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Abstract

Extended Dynamic Mode Decomposition (EDMD) is a powerful data-driven numeri-
cal method based on the theoretical concepts of Koopman operator theory. It can be used
to approximate and predict the behavior of a dynamical system using sample data with-
out requiring any knowledge of the underlying dynamics. This is particularly useful for
predicting the dynamics of nonlinear systems by summarizing them into a linear opera-
tor, which acts on a space of observable functions to create a reduced-order model of the
original system. Kernel EDMD is an extension of EDMD that uses a kernel function to effi-
ciently utilize a high-dimensional dictionary of observables. The theory of Kernel EDMD
is well established; however, the accuracy of its practical implementation is highly depen-
dent on the choice of functions in the dictionary. This thesis details a method for finding
an optimal choice of dictionary functions through the use of kernel parameter learning
with a gradient method called kernel EDMD-DL. This method is applied to numerically
generated data from two different dynamical systems, a hopf bifurcation and a hydro-
gen combustion reaction in a constant volume transient CSTR. The data is successfully
reconstructed for both systems, and the accuracy is reported along with an overview of
the techniques used for optimal hyperparameter tuning and data cleanup, which are crit-
ical components to the success of the method. A strong emphasis is made on using the
kernel EDMDL-DL method for making out-of-sample predictions. The knowledge gained
through this work can be used to enhance an understanding of the capabilities of kernel
EDMDL-ML and how it can be applied to complex nonlinear systems existing in engineer-
ing and science applications.
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1 Introduction

In modern society, numerical modeling methods go hand in hand with classical engineer-
ing and science disciplines. Understanding and predicting the behavior of systems that
evolve over time is critical to any application in these fields. The ability to model such
dynamical systems is very useful because predictions with numerical simulations can en-
hance understanding of the system beyond the bounds of experimental testing to acceler-
ate research and development. Physical systems encountered in real-world situations are
extremely complex, and most often, the mathematical equations governing the system’s
evolution are unknown. These dynamic systems can be extremely high dimensional and it
can be the case that not all of the variables contributing to the system’s evolution are even
identified. These aspects can cause difficulty when one wants to use numerical modeling.

Currently, many machine learning techniques have been designed to take advantage
of the current technological advances to collect and process high quantities of data in an
attempt to model such complex systems, for example, physics-informed neural networks
[ 25 ] and time-lagged autoencoders [  30 ]. Another such method, called Extended Dynamic
Mode Decomposition (EDMD), is a comparatively efficient model that requires less data
than a Neural network [ 1 ]. It is also a completely data-driven numerical method used
for modeling dynamic systems. EDMD is able to recreate the dynamics of an underly-
ing system only from sampled data points of the evolving system with no knowledge of
the underlying dynamical system governing equations. The EDMD method uses sampled
data to calculate a linear operator, which acts on a space of observable functions to create
a reduced-order approximation of the original system. Utilizing linear operators to ap-
proximate nonlinear dynamics holds the potential to significantly improve prediction and
control capabilities such complex systems [ 5 ].

EDMD is heavily based on the mathematics behind Dynamic Mode Decomposition
(DMD) [  27 ], and both methods are intimately connected with Koopman operator theory
[ 17 ]. This theory is based on the existence of an infinite dimensional linear operator that
can recreate the dynamics of a nonlinear dynamic system by trading nonlinearity for infi-
nite dimensionality. Both DMD and EDMD calculate a finite-dimensional approximation
for the Koopman operator. This operator can be used to recreate the underlying dynamical
system and predict the dynamics of the system outside of the data used to create it.

EDMD extends DMD in the sense that it allows for the incorporation of a broader range
of basis functions from which to combine and approximate the dynamic system [ 21 ]. It
maps the original data into a higher-dimensional feature space where the dynamics of the
system can be approximated linearly. While the theories of EDMD are well established, the
practical implementation is very difficult because the accuracy of the reconstruction of the
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1 Introduction

dynamic system is highly dependent upon the choice of basis functions. The appropriate
choice of basis functions can be unique to the underlying system and it is nearly impossible
for one to choose the right basis functions without any knowledge of the mathematical
construction of the underlying system.

The difficulty in choosing an appropriate set of basis functions is the motivation behind
kernel EDMD which augments EDMD with a kernel function that can represent a high
dimensional space of basis functions for a very low computational cost using the kernel
trick. There are many different types of kernel functions and each one represents a different
dictionary of basis functions. Some kernels have free parameters that can also affect the
characteristics of the functions represented by the kernel.

This thesis describes a method called Kernel EDMD-ML, which advances the concept of
kernel EDMD [ 3 ]. It employs the use of machine learning gradient methods to optimize the
free parameter in parameterized kernels. Essentially, this assists in finding an optimized
set of basis functions that best represent the underlying dynamic system.

The main goal of this thesis is to apply Kernel EDMD to two nonlinear dynamical sys-
tems with numerically generated data samples. The implementations are discussed in
detail, and a report is made on the accuracy of using the approximated linear operators to
reconstruct the original sample data and predictions outside the original data range. The
two systems used are the cubic Lotka-Volterra equations with a Hopf bifurcation and a
bifurcation created by a dynamic system representing the dynamics of hydrogen combus-
tion in a constant volume transient Continuous stirred tank reactor (CSTR) [ 20 ][ 7 ]. The
first dynamic system is well-studied and is a classic example of a system characterized by
rather simple nonlinear dynamics; thus, it is used as a proof of concept for both Kernel
EDMD and Kernel EDMD-DL. For the second system, only Kernel EDMD-MLis be ap-
plied. This is a much more complicated and higher-dimensional system. It provides an
excellent illustration of how Kernel EDMD-DL could potentially be employed to model
real-world experimental data.

The work of this thesis is split into three parts, the first part describes in detail the math-
ematical background behind Koopman operator theory, DMD, EDMD, kernel EDMD, and
kernel EDMD-ML. Then, in the second part, the kernel EDMD methods are applied to
the two dynamical systems. The hyperparameters are tuned and the most optimal im-
plementations of the methods are presented. These results are used to assess the efficacy
of the methods. Particular emphasis is placed on evaluating the precision of predictions
for the dynamic system beyond the scope of the sample data, as this highlights a critical
component of the method’s applicability to model real-world dynamic systems.
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2 State of the Art

2.1 Dynamical Systems and the Koopman Operator

As a big picture, Koopman Operator theory is a relatively modern approach to analyzing
nonlinear dynamic systems. Analysis of differential equations is essential in many fields
of science and engineering, often in the context of prediction, control, and optimization.
The first idea of the Koopman operator traces back to Bernard O. Koopman in 1931, who
presented the theory of an infinite dimensional linear operator which can recreate the dy-
namics of a nonlinear dynamic system trading nonlinearity for infinite dimensionality [ 17 ].
It provides a global understanding of the evolution of the system through one time iter-
ation. Initially, the Koopman Operator was directly connected to Ergodic theory but has
since been generalized and expanded upon in later works such as by the works of Mezic
et. al. [ 19 ]. The real application of the Koopman Operator is a data-driven approach, and
the accuracy is related to the amount of data used for analysis. As such, Koopman theory
has seen a surge in interest with modern computing power. As such, Koopman theory has
seen a surge in interest with modern computing power. The capacity to linearly represent
a nonlinear system enhances predictive capabilities by offering the opportunity to utilize
spectral analysis techniques effectively.

2.1.1 Linear Approximation of Nonlinear Systems

A system is defined as nonlinear when the change in output is not proportional to a change
in the input. This happens when the system does not exhibit additivity and homogeneity
both of which are required for the output to be a linear combination of the input variables.
Real-world problems are often nonlinear. These nonlinear dynamical systems are not al-
ways analytically solvable and can exhibit complex behavior such as periodic variation,
limit cycles, and bifurcations. They also contain more than one steady state which limits
the applicability of classical eigendecomposition [ 26 ]. Additionally, nonlinear systems are
sensitive to noisy data and small changes in the initial conditions. The usual approach
to analyzing a nonlinear system is to understand the geometry of families of solutions in
phase space as well as local linearizations near stability points [ 6 ][ 26 ].

Because the Koopman operator is a linear operator, the nonlinear system it represents
can be analyzed using traditional eigendecomposition techniques instead of geometric
techniques [  6 ]. Spectral decomposition of the infinite dimensional Koopman operator
completely characterizes the nonlinear system. For some simple select nonlinear systems,

3



2 State of the Art

the system can be represented by closed Koopman invariant subspaces, however, the ma-
jority of functions cannot be [ 5 ].

2.1.2 Dynamic Systems

Underlying Koopman Operator theory is the theory of dynamical systems. A dynamical
system describes how a point within a set evolves globally over time. This system is com-
posed of a triple including a phase spaceM, a rule that specifies how a point within the
phase space evolves with time ϕ, and a set of times T [ 16 ]. The rule is defined as

ϕ :M× T →M (2.1)

with a continuous-time dynamical system T ⊆ R and for a discrete dynamical system
T ⊆ Z.

Koopman theory considers a specific way to represent the behavior of a dynamic system.
In literature, the Koopman operator has been applied to many different types of discrete
and continuous dynamical systems. Abstractly, the Koopman operator exists for any for-
ward mapping; however, for the operator to be approximated, certain requirements of the
state space M (in the context of Koopman analysis, one generally considers M to be a
state space and not a full phase space) and mapping ϕ should be met. Some of these are
that the underlying state space should be finite-dimensional, compact, and observable or
measurable in some way [ 21 ]. It is also often assumed that the mapping is autonomous,
continuous, and deterministic. Most of the time, the dynamic system is defined over a
measure space with a measure-preserving map, but this is not necessary [ 6 ][ 8 ].

In this thesis, as in most cases in the literature, the Koopman operator is applied to
dynamic systems governed by a system of ordinary differential equations (ODEs). The
ODEs are continuous-time dynamical systems accompanied by appropriate boundary and
initial conditions with Lipschitz continuity. The evolution operator acts on states in the
state space. The states x are defined by a vector field in a Euclidean space x ∈ M ⊆ Rn,
(t, x(t)) ∈ U and U ⊆ T × Rn, and T ⊂ R. f : U → Rn is a continuous function that is
sufficiently differentiable. The initial conditions are also defined (t0, x0) ∈ U [ 16 ].

For the sake of simplicity, the ODEs considered are of the first order and autonomous.
ODEs of higher order can always be transformed into a system of first-order ODEs. Au-
tonomous means the t argument is not present on the right hand side. These conditions
result in an ODE of the form

d

dt
x(t) = f(x(t)). (2.2)

Although linear and nonlinear ODEs are applicable to Koopman analysis, nonlinear
ODEs are the most interesting because many techniques already exist for the analysis and
solution of linear ODEs. A non-linear first-order ODE is an ODE where f(x(t)) involves
nonlinear operations in x(t) (i.e. exponentiation). Koopman analysis can also be applied
to systems of ODEs. A system of ODEs is a set of two or more interconnected differential
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2.1 Dynamical Systems and the Koopman Operator

equations involving multiple unknown functions and their derivatives with respect to the
same independent variable.

2.1.3 Defining the Koopman Operator

The calculation of the Koopman operator is a data driven process so it is most natural to
consider discrete-time dynamic systems which are [ 21 ]

xn+1 = F (xn), x(n) ∈ RN , n ≥ 0 n ∈ N. (2.3)

Discrete-time dynamic systems can be induced from continuous ones by sampling a con-
tinuous time system at discrete time points [ 5 ], so the discrete-time evolution operator is
parameterized by the time step ∆t. Starting with the autonomous first ODE as defined in

 2.1.2 , the discrete system can be related to the continuous one through

F (x(t0)) = x(t0) +

∫ t0+∆t

t0

f(x(τ))dτ. (2.4)

A critical characteristic of the Koopman operator is that it does not act directly on the
states in the state space but rather describes how the scalar measurement functions (ob-
servables) defined on the state space evolve [ 21 ]. The observables are defined as

g :M→ R, (2.5)

which can be combined to create the vector-valued observable g :M→ RM

g(x) =



g1(x)
g2(x)
.
.
.

gM (x)

 , (2.6)

where gn belongs to some function space F . Usually, these functions belong to the Hilbert
space F = L2(M, ρ), which is endowed with its corresponding inner product and norm
[ 21 ]. In this thesis, we will only consider a mapping to the real numbers R ⊂ C.

The Koopman operator K describes the linear evolution of g as governed by the under-
lying dynamical system

Kg(xn) = g(F (xn)) = g(xn+1), (2.7)

where F (x(n)) is the discrete evolution operator of the dynamic system. The intent of the
Koopman operator is not to map states to states but to map functions over a state space to
functions over a state space. The Koopman operator controls the change of the observable
functions over time [ 31 ]. Equation  2.7 works for all observable functions over all states
x ∈M. The observable functions do not have to be linearly independent.

It is also possible to define the Koopman operator for continuous time dynamical sys-
tems directly instead of first having to discretize the underlying governing equation. This
however will not be discussed as it is not a topic of focus for this thesis.
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2 State of the Art

2.1.4 Linear Decomposition of the Koopman Operator

Because the Koopman operator is linear, it can be decomposed into its eigenvalues and
eigenvectors using traditional eigendecomposition techniques. The concept is the same
for both the discrete and continuous versions of the Koopman operator. The decomposi-
tion can then be used to construct eigenfunctions of the operator which provide a linear
summary of its action on the observables. An observable is an eigenfunction of the Koop-
man operator K if

φ(xn+1) = Kφ(xn) = λφ(xn). (2.8)

The eigenfunctions of the Koopman operator are represented by φ : M → C and the
eigenvalues by λ ∈ C. The set of eigenfunctions of the Koopman operator does not neces-
sarily form a complete basis for the function space of observables. The observables can be
rewritten as the projection onto the span of the eigenfunctions as in [ 6 ]

gi(x) =
∞∑
j=1

φj(x)vij . (2.9)

.
Expanding  2.10 to the vector of all observable functions, a vector of coefficients vj(ψ) ∈

CN called the Koopman Modes can be uncovered by using

g(x) =

∞∑
j=1

φj(x)vj . (2.10)

The eigenvalues λ represent the time-dependent behavior of the system, the eigenfunc-
tions are determined by the initial conditions φ(x), and the Koopman modes are the pro-
jection of the observables onto the space spanned by the eigenfunctions vj(x) [ 6 ]. With this
in mind, the original states of the system can be reconstructed by a tuple called Koopman
mode decomposition [ 5 ], which is

g(xn) = Kng(x0) =
∞∑
j=0

λnj φj(x0)vj . (2.11)

Figure  3.2 shows a quick summary of the Koopman operator theory as it is covered in
section  2.1 taken from [ 31 ]. It describes graphically how the Koopman Eigenfunctions and
Koopman Modes relate to the underlying dynamical system.

A final topic to cover is the Koopman invariant subspace. This is a space composed of
the span of all observable functions

g = a1g1 + a2g2...+ apgp, (2.12)

of which remain in the subspace after being acted upon by the Koopman operator through

Kg = β1g1 + β2g2...+ βpgp. (2.13)

6



2.2 Data Driven Methods for Koopman Approximation

Figure 2.1: Illustration of Koopman Operator Theory taken from [ 31 ].

Any set of the eigenfunctions of the Koopman operator will span an invariant subspace
[ 4 ]. If one can find a subset of equations that are closed under the dynamics operator, then
a finite number of observable functions is possible as well as a finite-dimensional linear
Koopman operator. For many systems, however, it may still be that an infinite number of
functions within the invariant subspace are required.

2.2 Data Driven Methods for Koopman Approximation

To calculate a finite approximation of the Koopman operator, the governing equations for
the underlying dynamics of the system do not need to be known. Rather, the Koopman
operator can be approximated from either experimental or numerically calculated samples
of the system. These are called data driven methods. These methods focus on finding a
finite dimensional representation of the Koopman operator. In this case, a subset of the
Koopman invariant subspace is searched for which captures the greatest variation in the
dynamics. Some common data driven methods are DMD [ 27 ], Generalized Laplace analy-
sis [ 6 ], the Ulam Galerkin method [  9 ], Space identification of nonlinear dynamics (sINDy)
[ 5 ], and Extended Dynamic Mode Decomposition (EDMD) [  31 ]. Data-driven methods
generate a finite dimensional linear approximation of the Koopman operator with spec-
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2 State of the Art

tral properties which are similar to those of the true operator [ 21 ]. The Kernel EDMD-DL
method described in this thesis leverages EDMD which is heavily based on the traditional
DMD method. The next sections will first review the critical components of the traditional
DMD, then discuss how the EDMD method expands upon DMD.

2.2.1 DMD Method

EDMD gets its origins from the original DMD method which is likely the most popular
method due to its numerical stability and simplicity. DMD unrelated to the Koopman op-
erator, finds an approximate linear system that advances high dimensional measurements
of a state space in time. It also does not require any understanding of the underlying
dynamical system and instead relies purely on data [ 5 ]. If the DMD method is applied to
finding a finite dimensional approximation of the Koopman operator, the final result of the
algorithm is the group of eigenfunctions and eigenvalues of the Koopman operator which
can be, in the end, combined to recreate the dynamics of the system. There are many dif-
ferent versions of DMD. In this section, we go into more detail about the DMD algorithm
based on the work in [ 28 ] which utilizes singular value decomposition.

To begin DMD, data is recorded from a dynamical system with a state space with P
dimensions. This data can either be experimental or numerically generated. Typically
the data is collected in the form of a discrete time-series of the data with N ∈ Z time
points. Values of the state space are recorded at discretized time intervals from multiple
discretized locations in the state space [ 5 ]. Next, the states are sampled from the data as
discrete-time snapshot pairs denoted as {x(tn), x(tn+1)}Nn=1. One snapshot pair includes
the states vector x(tn) at time tn, and its partner is the states vector at the next snapshot
in the time series with the movement of the states governed by the discrete differential
operator yn = y(tn) = xn+1 = x(tn+1) = F (x(tn)) = F (xn). The sampling times of the
pairs can be either irregular or uniform and could belong to combined data from several
different experiments [ 4 ]. If uniform sampling is used, after a period of time tn = n∆t.

Finally, all of the sampled x state vectors in the time series are stacked into a long P ×N
matrix X , and all the sampled y state vectors are stacked into a long z ×N matrix Y . This
results in two matrices with the columns of Y right shifted from X by one discrete time
period ∆t. In theory, the data does not necessarily have to come from a time series for the
DMD algorithm to work but rather X and Y must just be linearly consistent [ 28 ].

X =

 | | | |
x1 x2 . . . xN−1

| | | |

 =
[
x1 x2 x3 x4

]

Y =

 | | | |
x2 x3 . . . xN
| | | |

 =
[
y1 y2 y3 y4

]
(2.14)
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2.2 Data Driven Methods for Koopman Approximation

As an example, imagine a physical dynamic system that models the trajectory of a mov-
ing particle in 2D space (P = 2). The particles are placed at Z initial discretized locations,
and movement of the system begins a t = 0. From t = 0 to t = N the spacial locations of
each trajectory are recorded. In the end, there are N × 2 × Z numerical data points. The
data is then separated into Z separate matrices of size 2 × N with each matrix containing
the state vectors from one trajectory. Next, Z separate X and Y matrices are created each
with a total of N − 1 columns. Finally, the entire data from the Z separate trajectories is
put together by stacking the X matrices from each trajectory columnwise and stacking the
Y matrices from each trajectory columnwise. This results in large X and Y matrices of size
Z × N . For the rest of the introduction section for ease of notation, it is assumed data is
collected from a system similar to the scenario of only one ”trajectory” so X and Y have
sizes of P ×N .

Next, for DMD we assume a linear correlation between X and Y with an operator A
which linearly advances the system between the snapshots.

Y ≈ AX (2.15)

To estimate the operator A, a least squares approximation is used. The best-fit operator A
is calculated using the pseudo-inverse ofX which is defined by the minimization problem

A = argmin
A
J(A) = argmin

A
||Y −AX||F = Y X+. (2.16)

with F indicating the Frobenius norm and X+ indicating the psuedo-inverse of X . Go-
ing back to the definition of the Koopman operator in  2.7 , if one considers the Koopman
operator observation functions to be linear measurements of the states g(xn) = xn, then A
can be considered a finite-dimensional approximation for the Koopman operator [ 4 ].

The matrix A is square, the size of which is determined by the size of the states vectors.
DMD is often applied to systems with high dimensional state vectors (such as for turbu-
lent fluid flow over an airfoil), so A is likely to be very large. The DMD algorithm avoids
explicit computations of A directly by using the pseudo-inverse of X to perform dimen-
sionality reduction by computation of the eigenvalues and eigenvectors of A. The pseudo
inverse is calculated via Singular Value Decomposition (SVD). Using SVD makes the al-
gorithm more efficient because it computes the projection of A onto the leading singular
vectors of X .

SVD factors a matrix X into three separate matrices, which provide more useful infor-
mation about how the original matrix acts in a linear transformation. It is a generalization
of the eigendecomposition of square matrices to any rectangular matrix.

X ≈ QΣZT (2.17)

If P is equal to the dimension of the state space and N is equal to the number of snap-
shots then Q ∈ RP×P , Z ∈ RN×N , and Σ ∈ RP×N . Where both Q and Z are unitary
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2 State of the Art

matrices. DMD can also be used for complex matrices but in this thesis only real matrices
will be considered. When X is decomposed, A can be calculated as follows:

A = Y ZΣ−1QT (2.18)

The columns of Q (left singular vectors) and Z (right singular vectors) are orthonormal
and the matrix Σ is a diagonal matrix with positive real entries which are the singular
values of X . Q and Z are calculated from the correlation matrices XXT and XTX which
provide information about the how each variable inside X is linearly related to the others
row-wise and column-wise. The columns of Z consist of the transpose of the eigenvectors
of XTX and the columns of Q consist of the eigenvectors of XXT . The right and left
eigenvectors of X can be related to the correlation matrices through

XTX = ZΣQTQΣZT = ZΣ2V T = XXTV = Σ2V T (2.19)

XXT = QΣZTZΣQT = QΣ2QT = XXTQ = QΣ2. (2.20)

The matrix Σ contains the square roots of the eigenvalues from XTX arranged in de-
scending order. The number of non-zero singular values in Σ will be at most as many as
the size of the largest dimension of X . For example, if P > N , Σ will have at most N
non-zero singular values. This results in the computed A matrix being at most N × N . It
is possible to truncate Σ and keep only the first r leading singular values. This reduces Σ
to size Rr×r. This also requires truncating Q and Z accordingly to Q ∈ RP×r, Z ∈ RN×r.
If this reduction occurs, A now becomes r× r. The eigenspace of the truncated A can only
be shown to be an approximation of the true eigenspace. It is important to note that Q is
no longer unitary, and the solution to the least squares approximation will be a projection
onto the column space of Q [ 5 ].

After truncation, A can now be approximated by projection of A onto the column space
of Q to reduce the dimensionality [ 28 ].

Ã = QTAQ = QTY ZΣ−1. (2.21)

The orthogonal columns of Q are important and are known as the Proper Orthogonal
Decomposition (POD) modes. The POD modes are temporally averaged spatial auto-
covariance matrix of which the eigenvectors are computed and arranged as columns ranked
according to their energy content by Σ [ 5 ].

Next, the left eigenvalues and eigenvectors of Ã are calculated using the usual eigende-
composition

ÃW = ΛW. (2.22)

If Σ is only truncated up to the non-zero singular values the eigenvalues of Ã are the
same as the fullAmatrix. Finally, the DMD modes can be calculated from the eigenvectors
of Ã by transforming them back to the column space of Y

ΦDMD = Y ZΣ−1W. (2.23)
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Through some algebra, the DMD modes can be shown to also be the eigenvectors of the
original A matrix corresponding to the eigenvalues Λ

AΦDMD = ΦDMDΛ (2.24)

Finally, the original states can be reconstructed, and the dynamic system can be now be
represented as a spectral decomposition

xn = Λn−1Φb. (2.25)

Equation  2.25 is comparable to equation  2.10 when defining how to reconstruct the original
system using the Koopman operator. b is a vector which represents the mode amplitudes.
It can be estimated by solving x1 = Φb and b = (WΛ)−1x1 [ 5 ]. A summary of the DMD
process is wonderfully summarized in figure  2.2 .

Figure 2.2: Holistic Summary of the DMD method illustrated on flow past a cylinder at
Reynolds number 100 reproduced from [ 15 ].

2.2.2 EDMD Method

In this section, Extended Dynamic Mode Decomposition (EDMD) is discussed by building
upon the definition of DMD. As a recap, when considered in the context of the Koopman
operator, the DMD algorithm assumes a linear correlation between direct measurements
of the state, which equates to linear observable functions gi(xn) = xn from equation  2.5 .
This often results in an overly simplistic approximation of the Koopman operator for com-
plex non-linear systems. EDMD enhances DMD to consider instead an expanded set of
non-linear measurements of the state (this set can also include linear measurements of the
states).

To perform EDMD, first, a dictionary of scalar functions is defined as

D = {ψ1, ψ2....ψM}, (2.26)

11
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where

ψi :M→ R for i = 1, 2, ...,M.

The span of the functions ψi in the dictionary creates a subspace FM which belongs to
a larger function subspace FM ⊂ F . As stated in section  2.1.3 , the space F belongs to
the L2 space. The dictionary functions can be written in terms of a vector-valued function
Ψ(x) :M→ RM as in

Ψ(x) = [ψ1(x), ψ2(x)....ψM (x)]T . (2.27)

Additionally, the dictionary functions can be superimposed with some vector a as

g(x) =

M∑
m=1

amψm(x) = Ψ(x)a. (2.28)

When the chosen dictionary is not a Koopman invariant subspace, ĝ(x) = Kg(x) + r(x)
with a residual r(x), the goal of EDMD is to define a mapping from a to â that minimizes
the residual of the superimposed dictionary functions at the points x to the underlying
dynamic system at the next time point. This linear mapping can be done through a finite-
dimensional approximation of the Koopman operator K ∈M ×M [ 32 ]. As the number of
linearly independent basis functions in the dictionary increases, the Koopman approxima-
tion converges to the true Koopman operator [ 19 ].

To perform EDMD, data is collected in the same way as for DMD in snapshot pairs with
data samples of the state space collected in states vectors from N ∈ Z discrete time points.
These samples are then organized into matrices X and Y. Equation  2.27 can then be applied
to the states vectors for each snapshot as in

Ψ(X) = [Ψ(x1),Ψ(x2)....Ψ(xN−1)], (2.29)

where Ψ(X) :M→ RM×N . Ψ(Y ) can also be created when equation  2.27 is applied to all
columns of Y .

To calculate an approximation of the operator, a linear least squares approach is taken
as in traditional DMD

K = argmin
K̃

J(K̃) = argmin
K̃
||Ψ(Y )− K̃Ψ(X)||2F . (2.30)

The solution to equation  2.30 is

K = Ψ(Y )Ψ(X)+. (2.31)

After calculating the approximated Koopman operator K, the vector of eigenfunctions
Φ of K can be approximated by combining the vector of dictionary functions and the cor-
responding left wk eigenvectors of K using

Φ = WΨ. (2.32)

12
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where W is the matrix created with each row a left eigenvector.
In the traditional EDMD method, the functions in the dictionary are defined explicitly.

The important thing is that the functions within the dictionary are different than just a lin-
ear function of the states themselves which makes EDMD unique from DMD. The focus of
this thesis is to create this extended function space with a very large number of dictionary
functions, much greater than the number of snapshots M >> N . This is similar to the sit-
uation when applying DMD to a state space with higher dimensionality than the number
of snapshots. Because of this, we take the same approach as in DMD and use SVD to avoid
calculation complexity dependent upon the size of the dictionary.

Next, SVD is used to decompose Ψ(X) through

Ψ(X) ≈ Q̂Σ̂ẐT . (2.33)

Then, because the number of snapshots is assumed to be greater than the number of
dictionary functions, Σ sigma can be reduced to N ×N . Therefore, Q becomes M ×N and
Z stays the same. Q is no longer unitary but semi-unitary. Equation  2.33 can be rewritten
as

Ψ(X) ≈ QΣZT . (2.34)

Substituting equation  2.33 in  2.31 to solve for K K̂ can be approximated by

K̂ = Ψ(Y )ZΣ−1QT . (2.35)

As mentioned in equation  2.21 , K̂ can now become a projection of K onto the columns
of Q due to the truncation of Σ to reduce the dimensionality of K̂. A projection operator
P = QQT can be applied so that K̂ becomes Kp through the relation

KP = PK̂ = QK̂QT = QTΨ(Y )ZΣ−1. (2.36)

Where P indicates the projection operator.
K̂ can be shown to have an equivalent eigenspace to KP , but the eigenspace of KP is

only a subset of the true Koopman operator K eigenspace unless K is somehow invariant
on the eigenspace of KP (Kernel EDMD learning). The left and right eigenvectors of the
projected operator KP can also be related back to the eigenvectors of K̂ using Q and QT

as a map between the two spaces. Assume v and w are right and left eigenvectors of KP

while v̂ and ŵ are eigenvectors of K̂ then

wj = ŵTQ (2.37)

and
vj = Qv̂j . (2.38)

The minimization objective can be rewritten to solve for KP as

KP = argmin
K̃
||PΨ(Y )− (PK̃)PΨ(X)||2F , (2.39)

where K̃ is an approximation for the true Koopman operator. Equation  2.40 has solution
KP = (PΨ(Y ))Ψ(X))+.

13
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2.2.3 Using Kernels

This next section summarizes the work of Williams et. al. [ 32 ], who developed the idea of
Kernel EDMD. In the SVD decomposition of Ψ(X), the matrix Q is size M × N , which is
still very large, and its calculation requires explicit evaluations of the dictionary functions.
In equation  2.35 , Q can be replaced with the relationQ = (PΨ(X))ZΣ+ from equation  2.34 

and through some algebraic manipulation, one can then rewrite K̂ as

K̂ = (ZΣ+)T (((PΨ(X)T )(PΨ(Y )))(ZΣ+). (2.40)

With Â = (PΨ(X)T )(PΨ(Y )) being the gram matrix.
In equation  2.40 , The values of Z and Σ are also needed to calculate KP . This can be

done through the method of snapshots which makes use of relationship from equation
 2.20 which defines Z as the left eigenvectors of the correlation matrix XTX as

Ĝ = ((PΨ(X)T )(PΨ(X)) = ZΣ2ZT , (2.41)

where Σ and Z are the same as in equation  2.34 .
The computation of Â and Ĝ requires the evaluation of the entire dictionary for every

combination of X and Y points in the state space. This requires explicit knowledge of
the dictionary and computational time on the order of O(N2M). A technique called the
Kernel trick can be used to replace the function evaluations. When the dictionary is very
large, this trick reduces the computational effort and avoids evaluating the functions in
the dictionary.

2.2.4 Kernel Basics

Instead of explicitly defining all of the functions in the dictionary, a single function called
a kernel function is used. The choice of the kernel function defines the functions in the
dictionary in an implicit way. A kernel function is a function f : M×M → R which,
instead of requiring the evaluation of the functions at X and Y , requires only the inner
product between X and Y . For the inner products of functions, the complexity of calculat-
ing a combination of inner products becomes dependent upon the size of the states space
vector P rather than the size of the function space M over which the states are evaluated
[ 32 ] because

f(xi, xj) = ⟨xi, xj⟩ = ψ(xi)
Tψ(xj). (2.42)

In the case of EDMD, the kernel function can be used for the least squares estimation of
K̂ to avoid explicit evaluations of the dictionary functions and to reduce the complexity
of computation when the dictionary is very large. Using the Kernel trick to compute K̂
reduces the computational effort fromO(N2M) toO(N2P ). This technique is known as the
Kernel Trick. The decomposition of Ψ(X) using SVD also fits in well with this idea because
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it is defined through the use of correlation matrices which are effectively combinations of
inner products.

In the case of EDMD, a Kernel function f can be used to define basis functions for use
in the Dictionary. There exist different functions for different classes of function bases.
For example, there are polynomial and Gaussian Kernels [ 14 ]. A linear Kernel f(x, y) =
xT y implicitly evaluates the space of linear functions as used in DMD [ 32 ]. When the
computation of Â and Ĝ is replaced with the kernel trick, Â and Ĝ become kernel matrices
defined by

ˆG(ij) = f(x(j), x(i)) and ˆA(ij) = f(y(j), x(i)). (2.43)

2.2.5 Eigenfunctions, Eigenvectors, and Modes

The next step is to find the eigenfunctions PΨ of KP defined by

PΦ =WPΨ, (2.44)

which is the same as equation  2.32 but with the eigenfunctions as a projection onto the
space spanned by Q. The evaluated eigenfunctions of Kp can be calculated using only the
elements of K̂. This can be done with the left eigenvectors of K̂ through eigendecompo-
sition. Evaluating the eigenfunctions at X , the SVD of Ψ(X) can again be used as well as
the projection operator as P = QQT to result in

PΦ(X) =WPΨ(X) = ŴΣZT = ŴΣ−1ZT Ĝ. (2.45)

Through a similar process Ψ(Y ) can be replaced by

PΦ(Y ) =WPΨ(Y ) = ŴΣ−1ZT Â. (2.46)

The eigenfunctions evaluated at X and Y are now rewritten in terms of the matrices Σ
and ZT , Ĝ, and Â, which can be calculated without any explicit evaluation of the dictio-
nary functions using a kernel function and the relationship from equation  2.41 . A similar
manipulation can be done to find the relationship for the left eigenvectors V and V̂ . By
definition, W is the inverse of V with right eigenvectors as columns (assuming full rank)
(Kernel EDMD learning).

The Koopman modes ξk can be calculated similarly to the DMD modes in section  2.2.1 . A
sample point from the state space x can be recreated by evaluating all of the eigenfunctions
at the data point, multiplying each eigenfunction by its respective Koopman modes for that
data point, and taking the sum as

x =
K∑
k=1

ξkϕk(x). (2.47)
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Equation  2.47 can be rewritten for all sample points in X and Y and all eigenfunctions of
KP as

X = PΦ(X)Ξ. (2.48)

To calculate the Koopman modes for every eigenfunction, the pseudoinverse of PΨ(X) is
taken as

Ξ = PΦ(X)+X. (2.49)

Now, PΦ(X) can replaced with its equivalent from equation  2.45 which results in

Ξ = (ŴΣ−1ZTG)+X. (2.50)

2.2.6 Kernel EDMD-DL

The best choice of dictionary elements and, by extension, the best choice of Kernel function
to use in Kernel EDMD, is a topic of debate and is unique for each dynamical system [ 32 ].
Some kernels have free parameters which change the functions in their associated dictio-
nary. For example, the RBF kernel contains a parameter θ, which influences the region of
similarity between two radius centers. For some kernels, the free parameter values offer
an opportunity to optimize the kernel to the data set and potentially reduce the complexity
of finding the right choice of kernel function [ 19 ]. To take advantage of this optimization
opportunity, a gradient learning method can be used to minimize the loss function in equa-
tion  2.40 , as long as the loss function is differentiable in relationship to the free parameters.

To utilize the free kernel parameter learning method, the loss function must be rewrit-
ten to remove any explicit evaluations of the dictionary functions and replace them with
the kernel function. This can be done by replacing the evaluations of the dictionary func-
tions at X and Y with the relationship to the eigenfunctions from equation  2.44 , using the
property that V (a matrix with right eigenvectors of KP as columns) is the inverse of W ,
and taking advantage of the idempotent property of P. Additionally, KP is replaced by its
eigendecomposition. This results in

J(KP , f) = ∥PV PΦ(Y )− PV Λ(PΦ(X))∥2F . (2.51)

Next, using QTV = PV = V̂ , plugging in the relationship for the projected eigenfunc-
tions to the left eigenvectors from equations  2.45 and  2.46 , and removingQ because it is an
isometry in Euclidean space when applied from the left, equation  3.7 becomes [ 24 ][ 3 ]

J(Kp, f) =
∥∥∥V̂ ŴΣ+ZT Â− V̂ ΛŴΣZT

∥∥∥2
F
. (2.52)

Because the eigenvalues for KP and K̂ are the same and solving for KP is not realistically
possible, J(Kp, f) is changed to J(K̂, f).

16



2.2 Data Driven Methods for Koopman Approximation

To learn a parameterized kernel, first K̂ is calculated using a fixed dictionary, then hold-
ing the approximated K̂ fixed, the parameters of the Kernel are updated and, by extension,
the dictionary. Any gradient learning method can be used to update the kernel parame-
ters. This method requires taking the derivative of the loss function with respect to the
kernel parameters. This can be easy if K̂ is constant during each update. There are many
kernel functions with more than one parameter, which can all be learned using the same
procedure. In addition to using a single kernel function, kernels can be added or multi-
plied.

As a final note, similar to what was done in [ 21 ], a regularization term is added to the
loss function. The reason for this is to ensure while learning that the right-hand term in
function  2.52 V̂ ΛŴΣZT never is equal to zero. If it does, the solution to the loss function
could be trivial, and it is not guaranteed that the optimization problem finds a Koopman
invariant subspace as described in section  2.1.3 [ 21 ]. The regularization term is the identity
function of Y minus the predicted values by the Koopman approximation at Y as in

J(Kp, f) =
∥∥∥V̂ ŴΣ+ZT Â− V̂ ΛŴΣZT ||2F + ||Y − ΞŴΣ−1ZT Â

∥∥∥2 . (2.53)

In equation  2.53 , the Koopman modes are found for the values in Y (not for the values inX
as described in section  2.2.5 ). The Koopman modes are then multiplied by the eigenfunc-
tions evaluated at Y . If the trivial solution is found with the left part of the loss function
then the newly added term will penalize the loss.

2.2.7 Recreating the System Dynamics

A summary of the complete algorithm is described in algorithm  1 .

Algorithm 1 Kernel EDMD-DL Algorithm

Initialize K, θ
Set learning rate n > 0
Set the maximum number of Epochs E > 0
while Epochs < E do

ˆA(ij) ← f(yj , xi)
ˆG(ij) ← f(xj , xi)

Compute Ĝ = Σ2ZT

Compute K̂ ← (ZΣ+)T Â(ZΣ+)
Compute eigenvalues/vectors V̂ , Ŵ ,Λ
θ ← θ − n∇θ||V̂ ŴΣ+ZT Â− V̂ ΛŴΣZT ||2F

end while

In algorithm  1 , a while loop cycles over a specified number of training epochs, or until
the loss is below a threshold. Within each iteration, Â and Ĝ must be calculated using
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the kernel according to  2.2.4 . Then, eigendecomposition is performed on Ĝ and K̂ is cal-
culated from Â and the eigendecomposition of Ĝ as discussed in section  2.2.3 . Next, the
eigenvectors and eigenvalues of K̂ are found and used as part of the loss function J(K̂, θ)
as described in sections  2.2.5 and  2.2.6 . Holding the components of K̂ constant, a gradient
learning method can then be used with this loss function to update the kernel parameter θ
as discussed in section  2.2.6 .

Once a suitable K̂ has been calculated, using Algorithm  1 , it can be used to predict the
original underlying dynamic system. This can be done through the spectral decomposition
of K̂ by using equation  2.11 . First, an initial state vector x0 is chosen . This could either
be a snapshot from the data or it could be a new state vector. The accuracy of the latter,
however, greatly depends on the relationship of the new initial state vector to those the K̂
was constructed on. This topic will be discussed in more detail in section  3.1.2 .

Once an initial state vector is chosen, it is used to calculate the Kernel matrix Ĝx0 be-
tween X and x0 as

Ĝx0

(ij)
= f(x

(j)
0 , x(i)). (2.54)

Next, the eigenfunctions of K̂ are evaluated at the new state vector x0 using

PΦ(x0) = ŴΣ−1ZT Ĝx0 . (2.55)

The next step is to solve  2.50 to uncover the Koopman modes by using the kernel matrix
Ĝ calculated between X and X , not Gx0 . Finally, as in equation  2.11 , calculate the pre-
dicted value of x1 at the next timestep by multiplying together the Koopman modes, the
eigenvalues of K̂, and PΦ(x0) as

xn+1 = ΞΛPΦ(x0). (2.56)

To advance the system more timesteps, repeat the same procedure using the newly cal-
culated state vector x(n + 1) as the initial state vector x0 until the desired end of the tra-
jectory has been reached. As with the choice of the initial state vector, the duration of the
predicted dynamics, that can still be accurately calculated, depends highly on the rela-
tionship of the prediction to the data used to construct K̂ and the underlying dynamical
system. It should be noted that K̂ can also advance the linear system. This method is
generally more robust, but using the spectral decomposition method is computationally
cheaper. In this thesis, the spectral decomposition method is used.
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3.1 Experimental Methodology

This section discusses the methodology used to apply the kernel EDMD to two ODE sys-
tems of differing complexity. The first system is an example of a Hopf bifurcation, and
the second is a more complex system representing hydrogen combustion in a Continuous
stirred tank reactor (CSTR). What is of interest is recreating the dynamic systems over a
wide range of initial starting conditions and prediction of trajectories between sampled
data points. This scenario mimics a real-world application where experimental data is col-
lected from a physical dynamic system, and the goal is to use this data to simulate the
system’s behavior with conditions that were not directly tested during experimentation to
enhance understanding of the system efficiently. Python is used as the base coding lan-
guage to implement EDMD, and the PyTorch library is used specifically for kernel learn-
ing. In the following sections, the experimental design is described in detail, including the
data collection, accuracy assessment, kernel selection, and hyperparameter tuning.

3.1.1 Data Collection

The data for both dynamical systems is generated numerically. Discrete solutions to the
dynamical systems are found using numerical solvers. For each system, separate trajecto-
ries are calculated at several initial conditions distributed over the solution space of inter-
est. A trajectory is defined here as the path of a system state over time. An example of this
can be seen in figure  3.1 , which depicts 4 separate trajectories of the cubic Lotka-Volterra
equations over a time span of t=0 to t=0.4 (unitless). Each trajectory is a separate color and
the initial condition is labeled with a corresponding colored dot. The direction of move-
ment of the path over time is labeled with an arrow. The system states in this example
are y0 and y1, and their evaluations in time are defined by the equation system  3.6 . The
leftmost graph is of y0 plotted vs y1 and the other graphs are of each parameter plotted
against time.

The discrete-time interval is set small enough initially for the solver to solve the numer-
ical system accurately. A subset of that data distributed evenly among the entire trajectory
is then used for input into the kernel EDMD methods. When using machine learning tech-
niques in general, it is important to have quality input data. Certain characteristics in the
data are necessary to calculate accurate predictions using the kernel EDMD-DL method.
First, the time steps must have sufficient granularity to capture the desired detail in the
system. Additionally, the magnitude of changes in the dynamic system in each dimension
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Figure 3.1: Example of 4 trajectories with separate initial conditions plotted over t = 0 to
t = 4 for the Hopf bifurcation equation system.

should be relatively similar to ensure the numerical system results in a well-conditioned
numerical method in all dimensions. One way to ensure this is the case is to normalize the
data or apply transformations. Finally, it should be avoided that the observed trajectories
should not overlap each other. This is because, when this situation occurs, there is more
than one potential ”dynamic path” for a state vector to evolve to in the next time step. The
reason for this is that the dimensionality of the training data is not high enough to explain
the dynamic behavior.

Sometimes, it is impossible to avoid regions of overlap or to increase the dimensionality
of the sample data. An example of this is in a real-world chemical experiment, where the
spectroscopy equipment is unable to adequately measure the concentrations of all inter-
mediate species, which drives the rate of reaction. In this case, time delay methods could
be used as a solution; however, this method is not discussed in detail in this thesis.

3.1.2 Reporting Accuracy

The loss function defined in equation  2.52 is used to quantify the error of the reconstructed
in-sample trajectories from the data set. Additionally, three out-of-sample (OOS) trajec-
tories are predicted with the same ending and starting time as the in-sample trajectories
on which the model is trained. An in-sample trajectory is a trajectory with the same initial
condition as a trajectory from the original data set that is used to calculate the approximate
Koopman operator through the kernel EDMD-DL process. An OOS trajectory is defined as
a trajectory with an initial condition not contained within the original data set. To ensure
the accuracy of an OOS trajectory, the initial conditions of the OOS trajectory are placed
between the initial conditions used for the in-sample trajectories. This is because the dy-
namic system might behave much differently outside the bounds of the data set used for
training, and the approximated Koopman operator only estimates how the system behaves
in between the data samples used for training.

The accuracy of an OOS trajectory is calculated using the averaged L2 norm over all time
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steps of the true trajectory values of the dynamic system minus the predicted trajectory
values. A new true trajectory with the same initial condition is also calculated from the
original system to compare. The OOS trajectory error is calculated with

OOS error =

√√√√ 1

N

N∑
n=1

|x(n)− x̃(n)|2, (3.1)

where N is the number of time steps, x(n) is the true value at time step n, and x̃(n) is
the predicted value at time step n. Using the OOS trajectories to measure the error is
comparable to a simple form of cross-validation. For each example, 3 OOS trajectories are
be calculated with unique randomly distributed initial conditions. The final OOS error
reported is the error of all 3 trajectories. This is still referred to as just the OOS error.

An acceptable in-sample and OOS error is highly dependent upon the dynamical system
and purpose of prediction. Of course, the sample data can include experimental noise or
numerical errors when compared to the true behavior of the dynamic system it sampled
from. Here, the focus is only on the capabilities of the Kernel EDMD-DL method assessed
with comparison to the sample data. The values of all data used are between 0 and 2.5, so
any reported error values below 1e−15 are considered to have machine precision.

3.1.3 Kernel Selection

As covered in section  2.2.6 , the best choice of kernel function that achieves optimal Kernel
EDMD results is highly dependent upon the system. Finding the correct choice of basis
functions is difficult. If the mathematical equations governing the underlying system are
known, this might be a simpler task, but this is not the case in most cases.

To choose the best dictionary of basis functions for the systems presented here, a ”tried
and true” approach is taken. The application of the linear and cubic polynomial kernels
to the Hopf system bifurcation has already been documented [  20 ] in literature and the use
of these kernels serves as a great proof of concept to demonstrate the capabilities of the
kernel EDMD method. Additionally, no kernel parameter learning is necessary. The linear
kernel matrix is [ 2 ]

K(X,Y ) = XTY . (3.2)

The cubic polynomial kernel matrix is [ 14 ]

K(X,Y ) = (XTY + 1)3 . (3.3)

Technically, the order of the cubic polynomial can be changed to any desired order a, and
this is a learnable hyperparameter of the kernel, but in this case, it will be kept constant at a
value of 3 and the kernel will be treated as if it is parameter-free. The cubic kernel contains
in its implicit dictionary all polynomials up to and including a degree 3 polynomial [ 32 ].
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To perform kernel EDMD-ML, on both the Hopf bifurcation and the CSTR combustion
reaction examples, the Standard Radial Basis Function kernel(RBF) (also known as the
Gaussian kernel) is used. This kernel is chosen because it is known to provide good results
for a wide variety of systems [ 32 ][ 21 ][ 5 ][ 31 ]. The possibility exists that a different kernel
could yield more accurate results for the specific systems under consideration; neverthe-
less, this idea remains unexplored.

The RBF kernel is [ 2 ]

K(X,Y ) = exp

(
− ∥ X − Y ∥2

2θ2

)
. (3.4)

The free parameter θ is called the bandwidth and is a trainable parameter. The RBF ker-
nel calculates the distance between two data points. The farther apart the points are, the
smaller the value of the kernel. The RBF kernel is a stationary homogeneous kernel, mean-
ing the kernel’s value is relative only to the distance between points in the two input ma-
trices [ 2 ].

When using the RBF kernel in Kernel EDMD-DL, the radius centers are located at the
sample points, so the more sample points that are used, the greater the number of radius
centers. The trainable free parameter θ affects how quickly the function decreases as the
distance between points decreases. A similar phenomenon happens with the polynomial
kernel because each data point adds more terms to the polynomial expansion. Increasing
the number of data points increases the number of basis functions in the dictionary, which
expands the predictive capabilities of the EDMD dictionary, but can also lead to overfitting
of the data due to an increase in the condition numbers of Ĝ and Â matrices. If too high,
the calculated Koopman operator approximation can amplify errors and poorly fit OOS
trajectories.

3.1.4 Hyperparamter Optimization

There are many different hyperparameters that influence the accuracy of the OOS and in-
sample accuracy measures. Taking a strategic approach to hyperparameter optimization
is of utmost importance, as it can determine the feasibility and effectiveness of a method.
The most important factors for both the OOS and in-sample accuracy are:

• Number of time steps in each trajectory

• Number of eigenfunctions associated with the approximated koopman operator

• Value of the kernel free parameter

The last item is only applicable to Kernel EDMD-ML. It should be noted that the number
of time steps is not always a changeable hyperparameter. For example, if the sample data
is experimental, the number of data points collected is often limited by the equipment
used for the experiment. In this case, the number of time steps is fixed. Here, however,
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it is easy to do with the numerically generated data so we consider time steps to be an
adjustable hyperparameter to gain better insight into how the value affects the accuracy of
the results. This knowledge could be used to make informed decisions about whether or
not the kernel EDMD-DL method is appropriate for certain situations.

The sensitivity that the results have to each factor depends highly on the complexity
of the underlying system. Additionally, when predicting the dynamics of the OOS tra-
jectory, the accuracy of the predicted system is influenced by the number and the range
of the initial conditions. The number of initial conditions which can be tested is limited
by computation time, but the trajectories must be close enough together for the Koopman
operator to have enough information to capture the dynamics between the known infor-
mation. If the trajectories are too close, this can also cause problems because it increases
the sensitivity of the prediction to the other hyperparameters. The number of initial con-
ditions and the state space range of the trajectories also affect the optimal values for the
number of time steps, the number of eigenfunctions, and the kernel free parameters.

The hyperparameter optimization strategy is to first define the state space of interest
and choose initial conditions that produce trajectories that fully cover the space. The tra-
jectories should ideally all be part of the same bifurcation, and the more initial conditions,
the better. This, of course, is dependent upon the allowed computation time.

Next, once the dynamic system data has been generated, a grid search is performed for
a large hyperparameter range. The grid search includes the number of time steps and the
number of eigenfunctions for the linear and polynomial kernels, which do not have any
free kernel parameters. For the RBF kernel, with a trainable kernel free parameter, the
number of time steps is set constant before the grid search. The search is then performed
using different combinations of the number of eigenfunctions and the free parameter.

The reason for using both the gradient learning method of Kernel EDMD-ML and the
grid search to optimize the kernel free parameter is because, based on experience, the
gradient method for the free parameter training is very sensitive to the initial value set at
the beginning of training. It is, therefore, crucial to have at least a basic understanding of
how the free parameter affects the accuracy of the results to choose an appropriate initial
condition.

During the grid search, for each parameter combination, kernel EDMD-DL is performed
on the same sample data, and the OOS error and in-sample loss are calculated. The optimal
results are found by locating the parameter combination that effectively minimizes both
accuracy measures. The metric employed to consolidate these two accuracy assessments
into a single value, facilitating comparisons across the entire grid search, is the simple Root
Mean Square Error (RMSE) defined as

combined error =

√√√√ 1

n

n∑
i=1

x2i . (3.5)

Once the optimal parameter settings are detected, a simple guess-and-check methodol-
ogy is used to fine-tune the values with higher granularity. Admittedly, this procedure
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is not technical or reproducible, but in most cases is faster than performing another grid
search with a smaller parameter range. The overall grid search strategy taken here is rather
rudimentary. For this reason, the optimality of the hyperparameters cannot be guaranteed
when any results are reported.

Unlike the number of eigenfunctions and the number of time steps, kernel-free param-
eters can be learned using a gradient method combined with the in-sample loss function
as described in section  2.2.6 . The gradient learning procedure introduces a whole new
set of additional hyperparameters in addition to the initial value for the free parameter
already discussed. These include the learning rate, the optimizer, and the number of train-
ing epochs. Also, depending upon the optimizer chosen, even more parameters can be
introduced, such as the weight decay if RMSprop is used. The strategy used here is to first
run the training with basic default settings and the classic gradient descent method. The
learning rate is set to 1e−1 and the number of epochs is set to 100. The training landscape
is then analyzed and adjustments to the parameters are made on a system-specific basis.

The gradient learning process only utilizes the in-sample loss update of the free param-
eter and does not take into account the OOS error. It makes sense that this learning process
should also include some cross-validation capabilities. The search for the optimal kernel-
free parameter could be made more efficient if the calculation of the trajectory error can
also be incorporated into the learning somehow. The standard form of cross-validation,
where the data is broken up into randomized test and validation groups, does not work in
this case because it is important to keep the temporal and spatial structure of the X and Y
matrices intact. However, it is feasible to split the data into groups of trajectories. Unfor-
tunately, this is not incorporated into the gradient learning method, so the results reported
for the parameter learning process are more a proof of concept rather than a full optimiza-
tion technique. To find a true optimal kernel-free parameter value, it is also required to
compare the result of the learning with the results from the grid search.

3.1.5 Eigenfunctions and Eigenvalues

Probably the most critical parameter which influences the accuracy of the kernel EDMD
results is the number of eigenfunctions that are retained during the computation of the ap-
proximated Koopman operator. Theoretically, the more eigenfunctions with non-singular
eigenvalues that are retained, the more accurate the results; however, many eigenfunc-
tions have small singular values which are not significant or unstable due to numerical
errors. This means there is an optimum number of eigenfunctions with leading singular
values that must be retained to achieve the highest prediction accuracy. On either side of
the optimum, the prediction error increases. The more complex the underlying dynamical
system, the more sensitive the results become to the number of eigenfunctions. The proper
number of eigenfunctions to retain is dependent on the number of sample points from the
underlying system used to construct the Koopman approximation (trajectory time steps
and initial conditions) and the type of functions the dictionary comprises.

Many strategies exist to find the proper number of eigenfunctions. One strategy is to
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3.2 Application of Kernel EDMD to Hopf Bifurcation

apply the kernel EDMD-DL procedure to subsets of the data, compare the resulting eigen-
values, and remove ones that are not consistent [ 31 ]. Another strategy is the evaluate the
quantity of the eigenfunctions by comparing the error associated with each eigenfunction
when it is individually applied to the state space and using Monte-Carlo integration to
form an error estimate [ 21 ]. The method used here is much more rudimentary. Rather, a
holistic view is taken and the appropriate number of eigenfunctions is found by searching
for the minimum of the OOS error and the in-sample loss. Ideally, this would also optimize
the combined error defined in equation  3.5 .

3.2 Application of Kernel EDMD to Hopf Bifurcation

3.2.1 Hopf System Background Theory and Data Collection

This first dynamic system is comprised of the cubic Lotka-Volterra equations, which are
simple two-dimensional coupled ODEs that exhibit an example of a Hopf bifurcation. The
equations describe the rate of change of two populations over time with a predator-prey
relationship defined as

dy0
dt

= −y1 + y0(µ− y20 − y21)

dy1
dt

= −y0 + y1(µ− y20 − y21). (3.6)

In this system, the parameter µ determines whether the system is a fixed point or a limit
cycle. When µ is set to 1, the solution to the ODE system is a limit cycle. This can be seen
in figure  3.2 under the ”Original Numerical Solution” column.

The numerical solution to the ODE system is found using Scipy’s ODE solver, which
uses the adaptive explicit Runge-Kutta method of order 5(4). The error is controlled with
a 4th-order accurate method, but the steps are taken with a 5th-order accurate formula.
The solver calculates an estimate for the local error, and the time step is either decreased
to reduce the local error or increased to speed up the calculations if the error is under a
threshold [ 12 ]. The default values of 1e−3 and 1e−6 for the relative and absolute local error
tolerances are used. When the time interval of integration is passed into the function, as
is done in this case, the function interpolates the variable time step solution to the desired
input time steps allowing control of the number of data samples collected from the system.

The Runge-Kutta 5(4) solver is good for non-stiff initial value problems and is relatively
fast. To highlight the capabilities of the Kernel EDMD methods, the accuracy of the numer-
ical solution is not of critical importance. The essential aspect is that the solver is capable
of generating the anticipated bifurcations and providing a solution at designated time in-
tervals.

The ODE system is completely defined by the states (y0 and y1) and it is assumed both
states can be set to any value in the state space as an initial condition. Because of this,
many short trajectories over many initial conditions can be generated. This enables an
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efficient method to gain information about the underlying dynamic system evenly over
the state space of interest. Additionally, because the Hopf bifurcation is symmetrical in
both dimensions around (0, 0), no data normalization is required. Finally, the dynamics
do not display multiscale time dynamics across either dimension along the trajectory path.
This means a transformation of the data is not required.

The linear, polynomial, and RBF kernels are applied to model the system dynamics.
The basic Kernel EDMD method is used with the linear and polynomial Kernels, and the
Kernel EDMD-ML method is used with the RBF kernel. Within a (−2, 2) interval for y0 and
y1, 64 initial conditions are distributed evenly across the parameter space, with trajectories
running from t=0 to t=0.4.

3.2.2 Hopf System Results

Figure  3.2 shows the combined results for the linear, polynomial, and RBF kernels together.
While no claims are made about complete optimality, the figure shows the results from the
best hyperparameter combinations found for each kernel. The top left graph in figure
 3.2 shows the 64 trajectories from the original numerical solution that the data samples
collected.

The second row of figure  3.2 shows the predictions of three OOS trajectories with ran-
domly chosen initial values at (1.6, 1.6), (0.75, 0.75), (−0.4,−0.4) and a trajectory end time
of 2.0 seconds. The trajectory end time is extended only for visualization purposes, and
only values up to 0.4 seconds are used for the accuracy calculation. This allows for a better
comparison of the OOS to the loss from the training data.

Figure  3.2 shows that the RBF kernel resulted in the best predictions, and the results
from the polynomial kernel are a close second. The linear kernel could not recreate the
limit cycle bifurcation and instead predicted a stable point. The cause of this is the inabil-
ity of the set of linear basis functions defined directly on the states to recreate the complex
dynamics of the Hopf bifurcation. The stable point is the closest approximation to the un-
derlying system that the linear basis functions could form. Visually, the difference between
the linear kernel results and the polynomial and RBF kernel results is easy to see. The ac-
curacy values reported here are comparable but slightly higher than those reported in the
literature for similar well-studied nonlinear functions [ 21 ][ 1 ]; however, it can be difficult
to directly compare accuracy reports due to the wide variety of accuracy measures.

An important aspect to discuss is the number of eigenfunctions required for the recon-
struction, which relates to the computational power needed. The polynomial kernel re-
quires only 10 eigenfunctions, while the RBF kernel requires 25 to achieve nearly the same
accuracy for both the in-sample and OOS trajectories. One might expect the opposite be-
cause the shape of the radial basis functions is the same as that of the Hopf bifurcation. The
radial basis functions could be used to linearize the phase space’s manifold [ 20 ]. This can
only be the case when the centers are placed intentionally in the center of the bifurcation.
When using this method of Kernel EDMD-DL and the RBF function with the trainable θ
parameter, the radial centers must be placed at points along the trajectories. In the case of
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Figure 3.2: The original numerical solution for the Hopf bifurcation system compared to
predicted kernel EDMD results for the linear, polynomial, and RBF kernels.

the Hopf bifurcation, this greatly complicates the reconstruction and requires more eigen-
functions.

3.2.3 Hopf System Hyperparameter Optimization

The linear and polynomial kernels do not have any parameters which can be trained
through a gradient method like the RBF kernel. Therefore, a grid search is performed
to better understand how the results’ accuracy changes with the number of time steps for
each trajectory and the number of leading eigenfunctions. The bounds of the grid search
are chosen differently for each system, and only an interesting subset of the results are
presented. Figure  3.3 and  3.4 show the grid search results for both the OOS error and the
in-sample loss separately for the linear kernel and polynomial kernel, respectively.

The data from the grid searches for both kernels shows that the OOS trajectory loss is
lower for most parameter combinations but that both accuracy calculations show similar
patterns. Both kernels show a steep decrease in the error after a cut-off number of eigen-
functions but an increase again after a certain number of eigenfunctions. The trend is even
more prominent for the average OOS trajectory loss, which is a typical indication of over-
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Figure 3.3: In-sample loss and OOS trajectory error for different combinations of Time
steps and Eigenfunctions using the linear kernel with the Hopf bifurcation ex-
ample.

fitting. This analysis confirms there exists an optimum point in the parameter space where
the loss is minimal. This optimal point, however, can be challenging to find and anticipate
from the system if an initial grid search is not performed.

Based on the grid search results, the combination error from equation  3.5 for the linear
kernel located the best parameters to be 4 time steps and 5 eigenfunctions, and for the
polynomial kernel 20 time steps and 10 eigenvalues.To better compare the results, 20 time
steps are chosen for all kernels despite the results of the combined error. For the linear
kernel, the two different timesteps are tested and there was no significant change in the
OOS trajectory error or the in-sample loss by increasing the number of time steps and
keeping the number of eigenfunctions constant.

3.2.4 Learning the Parameterized RBF Kernel Using Kernel EDMD-DL

A grid search is performed, setting the number of time steps to 20, and varying the kernel
free parameter θ and the number of eigenfunctions for the RBF kernel. This produces a
minimum combined error at a θ value of 6.0 and 32 eigenfunctions. Another nearly com-
parably low combined error parameter combination was 10.0 and 25 eigenfunctions. This
parameter set was chosen instead for the next steps the smaller number of eigenfunctions
was slightly faster computationally. Figure  3.5 shows the grid search results. Based on the
results, the number of eigenfunctions is set constant at 25. To gain more detailed insight
into the loss landscape for θ when the number of eigenfunctions is held constant, figure  3.6 

is created. This time only the in-sample loss is calculated for θ values between 1 and 50.
Analyzing figure  3.6 , an obvious global minimum can be seen at a θ value of around

11. Anywhere between a θ value of 5 and 12 is nearly at machine precision and would
be considered an acceptable result. What is surprising, however, is the roughness of the
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Figure 3.4: In-sample loss and average OOS trajectory error for different combinations of
Time steps and Eigenfunctions using the polynomial kernel with the Hopf bi-
furcation example.

Figure 3.5: In-sample loss and OOS trajectory error using RBF Kernel for different combi-
nations of the free parameter θ and eigenfunctions for Hopf bifurcation exam-
ple.

landscape and the many local minima. This indicates that the gradient learning algorithm
will probably have difficulty converging to the global minimum depending on the location
of the starting θ value.

Learning of the θ parameter is attempted using a classic batch gradient descent opti-
mizer with a learning rate of 1e−1, 100 epochs, and an initial value of 2.0. Figure  3.7 visu-
alizes the in-sample loss vs. epoch as a result of the training. After 100 epochs, the final θ
value is calculated to be 2.592, corresponding to a loss value of 9.359e−4 after 20 minutes.
The in-sample loss result is very acceptable. However, obviously based on  3.6 , the global
minimum has not been reached. The results of this experiment show that the gradient
method does have the potential to find the optimum; however, more optimized learning
parameters and a different optimizer are needed to converge to a better parameter value
in such a rugged loss landscape in an efficient amount of time.
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Figure 3.6: In-Sample Loss vs. Free Parameter θ for Hopf bifurcation example with 25
eigenfunctions and 20 time steps.

As a second attempt, RMSprop optimizer learning optimizer is used with a learning
rate of 1e−1, momentum=0.9, 50 epochs, default weight decay of 0, and an initial value
of 2.0. RMSprop stands for root mean square optimization and is an adaptive learning
rate method that is a more robust optimizer designed to produce better results in a rough
landscape with a local minimum. It uses a moving average of the squared gradient to scale
the learning rate, which helps stabilize the learning process in a rough loss landscape.

Figure  3.8 shows the results for the free parameter learning with the RMSProp optimizer.
Compared to  3.7 , the learning is much smoother, and convergence to the optimum θ value
is achieved in far fewer iterations. Only the first ten epochs are displayed in the figure
because any changes after that are visually too difficult to discern. The final θ value after
50 epochs is calculated to be 12.074. This value results in a loss of 2.012e−11, which is a very
good improvement from the loss at a θ value of 9.359e−4. No further by-hand adjustments
are made afterward to the θ because changing the number of eigenfunctions and θ by a
small amount in either direction does not significantly improve the accuracy.

3.3 Application of Kernel EDMD to Hydrogen Combustion CSTR

For the most important part of this thesis, the capabilities of kernel EDMD-DL are show-
cased in a practical application to the dynamics of hydrogen combustion in an ideal gas,
constant volume, continuous stirred tank reactor (CSTR) with perfect mixing. The over-
all goal is to use kernel EDMD-DL to accurately predict the system’s behavior with initial
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Figure 3.7: In-Sample Loss vs. Free Parameter θ for Hopf bifurcation data with 25 eigen-
functions and 20 time steps using gradient descent optimizer.

conditions outside of the ones used to generate the sample data. This particular dynamical
system is chosen because the rate of chemical reactions in a CSTR reactor system can be
modeled simply through a system of ODEs. If the CSTR is designed to maintain volume
and the gasses are assumed to be ideal, then important assumptions can be made, signifi-
cantly simplifying the reaction model. Hydrogen as a future fuel is currently an important
topic. Although the reaction system used in this thesis is quite simple, it highlights the
potential for the kernel EDMD methods to be extended to more complex real-world sys-
tems. The capability to numerically predict and simulate the dynamics of a hydrogen
combustion system in a data-driven way can potentially accelerate future developments.
Some examples of this are better control, decreasing experimental costs, increasing safety,
or expanding the knowledge of where and how hydrogen combustion can be useful.

3.3.1 Hydrogen Combustion Background Theory

Hydrogen is considered to be a prime candidate for future fuel sources. Hydrogen is a
clean fuel that stoichiometrically produces only water when burned. It can also be pro-
duced with renewable energy sources such as through electrolysis [ 29 ]. Hydrogen is an
easily transportable fuel that can be used for many different mobility applications. Cur-
rently, the most promising application is the use of hydrogen in fuel cells which can gener-
ate energy for electric vehicles. Another application is direct fuel for internal combustion
engines. Direct hydrogen combustion is less efficient and when burned at high tempera-
tures in air can produce nitrogen pollutants in the form of nitrous oxides (NOx). [ 29 ]. For
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Figure 3.8: In-Sample Loss vs. Epoch for Hopf bifurcation example data from with 25
eigenfunctions and 20 time steps using RMSprop optimizer.

use with vehicles, it can be stored as a compressed gas and other ways of safer storage
are currently being researched. One of the biggest problems with hydrogen combustion is
that neither compressed nor liquid hydrogen can meet the current energy density storage
capabilities of regular gasoline [ 29 ].

Hydrogen releases more energy, has a higher automatic ignition temperature, and more
rapid combustion than gasoline. Combustion can also be performed with a lower air/fuel
ratio. Compared to gasoline, hydrogen has a broader range of flammable concentrations.
The lower flammability concentration generally increases with temperature and pressure.
The auto-ignition temperature (the minimum temperature required to ignite a gas or vapor
in air without a spark or flame being present) at standard atmospheric pressure (1 atm or
101.325 kPa) is disputed to be around 773 to 858 K [ 29 ].

When hydrogen is burned, the hydrogen directly reacts with oxygen

2H2(g) +O2 → 2H2O(g) + energy. (3.7)

.  3.7 is the total stoichiometry of the combustion but when combustion occurs the actual
reaction is much more complicated because the reaction includes third bodies, reaction
intermediates, and side reactions. This is referred to as the reaction system. Reaction in-
termediates are species that are formed and consumed throughout the combustion. When
combustion occurs in the presence of air or other gases other than oxygen, some gases
can act as third bodies which are not consumed in the reaction but can affect the reaction
rate. There has been much research on this topic to define correctly all of the intermediate
reactions [ 11 ][ 23 ].
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The reaction system used to generate numerical data is a common hydrogen-oxygen
sub-mechanism from GRI-Mech 3.0 created by the Berkeley combustion team, which in-
cludes 11 species and 23 unique reversible elementary reactions [ 11 ] [ 23 ]. The 11 species
are:

H2 H O O2 OH H2O HO2 H2O2 AR N2

.

The entire GRI-Mech 3.0 system is optimized for natural gas combustion and contains
53 species with 325 reactions. Here a subset of those reactions for hydrogen combustion is
used.

3.3.2 CSTR Reactor Background Theory

CSTRs are used for continuous chemical production but can also be considered a signifi-
cantly simplified version of an internal combustion engine. CSTR reactors have a constant
volume with an inlet and an outlet that can be set to specified flow rates. The inlet con-
tains the reacting species, and the outlet contains a mixture of reacting species and the
products. The volume of the CSTR is fixed, and the time a packet of fluid spends in the
reactor is called the residence time and it is a function of the reactor volume and the inlet
flow rate. The longer the residence time, the more time the reaction has to proceed inside
the reactor, and the higher the concentration of products in the outlet stream. Figure  3.9 is
a descriptive illustration of a CSTR reactor.

When the reaction occurs inside the reactor, mass and energy are conserved so critical
state variables can be calculated using complex mass and energy balances throughout the
reaction. In the simplified CSTR model, at each moment, the species concentrations and
the temperature drive the speed of the reaction. During combustion, the amount of each
species, the pressure, and the temperature of the reactor change. CSTRs can also be insu-
lated or fitted with heat exchangers to regulate the amount of energy that leaves the reactor
as heat. For combustion reactions, removing heat energy is very important for safety rea-
sons and the ability to control the extent of the reaction. Because autoignition only occurs
at high temperatures, the entire reactor is placed into an oven which sets the inlet, outlet,
and surrounding air temperatures to a specified value.

3.3.3 Defining and Solving the Dynamic Reaction System

The dynamic system describing the hydrogen combustion reaction for i = 1...ns species
and k = 1...nr reactions in a constant volume CSTR is [ 10 ][ 18 ]

V
d[Xi]

dt
= Qin[X

0
i ]−Qout[Xi]− V ẇi (3.8)
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Figure 3.9

V

ns∑
i=1

([Xi]Cvi)
dTr
dt

= Qin

ns∑
i=1

[
(H0

i −Hi)[X
0
i ]
]
− V

nr∑
k=1

(∆rHkqk)

− UA(Tr − T ) +RTrV
d[Xtot]

dt
, (3.9)

where Qin and Qout are the volumetric flow rates of the inlet and outlet, respectively, Tr is
the reactor temperature, and T is the surrounding oven temperature. 0

i is the molar con-
centration, and H0

i is the total enthalpy of species i in the inflow. For the contents inside
the reactor and in the outlet for each species i, Ci is the molar concentration, ẇi is the
production rate, Cvi is the molar heat capacity at constant volume, and Hi is the total en-
thalpy. Because it is assumed the reactor experiences heat exchange with the environment,
A is the heat exchange surface area and U is the overall heat transfer coefficient. Finally, R
is the gas constant and Ctot is the total molar concentration of material in reactor. The key
parameters which must be preset in equation  3.8 and  3.9 are T, Ci, U, A, V,Qin, Qout. Other
variables not shown explicitly, which are important when calculating the total enthalpy
of the inlet stream, are Tin Pin and, which are the temperature and pressure of the inlet
stream.

Equation  3.8 is the energy balance for the CSTR reactor. Because ideal gases are consid-
ered, the ideal gas law which is

PV = nRT, (3.10)

is used in the derivation to relate the current pressure P of gas to the volume V , the tem-
perature T , and the number of moles n. The total enthalpy is a way to quantify the en-
ergy stored by each species. The heat capacity at constant volume Cv is also an important
species-specific value which is a way to quantify the amount of energy stored by a species
as a change in temperature. To calculate these terms, thermodynamic reference-state quan-
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tities must be known. The reference-state quantities from 7-parameter NASA polynomials
are used, as well as the Maxwell relations, to derive other necessary thermodynamic prop-
erties from the equations of state [ 10 ].

Equation  3.8 defines the mass balance for the system as the rate of change in molar con-
centration for each species. The species-specific generation rate is the variable ẇi. In this
model, the reactions are considered elementary, which means the instantaneous concen-
tration of each species in the mixture governs this rate of reaction. The reactions used for
hydrogen combustion are all considered reversible, which means conversion from reac-
tants to products and products to reactants happens simultaneously.

For a system of Mi, i = 1...ns chemical species, the species react according to k = 1...nr
reversible elementary reactions defined by

ns∑
i=1

v
′
ikMi ⇌

ns∑
i=1

v
′′
ikMi, (3.11)

where v
′
ik and v”ik are the stoichiometric coefficients of species i in reaction k. The rate of

progress variables can be defined for every kth reversible reaction as [ 18 ] [ 21 ]

qk = qfk − q
r
k = kfk

ns∏
i=1

[Xi]
v
′
ik − krk

ns∏
i=1

[Xi]v
”
ik . (3.12)

The parameters kfk and krk are the forward and reverse rate constants. In this model, the
forward rate constant is defined by the modified Arrhenius equation which is [ 22 ]

kf = AT be
−Ea
RT , (3.13)

The forward and backward rate constants are related through the equilibrium constant via

kr =
kf
Kc

. (3.14)

For elementary reactions, as in the case here, the forward rate constant is a function of
temperature, and in more complex cases, it can also depend upon other factors such as
pressure.

Finally, the production rate of a single species i is calculated by summing up the pro-
duction rate of progress variables for all reactions involving species i through

ẇi =

nr∑
k=1

vikqk. (3.15)

The Cantera Library [ 10 ] is used to generate and solve the governing system of equa-
tions  3.8 , and  3.9 . The library reads an input file containing the required thermodynamic
reference data for all 11 species. The name of the yaml file is called H2o2.yaml. To model
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the CSTR, an IdealGasReactor object is created and combined with two
MassFlowController objects to model the inlet and outlet flows. A Wall object is also
added to model the heat exchange between the reactor and the surrounding oven environ-
ment.

The governing equations are used to model the transient startup of the CSTR. Before
time starts, the reactor is filled up to the defined volume with the inlet gas mixture of
hydrogen (H2), oxygen (O2), and nitrogen (N2). Oxygen and hydrogen are required for
ignition, and nitrogen is added to adjust the absolute partial pressures of both gases. When
adjusting the mole fractions of each species in the inlet stream, only the mole fraction of
hydrogen is changed for simplicity and the concentration of Oxygen is held constant. This
is the same as using the concentration of hydrogen to adjust the air-to-fuel ratio, which
is the critical parameter in combustion. Enough nitrogen is added then to make up the
difference.

Cantera uses a slightly different version for the governing equations  3.8 and  3.9 . There-
fore, instead of using the molar concentration of each species [Xi], the dimensionless molar
fraction is used. Both represent a very similar quantity and can be converted through the
relation

Xki =
[Xk]∑K
i=1[Xi]

. (3.16)

Additionally, in this implementation, the mass flowrate ṁin is defined instead of the
volumetric flowrate Qin. This means Qin is equal to the mass flow rate ṁin divided by the
density of the inlet ρin and the outlet volumetric flow rateQout is equal to ˙mout divided by
the density of the outlet ρ. Filling the reactor over time will not be modeled, so the mass
flow rate out of the reactor is set equal to the mass flow rate into the reactor. In the case of a
real CSTR, this would be equivalent to using two mass flow valves set to the same setting.
Table  3.1 shows all the constant parameters used as input for the Cantera simulation.

Table 3.1: Parameters for the Transient Hydrogen Combustion CSTR System.
Parameter Value Units

ṁin 2.5× 10−8 kg/s
P0 1330.3 Pa
U 5.0 W/m2

A 0.2 m2

V 0.0009 m3

χ0
O2 0.12 Unitless

From the values in table  3.1 , the residence time of the CSTR is calculated to be about
200 seconds. When adjusting the composition of the inlet stream, only the mole fraction
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of hydrogen will be adjusted because the parameter that affects the combustion is the air-
to-fuel ratio. The mole fraction of oxygen is always held at 0.12, and enough nitrogen is
added to make up the difference.

To solve the system of equations, Cantera uses the CVODES solver, an efficient solver
for stiff and non-stiff ODEs. CVODES is a part of the SUNDIALS suite created by the
Lawrence Livermore National Laboratory. Cantera generates a Jacobian array for the gov-
erning ODEs, which, along with residual evaluation functions, are passed to the Integrator
method, which uses CVODES. Because the governing equations are stiff, Backwards Dif-
ferentiation Formula (BDF) in fixed-leading coefficient (FLC) form is used as the implicit
integration method. At each integration step, a nonlinear system of equations must be
solved using one of many nonlinear solver choices, such as the Newton method or a Krylov
method depending upon the system’s complexity. The user can utilize Preconditioners in
Cantera for potentially faster integration, but in this case, they are not used. CVODES
also uses adaptive step sizing by estimating the local error at each integration step and
decreasing it if it does not satisfy tolerance conditions. When the time steps for integration
are specified, CVODES autonomously chooses the step size required to reach the specified
time steps but only reports the solution at the desired time step [ 13 ][ 10 ].

In this example, it is assumed the purpose of modeling the dynamic system is to better
understand the behavior of the reactor during initial startup until the steady state opera-
tion is reached. The purpose of modeling could be, for example, for safety or sensitivity
testing during the reactor design phase. The assumption of steady-state conditions in a
CSTR greatly simplifies the governing equations, so much so that a satisfactory analytical
solution is usually available. In contrast, the transient startup behavior of a CSTR is much
more complicated and there is quite a bit of knowledge added value in modeling it.

The key variables that are tracked during the reactor start-up are reactor temperature
Tr and reactor hydrogen mole fraction XH2 . Only the inlet gas temperature Tin and the
inlet mole fraction of hydrogen X0

H2
in the inlet stream are adjusted. The initial conditions

for all other parameters are fixed. It should be noted that due to the details of the reactor
setup, the reactor temperature Tr and hydrogen mole fraction XH2 will also be initialized
the same as the inlet stream because, at the beginning of the numerical model, the reactor
is filled to the specified reactor volume V with inlet gas.

The mole fractions of oxygen, water, and the intermediate species involved in the com-
bustion process are also essential components of the governing system of equations  3.8 and

 3.9 as they drive the rate of reaction. However, for this illustration, it is assumed that only
hydrogen concentration and temperature are variables that can be monitored throughout
reactor operation. This limitation is practical because, in real-world experiments, not all
variables influencing a dynamic system may be controllable or even known. Chemical
intermediates exist in unstable equilibrium and often form and dissipate so rapidly that
measuring their concentration is unfeasible. Additionally, their introduction into the inlet
gas stream is impractical, preventing their use for setting initial conditions.

Although the underlying dynamic system is of high dimensionality due to a large num-
ber of reacting species, from the perspective of using kernel EDMD-DL to reconstruct the
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system, there are only two. The other variables are lumped into the ”nonlinearity” of the
dynamics. For the kernel EDMD-ML method to be useful for predicting dynamic systems
from experimental data, it must be robust to such situations.

3.3.4 Simultaneous Modeling of Temperature and Hydrogen Concentration
Variations

Data collection

In the first attempt, kernel EDMD-DL with the RBF kernel is used to predict the dynamics
of the transient CSTR startup behavior using initial conditions which vary in both the inlet
temperature Tin and initial hydrogen mole fraction X0

H2
. All other species’ mole fractions

are zero at t = 0s. 9 initial conditions are evenly distributed from Tin = 775 K to Tin = 782
K and X0

H2 = 0.06 to X0
H2 = 0.08. All of the temperature values are above the autoignition

temperature of the system, which means that ignition can occur spontaneously.
Unlike the Hopf bifurcation defined by the solution to the cubic Lotka-Volterra equa-

tions in section  3.2 , starting conditions for all state-space parameters cannot be defined
over the ranges that they exist in during a trajectory as initial conditions. Therefore, each
trajectory must be long enough to capture the duration of the startup dynamics. The num-
ber of initial conditions which can be tested is thus limited by computation time. In this
case, the number of trajectories is set to 9, and the spacing between trajectories is chosen
to be as close as possible without overlapping.

For all 9 trajectories, the governing equations are solved using the CVODES solver from
t = 0s to t = 0.35s. The numerical solutions can be viewed in the first row of figure

 3.10 . The top leftmost graph in the figure is a plot of reactor temperature Tr vs the reactor
hydrogen mole fraction XH2. Different colors represent trajectories with different initial
conditions of varying inlet gas temperature and hydrogen concentration. The trajecto-
ries move from the right bottom corner of the graph to the left over time. The right-most
graphs showXH2 and Tr vs time separately. The autoignition of each trajectory can clearly
be seen in each graph by the sudden increase in temperature and sudden decrease in hy-
drogen mole fraction in the reactor. This time difference between heat application and
ignition is called the ignition delay time. During the ignition delay, intermediate species
are formed in chain reactions, eventually leading to the final stable reaction products and
a propagating flame front [ 7 ]. Ignition delay times are an important aspect of combustion
because they directly affect the efficiency and performance of combustion systems. For
instance, a shorter ignition delay often leads to improved engine power output in internal
combustion engines. Ignition delay time also affects the formation of pollutants during
combustion, such as nitrogen oxides (NOx).

During the ignition, the temperature rises about 15 K (depending upon the starting tem-
perature) and then decreases again as the heat energy is proportionally removed and a
continuously burning flame stabilizes at a temperature similar to the surrounding oven
temperature. This state is the steady state of the CSTR. If the numerical simulation were
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Figure 3.10: Numerical Solutions for hydrogen combustion in constant volume CSTR ex-
ample for 9 initial conditions.

to be simulated to t = ∞s, theoretically, the reactor conditions would remain the same.
This is another very important aspect of the model because the steady-state operating con-
ditions of the CSTR directly affect the quality and quantity of the products. From the
analysis of figure ??, It appears that the autoignition time decreases as temperature and
hydrogen mole fraction increase. This agrees with the literature [ 7 ].

It can be observed that there are some characteristics of the data that make it not ideal
for use with the kernel EDMD-DL method or other machine learning methods in general.
First, the scales of Tr andXH2 are drastically different from each other. This can be resolved
by normalizing the data in each dimension. Here standard score normalization is used,
which is

X =
X − µ
σ

. (3.17)

Equation  3.17 is used to normalize both X and Y matrices. Where X is either X or Y, µ is
the mean of all the collected samples from all trajectories combined, and σ is the standard
deviation of all the collected samples from all trajectories combined. After normalization,
the data is still labeled as temperature and mole fraction to easily distinguish between the
two dimensions but the units are removed for temperature because Kelvin is no longer
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accurate.
the units of Kelvin are no longer displayed in graphs of the data, however, the axis is

still labeled as Temperature.
An additional problem with the data is that before and after ignition, there are regions

of very slow movement in the dynamic variables as compared to the fast dynamics during
ignition. These multiscale dynamics can lead to a poor approximation of the Koopman
operator because important fast dynamics may be lost when a lower dimensional system
approximates the model. Additionally, it could lead to an operator that is ill-conditioned.
One option to mitigate this problem is to apply another function to the data to transform
it in a way that smooths out the dynamics.

The data is not transformed for the reaction system modeled here, but the trajectory time
is truncated to t = 0.1s to t = 0.25s. This removes a large portion of the slow dynamics
from the sampled data. In addition to reducing the impact of slow dynamics on the calcu-
lation of the approximated koopman operator, it also increases the resolution of the data
if the number of timesteps remains the same, hopefully leading to improved prediction
capabilities of the fast dynamics during ignition. One drawback to this strategy is that
important portions of the system’s dynamic behavior will not be modeled. A way to get
around this would be to multiple times on different regions of the data but this can quickly
become computationally expensive.

Hyperparameter Tuning and Results

After truncating and normalizing the data as described in the previous section, 40 evenly
distributed data values corresponding to 40 time steps are selected from each trajectory
to calculate the approximated Koopman operator. 40 steps are chosen rather arbitrarily,
mostly taking into account computation time. The number of time steps is increased from
the Hopf bifurcation example, however, in an attempt to increase resolution and reduce
the effect of the multiscale dynamics. Because there are fewer overall trajectories in the
dataset as compared to the Hopf bifurcation example, however, the computation time is
comparable.

As was done for the Hopf system, a grid search is performed over various θ values and
the number of eigenfunctions and the OOS error and in-sample loss are calculated for each
parameter combination. Figure  3.11 shows the results.

Figure  3.11 exhibits a visually interesting pattern. Generally, for the in-sample loss,
the optimal corresponding θ value decreases as the number of eigenfunctions increases.
The average OOS trajectory error shows that the error increases as both the number of
eigenfunctions and the value for theta increase. The region of overfitting is clearly in the
right-hand upper corner of both graphs. It appears there might be a larger potential for
agreement between the two accuracy measures when a smaller number of eigenfunctions
is used. One noticeable feature is that on average, the oos error values are much higher
than in the grid search performed for the Hopf example in figure  3.5 . Additionally, they
are much higher than average in-sample loss values. This big difference in the scales of
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3.3 Application of Kernel EDMD to Hydrogen Combustion CSTR

Figure 3.11: In-sample loss and OOS trajectory error using RBF Kernel for different combi-
nations of the free parameter θ and eigenfunctions for hydrogen combustion
example.

the data is likely the cause of a bad prediction for the optimum by the combined error
function.

From Figure  3.11 , it is evident that finding a parameter combination that achieves accu-
rate predictions for both the out-of-sample (OOS) Error and in-sample loss is challenging.
The combined error equation  3.5 is at a minimum at 10 eigenfunctions and a θ parameter
value of 3.0. Figure  3.12 shows a more detailed view of the loss landscape at loss landscape
for 10 eigenfunctions.

Learning is performed using the RMSprop optimizer to enhance training in a rugged
loss landscape, as described in Section  3.2.4 (data not shown here). After 500 Epochs,
this results in an optimal θ parameter of 17.9, which by observing figure  3.12 it is not the
global minimum. When a θ value of 17.9 and 10 eigenfunctions are used to reconstruct the
dynamics, the OOS trajectory error is extremely high, indicating a poor fit. It is therefore
necessary to admit the failure of the hyperparameter search strategy and use a manual
guess-and-check procedure.

Even after a manual parameter search was exhaustively undertaken, none of the combi-
nations tested produced predictions comparable accuracy to the reportings from the Hopf
bifurcation example. Despite this, however, The best results of the search are still reported
in figure  3.13 .

Considering the poor accuracy values reported in  3.13 , one can be certain the kernel
EDMD-DL method with the RBF kernel is not very successful in reconstructing the com-
bustion dynamics. Because a very intensive hyperparameter search is performed, it is less
likely to be due to an inadequate hyperparameter combination than it is to be due to the
characteristics of the data used for training.

A simple sensitivity analysis is conducted to try to understand what about the data that
is causing the low accuracy. For each new condition tested, new hyperparameter values
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Figure 3.12: In-Sample Loss vs. Free Parameter θ for Hopf bifurcation data with 10 eigen-
functions and 40 time steps for the hydrogen combustion example

are needed to find an optimized prediction. This causes a major source of variation and
decreases the reliability of the results from the sensitivity analysis; however, due to the
thoroughness of the parameter search, the results are considered reliable enough to make
generalized conclusions.

First, an increase in the number of time steps is tested. This is concluded not to have
an effect because grid searches using anywhere from 100 to 200 time steps yield similar
results and do not significantly improve the accuracy. Over 200 time steps became time
prohibitive in terms of computational time. In a second attempt, the time range of the
data samples is decreased from t = 0.1s to t = 0.25s to t = 0.125s to t = 0.23s to limit
as much as possible the effects of the multiscale dynamics but still preserve the essential
dynamics of the system. As in the first case, this also does not improve the accuracy of the
results significantly. Finally, the range of values for both the mole fraction and the temper-
ature is adjusted to test the idea that maybe the approximated Koopman operator does not
have enough knowledge about the complexity of the dynamics between sample values or
maybe the trajectories are too close to each other causing amplification of numerical errors.
This last attempt, however, also did not improve the accuracy. Increasing and decreasing
the space between the initial condition both decreased the accuracy.

A close look at the underlying dynamic system shows that the dynamic behavior of tra-
jectories with very similar initial conditions can show drastically different behavior over
time. This is due to the high dimensionality and complexity of the underlying dynamics.
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Figure 3.13: In-Sample Loss, OOS Trajectories, accuracy reports, and hyperparameter val-
ues for Combustion data example using RBF kernel and varying both inlet
temperature and hydrogen mole fraction.

Additionally, in figure  3.10 , it can be observed the observed trajectories overlap each other
at the end of the ignition as the steady state of the CSTR is reached. This means that there
are not enough time-dependent variables tracked (the dimensionality of the state space
vector is not high enough) for the approximated Koopman operator to adequately distin-
guish a unique path for each trajectory. This effect is most prominent in the hydrogen
mole fraction dimension because, despite the starting mole fraction, all reactors experi-
ence nearly complete conversion and, in the end, reach the same steady state because of
the long reactor residence time. In the next section, section  3.3.5 , the reactor temperature
and hydrogen mole fraction are modeled separately using kernel EDMD-ML to see if the
accuracy of the results can be improved.

As a side note, a final reason for the inaccurate prediction results could also be that
the RBF basis functions are inadequate to represent the system. This idea is not tested,
however, due to time constraints.
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3.3.5 Separately Modeling Temperature and Hydrogen Concentration
Variations

Data collection

Based on the findings in section  3.3.5 , this time, data is numerically generated for initial
conditions that only vary in temperature and hydrogen mole fraction separately. One
data set contains the numerical solution for 3 initial conditions evenly distributed from
Tin = 775 K to Tin = 782 K with X0

H2 = 0.08. This is referred to as the temperature data
set. The second data set contains the numerical solution for 3 initial conditions evenly
distributed from X0

H2 = 0.06 to X0
H2 = 0.08 at Tin = 770 K. This dat is referred to as the

mole fraction dataset. The mole fraction and temperature ranges are not altered to keep
comparability to the previous section. As before, this data is normalized and truncated
from t = 0.1s to t = 0.25s. The cleaned data can be viewed in figures  3.14a and  3.14b .

(a) Numerical solution of the combustion reaction varying temperature in the inlet gas and keeping
hydrogen mole fraction the same.

(b) Numerical solution of the combustion reaction varying hydrogen mole fraction in the inlet gas
and keeping the inlet temperature the same.

Figure 3.14: Numerical solutions of the combustion reaction for 3 initial points varying
either hydrogen mole fraction or temperature in the inlet gas.
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Hyperparameter Tuning and Results

Next, two separate grid searches are performed for each data set to find an adequate initial
condition for the free parameter θ and the number of eigenfunctions, as in the example
from the previous section  3.3.4 the number of time steps is set to 40 to maintain consistency.

The findings from these searches reveal that for the temperature data set, the combined
minimum error is lowest at a θ value of 3.0 and 15 eigenfunctions (grid search results not
shown). For the mole fraction dataset, the combined minimum error is lowest at a θ value
of 2.5 and 20 eigenfunctions (grid search results not shown). The in-sample loss landscapes
for both datasets are explored, keeping the number of eigenfunctions constant. Figure  3.15 

shows the results for both datasets. An interesting observation that can be made about
the in-sample loss data from both graphs is that the temperature data has a bigger global
minimum in-sample loss, and it is smoother, for most θ values tested.

(a) In-Sample Loss vs. θ varying only inlet
gas temperature in the initial conditions.
15 eigenfunctions and 40 time steps are
used.

(b) In-sample Loss vs. θ varying only hydro-
gen mole fraction in the initial conditions.
20 eigenfunctions and 40 time steps are
used.

Figure 3.15: Comparison of in-sample loss vs. Free Parameter θ for the combustion reaction
example.

The gradient learning method is then applied to both data sets using the RMSprop op-
timizer to minimize the in-sample loss by optimizing the θ parameter. The results of this
are 8.943 for the hydrogen mole fraction data and 11.034 for the temperature data set.
Finally, because the parameter combinations prove to be successful providing adequate
OOS error and in-sample loss, the hyperparameters are fine-tuned by hand to maximize
the in-sample loss. The in-sample loss, OOS trajectories, accuracy reports, and final hyper-
parameter values can be viewed in figures  3.16 and  3.17 .

The results displayed in figures  3.16 and  3.17 are more accurate than for the dataset vary-
ing both temperature and hydrogen mole fraction. Additionally, hyperparameter tuning
is much quicker and easier for both because there is a larger region of agreement between
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Figure 3.16: In-Sample Loss, OOS Trajectories, accuracy reports, and hyperparameter val-
ues for combustion data example using RBF kernel and varying only inlet
temperature while keeping hydrogen mole fraction the same.

the OOS trajectory errors and the in-sample losses. This phenomenon supports the hy-
pothesis described in the previous section  3.3.4 that the data set is not well suited for the
kernel EDMD-DL method. Separating the data into two sets gives the method a simpler
dynamic system to recreate. The hyperparameters for the temperature and hydrogen mole
fraction data sets are different from each other, indicating that it is difficult to capture the
dynamics in both dimensions using the same reduced model.

Compared to the hydrogen mole fraction data, the temperature data set performed bet-
ter for both the in-sample loss and OOS errors. The reason for this is likely due to the
clear separation between observed trajectories, the dynamics are smoother, and compared
to all other dimensions, the gas inlet temperature has one of the biggest effects on reactor
temperature and therefore captures the majority of the change in the dynamics. It might
be possible to improve the prediction of the hydrogen mole fraction data set if the mole
fractions of more species are tracked. It could also be that the multiscale dynamics are too
extreme for the approximated Koopman operator to reconstruct. If this is the case, try-
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Figure 3.17: In-Sample Loss, OOS Trajectories, accuracy reports, and hyperparamter val-
ues for Combustion data example using RBF kernel and varying only inlet
hydrogen mole fraction while keeping temperature the same.

ing out different types of basis functions might be useful rather than just the RBF kernel
because potentially another set of basis functions is better suited. Additionally, it may be
possible to break the data up into smaller time frames and model the dynamics of each
section separately. In the end, it could be possible to piece the models together to recreate
the entire trajectory. Unfortunately, none of these ideas are tested in this thesis.

Modeling an Expanded Range of Temperature Variations

To better understand the prediction capabilities of the kernel EDMD- method just for just
predicting changes in temperature, the desired range of inlet gas temperatures is expanded
to Tin = 760 K to Tin = 790 K and X0

H2 = 0.08. This time, 7 different initial conditions
are used to numerically generate trajectories equally spread across the operating temper-
atures. The number of initial conditions is increased to test the hypothesis that increasing
the number of trajectories to train the model increases the accuracy. The numerically gen-
erated data after normalization and truncation can be viewed in figure  3.18 .
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Figure 3.18: Numerical solution of the combustion reaction for 7 initial points varying an
expanded range of inlet gas temperatures and keeping the inlet hydrogen
mole fraction the same.

The same procedure is used for hyperparameter search and free parameter θ learning.
As a result of the grid search (results not shown), the minimum combination error occurs
at a θ value of 8.0 and 25 eigenfunctions. After adjusting the learning rate, the gradient
learning method found an optimal value of θ at 4.305 with a learning rate of 1e− 2 and an
initial value of 8.0. The most optimal final results for minimizing both the OOS error and
in-sample loss are displayed in figure  3.19 The results of modeling the expanded temper-
ature range are surprisingly accurate . The reported OOS trajectories and the in-sample
errors are similar to those reported for the predictions of the Hopf bifurcation in section
 3.2.2 for the polynomial and RBF kernels. Additionally, the accuracy values are nearly
comparable to those reported literature for better-known and lower dimensional systems,
often with known analytical solutions [ 21 ] [ 1 ]. However, the latter statement must be
taken lightly due to the varying types of accuracy measures. Compared to other examples
of EDMD applications in literature [  21 ][ 1 ][ 31 ][ 20 ], the number of trajectories within the
state-space used for training is quite small due to computational time limits. It would be
interesting to see how the prediction accuracy could improve if the kernel EDMD-DL code
is better optimized for efficiency.

3.3.6 Modeling a Second Dynamic Reaction System

Hydrogen combustion dynamics can exhibit a variety of interesting bifurcations [ 7 ]. In
this last section, another set of solutions to the governing equations is explored. This time
with the settings in table  3.2 .

Compared to the previous reactor system, this system has a smaller starting pressure,
a higher heat removal rate, a larger inlet gas flow rate, and a smaller volume. All factors
contribute to a smaller ignition event and a lower conversion of reactants to products. The
temperature in the reactor increases less during ignition, and the hydrogen mole fraction
in the reactor decreases but not as much as in the first example. Additionally, the reactor
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Figure 3.19: In-Sample Loss, OOS Trajectories, accuracy reports, and hyperparameter val-
ues for hydrogen combustion example using RBF kernel and varying only in-
let temperature while inlet hydrogen mole fraction remains the same for an
expanded range of temperature values

volume is much smaller, so there is less material in the reactor at one time to absorb the
heat energy released during combustion. These factors result in a reactor system with a
steady state higher than the inlet gas and less extreme autoignition. From an efficiency
perspective, these reactor conditions are not ideal because fewer reactants are converted
to products. The upside, however, is that this system is potentially more environmentally
friendly because milder autoignition conditions can reduce the risk of side reactions that
cause pollutants.

The new reaction system can be viewed in figure  3.20 with 9 different initial conditions
evenly spaced between inlet gas temperature values of 776 K and 792 K and a constant
value of 0.06 hydrogen mole fraction. The top graph is the original numerical solution
from t = 0s to t = 0.3s. The bottom graph is the normalized data which is trimmed from

49



3 Applications of Kernel EDMD

Table 3.2: Parameters for the 2nd example of the Transient Hydrogen Combustion CSTR
System.

Parameter Value Units
ṁin 70.5× 10−8 kg/s
P0 1199.7 Pa
U 2.0 W/m2

A 0.2 m2

V 5× 10−6 m3

t = 0.1s to t = 0.25s. In the figure, one can clearly see how each trajectory (represented by
a different color) converges into a steady state with a higher temperature than the starting
temperature at the end of modeling time. As compared to the data from the first example,
this data is smoother and the trajectories are more uniform across temperatures. As with
the other examples, a grid search is conducted (results not shown), holding the number
of time steps constant at 40. The combined error is pointed to be lowest at a θ value of
2.0 and 42 eigenfunctions. This time, parameter learning for θ is skipped, and only guess-
and-check adjustments are made to theta and the number of eigenfunctions to fine-tune
the results. Surprisingly very few adjustments need to be made. The results of this pa-
rameter search and using the kernel EDMD-DL method to model this new reaction system
are presented in Figure  3.21 . Compared to the first reactor example where only varying
temperature is modeled in section  3.3.5 , the accuracy of the predictions from the kernel
EDMD-DL method applied to the second reactor example performed equally as well. This
indicates that the kernel EDMD-DL method can model different combustion bifurcations
as long as the data is presented properly to the method.
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Figure 3.20: Numerical solution of the second combustion reactor system example for 9
initial points only varying in inlet gas temperature
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Figure 3.21: In-Sample Loss, OOS Trajectories, accuracy reports, and hyperparamter val-
ues for combustion data modeling the second combustion reactor system ex-
ample with 9 initial conditions only varying in inlet gas temperature.
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4.1 Summary

This thesis discusses the mathematical theory behind kernel-based EDMD and Kernel
EDMD-DL. These theories are then applied to predict the behavior of nonlinear dynami-
cal systems using an approximated linear operator from numerically generated data. The
resulting accuracy of the predictions is assessed. Additionally, the capabilities and ap-
plications of the gradient kernel parameter learning in the Kernel EDMD-DL method are
analyzed in detail. The kernel EDMD and kernel EDMD-DL methods are applied success-
fully applied to the cubic Lotka-Volterra equations with a Hopf bifurcation as a proof of
concept. As a next step, the kernel EDMD-DL method is applied to predict the dynam-
ics of hydrogen combustion in a constant volume transient CSTR. In this case, the kernel
EDMD-DL method is conditionally successful upon using quality input data and simplify-
ing the dynamics by choosing a more limited parameter space. A highlighted component
of this work is its focus on utilizing the kernel EDMD methods for making out-of-sample
predictions and optimizing the required method hyperparameters to do so.

4.2 Discussion and Outlook

The results show that kernel EDMD-DL can be successfully applied to predict complex
nonlinear dynamics. However, the practical implementation of the method is not as straight-
forward as one would initially think. One of the most important observations made is how
critical it is to find optimal hyperparameters. In the case of the hydrogen combustion dy-
namics example, the accuracy of the results is extremely sensitive to the parameter values.
A rather unexpected aspect is how easy it is to overfit the data. At first, it was expected
that overfitting would not be a problem; however, this proved not to be the case.

By far, the most critical hyperparameter is the number of eigenfunctions. At its core,
EDMD is a model order reduction technique, and the great sensitivity of the results to the
number of eigenfunctions used to reconstruct the data highlighted this aspect. It is unfor-
tunate that more attention is not paid to creating a more robust and effective method of
assessing the quality of the eigenfunctions, as is done in other literature sources, for exam-
ple, in [ 21 ]. A separate thesis could be written about analyzing the eigendecomposition of
the approximated Koopman operator.

A grid search method is useful for parameter optimization but is not very computa-
tionally efficient. The effectiveness of the kernel EDMD-ML method could be drastically

53



4 Conclusion

improved with a better way to optimize the parameters, which cannot be optimized using
a gradient method. The combined error equation  3.5 used to assess both the out-of-sample
error and in-sample error is only partially effective at finding a parameter combination
that finds a minimum that appropriately favors the OOS trajectory error. One would think
it might be enough to minimize the out-of-sample error; however, an analysis of the loss
landscape for all examples shows that both parameters need to be optimized for the full
parameter region of interest to be accurately reconstructed. In future work, exploring bet-
ter concurrent optimization methods would be interesting.

The kernel learning method is shown to be contingently effective in finding an opti-
mal kernel-free parameter through a gradient learning method. Theoretically, it works,
but practically, it is difficult to implement. The loss landscape for both the Hopf and the
combustion reaction examples shows many local minima, which makes learning challeng-
ing when it comes to both setting the initial value and choosing an appropriate optimizer.
However, it cannot be concluded whether these issues are truly prohibitive to its usage in
other applications. In the context of this thesis, the kernel learning method is not useful
because, as discussed in the previous paragraph, it is not enough to minimize only the
in-sample loss. Implementing a way to assess the OOS trajectory loss into the learning
method would be a great next step.

Another critical observation made during the thesis work is the importance of using
quality data to produce quality results. This is true for the kernel EDMD-DL method and
all machine-learning applications. In the hydrogen combustion example, the data quality
is a problem and prohibits the method’s effectiveness. It is not completely understood if
all challenges can be effectively worked around or if there are limitations. In the hydro-
gen combustion example, a workaround method is implemented by creating a separate
approximated Koopman operator for the transient behavior of each system state. This is
just one example of many different methods that can be used. It is worthwhile to conduct
further research on effectively utilizing imperfect data.

As a final note, kernel EDMD holds a lot of promise for the future of dynamic system
modeling. The drive to further integrate simulation and modeling into engineering and
scientific applications is increasing, and kernel EDMD will be a significant contributor.
Additionally, the challenges encountered with kernel parameter learning do not imply
that the method cannot be effectively utilized. It is unfortunate that the beautiful theory
behind the method can be obscured by the practical application difficulties and common
machine learning challenges, but as demonstrated in this thesis, these obstacles can be
overcome.
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[19] Milan Korda and Igor Mezić. On convergence of extended dynamic mode decompo-
sition to the koopman operator. Journal of Nonlinear Science, 28(2):687–710, 2018.

[20] Daniel Lehmberg, Felix Dietrich, Gerta Köster, and Hans-Joachim Bungartz. datafold:
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