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Abstract

A score matching estimator is defined as the minimizer of the score loss function. In the case of an ex-
ponential family with a density that satisfies boundary conditions, the score matching estimator can be
explicitly written down. In this thesis, our primary focus is on applying score matching method to estimate
the parameters of a Gaussian distribution Ny (u, X), with the goal of constructing a robust version of it.
To achieve this, we start by deriving the explicit form of the score matching estimator for the unknown
parameters g and ¥ of the Gaussian distribution. We see that the form can be expressed as a composition
of empirical mean and empirical covariance matrix. Then, replacing them to robust alternatives, we obtain
the robust score matching estimator for the parameter g and X. To observe the behavior of the estimators,
we derive the concentration inequalities and conduct numerical simulations.
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1 Introduction

When conducting statistical experiments, one of our interests is how the estimated value is differ from the
true parameter of interest. This is crucial in practice, because we have a restriction of budget for collecting
data, and the experiment organizer need to know the minimum sample size required to obtain results
within the error that the researcher can admit. In order to describe this topic, we start from considering
a statistical model (S, 7, P). Statistical model is characterized as a pair of a sample space (S,¥) and a
set of probability distributions  on (S, 7). We suppose that # is parametrized by population parameter
0 cO:P ={Pp:0 € ® c R"}, where O is the set of all the possible parameters. We denote the
density function of Pg by pg for each 8 € ©. In a statistical experiment one typically considers a sample
of size n, (Xj)ie[n] € S, and the goal is to estimate a parameter € of the statistical model (S, ¥, #). Then,
our problems is paraphrased as the problem of designing data-dependent decision rules which describe
behavior of the unknown population parameter 6 based on the sample of the fixed size. In particular, when
we have a population parameter 6 and the value of its point estimate 6, we can consider the probability
with which the underlying estimator gather around the population value with error € : For the acceptable
error € > 0, we are interested in the value §(n, €) € [0, 1] which satisfies

Po, (|6((Xicin)) - 00| < ) 2 1-5(ne). (L.1)
(1.1) is called Concentration inequality for parameter . In Chapter 3 in this thesis, we review several
important concentration inequalities.

Score matching method was firstly developed in Hyvérinen (2005) in [7]. Suppose that for each 6 € © the
density function pg of the distribution Py is supported on R? and twice continuously differentiable. The
score matching estimator Bsy; ! is defined as the minimizer with respect to 8 € © of the expected squared
¢, distance between the gradients of log py and log p. That is,

O\ = argmin/ po(x) |V log po(x) — Vlog pe, (x)|2 dx. (1.2)
6cO R4

As shown in [7], when pg satisfies several moderate conditions, (1.2) can be rewritten without any terms

involving p(x),

(9 logge(x))z]dx.

d
éSM = argmin /d pe, (x) Z [ajj log po(x) + (1.3)
R j=1

0co
Moreover for an exponential family of distributions with the density function satisfying log pe(x) =
07 t(x) — a(0) + b(x) with a sufficient statistics ¢ and real-valued functions a : R” — Rand b : R — R,
we can explicitly write down (1.3) by

Epg, Xy /(X085 (X)T

O =T7'g, with
™ ! _]EPGO 27:1 [b}(X)t]’-(X) + t]'.'(X)],

(1.4)

The score matching estimator introduce by Hyvérinen is defined as the empirical version of (1.4), which
we call "the original score matching estimator”. Yu et al.(2019) [8] generalized the idea of score matching
method to broad ranges of distributions. Their works enable us to consider distributions whose densities

n [7], Score matching estimator is denoted by the natation 6, but in this thesis we use the notation éSM in order to distinguish
it from other estimators.



are supported on a subset S of R?. The idea is to introduce a function h : S — Rwhich is enough small
around the boundary of S. Instead of (1.2), generalized score matching method consider the following
optimization problem.

. 2
Osnm = argmin/p@0 (x) 'Vlogpg(x) o h(x)'? - Vlog pe,(x) o h(x)"?| dx (1.5)
0co S

Similar transformation like (1.3) is possible under moderate conditions with respect to pg, and h. And
for exponential families we can obtain an analogical result with (1.4). We call emprical version of it the
generalized score matching estimator.

In this thesis, one of the problems we consider is the application of the score matching method for es-
timating the unknown parameters (g, X) of Gaussian distribution. We consider a statistical model with
S = R which is characterized by parameters 6 = (p, %) with g € R? and £ € R¥? | and the density of
each distribution Fy is given by

po(x) = exp (—%(x _p)TQ( - #))-

1
Var|Q|™

For each p and %, Fy is called Gaussian distribution, which is one of exponential families. As introduced in
many books such as [15], the classical estimator for the unkown parameter g and ¥ of Gaussian distribu-
tion, the empirical mean and covariance

o1 . _ 1y . .
”E;ZXi ZE;Z(Xi_ﬂ)(Xi_I—’)T

i=1 i=1

works well. However, in practice observed data sometimes contains outliers, in other words the observed
data may be contaminated by several data whose distribution is different from the distribution that occu-
pies a large portion of the sample. In order to ease the effect of contamination, we consider robust estimator
instead of classical estimator. As introduced in literatures such as [3], [5],[14], and [16], a lot of robust es-
timators have been developed, and we can write down the concentration inequality for them. We will see
some of them in Chapter 4 in this thesis.

In Chapter 5, we obtain the explicit form of sy for the unknown parameters 6 = (u,X) of Gaussian
distribution by applying (1.5). And we robustify the score matching estimator by replacing the components
of the estimator to robust ones. Then, we check the behaviors of the robust score matching estimators from
the view point of concentration inequality and numerical simulations.

This thesis is organized as follows. In Chapter 3, we review several properties of statistical inequality
and show the inequalities for sample mean and sample covariance. In Chapter 4, we review the proper-
ties of previously well-known robust estimators (Median of means, Trimmed mean, Minsker’s covariance
estimator, and so on.) for mean and covariance. In Chapter 5, we introduce score matching loss function
and define the score matching estimator, then derive the explicit form for Gaussian distribution and Pareto
distribution. Moreover, we combine the idea of score matching method and robust statistics to create ro-
bust version of Gsy. Then, analyze the error through applying concentration inequalities concentration
inequality and investigate the behavior of the proposed estimator by means of numerical simulations.



2 Notation

In this thesis, we use the following notations unless otherwise stated.

We use regular font for scalars, boldface for vectors. We use characters in lower-case for deterministic
elements, in upper-case for random elements, e.g.

x :deterministic variable, x :deterministic vector,
X :random variable, X :random vector.

Following alphabets are used as natural numbers for specific meanings.

n :the number of samples, i :the index of the sample
d :the dimension the sample space, j :the coordinate,
m : the dimension of the parameter space.

We defines the following symbols by the right sides.

R : real valued d—dimensional Euclidean space
R%1%dz : the whole set of real valued d; X d; matrices
Sq ={MeR™ :M=M"}
PDy = {M € R¥™¢: M =M™ and M is positive semidefinite}
|x| : Euclidean norm for x € R?
||M|| : the spectral norm for the matrix M € R**% (in case that d; = d,, the operator norm)
an ... Qi
vec : R4xd2 5 R4z o Co e (A adys e Qrdys - - - Gdidy) |
ag  --- 44,d,
[n] ={1,...,n} e Nforne N
1 x>0
Sign(x) =4 0 when x =0
-1 x <0

ejq€ R is a a vector the j-th entry 1 and otherwise 0, that is, ejq=(0,..0, }h, 0,..,0)" .
j
flefl - x_j means the integration with respect to all the coordinates except for x;



3 Concentration inequalities and their usage in
statistics

In an estimation problem, one of our interest is estimating the population parameter 6, € ® c R™ by
using a set of observations (x;);c[n]. Here, © is the parameter space, and family of probability measures
P = {Pg : 0 € O}are parameterized by the elements @ € ©. Py, is the probability distribution which
corresponds to the unknown parameter 0, and (x;);e[,] comes from Py,. Let (X;);e[n] be iid. random
vectors which distribute from Py,. We consider a function f of these random vectors, and we call the
random vector 6 = f(X,...,X,) estimator and the certain vector f(xy,...,x,) estimate of 6, based on
X1,...,%p. In order to measure the error of the estimator from the true paremeter 6y, one one usually
considers the mean squared error, which is defined as

Epg,on[(6 = 60)*]

Another tool to quantify how a random variable deviates from some value is concentration inequality,
which is the main topic of this chapter. Concentration inequalities quantify random fluctuations of func-
tions of independent random variables by bounding the probability with which the function differs from
its expected value by more than a certain amount.

3.1 Concentration inequalities for mean of random vector

Starting from Markov’s inequality, we can get following two concentration inequalities. One is Chebyshev’s
inequality, and the other is Chernoff Bound, which is the key equality in this section.

Theorem 3.1.1 (Markov’s inequality) If X is a nonnegative random variable with E[X] < oo and € > 0,

then
E[X
P(X >¢) < [ ]. (3.1)
€
Proof.
Define a new random variable Y = €l;x¢), i.e.
X >
Y(o) = € (w) =z €
0 X(w)<e
since Y < X,
E[X E[Y
[6 | > [6 | =]E[1{X25}] =P(X > ¢).
[l

By applying Markov’s inequality to (X — E[X])? and eX,which are always positive, we get the following
two inequalities.

Theorem 3.1.2 (Chebyshev’s inequality) If X is a random variable with E[X?] < oo and € > 0, then

Var(X)

P(IX -~ E[X]| 2 €) < ——
€

(3.2)



Proof.
P(IX —E[X]| > €) =P ((X - E[X])* > €?)
E [(X - E[X])?]

Markoo €?
_ Var(X)
= =

O

Theorem 3.1.3 (Chernoff bound, see in [13]) Suppose X is a random variable with E [etX] < oo for all
t € R,. Then,

YVee R VteR, P(X > €) < e "“Mx(1), (3.3)

where Mx(t) = E [etX ] is the moment-generating function of X.
Proof.

X
P(X >¢) = IP(etX > e”) < E [ie | = e *Mx (1)
Markoo e

O

Note1 Markov’s inequality and Chebyshev’s inequality assume E[X] < oo and E[X?] < oo respectively,

and Chernoff bound assumes the existence of the moment generating function for ¢t > 0. From Jensen’s

inequality, E[X?] < o0 — [E[X] < oo, but there are no order of the strongness between E[X] < oo and

E[e!X] < oo for all t € R, and between E[X?] < oo and E[e/X] < oo for all t € R,. In fact, when X

distributes from Log-normal distribution, E[X 2] is finite, but E[e’X] can not be defined for any t > 0. On
the other hand, when we define the distribution of X; and X, by

]P(Xl = X)

275 (when x = =2k, k € N)
0 (others)

and P(X; = x)

5

2k (when x = —2§, k € N)
0 (others)

E[e!X1] < oo, but E[X;] doesn’t exist. E[e*2] < oo and E[X;] < o, but E[X;] doesn’t exist. So, the
inclusion relationships are described by the following figure.

Markov

S

Figure 3.1 The order of the strongness of each assumptions

Chernoff

Note2 (3.3) holds for all ¢ > 0, so we have

P(X >¢€) < itnt(; e ' Mx(t) (3.4)
>

And the following corollary is used later.



Corollary 3.1.4 ForS, = i, X; with (X;)_,independent and for any e € R

P(S, —E(S,) >¢€) < e '“E
(33)

exp (t Zn: (Xi —E[Xi])

i=1
ote (IE [et(Xl—]E[Xl])])n

e "My, _g[x,1 ()"

Now, the problem of finding an upper bound for the probability can be paraphrased by the problem of
finding an upper bound for the moment generating function.

Concentration inequality for sub-Gaussian Distribution Next let’s consider a specific class of distri-
bution. One of the most famous distribution is Gaussian distribution N (g, 6%). In this case Mx_g[x](t) =

exp (%) We define sub-Gaussian distribution as an extension of Gaussian distribution.

Definition 3.1.5 (sub-Gaussian distribution, introduced in [12]) Let X to be a random variable with
finite mean. Xis called sub-Gaussian with variance proxy o* if

242
Vit e R MX—IE[X](t) =E [et(X_]E[X])] < exXp (O-T) . (35)

The following lemma states that Sub-Gaussian property is closed under algebraic operations.

Lemma 3.1.6 (Algebraic properties of sub-Gaussian variables) If X; and X, are independent sub-Gaussian
random variables with variance proxies 012 and 022, then

* Xi + X is sub-Gaussian with variance proxy o’ + o5.
e ¢X; is sub-Gaussian with variance proxy c>c* for any constant ¢ # 0.

Proof.
Foranyt € R

E [el‘(X1+X2—]E[X1+Xz])] =E [et(Xl_]E[Xl])et(XZ_]E[XZ])

=E [e!X"EXD] E [e!*:"ElX:D]  independenceness

%1 2

242 0_2 2
Sexp( )exp )

2 2
2,22
= exp (—(Gl+2()-2)t ) s

s0, X1 + X; is sub-Gaussian with variance proxy o? + 2. For any t € R

2 2 2 2 2
E [et(cX—]E[cX])] -E [e(tc)(X—]E[X])] < exp (0 (tc) ) = exp ( (c2a?)t )
— 2 b

2

so cX is sub-Gaussian with variance proxy c?c?.

O

Theorem 3.1.7 (Concentration inequality for sub-Gaussian distribution) LetX be sub-Gaussian ran-
dom variable with the variance proxy o*. Then for any € > 0

2
P(X -E[X] > ¢€) <exp (——)

2
P(E[X]-X =€) < exp (——)



Proof.
Applying Markov’s inequality and using sub-Gaussian property,

E [et(X—E[X])] o212
P(X-E[X]>¢) < T < exp (T — te)
E [e-tX-EIXD 242
P(E[X]-X>¢) = P (e_t(X_JE[X]) 2 ete) < % < exp (UT - tG)
e

This holds for every ¢ > 0, and exp (# - te) take the minimum value exp (—26—22) att =e/o?.
o

The following two-side bound can be derived directly as a consequence of theorem 3.1.7.

2
P(IX — E[X]| > €) < P(X — E[X] > €) + P(E[X] - X > €) < 2exp (—%) (3.6)
o
Corollary 3.1.8 Suppose X3, ..., X, are independent sub-Gaussian random variables with variance proxies

0%,...,0%. Let Sy = Y1, X; and X, = 1S,,. Then for anye > 0

2
P(S,—E[S.]| =€) <2 -—— 3.7
(1 [Snll = €) eXp( 22?:10?) (3.7)
and
) ) n2e?
P(X,—E|X,||>2€) <2 -— . 3.8
(o[ €) < 20 (- 35 69
Proof.

Lemma 3.1.6 implies that S, and X,, are also sub-Gaussian, and the variance proxies of S, and X, are 3,1, o7
and % YL, o2 Then, applying (3.6), we get the statement.
O

Note one-sided versions of the inequalities above also hold without the leading factor of 2. By taking a

2

common o for 0'12, ..., 0,, we get the following.

Corollary 3.1.9 Let X be a sub-Gaussian random variable with variance proxy o* and X1, . .., X, be inde-
pendent copies of X. Let S, = 2,11 X; and X, = %Sn. Then for any e > 0

2
P (S, — E[Sp]] =€) < 2exp (—2202)

and

2

P (|Xn -E [)_(,,” > 6) < 2exp (—%)

By taking the compliment, we get the following equation which are equivalent to (3.7) and (3.8)

n
i=

2
P(|S, —E[Sy]| <€) >1-2exp (—6—2) (3.9)
2 10;
and

B B n2€2
P (X, -E[X:]| <€) >1-2exp (_ﬁ) (3.10)



These equations show the probability with which the deviances of S, and X,, from the mean are smaller

than the given e. Now, by reparametrizing € to t by € = /2t YL, 07, we get

n
Ve >0 P||S, —E[S.]] < ZthriZ > 1-2exp (—t) (3.11)
i=1

In case that (X;);e[n) are iid.,

VE>0 P (|sn —E[S,]| < W) > 1—-2exp (—t) (3.12)
Note This inequality implies that S, have a deviation of order O (v/n) with exponential decay in probability.
Next we consider equivalent condition of sub-Gaussian property. In fact, (3.6) is not only an necessary

condition but also an equivalent condition to sub-Gaussian. Furthermore, the following statement of sub-
Gaussian holds, which provides us with other definitions of sub-Gaussian random variable.

Lemma 3.1.10 (Equivalent conditions for variable to be sub-Gaussian) Fora random variable X with
E[X] < co, the following statements are equivalent.

(a) Fo*>0 VieR My gx|(t) = E [ X EXD] < exp (@)
(b) Vez0 P(X-E[X]| =€) <2exp (_26722)

(c)  supp 2 (E|X - E[X][P)/? < oo
p=1

Proof.
(a) = (b) : From Theorem 3.1.7.

(b) = (c) : It is enough to show case when E[X] = 0,0% = 1

E[IX]"] = /0 “PUXIP > u)du

= /OOO]P(|X| > t)ptP~ldt by taking u = ¥

< ‘/0‘00 2p exp(—tz—z)tp_ldt from the assumption of (b)
=2p —/000 exp(—s)s%_lds by taking s = %

()

< 2pe\/§ (%)’2’ . Stirling’s approximation

Taking p‘l/z(-)% for both sides,

1

pfl/z (]E|X|P)1/P < Zep\/z ’ i : < 00.
- 2 2e



(c) = (a) : From the assumption of (c), E[X] < o0, and y = [|X]|y, < 0. It is enough to show (a) in case
that E[X] = 0 and E[X?] = 1. Forany t € R

— tPEX?
1+t E[X] +Z
— 3 p!
=0
O yiPpP/2
1+ Z % from the assumption of (c)
p=2 ’

d p
1 +; (Yi/gl) from p! > (p/e)?

2

Clt

1+ Z (i) taking C enough large
pe2N P/2

Elexp(tX)]

IA

IA

IA

|
We introduce the i, norm by [IX||y, = supPle_l/Z (E|X|P)'? < co. Then (c) in Lemma 3.1.10 can be
written as
IEIX — E[X]]ly, < oo

Next, We define a similar norm ||-[|;, and a new category of random variables, which is called sub-
exponential.

Definition 3.1.11 (y; norm and Sub-exponential random variables) For a random variable X, we de-
fine 1, as
- 1
IXlly, = supp™ (EIx|?)"/”
p>1

We call X sub-exponential random variable if

X = E[X]lly, < oo
We use the following lemmas related to sub-exponential distribution in the subsequent chapter.

Lemma 3.1.12 A random variable X is sub-exponential if and only if there exist C > 0 and ¢ > 0 such that
[t < ¢/ IX = E[X]lly, = Bexp(t(X - E[X])) < exp (C2X ~ E[X]|I5, ).

where C, ¢ > 0 are absolute constants.

Outline of the proof
It’s enough to show the statement in case that the distribution is centered, and We can assume that || X||,, =

1 since we can show general cases by replacing X with X /||X||y, and t with ¢[|X]|y,. From the definition of
/
IIly,» EIX|? < pP, and Taylor expansion provides us with Eexp(tX) < 1+ X2, tpg—fz. And we can check

this is bounded by 1 + Z;O:z(e|t|)1’. Moreover, this is bounded by 1 + 2e?t? < exp (2¢*t*) when [¢| < 1/2e.
For the details, see Lemma 5.15 in [18]

Lemma 3.1.13 (Equivalence between sub-exponential and sub-Gaussian) A random variableX is sub-
Gaussian if and only if X? is sub-exponential. Moreover,

IX12, < 11X2y, < 20IX12,



Proof.
The first inequality is derived from the definitions of ||-|;, and ||-||, amd Jensen’s inequality. The second is

1
from [|-|ly, = sup,5, p2 (E[X|?)"?

Hoeffding’s inequality What is the condition for X to be sub-Gaussian? A sufficient condition is that X
should be bounded.

Lemma 3.1.14 (Hoeffding’s lemma, see [13]) When a random variable X is bounded i.e.a < X < b a.s.
(b-a)®
4

2,2
t(X-E[X]) (b—a)t
E [e ] < exp (—8 .

Then X is sub-Gaussian with variance proxy ,ie foranyt € R

Proof.
First, we prove for the case that E[X] = 0, note that a < 0 < b. From the convexity of x > e’* with
respect to x

b-x ,, x—a g,

Vte R Vx € [a,b] etxsb e ¢
—a —a
By taking the expectation,
E[eX] < efv+ Fetb
= (1 - 0)e® + fet? 0=-a/(b-a) <0
=(1-0+ Qet(b_“)) ela
= (1— 0+ 0e*) e u=t(b-a)
=W $(u) = log ((1 -6 + Oe¥) 6_9“) =log (1 -0+ 0e*) — Ou

From the arbitrariness of ¢, we can also arbitrarily choose u. And /(u) is well-defined. This is because
0 >0,s01—0+0e" =0 (é -1+ e”) =0 (—% + e“) > 0. Thus, all we need to do is to find the bound of
¢(u). We can show the bound as followings

1
Yue R3o e [0,u] st ¢(u)=¢(0)+up’(0)+ Eung"(v) from Taylor’s theorem

$(0) =log(1—0+0) —0=0

, Oet
$'(0) = g~ w0 =0-0=0
7] _ v\ _ 2,20 v v
¢,,(U):He (1—0+0e°) — 0% _ Oe - fe Sl
(1 -6+ 0ev)? 1-0+0e? 1-0+0e”) ™ 4

The last inequality is derived from the inequality that a(1 — a) < i for a € [0,1]. Then, we get

(b o)

1 1
U <0+u-0+-u?- ==
¢ () 2 4 8 8

Combining this bound and IE [etX ] < e,

o \2,2
E[e™X] < e/ < exp (%)

In the case of general X (in which the mean may not equal 0), we apply the aforementioned argument to
Y=X-E[x].Since E[Y] =0anda—E[X] <Y < b-E[X] as.

[0 | 2 o] < exp ((b SRR E[X]))th) - ((b —;)%2) |

10



O
From the Hoeffding’s Lemma and (3.1.8), we immediately get the following theorem.

Theorem 3.1.15 (Hoeffding’s inequality, see [13]) Suppose X, ..., X, are independent random variables
such that a; < X; < b; almost surely foreachi=1,...,n. LetS, = Y}, X; and X, = %Sn. Then

2¢?
P(S, - E[Sy]| =€) <2exp (—n—)
Zi:] (bi - ai)z
and
_ _ 2n2e?
]P(|Xn -E [Xn” > 6) < 2exp -

Bernstein’s inequality Hoeffding’s inequality is a well-known concentration inequality, and another
famous concentration inequality is the following.

Theorem 3.1.16 (Bernstein’s inequality, see [10]) LetXj, ..., X, be independent real-valued random vari-
ables with E[X;] =0 and X; < 1 a.s. for all i € [n]. Define

1 n
ol =~ ZVar {Xi}.
n
i=1

Then,
2

1 v ne
Ve >0 P|- Xi > < _ .
¢ n; 6) eXp( 2(02+e/3))

Moreover, if |X;| < 1, then

2

ne
<2ew (30 )

Ye >0 P
¢ 2 (02 +¢/3)

> €

1 n
5
n i=1

To prove (3.1.16), we use the following lemma.

Lemma 3.1.17 (Bennett’s inequality, see [11]) Let Xi,...,X, be independent real-valued random vari-
ables s.t. E[X;] =0 and X; < 1a.s. forallie€ [n] Let

1 n
ol =~ ZVar {Xi}.
n
i=1

Then,
= t
Yt > 0 P {;Xl > t} < exp (—nO'Zh (n_O'Z)) .

where h(u) = (1+ x) log(1 + x) — x for x > 0. Moreover, if |X;| < 1, then

iXi > t} < 2exp (—ncrzh (#))

i=1

YVt >0 ]P{

Proof of Bennett’s inequality

Let ¥(x) = exp(x) — x — 1, then ¢ satisfy the following.

Y(x) = x*/2 forx=0 (3.13)
Y(x) < x*/2 forx<0 (3.14)
Y(sx) < x*Y(s) fors = 0andx € [0,1] (3.15)

11



Then, for s > 0

E[eX] = 1+sE[X]+E [y (sX;)]
——

=0
= 1+E[¢y(s(X))+¢¥(=s(X;)_)] ( where x; = max(0,x) and x_ = max(0, —x))

< 1+E 1// (s (Xp),) + % (X,)rf} from (3.14)
< 1+E 1//(3) (X2 + % (X,-)E] from (3.21) and 0 < (X;); < 1
= 1+E 7¢(S) (X)? = (s) (X% + % (Xi)z—]
< 1+y(s)E[X?] -E [{l//(s) - g} (X,-)E}
> 0 from 3.14
< exp (lﬁ(s)]E [Xf])

Applying corollary 3.1.4 to (X;)1 |,

n
Vt € R ]P{ZX,- > t} < exp
i=1

This holds for arbitrary s € R;. The upper bound is minimized at

DB X y(s) - st) < notVis) st
1

i=

szlog(1+n%‘2),

and the minimum value is the left hand side of the statement. Repeating this argument for —X; instead of
X;, we obtain the same upper bound for P {— 2 Xi > t}, SO

P{in > t} :P{in > t}HP{—ZXi > t} < 2exp(—n0'2h(é))

O
Proof of Bernstein’s inequality
Forx > 0, h(x) > x?/(2 + 2x/3) since F(x) = h(x) — x?/(2 + 2x/3) takes 0 at x = 0 and Z—i > 0 for x > 0.
By applying Bennett’s inequality to
2 Xi, we get

1 n
;in>f

i=1

P =P

iX > in < ex (—nazh (L)) <ex _n—tZ
' Bennett P no? = &P 2(0'2+t/3) .

i=1
]

Two sided inequality is proved in the same way as Bennett’s inequality. By reparametrization , we obtain
the following corollary.

Corollary 3.1.18 For i.i.d. random variables X1, ..., X, with E[X;] = 0 and |X;| < 1 foralli € [n],

2 2 2
1 Zn: ‘ 211’15 20 ln(—s
-y Xl < +\/ >1-6. (3.16)
n i 3n n

V6 >0 P

12



Proof.

Take
| Slos})+ V(Zlog(2))* + 8n5% log(2)
2n
Note that
2exp (_n—tz) =4
2 (02 +1/3)

since 1 is the positive solution of nt? — 21In (%) t — 20*In () = 0. And the following inequality holds.

2 211 2
t<21n5+ 201r15
~ 3n n

From this inequality

2ln 2 2621n 2
< 5 5
3n n

v 1<
Pl- DX Z]P(;ZX,-St)
i=1 i=1
12
> 1-2exp S — from the theorem 3.1.16
2(c2+1/3)
=1-6

Theorem 3.1.19 (Bernstein-type inequality) Let Xi,..., X, be i.id. centered sub-exponential random
variables, and K = max; ||Xilly,. Then,

>t

2t
< 2exp [—cl min (KT’ I?)} (3.17)
n

n
2%

i=1

ey >0 ViE>0 IP(

Proof.
At first we prove the case in which ||Xi ||y, = K =1 Define § = 2.1 Xi. By taking ¢ > 0 satisfying Lemma
3.1.12,

IA

e M(E[!°])" Corollary 3.1.4
e M exp (nCA*)  Lemma 3.1.12
= exp (—At+Cn?).

P(S=>1t)

IA

Choosing A = min (¢/2nC, ¢), we obtain

]P(SZt)s{eng
<{exp<—%) if 7t= <¢
< e

[t et
< exp |—min we 2

13



Note that in the second inequality we use that 5= > ¢ & & > Cc?n, and under this condition —ct+Cc?n <
—<. Repeating the above argument for —S instead of S, we obtain the same bound for P(—S > t). Then,

n
2%
i=1

Taking ¢; = (36 A £), we get

P >t

> ct
=P(S>t)+P(-S>1t)<2 —min | —;, —
S=2t)+P(-S=>1t) < exp[ m1n(4nc 2)]

n

S

i=1

P

| ”
>t] <2exp [—cl min (;, t)] . (3.18)

For general K,

< 5 (ot
< 2exp|—cimin|—,—=|]|.
(3.18) P4 K?n K

By replacing t to tn, we obtain the following inequality regarding sample average.

Corollary 3.1.20 (Bernstein-type inequality) Let X3, ..., X, be i.i.d. centered sub-exponential random
variables, and K = max; ||X;l|,,. Then,

1 n
Je; >0 Viz0 P ;ZXI-

i=1

>t < 2 - 1 —tz —t (3 19)
exXp C1Mmin n .
- - ! KZ ’ K

Next, we consider reformulating (3.19) to another representation like (3.1.18).

2 exp [—01 min (t;)(—"; %’)] =€ & c¢ymin (% tfn) = log?
& min (%,%) = C—lllo g
o B = max (élog %,,/élogf)
o t = %max (élog %,,lc—lllogf)

Note that since for € € [0, 1], % > 1 and log% > 0 and we use that for x > 0, min(x,x?) = y © x =

max(y,/y) in the second line. Thus, by re-parametrization and taking the compliment, (3.19) can be

written as
K 1 2 1 2
< —max|—log—,/—log-||=>1-¢€
n C1 € C1 €

Theorem 3.1.21 (See Corollary 1in [2]) Let (X;);c[n] be a sequence of independent random vectors in
RY, define S, = 21 Xi. Assume

de; >0 Vie € [0,1] P

1 n
15
n i=1

Vie[n] EX;=0,

n 12 m—2 3.20
JBL>0 2<VYmeN Z]ElX,-lmsm—. (3.20

i=1 2

Then,

Vr>0 Po(|Sn| = 1) < Zexp{ (3.21)

_rz
2B +2rL |’

14



Moreover,

2.2
Ve>0  Po(|X|>e) <2exp {ﬁ} (3.22)

Outline of proof

n
Po(|Sa| = r) < e E(e"¥!) < 267 EcoshA |S,| < 2¢7" l_[]E(eMXfl -A |Xj|)
j=1

From Taylor’s expansion and the assumption, the last equals to 2e™*" [Tio E(X, BZLZ'H). Calculating

the sum of the geometric series and the A minimizing it, we obtain (3.21). For the details, see Corollary 1
in [2].

Corollary 3.1.22 Under the same assumption of (3.20)

2 2
V620 P (||sn|| <2Llog s + \[2B2 1og3) >1-6. (3.23)

Proof.
Let
2 2\? 2
= Llog = Llog — 2B%log —. .24
t og5+ ( og5)+ og 5 (3.24)
Note that )
-r
2 —— =9/ 3.25
eXp{2B2+2rL} (3.25)

since r is the positive solution of t? — 2L log % t+2B%log % = 0. And the following inequality holds.

2 / 2\* ] 2 2 2
t < LlOg 5 + (L IOg 5) + ZBZ lOg 3 = 2L lOg 5 + 2B2 log 3 (326)

From this inequality

LHSof (3.27) = P(||Sull < 1) from (3.26)
—2
> 1-2exp{—-"— from Theorem 3.1.21
2B? +2rL
=1-6 from (3.25)

Two specific case which satisfies the assumption of theorem 3.1.21

Case 1: (|X;]) are i.i.d bounded (and EX; = 0)
When (|X;|) are bounded : L = sup | X;| < oo, (]X;|) also has a finite variance. So, take

B’ = gIE|X1|2 = gIE (TrXi X, ") = gTﬂE (X1XT) < o0

X fulfills (3.20). By Substituting TrIE[X;X]"] for B, we obtain the next corollary.

Corollary 3.1.23 Let (X;)1<i<n € RY be a sequence of i.i.d random vectors. Define S, = Y,I_; X;. Assume

that sup | X;| = L < co. Then,
2 2
|Sn] < JTrIE[XleT]w/log(—s + 2L log 5) >1-6

V6 >0 P

15



Case 2 : (|X;|) are i.i.d Gaussian (and EX; = 0) The following lemma states that (Multivariate) normal dis-
tribution satisfies the assumption of Theorem 3.1.21 for L = D and B? = nD?.

Lemma 3.1.24 (Lemma : Case of Gaussian random vector) Letarandom vector (X;);c(n] distribute from
N(0,X). Then
m!nD?*D™2

n
|
Vm e N Z]E|Xi|mSan% - .

i=1

where D = TrX.

Proof.
When X;~X~N(0,Y), and X is represented as

Y= QTdiag(Ulz, .. .,O';)Q,

here o; € Rfor j € [d] and Q € R% is an orthogonal matrix. Nete that D = /3, oj2. Define é; = Q'e;
for all i € [d], where (e;);e[q) is the standard basis for R?. And we can write X as

X =¥1Y,
where Y = 3%, &e; and & "< N (0,1) for all j € [d]. Then,
X = Z;’zl @Zéej = Z;‘;l £;QTdiag(oy,...,0q0)e;
= YL, EQ oe; = X9, &05(Q7e)) = Y9, 0588

Thus,

I

S
il
o
3

n
Z E|X;|™
p)

(Xi)ien) ~ X
i.id.

IA
S
o
=
g

Jensen's inequality

IA
S
-
sl
<
=l
~
B

= ”\ Z —ZIE (D2&)™ linearity of expectation

= n4E (D2&)™ (&)'s i.i.d and the definition of D*

2 2

16



2
On the fourth line, we apply Jensen’s inequality : (Z?zl ;Téa ]) <yd =1 DZ (a ;)™ for non negative values

(aj)jen] = (D2§J2.)j€[n]. Thus, by applying Corollary 3.1.22, we get the following.

Corollary 3.1.25 Let random vectors (X;)ie[n] distribute from N'(0,X). Then,

2 2
Vé >0 P (lSnl < 2Tr(Z) log 5 +4/2nTr (%) log 5) >1-94. (3.27)
_ 2 2 2 2
Y6 >0 P (|X| < —Tr(X) log 5 + 4 / —Tr(Z) log 5) >1-96. (3.28)
n n

At the end of this subsection, we compare the above concentration inequalities : Chebyshev inequality,
Chernoff bound (under sub-Gaussian assumption), Hoeffding inequality, and Bernstein inequiality. By
re-parametrization, each inequality can be written as

Moreover,

P (X, - E [Xa]| = h(8,n)) <6,

where
h(d,n) = \/% for Chebyshev inequiality,
h(é,n) = 20%In for Chernoff bound,

h(8,n) = | ——= === (b= a) IOg(Z/ %) for Hoeffding inequiality,
h(8,n) = Zln SN 202 ln § —3, for Bernstein inequiality,

The following is the relation between the number of samples (= n) and h(§, n).

Chebyshev Chebyshev

Chemoff Chemoff

8| Hoeffding K 35| Hoeffding
Bernstein ' Bemnstein

0 20 40 60 80 100 0 20 40 60 80 100

here, we draw the line of Bernstein inequality by setting a; = —1 and b; = 1 in order to compare it with
Hoeffding inequality.
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3.2 Concentration inequalities for covariance matrix of random vector

Next, we construct concentration inequalities for a random matrix. When the operator norm of the random
matrix is bounded, the following probability inequality hold.

Theorem 3.2.1 (Bernstein’s inequality due to Tropp(2015), see Theorem 6.6.1in [4]) Let(X;);<;<, €
R¥? be a sequence of independent, random, positive semidefinite Hermitian matrices. Assume

JR>0 VkeN, [EXc¢=0 and |Xil|<R

Then, then it holds that

Vt >0 ]P(

ZX —t2/2
hi |2 EXZ[[+Re/3 |

Zt)Sd-exp

The outline of the proof (For the details, see Theorem 6.6.1 in [4]. )

e —fx—1

At first, we consider a function fy on R satisfying fy(x) = — (for x = 0, define fp(0) = 972).

Performing calculations provides us with fy(R) < 1_9;—/}?2/3. From the assumption || Xk || < R, we get f(Xi) <

f(R) - I;. When, we obtain

6%/2

X <L +0X+X(fy(R) - INX =I;+0X + fy(R) - X> < I;+ OX + T=0R5 - X2, (3.29)
Taking the expectation for the both sides, from the assumption of E(Xj) = 0
6%/2 6%/2
Ee® <1+ —/ -EX? < exp —/ -EX? (3.30)
1-0R/3 1-0R/3
Then,
PUSLXN>) < if e e (S logEe’™)
0<
< inf e 0t (ﬂ A]EX.Z)
logaﬁthm 0<19113/R ¢ Texp 1-6R/3 Zl !
of (3.30)
LBy
taking 0 = m, we obtain the statement.

Corollary 3.2.2 Consider a sequence (Xi); k<, € R of independent, random, Hermitian matrices. As-
sume that E [Xi] = 0 and Yk € [n] ||Xk|| < R. Then,

¢ ¢ d\ 2R d
2 el i et —
v6>0 P Zxk st Z]E[Xk] 10g(5)+ 3 1og(5) >1-6 (3.31)
k=1 k=1
Proof.
Let
R, d R? d o d
= _ e _ )2 2 e
t= 310g5+J 5 (log )? +2 ;Exk log (3.32)
Note that

—t2/2 _
do (”2221 EXZ|| +Rt/3) =9 (3.33)
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since t is the positive solution of % - §(log %)t - ||ZZ:1 ]EX]f” log% = 0. And the following inequality

holds.
R d R? d d
t < 510g5+\/?(10g3)2+ Z]EX2 log(S ?log + ZIEX2 log— (3.34)
From this inequality
L.H.S of (3.31) > < t) from (3.34)
—t%/2
>1-d-exp from Theorem 3.2.1
|2 EXE|| + Re/3
=1-6 from (3.33)
Taking 1/n for the both sides of (3.31), it holds with probability at least 1 — § that
1< 1 ¢ d\ 2R (d
- Xi|| <4|2||5 ) EXA||log | < |+ —log| <
n; I nth:; ! Og(5)+3n Og(5)
UOur

interest in this thesis is the case in which we have i.i.d. sample (X;); € [n] € R¢, and the random matrix is
represented as the sample covariance of (X;); € [n] In order to discuss this topic, we introduce Covariance
operator.

Definition 3.2.3 Let (E, || - ||) be a Hilbert space with the dual space E*, X be a centered random vector in E
with E|X|?* < oo, and X1, ..., X,, be i.i.d. copies of X. The covariance operator s, : E* — E is defined as
Yu=E[(X,u)X] u € E".

And, the sample covariance operator 3. : E* — E is defined as

n
Su= nilz<Xj,u>X-, uck”
J=1

here, (x,u) denotes the value ofu € E* atx € E.

Note Since E is a hilbert space, E* is regarded as the same space as E by the canonical isomorphism. In the
case when E = R, the representation matrix of Z with respect to the standard basis equals to E [ XX ],
that of 3 equals to the empirical covariance, - 7, X; X"

The goal of this section is creating upper bounds for the deviation 3 from ¥ with some probability. In
order to measure how for 3. deviates from X, we introduce operator norm

Definition 3.2.4 For operator A : E* — E,

lAll= " sup [|Au]l

uekE” |lul <1

In case that E = RY, the covariance operator 3 w.r.t. X, ||| is the maximum length of the eigen vectors
of Cou(X). For the random variable ||3 — X||, the following inequality is known.

Theorem 3.2.5 Let X in R? to be Gaussian with E[X] = 0, X1, ..., X, to be i.i.d. copies of X. Then,

PlIIS - zn<cnzn(\[v v\[v ))>1—ef (3.35)

19
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Proof.

Step 1: Simplifying the situation

Define n X d matrix X = (X1,...,Xn) ", where Xj, ..., X, are independent copies of X. Then, 3= %)ZT)Z
Using this notation, (3.35) is rewritten as

1~ d d t t
AC>0Ve> 1 PlI-X"X -3 <C|= \/j = \/j “l>1-¢" 3.36
S0Vt > I I <l ll( “\ =V nvn))_ e (3.36)

To show (3.2), it is enough to show (3.35) only in case of = I, i.e. in case that X is isortopic. This can be
checked as the followings.

1~ = 1 o
I=XTX -3 22T (=272 TXTX3"2 - [)%8
n n

IA

1 1+ mrn 1
IIZIIIIZ2 2TXTXE72 - Il

Thus,

P ||%)~<T)~(—Z|| < ||z (\/g\/‘_;\/\/g\/é))
e e R (ﬁ VEVYEY E))
- P ||%z—%w”m22—% “Lll < c(\/gvgv\/;vi))

The transpose of each rows of X >~2, which is represented as e]T df( 372, are isotropic! This is shown by

Y
)

the following. Note that the j-th row of X "7 can be written by e]T df( > =X jTZ_% (For the definition of
ej d, see the notation chapter.).

.
E ((X,-TZ‘%) XjTZ‘é) =E(277xx,727H)
=>"E (X;X;T) =2

1 1

=y 2Ty¥%:

So, for the proof of , it’s suffice to show it in case of (X;);c[,] 's are isotropic, that is our problem boils
down to show the following.

Isotropic case of (3.35)

Let Ay, ..., A, € R? tobeiid. isotropic sub-Gaussian with E[A;] = 0 for all i. Define A = (Ay,...,Ap)" €

R™4. Then,
sc(\/g\/%\/\/g\/i))m—e‘f. (3.37)

AC>0Vt>1 P

1
H—ATA -1y
n

1A random vector X € RY is called isotropic, when E[xxT] = 1I,.
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Note that since ([\/ \/7) \/7 \/7 <2 ([\/ \/%) (3.37) is equivalent to
SC(5\/52)) >1—e! whered= (\/g+\/g) (3.38)

< (5\/52)) >1-e! where§=C (\/g+ \/g) . (3.39)

This is because replacing C to (C \/ 1)%, we obtain (3.38) = (3.39), and replacing C to (C\/ C?), we obtain
(3.39) = (3.38)

1
AC >0Vt >1 ]P(H—ATA—Id
n
Moreover, (3.38) is equivalent to

1
ATA-I;
n

AC>0Vt>1 ]P(

. Step 2: approximation by e-net
Let N'tobea ‘—11-net of the unit sphere $%~!. We can choose the net N ¢ S9! s t.

1 1 1
IN|] < 9¢ and H—ATA — Ij|| £ 2max <(—ATA - Id) x,x> = 2max |— |[Ax|* - 1‘.
n xeN n xeN |n
So, to show (3.39), it suffices to show
1 5\ &
AC>0 Vi>1 ]P(max—|Ax|2—1 S( v ))Zl—e_t (3.40)
xeN |n 2
where 6 =C (\/g + \/% ) This is equivalent to
1 5\ 8
3AC>0 Vi>1 ]P(max—|Ax|2—12(\/ ))Se_t
xeN |n 2

By taking the union bound,

= > £V2)

1
P (max < 99 max P (‘—||Ax||§ 1] >
xeN n

xeN

for any given x. Therefore, to show (3.40), it suffices to show

1 5\ 8 d t
VxeS¥! Fc>0 Vi1 ]P(‘—|Ax|2—1 2( \g ))Se_t9_d , where 5EC( -+ —)
n

Step 3 : Concentration
Take Z; = (A;, x) for any x € S"71, then, (Z;)[, are independent, (Z;), are also sub-Gaussian from the

algebraic property of sub-Gaussian distribution, and

E [le] = E [(A,-x)TA,-x] E [xTATA x] E [xTIdx] =1

Ajis 1sotropzc

(Z%-1) i, are also independent, and

122 = 1fl,, < 2]z,
<4 ||Z,-||§,2 Lemma 3.1.13

< 4K> from the defnition of || - |y,
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The first inequality is derived by

122 = 1ll, =llzF -, =< |2, + Bl <2z
E(Z?)
Iz,

||1//1 ”l//l

Triangle
inequality

AN

So, (Z#—1)", are centered sub-exponential distributions. Thus, we can apply Theorem 3.1.19 to (Z2—1)"
and we obtain

=1’

1
de; >0 Ve>0 ]P(— F—1
n

>E < 2exp|—c —62 /\in
=2 = P\ 1ok / \ ak?
2
< 26 |1 (¢ \ o) ]

The second inequality holds because K > ||Z;[ly, > \/%(]E(IZ,-F))UZ - \/LE and under this region 16K* >

4K?. Reclacing % to ¢y, we obtain

Je; >0 Ve>0 IP(

1 n
DL
n

i=1

> g) < 2exp [— 16CII(4 (62 /\ e) n] (3.42)

LHS.of 341) = P

(5\/52))

— Z; =1 >
n i 2

5, 2P - % ((5v 52)2 A (5v 52)) n]

Sy
2
\/E\/?)

—+4/=| n
n n

o
2 exp fIFC (d+t)]

exp [—%Cz (d+1t)+log 2]

= 2exp —1714(32

IA

(3.41) can be shown by taking C = Kz\/bcilg:

2exp [—%C2 (d+ t)] < 2exp(—log9(d+t))=2-97"- 974 < g7t

This bound depends on demension. The following is a demension free version.

Theorem 3.2.6 Under the same assumption of Theorem 3.2.5,

. r(%)
3C >0Vt > 1 P(llZ—ZH < Iz (‘/Tv

,wherer(2) = (El ””)

D V)2
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Example

In case when X ~ N3 (0,15), ||2|| = the maximum absolute eigen value = 1.

SO: r(Z) = 471-2

E || ]

1 2+ 2+ 2
/ \/m—exp(_u)dxdydz

/ro /e 0 /_;_” eXP(——)cos dddodr

= \/ﬁ/ r exp(_?)dr
r=0

=2
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4 Robust Estimation on the framework of graphical
models

Classical estimation methods rely heavily on assumptions about randomness, independenceness, distri-
butional models, perhaps prior distributions for some unknown parameters, and so on. In fact, until the
previous chapter, we have assumed X, ..., X}, perfectly distribute from the distribution which interest
us. Unfortunately, these assumption does not hold in practice, sometimes practical data contain outliers.
When there are outliers in the data, classical estimators often have very poor performance.

In order to deal with such practical problems, alterative estimators which is less susceptible to the outliers
have been developed (See [14]) . Distinguished with classical estimators, the estimators are called robust
estimators.

4.1 Robust estimator for mean of random vector

At first, we consider estimators for the mean. In the following table, we describe methods to estimate
mean of random vector, provide theoretical assumptions, computation time, and give the error bounds. As
a basic setting, assume that

+ we have ii.d sample (X;);c[,) from the distribution Pg,,
« X has finite covariance matrix.

The following shows several famous mean estimator.

Mean estimator fi = (2V), .. ‘,‘[,(d))T

Method Assumption Computation Error Bound

Sub Gaussian

or bounded O (dn) See Chapter 2

1 Simple mean

N / log(d/$)
2 || Median of means None O (dn logk) A = ol < 32Tr(2) =

(Proposition 1 in [5])

. log(8/6)
3 Trimmed mean n > (16/3) log(8/9) O (dn logk) lp—pl < 9\/TY(Z)T

(Theorem 6 in [5] and take union bound)

Remark 1 The finiteness of the variance of X means the finiteness of Median because

[Med(X)| IMed(X) — p| + |l
E(|Med(X) — X|) + ||
E(|lp = X]) + ||

VE((p=X)) +Ipl = Tr(ZXT) +|p].

The second and fourth inequalities holds from Jensen’s inequality, and the third can be shown by the fact
that median minimizes the function on R? : a — E(|X — a).

IAN A A IA
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1. Sample mean In the previous chapter, we discussed sample mean.

2. Median of means Median of means are defined depending on the number of blocks (= k). The esti-
mator is calculated by the following two steps. First, we partition [n] = {1,...,n} into k blocks By, . .., B,
where we assume #B; = m for all i € [k], so km equals to n. Next, we calculate the sample means in each
blocks.

1
7z = — Xl'
. mz vl € [k]

i€eBy
Then, take the median of the k data.
jiY) =Med z,Y) Vj e [d]
lek]

3. Trimmed mean Trimmed mean? use 2n samples from X. Let Xi,... X}, X1, ... X}, be ii.d. copies of
X. And it has a parameter € € [0,0.5], , which we call discarded rate. The estimation procedure is the
following. First, we use (X;);e[n] to set thresholds to set the criteria of outliers : For the discarded rate e
and for all j € [d], we calculate

a') = the e—quantile of (Xi(j))ie[b] ﬁ(j) = the (1 — €)—quantile of (Xi(j))ie[b]

Next, we calculate the mean of adjusted (X l.(j ))ie[n] :

RUBEE R, ~
a0 = - Z Dath g0 (Xi(])),
P

B ifx>p,
where ¢, : R — Ris defined by ¢ 5(x) = {x ifx € [a, f],
a ifx<a,

Remark Under the condition that X has finite covariance matrix, the expectation of Trimmed mean is
also finite. We need a long discussion to prove in general case. But, under the assumption that /)’s and
BUY)’s are finite. It’s trivial that the trimmed mean is finite.

4.2 Robust estimator for covariance matrix of random vector

Next, we consider estimating the covariance . = (¢(%/)); ;. As is the case with mean, we suppose that
+ we have ii.d sample (X;);ec[n] from the distribution Py,

« X has finite variance.

Covariance estimator 3 = (6(i’j)){ij}e[nj><[nj

1 As the reference, e.g. see [5]
2 As the reference, e.g. see [5]
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The following shows several well-known covariance estimator.

Method Assumption | Computation Error Bound

IZ-2 <
1 Sample covariance None O (dn) izl (\/E\/ d V —log$ v —log5)
n n n n

Covariance derived by
Median absolute deviation

The existency of the error

Gaussian O (dnlogn) boundis not trivial®

Covariance derived from
3 order statistic of Gaussian O (dnlogn)
two samples defferences

The existency of the error
boundis not trivial*

4 Minsker’s method None Infeasible See the below

The correlation p (X", XU2)) = p; . can be written in terms of standard deviations of one dimensional
variables ox = +/Var(X) as the followings.

0'2 — O'2
_ _ T aXUD4+pXU2) aXU1) —px(2)
Pij = Pxtn Xt = =5 oy , (4.1)
XU +bxU2 T P axUn _pxUa)

whereazg1 and b= —1—.

x(jl) Jx(jz)
And the relation between the covariance and the correlation is given by

(njz2) — )
0= Py Ox ) Oy (i) - (4.2)

We use above relations to construct a (robust) estimator for the covariance :

First, we construct estimators of the variances (we will see several estimator for variances later) for all
jl: j2 € [d]:

~2 ~2 ~2 ~2
OxG1) OxUa)s O axtn) 4bxU2)? P ax ) —pxU2)?

wherea= —1— and b= —1—.
O (1 Ox(j2)

Second, define &/1-/2) by

A2 a2

~ Taxtnspxta) T Paxtn —px )

Piijz = a3 ~2

o . N N . )
aXU1) +pX2) aX 1) —px(2)
A2 a2

s — A~ a o %axUngpxU) T YaxUnpxe) . .
o = P j2Ox 1) Ox () = 75 Ox (1) Ox ()

~2
XU +6x0 T ax ) —pxU2)

Therefore, the transformation from variances to correlation by (4.1) makes our problem boil down to the
problem to find the robust estimator of the variance of the each component. The following table shows
several robust estimator for the variance.
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1. Sample covariance As is well known, sample covariance 3. is defined by

Ji1.j2€ld] n P

n . .
ﬁ: = (6(jl>j2)) = (l Z(Xi(jl) _ )_((h))(xi(jZ) _ )—((]z)))
JiJ2€d]

This definition of sample covariance van be induced by the definition of sample variance 6x = \/ % (X - X)?
and (*). We can check this as the following.

4ab% Z?:l(Xi(jl) _ )_((jl))(Xi(jz) _ )—{(]z))

ﬁjl,jz = B (i ; (i
2021 5, (X0 - Xz aped wn (x ) - Xy
. % n (Xj(jl) _ )_((h))(Xi(jZ) _ )—((Jz))
j < () j. < (2)
\/% Zﬁzl(xi(h) XM )2\/% Zl(z:l(xi(n) _x? )2
gl = PirjrOx ) Ox Uiz

1, (i =G —
_ - Z(Xi(h) _X(]l))(Xi(jz) _X(Jz))
i=1

2. Median absolute deviation When we know X ~ N(u,X), one of robust covariance estimator is
Median absolute deviation ®> (MAD), which is defined as

&0 = cMed, {Medl ’X,E") -x

in the case of Gaussian, ¢ ~ 1.1926.

3. Alternative to MAD  © Successively under the assumption of X ~ N (p, ), another robust covariance
estimator is defined as ' .
60 =a{p - x|k < 1}
(2)
[n/2] +1

here {X} } ;) means the z-th largest value in {Xy} and z = ( 5

). In case of Gaussian, d ~ 2.2219.

4. Minsker’s method We consider the method described by Minsker in [16]. Different from the estima-
tors in 2. Covariance derived by Median absolute deviation and 3.Covariance derived from order statistic
of two samples differences, the Minsker’s method directly estimates the covariance matrix. The definition
is the following.

Definition 4.2.1 Let (X;);e[n] are i.i.d. copies of a random vector X € R?. Minsker’s estimator with param-
eter A = (A, Ap)is defined as

~ 1 - 2
5, = argmin min |——— Hx XT —S—+n(n- 1)U-,-H PAlSl+ 2 Y [Usll, | @3
ses; Uij€Sa ln(n -1) ; Y/ B\ £ | 11H1

joyt Xi—X; . . .
here X; ; = 7% L, Sq is the whole set of real-valued symmetric d X d matrices.

The following theorem provides us the minimum value with respect to U; ;.

5 As the reference, see[6]
6 As the reference, see [6]
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Theorem 4.2.2 (See Remark 1in [16]) Let (X;);c[n] are i.i.d. copies of a random vector X € R?. We can
express Minsker’s estimator with parameter A = (A1, A2) as

—~ ) 2 ~
SA:arggmn{n(n— me (Xi)le'Tj_S) +).1||S||1}, (44)
itj
where
2l < A
=9 2’ - Yue R AeR"
pa(u) { Mul_%z, ul > A uek,

and for f : R — R and A € Sy with the spectral decomposition A = Udiag(zy,...,74)U", define f(A) as

f ()
fA)=U U (4.5)
f(za)

Outline of proof o
Consider the spectral decomposition ofX,-,in)Tj —Sforalli,je [n]:

Y. . xT S (1), (lJ) (lJ)T

X, X[ - ; r
where, T,ii’j ) is the k-th eigenvalue of )?,; 15(7] — S and v](ci’j ) is the corresponding eigenvector. We can see

that

Usj =

d
1 . ; s Vn(n—1)7A, i (DT
o Z sign (Tliw)) (|T’£u)| - U]EI’J)U]EI)J) = p i (Y”YIT] 5)
Vyn(n—-1) 1= 2

minimizes the object function of (4.3). Plugging U; ;j in the object function, we get the statement. For
details, see the D.1 in [16].

+

Practical calculation by Minsker’'s method In general, it is difficult to analytically find the minimizer
S, so we solve this optimal problem by a numerical approach : Proximal Gradient Descent (PGD) method.
Let’ consider a general optimizing problem :

argmin, f(x) = argmin, g(x) + h(x), (4.6)

where g is convex and differentiable, h is convex (not necessarily differentiable). The PDG method is a
numerical way for solving the problem, which is proceeded by the following inductions.

« starts from an initial point x(©,
« updates as : x®) = proXg, p, (x(k_l) — Vg (x(k_l))),
where
1
prox;, (x) = argmin (h(u) + 5||u - x||§) ,
u
and ay > 0 is the step size. The following lemma guarantees the convergence of x¥) to the minimizer x*.

Lemma 4.2.3 Assume that g and h satisfies the above conditions, and suppose that Vg is Lipschitz continuous
with constant L > 0, that is
IVg(x) = Vgl < Lllx - yll
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and the optimal value f* of (4.6) is finite and achieved at the point x*. Take a = a < L. Then the PGD
algorithm yield an O(3) convergence rate, i.e.

3CeR VkeN |f(x(k))—f* s%.

We can apply PGD method to our problem (4.4) by taking

9(8) = tflzpm (55@1'555‘5)]
i#j 2
h(S) = =Sl

Note that, g is convex and differentiable with respect to S. Recall that differentiability of multi dimensional
function f : R™ — R™ is defined as the following.

Definition 4.2.4 (Gateaux differentiability) f : R™ — R™ is called differentiable at A € R™ when there
exists a linear transformation D f(A) : R™ — R™ such that

VH € R™ Z)f(A):% f(A+tH).
t=0

DFf(A) is called Gateaux derivative.
Now, In order to check this, we use the following lemma.

Lemma 4.2.5 (See Theorem V.3.3 in [17]) Let f € C!(R) and let A be a symmetric matrix with the spec-
tral decomposition A = Udiag(Ay,...,Aq)U". Then the map f : Sq —> S; induced by (4.5) is differentiable
at A, and the Gateux derivative of f at A satisfies

VH Df(A)(H) =U [f'(diag(As,...,Aq)) oU HU| U,
where o is entry-wise products.

Now, from the definition of p and g, g is also differentiable and takes over the convexity of p. And

IVg(S1) = Vg(S2)ll 1Dg(S1) — Dg(Sa)llp
< C|lDg(S1) — Dg(Sy)|| for an absolute constant C € R,

ClIS1 = Sell.-

A

IA

So, applying 4.2.3, the convergence of the following algorithm is guaranteed. Thus, we get the following
algorithm.

Algorithm : Proximal gradient descent (PGD) method

Input: number of iterations T, tuning parameters A; and A,, initial estimation S°, samples (X;);e[n] € R

Fort=1,2,...,T do

2 , _ -

() Compute Gy =~ =5 D, Vour () = 2 P, (XX =)
0<i;<jr <n 7

0<i;<jr<n
(2) (gradient update) T"*! = §* — G,.
(3) (proximal update)

2
_n(n -1)

S™1 = argmin {% ”S - Tt‘LIHIZD + %”5”1} =y (T™),
S 2

where y) (u) = sign(u) (|u] — 1)+
End for

29



Output: ST

We are interested in the deviation of ||§ 2 — Z” The following statement provides as an answer.

Theorem 4.2.6 (See Theorem 4 in [16]) Let (X;)ic[n] are i.i.d. copies of a random vector X € R?, For
any t, o which satisfies

(] (-2)'])

1<t < 63" for some enough small constantcs, where ry = —~—————-
[ ey
1
o ZIIE[(le—Z)Z]HZ, ()
k3k
n > \64a’ryt\/ M} for some enough large constants a, b,
A < Z)G\/;
>

L 2 N

Then
-~ 20 80 r 40 8
P HS"_ZH < —)L1+—a\/j+—/12t >1-(2H el
39 39 n 39 3
where H; j = —(Xi_Xj);Xi_Xj)T fori, j € [n].
Outline of proof
For a given ¢t € N in the PGD algorithm,
”St+1 _ z” < ||St+1 _ Tt+1|| + Tt+1 _ Z”
<[5 =T+ g e Lo (62 (i = ) = o7 (03 (Hi = %)) +5" - 3
+ n(n—1)92 Yz P’ (02 (Hij — Z))H

where 0, = . Calculating the bound of the each three terms in the right hand side. We obtains

/lz\ln(n 1)

the statement. For details, see the D.1 in [16].
Replacing (&TH + 1) e~! to 8, we immediately obtain the following Corollary.

Corollary 4.2.7 Let (X;)ic[n] are i.i.d. copies of a random vector X € R, For a given § € [0,1], define
t =log (8rH+3) Assume that t, o satisfies (++) in Theorem 4.2.6. Then,

80 lg(ng+3) 40 8re + 3
ryg +

—2” P\ —2 4 250 >1-4.

P|[5: )L1+39 — Azog( - ) 5

Implementation of Minsker’s method by PGD algorithm To see the behavior of estimates by Minsker
method’s, we set the following three cases as the population distribution.

+ 1 dimensional Gaussian distribution : (X;);e[n)] ~ N(1,3)
n =100,S, = 10, T = 200,A4; = 0,15, = 0.02,0.1, 1, and 20. We simulate 100 times.

+ 1 dimensional Pareto distribution : (X;);c[n] ~ Pareto(x, = 2,a = 3).

n=100,5° =10,T = 200, A; = 0,4, = 0.02,0.1, 1, and 20

2
X5,

o¥a—y = 3- We simulate 100 times.

Note that the mean = %2 = 32 = 3 and the variance =
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+ 3 dimensional Gaussian distribution : (X;);e[n] ~ N(p,X) where = [-1|, X = (Oé ) Ois). n=

100,S° = 10, T = 200, A; = 0, 15 = 0.02,0.1, 1, and 20

In each case, we simulate 100 times. From the next page, the results (the pass of the operator norm and
the pass of (S’ — Sy)?) are shown. Red line represents the average.
1 dimensional normal distribution : (X;)ie[n] ~ N(1,3)

lambda2 = 0.02 lambda2 = 0.02

estimate(1,1)
2

| |
L2 ermor

02488
L1

0 20 40 60 80 100 0 20 40 60 80 100
1:Number_of_iterations 1:Number_of_iterations
lambda2 = 0.1 lambda2 = 0.1
©
< . l g @
g E =
-y ] o
" . =
o
[= o
T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
1:Number_of_iterations 1:Number_of_iterations
lambda2 = 1 lambda2 = 1
© o
< <] g
B ©
- .| : =
E o
T . - w
® 1
(= o
T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
1:Number_of_iterations 1:Number_of_iterations
lambda2 = 20 lambda2 = 20
© o
Z L] g =
T T E
e ————— g
E ™ o o 7
b 4 -
® -1
(= o
T T T T T T
0 20 40 60 a0 100 0 20 40 60 a0 100
1:Number_of_iterations 1:Number_of_iterations
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1 dimensional pareto distribution : (X;);c[,] ~ Pareto(xp, = 2,a = 3)

estimatel1 13

estimatel1 13

estimatel1 13

estimateal1 13
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Implementation of Minsker’m method by SPGD algorithm Computational cost of PGD is so large. To
avoid this problem, we replace the step (1) to a stochastic one.

Algorithm : Mini-batch Stochastic proximal gradient descent (SPGD) method

Input: Number of iterations T, step size (1;);¢[r], batch size B € N, tuning parameters A; and A,, initial
estimation S°, samples (X;);e[n] € RY.
Fort=1,2,...,T do
(1) Forb=1,...,Bdo
Randomly pick i; and j; s.t. 0 < iy < j; < n.

Compute G? = -Vg; ; (S?) = )?i,j;qj - St).

—n
p\/n(n—l)/lz
2

(2)Gr =534, G
(3) (gradient update) T"*! = §* — G,.
(4) (proximal update)

.1 2 M
st = argmin {5 ||s = 7|5 + ?||5||1} =y (T™),
where y) (u) = sign(u) (|u]| — 1)+

End for
Output: S7*!

Same as the previous section, we set the following three cases as the population distribution.

+ 1 dimensional normal distribution : (X;);e[n] ~ N(1,3)

n=100,S, = 10, T = 200,A4; = 0,1, = 0.02,0.1, 1, and 20. We simulate 100 times.

+ 1 dimensional pareto distribution : (X;);e[,] ~ Pareto(xp, = 2,a = 3).

n=100,5° =10, T = 200, 1; = 0, 1, = 0.02,0.1, 1, and 20
2

Note that the mean = 2¥2 = 32 — 3 an( the variance = —2-*

z -2 (a_l)”;w = 3. We simulate 100 times.

1
+ 3 dimensional gaussian distribution : (X;)ic[n] ~ N (1, X) where p=(-1|, X = (Oé ) Ois).
0 .

n=100,5° =10, T = 200, A; = 0,4, = 0.02,0.1, 1, and 20

In each case, we simulate 100 times and we set the step size B = 20 and , = t75. From the next page,
the results (the pass of the operator norm and the pass of (S’ — Sy)?) are shown. Red line represents the
average.
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1 dimensional normal distribution : (X;)je[n] ~ N(1,3)
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1 dimensional pareto distribution : (X;);c[,] ~ Pareto(xp, = 2,a = 3)
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3 dimensional gaussian distribution : (X;);e[n] ~ N (p, X) where i = ( : ), > = (<l> 2 Ois).
A=0 A3 =0.05
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Estimation in contamination model Next, we consider the case in which the sample contains con-
tamination. More precisely, we consider the situation in which we have samples (Z;);c[n) With Z; ~
(1 -6;)X; + 6;C; Here, X; is an underling distribution and C; is an error distribution, and (;);c[,] inde-
pendently distribute, taking 1 with probability § and 0 with probability 1 — . The followings are the result
of interpretation for contamination models with several underling distributions.
1 dimensional Gaussian distribution : (X;)ie[n] ~ N (1,3)

=0 A =002

o
=7 £
W = 3
| [S]
il N
(N w ~
™
Alzo 12:0.1
o ]
i g
Wooeo 5
I =]
il o
(N o ~
o
T T T T T T T
0 50 100 150 200 250 300
/11:0
g
W 5
I :
(N =
T T T T T T T
4] 50 100 150 200 250 300
L=0 A,=20
2 &
=7 £ o
ST 5@
| - - o -
(W S T

37



1 dimensional pareto distribution : (X;);c[,] ~ Pareto(xp, = 2,a = 3)
/11 =0 /12 =0.02
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3 dimensional gaussian distribution : (X;);e[n] ~ N (p, X) where y = (—:)1), > = (<l> 2 Ois).
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5 Score Matching

In this section, at first we introduce score matching method, in which score matching loss is introduced, and
score matching estimator is defined as the minimizer of the empirical version of score matching loss. Our
goal in this chapter is to robustify score matching estimator.

5.1 Construction of Score matching estimator

Definition 5.1.1 (Score matching loss : See [7] and [8]') Suppose that distribution Py has a twice con-
tinuously differentiable density pg over R%for all @ € ©. Let hy,...,hg : R — R be a.s. positive functions
with respect to Pg, and absolutely continuous, and set h(x) = (hy (x(l)) oo hg (x(d)))T. Score matching loss
with respect to h and the distribution Py with density pg, Jn(pe) is defined as

Itpo) = [ pa(0)[Tlogpo(x) 0 ) = Vg o, () o ()| (5.1)

here V- means the divergence, and o means pairwise products.

Note Ji(pg) = 0 if and only if pg(x) = pg, (x) for almost every x € R?.

For the later discussion, we add the following assumption on h.

(A1) Vj lim pgo(x)hj(x(j))ajlogpg(x)= lim pgo(x)hj(x(j))ajlogpg(x) =0,
x () /'+oo x(])\—oo

@y [

We consider another representation of (5.1).

d h:(cW) -] 2 d hi(xW) 1 2
Jn(p) = /dego(x)Z[ j(x )(ajzogpeo(x)) ]dx+/de90(x)Z[ j(x )(ajzogpgo(x)) "
j=1 =

ET1 ET2

2
Vlog po ) o h(x)' 4 dx <oo, [ 1(Tlogpa(x) o ()l dx < .
R

d
= [ pa@ ) [hs(x)0slog p(x)3; 10g pa x| dx
=1

ET3

LA specific case that h = 1; was introduced in [?], the generalized version was in [8].
IFor proof, see the proposition 2 in [8].
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Here 0; - means the partial derivative with respect to x;. The second term is constant with respect to the
choice of p, the third term is reformulated as the following under this assumptions (A1) and (A2).

d
T, = -2 / pay ()| by ()2, 10g p (x)0; log po, () | dx
=1 /R

Fubini;nd (A2)

d -
- _Z'/]R.d—l /]RPQO(X)hJ-(x(J))ajlogp(x)ﬁjlogpgo(x)dx(ﬂ]dx_j
= ’

9;log pg,=9;pe,/pe,

d -
— _Z‘/Rd_l A3jp9o(x)hj(X(J))3jlogp(x)dxw]dx_j
j=1

Integrationby part L x() 74

d
- 2 [ ] i paengsx )y (x)0s Tog p( i)
= R4-1 00
= lim pe,(x—;x)h;(x")9; log p(e-3x'7)

x N\ =co

_/Rpeo(x)aj(hj(x(j))ajlogp(x))dx(j)]dx_j
d

= Z/ [/Peo(x)aj(hj(x(j))ajlogp(x))dx(j)]dx_j
7= R4-1 R

d
- > [ 010,y (x)ay log p(x)dx
=1 /R

Product rule

d d
= Z ‘/]l;d peo (x)h]/(x(.]))a] logp(x) + Z ‘/]R;d PGO (x)h](x('l))a]] logp(x),
= =
where dx_; = dx; - - - dxj_;dxjy; - - - dx,,. Then, Score matching loss is discribed as

hj(x1)(9;log p(x))°
2

Jn(p)

]dx + const.

d
[ o) Y [P0y ogpo) + hy )3y og po ) +
=
d - -
= Ep,, Z [h/(X(J))aj log po(X) + h;(X"))a;; log pa(X) +

Jj=1

By (X) (9 log pa, (X))?
2

] + const.

5.2 Score matching estimator for exponential family

Next, we consider tha case in which # is an exponential family. Exponential family is defined as the
following.

Definition 5.2.1 We call P = {pg : 6 € O} an exponential family when the density pg is represented by

log po(x) = 0" t(x) — a(0) + b(x) (5.3)

Here, 6 and t(x) are called canonical parameter and sufficient statistics. An example of exponential family is
multivariate gaussian distribution, which we check later. In our setting we assume the canonical parameter
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of the population distribution 6, belongs to ©. In case of an exponential family, (5.2) can be rewritten as
follows (omitting constant term).

Eypo, Zd; [P XN {07 8730 + b5 00} + by (X {OTH (X + b7 (X))} + %{hj(X(j))(OTtJ'-(X) +b5(0)?]
=
= Ep, ; [h}(X(j)){GTt]’-(X)+ PAX) F+hi(XUNOTE(X)+  bI(X) )
- const w10 const w20
‘ %hj(X(j))(GTt;(X))Z + (0T (X)) (X) + %b}(X)Z |

—
const. w.r.t 6

d
= Epy, Z; [h;(xU)){eTt; (X)}+hj(XD) 0T (X)} + %h,— (XD)(OTH(X))? + hj (XO))(eTt;(X))b;(X)]
J:

Here t} = 0;t, b} = 0;b, t] = 9;;t, and b} = 9;;b. Summarizing the above discussion, we get the following
theorem.

Theorem 5.2.2 In the exponential family of the distributions, we have that

Jn(pe) = %GTFO —g' 0+ const. (5.4)
where T € R and g e R? are
d
' = By, Z hy (XU XOH(X)T, (5.5)
J::
g = -Ep, Z[hj(X(j))b]’.(X)t]’-(X) + by (XU (X) + (XU (X)), (5.6)
j=1

Corollary 5.2.3 Let X distribute from an exponential family, define T' by (5.5) and g by (5.6). Under the
condition that T is invertible. Then

argminJ,(pe) =T 'g
0

From the definition of the score matching loss function, the minimizer coincides with the true parameter
6. The above discussion provides us an idea to construct an estimator of the true parameter 6, : The
population quantities T, g define the true parameter 6. So, in order to find the estimator for 6,, we apply
plugin principle and replace correspondent population analogs by their empirical counterparts.

Definition 5.2.4 Let X be a random vector with the distribution Pg, which belongs to an exponential family
P. For independent copies (X;)ic[n] of X, we define an estimator Ospy by

A 1
Osp = argmin (—GTI‘(X)G -g(X)7o
6cO 2

n d
_ 1 )Ny ’
here rx) = - 2. ;hj(xi] )tj(Xi)tj(Xi)T,
1< d _ ) )
g(x) = -= [ (X0 (X0)E(X) + hy (X)) (X) + hy(XI)E(X0)].
n
i=1 j=1

For later discussion, we define the following notations.
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Definition 5.2.5 For random vectors (X;)ic[n] and function h : RY — R? satisfying the assumptions of
Definition 5.2.4 and fori € [n], we define

N(X;) = ) b (X)E (X)), (5.7)

Mm.

=1

~
Il

~g(X) = Y [y (X)Xt (X0) + by () (X0) + R (X)) (X)) (5.8)

M&

~
1l
—

Note (5.7) and (5.8), T'(X) and g(X) can be written by
1 v 1 v
'x)=- I'(X; X)=- Xi),
(0= 2,TX) 900 =7 2, 9(X)
and I'(X) and T'(X;) are Hermitian matrices from the definition.

5.3 Error bound of Score matching estimator

Our interest is the behavior of the difference fsy — 6. The following lemma provides an error decompo-
sition of SME@ — 0.

Lemma 5.3.1 For a given exponential family P = {pg : 0 € O} with the true parameter 6y, define
I, I'(X), g, g(X) as the above, and assume I'(X) is invertible a.s. Then

Osv — 0o = T(X) 1 (g(X) — g) + T(X) " (T(X) - T) 8. (5.9)

Proof.
fsv — 60 = T (X) (9(X) — T(X)80)
=T7'(X) (9(X) =g +g—-T(X)6)
=TI (X)((9(X) - 9)) +TH(X)(T - T(X)) 6.
O

From the triangle inequality and the properties of operator norm and Euclidean norm : |Ax| < ||A]| |x| for
A€ R4, x € RY, we can derive the following inequality for the difference between sy and 6,

Lemma 5.3.2
65w = 6] < I GOl (1g(X) = g1 + TGO =T 6]

Our goal is finding the concentration inequality of By, that is finding the (probabilistic) upper bound
of |Osp — 65| From the lemma 5.3.1, this problem boils down to the problem to find the upper bound of
19(X) — gl and IT(X) — Tl

As an example, at first we consider the case in which the population distribution satisfies that |g(X;)|
and ||T'(X1)]| are bounded. In this case, there exist L and R such that |g(X;) — g| < Lamd ||[T(X;) - T <
R. Thus, Corollary 3.1.23 provides us with a bound of |g(X) — g|. Define C = w, then with
probability 1 — § it hold at least that

2

1
19(X) - gl < ~VdC\[log 5

2L 2

— log —. 5.10
+—log s (5.10)
And Theorem 3.2.1 provide us with the bound of |T(X) — T||. With probability 1 — §it holds that

d\ 2R d

IT(X) - Tl < %RZ log (3) + 5 log (3) (5.11)
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Replacing 6 to ‘; of (5.10) and (5.11), and taking the union bound, we obtain the following.

Corollary 5.3.3 Let (X;)ic[n] € R? and (hj)jera) : R — R be random vectors and positive functions which
satisfy the assumption of Definition 5.1.1 . Define g(X), I'(X), andg(X;), I'(X;), as in Definition 5.2.4 and
Definition 5.2.5. Assume that

lg(Xi) —gl <L and [I(X;)-T| <R

Then,

5.4 Score matching estimator in Gaussian case

5.4.1 Original score matching estimator in Gaussian case

In this section, we consider the case in which X is distributed as a Gaussian distribution Ny(p, Q7). At
first we discuss the case of h = 1,4 The probability density function is given by

1 1
fXinQ) = —=-exp|—S(x-p)'Qx-p)|.
27|Q| 2
Then,
Plog f(Xip, Q) = —(QX - p));
a]]f(X; i, Q) = Twy
hj, = 0

, where (w;;) = Q. Thus, we obtain

i,jeln]
1 & 1
_— - — .. p— + — T 2 + —
Jn(p, Q) = " ;:1 ;:1 { wjj + Z(Xl ) QX u)}-

From the definition, the score matching estimator figy, Q sum is defined as the minimizer of J, (g, Q). The
gradient is

1 n

Vih(1 Q) = Qzu—sf;;x,-, (5.12)
1 v 1 [<

Vali(p Q) = —Id+Q§;<Xi—u>(xi—u>T+£{;m—u)(xi—uf}a, (5.13)

Q? is positive definite, so
1 n
(512) =0 & p = —ZXi
n
i=1

. Under this constraint with respect to py,

-1
1w X R
(513)=0 © Q= —Z(Xi_HSM)(Xi_IlSM)T) :
n i=1
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Thus, the score maching estimator Osyr = (fisym, fJSM) is

) 1y
”SM:Ei_lei

) (5.14)
. L1 1 ) o
Ysm = (QSM) = Z(Xi — fism) (Xi — fism)

i=1

On the other hand, one of other estimation approaches is Maximum likelihood estimation. Maximum

likelihood estimation is a method to estimate the parameter of the population distribution by searching
for the maximizer of the likelihood function. In Gaussian case, the log-likelihood function is

n

1
const. + glog =Y (X=X - )
i=1
n 1 — — T - —
const.+510g|Q|—ZE(X,»—X+X—[J) QX; - X+X - p)

i=1

const. + glog Q| - %{ ;(xi _X)TQ(X; - X) 42 ;(xi ~XTeX -+ Y (X - X - ,1)}

i=1

£(p, Q)

=nTr(Q% > (Xi-X) (Xi—Y)T) =0

i=1

const. + glog Q| - gTr(QE) - g(i )X - p).

Here, X = 1 ?:1Xi,§ =1

~n n

" (X; = X)(X; — X)T. The last term = 0 if and only if g = X since Q is
positive definite. Thus, the Maximum likelihood estimator Oy, = (fime, ﬁML) is given by

. 1 v
v = ;;Xi,

~ ~ -1 —
ML = (QML) = |arg max log |Q| — Tr(QS)
QePDy

A — ~ —1 — ~
Lemma 5.4.1 Regarding Quy, if S is positive definite, then Qpp = S . And if S is singular, then Qpp
doesn’t exist.

Proof.

(First case) Since S is positive definite, there exists a orthogonal matrix Q s.t. S = QAQT ,where A is a
diagonal matrix A = diag(4;,...,A4) with the eigen values (1;);c[4) of Q in the diagonal entries. When
we define a map F : R — R by F5(Q) = log |Q] - Tr(QS),

F(Q) = Fyr5(Q7Q0)

Thus,
_ T
argmaxFg(Q) = Q - argmaxFa(Q) - Q
QePD, QePD,
ajjfori>j

Let Q = AAT be the Cholesky decomposition, where A is lower-triangular with the (i, j) entry = { 0 oth
other

Then
d

FA(Q) = Z log a?, — a2 A; — Z afjxli . (5.15)

i=1 j<i
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From the assumption on S, A; > 0 for all i € [d]. For A > 0, the function log a — a} is strictly concave for
a € (0, 00) and takes its unique maximum for a = 1/A. The term - };_; (a? j/li) attains its maximum when

all a;; = 0. Thus, Fa is maximized at Q= diag (1/Ay,...,1/A4). We conclude that Fg takes the maximum
at
Q=000" = (Q"AQ)" =5
(Second case) If S is singular, then there exists an eigenvalue A; = 0, and the i-th term in (5.15) is log a?;, —
oo as a;; — 0. Hence, F5(Q) is unbounded.
O

Thus, under the condition that

1. the distribution comes from a Gaussian distribution,
2. h=1yg,
3. no constraint on the parameters except for the symmetry and positive definiteness of Q,

the score-matching estimator coincides with the maximum likelihood estimator.

5.4.2 Generalized score matching estimator in Gaussian case

Next we consider the case in which the distribution is Gaussian but the function h is general. Note that

Ny(p, %) has d mean parameters and w covariance parameters. We write the @ +d parameters by

0= (011,..., 01811, W22, >D2ds M2 s --- > WadrNd) ' € Aged
In order to make the next discussion clear, we introduce the following map R.
Definition 5.4.2 We define R : RYTH+d _, R(@+1d by

R(0) = (011, - - > @1d, 11 5 @12, 0225+ > W2ds§2 5 « -5 D1ds - - - » Ddds I’]d)T

Note that R can be written as R = vec o R’, where R’ : R¥TH s R@HDXd defined by

w11 N W1d,
R'(0) =

Wdi1 --- Wdd,

Nd;1 --- Ndid,

The logarithm density function of N;(u, X) is given by
log f(x) = —%(x —p)"2 7 (x - p) + const.
= —%xTZ_lx + pTZ_lx + const.
= —%xTQx +1"x + const. here,Q =X land n =X 'p

1
= —ETr(QxxT) +n'x + const.

2
X1 X1X4 XoX1 Xo2X4q XdX1 XdXd
= (ROT|—,..., , X1, ey N T ye..,—,Xgq| + const.
2 2 2 2 2 2
2
X1 X1Xd X2X1 X2Xd XdX1 XdXd
= 0"R"|—,..., , X1, e, ' T yeoo, —,Xg| + const.
2 2 2 2 2 2

=t(x)
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Note Since the map PDy x R — PDy x R? : (3, u) — (Q,7n) is bijection, the problem to find the
parameter 6 = (g, Y) which minimizes score matching loss J,(pg) can be replaced by the problem to find
the parameter (€2, ) which minimizes Jj,(pg).

The above transformation illustrates that Gaussian distribution is an exponential family with the canonical
parameter 6 and b(x) = 0. Applying theorem 5.2.2, we get the following.

Corollary 5.4.3 (Score matching estimator for Gaussian distribution) Let X come from a Gaussian
distribution N(nQ™', Q") and (X;)1<i<n be independent copeis of X. Then, T'(X) and g(X) for the score
matching estimator (Q,n) is given by

91,1(X)
I1(X) 0 92,1(X)
I'(X)=R" R, g(X)=RT : ) (5.16)
0 Lm(X) 91,4(X)
g2,4(X)
Here
n i i AT i R
X)) = [rm rlz,,} = BOGOXOXOT hGOXO) s
] Laj Taj] = n | -mxXOT hyx) |

1O () (D) (i) d
91,j ;;h](xj )Xj +hJ(Xj )ej’d € RY,

10, oG
g2,j ; Z hJ(X](l)) e R.
i=1

R is defined in Definition 5.4.2, ande; ; € RY is 1 forthe j-th entry and 0 otherwise, thatis,e;j 4 = (0,...,0, '1h’ 0,...

jt
I case of h = 1, this corollary can be written as the following.
Corollary 5.4.4 (Score matching estimator for Gaussian distribution in case of h = 1;) Let X come

from a Gaussian distribution N (nQ ™", Q') and (X;)1<i<n be independent copeis of X. Take h = 1. Then,
I'(X) and g(X) for the score matching estimator (Q,n) is given by

gl,l(X)
To(X) 0 g21(X)
I'(X)=R' R, gX)=R"| : | (5.17)
0 [o(X) g1.4(X)
g2,4(X)
Here
'y Ty 1 | xOxOT _xO (d+1)x (d+1)
Ih(X) = = — . eR ,
0( ) |:F21 FZZ] n ; _X(l)T 1
gl,j = ej’d € ]Rd,
gz’j = O S IR

€ejq € R? and R are similarly defined as in corollary 5.4.3.

Remark : [7] shows more generalized case of Cororally 5.4.3, in which X is distributed as pairwise inter-
action power model. And, when we set h = 1y, the corporally 5.4.3 coincides with (5.14).
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Error decomposition in Gaussian case Now we go consider the decomposition of |95M - 90’ in case

of h = 14. Remember that from the the error |93M - 90| can be upper bounded by the terms which include
IT(X) — T and |g(X) — g].

FO(X) ~To 0 X(l)x(l)T x () xxT X
||F(X)—r||: RT R here ro(X)— ZI X(I)T l FOE]E|:_XT 1]
0 To(X) -
Io(X) - T 0
< |IR|I?
0 To(X) -
= ||R||* ITo(X) — To||
1 & N
<RI Y xOxOT _ExxT)|[+2|= ) X; - E(X)|+1
<IRIF§ | D (XXT)||+ Z (X)[+
=a =b
1 — _ .
a ={- ) (X=X (X =X)T - EX = p)(X ~ )" +XXT — pup”
i=1
“BOC- ) (X = )|+ XX ™

—EX-p)X-p)|+]|[X - X -+ X —pp" +p(X—p)7||

n

=R - X)T - B (X - )T

i=1

_ +[X - " +2|X = p Il
N———— N——
= b2 =b

1
o

From Theorem 3.1.25, with probability at least 1 — 8, b < %Tr(Z) log% + 4 /%Tr(Z) log %. From Theorem

3.2.5, with probability at least 1 — 8, ¢ < C||Z|| (\/g \ % \V @ \/ ing&)' Replacing § to g and taking

the union bound, we obtain

IT(X) =Tl < |IRII* {c +b*+2b(|pu| + 1) + 1}

d\ ,;d\,; [~logs/2\ ;—logé

SIIRII2{C||2|| (\/;\/;v\/?\/ 05 /2)
2

+(%Tr(2)10gg+m) )

%Tr(Z) Iog% + w/—Tr(Z) log - ) (gl + 1)+ 1}
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with probability at least 1 — §. Since |g(X) — g| = 0 in case that X is distributed as Gaussian and h is
identity function,

) d\ ;d —log “log§
|9sm—901s||F‘1<X>H|eo|||R||2{cnz|| (\EV;Vw/ B2\ ) o8 /2)

2
%Tr(z)logghlirr(znog%) +2 %Tr(z)logngM)qmﬂ)H}

5.4.3 Robust score matching estimator in Gaussian case

+

Our aim is to obtain robust version of 6sy;. For this aim, we consider to robustify T'y(X) in ??. consists of
empirical mean and empirical covariance, we replace these to robust ones. More precisely, we replace

1 | xOxOT _xO
- _ (d+1)x(d+1)
Fo(X) = — > [ s 1 €eR

i=1
to

o(X)

(5.18)

N . R N AT N i
DX+ p(XNax®) —px®) ¢ R(@Dx(d1)
—a(x®)’ 1 .

Here fi and ¥, are robust estimator for mean and covariance such as those we listed up in the previous
chapter. Note that this robustification procedure can be also applied to general exponential families in
case that we have robust estimators for E,, t/(X)t; (X)T = Covp,, (t/(X)) + Ep,, (tJ’.(X))]EpsO(t]'.(X))T
Epg, b;. (X)tj’. (X) , and Epy, tj’.’(X) for all j € [d] by replacing the corresponding empirical means and
covariance matrix to them.
On the other hand, We can also obtain a robust estimator for y and X by simply replacing fiyg, and T to
a robust mean and robust covariance. Robustifying process are different, but we obtain the same estimator,
i.e. the following lemma holds.

Lemma 5.4.5 Let X is distributed as N (p, X) a Gaussian distribution N (po, Xo) and (X;)1<i<n be indepen-
dent copies of X. Define

N g1,1(X)
To(X) 0 g2,1(X)
I(X)=R" R, gX)=R"| : |, (5.19)
0 To(X) 91.4(X)
g2,4(X)

here T (X)

« . . N A AT N i

Z(XD) + XN ax) T —px®) ¢ R(E+DX(d+D)
_(x )" 1 ’

gij = €4 € ]Rd,

gZ,j = 0 e R

€jq € R? and R are similarly defined as in Corollary 5.4.3. fi(X) and %(X) are estimators for the mean and
the covariance. Suppose ['(X) is positive definite. Then,

R (argmin (leTr(X)e - g(X)TH)) - (i(X)—l,z(X) , ﬁ(X)—l),
oo \2

d(d+1)
— T —=—=+d
heree:(w11>---,wld,’71>¢U22,---,0)2d,772a---,wddand) € 2 .
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Proof.
Since f‘(X) is positive definite, J,(0) = %OTIA‘(X)O — g(X) "0 is strictly convex function with respect to
0. So, it is enough to show Y —at = ﬁ(X)_lﬂ(X).

96 —
aJn dJn 9(RO) dJn
— =0 = R =0
20 < 3(RO) 90  a(RH)
=3 a(aéhe) =0 since kernel(R) =0

s (ROT(X)-g(X)T=0
& T(X)(RO) = g(X)
w11
(B + aXMaXD)T)| 1 |- XDy
wid
w11
axO e e1d
0
W1d
o : — E]R(d+1)><d
Wd1
(EEO)+axOax )T | |- aXna| ey,
Wdd 0
W41
aXNT g
Wdd
w11
(B +aXDaXNT)| 1 |- XD,
W1d
Wd1 €1.d
(B + aXMaXNT)| ¢ |- A
o Wdd _ | €dd c R(@+Dxd
w11 0
—AXO) T e
w1d 0
Wd1
(x| -
Aa(x") N
Wdd
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w11 N O it 1
o (BxO+axMax®)| o L) | =L
Wwid ... Wdd nd
Q nv
T
w11 ... W1 m
d - O . . . . _aT
and —ax®'| 1 o 1|+ 1] =0
wid ... Wqd Nd
——————— N~
Q nv

(n,Q) = ():T(X)_lﬁ(X) , fl(X)_l) satisfies the both equations. So, this pair minimizes Jj
O

Note that this lemma holds under the condition that the distribution comes from Gaussian and h = 1.

Error bound of robust score matching estimator Similar to non-robust case, the error bound is bounded
by the error of robust mean and robust covariance. For example, when we replace sample mean to Median
of means and sample covariance to Minsker estimator, under that each parameters satisfies the assumption
in the table in section 4.1 and (»+) in Theorem 4.2.6,

10g(8rH+3)

_ 20 80 36 40 8ry +3
< It GOl IIRIIZ CIZN | =2y + — —_ 4+ — A1
e Coll 6ol IRIE S Izl | S5 + S50\ ———+ 52 og( )

2
2 4 2 4
“Tr(X)log = ++/=Tr(Z)log = | +2
n 1) n 19}

5.5 Simulation in Gaussian case

‘éSM -6

+

ot P 1)

5.5.1 Non-robust estimator

In the simulation, we consider the case in which the the population distribution X is distributed as N3 (o, o),

where

0 05 1 1

and we set h; = 1 for j € [3]. Suppose that we don’t know both py amd X, which we estimate by using
sample data. We compare the score matching estimators in case that the sample size n = 10,n = 100, and
n = 1000. For each case, we estimate 100 times.

From Corollary 5.4.4, the score matching estimator is given by

gl,l(X)
Iy (X) 0 g2.1(X)
I'(X)=R" R, g(X)=R"T : ) (5.20)
0 To(X) g1.4(X)
gz,d(X)
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Here

. ~NT .
i Ty 1 [ xXOx®O7 —x® (d+1)x(d+1)
(X)) = = — . eR R
0( ) |:F21 FZZ] n - _X(l)T 1
gl,j = ej,d € ]Rd,
gz’j = O (S IR

Thus, we can estimate g and X by the following procedure.

Procedure 1 Score maching method in Gaussian distribution (100 times trials)

1: INPUT: 100 X n samples (x¢:i)ref100], i € [n] from N3(po, %)
2: OUTPUT: Estimated means (fisy,) and covariances (ZAZSMf)(e[wO] by score mathing method
3: FOR ¢ =1 to 100

Calculate T'(x;) and g(x;) in Corollary 5.19

Osn, = T(x¢)~"g(xr)

Find fisy, and Xy, corresponding to fsyy,
A .1
Calculate Qgv, = Xgyy,

The following is the result. As we proved in Section 3.2, when hj(x) = i Vj, sy = Opr. So, we obrtain
exactly the same result from the following procedure.

Procedure 2 Maximum likelihood estimation method for Gaussian Graphical models (100 times trials)

1: INPUT: 100 x n samples (x¢.i)ee[100],ic[n] from Na(po, Zo)
2: OUTPUT: Estimated means (fimr, )re[100] and covariances (ZAZML[)(EUOO] by maximum likelihood method
3: FOR?¢ =1to }100

. 1
ML, = — Z Xp:i
=

. 1< X R
ZMLE = ; Z(x[:i - llML[)(xt’:i - ”ML[)T
i=1

. A1
Calculate Qpp, = XM,

L% error For the evaluation of the errors of sy — Mo and ﬁSM — X, we use L? error. The following is the
algorithm to calculate it.

Procedure 3 Measuring the L? errors

1: INPUT: (fism,)eef100] and (2SM,)fe[100] obtained by Procedure 1
2: OUTPUT: L?(fism — po), L*(Zsm — %o), and L?(Qsm — Qo)
3: FOR ¢ = 1 to 100, calculate

1 1 1

. 12 2 . 3 2 X 3 - . i
0] P =[5 -], =[5 i -t
1 =

SM,

3

[isn, — o, = (Z

. 12
A (i]) (ij)

6! ‘
i=1

IsM,

4: For k = 1 to n, calculate

100

. . A 1
Ly(fism, — o) = — Z lsm, — po|, Lo(Zsm, — Zo) =
=1

100 100

100 100
. R 1 R
] S ST N |
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Result :

n || Ly(fism, — po) | La(Zsm, — Zo)
100 0.17042293 0.4270580 (5.21)
300 0.09780322 0.2619216
1000 0.05625493 0.1384555

TPR and FPR In a covariance estimation, we are especially interested in a covariance is 0 or not. In our
(1))

example, (1,2) entry and (2, 1) entry of X, are 0. We decide that X5, = 0 when ’ﬁg\f{) < €. To compare

the result from the perspective how correctly the estimator distinguish each parameters is zero or not, we
use the following criteria.

FPR (i ) _ # of non-diagonal entries not equal 0 in Tsm but the decision is wrong _ |§off \So off |
sM) = # of non-diagonal entries equal 0 in % T d(d-1)—|So|

TPR (ﬁ: ) _ # of non-diagonal entries not equal 0 in Ssm and the decision is correct _ |§0ff mSo,off|
SM) = # of non-diagonal entries not equal 0 in X% - [ So,of|

where So o = {(i, N ii#EjAoyj# 0}, and Sof = {(i, j):i# jand 65(1{/{)‘ > e}. Since Zgm depends on
the sample, FPR and TPR fluctuate. So, we take the mean of them.

Analogically TPR( QSM) and FPR(QSM) are also defined.

Procedure 4 Calculate the FPR and TPR

1: INPUT: (ﬁ:SMe)[E[log] obtained by Procedure 1, € € [0, 1]
2: OUTPUT: Mean of FPR and Mean of TPR
3: FOR[ =1 to 100

Calculate FPR(ﬁSMt,) and TPR(ﬁZSM()
100 100

4: Calculate Mean of FPD = ﬁ Z FPR(iSM,) and Mean of TPR = ﬁ Z TPR(iSM,)
=1 =1

Result :

&
™

Twmm e e
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5.5.2 Robust estimator

The performance of the robust score matching estimator provided by (5.18) is the followings.

Median of Mean, Median absolute deviation

54

L? error
# of samples || La(fism, — o) | L2(Zsm, — Zo)
100 0.2008869 0.5691329
300 0.1156710 0.3521662
1000 0.06558571 0.1891582
TPR and FPR
2 T e
h

.

n= 1000
= %, = e

) -

B =73

£ % E g

& %, 3 i

)

T T T T T T T T
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Median of Mean, Altenative MAD

L? error

# of samples

La(fism, — po)

Ly(Zsm, — Xo)

100 0.2008869 0.468477
300 0.1156710 0.3012807
1000 0.06558571 0.1600284
TPR and FPR
Qo ) M%\M @
“%%% WN
4 ., i s
Mﬂb N
E % o £ i

(5.23)
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Trimmed Means, Median absolute deviation

56

L? error
# of samples || Ly(fism, — po) | L2(Zsm, — Zo)
100 0.1917967 0.5691329
300 0.1051795 0.3521662
1000 0.06180664 0.1891582
TPR and FPR
z - P
: _ %}.N : {
S ‘ ™ I
ﬂ‘a
B Nl
& %, o £ i
% i
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Trimmed Means, Altenative MAD

L? error
# of samples || Ly(fism, — po) | L2(Zsm, — Zo)
100 0.1917967 0.4684770
300 0.1051795 0.3012807
1000 0.06180664 0.1600284
TPR and FPR
qflo ) =z %KM -
e, -

y I

; * E

MMM%
13 % o B o

(5.25)
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Medians of Means, Minsker’s Method
2
M=0,4,=01,B=10,p, =t 3
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L? error

# of samples

Lo (fism, — Mo)

Ly(Zsm, — o)

In Minsker’s method, we set the number of iterations is 30,

(5.26)

100 0.2008869 0.5669076
300 0.1156710 0.4381501
1000 0.06558571 0.3836059
TPR and FPR
e E—————
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Trimmed Means, Minsker’s Method
2
A2 =0.1,B=10,n; =73

L? error

# of samples

Lo (fism, — Mo)

Ly(Zsm, — Xo)

In Minsker’s method, we set the number of iterations is 30, A; = 0,

(5.27)

100 0.19179671 0.5669076
300 0.10517949 0.4381501
1000 0.06180664 0.3836059
TPR and FPR
e S
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Next we consider the model which have contamination.

Non-robust score matching estimator

60

L? error
# of samples || Ly(fism, — fo) | L2(Zsm, — Zo)
100 4.249416 345.7046
300 4.375587 358.147
1000 4.299185 353.4891
TPR and FPR

(5.28)



Median of Means, Minsker’s Method in contamination model

In Minsker’s method, we set the number

of iterations is 30, 1y = 0, 1, = 0.1, B = 10,p; = =5 . The distribution is contaminated with 5 percent of

outlier (50, 50, 50).

L? error
# of samples || Ly(fism, — po) | L2(Zsm, — Zo)
100 2.676537 2.837128
(5.29)
300 4.096872 1.615904
1000 4.214861 4.938987
TPR and FPR
= M‘h : oy ; . g 2
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Trimmed Means, Minsker’s Method in contamination model

In Minsker’s method, we set the number

of iterations is 30, 4 = 0, 1, = 0.1, B = 10,p; = =5 . The distribution is contaminated with 5 percent of

outlier (50, 50, 50).

L? error

# of samples

La(fism, — po)

Ly(Zsm, — o)

100 0.30125 2.837128
300 0.2033159 1.615904
1000 0.1751119 4.938987
TPR and FPR
;: m% ;: ) o 80
£s N, £ 3
. ., s
i- w% E %%% F w P i o
] B = %%% ; . ju&s
%M% g =, Rl

Comparing with Non-robust estimator, we can see that the robust estimator is more efficient.
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5.5.3 Estimation of Precision matrix

Although we have estimated the mean p and the covariance matrix ¥ of Gaussian distribution until here,
at the same time the estimating the precision matrix Q = X! is also our interest because in Gaussian
case, each entries in the precision matrix is related to the statistical graph. We can estimate the Q of the
population distribution by taking the inverse of %/

we consider the case in which the the population distribution X is distributed as N3 (o, Zo), where

1 1 0 05 2 1 =2
p=|-1, Q=10 2 1|, |[thenX=Q7'=|1 15 -2
0 05 1 1 -2 -2 4

and we set hj = 1 for j € [3]. The followings are the result of this estimation

Non-robust case In Minsker’s method, we set the number of iterations is 30, A; = 0, A; = 0.1, B =

10,7, =73
L? error
# of samples || Ly(fism, — o) | L2(Qsm, — R0)
100 0.2291308 0.5343700
300 0.1286565 0.2836951
1000 0.0769031 0.1544092
TPR and FPR
s e [ .
%% %%o.,

e

&
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Robust case : Medians of Means, Minsker’s Method
2
iterations is 30, 4 = 0,4, = 0.1, B= 10,5, =t 3

64

In Minsker’s method, we set the number of

L? error
# of samples || La(fism, — po) | L2(Qsm, — Qo)

100 0.27581564 1.5124890

300 0.15455185 0.4772902

1000 0.08734777 0.4015194

TPR and FPR
Y SN E )
™ .9 &
M W%M . i} JJ,@"S
= 2 55 = %
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Robust case : Trimmed Mean, Minsker’s Method In Minsker’s method, we set the number of iterations

is30,1,=0,1,=01,B=10,p, =3

L? error

# of samples || Ly(fism, — fo) | L2(Qsm, — R0)

100 0.26785685 1.5124890

300 0.14696800 0.4772902

1000 0.08505598 0.4015194

TPR and FPR
. m\%,o g 31 %\% " J
™ =, o
M %%“‘%.M . A

5.6 Score matching estimator in Pareto case

Next, we consider non-Gaussian case. First, let’s consider the maximum likelihood estimator The the
density function of the Pareto distribution with the parameter 8 = («, ) is given by

o

Pap(x;a, f) =a x>B, apf>0. (5.31)

xa+l’
«a is called scale parameter, and f is shape parameter.

log pep(x; @, f) =log(a) + alog(B) — (a+ 1) log (x) .
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Pareto distribution is an exponential family with the canonical parameter —(a + 1). The log-likelihood

function ¢(«a, f; x) of the Pareto distribution given a sample x = (xy, ..., x,) is given by
log npa,ﬁ(xi§ ap) = Z log (axfm )
i=1 i=1 i
= nlog(a) + nalog(f) — (@ +1) Z log (x;) . (5.32)
i=1

Let’s consider the maximum likelihood estimator. At first, we consider the case case that § is known. For
a, we can find the maximizer by solving set the partial derivative equal to 0 :

@ =2+ nlog(p) - ;log (x;) = 0.

Thus, we get the maximum likelihood estimator for Pareto distribution

aymr = argminnlog(a) + nalog(f) — (e + 1) Z log (x;)
a i=1
n

2=y log (xi) — nlog(p)

In case that both o and f are unknown, the higher f, the higher (5.32), and f < x; for all i. Under this
restriction, the f maximizing £(x; , f) is f = min; x;.

,BML = minx;.
n
Sy log (xi) — nlog()

Next, we consider the score matching estimator for Pareto distribution. Note that in order to apply Score

matching method, we need to chose h which satisfies (A1) and (A2). In fact, tn Pareto case, h(x) = 1 does

not satisfy (A1) since Iin}z log pa,p(x)dlog pe,s(x) # 0 So, we need to consider a function h which satisfies
xX—

amr =

limh(x) = 0.
limh(x)

(A1) & li;}n pe, (x)h(x)dlog pe(x) =0
x— 400

. B« —(a+1)
1 =
=3 x—>1/I7’Er ooax““ h(x) 0
. h(x)
= x—1>1/I7’T-1+—ooxa+2 =0
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For example, h(x) = (x — f)¥ for 0 < k < a+2 and h(x) = (x — f)x* for k < a + 1 satisfies this condition.
For such h, we can calculate I'(X) and g(X) in Definition 5.2.4 as follows. Then

1 - ’ ’ T
rx) = ;;h%)t (Xt (X)
10 h(X)
) ;1:1 Xlz ’
90 = = D RO (O () + OG0 () + KX (X))

“Z[ h(X) W (X)}

[h(X) h’(X)]

Then, the score matching estimator sy for 6 = —(« + 1) is given by

-1
s [10 X)) 1 [hGG) R(X)
e = (‘Z X;) DI
-1
S (X)) o R(X)
= 1- .
; X? ; Xi
Thus,
-1
. = h(X; O b (X
asm = Z ;2)) Z E( ! —2 (533)
=1 i i=1 !

The following are the result of each estimator. Here, the population distribution is Pareto distribution with
a =3, = 1. We know the f, but « is unknown. We estimate a with 100, 500, 1000 samples. We calculate
10,000 times for each simulation, and the followings are the results.

SME with h(x) = (x - B)*

SME : n= 100 SME : n = 500 SME : n= 1000

Frequency
]
Frecquency
]
Frequency
I

500 1000 1500 2000 2500 3000
500 1000 1500 2000 2500 3000

>

500 1000 1500 2000 2500 3000

0
I

sd= 0.55779 sd = 027547 sd = 020679
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(x = p)x

SME : n = 500

SME with h(x)

SME : n= 1000

SME:n= 100

i
=
I T T T T T
000E 0052 0002 00SL 0oob 00 0
Aouanbad 4
I T T T T T
0002 0052 0002 00SL ooob 00 0
Aouanbead 4
I T T T T T
0002 00SZ 0002 00SL ooob  O0s 0

Aouanbed 4

73]

i

7]

sd = 0.05806

sd = 0.14096

sd= 0.31314

(x - p)x*
SME : n = 500

SME with h(x)

SME : n= 1000

SME:n= 100

0

000g 0052 0002 00SE 000k 00
Aouanbad 4
T T T T T T
000g 0052 0002 00SE 00Ok 00 0
Aouanbau 4
T T T T T T
0002 0052 0002 0O0SE O0DOL  O0S 0

Aouanbeau 4

5]

i

w1

sd = 0.10508

sd = 0.1507%

sd= 0.32761

68



MLE

MLE : n= 100 MLE : n= 500 MLE : n = 1000

]
Frecquency
]
Frequency

Frecuency
500 1000 1500 2000 2500 3000

0
1 I
0
0
P
P

500 1000 1500 2000 2500 3000
500 1000 1500 2000 2500 3000

=
]
(4]
£y
wn
-
]
(4]
£
on
=
]
s
£
th

sd = 0.30364 sd = 0.13588 sd = 0.08522

5.6.1 Robust Score matching estimator in Pareto case

Note that the final case can be considered under the situation in which we have a previous information
that @ > 0. Now, we consider h(x) = (x — f)x?. In this case, (5.33) can be written as

-1
" X2(X; — n3X2 - 2BX;
R
1

i=1 i i=1

(Zn:(xi -p)

(7{— ﬁ)_l (3)_(— 2ﬁ) —2

-1 n
(3% —26) 2
i=1

By replacing the empirical mean X to a robust version, we can obtain a robust estimator for dsy;.

— -1/, _
&SMrob = (XrOb - ﬁ) (3Xr0b - Zﬁ) - 2.

The followings are the result with X}, is Median of Mean and Trimmed mean. The population distribution,
the number of samples, and the number of trials are the same as the above.

To see the performance of these estimators, we consider a contamination model, that is each sample
(Xi)ie[n] identically distributes

Xi = (1-25;)Y; +6;50 Y; . Pareto(a =3, =1) §; id. Bernoulli(0.05).

Then, the results are the followings, which show that while the estimate by non-robust score matching
method is distorted by the outlier, the robust score matching estimator can reduce the effect of the outliers.
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Frequency

Frequency

Frequency

70

Non-robust SME

Frequency

Frequency

Frequency

2000

1000
1

SME : n = 1000

2000
1

1000
I

sd = 0.04108

SME : n = 1000

is 0.1)

2000
|

1500

1000
I

sd = 0.14433

SME : n = 1000

SME : n = 100 SME : n= 500
87 87
=
o B
2 g =]
3
g 1 g 1
r T T T T T 1 T T T T T
0 1 2 3 4 5 8 [} 1 2 3 4
sd = 0.20624 sd= 0.06
Robust SME with Median of Mean (The number of sample of each block is 5)
SME : n = 100 SME : n= 500
8 - 8 -
g g
2] 2]
g -
g - s B4
g -
£
g
g
r T T T T 1 r T T T T
0 1 2z 3 4 5 6 1] 1 2 3 4
sd = 0.48255 sd = 0.20256
Robust SME with Trimmed mean (Removal rate
SME : n = 100 SME: n = 500
g g
CN g
g g
21 2]
g -
g 3 8
g g2
g
i g
o
T T T T T 1 T T T T T
0 1 2 3 4 5 6 0 1 2z 3 4
sd = 0.65209 sd= 021411

sd= 0.1387



6 Summary

First of all in this thesis, we conducted a review of various concentration inequalities. Starting with dis-
cussions on the inequalities involving empirical means and empirical covariances, we proceeded to review
several robust estimators that can serve as alternatives to them. In particular, as an alternative to the em-
pirical covariance, we focused on the estimator introduced by Minsker [16]. The estimator was defined
in (4.3) as a penalized least-squares estimator S with parameter A, as the penalty weight for the sample
deviation from the Gaussianity of the distribution.

Our primary focus in this thesis is on score matching estimator (SME). The original version of SME is
introduced in [7], and generalized version was introduced in [8], which is defined as the minimizer of
the empirical version of (5.1). When dealing with a exponential distribution family, SME can be explicitly
represented by empirical means of multi-liniear forms of the sufficient statistics, as shown in Theorem
5.2.2. This representation provides us with the error bound of sy from the true parameter 6, € © given
in Lemma 5.3.2, where © is a parameter space and a subset of R™. In case the distribution is Ny (g, X),
©® = R? x PDy where PD; € R¥? is the set of whole d dimensional symmetric and positive definite

matrices. This decomposition allows to control the error |95M - 90| in terms of controlling the deviations

of the mean vector g and covariance matrix I' from their empirical analogues.

As an example we consider the case of Gaussian distribution N (g, ) with unknown parameters y, > We
checked that the original SME for the parameters of Gaussian distribution coincides with the most likeli-
hood estimator (MLE). By applying Theorem 5.2.2, we explicitly derived the expression for the generalized
score matching estimator for the parameters of the Gaussian distribution (Corollary 5.4.3). For original
score matching method, that is, we take h(x) = (1,...,1)T as the function h : R? — R which was intro-
duced in the (5.1), the SME can be expressed as a composition of empirical mean and empirical covariance
as shown in Corollary 5.4.4.

One of the contributions of this thesis is a construction of a robust version of score matching estima-
tor (RSM) for the unknown parameter y and X of N(p,X). For this goal, as we saw in Section 5.4.1,
we replaced the empirical quantities corresponding to the empirical mean and covariance matrix in the
generalized SME with robust alternatives. As shown in many books like [14] and papers such as [3], [5],
and [16], there is a lot of candidates as a robust empirical mean and a robust covariance matrix estima-
tor. In this thesis we chose the Median of Means and Trimmed Mean, to which we referred in Section
4.1, as alternatives to the empirical mean, and and employed Minsker’s approach, which we introduce in
Section 4.2, to construct a robust version of the empirical covariance estimator. This choice was made
because the error bounds for these robust statistics can be explicitly calculated. And we showed that in
case that h(x) = (1,...,1)T and the underling distribution is Gaussian, RSE matches the alterative mean
and covariance matrix estimators used in the robustification procedure. (Lemma 5.19)

To analyze the behavior of RSM, we adopted two approaches: error bounds and numerical simulations.
By applying Lemma 5.3.2, we obtained an explicit error bound for RSM for the unknown parameters of
Gaussan or Pareto distribution. In numerical approach, we considered the situation in which we have
samples (Z;);e[n] With Z; ~ (1 = 8;) X; + 6;C;, where X; distributes from Gaussian or Pareto distribution,
C; is some outlier, and § € [0,1]. In other words, the sample contains contaminations at the rate §.
The estimation error in this model differs from the uncontaminated model as we saw in (5.21) and (5.28),
however (5.29) and (5.30) shows that RSM prove to be efficient. The idea to robustify the score matching
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estimator by replacing the components of the estimator to robust alternatives can be extended to the
case of general exponential distribution families because the score matching estimator for an exponential
distribution family can be written as a liniear combination of empirical means and covariance matrix of
derivatives of sufficient statistics. By substituting them with robust counterparts, we derive the RSM for
the parameters of the exponential family.

In the last of the thesis, in Section 5.6 we considered the problem of estimating the shape parameter of
Pareto distribution, the original SME can not be represented by empirical mean and covariance matrix.
However generalized SME with suitable h enables us to write down the estimator as the composition of
them, and we can replace them to robust alternatives and robust score matching estimators for the shape
parameter of Pareto distribution. Even here, we consider a Pareto distribution with contaminations, and
we confirmed the RSM’s resilience to outliers .

There are several issues that we could not address in this thesis. As a RSM for the parameters of Gaussian
distribution, we used Minsker method, which have parameter A,. It is interesting to determine the best
parameter for effectively mitigating the influence of outliers. The choice of the most suitable method will
depend on the sample size. To address this question, we need to simulate data using various methods for
different sample sizes. And, here we only discussed about the specific h. When h is general, I'(X) and g(X)
include the term related to hA(X), SME for the parameters of Gaussian distribution cannot be expressed in
terms of empirical mean and empirical covariances. For instance, when the function h : R? — R? sit.
h(x) = x as the function A in (5.1) , then we need a robust estimator for the 3rd moment at least. So we
can not directly apply our idea dealing only with robust mean and covariance matrix estimator. I would
like to leave these problems to the future researches.

As I conclude this thesis, I would like to express my gratitude to Prof. Mathias Drton and Dr. Oleksandr
Zadorozhnyi. Professor Mathias offered me the opportunity to delve into the captivating subject of ro-
bustifying the score matching estimator. Dr. Zadorozhnyi consistently scheduled meetings and provided
unwavering support throughout my thesis. He also generously shared valuable advice and made revisions
to my drafts. I am profoundly thankful for all the insightful discussions with them.
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7 Appendix : R code

7.1 Robust estimators

The following is functions to estimate the parameters from a given observations X by robust methods

library(plyr)
HHRHRHHHHH AR AR AR AR AR AR HRHRHH
### Robust Mean estimator###
RHRHRHHHHH AR AR ARG ARG AR AR HRHRHH
#Input : X:samples data nblocks:number of blocks
#0utput: Median of mean
Median_of_mean_1D <- function(X,nblocks){#(data(n X 1) ,number of blocks)
number_of_sample <- length(X) #input vector
m <- floor(number_of_sample/nblocks)
if(m*nblocks != number_of_sample){
message ("Number of samples can not be devided by number of blocks")
3
X_dev <- array(X,dim=c(m,nblocks))
Z <- array(0,dim=c(1,nblocks))
for(i in 1:nblocks){
Z[i] <- mean(X_dev[,1i])
3
return(median(z))

}

#Input : X:samples data threshold:outlier rate
#0utput: Trimmed mean
Trimmed_mean_1D <- function(X,e){
number_of_sample <- length(X) #input vector
under_threshold <- floor(number_of_sample/2 * e)
#upper_threshold <- number_of_sample/2 - under_threshold
if(under_threshold == 0){
return(mean(X))
}else{
alfa <- sort(X[1:(number_of_sample/2)],partial =
under_threshold) [under_threshold]
beta <- -sort(- X[1:(number_of_sample/2)], partial =
under_threshold) [under_threshold]
total <- 0
for(i in ((number_of_sample/2)+1) :number_of_sample) {
total <- total + max(alfa,min(beta,X[i]))
}
return(total/length(((number_of_sample/2)+1) :number_of_sample))
3
3
HA#RARHH B AR HRHH R AR H R AR AR AR AR
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### Robust Covariance estimator###
HHHRRERBHHHHHHA R R RS
covariance_estimation <- function(X_multi_dim){
#X is (number of data * dim )matrix
result<- matrix(0, nrow = d, ncol = d)

for(w in 1:d){
result[w,w] = Chatt_sigma(X_multi_dim[,w]))*2
3
for(wl in 2:d){
for(w2 in 1:(wl-1)){
sigma_plus = hatt_sigma(X_multi_dim[,wl]/sqrt(result[wl,wl])+
X_multi_dim[,w2]/sqrt(result[w2,w2]))
sigma_minus = hatt_sigma(X_multi_dim[,wl]/sqrt(result[wl,wl])-
X _multi_dim[,w2]/sqrt(result[w2,w2]))
(sigma_plus*2 -sigma_minusA2)/(sigma_plus+2 +
sigma_minusA2)*sqrt(result[wl,wl])*sqrt(result[w2,w2])
result[wl,w2]

result[wl,w2]

result[w2,wl]
b
3
return(result)

}

Median_absolute_deviation_1D <- function(X) {#(data(n X 1) ,number of blocks)
Const = 1.1926
number_of_sample <- length(X) #input vector
Y <- matrix(0,nrow = number_of_sample,ncol=number_of_sample)
for(s in 1 : number_of_sample){
for(t in 1: number_of_sample){
Y[s,t] = abs(X[s]-X[t])
3
}
partial_median <- rep(0,number_of_sample)
for(s in 1 : number_of_sample){
partial_median[s] = median(Y[s,])
}
return(Const*median(partial_median))

}

Altenative_MAD_1D <- function(X){#(data(n X 1),number of blocks)

Const = 2.2219
number_of_sample <- length(X) #input vector
Y <- array(0,dim=c(number_of_sample,number_of_sample))
for(s in 1l:number_of_sample){

for(t in 1:number_of_sample){

Y[s,t] <- abs(X[s]-X[t])

ks

}

h <- (floor(number_of_sample/2) + 1)*floor(number_of sample/2)
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return(Const*sort(Y,partial = h)[h])
b

7.2 Minsker method

The followings are the functions to conduct Minsker’s method from a given observations X.

Huber_loss_prime <- function(lambda,u){
if(abs(u) <= lambda){
return(u)
}else{
if(u >= 0){return(lambda)?}
else{return(-lambda)}
}
3

Huber_loss_prime_matrix <- function(lambda,Y){# M is d x d matrix
output_Y <- matrix(0,nrow = dim(Y)[1], ncol = dim(Y)[2])
for(j in 1:dim(Y)[1]){
output_Y <- output_Y + Huber_loss_prime(lambda,eigen(Y)$values[j])*
eigen(Y)$vectors[, jl%*%t (eigen(Y)$vectors[,j])
3
return(output_Y)
ks

Huber_gamma <- function(lambda,u){
return(sign(u)*max (abs(u)-lambda,0))

}

Huber_gamma_matrix <- function(lambda,Y){# M is d x d matrix
#Apply Huber_loss function for each entries
output_Y <- matrix(0,nrow = dim(Y)[1], ncol = dim(Y)[2])
for(j in 1:dim(Y)[1]){
output_Y <- output_Y + Huber_gamma(lambda,eigen(Y)$values[j])*
eigen(Y)$vectors[, j1%*%t(eigen(Y)$vectors[,j]l)
}
return(output_Y)

}

Minsker <- function(Y,lambdal,lambda2,Number_of_iterations,B,S_initial){
n <- dim(Y)[1]
d <- dim(Y)[2]
lambda = (sqrt(n*(n-1))*lambda2)/2
stepsize <- rep(0,Number_of_iterations)
for(t in 1: Number_of_iterations){
if(B==0){stepsize[t] <- 1
}else{stepsize[t] <- t*(-2/3)}
}

S_trend <- array(0,dim=c(d,d,Number_of_iterations))
G_trend <- array(0,dim=c(d,d,Number_of_iterations))
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huber_trend <- array(0,dim=c(d,d,Number_of_iterations))
Y_tilde <- array(0,dim = c(d,n,n))
Y_tilde_Y_tilde_T <- array(0,dim = c(d,d,n,n))

for(i in 1:n){
for(j in 1:n){
Y_tilde[ ,i,j] <- (Y[i,] - Y[j,1D/(sart(2))
Y_tilde_Y_tilde_T[ , ,i,j] <- Y_tilde[ ,i,jl1%*%(t(Y_tilde[ ,i,jl1))
}
}
S <- S_initial
for(t in 1:Number_of_iterations){ #Step 1
G=0
if(B == 0){#counting up all the combinations
for(ii in 1:(n-1)){
for(jj in (ii+1):n){
G <- G - Huber_loss_prime_matrix(lambda,
Y_tilde_Y_tilde_T[,,ii,jjl-S)/(m*(n-1)*0.5)
}
3
}else{
for(b in 1:B){
i <- as.integer( runif(l, min
j <- as.integer( runif(l, min

1, max = n-1) )
i+l, max = n) )

G <- G - (Huber_loss_prime_matrix(lambda, Y_tilde_Y_tilde_T[,,1i,]]
- S))/B
3
}
#Step 5,6
S <- Huber_gamma_matrix((lambdal)/2,S - stepsize[t]*G)
S_trend[,,t] <-S
G_trend[,,t] <-G
}
return(list(S=S,S_trend = S_trend, G_trend = G_trend))
3

7.3 Score matching method

The following is the function to estimate the parameters from a given observations X by score matching
method.

# This R-code works only in case h =1
Score_Matching_3D <- function(X,n,flag){
#Input : X:samples data n:number of Samples, flag : flag of Robust or Non-robust
#Output: Estimates for mean and covariance by SME
# flag is 1 for robust, 2 for non-robust
d <- 3
# set variables and vectors
theta_SM <- matrix(0, nrow = 1, ncol = d*(d+1)/2 + d)
Gammall <- array(0,dim=c(d,d,d))
Gammal2 <- array(0,dim=c(d,1,d))
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Gamma2l <- array(0,dim=c(1l,d,d))
Gamma22 <- array(0,dim=c(1,1,d))
Gamma <- array(0, dim=c(d+1,d+1,d))
temp <- c(0,0)

if(flag == "Robust"){
if(robust_covariance == "Minsker"){
Sigma_SM <- Minsker(X,lambdal,lambda2,Number_of_iterations,B,S_initial)$S
}else{
Sigma_SM <- covariance_estimation(X)
}
}

# Calculate Gamma
for(j in 1:d){
if(flag == "Robust"){
for(w in 1:d){
Gammal2[w,1,j]
Gamma21[1,w,j]
3
Gammall[ , ,j] = Sigma_SM + t(t(Gammal2[ ,1,j1)) %*% Gammal2[ ,1,j]

- hatt_mu(X[,w])
- hatt_mu(X[,w])

}else if(flag == "Non-Robust"){
for(i in 1:n){
Gammall[,,j] = Gammall[,,j] + (X[i,]) %*% t(X[i,])/n
Gammal2[,1,j] = Gammal2[,1,j] - (t(1 %*% ( X[i,]1)))/n
Gamma21[1,,j] = Gamma21[1,,j] - t(X[i,])/n
}
3
Gamma22[,,j] =1
Gammal[,,j] = rbind(cbind(Gammalll,,j], Gammal2[,,jl),
abind (Gamma21[1,,j],Gamma22[,,j]1))
}
zero <- matrix(0, nrow=d+1,ncol=d+1)
Gamma_12 = rbind(cbind(Gammal,,1],zero,zero),cbind(zero, Gammal,,2], zero),
cbind(zero, zero,Gammal,,3]))
transition = rbind( # This is "R" in the thesis

c(1,0,0,0,0,0,0,0,0),
c(0,1,0,0,0,0,0,0,0),
c(o0,0,1,0,0,0,0,0,0),
c(0,0,0,1,0,0,0,0,0),
c(0,1,0,0,0,0,0,0,0),
c(0,0,0,0,1,0,0,0,0),
c(0,0,0,0,0,1,0,0,0),
c(0,0,0,0,0,0,1,0,0),
c(o0,0,1,0,0,0,0,0,0),
c(0,0,0,0,0,1,0,0,0),
c(o,0,0,0,0,0,0,1,0),
c(0,0,0,0,0,0,0,0,D)

)

Gamma_12t = t(transition) %*% Gamma_12 %*% transition
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# Calculate the g
e <- array(rbind(
c(1,0,0),
c(0,1,0),
c(0,0,1)
),dim=c(3,3))
gl <- array(0, dim=c(d,d))
g2 <- array(0, dim=c(1l,d))
for(j in 1:d){
gll,jl = elj,]
g2[,3]1 =0
}
g <- abind(g91[,1],92[,1]1,91[,2],92[,2],91[,3]1,92[,31)
theta_SM[1, ] <- solve(Gamma_12t)%*% t(transition)%*% g

K_SM <- matrix(c(theta_SM[1,1],theta_SM[1,2],theta_SM[1,3],
theta_SM[1,2],theta_SM[1,5],theta_SM[1,6],
theta_SM[1,3],theta_SM[1,6],theta_SM[1,8])
,hrow = d, ncol = d)

eta_SM <- matrix(c(theta_SM[1,4],

theta_SM[1,7],
theta_SM[1,9])
,hrow =d, ncol =1)

mu_SM <- solve(K_SM) %*% eta_SM

Sigma_SM <- solve(K_SM)

return(list(mu_SM=mu_SM, Sigma_SM=Sigma_SM))

7.4 Maximum likelihood method

The following is the function to estimate the parameters from a given observations X by most likelihood
method.

Most_Likelihood <- function(X,n,flag){
#Input : X:samples data n:number of Samples, flag : flag of Robust or Non-robust
#0utput: Estimates for mean and covariance by MLE
# flag is 1 for robust, 2 for non-robust

Sigma_ML <- matrix(0,nrow = 3,ncol=3)
if(flag == "Non-Robust"){
mu_ML <- c(sum(X[,1])/n,sum(X[,2])/n,sum(X[,3])/n)
for(i in 1:3){
for(j in 1:3){
Sigma_ML[i,j] <- sum((X[,i]-mu_ML[i])*(X[,j]l-mu_ML[j]1))/n

}
3
}else if(flag == "Robust" ){
mu_ML <- cChatt_mu(X[,1]),hatt_mu(X[,2]),hatt_mu(X[,31))
if(robust_covariance == "Minsker"){

Sigma_ML <- Minsker(X,lambdal,lambda2,Number_of_iterations,B,S_initial)$S
#See the Robust estimation R code
}else{
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Sigma_ML <- covariance_estimation(X) #See the Robust estimation R code

3
b
return(list (mu_ML=mu_ML,Sigma_ML=Sigma_ML))

}

7.5 TPR and FPR

This is the function to calculate TPR and FPR of the estimation result.

TPR_FPR <- functionChatt_Sigma,Sigma0,K) {
#Input : Estimates of covariance, true covariance, number of estimates
#0utput: TPR and FPR for each epsilon
TPR <- rep(0,100)
FPR <- rep(0,100)
d <-3
for(e in 1:100){
epsilon <- e/100
SO_off <- 0
hatt_SO0_off <- rep(0,100)
hatt_S_off_and_SO0_off <- rep(0,100)
for(i in 1:(d-1)){
for(j in (A+1):(d)){
if(SigmaO[i,j] != 0){
SO_off <- SO_off + 2
3
3
3
for(sample in 1:K){
for(i in 1:(d-1)){
for(j in (i+1):(d)){
if(Chatt_Sigma[sample,i,j])A2 > epsilonr2){
hatt_SO_off[sample] <- hatt_SO_off[sample] + 2
3
3
3
3
for(sample in 1:K){
for(i in 1:(d-1)){
for(j in (i+1):(d)){
if((SigmaO[i,j] != 0)&(Chatt_Sigma[sample,i,j])*2 > epsilon*2)){
hatt_S_off_and_SO_off[sample] <- hatt_S_off_and_SO_off[sample] + 2
3
3
b

}
FPR[e] <- (meanChatt_SO_off - hatt_S_off and_SO0_off))/(d*(d-1) - SO_off )

TPR[e] <- (meanChatt_S_off _and_SO0_off))/(S0_off )
3
return(rbind (TPR,FPR))
3
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