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Abstract

A score matching estimator is defined as the minimizer of the score loss function. In the case of an ex-
ponential family with a density that satisfies boundary conditions, the score matching estimator can be
explicitly written down. In this thesis, our primary focus is on applying score matchingmethod to estimate
the parameters of a Gaussian distribution N𝑑 (𝝁, 𝚺), with the goal of constructing a robust version of it.
To achieve this, we start by deriving the explicit form of the score matching estimator for the unknown
parameters 𝝁 and 𝚺 of the Gaussian distribution. We see that the form can be expressed as a composition
of empirical mean and empirical covariance matrix. Then, replacing them to robust alternatives, we obtain
the robust score matching estimator for the parameter 𝝁 and 𝚺. To observe the behavior of the estimators,
we derive the concentration inequalities and conduct numerical simulations.
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1 Introduction

When conducting statistical experiments, one of our interests is how the estimated value is differ from the
true parameter of interest. This is crucial in practice, because we have a restriction of budget for collecting
data, and the experiment organizer need to know the minimum sample size required to obtain results
within the error that the researcher can admit. In order to describe this topic, we start from considering
a statistical model (𝑆, F ,P). Statistical model is characterized as a pair of a sample space (𝑆, F ) and a
set of probability distributions P on (𝑆, F ). We suppose that P is parametrized by population parameter
𝜽 ∈ Θ : P = {𝑃𝜽 : 𝜽 ∈ Θ ⊂ ℝ𝑚}, where Θ is the set of all the possible parameters. We denote the
density function of 𝑃𝜽 by 𝑝𝜽 for each 𝜽 ∈ Θ. In a statistical experiment one typically considers a sample
of size 𝑛, (𝑿𝑖)𝑖∈[𝑛] ∈ 𝑆 , and the goal is to estimate a parameter 𝜽 of the statistical model (𝑆, F ,P). Then,
our problems is paraphrased as the problem of designing data-dependent decision rules which describe
behavior of the unknown population parameter 𝜽 based on the sample of the fixed size. In particular, when
we have a population parameter 𝜽 and the value of its point estimate 𝜽 , we can consider the probability
with which the underlying estimator gather around the population value with error 𝜖 : For the acceptable
error 𝜖 > 0, we are interested in the value 𝛿 (𝑛, 𝜖) ∈ [0, 1] which satisfies

𝑃𝜽0

(���𝜽 ((𝑋𝑖)𝑖∈[𝑛]) − 𝜽0
��� ≤ 𝜖) ≥ 1 − 𝛿 (𝑛, 𝜖) . (1.1)

(1.1) is called Concentration inequality for parameter 𝜽 . In Chapter 3 in this thesis, we review several
important concentration inequalities.

Score matching method was firstly developed in Hyvärinen (2005) in [7]. Suppose that for each 𝜽 ∈ Θ the
density function 𝑝𝜽 of the distribution 𝑃𝜽 is supported on ℝ𝑑 and twice continuously differentiable. The
score matching estimator 𝜽SM 1 is defined as the minimizer with respect to 𝜽 ∈ Θ of the expected squared
ℓ2 distance between the gradients of log𝑝0 and log𝑝 . That is,

𝜽SM ≡ argmin
𝜽 ∈Θ

∫
ℝ𝑑
𝑝0(𝒙)

��∇ log𝑝𝜽 (𝒙) − ∇ log𝑝𝜽0 (𝒙)
��2 d𝒙 . (1.2)

As shown in [7], when 𝑝𝜽 satisfies several moderate conditions, (1.2) can be rewritten without any terms
involving 𝑝 (𝑥),

𝜽SM = argmin
𝜽 ∈Θ

∫
ℝ𝑑
𝑝𝜽0 (𝒙)

𝑑∑
𝑗=1

[
𝜕𝑗𝑗 log𝑝𝜽 (𝒙) +

(𝜕𝑗 log𝑝𝜽 (𝒙))2
2

]
d𝒙 . (1.3)

Moreover for an exponential family of distributions with the density function satisfying log𝑝𝜽 (𝒙) =
𝜽⊤𝒕 (𝒙) − 𝑎(𝜽 ) + 𝑏 (𝒙) with a sufficient statistics 𝒕 and real-valued functions 𝑎 : ℝ𝑚 ↦→ ℝ and 𝑏 : ℝ𝑑 ↦→ ℝ,
we can explicitly write down (1.3) by

𝜽SM = 𝚪−1𝒈, with
𝚪 ≡ 𝔼𝑝𝜽0

∑𝑑
𝑗=1 𝒕

′
𝑗 (𝑿 )𝒕 ′𝑗 (𝑿 )⊤

𝒈 ≡ −𝔼𝑝𝜽0
∑𝑑
𝑗=1 [𝑏 ′𝑗 (𝑿 )𝒕 ′𝑗 (𝑿 ) + 𝒕 ′′𝑗 (𝑿 )] . (1.4)

The score matching estimator introduce by Hyvärinen is defined as the empirical version of (1.4), which
we call "the original score matching estimator". Yu et al.(2019) [8] generalized the idea of score matching
method to broad ranges of distributions. Their works enable us to consider distributions whose densities

1In [7], Score matching estimator is denoted by the natation 𝜽 , but in this thesis we use the notation 𝜽SM in order to distinguish
it from other estimators.
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are supported on a subset 𝑆 of ℝ𝑑 . The idea is to introduce a function 𝒉 : 𝑆 → ℝwhich is enough small
around the boundary of 𝑆 . Instead of (1.2), generalized score matching method consider the following
optimization problem.

𝜽SM ≡ argmin
𝜽 ∈Θ

∫
𝑆
𝑝𝜽0 (𝒙)

���∇ log𝑝𝜽 (𝒙) ◦ 𝒉(𝒙)1/2 − ∇ log𝑝𝜽0 (𝒙) ◦ 𝒉(𝒙)1/2
���2 d𝒙 (1.5)

Similar transformation like (1.3) is possible under moderate conditions with respect to 𝑝𝜃0 and 𝒉. And
for exponential families we can obtain an analogical result with (1.4). We call emprical version of it the
generalized score matching estimator .

In this thesis, one of the problems we consider is the application of the score matching method for es-
timating the unknown parameters (𝝁, 𝚺) of Gaussian distribution. We consider a statistical model with
𝑆 = ℝ𝑑 which is characterized by parameters 𝜽 = (𝝁, 𝚺) with 𝝁 ∈ ℝ𝑑 and 𝚺 ∈ ℝ𝑑×𝑑 , and the density of
each distribution 𝐹𝜽 is given by

𝑝𝜽 (𝒙) ≡
1√

2𝜋 |𝛀 |−1
exp

(
−1
2
(𝑥 − 𝝁)⊤𝛀(𝑥 − 𝝁)

)
.

For each 𝝁 and 𝚺, 𝐹𝜃 is called Gaussian distribution, which is one of exponential families. As introduced in
many books such as [15], the classical estimator for the unkown parameter 𝝁 and 𝚺 of Gaussian distribu-
tion, the empirical mean and covariance

𝝁 ≡ 1
𝑛

𝑛∑
𝑖=1

𝑿𝑖 𝚺̂ ≡ 1
𝑛

𝑛∑
𝑖=1

(𝑿𝑖 − 𝝁) (𝑿𝑖 − 𝝁)⊤

works well. However, in practice observed data sometimes contains outliers, in other words the observed
data may be contaminated by several data whose distribution is different from the distribution that occu-
pies a large portion of the sample. In order to ease the effect of contamination, we consider robust estimator
instead of classical estimator. As introduced in literatures such as [3], [5],[14], and [16], a lot of robust es-
timators have been developed, and we can write down the concentration inequality for them. We will see
some of them in Chapter 4 in this thesis.

In Chapter 5, we obtain the explicit form of 𝜽SM for the unknown parameters 𝜽 = (𝝁, 𝚺) of Gaussian
distribution by applying (1.5). Andwe robustify the score matching estimator by replacing the components
of the estimator to robust ones. Then, we check the behaviors of the robust score matching estimators from
the view point of concentration inequality and numerical simulations.

This thesis is organized as follows. In Chapter 3, we review several properties of statistical inequality
and show the inequalities for sample mean and sample covariance. In Chapter 4, we review the proper-
ties of previously well-known robust estimators (Median of means, Trimmed mean, Minsker’s covariance
estimator, and so on.) for mean and covariance. In Chapter 5, we introduce score matching loss function
and define the score matching estimator, then derive the explicit form for Gaussian distribution and Pareto
distribution. Moreover, we combine the idea of score matching method and robust statistics to create ro-
bust version of 𝜽SM . Then, analyze the error through applying concentration inequalities concentration
inequality and investigate the behavior of the proposed estimator by means of numerical simulations.



3

2 Notation

In this thesis, we use the following notations unless otherwise stated.

We use regular font for scalars, boldface for vectors. We use characters in lower-case for deterministic
elements, in upper-case for random elements, e.g.

𝑥 : deterministic variable, 𝒙 : deterministic vector,
𝑋 : random variable, 𝑿 : random vector.

Following alphabets are used as natural numbers for specific meanings.

𝑛 : the number of samples, 𝑖 : the index of the sample
𝑑 : the dimension the sample space, 𝑗 : the coordinate,
𝑚 : the dimension of the parameter space.

We defines the following symbols by the right sides.

ℝ𝑑 : real valued 𝑑−dimensional Euclidean space
ℝ𝑑1×𝑑2 : the whole set of real valued 𝑑1 × 𝑑2 matrices
S𝑑 ≡ {𝑀 ∈ ℝ𝑑×𝑑 : 𝑀 = 𝑀⊤}
PD𝑑 ≡ {𝑀 ∈ ℝ𝑑×𝑑 : 𝑀 = 𝑀⊤ and𝑀 is positive semidefinite}
|𝒙 | : Euclidean norm for 𝒙 ∈ ℝ𝑑

∥𝑴 ∥ : the spectral norm for the matrix 𝑴 ∈ ℝ𝑑1×𝑑2 (in case that 𝑑1 = 𝑑2, the operator norm)

vec : ℝ𝑑1×𝑑2 → ℝ𝑑1𝑑2
©­­«
𝑎11 . . . 𝑎1𝑑2
...

. . .
...

𝑎𝑑11 . . . 𝑎𝑑1𝑑2

ª®®¬ ↦→ (𝑎11, . . . 𝑎𝑑11, . . . , 𝑎1𝑑2, . . . 𝑎𝑑1𝑑2)⊤

[𝑛] ≡ {1, . . . , 𝑛} ∈ ℕ for 𝑛 ∈ ℕ

Sign(𝑥) ≡


1 𝑥 > 0
0 when 𝑥 = 0
−1 𝑥 < 0

e𝑗,𝑑 ∈ ℝ𝑑 is a a vector the j-th entry 1 and otherwise 0, that is, e𝑗,𝑑 ≡ (0, ..., 0, 1
j th
, 0, ..., 0)⊤ .∫

ℝ𝑑−1 · 𝒙−j means the integration with respect to all the coordinates except for 𝑥 𝑗
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3 Concentration inequalities and their usage in
statistics

In an estimation problem, one of our interest is estimating the population parameter 𝜽0 ∈ Θ ⊂ ℝ𝑚 by
using a set of observations (𝑥𝑖)𝑖∈[𝑛] . Here, Θ is the parameter space, and family of probability measures
P ≡ {𝑃𝜃 : 𝜃 ∈ Θ}are parameterized by the elements 𝜽 ∈ Θ. 𝑃𝜃0 is the probability distribution which
corresponds to the unknown parameter 𝜃0, and (𝑥𝑖)𝑖∈[𝑛] comes from 𝑃𝜃0 . Let (𝑋𝑖)𝑖∈[𝑛] be i.i.d. random
vectors which distribute from 𝑃𝜃0 . We consider a function 𝑓 of these random vectors, and we call the
random vector 𝜃 ≡ 𝑓 (𝑿1, . . . ,𝑿𝑛) estimator and the certain vector 𝑓 (𝒙1, . . . , 𝒙𝑛) estimate of 𝜃0 based on
𝒙1, . . . , 𝒙𝑛 . In order to measure the error of the estimator from the true paremeter 𝜃0, one one usually
considers the mean squared error, which is defined as

𝔼𝑃𝜃0 ⊗𝑛 [(𝜃 − 𝜃0)
2]

Another tool to quantify how a random variable deviates from some value is concentration inequality,
which is the main topic of this chapter. Concentration inequalities quantify random fluctuations of func-
tions of independent random variables by bounding the probability with which the function differs from
its expected value by more than a certain amount.

3.1 Concentration inequalities for mean of random vector

Starting fromMarkov’s inequality, we can get following two concentration inequalities. One isChebyshev’s
inequality, and the other is Chernoff Bound, which is the key equality in this section.

Theorem 3.1.1 (Markov’s inequality) If 𝑋 is a nonnegative random variable with 𝔼[𝑋 ] < ∞ and 𝜖 > 0,
then

ℙ(𝑋 ≥ 𝜖) ≤ 𝔼[𝑋 ]
𝜖

. (3.1)

Proof.
Define a new random variable 𝑌 ≡ 𝜖1{𝑋 ≥𝜖 }, i.e.

𝑌 (𝜔) ≡
{
𝜖 𝑋 (𝜔) ≥ 𝜖
0 𝑋 (𝜔) < 𝜖

since 𝑌 ≤ 𝑋 ,
𝔼[𝑋 ]
𝜖

≥ 𝔼[𝑌 ]
𝜖

= 𝔼
[
1{𝑋 ≥𝜖 }

]
= ℙ(𝑋 ≥ 𝜖) .

□

By applying Markov’s inequality to (𝑋 − 𝔼[𝑋 ])2 and 𝑒𝑋 ,which are always positive, we get the following
two inequalities.

Theorem 3.1.2 (Chebyshev’s inequality) If 𝑋 is a random variable with 𝔼[𝑋 2] < ∞ and 𝜖 > 0, then

ℙ( |𝑋 − 𝔼[𝑋 ] | ≥ 𝜖) ≤ Var(𝑋 )
𝜖2

. (3.2)
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Proof.
ℙ(|𝑋 − 𝔼[𝑋 ] | ≥ 𝜖) = ℙ

(
(𝑋 − 𝔼[𝑋 ])2 ≥ 𝜖2

)
≤

𝑀𝑎𝑟𝑘𝑜𝑣

𝔼
[
(𝑋 − 𝔼[𝑋 ])2

]
𝜖2

=
Var(𝑋 )
𝜖2

□

Theorem 3.1.3 (Chernoff bound, see in [13]) Suppose 𝑋 is a random variable with 𝔼
[
𝑒𝑡𝑋

]
< ∞ for all

𝑡 ∈ ℝ+. Then,

∀𝜖 ∈ ℝ ∀𝑡 ∈ ℝ+ ℙ(𝑋 ≥ 𝜖) ≤ 𝑒−𝑡𝜖M𝑋 (𝑡), (3.3)

where𝑀𝑋 (𝑡) ≡ 𝔼
[
𝑒𝑡𝑋

]
is the moment-generating function of 𝑋 .

Proof.

ℙ(𝑋 ≥ 𝜖) = ℙ
(
𝑒𝑡𝑋 ≥ 𝑒𝑡𝜖

)
≤

𝑀𝑎𝑟𝑘𝑜𝑣

𝔼
[
𝑒𝑡𝑋

]
𝑒𝑡𝜖

= 𝑒−𝑡𝜖M𝑋 (𝑡)

□
Note1 Markov’s inequality and Chebyshev’s inequality assume 𝔼[𝑋 ] < ∞ and 𝔼[𝑋 2] < ∞ respectively,
and Chernoff bound assumes the existence of the moment generating function for 𝑡 > 0. From Jensen’s
inequality, 𝔼[𝑋 2] < ∞ → 𝔼[𝑋 ] < ∞, but there are no order of the strongness between 𝔼[𝑋 ] < ∞ and
𝔼[𝑒𝑡𝑋 ] < ∞ for all 𝑡 ∈ ℝ+ and between 𝔼[𝑋 2] < ∞ and 𝔼[𝑒𝑡𝑋 ] < ∞ for all 𝑡 ∈ ℝ+. In fact, when 𝑋
distributes from Log-normal distribution, 𝐸 [𝑋 2] is finite, but 𝐸 [𝑒𝑡𝑋 ] can not be defined for any t > 0. On
the other hand, when we define the distribution of 𝑋1 and 𝑋2 by

ℙ(𝑋1 = 𝑥) ≡
{
2−𝑘 (𝑤ℎ𝑒𝑛 𝑥 = −2𝑘 , 𝑘 ∈ ℕ)
0 (𝑜𝑡ℎ𝑒𝑟𝑠)

and ℙ(𝑋2 = 𝑥) ≡
{
2−𝑘 (𝑤ℎ𝑒𝑛 𝑥 = −2𝑘

2 , 𝑘 ∈ ℕ)
0 (𝑜𝑡ℎ𝑒𝑟𝑠)

,

𝔼[𝑒𝑡𝑋1] < ∞, but 𝔼[𝑋1] doesn’t exist. 𝔼[𝑒𝑡𝑋2] < ∞ and 𝔼[𝑋2] < ∞ , but 𝔼[𝑋2] doesn’t exist. So, the
inclusion relationships are described by the following figure.

Figure 3.1 The order of the strongness of each assumptions

Note2 (3.3) holds for all 𝑡 > 0, so we have

ℙ(𝑋 ≥ 𝜖) ≤ inf
𝑡>0

𝑒−𝑡𝜖𝑀𝑋 (𝑡) (3.4)

And the following corollary is used later.
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Corollary 3.1.4 For 𝑆𝑛 ≡ ∑𝑛
𝑖=1𝑋𝑖 with (𝑋𝑖)𝑛𝑖=1𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 and for any 𝜖 ∈ ℝ

ℙ(𝑆𝑛 − 𝐸 (𝑆𝑛) ≥ 𝜖) ≤
(3.3)

𝑒−𝑡𝜖𝔼

[
exp

(
𝑡

𝑛∑
𝑖=1

(𝑋𝑖 − 𝔼 [𝑋𝑖])
)]

= 𝑒−𝑡𝜖
(
𝔼

[
𝑒𝑡 (𝑋1−𝔼[𝑋1 ])

] )𝑛
= 𝑒−𝑡𝜖M𝑋1−𝔼[𝑋1 ] (𝑡)𝑛 .

Now, the problem of finding an upper bound for the probability can be paraphrased by the problem of
finding an upper bound for the moment generating function.

Concentration inequality for sub-Gaussian Distribution Next let’s consider a specific class of distri-
bution. One of the most famous distribution is Gaussian distribution N(𝜇, 𝜎2). In this case 𝑴𝑋−𝔼[𝑋 ] (𝑡) =
exp

(
𝜎2𝑡2

2

)
. We define sub-Gaussian distribution as an extension of Gaussian distribution.

Definition 3.1.5 (sub-Gaussian distribution, introduced in [12]) Let 𝑋 to be a random variable with
finite mean. 𝑋 is called sub-Gaussian with variance proxy 𝜎2 if

∀𝑡 ∈ ℝ 𝑴𝑋−𝔼[𝑋 ] (𝑡) = 𝔼
[
𝑒𝑡 (𝑋−𝔼[𝑋 ])

]
≤ exp

(
𝜎2𝑡2

2

)
. (3.5)

The following lemma states that Sub-Gaussian property is closed under algebraic operations.

Lemma 3.1.6 (Algebraic properties of sub-Gaussian variables) If 𝑋1 and𝑋2 are independent sub-Gaussian
random variables with variance proxies 𝜎21 and 𝜎

2
2 , then

• 𝑋1 + 𝑋2 is sub-Gaussian with variance proxy𝜎21 + 𝜎22 .

• 𝑐𝑋1 is sub-Gaussian with variance proxy 𝑐2𝜎2 for any constant 𝑐 ≠ 0.

Proof.
For any 𝑡 ∈ ℝ

𝔼
[
𝑒𝑡 (𝑋1+𝑋2−𝔼[𝑋1+𝑋2 ])

]
= 𝔼

[
𝑒𝑡 (𝑋1−𝔼[𝑋1 ])𝑒𝑡 (𝑋2−𝔼[𝑋2 ])

]
= 𝔼

[
𝑒𝑡 (𝑋1−𝔼[𝑋1 ])

]
𝔼

[
𝑒𝑡 (𝑋2−𝔼[𝑋2 ])

]
independenceness

≤ exp
(
𝜎2
1𝑡

2

2

)
exp

(
𝜎2
2𝑡

2

2

)
= exp

( (𝜎2
1+𝜎2

2)𝑡2
2

)
,

so, 𝑋1 + 𝑋2 is sub-Gaussian with variance proxy 𝜎21 + 𝜎22 . For any 𝑡 ∈ ℝ

𝔼
[
𝑒𝑡 (𝑐𝑋−𝔼[𝑐𝑋 ])

]
= 𝔼

[
𝑒 (𝑡𝑐) (𝑋−𝔼[𝑋 ])

]
≤ exp

(
𝜎2(𝑡𝑐)2

2

)
= exp

( (
𝑐2𝜎2

)
𝑡2

2

)
,

so 𝑐𝑋 is sub-Gaussian with variance proxy 𝑐2𝜎2.
□

Theorem 3.1.7 (Concentration inequality for sub-Gaussian distribution) Let𝑋 be sub-Gaussian ran-
dom variable with the variance proxy 𝜎2. Then for any 𝜖 > 0

ℙ(𝑋 − 𝔼[𝑋 ] ≥ 𝜖) ≤ exp
(
− 𝜖2

2𝜎2

)
ℙ(𝔼[𝑋 ] − 𝑋 ≥ 𝜖) ≤ exp

(
− 𝜖2

2𝜎2

)
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Proof.
Applying Markov’s inequality and using sub-Gaussian property,

ℙ(𝑋 − 𝔼[𝑋 ] ≥ 𝜖) ≤
𝔼

[
𝑒𝑡 (𝑋−𝔼[𝑋 ]) ]
𝑒𝑡𝜖

≤ exp
(
𝜎2𝑡2

2
− 𝑡𝜖

)
ℙ(𝔼[𝑋 ] − 𝑋 ≥ 𝜖) = ℙ

(
𝑒−𝑡 (𝑋−𝔼[𝑋 ]) ≥ 𝑒𝑡𝜖

)
≤

𝔼
[
𝑒−𝑡 (𝑋−𝔼[𝑋 ]) ]

𝑒𝑡𝜖
≤ exp

(
𝜎2𝑡2

2
− 𝑡𝜖

)
This holds for every 𝑡 > 0, and exp

(
𝜎2𝑡2

2 − 𝑡𝜖
)
take the minimum value exp

(
− 𝜖2

2𝜎2

)
at 𝑡 = 𝜖/𝜎2.

□
The following two-side bound can be derived directly as a consequence of theorem 3.1.7.

ℙ(|𝑋 − 𝔼[𝑋 ] | ≥ 𝜖) ≤ ℙ(𝑋 − 𝔼[𝑋 ] ≥ 𝜖) + ℙ(𝔼[𝑋 ] − 𝑋 ≥ 𝜖) ≤ 2 exp
(
− 𝜖2

2𝜎2

)
(3.6)

Corollary 3.1.8 Suppose 𝑋1, . . . , 𝑋𝑛 are independent sub-Gaussian random variables with variance proxies
𝜎21 , . . . , 𝜎

2
𝑛 . Let 𝑆𝑛 =

∑𝑛
𝑖=1𝑋𝑖 and 𝑋𝑛 = 1

𝑛𝑆𝑛 . Then for any 𝜖 ≥ 0

ℙ ( |𝑆𝑛 − 𝔼 [𝑆𝑛] | ≥ 𝜖) ≤ 2 exp
(
− 𝜖2

2
∑𝑛
𝑖=1 𝜎

2
𝑖

)
, (3.7)

and

ℙ
(��𝑋𝑛 − 𝔼

[
𝑋𝑛

] �� ≥ 𝜖 ) ≤ 2 exp
(
− 𝑛2𝜖2

2
∑𝑛
𝑖=1 𝜎

2
𝑖

)
. (3.8)

Proof.
Lemma 3.1.6 implies that 𝑆𝑛 and𝑋𝑛 are also sub-Gaussian, and the variance proxies of 𝑆𝑛 and𝑋𝑛 are

∑𝑛
𝑖=1 𝜎

2
𝑖

and 1
𝑛2

∑𝑛
𝑖=1 𝜎

2
𝑖 . Then, applying (3.6), we get the statement.

□
Note one-sided versions of the inequalities above also hold without the leading factor of 2. By taking a
common 𝜎 for 𝜎21 , . . . , 𝜎

2
𝑛 , we get the following.

Corollary 3.1.9 Let 𝑋 be a sub-Gaussian random variable with variance proxy 𝜎2 and 𝑋1, . . . , 𝑋𝑛 be inde-
pendent copies of X. Let 𝑆𝑛 =

∑𝑛
𝑖=1𝑋𝑖 and 𝑋𝑛 = 1

𝑛𝑆𝑛 . Then for any 𝜖 > 0

ℙ (|𝑆𝑛 − 𝔼 [𝑆𝑛] | ≥ 𝜖) ≤ 2 exp
(
− 𝜖2

2𝑛𝜎2

)
and

ℙ
(��𝑋𝑛 − 𝔼

[
𝑋𝑛

] �� ≥ 𝜖 ) ≤ 2 exp
(
−𝑛𝜖

2

2𝜎2

)
By taking the compliment, we get the following equation which are equivalent to (3.7) and (3.8)

ℙ (|𝑆𝑛 − 𝔼 [𝑆𝑛] | ≤ 𝜖) ≥ 1 − 2 exp
(
− 𝜖2

2
∑𝑛
𝑖=1 𝜎

2
𝑖

)
(3.9)

and

ℙ
(��𝑋𝑛 − 𝔼

[
𝑋𝑛

] �� ≤ 𝜖 ) ≥ 1 − 2 exp
(
− 𝑛2𝜖2

2
∑𝑛
𝑖=1 𝜎

2
𝑖

)
(3.10)



8

These equations show the probability with which the deviances of 𝑆𝑛 and 𝑋𝑛 from the mean are smaller
than the given 𝜖 . Now, by reparametrizing 𝜖 to 𝑡 by 𝜖 ≡

√
2𝑡

∑𝑛
𝑖=1 𝜎

2
𝑖 , we get

∀𝑡 > 0 ℙ
©­«|𝑆𝑛 − 𝔼 [𝑆𝑛] | ≤

√√
2𝑡

𝑛∑
𝑖=1

𝜎2𝑖
ª®¬ ≥ 1 − 2 exp (−𝑡) (3.11)

In case that (𝑋𝑖)𝑖∈[𝑛] are i.i.d.,

∀𝑡 > 0 ℙ
(
|𝑆𝑛 − 𝔼 [𝑆𝑛] | ≤

√
2𝑡𝑛𝜎2

)
≥ 1 − 2 exp (−𝑡) (3.12)

NoteThis inequality implies that 𝑆𝑛 have a deviation of orderO
(√
𝑛
)
with exponential decay in probability.

Next we consider equivalent condition of sub-Gaussian property. In fact, (3.6) is not only an necessary
condition but also an equivalent condition to sub-Gaussian. Furthermore, the following statement of sub-
Gaussian holds, which provides us with other definitions of sub-Gaussian random variable.

Lemma 3.1.10 (Equivalent conditions for variable to be sub-Gaussian) For a random variable𝑋 with
𝔼[𝑋 ] < ∞, the following statements are equivalent.

(a) ∃𝜎2 > 0 ∀𝑡 ∈ ℝ 𝑴𝑋−𝔼[𝑋 ] (𝑡) = 𝔼
[
𝑒𝑡 (𝑋−𝔼[𝑋 ]) ] ≤ exp

(
𝜎2𝑡2

2

)
(b) ∀𝜖 ≥ 0 ℙ(|𝑋 − 𝔼[𝑋 ] | ≥ 𝜖) ≤ 2 exp

(
− 𝜖2

2𝜎2

)
(c) sup

𝑝≥1
𝑝−1/2 (𝔼|𝑋 − 𝔼[𝑋 ] |𝑝)1/𝑝 < ∞

Proof.

(a)⇒ (b) : From Theorem 3.1.7.

(b) ⇒ (c) : It is enough to show case when 𝔼[𝑋 ] = 0, 𝜎2 = 1

𝔼[|𝑋 |𝑝] =
∫ ∞

0
ℙ( |𝑋 |𝑝 ≥ 𝑢)𝑑𝑢

=
∫ ∞

0
ℙ( |𝑋 | ≥ 𝑡)𝑝𝑡𝑝−1𝑑𝑡 by taking 𝑢 ≡ 𝑡𝑝

≤
∫ ∞

0
2𝑝 exp(−𝑡

2

2
)𝑡𝑝−1𝑑𝑡 from the assumption of (b)

= 2𝑝
∫ ∞

0
exp(−𝑠)𝑠

𝑝
2 −1𝑑𝑠 by taking s ≡ t2

2

= 2𝑝Γ
(𝑝
2

)
≤ 2𝑝𝑒

√
𝑝

2

( 𝑝
2𝑒

) 𝑝
2
. Stirling′s approximation

.

Taking 𝑝−1/2(·)
1
𝑝 for both sides,

𝑝−1/2
(
𝔼 |𝑋 |𝑝

)1/𝑝 ≤
(
2𝑒𝑝

√
𝑝

2

) 1
𝑝 (

1
2𝑒

) 1
2

< ∞.
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(c) ⇒ (a) : From the assumption of (c), 𝔼[𝑋 ] < ∞, and 𝛾 ≡ ∥𝑋 ∥𝜓2 < ∞. It is enough to show (a) in case
that 𝔼[𝑋 ] = 0 and 𝔼[𝑋 2] = 1. For any 𝑡 ∈ ℝ

𝔼[exp(𝑡𝑋 )] = 1 + 𝑡 𝔼[𝑋 ]︸︷︷︸
= 0

+
∞∑
𝑝=2

𝑡𝑝𝔼𝑋𝑝

𝑝!

≤ 1 +
∞∑
𝑝=2

𝛾𝑡𝑝𝑝𝑝/2

𝑝!
from the assumption of (c)

≤ 1 +
∞∑
𝑝=2

(
𝛾𝑒 |𝑡 |
√
𝑝

)𝑝
from 𝑝! ≥ (𝑝/𝑒)𝑝

≤ 1 +
∑
𝑝∈2ℕ

(
𝐶 |𝑡 |√
𝑝/2

)2
taking 𝐶 enough large

= 1 +
∞∑
𝑘=1

(
𝐶 |𝑡 |
√
𝑘

)2𝑘
≤ 1 +

∞∑
𝑘=1

(𝐶 |𝑡 |)2𝑘
𝑘!

= exp(𝐶2𝑡2)

□
We introduce the 𝜓2 norm by ∥𝑋 ∥𝜓2 ≡ sup𝑝≥1 𝑝−1/2 (𝔼|𝑋 |𝑝)1/𝑝 < ∞. Then (c) in Lemma 3.1.10 can be
written as

∥𝔼|𝑋 − 𝔼[𝑋 ] ∥𝜓2 < ∞

Next, We define a similar norm ∥·∥𝜓1 and a new category of random variables, which is called sub-
exponential.

Definition 3.1.11 (𝝍1 norm and Sub-exponential random variables) For a random variable X, we de-
fine ∥·∥𝜓1 as

∥𝑋 ∥𝜓1 ≡ sup
𝑝≥1

𝑝−1
(
𝔼|𝑋 |𝑝

)1/𝑝
We call X sub-exponential random variable if

∥𝑋 − 𝔼[𝑋 ]∥𝜓1 < ∞

We use the following lemmas related to sub-exponential distribution in the subsequent chapter.

Lemma 3.1.12 A random variable 𝑋 is sub-exponential if and only if there exist 𝐶 > 0 and 𝑐 > 0 such that

|𝑡 | ≤ 𝑐/∥𝑋 − 𝔼[𝑋 ]∥𝜓1 ⇒ 𝔼 exp(𝑡 (𝑋 − 𝔼[𝑋 ])) ≤ exp
(
𝐶𝑡2∥𝑋 − 𝔼[𝑋 ] ∥2𝜓1

)
.

where 𝐶, 𝑐 > 0 are absolute constants.

Outline of the proof
It’s enough to show the statement in case that the distribution is centered, andWe can assume that ∥𝑋 ∥𝜓1 =
1 since we can show general cases by replacing 𝑋 with 𝑋/∥𝑋 ∥𝜓1 and 𝑡 with 𝑡 ∥𝑋 ∥𝜓1 . From the definition of
∥·∥𝜓1 , 𝔼|𝑋 |𝑝 ≤ 𝑝𝑝 , and Taylor expansion provides us with 𝔼 exp(𝑡𝑋 ) ≤ 1+∑∞

𝑝=2
𝑡𝑝𝑝𝑝/2

𝑝! . And we can check
this is bounded by 1 + ∑∞

𝑝=2(𝑒 |𝑡 |)𝑝 . Moreover, this is bounded by 1 + 2𝑒2𝑡2 ≤ exp
(
2𝑒2𝑡2

)
when |𝑡 | ≤ 1/2𝑒 .

For the details, see Lemma 5.15 in [18]

Lemma 3.1.13 (Equivalence between sub-exponential and sub-Gaussian) A random variable𝑋 is sub-
Gaussian if and only if 𝑋 2 is sub-exponential. Moreover,

∥𝑋 ∥2𝜓2
≤ ∥𝑋 2∥𝜓1 ≤ 2∥𝑋 ∥2𝜓2
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Proof.
The first inequality is derived from the definitions of ∥·∥𝜓1 and ∥·∥𝜓2 amd Jensen’s inequality. The second is
from ∥·∥𝜓2 = sup𝑝≥1 𝑝

1
2 (𝔼|𝑋 |𝑝)1/𝑝 □

Hoeffding’s inequality What is the condition for X to be sub-Gaussian? A sufficient condition is that 𝑋
should be bounded.

Lemma 3.1.14 (Hoeffding’s lemma, see [13]) When a random variable 𝑋 is bounded i.e. 𝑎 ≤ 𝑋 ≤ 𝑏 a.s.
Then 𝑋 is sub-Gaussian with variance proxy (𝑏−𝑎)2

4 , i.e. for any 𝑡 ∈ ℝ

𝔼
[
𝑒𝑡 (𝑋−𝔼[𝑋 ])

]
≤ exp

(
(𝑏 − 𝑎)2𝑡2

8

)
.

Proof.
First, we prove for the case that 𝔼[𝑋 ] = 0, note that 𝑎 ≤ 0 ≤ 𝑏. From the convexity of 𝑥 ↦→ 𝑒𝑡𝑥 with
respect to 𝑥

∀𝑡 ∈ ℝ ∀𝑥 ∈ [𝑎,𝑏] 𝑒𝑡𝑥 ≤ 𝑏 − 𝑥
𝑏 − 𝑎𝑒

𝑡𝑎 + 𝑥 − 𝑎
𝑏 − 𝑎 𝑒

𝑡𝑏 .

By taking the expectation,

𝔼
[
𝑒𝑡𝑋

]
≤ 𝑏

𝑏−𝑎𝑒
𝑡𝑎 + −𝑎

𝑏−𝑎𝑒
𝑡𝑏

= (1 − 𝜃 )𝑒𝑡𝑎 + 𝜃𝑒𝑡𝑏 𝜃 ≡ −𝑎/(𝑏 − 𝑎) ≤ 0
=

(
1 − 𝜃 + 𝜃𝑒𝑡 (𝑏−𝑎)

)
𝑒𝑡𝑎

= (1 − 𝜃 + 𝜃𝑒𝑢) 𝑒−𝜃𝑢 𝑢 ≡ 𝑡 (𝑏 − 𝑎)
= 𝑒𝜙 (𝑢) 𝜙 (𝑢) ≡ log

(
(1 − 𝜃 + 𝜃𝑒𝑢) 𝑒−𝜃𝑢

)
= log (1 − 𝜃 + 𝜃𝑒𝑢) − 𝜃𝑢

From the arbitrariness of 𝑡 , we can also arbitrarily choose 𝑢. And 𝜓 (𝑢) is well-defined. This is because
𝜃 > 0, so 1 − 𝜃 + 𝜃𝑒𝑢 = 𝜃

( 1
𝜃 − 1 + 𝑒𝑢

)
= 𝜃

(
−𝑏𝑎 + 𝑒𝑢

)
> 0. Thus, all we need to do is to find the bound of

𝜙 (𝑢). We can show the bound as followings

∀𝑢 ∈ ℝ ∃𝑣 ∈ [0, 𝑢] s.t. 𝜙 (𝑢) = 𝜙 (0) + 𝑢𝜙 ′(0) + 1
2
𝑢2𝜙 ′′(𝑣) from Taylor′s theorem

𝜙 (0) = log(1 − 𝜃 + 𝜃 ) − 0 = 0

𝜙 ′(0) = 𝜃𝑒𝑢

1 − 𝜃 + 𝜃𝑒𝑢 − 𝜃 |𝑢=0 = 𝜃 − 𝜃 = 0

𝜙 ′′(𝑣) = 𝜃𝑒𝑣 (1 − 𝜃 + 𝜃𝑒𝑣) − 𝜃 2𝑒2𝑣

(1 − 𝜃 + 𝜃𝑒𝑣)2
=

𝜃𝑒𝑣

1 − 𝜃 + 𝜃𝑒𝑣

(
1 − 𝜃𝑒𝑣

1 − 𝜃 + 𝜃𝑒𝑣

)
≤ 1

4

The last inequality is derived from the inequality that 𝑎(1 − 𝑎) ≤ 1
4 for 𝑎 ∈ [0, 1]. Then, we get

𝜙 (𝑢) ≤ 0 + 𝑢 · 0 + 1
2
𝑢2 · 1

4
=
𝑢2

8
=

(𝑏 − 𝑎)2𝑡2
8

.

Combining this bound and 𝔼
[
𝑒𝑡𝑋

]
≤ 𝑒𝜙 (𝑢) ,

𝔼
[
𝑒𝑡𝑋

]
≤ 𝑒𝜙 (𝑢) ≤ exp

(
(𝑏 − 𝑎)2𝑡2

8

)
In the case of general 𝑋 (in which the mean may not equal 0), we apply the aforementioned argument to
𝑌 ≡ 𝑋 − 𝔼[𝑥]. Since 𝔼[𝑌 ] = 0 and 𝑎 − 𝔼[𝑋 ] ≤ 𝑌 ≤ 𝑏 − 𝔼[𝑋 ] a.s.

𝔼
[
𝑒𝑡 (𝑋−𝔼[𝑋 ])

]
= 𝔼

[
𝑒𝑡𝑌

]
≤ exp

(
(𝑏 − 𝔼[𝑋 ] − (𝑎 − 𝔼[𝑋 ]))2𝑡2

8

)
= exp

(
(𝑏 − 𝑎)2𝑡2

8

)
.
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□
From the Hoeffding’s Lemma and (3.1.8), we immediately get the following theorem.

Theorem 3.1.15 (Hoeffding’s inequality, see [13]) Suppose𝑋1, . . . , 𝑋𝑛 are independent random variables
such that 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 almost surely for each 𝑖 = 1, . . . , 𝑛. Let 𝑆𝑛 =

∑𝑛
𝑖=1𝑋𝑖 and 𝑋𝑛 = 1

𝑛𝑆𝑛 . Then

ℙ (|𝑆𝑛 − 𝔼 [𝑆𝑛] | ≥ 𝜖) ≤ 2 exp
(
− 2𝜖2∑𝑛

𝑖=1 (𝑏𝑖 − 𝑎𝑖)2
)

and

ℙ
(��𝑋𝑛 − 𝔼

[
𝑋𝑛

] �� ≥ 𝜖 ) ≤ 2 exp
(
− 2𝑛2𝜖2∑𝑛

𝑖=1 (𝑏𝑖 − 𝑎𝑖)2
)

Bernstein’s inequality Hoeffding’s inequality is a well-known concentration inequality, and another
famous concentration inequality is the following.

Theorem 3.1.16 (Bernstein’s inequality, see [10]) Let𝑋1, . . . , 𝑋𝑛 be independent real-valued random vari-
ables with 𝔼[𝑋𝑖] = 0 and 𝑋𝑖 ≤ 1 𝑎.𝑠. 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ [𝑛]. Define

𝜎2 ≡ 1
𝑛

𝑛∑
𝑖=1

Var {𝑋𝑖} .

Then,

∀𝜖 ≥ 0 ℙ

(
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 > 𝜖

)
≤ exp

(
− 𝑛𝜖2

2 (𝜎2 + 𝜖/3)

)
.

Moreover, if |𝑋𝑖 | ≤ 1, then

∀𝜖 ≥ 0 ℙ

(�����1𝑛 𝑛∑
𝑖=1

𝑋𝑖

����� > 𝜖
)
≤ 2 exp

(
− 𝑛𝜖2

2 (𝜎2 + 𝜖/3)

)
.

To prove (3.1.16), we use the following lemma.

Lemma 3.1.17 (Bennett’s inequality, see [11]) Let 𝑋1, . . . , 𝑋𝑛 be independent real-valued random vari-
ables s.t. 𝔼[𝑋𝑖] = 0 and 𝑋𝑖 ≤ 1 𝑎.𝑠. 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ [𝑛] Let

𝜎2 ≡ 1
𝑛

𝑛∑
𝑖=1

Var {𝑋𝑖} .

Then,

∀𝑡 ≥ 0 ℙ

{
𝑛∑
𝑖=1

𝑋𝑖 > 𝑡

}
≤ exp

(
−𝑛𝜎2ℎ

( 𝑡

𝑛𝜎2

))
.

where ℎ(𝑢) ≡ (1 + 𝑥) log(1 + 𝑥) − 𝑥 for 𝑥 ≥ 0. Moreover, if |𝑋𝑖 | ≤ 1, then

∀𝑡 ≥ 0 ℙ

{����� 𝑛∑
𝑖=1

𝑋𝑖 > 𝑡

�����
}
≤ 2 exp

(
−𝑛𝜎2ℎ

( 𝑡

𝑛𝜎2

))
.

Proof of Bennett’s inequality

Let𝜓 (𝑥) ≡ exp(𝑥) − 𝑥 − 1, then𝜓 satisfy the following.

𝜓 (𝑥) ≥ 𝑥2/2 𝑓 𝑜𝑟 𝑥 ≥ 0 (3.13)
𝜓 (𝑥) ≤ 𝑥2/2 𝑓 𝑜𝑟 𝑥 ≤ 0 (3.14)
𝜓 (𝑠𝑥) ≤ 𝑥2𝜓 (𝑠) 𝑓 𝑜𝑟 𝑠 ≥ 0 𝑎𝑛𝑑 𝑥 ∈ [0, 1] (3.15)
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Then, for 𝑠 ≥ 0

𝔼
[
𝑒𝑠𝑋𝑖

]
= 1 + 𝑠 𝔼 [𝑋𝑖]︸ ︷︷ ︸

= 0

+𝔼 [𝜓 (𝑠𝑋𝑖)]

= 1 + 𝔼 [𝜓 (𝑠 (𝑋𝑖)+) +𝜓 (−𝑠 (𝑋𝑖)−)] ( where 𝑥+ = max(0, 𝑥) and 𝑥− = max(0,−𝑥))

≤ 1 + 𝔼

[
𝜓 (𝑠 (𝑋𝑖)+) +

𝑠2

2
(𝑋𝑖)2−

]
from (3.14)

≤ 1 + 𝔼

[
𝜓 (𝑠) (𝑋𝑖)2+ +

𝑠2

2
(𝑋𝑖)2−

]
from (3.21) and 0 ≤ (𝑋𝑖)+ ≤ 1

= 1 + 𝔼

[
𝜓 (𝑠) (𝑋𝑖)2 −𝜓 (𝑠) (𝑋𝑖)2− + 𝑠

2

2
(𝑋𝑖)2−

]
≤ 1 +𝜓 (𝑠)𝔼

[
𝑋 2
𝑖

]
− 𝔼

[{
𝜓 (𝑠) − 𝑠2

2

}
(𝑋𝑖)2−

]
︸                       ︷︷                       ︸

≥ 0 from 3.14

≤ exp
(
𝜓 (𝑠)𝔼

[
𝑋 2
𝑖

] )
Applying corollary 3.1.4 to (𝑋𝑖)𝑛𝑖=1,

∀𝑡 ∈ ℝ ℙ

{
𝑛∑
𝑖=1

𝑋𝑖 > 𝑡

}
≤ exp

(
𝑛∑
𝑖=1

𝔼
[
𝑋 2
𝑖

]
𝜓 (𝑠) − 𝑠𝑡

)
≤ 𝑒𝑛𝜎2𝜓 (𝑠)−𝑠𝑡 .

This holds for arbitrary 𝑠 ∈ ℝ+. The upper bound is minimized at

𝑠 = log
(
1 + 𝑡

𝑛𝜎2

)
,

and the minimum value is the left hand side of the statement. Repeating this argument for −𝑋𝑖 instead of
𝑋𝑖 , we obtain the same upper bound for ℙ

{
−∑𝑛

𝑖=1𝑋𝑖 > 𝑡
}
, so

ℙ

{����� 𝑛∑
𝑖=1

𝑋𝑖 > 𝑡

�����
}
= ℙ

{
𝑛∑
𝑖=1

𝑋𝑖 > 𝑡

}
+ ℙ

{
−

𝑛∑
𝑖=1

𝑋𝑖 > 𝑡

}
≤ 2 exp

(
−𝑛𝜎2ℎ

( 𝑡

𝑛𝜎2

))
□

Proof of Bernstein’s inequality
𝐹𝑜𝑟𝑥 ≥ 0, ℎ(𝑥) ≥ 𝑥2/(2 + 2𝑥/3) since 𝐹 (𝑥) ≡ ℎ(𝑥) − 𝑥2/(2 + 2𝑥/3) takes 0 at 𝑥 = 0 and 𝑑𝐹

𝑑𝑥 > 0 for 𝑥 ≥ 0.
By applying Bennett’s inequality to∑𝑛
𝑖=1𝑋𝑖 , we get

ℙ

(
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 > 𝑡

)
= ℙ

(
𝑛∑
𝑖=1

𝑋𝑖 > 𝑡𝑛

)
≤

𝐵𝑒𝑛𝑛𝑒𝑡𝑡
exp

(
−𝑛𝜎2ℎ

( 𝑡

𝑛𝜎2

))
≤ exp

(
− 𝑛𝑡2

2 (𝜎2 + 𝑡/3)

)
.

□
Two sided inequality is proved in the same way as Bennett’s inequality. By reparametrization , we obtain
the following corollary.

Corollary 3.1.18 For i.i.d. random variables 𝑋1, . . . , 𝑋𝑛 with 𝔼[𝑋𝑖] = 0 and |𝑋𝑖 | ≤ 1 for all 𝑖 ∈ [𝑛],

∀𝛿 > 0 ℙ
©­«
�����1𝑛 𝑛∑

𝑖=1
𝑋𝑖

����� < 2 ln 2
𝛿

3𝑛
+

√
2𝜎2 ln 2

𝛿

𝑛
ª®¬ ≥ 1 − 𝛿. (3.16)
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Proof.
Take

𝑡 ≡
2
3 log(

2
𝛿 ) +

√( 2
3 log(

2
𝛿 )

)2 + 8𝑛𝛿2 log( 2𝛿 )
2𝑛

.

Note that
2 exp

(
− 𝑛𝑡2

2 (𝜎2 + 𝑡/3)

)
= 𝛿.

since 𝑡 is the positive solution of 𝑛𝑡2 − 2
3 ln

( 2
𝛿

)
𝑡 − 2𝜎2 ln

( 2
𝛿

)
= 0. And the following inequality holds.

𝑡 ≤
2 ln 2

𝛿

3𝑛
+

√
2𝜎2 ln 2

𝛿

𝑛

From this inequality

ℙ
©­«
�����1𝑛 𝑛∑

𝑖=1
𝑋𝑖

����� < 2 ln 2
𝛿

3𝑛
+

√
2𝜎2 ln 2

𝛿

𝑛
ª®¬ ≥ ℙ

(�����1𝑛 𝑛∑
𝑖=1

𝑋𝑖

����� ≤ 𝑡
)

≥ 1 − 2 exp
(
− 𝑛𝑡2

2 (𝜎2 + 𝑡/3)

)
from the theorem 3.1.16

= 1 − 𝛿

□

Theorem 3.1.19 (Bernstein-type inequality) Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. centered sub-exponential random
variables, and 𝐾 ≡ max𝑖 ∥𝑋𝑖 ∥𝜓1 . Then,

∃𝑐1 > 0 ∀𝑡 ≥ 0 ℙ

(����� 𝑛∑
𝑖=1

𝑋𝑖

����� ≥ 𝑡
)
≤ 2 exp

[
−𝑐1min

(
𝑡2

𝐾2𝑛
,
𝑡

𝐾

)]
(3.17)

Proof.
At first we prove the case in which ∥𝑋1∥𝜓1 = 𝐾 = 1 Define 𝑆 ≡ ∑𝑛

𝑖=1𝑋𝑖 . By taking c > 0 satisfying Lemma
3.1.12,

ℙ (𝑆 ≥ 𝑡) ≤ 𝑒−𝜆𝑡 (𝔼[𝑒𝜆𝑆 ])𝑛 𝐶𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦 3.1.4
≤ 𝑒−𝜆𝑡 exp

(
𝑛𝐶𝜆2

)
𝐿𝑒𝑚𝑚𝑎 3.1.12

= exp
(
−𝜆𝑡 +𝐶𝑛𝜆2

)
.

Choosing 𝜆 = min (𝑡/2𝑛𝐶, 𝑐), we obtain

ℙ(𝑆 ≥ 𝑡) ≤
{

exp
(
− 𝑡2

4𝑛𝐶

)
if 𝑡

2𝑛𝐶 ≤ 𝑐
exp

(
−𝑐𝑡 +𝐶𝑐2𝑛

)
else

≤
{

exp
(
− 𝑡2

4𝑛𝐶

)
if 𝑡

2𝑛𝐶 ≤ 𝑐
exp

(
−𝑐𝑡2

)
else

≤ exp
[
−min

(
𝑡2

4𝑛𝐶
,
𝑐𝑡

2

)]
.
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Note that in the second inequality we use that 𝑡
2𝑛𝐶 > 𝑐 ⇔ 𝑐𝑡

2 > 𝐶𝑐2𝑛, and under this condition −𝑐𝑡 +𝐶𝑐2𝑛 <
−𝑐𝑡2 . Repeating the above argument for −𝑆 instead of 𝑆 , we obtain the same bound for ℙ(−𝑆 ≥ 𝑡). Then,

ℙ

(����� 𝑛∑
𝑖=1

𝑋𝑖

����� ≥ 𝑡
)
= ℙ(𝑆 ≥ 𝑡) + ℙ(−𝑆 ≥ 𝑡) ≤ 2 exp

[
−min

(
𝑡2

4𝑛𝐶
,
𝑐𝑡

2

)]
Taking 𝑐1 ≡

( 1
4𝐶

∧ 𝑐
2
)
, we get

ℙ

(����� 𝑛∑
𝑖=1

𝑋𝑖

����� ≥ 𝑡
)
≤ 2 exp

[
−𝑐1min

(
𝑡2

𝑛
, 𝑡

)]
. (3.18)

For general 𝐾 ,

ℙ

(����� 𝑛∑
𝑖=1

𝑋𝑖

����� ≥ 𝑡
)
= ℙ

(����� 𝑛∑
𝑖=1

𝑋𝑖
𝐾

����� ≥ 𝑡

𝐾

)
≤

(3.18)
2 exp

[
−𝑐1min

(
𝑡2

𝐾2𝑛
,
𝑡

𝐾

)]
.

□
By replacing 𝑡 to 𝑡𝑛, we obtain the following inequality regarding sample average.

Corollary 3.1.20 (Bernstein-type inequality) Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. centered sub-exponential random
variables, and 𝐾 ≡ max𝑖 ∥𝑋𝑖 ∥𝜓1 . Then,

∃𝑐1 > 0 ∀𝑡 ≥ 0 ℙ

(�����1𝑛 𝑛∑
𝑖=1

𝑋𝑖

����� ≥ 𝑡
)
≤ 2 exp

[
−𝑐1min

(
𝑡2

𝐾2 ,
𝑡

𝐾

)
𝑛

]
(3.19)

Next, we consider reformulating (3.19) to another representation like (3.1.18).

2 exp
[
−𝑐1min

(
𝑡2𝑛2

𝐾2 ,
𝑡𝑛
𝐾

)]
= 𝜖 ⇔ 𝑐1min

(
𝑡2𝑛2

𝐾2 ,
𝑡𝑛
𝐾

)
= log 2

𝜖

⇔ min
(
𝑡2𝑛2

𝐾2 ,
𝑡𝑛
𝐾

)
= 1

𝑐1
log 2

𝜖

⇔ 𝑡𝑛
𝐾 = max

(
1
𝑐1
log 2

𝜖 ,
√

1
𝑐1
log 2

𝜖

)
⇔ 𝑡 = 𝐾

𝑛 max
(
1
𝑐1
log 2

𝜖 ,
√

1
𝑐1
log 2

𝜖

)
Note that since for 𝜖 ∈ [0, 1], 2

𝜖 > 1 and log 2
𝜖 > 0 and we use that for 𝑥 ≥ 0,min(𝑥, 𝑥2) = 𝑦 ⇔ 𝑥 =

max(𝑦,√𝑦) in the second line. Thus, by re-parametrization and taking the compliment, (3.19) can be
written as

∃𝑐1 > 0 ∀1𝜖 ∈ [0, 1] ℙ

(�����1𝑛 𝑛∑
𝑖=1

𝑋𝑖

����� ≤ 𝐾

𝑛
max

(
1
𝑐1

log
2
𝜖
,

√
1
𝑐1

log
2
𝜖

))
≥ 1 − 𝜖

Theorem 3.1.21 (See Corollary 1 in [2]) Let (𝑿𝑖)𝑖∈[𝑛] be a sequence of independent random vectors in
ℝ𝑑 , define 𝑆𝑛 ≡ ∑𝑛

𝑖=1𝑿𝑖 . Assume

∀𝑖 ∈ [𝑛] 𝔼𝑿𝑖 = 0,

∃𝐵, 𝐿 > 0 2 ≤ ∀𝑚 ∈ ℕ
𝑛∑
𝑖=1

𝔼 |𝑿𝑖 |𝑚 ≤ 𝑚!𝐵2𝐿𝑚−2

2
.

(3.20)

Then,

∀𝑟 ≥ 0 ℙ𝜽 ( |𝑆𝑛 | ≥ 𝑟 ) ≤ 2 exp
{

−𝑟 2
2𝐵2 + 2𝑟𝐿

}
. (3.21)
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Moreover,

∀𝜖 ≥ 0 ℙ𝜽 (
��𝑿̄ �� ≥ 𝜖) ≤ 2 exp

{
−𝑛2𝜖2

2𝐵2 + 2𝑛𝜖𝐿

}
. (3.22)

Outline of proof

ℙ𝜽 ( |𝑆𝑛 | ≥ 𝑟 ) ≤ 𝑒−𝜆𝑟𝔼(𝑒𝑟 |𝑆𝑛 |) ≤ 2𝑒−𝜆𝑟𝔼cosh𝜆 |𝑆𝑛 | ≤ 2𝑒−𝜆𝑟
𝑛∏
𝑗=1

𝔼(𝑒𝜆 |𝑋 𝑗 | − 𝜆
��𝑋 𝑗 ��)

From Taylor’s expansion and the assumption, the last equals to 2𝑒−𝜆𝑟
∏𝑛

𝑗=1𝔼(∑∞
𝑘=2

𝐵2𝐿𝑚−2

2 ) . Calculating
the sum of the geometric series and the 𝜆 minimizing it, we obtain (3.21). For the details, see Corollary 1
in [2].

Corollary 3.1.22 Under the same assumption of (3.20)

∀𝛿 ≥ 0 ℙ

(
∥𝑆𝑛 ∥ ≤ 2𝐿 log

2
𝛿
+

√
2𝐵2 log

2
𝛿

)
≥ 1 − 𝛿. (3.23)

Proof.
Let

𝑡 ≡ 𝐿 log 2
𝛿
+

√(
𝐿 log

2
𝛿

)2
+ 2𝐵2 log

2
𝛿
. (3.24)

Note that
2 exp

{
−𝑟 2

2𝐵2 + 2𝑟𝐿

}
= 𝛿 (3.25)

since 𝑟 is the positive solution of 𝑡2 − 2𝐿 log 2
𝛿 𝑡 + 2𝐵2 log 2

𝛿 = 0. And the following inequality holds.

𝑡 ≤ 𝐿 log
2
𝛿
+

√(
𝐿 log

2
𝛿

)2
+

√
2𝐵2 log

2
𝛿
= 2𝐿 log

2
𝛿
+

√
2𝐵2 log

2
𝛿

(3.26)

From this inequality

L.H.S of (3.27) ≥ ℙ (∥𝑆𝑛 ∥ ≤ 𝑡) from (3.26)

≥ 1 − 2 exp
{

−𝑡2
2𝐵2 + 2𝑟𝐿

}
from Theorem 3.1.21

= 1 − 𝛿 from (3.25)

□
Two specific case which satisfies the assumption of theorem 3.1.21

Case 1 : ( |𝑋𝑖 |) are i.i.d bounded (and 𝔼𝑋1 = 0)
When ( |𝑋1 |) are bounded : 𝐿 ≡ sup |𝑋1 | < ∞, ( |𝑋𝑖 |) also has a finite variance. So, take

𝐵2 ≡ 𝑛

2
𝔼|𝑋1 |2 =

𝑛

2
𝔼

(
Tr𝑋1𝑋1

⊤)
=
𝑛

2
Tr𝔼

(
𝑋1𝑋1

⊤)
< ∞

𝑋1 fulfills (3.20). By Substituting Tr𝔼[𝑋1𝑋
⊤
1 ] for 𝐵2, we obtain the next corollary.

Corollary 3.1.23 Let (𝑿𝑖)1≤𝑖≤𝑛 ∈ ℝ𝑑 be a sequence of i.i.d random vectors. Define 𝑆𝑛 ≡ ∑𝑛
𝑖=1𝑋𝑖 . Assume

that sup |𝑋1 | ≡ 𝐿 < ∞. Then,

∀𝛿 > 0 ℙ

(
|𝑆𝑛 | ≤

√
Tr𝔼[𝑋1𝑋⊤

1 ]
√
log

2
𝛿
+ 2𝐿 log

2
𝛿

)
≥ 1 − 𝛿
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Case 2 : ( |𝑋𝑖 |) are i.i.d Gaussian (and 𝔼𝑋1 = 0) The following lemma states that (Multivariate) normal dis-
tribution satisfies the assumption of Theorem 3.1.21 for 𝐿 = 𝐷 and 𝐵2 = 𝑛𝐷2.

Lemma 3.1.24 (Lemma : Case of Gaussian random vector) Let a random vector (𝑋𝑖)𝑖∈[𝑛] distribute from
N(0, 𝚺). Then

∀𝑚 ∈ ℕ
𝑛∑
𝑖=1

𝔼 |𝑋𝑖 |𝑚 ≤ 𝑛𝐷𝑚𝑚!
2

=
𝑚!𝑛𝐷2𝐷𝑚−2

2

where 𝐷 ≡ Tr𝚺.

Proof.
When 𝑋𝑖∼𝑋∼N(0, 𝚺), and 𝚺 is represented as

𝚺 = 𝑸⊤diag(𝜎21 , . . . , 𝜎2𝑑 )𝑸,

here 𝜎 𝑗 ∈ ℝ for 𝑗 ∈ [𝑑] and 𝑸 ∈ ℝ𝑑×𝑑 is an orthogonal matrix. Nete that 𝐷 ≡
√∑

𝜎 𝑗 2. Define 𝒆̃𝑖 ≡ 𝑸⊤𝒆𝑖
for all 𝑖 ∈ [𝑑], where (𝒆𝑖)𝑖∈[𝑑 ] is the standard basis for ℝ𝑑 . And we can write 𝑿 as

𝑋 = 𝚺
1
2𝑌,

where 𝑌 =
∑𝑑
𝑗=1 𝜉 𝑗𝒆 𝑗 and 𝜉 𝑗

i.i.d.∼ N1(0, 1) for all 𝑗 ∈ [𝑑]. Then,

𝑋 =
∑𝑑
𝑗=1 𝜉 𝑗𝚺

1
2 𝒆 𝑗 =

∑𝑑
𝑗=1 𝜉 𝑗𝑸

⊤diag(𝜎1, . . . , 𝜎𝑑 )𝒆 𝑗
=

∑𝑑
𝑗=1 𝜉 𝑗𝑸

⊤𝜎 𝑗𝒆 𝑗 =
∑𝑑
𝑗=1 𝜉 𝑗𝜎 𝑗 (𝑸⊤𝒆 𝑗 ) =

∑𝑑
𝑗=1 𝜎 𝑗𝜉 𝑗 𝒆̃ 𝑗

Thus,

𝑛∑
𝑖=1

𝐸 |𝑋𝑖 |𝑚 = 𝑛𝐸 |𝑋 |𝑚 (𝑋𝑖)𝑖∈[𝑛] ∼
𝑖 .𝑖 .𝑑.

𝑋

≤ 𝑛

√
𝔼 |𝑋 |2𝑚 𝐽𝑒𝑛𝑠𝑒𝑛′𝑠 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

= 𝑛

√√√
𝔼

(
𝑑∑
𝑗=1

𝜎 𝑗 2𝜉 𝑗
2

)𝑚
≤ 𝑛

√√√
𝔼

𝑑∑
𝑗=1

𝜎 𝑗 2

𝐷2
(
𝐷2𝜉 𝑗

2)𝑚
= 𝑛

√√√ 𝑑∑
𝑗=1

𝜎 𝑗 2

𝐷2 𝔼
(
𝐷2𝜉 𝑗

2)𝑚 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 𝑜 𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛

= 𝑛
√
𝔼

(
𝐷2𝜉21

)𝑚 (𝜉 𝑗 ) ′𝑠 𝑖 .𝑖 .𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑒 𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜 𝑓 𝐷2

= 𝑛𝐷𝑚
√
𝔼

(
𝜉2𝑚1

)
= 𝑛𝐷𝑚

√√
2𝑚

𝑚∏
𝑘=1

2𝑘 − 1
2

≤ 𝑛𝐷𝑚
𝑚!
2

=
𝑚!𝑛𝐷2𝐷𝑚−2

2
.

□
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On the fourth line, we apply Jensen’s inequality :
(∑𝑑

𝑗=1
𝜎2
𝑗

𝐷2𝑎 𝑗

)𝑚
≤ ∑𝑑

𝑗=1
𝜎2
𝑗

𝐷2 (𝑎 𝑗 )𝑚 for non negative values

(𝑎 𝑗 ) 𝑗 ∈[𝑛] ≡ (𝐷2𝜉2𝑗 ) 𝑗 ∈[𝑛] . Thus, by applying Corollary 3.1.22, we get the following.

Corollary 3.1.25 Let random vectors (𝑋𝑖)𝑖∈[𝑛] distribute from N(0, 𝚺). Then,

∀𝛿 ≥ 0 ℙ

(
|𝑆𝑛 | ≤ 2Tr(𝚺) log 2

𝛿
+

√
2𝑛Tr(𝚺) log 2

𝛿

)
≥ 1 − 𝛿. (3.27)

Moreover,

∀𝛿 ≥ 0 ℙ

(��𝑿̄ �� ≤ 2
𝑛
Tr(𝚺) log 2

𝛿
+

√
2
𝑛
Tr(𝚺) log 2

𝛿

)
≥ 1 − 𝛿. (3.28)

At the end of this subsection, we compare the above concentration inequalities : Chebyshev inequality,
Chernoff bound (under sub-Gaussian assumption), Hoeffding inequality, and Bernstein inequiality. By
re-parametrization, each inequality can be written as

ℙ
(��𝑋𝑛 − 𝔼

[
𝑋𝑛

] �� ≥ ℎ(𝛿, 𝑛)) ≤ 𝛿,
where

ℎ(𝛿, 𝑛) ≡ 𝜎√
𝑛𝛿

for Chebyshev inequiality,

ℎ(𝛿, 𝑛) ≡
√

2𝜎2 ln 2
𝛿

𝑛 for Chernoff bound,

ℎ(𝛿, 𝑛) ≡
√

(𝑏−𝑎)2 log(2/𝛿)
2𝑛 for Hoeffding inequiality,

ℎ(𝛿, 𝑛) ≡ 2 ln 2
𝛿

3𝑛 +
√

2𝜎2 ln 2
𝛿

𝑛 . for Bernstein inequiality,

The following is the relation between the number of samples (= 𝑛) and ℎ(𝛿, 𝑛).

here, we draw the line of Bernstein inequality by setting 𝑎𝑖 = −1 and 𝑏𝑖 = 1 in order to compare it with
Hoeffding inequality.
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3.2 Concentration inequalities for covariance matrix of random vector

Next, we construct concentration inequalities for a randommatrix. When the operator norm of the random
matrix is bounded, the following probability inequality hold.

Theorem 3.2.1 (Bernstein’s inequality due to Tropp(2015), see Theorem 6.6.1 in [4]) Let (𝑿𝑖)1≤𝑖≤𝑛 ∈
ℝ𝑑×𝑑 be a sequence of independent, random, positive semidefinite Hermitian matrices. Assume

∃𝑅 > 0 ∀𝑘 ∈ ℕ0 𝔼𝑿𝑘 = 0 and ∥𝑿𝑘 ∥ ≤ 𝑅

Then, then it holds that

∀𝑡 ≥ 0 ℙ

(




∑
𝑘

𝑿𝑘






 ≥ 𝑡
)
≤ 𝑑 · exp

(
−𝑡2/2

∑

𝑘 𝔼𝑿
2
𝑘



 + 𝑅𝑡/3
)
.

The outline of the proof (For the details, see Theorem 6.6.1 in [4]. )
At first, we consider a function 𝑓𝜃 on ℝ satisfying 𝑓𝜃 (𝑥) = 𝑒𝜃𝑥−𝜃𝑥−1

𝑥2
(for 𝑥 = 0, define 𝑓𝜃 (0) = 𝜃 2

2 ).
Performing calculations provides us with 𝑓𝜃 (𝑅) ≤ 𝜃 2/2

1−𝜃𝑅/3 . From the assumption ∥𝑿𝑘 ∥ ≤ 𝑅, we get 𝑓 (𝑿𝑘 ) ≼
𝑓 (𝑅) · 𝐼𝑑 .When, we obtain

e𝜃𝑿 ≼ 𝐼𝑑 + 𝜃𝑿 + 𝑿 (𝑓𝜃 (𝑅) · 𝐼𝑑 )𝑿 = 𝐼𝑑 + 𝜃𝑿 + 𝑓𝜃 (𝑅) · 𝑿2 ≼ 𝐼𝑑 + 𝜃𝑿 + 𝜃 2/2
1 − 𝜃𝑅/3 · 𝑿2. (3.29)

Taking the expectation for the both sides, from the assumption of 𝔼(𝑿𝑘 ) = 0

𝔼e𝜃𝑿 ≼ I + 𝜃 2/2
1 − 𝜃𝑅/3 · 𝔼𝑿2 ≼ exp

(
𝜃 2/2

1 − 𝜃𝑅/3 · 𝔼𝑿2
)

(3.30)

Then,
ℙ

(

∑𝑛
𝑖=1𝑋𝑖



 ≥ 𝑡
)

≤ inf
0<𝜃

e−𝜃𝑡 tr exp
(∑

𝑖 log𝔼e𝜃𝑿𝑖
)

≤
logarithm
of (3.30)

inf
0<𝜃<3/𝑅

e−𝜃𝑡 tr exp
(
𝜃 2/2

1−𝜃𝑅/3
∑
𝑖 𝔼𝑿

2
𝑖

)
□By

taking𝜃 ≡ 𝑡∑
𝑖 𝔼𝑿

2
𝑖 +𝑅𝑡/3

, we obtain the statement. □

Corollary 3.2.2 Consider a sequence (𝑋𝑘 )1≤𝑘≤𝑛 ∈ ℝ𝑑×𝑑 of independent, random, Hermitian matrices. As-
sume that 𝔼 [𝑋𝑘 ] = 0 and ∀𝑘 ∈ [𝑛] ∥𝑋𝑘 ∥ ≤ 𝑅. Then,

∀𝛿 ≥ 0 ℙ
©­«





 𝑛∑
𝑘=1

𝑋𝑘






 ≤

√√√
2






 𝑛∑
𝑘=1

𝔼
[
𝑋 2
𝑘

]




 log (
𝑑

𝛿

)
+ 2𝑅

3
log

(
𝑑

𝛿

)ª®¬ ≥ 1 − 𝛿 (3.31)

Proof.
Let

𝑡 ≡ 𝑅

3
log

𝑑

𝛿
+

√√√
𝑅2

9
(log 𝑑

𝛿
)2 + 2






 𝑛∑
𝑘=1

𝔼𝑋 2
𝑘






 log 𝑑𝛿 (3.32)

Note that

𝑑 exp

(
−𝑡2/2

∑𝑛

𝑘=1𝔼𝑋
2
𝑘



 + 𝑅𝑡/3
)
= 𝛿 (3.33)
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since 𝑡 is the positive solution of 𝑡
2

2 − 𝑅
3 (log

𝑑
𝛿 )𝑡 −



∑𝑛
𝑘=1𝔼𝑋

2
𝑘



 log 𝑑𝛿 = 0. And the following inequality
holds.

𝑡 ≤ 𝑅

3
log

𝑑

𝛿
+

√
𝑅2

9
(log 𝑑

𝛿
)2 +

√√√
2






 𝑛∑
𝑘=1

𝔼𝑋 2
𝑘






 log 𝑑𝛿 =
2𝐿
3

log
𝑑

𝛿
+

√√√
2






 𝑛∑
𝑘=1

𝔼𝑋 2
𝑘






 log 𝑑𝛿 (3.34)

From this inequality

L.H.S of (3.31) ≥ ℙ

(




 𝑛∑
𝑘=1

𝑋𝑘






 ≤ 𝑡
)

from (3.34)

≥ 1 − 𝑑 · exp
(

−𝑡2/2

∑𝑛
𝑘=1𝔼𝑋

2
𝑘



 + 𝑅𝑡/3
)

from Theorem 3.2.1

= 1 − 𝛿 from (3.33)

Taking 1/𝑛 for the both sides of (3.31), it holds with probability at least 1 − 𝛿 that




1𝑛 𝑛∑
𝑡=1

𝑋𝑡






 ≤

√√√
2






 1
𝑛2

𝑛∑
𝑡=1

𝔼𝑋𝑡 2





 log (

𝑑

𝛿

)
+ 2𝑅
3𝑛

log
(
𝑑

𝛿

)
□Our

interest in this thesis is the case in which we have i.i.d. sample (𝑋𝑖)𝑖 ∈ [𝑛] ∈ ℝ𝑑 , and the random matrix is
represented as the sample covariance of (𝑋𝑖)𝑖 ∈ [𝑛] In order to discuss this topic, we introduce Covariance
operator.

Definition 3.2.3 Let (𝐸, ∥ · ∥) be a Hilbert space with the dual space 𝐸∗, 𝑿 be a centered random vector in 𝐸
with 𝔼 |𝑿 |2 < ∞, and 𝑿1, . . . ,𝑿𝑛 be i.i.d. copies of 𝑿 . The covariance operator Σ : 𝐸∗ → 𝐸 is defined as

𝚺𝑢 ≡ 𝔼 [⟨𝑿 , 𝑢⟩𝑿 ] 𝑢 ∈ 𝐸∗.

And, the sample covariance operator Σ̂ : 𝐸∗ → 𝐸 is defined as

𝚺̂𝑢 ≡ 𝑛−1
𝑛∑
𝑗=1

〈
𝑿 𝑗 , 𝑢

〉
𝑿 𝑗 , 𝑢 ∈ 𝐸∗

here, ⟨𝑥,𝑢⟩ denotes the value of 𝑢 ∈ 𝐸∗ at 𝑥 ∈ 𝐸.
Note Since 𝐸 is a hilbert space, 𝐸∗ is regarded as the same space as 𝐸 by the canonical isomorphism. In the
case when 𝐸 = ℝ𝑑 , the representation matrix of 𝚺 with respect to the standard basis equals to 𝔼 [𝑿𝑿⊤],
that of 𝚺̂ equals to the empirical covariance, 1

𝑛

∑𝑛
𝑖=1𝑿𝑖𝑿

⊤
𝑖 .

The goal of this section is creating upper bounds for the deviation Σ̂ from Σ with some probability. In
order to measure how for Σ̂ deviates from Σ, we introduce operator norm

Definition 3.2.4 For operator A : 𝐸∗ → 𝐸,

∥𝐴∥ ≡ sup
𝑢∈𝐸∗, ∥𝑢 ∥≤1

∥𝐴𝑢∥

In case that 𝐸 = ℝ𝑑 , the covariance operator Σ w.r.t. X, ∥Σ∥ is the maximum length of the eigen vectors
of 𝐶𝑜𝑣 (𝑋 ). For the random variable ∥Σ̂ − Σ∥, the following inequality is known.
Theorem 3.2.5 Let 𝑿 in ℝ𝑑 to be Gaussian with 𝔼[𝑿 ] = 0, 𝑿1, . . . ,𝑿𝑛 to be i.i.d. copies of X. Then,

∃𝐶 > 0 ∀𝑡 > 1 𝑃

(
∥Σ̂ − Σ∥ ≤ 𝐶 ∥Σ∥

(√
𝑑

𝑛

∨ 𝑑

𝑛

∨√
𝑡

𝑛

∨ 𝑡

𝑛

))
≥ 1 − 𝑒−𝑡 (3.35)
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Proof.
Step 1 : Simplifying the situation
Define 𝑛 × 𝑑 matrix 𝑋̃ ≡ (𝑋1, . . . , 𝑋𝑛)⊤, where 𝑋1, . . . , 𝑋𝑛 are independent copies of 𝑋 . Then, Σ̂ = 1

𝑛 𝑋̃
⊤𝑋̃ .

Using this notation, (3.35) is rewritten as

∃𝐶 > 0 ∀𝑡 > 1 𝑃

(
∥ 1
𝑛
𝑋̃⊤𝑋̃ − Σ∥ ≤ 𝐶 ∥Σ∥

(√
𝑑

𝑛

∨ 𝑑

𝑛

∨√
𝑡

𝑛

∨ 𝑡

𝑛

))
≥ 1 − 𝑒−𝑡 (3.36)

To show (3.2), it is enough to show (3.35) only in case of Σ ≡ 𝐼𝑑 , i.e. in case that 𝑋 is isortopic. This can be
checked as the followings.

∥ 1
𝑛
𝑋̃⊤𝑋̃ − Σ∥ = ∥Σ 1

2⊤( 1
𝑛
Σ− 1

2⊤𝑋̃⊤𝑋̃Σ− 1
2 − 𝐼𝑑 )Σ

1
2 ∥

≤ ∥Σ∥∥ 1
𝑛
Σ− 1

2⊤𝑋̃⊤𝑋̃Σ− 1
2 − 𝐼𝑑 ∥.

Thus,

ℙ

(
∥ 1
𝑛
𝑋̃⊤𝑋̃ − Σ∥ ≤ 𝐶 ∥Σ∥

(√
𝑑

𝑛

∨ 𝑑

𝑛

∨√
𝑡

𝑛

∨ 𝑡

𝑛

))
≥ ℙ

(
∥Σ∥∥ 1

𝑛
𝚺− 1

2⊤𝑋̃⊤𝑋̃Σ− 1
2 − 𝐼𝑑 ∥ ≤ 𝐶 ∥Σ∥

(√
𝑑

𝑛

∨ 𝑑

𝑛

∨√
𝑡

𝑛

∨ 𝑡

𝑛

))
= ℙ

(
∥ 1
𝑛
Σ− 1

2⊤𝑋̃⊤𝑋̃Σ− 1
2 − 𝐼𝑑 ∥ ≤ 𝐶

(√
𝑑

𝑛

∨ 𝑑

𝑛

∨√
𝑡

𝑛

∨ 𝑡

𝑛

))
.

The transpose of each rows of 𝑋̃Σ− 1
2 , which is represented as 𝒆⊤

𝑗,𝑑
𝑋̃Σ− 1

2 , are isotropic1 This is shown by

the following. Note that the 𝑗-th row of 𝑋̃Σ− 1
2 can be written by 𝒆⊤

𝑗,𝑑
𝑿̃Σ− 1

2 = 𝑿 𝑗
⊤𝚺− 1

2 (For the definition of
𝑒 𝑗,𝑑 , see the notation chapter.).

𝔼

((
𝑿 𝑗

⊤𝚺− 1
2

)⊤
𝑿 𝑗

⊤𝚺− 1
2

)
= 𝔼

(
𝚺− 1

2⊤𝑿 𝑗𝑿 𝑗
⊤𝚺− 1

2

)
= 𝚺− 1

2⊤𝔼
(
𝑿 𝑗𝑿 𝑗

⊤)
𝚺− 1

2

= 𝚺− 1
2⊤𝚺𝚺− 1

2

= 𝐼𝑑

So, for the proof of , it’s suffice to show it in case of (𝑋𝑖)𝑖∈[𝑛] ’s are isotropic, that is our problem boils
down to show the following.
Isotropic case of (3.35)
Let 𝐴1, . . . , 𝐴𝑛 ∈ ℝ𝑑 to be i.i.d. isotropic sub-Gaussian with 𝔼[𝐴𝑖] = 0 for all 𝑖 . Define 𝐴 ≡ (𝐴1, . . . , 𝐴𝑛)⊤ ∈
ℝ𝑛×𝑑 . Then,

∃𝐶 > 0 ∀𝑡 > 1 ℙ

(



1𝑛𝐴⊤𝐴 − 𝐼𝑑




 ≤ 𝐶

(√
𝑑

𝑛

∨ 𝑑

𝑛

∨√
𝑡

𝑛

∨ 𝑡

𝑛

))
≥ 1 − 𝑒−𝑡 . (3.37)

1A random vector 𝑿 ∈ ℝ𝑑 is called isotropic, when 𝔼[𝑋𝑋𝑇 ] = 𝐼𝑑 .
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Note that since
(√

𝑑
𝑛

∨√
𝑡
𝑛

)
≤

√
𝑑
𝑛 +

√
𝑡
𝑛 ≤ 2

(√
𝑑
𝑛

∨√
𝑡
𝑛

)
, (3.37) is equivalent to

∃𝐶 > 0 ∀𝑡 > 1 ℙ

(



1𝑛𝐴⊤𝐴 − 𝐼𝑑




 ≤ 𝐶

(
𝛿
∨

𝛿2
))

≥ 1 − 𝑒−𝑡 𝑤ℎ𝑒𝑟𝑒 𝛿 ≡
(√

𝑑

𝑛
+

√
𝑡

𝑛

)
. (3.38)

Moreover, (3.38) is equivalent to

∃𝐶 > 0 ∀𝑡 > 1 ℙ

(



1𝑛𝐴⊤𝐴 − 𝐼𝑑




 ≤

(
𝛿
∨

𝛿2
))

≥ 1 − 𝑒−𝑡 𝑤ℎ𝑒𝑟𝑒 𝛿 ≡ 𝐶
(√

𝑑

𝑛
+

√
𝑡

𝑛

)
. (3.39)

This is because replacing 𝐶 to (𝐶∨
1)2, we obtain (3.38) ⇒ (3.39), and replacing 𝐶 to

(
𝐶

∨
𝐶2) , we obtain

(3.39)⇒ (3.38)

. Step 2: approximation by 𝜖-net
Let N to be a 1

4 -net of the unit sphere 𝑆
𝑑−1. We can choose the net N ⊂ 𝑆𝑑−1 s.t.

|N | ≤ 9𝑑 and




1𝑛𝐴⊤𝐴 − 𝐼𝑑





 ≤ 2max
𝑥 ∈N

����〈( 1𝑛𝐴⊤𝐴 − 𝐼𝑑
)
𝑥, 𝑥

〉���� = 2max
𝑥 ∈N

����1𝑛 |𝐴𝑥 |2 − 1
���� .

So, to show (3.39), it suffices to show

∃𝐶 > 0 ∀𝑡 > 1 ℙ

(
max
𝑥 ∈N

����1𝑛 |𝐴𝑥 |2 − 1
���� ≤ (

𝛿
∨
𝛿2

)
2

)
≥ 1 − 𝑒−𝑡 (3.40)

,where 𝛿 ≡ 𝐶
(√

𝑑
𝑛 +

√
𝑡
𝑛

)
. This is equivalent to

∃𝐶 > 0 ∀𝑡 > 1 ℙ

(
max
𝑥 ∈N

����1𝑛 |𝐴𝑥 |2 − 1
���� ≥ (

𝛿
∨
𝛿2

)
2

)
≤ 𝑒−𝑡

By taking the union bound,

ℙ

(
max
𝑥 ∈N

����1𝑛 |𝐴𝑥 |2 − 1
���� ≥ (

𝛿
∨
𝛿2

)
2

)
≤ 9𝑑 max

𝑥 ∈N
ℙ

(����1𝑛 ∥𝐴𝑥 ∥22 − 1
���� ≥ (

𝛿
∨
𝛿2

)
2

)
for any given 𝑥 . Therefore, to show (3.40), it suffices to show

∀𝑥 ∈ 𝑆𝑑−1 ∃𝐶 > 0 ∀𝑡 > 1 ℙ

(����1𝑛 |𝐴𝑥 |2 − 1
���� ≥ (

𝛿
∨
𝛿2

)
2

)
≤ 𝑒−𝑡9−𝑑 ,𝑤ℎ𝑒𝑟𝑒 𝛿 ≡ 𝐶

(√
𝑑

𝑛
+

√
𝑡

𝑛

)
(3.41)

Step 3 : Concentration
Take 𝑍𝑖 ≡ ⟨𝐴𝑖 , 𝑥⟩ for any 𝑥 ∈ 𝑆𝑛−1, then, (𝑍𝑖)𝑛𝑖=1 are independent, (𝑍𝑖)𝑛𝑖=1 are also sub-Gaussian from the
algebraic property of sub-Gaussian distribution, and

𝔼
[
𝑍 2
𝑖

]
= 𝔼

[
(𝐴𝑖𝑥)⊤𝐴𝑖𝑥

]
= 𝔼

[
𝑥⊤𝐴⊤

𝑖 𝐴𝑖𝑥
]

=
𝐴𝑖 𝑖𝑠 𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐

𝔼
[
𝑥⊤𝐼𝑑𝑥

]
= 1

(𝑍 2
𝑖 − 1)𝑛𝑖=1 are also independent, and

𝑍 2

𝑖 − 1



𝜓1

≤ 2


𝑍 2

𝑖




𝜓1

≤ 4 ∥𝑍𝑖 ∥2𝜓2
Lemma 3.1.13

≤ 4𝐾2 from the defnition of ∥ · ∥𝜓2
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The first inequality is derived by

𝑍 2
𝑖 − 1




𝜓1

=


𝑍 2

𝑖 − 𝔼(𝑍 2
𝑖 )




𝜓1

≤
Triangle
inequality



𝑍 2
𝑖




𝜓1

+


𝔼(𝑍 2

𝑖 )



𝜓1

= 𝔼(𝑍 2
𝑖 )

≤


(𝑍 2

𝑖 )



𝜓1

≤ 2


𝑍 2

𝑖




𝜓1

So, (𝑍 2
𝑖 −1)𝑛𝑖=1 are centered sub-exponential distributions. Thus, we can apply Theorem 3.1.19 to (𝑍 2

𝑖 −1)𝑛𝑖=1,
and we obtain

∃𝑐1 > 0 ∀𝜖 > 0 ℙ

(�����1𝑛 𝑛∑
𝑖=1

𝑍 2
𝑖 − 1

����� ≥ 𝜖

2

)
≤ 2 exp

[
−𝑐1

(
𝜖2

16𝐾4

∧ 𝜖

4𝐾2

)
𝑛

]
≤ 2 exp

[
− 𝑐1
16𝐾4

(
𝜖2

∧
𝜖
)
𝑛
]

The second inequality holds because 𝐾 ≥ ∥𝑍𝑖 ∥𝜓2 ≥ 1√
2
(𝔼( |𝑍𝑖 |2))1/2 = 1√

2
, and under this region 16𝐾4 ≥

4𝐾2. Reclacing 𝑐1
16 to 𝑐1, we obtain

∃𝑐1 > 0 ∀𝜖 > 0 ℙ

(�����1𝑛 𝑛∑
𝑖=1

𝑍 2
𝑖 − 1

����� ≥ 𝜖

2

)
≤ 2 exp

[
− 𝑐1
16𝐾4

(
𝜖2

∧
𝜖
)
𝑛
]

(3.42)

L.H.S. of (3.41) = ℙ

(�����1𝑛 𝑛∑
𝑖=1

𝑍 2
𝑖 − 1

����� ≥ (
𝛿
∨
𝛿2

)
2

)
≤

(3.42)
2 exp

[
− 𝑐1
𝐾4

((
𝛿
∨

𝛿2
)2 ∧ (

𝛿
∨

𝛿2
))

︸                             ︷︷                             ︸
= 𝛿2

𝑛

]

= 2 exp
−
𝑐1
𝐾4𝐶

2

(√
𝑑

𝑛
+

√
𝑡

𝑛

)2
𝑛


≤ 2 exp

[
− 𝑐1
𝐾4𝐶

2 (𝑑 + 𝑡)
]

= exp
[
− 𝑐1
𝐾4𝐶

2 (𝑑 + 𝑡) + log 2
]

(3.41) can be shown by taking 𝐶 ≡ 𝐾2
√

log 9
𝑐1

,

2 exp
[
− 𝑐1
𝐾4𝐶

2 (𝑑 + 𝑡)
]
≤ 2 exp(− log 9(𝑑 + 𝑡)) = 2 · 9−𝑡 · 9−𝑑 < 𝑒−𝑡9−𝑑

□

This bound depends on demension. The following is a demension free version.

Theorem 3.2.6 Under the same assumption of Theorem 3.2.5,

∃𝐶 > 0 ∀𝑡 > 1 𝑃

(
∥Σ̂ − Σ∥ ≤ ∥Σ∥

(√
r(Σ)
𝑛

∨ r(Σ)
𝑛

∨√
𝑡

𝑛

∨ 𝑡

𝑛

))
≥ 1 − 𝑒−𝑡

,where r(Σ) ≡ (𝔼∥𝑋 ∥)2
∥Σ∥



23

Example
In case when 𝑿 ∼ N3 (0, 𝐼3), ∥Σ∥ = the maximum absolute eigen value = 1.

𝔼 ∥𝑿 ∥ =
∫
ℝ3

√
𝑥2 + 𝑦2 + 𝑧2 1

√
2𝜋

exp(−𝑥
2 + 𝑦2 + 𝑧2

2
)𝑑𝑥𝑑𝑦𝑑𝑧

=
∫ ∞

𝑟=0

∫ 2𝜋

𝜃=0

∫ 1
2𝜋

𝜙=− 1
2𝜋
𝑟 2

1
√
2𝜋

exp(−𝑟
2

2
) cos𝜙𝑑𝜙𝑑𝜃𝑑𝑟

=
√
8𝜋

∫ ∞

𝑟=0
𝑟 2 exp(−𝑟

2

2
)𝑑𝑟︸                   ︷︷                   ︸

=
√

𝜋
2

= 2𝜋

So, 𝒓 (Σ) = 4𝜋2
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4 Robust Estimation on the framework of graphical
models

Classical estimation methods rely heavily on assumptions about randomness, independenceness, distri-
butional models, perhaps prior distributions for some unknown parameters, and so on. In fact, until the
previous chapter, we have assumed 𝑿1, . . . ,𝑿𝑛 perfectly distribute from the distribution which interest
us. Unfortunately, these assumption does not hold in practice, sometimes practical data contain outliers.
When there are outliers in the data, classical estimators often have very poor performance.
In order to deal with such practical problems, alterative estimators which is less susceptible to the outliers
have been developed (See [14]) . Distinguished with classical estimators, the estimators are called robust
estimators.

4.1 Robust estimator for mean of random vector

At first, we consider estimators for the mean. In the following table, we describe methods to estimate
mean of random vector, provide theoretical assumptions, computation time, and give the error bounds. As
a basic setting, assume that

• we have i.i.d sample (𝑿𝑖)𝑖∈[𝑛] from the distribution 𝑃𝜃0 ,

• 𝑿 has finite covariance matrix.

The following shows several famous mean estimator.

Mean estimator 𝝁 =
(
𝜇 (1) , . . . , 𝜇 (𝑑)

)⊤
Method Assumption Computation Error Bound

1 Simple mean Sub Gaussian
or bounded O (𝑑𝑛) 𝑆𝑒𝑒 𝐶ℎ𝑎𝑝𝑡𝑒𝑟 2

2 Median of means None O (𝑑𝑛 log𝑘) |𝝁 − 𝝁0 | ≤
√
32Tr(𝚺) log(𝑑/𝛿)𝑛

(Proposition 1 in [5])

3 Trimmed mean 𝑛 > (16/3) log(8/𝛿) O (𝑑𝑛 log𝑘) |𝝁 − 𝝁 | ≤ 9
√
Tr(Σ) log(8/𝛿)𝑛

(Theorem 6 in [5] and take union bound)

Remark 1 The finiteness of the variance of 𝑿 means the finiteness of Median because

|Med(𝑿 ) | ≤ |Med(𝑿 ) − 𝝁 | + |𝝁 |
≤ 𝔼( |Med(𝑿 ) − 𝑿 |) + |𝝁 |
≤ 𝔼( |𝝁 − 𝑿 |) + |𝝁 |
≤

√
𝔼((𝝁 − 𝑿 )2) + |𝝁 | =

√
Tr(𝚺𝚺⊤) + |𝝁 | .

The second and fourth inequalities holds from Jensen’s inequality, and the third can be shown by the fact
that median minimizes the function on ℝ𝑑 : 𝑎 ↦→ 𝔼( |𝑿 − 𝑎 |).
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1. Sample mean In the previous chapter, we discussed sample mean.

𝜇 ≡ 1
𝑛

𝑛∑
𝑖=1

𝑿𝑖

2. Median of means Median of means1 are defined depending on the number of blocks (≡ 𝑘). The esti-
mator is calculated by the following two steps. First, we partition [𝑛] = {1, . . . , 𝑛} into 𝑘 blocks 𝐵1, . . . , 𝐵𝑘 ,
where we assume #𝐵𝑖 =𝑚 for all 𝑖 ∈ [𝑘], so 𝑘𝑚 equals to 𝑛. Next, we calculate the sample means in each
blocks.

𝒁𝑙 ≡
1
𝑚

∑
𝑖∈𝐵𝑙

𝑿𝑖 ∀𝑙 ∈ [𝑘]

Then, take the median of the 𝑘 data.

𝜇 ( 𝑗) ≡ Med
𝑙 ∈[𝑘 ]

𝑍𝑙
( 𝑗) ∀𝑗 ∈ [𝑑]

3. Trimmed mean Trimmed mean2 use 2𝑛 samples from 𝑿 . Let 𝑋1, . . .𝑿𝑛,𝑿1, . . .𝑿𝑛 be i.i.d. copies of
𝑿 . And it has a parameter 𝜖 ∈ [0, 0.5], , which we call discarded rate. The estimation procedure is the
following. First, we use (𝑿𝑖)𝑖∈[𝑛] to set thresholds to set the criteria of outliers : For the discarded rate 𝜖
and for all 𝑗 ∈ [𝑑], we calculate

𝛼 ( 𝑗) ≡ the 𝜖−quantile of (𝑿 ( 𝑗)
𝑖 )𝑖∈[𝑏 ] 𝛽 ( 𝑗) ≡ the (1 − 𝜖)−quantile of (𝑿 ( 𝑗)

𝑖 )𝑖∈[𝑏 ]

Next, we calculate the mean of adjusted (𝑋 ( 𝑗)
𝑖 )𝑖∈[𝑛] :

𝜇 ( 𝑗) ≡ 1
𝑛

𝑛∑
𝑖=1

𝜙𝛼 ( 𝑗 ) ,𝛽 ( 𝑗 )

(
𝑋 ( 𝑗)
𝑖

)
,

where 𝜙𝛼,𝛽 : ℝ→ ℝ is defined by 𝜙𝛼,𝛽 (𝑥) =

𝛽 if 𝑥 > 𝛽,

𝑥 if 𝑥 ∈ [𝛼, 𝛽],
𝛼 if 𝑥 < 𝛼,

Remark Under the condition that 𝑿 has finite covariance matrix, the expectation of Trimmed mean is
also finite. We need a long discussion to prove in general case. But, under the assumption that 𝛼 ( 𝑗) ’s and
𝛽 ( 𝑗) ’s are finite. It’s trivial that the trimmed mean is finite.

4.2 Robust estimator for covariance matrix of random vector

Next, we consider estimating the covariance 𝚺 = (𝜎 (𝑖, 𝑗) )𝑖, 𝑗 . As is the case with mean, we suppose that

• we have i.i.d sample (𝑿𝑖)𝑖∈[𝑛] from the distribution 𝑃𝜃0

• 𝑿 has finite variance.

Covariance estimator Σ̂ =
(
𝜎̂ (𝑖, 𝑗) )

{𝑖, 𝑗 }∈[𝑛]×[𝑛]

1As the reference, e.g. see [5]
2As the reference, e.g. see [5]
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The following shows several well-known covariance estimator.

Method Assumption Computation Error Bound

1 Sample covariance None O (𝑑𝑛)
∥Σ̂ − Σ∥ ≤

𝐶 ∥Σ∥
(√

𝑑
𝑛

∨ 𝑑
𝑛

∨√
− log𝛿
𝑛

∨ − log𝛿
𝑛

)

2 Covariance derived by
Median absolute deviation Gaussian O (𝑑𝑛log𝑛) The existency of the error

boundis not trivial3

3
Covariance derived from

order statistic of
two samples defferences

Gaussian O (𝑑𝑛log𝑛) The existency of the error
boundis not trivial4

4 Minsker′s method None Infeasible See the below

The correlation 𝜌
(
X( 𝑗1) ,X( 𝑗2) ) = 𝜌 𝑗1, 𝑗2 can be written in terms of standard deviations of one dimensional

variables 𝜎𝑋 =
√
Var(𝑋 ) as the followings.

𝜌𝑖, 𝑗 = 𝜌𝑿 ( 𝑗1 ) ,X( 𝑗2 ) =
𝜎2
𝑎X( 𝑗1 )+𝑏X( 𝑗2 )

− 𝜎2
𝑎X( 𝑗1 )−𝑏X( 𝑗2 )

𝜎2
𝑎X( 𝑗1 )+𝑏X( 𝑗2 )

+ 𝜎2
𝑎X( 𝑗1 )−𝑏X( 𝑗2 )

, (4.1)

where 𝑎 ≡ 1
𝜎
𝑋 ( 𝑗1 )

and 𝑏 ≡ 1
𝜎
X( 𝑗2 )

.
And the relation between the covariance and the correlation is given by

𝜎 ( 𝑗1, 𝑗2) = 𝜌 𝑗1, 𝑗2𝜎𝑋 ( 𝑗1 )𝜎𝑋 ( 𝑗2 (̄𝑖 ) ) . (4.2)

We use above relations to construct a (robust) estimator for the covariance :

First, we construct estimators of the variances (we will see several estimator for variances later) for all
𝑗1, 𝑗2 ∈ [𝑑],

𝜎̂2X( 𝑗1 ) , 𝜎̂
2
X( 𝑗2 ) , 𝜎̂

2
𝑎X( 𝑗1 )+𝑏X( 𝑗2 ) , 𝜎̂

2
𝑎X( 𝑗1 )−𝑏X( 𝑗2 ) ,

,where 𝑎 = 1
𝜎̂
𝑋 ( 𝑗1 )

and 𝑏 = 1
𝜎̂
X( 𝑗2 )

.

Second, define 𝜎̂ ( 𝑗1, 𝑗2) by

𝜌 𝑗1, 𝑗2 ≡
𝜎̂2
𝑎X( 𝑗1 )+𝑏X( 𝑗2 )

− 𝜎̂2
𝑎X( 𝑗1 )−𝑏X( 𝑗2 )

𝜎̂2
𝑎X( 𝑗1 )+𝑏X( 𝑗2 )

+ 𝜎̂2
𝑎X( 𝑗1 )−𝑏X( 𝑗2 )

𝜎̂ ( 𝑗1, 𝑗2) ≡ 𝜌 𝑗1, 𝑗2𝜎̂𝑋 ( 𝑗1 ) 𝜎̂𝑋 ( 𝑗2 ) =
𝜎̂2
𝑎X( 𝑗1 )+𝑏X( 𝑗2 )

− 𝜎̂2
𝑎X( 𝑗1 )−𝑏X( 𝑗2 )

𝜎̂2
𝑎X( 𝑗1 )+𝑏X( 𝑗2 )

+ 𝜎̂2
𝑎X( 𝑗1 )−𝑏X( 𝑗2 )

𝜎̂𝑋 ( 𝑗1 ) 𝜎̂𝑋 ( 𝑗2 )

Therefore, the transformation from variances to correlation by (4.1) makes our problem boil down to the
problem to find the robust estimator of the variance of the each component. The following table shows
several robust estimator for the variance.
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1. Sample covariance As is well known, sample covariance 𝚺̂ is defined by

𝚺̂ ≡
(
𝜎̂ ( 𝑗1, 𝑗2)

)
𝑗1, 𝑗2∈[𝑑 ]

≡
(
1
𝑛

𝑛∑
𝑖=1

(𝑋 ( 𝑗1)
𝑖 − 𝑋 ( 𝑗1) )(𝑋 ( 𝑗2)

𝑖 − 𝑋 ( 𝑗2) )
)
𝑗1, 𝑗2∈[𝑑 ]

This definition of sample covariance van be induced by the definition of sample variance 𝜎̂𝑋 ≡
√

1
𝑛

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋 )2

and (∗). We can check this as the following.

𝜌 𝑗1, 𝑗2 =
4𝑎𝑏 1

𝑛

∑𝑛
𝑖=1(𝑋

( 𝑗1)
𝑖 − 𝑋 ( 𝑗1) ) (𝑋 ( 𝑗2)

𝑖 − 𝑋 ( 𝑗2) )

2𝑎2 1𝑛
∑𝑛
𝑖=1(𝑋

( 𝑗1)
𝑘

− 𝑋 ( 𝑗1) )2 + 2𝑏2 1𝑛
∑𝑛
𝑖=1(𝑋

( 𝑗2)
𝑖 − 𝑋 ( 𝑗2) )2

=
1
𝑛

∑𝑛
𝑖=1(𝑋

( 𝑗1)
𝑖 − 𝑋 ( 𝑗1) ) (𝑋 ( 𝑗2)

𝑖 − 𝑋 ( 𝑗2) )√
1
𝑛

∑𝑛
𝑘=1(𝑋

( 𝑗1)
𝑖 − 𝑋 ( 𝑗1) )2

√
1
𝑛

∑𝑛
𝑖=1(𝑋

( 𝑗2)
𝑖 − 𝑋 ( 𝑗2) )2

𝜎̂ ( 𝑗1, 𝑗2) = 𝜌 𝑗1, 𝑗2𝜎̂𝑋 ( 𝑗1 ) 𝜎̂𝑋 ( 𝑗2 )

=
1
𝑛

𝑛∑
𝑖=1

(𝑋 ( 𝑗1)
𝑖 − 𝑋 ( 𝑗1) ) (𝑋 ( 𝑗2)

𝑖 − 𝑋 ( 𝑗2) )

2. Median absolute deviation When we know 𝑿 ∼ N(𝝁, 𝚺), one of robust covariance estimator is
Median absolute deviation 5 (MAD), which is defined as

𝜎̂ (𝑖) ≡ 𝑐Med𝑘
{
Med𝑙

���𝑿 (𝑖)
𝑘

− 𝑿 (𝑖)
𝑙

���} .
in the case of Gaussian, 𝑐 ≈ 1.1926.

3. Alternative to MAD 6 Successively under the assumption of 𝑿 ∼ N(𝝁, 𝚺), another robust covariance
estimator is defined as

𝜎̂ (𝑖) ≡ 𝑑
{���𝑋 (𝑖)

𝑘
− 𝑋 (𝑖)

𝑙

��� ;𝑘 < 𝑙
}
(𝑧)
.

here {𝑿𝑘 } (𝑧) means the 𝑧-th largest value in {𝑿𝑘 } and 𝑧 ≡
(
⌊𝑛/2⌋ + 1

2

)
. In case of Gaussian, 𝑑 ≈ 2.2219.

4. Minsker’s method We consider the method described by Minsker in [16]. Different from the estima-
tors in 2. Covariance derived by Median absolute deviation and 3.Covariance derived from order statistic
of two samples differences, the Minsker’s method directly estimates the covariance matrix. The definition
is the following.

Definition 4.2.1 Let (𝑿𝑖)𝑖∈[𝑛] are i.i.d. copies of a random vector 𝑿 ∈ ℝ𝑑 . Minsker’s estimator with param-
eter 𝜆 = (𝜆1, 𝜆2)is defined as

𝑆𝜆 ≡ argmin
𝑆 ∈𝑆𝑑

min
𝑈𝑖,𝑗 ∈𝑆𝑑

[
1

𝑛(𝑛 − 1)
∑
𝑖≠𝑗




𝑿𝑖, 𝑗𝑿⊤
𝑖, 𝑗 − 𝑆 −

√
𝑛(𝑛 − 1)𝑈𝑖, 𝑗




2
F
+𝜆1∥𝑆 ∥1 + 𝜆2

∑
𝑖≠𝑗



𝑈𝑖, 𝑗

1] , (4.3)

here 𝑿𝑖, 𝑗 ≡ 𝑿𝑖−𝑿 𝑗√
2

, 𝑆𝑑 is the whole set of real-valued symmetric 𝑑 × 𝑑 matrices.

The following theorem provides us the minimum value with respect to 𝑈𝑖, 𝑗 .

5As the reference, see[6]
6As the reference, see [6]
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Theorem 4.2.2 (See Remark 1 in [16]) Let (𝑿𝑖)𝑖∈[𝑛] are i.i.d. copies of a random vector 𝑿 ∈ ℝ𝑑 . We can
express Minsker’s estimator with parameter 𝜆 = (𝜆1, 𝜆2) as

𝑆𝜆 = argmin
𝑆

{
2

𝑛(𝑛 − 1) tr
[∑
𝑖≠𝑗

𝜌 √
𝑛 (𝑛−1)𝜆2

2

(
𝑿𝑖, 𝑗 𝑿̃

⊤
𝑖, 𝑗 − 𝑆

)]
+ 𝜆1∥𝑆 ∥1

}
, (4.4)

where

𝜌𝜆 (𝑢) :=
{

𝑢2

2 , |𝑢 | ≤ 𝜆

𝜆 |𝑢 | − 𝜆2

2 , |𝑢 | > 𝜆
∀𝑢 ∈ ℝ, 𝜆 ∈ ℝ+

and for 𝑓 : ℝ→ ℝ and 𝐴 ∈ 𝑆𝑑 with the spectral decomposition 𝐴 = 𝑼diag(𝜏1, . . . , 𝜏𝑑 )𝑼⊤, define 𝑓 (𝐴) as

𝑓 (𝐴) ≡ 𝑼

©­­­­«
𝑓 (𝜏1)

. . .

𝑓 (𝜏𝑑 )

ª®®®®¬
𝑼⊤. (4.5)

Outline of proof
Consider the spectral decomposition of 𝑋𝑖, 𝑗𝑋⊤

𝑖, 𝑗 − 𝑆 for all 𝑖, 𝑗 ∈ [𝑛] :

𝑋𝑖, 𝑗𝑋
⊤
𝑖, 𝑗 − 𝑆 =

𝑑∑
𝑘=1

𝜏 (𝑖, 𝑗)
𝑘

𝑣 (𝑖, 𝑗)
𝑘

𝑣 (𝑖, 𝑗)⊤
𝑘

where, 𝜏 (𝑖, 𝑗)
𝑘

is the 𝑘-th eigenvalue of 𝑋𝑖, 𝑗𝑋⊤
𝑖, 𝑗 − 𝑆 and 𝑣 (𝑖, 𝑗)

𝑘
is the corresponding eigenvector. We can see

that

𝑈𝑖, 𝑗 ≡
1√

𝑛(𝑛 − 1)

𝑑∑
𝑘=1

sign
(
𝜏 (𝑖, 𝑗)
𝑘

) (���𝜏 (𝑖, 𝑗)𝑘

��� − √
𝑛(𝑛 − 1)𝜆2

2

)
+
𝑣 (𝑖, 𝑗)
𝑘

𝑣 (𝑖, 𝑗)𝑇
𝑘

= 𝜌 √
𝑛 (𝑛−1)𝜆2

2

(
𝑌𝑖, 𝑗𝑌

𝑇
𝑖,𝑗 − 𝑆

)
minimizes the object function of (4.3). Plugging 𝑈𝑖, 𝑗 in the object function, we get the statement. For
details, see the D.1 in [16].

Practical calculation by Minsker’s method In general, it is difficult to analytically find the minimizer
𝑆 , so we solve this optimal problem by a numerical approach : Proximal Gradient Descent (PGD) method.
Let’ consider a general optimizing problem :

argmin𝑥 𝑓 (𝑥) = argmin𝑥 𝑔(𝑥) + ℎ(𝑥), (4.6)

where 𝑔 is convex and differentiable, ℎ is convex (not necessarily differentiable). The PDG method is a
numerical way for solving the problem, which is proceeded by the following inductions.

• starts from an initial point 𝑥 (0) ,

• updates as : 𝑥 (𝑘) = prox𝛼𝑘ℎ
(
𝑥 (𝑘−1) − 𝛼𝑘∇𝑔

(
𝑥 (𝑘−1) ) ) ,

where
proxℎ (𝑥) ≡ argmin

𝑢

(
ℎ(𝑢) + 1

2
∥𝑢 − 𝑥 ∥22

)
,

and 𝛼𝑘 > 0 is the step size. The following lemma guarantees the convergence of 𝑥 (𝑘) to the minimizer 𝑥∗.

Lemma 4.2.3 Assume that𝑔 andℎ satisfies the above conditions, and suppose that ∇𝑔 is Lipschitz continuous
with constant 𝐿 > 0, that is

∥∇𝑔(𝑥) − ∇𝑔(𝑦)∥ ≤ 𝐿∥𝑥 − 𝑦∥
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and the optimal value 𝑓 ∗ of (4.6) is finite and achieved at the point 𝑥∗. Take 𝛼𝑘 = 𝛼 ≤ 𝐿. Then the PGD
algorithm yield an O( 1𝑘 ) convergence rate, i.e.

∃𝐶 ∈ ℝ ∀𝑘 ∈ ℕ
���𝑓 (

𝑥 (𝑘)
)
− 𝑓 ∗

��� ≤ 𝐶

𝑘
.

We can apply PGD method to our problem (4.4) by taking

𝑔(𝑆) ≡ tr

[∑
𝑖≠𝑗

𝜌 √
𝑛 (𝑛−1)𝜏2

2

(
𝑿𝑖, 𝑗𝑿

⊤
𝑖, 𝑗 − 𝑆

)]
ℎ(𝑆) ≡ 𝜏1 ∥𝑆 ∥1

Note that, 𝑔 is convex and differentiable with respect to 𝑆 . Recall that differentiability of multi dimensional
function 𝑓 : ℝ𝑚 → ℝ𝑚 is defined as the following.

Definition 4.2.4 (Gateaux differentiability) 𝑓 : ℝ𝑚 → ℝ𝑚 is called differentiable at𝐴 ∈ ℝ𝑚 when there
exists a linear transformation D 𝑓 (𝐴) : ℝ𝑚 → ℝ𝑚 such that

∀𝐻 ∈ ℝ𝑚 D 𝑓 (𝐴) = 𝑑

𝑑𝑡

����
𝑡=0

𝑓 (𝐴 + 𝑡𝐻 ).

D 𝑓 (𝐴) is called Gateaux derivative.

Now, In order to check this, we use the following lemma.

Lemma 4.2.5 (See Theorem V.3.3 in [17]) Let 𝑓 ∈ 𝐶1(ℝ) and let 𝐴 be a symmetric matrix with the spec-
tral decomposition 𝐴 = 𝑼diag(𝜆1, . . . , 𝜆𝑑 )𝑼⊤. Then the map 𝑓 : 𝑆𝑑 −→ 𝑆𝑑 induced by (4.5) is differentiable
at 𝐴, and the Gateux derivative of 𝑓 at 𝐴 satisfies

∀𝐻 D 𝑓 (𝐴)(𝐻 ) = 𝑈
[
𝑓 ′(diag(𝜆1, . . . , 𝜆𝑑 )) ◦𝑈 ⊤𝐻𝑈

]
𝑈 ⊤,

where ◦ is entry-wise products.

Now, from the definition of 𝜌 and 𝑔, 𝑔 is also differentiable and takes over the convexity of 𝜌 . And

∥∇𝑔(𝑆1) − ∇𝑔(𝑆2)∥𝐹 = ∥D𝑔(𝑆1) − D𝑔(𝑆2)∥𝐹
≤ 𝐶 ∥D𝑔(𝑆1) − D𝑔(𝑆2)∥ for an absolute constant 𝐶 ∈ ℝ+

≤ 𝐶 ∥𝑆1 − 𝑆2∥ .

So, applying 4.2.3, the convergence of the following algorithm is guaranteed. Thus, we get the following
algorithm.

Algorithm : Proximal gradient descent (PGD) method

Input: number of iterations𝑇 , tuning parameters 𝜆1 and 𝜆2, initial estimation 𝑆0, samples (𝑿𝑖)𝑖∈[𝑛] ∈ ℝ𝑑 .
For 𝑡 = 1, 2, . . . ,𝑇 do

(1) Compute 𝐺𝑡 = − 2
𝑛(𝑛 − 1)

∑
0≤𝑖𝑡< 𝑗𝑡 ≤𝑛

∇𝑔𝑖, 𝑗
(
𝑆𝑡

)
= − 2

𝑛(𝑛 − 1)
∑

0≤𝑖𝑡< 𝑗𝑡 ≤𝑛
𝜌 ′√

𝑛 (𝑛−1)𝜆2
2

(
𝑿𝑖, 𝑗𝑿

⊤
𝑖, 𝑗 − 𝑆𝑡

)
.

(2) (gradient update) 𝑇 𝑡+1 = 𝑆𝑡 −𝐺𝑡 .
(3) (proximal update)

𝑆𝑡+1 = argmin
𝑆

{
1
2


𝑆 −𝑇 𝑡+1

2

𝐹
+ 𝜆1

2
∥𝑆 ∥1

}
= 𝛾 𝜆1

2

(
𝑇 𝑡+1

)
,

where 𝛾𝜆 (𝑢) = sign(𝑢) ( |𝑢 | − 𝜆)+.
End for
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Output: 𝑆𝑇+1

We are interested in the deviation of



𝑆𝜆 − 𝚺




. The following statement provides as an answer.

Theorem 4.2.6 (See Theorem 4 in [16]) Let (𝑿𝑖)𝑖∈[𝑛] are i.i.d. copies of a random vector 𝑿 ∈ ℝ𝑑 , For
any 𝑡, 𝜎 which satisfies

1 ≤ 𝑡 ≤ 𝑐3𝑛
𝑟𝐻

for some enough small constant𝑐3,where 𝑟𝐻 ≡
tr

(
𝔼

[
(𝐻1,2−Σ)2

] )


𝔼[
(𝐻1,2−Σ)2

]



𝜎 ≥




𝔼 [ (
𝐻1,2 − Σ

)2]


 1
2
,

𝑛 ≥
{
64𝑎2𝑟𝐻 𝑡

∨ 4𝑏2𝑡2 ∥Σ∥2
𝜎2

}
for some enough large constants 𝑎, 𝑏,

𝜆1 ≤ ( 𝜎4 )
√
𝑛
𝑡

𝜆2 ≥ 𝜎√
(𝑛−1)𝑡


(∗∗)

Then

ℙ

(


𝑆𝜆 − 𝚺



 ≤ 20

39
𝜆1 +

80
39
𝜎

√
𝑡

𝑛
+ 40
39
𝜆2𝑡

)
≥ 1 −

(
8𝑟𝐻
3

+ 1
)
𝑒−𝑡 ,

where 𝐻𝑖, 𝑗 ≡ (𝑿𝑖−𝑿 𝑗 ) (𝑿𝑖−𝑿 𝑗 )⊤
2 for 𝑖, 𝑗 ∈ [𝑛].

Outline of proof
For a given 𝑡 ∈ ℕ in the PGD algorithm,

𝑆𝑡+1 − 𝚺



 ≤


𝑆𝑡+1 −𝑇 𝑡+1

 + 

𝑇 𝑡+1 − 𝚺




≤



𝑆𝑡+1 −𝑇 𝑡+1

 + 


 1
𝑛 (𝑛−1)𝜃2

∑
𝑖≠𝑗

[
𝜌 ′

(
𝜃2

(
𝐻𝑖, 𝑗 − 𝑆𝑡

) )
− 𝜌 ′

(
𝜃2

(
𝐻𝑖, 𝑗 − Σ

) ) ]
+ 𝑆𝑡 − 𝚺





+



 1
𝑛 (𝑛−1)𝜃2

∑
𝑖≠𝑗 𝜌

′ (𝜃2 (
𝐻𝑖, 𝑗 − 𝚺

) )


 ,
where 𝜃2 ≡ 2

𝜆2
√
𝑛 (𝑛−1)

. Calculating the bound of the each three terms in the right hand side. We obtains

the statement. For details, see the D.1 in [16].
Replacing

(
8𝑟𝐻
3 + 1

)
𝑒−𝑡 to 𝛿 , we immediately obtain the following Corollary.

Corollary 4.2.7 Let (𝑿𝑖)𝑖∈[𝑛] are i.i.d. copies of a random vector 𝑿 ∈ ℝ𝑑 . For a given 𝛿 ∈ [0, 1], define
𝑡 = log

(
8𝑟𝐻+3
3𝛿

)
. Assume that 𝑡, 𝜎 satisfies (∗∗) in Theorem 4.2.6. Then,

ℙ
©­­­«



𝑆𝜆 − 𝚺




 ≤ 20
39
𝜆1 +

80
39
𝜎

√√
log

(
8𝑟𝐻+3
3𝛿

)
𝑛

+ 40
39
𝜆2 log

(
8𝑟𝐻 + 3
3𝛿

)ª®®®¬ ≥ 1 − 𝛿.

Implementation of Minsker’s method by PGD algorithm To see the behavior of estimates by Minsker
method’s, we set the following three cases as the population distribution.

• 1 dimensional Gaussian distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ N(1, 3)
𝑛 = 100, 𝑆0 = 10,𝑇 = 200, 𝜆1 = 0, 𝜆2 = 0.02, 0.1, 1, and 20. We simulate 100 times.

• 1 dimensional Pareto distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ 𝑃𝑎𝑟𝑒𝑡𝑜 (𝑥𝑚 = 2, 𝛼 = 3).
𝑛 = 100, 𝑆0 = 10,𝑇 = 200, 𝜆1 = 0, 𝜆2 = 0.02, 0.1, 1, and 20

Note that the mean = 𝛼𝒙𝑚
𝛼−1 = 3·2

3−1 = 3 and the variance = 𝑥2𝑚 ·𝛼
(𝛼−1)2 (𝛼−2) = 3. We simulate 100 times.
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• 3 dimensional Gaussian distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ N(𝜇, 𝚺) where 𝜇 =
©­«
1
−1
0

ª®¬, Σ =
( 1 0 0.5

0 2 1
0.5 1 1

)
. 𝑛 =

100, 𝑆0 = 10,𝑇 = 200, 𝜆1 = 0, 𝜆2 = 0.02, 0.1, 1, and 20

In each case, we simulate 100 times. From the next page, the results (the pass of the operator norm and
the pass of (𝑆𝑡 − 𝑆0)2) are shown. Red line represents the average.
1 dimensional normal distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ N(1, 3)
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1 dimensional pareto distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ 𝑃𝑎𝑟𝑒𝑡𝑜 (𝑥𝑚 = 2, 𝛼 = 3)
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Implementation of Minsker’m method by SPGD algorithm Computational cost of PGD is so large. To
avoid this problem, we replace the step (1) to a stochastic one.

Algorithm : Mini-batch Stochastic proximal gradient descent (SPGD) method

Input: Number of iterations 𝑇 , step size (𝜂𝑡 )𝑡 ∈[𝑇 ] , batch size 𝐵 ∈ ℕ, tuning parameters 𝜆1 and 𝜆2, initial
estimation 𝑆0, samples (𝑿𝑖)𝑖∈[𝑛] ∈ ℝ𝑑 .
For 𝑡 = 1, 2, . . . ,𝑇 do

(1) For 𝑏 = 1, . . . , 𝐵 do
Randomly pick 𝑖𝑡 and 𝑗𝑡 s.t. 0 ≤ 𝑖𝑡 < 𝑗𝑡 ≤ 𝑛.
Compute 𝐺𝑏𝑡 = −∇𝑔𝑖, 𝑗

(
𝑆𝑡

)
= −𝜌 ′√

𝑛 (𝑛−1)𝜆2
2

(
𝑿𝑖, 𝑗𝑿⊤

𝑖, 𝑗 − 𝑆𝑡
)
.

(2) 𝐺𝑡 = 1
𝐵

∑𝐵
𝑏=1𝐺

𝑏
𝑡

(3) (gradient update) 𝑇 𝑡+1 = 𝑆𝑡 −𝐺𝑡 .
(4) (proximal update)

𝑆𝑡+1 = argmin
𝑆

{
1
2


𝑆 −𝑇 𝑡+1

2

𝐹
+ 𝜆1

2
∥𝑆 ∥1

}
= 𝛾 𝜆1

2

(
𝑇 𝑡+1

)
,

where 𝛾𝜆 (𝑢) = sign(𝑢) ( |𝑢 | − 𝜆)+.
End for
Output: 𝑆𝑇+1

Same as the previous section, we set the following three cases as the population distribution.

• 1 dimensional normal distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ N(1, 3)
𝑛 = 100, 𝑆0 = 10,𝑇 = 200, 𝜆1 = 0, 𝜆2 = 0.02, 0.1, 1, and 20. We simulate 100 times.

• 1 dimensional pareto distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ 𝑃𝑎𝑟𝑒𝑡𝑜 (𝑥𝑚 = 2, 𝛼 = 3).
𝑛 = 100, 𝑆0 = 10,𝑇 = 200, 𝜆1 = 0, 𝜆2 = 0.02, 0.1, 1, and 20

Note that the mean = 𝛼𝒙𝑚
𝛼−1 = 3·2

3−1 = 3 and the variance = 𝑥2𝑚 ·𝛼
(𝛼−1)2 (𝛼−2) = 3. We simulate 100 times.

• 3 dimensional gaussian distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ N(𝜇, 𝚺) where 𝜇 = ©­«
1
−1
0

ª®¬, Σ =
( 1 0 0.5

0 2 1
0.5 1 1

)
.

𝑛 = 100, 𝑆0 = 10,𝑇 = 200, 𝜆1 = 0, 𝜆2 = 0.02, 0.1, 1, and 20

In each case, we simulate 100 times and we set the step size 𝐵 = 20 and 𝜂𝑡 ≡ 𝑡−
2
3 . From the next page,

the results (the pass of the operator norm and the pass of (𝑆𝑡 − 𝑆0)2) are shown. Red line represents the
average.
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1 dimensional normal distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ N(1, 3)
𝜆1 = 0 𝜆2 = 0.02

Σ̂
−
Σ
0

𝐿
2
no

rm
𝜆1 = 0 𝜆2 = 0.1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 20

Σ̂
−
Σ
0

𝐿
2
no

rm
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1 dimensional pareto distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ 𝑃𝑎𝑟𝑒𝑡𝑜 (𝑥𝑚 = 2, 𝛼 = 3)
𝜆1 = 0 𝜆2 = 0.02

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 0.1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 20

Σ̂
−
Σ
0

𝐿
2
no

rm
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3 dimensional gaussian distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ N(𝜇, 𝚺) where 𝜇 =
( 1
−1
0

)
, Σ =

( 1 0 0.5
0 2 1
0.5 1 1

)
.

𝜆1 = 0 𝜆2 = 0.05

Σ̂
−
Σ
0

𝐿
2
no

rm
𝜆1 = 0 𝜆2 = 0.1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 20

Σ̂
−
Σ
0

𝐿
2
no

rm
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Estimation in contamination model Next, we consider the case in which the sample contains con-
tamination. More precisely, we consider the situation in which we have samples (𝑍𝑖)𝑖∈[𝑛] with 𝑍𝑖 ∼
(1 − 𝛿𝑖)𝑿𝑖 + 𝛿𝑖𝐶𝑖 Here, 𝑿𝑖 is an underling distribution and 𝐶𝑖 is an error distribution, and (𝛿𝑖)𝑖∈[𝑛] inde-
pendently distribute, taking 1 with probability 𝛿 and 0 with probability 1−𝛿 . The followings are the result
of interpretation for contamination models with several underling distributions.
1 dimensional Gaussian distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ N(1, 3)

𝜆1 = 0 𝜆2 = 0.02

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 0.1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 20

Σ̂
−
Σ
0

𝐿
2
no

rm
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1 dimensional pareto distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ 𝑃𝑎𝑟𝑒𝑡𝑜 (𝑥𝑚 = 2, 𝛼 = 3)
𝜆1 = 0 𝜆2 = 0.02

Σ̂
−
Σ
0

𝐿
2
no

rm
𝜆1 = 0 𝜆2 = 0.1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 20

Σ̂
−
Σ
0

𝐿
2
no

rm
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3 dimensional gaussian distribution : (𝑿𝑖)𝑖∈[𝑛] ∼ N(𝜇, 𝚺) where 𝜇 =
( 1
−1
0

)
, Σ =

( 1 0 0.5
0 2 1
0.5 1 1

)
.

𝜆1 = 0 𝜆2 = 0.05

Σ̂
−
Σ
0

𝐿
2
no

rm
𝜆1 = 0 𝜆2 = 0.1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 1

Σ̂
−
Σ
0

𝐿
2
no

rm

𝜆1 = 0 𝜆2 = 20

Σ̂
−
Σ
0

𝐿
2
no

rm
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5 Score Matching

In this section, at first we introduce score matching method, in which score matching loss is introduced, and
score matching estimator is defined as the minimizer of the empirical version of score matching loss. Our
goal in this chapter is to robustify score matching estimator.

5.1 Construction of Score matching estimator

Definition 5.1.1 (Score matching loss : See [7] and [8]1) Suppose that distribution 𝑃𝜽 has a twice con-
tinuously differentiable density 𝑝𝜽 over ℝ𝑑 for all 𝜽 ∈ Θ. Let ℎ1, . . . , ℎ𝑑 : ℝ → ℝ be a.s. positive functions
with respect to 𝑃𝜽0 and absolutely continuous, and set 𝒉(𝒙) =

(
ℎ1

(
𝑥 (1) ) , . . . , ℎ𝑑 (

𝑥 (𝑑) ) )⊤. Score matching loss
with respect to 𝒉 and the distribution 𝑃𝜽 with density 𝑝𝜽 , 𝐽ℎ (𝑝𝜽 ) is defined as

𝐽ℎ (𝑝𝜽 ) ≡
∫
ℝ𝑑
𝑝𝜽0 (𝒙)

���∇ log𝑝𝜽 (𝒙) ◦ 𝒉(𝒙)1/2 − ∇ log𝑝𝜽0 (𝒙) ◦ 𝒉(𝒙)1/2
���2 d𝒙, (5.1)

here ∇· means the divergence, and ◦ means pairwise products.

Note 𝐽ℎ (𝑝𝜽 ) = 0 if and only if 𝑝𝜽 (𝑥) = 𝑝𝜽0 (𝑥) for almost every 𝒙 ∈ ℝ𝑑 .

For the later discussion, we add the following assumption on 𝒉.

(𝐴1) ∀𝑗 lim
𝑥 ( 𝑗 )↗+∞

𝑝𝜽0 (𝑥)ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗 log𝑝𝜽 (𝒙) = lim
𝑥 ( 𝑗 )↘−∞

𝑝𝜽0 (𝑥)ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗 log𝑝𝜽 (𝒙) = 0,

(𝐴2)
∫
ℝ𝑑




∇ log𝑝𝜽 (𝒙) ◦ 𝒉(𝒙)1/2



2
2
𝑑𝒙 < ∞ ,

∫
ℝ𝑑

∥(∇ log𝑝𝜽 (𝒙) ◦ 𝒉(𝒙)) ′∥1 𝑑𝒙 < ∞.

We consider another representation of (5.1).

𝐽ℎ (𝑝) =
∫
ℝ𝑑
𝑝𝜽0 (𝒙)

𝑑∑
𝑗=1

[ℎ 𝑗 (𝑥 ( 𝑗) )(𝜕𝑗 log𝑝𝜽0 (𝒙))2
2

]
d𝒙︸                                                     ︷︷                                                     ︸

≡T1

+
∫
ℝ𝑑
𝑝𝜽0 (𝒙)

𝑑∑
𝑗=1

[ℎ 𝑗 (𝑥 ( 𝑗) )(𝜕𝑗 log𝑝𝜽0 (𝒙))2
2

]
d𝒙︸                                                     ︷︷                                                     ︸

≡T2

−
∫
ℝ𝑑
𝑝𝜽0 (𝒙)

𝑑∑
𝑗=1

[
ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗 log𝑝 (𝒙)𝜕𝑗 log𝑝𝜽0 (𝒙)

]
d𝒙︸                                                               ︷︷                                                               ︸

≡T3

.

1A specific case that 𝒉 ≡ 𝟙𝑑 was introduced in [?], the generalized version was in [8].
1For proof, see the proposition 2 in [8].
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Here 𝜕𝑗 · means the partial derivative with respect to 𝑥 𝑗 . The second term is constant with respect to the
choice of 𝑝 , the third term is reformulated as the following under this assumptions (A1) and (A2).

T3 = −
𝑑∑
𝑗=1

∫
ℝ𝑑
𝑝𝜽0 (𝒙)

[
ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗 log𝑝 (𝒙)𝜕𝑗 log𝑝𝜽0 (𝒙)

]
d𝒙

=
𝐹𝑢𝑏𝑖𝑛𝑖 𝑎𝑛𝑑 (𝐴2)

−
𝑑∑
𝑗=1

∫
ℝ𝑑−1

[ ∫
ℝ
𝑝𝜽0 (𝒙)ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗 log𝑝 (𝒙)𝜕𝑗 log𝑝𝜽0 (𝒙)d𝑥 ( 𝑗)

]
d𝒙−j

=
𝜕𝑗 log𝑝𝜽0=𝜕𝑗𝑝𝜽0/𝑝𝜽0

−
𝑑∑
𝑗=1

∫
ℝ𝑑−1

[ ∫
ℝ
𝜕𝑗𝑝𝜽0 (𝒙)ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗 log𝑝 (𝒙)d𝑥 ( 𝑗)

]
d𝒙−𝑗

=
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑏𝑦 𝑝𝑎𝑟𝑡

−
𝑑∑
𝑗=1

∫
ℝ𝑑−1

[
lim

𝑥 ( 𝑗 )↗+∞
𝑝𝜽0 (𝒙−𝑗 ; x( 𝑗) )ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗 log𝑝 (𝒙−𝑗 ;𝑥 ( 𝑗) )

− lim
𝑥 ( 𝑗 )↘−∞

𝑝𝜽0 (𝒙−𝑗 ; x( 𝑗) )ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗 log𝑝 (𝒙−𝑗 ;𝑥 ( 𝑗) )

−
∫
ℝ
𝑝𝜽0 (𝒙)𝜕𝑗 (ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗 log𝑝 (𝒙))d𝑥 ( 𝑗)

]
d𝒙−𝑗

=
(A1)

𝑑∑
𝑗=1

∫
ℝ𝑑−1

[ ∫
ℝ
𝑝𝜽0 (𝒙)𝜕𝑗 (ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗 log𝑝 (𝒙))dx( 𝑗)

]
d𝒙−𝑗

=
𝑑∑
𝑗=1

∫
ℝ𝑑
𝑝𝜽0 (𝒙)𝜕𝑗 (ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗 log𝑝 (𝒙))d𝒙

=
𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑟𝑢𝑙𝑒

𝑑∑
𝑗=1

∫
ℝ𝑑
𝑝𝜽0 (𝒙)ℎ 𝑗 ′(𝑥 ( 𝑗) )𝜕𝑗 log𝑝 (𝒙) +

𝑑∑
𝑗=1

∫
ℝ𝑑
𝑝𝜽0 (𝒙)ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗𝑗 log𝑝 (𝒙),

where d𝒙−𝑗 = d𝑥1 · · · d𝑥 𝑗−1d𝑥 𝑗+1 · · · d𝑥𝑛 . Then, Score matching loss is discribed as

𝐽ℎ (𝑝) =
∫
ℝ𝑑
𝑝𝜽0 (𝒙)

𝑑∑
𝑗=1

[
ℎ 𝑗

′(𝑥 ( 𝑗) )𝜕𝑗 log𝑝𝜽 (𝒙) + ℎ 𝑗 (𝑥 ( 𝑗) )𝜕𝑗𝑗 log𝑝𝜽 (𝒙) +
ℎ 𝑗 (𝑥 ( 𝑗) )(𝜕𝑗 log𝑝 (𝒙))2

2

]
d𝒙 + const.

= 𝔼𝑝𝜽0

𝑑∑
𝑗=1

[
ℎ 𝑗

′(𝑋 ( 𝑗) )𝜕𝑗 log𝑝𝜽 (𝑿 ) + ℎ 𝑗 (𝑋 ( 𝑗) )𝜕𝑗𝑗 log𝑝𝜽 (𝑿 ) +
ℎ 𝑗 (𝑋 ( 𝑗) )(𝜕𝑗 log𝑝𝜽0 (𝑿 ))2

2

]
+ const. (5.2)

5.2 Score matching estimator for exponential family

Next, we consider tha case in which P is an exponential family. Exponential family is defined as the
following.

Definition 5.2.1 We call P ≡ {𝑝𝜽 : 𝜽 ∈ Θ} an exponential family when the density 𝑝𝜽 is represented by

log𝑝𝜽 (𝒙) = 𝜽⊤𝒕 (𝒙) − 𝑎(𝜽 ) + 𝑏 (𝒙) (5.3)

Here, 𝜽 and 𝒕 (𝒙) are called canonical parameter and sufficient statistics. An example of exponential family is
multivariate gaussian distribution, which we check later. In our setting we assume the canonical parameter
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of the population distribution 𝜽0 belongs to Θ. In case of an exponential family, (5.2) can be rewritten as
follows (omitting constant term).

𝔼𝑝𝜽0

𝑑∑
𝑗=1

[
ℎ′𝑗 (𝑋

( 𝑗) ){𝜽⊤𝒕 ′𝑗 (𝑿 ) + 𝑏 ′𝑗 (𝑋 )} + ℎ 𝑗 (𝑋
( 𝑗) ){𝜽⊤𝒕 ′′𝑗 (𝑿 ) + 𝑏 ′′𝑗 (𝑿 )} + 1

2
{ℎ 𝑗 (𝑋 ( 𝑗) ) (𝜽⊤𝒕 ′𝑗 (𝑿 ) + 𝑏 ′𝑗 (𝑿 ))2

]
= 𝔼𝑝𝜽0

𝑑∑
𝑗=1

[
ℎ′𝑗 (𝑋

( 𝑗) ){𝜽⊤𝒕 ′𝑗 (𝑿 ) + 𝑏 ′𝑗 (𝑿 )︸︷︷︸
const. 𝑤.𝑟 .𝑡 𝜽

} + ℎ 𝑗 (𝑋 ( 𝑗) ){𝜽⊤𝒕 ′′𝑗 (𝑿 ) + 𝑏 ′′𝑗 (𝑿 )︸ ︷︷ ︸
const. 𝑤.𝑟 .𝑡 𝜽

}

+ 1
2
ℎ 𝑗 (𝑋 ( 𝑗) )(𝜽⊤𝒕 ′𝑗 (𝑿 ))2 + (𝜽⊤𝒕 ′𝑗 (𝑿 ))𝑏 ′𝑗 (𝑿 ) + 1

2
𝑏 ′𝑗 (𝑿 )2︸    ︷︷    ︸

const. 𝑤.𝑟 .𝑡 𝜽

]

= 𝔼𝑝𝜽0

𝑑∑
𝑗=1

[
ℎ′𝑗 (𝑋

( 𝑗) ){𝜽⊤𝒕 ′𝑗 (𝑿 )} + ℎ 𝑗 (𝑋 ( 𝑗) ){𝜽⊤𝒕 ′′𝑗 (𝑿 )} + 1
2
ℎ 𝑗 (𝑋 ( 𝑗) ) (𝜽⊤𝒕 ′𝑗 (𝑿 ))2 + ℎ 𝑗 (𝑋 ( 𝑗) )(𝜽⊤𝒕 ′𝑗 (𝑿 ))𝑏 ′𝑗 (𝑿 )

]
Here 𝒕 ′𝑗 ≡ 𝜕𝑗 𝒕 , 𝑏 ′𝑗 ≡ 𝜕𝑗𝑏, 𝒕 ′′𝑗 ≡ 𝜕𝑗𝑗 𝒕 , and 𝑏 ′′𝑗 ≡ 𝜕𝑗𝑗𝑏. Summarizing the above discussion, we get the following
theorem.

Theorem 5.2.2 In the exponential family of the distributions, we have that

𝐽ℎ (𝑝𝜽 ) =
1
2
𝜽⊤𝚪𝜽 − 𝒈⊤𝜽 + const. (5.4)

where 𝚪 ∈ ℝ𝑑×𝑑 and 𝒈 ∈ ℝ𝑑 are

𝚪 ≡ 𝔼𝑝𝜽0

𝑑∑
𝑗=1

ℎ 𝑗 (𝑋 ( 𝑗) )𝒕 ′𝑗 (𝑿 )𝒕 ′𝑗 (𝑿 )⊤, (5.5)

𝒈 ≡ −𝔼𝑝𝜽0
𝑑∑
𝑗=1

[ℎ 𝑗 (𝑋 ( 𝑗) )𝑏 ′𝑗 (𝑿 )𝒕 ′𝑗 (𝑿 ) + ℎ 𝑗 (𝑋 ( 𝑗) )𝒕 ′′𝑗 (𝑿 ) + ℎ′𝑗 (𝑋 ( 𝑗) )𝒕 ′𝑗 (𝑿 )] . (5.6)

Corollary 5.2.3 Let 𝑿 distribute from an exponential family, define 𝚪 by (5.5) and 𝒈 by (5.6). Under the
condition that 𝚪 is invertible. Then

argmin
𝜽

𝐽ℎ (𝑝𝜽 ) = 𝚪−1𝒈

From the definition of the score matching loss function, the minimizer coincides with the true parameter
𝜽0. The above discussion provides us an idea to construct an estimator of the true parameter 𝜽0 : The
population quantities 𝚪,𝒈 define the true parameter 𝜽0. So, in order to find the estimator for 𝜽0, we apply
plugin principle and replace correspondent population analogs by their empirical counterparts.

Definition 5.2.4 Let X be a random vector with the distribution 𝑃𝜽0 which belongs to an exponential family
P. For independent copies (𝑿𝑖)𝑖∈[𝑛] of 𝑿 , we define an estimator 𝜽𝑆𝑀 by

𝜽SM ≡ argmin
𝜽 ∈Θ

(
1
2
𝜽⊤𝚪(𝑿 )𝜽 − 𝒈(𝑿 )⊤𝜽

)

ℎ𝑒𝑟𝑒 𝚪(𝑿 ) ≡ 1
𝑛

𝑛∑
𝑖=1

𝑑∑
𝑗=1

ℎ 𝑗 (𝑋 ( 𝑗)
𝑖 )𝒕 ′𝑗 (𝑿𝑖)𝒕 ′𝑗 (𝑿𝑖)⊤,

𝒈(𝑿 ) ≡ −1
𝑛

𝑛∑
𝑖=1

𝑑∑
𝑗=1

[ℎ 𝑗 (𝑋 ( 𝑗)
𝑖 )𝑏 ′𝑗 (𝑿𝑖)𝒕 ′𝑗 (𝑿𝑖) + ℎ 𝑗 (𝑋

( 𝑗)
𝑖 )𝒕 ′′𝑗 (𝑿𝑖) + ℎ 𝑗 (𝑋

( 𝑗)
𝑖 )𝒕 ′𝑗 (𝑿𝑖)] .

For later discussion, we define the following notations.



43

Definition 5.2.5 For random vectors (𝑿𝑖)𝑖∈[𝑛] and function 𝒉 : ℝ𝑑 → ℝ𝑑 satisfying the assumptions of
Definition 5.2.4 and for 𝑖 ∈ [𝑛], we define

𝚪(𝑿𝑖) ≡
𝑑∑
𝑗=1

ℎ 𝑗 (𝑋 ( 𝑗)
𝑖 )𝒕 ′𝑗 (𝑿𝑖)𝒕 ′𝑗 (𝑿𝑖)⊤, (5.7)

−𝒈(𝑿𝑖) ≡
𝑑∑
𝑗=1

[ℎ 𝑗 (𝑋 ( 𝑗)
𝑖 )𝑏 ′𝑗 (𝑿𝑖)𝒕 ′𝑗 (𝑿𝑖) + ℎ 𝑗 (𝑋

( 𝑗)
𝑖 )𝒕 ′′𝑗 (𝑿𝑖) + ℎ′𝑗 (𝑋

( 𝑗)
𝑖 )𝒕 ′𝑗 (𝑿𝑖)] . (5.8)

Note (5.7) and (5.8), 𝚪(𝑿 ) and 𝒈(𝑿 ) can be written by

𝚪(𝑿 ) = 1
𝑛

𝑛∑
𝑖=1

𝚪(𝑿𝑖) 𝒈(𝑿 ) = 1
𝑛

𝑛∑
𝑖=1

𝒈(𝑿𝑖),

and 𝚪(𝑿 ) and 𝚪(𝑿𝑖) are Hermitian matrices from the definition.

5.3 Error bound of Score matching estimator

Our interest is the behavior of the difference 𝜽SM − 𝜽0. The following lemma provides an error decompo-
sition of 𝑆𝑀𝐸𝜽 − 𝜽0.

Lemma 5.3.1 For a given exponential family P ≡ {𝑝𝜽 : 𝜽 ∈ Θ} with the true parameter 𝜽0, define
𝚪, 𝚪(𝑿 ), 𝒈, 𝒈(𝑿 ) as the above, and assume 𝚪(𝑿 ) is invertible a.s. Then

𝜽SM − 𝜽0 = 𝚪(𝑿 )−1(𝒈(𝑿 ) − 𝒈) + 𝚪(𝑋 )−1(𝚪(𝑿 ) − 𝚪)𝜽0. (5.9)

Proof.
𝜽SM − 𝜽0 = Γ−1(𝑋 ) (𝑔(𝑋 ) − Γ(𝑋 )𝜽0)

= Γ−1(𝑋 ) (𝑔(𝑋 ) − 𝑔 + 𝑔 − Γ(𝑋 )𝜽0)
= Γ−1(𝑋 )((𝑔(𝑋 ) − 𝑔)) + Γ−1(𝑋 ) (Γ − Γ(𝑋 ))𝜽0.

□
From the triangle inequality and the properties of operator norm and Euclidean norm : |𝐴𝑥 | ≤ ∥𝐴∥ |𝑥 | for
𝐴 ∈ ℝ𝑑×𝑑 , 𝑥 ∈ ℝ𝑑 , we can derive the following inequality for the difference between 𝜽𝑆𝑀 and 𝜽0

Lemma 5.3.2 ���𝜽SM − 𝜽0
��� ≤ 

Γ−1(𝑋 )

 (|𝑔(𝑋 ) − 𝑔| + ∥Γ(𝑋 ) − Γ∥ |𝜽0 |) .

Our goal is finding the concentration inequality of 𝜽SM , that is finding the (probabilistic) upper bound
of |𝜽SM − 𝜽0 |. From the lemma 5.3.1, this problem boils down to the problem to find the upper bound of
|𝑔(𝑋 ) − 𝑔| and ∥Γ(𝑋 ) − Γ∥.
As an example, at first we consider the case in which the population distribution satisfies that |𝒈(𝑿1) |
and ∥Γ(𝑿1)∥ are bounded. In this case, there exist 𝐿 and 𝑅 such that |𝒈(𝑿1) − 𝒈 | ≤ 𝐿 amd ∥𝚪(𝑿1) − 𝚪∥ ≤
𝑅. Thus, Corollary 3.1.23 provides us with a bound of |𝑔(𝑿 ) − 𝑔|. Define 𝐶 ≡ Tr𝑔 (𝑋1)𝑔 (𝑋1)⊤

𝑑 , then with
probability 1 − 𝛿 it hold at least that

|𝒈(𝑋 ) − 𝒈 | ≤ 1
𝑛

√
𝑑𝐶

√
log

2
𝛿
+ 2𝐿
𝑛

log
2
𝛿
. (5.10)

And Theorem 3.2.1 provide us with the bound of ∥𝚪(𝑿 ) − 𝚪∥. With probability 1 − 𝛿 it holds that

∥𝚪(𝑿 ) − 𝚪∥ ≤

√
2
𝑛
𝑅2 log

(
𝑑

𝛿

)
+ 2𝑅
3𝑛

log
(
𝑑

𝛿

)
(5.11)
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Replacing 𝛿 to 𝛿
2 of (5.10) and (5.11), and taking the union bound, we obtain the following.

Corollary 5.3.3 Let (𝑿𝑖)𝑖∈[𝑛] ∈ ℝ𝑑 and (ℎ 𝑗 ) 𝑗 ∈[𝑑 ] : ℝ→ ℝ be random vectors and positive functions which
satisfy the assumption of Definition 5.1.1 . Define 𝒈(𝑿 ), Γ(𝑿 ), 𝑎𝑛𝑑𝒈(𝑿𝑖), 𝚪(𝑿𝑖), as in Definition 5.2.4 and
Definition 5.2.5. Assume that

|𝒈(𝑿𝑖) − 𝒈 | ≤ 𝐿 𝑎𝑛𝑑 ∥𝚪(𝑿𝑖) − 𝚪∥ ≤ 𝑅

Then, ���𝜽SM − 𝜽0
��� ≤



Γ−1(𝑋 )

 ©­«1𝑛
√
𝑑𝐶

√
log

4
𝛿
+ 2𝐿
𝑛

log
4
𝛿
+

√
2
𝑛
𝑅2 log

(
2𝑑
𝛿

)
+ 2𝑅
3𝑛

log
(
2𝑑
𝛿

)
|𝜽0 |

ª®¬.
5.4 Score matching estimator in Gaussian case

5.4.1 Original score matching estimator in Gaussian case

In this section, we consider the case in which 𝑿 is distributed as a Gaussian distribution N𝑑 (𝝁,𝛀−1). At
first we discuss the case of 𝒉 ≡ 𝟙𝑑 The probability density function is given by

𝑓 (𝑿 ; 𝝁,𝛀) ≡ 1√
2𝜋 |𝛀 |−1

exp
(
−1
2
(𝑥 − 𝝁)⊤𝛀(𝑥 − 𝝁)

)
.

Then,

𝜕 𝑗 log 𝑓 (𝑿 ; 𝝁,𝛀) = −(𝛀(𝑿 − 𝝁)) 𝑗
𝜕 𝑗𝑗 𝑓 (𝑿 ; 𝝁,𝛀) = −𝜔 𝑗𝑗

ℎ 𝑗
′ ≡ 0

, where
(
𝜔𝑖 𝑗

)
𝑖, 𝑗 ∈[𝑛] ≡ 𝛀. Thus, we obtain

𝐽ℎ (𝝁,𝛀) = 1
𝑛

𝑛∑
𝑖=1

𝑑∑
𝑗=1

{
−𝜔 𝑗𝑗 +

1
2
(𝑋𝑖 − 𝝁)⊤𝛀2(𝑋𝑖 − 𝝁)

}
.

From the definition, the score matching estimator 𝝁𝑆𝑀 , 𝛀̂𝑆𝑀 is defined as the minimizer of 𝐽ℎ (𝝁,𝛀). The
gradient is

∇𝝁 𝐽ℎ (𝝁,𝛀) = 𝛀2𝜇 − 𝛀2 1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 , (5.12)

∇𝛀 𝐽ℎ (𝝁,𝛀) = −𝐼𝑑 + 𝛀
1
2𝑛

𝑛∑
𝑖=1

(𝑿𝑖 − 𝝁)(𝑿𝑖 − 𝝁)⊤ + 1
2𝑛

{
𝑛∑
𝑖=1

(𝑿𝑖 − 𝝁) (𝑿𝑖 − 𝝁)⊤
}
𝛀, (5.13)

Ω2 is positive definite, so

(5.12) = 0 ⇔ 𝝁 =
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖

. Under this constraint with respect to 𝝁,

(5.13) = 0 ⇔ 𝛀 =

(
1
𝑛

𝑛∑
𝑖=1

(𝑿𝑖 − 𝝁𝑆𝑀 )(𝑿𝑖 − 𝝁𝑆𝑀 )⊤
)−1

.
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Thus, the score maching estimator 𝜽𝑆𝑀 = (𝝁𝑆𝑀 , 𝚺̂SM) is

𝝁SM =
1
𝑛

𝑛∑
𝑖=1

𝑿𝑖

𝚺̂SM =
(
𝛀̂SM

)−1
=

1
𝑛

𝑛∑
𝑖=1

(𝑿𝑖 − 𝝁𝑆𝑀 ) (𝑿𝑖 − 𝝁𝑆𝑀 )⊤
(5.14)

On the other hand, one of other estimation approaches is Maximum likelihood estimation. Maximum
likelihood estimation is a method to estimate the parameter of the population distribution by searching
for the maximizer of the likelihood function. In Gaussian case, the log-likelihood function is

ℓ (𝝁,𝛀) = 𝑐𝑜𝑛𝑠𝑡 . + 𝑛
2
log |𝛀 | −

𝑛∑
𝑖=1

1
2
(𝑿𝑖 − 𝝁)⊤𝛀(𝑿𝑖 − 𝝁)

= 𝑐𝑜𝑛𝑠𝑡 . + 𝑛
2
log |𝛀 | −

𝑛∑
𝑖=1

1
2
(𝑿𝑖 − 𝑋 + 𝑿 − 𝝁)⊤𝛀(𝑿𝑖 − 𝑿 + 𝑿 − 𝝁)

= 𝑐𝑜𝑛𝑠𝑡 . + 𝑛
2
log |𝛀 | − 1

2

{ 𝑛∑
𝑖=1

(𝑿𝑖 − 𝑋 )⊤𝛀(𝑿𝑖 − 𝑿 )︸                          ︷︷                          ︸
=𝑛Tr(Ω 1

𝑛

∑𝑛
𝑖=1 (𝑿𝑖−𝑿 ) (𝑿𝑖−𝑿 )⊤)

+2
𝑛∑
𝑖=1

(𝑿𝑖 − 𝑋 )⊤𝛀(𝑿 − 𝝁)︸                         ︷︷                         ︸
= 0

+
𝑛∑
𝑖=1

(𝑿 − 𝝁)⊤𝛀(𝑿 − 𝝁)
}

= 𝑐𝑜𝑛𝑠𝑡 . + 𝑛
2
log |𝛀 | − 𝑛

2
Tr(𝛀𝑺) − 𝑛

2
(𝑿 − 𝝁)⊤𝛀(𝑿 − 𝝁).

Here, 𝑿 ≡ 1
𝑛

∑𝑛
𝑖=1𝑿𝑖 , 𝑺 ≡ 1

𝑛

∑𝑛
𝑖=1(𝑿𝑖 − 𝑿 ) (𝑿𝑖 − 𝑿 )⊤. The last term = 0 if and only if 𝝁 = 𝑿 since 𝛀 is

positive definite. Thus, the Maximum likelihood estimator 𝜽𝑀𝐿 ≡ (𝝁ML, 𝚺̂ML) is given by

𝝁ML =
1
𝑛

𝑛∑
𝑖=1

𝑿𝑖 ,

𝚺̂ML =
(
𝛀̂ML

)−1
=

(
argmax
𝛀∈𝑃𝐷𝑑

log |𝛀 | − Tr(𝛀𝑺)
)−1

.

Lemma 5.4.1 Regarding 𝛀̂𝑀𝐿 , if 𝑺 is positive definite, then 𝛀̂𝑀𝐿 = 𝑺
−1
. And if 𝑺 is singular, then 𝛀̂𝑀𝐿

doesn’t exist.

Proof.
(First case) Since 𝑺 is positive definite, there exists a orthogonal matrix 𝑄 s.t. 𝑺 = 𝑄Λ𝑄⊤ ,where Λ is a
diagonal matrix Λ = diag(𝜆1, . . . , 𝜆𝑑 ) with the eigen values (𝜆 𝑗 ) 𝑗 ∈[𝑑 ] of 𝛀̂ in the diagonal entries. When
we define a map 𝐹 : ℝ𝑑×𝑑 → ℝ by 𝐹𝑺 (𝛀) ≡ log |𝛀 | − Tr(𝛀𝑺) ,

𝐹𝑺 (𝛀) = 𝐹𝑄⊤𝑺𝑄 (𝑄
⊤𝛀𝑄)

Thus,
argmax
𝛀∈𝑃𝐷𝑑

𝐹𝑺 (𝛀) = 𝑄 · argmax
𝛀∈𝑃𝐷𝑑

𝐹Λ(𝛀) ·𝑄⊤

Let𝛀 = 𝐴𝐴⊤ be the Cholesky decomposition, where𝐴 is lower-triangularwith the (𝑖, 𝑗) entry=
{
𝑎𝑖, 𝑗 for 𝑖 ≥ 𝑗

0 𝑜𝑡ℎ𝑒𝑟
.

Then

𝐹Λ(𝛀) =
𝑑∑
𝑖=1

(
log𝑎2𝑖𝑖 − 𝑎2𝑖𝑖𝜆𝑖 −

∑
𝑗<𝑖

𝑎2𝑖 𝑗𝜆𝑖

)
. (5.15)
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From the assumption on 𝑺 , 𝜆𝑖 > 0 for all 𝑖 ∈ [𝑑]. For 𝜆 > 0, the function log𝑎 − 𝑎𝜆 is strictly concave for
𝑎 ∈ (0,∞) and takes its unique maximum for 𝑎 = 1/𝜆. The term −∑

𝑖< 𝑗

(
𝑎2𝑖 𝑗𝜆𝑖

)
attains its maximum when

all 𝑎𝑖 𝑗 = 0. Thus, 𝐹Λ is maximized at 𝛀̃ = diag (1/𝜆1, . . . , 1/𝜆𝑑 ). We conclude that 𝐹𝑺 takes the maximum
at

𝛀 = 𝑄 𝛀̃𝑄⊤ =
(
𝑄⊤Λ𝑄

)−1 = 𝑆−1
(Second case) If 𝑆 is singular, then there exists an eigenvalue 𝜆𝑖 = 0, and the 𝑖-th term in (5.15) is log𝑎2𝑖𝑖 →
∞ as 𝑎𝑖𝑖 → ∞. Hence, 𝐹𝑺 (𝛀) is unbounded.

□
Thus, under the condition that

1. the distribution comes from a Gaussian distribution,
2. 𝒉 ≡ 𝟙𝑑 ,
3. no constraint on the parameters except for the symmetry and positive definiteness of 𝛀,

the score-matching estimator coincides with the maximum likelihood estimator.

5.4.2 Generalized score matching estimator in Gaussian case

Next we consider the case in which the distribution is Gaussian but the function 𝒉 is general. Note that
N𝑑 (𝝁, 𝚺) has 𝑑 mean parameters and 𝑑 (𝑑+1)

2 covariance parameters. We write the 𝑑 (𝑑+1)2 +𝑑 parameters by

𝜽 ≡ (𝜔11, . . . , 𝜔1𝑑 , 𝜂1 , 𝜔22, . . . , 𝜔2𝑑 , 𝜂2 , . . . , 𝜔𝑑𝑑 , 𝜂𝑑 )⊤ ∈ ℝ
𝑑 (𝑑+1)

2 +𝑑

In order to make the next discussion clear, we introduce the following map 𝑅.

Definition 5.4.2 We define R : 𝑅
𝑑 (𝑑+1)

2 +𝑑 → ℝ(𝑑+1)𝑑 by

𝑅(𝜽 ) ≡ (𝜔11, . . . , 𝜔1𝑑 , 𝜂1 , 𝜔12, 𝜔22, . . . , 𝜔2𝑑 , 𝜂2 , . . . , 𝜔1𝑑 , . . . , 𝜔𝑑𝑑 , 𝜂𝑑 )⊤

Note that 𝑅 can be written as 𝑅 ≡ vec ◦ 𝑅′, where 𝑅′ : ℝ
𝑑 (𝑑+1)

2 +𝑑 → ℝ(𝑑+1)×𝑑 is defined by

𝑅′(𝜽 ) ≡
©­­­­«
𝜔11 . . . 𝜔1𝑑2
...

. . .
...

𝜔𝑑11 . . . 𝜔𝑑1𝑑2
𝜂𝑑11 . . . 𝜂𝑑1𝑑2

ª®®®®¬
The logarithm density function of N𝑑 (𝝁, 𝚺) is given by

log 𝑓 (𝒙) = −1
2
(𝒙 − 𝝁)⊤𝚺−1(𝒙 − 𝝁) + const.

= −1
2
𝒙⊤𝚺−1𝒙 + 𝝁⊤𝚺−1𝒙 + const.

= −1
2
𝒙⊤𝛀𝒙 + 𝜂⊤𝒙 + const. ℎ𝑒𝑟𝑒,𝛀 ≡ 𝚺−1𝑎𝑛𝑑 𝜂 ≡ 𝚺−1𝝁

= −1
2
Tr(𝛀𝒙𝒙⊤) + 𝜂⊤𝒙 + const.

= (𝑹𝜽 )⊤
(
𝑥1

2

2
, . . . ,

𝑥1𝑥𝑑
2
, 𝑥1,

𝑥2𝑥1
2
, . . . ,

𝑥2𝑥𝑑
2
, 𝑥2, . . . ,

𝑥𝑑𝑥1
2
, . . . ,

𝑥𝑑𝑥𝑑
2
, 𝑥𝑑

)⊤
+ const.

= 𝜽⊤ 𝑹⊤
(
𝑥1

2

2
, . . . ,

𝑥1𝑥𝑑
2
, 𝑥1,

𝑥2𝑥1
2
, . . . ,

𝑥2𝑥𝑑
2
, 𝑥2, . . . ,

𝑥𝑑𝑥1
2
, . . . ,

𝑥𝑑𝑥𝑑
2
, 𝑥𝑑

)⊤
︸                                                                                    ︷︷                                                                                    ︸

=𝒕 (𝒙)

+ const.
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Note Since the map 𝑃𝐷𝑑 × ℝ𝑑 → 𝑃𝐷𝑑 × ℝ𝑑 : (𝚺, 𝝁) ↦→ (𝛀, 𝜂) is bijection, the problem to find the
parameter 𝜽 = (𝝁, 𝚺) which minimizes score matching loss 𝐽ℎ (𝑝𝜽 ) can be replaced by the problem to find
the parameter (𝛀,𝜼) which minimizes 𝐽ℎ (𝑝𝜽 ).
The above transformation illustrates that Gaussian distribution is an exponential family with the canonical
parameter 𝜽 and 𝑏 (𝒙) = 0. Applying theorem 5.2.2, we get the following.

Corollary 5.4.3 (Score matching estimator for Gaussian distribution) Let X come from a Gaussian
distribution N(𝜂𝛀−1,𝛀−1) and (𝑿𝑖)1≤𝑖≤𝑛 be independent copeis of 𝑿 . Then, 𝚪(𝑿 ) and 𝒈(𝑋 ) for the score
matching estimator (𝛀, 𝜂) is given by

𝚪(𝑿 ) = 𝑹⊤ ©­­«
𝚪1(𝑿 ) 0

. . .

0 𝚪𝑚 (𝑿 )

ª®®¬ 𝑹, 𝒈(𝑿 ) = 𝑹⊤

©­­­­­­«

𝒈1,1(𝑿 )
𝑔2,1(𝑿 )

...
𝒈1,𝑑 (𝑿 )
𝑔2,𝑑 (𝑿 )

ª®®®®®®¬
. (5.16)

Here

𝚪 𝑗 (𝑿 ) ≡
[
𝚪11, 𝑗 𝚪12, 𝑗
𝚪21, 𝑗 𝚪22, 𝑗

]
≡ 1
𝑛

𝑛∑
𝑖=1

[
ℎ 𝑗 (𝑋 (𝑖)

𝑗 )𝑿 (𝑖)𝑿 (𝑖)𝑇 −ℎ 𝑗 (𝑋 (𝑖)
𝑗 )𝑿 (𝑖)

−ℎ 𝑗 (𝑋 (𝑖)
𝑗 )𝑿 (𝑖)𝑇 ℎ 𝑗 (𝑋 (𝑖)

𝑗 )

]
∈ ℝ(𝑑+1)×(𝑑+1) ,

𝒈1, 𝑗 ≡ 1
𝑛

𝑛∑
𝑖=1

ℎ′𝑗 (𝑋
(𝑖)
𝑗 )𝑋 (𝑖)

𝑗 + ℎ 𝑗 (𝑋 (𝑖)
𝑗 )e𝑗,𝑑 ∈ ℝ𝑑 ,

𝑔2, 𝑗 ≡ 1
𝑛

𝑛∑
𝑖=1

ℎ′𝑗 (𝑋
(𝑖)
𝑗 ) ∈ ℝ.

𝑅 is defined in Definition 5.4.2, and e𝑗,𝑑 ∈ ℝ𝑑 is 1 for the j-th entry and 0 otherwise, that is, e𝑗,𝑑 ≡ (0, . . . , 0, 1
j th
, 0, . . . , 0)⊤

.

I case of 𝒉 ≡ 1, this corollary can be written as the following.

Corollary 5.4.4 (Score matching estimator for Gaussian distribution in case of ℎ ≡ 𝟙𝑑 ) Let X come
from a Gaussian distribution N(𝜂𝛀−1,𝛀−1) and (𝑿𝑖)1≤𝑖≤𝑛 be independent copeis of 𝑿 . Take ℎ ≡ 𝟙𝑑 . Then,
𝚪(𝑿 ) and 𝒈(𝑋 ) for the score matching estimator (𝛀, 𝜂) is given by

𝚪(𝑿 ) = 𝑹⊤ ©­­«
𝚪0(𝑿 ) 0

. . .

0 𝚪0(𝑿 )

ª®®¬ 𝑹, 𝒈(𝑿 ) = 𝑹⊤

©­­­­­­«

𝒈1,1(𝑿 )
𝑔2,1(𝑿 )

...
𝒈1,𝑑 (𝑿 )
𝑔2,𝑑 (𝑿 )

ª®®®®®®¬
. (5.17)

Here

𝚪0(𝑿 ) ≡
[
𝚪11 𝚪12
𝚪21 𝚪22

]
≡ 1
𝑛

𝑛∑
𝑖=1

[
𝑿 (𝑖)𝑿 (𝑖)⊤ −𝑿 (𝑖)

−𝑿 (𝑖)⊤ 1

]
∈ ℝ(𝑑+1)×(𝑑+1) ,

𝒈1, 𝑗 ≡ e𝑗,𝑑 ∈ ℝ𝑑 ,

𝑔2, 𝑗 ≡ 0 ∈ ℝ.

e𝑗,𝑑 ∈ ℝ𝑑 and 𝑹 are similarly defined as in corollary 5.4.3.

Remark : [7] shows more generalized case of Cororally 5.4.3, in which 𝑿 is distributed as pairwise inter-
action power model. And, when we set ℎ ≡ 𝟙𝑑 , the corporally 5.4.3 coincides with (5.14).
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Error decomposition in Gaussian case Now we go consider the decomposition of
���𝜽SM − 𝜽0

��� in case

of ℎ ≡ 𝟙𝑑 . Remember that from the the error
���𝜽SM − 𝜽0

��� can be upper bounded by the terms which include
∥𝚪(𝑿 ) − 𝚪∥ and |𝒈(𝑋 ) − 𝒈 |.

∥𝚪(𝑿 ) − 𝚪∥ =








𝑹⊤©­­«
𝚪0 (𝑿 ) − 𝚪0 0

. . .

0 𝚪0 (𝑿 ) − 𝚪0

ª®®¬𝑹







 here 𝚪0 (𝑿 ) ≡ 1

𝑛

𝑛∑
𝑖=1

[
𝑿 (𝑖)𝑿 (𝑖)𝑇 −𝑿 (𝑖)

−𝑿 (𝑖)𝑇 1

]
, 𝚪0 ≡ 𝔼

[
𝑿𝑿𝑇 −𝑿
−𝑿𝑇 1

]

≤ ∥𝑅∥2








©­­«
𝚪0 (𝑿 ) − 𝚪0 0

. . .

0 𝚪0 (𝑿 ) − 𝚪0

ª®®¬









= ∥𝑅∥2 ∥𝚪0(𝑿 ) − 𝚪0∥

≤ ∥𝑅∥2







1𝑛 𝑛∑

𝑖=1
𝑿 (𝑖)𝑿 (𝑖)⊤ − 𝔼(𝑿𝑿⊤)






︸                                 ︷︷                                 ︸
≡𝑎

+2
�����1𝑛 𝑛∑

𝑖=1
𝑿𝑖 − 𝔼(𝑋 )

�����︸                 ︷︷                 ︸
≡𝑏

+1


𝑎 =






1𝑛 𝑛∑
𝑖=1

(𝑿𝑖 − 𝑋 ) (𝑿𝑖 − 𝑋 )⊤ − 𝔼(𝑿 − 𝝁)(𝑿 − 𝝁)⊤ + 𝑿𝑿⊤ − 𝝁𝝁⊤







≤






1𝑛 𝑛∑
𝑖=1

(𝑿𝑖 − 𝑋 )(𝑿𝑖 − 𝑋 )⊤ − 𝔼(𝑿 − 𝝁)(𝑿 − 𝝁)⊤





 + 


𝑿𝑿⊤ − 𝝁𝝁⊤





=






1𝑛 𝑛∑
𝑖=1

(𝑿𝑖 − 𝑋 ) (𝑿𝑖 − 𝑋 )⊤ − 𝔼(𝑿 − 𝝁)(𝑿 − 𝝁)⊤





 + 

(𝑿 − 𝝁) (𝑿 − 𝝁)⊤ + (𝑿 − 𝝁)𝝁⊤ + 𝝁 (𝑿 − 𝝁)⊤




=






1𝑛 𝑛∑
𝑖=1

(𝑿𝑖 − 𝑋 ) (𝑿𝑖 − 𝑋 )⊤ − 𝔼(𝑿 − 𝝁)(𝑿 − 𝝁)⊤





︸                                                            ︷︷                                                            ︸

≡ 𝑐

+
��𝑿 − 𝝁

��2︸   ︷︷   ︸
= 𝑏2

+2
��𝑿 − 𝝁

��︸  ︷︷  ︸
= 𝑏

|𝝁 |

From Theorem 3.1.25, with probability at least 1 − 𝛿 , 𝑏 ≤ 2
𝑛Tr(𝚺) log

2
𝛿 +

√
2
𝑛Tr(𝚺) log

2
𝛿 . From Theorem

3.2.5, with probability at least 1 − 𝛿 , 𝑐 ≤ 𝐶 ∥Σ∥
(√

𝑑
𝑛

∨ 𝑑
𝑛

∨√
− log𝛿
𝑛

∨ − log𝛿
𝑛

)
. Replacing 𝛿 to 𝛿

2 and taking

the union bound, we obtain

∥𝚪(𝑿 ) − 𝚪∥ ≤ ∥𝑅∥2
{
𝑐 + 𝑏2 + 2𝑏 ( |𝝁 | + 1) + 1

}
≤ ∥𝑅∥2

{
𝐶 ∥Σ∥

(√
𝑑

𝑛

∨ 𝑑

𝑛

∨√
− log𝛿/2

𝑛

∨ − log𝛿/2
𝑛

)
+

(
2
𝑛
Tr(𝚺) log 4

𝛿
+

√
2
𝑛
Tr(𝚺) log 4

𝛿

)2
+ 2

(
2
𝑛
Tr(𝚺) log 4

𝛿
+

√
2
𝑛
Tr(𝚺) log 4

𝛿

)
( |𝝁 | + 1) + 1


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with probability at least 1 − 𝛿 . Since |𝒈(𝑋 ) − 𝒈 | = 0 in case that 𝑿 is distributed as Gaussian and ℎ is
identity function,���𝜽SM − 𝜽0

��� ≤ 

Γ−1(𝑋 )

 |𝜽0 | ∥𝑅∥2 {
𝐶 ∥Σ∥

(√
𝑑

𝑛

∨ 𝑑

𝑛

∨√
− log𝛿/2

𝑛

∨ − log𝛿/2
𝑛

)
+

(
2
𝑛
Tr(𝚺) log 4

𝛿
+

√
2
𝑛
Tr(𝚺) log 4

𝛿

)2
+ 2

(
2
𝑛
Tr(𝚺) log 4

𝛿
+

√
2
𝑛
Tr(𝚺) log 4

𝛿

)
( |𝝁 | + 1) + 1

 .
5.4.3 Robust score matching estimator in Gaussian case

Our aim is to obtain robust version of 𝜽SM . For this aim, we consider to robustify 𝚪0(𝑋 ) in ??. consists of
empirical mean and empirical covariance, we replace these to robust ones. More precisely, we replace

𝚪0(𝑿 ) =
1
𝑛

𝑛∑
𝑖=1

[
𝑿 (𝑖)𝑿 (𝑖)⊤ −𝑿 (𝑖)

−𝑿 (𝑖)⊤ 1

]
∈ ℝ(𝑑+1)×(𝑑+1)

to

𝚪̂0(𝑿 ) ≡
[
𝚺̂(𝑿 (𝑖) ) + 𝝁 (𝑿 (𝑖) )𝝁 (𝑿 (𝑖) )⊤ −𝝁 (𝑿 (𝑖) )

−𝝁 (𝑿 (𝑖) )⊤ 1

]
∈ ℝ(𝑑+1)×(𝑑+1) . (5.18)

Here 𝝁 and 𝚺̂ are robust estimator for mean and covariance such as those we listed up in the previous
chapter. Note that this robustification procedure can be also applied to general exponential families in
case that we have robust estimators for 𝔼𝑝𝜽0 𝒕

′
𝑗 (𝑿 )𝒕 ′𝑗 (𝑿 )⊤ = Cov𝑝𝜽0 (𝒕

′
𝑗 (𝑿 )) + 𝔼𝑝𝜽0 (𝒕

′
𝑗 (𝑿 ))𝔼𝑝𝜽0 (𝒕

′
𝑗 (𝑿 ))⊤

, 𝔼𝑝𝜽0𝑏
′
𝑗 (𝑿 )𝒕 ′𝑗 (𝑿 ) , and 𝔼𝑝𝜽0 𝒕

′′
𝑗 (𝑿 ) for all 𝑗 ∈ [𝑑] by replacing the corresponding empirical means and

covariance matrix to them.
On the other hand, We can also obtain a robust estimator for 𝝁 and 𝚺 by simply replacing 𝝁ML and 𝚺̂ML to
a robust mean and robust covariance. Robustifying process are different, but we obtain the same estimator,
i.e. the following lemma holds.

Lemma 5.4.5 Let X is distributed asN(𝝁, 𝚺) a Gaussian distributionN(𝝁0, 𝚺0) and (𝑿𝑖)1≤𝑖≤𝑛 be indepen-
dent copies of 𝑿 . Define

𝚪̂(𝑿 ) ≡ 𝑹⊤ ©­­«
𝚪̂0(𝑿 ) 0

. . .

0 𝚪̂0(𝑿 )

ª®®¬ 𝑹, 𝒈(𝑿 ) ≡ 𝑹⊤

©­­­­­­«

𝒈1,1(𝑿 )
𝑔2,1(𝑿 )

...
𝒈1,𝑑 (𝑿 )
𝑔2,𝑑 (𝑿 )

ª®®®®®®¬
, (5.19)

ℎ𝑒𝑟𝑒 𝚪̂0(𝑿 ) ≡
[
𝚺̂(𝑿 (𝑖) ) + 𝝁 (𝑿 (𝑖) )𝝁 (𝑿 (𝑖) )⊤ −𝝁 (𝑿 (𝑖) )

−𝝁 (𝑿 (𝑖) )⊤ 1

]
∈ ℝ(𝑑+1)×(𝑑+1) ,

𝒈1, 𝑗 ≡ e𝑗,𝑑 ∈ ℝ𝑑 ,

𝑔2, 𝑗 ≡ 0 ∈ ℝ.

e𝑗,𝑑 ∈ ℝ𝑑 and 𝑹 are similarly defined as in Corollary 5.4.3. 𝝁 (𝑿 ) and 𝚺̂(𝑿 ) are estimators for the mean and
the covariance. Suppose 𝚪̂(𝑿 ) is positive definite. Then,

𝑹

(
argmin

𝜽 ∈Θ

(
1
2
𝜽⊤𝚪(𝑿 )𝜽 − 𝒈(𝑿 )⊤𝜽

))
=

(
𝚺̂(𝑿 )−1𝝁 (𝑿 ) , 𝚺̂(𝑿 )−1

)
,

here 𝜽 ≡ (𝜔11, . . . , 𝜔1𝑑 , 𝜂1 , 𝜔22, . . . , 𝜔2𝑑 , 𝜂2 , . . . , 𝜔𝑑𝑑 , 𝜂𝑑 )⊤ ∈ ℝ
𝑑 (𝑑+1)

2 +𝑑 .
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Proof.
Since 𝚪̂(𝑿 ) is positive definite, 𝐽ℎ (𝜽 ) ≡ 1

2𝜽
⊤𝚪̂(𝑿 )𝜽 − 𝒈(𝑿 )⊤𝜽 is strictly convex function with respect to

𝜽 . So, it is enough to show 𝜕𝐽ℎ
𝜕𝜽 = 0 at 𝜽 = 𝚺̂(𝑿 )−1𝝁 (𝑿 ).

𝜕𝐽ℎ
𝜕𝜽

= 0 ⇔ 𝜕𝐽ℎ
𝜕(𝑹𝜽 )

𝜕(𝑹𝜽 )
𝜕𝜽

=
𝜕𝐽ℎ
𝜕(𝑹𝜽 ) 𝑹 = 0

⇔ 𝜕𝐽ℎ
𝜕(𝑹𝜽 ) = 0 𝑠𝑖𝑛𝑐𝑒 kernel(𝑹) = 0

⇔ (𝑹𝜽 )⊤𝚪̂(𝑿 ) − 𝒈(𝑿 )⊤ = 0
⇔ 𝚪̂(𝑿 )(𝑹𝜽 ) = 𝒈(𝑿 )

⇔

©­­­­­­­­­­­­­­­­­­­­­­­­­­«

(
𝚺̂(𝑿 (𝑖) ) + 𝝁 (𝑿 (𝑖) )𝝁 (𝑿 (𝑖) )⊤

) ©­­«
𝜔11
...

𝜔1𝑑

ª®®¬ − 𝝁 (𝑿 (𝑖) )𝜂1

𝝁 (𝑿 (𝑖) )⊤
©­­«
𝜔11
...

𝜔1𝑑

ª®®¬ + 𝜂1
...(

𝚺̂(𝑿 (𝑖) ) + 𝝁 (𝑿 (𝑖) )𝝁 (𝑿 (𝑖) )⊤
) ©­­«
𝜔𝑑1
...

𝜔𝑑𝑑

ª®®¬ − 𝝁 (𝑿 (𝑖) )𝜂𝑑

𝝁 (𝑿 (𝑖) )⊤
©­­«
𝜔𝑑1
...

𝜔𝑑𝑑

ª®®¬ + 𝜂𝑑

ª®®®®®®®®®®®®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­«

e1,𝑑
0

...

e𝑑,𝑑
0

ª®®®®®®®®®®®®¬
∈ ℝ(𝑑+1)×𝑑

⇔

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

(
𝚺̂(𝑿 (𝑖) ) + 𝝁 (𝑿 (𝑖) )𝝁 (𝑿 (𝑖) )⊤

) ©­­«
𝜔11
...

𝜔1𝑑

ª®®¬ − 𝝁 (𝑿 (𝑖) )𝜂1

...(
𝚺̂(𝑿 (𝑖) ) + 𝝁 (𝑿 (𝑖) )𝝁 (𝑿 (𝑖) )⊤

) ©­­«
𝜔𝑑1
...

𝜔𝑑𝑑

ª®®¬ − 𝝁 (𝑿 (𝑖) )𝜂𝑑

−𝝁 (𝑿 (𝑖) )⊤
©­­«
𝜔11
...

𝜔1𝑑

ª®®¬ + 𝜂1
...

−𝝁 (𝑿 (𝑖) )⊤
©­­«
𝜔𝑑1
...

𝜔𝑑𝑑

ª®®¬ + 𝜂𝑑

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­«

e1,𝑑
...

e𝑑,𝑑
0
...
0

ª®®®®®®®®®¬
∈ ℝ(𝑑+1)×𝑑
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⇔
(
𝚺̂(𝑿 (𝑖) ) + 𝝁 (𝑿 (𝑖) )𝝁 (𝑿 (𝑖) )⊤

) ©­­«
𝜔11 . . . 𝜔𝑑1
...

. . .
...

𝜔1𝑑 . . . 𝜔𝑑𝑑

ª®®¬︸               ︷︷               ︸
𝛀

−𝝁 (𝑿 (𝑖) )
©­­«
𝜂1
...
𝜂𝑑

ª®®¬
⊤

︸︷︷︸
𝜼⊤

= 𝑰𝑑

and − 𝝁 (𝑿 (𝑖) )⊤
©­­«
𝜔11 . . . 𝜔𝑑1
...

. . .
...

𝜔1𝑑 . . . 𝜔𝑑𝑑

ª®®¬︸               ︷︷               ︸
𝛀

+
©­­«
𝜂1
...
𝜂𝑑

ª®®¬
⊤

︸︷︷︸
𝜼⊤

= 0⊤

(𝜂,𝛀) =
(
𝚺̂(𝑿 )−1𝝁 (𝑿 ) , 𝚺̂(𝑿 )−1

)
satisfies the both equations. So, this pair minimizes 𝐽ℎ

□
Note that this lemma holds under the condition that the distribution comes from Gaussian and ℎ ≡ 1.

Error bound of robust score matching estimator Similar to non-robust case, the error bound is bounded
by the error of robust mean and robust covariance. For example, when we replace sample mean to Median
of means and sample covariance to Minsker estimator, under that each parameters satisfies the assumption
in the table in section 4.1 and (∗∗) in Theorem 4.2.6,

���𝜽SM − 𝜽0
��� ≤ 

Γ−1(𝑋 )

 |𝜽0 | ∥𝑅∥2 𝐶 ∥Σ∥

©­­­«
20
39
𝜆1 +

80
39
𝜎

√√
log

(
8𝑟𝐻+3
3𝛿

)
𝑛

+ 40
39
𝜆2 log

(
8𝑟𝐻 + 3
3𝛿

)ª®®®¬
+

(
2
𝑛
Tr(𝚺) log 4

𝛿
+

√
2
𝑛
Tr(𝚺) log 4

𝛿

)2
+ 2

(√
32Tr(Σ) log(𝑑/𝛿)

𝑛

)
( |𝝁 | + 1) + 1

 .
5.5 Simulation in Gaussian case

5.5.1 Non-robust estimator

In the simulation, we consider the case inwhich the the population distribution𝑿 is distributed asN3(𝜇0, Σ0),
where

𝜇 =
©­«
1
−1
0

ª®¬ , Σ =
©­«
1 0 0.5
0 2 1
0.5 1 1

ª®¬ ,
and we set ℎ 𝑗 ≡ 1 for 𝑗 ∈ [3]. Suppose that we don’t know both 𝝁0 amd 𝚺0, which we estimate by using
sample data. We compare the score matching estimators in case that the sample size 𝑛 = 10, 𝑛 = 100, and
𝑛 = 1000. For each case, we estimate 100 times.

From Corollary 5.4.4, the score matching estimator is given by

𝚪(𝑿 ) = 𝑹⊤ ©­­«
𝚪0(𝑿 ) 0

. . .

0 𝚪0(𝑿 )

ª®®¬ 𝑹, 𝒈(𝑿 ) = 𝑹⊤

©­­­­­­«

𝒈1,1(𝑿 )
𝑔2,1(𝑿 )

...
𝒈1,𝑑 (𝑿 )
𝑔2,𝑑 (𝑿 )

ª®®®®®®¬
. (5.20)
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Here

𝚪0(𝑿 ) ≡
[
𝚪11 𝚪12
𝚪21 𝚪22

]
≡ 1
𝑛

𝑛∑
𝑖=1

[
𝑿 (𝑖)𝑿 (𝑖)⊤ −𝑿 (𝑖)

−𝑿 (𝑖)⊤ 1

]
∈ ℝ(𝑑+1)×(𝑑+1) ,

𝒈1, 𝑗 ≡ e𝑗,𝑑 ∈ ℝ𝑑 ,

𝑔2, 𝑗 ≡ 0 ∈ ℝ.

Thus, we can estimate 𝝁 and 𝚺 by the following procedure.

Procedure 1 Score maching method in Gaussian distribution (100 times trials)

1: INPUT: 100 × 𝑛 samples (𝒙ℓ :𝑖)ℓ∈[100], 𝑖 ∈ [𝑛] from N3(𝝁0, 𝚺0)
2: OUTPUT: Estimated means (𝝁SMℓ ) and covariances (𝚺̂SMℓ )ℓ∈[100] by score mathing method
3: FOR ℓ = 1 𝑡𝑜 100

Calculate 𝚪(𝒙ℓ ) and 𝒈(𝒙ℓ ) in Corollary 5.19
𝜽SMℓ = 𝚪(𝒙ℓ )−1𝒈(𝒙ℓ )
Find 𝝁SMℓ and 𝚺̂SMℓ corresponding to 𝜽SMℓ

Calculate 𝛀̂SMℓ = 𝚺̂
−1
SMℓ

The following is the result. As we proved in Section 3.2, when ℎ 𝑗 (𝑥) = 𝑖 ∀𝑗 , 𝜃𝑆𝑀 = 𝜃𝑀𝐿 . So, we obrtain
exactly the same result from the following procedure.

Procedure 2 Maximum likelihood estimation method for Gaussian Graphical models (100 times trials)

1: INPUT: 100 × 𝑛 samples (𝒙ℓ :𝑖)ℓ∈[100],𝑖∈[𝑛] from N3(𝝁0, 𝚺0)
2: OUTPUT: Estimated means (𝝁MLℓ )ℓ∈[100] and covariances (𝚺̂MLℓ )ℓ∈[100] bymaximum likelihoodmethod
3: FOR ℓ = 1 𝑡𝑜 100

𝝁MLℓ =
1
𝑛

𝑛∑
𝑖=1

𝒙ℓ :𝑖

𝚺̂MLℓ =
1
𝑛

𝑛∑
𝑖=1

(𝒙ℓ :𝑖 − 𝝁MLℓ )(𝒙ℓ :𝑖 − 𝝁MLℓ )
⊤

Calculate 𝛀̂MLℓ = 𝚺̂
−1
MLℓ

𝐿2 error For the evaluation of the errors of 𝝁SM − 𝝁0 and 𝚺̂SM − 𝚺0, we use 𝐿2 error. The following is the
algorithm to calculate it.

Procedure 3 Measuring the 𝐿2 errors

1: INPUT: (𝝁SMℓ )ℓ∈[100] and (𝚺̂SMℓ )ℓ∈[100] obtained by Procedure 1
2: OUTPUT: 𝐿2(𝝁SM − 𝝁0), 𝐿2(𝚺̂SM − 𝚺0), and 𝐿2(𝛀̂SM − 𝛀0)
3: FOR ℓ = 1 to 100, calculate

��𝝁SMℓ − 𝝁0
��
2 ≡

(
3∑
𝑖=1

���𝜇 (𝑖)SMℓ
− 𝜇 (𝑖)

���2) 1
2 


𝚺̂SMℓ − 𝚺0





2
≡

(
3∑

𝑖, 𝑗=1

���𝜎̂ (𝑖 𝑗)
SMℓ

− 𝜎 (𝑖 𝑗)
0

���2) 1
2 


𝛀̂SMℓ − 𝛀0





2
≡

(
3∑

𝑖, 𝑗=1

���𝜔̂ (𝑖 𝑗)
SMℓ

− 𝜔 (𝑖 𝑗)
0

���2) 1
2

4: For 𝑘 = 1 to 𝑛, calculate

𝐿2 (𝝁SMℓ − 𝝁0) ≡
1
100

100∑
ℓ=1

��𝝁SMℓ − 𝝁0
��
2 𝐿2 (𝚺̂SMℓ − 𝚺0) ≡

1
100

100∑
ℓ=1




𝚺̂SMℓ − 𝚺0





2

𝐿2 (𝛀̂SMℓ − 𝛀0) ≡
1
100

100∑
ℓ=1




𝛀̂SMℓ − 𝛀0





2
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Result :
𝑛 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝚺̂SMℓ − 𝚺0)

100 0.17042293 0.4270580
300 0.09780322 0.2619216
1000 0.05625493 0.1384555

(5.21)

TPR and FPR In a covariance estimation, we are especially interested in a covariance is 0 or not. In our
example, (1, 2) entry and (2, 1) entry of 𝚺0 are 0. We decide that 𝚺̂

(𝑖 𝑗)
SM = 0 when

���𝚺̂(𝑖 𝑗)
SM

��� ≤ 𝜖 . To compare
the result from the perspective how correctly the estimator distinguish each parameters is zero or not, we
use the following criteria.

FPR(𝚺̂SM) ≡ # of non-diagonal entries not equal 0 in 𝚺̂SM but the decision is wrong
# of non-diagonal entries equal 0 in 𝚺0

= |𝑆off \𝑆0,off |
𝑑 (𝑑−1)−|𝑆0,off |

TPR(𝚺̂SM) ≡ # of non-diagonal entries not equal 0 in 𝚺̂SM and the decision is correct
# of non-diagonal entries not equal 0 in 𝚺0

= |𝑆off ∩𝑆0,off |
|𝑆0,off |

where 𝑆0,off ≡
{
(𝑖, 𝑗) : 𝑖 ≠ 𝑗 ∧ 𝜎0,𝑖 𝑗 ≠ 0

}
, and 𝑆off ≡

{
(𝑖, 𝑗) : 𝑖 ≠ 𝑗 and

���𝜎̂ (𝑖 𝑗)
SM

��� > 𝜖}. Since 𝚺̂SM depends on
the sample, FPR and TPR fluctuate. So, we take the mean of them.
Analogically TPR(𝛀̂SM) and FPR(𝛀̂SM) are also defined.

Procedure 4 Calculate the FPR and TPR

1: INPUT: (𝚺̂SMℓ )ℓ∈[100] obtained by Procedure 1, 𝜖 ∈ [0, 1]
2: OUTPUT: Mean of FPR and Mean of TPR
3: FOR 𝑙 = 1 to 100

Calculate FPR(𝚺̂SMℓ ) and TPR(𝚺̂SMℓ )

4: Calculate Mean of FPD ≡ 1
100

100∑
ℓ=1

FPR(𝚺̂SMℓ ) and Mean of TPR ≡ 1
100

100∑
ℓ=1

TPR(𝚺̂SMℓ )

Result :
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5.5.2 Robust estimator

The performance of the robust score matching estimator provided by (5.18) is the followings.

Median of Mean, Median absolute deviation

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝚺̂SMℓ − 𝚺0)
100 0.2008869 0.5691329
300 0.1156710 0.3521662
1000 0.06558571 0.1891582

(5.22)

TPR and FPR
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Median of Mean, Altenative MAD

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝚺̂SMℓ − 𝚺0)
100 0.2008869 0.468477
300 0.1156710 0.3012807
1000 0.06558571 0.1600284

(5.23)

TPR and FPR
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Trimmed Means, Median absolute deviation

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝚺̂SMℓ − 𝚺0)
100 0.1917967 0.5691329
300 0.1051795 0.3521662
1000 0.06180664 0.1891582

(5.24)

TPR and FPR
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Trimmed Means, Altenative MAD

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝚺̂SMℓ − 𝚺0)
100 0.1917967 0.4684770
300 0.1051795 0.3012807
1000 0.06180664 0.1600284

(5.25)

TPR and FPR
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Medians of Means, Minsker’s Method In Minsker’s method, we set the number of iterations is 30,
𝜆1 ≡ 0, 𝜆2 ≡ 0.1, 𝐵 ≡ 10, 𝜂𝑡 ≡ 𝑡−

2
3

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝚺̂SMℓ − 𝚺0)
100 0.2008869 0.5669076
300 0.1156710 0.4381501
1000 0.06558571 0.3836059

(5.26)

TPR and FPR
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Trimmed Means, Minsker’s Method In Minsker’s method, we set the number of iterations is 30, 𝜆1 ≡ 0,
𝜆2 ≡ 0.1, 𝐵 ≡ 10, 𝜂𝑡 ≡ 𝑡−

2
3

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝚺̂SMℓ − 𝚺0)
100 0.19179671 0.5669076
300 0.10517949 0.4381501
1000 0.06180664 0.3836059

(5.27)

TPR and FPR
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Next we consider the model which have contamination.

Non-robust score matching estimator

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝚺̂SMℓ − 𝚺0)
100 4.249416 345.7046
300 4.375587 358.147
1000 4.299185 353.4891

(5.28)

TPR and FPR
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Median of Means, Minsker’s Method in contamination model InMinsker’smethod, we set the number
of iterations is 30, 𝜆1 ≡ 0, 𝜆2 ≡ 0.1, 𝐵 ≡ 10, 𝜂𝑡 ≡ 𝑡−

2
3 . The distribution is contaminated with 5 percent of

outlier (50, 50, 50).

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝚺̂SMℓ − 𝚺0)
100 2.676537 2.837128
300 4.096872 1.615904
1000 4.214861 4.938987

(5.29)

TPR and FPR
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Trimmed Means, Minsker’s Method in contamination model In Minsker’s method, we set the number
of iterations is 30, 𝜆1 ≡ 0, 𝜆2 ≡ 0.1, 𝐵 ≡ 10, 𝜂𝑡 ≡ 𝑡−

2
3 . The distribution is contaminated with 5 percent of

outlier (50, 50, 50).

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝚺̂SMℓ − 𝚺0)
100 0.30125 2.837128
300 0.2033159 1.615904
1000 0.1751119 4.938987

(5.30)

TPR and FPR

Comparing with Non-robust estimator, we can see that the robust estimator is more efficient.
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5.5.3 Estimation of Precision matrix

Although we have estimated the mean 𝝁 and the covariance matrix 𝚺 of Gaussian distribution until here,
at the same time the estimating the precision matrix 𝛀 ≡ 𝚺−1 is also our interest because in Gaussian
case, each entries in the precision matrix is related to the statistical graph. We can estimate the 𝛀 of the
population distribution by taking the inverse of 𝚺̂/
we consider the case in which the the population distribution 𝑿 is distributed as N3(𝜇0, Σ0), where

𝜇 =
©­«
1
−1
0

ª®¬ , 𝛀 =
©­«
1 0 0.5
0 2 1
0.5 1 1

ª®¬ , ©­«then 𝚺 = 𝛀−1 =
©­«
2 1 −2
1 1.5 −2
−2 −2 4

ª®¬ ª®¬
and we set ℎ 𝑗 ≡ 1 for 𝑗 ∈ [3]. The followings are the result of this estimation

Non-robust case In Minsker’s method, we set the number of iterations is 30, 𝜆1 ≡ 0, 𝜆2 ≡ 0.1, 𝐵 ≡
10, 𝜂𝑡 ≡ 𝑡−

2
3

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝛀̂SMℓ − 𝛀0)
100 0.2291308 0.5343700
300 0.1286565 0.2836951
1000 0.0769031 0.1544092

TPR and FPR
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Robust case : Medians of Means, Minsker’s Method In Minsker’s method, we set the number of
iterations is 30, 𝜆1 ≡ 0, 𝜆2 ≡ 0.1, 𝐵 ≡ 10, 𝜂𝑡 ≡ 𝑡−

2
3

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝛀̂SMℓ − 𝛀0)
100 0.27581564 1.5124890
300 0.15455185 0.4772902
1000 0.08734777 0.4015194

TPR and FPR
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Robust case : Trimmed Mean, Minsker’s Method InMinsker’s method, we set the number of iterations
is 30, 𝜆1 ≡ 0, 𝜆2 ≡ 0.1, 𝐵 ≡ 10, 𝜂𝑡 ≡ 𝑡−

2
3

L2 error

# of samples 𝐿2(𝝁SMℓ − 𝝁0) 𝐿2(𝛀̂SMℓ − 𝛀0)
100 0.26785685 1.5124890
300 0.14696800 0.4772902
1000 0.08505598 0.4015194

TPR and FPR

5.6 Score matching estimator in Pareto case

Next, we consider non-Gaussian case. First, let’s consider the maximum likelihood estimator The the
density function of the Pareto distribution with the parameter 𝜽 = (𝛼, 𝛽) is given by

𝑝𝛼,𝛽 (𝑥 ;𝛼, 𝛽) = 𝛼
𝛽𝛼

𝑥𝛼+1
, 𝑥 ≥ 𝛽, 𝛼, 𝛽 > 0. (5.31)

𝛼 is called scale parameter, and 𝛽 is shape parameter.

log𝑝𝛼,𝛽 (𝑥 ;𝛼, 𝛽) = log(𝛼) + 𝛼 log(𝛽) − (𝛼 + 1) log (𝑥) .
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Pareto distribution is an exponential family with the canonical parameter −(𝛼 + 1). The log-likelihood
function ℓ (𝛼, 𝛽 ;𝑥) of the Pareto distribution given a sample 𝑥 = (𝑥1, . . . , 𝑥𝑛) is given by

log
𝑛∏
𝑖=1

𝑝𝛼,𝛽 (𝑥𝑖 ;𝛼, 𝛽) =
𝑛∑
𝑖=1

log
(
𝛼
𝛽𝛼

𝑥𝛼+1𝑖

)
= 𝑛 log(𝛼) + 𝑛𝛼 log(𝛽) − (𝛼 + 1)

𝑛∑
𝑖=1

log (𝑥𝑖) . (5.32)

Let’s consider the maximum likelihood estimator. At first, we consider the case case that 𝛽 is known. For
𝛼 , we can find the maximizer by solving set the partial derivative equal to 0 :

𝜕ℓ (𝛼, 𝛽)
𝜕𝛼

=
𝑛

𝛼
+ 𝑛 log(𝛽) −

𝑛∑
𝑖=1

log (𝑥𝑖) = 0.

Thus, we get the maximum likelihood estimator for Pareto distribution

𝛼ML = argmin
𝛼

𝑛 log(𝛼) + 𝑛𝛼 log(𝛽) − (𝛼 + 1)
𝑛∑
𝑖=1

log (𝑥𝑖)

=
𝑛∑𝑛

𝑖=1 log (𝑥𝑖) − 𝑛 log(𝛽)

In case that both 𝛼 and 𝛽 are unknown, the higher 𝛽 , the higher (5.32), and 𝛽 ≤ 𝑥𝑖 for all 𝑖 . Under this
restriction, the 𝛽 maximizing ℓ (𝑥 ;𝛼, 𝛽) is 𝛽 = min𝑖 𝑥𝑖 .

𝛽ML = min
𝑖
𝑥𝑖 .

𝛼ML =
𝑛∑𝑛

𝑖=1 log (𝑥𝑖) − 𝑛 log(𝛽)

Next, we consider the score matching estimator for Pareto distribution. Note that in order to apply Score
matching method, we need to chose ℎ which satisfies (A1) and (A2). In fact, tn Pareto case, ℎ(𝑥) = 1 does
not satisfy (A1) since lim

𝑥→𝛽
log𝑝𝛼,𝛽 (𝑥)𝜕 log𝑝𝛼,𝛽 (𝑥) ≠ 0 So, we need to consider a function ℎ which satisfies

lim
𝑥→𝛽

ℎ(𝑥) = 0.

(A1) ⇔ lim
𝑥→𝛽,+∞

𝑝𝜽0 (𝑥)ℎ(𝑥)𝜕 log𝑝𝜽 (𝒙) = 0

⇔ lim
𝑥→𝛽,+∞

𝛼
𝛽𝛼

𝑥𝛼+1
ℎ(𝑥) −(𝛼 + 1)

𝑥
= 0

⇔ lim
𝑥→𝛽,+∞

ℎ(𝑥)
𝑥𝛼+2

= 0
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For example, ℎ(𝑥) ≡ (𝑥 − 𝛽)𝑘 for 0 < 𝑘 ≤ 𝛼 + 2 and ℎ(𝑥) ≡ (𝑥 − 𝛽)𝑥𝑘 for 𝑘 ≤ 𝛼 + 1 satisfies this condition.
For such ℎ, we can calculate 𝚪(𝑋 ) and 𝒈(𝑋 ) in Definition 5.2.4 as follows. Then

𝚪(𝑋 ) =
1
𝑛

𝑛∑
𝑖=1

ℎ(𝑋𝑖)𝒕 ′(𝑿𝑖)𝒕 ′(𝑿𝑖)⊤

=
1
𝑛

𝑛∑
𝑖=1

ℎ(𝑋𝑖)
𝑋 2
𝑖

,

𝒈(𝑋 ) = −1
𝑛

𝑛∑
𝑖=1

[ℎ(𝑋𝑖)𝑏 ′(𝑿𝑖)𝒕 ′(𝑿𝑖) + ℎ(𝑋𝑖) (𝑋𝑖)𝒕 ′′(𝑿𝑖) + ℎ′(𝑋𝑖)𝒕 ′(𝑿𝑖)]

= −1
𝑛

𝑛∑
𝑖=1

[
−ℎ(𝑋𝑖)

𝑋 2
𝑖

+ ℎ
′(𝑋𝑖)
𝑋𝑖

]
=

1
𝑛

𝑛∑
𝑖=1

[
ℎ(𝑋𝑖)
𝑋 2
𝑖

− ℎ′(𝑋𝑖)
𝑋𝑖

]
.

Then, the score matching estimator 𝜽SM for 𝜃 = −(𝛼 + 1) is given by

𝜽SM =

(
1
𝑛

𝑛∑
𝑖=1

ℎ(𝑋𝑖)
𝑋 2
𝑖

)−1
1
𝑛

𝑛∑
𝑖=1

[
ℎ(𝑋𝑖)
𝑋 2
𝑖

− ℎ′(𝑋𝑖)
𝑋𝑖

]
= 1 −

(
𝑛∑
𝑖=1

ℎ(𝑋𝑖)
𝑋 2
𝑖

)−1 𝑛∑
𝑖=1

ℎ′(𝑋𝑖)
𝑋𝑖

.

Thus,

𝛼SM =

(
𝑛∑
𝑖=1

ℎ(𝑋𝑖)
𝑋 2
𝑖

)−1 𝑛∑
𝑖=1

ℎ′(𝑋𝑖)
𝑋𝑖

− 2. (5.33)

The following are the result of each estimator. Here, the population distribution is Pareto distribution with
𝛼 = 3, 𝛽 = 1. We know the 𝛽 , but 𝛼 is unknown. We estimate 𝛼 with 100, 500, 1000 samples. We calculate
10,000 times for each simulation, and the followings are the results.

SME with ℎ(𝑥) ≡ (𝑥 − 𝛽)3
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SME with ℎ(𝑥) ≡ (𝑥 − 𝛽)𝑥

SME with ℎ(𝑥) ≡ (𝑥 − 𝛽)𝑥2



69

MLE

5.6.1 Robust Score matching estimator in Pareto case

Note that the final case can be considered under the situation in which we have a previous information
that 𝛼 ≥ 0. Now, we consider ℎ(𝑥) ≡ (𝑥 − 𝛽)𝑥2. In this case, (5.33) can be written as

𝛼SM =

(
𝑛∑
𝑖=1

𝑋 2
𝑖 (𝑋𝑖 − 𝛽)
𝑋 2
𝑖

)−1 𝑛∑
𝑖=1

3𝑋 2
𝑖 − 2𝛽𝑋𝑖
𝑋𝑖

− 2

=

(
𝑛∑
𝑖=1

(𝑋𝑖 − 𝛽)
)−1 𝑛∑

𝑖=1
(3𝑋𝑖 − 2𝛽) − 2

=
(
𝑋 − 𝛽

)−1 (
3𝑋 − 2𝛽

)
− 2

By replacing the empirical mean 𝑋 to a robust version, we can obtain a robust estimator for 𝛼SM .

𝛼SMrob =
(
𝑋 rob − 𝛽

)−1 (
3𝑋 rob − 2𝛽

)
− 2.

The followings are the result with𝑿rob isMedian ofMean and Trimmedmean. The population distribution,
the number of samples, and the number of trials are the same as the above.
To see the performance of these estimators, we consider a contamination model, that is each sample
(𝑋𝑖)𝑖∈[𝑛] identically distributes

𝑋𝑖 = (1 − 𝛿𝑖)𝑌𝑖 + 𝛿𝑖50 𝑌𝑖
i.i.d.∼ Pareto(𝛼 = 3, 𝛽 = 1) 𝛿𝑖

i.i.d.∼ Bernoulli(0.05) .

Then, the results are the followings, which show that while the estimate by non-robust score matching
method is distorted by the outlier, the robust score matching estimator can reduce the effect of the outliers.
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Non-robust SME

Robust SME with Median of Mean (The number of sample of each block is 5)

Robust SME with Trimmed mean (Removal rate is 0.1)
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6 Summary

First of all in this thesis, we conducted a review of various concentration inequalities. Starting with dis-
cussions on the inequalities involving empirical means and empirical covariances, we proceeded to review
several robust estimators that can serve as alternatives to them. In particular, as an alternative to the em-
pirical covariance, we focused on the estimator introduced by Minsker [16]. The estimator was defined
in (4.3) as a penalized least-squares estimator 𝑆 with parameter 𝜆2 as the penalty weight for the sample
deviation from the Gaussianity of the distribution.

Our primary focus in this thesis is on score matching estimator (SME). The original version of SME is
introduced in [7], and generalized version was introduced in [8], which is defined as the minimizer of
the empirical version of (5.1). When dealing with a exponential distribution family, SME can be explicitly
represented by empirical means of multi-liniear forms of the sufficient statistics, as shown in Theorem
5.2.2. This representation provides us with the error bound of 𝜽SM from the true parameter 𝜽0 ∈ Θ given
in Lemma 5.3.2, where Θ is a parameter space and a subset of ℝ𝑚 . In case the distribution is N𝑑 (𝝁, 𝚺),
Θ = ℝ𝑑 × 𝑃𝐷𝑑 where 𝑃𝐷𝑑 ∈ ℝ𝑑×𝑑 is the set of whole 𝑑 dimensional symmetric and positive definite
matrices. This decomposition allows to control the error

���𝜽SM − 𝜽0
��� in terms of controlling the deviations

of the mean vector 𝒈 and covariance matrix 𝚪 from their empirical analogues.

As an example we consider the case of Gaussian distributionN(𝝁, 𝚺) with unknown parameters 𝝁, 𝚺 We
checked that the original SME for the parameters of Gaussian distribution coincides with the most likeli-
hood estimator (MLE). By applying Theorem 5.2.2, we explicitly derived the expression for the generalized
score matching estimator for the parameters of the Gaussian distribution (Corollary 5.4.3). For original
score matching method, that is, we take ℎ(𝑥) ≡ (1, . . . , 1)⊤ as the function 𝒉 : ℝ𝑑 → ℝwhich was intro-
duced in the (5.1), the SME can be expressed as a composition of empirical mean and empirical covariance
as shown in Corollary 5.4.4.

One of the contributions of this thesis is a construction of a robust version of score matching estima-
tor (RSM) for the unknown parameter 𝝁 and 𝚺 of N𝑑 (𝝁, 𝚺). For this goal, as we saw in Section 5.4.1,
we replaced the empirical quantities corresponding to the empirical mean and covariance matrix in the
generalized SME with robust alternatives. As shown in many books like [14] and papers such as [3], [5],
and [16], there is a lot of candidates as a robust empirical mean and a robust covariance matrix estima-
tor. In this thesis we chose the Median of Means and Trimmed Mean, to which we referred in Section
4.1, as alternatives to the empirical mean, and and employed Minsker’s approach, which we introduce in
Section 4.2, to construct a robust version of the empirical covariance estimator. This choice was made
because the error bounds for these robust statistics can be explicitly calculated. And we showed that in
case that ℎ(𝑥) = (1, . . . , 1)⊤ and the underling distribution is Gaussian, RSE matches the alterative mean
and covariance matrix estimators used in the robustification procedure. (Lemma 5.19)

To analyze the behavior of RSM, we adopted two approaches: error bounds and numerical simulations.
By applying Lemma 5.3.2, we obtained an explicit error bound for RSM for the unknown parameters of
Gaussan or Pareto distribution. In numerical approach, we considered the situation in which we have
samples (𝑍𝑖)𝑖∈[𝑛] with 𝑍𝑖 ∼ (1 − 𝛿𝑖)𝑿𝑖 + 𝛿𝑖𝐶𝑖 , where 𝑋𝑖 distributes from Gaussian or Pareto distribution,
𝐶𝑖 is some outlier, and 𝛿 ∈ [0, 1]. In other words, the sample contains contaminations at the rate 𝛿 .
The estimation error in this model differs from the uncontaminated model as we saw in (5.21) and (5.28),
however (5.29) and (5.30) shows that RSM prove to be efficient. The idea to robustify the score matching
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estimator by replacing the components of the estimator to robust alternatives can be extended to the
case of general exponential distribution families because the score matching estimator for an exponential
distribution family can be written as a liniear combination of empirical means and covariance matrix of
derivatives of sufficient statistics. By substituting them with robust counterparts, we derive the RSM for
the parameters of the exponential family.

In the last of the thesis, in Section 5.6 we considered the problem of estimating the shape parameter of
Pareto distribution, the original SME can not be represented by empirical mean and covariance matrix.
However generalized SME with suitable ℎ enables us to write down the estimator as the composition of
them, and we can replace them to robust alternatives and robust score matching estimators for the shape
parameter of Pareto distribution. Even here, we consider a Pareto distribution with contaminations, and
we confirmed the RSM’s resilience to outliers .

There are several issues that we could not address in this thesis. As a RSM for the parameters of Gaussian
distribution, we used Minsker method, which have parameter 𝜆2. It is interesting to determine the best
parameter for effectively mitigating the influence of outliers. The choice of the most suitable method will
depend on the sample size. To address this question, we need to simulate data using various methods for
different sample sizes. And, here we only discussed about the specificℎ. Whenℎ is general, 𝚪(𝑿 ) and 𝒈(𝑿 )
include the term related to ℎ(𝑿 ), SME for the parameters of Gaussian distribution cannot be expressed in
terms of empirical mean and empirical covariances. For instance, when the function ℎ : ℝ𝑑 → ℝ𝑑 s.t.
ℎ(𝒙) = 𝑥 as the function ℎ in (5.1) , then we need a robust estimator for the 3rd moment at least. So we
can not directly apply our idea dealing only with robust mean and covariance matrix estimator. I would
like to leave these problems to the future researches.

As I conclude this thesis, I would like to express my gratitude to Prof. Mathias Drton and Dr. Oleksandr
Zadorozhnyi. Professor Mathias offered me the opportunity to delve into the captivating subject of ro-
bustifying the score matching estimator. Dr. Zadorozhnyi consistently scheduled meetings and provided
unwavering support throughout my thesis. He also generously shared valuable advice and made revisions
to my drafts. I am profoundly thankful for all the insightful discussions with them.
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7 Appendix : R code

7.1 Robust estimators

The following is functions to estimate the parameters from a given observations 𝑋 by robust methods

library(plyr)
############################
### Robust Mean estimator###
############################
#Input : X:samples data nblocks:number of blocks
#Output: Median of mean
Median_of_mean_1D <- function(X,nblocks){#(data(n× 1),number of blocks)
number_of_sample <- length(X) #input vector
m <- floor(number_of_sample/nblocks)
if(m*nblocks != number_of_sample){
message("Number of samples can not be devided by number of blocks")

}
X_dev <- array(X,dim=c(m,nblocks))
Z <- array(0,dim=c(1,nblocks))
for(i in 1:nblocks){
Z[i] <- mean(X_dev[,i])

}
return(median(Z))

}

#Input : X:samples data threshold:outlier rate
#Output: Trimmed mean
Trimmed_mean_1D <- function(X,e){
number_of_sample <- length(X) #input vector
under_threshold <- floor(number_of_sample/2 * e)
#upper_threshold <- number_of_sample/2 - under_threshold
if(under_threshold == 0){
return(mean(X))

}else{
alfa <- sort(X[1:(number_of_sample/2)],partial =

under_threshold)[under_threshold]
beta <- -sort(- X[1:(number_of_sample/2)], partial =

under_threshold)[under_threshold]
total <- 0
for(i in ((number_of_sample/2)+1):number_of_sample){
total <- total + max(alfa,min(beta,X[i]))

}
return(total/length(((number_of_sample/2)+1):number_of_sample))
}

}
##################################
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### Robust Covariance estimator###
##################################
covariance_estimation <- function(X_multi_dim){
#X is (number of data * dim )matrix
result<- matrix(0, nrow = d, ncol = d)

for(w in 1:d){
result[w,w] = (hatt_sigma(X_multi_dim[,w]))^2

}
for(w1 in 2:d){
for(w2 in 1:(w1-1)){
sigma_plus = hatt_sigma(X_multi_dim[,w1]/sqrt(result[w1,w1])+

X_multi_dim[,w2]/sqrt(result[w2,w2]))
sigma_minus = hatt_sigma(X_multi_dim[,w1]/sqrt(result[w1,w1])-

X_multi_dim[,w2]/sqrt(result[w2,w2]))
result[w1,w2] = (sigma_plus^2 -sigma_minus^2)/(sigma_plus^2 +

sigma_minus^2)*sqrt(result[w1,w1])*sqrt(result[w2,w2])
result[w2,w1] = result[w1,w2]

}
}
return(result)

}

Median_absolute_deviation_1D <- function(X){#(data(n× 1),number of blocks)
Const = 1.1926
number_of_sample <- length(X) #input vector
Y <- matrix(0,nrow = number_of_sample,ncol=number_of_sample)
for(s in 1 : number_of_sample){
for(t in 1: number_of_sample){
Y[s,t] = abs(X[s]-X[t])

}
}
partial_median <- rep(0,number_of_sample)
for(s in 1 : number_of_sample){

partial_median[s] = median(Y[s,])
}
return(Const*median(partial_median))

}

Altenative_MAD_1D <- function(X){#(data(n× 1),number of blocks)

Const = 2.2219
number_of_sample <- length(X) #input vector
Y <- array(0,dim=c(number_of_sample,number_of_sample))
for(s in 1:number_of_sample){
for(t in 1:number_of_sample){
Y[s,t] <- abs(X[s]-X[t])

}
}

h <- (floor(number_of_sample/2) + 1)*floor(number_of_sample/2)
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return(Const*sort(Y,partial = h)[h])
}

7.2 Minsker method

The followings are the functions to conduct Minsker’s method from a given observations 𝑋 .

Huber_loss_prime <- function(lambda,u){
if(abs(u) <= lambda){
return(u)

}else{
if(u >= 0){return(lambda)}
else{return(-lambda)}

}
}

Huber_loss_prime_matrix <- function(lambda,Y){# M is d x d matrix
output_Y <- matrix(0,nrow = dim(Y)[1], ncol = dim(Y)[2])
for(j in 1:dim(Y)[1]){
output_Y <- output_Y + Huber_loss_prime(lambda,eigen(Y)$values[j])*

eigen(Y)$vectors[,j]%*%t(eigen(Y)$vectors[,j])
}
return(output_Y)

}

Huber_gamma <- function(lambda,u){
return(sign(u)*max(abs(u)-lambda,0))

}

Huber_gamma_matrix <- function(lambda,Y){# M is d x d matrix
#Apply Huber_loss function for each entries
output_Y <- matrix(0,nrow = dim(Y)[1], ncol = dim(Y)[2])
for(j in 1:dim(Y)[1]){
output_Y <- output_Y + Huber_gamma(lambda,eigen(Y)$values[j])*

eigen(Y)$vectors[,j]%*%t(eigen(Y)$vectors[,j])
}
return(output_Y)

}

Minsker <- function(Y,lambda1,lambda2,Number_of_iterations,B,S_initial){
n <- dim(Y)[1]
d <- dim(Y)[2]
lambda = (sqrt(n*(n-1))*lambda2)/2
stepsize <- rep(0,Number_of_iterations)
for(t in 1: Number_of_iterations){
if(B==0){stepsize[t] <- 1
}else{stepsize[t] <- t^(-2/3)}

}

S_trend <- array(0,dim=c(d,d,Number_of_iterations))
G_trend <- array(0,dim=c(d,d,Number_of_iterations))



76

huber_trend <- array(0,dim=c(d,d,Number_of_iterations))
Y_tilde <- array(0,dim = c(d,n,n))
Y_tilde_Y_tilde_T <- array(0,dim = c(d,d,n,n))

for(i in 1:n){
for(j in 1:n){
Y_tilde[ ,i,j] <- (Y[i,] - Y[j,])/(sqrt(2))
Y_tilde_Y_tilde_T[ , ,i,j] <- Y_tilde[ ,i,j]%*%(t(Y_tilde[ ,i,j]))

}
}
S <- S_initial
for(t in 1:Number_of_iterations){ #Step 1
G = 0
if(B == 0){#counting up all the combinations
for(ii in 1:(n-1)){
for(jj in (ii+1):n){
G　<- G - Huber_loss_prime_matrix(lambda,

Y_tilde_Y_tilde_T[,,ii,jj]-S)/(n*(n-1)*0.5)
}

}
}else{
for(b in 1:B){
i <- as.integer( runif(1, min = 1, max = n-1) )
j <- as.integer( runif(1, min = i+1, max = n) )

G <- G - (Huber_loss_prime_matrix(lambda, Y_tilde_Y_tilde_T[,,i,j]
- S))/B

}
}
#Step 5,6
S <- Huber_gamma_matrix((lambda1)/2,S - stepsize[t]*G)
S_trend[,,t] <-S
G_trend[,,t] <-G

}
return(list(S=S,S_trend = S_trend, G_trend = G_trend))

}

7.3 Score matching method

The following is the function to estimate the parameters from a given observations 𝑋 by score matching
method.

# This R-code works only in case h = 1
Score_Matching_3D <- function(X,n,flag){
#Input : X:samples data n:number of Samples, flag : flag of Robust or Non-robust
#Output: Estimates for mean and covariance by SME
# flag is 1 for robust, 2 for non-robust
d <- 3
# set variables and vectors
theta_SM <- matrix(0, nrow = 1, ncol = d*(d+1)/2 + d)
Gamma11 <- array(0,dim=c(d,d,d))
Gamma12 <- array(0,dim=c(d,1,d))
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Gamma21 <- array(0,dim=c(1,d,d))
Gamma22 <- array(0,dim=c(1,1,d))
Gamma <- array(0, dim=c(d+1,d+1,d))
temp <- c(0,0)

if(flag == "Robust"){
if(robust_covariance == "Minsker"){
Sigma_SM <- Minsker(X,lambda1,lambda2,Number_of_iterations,B,S_initial)$S

}else{
Sigma_SM <- covariance_estimation(X)

}
}
# Calculate Gamma
for(j in 1:d){
if(flag == "Robust"){
for(w in 1:d){
Gamma12[w,1,j] = - hatt_mu(X[,w])
Gamma21[1,w,j] = - hatt_mu(X[,w])

}
Gamma11[ , ,j] = Sigma_SM + t(t(Gamma12[ ,1,j])) %*% Gamma12[ ,1,j]

}else if(flag == "Non-Robust"){
for(i in 1:n){
Gamma11[,,j] = Gamma11[,,j] + (X[i,]) %*% t(X[i,])/n
Gamma12[,1,j] = Gamma12[,1,j] - (t(1 %*% ( X[i,])))/n
Gamma21[1,,j] = Gamma21[1,,j] - t(X[i,])/n

}
}
Gamma22[,,j] = 1
Gamma[,,j] = rbind(cbind(Gamma11[,,j], Gamma12[,,j]),

abind(Gamma21[1,,j],Gamma22[,,j]))
}
zero <- matrix(0, nrow=d+1,ncol=d+1)
Gamma_12 = rbind(cbind(Gamma[,,1],zero,zero),cbind(zero, Gamma[,,2], zero),

cbind(zero, zero,Gamma[,,3]))
transition = rbind( # This is "R" in the thesis
c(1,0,0,0,0,0,0,0,0),
c(0,1,0,0,0,0,0,0,0),
c(0,0,1,0,0,0,0,0,0),
c(0,0,0,1,0,0,0,0,0),
c(0,1,0,0,0,0,0,0,0),
c(0,0,0,0,1,0,0,0,0),
c(0,0,0,0,0,1,0,0,0),
c(0,0,0,0,0,0,1,0,0),
c(0,0,1,0,0,0,0,0,0),
c(0,0,0,0,0,1,0,0,0),
c(0,0,0,0,0,0,0,1,0),
c(0,0,0,0,0,0,0,0,1)

)
Gamma_12t = t(transition) %*% Gamma_12 %*% transition
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# Calculate the g
e <- array(rbind(
c(1,0,0),
c(0,1,0),
c(0,0,1)

),dim=c(3,3))
g1 <- array(0, dim=c(d,d))
g2 <- array(0, dim=c(1,d))
for(j in 1:d){
g1[,j] = e[j,]
g2[,j] = 0

}
g <- abind(g1[,1],g2[,1],g1[,2],g2[,2],g1[,3],g2[,3])
theta_SM[1, ] <- solve(Gamma_12t)%*% t(transition)%*% g

K_SM <- matrix(c(theta_SM[1,1],theta_SM[1,2],theta_SM[1,3],
theta_SM[1,2],theta_SM[1,5],theta_SM[1,6],
theta_SM[1,3],theta_SM[1,6],theta_SM[1,8])
,nrow = d, ncol = d)

eta_SM <- matrix(c(theta_SM[1,4],
theta_SM[1,7],
theta_SM[1,9])

,nrow =d, ncol =1)
mu_SM <- solve(K_SM) %*% eta_SM
Sigma_SM <- solve(K_SM)
return(list(mu_SM=mu_SM,Sigma_SM=Sigma_SM))

}

7.4 Maximum likelihood method

The following is the function to estimate the parameters from a given observations 𝑋 by most likelihood
method.

Most_Likelihood <- function(X,n,flag){
#Input : X:samples data n:number of Samples, flag : flag of Robust or Non-robust
#Output: Estimates for mean and covariance by MLE
# flag is 1 for robust, 2 for non-robust

Sigma_ML <- matrix(0,nrow = 3,ncol=3)
if(flag == "Non-Robust"){
mu_ML <- c(sum(X[,1])/n,sum(X[,2])/n,sum(X[,3])/n)
for(i in 1:3){
for(j in 1:3){
Sigma_ML[i,j] <- sum((X[,i]-mu_ML[i])*(X[,j]-mu_ML[j]))/n

}
}

}else if(flag == "Robust" ){
mu_ML <- c(hatt_mu(X[,1]),hatt_mu(X[,2]),hatt_mu(X[,3]))
if(robust_covariance == "Minsker"){
Sigma_ML <- Minsker(X,lambda1,lambda2,Number_of_iterations,B,S_initial)$S

#See the Robust estimation R code
}else{
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Sigma_ML <- covariance_estimation(X) #See the Robust estimation R code
}

}
return(list(mu_ML=mu_ML,Sigma_ML=Sigma_ML))

}

7.5 TPR and FPR

This is the function to calculate TPR and FPR of the estimation result.

TPR_FPR <- function(hatt_Sigma,Sigma0,K){
#Input : Estimates of covariance, true covariance, number of estimates
#Output: TPR and FPR for each epsilon
TPR <- rep(0,100)
FPR <- rep(0,100)
d <-3
for(e in 1:100){
epsilon <- e/100
S0_off <- 0
hatt_S0_off <- rep(0,100)
hatt_S_off_and_S0_off <- rep(0,100)
for(i in 1:(d-1)){
for(j in (i+1):(d)){
if(Sigma0[i,j] != 0){
S0_off <- S0_off + 2

}
}

}
for(sample in 1:K){
for(i in 1:(d-1)){
for(j in (i+1):(d)){
if((hatt_Sigma[sample,i,j])^2 > epsilon^2){
hatt_S0_off[sample] <- hatt_S0_off[sample] + 2

}
}

}
}
for(sample in 1:K){
for(i in 1:(d-1)){
for(j in (i+1):(d)){
if((Sigma0[i,j] != 0)&((hatt_Sigma[sample,i,j])^2 > epsilon^2)){
hatt_S_off_and_S0_off[sample] <- hatt_S_off_and_S0_off[sample] + 2

}
}

}
}
FPR[e] <- (mean(hatt_S0_off - hatt_S_off_and_S0_off))/(d*(d-1) - S0_off )
TPR[e] <- (mean(hatt_S_off_and_S0_off))/(S0_off )

}
return(rbind(TPR,FPR))

}
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