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Abstract. What is integration testing? There are multiple definitions
in the literature and relevant standards. The notion of integration testing
also is understood and implemented differently across and even within
organizations. We define integration testing intensionally, delineate it
from unit, subsystem and system testing, and summarize analytical and
constructive approaches at integration testing. We argue that partial
negative specifications which reflect recurring integration faults can help
detect and even avoid integration problems.

1 Introduction

Software is the most powerful driver of innovation today. Powered by communica-
tion over the internet, software enables the integration of things, data, concepts,
and systems. Because of the enormous complexity of the integrated systems and
data we build, integration is becoming ever more relevant and difficult.

In addition to conceptual integrity, the integration process requires to match
hardware and software interfaces. In practice, this turns out to be a very difficult
task: What does it mean for interfaces to match? How can we make sure they
match? How do we check if they match? In this essay, we focus on matching
software interfaces and consider hardware interfaces only in passing. While many
ideas we discuss can and probably should also be used constructively, we will
specifically focus on the activity of integration testing.

The literature roughly suggests two ways to understand integration tests.
One understanding is that integration tests aim at testing the combined func-
tionality of some subset of components, or units. The other understanding is that
integration tests aim at evaluating the interaction in-between components, most
often without saying what exactly this means or entails. In fact, one standard [1]
uses both definitions within the same standard, where “integration tests” are the
former and “integration testing” is the latter.

Academic distinctions may not be so relevant to practitioners. However, our
own anecdotal experience is that different companies and even different teams
within one company have different understandings of integration tests, and do
integration tests to vastly varying extents. Some observe in hindsight that unit
and integration tests seemingly tested for the same “thing;” some observe that
problems found by integration tests could have been found using unit tests; and
some realize that unit tests fundamentally fail to identify relevant problems.
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Test pyramid. This is in line with differing perspectives on the test pyramid.
The idea is to have many automated unit tests; fewer (possibly automated)
integration tests; and as few end-to-end tests as possible. At the same time,
different organizations today observe that the structure of their tests rather
resembles ice cones, honeycombs, sand glasses, or any other shape.

The Influence of Architecture. The architecture of the system matters, of
course. If we think about a system written in Java, we may have at least a clear
understanding of what a unit test is. If we then integrate units and test these,
this intuitively becomes an integration test. But if we test the composition of two
units, what are the consequences for the intention of tests? If we re-use the unit
tests and simply replace drivers or stubs (mocks) with the actual components,
does this turn unit tests into integration tests? If we consider a microservice
architecture, what is the difference between a unit and an integration test?

Granularity. Integration testing happens at several levels [2]. “Units” to be
integrated include classes, components, things, (micro) services, full-fledged en-
terprise systems as well as electronic control units (ECUs) in cars. We will use
examples from these domains throughout our essay, but our treatise aims at an
understanding that is independent of the specific notion of unit. We do, there-
fore, not think that the conceptual ambiguities about integration tests are a
result of different notions of “unit.”

Development Process. In addition to the architecture and granularity, the
development process clearly has an impact on the understanding and necessity
of integration tests. If software is developed by distributed teams, possibly under
different governance, the integration problem seems different from one single
agile team that develops a specific piece of software: Intuitively, it matters if
the testing process is intertwined with or even precedes development, or if it is
performed after development, possibly by a different team.

Why is it difficult? While there may be no consensus on what exactly integra-
tion testing is, integration problems are widely acknowledged. Why do we have
these problems? When system components are developed, there is both explicit
knowledge and implicit assumptions about the technical context of the system:
Among others, APIs and database schemas constitute explicit knowledge while
the interpretation of numbers or the communication format, among many oth-
ers listed in §4.1, often remain implicit. If two component implementations then
make conflicting assumptions, integration problems are unavoidable.

Overview. The remainder of this essay is organized as follows. §2 introduces our
formalism, the way it can be used to model development processes, and recaps
the fundamentals of testing. §3 introduces different test levels. We argue that
there are two kinds of integration faults that relate to (1) inadequate design
decisions an6d (2) to inadequate connections at the implementation level. §4
argues that integration tests should address integration faults, defines the latter,
and provides examples. A key insight will be that we cannot expect specifications
for integration testing, and that lists of integration faults can be used as negative
specifications for integration testing. §5 uses these insights pragmatically, and
§6 concludes.
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2 Preliminaries

2.1 Behavior Descriptions

Throughout this paper, we gently make use of formalism where we believe it can
help clarify concepts or lead to more succinct descriptions. We see the devel-
opment process as a transformation of behavior descriptions [3] in the spirit of
Broy’s work on using streams for formally founded model-based development [4].
In the simplest form, behavior descriptions relate input to output. We extend
this notion to nondeterministic as well as underspecified behavior descriptions
that relate input to sets of output. Where appropriate, we may assume that the
formalism includes notions of logical or real time, in order to capture real-time
behavior or the performance of a system. We may also assume that the for-
malism captures special security properties such as confidentiality expressed as
hyper properties. Because the precise nature of the formalism is immaterial to
our argumentation, we refrain from incorporating the latter properties and stick
to the intuition that behavior descriptions are predicates whose semantics are a
mapping from streams of input I to streams of sets of output O,

(N → I) → (N → 2O).

Software and systems development is based on user requirements U and then
possibly systems requirements R. At least in principle, requirements are turned
into system specifications, which are turned into subsystem specifications, turned
into unit specifications and ultimately implemented by code. All these artifacts
can be interpreted as behavior descriptions, but they usually do not exist as
formal documents. The notion of subsystem is recursive where units are imple-
mented but otherwise not further refined. Subsystems hence include units; we
also use the word component as a synonym. We generalize each of these devel-
opment steps into a transformation⇝ between behavior descriptions, where the
left behavior description is turned into the right behavior description.

Nondeterminism is one way to express underspecification: if for a given input,
any output is possible, this amounts to leaving open or not specifying the reac-
tion to that input. The behavior description of a specification is meant to reflect
the requirements—but it may take some additional decisions that were left open
by the requirements. Similarly, the specification of subsystems should reflect the
system behavior, but may add additional behavior. Finally, implementations of
units are meant to reflect the specifications of the latter but themselves are al-
lowed to take further decisions. If this is the case, our development steps are
stepwise refinements in a formal sense. Refinement hence amounts to reducing
non-determinism, commonly expressed as logical implication between behavior
descriptions, or as trace inclusion at the semantic level. In order not to clutter
formalism, we will not distinguish between syntax and semantics: For require-
ments, system specifications, subsystem specifications and implementations P,Q,
P ⇝ Q is a refinement step iff Q ⇒ P or, semantically, iff

∀i ∈ N → I, t ∈ N : (Q(i))(t) ⊆ (P (i))(t).
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We do not think that stepwise refinement is or should be a realistic development
methodology. We also do not advocate that formalized behavior descriptions
should drive a development process. We are perfectly fine if behavior descrip-
tions only exist virtually. In our context, which is independent of a specific
development methodology, we use formalism solely to characterize the testing
activities, not the development activities.

2.2 Development

Many design steps are functional decompositions. Because once again an exact
formal definition of the composition is immaterial to our paper, we assume some
composition operator ⊕ with a well-defined semantics that type-correctly con-
nects inputs and outputs of the subsystems. One example for such an operator
is provided by the Focus formalism [4], where the semantics simply is the logical
conjunction ∧. We will write S ⇝ S1 ⊕ . . . ⊕ Sn to denote the decomposition
of S into n subsystems and their respective connections. We will use the same
symbol S ⇝ I to denote an implementation step.

An idealized development process starts with a set of user requirements U,
refined into system requirements R, in turn refined into an overall system spec-
ification S with U ⇝ R ⇝ S. The system S is functionally decomposed via
S ⇝ S1 ⊕ . . . ⊕ Sn. Each subsystem Si can recursively be decomposed into
smaller subsystems. When the design process comes to an end, subsystems Si

are realized by implementations Ii in implementation steps Si ⇝ Ii. If a sub-
system S was decomposed by S1 ⊕ . . . ⊕ Sn and realized by implementations
I1, . . . , In, then I1 ⊕ . . . ⊕ In ⇝ I is the integration step that leads to the im-
plementation I of S. A subsystem’s implementation I may be used in further
integration steps to form higher-level subsystems.

While we focus on software systems in this essay, our conceptualization also
works for cyber-physical systems (CPS). The behavior of CPS usually cannot
be reduced to I/O relations only as it includes attributes such as weight, energy
consumption, temperature, etc. Clearly lacking elegance, we can model these
as part of the system output. At the level of specifications, we then need to
include a subset relationship between ranges of values in order to cater to refine-
ments. At the level of implementations, we do not consider refinements between
implementations, but only between implementations and possibly hypothetical
specifications.

Moreover, CPS development includes a further software-hardware integration
step, concerned with the mapping of software components (tasks, communica-
tion) to hardware components (processors, memory, busses). We acknowledge
the potential for confusion because of the terminology and consider this step to
be a mix of design and implementation steps which include the partitioning of
tasks, the choice of schedules, the exploration of and decisions about hardware
design trade-offs related to cost, reliability, availability, weight, energy consump-
tion, etc., and the deployment of software components to hardware resources.

There is a long tradition of mathematically modeling development steps as
logical implications or, semantically, as trace inclusions, and thus understanding
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them as refinement steps in the above sense (the only exception is the integration
step, which is rather the opposite: I ⇝ I1⊕ . . .⊕ In is or should be a refinement,
not I1 ⊕ . . .⊕ In ⇝ I—but we need to implement before we can integrate, and
in agile processes, we continuously integrate).

From a technical perspective, there is no need for testing in an ideal world.
If during design it can be shown that R ⇒ U, S ⇒ R, recursively that S1 ∧
. . . ∧ Sn ⇒ S for all subsystems and that Ii ⇒ Si, then the implementation I
of the system satisfies I ⇒ U by construction, under the assumption that the
composition of implementations reflects the semantics of the dual decomposi-
tion steps and also includes specifications of all the infrastructure components,
including libraries, middleware, virtual machines, etc. Note the similarity with
the communication and computation infrastructure for CPS mentioned above.

2.3 Testing

In reality, of course, things are more complex. Requirements change; specifica-
tions are inexistent, incomplete, wrong, or bad; design steps cannot be shown to
be refinements; and implementations cannot be proved to be refinements either.
This motivates the need for incomplete verification steps: checking the correct-
ness of implementations Ii ⇒ Si is approximated using unit testing; checking
the correctness Ij1∧ . . .∧Ijnj

⇒ Sj of subystem Sj implemented by Ij1, . . . , Ijnj

is approximated using subsystem testing; checking if the top level implementa-
tion I implements the requirements R is approximated with system testing; and
I ⇒ U is verified during acceptance testing.

Let us assume a (sub)system S has been decomposed into S1 ⊕ . . . ⊕ Sn

and the Si are implemented by Ii such that unit testing suggests Ii ⇒ Si.
Then the correctness of at least two composed unit implementations Ii with
i ∈ J, J ⊆ {1, . . . , n}, |J| ≥ 2 against a hypothetical specification HJ is checked
using integration testing by approximating (i.e., testing)

∧
i∈J Ii ⇒ HJ such that

HJ ⊕X = S for some equally unknown X. In case |J| = n, we have HJ = S; this
is the last level of integration testing, different from system testing because the
latter checks

∧
Ii ⇒ R rather than

∧
Ii ⇒ S (cf.§§3.2 and 3.3). Jorgenson finds

this distinction academic because in reality, the distinction between a system
specification and a system requirements specification is not always clear-cut
[5]. In practice, indeed, testing the last integration stage and system testing
cannot always be clearly separated. In any case, we argue that the hypothetical
specification HJ is the key to understanding what integration testing really is
and should be, an insight missing in prior work [6].

The above formalization of design and testing steps suggests a development
process that reflects the V model. Yet, our perspective is agnostic to the concrete
development process. The activities are the same in other development processes,
e.g., agile processes. The difference is the temporal ordering of the steps (when
is integration taking place, when are requirements refined) and the nature of
the specifications: In an agile world, specifications come as user stories, test
cases, or acceptance tests. These are user requirements specifications rather than
(sub)system specifications in a traditional sense; and yet they all give rise to

PrePrint for ’Festschrift’ Engineering Safe and Trustworthy Cyber Physical Systems, 2023. 5



Pr
eP
rin
t

3. TEST LEVELS A. Pretschner and L. Gregor

behavior descriptions. Hypothetical specifications HJ for integration testing are
often captured by the previously implemented user stories. They unlikely exist as
explicit (sub)system specifications in either development process, possibly with
the exception of the last stage where HJ = S.

Test cases, or tests for short, consist of input streams and expected output
streams, and of environment conditions. Testing is the process of applying input
to a system and comparing the system’s actual output to its expected output.
Test cases reflect specifications and are themselves partial behavior descriptions.
Sometimes, test cases are the the relevant specifications, which is typical for
test-first approaches such as test-driven development.

Testing in most cases cannot prove if one behavior description refines another
but usually provides partial evidence or falsifies a refinement relationship. That
is, testing in practice usually cannot show

∧
Ii ⇒ HJ but at most ¬(

∧
Ii ∧HJ).

With the exception of code and tests, we use behavior descriptions only for
conceptualizing our perspective. They are unlikely to be amenable to formal
treatment in any realistic development process anyway, so this is not a huge
practical concern—and the approaches in §5 do not require formalized specifica-
tions. Yet, for gaining confidence that the implementation of a system satisfies its
specification and/or addresses the users’ needs, the choice of relevant, or good,
test cases is crucial.

Testing aims both at gaining confidence if requirements are implemented
correctly and at revealing faults. In terms of the latter, the idea that good test
cases are usually defect-based is spelt out in earlier work [3], getting back to
early considerations by Weyuker and Jeng [7]. The starting point of our under-
standing is the text book definition of test cases being good when they reveal
faults. As intuitive as this definition may be from a management perspective, it
immediately leads to the odd conclusion that there cannot be good test cases
for a hypothetical perfect system. It is then a short step to extend the defini-
tion of good tests to reveal potential faults, and marry that to the economical
or risk-based intuition that not all faults are equally problematic, tests easy to
debug, or cheap to run. In this vein, we consider tests to be good if they reveal
potential faults with good cost effectiveness and will, in this paper, concentrate
on faults being potential.

Requirements-based tests usually do not target specific faults beyond “re-
quirement incorrectly implemented.” If requirements are prioritized w.r.t. im-
portance, respective tests can still be “good” as they address specified (and
therefore probably relevant) use cases, which makes their incorrect implementa-
tion naturally risk-based and hence helps design tests that are cost-effective.

3 Test Levels

3.1 Unit Tests: Ii ⇒ Si?

Unit tests are meant to check if the implementation Ii of a unit specification Si

is correct, that is, if Ii ⇒ Si (once again note that in most cases tests do not
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provide proof, but we may content ourselves with falsification). In order to test
such a unit independently, in practice we need to mock, or stub, those units that
are used by Ii, be that by calls to other functions, messages to other services,
or signals sent to other ECUs in a car. Depending on the development context,
there is a chance that there is no explicit specification Si for Ii, or that the unit
tests themselves constitute Si. In practice, even without specifications, unit tests
are written by using knowledge about requirements and context.

Unit tests reveal unit faults that are usually rooted and fixed in the unit itself.
In the V model, unit tests immediately follow the implementation step. In agile
contexts, unit tests are written before or during development in a sprint, and are
executed whenever code is checked in to the continuous integration environment.
Within each sprint, a subsystem consisting of several features is built.

3.2 Integration Tests:
∧

Ii ⇒ HJ?

Integration takes place whenever components (that may be units) are connected
to each other. “Connecting” here means that previously mocked functions are
now replaced by the respective real implementations. The way functions from
other units are called depends on the system: In a simple system, these may be
synchronous function calls. In more complex systems, this may be asynchronous
inter-process communication; the sending and receiving of messages within some
middleware; or the exchange of messages via the Internet in REST-based (mi-
cro)service architectures.

Assume we integrate a subset of at least two implementations Ij of com-
ponents Sj with j ∈ J and J ⊆ {1, . . . , n} ∧ |J| ≥ 2 for a (sub)system S with
S ⇝ S1 ⊕ . . . ⊕ Sn. We further assume that unit tests suggest that the Ij are
correct w.r.t. Sj . Testing includes the comparison with expected results, which
is why we explained in §2.3 that we need to assume a hypothetical specification
HJ for this subset of components to be given—which, because in most cases
|J| < n and only in one case |J| = n, almost certainly does not explicitly exist.
However, in agile processes, HJ can be seen to capture all user stories that were
built in earlier sprints, and regardless of the development process, it comes as
the integration test suite and hence reflects the testers’ intentions.

Remember that we have defined ∧ as the semantics of the composition op-
erator ⊕, without making a distinction between ∧α at the level of specifications
and ∧γ at the level of implementations. Now assume that integration tests reveal∧

j∈J Ij ̸⇒ HJ. The respective design, implementation, and integration steps pre-
ceding this integration test are S ⇝ S1⊕ . . .⊕Sn; Sj ⇝ Ij ; and I1⊕ . . .⊕Iℓ ⇝ I
for some ℓ ≤ n. Because the Ij are assumed to be correct by virtue of unit test-
ing, and because we assume the semantics ∧α of ⊕ to be adequate by design of
the formalism, there are two possible causes for the integration test to fail: the
implementation of ∧γ at the implementation level or the decomposition at the
specification level.

Interaction Faults. The implementation of the “connection” (abstractly, ⊕
with semantics ∧γ) of at least two subsystems Ij1, Ij2 does not work as expected
by the design: The connection at the implementation level does not have the
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same properties as the connection at the design level. At the level of abstract
behavior descriptions, including both specifications and implementations, this
mismatch cannot materialize: a logical ∧ is an ∧! However, this connection is
implemented by some technical mechanism that transfers control or data. At the
level of decomposing systems into subsystem specifications, we may just assume
that the connection ∧α “works.” The concrete implementation-level connection
mechanism ∧γ , in contrast, is implemented by a simple synchronous method call
or a remote procedure call in a full-fledged middleware (in which case we could
also see the system as composed of another component, the middleware itself).
It includes characteristics of the communication that are outside the control
of the interacting partners, including jitter, latency, message loss, etc., and if
these are instrumental for system functionality, they are a cause for integration
faults. ∧γ also captures the full complexities of hardware-software integration as
introduced in §1.

We have defined tests to include environment conditions in §2.3. The common
understanding is the configuration of the hardware and software stacks. How-
ever, one may also see characteristics of the transfer of control and data to be
such environment conditions. This becomes apparent when considering electro-
magnetic interferences or cosmic rays as a source for a system’s malfunctioning:
These evidently are environment conditions.

The connection mechanism does not include the content, encoding, format
of the messages or function calls or the way the recipient is addressed. These
are the responsibility of the components that interact. At the level of the im-
plementation, ∧γ may be defective or not share all properties with its abstract
counterpart ∧α: It may be that Sj1 ∧α Sj2 ⇒ Sj , Ij1 ⇒ Sj1 and Ij2 ⇒ Sj2,
but Ij1 ∧γ Ij2 ̸⇒ Sj . This can happen, for instance, if messages are simply not
forwarded by the communication infrastructure. We call these integration faults
interaction faults. They are typically meant when integration testing is said to
target the interaction between subsystems, cf. §1.

For pure software systems, the majority of integration problems does not
seem to be due to the interaction itself. In contrast, interaction problems are
more relevant, if not prevalent, when considering hardware components.

Design Faults. The decomposition S ⇝ S1⊕ . . .⊕Sn was incorrect. That is
to say, S1 ∧ . . . ∧ Sn ̸⇒ S already at the specification level, but this design fault
was not or could not be detected at the level of specifications, for instance, simply
because of a lack of respective specification documents. At this level, we usually
assume that the connection ∧α between the subsystems simply works correctly.
However, the (possibly implicit) component specifications may have left open the
communication format, message frequency, encoding, interpretation of numbers,
and so on. Yet, these are the responsibility of individual components, not of the
connection ∧α. Implementations of the subsystems each took their own decisions.
These were possibly correct w.r.t. their own possibly implicit specifications, but
later turn out to be in conflict with each other. For instance, one subsystem
implementation I1 took the decision to use XML, in line with specification S1,
and another subsystem implementation I2 to use JSON, in line with specification
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S2. These integration faults could, in principle, have been avoided and detected
at the level of specifications during design step S ⇝ S1⊕ . . .⊕Sn, but have not;
and therefore constitute design faults.

Without considering non-functional properties, Reiter calls these faults ar-
chitecture faults [8]. We prefer the term design fault because not all design faults
are architecture faults, see §4.3. Performance and security problems, for which
integration testing probably is the wrong technique, are discussed in §4.5.

In practice, tests may also incorrectly suggest that the hypothetical specifi-
cation HJ is satisfied, because they are incomplete. Yet, at a later integration
stage, the system may not work as expected. This may also be because of the pos-
sibility of a fourth cause, incompleteness (or incorrectness) of the hypothetical
specification HJ used during integration testing.

If HJ does not contain or contains inconsistent information about the transfer
of control or data between two components, including format, timing, units, data
types and data model, as spelt out in §4.1, incorrect implementation choices may
be impossible to detect at the level of integration testing. In practice, the same
holds for subsystem specifications Si that are used for subsystem testing: If these
do not contain information about timing, for instance, then two implementations
are free to pick their own timing, and this choice may be in conflict with other
choices, a recurring problem in the context of flaky tests, cf. §4.1. As mentioned
in the introduction, integration faults are based on conflicting assumptions.

Depending on the development context and the need for standard confor-
mance, there is a chance that there are specifications for full subsystems. In
contrast, when integration testing is performed, the only explicit representation
of HJ usually is the test cases themselves, containing input and expected output,
written to reflect the testers’ intentions. In practice, at this test level, engineers
perform rather explorative testing to see if the interfaces of the subsystems
“match.” We will therefore suggest in §4.7 to approximate HJ by formulating
such a specification negatively, based on commonly recurring integration faults.

3.3 System, Subsystem, and Acceptance Tests: I ⇒ R? I ⇒ U?

In a V modellish process, system tests are performed after system integration
has taken place. Text books sometimes additionally require that the system’s
infrastructure be identical to the prospective deployment infrastructure. The
goal of these tests is to show that a system’s implementation I implements the
(stipulated) requirements R, I ⇒ R. System tests are sometimes called end-to-
end tests because they allow for user interactions that mimic those in the real
deployment context. Good system test cases address important use cases and
risky potential defects. In agile development, system tests are run continuously,
where the integrated system consists of all those components that have hitherto
been developed and those that need to be mocked. As there often are no explicit
system requirements, checking is instead done directly against a subset of the
user requirements that often come as user stories.

In addition to the perspective that system testing aims at verifying if I ⇒ R,
it is not uncommon to see system testing as the last stage of integration testing,
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or at least not to insist on a clear-cut distinction [5]. As explained above, in this
case the hypothetical specification HJ is not hypothetical anymore but instead
is given by S, i.e., HJ = S. We then test if the development S ⇝ I1 ⊕ . . . ⊕ In
actually was a refinement.

The idea of system testing recursively applies to subsystems Si of a system S
with Si ⇝ Si1⊕ . . .⊕Sin and an implementation Ii = Ii1⊕ . . .⊕ Iin. Subsystem
testing checks if Ii ⇒ Ri holds for subsystem requirements Ri, as long as these
are available. We may also take again the perspective that a subsystem test for
Si actually is the last stage of the integration tests for the implementation Ii of
Si. In this case, the specification of Si is actual rather than hypothetical.

Subsystem and system testing are done w.r.t. requirements. Integration test-
ing is done w.r.t. possibly hypothetical system specifications.

Finally, acceptance tests verify if a system implementation I satisfies the
user requirements, I ⇒ U. Requirements specifications are likely incomplete,
and respective faults may incorrectly be considered to be integration faults. We
will consider three examples in §4.4.

4 Integration Faults

If good test cases target potential faults, cf. §2.3, then it is natural to require
integration tests to target specific integration faults. As it turns out, there is a
huge body of literature and practice on recurring faults in different system types.
Interestingly, very few specifically target integration faults.

4.1 Examples

There is a wide range of known integration faults, including different expecta-
tions regarding units, encoding, data models, formats, data types, value ranges,
frequency, quantization, message synchronicity, message or call ordering, sched-
ule, information freshness and timeouts. Popular examples include the Mars
climate orbiter that crashed due to unit inconsistencies where one component ex-
pected data in metric units of Newton-seconds and another component sent data
in Imperial units of pound-seconds. Ariane-V exploded because two connected
components operated with different representations, and hence value ranges, of
integers. Buffer overflows can be seen as a further example of integration prob-
lems related to value ranges: input strings in one component are longer than
expected by the memory allocated to buffer variables in other components. In
microservice architectures, mismatches between communication formats JSON
and XML are frequently observed. Moreover, as microservices are meant to main-
tain their own data and thus data model, changes to the model in one service are
not always consistently implemented in other services. Respective inconsisten-
cies are not uncommon in contexts where the data model frequently changes, as
seen in the insurance sector with frequently changing regulations. Finally, flaky
tests can be understood as integration problems. One source of test flakiness
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are timeouts, where testers specify timeouts that have not been specified at all
during design and implementation of the system to be tested.

We do not claim this list to be complete. Indeed, there is a huge body of
literature regarding recurring faults for different system types. Some of these
works include integration-relevant faults considering various aspects of inte-
gration, among them integration faults in monolithic (e.g. [9]), object-oriented
(e.g. [2]), or cyber-physical systems (e.g. [10,11]), interface faults (e.g. [12,13,14]),
and faults in the composition of services (e.g. [14,15]).

4.2 Integration Faults as Design Faults

In this essay, the lack of space makes us focus on design rather than interaction
faults. We are fully aware of the importance of interaction faults specifically in
CPS. That said, let us turn our attention to why design faults occur, and why
they recur. We have already observed that in practice, the boundaries between
the last stage of integration testing and system testing are blurred. Textbooks
indicate that system testing is requirements-based and tests if IS ⇒ RS . We have
seen that system testing sometimes also is understood as the last step of integra-
tion testing where it is checked if IS ⇒ S. Integration testing takes some subset
of components and checks their composition against a hypothetical specifica-
tion. In agile settings, that specification corresponds to previously implemented
user requirements. We may speculate that in agile settings, integration testing
corresponds to the flavor of integration testing that targets correct functionality
rather than correct interactions between components.

We have argued that specifically software integration faults often are a special
form of design faults. For simplicity’s sake, let us consider the interaction of only
two correct implementations I1 and I2 with specifications S1, S2 in S ⇝ S1 ⊕
. . .⊕Sn. Integration tests are executed against a hypothetical specificationH{1,2}
and fail: I1 ∧γ I2 ̸⇒ H{1,2}. If the implementation of the connection ∧γ between
components is correct, the problem must be the design with S1∧α . . .∧αSn ̸⇒ S.

That the problem is a specification problem does not contradict the intuition
that it can be repaired at the implementation level: It will often be possible to
modify implementations Ii such that

∧
Ii ⇒ HJ, independent of the specifica-

tions, and as long as HJ is consistent. Note that we use the term modify rather
than refine here: implementations usually are fully refined. After this fix, it may
be that Ii ̸⇒ Si which means that we would need to update the specification.

It is important to remember that S1 ∧α S2 ̸⇒ S can be due to the following
situation: Both S1 and S2 leave open the same implementation choice, e.g.,
the communication format JSON or XML. This means that implementations
I1, I2 that refine these specifications can decide differently, thus introducing an
integration fault. And yet, this is a design fault : When designing S ⇝ S1⊕ . . .⊕
Sn, the communication format should have been chosen consistently! However,
as we lack ways to understand S1∧S2 ̸⇒ S at design time, we are likely to detect
this problem only after implementation.
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In sum, the problem can often be fixed in the implementations, but the root
cause is the design. In order to understand integration faults, we therefore study
them in terms of what can go wrong at the design level.

– If in order to repair the design fault, both S1 and S2 must and can consis-
tently be refined into S′

1 and S′
2 such that S′

1 ∧ S′
2 ∧ S3 ∧ . . .∧ Sn ⇒ S, then

both S1 and S2 were underspecified. The implementations took conflicting
decisions, probably inadvertently. This is the case that we studied above:
both specifications leave open the communication format. Note that there is
no unique component to blame for this integration fault.

– If it is sufficient to refine only one component specification S1 into S′
1 (or

symmetrically, S2 into S′
2) and thus ensure that I ′1 ⊕ I2 ⊕ . . . ⊕ In ⇒ S,

then S1 initially offered implementation choices that could conflict with the
design of the rest of the system, and I1 happened to precisely take a decision
that did conflict. This happens, for instance, if an implementation I2 of S2

is re-used (and thus equated with S2) and performs computations with 32-
bit numbers while S1 didn’t specify if numbers were 32 or 64 bits long, but
some implementation I1 decided to do 64 bits. It also happens when the
integration of components leads to a buffer overflow.
In this case, there is a conflict between two implementations that could have
been avoided by fixing one component specification and making sure that it
is correctly implemented.

– It may also be impossible to simultaneously refine both S1 and S2 into a
consistent subsystem specification, i.e. for all refinements S′

i ⇒ Si and cor-
rect implementations Ii ⇒ Si, we have S′

1 ⊕ . . . ⊕ S′
n ̸⇒ S. This is the case

if component specifications took conflicting design decisions, for instance, if
S1 requires its implementations to communicate with I2 at 100Hz and S2

requires its implementations to communicate with I1 at 33Hz. In this case,
either one or both specifications (and their respective implementations) need
to be modified, not refined, in order to conform with the behavior of the re-
spective other component.

– Finally, one may be tempted to think that in addition to the above possibil-
ities, it is possible that any of the two specifications be refined in order to
fix the integration problem, but not necessarily both: In this case, S1 ⇝ S′

1

with S′
1 ⇒ S1 ∧S′

2 = S2 or S2 ⇝ S′
2 with S′

1 = S1 ∧S′
2 ⇒ S2 fix one specific

observed integration problem.
That is, both S1 ⊕ S2 ⇝ S′

1 ⊕ S2 and S1 ⊕ S2 ⇝ S1 ⊕ S′
2 are possible re-

finements that fix the integration problem. However, this means that there
is underspecification in both specifications for some inputs. If we remove
this underspecification in one component, then implementation choices in
the other component may, once again, lead to the same integration prob-
lem. In practice, this is unlikely to happen because only one implementation
is actually changed. We have seen before that it is possible to resolve the
integration problem at the level of either implementation. However, if the
unchanged implementation is re-used with its unchanged specification in a
different context, then this may lead to future integration problems.

12 PrePrint for ’Festschrift’ Engineering Safe and Trustworthy Cyber Physical Systems, 2023.



Pr
eP
rin
t

A. Pretschner and L. Gregor 4. INTEGRATION FAULTS

For simplicity’s sake, we have argued with two rather than more components.
It is of course possible that an integration fails when three but not two compo-
nents are integrated. Then, for instance, it may be possible to refine S1 and S2

as well as S2 and S3, but there still is an inconsistency in S′
1 ⊕ S′

2 ⊕ S′
3. The

characterization of different integration faults, however, remains the same.

4.3 Other Design Faults

Are there design faults that are not integration faults? Intuitively, this is the case,
for instance, if the intended functionality of one single component Si happens to
be incorrectly specified. This, however, begs the question of the reference w.r.t.
which Si is incorrect. There seems to be one special case where we do not need
this external reference: a component S1 is obviously problematic regardless of the
rest of the system if it is impossible to refine (or implement) it in a way such that
for any refinement of the other units S′

2⊕ . . .⊕S′
n, we have S1∧S′

2 . . . S
′
n ̸⇒ S. In

this case, the design of S1 is “broken,” must be modified, and cannot be repaired
by the implementation of the remaining system.

Unfortunately, this case is of rather theoretical interest, as in practice the
misbehavior of one unit often can be compensated by other units (exception
handling, error correction, redundancy). However, we may accept the practical
intuition that there is a design fault in the definition of S1 if “the other units
could but should not fix the problem in S1” and refrain from attempting to
formalize this idea.

Design faults which are not integration faults can also lead to the violation
of non-functional requirements, including performance and security, cf. §4.3.

4.4 Requirements Rather than Integration Faults

Some faults may seem like integration faults but really are due to incorrect or
incomplete requirements for a system at a higher level.

To start with, consider a car2infrastructure component that is meant to help
optimize traffic. In order to do so, it provides information to vehicles about the
situation behind a turn at a crossing: pedestrians, children, other cars, buses,
etc. The input to such a component are signals derived from camera or infrared
or other sensors; the output is a representation of the real world behind the turn.
Acceptance testing such a system may then lead to challenging situations for the
recognition capabilities of the controller—but what really matters is the safety
of traffic, the throughput of the overall system, and so on. In other words, the
relevant properties are system-level properties that transcend the properties of
the controller subsystem. The controller is a subsystem, not the top-level system.

Higher-level properties often do not make sense at a lower level. This is
the case for drone swarms, for instance, where one part of the system’s desired
behavior is to maintain a minimum distance to other drones. This is controlled
by each individual drone but can only be observed if there is at least a second
drone, i.e., after the top-level system “drone swarm” has been put in place.
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Now consider an automated cruise control component, or ACC. Phantom
jams occur when changes in the (usually decelerating) movement of one car
are reflected and amplified by the following car, leading to a further amplifica-
tion of the movement by the next following car, and so on. This phenomenon,
called string instability, is provoked by many ACCs on the market [16]. Possibly
overlooked by the designers of the respective control algorithms, it is however
relatively easy to fix in the control algorithms themselves [17]. The point here is
that the phenomenon cannot be observed by (acceptance) testing one individual
ACC alone: String stability is a property of the higher-level system within which
the ACC is embedded: traffic management. If string stability is ignored during
the design of the ACC, it is unlikely that the ACC induces string-stable behavior.
However, upon integrating it into cars and then into traffic, the property becomes
relevant. From the perspective of the overall traffic, we may—incorrectly—see a
lack of string stability as an interaction problem.

Finally, let us consider the problem of feature interactions [18], well studied
in telecommunication systems, and also common in other distributed systems
such as cars. Feature interactions occur when the combination of one or more
features lead to undesired or at least unspecified system behavior. For instance,
if n1 enables call forwarding to n2, which in turn enables call forwarding to
n3, should calls to n1 be redirected to n3, even though n1 didn’t explicitly say
so? Similarly, if n1 has blocked outgoing calls to n2, but n3 has enabled call
forwarding to n2, should a call from n1 to n3 be redirected to n2?

These situations share the commonality that systems are embedded within
other systems, and acceptance tests at a lower component level—the traffic con-
troller, drone swarms, the ACC, the individual feature—naturally cannot reveal
the problems at a higher level. Seeing them as interaction problems from the
higher level is incorrect: They actually are design problems in the higher-level
systems. We are aware that avoiding this kind of situations without knowing the
potential problems upfront is a daunting task.

4.5 Non-Functional Properties

Performance, a system-level property, is influenced by architecture, be that the
result of too many indirections in a multi-tiered architecture, be that the result
of an inadequate network topology. Performance also is influenced by unit-level
choices of adequate data structures—in which case bad performance could be
traced back to unit faults at the level of design or implementation.

Similarly, security is a system-level property. Its violation can result from
both inadequate implementations and inadequate architectures. We have dis-
cussed buffer overflows as integration problems above; we would argue along
similar lines for most injection attacks. We also know that some definitions of
confidentiality such as non-interference are non-compositional: individual sys-
tems may be secure, but their composition is not. Moreover, system-level se-
curity of course is influenced by the mechanisms that transfer control, possibly
attacked by system call interposition or in-memory process patching, or data:
communication channels compromised by a variety of man-in-the-middle attacks.
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Non-functional properties like security and performance cross-cut all possi-
ble executions of a system and hence naturally matter when (sub)systems are
integrated. Security and performance problems are rooted in protocol design,
architecture, interaction, and implementation and can hence be seen as all three
design, interaction, and implementation faults. Yet, because they manifest at
the level of the overall (sub)system, integration testing is not the right level nor
the right technique for checking these properties. Specifically, reviews or static
analysis tools may be more adequate for the identification of security problems.

At this stage, it is of course natural to consider the notion of emergent prop-
erties, a topic, however, that we see outside the scope of this paper.

4.6 Locating Integration Faults

The above integration problems between implementations result from inconsis-
tent design choices made during development of the integrated components. The
reason for the possibility of inconsistency often is underspecification. Later de-
sign choices that, taken together, led to inconsistent behavior, have been taken
inadvertently or because incorrect assumptions on the implementation of the
respective other components were made. We have already seen that the inte-
gration problem can be repaired in the implementation of any component : Both
modifications I1 ⊕ I2 ⇝ I ′1 ⊕ I2 and I1 ⊕ I2 ⇝ I1 ⊕ I ′2 solve the problem, which
can cater to both design and interaction faults.

This raises the question of where to locate integration faults. At the level of
the implementations, there is no unique component to blame. As an example,
consider two connected components where one receives an input that the other
component processes and then fails with a buffer overflow. Truncation of the
string could be done in either unit; and usually performance considerations lead
to one choice or the other. It is a typical problem that the second unit later
is re-used but assumes that the string has been truncated to the length of the
buffer. The underlying problem is that the specifications of the two units did
not agree on a maximum length for the input.

Even if we can fix an integration problem in implementations, our considera-
tions show that the root cause often is the design, not the implementation. As we
have seen, integration faults at the design level can be repaired by refining only
one or by refining or modifying both specifications. If the implementation is not
modified accordingly, this process may entail that one of the implementations is
inconsistent with its specification after this refinement or modification.

Unit tests, in contrast, immediately indicate the location of the fault. And
of course, if a specification had been refined in order to avoid later integration
problems, this refined specification could have been used for unit testing, and
unit tests would possibly have revealed an implementation fault. This explains
the common intuition in practice that some integration problems could and
should have been detected with unit tests, as introduced in §1.

It is tempting to include the notion of “fault for which there is no canonical
location to fix it” into a definition of integration faults. Indeed, we believe that
this is a useful perspective in terms of understanding integration testing. In
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general, unfortunately, we cannot see, beforehand, if a test targets a fault that
can be fixed by touching several alternative components. This seems, however,
possible if we restrict ourselves to the above class of specific integration faults.

4.7 Integration Faults for Negative Specifications

The above argumentation essentially entails the following definition of integra-
tion testing: the verification if a composition of components—that often do not
form a “full” subsystem which may come with an explicit specification—matches
the implicit specification of this composition. We agreed that these specifications
usually do not actually exist but are hypothetical instead.

In practice, testers write integration tests that themselves constitute this very
partial specification. We now suggest to simply see the above list of integration
faults as negative specifications, of course tailored to a specific context. HJ then
may come as “absence of unit mismatch” or “absence of format mismatch,” and
the tester needs to find a way to instantiate these statements in a given context.
This leads to a mostly methodological approach at integration testing: checklists
of both design and interaction faults, some of which have been published in the
literature [2,9,12,13,14,15], thus yielding an extensional but not an intensional
definition of integration tests, which is the point of this essay. Obviously, it is
even preferable to use these checklists during design and implementation of the
system, in order to avoid rather than to identify them at a later stage.

5 Constructive and Analytical Approaches

Checklists. The use of checklists with known integration faults, tailored to a
specific context, has been discussed in §4.7. While this of course cannot guarantee
the absence of integration faults, awareness of respective problems is a powerful
first step, specifically when systems are developed in distributed teams.

Contract-Driven Design. One recurring attempt at embedding precise par-
tial specifications into the design process is the use of contracts [19,4,20]. We
would argue that while the idea has been around for sixty years now, there are
few places where it is implemented in practice. Let us venture to speculate that
the reason is of a methodological rather than a technical nature: engineers need
guidance w.r.t. what constitutes an adequate level of abstraction for these con-
tracts. It seems like the “absence of recurring faults,” adequately contextualized
and formalized, can be a realistic level of abstraction for writing contracts.

Contract-Based Testing. One way to target rather simple integration faults
such as data type, format, or range of values mismatch, is contract-based testing
for service-oriented testing, which is more “lightweight” than other integration
tests because it allows to test the interaction of two services in isolation: For
consumer-driven contract testing, the developers of the consumer manually write
tests to specify simple conditions to the interface of their provider. The provider
team can then use these tests to verify if their service actually fulfills these
conditions. Provider-driven contract testing works in the opposite order.
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Fault Injection. Approaches for test adequacy assessment through integra-
tion fault injection into software systems or their interfaces are rather sparse,
e.g. interface mutation for programs in C [21,22,23]. The above taxonomies and
catalogues of integration faults can be used to inject realistic integration faults
into component interfaces, which is the subject of our own current work.

6 Conclusions

Integration tests target integration faults. Integration testing is the process of
verifying if some composition of components satisfies its specification. In contrast
to subsystem tests, it is almost certain that such specifications do not exist.
Instead, they come as the very integration tests that testers write. In addition to
explorative testing if component interfaces match at this level, we have suggested
to use the absence of integration faults as negative specifications and use this
information to design integration tests.

We have argued that integration faults usually are design faults, at least
for pure software systems without complex transfers of control or data. If the
characteristics of the communication between two components, including latency,
packet loss, etc., can impact the correct functioning of the system, integration
testing also needs to target interaction faults. This is the case for hardware
components where the nature of the communication channels very much matters
and often constitutes the source of integration problems, e.g., network, wiring,
voltage, or electromagnetic interference problems.

The methodological challenge behind integration faults is that during de-
velopment, design decisions are taken that are based on assumptions on the
technical context of a set of components. Integration faults materialize during
implementation when these assumptions turn out to be incorrect.

Our conceptualization intensionally defines integration tests, is agnostic to
the development process, and may help explain some of the confusion about in-
tegration testing: When practitioners feel in hindsight that unit tests could have
detected integration problems, this is likely because shared assumptions were
not understood, refined, and made explicit. When integration tests seemingly
yield the same results as unit tests, then there likely is awareness of shared as-
sumptions, but these are not explicit part of specifications and thus unit tests. If
integration tests fail to reveal integration faults, they were probably not designed
with potential integration faults in mind.
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