer l, a con-
ditional probability distribution P(l) over pairs (x(1), x(2)) from X ×X is constructed.

11

3 Sampled Networks

This probability distribution guides which pairs are more likely to be selected. P(l)

favors pairs of points that are close in the representation space in the lth layer but
have a significant difference in the true output value. More precisely, for l = 1, 2, . . . , L
and x(1)0 , x(2)0 ∈ X , the probability distribution of P(l) is defined by its conditional
distribution with density p(l) as

p(l)
(

x(1)0 , x(2)0 |
{

Wj, bj
}l−1

j=1

)
∝

∥y(2)−y(1)∥∥∥∥x(2)l−1−x(1)l−1

∥∥∥ x(1)l−1 ̸= x(2)l−1

0, otherwise
,

where y(1) and y(2) are the true outputs of x(1)0 and x(2)0 respectively.
In other words, the probability density P(l) for a pair (x(1), x(2)) in a layer l is pro-

portional to the difference in the output values between the two points, divided by the
difference in their representations in the previous layer of the network. This results in
giving more importance to points that are close but differ a lot with respect to their
output.

A simplified algorithm for the SWIM method is given in Algorithm 1. The input
of the algorithm is an input-output dataset (X, Y) with size M, where X ⊆ X . For
each hidden layer l, the function ComputeProbabilityDistribution calculates the
probability distribution P(l) based on the input and output points and the representation
of the input points in the previous layer. A data pair is then sampled using that
probability distribution, and the weights and biases are computed based on that pair.
Once all the hidden layers are processed, the output of the last hidden layer of the
network, Φ(L), is calculated. Then the parameters of the output layer are constructed to
minimize the loss function L, which is a measure of the discrepancy between the actual
output values Y and those predicted by the network Φ(L+1) = Φ(L)(X)WL+1 − bL+1.
This involves determining the optimal weights WL+1 and biases bL+1 that minimize L.
A typical loss function is the Mean Squared Error (MSE).

12

3 Sampled Networks

Algorithm 1: The SWIM algorithm for an activation function ϕ and a loss
function L.
Data: X = {xi : xi ∈ RD, i = 1, 2, . . . , M}, Y = {yi : yi ∈ RNL+1 , i = 1, 2, . . . , M}
Result: {Wl , bl}L+1

l=1
Constant: L ∈N>0, {Nl ∈N>0}L+1

l=1 , and s1, s2 ∈ R;
Φ(0)(x) = x;
for l = 1, 2, . . . , L do

P(l) = ComputeProbabilityDistribution(Φ(l−1), X, Y);
Wl ∈ RNl−1,Nl , bl ∈ RNl ;
for i = 1, 2, . . . , Nl do

Sample (x(1), x(2)) from X× X, with probability proportional to P(l);

x(1)l−1,i, x(2)l−1,i ← Φ(l−1)(x(1)), Φ(l−1)(x(2));

W(i,:)
l ← s1

x(2)l−1,i−x(1)l−1,i∥∥∥x(2)l−1,i−x(1)l−1,i

∥∥∥2 ;

b(i)l ← ⟨W
(i,:)
l , x(1)l−1,i⟩+ s2;

end
Φ(l)(·)← ϕ(Φ(l−1)Wl(·)− bl);

end
WL+1, bL+1 ← arg minL(Φ(L)(X)Wl+1 − bL+1, Y);

13

4 Converting Neural Networks to Sampled
Networks

In this Chapter, we first start by giving the motivation for converting neural networks
into sampled networks. We then present an algorithm for the conversion process.
Our implementation focuses on the case where the given network comprises only one
hidden layer and one output layer, and uses the ReLU activation function in the hidden
layer.

4.1 Motivation

Neural networks are often referred to as "black boxes" due to their complexity and
the difficulties in understanding their inner workings and mechanisms. While these
models have achieved an increasing performace, this accuracy has been achieved thanks
to advanced optimizing algorithms. By converting these traditionally trained neural
networks into sampled networks, we leverage the properties of the sampled networks
to provide more transparency and interpretability to the trained networks. Specifically,
sampled networks adopt a data-driven approach where the weights and bias for each
neuron are constructed using a specific data pair from the input dataset. By definition,
for a neuron, the weight is a constant times the difference between these two points
divided by the squared norm of their difference. Meanwhile, the bias is the dot product
between this sampled weight vector and one of the points of the pairs, added to a
constant. This data-driven approach provides a more intuitive connection between
the model’s internal structures and the dataset it was trained on. In addition, with
sampled networks we gain more insights into the inner workings of a neuron to receive
its output. In fact, for a regression problem using the ReLU activation function, the
sampled pair points x(1) and x(2) correspond to values of zero and one, respectively.
This means that x(1) directly defines the activation boundary of the neuron, while other
points are linearly interpolated between the two points. For a classification problem
using tanh, the images of the points x(1) and x(2) after activation are −1/2 and 1/2,
while the midpoint between the two points is zero. This implies that a boundary is
constructed if x(1) belongs to a different class than x(2) [Bol+23].

14

4 Converting Neural Networks to Sampled Networks

4.2 Implementation

The conversion process is detailed in Algorithm 2. The input is a traditionally trained
neural network having two layers: a hidden layer and an output layer. These layers
are defined by the weights and biases represented as {wl,i, bl,i}2,Nl

l=1,i=1, where Nl in-
dicates the number of neurons in the lth layer. The sampling dataset is defined as
X =

{
xi : xi ∈ RD, i = 1, 2, . . . , M

}
, where M is the number of samples, and D, equiva-

lent to N0, represents the dimension of the input space.

For each neuron i in the hidden layer, the algorithm calls the FindDataPair function
to select a pair of data points from the input dataset. It then calculates new weights
and biases, ŵ1,i and b̂1,i, using the formulas defined for sampled networks in Section
3.2.1. The objective of FindDataPair is to choose data points such that the resultant
weights and biases of the sampled network align closely with the trained ones. For the
output layer, the algorithm calls UpdateSecondLayer, to adjust the parameters based
on the newly computed sampled weights and biases and the trained neural network
parameters.

Algorithm 2: The algorithm for creating a Sampled Network from an traditionally
trained network.
Data: X =

{
xi : xi ∈ RD, i = 1, 2, . . . , M

}
, {wl,i, bl,i}2,Nl

l=1,i=1
for i = 1, 2, . . . , N1 do

x(1), x(2) ← FindDataPair(X, w1,i, b1,i);

ŵ1,i ← x(2)−x(1)

∥x(2)−x(1)∥2 ;

b̂1,i ←
〈

x(1), ŵ1,i

〉
;

end
{ŵ2,j, b̂2,j}N2

j=1 ←UpdateSecondLayer(X, {ŵ1,i, b̂1,i}N1
i=1, {wl,i, bl,i}2,Nl

l=1,i=1);

return
{

ŵl,i, b̂l,i

}2,Nl

l=1,i=1

4.2.1 Sampling for the Hidden Layer

The core of the conversion algorithm is to sample adequate points for each neuron,
which are then used to determine the weights and biases of the sampled network. Our
requirements are that the sampled weights and biases, ŵ1,i and b̂1,i, closely align with
the trained ones. Concretely, for instance, we desire that the sampled weights align

15

4 Converting Neural Networks to Sampled Networks

both in direction and in norm with the trained ones. Furthermore, the bias of each
neuron, b̂i, should be close to the original bias bi. The method employed to achieve this
lies in the FindDataPair function. In this section, we will introduce various strategies
to sample data points and construct sampled weights and biases by providing multiple
implementations for the function FindDataPair. We will introduce different methods
while focusing on both accuracy and performance.

4.2.1.1 Lowest Angle Approach

This strategy identifies a pair (x(1), x(2)) based on the provided weights w1,i and biases
b1,i of a specific node i, while giving constraints for both points. The general goal is
that the resulting sampled weight ŵ1,i for each node closely aligns in direction with
w1,i, and that the bias b̂1,i is close to b1,i. The process is described in Algorithm 3.

Algorithm 3: The function FindDataPair samples a data pair for a neuron i in
the first layer following the lowest angle approach.

Function FindDataPair(X, w1,i, b1,i):
Find x(1) ∈ X which minimizes {|⟨x, w1,i⟩ − b1,i| : x ∈ X};

Find x(2) ∈ X\
{

x(1)
}

which minimizes
{

cos−1
(
⟨x−x(1),w1,i⟩
∥x−x(1)∥∥w1,i∥

)
: x ∈ X

}
;

return x(1), x(2);

Finding x(1): Algorithm 3 selects x(1) from the dataset X such that its dot product
with the given weight minus the bias is minimized in absolute terms. This ensures that
the output of the neuron for x(1), prior to applying the activation function, is as close to
zero as possible. For the ReLU activation function, zero is the transition point from the
activation or inactivation state of the neuron. That means that x(1) is the point nearest
to this transition point.

Let us further visualize this from another perspective. For a certain node i in the first
layer, let H be the hyperplane defined by

H := {x ∈ RN0 : ⟨x, w1,i⟩ − b1,i = 0}.

As the neuron uses ReLU activation function, H represents the activation boundary of
the neuron. This hyperplane partitions the input space into two regions, activating or
not activating the neuron. The Euclidean distance from a point x to the hyperplane H

16

4 Converting Neural Networks to Sampled Networks

is given by the general formula

d(x, H) =
|⟨x, w1,i⟩ − b1,i|
∥w1,i∥

.

Thus, finding x(1) ∈ X which minimizes {|⟨x, w1,i⟩ − b1,i| : x ∈ X} is in essence finding
x(1) from the input space that is the closest in Euclidean distance to the activation
boundary H of the neuron, since ∥w1,i∥ is a positive constant.

In Figure 4.1, an explanatory example containing a sample dataset of four points and
their projections to the activation boundary H is shown. In the upper part of Figure
4.2, we can see the images of the points before the activation, and thus visualize the
relationship to the distance to H.

Finding x(2): In general, the output of a node involves calculating the weighted sum
of its inputs, which is the dot product between the input vector and the weight vector
associated with that node. When the input vector is more aligned with the direction of
the weight vector, it will produce a larger output. Thus, the direction of a weight vector
plays an important role in calculating the output as it indicates which aspects of the
input the node emphasizes or is sensitive to.

Given a specific vector x(1), we aim to find the second point x(2) such that the vector
difference x(2) − x(1) has the smallest angle with respect to the weight vector w1,i. To

achieve this, we find the point x(2) ∈ X\{x(1)} which minimizes {cos−1
(
⟨x−x(1),w1,i⟩
∥x−x(1)∥∥w1,i∥

)
:

x ∈ X}. The term inside the cosine inverse, cos−1, represents the cosine similar-
ity between the vector x − x(1) and w1,i. By minimizing this expression, we ensure
that the direction from x(1) to x aligns closely with the direction of the given weight w1,i.

By finding an x(2) that satisfies the last condition and using the updated weight
ŵ1,i = x(2)−x(1)

∥x(2)−x(1)∥2 , we ensure that ŵ1,i remains closely aligned in direction with the

original weight vector w1,i. In Figure 4.2, after choosing the point D as x(1), we choose
the point B as x(2), because the resulting sampled weight is the closest in angle to the
original weight.

As for the bias, it is calculated according to the definition of a sampled network as
b̂1,i = ⟨x(1), ŵ1,i⟩. This results in the point x(1) now getting mapped to 0 before the
activation, indicating a shift in the activation boundary in comparison with the trained
network. To minimize that shift, we choose the point x(1) in Algorithm 3 as the closest

17

4 Converting Neural Networks to Sampled Networks

point to the original activation boundary.

−2 −1 1 2

−1

1

2

A

B

C

D

w

ŵ

w · x− b = 0

x1

x2

Figure 4.1: A two dimentional in-
put dataset is plotted.
The blue line is the
activation boundary of
the neuron. The dis-
tances to that activation
boundary, as well the
original and the sam-
pled weight are shown.

−1 1 2

1

A BCD

⟨x, w1,i⟩ − b1,i

y

−1 1 2

1

A BCD

⟨x, ŵ1,i⟩ − b̂1,i

y

Figure 4.2: The upper plot shows the images
of the input points in the original
trained network. The lower plot
shows the images in the sampled net-
work. The red arrows in the upper
plot shows the bias shift that hap-
pens in the conversion process.

4.2.1.2 Threshold Ratio and Weight Norm Preservation Approach

In this strategy, we explore an alternative approach to create sampled weights and
biases that better align with the original parameters. At first, we extend the method
of finding an adequate point x(1). We then propose a method to find the second point
x(2), such that the resulting sampled weight does not only match the given weight in
direction, but also in magnitude.

Threshold ratio r: Selecting a single point x(1), that is the closest point to the activa-
tion boundary, might not always yield an optimal solution. This selection could place
x(1) in regions of the dataset with sparse data distributions along the direction of the
weight vector w1,i, potentially misrepresenting the overall geometry and directionality
of the data relative to w1,i.

To account for this, we introduce a candidate set X′ that contains the points close
to the activation boundary. To define this set, we use a threshold ratio r ∈ [0, 1]. X′

18

4 Converting Neural Networks to Sampled Networks

contains the points x from the dataset X that lie within a specified range given by
x ∈ X : |⟨x, w1,i⟩ − b1,i| < rM, whereM = maxx∈X |⟨x, w1,i⟩ − b1,i|. Here,M serves as
a normalizing factor, representing the maximum absolute value of the output of neuron
i before activation across all points in X. In essence, the set X′ contains the points that
lie within a distance rM to the activation boundary. It provides a pool from which we
can iteratively select the most suitable point x(1).

Introducing the threshold ratio r adds a layer of flexibility to choosing the point x(1).
A smaller r might be overly restrictive, reverting to the initial problem. However, a
larger r, which is closer to 1, might be too permissive, adding irrelevant data points and
moving too far from the activation boundary, resulting in a sampled bias very different
from the original one.

Normalization concerns: The sampled weight ŵ1,i of each neuron is computed as
the difference between two samples x(2) and x(1) divided by the squared norm of
their difference. Following the lowest angle strategy, this new weight vector is in a
close direction to the original weight vector w1,i. However, it does not guarantee the
preservation of its magnitude. A significant difference in magnitude between the new
and original weights can alter the network’s dynamics.

While the direction of a weight vector indicates the direction in the input space it
emphasizes, its magnitude or norm determines the strength of this emphasis. In this
second strategy, we aim to select x(2) such that the resultant sampled weight vector
closely aligns in both angle and magnitude with the trained one. This is achieved
by minimizing the norm of their difference, ∥ŵ1,i − w1,i∥. That means we want each
element of the two vectors to be as close as possible. Another way to visualize this, is
that the distance between the tips of the sampled and original trained weight vectors
should be as low as possible.

Algorithm 4 describes this approach. First, we create a subset X′ that contains the
data points lying within the threshold ratio r. To account for potentially small values of
r that might result in an empty subset X′, we always include xmin, the point closest to
the activation boundary. The algorithm then iterates over all pairs (x(1), x(2)) where x(1)

is in X′ and x(2) is in X \ {x(1)}. Out of all these combinations, it identifies the weight
vector that best approximates the trained w1,i. Finally, the algorithm returns the pair of
points that provide a sampled weight that closely aligns to the original weight.

In Figure 4.3, the difference between choosing r = 0, shown on the left plot, and

19

4 Converting Neural Networks to Sampled Networks

r = 0.05, shown on the right plot, is illustrated. On the right plot, for example, we see
that, for the seventh and third vectors, the sampled points are different from the left
plot. Specifically, for the seventh weight vector, the direction of x(2) − x(1) on the right
plot is more aligned with the given weight vectors compared to the left plot.

Algorithm 4: This function finds a data pair such that the resulting sampled
weight is closest in distance to the given one.

Function FindDataPair(X, w1,i, b1,i, r):
M = maxx∈X |⟨x, w1,i⟩ − b1,i|;
xmin ← arg minx∈X |⟨x, w1,i⟩ − b1,i|;
X′ ← {x ∈ X : |x · w1,i − b1,i| < rM}∪ {xmin};
min_distance← ∞;
for each x(1) in X′ do

for each x(2) in X \ {x(1)} do
ŵ1,i ← x(2)−x(1)

∥x(2)−x(1)∥2 ;

distance← ∥ŵ1,i − w1,i∥2;
if distance < min_distance then

min_distance← distance;

x(1)return ← x(1);

x(2)return ← x(2);
end

end
end

return x(1)return, x(2)return;

4.2.1.3 Pair Selection with Proximity Optimization

In Algorithm 4, identifying the point x(2) for a given x(1) involves iteratively scanning
all data points in the inner loop. For each combination, it computes the resulting new
weight vector ŵ1,i and updates the best pair based on the Euclidean distance between
the new and reference weight vectors.

While this method is comprehensive, it is computationally demanding, particularly
for large input datasets X and threshold values r that result in large set X′. The use of
nested loops in Algorithm 4 leads to a worst case time complexity of O(|X|2). Quadratic
complexity with respect to the number of input samples is prohibitive in the context of

20

4 Converting Neural Networks to Sampled Networks

−2 −1 0 1 2
x1

−2

−1

0

1

2

x 2

1

3
8

6

2

7

5

4

9

10

x(1)

x(2)

w1,i

−2 −1 0 1 2
x1

−2

−1

0

1

2

x 2

1

3

8

6

2

7

5
4

9

10

x(1)

x(2)

w1,i

Figure 4.3: The dataset contains 80 points in the range [−2, 2]2. The given network’s
hidden layer contain 10 nodes. Each plot shows the dataset points, the
neural network’s weight vectors, and the sampled points for each weight
vector. The plot on the left uses the Sampled Weight Closest Distance
approach with a radius of r = 0. The plot on the right uses a radius of
r = 0.05.

neural networks. Consequently, we aim to further reduce the time complexity through
reformulations of the problem.

The previous approach is effectively finding the point x(2) ∈ X \ {x(1)}, for a given
point x(1) and weight vector w1,i that the norm of the difference between the sampled
weight and the given weight, ∥∥∥∥∥ x(2) − x(1)

∥x(2) − x(1)∥2
− w1,i

∥∥∥∥∥ , (4.1)

is minimal.
Let x̂ ∈ RD be the point that would result in the norm of the difference equal to 0.

This point x̂ is not necessarily an element of the input dataset X. Our approach is to
find the point x(2) that is closest in Euclidean distance to that point x̂.

21

4 Converting Neural Networks to Sampled Networks

Plugging x̂ into the equation 4.1 and setting to zero, we have

x̂− x(1)

∥x̂− x(1)∥2
= w1,i. (4.2)

Taking the norm on both sides as∥∥∥∥∥ x̂− x(1)

∥x̂− x(1)∥2

∥∥∥∥∥ = ∥w1,i∥, (4.3)

gives
1

∥x̂− x(1)∥
= ∥w1,i∥. (4.4)

Now substituting 4.4 into 4.2 gives

(x̂− x(1))∥w1,i∥2 = w1,i,

which means
x̂ = x(1) +

w1,i

∥w1,i∥2 .

Using this result, for any given point x(1) and weight vector w1,i, we can compute the
point x̂ = x(1) + w

|w|2 that results in perfect alignment. Subsequently, we identify the

point x(2) from the input dataset that is nearest to this newly computed x̂. This process
can be optimized by utilizing specialized data structures such as KD-trees.

KD-trees, or k-dimensional trees, are used to organize points in a k-dimensional
space. The tree is constructed by recursively choosing a dimension and dividing the
data along the median of that dimension. The node having the median value defines a
hyperrectangle. KD-trees provide logarithmic time complexity for the nearest neighbor
search problem [Skr19].

In the Python implementation presented in Listing 1, we first construct the set X′.
We then iterate over each element x(1) in that set. In each iteration, the point x̂, which
would result in an optimal alignment, is computed. We then query the closest point to
it from our input dataset X to find x(2). If the closest point is equal to x(1), we query
the next nearest point. At the end, the pair out of all possible combinations that has the
best results is returned.

22

4 Converting Neural Networks to Sampled Networks

1 import numpy as np
2 from scipy.spatial import KDTree
3

4 def find_data_pair(X, weight, bias, r=0):
5 x_min = X[np.argmin(np.abs(np.dot(X, weight) - bias))]
6 M = np.max(np.abs(np.dot(X, weight) - bias))
7 X_prime = [x for x in X if abs(np.dot(x, weight) - bias) < r * M or x == x_min]
8

9 min_distance = float('inf')
10 x_1, x_2 = None, None
11 X_tree = KDTree(X)
12

13 for x_1_curr in X_prime:
14 x_hat = x_1_curr + weight / np.linalg.norm(weight) ** 2
15 dists, idxs = X_tree.query(x_hat, 2)
16 chosen_idx = 0 if dists[0] != 0 else 1
17 if dists[chosen_idx] < min_distance:
18 min_distance = dists[chosen_idx]
19 x_1, x_2 = x_1_curr, X_tree.data[idxs[chosen_idx]]
20 return x_1, x_2

Listing 1: The implementation in Python for the pair selection with approximity opti-
mization approach.

4.2.1.4 Minimizing the Bias Shift

For a neuron i, after selecting the data pair (x(1), x(2)), the new bias is computed as
b̂1,i = ⟨x(1), ŵ1,i⟩. As discussed in Section 4.2.1.1, this computation leads to a shift in
the neuron’s activation boundary. This shift occurs because x(1) is now mapped to
0, and thus defining a new activation boundary. Consequently, the original neuron’s
activation boundary has been repositioned to cross through x(1), the point closest to it
in the dataset.

To minimize the shift in the bias even further, we suggest projecting x(1) onto the
hyperplane H to derive x(1)proj. We also shift x(2) with the same amount to receive x(2)proj,

in a way that the relative position between x(1)proj and x(2)proj remains unchanged.

This modification does not alter ŵ1,i because the vector difference between x(2) and
x(1) remains unchanged. However, it does affect b̂1,i, which now becomes

b̂1,i = ⟨x(1)proj, ŵ1,i⟩.

23

4 Converting Neural Networks to Sampled Networks

This ensures that the mapped value of x(1)proj remains zero, maintaining consistency
with the activation transition.

This shift is executed after the data pair has been identified through the function
FindDataPair, and is demonstrated in Algorithm 5. Initially, d, the signed distance
from x(1) to the hyperplane H, is calculated. w

∥w∥ represents the unit vector in the
direction of the normal to the hyperplane H. The adjustment vector δ is obtained
by multiplying this unit vector with the distance d, and points from the point x(1)

to its projection on the hyperplane H. The pair is then shifted accordingly to obtain
x(1)proj and x(2)proj.

Algorithm 5: Shift x(1) and x(2) such that x(1)proj lies on the activation boundary.

Function ShiftToActivationBoundary(x(1), x(2), w, b):

d← ⟨x
(1),w⟩−b
∥w∥ ;

δ← d · w
∥w∥ ;

x(1)proj ← x(1) − δ;

x(2)proj ← x(2) − δ;

return x(1)proj, x(2)proj;

4.2.1.5 Input Dataset Augmentation

One concern that might arise is when the input dataset is not large enough and has an
insufficient number of points for the sampling algorithm. In this case, it would be chal-
lenging to find representative data pairs (x(1), x(2)) that would allow the construction
of a sampled network that aligns with the trained network.

While the input dataset is given and is a property of the problem, we can consider
techniques for data augmentation to artificially expand the dataset and thereby improve
the chances of finding representative data pairs. One method of data augmentation is
to add Gaussian noise to the input variables [GBC16].

In our implementation, for each data point, we generate n new samples following a
Gaussian distribution with a mean µ and a standard deviation σ. µ is set to 0 to avoid
bias in the noise. The values of n and σ can be parameterized. n essentially determines
how many times we multiply the number of samples of the input dataset. A large n
could lead to better accuracy but a drop in performance. σ determines how spread

24

4 Converting Neural Networks to Sampled Networks

out the new samples are. Low values of σ could lead to new points being close to
the original ones, and thus not significantly increasing the accuracy. High values of σ

could, however, lead to a loss of the underlying structure of the dataset.

4.2.2 Updating the Second Layer

Once the first layer of the network has been converted using the sampling approach
detailed in previous sections, the next step is to adapt the second layer so that the
overall function of the sampled network approximates that of the original network as
closely as possible. In the following part, we present two strategies to achieve this: first,
by retaining the weights of the second layer and adjusting only the biases; second, by
updating both the weights and biases to minimize a loss function between the output
of the sampled network and that of the original given network.

4.2.2.1 Only Bias Update of the Output Layer

Under the assumption that the weights and biases of the first layer in the sampled
network closely align with the original ones, we retain the weights of the second layer
as-is while only optimizing the biases.

We denote by Φ̂(l)(x) and Φ(l)(x) the outputs of the sampled network and the given
neural network at the point x on the lth layer, respectively. Each of these outputs is a
vector with a dimension of Nl . The goal is to calculate the bias b̂2,j for each neuron j in
the second layer in such a way that the mean squared error MSE between the output of
the given and the sampled network for that neuron is minimized. To do this, for each
neuron j in the second layer, we minimize the MSE function given by

MSE(b̂2,j) =
1
M

M

∑
i=1

(
Φ̂(2)

j (xi)−Φ(2)
j (xi)

)2

=
1
M

M

∑
i=1

(
⟨Φ̂(1)(xi), w2,j⟩ − b̂2,j −Φ(2)

j (xi)
)2

,

where Φ̂(2)
j (xi) and Φ(2)

j (xi) are the jth elements of the output vectors Φ̂(2)(xi) and

Φ(2)(xi), respectively. To find the value of b̂2,j that minimizes the MSE, we derive the
equation with respect to b̂2,j and set it to zero, which gives

1
M

M

∑
i=1
−2
(
⟨Φ̂(1)(xi), w2,j⟩ − b̂2,j −Φ(2)

j (xi)
)
= 0.

25

4 Converting Neural Networks to Sampled Networks

Solving for b̂2,j we find

b̂2,j =
∑M

i=1⟨Φ̂(1)(xi), w2,j⟩ −∑M
i=1 Φ(2)

j (xi)

M
.

We repeat this process for each node in the second layer to construct the bias vector
for the second layer, b̂2. As a result, the weights and biases of the second layer of the
sampled network are given by

Ŵ2 = W2, b̂2 =

b̂2,1

b̂2,2
...

b̂2,N2

 .

4.2.2.2 Weight and Bias Update with Linear Regression

The second strategy is to adjust both the weights and biases of the second layer to
minimize a loss between the output of the sampled network and the given network
output. The goal is to find a weight matrix and a bias vector that satisfy

Ŵ2, b̂2 = arg minL(Φ̂(2)(X), Φ(2)(X))

= arg minL(Φ̂(1)(X)Ŵ2 − b̂2, Φ(2)(X)).

Given that Ŵ2 ∈ RNl−1×Nl and b̂2 ∈ RNl , we stack the vector b̂2 onto the first row of
Ŵ2. We denote the resulting matrix by W, given by

W =

[
b̂2

Ŵ2

]
.

Similarly, we construct a matrix X by adding a first column of values equal to −1 to the
matrix Φ̂(1)(X) as

X =
[
−1 Φ̂(1)(X)

]
.

The output of the sampled network can now be expressed in terms of these matrices as

Φ̂(2)(X) = Φ̂(1)(X)Ŵ2 − b̂2 = XW.

The problem now reduces to finding the matrix W that minimizes the loss function,
by satisfying

W = arg minL(XW, Φ(2)(X)).

26

4 Converting Neural Networks to Sampled Networks

One method for solving this linear optimization problem is the least squares method
[Van05]. This method aims to minimize the squared discrepancies between the observed
data and their expected values. In our case, we want to find the matrix W that minimizes

LSE(W) =
M

∑
i=1
∥Φ̂(2)(xi)−Φ(2)(xi)∥2 = ∥Φ̂(2)(X)−Φ(2)(X)∥2 = ∥XW−Φ(2)(X)∥2.

Differentiating with respect to W yields

∂LSE(W)

∂W
= 2XT(XW−Φ(2)(X)).

Setting the derivative to zero and solving for W gives the result

W = (XTX)−1XTΦ(2)(X).

However, one notable limitaiton of LSE is when the input data samples are highly
correlated. The method can even fail to find a unique solution when the matrix
XTX is not invertible [HK70]. Arthur Hoerl and Robert Kennard proposed a method
called ridge regression to account for this [HK70]. On top of minimizing he square
differences between the observed data and their expected values, the ridge regression
also minimizes the magnitudes of the parameter W. The loss function is denoted as

J(W) = ∥XW−Φ(2)(X)∥2 + λ∥W∥2,

where λ is a regularization parameter that controls the amount of shrinkage applied to
the parameters. To find the minimum of this loss function, we set its gradient to zero,
giving

∂J(W)

∂W
= 2XT(XW−Φ(2)(X)) + 2λW = 0.

Solving for W, we find
W = (XTX + λI)−1XTΦ(2)(X).

Here, I is the identity matrix. This problem guarantees a unique solution for λ > 0,
since the matrix (XTX + λI) always possesses full rank.

Upon deriving the optimal W, we extract the second layer’s weights and biases using
the definition

W =

[
b̂2

Ŵ2

]
.

27

4 Converting Neural Networks to Sampled Networks

Discussion: While each of these two strategies presented to convert the second layer’s
parameters have their merits, there are some considerations that need to be addressed.

On the one hand, despite the simplicity of the bias-only update method, it may not
always produce an alignment with the original network that is as good as updating
both the weights and biases using regression. This especially happens when there are
underlying discrepancies that occurred when converting the first layer that the second
layer cannot correct with bias adjustments alone.

On the other hand, adjusting both weights and biases using linear regression, can
potentially achieve a better alignment in the output with the trained network. However,
this increased adaptability also introduces the risk of overfitting or shadowing underly-
ing discrepancies from the first layer. The ability to correct outputs in the second layer
using regression might mask some significant discrepancies occurred while converting
the first layer. In other words, while the final output of the sampled network may
appear accurate and matched that of the trained network, this does not necessarily
guarantee that the internal representations, especially in the first layer, are true to the
original network. This is especially concerning as regression from a large number of
nodes in the hidden layer to the output layer can produce satisfactory outputs, but
simultaneously mask potential high variances in the first layer’s weights and biases of
the sampled network.

28

5 Experiments and Results

In the previous chapter, we presented some approaches for converting a traditionally
trained neural network containing one hidden layer into a sampled network. In
the following, we will present and analyze the results obtained from each of these
approaches. As a recapitulation, we will revisit the following approaches in order:

• Converting the hidden layer:

1. Lowest angle approach

2. Weight norm preservation approach with threshold ratio r

3. Pair selection with proximity optimization

4. Minimizing the bias shift

5. Input dataset augmentation with Gaussian sampling

• Converting the second layer:

1. Only updating the biases

2. Updating the weights and biases with linear regression

5.1 Experimental Setup and Evaluation Metrics

First, we set up an input framework that will be used throughout the tests. Then, we
present the metrics used to evaluate the different conversion algorithms.

5.1.1 Input Framework

The input space used throughout the experiments is X = [−2, 2]2. The choice of a
2-dimensional space allows for better visualization and interpretability of angles and
norms. We opted for the interval [−2, 2] to provide more variance in the data compared
to the typical [−1, 1], without introducing an overly large range.

The target function that the given neural network is trained on is the Laplacian of
Gaussian (LoG) function, which is commonly used in the field of image processing

29

5 Experiments and Results

[MH80]. The function is defined as

LoG(x1, x2) = −
1

πσ4

(
1− x2

1 + x2
2

2σ2

)
e−

x2
1+x2

2
2σ2 . (5.1)

The LoG function maps from X to R. The value of σ is chosen to be 0.5. The plot of
the function in the 3D space is shown in Figure 5.1.

−2
0

2−2
0

2

−4

−2

0

x1 x2

Lo
G
(x

1,
x 2
)

Laplacian of Gaussian

Figure 5.1: Plot of the Laplacian of Gaussian function with σ = 0.5 over the input space
[−2, 2]2

The neural network we aim to convert into a sampled network has input and output
dimensions of N0 = 2 and N2 = 1, respectively. It contains a single hidden layer
with N1 = 100 nodes. This network is trained with the Adam optimizer on the target
function using 5,000 data points. The training minimizes the mean squared error (MSE)
loss function, spans 150 epochs, has a validation split of 0.2, and is initialized based on
He et al. [He+15]. After training, the network achieves a loss of 0.0287 on the training
set and 0.0308 on the validation set.

5.1.2 Evaluation Metrics

The metrics we use to assess the conversion measure how closely the converted sampled
network matches the trained neural network. Essentially, they measure the similarity
between the sampled weights and biases and the trained weights and biases of the
initial neural network, as well as how well the output of the sampled network aligns
with the trained network’s output. More specifically, the metrics include:

Measures of similarity between the networks’ parameters:

30

5 Experiments and Results

– Weight vectors angle mean (the lower the better): It is equal to the mean of the
angle differences between each weight vector of the trained network’s hidden layer
w1,i and the corresponding weight vector of the sampled network ŵ1,i.

– Weight norms Mean Absolute Error (MAE, the lower the better): This metric
calculates the average of the absolute differences between the norms of the weights
in the initial network’s hidden layer w1,i and the norms of the corresponding
weights in the sampled network ŵ1,i.

– Weight norms correlation (the closer to 1 the better): This measures the correlation
between the sampled network’s weight and the trained network’s weight norms.

– Biases Mean Absolute Error (MAE, the lower the better): Similarly, this metric
computes the average of the absolute differences between the biases in the initial
network’s hidden layer b1,i and the biases of the sampled network b̂1,i.

Measures of similarity between the networks’ outputs:

– Mean Squared Error of the output (MSE, the lower the better): This metric
calculates the mean squared errors between the outputs of the sampled network
and the trained network. To compute this, we use a test dataset Xtest with
Mtest = 1250 points that are randomly and uniformly distributed over the input
space X . The formula is given by

1
Mtest

Mtest

∑
i=1
∥Φ̂(xi)−Φ(xi)∥2.

– Coefficient of Determination (R2 score, the closer to 1 the better): The R2 score
represents the proportion of the variance in the output of the converted sampled
network that is predictable from the output of the trained network. It is defined as

R2 = 1− MSE
Var(Φ(Xtest))

.

Taking into account the remarks raised in the discussion in Paragraph 4.2.2.2, to
obtain a more representable and transparent outcome from the first layer’s conversion
methods, we will only update the bias of the second layer while retaining the weights
from the initial trained network.

5.2 Results and Analysis

After establishing the test framework and evaluation metrics, we test and analyze each
approach to the conversion algorithm. Each of the following subsections begins with a
brief description of a conversion approach, followed by a discussion of its results.

31

5 Experiments and Results

5.2.1 Lowest Angle Approach

This approach aims to create sampled weights that align closely in direction with the
weight vectors of the trained network. The trained neural network to be converted
is the same as described in Section 5.1. The input dataset X used for the sampling
approaches contains M = 1000 points, randomly and uniformly distributed over the
input space X .

The evaluation of the output is given by the results in Table 5.1. Analyzing the results,
we can make several observations.

The mean of the angles between the sampled and the initial weight vectors is
0.83 degrees, suggesting that the directions of the vectors are generally well-aligned.
However, there is a considerable difference in the weight norms, evidenced by a mean
absolute error (MAE) between the norms of 1.019. This idea is further supported by the
low correlation value of 0.1988, indicating a weak relationship between the norms of
the trained weights and those of theconverted sampled weights.

This significant difference in norms has a noticeable impact on the output, leading
to a high discrepancy between the outputs of the trained and the sampled networks.
Indeed, the high MSE value of 7.53, with an extremely low R2 score of -8.65, manifest
the mismatch between the outputs of the two networks.

Table 5.1: The test metrics for the lowest angle approach show a considerably low angle
mean between initial and sampled weights. The outputs, however, do not
align well.

Metric Value
Angle mean (degrees) 0.83
Weight norms MAE 1.019
Weight norms Correlation 0.1988
Bias difference MAE 0.37
MSE between the outputs 7.5308
R2 score -8.65

5.2.2 Weight Norm Preservation Approach with Threshold ratio r

The objective of this method is to address the issues that arise with the last approach
by identifying sampled weights that match the weights of the initial network, both in
angle and magnitude. Moreover, for a broader range of potential sampling pairs, a
threshold ratio r is introduced, allowing more flexibility in selecting the first point x(1)

32

5 Experiments and Results

of the sampling pair.

The value of r used in the tests is r = 0.04. The choice of this value is explained at
the end of this section. The results presented in Table 5.2 allow for the extraction of
several key observations.

Initially, we observe a significant reduction in the weight norms MAE, compared
to the last approach, which now stands at a value of 0.008. Moreover, the correlation
is closer to 1, recorded at a value of 0.9997. This indicates that the current approach
performs better than the first one in creating sampled weights that better match the
trained ones.

The mean angle between the sampled weight and trained weight vectors is reduced
to 0.29 degrees. Although the previous method only focuses on minimizing the angle,
the introduction of the ratio r helped in further reduction of the angle mean. This is
because the threshold ratio r extends the range for selecting the first point x(1) of the
sampling pair. This extended range allows a higher number of possible combinations,
resulting in a lower angle mean.

Concerning the bias, one might think that introducing the threshold ratio r and
allowing more points that are further away from the activation boundary to be a
potential x(1) point might cause the sampled bias to decay. The definition of the
sampled bias for a certain neuron i, b̂1,i = ⟨x(1), ŵ1,i⟩, entails that for the same weight
vector, the closer x(1) is to the activation boundary, the closer b̂1,i is to b1,i. However,
in this approach, the closer alignment of the sampled weights ŵ1,i with w1,i results in
decreased bias decay. The mean absolute error between the sampled biases and the
initial biases is actually lower than the first approach, with a value of 0.108.

This better alignment between the parameters of the transformed sampled network
and those of the initial network leads to improved accuracy in the output. This is
reflected in a lower MSE between the outputs, noted at 0.0542, and an R2 score that is
closer to 1, with a value of 0.9.

Figures 5.2 and 5.3 visualize the differences in weights and biases of the sampled
and trained networks’ hidden layer using the first approach and this current approach
respectively. In the upper plot of Figure 5.2, we observe that the weight norms are
uncorrelated when applying the lowest angle approach. This issue is mitigated in the
norm preservation approach, where a closer match with a lower MAE of the weight
norms is clear. Furthermore, the sampled biases more accurately reflect the trained
ones, as shown in the lower plots of both figures.

The choice of the value for r plays a crucial role in conversion process. As discussed
in Chapter 4, a lower value of r might be too restrictive, reverting to the initial problem.
In contrast, a larger value of r might introduce points farther from the activation

33

5 Experiments and Results

Table 5.2: The test metrics for the weight norm preservation approach with threshold
ratio r show a better alignment in the model’s parameters, with lower dis-
crepancies in the output of the two networks.

Metric Value
Angle mean 0.29
Weight norms MAE 0.008
Weight norms Correlation 0.9997
Bias difference MAE 0.108
MSE between the outputs 0.0542
R2 score 0.9

boundary, leading to a larger bias shift. To find the best value for r, we conducted a
hyperparameter search. Figure 5.4 shows that the minimum mean square error between
the outputs of the initial network and the converted sampled network, as well as the
minimum mean absolute error of the biases, occurs at a value above zero, specifically
at r = 0.04. Larger values of r result in an increase in both the output MSE and the bias
MAE.

We will use this sampling approach as a reference for comparison for the other
methods that will come in the following. Moreover, we apply the bias shift minimization
and the data augmentation techniques on this sampling approach.

5.2.3 Pair Selection with Proximity Optimization

This approach is very similar to the previous one, namely the weight norm preservation
approach. For a neuron i, after selecting the first point x(1) of the pair, we first calculate
the point x̂ that would, in theory, result in a perfect alignment between the resulting
sampled weight ŵ1,i and the initial weight w1,i. This point is given by

x̂ = x(1) +
w1,i

∥w1,i∥2 .

Next, we find the point nearest to it from the input dataset using a special data structure
called a KD-tree. The main goal here is to reduce the runtime complexity from O(n2)

to O(n log(n)) by leveraging the properties of KD-trees.

To compare this conversion method with the previous one, we tested both methods
on the same input set X and the neural network described in Section 5.1.

34

5 Experiments and Results

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

0

10

20

30

40

50

A
ng

le
(d

eg
re

es
)

Weight differences
Angle mean: 0.89

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

0

2

4

6

B
ia

s
V
al

ue

Bias differences
b1,i

b̂1,i

MAE=0.219

0

2

4

6

8

10

W
ei

gh
t

N
or

m

∥w1,i∥
∥ŵ1,i∥
MAE=0.851

Figure 5.2: The two plots illustrate the dif-
ferences in the hidden layer
weights and biases between the
sampled and initial network, as
determined by the lowest angle
approach.

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

0.0

0.5

1.0

1.5

2.0

A
ng

le
(d

eg
re

es
)

Weight differences
Angle mean: 0.38

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

0

1

B
ia

s
V
al

ue

Bias differences
b1,i

b̂1,i

MAE=0.075

0.5

1.0

1.5

2.0

2.5

W
ei

gh
t

N
or

m

∥w1,i∥
∥ŵ1,i∥
MAE=0.009

Figure 5.3: The two plots illustrate the dif-
ferences in the hidden layer
weights and biases between
the sampled and initial net-
work, as determined using the
weight norm preservation ap-
proach with the threshold ratio.

The resulting sampled network of this method is very similar to the sampled network
produced by the previous method, the weight norm preservation approach. In fact, in
our tests, on average, 98 out of the 100 sampled pairs (x(1), x(2)) were chosen identically
in both methods, resulting in identical sampled weights and biases between the two
converted sampled networks. For the different pairs, the differences between the
resulting sampled weights and biases between the two algorithms were very minimal.

However, there is a significant difference in runtime. The runtime was measured 5
times on datasets of different sizes, and the average is shown in Table 5.3. We observe
that there is a significant decrease in runtime, especially for large datasets.

35

5 Experiments and Results

0.0 0.1 0.2 0.3 0.4

ratio r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
ia

s
M

A
E

Output MSE and Bias MAE on Various Values of r
Bias MAE

0.0

0.5

1.0

1.5

2.0

M
SE

of
th

e
ou

tp
ut

s

MSE of the outputs

Figure 5.4: This plot illustrates the relationship between the value of r and both the
MAE of the biases and the MSE of the outputs. r = 0.04 marks the minimum
point on both plots, beyond which both plots show an increasing trend.

Table 5.3: The table compares runtime in seconds for both the Weight Norm Preserva-
tion (2nd method) and the Proximity Optimization (3rd method) approaches
across different dataset sizes of X.

Method
|X| = 1000
runtime (s)

|X| = 5000
runtime (s)

|X| = 10000
runtime (s)

Weight Norm Preservation (2nd method) 0.572 8.612 32.047
Proximity Optimization (3rd method) 0.360 1.734 3.158

5.2.3.1 Minimizing the Bias Shift

This method aims to reduce the bias shift by adjusting the first point, x(1), to lie on the
activation boundary hyperplane H. To achieve this, after choosing the pair (x(1), x(2)),
we project x(1) onto the hyperplane H, resulting in x(1)proj. Similarly, x(2) is shifted by an

equivalent amount to ensure the relative position between x(1) and x(2) is maintained,
and thus x(2)proj − x(1)proj = x(2) − x(1). This ensures that the sampled vector ŵ1,i remains

constant. Only the bias is modified, becoming b̂1,i = ⟨x(1)proj, ŵ1,i⟩.

To test this method, we apply it after choosing the pair using the weight norm preser-
vation approach (second approach). The left plot in Figure 5.5 displays the sampled
biases compared to the initial biases for each neuron in the hidden layer, without using
the bias shift minimization method. We note some discrepancies between the sampled

36

5 Experiments and Results

and initial biases, with a mean absolute error (MAE) of 0.078. However, when using the
bias shift minimization technique, there is a reduction in bias discrepancies, resulting in
a decreased mean absolute error (MAE) of 0.009. As seen in the right plot of the Figure
5.5, the sampled bias b̂1,i for each neuron i aligns almost perfectly with the initial bias
b1,i. We note that the sampled weights remain unchanged with or without the use of
the bias shift minimization technique.

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ng

le
(d

eg
re

es
)

Weight differences
Angle mean: 0.39

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

−1

0

1

2

B
ia

s
V
al

ue

Bias differences
b1,i

b̂1,i

MAE=0.078

0.5

1.0

1.5

2.0

2.5

W
ei

gh
t

N
or

m
∥w1,i∥
∥ŵ1,i∥
MAE=0.010

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ng

le
(d

eg
re

es
)

Weight differences
Angle mean: 0.37

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

−1

0

1

2

B
ia

s
V
al

ue

Bias differences
b1,i

b̂1,i

MAE=0.009

0.5

1.0

1.5

2.0

2.5

W
ei

gh
t

N
or

m

∥w1,i∥
∥ŵ1,i∥
MAE=0.009

Figure 5.5: Comparison of biases in the initial and converted sampled networks. The
left plot shows the biases without the bias shift minimization technique,
while the right shows the biases when the bias shift minimization is applied.

The improved bias alignment results in a more accurate alignment between the output
of the sampled network and the output of the initial network. Table 5.4 displays the test
metrics for the weight norm preservation approach using the bias shift minimization
technique. Since the sampled weights remain unchanged with or without using the
bias shift minimization technique, the test metrics for the weights also remain the same.
Specifically, the angle mean, the weight norms mean absolute error, and the weight
norms correlation are identical to those in Table 5.2. As mentioned in the previous
paragraph, the biases mean absolute error has decreased to 0.009. The MSE between
the output of the sampled network and the initial network has been reduced to 0.002,
and the R2 score is nearer to 1 with a value of 0.9918.

5.2.3.2 Input Dataset Augmentation

This method addresses the issue posed by a low number of input samples by generat-
ing new data points through the addition of Gaussian Noise. In the experiments, we
employ the weight norm preservation approach (2nd method) with r = 0.04. Initially,
this conversion approach is applied using a dataset comprising M = 100 samples.
Subsequently, Gaussian noise with parameters n = 10 and σ = 0.5 is added, leading to
an augmented dataset of M = 1000 samples. We proceed to convert the neural network

37

5 Experiments and Results

Table 5.4: The table shows the test metrics evaluating the effectiveness of the bias shift
minimization technique when applied after sampling the pair using the
weight norm preservation approach.

Metric Value
Angle mean 0.29
Weight norms MAE 0.008
Weight norms Correlation 0.9997
Bias difference MAE 0.009
MSE between the outputs 0.002
R2 score 0.9918

using both the initial and the augmented datasets.

Figure 5.6 presents the conversion results for the neural network when sampling
from the original dataset, and Figure 5.7 shows the results when using the augmented
dataset. Notably, when using the dataset augmentation, a better alignment in biases and
weight vectors is observed. Furthermore, the MSE of the output decreases, dropping
from 2.1831 with the original dataset to 0.0626 when using the augmented dataset.

38

5 Experiments and Results

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

0

5

10

15

20

A
ng

le
(d

eg
re

es
)

Weight differences
Angle mean: 5.58

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

−1

0

1

2

B
ia

s
V
al

ue

Bias differences
b1,i

b̂1,i

MAE=0.193

0.5

1.0

1.5

2.0

2.5

3.0

W
ei

gh
t

N
or

m

∥w1,i∥
∥ŵ1,i∥
MAE=0.198

Figure 5.6: The two plots show the differ-
ences in the weights and biases
of the initial and converted net-
work when the dataset with 100
points is used for the sampling.

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ng

le
(d

eg
re

es
)

Weight differences
Angle mean: 0.40

0 20 40 60 80 100

Node Index i (sorted by weights’ angle)

−1

0

1

2

B
ia

s
V
al

ue

Bias differences
b1,i

b̂1,i

MAE=0.107

0.5

1.0

1.5

2.0

2.5

3.0

W
ei

gh
t

N
or

m

∥w1,i∥
∥ŵ1,i∥
MAE=0.012

Figure 5.7: The two plots show the differ-
ences in the weights and biases
of the initial and converted net-
work when the dataset is aug-
ment using the Gaussian Noise
with parameters n = 10 and
σ = 0.5.

39

6 Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed and analyzed techniques to convert traditionally trained
neural networks into sampled networks. The key motivation was to leverage the in-
herent interpretability of sampled networks to provide more transparency into already
trained neural networks. Specifically, sampled networks directly link the input dataset
to the network’s parameters by constructing the weights and biases using pairs of data
points. The weight is derived from the difference between these two points divided by
the squared norm of their distance, while the bias is computed as the inner product of
the derived weight and one of the two points.

Our implementation focused on converting neural networks containing one single
hidden layer and an output layer and employing the ReLU activation function. The
main requirement of the conversion process is that the resultant sampled network
maintains the geometrical properties of the weights and biases of the trained networks
in order to have similar outputs.

For the hidden layer, in order to convert the weights, we proposed three methods for
selecting data pairs. The first one, the lowest angle approach, creates sampled weights
that closely match the direction of the trained weights by minimizing the angle between
the trained and sampled weight vectors. While the direction of the weight vector is
important, as it tells which direction of the input space it emphasizes, the magnitude
of the weight vector is also crucial. It indicates how strong this emphasis is. For that,
we introduced the weight norm preservation approach, which, as the name suggests,
samples a data pair that minimizes the norm of the difference between the trained and
sampled weight vector. This method, while it may provide the most accuracy, has a
worst case runtime complexity in terms of the number of input data of O(n2) . For that,
we introduced the pair selection with proximity optimization approach that makes use
of a special data structure to optimize the search. With this, the time complexity is
lowered to O(n log(n)).

As for the bias, all the previous methods result in a minor bias shift from the trained
one. For the ReLU activation function, this also shift the activation boundary of the
neuron, thus altering the network’s dynamics. To address that, we added the possibility

40

6 Conclusion and Future Work

of projecting the first of the sampling pair onto the activation boundary of the neuron.
Another issue arises when the sampling dataset is not large enough and not repre-

sentative of the overall directionality and geometry of the weights and biases of the
trained network. For that, we added the possibility of generating new data points using
Gaussian sampling.

For the output layer, we can either retain the original weights and only update the
biases by minimizing the mean error between the output of the sampled and trained
network, or we can update both the weights and biases in the sampled network by
using the Ridge regression. While the second method might yield more accurate results,
retaining the weights and only updating the bias provides more transparency with the
trained network.

Overall, this thesis provides an interpretability means for traditionally trained neural
networks by making use of the properties of sampled networks.

6.2 Future Work

While this thesis focuses on converting a simple neural network containing one hidden
layer, the conversion techniques could be extended to larger and deeper neural archi-
tectures. The pair selection strategies may need to be adapted for networks with more
complex representations.

Another potential area of future work is developing theoretical guarantees on the
equivalence between a trained network and its sampled converted version.

The conversion process could also be extended to support different network architec-
tures, activation functions, and training algorithms.

Finally, it would be interesting to apply the conversion on neural networks trained
on real-world datasets. The tests and experiments in this thesis were run on synthetic
and scaled datasets. This helped with better interpreting the angles and norms in data
pairs. That might not be optimal with higher-dimensional raw data.

41

List of Figures

2.1 A simple diagram illustrating the structure of a single neuron 5
2.2 This diagram illustrates the hierarchy of layers in a neural network. . . 6

4.1 A two dimentional input dataset is plotted. The blue line is the activation
boundary of the neuron. The distances to that activation boundary, as
well the original and the sampled weight are shown. 18

4.2 The upper plot shows the images of the input points in the original
trained network. The lower plot shows the images in the sampled
network. The red arrows in the upper plot shows the bias shift that
happens in the conversion process. 18

4.3 The dataset contains 80 points in the range [−2, 2]2. The given network’s
hidden layer contain 10 nodes. Each plot shows the dataset points, the
neural network’s weight vectors, and the sampled points for each weight
vector. The plot on the left uses the Sampled Weight Closest Distance
approach with a radius of r = 0. The plot on the right uses a radius of
r = 0.05. 21

5.1 Plot of the Laplacian of Gaussian function with σ = 0.5 over the input
space [−2, 2]2 . 30

5.2 The two plots illustrate the differences in the hidden layer weights and
biases between the sampled and initial network, as determined by the
lowest angle approach. 35

5.3 The two plots illustrate the differences in the hidden layer weights and
biases between the sampled and initial network, as determined using the
weight norm preservation approach with the threshold ratio. 35

5.4 This plot illustrates the relationship between the value of r and both
the MAE of the biases and the MSE of the outputs. r = 0.04 marks
the minimum point on both plots, beyond which both plots show an
increasing trend. 36

5.5 Comparison of biases in the initial and converted sampled networks. The
left plot shows the biases without the bias shift minimization technique,
while the right shows the biases when the bias shift minimization is
applied. 37

42

List of Figures

5.6 The two plots show the differences in the weights and biases of the initial
and converted network when the dataset with 100 points is used for the
sampling. 39

5.7 The two plots show the differences in the weights and biases of the initial
and converted network when the dataset is augment using the Gaussian
Noise with parameters n = 10 and σ = 0.5. 39

43

List of Tables

5.1 The test metrics for the lowest angle approach show a considerably low
angle mean between initial and sampled weights. The outputs, however,
do not align well. 32

5.2 The test metrics for the weight norm preservation approach with thresh-
old ratio r show a better alignment in the model’s parameters, with lower
discrepancies in the output of the two networks. 34

5.3 The table compares runtime in seconds for both the Weight Norm Preser-
vation (2nd method) and the Proximity Optimization (3rd method) ap-
proaches across different dataset sizes of X. 36

5.4 The table shows the test metrics evaluating the effectiveness of the bias
shift minimization technique when applied after sampling the pair using
the weight norm preservation approach. 38

44

Bibliography

[Agg18] C. C. Aggarwal. Neural Networks and Deep Learning. A Textbook. Cham:
Springer, 2018, p. 497. isbn: 978-3-319-94462-3. doi: 10.1007/978-3-319-
94463-0.

[Ako13] D. Akomolafe. “Scholars Research Library Comparative study of biological
and artificial neural networks.” In: European Journal of Applied Engineering
and Scientific Research 2 (Jan. 2013), pp. 36–46.

[Ama+13] F. Amato, A. López-Rodríguez, E. Peña-Méndez, P. Vaňhara, A. Hampl,
and J. Havel. “Artificial neural networks in medical diagnosis.” In: J Appl
Biomed 11 (Dec. 2013), pp. 47–58. doi: 10.2478/v10136-012-0031-x.

[Bol+23] E. L. Bolager, I. Burak, C. Datar, Q. Sun, and F. Dietrich. Sampling weights
of deep neural networks. 2023. arXiv: 2306.16830 [cs.LG].

[Cas16] D. Castelvecchi. “Can we open the black box of AI?” In: Nature News
538.7623 (2016), pp. 20–23.

[DHS01] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. 2nd. John
Wiley & Sons, 2001.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[He+15] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. 2015. arXiv: 1502.01852
[cs.CV].

[HK70] A. E. Hoerl and R. W. Kennard. “Ridge Regression: Biased Estimation for
Nonorthogonal Problems.” In: Technometrics 12.1 (1970).

[HSS12] G. Hinton, N. Srivastava, and K. Swersky. Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent. Lecture notes. 2012.

[KB14] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization.” In:
arXiv preprint arXiv:1412.6980 (2014).

45

https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.2478/v10136-012-0031-x
https://arxiv.org/abs/2306.16830
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852

Bibliography

[LLB09] L. J. Lancashire, C. Lemetre, and G. R. Ball. “An introduction to artificial
neural networks in bioinformatics–application to complex microarray and
mass spectrometry datasets in cancer studies.” In: Briefings in Bioinformatics
10.3 (May 2009). Epub 2009 Mar 23, pp. 315–329. issn: 19307287. doi:
10.1093/bib/bbp012.

[MH80] D. Marr and E. Hildreth. “Theory of Edge Detection.” In: Proceedings of the
Royal Society of London. Series B, Biological Sciences 207.1167 (1980), pp. 187–
217.

[MM97] T. M. Mitchell and T. M. Mitchell. Machine learning. Vol. 1. 9. McGraw-hill
New York, 1997.

[Pol64] B. T. Polyak. “Some methods of speeding up the convergence of iteration
methods.” In: USSR Computational Mathematics and Mathematical Physics 4.5
(1964), pp. 1–17.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations
by back-propagating errors.” In: Nature 323.6088 (1986), pp. 533–536.

[Skr19] M. Skrodzki. The k-d tree data structure and a proof for neighborhood computation
in expected logarithmic time. 2019. arXiv: 1903.04936 [cs.DS].

[SSA20] S. Sharma, S. Sharma, and A. Athaiya. “ACTIVATION FUNCTIONS IN
NEURAL NETWORKS.” In: International Journal of Engineering Applied
Sciences and Technology 04 (May 2020), pp. 310–316. doi: 10.33564/IJEAST.
2020.v04i12.054.

[Van05] S. A. Van de Geer. “Least Squares Estimation.” In: Encyclopedia of Statistics
in Behavioral Science. Ed. by B. S. Everitt and D. C. Howell. Vol. 2. Chichester:
John Wiley & Sons, Ltd, 2005, pp. 1041–1045. isbn: 978-0-470-86080-9.

46

https://doi.org/10.1093/bib/bbp012
https://arxiv.org/abs/1903.04936
https://doi.org/10.33564/IJEAST.2020.v04i12.054
https://doi.org/10.33564/IJEAST.2020.v04i12.054

	Abstract
	Contents
	Introduction
	Neural Networks
	Modelling a single neuron
	Multilayered Neural Networks
	Training Neural Networks
	Classical Gradient Descent
	Adam

	Sampled Networks
	Introduction to Sampled Networks
	Constructing Sampled Networks
	Definition of a Sampled Network
	SWIM Algorithm

	Converting Neural Networks to Sampled Networks
	Motivation
	Implementation
	Sampling for the Hidden Layer
	Lowest Angle Approach
	Threshold Ratio and Weight Norm Preservation Approach
	Pair Selection with Proximity Optimization
	Minimizing the Bias Shift
	Input Dataset Augmentation

	Updating the Second Layer
	Only Bias Update of the Output Layer
	Weight and Bias Update with Linear Regression

	Experiments and Results
	Experimental Setup and Evaluation Metrics
	Input Framework
	Evaluation Metrics

	Results and Analysis
	Lowest Angle Approach
	Weight Norm Preservation Approach with Threshold ratio r
	Pair Selection with Proximity Optimization
	Minimizing the Bias Shift
	Input Dataset Augmentation

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

