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Abstract

Avalanches pose significant threats to human life, infrastructure, and the environment,
making accurate prediction and mitigation strategies essential. Avalanches are modelled
using the shallow-water equations and the friction law for granular materials flowing
down an inclined plane. The resulting equations are known as depth-averaged avalanche
equations. This work implements the depth-averaged avalanche equations in ExaHyPE 2,
a high-performance computing framework for simulating hyperbolic PDEs. A preprocess-
ing routine is also implemented to facilitate the calculation of complex derivative terms in
the equations. The validation of the solver application is mainly done by simulating the
flow of a circular patch of masonry sand down a rectangular plane inclined at an angle
of 35◦. The finite volume method with Rusanov flux and adaptive time stepping is used
for the simulations. A comparison between the flow of masonry sand and carborundum
particles is done to qualitatively validate the dependence of friction on material param-
eters. The results of the validation are found to be in agreement with the physics of the
governing equations. The availability of the static adaptive mesh refinement feature in
ExaHyPE 2 is demonstrated by refining one-half of the domain while coarsening the other
half. The solver application is a high-performance computing solution that provides de-
tailed insights into avalanche dynamics.
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1 Introduction

Gravity-driven geophysical events sometimes involve the flow of a dry granular mate-
rial. Landslides, rock avalanches and pyroclastic flows are examples of natural hazards
where a granular mass flows down a slope. This thesis aims to develop an application
in ExaHyPE 2 to simulate avalanches by considering them as the flow of granular mate-
rial. This research avenue holds immense potential not only for understanding natural
phenomena but also for a wide range of practical applications.

1.1 Motivation of the Thesis

The motivation behind this thesis is rooted in several fundamental aspects of science, en-
gineering, and societal well-being.

Studying avalanches as granular flows allows us to gain deep insights into the intricate
dynamics of these catastrophic events. By comprehending the behaviour of granular ma-
terials during avalanches, we can develop more accurate predictive models. Such models
are invaluable for early warning systems, enabling us to mitigate the impact of avalanches
on vulnerable communities.

In regions prone to avalanches, understanding granular material flow is essential for
evaluating the environmental impact of these events. By simulating avalanches as gran-
ular flows, researchers can assess how ecosystems are affected, enabling us to develop
strategies to preserve biodiversity and natural habitats in avalanche-prone areas.

Engineers can benefit immensely from a comprehensive understanding of granular ma-
terial flow during avalanches. Simulations in this context provide valuable data for de-
signing infrastructure such as avalanche barriers and protective structures. Optimising
these designs ensures the safety of communities living in avalanche-prone regions.

Delving into the dynamics of granular materials can also drive innovations in material
science. By understanding how different materials behave during avalanches, scientists
can develop novel materials with properties that could revolutionise various industries,
from construction to transportation. These advancements have the potential to signifi-
cantly enhance the durability and safety of structures and vehicles.

Simulating avalanches as granular flows offers an exciting opportunity to advance our
fundamental understanding of complex systems. Granular materials exhibit fascinating
behaviours that challenge existing theories and provide avenues for groundbreaking dis-
coveries.
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1 Introduction

1.2 Related Work

Researchers have explored various approaches to understand and predict the behaviour of
avalanches. One significant line of research has focused on developing and refining gran-
ular flow models to simulate avalanche dynamics accurately. Early studies, such as those
by Savage and Hutter [ 24 ], laid the foundation by introducing continuum-based models
to describe granular flow. These models treated avalanches as a continuous flow of gran-
ular material, considering factors like shear rate, stress, and density to predict avalanche
behaviour.

Researchers like Gray and Edwards [ 13 ] investigated the rheology of granular materi-
als, providing valuable insights into the flow behaviour of granular media. Their work
contributed to the formulation of constitutive equations used in granular flow models,
enhancing the accuracy of avalanche simulations. They modified the basal friction laws
derived by Pouliquen and Forterre [ 10 ] and incorporated it into the source term of their
equations to model avalanches more accurately.

Additionally, computational techniques have been employed to simulate granular
avalanches in complex terrains. Studies by Patra et al. [ 19 ] utilised numerical simulations
based on a finite volume Gudonov solver with adaptive mesh refinement (AMR) to solve
the governing model equations. They designed their simulation code to run on distributed
memory supercomputers using MPI. Their software also directly connects to GIS (Geo-
graphic Information System) to dynamically obtain the topographic data as needed by the
simulation.

Furthermore, Ma et al. [ 17 ] established a numerical model for the generation and propa-
gation of tsunami waves by granular landslides. They simulated tsunami wave generation
using the 3D non-hydrostatic wave model NHWAVE, which is capable of capturing wave
dispersion efficiently using a small number of discretised vertical levels. Their model also
illustrates a complex interplay between granular landslides and tsunami waves, and it
reasonably predicts not only the tsunami wave generation but also the granular landslide
motion from initiation to deposition.

Ashtiani et al. [ 2 ] used a 2D fourth-order Boussinesq-type numerical model to estimate
the impact of landslide-generated waves in dam reservoirs. They validated their model
against available three-dimensional experimental data. They also employed their numeri-
cal model to investigate the impact of landslide-generated waves in two real cases.

Longchamp et al. [ 16 ] performed experiments to understand the propagation and spread-
ing of granular masses released at the top of a simple geometry. They measured the flow
of granular material flowing down a plane inclined at 45◦ using a high-speed camera.
They also simulated this granular flow using a numerical model based on the shallow-
water equations and the Mohr-Coulomb friction law. They compared the results obtained
through simulations and experiments and found them to be in good agreement. The mag-
nitude of velocity measured in experiments matched precisely with what they got in sim-
ulations.

Rauter et al. [ 22 ] presented a novel three-dimensional granular landslide and tsunami
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1.3 Structure of the Thesis

model, which they applied to the 2014 Lake Askja landslide tsunami. Their model cap-
tures the complete event chain from the landslide dynamics to the wave generation and
inundation. The model gives deep insights into the physical landslide processes and im-
proves our understanding and prediction capabilities of frequent and catastrophic land-
slide tsunamis.

1.3 Structure of the Thesis

The following Chapter  2 presents the derivation of the depth-averaged avalanche equa-
tions, which are the governing equations used in this thesis for simulation. The chapter
is divided into three sections. Section  2.1 presents a brief description of the shallow-water
equations which form the basis for the depth-averaged avalanche equations. Section  2.2 

explains the formulation of friction law for granular flows, which is used in the source term
of the governing equations. Finally, Section  2.3 presents an overview of how the complete
depth-averaged avalanche equations are derived, assuming that the granular material be-
haves like a viscous fluid.

Chapter  3 presents an introduction to ExaHyPE 2, which is the simulation engine used
for this thesis. The chapter also presents algorithms that can be used to develop an appli-
cation in ExaHyPE 2 to simulate the shallow-water equations.

Chapter  4 presents algorithms for developing the ExaHyPE 2 solver application to sim-
ulate avalanches using the depth-averaged avalanche equations. Section  4.1 presents the
algorithms used for preprocessing of a patch, which is done to calculate derivatives using
a finite-difference method. Section  4.2 presents the algorithms used for the development
and configuration of the solver application in ExaHyPE 2.

Chapter  5 presents results in the form of surface and line plots obtained by evaluating
the developed ExaHyPE 2 application. Section  5.1 presents results that validate the imple-
mentation of the algorithms in ExaHyPE 2. Section  5.1.4 compares the avalanche of two
different granular materials, namely sand and carborundum. Section  5.2 presents results
obtained by applying static adaptive mesh refinement (static AMR). The results are also
compared with the the ones obtained in Section  5.1.2 without static AMR.

Finally, Chapter  6 presents the conclusion of this work.
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2 Theory

The mathematical model used to simulate avalanches is based on the shallow-water equa-
tions and the friction law for granular material flowing down an inclined plane. The re-
sulting equations that govern the propagation of avalanches are known as depth-averaged
avalanche equations. This chapter explains the important components of these equations
and the steps behind their derivation.

2.1 The Shallow-Water Equations

Fluid dynamics is a fascinating field of study that explores the behaviour of fluids in var-
ious scenarios. One important aspect of fluid dynamics is the understanding of the flow
below a pressure surface in a fluid. This flow is described by a set of equations known
as the shallow-water equations (SWE), also referred to as the Saint-Venant equations, as
their derivation was first presented by Saint-Venant in [ 5 ]. The shallow-water equations
are a set of hyperbolic partial differential equations that govern the flow below a pressure
surface in a fluid. These equations are derived from depth-integrating the Navier-Stokes
equations with the assumption that the horizontal length scale is much greater than the
vertical length scale. This assumption allows for the removal of the vertical velocity com-
ponent from the equations. From tsunamis to storm surges, these equations offer valuable
insights into the dynamics of shallow-water motion.

Depth-averaging of governing equations is a prevalent approach amongst researchers
for modelling complex flows. Researchers have proposed various reformulation methods
to increase the computational efficiency of models based on shallow-water flows. Bristeau
et al. [ 4 ] presented an original derivation process of a non-hydrostatic shallow-water type
model to approximate Euler and Navier-Stokes systems with a free surface. Escalante and
Luna [ 9 ] proposed a novel first-order reformulation of the Boussinesq-type systems. Their
model avoids the use of high-order derivatives, which require a large stencil size, hence
reducing the computational complexity of the model. Their model also accounts for the
effect of time-dependent bathymetry.

The shallow-water equations for an inviscid fluid in component form in a two-
dimensional domain (horizontal coordinates) can be written as follows:

Continuity Equation:

∂h

∂t
+

∂(hū)

∂x
+

∂(hv̄)

∂y
= 0. (2.1)
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2 Theory

Momentum Equations:

∂(hū)

∂t
+

∂

∂x

(
hū2 +

1

2
gh2

)
+

∂(hūv̄)

∂y
= −gh ∂b

∂x
, (2.2)

∂(hv̄)

∂t
+

∂(hūv̄)

∂x
+

∂

∂y

(
hv̄2 +

1

2
gh2

)
= −gh∂b

∂y
, (2.3)

where:

• h is the water height.

• ū and v̄ are the depth-averaged velocity components in the x- and y-direction, re-
spectively.

• g is the acceleration due to gravity.

• b is the bathymetry of the bottom.

2.2 Friction Law for Granular Flows

Granular flows down rough inclined planes are a common phenomenon encountered in
various engineering and geophysical applications. These flows involve the movement
of particulate solids, such as minerals and cereals, on inclined surfaces. Understanding
the behaviour and characteristics of granular flows is crucial for designing transportation
systems and predicting natural events like landslides and rock avalanches. The flow of
granular materials on inclined surfaces has been the subject of extensive research due to its
relevance in various fields. These flows are characterised by the interplay between gravity
and friction forces on the inclined plane. The behaviour of granular flows depends on
factors such as the surface roughness, particle size, and inclination angle of the plane [ 20 ].
Studying granular flows down rough inclined planes provides insights into the rheological
properties of particulate systems and helps develop predictive models for such flows.

To investigate the scaling laws in granular flows down rough inclined planes,
Pouliquen [ 20 ] conducted a series of experiments using different systems of glass beads.
Their experimental setup consisted of an inclined plane with adjustable inclination an-
gles, as shown in Figure  2.1 . The glass beads were flowed down the inclined plane, and
various parameters, such as the mean velocity and thickness of the granular layer, were
measured. The measurements were performed for different surface roughness conditions
and inclination angles to capture a wide range of flow behaviours.

Their experimental results revealed the existence of steady uniform flows in a spe-
cific range of inclination angles and layer thicknesses. Experimental measurements have
shown the existence of two critical angles. An initially static granular layer starts to flow
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2.2 Friction Law for Granular Flows

Figure 2.1: Schematic of experimental setup used by Pouliquen [ 20 ].

when the inclination reaches a critical value θstart. To stop the flow, the angle of inclination
needs to be decreased to θstop. These flows were characterised by constant mean velocities
and thicknesses. The data obtained for different systems of beads were found to collapse
into a single curve, as shown in Figure  2.2 , when properly scaled. The scaling was based
on the measurement of the minimum thickness hstop(θ) necessary to observe a steady uni-
form flow at a given inclination angle. This empirical scaling allowed for the prediction
of mean flow velocities without the need for direct velocity measurements. It is evident
from Figure  2.2 that the Froude number u/

√
gh varies linearly with h/hstop(θ) and can be

written as
u√
gh

= β
h

hstop(θ)
, (2.4)

with β = 0.136 independent of the inclination, the bead size, and the roughness of the bed.
This value of β corresponds to the best fit in Figure  2.2 .

To infer the coefficient of friction µ, it is assumed that at an angle θ and thickness hstop(θ),
the friction force is enough to balance the gravitational force down the slope. Hence, one
can write

µ(u, h) = tan θ. (2.5)

It is important to note that the above dynamic friction coefficient µ(u, h), which is as-
sumed to be a function of the thickness h and the mean velocity u, is not a property of
the bulk material but describes the interaction between the material and the rough sur-
face. Pouliquen [ 20 ] also observed that when performing an experiment at a given angle θ
and with a thickness h, the granular layer adjusts its velocity according to Equation  2.4 . In
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2 Theory

other terms, fixing the inclination is equivalent to fixing the friction coefficient.

Figure 2.2: Froude number as a function of h/hstop(θ) for the four systems of beads and for
different inclination angles [ 20 ].

From the curves in Figure  2.3 , Pouliquen [  20 ] experimentally obtained an analytical ex-
pression describing the relationship between hstop and θ as

tan θ = tan θ1 + (tan θ2 − tan θ1) exp

(
−hstop
Ld

)
, (2.6)

where d is the particle diameter, θ1 corresponds to the angle where hstop(θ) diverges, θ2
to the angle where hstop(θ) vanishes and L is a characteristic dimensionless thickness over
which θstop(h) varies.

By substituting hstop(θ) from Equation  2.4 into Equation  2.6 , we obtain the following
relation:

µ(u, h) = tan θ = tan θ1 + (tan θ2 − tan θ1) exp

(
−βh
Ld

√
gh

u

)
. (2.7)

This empirical relation raises several issues. On the one hand, in the high-velocity
regime, Equation  2.7 predicts that the friction coefficient tends to a limit equal to tan θ2
when the velocity tends to infinity. The existence of an upper limit for the friction coeffi-
cient implies that no steady uniform flow can be obtained for an inclination higher than
θ2. On the other hand, the low-velocity regime is not well described by Equation  2.7 . Ac-
cording to this empirical relation, steady uniform flows can be observed for any thickness
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2.2 Friction Law for Granular Flows

Figure 2.3: hstop as a function of θ [ 20 ].

as soon as the inclination is higher than θ1. This is in contradiction with the existence of
the function hstop(θ). However, it must be kept in mind that Equation  2.7 is derived from
Equation  2.4 , which is valid only for h > hstop or equivalently for Froude number Fr > β.
Hence, Equation  2.7 is valid only when the Froude number exceeds β. For Fr < β, we
have no information about the friction law. Experiments on friction between solids [ 14 ] or
between a rough plate and a granular layer [ 18 ] in the low-velocity regime have shown a
complex and rich dynamics which is not yet fully understood.
Hence, it can be inferred from the experiments that steady uniform flows can only develop
when the inclination angle θ ∈ (θ1, θ2).

Pouliquen and Forterre [ 21 ] presented the following expression for determining the fric-
tion coefficient µ:
If Fr > β:

µ(h, Fr) = µstop

(
h

β

Fr

)
, (2.8)

if 0 < Fr ≤ β:

µ(h, Fr) =

(
Fr

β

)κ

(µstop(h)− µstart(h)) + µstart(h), (2.9)

if Fr = 0:

µ(h, 0) = min(µstart(h), ∥ tan θex −∇h∥2). (2.10)
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2 Theory

Equation  2.9 provides the value of µ when Fr ∈ (0, β). Equation  2.9 is derived by ex-
trapolating by a power function characterised by a power of κ. Equation  2.10 is to ensure
that, when the material is static, the friction balances the other forces exactly unless the to-
tal force reaches the threshold value given by the static friction coefficient [ 21 ]. The friction
coefficient is qualitatively determined by the two functions µstart(h) = tan (θstart(h)) and
µstop(h) = tan (θstop(h)), which are experimentally obtained as best fits of curves similar to
the ones in Figure  2.3 . θ1 and θ2 are obtained from the graph between hstop/d and θ which
is exactly the curve shown in Figure  2.3 , and θ3 is the angle at which the curve between
hstart/d and θ diverges. For the glass beads used in their experiment by Pouliquen and
Forterre [ 21 ], the best fits are given by the following expression:

µstop(h) = tan θ1 + (tan θ2 − tan θ1)
1

h/L+ 1
, (2.11)

µstart(h) = tan θ3 + (tan θ2 − tan θ1)
1

h/L+ 1
, (2.12)

with θ1 = 21◦, θ2 = 30.5◦, θ3 = 22.2◦ and L = 0.65mm.
Equation  2.10 presents the coefficient of static friction. In general, the coefficient of static
friction may lie below µstart while the static friction force simply balances the remaining
forces to prevent motion [ 7 ]. A general two-dimensional static momentum balance implies
that the friction must precisely match the gravitational force pulling the grains downslope
as well as any pressure gradients that may be driving them in other directions [ 6 ]. As a
result, µ = ∥ tan θex−∇h∥2 where ex is a unit vector in the downslope direction and∇h is
the gradient of the thickness.

Figure 2.4: Thickness profile observed during flow of sand down an inclined plane [ 10 ].

While experimentally studying the development of long-surface-wave instability in gran-
ular material flows, Forterre and Pouliquen [ 10 ] made some interesting observations. They
conducted experiments similar to the one in [ 20 ] but used sand as the granular material
instead of glass beads. They made a very striking observation that sand flows such that
the thickness profile of the flow looks like a wave, as seen in Figure  2.4 , whereas no such
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2.2 Friction Law for Granular Flows

waves are visible with glass beads. Hence, they realised sand and glass beads behave dif-
ferently while flowing down an inclined plane. They further examined and compared the
two flows experimentally, which led them to include an offset parameter γ in Equation  2.4 .
They presented a more generalised version of the velocity law as seen in Equation  2.13 .

u√
gh

= −γ + β
h

hstop(θ)
, (2.13)

with γ = 0, β = 0.136 for glass beads, and γ = 0.77, β = 0.65 for sand.
The empirical friction law (Equation  2.4 ) is valid only for flows in the dynamic regime

where steady uniform flows exist. According to Pouliquen and Forterre [  21 ], a flow is in
the dynamic regime if h ≥ hstop(θ) which is equivalent to Fr ≥ β in case of glass beads,
since the Froude number offset is γ = 0. Edwards and Gray [  8 ] found that allowing a
dynamic regime for h ≥ hstop(θ) in the same way for glass beads, with β = 0.65 and γ = 0,
leads to the formation of erosion-deposition waves that deposit grains in the wave troughs
with a layer thickness hdeposit that is significantly lower than hstop(θ). From this, Edwards
et al. [ 7 ,  6 ], while studying the phenomenon of erosion and hysteresis in granular flows,
implied that for a steady uniform flow to leave a layer of thickness hstop, the transition be-
tween dynamic and intermediate friction regimes must occur at a higher Froude number.
Furthermore, for materials such as sand, where β < γ, the minimum Froude number for
the transition to the intermediate regime, i.e., Fr = β − γ is negative, implying that all
flows can only be in the dynamic regime. To overcome these problems Edwards et al. [ 7 ]
introduced a friction law transition point h∗(θ) such that h∗(θ) ∈ (hstop(θ), hstart(θ)), and
is given by

h∗(θ) = (1− a)hstop(θ) + ahstart, (2.14)

where a ∈ [0, 1], and hstop(θ) and hstart(θ) can be derived by inverting the Equations  2.11 -
 2.12 respectively, and can be written as

hstart(θ) = L

(
tan θ2 − tan θ1
tan θ − tan θ3

− 1

)
, (2.15)

hstop(θ) = L

(
tan θ2 − tan θ1
tan θ − tan θ2

− 1

)
. (2.16)

Edwards et al. [ 7 ] also introduced the parameter β∗ and defined it as the Froude number at
h = h∗. Substituting Equation  2.14 in Equation  2.4 , we obtain an expression for β∗ given as

β∗(θ) = β

(
1− a+ a

hstart(θ)

hstop(θ)

)
− γ. (2.17)

The maximum value of β∗ is at a = 0, i.e., when h∗(θ) = hstart and upon substituting
hstart(θ) and hstop(θ) from Equations  2.15 - 2.16 in Equation  2.17 , we obtain

β∗ ≤ βmax
∗ = β

(
µ2 + µ3 − 2µ1

µ2 − µ3

)2

− γ. (2.18)
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2 Theory

In the experiments conducted by Edwards et al. [ 7 ] using carborundum particles as gran-
ular material flowing on a rough plane of glass beads, they found that the value of βmax

∗
calculated using the material properties matched closely to the one chosen by them to
match the deposit layer depths hdeposit ≈ hstop. However, for other materials and slope
roughnesses, β∗ may not be equal to βmax

∗ and should instead be inferred directly from the
flow rule experiments [  6 ]. As such, β∗ may be considered as another intrinsic rheological
property. The final expression for the modified friction law given by Edwards et al. [ 7 ] to
determine the coefficient of basal friction µ can be summarised as follows:
If Fr > β∗:

µ(h, Fr) = µstop

(
h

β

Fr + γ

)
, (2.19)

if 0 < Fr ≤ β∗:

µ(h, Fr) = µstart(h) +

(
Fr

β∗

)κ

(µstop(h)− µstart(h)), (2.20)

if Fr = 0:
µ(h, 0) = min(µstart(h), ∥ tan θex −K∇h∥2). (2.21)

2.3 Depth-Averaged Avalanche Equations

Consideration of a solid as a fully rigid body serves as a good approximation for modelling
the properties of a solid. However, in practice, totally rigid bodies typically crack or shat-
ter when subjected to high stresses. As a result, when a more realistic solid is subjected to
intermittent shearing stress, the body will somewhat deform before returning to its former
shape, indicating the presence of some elastic property. When describing a fluid, however,
this description is altered because a fluid has no stiffness at all. Small fluid components’
inability to resist any inclination by applied forces to deform them without changing shape
is a fundamental property of fluids. This notion has implications for describing a granular
avalanche, which can behave like a solid or fluid and switch between the two states within
the same flow [ 1 ]. Avalanches are often modelled using the governing equations of fluid
flow because these equations provide a simplified yet effective way to describe the flow
of granular materials like snow and debris down a steep slope. The mathematical model
used to describe granular flow during an avalanche for this thesis is derived using the
conservation of mass (Equation  2.22 ) and momentum (Equation  2.23 ) for an incompress-
ible fluid. The conservation equations can be written as follows:

∇·u = 0, (2.22)

ρ

(
∂u
∂t

+∇ · (u⊗ u)
)

= ∇ · σ + ρg, (2.23)

where:
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2.3 Depth-Averaged Avalanche Equations

• t is time.

• ∇ is the gradient operator.

• u is the velocity vector.

• σ is the stress tensor which is symmetric, σT = σ.

• g denotes the acceleration due to gravitational body force.

The typical length scales within the plane of propagation of geophysical flows, such as
the separation between the start and runout of the flow and its width, are more signifi-
cant than the typical length scales in the outward normal direction, such as the depth of
the avalanche. As a result, the aspect ratio is often relatively low relative to the vertical
in both the cross-slope and downslope directions. This property is helpful mathemati-
cally because it allows for the use of the small spatial parameter that makes it possible to
employ asymptotic analysis to make the governing equations simpler while still achiev-
ing good approximations. Averaging over the shortest dimension allows for additional
simplifications and frequently reduces the problem’s effective spatial dimension by one.
This approach is exactly similar to what was done by Saint-Venant [ 5 ] while deriving the
shallow-water equations (Equations  2.1 - 2.3 ). Equations  2.22 - 2.23 were integrated along
the direction of depth to obtain the shallow-water equations.

The governing equations used for the numerical simulation in this thesis are based on
the equations given in [ 3 ] combined with the friction law presented in Equations  2.19 - 2.21 .
These equations are also based on the shallow-water assumption. It is useful to describe
the derivation of the final equations. The following is an overview of the derivation of the
depth-averaged avalanche equations given in [ 3 ].

Consider a mass of granular material flowing down an inclined plane which is inclined
at an angle θ to the horizontal as shown in Figure  2.5 . Let Oxyz be a Cartesian coordinate
system with the x-axis aligned with the downslope direction, the y-axis aligned with the
cross-slope direction and the z-axis normal to the surface of the plane. The velocity u has
components (u, v, w) in the (x, y, z) directions, respectively. Assuming a rigid flat base, the
free surface lies at z = h, where h is the depth of the flow. The depth-averaged velocity,
ū = (ū, v̄), is defined as

ū =
1

h

∫ h

0
u dz , (2.24)

v̄ =
1

h

∫ h

0
v dz . (2.25)

Upon depth integration of Equations  2.22 - 2.23 , we obtain

∂h

∂t
+∇ · (hū) = 0, (2.26)
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2 Theory

Figure 2.5: Force balance in the shallow-water description [ 11 ].

∂(hū)

∂t
+∇ · (χhū⊗ ū) +∇

(
1

2
gh2 cos θ

)
= ghS +

1

ρ
∇ · (hτ̄ ), (2.27)

where τ̄ is the depth-averaged deviatoric stress. The shape factor χ accounts for the differ-
ence between the square of the depth-averaged velocity and the depth-averaged square of
velocities via the relation ū2 = χū2. The value of χ depends on the vertical velocity profile,
with χ = 5/4 for a Bagnold profile and χ = 1 if the profile is independent of z. We assume
for our avalanche model that χ = 1 like what was done by Pouliquen and Forterre [ 21 ].
The source term S = (Sx, Sy) occurs due to gravity and effective basal friction, where

Sx = cos θ

(
tan θ − µ

ū

|ū|

)
, (2.28)

Sy = cos θ

(
−µ v̄

|ū|

)
, (2.29)

where µ is based on the basal friction law given in Equations  2.19 - 2.21 . The final expression
on the right-hand side of the momentum equation  2.27 is the divergence of the deviatoric
stress tensor. This term is usually very small and is neglected in standard inviscid shallow-
water-like avalanche models. However, in more subtle problems, it plays a critical role in
obtaining a correct solution. The depth-averaged deviatoric stress tensor τ̄ is defined as

τ̄ =
1

h

∫ h

0
τ dz , (2.30)
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2.3 Depth-Averaged Avalanche Equations

where τ is the deviatoric component of the (three-dimensional) Cauchy stress tensor

σ = −pI3 + τ, (2.31)

where I3 is the 3 × 3 identity matrix and p is the hydrostatic pressure. The aim of this
decomposition is to write τ in terms of the state variables already present in the formula-
tion, i.e., (u, p), and it is through this term that constitutive information is included in the
model. When the shear stress gives the deviatoric stress, the shear stress and strain rate
are co-linear, i.e.,

τ

∥τ∥
=

D
∥D∥

, (2.32)

where D is the strain-rate tensor. The strain-rate tensor D is defined to using the velocity
gradient L = ∇u as

D =
1

2

(
L + LT

)
. (2.33)

The norm on the strain-rate tensor is given by its second invariant defined as

∥D∥ =
√

1

2
tr(D2), (2.34)

where tr is the trace operation.
Combining the general concepts of plasticity with Coulomb’s postulate for friction in gran-
ular media, we can write

∥τ∥ = µip, (2.35)

where µi is the coefficient of internal friction. Using this formulation, τ can be written as

τ = ν(p, ∥D∥)D, (2.36)

where ν can be interpreted as the effective non-Newtonian granular viscosity. We can write
using Equation  2.32 that

τ = µi(I)p
D
∥D∥

, (2.37)

where I is the inertial number. The Groupement de Recherche Milieux Divisés [ 12 ] gath-
ered from numerical studies that the coefficient of internal friction µi is not a constant but
rather a function depending on a single non-dimensional parameter I. I is known as the in-
ertial number and can be interpreted as the ratio between the time scale given by the shear
rate and the time scale related to the confining pressure [ 12 ]. It is written in the following
form:

I =
2∥D∥d√
p/ρ∗

, (2.38)

where d is the particle diameter, and ρ∗ is the intrinsic solid density of the grains. Jop et
al. [ 15 ] derived the function µi(I) from the basal friction law as

µi(I) = µ1 +
µ2 − µ1

I/I0 + 1
, (2.39)
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2 Theory

where the constant I0 is given by
5βd

2L
√
ϕ
, (2.40)

where ϕ is the solid volume fraction. The hydrostatic pressure is given as

p = ρg(h− z) cos(θ), (2.41)

where ρ = ρ∗ϕ. The downslope momentum balance can also be integrated to show that
the shear stress is

τxz = ρg(h− z) sin θ. (2.42)

Substituting Equations  2.41 and  2.42 in Equation  2.35 implies that µi(I) = tan θ. Hence for
a fixed slope angle θ, the inertial number I is equal to a constant Iθ, and is given as

Iθ = I0

(
tan θ − µ1

µ2 − tan θ

)
. (2.43)

The Bagnold velocity profile is given as

u =
2Iθ
3d

√
ϕg cos θ(h3/2 − (h− z)3/2). (2.44)

Integrating the Bagnold velocity in Equation  2.44 through the avalanche depth implies that
the depth-averaged Bagnold velocity is

ū =
Iθ
5d

√
ϕg cos θh3/2. (2.45)

The depth-averaged viscosity term in one spatial dimension was derived by Gray and
Edwards in [ 13 ]. It is useful to briefly summarise their derivation only to later generalise in
order to extend it to a two-dimensional domain. Equation  2.35 implies that the downslope
in-plane deviatoric stress is

τxx = µ(I)p
Dxx

∥D∥
. (2.46)

Using Equation  2.33 , the strain rate Dxx is calculated by differentiating the Bagnold veloc-
ity profile in Equation  2.44 with respect to x

Dxx =
∂u

∂x
=

Iθ
2d

√
ϕg cos θ(h1/2 − (h− z)1/2)

∂h

∂x
. (2.47)

Similarly, to leading order, the second invariant of the strain-rate tensor could also be eval-
uated using the Bagnold velocity profile, i.e.,

∥D∥ = 1

2

∣∣∣∣∂u∂z
∣∣∣∣ = Iθ

2d

√
ϕg cos θ(h− z)1/2. (2.48)
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2.3 Depth-Averaged Avalanche Equations

By substituting µi = tan θ, and Equations  2.41 ,  2.47 and  2.48 in Equation  2.46 we obtain

τxx = 2ρg sin θ(h1/2(h− z)1/2 − (h− z))
∂h

∂x
. (2.49)

Integrating Equation  2.49 through the avalanche depth, the leading-order approximation
for the depth-averaged deviatoric in plane stress τ̄xx is

hτ̄xx =
1

3
ρg sin θh2

∂h

∂x
. (2.50)

From Equation  2.45 , it follows that the thickness gradient is

∂h

∂x
=

5d

3Iθ
√
ϕg cos θ

1

h1/2
∂ū

∂x
. (2.51)

Using Equation  2.51 in Equation  2.50 , we obtain

hτ̄xx = ρνh3/2
∂ū

∂x
, (2.52)

where all constant parameters have been merged into ν to make it equivalent to the depth-
averaged viscosity, which can be expressed as

ν =
2L
√
g

9β

sin θ√
cos θ

(
µ2 − tan θ

tan θ − µ1

)
. (2.53)

Baker et al. [ 3 ] showed that Equation  2.52 can be generalised for two dimensions as

hτ̄ = ρνh3/2D̄, (2.54)

where
D̄ =

1

2
(L̄+ L̄

T
), (2.55)

is the depth-integrated strain-rate tensor and L̄ = ∇ū is the two-dimensional gradient of
the depth-averaged velocity.
By substituting the depth-averaged deviatoric stress tensor from Equation  2.54 in Equa-
tion  2.27 , we finally obtain the depth-averaged avalanche equations in component form
as

∂h

∂t
+

∂

∂x
(hū) +

∂

∂y
(hv̄) = 0, (2.56)

∂

∂t
(hū) +

∂

∂x

(
hū2 +

1

2
gh2 cos θ

)
+

∂

∂y
(hūv̄) = ghSx +

∂(D1,x)

∂x
+

∂(D1,y)

∂y
, (2.57)

∂

∂t
(hv̄) +

∂

∂x
(hūv̄) +

∂

∂y

(
hv̄2 +

1

2
gh2 cos θ

)
= ghSy +

∂(D2,x)

∂x
+

∂(D2,y)

∂y
, (2.58)

17
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with Sx and Sy given in Equations  2.28 - 2.29 and

D1,x =

(
νh3/2

∂ū

∂x

)
,

D1,y = D2,x =

(
1

2
νh3/2

(
∂ū

∂y
+

∂v̄

∂x

))
,

D2,y =

(
νh3/2

∂v̄

∂y

)
.

For this thesis, Equations  2.56 - 2.58 are used in ExaHyPE 2 for avalanche simulations.
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3 ExaHyPE 2

ExaHyPE 2 (”An Exascale Hyperbolic PDE Engine”) is a software engine for solving sys-
tems of first-order hyperbolic partial differential equations (PDEs) [ 23 ]. Hyperbolic PDEs
are typically derived from the conservation laws of physics and are useful in a wide range
of application areas. Applications powered by ExaHyPE 2 can be run on a student’s lap-
top, as well as exploit thousands of processor cores on state-of-the-art supercomputers.
The engine can dynamically increase the accuracy of the simulation using adaptive mesh
refinement where required. Due to the robustness and shock-capturing abilities of Ex-
aHyPE 2’s numerical methods, engine users can simulate linear and non-linear hyperbolic
PDEs with very high accuracy. Users can tailor the engine to their particular PDE by spec-
ifying evolved quantities, fluxes, and source terms. A complete simulation code for a new
hyperbolic PDE can often be realised within a few hours — a task that, traditionally, can
take weeks, months and often years for researchers starting from scratch.

The ExaHyPE 2 engine relies on the Peano framework [ 26 ] for its dynamically adap-
tive Cartesian meshes. In addition, it provides an efficient mesh traversal scheme that
ExaHyPE 2’s algorithms plug into Peano itself. Peano decomposes the Cartesian domain
into patches based on the inputs and the choice of numerical method provided by the user.
These patches are then traversed in an order defined by the Peano curve. Figure  3.1 shows
a schematic of a single patch with interior cells (green), halo cells (white) and corner halo
cells (red). The data in corner halo cells (red) is not communicated to the neighbouring
patches. Only the data in halo cells with emanating arrows (white) is communicated to
neighbouring patches.

Since ExaHyPE 2 is a solver engine, domain-specific code has to be written by the user to
obtain the simulation code. To write an ExaHyPE 2 application, users typically start with
a Python script written using the Python API of ExaHyPE 2 and Peano. This Python script
yields a native Peano application (builder mechanism), which then assembles the applica-
tion. The user fills the application-specific classes with the PDE terms. The generated glue
code and the initially empty templates comprise the ExaHyPE 2 application.

3.1 Problem Formulation

ExaHyPE 2 itself is a hyperbolic PDE engine, and its goal is to provide a generic API in
which users can implement the specifics of their hyperbolic PDEs and have the engine
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3 ExaHyPE 2

C1 C2 C3 C4 C5

C6 C7 C8 C9 C10

C11 C12 C13 C14 C15

C16 C17 C18 C19 C20

C21 C22 C23 C24 C25

Figure 3.1: Single patch for a patch-size of 3 with internal cells (green), halo cells (white)
and corner halo cells (red).
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3.2 The Shallow-Water Equations in ExaHyPE 2

solve these. ExaHyPE 2 solves partial differential equations of the following form:

∂Q

∂t
+∇ · F (Q,∇Q) +B(Q).∇Q = S(Q) +

nps∑
i=1

δi, (3.1)

where Q is the vector of unknowns and auxiliary variables, F is the flux, B is the non-
conservative product (often shortened to NCP), and S is the source term of the equation.
For simplicity, the easiest way to think of each of these is as follows:

• The flux contains terms linked to the transmission of a quantity within the domain,
such as the flow of heat from a hot part of the domain to a colder one. It concerns
quantities that do not change but move from one part to another.

• The non-conservative product refers to the non-linear terms that appear in the hyper-
bolic PDEs. These terms are called non-conservative because they do not have a clear
conservation interpretation, meaning they do not preserve any physical quantities in
the system.

• The source term contains terms that are acted upon the system from outside, such as
gravity or some other forces.

3.2 The Shallow-Water Equations in ExaHyPE 2

This section is a brief tutorial on how to implement the shallow-water equations (SWE)
(Equations  2.1 - 2.3 ) in ExaHyPE 2. The algorithms required to develop the solver applica-
tion are presented.
On comparing the shallow-water equations (Equations  2.1 - 2.3 ) with Equation  3.1 , we can
write:

Q =


h
hū
hv̄
b

 , (3.2)

F =

 hū hv̄
hū2 + 1

2gh
2 hūv̄

hūv̄ hv̄2 + 1
2gh

2

 , (3.3)

B∇Q =

 0 0

gh ∂b
∂x 0

0 gh ∂b
∂y

 , (3.4)

S =

0
0
0

 . (3.5)
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3 ExaHyPE 2

Algorithms  1 - 3 are implemented for a dam-break scenario with reflective boundary con-
ditions. This scenario is chosen as an example to demonstrate the implementation of these
algorithms.

The initial conditions are set such that the water height inside a circular dam is 0.5 m
higher than the height outside the dam.

Algorithm 1: Implementation of the initial conditions function for an SWE dam-
break scenario

Input: Q: Vector of unknown variables containing h, hu, hv, b.
volumeCentre: Vector containing coordinates of the centre of the current
volume.

Output: Q: Vector with initialised h, hu, hv, b.
Data: dam: Region convered by the dam in the domain.

1 Function initialConditions(Q, volumeCentre):
2 if volumeCentre ∈ dam then
3 Q[h]← 1.5 // water height inside dam is 1.5 m

4 else
5 Q[h]← 1.0 // water height outside the dam is 1.0 m

6 Q[hu]← 0.0 // initial velocity in x-direction is 0.0 m/s
7 Q[hv]← 0.0 // initial velocity in y-direction is 0.0 m/s
8 Q[b]← 0.0 // assuming flat bottom
9 return Q

Reflective boundary conditions are programmed in Algorithm  2 such that the water
height at the boundary is equal to the water height in the cell adjacent to the boundary
inside the domain. Velocity at the boundary is equal and opposite to the velocity in the
cell adjacent to the boundary inside the domain.

The user can initially choose which part of the domain they want to refine. This feature
is called static adaptive mesh refinement. For e.g., in Algorithm  3 , the cells inside the dam
region are refined, and volumes outside the dam are kept unrefined.

The eigenvalues of the system are the eigenvalues of the Jacobian of the flux function.
Since the 2D shallow-water equations are a system of three PDEs, we get three eigen-
values in each of the two components (dimensions). The eigenvalues in x-direction are
the eigenvalues of the Jacobian of the x-component of the flux in Equation  3.3 , which is
(hū, hū2 + 1

2gh
2, hūv̄)T . Similarly, the eigenvalues in y-direction are the eigenvalues of the

Jacobian of the y-component of the flux which is (hv̄, hūv̄, hv̄2 + 1
2gh

2)T . Upon calculation,
the eigenvalues in x- and y-direction turn out to be λx1 = ū, λx2 = ū−

√
gh, λx3 = ū+

√
gh

and λy1 = v̄, λy2 = v̄ −
√
gh, λy3 = v̄ +

√
gh, respectively. The maxEigenvalue function

in Algorithm  4 returns the maximum eigenvalue in the normal-direction.
From Equation  3.3 , we can see that the x-component of the flux is (hu, hu2 + 1

2gh
2, huv)
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3.2 The Shallow-Water Equations in ExaHyPE 2

Algorithm 2: Implementation of the reflective boundary conditions function for
SWE

Input: Qinside: Vector of unknown variables containing h, hu, hv, b of volume
located just inside the domain.
Qoutside: Vector containing unknown variables h, hu, hv, b of the volume
at the boundary.

Output: Qoutside: Vector containing unknown variables with assigned boundary
conditions.

1 Function boundaryConditions(Qinside, Qoutside):
2 Qoutside[h]← Qinside[h]
3 Qoutside[hu]← −Qinside[hu] // refective boundary condition
4 Qoutside[hv]← −Qinside[hv] // refective boundary condition
5 Qoutside[b]← Qinside[b]
6 return Qoutside

and the y-component is (hv, huv, hv2 + 1
2gh

2). One of the two components is returned by
Algorithm  5 based on the value of n.

From Equation  3.4 , we can see that the x-component of the non-conservative product is
(0, gh ∂b

∂x , 0)
T and the y-component is (0, 0, gh ∂b

∂y )
T . One of the two components is returned

by Algorithm  6 based on the value of n.
Since the source term is (0, 0, 0)T , we need not provide its implementation to the engine.

The engine assumes it to be zero by default.
The details of the simulation, such as choosing the solver, volume size, time-step size

and domain size are provided in the Python script used to configure the solver and to
build the code. The Python script is written using the Python API of ExaHyPE 2.

Algorithm 3: Implementation of the refinement criterion function for SWE
Input: Q: Vector of unknown variables containing h, hu, hv, b.

volumeCentre: Vector containing coordinates of the centre of current
volume with {0 : x, 1 : y}.

Output: refinementCommand ∈ {Keep,Refine,Erase}: Refinement option.
Data: dam: Region convered by the dam in the domain.

1 Function refinementCriterion(Q, volumeCentre):
2 if volumeCentre ∈ dam then
3 return Refine

4 else
5 return Keep
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3 ExaHyPE 2

Algorithm 4: Implementation of the function calculating max eigenvalue for
SWE

Input: Q: Vector of unknown variables containing h, hu, hv, b.
n ∈ {x, y}: Normal-direction.

Output: maxEigenvalue: Maximum eigenvalue in the direction pointed by n.
1 Function maxEigenvalue(Q, n):
2 g ← 9.81

3 c←
√
gQ[h]

4 if n is along x then
5 u← Q[hu]/Q[h]
6 maxEigenvalue← max (|u− c|, |u+ c|)
7 else if n is along y then
8 v ← Q[hv]/Q[h]
9 maxEigenvalue← max (|v − c|, |v + c|)

10 return maxEigenvalue

Algorithm 5: Implementation of the flux function for SWE
Input: Q: Vector of unknown variables containing h, hu, hv, b.

n ∈ {x, y}: Normal-direction.
Output: F : Vector containing flux in the normal-direction.

1 Function flux(Q, n):
2 g ← 9.81 if n is along x then
3 F [0]← Q[hu] // hu

4 F [1]← Q[h]
(
Q[hu]
Q[h]

)2
+ 1

2g(Q[h])2 // hu2 + 1
2gh

2

5 F [2]← Q[hu]
(
Q[hv]
Q[h]

)
// huv

6 else if n is along y then
7 F [0]← Q[hv] // hv

8 F [1]← Q[hu]
(
Q[hv]
Q[h]

)
// huv

9 F [2]← Q[h]
(
Q[hv]
Q[h]

)2
+ 1

2g(Q[h])2 // hv2 + 1
2gh

2

10 return F
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Algorithm 6: Implementation of the non-conservative product function for SWE
Input: Q: Vector of unknown variables containing h, hu, hv, b.

n ∈ {x, y}: Normal-direction.
deltaQ: Vector containing derivatives hn, hun, hvn, bn along the
normal-direction n.

Output: BTimesDeltaQ: Vector containing the non-conservative term in the
normal-direction.

1 Function nonConservativeProduct(Q, n,∇Q):
2 g ← 9.81
3 if n is along x then
4 BTimesDeltaQ[0]← 0
5 BTimesDeltaQ[1]← gQ[h](deltaQ[b]) // ghbx
6 BTimesDeltaQ[2]← 0

7 else if n is along y then
8 BTimesDeltaQ[0]← 0
9 BTimesDeltaQ[1]← 0

10 BTimesDeltaQ[2]← gQ[h](deltaQ[b]) // ghby
11 return BTimesDeltaQ
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4 Implementation of the Depth-Averaged
Avalanche Equations in ExaHyPE 2

The depth-averaged avalanche equations (Equations  2.56 - 2.58 ) were implemented in Ex-
aHyPE 2. This chapter presents all the algorithms required to develop a solver application
that uses the finite volume method with Rusanov flux and adaptive time stepping to sim-
ulate avalanches using the depth-averaged avalanche equations (DAE).

The implementation of hyperbolic PDEs in ExaHyPE 2 requires them to be arranged as
per Equation  3.1 . On comparing Equations  2.56 - 2.58 with Equation  3.1 , we can write

Q =

 h
hū
hv̄

 , (4.1)

F =

 hū hv̄
hū2 + 1

2g cos θh
2 hūv̄

hūv̄ hv̄2 + 1
2g cos θh

2

 , (4.2)

B∇Q =

 0 0

−∂(D1,x)
∂x −∂(D1,y)

∂y

−∂(D2,x)
∂x −∂(D2,y)

∂y

 , (4.3)

where
∂(D1,x)

∂x
= ν
√
h

(
3

2

∂h

∂x

∂ū

∂x
+ h

∂2ū

∂x2

)
,

∂(D1,y)

∂y
=

1

2
ν
√
h

(
3

2

∂h

∂y

(
∂ū

∂y
+

∂v̄

∂x

)
+ h

(
∂2ū

∂y2
+

∂2v̄

∂x∂y

))
,

∂(D2,x)

∂x
=

1

2
ν
√
h

(
3

2

∂h

∂x

(
∂ū

∂y
+

∂v̄

∂x

)
+ h

(
∂2ū

∂x∂y
+

∂2v̄

∂x2

))
,

∂(D2,y)

∂y
= ν
√
h

(
3

2

∂h

∂y

∂v̄

∂y
+ h

∂2v̄

∂y2

)
,

and

S =

 0
gh cos θ − µ(h, Fr) ū√

ū2+v̄2
hg cos θ

−µ(h, Fr) v̄√
ū2+v̄2

hg cos θ

 , (4.4)

where µ(h, Fr) is given in Equations  2.19 - 2.21 .
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4.1 Preprocessing of a Patch

The implementation of the non-conservative product B∇Q in ExaHyPE 2 involves the fol-
lowing two challenges:

1. The x-component involves partial derivatives in y-direction, and, the y-component
involves partial derivatives in x-direction.

2. Existence of double derivatives.

These challenges occur because the deltaQ parameter in the nonConservativeProduct
function in Algorithm  6 contains only first-order derivatives in the normal-direction n. To
overcome these challenges, we treat the derivative terms as auxiliary variables and store
them in the vector of unknowns Q. Thus, the vector of unknowns Q programmed in
ExaHyPE 2 contains values of 16 variables as listed in Table  4.1 . The auxiliary variables
containing partial derivatives of h, ū, v̄ are calculated using the finite-difference method in
the preprocess reconstruced patch routine provided by ExaHyPE 2. This routine
is applied to all the patches before the start of every time step. Hence, the derivatives get
recalculated and updated before the start of every time step. However, there is another
problem here. As discussed in Chapter  3 and also seen in Figure  4.1 , the data in the corner
halo cells (C1, C5, C21, C25) is not transferred and updated between patches. From Equa-
tions  4.5 - 4.8 , we can see that calculation of mixed derivative for V ∈ {h, hū, v̄} i.e., ∂2V

∂x∂y at
the corner internal cells (C7, C9, C17, C19) using the central-difference scheme requires the
data at the respective corner halo cells (C1, C5, C21, C25):

∂2VC7

∂x∂y
≈ VC3 − VC1 − VC13 + VC11

4∆x∆y
, (4.5)

∂2VC9

∂x∂y
≈ VC5 − VC3 − VC15 + VC13

4∆x∆y
, (4.6)

∂2VC17

∂x∂y
≈ VC13 − VC11 − VC23 + VC21

4∆x∆y
, (4.7)

∂2VC19

∂x∂y
≈ VC15 − VC13 − VC25 + VC23

4∆x∆y
. (4.8)

To resolve the problem caused by missing data in the corner halo cells, we extrapolate the
values of all unknown variables according to Equations  4.9 - 4.12 .

VC1 =
VC2 + VC6

2
, (4.9)

VC5 =
VC4 + VC10

2
, (4.10)

VC21 =
VC16 + VC22

2
, (4.11)
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4.1 Preprocessing of a Patch

Index Variable Variable Description Variable Type

0 h Height of granular material. Unknown

1 hu Height×Depth-averaged velocity along x-direction. Unknown

2 hv Height×Depth-averaged velocity along y-direction. Unknown

3 b Bathymetry of the bottom. Auxiliary

4 hx
∂h
∂x Auxiliary

5 hy
∂h
∂y Auxiliary

6 ux
∂ū
∂x Auxiliary

7 uy
∂ū
∂y Auxiliary

8 uxx
∂2ū
∂x2 Auxiliary

9 uyy
∂2ū
∂y2

Auxiliary

10 uxy
∂2ū
∂x∂y Auxiliary

11 vx
∂v̄
∂x Auxiliary

12 vy
∂v̄
∂y Auxiliary

13 vxx
∂2v̄
∂x2 Auxiliary

14 vyy
∂2v̄
∂y2

Auxiliary

15 vxy
∂2v̄
∂x∂y Auxiliary

Table 4.1: List of Variables in Q
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4 Implementation of the Depth-Averaged Avalanche Equations in ExaHyPE 2

C5C1 C2 C3 C4

C6 C7 C8 C9 C10

C11 C12 C13 C14 C15
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Figure 4.1: Data transfer between halo cells of two patches.

VC25 =
VC24 + VC20

2
, (4.12)

where V ∈ {h, hū, hv̄}.
Algorithm  7 is included in the preprocess reconstruced patch routine to extrap-

olate values in corner halo cells before calculating derivatives (cf. Algorithm  8 ).
Algorithm  8 calculates single derivatives using the backward difference scheme and

double derivatives using the central difference scheme. Note that only the numerator of
these schemes is calculated in Algorithm  8 because ExaHyPE 2 does not provide the grid
size values ∆x and ∆y in the preprocess reconstruced patch routine. The denom-
inator is applied in the nonConservativeProduct function in Algorithm  14 and the
sourceTerm function in Algorithm  15 , where the derivatives are used, and the values for
grid sizes ∆x and ∆y are also available.

4.2 Algorithms for the Depth-Averaged Avalanche Equations

The initial conditions in Algorithm  9 are set such that the height inside the granular mate-
rial region is 8mm, and outside this region, it is 0 since there is no material. This condition
is mainly used in the following Chapter  5 for evaluations.

Reflective boundary conditions are programmed in Algorithm  10 such that the material
height at the boundary is equal to the material height in the cell adjacent to the boundary
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4.2 Algorithms for the Depth-Averaged Avalanche Equations

Algorithm 7: Implementation of the preprocessing function to extrapolate halo
cells

Input: Ci: Memory location of all volume denoted by Ci in Figure  3.1 .
variableList: Variable enumerations in each volume as given in Table  4.1 .

Output: patch: Linearised array containing all volumes with extrapolated corner
halo cells in the patch.

Data: Volume names are used as per Figure  3.1 .
1 Function extrapolateHalo(Ci, variableList):
2 for variable ∈ variableList do
3 C1[variable]← 1

2(C2[variable] + C6[variable])

4 C5[variable]← 1
2(C4[variable] + C10[variable])

5 C21[variable]← 1
2(C16[variable] + C22[variable])

6 C25[variable]← 1
2(C20[variable] + C24[variable])

7 return patch

inside the domain. Velocity at the boundary is equal and opposite to the velocity in the
cell adjacent to the boundary inside the domain.

In Algorithm  11 , for simplicity, we do not refine the volume anywhere in the domain
and always return Keep. To refine specific parts of the domain we can impose conditions
to return Refine based on the coordinates of the volume. Similarly, to coarsen certain parts
of the domain, we can return Erase.

The eigenvalues of the system are the eigenvalues of the Jacobian of the flux func-
tion. Since depth-averaged avalanche equations are a system of three PDEs, we get three
eigenvalues in each of the two components (dimensions). The eigenvalues in x-direction
are the eigenvalues of the Jacobian of the x-component of flux in Equation  4.2 which
is (hū, hū2 + 1

2g cos θh
2, hūv̄)T . Similarly, the eigenvalues in y-direction are the eigen-

values of the Jacobian of the y-component of flux which is (hv̄, hūv̄, hv̄2 + 1
2g cos θh

2)T .
Upon calculation, the eigenvalues in x- and y-direction turn out to be λx1 = ū, λx2 =
ū −
√
hg cos θ, λx3 = ū +

√
hg cos θ and λy1 = v̄, λy2 = v̄ −

√
hg cos θ, λy3 = v̄ +

√
hg cos θ,

respectively. The maxEigenvalue function in Algorithm  12 returns the maximum eigen-
value in the normal-direction.

From Equation  4.2 , we can see that the x-component of the flux is (hu, hu2 +
1
2g cos θh

2, huv)T and the y-component is (hv, huv, hv2+ 1
2g cos θh

2)T . One of the two com-
ponents is returned by Algorithm  13 based on the value of n.

From Equation  4.3 we can see that the x-component of the non-conservative product is
−(0, ν

√
h(32

∂h
∂x

∂u
∂x + h∂2u

∂x2 ),
1
2ν
√
h(32

∂h
∂x(

∂u
∂y + ∂v

∂x) + h( ∂2u
∂x∂y + ∂2v

∂x2 )))
T and the y-component

is −(0, 12ν
√
h(32

∂h
∂y (

∂u
∂y + ∂v

∂x) + h(∂
2u

∂y2
+ ∂2v

∂x∂y )), ν
√
h(32

∂h
∂y

∂v
∂y + h∂2v

∂y2
))T . The loop body

of the finite volume Rusanov solver in ExaHyPE 2 passes the average of the variable
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4 Implementation of the Depth-Averaged Avalanche Equations in ExaHyPE 2

value in the current volume and the volume on the right in the normal-direction to the
nonConservativeProduct function in Algorithm  14 . The function has another param-
eter named deltaQ, which is the difference between the variable value in the right cell in
the normal-direction and the current cell. The true value of the auxiliary variables (deriva-
tives) in Q is retrieved using Q and deltaQ and divided by the respective of volumeH to
apply the denominator of the finite-difference formulation. This denominator is applied
because it is only the numerator which is calculated and stored in Algorithm  8 . These
derivative values are then used to compute the non-conservative product in Algorithm  14 .

The source term from Equation  4.4 is incorporated in Algorithm  15 . The algorithm first
calculates the coefficient of basal friction µ based on Equations  2.19 - 2.21 , which is then
used to calculate the source term. The input parameters to Algorithm  15 are mostly material
parameters derived from experiments.
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4.2 Algorithms for the Depth-Averaged Avalanche Equations

Algorithm 8: Implementation of the preprocessing function to calculate deriva-
tives

Input: Ci: Memory location of volumes denoted by Ci in Figure  3.1 .
Output: patch: Linearised array containing all volumes with updated derivatives

in the patch.
Data: C(x,y)

i : Address of the neighbour volume of Ci with relative x-position = x
and relative y-position = y.
internalV olumes: List of volumes inside the patch denoted by green in
Figure  3.1 .

1 Function calculateDerivatives(Ci):
2 for Ci ∈ internalV olumes do

// Derivatives of h

3 Ci[hx]← Ci[h]− C
(−1,0)
i [h]

4 Ci[hy]← Ci[h]− C
(0,−1)
i [h]

// Derivatives of u

5 Ci[ux]← Ci[hu]
Ci[h]

− C
(−1,0)
i [hu]

C
(−1,0)
i [h]

6 Ci[uy]← Ci[hu]
Ci[h]

− C
(0,−1)
i [hu]

C
(0,−1)
i [h]

7 Ci[uxx]←
C

(1,0)
i [hu]

C
(1,0)
i [h]

− 2Ci[hu]
Ci[h]

+
C

(−1,0)
i [hu]

C
(−1,0)
i [h]

8 Ci[uyy]←
C

(0,1)
i [hu]

C
(0,1)
i [h]

− 2Ci[hu]
Ci[h]

+
C

(0,−1)
i [hu]

C
(0,−1)
i [h]

9 Ci[uxy]←
C

(1,1)
i [hu]

C
(1,1)
i [h]

− C
(1,−1)
i [hu]

C
(1,−1)
i [h]

− C
(−1,1)
i [hu]

C
(−1,1)
i [h]

+
C

(−1,−1)
i [hu]

C
(−1,−1)
i [h]

// Derivatives of v

10 Ci[vx]← Ci[hv]
Ci[h]

− C
(−1,0)
i [hv]

C
(−1,0)
i [h]

11 Ci[vy]← Ci[hv]
Ci[h]

− C
(0,−1)
i [hv]

C
(0,−1)
i [h]

12 Ci[vxx]←
C

(1,0)
i [hv]

C
(1,0)
i [h]

− 2Ci[hv]
Ci[h]

+
C

(−1,0)
i [hv]

C
(−1,0)
i [h]

13 Ci[vyy]←
C

(0,1)
i [hv]

C
(0,1)
i [h]

− 2Ci[hv]
Ci[h]

+
C

(0,−1)
i [hv]

C
(0,−1)
i [h]

14 Ci[vxy]←
C

(1,1)
i [hv]

C
(1,1)
i [h]

− C
(1,−1)
i [hv]

C
(1,−1)
i [h]

− C
(−1,1)
i [hv]

C
(−1,1)
i [h]

+
C

(−1,−1)
i [hv]

C
(−1,−1)
i [h]

15 return patch
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4 Implementation of the Depth-Averaged Avalanche Equations in ExaHyPE 2

Algorithm 9: Implementation of the initial conditions function for DAE
Input: Q: Vector containing unknown and auxiliary variables.

volumeCentre: Vector containing coordinates of the centre of the current
volume.

Output: Q: Vector with initialised unknown and auxiliary variables.
1 Function initialConditions(Q, volumeCentre):
2 if volumeCentre ∈ granularRegion then
3 Q[h]← 0.008

4 else
5 Q[h]← 0.0

6 Q[hu]← 0.0 // initial velocity in x-direction is 0
7 Q[hv]← 0.0 // initial velocity in y-direction is 0
8 Q[b]← 0.0 // assuming flat bottom
9

// All the remaining auxiliary variables get initialised
to 0.0

10

11 Q[hx]← 0.0
12 Q[hy]← 0.0
13 Q[ux]← 0.0
14 Q[uy]← 0.0
15 Q[uxx]← 0.0
16 Q[uyy]← 0.0
17 Q[uxy]← 0.0
18 Q[vx]← 0.0
19 Q[vy]← 0.0
20 Q[vxx]← 0.0
21 Q[vyy]← 0.0
22 Q[vxy]← 0.0
23 return Q

34



4.2 Algorithms for the Depth-Averaged Avalanche Equations

Algorithm 10: Implementation of the reflective boundary conditions function for
DAE

Input: Qinside: Vector containing unknown and auxiliary variables of volume
located just inside the domain.
Qoutside: Vector containing unknown and auxiliary variables of the
volume at the boundary.

Output: Qoutside: Vector containing unknown and auxiliary variables with
assigned boundary conditions.

1 Function boundaryConditions(Qinside, Qoutside):
2 Qoutside[h]← Qinside[h]
3 Qoutside[hu]← −Qinside[hu] // reflective boundary condition
4 Qoutside[hv]← −Qinside[hv] // reflective boundary condition
5

// boundary values of auxiliary variables are set to
inside values, they are never used

6

7 Qoutside[b]← Qinside[b]
8 Qoutside[hx]← Qinside[hx]
9 Qoutside[hy]← Qinside[hy]

10 Qoutside[ux]← Qinside[ux]
11 Qoutside[uy]← Qinside[uy]
12 Qoutside[uxx]← Qinside[uxx]
13 Qoutside[uyy]← Qinside[uyy]
14 Qoutside[uxy]← Qinside[uxy]
15 Qoutside[vx]← Qinside[vx]
16 Qoutside[vy]← Qinside[vy]
17 Qoutside[vxx]← Qinside[vxx]
18 Qoutside[vyy]← Qinside[vyy]
19 Qoutside[vxy]← Qinside[vxy]
20 return Qoutside

Algorithm 11: Implementation of the refinement criterion function for DAE
Input: Q: Vector containing unknown and auxiliary variables.

volumeCentre: Vector containing coordinates of the centre of current
volume with {0 : x, 1 : y}.

Output: refinementCommand ∈ {Keep,Refine,Erase}: Refinement option.
1 Function refinementCriterion(Q, volumeCentre):
2 return Keep
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4 Implementation of the Depth-Averaged Avalanche Equations in ExaHyPE 2

Algorithm 12: Implementation of the function calculating max eigenvalue for
DAE

Input: Q: Vector containing unknown and auxiliary variables.
n ∈ {x, y}: Normal-direction.
θ: Angle of inclination of the inclined plane.

Output: maxEigenvalue: Maximum eigenvalue in the direction pointed by n.
1 Function maxEigenvalue(Q, n, θ):
2 if Q[h] > 0 then
3 g ← 9.81

4 c←
√
gQ[h] cos θ

5 if n is along x then
6 u← Q[hu]/Q[h]
7 maxEigenvalue← max (|u− c|, |u+ c|)
8 else if n is along y then
9 v ← Q[hv]/Q[h]

10 maxEigenvalue← max (|v − c|, |v + c|)
11 return maxEigenvalue

12 else
13 return 0.0
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4.2 Algorithms for the Depth-Averaged Avalanche Equations

Algorithm 13: Implementation of the flux function for DAE
Input: Q: Vector containing unknown and auxiliary variables.

n ∈ {x, y}: Normal-direction.
θ: Angle of inclination of the inclined plane.

Output: F : Vector containing flux in the normal-direction.
1 Function flux(Q, n, θ):
2 if Q[h] > 0 then
3 g ← 9.81
4 if n is along x then
5 F [0]← Q[hu] // hu

6 F [1]← Q[h]
(
Q[hu]
Q[h]

)2
+ 1

2g cos θ(Q[h])2 // hu2 + 1
2g cos θh

2

7 F [2]← Q[hu]
(
Q[hv]
Q[h]

)
// huv

8 else if n is along y then
9 F [0]← Q[hv] // hv

10 F [1]← Q[hu]
(
Q[hv]
Q[h]

)
// huv

11 F [2]← Q[h]
(
Q[hv]
Q[h]

)2
+ 1

2g cos θ(Q[h])2 // hv2 + 1
2g cos θh

2

12 else
13 F [0]← 0.0
14 F [1]← 0.0
15 F [2]← 0.0

16 return F
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4 Implementation of the Depth-Averaged Avalanche Equations in ExaHyPE 2

Algorithm 14: Implementation of the non-conservative product function for DAE
Input: Q: Vector containing forward average values of unknown and auxiliary

variables.
deltaQ: Vector containing forward differences of unknown and auxiliary
variables.
n ∈ {x, y}: Normal-direction.
ν: Coefficient of viscosity.
volumeH : Vector containing grid size in each dimension {0 : x, 1 : y}.

Output: BTimesDeltaQ: Vector containing the component of the non-conservative
term in the normal-direction.

1 Function nonConservativeProduct(Q, deltaQ, n, ν, volumeH):
2 if Q[h] > 0 then

// Retrieving Derivatives of h from Q
3 hx ← (Q[hx]− 0.5 ∗ deltaQ[hx])/volumeH(0)
4 hy ← (Q[hy]− 0.5 ∗ deltaQ[hy])/volumeH(1)

// Retrieving values and calculating derivatives of u
5 ux ← (Q[ux]− 0.5 ∗ deltaQ[ux])/volumeH(0)
6 uy ← (Q[uy]− 0.5 ∗ deltaQ[uy])/volumeH(1)
7 uxx ← (Q[uxx]− 0.5 ∗ deltaQ[uxx])/(volumeH(0))2

8 uyy ← (Q[uxy]− 0.5 ∗ deltaQ[uyy])/(volumeH(1))2

9 uxy ← (Q[uxy]− 0.5 ∗ deltaQ[uxy])/(4 ∗ volumeH(0) ∗ volumeH(1))
// Retrieving values and calculating derivatives of v

10 vx ← (Q[vx]− 0.5 ∗ deltaQ[vx])/volumeH(0)
11 vy ← (Q[vy]− 0.5 ∗ deltaQ[vy])/volumeH(1)
12 vxx ← (Q[vxx]− 0.5 ∗ deltaQ[vxx])/(volumeH(0))2

13 vyy ← (Q[vxy]− 0.5 ∗ deltaQ[vyy])/(volumeH(1))2

14 vxy ← (Q[vxy]− 0.5 ∗ deltaQ[vxy])/(4 ∗ volumeH(0) ∗ volumeH(1))
15 if n is along x then
16 BTimesDeltaQ[0]← 0.0

17 BTimesDeltaQ[1]← −volumeH(0)ν
√
Q[h](32hxux +Q[h]uxx)

18 BTimesDeltaQ[2]←
−1

2volumeH(0)ν
√

Q[h](32hx(uy + vx) +Q[h](uxy + vxx))

19 else if n is along y then
20 BTimesDeltaQ[0]← 0.0
21 BTimesDeltaQ[1]←

−1
2volumeH(1)ν

√
Q[h](32hy(uy + vx) +Q[h](uyy + vxy))

22 BTimesDeltaQ[2]← −volumeH(1)ν
√
Q[h](32hyvy +Q[h]vyy)

23 else
24 BTimesDeltaQ[0]← 0.0
25 BTimesDeltaQ[1]← 0.0
26 BTimesDeltaQ[2]← 0.0

27 return BTimesDeltaQ
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4.2 Algorithms for the Depth-Averaged Avalanche Equations

Algorithm 15: Implementation of the source term function for DAE
Input: Q: Vector containing unknown and auxiliary variables.

θ: Angle of inclination of the inclined plane.
µi∀i ∈ {1, 2, 3}, β, γ, β∗, κ: Material parameters derived from experiments.
L: Friction length scale (scaling parameter).
volumeH : Vector containing grid sizes in each dimension {0 : x, 1 : y}.

Output: S: Vector containing source terms.
1 Function sourceTerm(Q, θ, µ1, µ2, µ3, β, γ, β∗, κ, L):
2 if Q[h] > 0 then
3 g ← 9.81

4 ū←
√

Q[hu]2 +Q[hv]2/Q[h]

5 Fr ← ū/
√
g cos θQ[h]

6 if Fr > β∗ then
7 vstop ← Q[h] ∗ β/(Fr + γ)
8 µ← µ1 + (µ1 − µ2)/(1 + vstop/L)

9 else if Fr ∈ (0, β∗] then
10 vstart ← Q[h]
11 vstop ← Q[h]β/(β∗ + γ)
12 µstart ← µ3 + (µ1 − µ2)/(1 + vstart/L)
13 µstop ← µ1 + (µ1 − µ2)/(1 + vstop/L)
14 µ← µstart + (µstop − µstart)(Fr/β∗)

15 else if Fr=0 then
16 vstart ← Q[h]
17 µstart ← µ3 + (µ1 − µ2)/(1 + vstart/L)
18 frictionV ector ← (tan θ −Q[hx]/volumeH(0),−Q[hy]/volumeH(1))
19 frictionV ectorMagnitude← ∥frictionV ector∥2
20 µ← min (µstart, frictionV ectorMagnitude)

21 if ū = 0 then
22 S[0]← 0

23 S[1]← gQ[h] sin θ − µ frictionV ector(0)
frictionV ectorMagnitudegQ[h] cos θ

24 S[2]← −µ frictionV ector(1)
frictionV ectorMagnitudegQ[h] cos θ

25 else
26 S[0]← 0.0

27 S[1]← gQ[h] sin θ − µQ[hu]
ū g cos θ

28 S[2]← −µQ[hv]
ū g cos θ

29 else
30 S[0]← 0.0
31 S[1]← 0.0
32 S[2]← 0.0

33 return S
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5 Results

This chapter presents the results of the various evaluations that were done to validate
and explore the features of the implementation of the depth-averaged avalanche equations
(DAE) in ExaHyPE 2. The results of the evaluations are presented as 2D-surface plots and
the line plots. All simulation results were obtained using the finite volume method with
Rusanov flux and adaptive time stepping.

5.1 Validation

Validation is a critical step in the development of scientific code. It ensures that the code
produces accurate and reliable results that align with the theoretical predictions or experi-
mental data. A scientific code is built based on mathematical models representing natural
processes. Validation helps verify that these models are implemented correctly in the code.
It ensures that the mathematical algorithms used to describe the phenomena are translated
accurately in the computational routines.

This section discusses the steps taken for the validation of the implementation of the
depth-averaged avalanche equations (Equations  2.56 - 2.58 ) in ExaHyPE 2.

5.1.1 Convergence to the Shallow-Water Equations

In the depth-averaged avalanche equations (Equations  2.56 - 2.58 ), if we make the angle of
inclination zero (θ = 0), the coefficient of viscosity zero (ν = 0), and the source terms Sx

and Sy zero (Sx = 0 and Sy = 0), then the equations converge to the shallow-water equa-
tions (Equations  2.1 - 2.3 ). By making the parameters mentioned above zero in the code, the
simulation results should yield the solution of shallow-water equations. To observe this,
we apply the equations to a square domain of size 2 m × 2 m and initialise the unknown
variables as per Equations  5.1 - 5.3 using Algorithm  1 .

h(x, y, 0) =

{
1.5

√
x2 + y2 < 0.25

1.0
√
x2 + y2 ≥ 0.25

,∀{x, y} ∈ [−1, 1]× [−1, 1], (5.1)

hū(x, y, 0) = 0,∀{x, y} ∈ [−1, 1]× [−1, 1], (5.2)

hv̄(x, y, 0) = 0,∀{x, y} ∈ [−1, 1]× [−1, 1]. (5.3)

The initial height (h) is plotted in Figure  5.1 . It can be seen that the height is 1.5 m in a
circle of radius 0.25 m located at the origin and 1.0 m in the rest of the domain. The initial
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5 Results

conditions resemble a dam-break scenario. Reflective boundary conditions are applied at
the boundaries using Algorithm  10 .
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Figure 5.1: 2D-surface plot of material height at t = 0 s.

From the surface plots in Figure  5.2 , it can be seen that the solution preserves sym-
metry at all time steps, which is expected in such a dam-break scenario with symmet-
ric initial conditions. In Figure  5.3 , the solution obtained here using the depth-averaged
avalanche equations’ application (DAE) is compared with the one obtained using the al-
ready present shallow-water equations’ application (SWE) in ExaHyPE 2. The comparison
is done through line plots of h (granular material height) along the x-axis. It can be seen
from Figure  5.3 that the DAE curve (blue) completely overlaps the SWE curve (red) at all
time steps. Hence, only the DAE curve (blue) is visible. The line plots quantitatively val-
idate the convergence of depth-averaged avalanche equations to the shallow water equa-
tions in our application.
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5.1 Validation

(a) t = 0.06s (b) t = 0.1 s

(c) t = 0.58 s (d) t = 1.0 s

9.3e-01 1.1e+000.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12
height (m)

Figure 5.2: 2D-surface plot of granular material height at different points in time.
43



5 Results
h

e
ig

h
t 

(m
)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

X (m)
-1.5 -1 -0.5 0 0.5 1 1.5

SWE

DAE

(a) t = 0.06 s

h
e
ig

h
t 

(m
)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

X (m)
-1.5 -1 -0.5 0 0.5 1 1.5

SWE

DAE

(b) t = 0.1 s

h
e
ig

h
t 

(m
)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

X (m)
-1.5 -1 -0.5 0 0.5 1 1.5

SWE

DAE

(c) t = 0.58 s
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Figure 5.3: Line plot of granular material height along x-axis comparing results from SWE
and DAE at different points in time.
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5.1.2 Simulation Using the Complete Depth-Averaged Avalanche Equations

The depth-averaged avalanche equations (Equations  2.56 - 2.58 ) were simulated on a rect-
angular plane of size 1.58 m × 0.7 m with x ∈ [0, 1.58] and y ∈ [0, 0.7], inclined at an
angle θ = 35◦. The initial conditions were applied such that there is a circular patch of
granular material with thickness h = 8 mm centred at (0.15, 1.0) as shown in Figure  5.4 .
The mathematical formulation of the initial conditions for unknown variables is given in
Equations  5.4 - 5.6 . These equations were programmed using Algorithm  9 . Note that all the
following sections and subsections use this domain setup and the same initial and bound-
ary conditions as used here.

h(x, y, 0) =

{
0.008

√
(x− 0.15)2 + (y − 1.0)2 < 0.1

0
√
(x− 0.15)2 + (y − 1.0)2 ≥ 0.1

,∀{x, y} ∈ [0, 1.58]× [0, 0.7], (5.4)

hū(x, y, 0) = 0, ∀{x, y} ∈ [0, 1.58]× [0, 0.7], (5.5)

hv̄(x, y, 0) = 0,∀{x, y} ∈ [0, 1.58]× [0, 0.7]. (5.6)

Reflective boundary conditions were programmed using Algorithm  10 . Masonry sand
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Figure 5.4: 2D-surface plot of granular material height at t = 0 s.

was used as the granular material whose parameters are listed in Table  5.1 .
From the surface plots in Figure  5.5 , it can be seen that the material flows in the downs-

lope direction (x-axis) due to the acceleration caused by gravity. The line plots for velocity
(ū) in Figure  5.6 indicate that the velocity increases as the material propagates further in the
downslope direction. Also, the material has the lowest velocity (ū) at the location where
the material height is the highest. This can be attributed to the internal friction between
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5 Results

θ1 θ2 θ3 L β γ κ β∗
28.95◦ 44.09◦ 31.81◦ 0.35mm 1.07 2.01 1 0.06

Table 5.1: Experimentally determined friction law parameters for masonry sand of grain
diameter 300− 400 µm [ 25 ].

(a) t = 0.1 s (b) t = 0.2 s

(c) t = 0.4 s (d) t = 0.6 s

(e) t = 0.7 s (f) t = 0.8 s

0.0e+00 4.0e-030.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035
height (m)

Figure 5.5: 2D-surface plot of granular material height (sand) at different points in time.

46



5.1 Validation

v
e

lo
c

it
y

 a
lo

n
g

 x
-d

ir
e

c
ti

o
n

 (
m

s
^

-1
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

X (m)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(a) t = 0.1 s

v
e

lo
c

it
y

 a
lo

n
g

 x
-d

ir
e

c
ti

o
n

 (
m

s
^

-1
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

X (m)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(b) t = 0.2 s

v
e

lo
c

it
y

 a
lo

n
g

 x
-d

ir
e

c
ti

o
n

 (
m

s
^

-1
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

X (m)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(c) t = 0.4 s

v
e

lo
c

it
y

 a
lo

n
g

 x
-d

ir
e

c
ti

o
n

 (
m

s
^

-1
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

X (m)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(d) t = 0.6 s

v
e

lo
c

it
y

 a
lo

n
g

 x
-d

ir
e

c
ti

o
n

 (
m

s
^

-1
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

X (m)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(e) t = 0.7 s

v
e

lo
c

it
y

 a
lo

n
g

 x
-d

ir
e

c
ti

o
n

 (
m

s
^

-1
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

X (m)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(f) t = 0.8 s

Figure 5.6: Line plot of ū (velocity along x-direction) of sand along the centreline y = 0.35
m at different points in time.
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5 Results

(a) t = 0.1 s (b) t = 0.2 s

(c) t = 0.4 s (d) t = 0.6 s

(e) t = 0.7 s (f) t = 0.8 s

0.0e+00 4.0e-030.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035
height (m)

Figure 5.7: 2D-surface plot of granular material (sand) height plotted using a step colour
palette to highlight crescentic contours at different points in time.
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5.1 Validation

grains, which is highest in the location with the highest material density. Vice versa, we
see that the peak velocity (ū) is obtained in the region which is furthest down the slope
with a very low material height. In Figure  5.7 , the same results from Figure  5.5 are shown
using a step colour palette to highlight the contours. We see crescent-shaped contours for
granular material with height decaying along the downslope direction. These contours are
qualitatively similar to what was obtained by Pouliquen and Forterre [ 21 ] in their exper-
iments and simulations. The contours obtained by them are shown in Figure  5.8 . These
observations confirm that the source term is indeed functioning correctly.

Figure 5.8: Contours of constant thickness every 0.5 mm obtained from (a) experiments,
and (b) simulations. (c) Line plot of granular material height along the cen-
treline; —, experiments; simulations, - - - [ 21 ]. The bold circle on the first plot
of the simulation in (b) represents the initial position of the granular material
patch.

5.1.3 Simulation With Vanishing Friction

The simulation was repeated with the same parameters and conditions used in Section  5.1.2 .
The only change was that the basal friction coefficient µ was forced to a value of 0. By doing
so, we compare the simulation with the one in Section  5.1.2 to check whether the friction
force is indeed causing resistance to the flow. From the surface plots in Figure  5.9 , it can
be seen that the contours are circular rather than crescentic. This is expected, as it is the
friction law which is responsible for the crescentic contours. In the absence of friction, the
material spreads evenly in all directions, due to which we see circular contours. By mak-
ing the frictional force vanish, it is expected that the granular material accelerates faster
and has a higher velocity as compared to results obtained in Section  5.1.2 . From the line
plots of velocity (ū) in Figure  5.10 , it is evident that the velocity without friction is always
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5 Results

θ1 θ2 θ3 L β γ κ β∗
31.1◦ 47.5◦ 32.7◦ 0.44mm 0.63 0.4 1 0.466

Table 5.2: Experimentally determined friction law parameters for carborundum particles
of diameter 750− 1000 µm [ 6 ].

higher except in Figure  5.10f at the end of the domain. This exception is due to the reflec-
tive boundary conditions which try to oppose the flow at the end of the inclined plane,
due to which the velocity of the material decreases.

5.1.4 Comparison Between Sand and Carborundum Granules

To check the dependence of the coefficient of basal friction (µ) on the material parameters,
the flow of carborundum particles was simulated and compared with the flow of sand
particles from Section  5.1.2 . The material parameters used for carborundum are given in
Table  5.2 . The simulation of carborundum was performed using the same domain, initial
conditions and boundary conditions as used in Section  5.1.2 . From the surface plots in
Figure  5.11 , it can be seen that we again obtain crescentic contours. This is expected since
it is the friction law which is responsible for their occurrence. As discussed in Section  5.1.2 ,
the particles in the densest region have the lowest velocity (ū), and the ones in the sparsest
region furthest in the downslope direction have the highest velocity (ū). From the line
plots of velocity (ū) in Figure  5.12 , it can be observed that the minimum velocity (ū) of sand
is higher than that of carborundum while the maximum velocity (ū) of sand is lower than
that of carborundum. This implies that the sand particles in dense regions propagate faster
than the carborundum particles in dense regions. In contrast, the particles in sparse regions
of sand propagate slower than carborundum particles in sparse regions. This difference
in acceleration behaviour illustrates the dependence of the coefficient of friction (µ) on
material parameters. Hence, our application qualitatively demonstrates this behaviour.

5.2 Simulation With Static Adaptive Mesh Refinement

In this section, the results with static adaptive mesh refinement (static AMR) are presented
to show the effect of this feature. The simulation parameters are the same as the ones used
in Section  5.1.2 . The static AMR was applied using Algorithm  16 , which refines the domain
when x < 0.79 m and coarsens when x >= 0.79 m. The minimum volume is set in the
code to perform coarsening up to three levels. Coarsened cells can be seen near the end of
the domain in Figures  5.13e - 5.13f . Figure  5.14 compares the velocity along the x-direction
(ū) obtained with and without static AMR. From Figures  5.14c - 5.14d , it can be seen that
the velocity curves differ greatly as the particles with the highest velocity transition into
the coarsened part of the domain. The simulation using static AMR was also attempted
for carborundum particles, but the eigenvalues blew up after just two time steps. The
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5.2 Simulation With Static Adaptive Mesh Refinement

static AMR for rectangular domains is under development in ExaHyPE 2, hence it does
not always yield a solution in its current state of implementation.

Algorithm 16: Implementation of the refinement criterion function where one
half of the domain is refined while the other half is coarsened

Input: Q: Vector containing unknown and auxiliary variables.
volumeCentre: Vector containing coordinates of the centre of current
volume with {0 : x, 1 : y}.

Output: refinementCommand ∈ {Keep,Refine,Erase}: Refinement option.
1 Function refinementCriterion(Q, volumeCentre):
2 if volumeCentre(0) < 0.79 then
3 return Refine

4 else
5 return Erase
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5 Results

(a) t = 0.1 s (b) t = 0.2 s

(c) t = 0.4 s (d) t = 0.6 s

(e) t = 0.7 s (f) t = 0.8 s

0.0e+00 2.4e-030.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002 0.0022
height (m)

Figure 5.9: 2D-surface plot of granular material height (sand) on a frictionless plane, plot-
ted using a step colour palette to highlight crescentic contours at different
points in time.
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Figure 5.10: Line plot comparing ū (velocity along x-direction) of sand with and without
friction along the centreline y = 0.35m at different points in time.
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5 Results

(a) t = 0.1 s (b) t = 0.2 s

(c) t = 0.4 s (d) t = 0.6 s

(e) t = 0.7 s (f) t = 0.8 s

0.0e+00 6.4e-030.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055
height (m)

Figure 5.11: 2D-surface plot of granular material height (carborundum) plotted using a
step colour palette to highlight crescentic contours at different points in time.
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Figure 5.12: Line plot comparing ū (velocity along x-direction) of sand particles and car-
borundum particles, along the centreline y = 0.35m at different points in time.
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5 Results

(a) t = 0.1 s (b) t = 0.2 s

(c) t = 0.4 s (d) t = 0.6 s

(e) t = 0.8 s (f) t = 1.0 s

0.0e+00 3.6e-030.0005 0.001 0.0015 0.002 0.0025 0.003
height (m)

Figure 5.13: 2D-surface plot of granular material (sand) height, simulated using static
AMR at different points in time.
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Figure 5.14: Line plot comparing ū (velocity along x-direction) with and without static
AMR, along the centreline y = 0.35m at different points in time.
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6 Conclusion and Discussion

In this thesis, the depth-averaged avalanche equations were implemented in ExaHyPE 2
to develop a solver application that simulates avalanches using the finite volume method
with Rusanov flux and adaptive time stepping. The challenges caused by the complexity
of the non-conservative product were resolved by applying a preprocessing routine on every
patch before every time step. Several validation cases were also presented to ensure that
the application simulates correct physics as per the governing equations.

The first validation case checks for convergence of the depth-avalanche equations to the
shallow-water equations upon making the inclination, viscosity and the source term vanish.
Initial conditions were applied to replicate a typical circular dam-break scenario at the
centre of the domain, and reflective boundary conditions were applied at the boundaries.
The results were then compared with the ones obtained from an already present shallow-
water application in ExaHyPE 2 and were found to match.

In the second validation case, the flow of sand down a rectangular inclined plane was
simulated. It was verified from the line plots of velocity that the material accelerates down
the inclined plane because of the effect of the source term. The crescentic contours on the
2D-surface plots of granular material height qualitatively confirm that the friction law is
implemented correctly.

The third validation case presents the simulation of sand on a frictionless inclined plane.
The results were compared with those obtained in the second validation case (simulation
with friction) to verify that friction is indeed causing the grains to decelerate and not the
other way around.

In the fourth validation case, the granular material was changed from sand to carborun-
dum, and the simulation was performed on the same domain as what was used for sand
in the second validation case. Upon comparing the results of sand and carborundum, it
was observed that both exhibit different behaviour, which is expected since the coefficient
of friction depends on material parameters.

Finally, the static adaptive mesh refinement (static AMR) feature was demonstrated by
refining one half and coarsening the other half of the inclined plane. The comparison of
results obtained with and without static AMR was also presented. The static AMR feature
functions correctly when sand is used as the granular material, but fails when carborun-
dum granules are used. In the case of carborundum granules, the eigenvalues blow up,
due to which the solver yields an incorrect solution. The static AMR for rectangular do-
mains is under development in ExaHyPE 2.

The solver application can also be compiled to perform simulations using the Arbitrary
Derivative Discontinuous Galerkin (ADER-DG) method. However, the ADER-DG method
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6 Conclusion and Discussion

in its current state in ExaHyPE 2 does not allow the implementation of preprocessing
routines. Hence, the depth-averaged avalanche equations cannot be simulated using this
method.

The future work for this thesis would be to couple the avalanches with a water body to
simulate tsunami events caused by avalanches.
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 5.12 Line plot comparing ū (velocity along x-direction) of sand particles and car-
borundum particles, along the centreline y = 0.35 m at different points in
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

 5.13 2D-surface plot of granular material (sand) height, simulated using static
AMR at different points in time. . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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