
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Guided Research in Computational Science and Engineering

Optimizing GPU Offloading with CUDA for
a Patch-based Hyperbolic Finite Volume

Solver in ExaHyPE

Ahmed Fouad

i

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Guided Research in Computational Science and Engineering

Optimizing GPU Offloading with CUDA for
a Patch-based Hyperbolic Finite Volume

Solver in ExaHyPE

Author: Ahmed Fouad
Supervisor: Prof. Dr. Michael Bader
Advisor: Mario Wille, M.Sc.
Submission Date: 22.10.2023

iii

I confirm that this guided research in computational science and engineering is my
own work and I have documented all sources and material used.

Munich, 22.10.2023 Ahmed Fouad

Acknowledgments

I express my deepest gratitude to Mario Will for his unwavering support and
guidance throughout my research in optimizing the finite volumes Rusanov solver in
CUDA. His unique blend of professionalism and flexibility has been instrumental in
shaping both my research and my growth as a scholar. His dedication to my work
and his constant availability have provided a strong foundation upon which I built
my research. I am truly fortunate to have had him as my advisor and am immensely
thankful for the insights, encouragement, and expertise he has generously provided.

Abstract

The present study focuses on optimizing GPU offloading techniques within the Peano
computational framework for adaptive mesh refinement (AMR) in Euler simulations
using the ExaHyPE 2 engine. We first investigate the ExaHyPE 2 finite volumes Rusanov
kernels to evolve the system of Euler equations using the CUDA framework. Then,
we systematically identify and mitigate performance bottlenecks in the kernels’ of-
floading process, yielding measurable overall improvements in the GPU computational
efficiency.

vi

Contents

Acknowledgments v

Abstract vi

1 Introduction 1
1.1 Peano and ExaHyPE 2 . 1
1.2 Rusanov Solver . 2

1.2.1 Spatial Fluxes Conservation . 2
1.2.2 Temporal Wave Speed Conservation 3

1.3 CUDA . 4
1.3.1 Execution Model . 5
1.3.2 Memory Hierarchy . 6

2 Methodology 12
2.1 Overview . 12

2.1.1 Grid Traversal in Space and Time 12
2.1.2 Original Implementation of the Solver 14

2.2 Kernel Analysis . 15
2.3 Optimized Rusanov Solver . 27

3 Results 30

4 Conclusion and Future Work 34

List of Figures 35

List of Tables 36

Bibliography 37

vii

1 Introduction

In this section, we describe the primary concepts of the Rusanov solver, highlight their
roles, and discuss their representation in ExaHyPE 2.

1.1 Peano and ExaHyPE 2

Peano is a framework for solvers operating on dynamically adaptive Cartesian meshes.
It is a base framework for further extensions, such as the ExaHyPE 2 engine and various
toolboxes, while Peano is only about mesh management, data storage, distribution, and
mesh traversal.

The Peano framework allows different solver engines to operate on dynamic adaptive
Cartesian grids. Although it serves as the foundation for various toolboxes tailored to
distinct applications, its primary focus remains on mesh management, data retention,
distribution, and mesh navigation. ExaHyPE 2 is one of the engines that utilizes
the Peano framework mesh processing capabilities. Peano and ExaHyPE 2 operate in
synergy to enable dynamic adaptivity on Cartesian grids using spacetree data structures
as shown in Figure 1.1.

ExaHyPE 2 (An Exascale Hyperbolic PDE Engine) is a specialized computational
platform that simulates hyperbolic Partial Differential Equations (PDE)s (cf. [11]). With
its orientation toward exascale computing architectures capable of performing at least
one exaFLOP, the platform is a High-Performance Computing (HPC) nexus for various
scientific applications. The engine capitalizes on advanced numerical techniques,
including Finite-Volume and Discontinuous Galerkin methods, to address hyperbolic
PDEs. These methods are executed on dynamically adaptive computational meshes,
enabling localized, high-fidelity solutions that optimize resource allocation.

1

1 Introduction

Figure 1.1: Schematic representation of ExaHyPE 2, Peano, and their CUDA integration.

This study focuses on optimizing the GPU offloading processes within ExaHyPE 2
by employing NVIDIA’s profiling toolbox. The study aims to identify and alleviate
computational bottlenecks in the Rusanov finite volumes solver.

1.2 Rusanov Solver

1.2.1 Spatial Fluxes Conservation

Rusanov’s method is a numerical scheme for solving hyperbolic PDEs. In the finite
volume methods context, the Rusanov method is often implemented as a solver kernel
to approximate fluxes across cell interfaces in a discretized computational domain. It
conserves fluxes by averaging them from adjacent cells and correcting them with a
dissipative term proportional to the difference in states of the adjacent cells. This helps
capture the shocks and discontinuities in hyperbolic conservation laws (cf. [12]).

Mathematically, given the local state Q with three-dimensional state components:

Q =


ρ

ρu
ρv
ρw
E

 (1.1)

where ρ is the density, u and v, w are the x-, y-, and z-components of velocity, and E
is the total energy per unit volume.

The Rusanov flux, for two local states Qi and Qj, is expressed as:

FRusanov(QL, QR) =
1
2
[F(QL) + F(QR)]−

1
2

S(QR −QL) (1.2)

Here, QL and QR are the states at the left and right sides of the interface, and S is
the wave speed, often approximated as the maximum eigenvalue λ of the Jacobian of

2

1 Introduction

F. λ represents the maximum eigenvalue of the Jacobian of the flux function F and is
expressed as:

λ = max (|u± c|) (1.3)

We can then find the speed of the wave c :

c =

√
γ
|p|
|ρ|

(1.4)

where γ is the specific heat ratio and approximated by 1.4 in our simulation and the
pressure term p is defined as:

p = (γ− 1)
(

E− ρ

2
(u2 + v2 + w2)

)
(1.5)

Equation 1.2 is general and works for both 2D and 3D cases as long as the appropriate
flux function F(Q) and the state vector Q are used for the respective dimensions.

For each cell interface i, F(Qi) is the flux function. The flux vector F together with
state vector Q can be used to conserve spatial fluxes across cell interfaces. Using
conservation laws, we obtain:

∂Q
∂t

+
∂Fx(Q)

∂x
+

∂Fy(Q)

∂y
+

∂Fz(Q)

∂z
= 0 (1.6)

By plugging in the full definition of Q from Equation 1.1, Equation 1.6 expands to:

∂

∂t


ρ

ρu
ρv
ρw
E

+
∂

∂x


ρu

ρu2 + p
ρuv
ρuw

(E + p)u

+
∂

∂y


ρv

ρuv
ρv2 + p

ρvw
(E + p)v

+
∂

∂z


ρw

ρuw
ρvw

ρw2 + p
(E + p)w

 = 0 (1.7)

The first term is the temporal conservation term. The pressure term p is added in the
diagonal of the momentum components.

The remaining terms in Equation 1.7 represent the spatial conservation of ρu, ρu2 + p,
ρuv, and (E + p)u in the horizontal x-direction, ρv, ρuv, ρv2 + p, and (E + p)v in the
vertical y-direction, and analogous terms for the depth-directed z-flux.

1.2.2 Temporal Wave Speed Conservation

A numerical procedure for evolving the solution in time is usually used with Rusanov
in computational fluid dynamics (CFD) applications. A time stepping scheme is often
used to integrate the ordinary differential equations (ODEs) resulting from the PDEs’

3

1 Introduction

spatial discretization as we usually conserve fluxes spatially in higher dimensional
space.

In the finite volume method context, after the spatial fluxes are computed, a time-
stepping kernel can be invoked to evolve the cell-averaged solution from one level to
the next.

To ensure stability, the maximum eigenvalue corresponding to the maximum wave
speed in Equation 1.2 determines the local time step (or CFL condition). We guaran-
tee temporal stability over multiple iterations in the simulation using the maximum
eigenvalue λ.

Mathematically, a general form of an explicit time-stepping scheme for the state Q
can be expressed as:

Qn+1 = Qn − ∆t∇ · F(Qn) (1.8)

Here, Qn and Qn+1 are the cell-averaged states at time levels n and n + 1, respec-
tively,. ∆t is the time step, and ∇ · F represents the divergence of the flux vector,
often approximated using fluxes computed by the Rusanov solver at cell interfaces in
Equation 1.2.

For the conservation laws in three-dimensional space, Equation 1.8 can be adapted
to:

Qn+1
i = Qn

i −
∆t
∆x

(
Fi+ 1

2
− Fi− 1

2

)

Qn+1
i,j,k = Qn

i,j,k −
∆t
∆x

(
Fx

i+ 1
2 ,j,k − Fx

i− 1
2 ,j,k

)
− ∆t

∆y

(
Fy

i,j+ 1
2 ,k
− Fy

i,j− 1
2 ,k

)
− ∆t

∆z

(
Fz

i,j,k+ 1
2
− Fz

i,j,k− 1
2

)
(1.9)

Where each Rusanov flux component is calculated as shown in Equation 1.2.
Using the above numerical model, we implemented the computational kernels of the

solver in ExaHyPE 2, which we later profiled, optimized, and tried to mitigate their
bottlenecks.

1.3 CUDA

The Compute Unified Device Architecture (CUDA) is a software framework developed
by NVIDIA to expand the capabilities of GPU acceleration (cf. [10]).

4

1 Introduction

1.3.1 Execution Model

Streaming Multiprocessors

In NVIDIA GPUs, the architecture revolves around scalable streaming multiprocessors
(SMs). Each SM handles the simultaneous execution of thread groups. Once assigned
to an SM, a thread group scheduled warps remains there until completion. An SM
encompasses processing cores, shared memory (L1 cache), registers, a load/store unit,
and a threads-scheduling unit.

Warps

Threads in CUDA are the finest execution units in CUDA. They are grouped into blocks,
which are further grouped into a grid. Within blocks, threads are further clustered
into warps. A warp typically consists of 32 threads that execute the same instruction
simultaneously, making it the fundamental unit of parallelism in CUDA (cf. Figure 1.2).
When a warp encounters a particular instruction in the kernel, all 32 threads execute it
in parallel on their respective data. If there’s a branching instruction and not all threads
take the same branch, then threads taking different paths are masked and executed
serially. This can lead to what is called warp divergence. When all different paths are
finished, the warp reconverges and continues executing in lockstep. Multiple warps
are scheduled simultaneously via a unit called the scheduler, which belongs to the SM.
Each scheduler maintains a pool of warps that it can issue instructions for. The kernel
launch configuration limits the upper bound of warps in the pool theoretical warps.
Every cycle, each scheduler checks the state of the allocated warps in the pool for active
warps. Active warps that are not stalled are eligible for the next instruction execution
and are known as eligible warps. From the set of eligible warps, the scheduler selects a
single warp to issue one or more instructions; once a warp is issued an instruction via
the issue slot, the warp becomes an issued warp. On cycles with no eligible warps, the
issue slot is skipped, and no instruction is issued. Having many skipped issue slots
indicates poor latency hiding and, thus, overall low bandwidth.

5

1 Introduction

Figure 1.2: Representation of the execution policy in CUDA via warps, where each
warp consists of 32 threads executing an instruction simultaneously.

Warp Divergence

Due to the Single Instruction, Multiple Thread (SIMT) architecture of NVIDIA GPUs (cf.
[6]), all threads in a warp execute the same instruction on different data. This means
that if two threads in the same warp need to execute different instructions due to a
branching condition, the warp will serialize the different branches, leading to reduced
performance. This serialization due to differing instruction paths within a warp is
known as warp divergence.

Warp divergence can have a significant performance impact. If threads within a
warp take different execution paths, the warp as a whole must execute each path
serially, reducing the effective parallelism. This is because a warp can only execute
one instruction at a time. Thus, frequent usage of branching if-else and nested logic
streams will cause some threads in a warp to execute different paths, significantly
reducing the warp’s overall parallelism efficiency.

1.3.2 Memory Hierarchy

The memory hierarchy plays a pivotal role in influencing the performance and efficiency
of GPU-accelerated applications. A generic CUDA memory hierarchy architecture is
illustrated in Figure 1.3. A summary of the memory characteristics is listed in Table 1.1.

6

1 Introduction

Figure 1.3: Memory hierarchy of the RTX 3080 CUDA-based GPU architecture.

Registers

Registers in CUDA represent the fastest type of memory available and are located
directly on the GPU’s SMs. Each thread running on an SM has its own private set of
registers.

7

1 Introduction

Shared Memory

Shared memory (SMEM) is an on-chip memory type that allows threads within the
same block to share data. It has much lower latency than global memory (GM) (cf.
subsubsection 1.3.2) and is divided among thread blocks. SMEM is exclusive to a block
of threads during their lifetime. Each block has its shared memory space that its threads
can use collaboratively. As shown in Table 1.1, SMEM and L1 caches are configurable
via CUDA API calls. Since they are both on the chip, SMEM can be considered a
software-controlled L1 cache.

(a) The kth thread accesses the kth SMEM bank and no
bank conflict occurs.

(b) No bank conflicts occur as long as all threads in the
warp access the same word in the SMEM bank. This
is known as Broadcast. All threads receive the same
value simultaneously, broadcasted from that address.

Figure 1.4: Different situations where bank conflicts do not occur.

8

1 Introduction

Despite having low latency, SMEM can suffer from bank conflicts that can degrade
the bandwidth. Bank conflicts arise when multiple threads of a warp access different
addresses that map to the same memory bank (cf. [9]). SMEM in NVIDIA GPUs is
divided into multiple banks (usually 32 banks in most architectures), and each bank can
service one request per cycle. Ideally, if all threads of a warp access a different bank,
the access can be done in parallel, achieving maximum throughput (cf. Figure 1.4).

However, when two or more threads of a warp access different addresses within the
same bank, a bank conflict occurs (cf. [2]). This causes serialization of the accesses,
resulting in a performance penalty. The number of clock cycles it takes is proportional
to the number of threads contending for that bank. Thus, it is best to make data accesses
within the same thread span different addresses i.e., with stride in the SMEM to reduce
such conflicts (cf. Figure 1.5). SMEM can be set to define the bank sizes in some CUDA
architectures. In our setup, we left it to the default value of 4 Bytes per bank. It can be
changed via cudaDeviceSetSharedMemConfig(cudaSharedMemConfig) to a maximum
of 8 Bytes per bank.

Figure 1.5: A 2-way bank conflict occurs when threads access different words in the
same bank.

L1/L2 Cache

L1 caches are designed to bridge the gap between the processing cores and the GM.
It provides low-latency access to recently used data, speeding up the data retrieval
process for threads. However, due to their small sizes (typically in the range of 100
KBs), improper memory access patterns can cause frequent spilling into L2 caches
and possibly to the GM when the data are too big (L2 can be up to 5 MB in the RTX
3080 GPU), rendering the two-level caching obsolete during the runtime and heavily
reducing the throughput of the overall computation pipeline. Each SM has its own L1

9

1 Introduction

cache. Hence, it is exclusive to threads running on the same SM. However, L2 caches
belong to the entire set of SMs. It is shared among all SMs in a GPU.

Constant Memory

Constant memory is a small section of memory used to store read-only constants for
the duration of a kernel execution. Access to constant memory is optimized to be faster
than GM when all threads read the same location. All threads in all SMs can read from
constant memory. It is globally accessible, though it is cached; repeated accesses to the
same address are usually faster than GM accesses.

Local Memory

Local memory in CUDA is an off-chip memory used primarily for spilling registers
when the register file overflows. Each thread has its private local memory. When a
CUDA program declares an array as a local variable in the kernel and the size of the
array cannot be determined at compile time, or if it is too large to fit into the available
registers, it gets placed into local memory. Despite being local to a thread, this memory
is not as fast as registers nor SMEM. Subsequent accesses to these spilled variables
leverage the GPU’s hierarchical memory structure. Initially, the GPU checks the L1
cache for the required data. If a miss occurs, the L2 cache is consulted. In the event of a
cache miss in both L1 and L2, the data is then fetched from off-chip GM. The GPU’s
caching mechanism, sensitive to both spatial and temporal locality, can enhance the
retrieval speed of frequently accessed local variables, reducing the need for slower GM
fetches. It is important to note that local memory accesses are not cached in the L1
cache by default (but can be enabled on specific architectures).

Global Memory

GM resides in the device memory and provides a main DRAM large storage area
accessible by all threads and the host (CPU). It has high latency and is not cached
(although there are exceptions in recent architectures with L2 cache). GM is available to
all threads regardless of their block or grid. It is the main off-chip memory of the GPU
with considerably low bandwidth. In accelerated applications, we usually minimize
memory requests from and to GM.

10

1 Introduction

MEMORY SCOPE SPEED SIZE LOCATION
Registers Per thread Fastest Smallest On-chip
Shared Per block Fast Small* On-chip

L1 cache Per SM Fast Small* On-chip
L2 cache All SMs Faster than GM Large Off-chip
Constant All threads and CPU Slow, cached Small Off-chip

Local Per thread Slow, cached Small Off-chip
Global All threads and CPU Slowest, cached Largest Off-chip

Table 1.1: Overview of CUDA memory types and some general characteristics of each.
*The SMEM and L1 cache are configurable in complementary manner. To-
gether, they share the same on-chip memory storage. Either size can be set
via CUDA APIs.

11

2 Methodology

2.1 Overview

In the computational implementation context, each Rusanov kernel calculates the
numerical fluxes for each interface in the computational mesh. The kernel takes in
the states QL and QR as input, computes the numerical flux FRusanov, and updates the
states for the next time level.

For high performance, these kernels are often optimized to exploit the memory
hierarchy of the hardware platform, in this case, the GPU. Special considerations may
include coarsening the computational grid, optimizing the memory access patterns,
reducing undesired memory transfers, and using advanced CUDA features for asyn-
chronous operations to support overlapping the computation and memory migrations
using CUDA graphs (cf. [3]) or streams (cf. [5]).

The computational complexity of each Rusanov kernel is generally O(1) for each
interface, leading to an overall complexity of O(N) for N interfaces in the mesh.
However, optimization techniques can influence the effective throughput.

As the basis of this study, we reviewed the results concluded in the GPU offloading
managed by the CUDA Unified Memory Architecture (UMA) in [13]. That study has
shown that after transitioning to the CUDA unified memory in place of manual copies,
the benefits of concurrent GPU offloading are still negligible, even detrimental to the
overall runtime. This approach delays the data movement cost until the data is needed,
distributing bandwidth needs over time. However, this doesn’t lead to any performance
gains. Hence, we focus in our study on analyzing the bandwidth pipeline further
using the CUDA profiling toolbox to gain deeper insights into the reasoning behind
the bandwidth limitation.

2.1.1 Grid Traversal in Space and Time

The Rusanov solver and a temporal update scheme serve two different but comple-
mentary roles in the simulation pipeline of hyperbolic PDEs. A typical mesh traversal
would be discretized in both space and time domains:

1. The Rusanov solver is used for spatial discretization, computing numerical fluxes
at volume interfaces based on the governing hyperbolic PDEs.

12

2 Methodology

2. The temporal update scheme is used for the temporal discretization, advancing
the volume-averaged solution in time based on the computed numerical fluxes.

Thus, the time-stepping scheme often uses the output of the Rusanov solver to evolve
the system’s state over a timestep. The two are intrinsically linked: the Rusanov solver
provides the spatially discretized form of the equations. At the same time, an update
scheme method advances this discretized form in time (cf. Figure 2.1).

By understanding this symbiotic relationship (spatially and temporally), we gain
more insights into the overall computational pipeline as it involves floating point
operations (FLOPs) on different elements of the grid volume’s state vectors, allowing
for targeted optimizations, particularly in high-performance computing environments
like GPUs.

Figure 2.1: Exemplary computational grid for the 2D Euler equations with Rusanov
fluxes.

The mathematical representation of a 2D grid (cf. Figure 2.1) is shown in Equation 1.7.
The red and green arrows represent the spatial flux differentiation and maximum
eigenvalue flow in the x- and y-directions, respectively. In this exemplary grid, the
grid consists of 2 patches and 5 × 5 volumes per patch, counting in total to 50
volumes. The 5 volumes per patch axis consist of two main types of volumes: the
white volumes counting to 3 per patch represent the actual original grid and red volumes
counting 5 × 5 − 3 × 3 = 16 per patch represent each patch’s boundary for inter-
patch communication and information flow. Those boundary volumes are called halo
or ghost volumes. They are mainly used to store the latest grid state values on the
boundary of each patch to allow neighboring patches to access the latest evolution of
the communicating patch.

13

2 Methodology

2.1.2 Original Implementation of the Solver

The local state vector for the grid Q in Equation 1.7 is represented as Qin in our
implementation. Qin will always represent the input grid state in the previous timestep,
and by using it, we calculate the system state evolution in the current timestep Qout. By
analyzing the computation kernels that take Qin as input and contribute to calculating
Qout in the Rusanov solver, we could introduce tuned optimizations to the kernels’
computations and memory access needs. The calculations access four physical entities
per volume in Qin that must be accessed to compute the terms presented in Equation 1.7
for every volume in every time step.

We start by listing those computations. This involves the following steps:

1. Calculate the temporal evolution (maximum eigenvalue).

2. Calculate the spatial fluxes.

3. Update the patch boundary for inter-patch-data-flow for the grid-level solution.

4. Reduce the maximum eigenvalue within the patch.

5. Update the output grid with the new calculated grid state.

We provide the pseudo-code for the first two stages because they involve the highest
number of FLOPs and data accesses of read/write. The maximum eigenvalue and spatial
fluxes calculations are shown in 0 and 0, respectively.

Algorithm 1 Eigenvalue computation algorithm for Euler equations

1: procedure computeMaxEigenvalue(Q, normal)
2: γ← 1.4
3: irho← 1

|Q[0]|
4: p← (γ− 1)×

(
Q[3]− 0.5× irho× (Q[1]2 + Q[2]2)

)
5: c←

√
γ× |p| × irho

6: un ← Q[normal + 1]× irho ▷ Dimension specific update
7: return max(|un + c|, |un − c|) ▷ Return Maximum Eigenvalue
8: end procedure

14

2 Methodology

Algorithm 2 Flux computation for the 2D Euler equations

1: procedure computeFlux(Q, normal, F)
2: γ← 1.4
3: irho← 1

|Q[0]|
4: p← (γ− 1)×

(
Q[3]− 0.5× irho× (Q[1]2 + Q[2]2)

)
5: coeff← irho×Q[normal + 1]
6: F[0]← coeff×Q[0]
7: F[1]← coeff×Q[1]
8: F[2]← coeff×Q[2]
9: F[normal + 1]← F[normal + 1] + p

10: F[3]← coeff×Q[3] + coeff× p
11: end procedure

Overall, we can see that memory accesses are higher than the performed computa-
tions. Combining this with the fact that every physical term in Equation 1.7 is a state
vector, memory alignment becomes a significant factor when accessing its elements
non-uniformly in determining the efficiency of memory transfers to process the content
of every volume as explained in subsection 1.3.2.

Several approaches are listed to address the limited bandwidth throughput:

1. Optimizing memory hierarchy.

2. Restructuring data access patterns.

3. Minimizing data transfers and use CUDA SMEM if available.

4. Overlapping independent data transfers and solver operations using CUDA
streams.

To adopt the above strategies, we first need to analyze all the kernels that the CUDA
Rusanov solver offloads to the GPU to solve the Equation 1.7 and update the grid in
each time step. We will analyze in the next section the main compute and update
kernels of the maximum eigenvalue and spatial fluxes.

2.2 Kernel Analysis

In this section, we present a deeper analysis of the kernels used by the solver. We
offloaded those kernels into the Scientific Computing in Computer Science (SCCS)
GPU cluster using the x-wing0 node, which is equipped with NVIDIA RTX 3080 GPUs.
Since our study focuses on CUDA optimization of the Rusanov kernels, we used a

15

2 Methodology

single GPU from the node. There, we also performed the benchmarks and obtained
our results. This GPU has the following specifications:

Hardware Characteristic Value

Global Memory (Avg. available) 10 GB
L1 Cache 128 KB (per SM)
L2 Cache 5 MB

SMEM 48 KB
FP64 (double) 465 GFLOPs

Memory Bandwidth 760.0 GB/s

Table 2.1: Hardware specifications of our test bench that consists of a single RTX 3080
GPU.

Each kernel in Table 2.2 represents a stage in the Rusanov solver except rv-evolve, a
combination of those kernels to represent the solver as a whole in our benchmarking.
From hereby on, we use the kernel labels introduced in Table 2.2 to distinguish between
the stages in our base implementation of the Rusanov solver.

We start by copying the input grid into the solution grid as a basis for the current
time step in copy-sol. Then, we calculate both maximum eigenvalue and spatial fluxes
according to the Equation 1.7 in comp-eigv and comp-flux, respectively. During the
calculations, we store intermediate values that we need to access via different kernels in
temporary arrays of different sizes. The arrays are accessed every iteration from a GPU
manager we implemented to avoid frequent allocations and de-allocations of those
temporary arrays. Then, in the update-sol kernels, we update the mesh and utilize
those temporary arrays. This sums up the stages that must be executed every time step
by default. For profiling and comparison purposes, we also listed the performance of
the entire Rusanov solver. This is represented in the evolve kernel, which contains all
the aforementioned kernels mentioned here to show the overall performance.

16

2 Methodology

Kernel Name Kernel ID

Copy Q_in to Q_out copy-sol
Compute Maximum Eigenvalue comp-eigv

Compute Flux comp-flux
Update Q_out update-sol

Reduce Maximum Eigenvalue reduce-eigv
Evolve (All previous kernels presenting the entire solver) rv-evolve

Table 2.2: List of our finite volumes Rusanov CUDA kernels with their respective labels.

Computational Intensity

Our study focuses on the problem configurations presented in Table 2.3. The volumes
are the total number of the grid volumes including the interior volumes and the exterior
halo or ghost volumes in the patches. With the halo volume number mentioned between
parenthesis per patch in each direction. For instance, a 30× 30 = 900 interior volumes
only mesh would expand to with halo to 32× 32 = 1024):

Configuration Parameter Value

Number of Patches 32,768, 16,384, 8,192
Number of Volumes Per Patch Axis 30(+2), 14(+2), 6(+2)

Table 2.3: Configurations of the test bench. The number of patches and volumes (We
add 2 volumes per axis for halo per patch between parenthesis) are listed,
and the results will list the Cartesian product of them.

We have chosen these configurations to ensure that we fully utilize the GPU warps
as explained in subsection 1.3.1. 2 Gigabytes (GB) of data is enough to populate the
cache levels (cf. Table 2.1) and proportionally sections of the GM as presented earlier in
subsection 1.3.2. This forces the kernels to access data from GM more often to signify
the memory access pattern’s impact on the bandwidth. At the same time, we wanted
to see the impact on the CUDA block level (size of the volumes per patch). In our
calculations, we considered the halo volumes as a part of the input and processed grid
by some kernels that need them, others have the halo volumes in their calculations
excluded since no memory transfers read/write were done on the halo.

The computation throughput calculation is done by counting each FLOPs in each
kernel, this will help us later when we calculate their arithmetic intensities. The memory

17

2 Methodology

throughput also known as the Effective Bandwidth in [2] is calculated using the following
formula:

Effective Bandwidth (GB/s) =
(Bread + Bwrite)× 10−9

T
(2.1)

We can count the FLOPs in the cuda-fused kernel similarly for the rest, excluding
or including the intermediate arrays that each kernel uses, then count the memory bytes
accessed by the kernel to compute its arithmetic intensity. We compute the total number
of bytes generally according to the Equation 2.6:1:

Input Grid Size (Bytes) = P× (V + Halo)2 ×U × 8 Bytes (2.2)

Output Grid Size (Bytes) = P×V2 ×U × 8 Bytes (2.3)

dt(Bytes) = P×Double Precision Size (2.4)

Cell Sizes(Bytes) = P×Double Precision Size ∗Dimensions Size (2.5)

Total Bytes = Input Grid Size + Output Grid Size + dt + Cell Sizes (2.6)

Where P, V, and U are patches, volumes/patch axis, and number of unknowns per
volume, respectively.

Table 2.4 lists the collected information for each kernel for a single configuration of
32K patches and 30 interior volumes 32 with halo per patch axis as follows:

Kernel ID FLOPs Global Memory Transfers (GB) Arithmetic Intensity (AI)

copy-sol 0 2.02 0
comp-eigv 40 1.61 2.48× 10−08

comp-flux 34 3.22 1.06× 10−08

update-sol 50 4.70 1.06× 10−08

reduce-eigv 80 0.94 8.47× 10−08

rv-evolve 204 4.70 4.34× 10−08

Table 2.4: Arithmetic intensities of the kernels for the 32k patches and 30 volumes per
patch axis.

1We consider double precision in our study.

18

2 Methodology

We obtained the following results on our test setup executing the kernels in Table 2.2
for 100 time steps.

From the above information, we calculated and listed the Arithmetic Intensity as
follows:

AI =
FLOPs
Bytes

(2.7)

We can see that they have very low arithmetic intensity due to the constant movement
of huge data arrays and relatively few FLOPs executions on them. Details of the FLOPs
count can be found in the code on GitLab ExaHyPE 2.

In our offloading mechanisms, we mapped a single patch to a single CUDA block
and a single volume to a single CUDA thread. Within each block, we could utilize
higher bandwidth sections on the chip like CUDA SMEM. By testing 16× 16 = 256
threads per block, we are testing a different warp occupancy since occupancy of warps
in CUDA is a critical metric to ensure we have utilized all theoretically available threads
per warp (problem dependent). Therefore, we included 32× 32 = 1024 threads/block
and a portion of that at 256.

Bandwidth Analysis

We ran the aforementioned kernels (cf. Table 2.2) and measured their bandwidths. As
a baseline of the actually reachable peak bandwidth because overhead can occur during the
simulation run on the cluster, we calculate the peak bandwidth via a simple copy kernel
that copies all the content of one array to another that is located on GM. The measured
peak bandwidth reported on the cluster was 681GB/s, which is relatively lower than
the HW theoretical peak bandwidth. This might be due to interconnect overhead or
simulation process execution rules set by the GPU cluster. To validate our theory, we
executed multiple benchmarking kernels to measure bandwidth (inside and outside
Peano). The result is that we have constantly obtained a peak of 681GB/s using our
reference copy kernel not the Rusanov copy kernel with different launch configurations
and the CUDA samples bandwidth evaluation kernels (cf. [4]). The reported peak
bandwidth the CUDA bandwidthTest kernel reached is 672GB. Thus, from now on,
we will use the 681GB/s as the peak bandwidth reference our kernels could target.
Moreover, using the same reference copy kernels on our local machines, we reported a
peak performance that matches the theoretical peak performance. In our local machine,
we have a single RTX 3070 Mobile GPU with a reported peak of 445GB/s, which is
very close to the theoretical peak of 448GB/s.

As can be seen in Figure 2.2, only a single kernel is getting close to the peak
bandwidth possible in our system with 681 GB/s peak bandwidth, that is the copy-sol

19

https://gitlab.lrz.de/hpcsoftware/Peano/-/blob/gpus-cuda/src/exahype2/fv/rusanov/cuda/Rusanov_patchwise_static_calls.cpph?ref_type=heads

2 Methodology

kernel at 581GB/s. Since it merely moves data one after another in constant stride-
controlled accessed data from one array to another. This allows the GPU to use more
elements of the previously requested sectors as explained in the memory access patterns
in subsection 1.3.2. By calculating the efficiency of the bandwidth on the CUDA thread
level of this kernel, we get a more concrete performance metric that we can use as a
baseline in our tests.

By analyzing the results, we can see that the compute kernels comp-eigv and
comp-fluxare less efficient. This indicates an improper memory access pattern. Because
our computation peak is at 450 GFLOPs (cf. Table 2.1) 2, and we perform considerably
lower FLOPs than that, this underscores the fact that our arithmetic intensity is rela-
tively very low to consider computation throughput in our analysis, as we will further
elaborate in the rest of our analysis.

co
py-so

l

co
m

p-ei
gv

co
m

p-fl
ux

update
-so

l

re
duce

-ei
gv

rv
-ev

olve

0

100

200

300

400

500

600

700

57
9

42 37

97 80

16

44
9

29 30

98 81

14

53
8

44 39

98 80

16

39
6

41 30

98 79

14

46
9

31 36

97 80

15

32
1

31 23

99 81

12

Ba
nd

w
id

th
(G

B/
s)

32,768 Patches, 32 Volumes
32,768 Patches, 16 Volumes
16,384 Patches, 32 Volumes
16,384 Patches, 16 Volumes
8,192 Patches, 32 Volumes
8,192 Patches, 16 Volumes

Figure 2.2: Bandwidth of all kernels of the original CUDA Rusanov solver. Each kernel
is launched separately and timed with CUDA events to capture its execution
time. Since different kernels handle different data, there are different sizes
of read and write data transfers for each kernel.

2We consider only double precision in our study.

20

2 Methodology

We can calculate the efficiency of the kernels on the solver level (entire kernel) or
the CUDA thread level (representing a volume). For the solver level, we calculate the
overall kernel efficiency on CUDA grid level as a percentage of the peak bandwidth
using the following formula:

Kernel Efficiency (GB/s) =
BWkernel GB/s× 100

681 GB/s
(2.8)

This will give us the percentage of each kernel’s overall efficiency. For the copy-sol,
we obtained the highest score at 85% while the rest of the kernels scored in the average
of 7.5%, indicating that we are facing a low memory throughput in compute and update
kernels.

On the CUDA thread level, we can see the kernel efficiencies in Figure 2.3. The
closest to peak, as explained earlier, is the copy-sol kernel at around 20%. We showed
that the possible peak bandwidth in our experiments was 681GB/s. Thus, we will
use the 20% as a reference efficiency for the other kernel’s threads. Some kernels
work well separately, as in comp-eigv and reduce-eigv, which both scored higher than
the overall rv-evolve reaching 1.2% and 5.8%, respectively. Nevertheless, the data
dependencies between the computation, update, and reduction stages will persist, and
thus, no parallelization could be employed between kernels such as CUDA streams
or CUDA graph nodes. The other information we can infer from the results is that
with an increasing number of blocks in the grid patches, allocating a single patch to a
CUDA block is heavily impacted in computations. During computations, the vector is
accessed multiple times from different threads to propagate the state information of the
volumes across the neighbors. Improving the access by utilizing SMEM has somehow
introduced stability in our results, which we will present in the next chapter.

To find out how efficient our threads are w.r.t. computation and memory transfers,
we calculate the volume bandwidth efficiency as follows:

Volume Efficiency =

(
t
N

)
÷

(
tloc

P×V

)
× 100 (2.9)

Where t is the minimum possible time that was chosen as reference to the data-
copying kernels illustrated in Figure 2.2, tloc is the runtime duration of the CUDA
kernel, N is a very large number that fills up all high bandwidth caches and memory
and forces the kernel to reach out to GM, P is the number of patches and V is the
number of volumes.

21

2 Methodology

co
py-so

l

co
m

p-ei
gv

co
m

p-fl
ux

update
-so

l

re
duce

-ei
gv

rv
-ev

olve

0

5

10

15

20

25
19

.6
7

1.
8

0.
79 1.

42

5.
82

0.
24

14
.1

6

1.
1

0.
57 1.

28

5.
91

0.
18

18
.3

1.
9

0.
84 1.
43

5.
87

0.
24

12
.5

1.
53

0.
57 1.

29

5.
78

0.
19

15
.9

4

1.
34

0.
78 1.

43

5.
84

0.
22

10
.1

2

1.
18

0.
43 1.

3

5.
88

0.
17

Ef
fic

ie
nc

y
(%

)

32,768 Patches, 32 Volumes
32,768 Patches, 16 Volumes
16,384 Patches, 32 Volumes
16,384 Patches, 16 Volumes
8,192 Patches, 32 Volumes
8,192 Patches, 16 Volumes

Figure 2.3: Efficiency on a CUDA thread level of all kernels of the original CUDA
Rusanov solver as a percentage of the peak bandwidth.

After gaining insight into how extremely memory-bound our kernels are, we utilized
NVIDIA’s Nsight Compute detailed analysis section to determine how to improve it.

Nsight Compute [7] is a kernel-level profiler offering detailed performance metrics
and insight into the performance of individual kernels. We analyzed the processing
pipeline of the Rusanove solver to identify possible parallelizable paths. We profiled all
kernels separately. Nsight Compute helps us optimize the data handled by each kernel.
This gives us a finer granularity of problems that impact the bandwidth. We collected
the most important findings that impact the memory bandwidth in Figure 2.4:

22

2 Methodology

co
py-so

l

co
m

p-ei
gv

co
m

p-fl
ux

update
-so

l

re
duce

-ei
gv

cu
da-f

use
d

0

50

100

150

200

250

300

73 70

83

95 87

61

80

19

82 74

0

55

77

10
1 12

1

10
4

10
0

15
6

2.
1 6 6

35

8

21

2 6 6

33

7

19

Pr
ofi

lin
g

M
et

ri
cs

L1 Hit Rate (%)
L2 Hit Rate (%)

Warp Cycles Per Issued Instruction (cycle)
Cycles (Mega cycles)

Time (msec)

Figure 2.4: Cache hits, warp cycles, execution time reported by Nsight Compute.

On average, the kernels’ warps spend around 109 cycles being stalled, waiting for an
MIO (memory input/output) instruction in almost all kernels. Ideally, we are looking
for less number of cycles between warps being active. The scheduler in RTX 3080 is
capable of issuing one instruction per second. So by merging multiple kernels and
reducing the access to GM, we are targeting less memory transfer and delegating that
to SMEM as memory access there doesn’t have to be fully coalesced for optimal loading.
SMEM has low latency.

Memory Access Patterns

In addition to the above, Nsight compute reported excessive uncoalesced global memory
accesses to the L2 in the cuda-original kernels. As explained in subsection 1.3.2,
memory access patterns can cause significant degradation in performance if requests
are not aligned well, which can cause cache thrashing or suboptimal usage of already
fetched data by using only a portion of them. This is called uncoalesced memory access.

Uncoalesced memory access in the context of GPUs refers to threads within the
same warp access non-contiguous memory addresses. This leads to inefficient memory
access patterns, causing the memory subsystem to make more transactions to fetch the

23

2 Methodology

requested set of data elements than needed, as shown in Figure 2.5a with the red cells
representing data that were fetched but not requested. Ideally, in a memory transfer, all
fetched data into the cache line should also be processed and not discarded, as shown
in Figure 2.5b.

(a) 5 different memory transfers initiated
to load the target 5 elements of the grid,
increasing the chances of frequent cache
evictions.

(b) 2 memory transfers are enough to fetch
the target 5 data elements in a coalesced
manner, increasing the spatial and tem-
poral locality.

Figure 2.5: Memory access patterns with coalesced and uncoalesced accesses. Assuming
4 elements are fetched per request on a cache line level(if a cache line is
32 B and our data are double precision (8 B), 1 memory transfer fetches 4
elements), green elements represent the target elements to read, and red
elements represent unused fetched data.

Since a warp consists of 32 threads, it is paramount to ensure that our warps adhere
to coalesced access pattern. By applying the concept explained in Figure 2.5 to the
CUDA warp, we obtain the memory access patterns shown in Figure 2.6. In Figure 2.6a,
I#0-3 represent instructions to be executed in the kernel by the warp threads one after
another, and every thread executes the same instruction that was issued to the warp
by the scheduler (cf. subsection 1.3.1). In the same instruction, if every thread loads
its data separately (cf. Figure 2.6a), more memory transactions are performed. On the
other hand, if T#0 loads the first element and T#1-3 access the subsequent elements
already loaded by the first thread in the warp, we avoid that overhead.

24

2 Methodology

(a) Threads in a warp load data in an unco-
alesced manner. Every thread accesses
a data element not fetched with the
data requested by other threads, caus-
ing pressure on the L1/L2 caches.

(b) Threads in a warp load data in a co-
alesced manner. The first thread T#0
loads the first element of the row, and
in the same memory transfer, the rest
of the threads use the fetched data.

Figure 2.6: Coalesced and uncoalesced memory accesses in a warp.

Taking that into consideration while optimizing the Rusanov solver, we show in
Figure 2.7 the aforementioned access patterns. Each color represents a state variable
inside Qin. This array contains 4 double precision elements for each volume, as shown.
In our implementation, we counted for both approaches, picking the second one shown
in Figure 2.7b, as it yielded (with a small margin) the best results.

When threads within a warp access consecutive memory locations, the hardware can
fetch the data in a single, large memory transaction, which is much more efficient. This
is termed coalesced memory access. In contrast, uncoalesced memory access patterns
can significantly reduce the effective memory bandwidth, leading to performance
degradation. In CUDA, memory is accessed in chunks known as sectors. Coalesced
memory accesses are realized, and the threads in a warp use each sector fetched from
GM efficiently. However, when we have uncoalesced accesses, the warp does not use all
data from a fetched sector, leading to inefficiencies. In this context, the term Excessive
sectors refers to the number of sectors fetched from GM that were not strictly necessary
due to these uncoalesced accesses. If memory access were perfectly coalesced, fewer
sectors would need to be fetched.

25

2 Methodology

(a) Array of structure layouts that cause spatial locality for the running thread but force other
threads in the same warp to access their elements in the grid with a stride in the interior
volumes.

(b) Structure of arrays allows threads in the same warp to access adjacent elements without a
stride in the interior volumes.

Figure 2.7: Exemplary grids of (2 + 2)2 = 16 volumes. Each volume contains 4 values;
in total, the renders 16× 4 = 64 double precision elements to be accessed in
the entire mesh, including both interior and halo volumes. Comparison of
two main layouts of grid data with each volume in the grid containing four
state values that will be processed. A thick black border surrounds interior
volumes. The rest are the halo volumes.

Reported by Nsight Compute for the update kernels: 273× 106 excessive sectors means
that this many sectors were fetched in addition to what would have been fetched if all
memory accesses were perfectly coalesced. 73% of the total 273× 106 sectors indicates
that a significant portion (73%) of all sectors fetched were unnecessary or excessive due
to uncoalesced memory access patterns.

This indicates a considerable inefficiency in the memory access pattern of the kernel,
which could be a potential area for optimization to improve performance for future
work.

In simple terms, for optimal performance, it is desirable for threads within a warp
to access contiguous memory locations, ensuring that memory accesses are coalesced.
Lastly, in our gpu-fused, we eliminated the use of if-else as they are the leading cause

26

2 Methodology

for warp divergence. We did not observe warp divergence detected in the optimized
kernel.

As a result, we fused all the kernels, reduced and shuffled some mathematical
FLOPs, and restructured the data layout that is accessed from outside to be coalesced
in our optimized version cuda-fused. This improves overall cuda-fused bandwidth
because it has fewer cycles than the other two kernels combined. This is reflected in the
total number of cycles per kernel and execution time in Figure 2.4, which signifies our
improvement in cuda-fused by introducing more data reusability in the kernel.

2.3 Optimized Rusanov Solver

As we have shown in our analysis in Figure 2.2, compute kernels suffer from the
lowest bandwidth, followed by the updated kernel and then copy kernel copy-sol.
The compute kernels need to execute FLOPs on the grid data which was copied in
the copy-sol kernel. Then, the update kernel uses the output of the compute kernels
to update the grid with the computed values of the Rusanov evolution in the current
timestep. Since those kernels were launched separately, we stored multiple data
temporarily, increasing the memory footprint and access to the GM. Thus, if we close
the gap between the kernels and share the accumulated data between them directly
without frequent accesses toGM, we expect to see an improvement in the overall solver’s
bandwidth.

As a first optimization step, we fused multiple kernels of the copy, compute, and
update kernels into a single kernel. This reduced the kernel’s launch overhead. Sec-
ondly, we eliminated the temporary storage buffers that were used to store intermediate
results between different kernels. Since the kernels now can communicate intermediate
data using SMEM across different threads within a CUDA block. As a result, we avoid
the bandwidth overhead stemming from unnecessary memory transfers from and to
GM. We explained earlier in subsection 1.3.2 that frequent accesses to GM impacts
significantly the memory throughput of the kernel because it has the lowest bandwidth
across other memory types (cf. Table 1.1). Finally, we coalesced the memory access
pattern to GM data (cf. Figure 2.7), which increased the spatial and temporal locality of
the fetched data from GM to execute the computations depicted in Equation 1.7.

As shown in 3, we utilized CUDA SMEM [9] to store some physical values we retain
for later access from each volume. The bandwidth of the shared memory in NVIDIA
GPUs is usually much higher than GM access default location of variables (cf. [8]). More
insights will be provided in the profiling analysis in the upcoming section.

We aligned threads (volumes) within the blocks (patches) to match the input grid
Qin. This simplifies mapping the input grid volumes to CUDA threads. A single CUDA

27

2 Methodology

Algorithm 3 Optimized Rusanov kernel algorithm

1: procedure Evolve(noOfPatches, Q_in, Q_out, newMaxEigenvalues)
2: patch← blockIndex ▷ Threads evolve the same volume index across patches
3: for patch < noO f Patches do
4: for all Dimensions do
5: s_maxEigenvalues[currentCell Index]← computeMaxEigenvalue(l_QOut)
6: s_ f lux[currentCell Index]← computeFlux(l_QOut)
7: sync() ▷ Synchronize threads in the block
8: if current volume is an interior volume then
9: for all unknowns do

10: l_QOut[unknown]←
11: maxEigenvalueInNeighbors(Q_in, s_maxEigenvalues)
12: l_QOut[unknown]← f luxInNeighbors(Q_in, s_ f lux)
13: QOut[currentCell Index + unknown]← l_QOut[unknown]
14: end for
15: ▷ Reduce Maximum Eigenvalue in block
16: s_maxEigenvalues[currentCell Index]←
17: max(computeEigenvalue(l_QOut, Dimension),
18: computeEigenvalue(l_QOut, Dimension + 1))
19: sync() ▷ Synchronize threads in the block
20: s← half the dimensions size
21: for s > 0 do
22: if currentCell Index < s then
23: s_maxEigenvalues[currentCell Index]←
24: max(s_maxEigenvalues[currentCell Index],
25: s_maxEigenvalues[currentCell Index + s])
26: end if
27: sync() ▷ Synchronize threads in the block
28: s← s/2
29: end for
30: if currentCell Index == 0 then
31: newMaxEigenvalues[patch]← s_maxEigenvalues[currentCell Index]
32: end if
33: end if
34: end for
35: patch← stride ▷ Threads jump a stride of grid x-dimension
36: end for
37: end procedure

28

2 Methodology

thread is a single volume. Where a group of volumes (threads) form a single CUDA
block patch. This is utilizing the Halo Threads Concept that was introduced in [1]. By
doing so, we are distributing the workload on the CUDA block equally. This is desirable
because different workloads in the warps impact heavily the overall performance. And
threads in the same warp that are idle executed less work and waiting for other threads
with more work will result in an underutilized kernel efficiency.

29

3 Results

In this section, we present our results of running the baseline for this research, which
is the base OpenMP implementation1. We call it omp-original in our results. First,
we show the achieved memory bandwidth in our optimized kernel cuda-fused versus
base cuda kernel cuda-original and base OpenMP kernel omp-original in Figure 3.1:

omp-original cuda-original cuda-fused

0

20

40

60

80

100

120

140

5.
91

16
.5

4

70
.2

1.
44

14
.0

5

67
.7

6

0.
34

10
.3

5

60
.0

2

5.
72

16
.6

9

70
.1

6

1.
4

14
.7

4

67
.6

8

0.
34

10
.3

7

59
.4

5

5.
87

15
.0

6

69
.8

4

1.
43

12
.8

7

67
.2

3

0.
34

10
.5

2

54
.2

9

M
em

or
y

Ba
nd

w
id

th
(G

B/
s)

32,768 Patches, 32 Volumes, 4.70 GB
32,768 Patches, 16 Volumes, 1.15 GB
32,768 Patches, 8 Volumes, 0.27 GB
16,384 Patches, 32 Volumes, 2.35 GB
16,384 Patches, 16 Volumes, 0.57 GB
16,384 Patches, 8 Volumes, 0.14 GB
8,192 Patches, 32 Volumes, 1.18 GB
8,192 Patches, 16 Volumes, 0.29 GB
8,192 Patches, 8 Volumes, 0.07 GB

Figure 3.1: Three versions of the Rusanov solver kernels configured with different patch
sizes CUDA blocks and volumes CUDA threads. They employ different com-
putation and memory transfer layouts reflected in the absolute bandwidth.

1The base implementation can be found in ExaHyPE2 under tagopenmp-baseline-snapshot

30

3 Results

Our optimized kernel achieves up to 70(GB/s)× 100/681(GB/s) = 10% efficiency
as we explained in Equation 2.8, unlike OpenMP and the original CUDA implementa-
tion with separate kernels and intermediate temporary data handling. The complete
speedup information is shown in Table 3.1:

Kernel Peak BW (GB/s) Speedup (w.r.t. OpenMP) Efficiency from Peak (%)

omp-original 5.9 1 0.76
cuda-original 16.7 3x 2.3

cuda-fused 70.2 12x 10

Table 3.1: Hardware specifications of our test bench

This improvement is mainly due to the use of shared memory for the intermediate
values like the tmpMaxEigenValue and tmpFlux as we have shown in 3. This, accompa-
nied by coalescing most memory access from GM, helps mitigate a noticeable portion
of the memory low throughput we have seen in the OpenMP and CUDA baselines.

We also show the execution time of the three solvers in Figure 3.2, showing that with
cuda-fused, we have an order of magnitude speedup on the CUDA thread level:

Thread Speedup =
2.71× 10−8

9.75× 10−10 = 28x (3.1)

31

3 Results

omp-original cuda-original cuda-fused

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

·10−8

2.
7
·1

0−
8

9.
64
·1

0−
9

9.
75
·1

0−
10

2.
69
·1

0−
8

1.
27
·1

0−
8

1.
09
·1

0−
9

2.
69
·1

0−
8

2.
23
·1

0−
8

1.
5
·1

0−
9

2.
79
·1

0−
8

9.
56
·1

0−
9

9.
75
·1

0−
10

2.
77
·1

0−
8

1.
21
·1

0−
8

1.
09
·1

0−
9

2.
76
·1

0−
8

2.
23
·1

0−
8

1.
51
·1

0−
9

2.
72
·1

0−
8

1.
06
·1

0−
8

9.
8
·1

0−
10

2.
72
·1

0−
8

1.
39
·1

0−
8

1.
1
·1

0−
9

2.
71
·1

0−
8

2.
2
·1

0−
8

1.
53
·1

0−
9

Ex
ec

ut
io

n
Ti

m
e

(s
)

32,768 Patches, 32 Volumes, 4.70 GB
32,768 Patches, 16 Volumes, 1.15 GB
32,768 Patches, 8 Volumes, 0.27 GB
16,384 Patches, 32 Volumes, 2.35 GB
16,384 Patches, 16 Volumes, 0.57 GB
16,384 Patches, 8 Volumes, 0.14 GB
8,192 Patches, 32 Volumes, 1.18 GB
8,192 Patches, 16 Volumes, 0.29 GB
8,192 Patches, 8 Volumes, 0.07 GB

Figure 3.2: Execution time of the threads in the tested kernels. This is the time needed
to transfer the grid data to the thread, execute FLOPs on its elements, and
copy the solution back to the GM. It contributes to the overall warp efficiency
(cf. subsection 1.3.1).

Finally, we plot the efficiency of the solvers’ volumes w.r.t. achievable peak bandwidth
in Figure 3.3. Although we had a good speedup on the CUDA thread level, we are
still far from the achievable bandwidth at 20% as we explained in section 2.2. We are
steadily oscillating in the range of 2.4%. This shows that further work could be done to
optimize the data access patterns by restructuring the algorithm and reducing memory
transfers.

32

3 Results

omp-original cuda-original cuda-fused

0

5

10

15

20

8.
7
·1

0−
2

0.
24

2.
38

8.
69
·1

0−
2

0.
18

2.
13

8.
67
·1

0−
2

0.
1

1.
55

8.
38
·1

0−
2

0.
24

2.
38

8.
45
·1

0−
2

0.
19

2.
12

8.
5
·1

0−
2

0.
1

1.
53

8.
63
·1

0−
2

0.
22

2.
37

8.
63
·1

0−
2

0.
17

2.
11

8.
64
·1

0−
2

0.
11

1.
51

Ef
fic

ie
nc

y
(%

)

32,768 Patches, 32 Volumes, 4.70 GB
32,768 Patches, 16 Volumes, 1.15 GB
32,768 Patches, 8 Volumes, 0.27 GB

16,384 Patches, 32 Volumes, 2.35 GB
16,384 Patches, 16 Volumes, 0.57 GB
16,384 Patches, 8 Volumes, 0.14 GB
8,192 Patches, 32 Volumes, 1.18 GB
8,192 Patches, 16 Volumes, 0.29 GB
8,192 Patches, 8 Volumes, 0.07 GB

Figure 3.3: Efficiency of the volume bandwidth as a percentage of the reported achiev-
able peak bandwidth valued at 20% of HW measured peak bandwidth of
RTX 3080 at 681GB/s that was achieved in reference kernel copy-kernel as
a baseline (cf. section 2.2).

33

4 Conclusion and Future Work

We leverage the NVIDIA Nsight platforms for in-depth performance analysis to op-
timize the implementation of our CUDA kernels used in the Rusanov solver. Post-
implementation, an optimization phase was executed, leveraging tools like Nsight
Compute for an in-depth performance analysis. This evaluation spotlighted issues,
particularly uncoalesced memory accesses and warp stalling caused by memory op-
erations, which we efficiently mitigated by fusing multiple kernels and refining the
iteration operations in the time-step solution. These operations, intrinsically dependent
on diverse memory portions, were optimized to minimize global memory access. More-
over, we capitalized on shared memory, facilitating the storage of inter-thread data,
such as specific physical computations like pressure and maximum eigenvalue. While
we achieved a significant reduction in global memory accesses, optimization avenues
remain open, particularly in the single-request, single-execution paradigm.

For future endeavors, the spotlight will shift to refining the solution algorithm itself. It
is noteworthy that our current progress did not tamper with the fundamental algorithm.
The subsequent phase aims to address existing constraints in our cuda-fused kernel,
such as the restrictions posed by shared memory. This will necessitate reconfiguring the
algorithm and reconsidering our approach to propagating spatial and temporal physical
values across cells. On another front, taking advantage of the automatic tasking from
CUDA is proving to be rewarding. More support for algorithms in the C++ standard is
taking pace, allowing more algorithms to be heterogeneously offloaded to the GPUs
implicitly without explicit management by the users.

34

List of Figures

1.1 Schematic representation of ExaHyPE 2, Peano, and their CUDA inte-
gration. 2

1.2 Representation of the execution policy in CUDA via warps, where each
warp consists of 32 threads executing an instruction simultaneously. . . 6

1.3 Memory hierarchy of the RTX 3080 CUDA-based GPU architecture. . . 7
1.4 Different situations where bank conflicts do not occur. 8
1.5 A 2-way bank conflict occurs when threads access different words in the

same bank. 9

2.1 Example of Computational grid . 13
2.5 Memory access patterns with coalesced and uncoalesced accesses. As-

suming 4 elements are fetched per request on a cache line level(if a cache
line is 32 B and our data are double precision (8 B), 1 memory transfer
fetches 4 elements), green elements represent the target elements to read,
and red elements represent unused fetched data. 24

2.6 Coalesced and uncoalesced memory accesses in a warp. 25
2.7 Exemplary grids of (2 + 2)2 = 16 volumes. Each volume contains 4

values; in total, the renders 16× 4 = 64 double precision elements to be
accessed in the entire mesh, including both interior and halo volumes.
Comparison of two main layouts of grid data with each volume in the
grid containing four state values that will be processed. A thick black
border surrounds interior volumes. The rest are the halo volumes. . . . 26

35

List of Tables

1.1 Overview of CUDA memory types and some general characteristics of
each. *The SMEM and L1 cache are configurable in complementary
manner. Together, they share the same on-chip memory storage. Either
size can be set via CUDA APIs. 11

2.1 Hardware specifications of our test bench that consists of a single RTX
3080 GPU. 16

2.2 List of our finite volumes Rusanov CUDA kernels with their respective
labels. 17

2.3 Configurations of the test bench. The number of patches and volumes
(We add 2 volumes per axis for halo per patch between parenthesis) are
listed, and the results will list the Cartesian product of them. 17

2.4 Arithmetic intensities of the kernels for the 32k patches and 30 volumes
per patch axis. 18

3.1 Hardware specifications of our test bench 31

36

Bibliography

[1] J. X. et al. “Optimizing Finite Volume Method Solvers on Nvidia GPUs.” In: IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 12, pp. 2790-2805 (1 Dec.
2019, doi: 10.1109/TPDS.2019.2926084).

[2] NVIDIA. CUDA Best practices. Accessed: 2023-08. 2022. url: https://developer.
download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_
Practices_Guide.pdf.

[3] NVIDIA. CUDA Graphs. Accessed: 2023-08. 2019. url: https://developer.
nvidia.com/blog/cuda-graphs/.

[4] NVIDIA. CUDA Samples Bandwidth Evaluators. Accessed: 2023-10. 2017. url:
https : / / github . com / NVIDIA / cuda - samples / tree / master / Samples / 1 _
Utilities/bandwidthTest.

[5] NVIDIA. CUDA Streams. Accessed: 2023-08. 2015. url: https://developer.
nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/.

[6] NVIDIA. CUDA’s SIMT Architecture. Accessed: 2023-08. 2023. url: https://
docs . nvidia . com / cuda / cuda - c - programming - guide / index . html # simt -
architecture.

[7] NVIDIA. Nsight Compute Profiling Guide. Accessed: 2023-09. 2023. url: https:
//docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#abstract.

[8] NVIDIA. Optimization using SM. Accessed: 2023-09. 2023. url: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory.

[9] NVIDIA. Shared Memory in NVIDIA GPUs. Accessed: 2023-09. 2023. url: https:
//developer.nvidia.com/blog/using-shared-memory-cuda-cc/.

[10] NVIDIA. What is CUDA? Accessed: 2023-09. 2023. url: https://blogs.nvidia.
com/blog/2012/09/10/what-is-cuda-2.

[11] A. Reinarz, D. E. Charrier, M. Bader, L. Bovard, M. Dumbser, K. Duru, F. Fambri,
A.-A. Gabriel, J.-M. Gallard, S. Köppel, L. Krenz, L. Rannabauer, L. Rezzolla,
P. Samfass, M. Tavelli, and T. Weinzierl. “ExaHyPE: An Engine for Parallel
Dynamically Adaptive Simulations of Wave Problems.” In: (May 2019).

37

https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Best_Practices_Guide.pdf
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/1_Utilities/bandwidthTest
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/1_Utilities/bandwidthTest
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#simt-architecture
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#abstract
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#abstract
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2

Bibliography

[12] P. Ullrich, C. Jablonowski, and B. van Leer. “High-order Finite-volume Models for
the Shallow-water Equations on the Sphere.” In: Journal of Computational Physics
229 (Aug. 2010), pp. 6104–6134. doi: 10.1016/j.jcp.2010.04.044.

[13] M. Wille, T. Weinzierl, G. Brito Gadeschi, and M. Bader. “Efficient GPU Offloading
with OpenMP for a Hyperbolic Finite Volume Solver on Dynamically Adaptive
Meshes.” In: High Performance Computing. Ed. by A. Bhatele, J. Hammond, M.
Baboulin, and C. Kruse. Cham: Springer Nature Switzerland, 2023, pp. 65–85.
isbn: 978-3-031-32041-5.

38

https://doi.org/10.1016/j.jcp.2010.04.044

Acronyms

CFD Computational Fluid Dynamics. 3

CUDA Compute Unified Device Architecture. 4

FLOPs Floating Point Operations. 13, 14, 16–20, 27, 32

GB Gigabyte. 16, 17, 20, 30, 32, 33

GM Global Memory. 8–11, 17, 19, 21, 23, 25, 27, 31, 32

HPC High-Performance Computing. 1

HW Hardware. 19, 33

ODE Ordinary Differential Equations. 3

PDE Partial Differential Equations. 1–3

SCCS Scientific Computing in Computer Science. 15

SM Streaming Multiprocessor. 5, 7, 9–11

SMEM Shared Memory. 8–11, 15, 16, 19, 21, 23, 27, 36

UMA Unified Memory Architecture. 12

39

	Acknowledgments
	Abstract
	Contents
	Introduction
	Peano and ExaHyPE 2
	Rusanov Solver
	Spatial Fluxes Conservation
	Temporal Wave Speed Conservation

	CUDA
	Execution Model
	Memory Hierarchy

	Methodology
	Overview
	Grid Traversal in Space and Time
	Original Implementation of the Solver

	Kernel Analysis
	Optimized Rusanov Solver

	Results
	Conclusion and Future Work
	List of Figures
	List of Tables
	Bibliography

