
Technical University Munich

Department of Physics

Master’s Thesis in Quantum Science & Technology

Using the Time Dependent Variational Principle
for Tree Tensor Networks to Simulate Single-Qubit

Quantum Error Correction

Anwenden des Time Dependent Variation Principle für Tree
Tensor Networks zum Simulieren von Single-Qubit Quantum

Error Correction

Julien Kollmann

November 15th, 2023

Supervised by Prof. Dr. Christian Mendl
Advised by Richard Milbradt

1



Preamble

Acknowledgements
I would like to thank my supervisor Prof. Dr. Christian Mendl and my advisor Richard Milbradt for their
time, help and guidance. Richard’s help during the work on this thesis was vital to its successful completion

Code
All code was written independently by me in Python using only standard modules as well as the module
PyTreeNet. PyTreeNet is an unreleased in-development Python module for working with Tree Tensor Net-
works. Up to now, contributions to this module have been made by Richard Milbradt and me. In particular,
the Time Dependent Variational Principle was implemented by me.

Figures
All figures were created independently by me using Python and the Python module Matplotlib.

Mathematical notation
An overview over the mathematical notation that is not specific for Tree Tensor Networks is provided in
section A.

2



Abstract

Utilizing the recent generalization of the Time Dependent Variational Principle (TDVP) for Tree Tensor
Networks (TTN) by [1], this thesis provides a TDVP implementation that is discussed along with TTN
fundamentals extensively and then used to simulate quantum circuit operations for circuits that interact
with an environment (or itself).
TTNs allow for well-performing computation of operations on the Hilbert space of a multi-qubit system.
The TDVP algorithm for TTNs can be used to time-evolve a quantum state under the action of a system
Hamiltonian, which is derived for a model of five qubits, where each qubit is connected to a single boson. The
system dynamics are constituted of three parts: Nearest-neighbor qubit-qubit interaction, nearest-neighbor
qubit-boson interaction and application of quantum circuit gates.
The goal is to apply this methodology to the 5-qubit quantum error correction (QEC) code by [2] and
observe the impact a bosonic bath and qubit-qubit interaction have on the fidelity of the error correction.
The model and error correction setup is similar to [3], where for the same QEC code a similar reduction of
circuit fidelity is observed as in this thesis.
The presented algorithms and model are versatile and reliable. However, challenges arise when applying the
algorithm to the presented model as the performance demand for accurate simulation is the main limitation
to the number of presented configurations. A discussion of possible improvements to the implementations
of the algorithms as well as to the model covers several aspects that could be included in future work.

3



CONTENTS

Contents

1 Introduction 5

2 Time-dependent Variational Principle for Tree Tensor Networks 6
2.1 TTN Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Contraction and decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Representing quantum states and operators . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Orthogonality center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Reduced density matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 TDVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Tangent space projector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 First-order integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Site and link update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Second-order integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 TDVP variants and dynamic bond dimension adjustments . . . . . . . . . . . . . . . . 12
2.2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Benchmarking and accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Quantum Error Correction 16
3.1 QEC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 5-qubit QEC Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 QEC within bosonic environment 19
4.1 5-qubit system with bosonic bath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 TTN representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 System Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Quantum circuit simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 TTO representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Circuit Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Quantum circuit fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 System variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 TDVP parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Results 26
5.1 State preservation in environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Non-zero encoding times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Implementation on commercially available quantum hardware . . . . . . . . . . . . . . . . . . 28

6 Conclusion 28
6.1 Sophisticated implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Improvements to the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A Definitions 33

B Calculations 33
B.1 En- and decoding scheme for 5-qubit QEC code . . . . . . . . . . . . . . . . . . . . . . . . . . 33
B.2 Example calculation for 5-qubit error syndrome . . . . . . . . . . . . . . . . . . . . . . . . . . 34
B.3 Kraus operators for 5-qubit code recovery step . . . . . . . . . . . . . . . . . . . . . . . . . . 34

C Additional figures 34

4



1 INTRODUCTION

1 Introduction

Despite experimental advances in quantum computation (QC) such as the demonstration of quantum
supremacy by [4] or the advent of commercially available quantum compute time, e.g. IBM (see section
5.3), the error rates of modern quantum computers are still orders of magnitude too high for many practical
applications of quantum algorithms ([5]). To mitigate errors such as bit or phase flips of the qubits, quantum
error correction (QEC) codes are a useful tool. [3] employ the 5-qubit QEC code by [2] in their very recent
publication1 and observe increased resilience against noise introduced by a bosonic environment. To gain a
better understanding of QEC and the challenges quantum computers face it is expedient to further analyze
the 5-qubit code and the effects of noise models on the qubits.
Based on the unreleased, in-development Python module PyTreeNet to which Richard Milbradt and I have
contributed, the relatively recent generalization of the Time Dependent Variational Principle (TDVP) for
Tree Tensor Networks (TTN) by [6] enables a detailed exploration of the effects of n-boson bosonic baths
on the qubits of the 5-qubit code. To that end, a suiting TTN has to be established along with specific op-
erations that serve the representation and the time-evolution of quantum multi-particle states. The 5-qubit
QEC code is discussed in-depth and the necessary operations are adapted to the model to allow simultaneous
application of the 5-qubit en- and decoder as well as the dynamics induced by the n-boson bosonic baths.
TTNs allow performing meaningful operations on systems that could not be done in matrix-form as the
matrix size scales exponentially. The capabilities of TTNs and manipulation of TTNs with the provided
definitions and operations, such as the tensor-valued singular value decomposition (SVD), are relevant far
beyond the scope of this specific problem.
QEC codes and in particular the 5-qubit code provide a pair of encoding and decoding operation that can
protect a logical qubit from a single arbitrary error of one of its physical qubits – an error which could be
catastrophic for the computation at hand – and is thus a powerful and important concept to QC entirely.
The presented model consists of 5 qubits which are each connected to their own bosonic bath that consists of
one boson – a generalization of this model for multiple bosons per qubit is also provided. The Hamiltonian
of the system is designed to allow for the qubits to interact with their respective boson as well as their
nearest qubit neighbor(s). A modification of the Hamiltonian for the application of quantum gates is also
presented. The methods used are therefore not unique to this problem and can also be transferred to other
TTN problems.

1Only the preprint can be cited as the paper has been accepted only late October 2023.
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2 TIME-DEPENDENT VARIATIONAL PRINCIPLE FOR TREE TENSOR NETWORKS

2 Time-dependent Variational Principle for Tree Tensor Net-

works

Since the dimension D of the Hilbert space for quantum states grows exponentially with the dimensionality n
of the quantum state (e.g. D = 2n for qubits), computing the time evolution of a quantum state represented
by a vector becomes unfeasible for larger n. Physical interactions are local, so instead of representing the
quantum state by a single vector, but a Matrix Product State (MPS) or – more generally – a Tree Tensor
Network (TTN) with a structure well-suited for the interaction is used ([7]).
The underlying material for TTNs presented in this section is taken from [8], while the mathematical notation
is adapted to the work done by [1] as the TDVP implementation in this thesis is based on it. Furthermore,
to better align notation and Python code, tensor indices will be called ”legs”.
Some definitions that are commonly used in quantum physics and not specific to TTNs or TDVP are
provided in section A.

2.1 TTN Basics

Tensors of rank N are N -dimensional arrays – just like matrices are 2-dimensional arrays and vectors are
1-dimensional arrays (or tensors of rank 2 or 1, respectively). A Tensor Network (TN) is composed of

multiple tensors Ti := T
[si]
Qi

, where si references the site of the tensor within the network and Qi is the subset
of legs qk that are attached to the tensor. Every leg qk is attached to exactly two tensors in such a way
that the network remains loop-free, constituting a Tree Tensor Network (TTN) – those legs are also called
bonds. There are exactly N − 1 unique qk for every TTN. Additionally to the Qi legs, each tensor Ti has
attached either one or two so-called physical legs, as described in the upcoming section 2.1.2.

2.1.1 Contraction and decomposition

TNs are contracted along all legs qk – which are those that connect exactly two tensors from the network.
For two tensors Aa,b and Bb,c the contraction

Ca,c =
∑
b

Aa,bBb,c (1)

is simply the matrix product of A and B. For tensors of higher rank, the legs can be grouped (either
as legs of the resulting tensor or as contracted legs) and reinterpreted as single legs. Grouping legs and
reinterpreting the shape of the tensor is the equivalent of reshaping an array in computational procedures.
Another important matrix function that can be generalized for tensors is the singular value decomposition
which is used e.g. to perform low-rank approximations or in the TDVP algorithm for orthogonalizing the
TTN. The matrix-SVD

Ci,j =
∑
q

Ui,qSq,qV
†
q,j (2)

can be rewritten for the tensor-SVD as follows:

Ci1,...,im;j1,...,jn =
∑
q

Ui1,...,im;qSq,qV
†
q;j1,...,jn

. (3)

Oftentimes, e.g. when orthogonalizing a set of tensors, the singular values stored in S are not relevant and
thus a QR-decomposition

Ci1,...,im;j1,...,jn =
∑
q

Qi1,...,im;qRq;j1,...,jn , (4)

which is easier to compute, suffices. Orthogonal tensors can simplify the computation of the contraction of
the TN with their complex conjugate since the orthogonal matrix propertyQQT = I translates to contracting
a tensor along its open legs with its complex conjugate, i.e. orthogonal leaves and branches simplify to the
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2 TIME-DEPENDENT VARIATIONAL PRINCIPLE FOR TREE TENSOR NETWORKS

1 2 4 5

3

Figure 1: Tensors 1-5 form a loop-free TN, i.e. TTN. Each tensor has one physical leg, indicated
by the upper-right diagonal lines. Tensors 3, 4 and 5 are orthogonal with respect to the tensor they
point towards (2) as indicated by their triangular shape.

identity and can be ignored when contracting the TN with its adjoint. This is useful for calculating the
norm of a TN or – in the context of quantum states – computing operator expectation values. For TNs,
orthogonal parts are usually indicated by triangles pointing in the direction in which the contraction results
in the identity. An example for a five-tensor TTN with partial orthogonalization is displayed in figure 1
(with one physical leg per tensor).
To touch on the Tree picture: The terminology is taken from the well-known standard graph theory. In the
example of figure 1, T2 could be chosen as the root. This would result in three branches: firstly T1 and T2
with leaf T1, then T2 and T3 with leaf T3 and lastly T2, T4 and T5 with leaf T5.

2.1.2 Representing quantum states and operators

As mentioned at the beginning of this chapter, TTNs are used for expressing quantum states in a more
compact way. The N -dimensional quantum state

|ψ⟩ =
∑

s1,...sN

cs1,...,sn |s1 · · · sN ⟩ ∈ H (5)

written in the product basis |s1 · · · sN ⟩ has s1 · · · sN coefficients cs1,...,sN . When working with a TTN, those

coefficients are split into a product of lower-rank tensors
∑

q1,...,qN−1
T
[s1]
Q1
· · ·T [sN ]

QN
= cs1,...,sN . Every one of

those T
[si]
Qi

has exactly one physical leg si(having zero physical legs is equivalent to having one physical leg
with dimension 1). While cs1,...,sN has dim(s1) · · · dim(sN ) parameters, each tensor Ti with non-physical legs
Qi has dim(si) ·

∏
qk∈Qi

dim(qk) parameters. For large N , i.e. systems with many sites, the latter expression
can be substantially smaller. Requirement for that is that the dimensionality of the bonds between the
tensors (bond dimension) is relatively small. The tensor network T is the set of tensors Ti and represents
the quantum state |ψ⟩, which is written as |ψ[T ]⟩.
The Hamiltonian (or any other operator ∈ L(H)) of the system has the same TTN structure as the state
|ψ[T ]⟩, but with two physical legs at every site si (corresponding to matrix-valued operators for states in
vector representation). An example is shown in figure 3, where for some quantum operator Ô, the contraction
corresponding to ⟨ψ|Ô|ψ⟩ is shown for a 5-tensor TTN.
This network serves as a useful example representing a chain of 5 qubits, each connected to its neighbor(s).
The tensors of the network can be chosen as

T := {T [s1]
q1 , T [s2]

q1,q2 , T
[s3]
q2,q3 , T

[s4]
q3,q4 , T

[s5]
q4 } , (6)

as shown in figure 2. The network T has physical legs s1, ..., s5, which can be grouped (vectorization) to
match the single physical leg of |s1 · · · s5⟩. The tensors Ti also have legs q1, ..., q4. It is worth noting that

7



2 TIME-DEPENDENT VARIATIONAL PRINCIPLE FOR TREE TENSOR NETWORKS

T1 T2 T3 T4 T5
q1 q2 q3 q4

s1 s2 s3 s4 s5

Figure 2: A 5-qubit chain is shown. Each qubit is represented by a tensor Ti with exactly one physical
leg si of dimensionality 2. The tensors are connected to their respective neighbor(s) via bonds qk.
The bond dimensions between the tensors determine if the network is an exact representation of
the quantum state (high enough bond dimension) or merely an approximation (truncated bond
dimension).

T1 T2 T3 T4 T5

O5O1 O2 O3 O4

T *
4 T *

5T *
1 T *

2 T *
3

Figure 3: For the network from figure 2 the contraction ⟨ψ|Ô|ψ⟩ for a TTN representation of an
arbitrary quantum operator Ô acting on |ψ⟩ is shown. The legs are not labeled to make the network
structure easier to grasp. The physical legs are not connected in order to show that this is a contrac-
tion of three separate TTNs – interpreting the entire contraction as one single TTN is not possible
(as there would be loops, e.g. T1, T2, O2 and O1).

while this representation classifies as a Matrix product state (MPS) and thus is only a special case of TTNs,
it offers a great starting point for constructing TTNs with the intention of representing quantum circuits.
The dimensionality of the physical legs is given by the nature of the system (i.e. 2 for qubits), but for the
legs acting as the bond between the sites the dimensionality is not. If the bond dimension is chosen large
enough, the quantum state is represented exactly. If on the other hand the bond dimension is truncated the
TTN serves as a (good) approximation of the quantum state. The bond dimension necessary for an exact
representation is lower for bonds closer to the leaves of the network and higher for bonds closer to the center
of the network (i.e. far away from a leaf), see [7]. In the example T , q2 and q3 have higher dimensional
demand than q1 and q4 when representing a highly entangled state. While the bond dimensions increase the
amount of entanglement the network can represent exactly, they also increase the computational demand
for contractions along the respective legs. It is thus useful to truncate the bond dimensions as far as possible
without distorting the state too much by approximating too heavily. For operators corresponding to the
network, e.g. the system Hamiltonian, the bond dimension is given by the mathematical formulation of the
operator. There may be multiple exact representations with differing bond dimension though. In this case
– since they perform equivalent operations – the representation with lower bond dimension is favorable due
to lower computational cost.
Finding a suitable TTN structure is not always as trivial as in this example, but in many cases it is, e.g.

Fork-Tree Product States (FTPS), as discussed in [6] and as used later in this thesis for the circuit model
with one boson per qubit in section 4.
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2 TIME-DEPENDENT VARIATIONAL PRINCIPLE FOR TREE TENSOR NETWORKS

2.1.3 Orthogonality center

Two TTNs have the same value when their contractions result in the same tensor – even if the TTNs do
not have the same parameters; There are degrees of freedom for TTNs. While [8] introduces also other
degrees of freedom, the gauge degree of freedom is particularly relevant here. Constructing an invertible
matrix M ∈ Cdim(qk) allows inserting M−1M = 1dim(qk) along the leg qk – obviously without changing the
contraction result of the TTN or the quantum state the TTN represents. The physical state is invariant
under the absorption of M (respectively M−1) into the tensors connected by qk. These so-called gauge
transformations give rise to the question for canonical forms. It is quite useful (and for the derivation of
the TDVP algorithm necessary) to orthogonalize a TTN. A TTN is orthogonalized if every tensor Ti of
the network but one is orthogonalized to the remaining tensor Tc. A tensor A is orthogonalized towards a
neighboring tensor B by first performing the QR-decomposition (eq. 4) and then replacing A with Q as
well as absorbing R into B. A tensor A is orthogonalized towards another tensor B when all the tensors
along the unique path that connects them are orthogonalized in that direction. To obtain an orthogonalized
TTN, all tensors must be orthogonalized towards the desired orthogonality center, starting with the tensors
that are the furthest away and then moving closer until the center is reached.
Looking only at orthogonalized parts of TTNs it is convenient to introduce the notation

|q[i]k ⟩ , (7)

where i is the site the orthogonalized sub-network is attached to via qk. In this context, q
[i]
k is a sub-network

of the TTN and is named after the connecting leg. This notation allows to express a quantum state with

orthogonality center C
[si]
Qi

as

|ψ⟩ =
∑
si,Qi

C
[si]
Qi
|si⟩ ⊗qk∈Qi |q

[i]
k ⟩ (8)

since connected at every leg in Qi is an orthogonalized sub-network. Here, the sum is over all basis states
of si as well as the qi ∈ Qi.
Orthogonalizing a TTN is important for the following section on the TDVP but is also useful for computing
single-site expectation value of an operator Ô. Complete contraction of the TTN can be avoided by or-
thogonalizing the TTN towards the site of interest, yielding the site-tensor T . After contracting T along its
physical leg with Ô and its conjugate T ∗ (also along the physical leg), the expectation value can be obtained
by tracing out all other legs, i.e. connecting each remaining leg of T with its T ∗ counterpart.

2.1.4 Reduced density matrix

For mixed (e.g. entangled) quantum states |s1 · · · sN ⟩ the state of a single site/qubit si cannot be expressed
as a vector |si⟩. Instead, only the reduced density matrix ρs1 provides information about its state. TTNs
offer a simple way to compute the reduced density matrix of a state |ψ⟩ for a subsystem R:

ρ
|ψ⟩
R = |ψ⟩R⟨ψ| = tr(¬R)|ψ⟩⟨ψ| , (9)

which can be read as the outer product of |ψ⟩ with its adjoint in combination with contracting the sites
with their adjoints along all open legs except those of R, as shown in [8]. For the previous example T of the
5-qubit MPS this operation is shown in figure 4. Here, sites s2, s3 and s4 have been chosen as the subsystem

R. The shown contraction is thus ρ
|ψ⟩
s2,s3,s4 .

2.2 TDVP

Quantum states |ψ⟩ evolve under the action of a Hamiltonian Ĥ according to the well-known time-dependent
Schrödinger equation (TDSE)

i
d

dt
|ψ⟩ = Ĥ(t)|ψ⟩ (10)

9



2 TIME-DEPENDENT VARIATIONAL PRINCIPLE FOR TREE TENSOR NETWORKS

T2 T3 T4

T *
2 T *

3 T *
4

q1

q2 q3

q2 q3

q4

s2 s3 s4

s2 s3 s4

Figure 4: For the subsystem of sites 2, 3 and 4 of the network from figure 2 the partial trace is
computed to obtain the reduced density matrix ρ

|ψ⟩
s2,s3,s4 . The network graph shown here represents

the outer product of the sites with their adjoints and the contraction along the remaining open legs
with their adjoints.

with h̄ = 1. Utilizing the Time-Dependent Variational Principle (TDVP), this equation can be re-written
as

i
d

dt
|ψ[T ]⟩ = P̂|ψ[T ]⟩Ĥ(t)|ψ[T ]⟩ (11)

for a TTN representation of the state |ψ[T ]⟩ and P̂ the tangent space projector as derived in the following
section.

2.2.1 Tangent space projector

The following derivation of the tangent space projector is based on work by [9]2 on TDVP for MPSs and
extended by the generalization to TTNs by [1].
Let MT ⊂ H be the manifold (subspace) accessible by variation of the parameters of the TTN T that is
used to represent a quantum state |ψ⟩ ∈ H, i.e. |ψ[T ]⟩ ∈ MT ⊂ H. Considering the TDSE for |ψ[T ](t0)⟩,
the time-evolved state |ψ(t1)⟩ (t1 > t0) will be in H but might be outside the manifold MT . To find a
good approximation for |ψ[T ](t1)⟩ (i.e. one that is ∈ MT ) the TDVP utilizes a projection P̂|ψ[T ]⟩ onto the
so-called tangent space – providing eq. 11 for solving the TDSE in the TTN subspace. The projection on
the right hand side of the equation leads to vectors i ddt |ψ⟩, which are elements of the tangent space due to
their nature as partial derivatives.
For an arbitrary vector |α⟩ ∈ H, the element |Θα[B]⟩ = P̂|ψ[T ]⟩|α⟩ of the tangent space of |ψ[T ]⟩ the
optimization problem

min
B
∥ |Θα[B]⟩ − |α⟩ ∥2 (12)

is equivalent to the projection problem. For TTNs specifically Bauernfeind et al. [1] derive the resulting
projection operator

P̂|ψ[T ]⟩ = +
N∑
i=1

1si ⊗
∑
Qi

|q[i]1 · · · q
[i]
ri ⟩⟨q

[i]
1 · · · q

[i]
ri | −

∑
qk:(i,j)

|q[i]k ⟩⟨q
[i]
k | ⊗ |q

[j]
k ⟩⟨q

[j]
k | (13)

=: +
N∑
i=1

P̂ site
i −

∑
qk:(i,j)

P̂ bond
i,j

2Their supplementary material is extremely helpful. For an extensive derivation of the tangent space projector for
MPSs, see the supplementary material of their later work [10].
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2 TIME-DEPENDENT VARIATIONAL PRINCIPLE FOR TREE TENSOR NETWORKS

where the sum over qk : (i, j) is a sum over all virtual legs qk. The nearest-neighbor site-pair that is con-
nected by qk is site i and site j. Note the use of the orthogonalization notation from section 2.1.3. Applying
the projector as demanded by the right hand side of eq. 11 results in the forward (+) time evolution of the
N site tensors and the backward (−) time evolution of the N − 1 bonds qk. In this context the bonds qk are
also referred to as ”links” – to emphasize that they are links between two tensor sites and not physical legs.

2.2.2 First-order integration

The integration scheme that solves this projected TDSE in the first-order solves the 2N−1 terms individually
(locally). Implementing a protocol to find a suitable integration sequence that completes one time step ∆t
can be done in various ways. The protocol described in [1] propagates from a start point to an end point
through the network:

Algorithm 1: First-order TDVP integration sequence

start, end←− Choose any two sites
i←− start
while i ̸= end do

qk ←− Leg connecting i towards end
if Any of Qi \ qk connects i towards pre-update site then

i←− Any leaf of the respective branch
else

SiteUpdate(i)
LinkUpdate(qk)
i←− Site connected to i via qk

end

end
SiteUpdate(end)

To update a site or a link, the time-discrete solution to the TDSE

A(t+∆t) = e±iHeff∆tA(t) (14)

for the vectorized site or link parameters A and the matricized effective site or link Hamiltonian Heff . The
sign in the exponent is − for the forward time evolution of the sites and + for the backward time evolution
of the links3. The computation of A and Heff will be discussed in the following subsection.
The sequence provided by algorithm 1 is not ideal and can require unnecessary many orthogonalizations
between site updates. A good extension to the presented protocol is to choose start and end point of the
sequence as two leaves, such that there is a maximum number of other sites along the path that connects
these two. This way, the total distance being covered by jumping to the leaves of branches is reduced – which
again reduces the number of orthogonalizations performed. When setting up a simulation for a specific tree
structure it may be beneficial to design a specific sequence.

2.2.3 Site and link update

The site update as described in [1] uses

H(siQi),(s′iQ
′
i)
= ⟨siq[i]1 · · · q

[i]
ri |H|s

′
iq

[i]′
1 · · · q

[i]′
ri ⟩ , (15)

where the grouped indices of H imply matricizing the tensor, as the effective Hamiltonian Heff . Thus, the
update of the site tensor Ti requires that the TTN is orthogonalized with Ti as its orthogonality center.
Following the order of the previously introduced integration sequence yields many cases (all non-leaf sites)
where the TTN is already in the correctly orthogonalized state – consequently this step can be often skipped

3Exactly contrary to the signs in the tangent space projector. This is because the TDSE needs to be multiplied
with −i before integrating.
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2 TIME-DEPENDENT VARIATIONAL PRINCIPLE FOR TREE TENSOR NETWORKS

during the site update:

Algorithm 2: Update site i

|ψ[T ]⟩ ←− Ti-Orthogonalize T
Heff ←− H(siQi),(s′iQ

′
i)

Ti ←− timeEvolution(Ti, Heff , forward)

The link update includes a QR-decomposition orthogonalizing the TTN from site i towards the site j
connected via qk

4 as chosen in algorithm 1:

Algorithm 3: Update link qk from site i towards site j

C(siQi\qk),(qk) ←− Matricize Ti to isolate qk
Q,R←− QR-Decompose C(siQi\qk),(qk)
Ti ←− reshaped(Q)
Heff ←− K(q

[i]
k q

[j]
k ),(q

[i]′
k q

[j]′
k )

R←− timeEvolution(R,Heff , backward)
Tj ←− contract(Tj , R, qk)
with

K
(q

[i]
k q

[j]
k ),(q

[i]′
k q

[j]′
k )

= ⟨q[i]k q
[j]
k |H|q

[i]′
k q

[j]′
k ⟩ (16)

as the effective Hamiltonian Heff .
To provide visualization of these updates, for both the site and the link update, figure 5 shows the effective
Hamiltonian for a MPS with five sites. The effective Hamiltonian is shown in orange and is used to update
the blue tensor respectively. For the site update that is the site tensor; For the link update the tensor to
update is the R matrix from the QR decomposition of T3.
A simple way to avoid unnecessary orthogonalizations is to perform the Ti-orthogonalization not as part of
the site update, but rather immediately after jumping to a leaf in algorithm 1 as well as one time at the
very start of the sequence.

2.2.4 Second-order integration

Instead of splitting the integration eA+B+C = eAeBeC (first-order approximation) it can also be split differ-
ently: eA+B+C = eA/2eB/2eCeB/2eA/2 – providing a second-order approximation. Leveraging the algorithms
developed for a first-order TDVP, the implementation of a second-order TDVP becomes extremely simple:
Instead of updating the sites along the sequence with time step ∆t, updates are performed along the se-
quence with time step ∆t

2 . After the last site has been updated, the sequence is applied again – in reverse
order. When performing the updates in reverse order it needs to be considered that the link qk previously
updated from site i to site j now effectively switches direction and is updated after site j and before site i.
Applying second-order integration reduces the numerical error more than it increases computation time as
shown in section 2.3.
Another (small) benefit of second-order updating is that the orthogonalization for the starting point of the
sequence only must be performed for the first time step. Since the starting point is also the last update in
the second-order variant the network already has the starting point as its orthogonality center.

2.2.5 TDVP variants and dynamic bond dimension adjustments

The presented TDVP algorithm is known as one-site TDVP as another popular TDVP variant is the two-site
TDVP (see [6]) where instead of the single-site and link updates a sequence of two site updates is performed.
The two-site update contains the contraction of the two sites – which after the update is split up again using
the tensor-valued SVD. In this step, the bond dimension q can be adjusted by decreasing the number of
singular values from q to q′ (truncation) or increased by filling the q singular values up with zeroes to q′

4Note that site j is not necessarily the site that gets updated next as one of Qj \ qk might connect site j to sites
that are yet to be updated.
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T1 T2

T3

T4 T5

H5H1 H2 H3 H4

T *
4 T *

5T *
1 T *

2

T1 T2 QR T4 T5

H5H1 H2 H3 H4

T *
4 T *

5T *
1 T *

2 T *
3

Figure 5: For the site (upper) and the link (lower) update the effective Hamiltonian is shown in
orange for an MPS with five sites. The tensor that is subject to the update is shown in blue. For
the link update, R originates in the QR decomposition of T3 as part of updating the link from T3
towards T2. This figure is thus a visualization of the terms in equation 15 and 16 respectively.
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TTN(t)
Bond dims qi

TDVP
TTN(t + t)

Bond dims qi

min(si) > c?Yesqi qi + 1 No

Continue

Figure 6: The procedure for increasing the TTN bond dimensions by demand. If the smallest singular
value min(si) obtained by an SVD on the two-site tensor of the sites connected by qi is greater than
a cutoff value c, the time-evolved state is computed again with slightly enlarged bond dimension(s).
This increases the accuracy of the TTN representation of the state and is motivated by the two-site
TDVP variant as well as the TDVP variant proposed by [11]. Note that here si refers to the singular
values of the two-site tensor along qi and not to a site of the TTN.

values. The advantage of this variant is that every time-step the bond dimensions can be increased to satisfy
the demand created by entanglement. The drawback of this variant however is that there is a truncation
error from the SVD decomposition which there is not in the one-site TDVP.
Increasing the bond dimension is beneficial for the accuracy of the TDVP algorithm as the state is in most
cases only approximated by the TTN representation. This is also achievable without using the two-site
TDVP, e.g. by using the algorithm proposed in [11]. Contracting two sites and splitting them up with an
SVD can also be done independently of the time evolution. Consider a scheme where every n time-steps
the singular values are calculated for every pair of nearest-neighbor sites. If the smallest singular value for
the current bond dimension is larger than a cutoff value c, the time-evolved state is rejected and the last
n time-steps are repeated with enlarged bond dimensions for the respective site-pairs. This procedure is
motivated by arguments made about the distribution of singular values in [11] and will be used in this thesis
(where indicated). A clear drawback is having to repeat certain parts of the time evolution but this method
is beneficial to the accuracy of the simulation. In the context of simulating quantum circuits (see section 4.2)
the singular values are computed after every gate application: The TDVP proposes a time-evolved state for
which all bond dimensions are analyzed. The bond dimensions with singular values that violate the cutoff
are then increased by 1 and the time-evolved state is rejected. The TDVP is then run again to propose a
new time-evolved state with higher bond dimensions. Consequently, for some gates the TDVP will be run
multiple times – which can partly be mitigated by setting the initial bond dimensions using an educated
guess. A visualization of this procedure is shown in figure 6.
A reduction of bond dimensions (e.g. if there are many very small singular values) is not considered.

2.2.6 Implementation

The implementation of TDVP for this thesis is done in Python 3.10.
The time evolution in equation 14 is a matrix exponential. The computation of matrix exponentials can
be costly (see [12]) and can become a bottleneck for performance and should thus be discussed. The
implementation of the matrix exponential on a vector provided by [13] based on an algorithm by [14] turns
out to be sufficient.
As the TTN is contracted with its conjugate and the Hamiltonian repeatedly for calculating the effective
Hamiltonian, it is advisable to store those contractions in a cache, most of those contractions would otherwise
be repeated without the parameters even changing.
To adequately judge the validity of the simulation and retrieve insights beyond the evolved network state,
an expectation value measurement is performed at every (n-th) time step. One good choice is to define one
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Figure 7: For the six-site MPS evolution under the Hamiltonian in eq. 17 the Ẑ-expectation value
is computed every ∆t = 0.01 and shown for every site individually.

operator for every site (e.g. Ẑ) and measure its expectation value by inserting it into the scalar product of
the TTN with itself at the respective site as explained in section 2.1.3.

2.3 Benchmarking and accuracy

To validate and evaluate the TDVP implementation it is necessary to compare results and performance to
a known example. To do se, the performances of first and second-order TDVP are compared to the exact
result for a six-site MPS. The evolution of a six-site qubit chain, i.e. MPS, under the transverse-field Ising
model (see e.g. [15]) Hamiltonian

H =
4∑
i=0

JX̂iX̂i+1 +
5∑
i=0

gẐi (17)

with g = −1.3 and J = 0.8 can be calculated exactly using matrix exponentiation since the Hilbert space is
low-dimensional (26 = 64). This is done for t ∈ [0, 1] with a time step size of ∆t = 0.01 and every time-step
the Ẑ-expectation value is saved for every qubit. The resulting dynamics are shown in figure 7. As expected
the results show symmetry with respect to the site number and have a reasonable time-resolution.
The same evolution is performed using first and second-order TDVP – with varying virtual bond dimensions
1, 3, 5, 7, 9. To show the advantage of using second-order TDVP over first-order TDVP, the second-order
variant uses twice the time-step size, ∆t = 0.02. Figure 8 shows that gain in accuracy from using second-
order integration despite doubling the time-step size. For the virtual bond dimensions 3, 5, 7, 9 the absolute
error for the Ẑ-expectation values (averaged across the six sites) is shown for both TDVP modes. With
increasing virtual bond dimension, the error decreases drastically for both variants, but more so for the
second-order integration.
With decreasing the number of time-steps for the second-order TDVP, the amount of computational over-
head is also decreased. Thus, for a low virtual bond dimension-regime, the second-order TDVP simulation
requires less compute time than the first-order variant. For higher virtual bond dimensions the compute
time is almost only network contraction and the time-savings are much smaller. Figure 9 shows the compu-
tation time needed for the TDVP simulations of the above example. The values are normalized to tbase –
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Figure 8: For the six-site MPS evolution under the Hamiltonian in eq. 17 the absolute error in
Ẑ-expectation values (averaged across all six sites) compared to the exact solution is shown for first
and second-order TDVP. The error dynamics are shown for virtual bond dimensions (VBD) 3, 5, 7, 9
– demonstrating that with increasing bond dimension the MPS representation of the state becomes
more precise. Also, despite having twice as large time-steps, the second-order TDVP simulation has
smaller error than the first-order variant. The drastic increase in error over time could be mitigated
by choosing smaller time-step sizes for both variants.

the time of the second-order TDVP simulation for virtual bond dimension 15. The data show exponential
increase of computation time with increasing bond dimension as well as clear performance advantage for the
second-order TDVP.
In conclusion, the second-order TDVP is more accurate and faster to compute than the first-order TDVP.
Also, the dilemma of gain in accuracy with loss in performance for increasing virtual bond dimensions per-
sists – for both methods alike.

3 Quantum Error Correction

One way of working around high qubit error rates are Quantum Error Correction (QEC) codes, where
multiple physical qubits are used to encode a state of interest – called logical qubit. Generally speaking, the
encoded, multi-qubit state can be restored after a small portion of its physical qubits have been affected by
an error and is thus more robust against decoherence than a single physical qubit.
QEC has become a fundamental concept of QC and is featured extensively in [16], which the following
section will use as its base. Further helpful references are [17] and [18].

3.1 QEC Codes

The standard textbook example for QEC is the Shor code ([19]). One qubit of information |ψ⟩ is encoded
in a superposition of codewords

|ψ⟩ = α|0⟩+ β|1⟩ −→ α|0L⟩+ β|1L⟩ :=

= α
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)√

23

+β
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩)√

23
. (18)

5tbase ≈ 889ms on an Intel Core i7-8550U.
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Figure 9: TDVP computation time for six-site MPS. For the one-site TDVP (∆t = 0.01) and the
two-site TDVP (∆t = 0.02) the computation time is shown relative to tbase (≈ 889ms on an Intel
Core i7-8550U). The computational demand increases exponentially with the bond dimension of the
TTN for both algorithm variants. While for lower bond dimensions the overhead is proportionally
larger, even for greater bond dimensions the first-order TDVP always requires more time to compute
than the second-order variant.

This encoding consists of two smaller encodings. The encoding

|0⟩ −→ |+++⟩
|1⟩ −→ |− −−⟩ , (19)

followed by

|+⟩ −→ |000⟩+ |111⟩√
2

|−⟩ −→ |000⟩+ |111⟩√
2

(20)

produces the 9-qubit codewords |0L⟩ and |1L⟩. The two-part concatenation of the encoding for the Shor
code is a hint towards what errors can be corrected with this code: Equation 19 is the three-qubit phase flip
code and equation 20 corresponds to the the three-qubit bit flip code. Together, any arbitrary single-qubit
error can be corrected as any single-qubit error is a (linear) combination of bit- and phase flipping.
The Shor code requires 9 physical qubits to encode one qubit of information. Other codes have been devel-
oped that require less physical bits, while still meeting the requirements for correction of a single arbitrary
error. There is a 7-qubit error by Steane ([20]) and even a 5-qubit code by Laflamme et al. ([2]. For the
5-qubit code it has been shown that this is the minimal number of physical qubits required to perform error
correction of one arbitrary single-qubit error.

3.2 5-qubit QEC Code

For the 5-qubit error code, a qubit of information |ψ⟩ stored in a single physical qubit |q3⟩ is encoded with
the help of 4 other qubits into a superposition of |0L⟩ and |1L⟩. The quantum circuit for the encoding is
provided by [2]6, but since section 5 compares results to those of [3], the notation will be adapted to the

6The notation used by [2] is partially outdated. What seems to be a CSWAP gate in the circuit notations is actually
a sequence of two CNOT gates with the same control qubit. See section B.1 and/or figure 10.

17



3 QUANTUM ERROR CORRECTION

q5

q4

q3

q2

q1

H

H

H

I I X X

X X

X

I

Figure 10: The 5-qubit encoding circuit used for the QEC code: The qubit of information in q3 is
encoded into a 5-qubit state via the shown circuit. The circuit consists of Hadamard gates, CNOT -
gates as well as multi-control phase flip gates −I. The controlled gates act if the control qubits are
in state |1⟩ (for the empty circle in |0⟩). The decoding circuit is U−1 and is the same circuit but has
the gates in reverse order (right to left).

latter.
The encoding circuit U as shown in figure 10 and as further discussed in section B.1 uses multi-controlled
−I-gates as well as CNOT -gates and Hadamard gates to encode

|q1q2q3q4q5⟩ = |00⟩12 ⊗ (α|0⟩+β|1⟩)3 ⊗ |00⟩45 −→

α(|0⟩+ |6⟩+ |9⟩ − |15⟩ − |19⟩+ |21⟩+ |26⟩+ |28⟩)/
√
23

+β(|3⟩+ |5⟩+ |10⟩ − |12⟩ − |16⟩+ |22⟩+ |25⟩+ |31⟩)/
√
23 , (21)

where the possible q1q2q3q4q5 (with qj ∈ {0, 1}) have been interpreted as binary numbers and written out
as decimal numbers for a briefer notation.
To recover from possible single-qubit errors induced by some erroneous quantum channel E , the 5-qubit

code uses U−1 to decode the 5-qubit state

|ψ⟩ −→ |q′1q′2⟩ ⊗ (α′|0⟩+ β′|1⟩)⊗ |q′4q′5⟩ . (22)

The original qubit of information |ψ⟩ (i.e. α and β) can be restored from α′ and β′ using |q′1q′2q′4q′5⟩ and
without using any ancillary qubits: For each unique measurement result of |q′1q′2q′4q′5⟩, α′ and β′ can be
determined exactly – and all possible outcomes are listed in table 1. Completeness is obvious, given the two
rightmost columns. To obtain measurement result as well as |q′3⟩ for a given error consider e.g. a bit flip
error on qubit q4 (as shown in a detailed example calculation in section B.1).
After determining α′ and β′, the original qubit can be restored by either performing simple single-qubit

rotations or by re-interpreting |0⟩ and |1⟩ (change of basis). The error syndrome measurement and the
qubit-recovery can also be combined into a projective measurement

R(ρ) =
15∑
i=0

R̂kρR̂
†
k , (23)

where ρ is the density matrix of the 5-qubit state after decoding via U−1 and Ri are Kraus operators as
given in table B.3. Note that while table 1 and table B.3 can be derived one from another, their focus differs:
The table given above focuses on the error at hand and is sorted accordingly, while the Kraus operators
listed in table B.3 are structured with a focus on the result of the error syndrome measurement.
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|q′1q′2q′4q′5⟩ measurement α′ β′ Error type Affected qubit
0110 −β −α Bit flip q1
1000 −α −β Phase flip q1
1110 −β −α Bit & phase flip q1
0001 α −β Bit flip q2
0100 −α −β Phase flip q2
0101 α −β Bit & phase flip q2
0111 −β −α Bit flip q3
1010 α −β Phase flip q3
1101 β −α Bit & phase flip q3
1011 −β −α Bit flip q4
0010 −α −β Phase flip q4
1001 −β −α Bit & phase flip q4
0011 −α −β Bit flip q5
1100 α −β Phase flip q5
1111 −α β Bit & phase flip q5
0000 α β None -

Table 1: Lookup table for restoring |ψ⟩ = α|0⟩ + β|1⟩ based on the measurement results from the
other 4 qubits q1, q2, q3 and q4 after the decoding operation U−1 as provided by [2].

Note that R(ρ) is not unitary. The corrected state is thus for arbitrary single-qubit errors (i.e. for single-
qubit errors that are not either pure X or pure Z errors) not normalized and off by a global phase. Thus,
instead of α|0⟩ + β|1⟩ the corrected state is ceiφ(α|0⟩ + β|1⟩) with c, φ ∈ R. Numerically this can easily
be resolved by dividing the resulting state (vector or TTN) by its norm, i.e. renormalizing the state. The
phase can be ignored for most purposes, especially all cases that observe only the qubits used in the QEC
code.

4 QEC within bosonic environment

The fidelity of quantum computations of course suffers not only from the errors discussed in the previous
section, i.e. single-qubit bit and sign flips. Systems of qubits also undergo errors in the form of unwanted
interactions with the environment as well as between themselves. To study the effect of QEC on the fidelity
of a quantum circuit, a five-qubit system is coupled to a bosonic bath – simulating the environment of a
quantum device. The chosen system Hamiltonian has nearest-neighbor qubit-qubit interaction (cross-talk)
as well as qubit-boson (environment) interaction and thus offers a good challenge for the 5-qubit system.
Single-qubit errors as well as unwanted interactions only affect a qubit’s ability to maintain its state. Quan-
tum computation is also prone to errors in regards to preparing, manipulating and measuring states; See
chapter 7 of [16]. In the scope of this work, state preparation and measurement as well as (multi-qubit) gate
application are assumed ideal.

4.1 5-qubit system with bosonic bath

To simulate the system dynamics using TDVP, the model needs to be presented in a TTN structure – along
with the corresponding Hamiltonian in the same structure.

4.1.1 TTN representation

Each of the five qubits is connected to exactly nb bosons, all of which are attached to no other qubit, i.e.
each qubit has its own, local environment. The model thus consists of five qubit tensors q1...q5 - connected
via the legs l1...l4 - and 5nb boson tensors b1,i...b5,i (i = 1...nb) with their first index matching their adjoint
qubits index. The bosons are connected to their respective qubit via links l1,i...l5,i (link index matches boson
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q1 q2 q3 q4 q5

b1, 1 b2, 1 b3, 1 b4, 1 b5, 1
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Figure 11: The 5-qubit system with its bosonic bath consists of five qubit tensors qi with each
qubit having one boson (upper) or two bosons (lower) bi,j attached via the link li,j. Each qubit qi is
connected to its neighbor qi+1 along the link li. The physical legs are indicated by the upper-diagonal
strokes but not labeled in order to reduce clutter.

tensor index). The complete model is shown for nb = 1 and nb = 2 in figure 11 (with all ten /fifteen physical
legs drawn, but for better readability not labeled).

4.1.2 System Hamiltonian

The system Hamiltonian is based on an XX-interaction Heisenberg model. While the XX-interaction
between qubits constitutes the cross-talk between qubits, the model is expanded by qubit-boson as used in
[21] (Chapter 10) and similar to [3]. The system Hamiltonian is thus given by

Ĥ = ĤQ + ĤB + ĤI , (24)

where

ĤQ =

4∑
q=1

Jq · X̂qX̂q+1 (25)
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is the XX nearest-neighbor Hamiltonian. The bosonic terms

ĤB =

5,nb∑
q=1,b=1

mq,bωq,b
2

N̂q,b (26)

and

ĤI =

5,nb∑
q=1,b=1

gq,bẐq(â
†
q,b + âq,b) (27)

let the bosons interact with the qubits by coupling bosonic creation â† and annihilation â to phase flipping
qubits via Ẑ. N̂ = â†â is the bosonic number operator. In general, operators with a single index q correspond
to the qubit sites with the respective index, while operators with index (q, b) act on the bosonic sites with
respective index.
To construct a TTN-valued operator for this Hamiltonian the structure is taken from the TTN representation
of the state introduced above. The starting point is again the XX model (see [22]), with qubit-qubit bond
dimension three:

ĤTTO
q =

 Î 0 0

X̂ 0 0

0 Jq · X̂ Î

 , (28)

where for the first site q1 the Hamiltonian is given by only the third row and analogously for the last site q5
by the first column. In this context 0 represents an all-zero 2× 2 matrix. As this partial Hamiltonian leaves
all bosons unchanged the corresponding bosonic operator is simply

ĤTTO
q,b = Î , (29)

with a bond between the qubit sites and the boson sites of dimension one. To account for the bosonic energy
term ĤB, the bond dimension is increased to two – and then to three to also account for the interaction
term ĤI , yielding

ĤTTO
q =



 Î 0 0

X̂ 0 0

0 Jq · X̂ Î


0 0 0
0 0 0

Î 0 0


 0 0 0

0 0 0

Ẑq 0 0




, (30)

ĤTTO
q,b =


Î

1
2 ·mq,bωq,b · N̂q,b

gq,b(â
†
q,b + âq,b)

 (31)

for each boson. For nb bosons attached to each qubit, this representation grows from a vector of length 3
to a 3×nb-tensor where the given vector is found along each main axis. Within the scope of this model all
other terms, i.e. mixed terms (e.g. for two bosons the entry in the second row and second column), are
zero-valued.
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4.2 Quantum circuit simulation

To perform targeted manipulations on the 5-qubit system, circuit operations must be adapted to the TTN
structure. Instead of writing multi-gates as operators on the q1⊗ ...⊗ q5 space, a TTO for the TTN at hand
has to be constructed. There are two different possibilities for doing so: Writing the gate action as a TTO
– or constructing a Hamiltonian under which the system evolution for a specific time is equivalent to the
gate action.

4.2.1 TTO representation

Choosing a TTO representation over a evolution under a Hamiltonian has one very clear advantage: The
gate is applied by performing one simple contraction instead of performing a time evolution with many time
steps. This leads to extremely shorter computational demand.
For single-qubit gates Ui it is sufficient to absorb the gate into qubit qi, i.e. applying a TTO with bond
dimension one that has the identity for every site except qubit qi – where the tensor value is U .
For multi-qubit gates, i.e. controlled gates C[j1,...]C [k1,...]Ui, that apply U onto qubit qi if all the qubits qj1 , ...
are 1 and all the qubits qk1 , ... are 0 can be obtained in a similar way: Again, the base of the TTO is the

identity. The tensor-tuple
(
Î |1⟩⟨1|

)
is then assigned to every control qubit qj1 , ..., the tuple

(
Î |0⟩⟨0|

)
is

assigned to every inverse control qubit qk1 , ... and
(
Î Û − Î

)
is assigned to the target qubit qi. To obtain

a viable TTO, every tensor that is between any of the gate-qubits is of shape

(
â 0

0 b̂

)
, where â and b̂ are

the two tensors from the tuple assigned to the site (twice the identity for uninvolved qubits). For the two

out-most gate-qubits the shape is simply
(
â b̂

)
. As an example the U = CCCΠ2345 gate from the 5-qubit

error code thus has the TTO representation

U2 =
(
Î |0⟩⟨0|

)
U3 =

(
Î 0
0 |1⟩⟨1|

)
U4 =

(
Î 0
0 |0⟩⟨0|

)
U5 =

(
Î Π̂− Î

)
.

Helpful resources for constructing tensor representations of quantum gates are [22] and [23], however the
construction can be understood fairly intuitively: The identities are applied in any case. If all control
projection operators result in non-zero values, the target gate Û is applied to the state. In this case the
identity must be subtracted again as it has already been applied anyway.
Explicitly contracting the identity on all other sites has no benefit. In the context of 5-qubit QEC this
explanation covers all necessary gates. Writing the whole 5-qubit QEC circuit as a single TTO (as opposed
to using a TTO for every single gate) is not necessary as the required bond dimension is large enough to
render the performance advantage over applying many TTOs meaningless.
For applying a TTO to a TTN there is an additional consideration to be made. After contracting all legs
that connect the TTO with the TTN (i.e. the physical legs of the TTN) the network has the same structure
as the TTN but all nodes that were involved in the contraction are now connected by two legs instead of
one. Interpreting the two parallel legs as one single leg gives a new leg with dimension dim(lT )dim(lO)
where lT is the leg that connects the respective nodes of the state and lO the corresponding leg for the
operator. Since dim(lO) is not generally 1 (e.g. 2 for the operator in the above TTO representation) the
dimension of the new leg is increased by this factor. There are two choices: Either the new leg can be
accepted, which inflates the bond dimensions of the TTN especially for multiple TTO applications, or it can
be truncated to the dimension it had before applying the TTO (via a tensor-valued truncated SVD). For
feasibility and performance reason the second option seems to be the obvious choice – though this method
introduces an unwanted truncation error to the network. This truncation error can in part be recovered
from by re-normalizing the TTN after the truncation, but in general the error will be non-zero. Avoiding
truncation errors is a further reason to apply gates via a circuit Hamiltonian.
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4 QEC WITHIN BOSONIC ENVIRONMENT

4.2.2 Circuit Hamiltonian

Using a TTO representation of every gate used in the 5-qubit QEC is fast but has a major drawback: Gate
application is instant, from a time evolution perspective. This means that the time evolution the system
undergoes from the cross-talk in combination with interaction with the bosonic bath is completely seperate
from the gate application. Since gate application is not instant, it is better to model the gate application
by expanding the system Hamiltonian by a gate Hamiltonian for the duration of the gate. For extremely
short gate times this solution approaches the instant TTO application.
Since a quantum system |ψ⟩ evolves under a Hamiltonian H according to

|ψ(t)⟩ = e−iHt|ψ(0)⟩ , (32)

the Hamiltonian HU corresponding to a gate U according to

|ψ(t)⟩ = U |ψ(0)⟩ = e−iHU t|ψ(0)⟩ (33)

is given by

HU t = iV · ln Λ · V −1 , (34)

where U = V ΛV −1 is the eigendecomposition of U with the usual convention7.
For single-qubit gates a gate Hamiltonian is thus given in the TTO format by choosing HU t at the respective
site (and the identity everywhere else) and has bond dimension one.
For multi-qubit controlled gates, the Hamiltonian also has bond dimension one and is obtained (similar to
the gate TTO) by placing |1⟩⟨1| at every qubit site that is used for control (or |0⟩⟨0| for inverted control)
and HU t (the single-qubit Hamiltonian corresponding to U) at the target site.
To combine the gate Hamiltonian with the system Hamiltonian, the qubit-qubit bond dimension is increased
by one and the third dimension of the Hamiltonian can be used for the gate matrices Û1, ..., Û5 as follows:

ĤTTO
1 =


(
0 J1 · X̂ Û1 Î

)(
Î 0 0 0

)(
Ẑ1 0 0 0

)
 , ĤTTO

q∈{2,3,4} =




Î 0 0 0

X̂ 0 0 0

0 0 Ûq 0

0 Jq · X̂ 0 Î



0 0 0 0
0 0 0 0
0 0 0 0

Î 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0

Ẑq 0 0 0





, ĤTTO
5 =




Î

X̂

Û5

0



0
0
0

Î




0
0
0

Ẑ5





. (35)

With this final version of the Hamiltonian, any single-qubit and any multi-controlled gate can be applied to
the 5-qubit system while also evolving the system with its bosonic bath.
For cases where zero error is assumed (e.g. instantaneous gate application or reference computations), the
Hamiltonian can be reduced to

ĤTTO
q = Ûq , ĤTTO

q,b = Î (36)

and always has virtual bond dimensions 1.

4.2.3 Quantum circuit fidelity

To meaningfully express how well a quantum circuit performs, a suiting decision for defining the fidelity in
relation to the pre-encoding state |ψ⟩ has to be made. Since the boson states (not relevant for quantum

7U is a gate and is thus unitary, i.e. the ln is well-defined for its diagonal matrix of eigenvalues.
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4 QEC WITHIN BOSONIC ENVIRONMENT

computation) as well as the states of qubits q1, q2, q4 and q5 (set to |0⟩ during error measurement) are not
of interest for the correction process, the only significant information about the post-correction state |ψ′⟩
is within the reduced density matrix ρ

|ψ′⟩
q3 of qubit q3. Similar to [3], F (|ψ⟩, |ψ′⟩) = tr

(
ρ
|ψ′⟩
q3 · ρ

|ψ⟩
q3

)
can be

considered. Since |ψ⟩ is a multi-particle state, obtaining pure states for reduced single-site density matrices
is unlikely – and it is thus useful to define the fidelity

F
(
|ψ⟩, |ψ′⟩

)
=

tr
(
ρ
|ψ′⟩
q3 · ρ

|ψ⟩
q3

)
tr

((
ρ
|ψ⟩
q3

)2
) , (37)

normalized by the purity of the pre-encoding state. This definition of the fidelity yields F = 1 for perfect
qubit recovery and can thus be understood as a direct measure of how well the 5-qubit QEC code performs.

4.3 Simulation setup

Before using the 5-qubit system with bosonic bath for simulating the 5-qubit QEC code, the network and
system parameters need to be discussed. Apart from setting the values Jq, gq,b, ... for the system Hamiltonian,
TDVP parameters like bond dimensions and time step size need to be considered. Most importantly, the
number of bosons per qubit nb is set to 1 (as visualized in figure 11, upper graph) in all following sections
and experiments to reduce computation time.

4.3.1 System variables

For the qubit-qubit cross-talk strength Jq as well as for the bosonic properties mq,b, ωq,b and the interaction
gq,b it is possible to set a different value for every qubit/boson. Since neither qubit-qubit cross-talk, nor the
bosonic interaction are the main point of interest here – but rather the 5-qubit QEC code – all the values
J,m, ω, g will be set to constant values, i.e. Jq =: J , mq,bωq,b =: m and gq,b =: g for all q, b. The exact values
used in each experiment are explicitly noted in the respective paragraphs.
The Hamiltonian for circuit simulation derived before defines the gates only up to a factor of t =: tgate, i.e. the
time interval within which the gate is applied. Since the circuit for the 5-qubit QEC encoder is composed of
three single-qubit gates and eight multi-qubit gates, each multi-qubit gate time is set to tgate =

1
9 tenc. (with

tenc. the total encoding time), while the three single-qubit gates combined take up another time interval of
t = 1

9 tenc. – split evenly across the three operations to give tgate =
1
27 tenc.. The 5-qubit encoder thus encodes

the qubit within ∆t = tenc. and single-qubit gates are three times as quick as multi-qubit gates.
To allow for short gate times (smaller t equals larger HU ) and thus a steeper gradient, each gate operation
is performed with the same number of time steps, independent of tgate. Since the action of the gates is much
larger than the error action for relevant parameters (otherwise the circuit would simply be too noisy), the
bottleneck are the gate applications and not the error dynamics.

4.3.2 TDVP parameters

The algorithm of choice is second-order TDVP since it can meet accuracy demands with higher time-step
sizes than first-order TDVP as demonstrated in section 2.3.
For the TDVP simulation the most important parameters are the bond dimensions between the TTN sites
as well as the time step size. With increasing bond dimension and decreasing time step size the simulation
becomes more precise – but also much more time-consuming. In the case of applying the 5-qubit QEC
code in particular the bond dimensions have to be large enough to allow accurate representation of the
highly-entangled encoded state. Using the dynamic bond dimension increasing scheme proposed in section
2.2.5 the fidelity of the zero-error circuit (i.e. J = m = g = 0) is measured for different singular value
cutoff values c ∈ {100, 10−1, 10−2, 10−3, 10−4}. The resulting maximum bond dimensions of the TTN are
then {8, 10, 17, 22, 36}8. The fidelity-cutoff pairs are shown in figure 12 for time-steps (per circuit operation)

8The bond dimensions at the start of the simulation were chosen as 4 for qubit-boson bonds and as 8 for qubit-qubit
bonds.
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Figure 12: For the zero-error (J = m = g = 0) circuit that first encodes and then decodes the target
state the relationship between the fidelity F and the singular value cutoff c is shown. For lower c
the bond dimensions increase as more singular values are included – resulting in better accuracy of
the circuit and approaching F = 1. The findings are shown for three numbers of time-steps nt per
circuit operation: 50, 100, 150. There is no necessity for increasing nt beyond 50 as the results vary
very little for different nt and the simulation inaccuracy is thus in a bond-dimension regime rather
than a time-step regime.

nt ∈ {50, 100, 150}. The ideal result for this simulation would of course be 1 − F = 0 as in theory the
applied operation is U−1U = I. It is clearly visible that the accuracy of the simulation improves as c gets
lower. Also, the time-step size is not the reason for F < 1 as for the three different nt the results do not
indicate any trend in that regard – which means that choosing nt = 50 is sufficient for the values of c shown
here. The necessary cutoff value for good accuracy seems to be even lower than 10−4, however the resulting
increase is linked to a computational expense that is too high producing meaningful, quantitative results
within the scope of this thesis. To balance acceptable accuracy (1− F ≈ 10−2 and acceptable computation
time (up to 30s per time-step), c = 10−2 is chosen. It is important to note that due to the complexity of the
numerical methods, for certain parameters J,m, g the simulation may produce more accurate results than
for others and 1− F = 10−2 is not a limit on the accuracy for c = 10−2.
For the observables, Ẑ is chosen for the qubits and N̂ for the bosons. Using the bond dimension cutoff

parameter c = 10−2 (9) for parameters J = 0.01,m = 0.1 and g = 0.01 the recorded observables of a selection
of sites are given in figures 15 (qubits) and 16 (boson) for an evolution of time t = 1 after error-free encoding
of |0⟩ within tenc. = 0.1 and before error-free decoding with tdec. = tenc. = 0.1. The graphs demonstrate the
effect of error activity for t ∈ (0.1, 1.1) by showing rising occupation numbers for all bosonic sites as time
progresses. For qubits q3 and q5 (who are not in superposition after the encoding) the expectation value

9In terms of the bond dimension increasing procedure the time evolution of the system without circuit operations
is considered as a sequence of I-gates, i.e. the system can still seen as a quantum circuit, but idling.
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5 RESULTS

changes during that interval can be spotted easily10

This concludes the setup of variables for the final simulations. To summarize, every circuit operation/gate
is applied using nt = 50 second-order TDVP time-steps. At every time-step there is a measurement for
the single-site operator expectation values Ẑ (qubits) and N̂ (bosons). To improve accuracy, whenever the
smallest singular value obtained from an SVD on the two-site tensor along a bond l is greater than c = 10−2,
the dimension of link l is increased by one and the time-step computation is repeated.

5 Results

While the previous sections derive a model and methods that can be used to a more general extent, some
model dynamics can be observed within the scope of this thesis. The following results are derived using the
parameters introduced in the previous section, in particular nt = 50 and c = 10−2. Starting point is always
the 5-qubit state |00000⟩, i.e. the qubit to encode is |0⟩.

5.1 State preservation in environment

For error-free encoding and decoding of the target state before and after an interaction time terr. with the
environment, i.e. circuit idling, the circuit fidelity can be observed for varying J,m, g. Error-free de- and
encoding can be interpreted as instantaneous gate application under the action of the environment Hamil-
tonian, i.e. the obtained fidelities are independent of the en-/decoding time. For m = 0.1 the parameters J
and g are swept across a range of interest: J ∈ (0.0001, 0.3) and g ∈ (0.03, 0.3). The resulting fidelities are
shown in figure 13. The data show improved circuit fidelity for lower values of J while the circuit fidelity
does not exceed ≈ 1− 10−3, which is likely due to the relatively high singular value cutoff value c = 10−2.
While the data does not fundamentally differ for changing values of g, the predominant effect in this graph is
the qubit-qubit interaction governed by J – to accurately display the action on the circuit fidelity induced by
m and g the range across which the parameters are swept needs to be increased (especially for m). However
for the cross-talk effect the figure shows that for large enough J the error correction quality is so low it can
be considered catastrophic in the context of error correction.
Similar work is done by [3]: Each qubit of the 5-qubit state is coupled with its own bosonic bath and

the circuit fidelity is measured for different coupling strengths. Their numerical methods allow for more
sophisticated bosonic baths and their model is thus an open quantum system, rather than a closed system
of qubit-boson pairs. Their implementation however is not capable of applying the system dynamics to the
state during the encoding and decoding as those are done by applying the respective operations directly
to the state rather than incorporating them in the system Hamiltonian, i.e. the en-/decoding happens
instantaneous and perfectly. While an exact comparison is not possible due to the model differences (and
different research objectives), the results obtained by [3] show a similar trend to 13 – namely a decreased
circuit fidelity F for stronger coupling J,m, g.

5.2 Non-zero encoding times

Considering the interaction between the bath and the qubits also during en- and decoding, i.e. not regarding
the en- and decoding as instantaneous, the fidelity of the quantum circuit might change. For one set
of parameters the simulation is successfully performed within a bit less than 10 hours. Due to the long
compute times of the simulation, no further meaningful simulation results can be provided in this thesis.
For J = 0.1,m = 0.1, g = 0.01 and a ratio of tenc. to tidle of 0.1 the circuit fidelity is computed to be 0.927.
For the same set of parameters, the fidelity is 0.940 for the case where the interaction is off during the
encoding and decoding.
This single data point is not at all conclusive but highlights why running further simulations might yield

10The other qubits experience of course a similar effect – this is merely not as clearly visible in the Z-basis.
Additionally measuring the X̂-expectation value could show the dynamics clearer but since the exact dynamics are not
as interesting as the circuit fidelity, the expectation value measurement is restricted to one operator for performance.
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Figure 13: For varying parameters J,m the fidelity of the circuit is shown for m = 0.1. The encoding
and decoding processes are considered instantaneous, i.e. error-free. The idle time between those
two processes is t = 1. The results show that the fidelity of the circuit decreases as error parameters
– namely J – increase. Fidelities above ≈ 1 − 10−3 cannot be reliably predicted as the accuracy of
the simulation is limited by the singular value cutoff c = 10−2.
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results that improve the understanding of the impact the qubit-qubit interactions as well as the qubit-
boson interactions have on the 5-qubit QEC code. This is further motivated by findings by [3]: When not
considering the interactions during the en- and decoding it is found that the circuit fidelity can be increased
by applying the QEC code repeatedly. The reduced fidelity of the simulation presented above gives rise
to the question of whether or not (and if yes, for which parameter sub-spaces) this still holds true when
not considering the encoding as well as the decoding as instantaneous processes. The results by [3] should
be obtained (approximately) with the method presented in this thesis for tidle ≫ 2Ntenc. where N is the
number of times the QEC protocol is applied – for other configurations and model parameters the fidelity
might even decrease for repeated QEC application.

5.3 Implementation on commercially available quantum hardware

The importance of accounting for the environment interaction during the encoding and decoding processes
is highlighted by looking at results from implementing the en- and decoder on commercially available hard-
ware: IBM’s quantum 27-qubit processor Falcon11. The encoder is implemented using Qiskit ([24]) by
writing the controlled −I-gate as a UGate with parameters 2π, 0, 0 (implementing the rest of the circuit is
straightforward). The individual qubits are measured after the decoding for n = 1024 shots and the relative
frequencies of the 5-qubit states are shown in figure 14. Since the decoded state was |0⟩ and the state after
decoding resembles the 5-qubit equal-superposition state, no information can be reliably recovered in this
example, i.e. the fidelity is minimal even though the idle time of the circuit is zero.
Of course on real hardware many more errors can occur than those covered by the bosonic-bath model
(as mentioned in section 4), but this result is still indicative of the current state of commercially available
quantum computers.

6 Conclusion

This work successfully provides an introduction to the topics of TTNs, TDVP and QEC as well as quantum
circuits and their integration in the system Hamiltonian – with the goal of simulating the interaction of a
quantum system with its environment while performing circuit operations such as QEC codes. To discuss the
limitations and opportunities of this work, aspects of implementation and modeling are discussed separately.

6.1 Sophisticated implementation

At the computational core of this thesis is the TDVP implementation that is successfully implemented for
first and second order integration. A procedure to change the bond dimension as needed is proposed and
applied to the simulations – yielding the desired changes to the TTN and the linked increase in accuracy.
The bottleneck for the number of experiments for this thesis as well as their extent however is mainly
the TDVP algorithm. The contraction of the effective Hamiltonians as well as the computation of matrix
exponentials is very time intensive and limits the possibilities of applying the algorithm within the scope of
this thesis - especially for those cases where the gate and the error dynamics are applied simultaneously due
to the large Hamiltonian bond dimension.
To improve performance, major computational results are stored in a cache to minimize the number of
computations necessary, but performance remains poor. For future simulations, these issues could be resolved
e.g. by optimizing the underlying data structure for the TTNs or by executing time-sensitive parts of the
code (e.g. the network contractions) in another programming language.
For large-scale experiments it is also possible to execute the relevant code on more sophisticated hardware,
where less-optimized performance is not as restricting.

11Falcon r5.11, 27 Qubits, via the algiers backend. Run on October 21, 2023. IBM Cloud access required.
See https://quantum-computing.ibm.com/ and https://quantum-computing.ibm.com/services/resources?tab=systems
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Figure 14: A circuit composed of the 5-qubit encode followed by the decoder with no idle time
between, the relative frequency of the measured states is shown for n = 1024 shots. The result is
obtained using a Falcon quantum processor by IBM. The resulting state has very low overlap with
the computational result |00000⟩.
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6.2 Improvements to the model

The quality of the experiments is strongly correlated to the extent of the model, which is implemented to
accommodate for a variable number of bosons per qubit and the option to have different parameters J,m, g
for every site. However, several adaptations could be made to better align the system dynamics with reality:

• Gate errors: Gate imperfections occur for real quantum gates but are not considered in this thesis
since this would introduce more model parameters and require more simulations, which is a problem
due to the performance issues mentioned above. Implementing gate errors may yield more realistic
results. To achieve this, no fundamental change to the implementation is necessary.

• Encoder: The presented QEC code is not the only QEC code. Considering alternative encoding and
error recovery schemes may increase the diversity of the results. Additionally, in this work the error
correction is only done for a single qubit. Quantum computations require multiple qubits for which
other codes might be a better choice. The implementation of quantum circuits for this thesis allows
specific gates and circuits to be constructed quickly.

• Hardware: The model presented here is independent of the intended quantum hardware. Depending
on the architecture of the quantum computer, certain operations might be favorable while others
might not possible to do at all. Matching the quantum operations of the model to the capabilities of
the quantum hardware at hand might produce more accurate results. Furthermore, the qubits of the
circuit are arranged in a straight line. For certain hardware this might not be the case and it may be
better to find a TTN structure for the qubits that fits the hardware layout better. The implemented
TTN and TDVP algorithms are viable for any tree structure and can thus still be used after potential
adjustments to the system layout.

• Cross-talk range: To keep the bond dimension of the system Hamiltonian low, cross-talk is only
considered for nearest neighbors. Adding longer-range cross-talk to the Hamiltonian might represent
computational noise more realistically and can easily be done by manipulating the existing Hamilto-
nian by adding additional bond dimensions.

To summarize, the presented model is versatile and easy to adapt in order to expand functionality. The
model can be used to simulate circuits, not only in the context of QEC, as well as their interaction with the
environment reliably and easily.

6.3 Summary

The presented concepts for TTNs (namely the TDVP algorithm) and QEC are applied to the constructed
model successfully. It is observed that for larger coupling between qubits and qubits as well as between
qubits and bosons, the circuit fidelity of the QEC code decreases, which aligns with current literature.
Algorithms and methods such as the TDVP algorithm or representing quantum circuits as part of the system
Hamiltonian can be applied beyond the scope of this thesis.
The findings of this study are limited by the high performance demand of the implemented TDVP algorithm.
However, observing that the TDVP algorithm can be used on this model to simulate QEC on a quantum
circuit that has interaction with the environment as well as within itself, is part of the result of this work;
So is identifying the weak spots of the implementation as well. Improving the performance of the imple-
mentation and accessing high-performing hardware may allow to run the simulation for more configurations
– e.g. in order to explore how to improve QEC codes.
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B CALCULATIONS

A Definitions

• X̂, Ŷ , and Ẑ are the usual Pauli matrixes

X̂ =

(
0 1
1 0

)
, Ŷ =

(
0 −i
i 0

)
, Ẑ =

(
1 0
0 −1

)
. (38)

• Ĥ is the normalized two-dimensional Hadamard matrix 1√
2

(
1 1
1 −1

)
.

• All matrices and tensorsO are written as Ô if they are used as operators in the given context.

• Tensor networks (or tensors or vectors) ψ that represent quantum states are written as |ψ⟩ and their
complex conjugate as ⟨ψ|.

• |ψ1ψ2⟩ is short for the Kronecker product |ψ1⟩ ⊗ |ψ2⟩.

B Calculations

B.1 En- and decoding scheme for 5-qubit QEC code

The unitary encoding operation U for the 5-qubit code by [2] is given by

U = CCΠ453 · CX25 · CX43 · CX13 · CX15 · CX35 · CCCΠ2345 · CCCΠ2345 ·H1 ·H2 ·H4 ,

where the indices denote the qubit number with qubit 3 holding the initial state of interest. CXab is the
standard controlled X gate with control qubit a and target qubit b. Ha is the Hadamard gate acting on
qubit a. The other gates are controlled Π := −I operations with a variable number of control qubits, which
is given by the amount of C’s. C indicates inversion of the control (i.e. CΠab = Xa · CZΠab ·Xa) and the
last index is always the target qubit.
It is worth noting, that the circuit in [2] might be hard to understand. The gate that is by modern notation
a CSWAP gate is actually a composition of two consecutive CNOT/CX gates that shre their control qubit.
The R gates are Hadamard gates (H) and the Π operations are sign flips, i.e. Π = −I, as mentioned above.
To show that this interpretation is correct a detailed example calculation is shown in section B.1.
Since every factor, i.e. gate, of U is unitary, the decoding operation is given by U−1 which can be obtained
by applying the gates in reverse order.
To shorten notation for calculations, split U =: U1 · U2 with

U1 = CCΠ453 · CX25 · CX43 · CX13 · CX15 · CX35 · CCCΠ2345 · CCCΠ2345

U2 = H1 ·H2 ·H4 ,

and U−1 = U−1
2 · U−1

1 . Note that this decomposes the decoding into a sequence of U−1
1 followed by U−1

2 .
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B.2 Example calculation for 5-qubit error syndrome

|ψ⟩inf. = |00⟩12 ⊗ (α|0⟩+ β|1⟩)3 ⊗ |00⟩45
apply U −→

√
8|ψ⟩enc. = α|00000⟩ − β|00011⟩ − β|00101⟩+ α|00110⟩

+ α|01001⟩ − β|01010⟩+ β|01100⟩+ α|01111⟩
− β|10000⟩ − α|10011⟩+ α|10101⟩+ β|10110⟩
+ β|11001⟩+ α|11010⟩+ α|11100⟩+ β|11111⟩

Bit flip q4 −→
√
8|ψ⟩err. = α|00010⟩ − β|00001⟩ − β|00111⟩+ α|00100⟩

+ α|01011⟩ − β|01000⟩+ β|01110⟩+ α|01101⟩
− β|10010⟩ − α|10001⟩+ α|10111⟩+ β|10100⟩
+ β|11011⟩+ α|11000⟩+ α|11110⟩+ β|11101⟩

apply U−1
1 −→

√
8|ψ⟩int. = α|00111⟩ − β|00001⟩+ β|00011⟩ − α|00101⟩

+ α|01111⟩ − β|01001⟩+ β|01011⟩ − α|01101⟩
− β|10011⟩+ α|10101⟩ − α|10111⟩+ β|10001⟩
− β|11011⟩+ α|11101⟩ − α|11111⟩+ β|11001⟩

After the last step it is already obvious, that |0⟩3 is to be associated with β and |1⟩3 with α. Writing
|ψ⟩int. = |ψ⟩1245 ⊗ (α|1⟩+ β|0⟩)3 simplifies the expression significantly:

|ψ⟩1245 =
1√
8
(|0011⟩ − |0001⟩+ |0111⟩ − |0101⟩+ |1001⟩ − |1011⟩+ |1101⟩ − |1111⟩)

= − |−+−1⟩

After applying U−1
2 the decoded state

|ψ⟩dec. = |10⟩12 ⊗ (−β|0⟩ − α|1⟩)3 ⊗ |11⟩45 (39)

can be looked up in the error table 1: 1011 corresponds to a bit flip on the fourth qubit and the state
(−β|0⟩−α|1⟩)3 is correctly predicted. The corresponding operator of the map in table B.3 is R̂11, applying
X̂3 to the state. The resulting qubit then reads −α|0⟩ − β|1⟩ – which is equal to the initially encoded
single-qubit state up to a global (i.e. irrelevant) phase −1.

B.3 Kraus operators for 5-qubit code recovery step

C Additional figures
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Figure 15: For the example with error-free encoding of tenc. = tdec. = 0.1 and an idle time of t = 1 with
J = 0.1,m = 0.1, g = 0.01 the Ẑ-expectation values are shown for the qubit sites. The corresponding
bosons are shown in figure 16. The simulation was done for nt = 50 time-steps per circuit operation
and c = 10−2 as the singular value cutoff.
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Figure 16: For the example with error-free encoding of tenc. = tdec. = 0.1 and an idle time of t = 1
with J = 0.1,m = 0.1, g = 0.01 the Ẑ-expectation values are shown for the boson sites. The
corresponding qubits are shown in figure 15. The simulation was done for nt = 50 time-steps per
circuit operation and c = 10−2 as the singular value cutoff.
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R̂0 = |00⟩12⟨00| ⊗ Î3 ⊗ |00⟩45⟨00|
R̂1 = |00⟩12⟨00| ⊗ Ẑ3 ⊗ |00⟩45⟨01|
R̂2 = |00⟩12⟨00| ⊗ Î3 ⊗ |00⟩45⟨10|
R̂3 = |00⟩12⟨00| ⊗ Î3 ⊗ |00⟩45⟨11|
R̂4 = |00⟩12⟨01| ⊗ Î3 ⊗ |00⟩45⟨00|
R̂5 = |00⟩12⟨01| ⊗ Ẑ3 ⊗ |00⟩45⟨01|
R̂6 = |00⟩12⟨01| ⊗ X̂3 ⊗ |00⟩45⟨10|
R̂7 = |00⟩12⟨01| ⊗ X̂3 ⊗ |00⟩45⟨11|
R̂8 = |00⟩12⟨10| ⊗ Î3 ⊗ |00⟩45⟨00|
R̂9 = |00⟩12⟨10| ⊗ X̂3 ⊗ |00⟩45⟨01|
R̂10 = |00⟩12⟨10| ⊗ Ẑ3 ⊗ |00⟩45⟨10|
R̂11 = |00⟩12⟨10| ⊗ X̂3 ⊗ |00⟩45⟨11|
R̂12 = |00⟩12⟨11| ⊗ Ẑ3 ⊗ |00⟩45⟨00|
R̂13 = |00⟩12⟨11| ⊗ X̂3Ẑ3 ⊗ |00⟩45⟨01|
R̂14 = |00⟩12⟨11| ⊗ X̂3 ⊗ |00⟩45⟨10|
R̂15 = |00⟩12⟨11| ⊗ Ẑ3 ⊗ |00⟩45⟨11|

Table 2: This table shows the Kraus operators for the error recovery of the 5-qubit QEC code as
used in [3]. Î3, Ẑ3 and X̂3 are the identity, X and Z operators applied to qubit q3 (the one holding
the information). While table 1 is sorted by which error occurred, this list is sorted by the result of
the error syndrome measurement encoded in the projective measurements for qubits q1, q2, q4 and q5.
Choosing |0⟩ as the projection for these four qubits effectively resets them to the |0⟩ state – enabling
the re-encoding of the information qubit.
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