
Technical University of Munich
TUM School of Engineering and Design

Automated Machine Learning for
Applications in Earth Observation

Kalifou René Traoré

Vollständiger Abdruck der von der TUM School of Engineering and Design der
Technischen Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:

Prof. Dr.-Ing. Yuanyuan Wang

Prüfende der Dissertation:

1. Prof. Dr.-Ing. habil. Xiaoxiang Zhu

2. Prof. Francisco Chicano, Ph.D.

Die Dissertation wurde am 20.11.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Engineering and Design am 07.08.2024
angenommen.

This page is intentionally left blank.

Acknowledgements

I would like to sincerely thank my supervisor, Xiao Xiang Zhu, for her tremendous
support during my PhD. She has always been generous with her time and expertise,
as well as trusting and patient throughout my entire PhD. Moreover, I could not
have undertaken this journey without the help of Andrés Camero, who has been a
fantastic collaborator and mentor in all aspects of my PhD. Working with him has
been a formidable human experience.

I am also grateful for the kindness and support of my working group (Deep
Learning WG), that has been supportive of my professional growth along the way,
by providing me feedback but also joy at work. My thanks should also go to the
management of the SiPEO chair of TUM, as well as our department at DLR for
enabling a working environment filled with a great spirit of collaboration, which has
provided me with plenty of inspiration for my research. I am also thankful for the
camaraderie of all my colleagues and office-mates, for contributing to making DLR
such a lovely place to work.

Last but not least, I would also like to thank my family, especially my parents,
Salif and Regina, my brother, Camille, and friends for their unwavering support
in my studies and life, particularly when dealing with the challenging COVID-19
pandemic.

i

This page is intentionally left blank.

ii

Abstract

Remote Sensing (RS) is a very active field of research, with a high pace of innovation,
and developments in numerous areas including the emergence of novel sensors, and
the launch of programs for the acquisition of ever-growing volumes of data, to name
a few. From the monitoring of environmental changes to the monitoring of urban
growth, or the detection of crises and disasters, the available data has the potential
to support highly impactful decision-making. In order to make this decision-making
efficient and reliable, the research area of Automated Machine Learning (AutoML)
provides tools for autonomously designing well-suited Data Science pipelines. The
works presented in this dissertation explore the aspects of explainability, efficiency
and accessibility of AutoML for tailored decision-making in Earth Observation-based
(EO) applications. The objectives and contributions of this dissertation can be
summarized as follows:

• Explainability: AutoML systems generally consist of an ensemble of compo-
nents all playing an essential role in the quality of the resulting decision-making
solutions. We are interested in understanding the influence of all components
in the output of AutoML systems in RS applications. In particular, we pro-
pose to analyze Neural Architecture Search (NAS) problems using a bag of
features characterizing key optimization aspects explaining search algorithm
performances. We provide novel insights on the influence of such elements on
search algorithm behavior, and how these could be used to better design or
calibrate AutoML search algorithms in EO.

• Efficiency: Designing modern decision-making solutions is still mostly per-
formed manually, which can require considerable time investments and pro-
vide results of variable quality. In this dissertation, we present methodolo-
gies for making such activity time-efficient, and resulting in resource-efficient
well-performing solutions for EO applications. To do so, we have developed
a methodology helping specific AutoML search algorithms (population-based
metaheuristics) to achieve faster convergence and better performances (quality
of identified decision-making solutions) on EO applications. This is done by
providing a data-driven initialization strategy that uses freely available search
space performance evaluations. Besides, we have also introduced a methodol-
ogy able to find high-performing image classifiers of low complexity, competing
with popular and manually-designed baselines of similar complexity.

• Accessibility: Given the high computational cost of conducting AutoML exper-
iments, researching the topic with data-intensive domain-specific EO applica-
tions is not always an easy endeavour. To contribute to making AutoML more
accessible to the EO community, we explore the creation of a NAS Benchmark
in EO, helping develop and benchmark AutoML search algorithms without
the need for model evaluation on an EO scene classification task.

iii

Zusammenfassung

Fernerkundung ist ein sehr aktives Forschungsgebiet mit einem hohen Innovation-
stempo und Entwicklungen in zahlreichen Bereichen, darunter das Aufkommen
neuartiger Sensoren und die Einführung von Programmen zur Erfassung ständig
wachsender Datenmengen, um nur einige zu nennen. Die verfügbaren Daten haben
das Potenzial, äußerst wirkungsvolle Entscheidungen zu unterstützen. Diese reichen
von der Überwachung von Umweltveränderungen und städtischen Wachstum bis
zu der Erkennung von Krisen und Katastrophen. Um diese Entscheidungsfindung
effizient und zuverlässig zu gestalten, stellt der Forschungsbereich Automatisiertes
Maschinelles Lernen (AutoML) Werkzeuge zur autonomen Gestaltung geeigneter
Data-Science-Pipelines bereit. Die in dieser Doktorarbeit vorgestellten Arbeiten
untersuchen die Aspekte der Erklärbarkeit, Effizienz und Zugänglichkeit von Au-
toML für maßgeschneiderte Entscheidungen der Anwendung von Erdbeobachtung.
Die Ziele und Beiträge dieser Dissertation lassen sich wie folgt zusammenfassen:

• Erklärbarkeit : AutoML-Systeme bestehen im Allgemeinen aus einem Ensem-
ble von Komponenten, die alle eine wesentliche Rolle für die Qualität der
resultierenden Entscheidungslösungen spielen. Wir sind daran interessiert,
den Einfluss aller Komponenten auf die Ausgabe von AutoML-Systemen in
FK-Anwendungen zu verstehen. Insbesondere schlagen wir vor, Probleme der
Neural Architecture Search (NAS) mithilfe einer Reihe von Merkmalen zu
analysieren, die wichtige Optimierungsaspekte charakterisieren und die Leis-
tung von Suchalgorithmen erklären. Wir liefern neue Erkenntnisse über den
Einfluss solcher Elemente auf das Verhalten von Suchalgorithmen und wie diese
genutzt werden könnten, um AutoML-Suchalgorithmen für die Erbeobachtung
besser zu entwerfen oder zu kalibrieren.

• Effizienz : Der Entwurf moderner Entscheidungslösungen wird immer noch
größtenteils manuell durchgeführt, was einen erheblichen Zeitaufwand er-
fordert und Ergebnisse unterschiedlicher Qualität liefern kann. In dieser Dis-
sertation stellen wir Methoden vor, um solche Aktivitäten zeiteffizient zu
gestalten und zu ressourceneffizienten, leistungsstarken Lösungen für Erd-
beobachtungsanwendungen zu führen. Zu diesem Zweck haben wir eine
Methodik entwickelt, die bestimmten AutoML-Suchalgorithmen (populations-
basierte Metaheuristik) hilft, schnellere Konvergenz und bessere Leistun-
gen (Qualität der identifizierten Entscheidungslösungen) bei Erdbeobach-
tungsanwendungen zu erreichen. Dies geschieht durch die Bereitstellung
einer datengesteuerten Initialisierungsstrategie, die frei verfügbare Leistungs-
bewertungen des Suchraums verwendet. Darüber hinaus haben wir eine
Methodik eingeführt, mit der leistungsstarke Bildklassifikatoren mit geringer
Komplexität gefunden werden können, die mit beliebten und manuell entwor-
fenen Basislinien ähnlicher Komplexität konkurrieren.

• Zugänglichkeit : Angesichts des hohen Rechenaufwands für die Durchführung
von AutoML-Experimenten ist die Erforschung des Themas mit dateninten-
siven domänenspezifischen Erdbeobachtungsanwendungen nicht immer ein ein-
faches Unterfangen. Um dazu beizutragen, AutoML für die Erdbeobachtungs-
gemeinschaft zugänglicher zu machen, untersuchen wir die Erstellung eines

iv

NAS-Benchmarks für die Erbeobachtung, der bei der Entwicklung und dem
Benchmarking von AutoML-Suchalgorithmen hilft, ohne dass eine Modellbew-
ertung für eine Erdbeobachtungszenenklassifizierungsaufgabe erforderlich ist.

v

This page is intentionally left blank.

vi

Table of Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Motivations and Challenges . 1

1.2 Problem Statements . 1

1.3 Contributions . 2

1.4 Outline . 3

1.5 Publications . 3

2 Fundamentals 6

2.1 Modern Deep Learning Methodologies for Earth Observation 6

2.2 Automated Machine Learning . 9

2.3 Neural Architecture Search . 9

2.4 Fitness Landscape Analysis . 12

3 Related work 15

3.1 Deep Learning in Earth Observation 15

3.2 Neural Architecture Search . 15

3.3 Understanding the Behavior of Search Algorithms 18

4 Landscape-aware Search for Automated Machine Learning 21

4.1 Toward Landscape-aware Neural Architecture Search 21

4.1.1 Motivations . 21

4.1.2 A Framework of General-purpose Features for NAS Problems . 22

4.1.3 A Landscape Analysis of NAS in Various Domains 24

4.1.4 Outlook . 27

4.2 Sensor-aware NAS for Multi-modal Classification 28

4.2.1 Motivations . 28

4.2.2 A Landscape Analysis of NAS using Various Sensors 28

4.2.3 Outlook . 30

4.3 Effect on Performance of Other Components in an AutoML Framework 32

4.3.1 Motivations . 32

4.3.2 Impact of the Failure of an Evaluation Metric on HPO 32

4.3.3 The Case of the MMCE Metric 33

4.3.4 Outlook . 36

vii

TABLE OF CONTENTS

5 Mechanisms for Efficient Search in AutoML 38
5.1 Improving AutoML Search using Data-Science 38

5.1.1 Motivations . 38
5.1.2 Data-driven Initialization for Population-based NAS Heuristics 39
5.1.3 Outlook . 45

5.2 Searching for Efficient and Compact Classification Models 48
5.2.1 Complexity-aware Differentiable Neural Architecture Search . 48
5.2.2 Results . 49
5.2.3 Outlook . 50

6 Benchmark for AutoML in Earth Observation 52
6.1 Motivations . 52
6.2 Database . 52
6.3 Outlook . 53

7 Conclusion 56

Bibliography 58

A Problems and Datasets 66
A.1 So2Sat LCZ-42 . 66
A.2 NASBench-101 . 66
A.3 YaHPO-Gym . 67
A.4 DS-2019 . 67

B List of Publications 69
B.1 Publications in Journals . 69
B.2 Publications in the Proceedings of Conferences 69
B.3 Other publications not included in the cumulative dissertation 70

viii

TABLE OF CONTENTS

This page is intentionally left blank.

ix

List of Figures

2.1 Overview of Object Detection in EO 7
2.2 Statistics of Backbone Usage in Object Detection Tasks in EO 8
2.3 Example of Change Detection Tasks in EO 8
2.4 General Framework of NAS . 10
2.5 Overview of Reinforcement Learning for NAS Strategies 10
2.6 Instance of Solution using a Cell-based Search Space 11
2.7 Example of a Performance Estimation Strategy 12

3.1 Rate of Dataset Release in EO . 16
3.2 Overview of NAS Benchmarks . 17
3.3 Search Trajectory Networks for Explainable Search 19

4.1 FDC for the CIFAR-10 and So2Sat LCZ-42 NAS Instances 24
4.2 Random Walks in NAS with CIFAR-10 and the So2Sat LCZ-42 . . . 25
4.3 Fitness Footprint for NAS with CIFAR-10 and the So2Sat LCZ42 . . 26
4.4 Random Walk Analysis in Sensor-fidelity NAS 29
4.5 Fitness Footprint for the NAS using Various EO Sensors 30
4.6 FDC for HPO Instance Evaluated with the MMCE Evaluation Metric 34
4.7 Neighbor Fitness for HPO Instance Evaluated with the MMCE Metric 35
4.8 Neutrality Score for HPO Instance Evaluated with the MMCE Metric 35

5.1 Flowchart of the Data-driven Initialization 39
5.2 Visualizing Solution Representations for the Initialization Technique . 41
5.3 Benchmark of NAS Based on Search Initialization 43
5.4 Benchmark of Transfer of NAS from CIFAR-10 to the So2Sat LCZ-42 44
5.5 Visualization of Solutions of the Initialization Technique 46
5.6 Overview of the Hybrid Search Space in NAS for Low Complexity . . 48

6.1 Model Performance in the NAS Benchmark for EO 53
6.2 Model Latency in the NAS Benchmark for EO 54

x

List of Tables

1 Table of Abbreviations Used in the Manuscript. xii

4.1 Enumerating Local Optima for the CIFAR-10 NAS Instances 25

5.1 Description of the Solution Encoding for the Initialization Technique 41
5.2 Legend for the Matrix Encoding of the Initialization Technique 45
5.3 Benchmark of Solutions after NAS for Low-Complexity Models 49

List of Algorithms

1 Best-Improvement Local-Search . 13
2 Enumerating Local Optima using the Birthday problem 14

3 Data-driven Initialization Technique 40
4 Optimizing Cell-based Solutions for Performance and Compactness . . 49

xi

List of Abbreviations and Symbols

Abbreviation Description

AutoML Automated Machine Learning
AE Aging Evolution
BILS Best Improvement Local Search
CNN Convolutional Neural Network
CV Computer Vision
EA Evolutionary Algorithm
EO Earth Observation
FDC Fitness Distance Correlation
FLA Fitness Landscape Analysis
GA Genetic Algorithm
GNN Graph Neural Network
GO Global Optima
HP Hyperparameter
HPO Hyperparameter Optimization
LCZ Local Climate Zone
LHS Latin Hypercube Sampling
LO Local Optima
LON Local Optima Network
LULC Land Use Land Cover
MMCE Mean Misclassification Error
NAS Neural Architecture Search
NLP Natural Language Processing
NN Neural Network
RS Remote Sensing
ResNet Residual Neural Network
SOTA State of the art
STN Search Trajectory Network

Table 1: Table of abbreviations used in the manuscript.

xii

LIST OF ALGORITHMS

This page is intentionally left blank.

xiii

Chapter 1

Introduction

This section provides an introduction to this doctoral dissertation by stating the
motivations behind the work being conducted, stating the research problems being
addressed, introducing the contributions that have been made, and providing a
general outline of the document.

1.1 Motivations and Challenges

With an ever-growing number of satellite programs being launched, the amount of
publicly available data is on the rise in the field of RS. This has led to a high demand
for technological solutions that can utilise these resources to generate novel insights
and support decision-making. Examples of real-world applications that benefit from
such technologies are precision agriculture and urban development monitoring, which
policymakers rely on for making accurate decisions by complementing data gathered
on the ground with remote-sensing data. In practice, many such technologies use
modern Computer Vision-based (CV) models to tackle their tasks. An example of
this is the use of Convolutional Neural Networks (CNNs). In order to improve the
decision-making abilities of such models, the research communities of CV and EO
have increasingly worked on developing novel configurations and architectures for
the models. However, these innovations have traditionally resulted from manual en-
gineering, a process that requires important time investments and is not guaranteed
to succeed. On the other hand, researchers in AutoML have developed method-
ologies to help automate and optimize the design of data-driven decision-making
models. This dissertation aims to investigate AutoML methodologies for helping
design solutions that are more efficient and better tailored to solve EO-related ap-
plications.

1.2 Problem Statements

Within the scope of this doctoral dissertation, we aim to find answers to the following
research questions:

• RQ1: Can we expect AutoML search algorithms to perform similarly in the
EO domain, as they do in the CV domain?

1

CHAPTER 1. INTRODUCTION

• RQ2: Assuming that there exist similarities across domains of applications,
can we leverage domain-specific algorithmic knowledge from a non-EO appli-
cation, to help an AutoML search algorithm perform better in its EO coun-
terpart?

• RQ3: By looking at the characteristics of an AutoML optimization problem
(e.g. search space), is it possible to anticipate the behaviour and performances
of a search algorithm needed to solve it? Assuming the previous question has
a positive answer, what elements would have such an influence on the search
algorithm behaviour?

1.3 Contributions

The contributions of this manuscript are summarized as follows:

• Contribution C1: Optimizing neural network architectures for a target ap-
plication is a complex task that requires careful consideration of numerous
elements, some critical to the suitable functioning of the resulting solutions.
These include identifying the type of architecture to consider, the optimizer
to tune the architectures, and the evaluation protocol to measure their fitness.
We introduce the framework of the Fitness Landscape Footprint1 enabling us
to quantify the impact of such elements on the landscape of a NAS search
problem. We demonstrate its ability to characterize and compare the diffi-
culty of finding good architectures for image classification tasks of two very
different domains (CV and EO). This work is introduced in Section 4.1 and
associated with the publication P1 (see in section 1.5).

• Contribution C2: As a Follow-up work to Contribution 1, we demonstrate
the use of the framework for a very practical problem: identifying the most
beneficial input-sensor setting when searching for an optimal model in the case
of a multi-modal RS image classification task2. We quantify the similarities
and anticipated benefits of each input for the considered NAS problem. This
work is introduced in Section 4.2.

• Contribution C3: Following up on the previous studies, we investigate how
the theory of fitness landscape analysis can help characterize the influence of
performance evaluation metrics on the task of tuning the hyperparameter of
decision-making models3. More particularly, we discover that a malfunction of
the performance metric can make AutoML landscapes harder for optimizers,
on a variety of Hyperparameter Optimization (HPO) scenarios and tasks. This
work is introduced in Section 4.3 and associated with the publication P4.

• Contribution C4: We propose a data-driving initialization technique for
population-based search algorithms4. We demonstrate the benefit of this
method against popular initialization baselines for three established search
algorithms. We demonstrate the possibility of initializing a search algorithm
deployed on the problem of tuning models for an EO target classification task
while using performance data from a different source domain (classification of
natural scenes). This work is introduced in Section 5.1 and associated with
the publication P2.

2

CHAPTER 1. INTRODUCTION

• Contribution C5: We propose a novel approach for searching efficient and
low-complexity scene classification models5, combining a modular backbone
architecture with a complexity-reducing loss. This work is introduced in Sec-
tion 5.2 and associated with the publication P3.

• Contribution C6: We propose a novel NAS database for the EO, providing
both real and surrogate performance estimations over a large search space of
image classifiers. This work is introduced in Section 6.

1.4 Outline

This manuscript is structured in seven chapters, of which the remaining ones are
organized as follows: in Chapter 2, we describe general concepts that are impor-
tant to understand the state of the art in Data Science for EO, NAS, as well as
landscape analysis for AutoML. Then, in Chapter 3, we present relevant works in
Machine Learning for EO, AutoML, as well as Landscape Analysis methodologies
that are highly relevant in describing combinatorial AutoML optimization problems.
Chapter 4 presents our research output on the topic of landscape-aware AutoML.
Relevant contributions include a framework for describing generic NAS problems
(see Section 4.1), as well as its application to a multi-modal sensor-fusion NAS in-
stance (see Section 4.2). In Chapter 5, we introduce works on the topic of efficient
AutoML, with contributions to the subject of the initialization of population-based
NAS algorithms (see Section 5.1), as well as to the subject of searching for effi-
cient decision-making models of low-complexity (see Section 5.2). In Chapter 6, we
present our contributions to AutoML databases in EO. In Chapter 7, we provide
a conclusion to the manuscript by presenting future research plans on the topic
of landscape-aware neural architecture search for EO and providing additional dis-
cussions on the topics previously tackled. Moreover, in Appendix A, we provide a
description of the datasets used in all experiments supporting the manuscript. Last
but not least, we provide a list of publications supporting the manuscript, in the
Appendix B, followed by the publications themselves.

1.5 Publications

This section presents the publications related to the work introduced in this disser-
tation.

Publications in Journals

• P1: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang, Fitness
Landscape Footprint: A Framework to Compare Neural Architecture Search
Problems, Under review at Journal of Machine Learning Research (JMLR),
2023.

• P2: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2023),
A Data-driven Approach to Neural Architecture Search Initialization, Annals
of Mathematics and Artificial Intelligence, pp. 1-28. Springer Nature, doi:
10.1007/s10472-022-09823-0, ISSN 1012-2443.

3

CHAPTER 1. INTRODUCTION

Publications in the Proceedings of Conferences

• P3: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2021),
Compact Neural Architecture Search for Local Climate Zones Classification, In:
The 29th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN), 06. - 08. Oct. 2021, Online.
doi: 10.14428/esann/2021.ES2021-55, ISBN 978287587082-7.

• P4: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2023),
We Won’t Get Fooled Again: When Performance Metric Malfunction Affects
the Landscape of Hyperparameter Optimization Problems, In: 6th International
Conference on Optimization and Learning, OLA 2023, 1824, pp. 148-160.
Springer, Cham, 3-5 May 2023, Malaga, Spain, doi: 10.1007/978-3-031-34020-
8 11. ISBN 978-303134019-2, ISSN 1865-0929.

Other publications not included in the cumulative disserta-
tion

• P5: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2022)
Landscape of Neural Architecture Search across sensors: how much do they
differ?, In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 3-2022, pp. 217-224, XXIV ISPRS Congress, 6.-11. June
2022, Nice, France, doi: 10.5194/isprs-annals-V-3-2022-217-2022, ISSN 2194-
9042.

• P6: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2021),
Lessons from Clustering of a Search Space: a Data-driven initialization tech-
nique to Search, Workshop on Data Science meets Optimization, International
Joint Conferences on Artificial Intelligence (IJCAI), Online.

• P7: Demir, Emre and Traoré, Kalifou René and Camero, Andrés (2024), Lever-
aging performance-based metadata for designing multi-objective NAS strate-
gies for efficient models in Earth Observation, In: The 32nd European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Ma-
chine Learning (ESANN), 09. - 11. Oct. 2024, Brugges, Belgium, doi:
10.14428/esann/2024.ES2024-94, ISBN 978-2-87587-090-2.

4

CHAPTER 1. INTRODUCTION

This page is intentionally left blank.

5

Chapter 2

Fundamentals

In this chapter, we introduce the fundamental concepts behind the works presented
in this manuscript. These concepts cover the research areas of Data Science for EO,
NAS, and Evolutionary Computation (FLA).

2.1 Modern Deep Learning Methodologies for

Earth Observation

Deep learning-based methodologies have helped tackle plenty of applications in RS.
Examples of use cases span from Precision Agriculture with Crop Monitoring to
Disaster Management with systems for Flood Detection. An RS application requir-
ing data-driven decision-making can be classified into various categories of tasks,
requiring task-specific methodologies and data. The following paragraphs intro-
duce the fundamental tasks of Semantic Segmentation, Object Detection, as well as
Change Detection, to give examples of methods used to tackle popular relevant RS
applications.

Semantic Segmentation Semantic segmentation is an important task in RS.
Given an image of objects sensed on the ground, it consists of assigning a semantic
label to every pixel of the image, a.k.a. pixel-wise classification6. As a result, all
instances of objects present in a scene usually have associated pixels assigned the
same semantic label. Early methodologies for RS semantic segmentation have been
highly inspired by works from the Compute Vision community, where various solu-
tions use a Deep Learning-based feature extractor to tackle the task. A particularly
recognizable feature of such methods is their use of a neural network architecture
that has two main feature processing stages. In the first stage, low-dimensional
features are extracted from an input image using a series of (convolutional) layers
of decreasing filter size. Then, it is followed by a symmetric structure aiming at
constructing an image-like semantic map from the low-dimensional features. This
is done using a series of (convolutional) layers of increasing kernel sizes, a.k.a. de-
convolution. This two-step structure is present in various architectures such as the
Fully Convolutional Network7 (FCN), SegNet8, as well as U-Net9, with variations
in the type of layers being used (fully connected etc.), and other layer characteristics
(up-sampling etc.). Recent works in RS have focused on tackling domain-specific
challenges present in the RS data such as the lack of data annotations to train the

6

CHAPTER 2. FUNDAMENTALS

models, the importance of pixel-level accuracy, as well as dealing with images from
specific sensors (multi-spectral, hyper-spectral), or combination of (sensor fusion).

Figure 2.1: Overview of the Framework of Object Detection for Remote Sensing10.

Object Dectection Moreover, some RS data analysis scenarios may require cat-
egorizing remotely sensed objects and locating them geographically. This is the task
of Object Detection, which supports real-world applications such as building plan-
ning or urban monitoring, where these object locations and characterization play
an important role and are crucial10. The challenges to Object Detection method-
ologies lie in the characteristics of the objects to detect (coexistence of objects, size,
ambiguity in the category), the complexity of the background of the images being
used, and the quality of the labelling of the data. The standard framework of RS
Object Detection methodologies is outlined in Figure 2.1. The first step consists
of preparing the input data for feature extraction: most techniques consist of data
augmentation, as well as clipping, i.e., the slicing of large images into smaller ones
in order to reduce the cost of feature extraction. Then, the processed data is passed
to a feature-extracting model, which is needed to categorize and locate the objects.
Figure 2.2 displays statistics regarding the usage of feature extractors, with the
seminal VGGNet and popular ResNet architectures being used 67% of the time.
Next is the step of bounding box generation performed using a dedicated algorithm,
followed by the steps of object classification and a final prepossessing.

Change Detection RS data analysis also involves dealing with data of various
forms, including sequential data, that requires tailored models. For this purpose,
RS experts have developed a variety of decision-making models able to deal with
time series, with an example of a use case being Change Detection. In RS, Change
Detection11 aims at accurately detecting changes occurring on a remotely sensed
object located at the surface of the Earth, using a sequence of measurements taken
at various moments in time. This framework supports the monitoring of all types of
relevant events for which the effect can be remotely sensed, such as natural disasters
(flood detection, etc.) or environmental changes (deforestation), to name a few.
Figure 2.3 provides the visualization of an example of change detection11, where
the aim is to detect changes in land use using consecutive optical images (pairs)
of the areas of interest. The baselines that are shown are based on data fusion of
the elements in the sequence and use an encoder-decoder type of architecture with

7

CHAPTER 2. FUNDAMENTALS

Figure 2.2: Statistics about the distribution of usage in of modern image classifica-
tion backbones in Object Detection-oriented mythologies in Remote Sensing10.

data fusion occurring at various stages of the models. The objective is to detect
the pixels (and associated geographical locations) where the changes occur in the
sequence elements.

Figure 2.3: Example of change detection baseline using pairs of images from scenes
where changes occur from one image to the other11. The method used is based
on manually designed Deep Learning-based baselines of varying architectures: an
auto-encoder with early, middle or late-fusion.

To summarize, the span of EO applications that have benefited from the Deep
learning revolution is wide and continuously growing. Most EO applications for
which large amounts of data can be gathered to simulate real-world use cases, could
be supported by modern, high-performing, but data-hungry decision-making mod-
els. However, the design of models that are specific to EO applications is often done
manually, an activity that requires a considerable time investment, with no cer-

8

CHAPTER 2. FUNDAMENTALS

tainty in the optimality of the resulting solutions. This constitutes an opportunity
for AutoML and NAS to support EO experts in identifying more reliably suitable
solutions.

2.2 Automated Machine Learning

AutoML as a research field, aims to support data scientists in designing robust
general machine learning pipelines in a systematic and efficient manner12. It is
subdivided into three main research areas that are HPO13, NAS14 and Meta Learn-
ing15. Since most modern ML algorithms have many hyperparameters, HPO-related
methods focus on providing HP configurations, improving performances over man-
ual tuning while dealing with complex HP spaces and costly fitness estimations by
means of Multi-fidelity approximations13. On the other hand, NAS encompasses all
methods explicitly dealing with the automated design of NN-based decision-making
algorithms and overlaps with the field of HPO14. Other AutoML research enables
algorithms to learn from data about past deployment, i.e. meta-data, such as model
evaluations (fitness, training time, etc.), to help deploy optimizers at reduced com-
putational cost15.

Besides, another important aspect of AutoML research is providing systems
working in the real world12. An example is auto-sklearn16, an AutoML system able
to autonomously handle the tuning of the hyperparameters of numerous decision-
making models, feature and data preprocessing methods. Formally, auto-sklearn
uses the framework of Combined Algorithm Selection and Hyperparameter optimiza-
tion (CASH)17 in order to jointly find the appropriate decision-making algorithm and
a hyperparameter setting yielding optimal performances for the task at hand (e.g.
data preprocessing). It has proven its value in real-world scenarios by winning sev-
eral AutoML competitions against SOTA competing systems. Besides, other works
provide an overview of existing open-source frameworks for building ML pipelines
automatically and provide a detailed benchmark of their performance18. In particu-
lar, their analysis considers ML systems from the perspective of the pipeline creation
problem, analogous to CASH, which describes systems with variable pipeline struc-
tures (i.e. an internal data and feature processing graph of variable complexity).

2.3 Neural Architecture Search

NAS refers to the topic of research dealing with the autonomous design of Neural
Network-based (NN) decision-making models. It is a sub-field of AutoML and is
closely tied to HPO, with a specific focus on NN architecture-related hyperparameter
tuning.

The general framework encompassing most NAS methods is depicted in Fig-
ure 2.4. It consists of three main components: a search space, a search strategy
(a.k.a. controller), and an evaluation strategy. The search space defines NN con-
figurations that are of interest. The search strategy, a.k.a. controller, aims to find
solutions that maximize performances on unseen data. The performance evalua-
tion strategy provides a measurement of fitness for solutions sampled by the search
strategy. In NAS problems that can be described with this framework, the search
strategy iteratively samples a candidate solution (or set of) from the search space,

9

CHAPTER 2. FUNDAMENTALS

and then this candidate has its fitness estimated by the evaluation strategy. The
fitness measurement is then returned it to the search strategy in order for it to make
an informed decision on which candidate to sample next. This iteration is ended
once the budget of the search iteration is reached, and the configuration (or set of)
having reached the best fitness is returned as the optimal architecture.

Figure 2.4: Overview of the general framework of NAS, showing the interaction
between the components in a NAS pipeline19.

Search Strategies: Search strategies are tools used to explore search spaces and
retrieve competitive solutions, given budgets of computation. Most search strate-
gies can be categorized as black-box optimization algorithms, at the exception of
the more recent one-shot NAS strategies. Early NAS methodologies have relied on
black-box methods that are based on Evolutionary or Genetic algorithms. More re-
cent methods make use of Reinforcement Learning or Bayesian optimization-based
search algorithms. When performance is the only considered metric, search strate-
gies can optimize for a single objective. They can also consider multiple objectives
in scenarios where other costs, such as model complexity-based metrics, are of in-
terest. Figure 2.5 illustrates an example of a search strategy, using the framework
of Reinforcement Learning20.

Figure 2.5: Overview of a prototypical Reinforcement Learning-based NAS search
strategy (right, RL-NAS), based on the standard RL computational framework
(left)20.

Search Spaces: Search spaces are containers for all the solutions that are con-
sidered in given NAS problems. They play a crucial role in the NAS framework since
the performance of search strategies will, by default, be bound to their definition.

10

CHAPTER 2. FUNDAMENTALS

In practice, search spaces are parameterized by a set of HPs that aim to affect the
structure of NN candidate solutions, and in turn, their performance. When com-
paring modern NN architecture configurations with similarities, the level at which
their differences occur highlights the nature of search spaces that could express
them. For instance, NN architectures that follow the design principle of the popu-
lar ResNet architecture and only differ in the number of stages or blocks contained
could be generated by macro search spaces or chain-structured search spaces. Both
methodologies help express configurations with variations of macro-level features,
with macro search spaces allowing for more complex solutions. On the other hand,
NN configurations of identical macro-level features, but differences in design choices
(operations, variable connections between layers, etc.) that are affecting elementary
building blocks, can be expressed by cell-based search spaces or even hierarchical
search spaces. Figure 2.6 provides a visualization of an example of search space that
is cell-based 19. Each image classification architecture sampled from it has a fixed
chain-like structure to its backbone, that alternates between two types of feature
processing modules. The first module is a sequence of variable, but repeating units
called normal cells. The second module contains a single unit, the reduction cells.
The normal cell does the most computationally expensive operations, while the re-
duction cell aims at extracting higher-level features through dimension reduction.

Figure 2.6: Overview of a Neural Network configuration instance, generated from a
chain-structured image classification backbone, where the variable hyperparameters
are associated to the normal cell 19. This setting falls under the umbrella of cell-
based search spaces.

Evaluation Strategies Performance evaluation strategies play the role of assess-
ing the quality of solutions sampled by the NAS search strategy from the search
space 19,20,14,12. This is done by direct measurement of fitness using performance
metrics while training the models, or indirect measurements with metrics that are
approximations of model performance. Other variants of performance estimation
strategies might rely on fitness measurements, while reducing the fidelity of some
resources, such as reduced training budgets or even training data, as an approx-
imation of the fitness for full fidelity (resources completely available). Figure 2.7
illustrates an example19 of such, particularly suitable for highly constrained NAS

11

CHAPTER 2. FUNDAMENTALS

systems where computational efficiency is essential. Indeed, it is based on learning
curve prediction that aims at approximating the performances of a model at full
training budget fidelity (black dashed line), after only a few iterations of training
(back line). Thus, when used for estimating the performance of numerous solu-
tions, it can reduce the entire training computation need by a considerable margin.
Learning curve prediction models usually require to be trained using the complete
performance evaluation of a training and evaluation set of solutions (red lines).

Figure 2.7: Example of performance prediction with an instance of learning curve
extrapolation19. More precisely, this example shows how a learning curve extrap-
olation method could select and rank a model for a given budget of training (full
fidelity), after only few iterations of training.

2.4 Fitness Landscape Analysis

Fitness Landscape Analysis (FLA) is an area of research at the intersection of var-
ious fields dealing with Optimization21. Researchers in Evolutionary Computation
invented it to help them better understand the Optimization problem they were tack-
ling. Recent FLA-related methodologies aim at providing a quantitative appraisal
of search difficulty through the use of various sampling strategies and metrics. The
resulting features aim to characterize various aspects of the search processes (fit-
ness, ruggedness, evolvability, epistasis) that may correlate with the behaviour and
outcome of the solvers being used to tackle the problem at hand. The following
paragraphs introduce a few popular features, helping describe search difficulty in
generic optimization problems. These features also apply to applied optimization
problems, such as NAS problems, with dedicated search spaces and solvers.

Fitness Distance Correlation The Fitness Distance Correlation (FDC) is often
considered an established way to assess the difficulty of optimization problems. It
measures the correlation between the fitness of solutions in the search space and
their distance to the global optimum. Besides, it is challenging to interpret. Instead
of considering its numerical quantity, we propose to visualize it, and we formulate
in Equation 2.1 as :

FDC(x∗,Ω, f) = {(d(x∗, y), f(y)), ∀y ∈ Ω} (2.1)

where d(·) is a distance operator, and x∗ ∈ Ω the global optimum.

12

CHAPTER 2. FUNDAMENTALS

Ruggedness Another way to analyze an optimization problem’s difficulty is by
identifying how irregular the associated landscape is. Indeed, a high level of ir-
regularities could affect local search-based algorithms in reaching global optima.
Examples of effective indicators of irregularity in a landscape are the ruggedness
and multi-modality. We focus here on a method to assess the ruggedness.

The ruggedness is a local descriptor of optimization landscapes: it does not
require a knowledge of all the whole search space, but can instead be estimated using
local sampling strategies. In practice, an appropriate sampling strategy consists
of deploying and evaluating several random walks over the search space, always
considering randomly selected and distinct starting points. In this way, one can
obtain global appreciation of the ruggedness by aggregating its value at the local
level in various regions on the landscape. Then, the next is to compute the serial
correlation ρ(·) of the fitness of the walks, as introduced in Equation 2.2:

ρ(k) =
E[(f(xi)− f̄)(f(xi+k)− f̄)]

V ar(f(xi))
,∀i ∈|W |

(2.2)

where for a given random walk W ∈ Ω, xi and xi+k are elements of the walk at an
interval of k steps (lags), f is the functions evaluating the fitness of these elements,
and ρ(k) is the serial correlation considering k lags of interval. Then, the ruggedness
is obtained as the inverse of the serial correlation at k = 1 lags τ = 1

ρ(1)
: it is high

when the fitness at a local level is highly variable (low ρ(k = 1)), and low in the
case of a relatively continuous local fitness (large ρ(k = 1)).

Local Optima Another relevant descriptor is the estimation of the number of local
optima (LO) existing in the search landscape. We consider local maxima for NAS
scenarios, given that we use an objective that we maximize (classification accuracy).
We also consider problems that fall into the category of combinatorial optimization.
Here, we describe a series of steps to approximate the number of existing LO in an
optimization landscape. First, we can retrieve a local optimum at the individual
level using a local search-based solution. In the case of local maxima, we can use
the procedure of Best Improvement Local Search (BILS), described in Algorithm 1.

Algorithm 1: Best-improvement local-search (BILS)

Choose an initial solution x ∈ Ω;
repeat

x∗ = x;
for i = 1 to | N(x∗) | do

Choose yi ∈ N(x∗);
if f(yi) < f(x) then

x = yi;
end

end

until x = x∗;

In order to provide an enumeration of all LO in the landscape, one would ideally
run the BILS(·) several times until no new solutions are reached. However, such a

13

CHAPTER 2. FUNDAMENTALS

procedure would possibly be exceptionally computationally and time-costly since the
duration of execution of BILS(·) algorithm (stochastic algorithm) and the number
of LO are both variable22. The least costly but reliable procedure would be based
on the solution to the Birthday problem 23.

Algorithm 2: Analytics of the birthday problem
Let T the total number of trials of enumeration;
for i = 1 to T do

Choose M distinct random starting points in Ω;
Iteratively collect the M Local Optima using ;
Let ki the number of Optima at first duplication;

end
Let kmean the average number of Optima at duplication;
Derive N the number of Optima using kmean and Eq. 2.3;

The estimation is based on large-scale deployment BILS(·), as described in Al-
gorithm 2. First is defined T , the number of trials used in the estimation. Then,
for each trial i, we randomly select M distinct starting points in the search space Ω.
Then, using the sample, the BILS(·) procedure is used to collect M LO. While the
retrieval of LO is being performed in an iterative manner, we identify ki, the number
of optima for which the first duplicate occurs. Once the T trials are performed, we
compute the quantity kmean, the average number of optima that can be collected
until a first duplication occurs. Last but not least, we use kmean together with
Equation 2.3, in order to estimate the total number of LO N in the search space Ω:

N ≈ k2
mean

−2 ∗ ln(1− PD)
(2.3)

where N approximates the number of LO given an average number kmean of optima
retrieved until duplication, and a fixed probability of duplication PD in the search
space.

14

Chapter 3

Related work

This chapter presents an overview of the literature relevant to this dissertation, with
works regarding the topic of Deep Learning for decision-making in EO, NAS, as well
as the general understanding of search algorithms.

3.1 Deep Learning in Earth Observation

Recent advances in RS missions have enabled the collection of large amounts of data
that help support various applications, where aerial imaging can contribute to more
reliable and systematic decision-making24. Examples of this include data in the
context of global land-cover mapping25, the monitoring of environmental changes
using change detection26, or even precision agriculture with the monitoring of crops
overtime27. This evolution in the increasing availability of curated EO datasets is
well captured in Figure 3.1.

In order to take advantage of the opportunities brought by the newly available
data, researchers in the RS community have developed plenty of decision-making
models in order to cover tasks such as LULC classification, the semantic segmen-
tation of Land-covers, object detection in Edge-detection scenarios, or time-series
analysis in change detection-related applications. Besides, the particularities of these
EO data sets (e.g., multimodal, geolocated, time-variable data, massive) have also
provided an opportunity to develop more domain-specific models, a challenge for
solutions highly inspired by the Computer Vision (CV) community.

3.2 Neural Architecture Search

The topic of NAS has been investigated since early 90s28,29, first under the name
of Neuro-evolution, popularized with methods such as NEAT30 already showing
prowess evolving architectures to adapt to complex tasks such as vision-based
decision-making for video games31. More recently, other evolutionary methods have
reestablished the SOTA in CV-based decision-making, with methods such as the
Aging Evolution32, helping find the very competitive families of image classifiers
AmoebaNets.

Simultaneously, many competing NAS methods have emerged14, with search
strategies classified as part of very different families of optimization algorithms.
For instance, authors have used Reinforcement Learning-based approaches33 to au-

15

CHAPTER 3. RELATED WORK

100,000
60,000
30,000

10,000
6000
3000

1000
600
300

100
60
30

10
6
3

1
0.5

0.2
0.1

0.06
0.03

0.01
0.01

0
0
0

Vo
lu

m
e (

GB
)

Poverty in Africa

SatStereo
WHU MVS/Stereo

WHU Multi-View
WHU Stereo

ISPRS2021

WHU-TCL SatMVS

URB3DCD

Brazilian Coffee

Salinas

Agricultural Crop Cover

GF2 3DFGC

Crop Type

CV4A Kenya

TimeSen2Crop

Agriculture-Vision

CaneSat

UAV Multispectral/Thermal

Sen4AgriNet

PASTIS
ZueriCrop

EuroCrops

CropHarvest

South Africa Crop

DENETHOR

The Canadian Cropland

Space2Ground

Paddy Rice South Korea

CropLand (CLCD)

PlanesNet MTARSI (Aircraft)

RarePlanes

CGI Planes

Airbus Aircraft Detection

SAR Aircraft

Military Aircraft
LEarning,VIsion & Remote Bridges Dataset

SpaceNet-1 (Building)

SpaceNet-2 (Building)

INRIA AerialAIST Building Change

SpaceNet-4 (Multi-View)

xView2 (xBD)

WHU Building

CrowdAI MappingWHU Building change

Built-structure count

Microsoft Building (Australia)

Microsoft Building (Uganda/Tanzania)

Microsoft Building (USA)

Microsoft Building (Canada)

Roof Segmentation

SpaceNet-6 (Multi-Sensor)

SpaceNet-7 (Multi-Temporal)

LEVIR-CD

Synthinel-1

Kaggle Water Bodies

Kaggle aerial segmentation

GTA-V SID

US Building Footprints

Urban Building Classification

BONAI

RID

Biome: L8 Cloud Cover

SPARCS

38-Cloud

STGAN Cloud Removal

Kaggle Cloud Detection

Sentinel-2 Cloud Detection
HRC_WHU

CloudCast

95-CloudSentinel-2 Cloud Mask

WHU Cloud Dataset

SEN12MS-CR

WHUS2-CD+

Sentinel-2 Cloud Cover

DroneCrowd

ERA (Event Recognition)
AFO-Floating objects

Kaggle Hurricane Damage

SEN-12-FLOODSen1Floods11

OMBRIA

AIS

NWPU-VHR10 RSOD

TGRS HRRSD

AID

xView

fMoW

DOTA v1.0

DLRSD

GETNET dataset

DOTA v1.5

DIOR

ORSSD

DOTA v2.0

iSAID

OVERHEAD MNIST

VALID

DSIFN

UAVid

SeCo

MultiScene

Million AID

UAVOD10
AIR-PolSAR-Seg

SSL4EO-S12

Semantic3D.net
GT-CrossView

CVUSA

UCF Cross View Dataset

CVACT

MLRSNet

University-1652

VIGOR

BIRDSAI

UCM captionSydney caption
RSICD

WHU-SEN-City

Aerial to Map(Pixel2Pixel)

SemCity Toulouse

UC Merced

Pavia Center

Pavia University

ISPRS 2D - PotsdamISPRS 2D - Vaihingen

WHU-RS19
Washington DC MALL

RSSCN7

SAT-4
SAT-6

Indian Pines

DFC2015 Zeebruges

Botswana
Kennedy Space Center

Zurich Summer

Brazilian Cerrado-Savanna

NWPU-RESISC45
RSC11SIRI-WHU

DSTL (3Band)

DSTL(16Band)
RSD46-WHU

RSI-CB256

RSI-CB128

Kaggle Planet Forest
AIS Dataset

Austin Zoning

Dstl Satellite ImageryAIS Online Maps

EuroSAT
DeepGlobe (LandCover)

Onera Satellite Change

Synthetic & Real

Proba-V Super Resolution

DFC18

SynthAer
Aeroscapes

Gaofen Image Dataset (GID)

Urban Drone Dataset (UDD)

HyRANK

RIT-18AICD

WHDLD

Hyperspectral Change

MSLCC

BigEarthNet

SEN12MS

Slovenia Land Cover

MtS-WH

Urban Semantic 3D

Semantic Drone SemSeg
XiongAn

AeroRIT

HistAerial

OPTIMAL-31

Chesapeake Land Cover

AiRound

CV-BrCT (Construction Type)

SECOND

DFC20

Kaggle building segmentation

AISD

EORSSD

Google CD

Open Cities

LandCoverAI
CLRS

SenseEarth classify

Google Data Set

GID15

DFC21-MSD

SYSU-CD

LoveDA

Satellite Classification

FloodNet

TG1HRSSC

AIR-CD

MiniFrance-DFC22

GeoNRW

SEASONET

MultiSenGE

The WorldStratFive-Billion-Pixels

OpenSentinelMap

WHU-OHS
TimeSpec4LULC

Bijie Landslide

MidAir

GTAH

RSUSS
IARPA Multi-View Stereo

S2UC

RSOC (Object Counting)

Oil and Gas Tank (OGST)

WiDS Datathon 2019

Airbus Oil Storage Detection

Oil Storage Tanks QXS-SAROPT

Draper Satellite Chronology

Stanford Drone Dataset

SateHaze1k

MUSIC4GC (Golf Course)

Okutama-Action

Iceberg Detection

PatternNet

Cactus Aerial Photos

So2Sat LCZ42
TenGeoP-SARwv

BrazilDAM

DFC21-DSE

Hephaestus

MUSIC4HA (Hot Area)

Kaggle Find a Car Park APKLOT
Semantic Drone-ODSatellite Pose Estimation TTPLA

Thermal/Visible aerial images

Massachusetts Roads

ERM PAIW

HD-Maps

SpaceNet-3 (Road)

AerialLanes18

DeepGlobe (Road)

RoadNet

SpaceNet-5 (Road)

Microsoft Road

RSVQA-LR

RSVQA-HR

RSVQAxBENRSIVQA

NOAA Sea Lion Count

MASATI(Maritime)

Aerial Maritime Drone

Arctic Sea Ice

SeaDronesSee

SEN1-2

OpenSARShip

HRSC2016 (Ship)

Ships in Satellite

Kaggle Airbus ShipAirbus Ship Detection

Ships in Google Earth

SAR Ship Detection

AIR-SARShip-1.0AIR-SARShip-2.0 (GF-3)

LS-SSDD (Large Scale)

HRSID (Ship)

FGSCR-42

SWIM-Ship

xView3-SAR

SynthWakeSAR

AI-TOD

USTC_SmokeRS

Hyperview Challenge

MUSIC4P3 (Photovoltaic Power Plants)

GeoLifeCLEF 2021

ALSAT-2B

SEN2VENmuS

BH-Pools + BH-WaterTanksAU-AIR

Forest Cover Type

Mexican Forest Canopy Height

Aerial Cactus Identification

Urban Tree Detection

NEON Tree Crowns

Forest Damages

ReforesTree

The Auto Arborist
TreeSatAI

SemanticKITTI

Toronto3D

SensatUrban

Heisenheim3D

DLR HySU

Oakland 3-D PointCloud

IQmulus & TerraMobilita

Columbia LiDAR 2015

Paris-Lille-3D

Columbia LiDAR 2018

DublinCity

Zhang et al. CD

SZTAKI AirChange

CDD (season-varying)

HRSCD

California flood
OSCD

Sentinel-2 Multitemporal CitiesRelative Radiometric Normalization

HTCD

S2LookingS2MTCP

MSBC
MSOSCD

Dynamic WorldSUM-Helsinki

Things And Stuff (TAS)

OIRDS

UCAS_AOD VEDAI(Vehicle)PKLot(Parking Lot)

COWC

Car Parking Lot (CARPK)

DLR3k/DLR-MVDA

WAMI DIRSIG

ITCVD (Vehicle)

VisDrone2019-DET

VisDrone2019-VID

VisDrone2019-SOT

VisDrone2019-MOT

SIMD (Multi-vehicles)

VisDrone

DroneVehicle

VISO-Detection

Swimming pool/car

GTA Birds Eye View (Vehicle)

Kaggle Massachusetts Buildings

Global inland waters

Historical Hourly Weather Data

DeepWeather

EarthNet2021

Next Day Wildfire Spread

Airbus Wind Turbine Patches
Hurricane Wind Speed

Figure 3.1: Visualization of the datasets published in the field of RS, by time of
publication, volume, and application being tackled24. It appears that the pace of
publication and their volume are considerably increasing.

tonomously design image classification architectures. Other authors have developed
Bayesian-based search strategies34 striving for sample efficiency, helping reduce the
computational cost of NAS. Alternatively, continuous Bi-level optimization-based
methods have also shown tremendous success in NAS19, with methods such as
DARTS35 and GDAS36, helping find SOTA image classifiers while requiring small
budgets of computation. They have been the topic of extensive studies, such as
works exploring their instability and proposing fixes for more robustness37.

As an attempt to look beyond the single lens of performance, NAS researchers
have also explored methods for helping design more efficient decision-making mod-
els, in particular by taking into account hardware capabilities and constraints, a.k.a.
Hardware-aware NAS20. Such methodologies focus on elements susceptible to im-
proving the efficiency of the models w.r.t. to the hardware, such as the design of
better search spaces, search strategies, optimizing the numerical precision of the
models, as well as the considering model evaluation metrics that are hardware or
complexity-related, as additional objective functions.

Besides, recent contributions to the field of NAS have provided efficient search
strategies and search spaces. However, the diversity in implementations and the
cost of deployments remain significant barriers when it comes to the adequate re-
producibility of the methods38. NAS Benchmarks39 aim at alleviating this problem
by providing databases with free-of-cost evaluations of NN configurations, enabling
anyone to benchmark and prototype any NAS method. These benchmarks come
in the form of databases with exhaustive NN, evaluations or a mix of real40 and
predicted evaluations41 (surrogate NASBenchmarks). They usually cover a wide
range of applications42 (classification, segmentation, object detection, etc.), and
domains43,44 (CV, Speech, NLP, etc). Besides, more recent benchmarks investigate
model efficiency, such as Hardware-aware NAS Benchmarks, or even hybrid settings,

16

CHAPTER 3. RELATED WORK

such as joint HPO and NAS45. Figure 3.2 shows an overview of such benchmark,
with the particular case of NAS-Bench-Suite42.

Figure 3.2: Overview of NAS-Bench-Suite, a collection of benchmarks helping de-
velop and evaluate numerous search algorithms, on various search spaces, and do-
mains (Speech, Natural Language Processing, Computer vision)42.

Most modern CV models have been designed following design patterns that in-
volve a sequential repetition of modular units to build the backbones of CV models.
The benchmarking of Deep models has shown the importance of depth in increasing
their capacity to fit datasets, resulting in better decision-making. However, instead
of following such heuristics, some authors have proposed an innovative NAS ap-
proach based on randomly wiring the elementary units within the desired models.
They demonstrate competitive results against SOTA baseline, designed using more
conventional principles46. Other works have later explored similar ideas, emphasiz-
ing the design of search spaces for better model properties. Instead of providing
tunable neural architecture backbones, a recent study proposes formulating design
spaces. Design space would provide specifications for generating search spaces with
desirable properties such as computational efficiency and high performance. The
approach is called designing design spaces47. Similarly, another study proposes a
search for models through scaling pre-existing CV models and empirically identi-
fying a formula considering several factors such as the model depth, width, and
resolution. The proposed approach achieves a target efficiency level by enabling
high performance and low complexity48. According to these recent findings, var-
ious ways of dealing with model architecture design have emerged, all being very
promising in terms of future outlook.

The quest for a better understanding of the factors that influence model perfor-
mances is also supported by researchers interested in qualitative analysis of existing
AutoML systems. For instance, ArchExplorer was introduced to enable users to vi-
sually analyze NAS search spaces to get insights into design principles that influence
architecture performance and complexity. ArchExplorer is based on clustering the
search space that uses structural similarity (edit distance) to define local and global
relationships between the solutions49. Similarly, the authors introduce PipelinePro-
filer, a tool for visually inspecting end-to-end AutoML systems. It enables us to
identify how primitives used in the systems affect their performances, simply de-
bugging or even comparing several systems when deployed on Data Science tasks
of any kind50. Similar studies have followed in the particular context of NAS for
vision-based decision-making51, helping establish best practices for benchmarking,

17

CHAPTER 3. RELATED WORK

comparing and designing NAS methodologies with an increased awareness of the
role played by each component in their systems.

3.3 Understanding the Behavior of Search Algo-

rithms

Aside from contributing to the development of search algorithms and their appli-
cation to the real world, the field of Optimization has also investigated the more
fundamental problem of understanding already existing algorithms and how their
inner components contribute to the successes or failures of the whole. This research
activity, referred to as Fitness Landscape Analysis (FLA)21, has been applied to
various optimization problems in order to help better design search algorithms. The
general idea behind this novel paradigm is to study and model the structure of
the landscape of optimization problems and identify how the underlying structures
explain and relate to algorithm performances.

For instance, authors have studied the relationship between funnels present in
the landscape of quadratic assignments’ optimization problems and the performance
of search heuristics52. They identify critical elements in the structure of funnels
(depth) that might affect the difficulty in solving the optimization problems. Other
examples appear in the case of dynamic optimization problems, where authors have
performed the first analysis of dynamic vehicle routing problems (DVRPs) using
static fitness landscape analysis and identify how the temporal or dynamic aspect of
the studied problems is captured (or not) using the tools53. Similarly, another study
has tackled the instances of the dynamic capacitor arc routing problem (DCARPs)
to identify how dynamic hyperparameters contribute to the problem difficulty54.

Furthermore, authors have recently introduced the concept of Search Trajectory
Networks (STNs) aiming at modelling the deployment process of search heuristics
using a graph-based approach. Their method is compatible with population-based
or single-point search heuristics in discrete or continuous search settings. STNs are
generated using data collected during several independent runs of algorithms. Thus,
STNs can reveal the search space’s topology in terms of LO’s connectedness and how
different regions are navigated (or shared) by a group of competing algorithms55.
An example of STN is visualized in Figure 3.3.

Alternatively, it is also possible to model fitness landscapes using the concept of
Local Optima Networks (LONs)56,57, highlighting the distribution of LO and their
connectedness in the search space. Examples of applications of LONs to analyze
optimization problems include the study of the Assisted Seismic History Matching
problem58, where a preliminary study of the problems using LONs helps prepare
design an accurate strategy to solve this computationally expensive industrial prob-
lem.

Moreover, a novel framework is introduced for analyzing the fitness landscapes
of (continuous) optimization problems. They propose a bag of features to gather
information about the local aspects of the landscapes, as well as their evolvability,
and have shown to be valuable predictors of algorithm run-time (ERT) on classi-
cal optimization benchmarks (BBOB).59. Another seminal work demonstrates how
global and local landscape features, in the context of MO optimization problems,
can help reliably quantify problem hardness and predict algorithm performance60.

18

CHAPTER 3. RELATED WORK

Figure 3.3: Example of Search Trajectory Network generated for two search base-
lines, the Iterated Local Search (ILS) algorithm, and Differential Evolution (DE)55.

More recently, authors have started researching how tools from FLA could help
better understand AutoML61 and NAS search problems62,63. Part of the work con-
ducted during this thesis carries such research objectives, in particular, search prob-
lem understanding in the context of NAS for EO-related decision-making tasks.

19

CHAPTER 3. RELATED WORK

This page is intentionally left blank.

20

Chapter 4

Landscape-aware Search for
Automated Machine Learning

This chapter is dedicated to the methodological contributions of this thesis aim-
ing at better characterizing and designing efficient AutoML search algorithms. It
introduces the contributions of C1, C2 and C3, while tackling all research questions.

4.1 Toward Landscape-aware Neural Architec-

ture Search

The following section introduces a framework for quantitatively describing the dif-
ficulty of generic NAS search problems.

Peer-reviewed publication:: Traoré, Kalifou René and Camero, Andrés and
Zhu, Xiao Xiang, Fitness Landscape Footprint: A Framework to Compare Neu-
ral Architecture Search Problems, Under Review, Journal of Machine Learning
Research, 2023.

Research questions tackled: RQ1, RQ2, RQ3.

Related contributions: C1.

4.1.1 Motivations

With the growing availability of AutoML solutions helping Data Scientists better
design decision-making pipelines, deciding what search methodology to use, or even
hyperparameters to tune among all possible options, becomes harder. Indeed, given
the complexity of modern pipelines in their number of components, how does one
ensure that the resulting system remains optimal for a given task? This work aims
to investigate ways to better understand the influence of the components of an Au-
toML pipeline, on the behaviour and performances of a search algorithm. Indeed,
it aims to do so by highlighting key characteristics in AutoML problems and relat-
ing such characteristics to algorithmic performance. The objective is to design an
approach that is problem-agnostic, i.e. independent of the AutoML scenario, and
task-agnostic, i.e. independent of the decision-making task being tackled (dataset).
This should enable us to study, in a systematic manner, any AutoML problems on

21

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

any scenario and applications in EO. Besides, the approach should also enable us to
quantitatively relate the characteristics of a given AutoML problem to alternative
scenarios or tasks. Recent advancements in Evolutionary Computation, AutoML
and optimization have been of high relevance, in particular work at their intersec-
tion, i.e. landscape analysis of AutoML problems, aiming to relate search problem
hardness and search performances. We propose a framework based on recent ad-
vances in the fields described in Chapter 3.

4.1.2 A Framework of General-purpose Features for NAS
Problems

This section introduces the proposed framework for characterizing generic NAS prob-
lems. First, we introduce the feature of Persistence, helping characterize the tempo-
ral dynamic in the performances of solutions in a search space. Then, we present the
proposed concept as a bag of features tackling several aspects of NAS combinatorial
optimization.

Persistence: In order to capture aspects specific to NAS, we introduce metrics
aiming at capturing the dynamics in the fitness of a population of solutions in the
search space. We consider the situation where each solution x ∈ Ω, is a neural
network trained and evaluated for a given budget of iteration (or epochs) tn, with
additional fitness measurements collected at intermediate time steps in the form of a
list M = {f(t0), f(ti), ..., f(tn)}. Then, we consider a ranking operator Ranking(N,

ti, Ω), which returns the set of solutions in the search space Ω that rank N , when
considering the evaluation time step ti, and the fitness operator f . Then, we formu-
late the metric of Persistence Π, outlined in Equation 4.1 as:

Π(Ranking(·), N) =
P (∩ti∈Rall

Ranking(N, ti))

P (Ranking(N, t0))
(4.1)

where the numerator estimates the probability P that solutions in Ω keep their rank
N across all evaluation time steps ti ∈ Rall. Given that the numerator estimates the
probability that solutions have the rank N at the initial time step t0, the Persis-
tence measures the chances for solutions initially at rank N , of keeping their rank
throughout the training and evaluation procedure. Then, we formulate the positive
and negative Persistence, outlined in Eq.4.2:

ΠPositive(N) = Π(TopRank(·), N)

ΠNegative(N) = Π(BottomRank(·), N) (4.2)

where the TopRank(·) (resp. BottomRank(·)) is the ranking function retrieving the
Top (resp. Bottom) N percentile performers in Ω. Then, the positive (resp. negative)
Persistence measures the chances for solutions in Ω to remain Top-N (resp. Bottom-
N) performers. Then, we also consider the area under the curve of the Persistence
AuC(Π(·, N)), outline in Eq.4.3 as:

AuC(Π(·, N)) =

∫ Nmax

1

Π(·, k) dk (4.3)

22

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

Fitness Landscape Footprint: a bag of features enabling a comparative
analysis Furthermore, we introduce a novel framework, fitness landscape footprint.
It gathers the optimization landscape descriptors introduced in Section 2.4, as well
as the Persistence, in the form of a bag of features. It aims to help characterize
a NAS optimization problem by considering the various aspects of its landscape,
captured by the selected features. It is best visualized in the form of a radar plot,
with an axis for each feature. Aside from describing individual NAS problems, it
also enables the comparison of several instances. This is possible by a simple overall
pair-wise comparison of the Footprints of the different instances. The bag of features
contains the following metrics introduced previously:

• Overall Fitness : an estimation of the fitness potential of the search space Ω,
by measuring the mean and variance in the fitness f .

• Ruggedness : a first descriptor of the irregularity of the landscape associated
with the given NAS problem.

• Enumeration of Local Optima: an additional descriptor of the multi-modality
of the landscape.

• Persistence: a feature informing on the temporal consistency in the fitness of
solutions in Ω. Four quantities are associated with this metric: the positive
and negative Persistence, as well as the associated areas under the curve.

23

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

4.1.3 A Landscape Analysis of NAS in Various Domains

Next, we describe FDC results, as shown in Figure 4.1, for the classification in-
stance CIFAR-10. The bottom left and right-hand corner figures show the FDC,
respectively, when using training budgets of 36, and 108 epochs.

We find a relatively low negative correlation between randomly picked solutions
in the search space and the global optimum (GO). More precisely, after 36 epochs
of training, the gain in fitness per hamming distance to the optima is positive and
about 1.66 percentage point in fitness.

Figure 4.1: Fitness distance correlation for the classification instance CIFAR-10,
using the search space of NASBench-101.

After 108 epochs of training, we find that the previously observed negative cor-
relation is slightly decreased: the gain in fitness per reduced hamming distance is
lower. Moreover, the overall fitness centers at much more significant values (∼91%).

The existence of a negative correlation for both training regimes suggests the ex-
istence of favourable trajectories for local search-based strategies in finding the GO,
from randomly picked solutions in the search space. The decrease in the correlation
and increase in the average performance of solutions suggests that when training for
108 epochs, the absolute gain in fitness obtained by such an optimizer is decreased
for the current search space.

Next, we analyze the landscape from the perspective of the ruggedness. Fig-
ure 4.2 provides the visualization of the evaluation of a random walk using CIFAR-
10 (green), and the So2Sat LCZ-42 (blue), as input data. Overall, we find that

24

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

Figure 4.2: Visualization of a random walk route being evaluated on both classi-
fication instances CIFAR-10 (green) and So2Sat LCZ42 (blue). The fitness of the
solutions in the route is measured on the test set after 36 epochs of training.

the route is of relatively large ruggedness, as the fitness of consecutive solutions ap-
pears to fluctuate a lot, for both instances. Surprisingly, we observe a similar visual
appearance of the routes for both instances, with what appears to be a constant
absolute difference K in fitness between the two routes (blue for LCZ-42, and green
for CIFAR-10). We identify K = 20%, such that when removed from the fitness
of solutions in the route obtained for the instance LCZ-42, we can retrieve a route
close to the one of CIFAR-10.

To summarize, even though the route evaluated using the So2Sat LCZ-42 reaches
a larger average fitness, the route obtained using a sensor from another domain
(LCZ-42) provides similar curvature, with absolute distance in fitness relatively
constant between both. This suggests that there are areas of the search space that
provide with the same ruggedness, for landscapes generated using instances from
different domains.

Trial Avg. Step Avg. Improvement(%) First Repeat k Cardinal

1 2.90 4.53 94 6373

2 2.89 5.48 57 2343

3 2.78 4.76 26 487

4 3.02 5.55 58 2426

5 2.86 5.06 38 1041

6 3.01 4.5 195 27429

7 2.83 5.77 52 1950

8 2.80 4.78 129 12003

9 2.70 4.79 197 27994

Summary 2.86 5.03 94 6373

Table 4.1: Results of enumerating local optima (maxima) for the CIFAR-10 classi-
fication instance.

Next, we look at the multi-modality of the landscapes. Table 4.1 displays the
enumeration results of local-optima for CIFAR-10. The estimation is performed

25

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

Figure 4.3: Fitness landscape footprint describing the classification instances
CIFAR-10 and So2Sat LCZ42, using the NASBench-101 search space.

considering T = 9 trials. We find that for BILS(·), the average improvement in
fitness until reaching a local maximum is of 5.03 percentage point in accuracy. In
average, we manage to deploy BILS(·) consecutively for kmean = 94 times, until a
LO is found twice. Overall, we estimate the number of LO 6373, which appears
relatively large, considering the low number of steps needed to reach one.

Next, we analyze the fitness footprint obtained for the instances CIFAR-10 and
So2Sat LCZ-42, as visualized in Figure 4.3, respectively, in blue and orange. We
find that there is a larger number of O on the landscapes of the So2Sat LCZ-42 NAS
instance with 11153 LO against 6373, for CIFAR-10. This suggests more chances for
local search-based strategies to get stuck in suboptimal solutions, when using LCZ-
42 as training data, as opposed to CIFAR-10. Moreover, the overall fitness is similar
for both datasets, with a slightly larger mean fitness for CIFAR-10 of about 83% of
overall accuracy after 36 epochs, and slightly larger variance for LCZ-42 of about
10%. This suggests that the overall performance might be similar when doing NAS
using either dataset. Besides, we find that the ruggedness is more prominent when
using CIFAR-10 (1.93 against 1.75), suggesting a more challenging landscape for lo-
cal search-based NAS heuristics. Overall, the persistence is more considerable using
LCZ-42 than CIFAR-10 (positive and negative). This indicates more predictabil-
ity in the performances of models from early in their training. This suggested that
performance estimation strategies such as learning curve extrapolation could benefit
more when performing NAS using LCZ-42 than CIFAR-10.

To summarize, we have successfully provided a quantitative appraisal of key
elements of the landscapes of two different NAS classification instances using the
bag of features included in the fitness footprint. The following section presents ideas

26

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

that could be explored in the future to best take advantage of the current framework
or extend it.

Note: Several of our FLA experiments capture results with respect to a GO. When
using CIFAR-10, the GO (global maximum) consists of the best solution within an
exhaustively evaluated search space, while for So2Sat LCZ-42, it is approximated
as the best solution within a set of LHS sampled solutions. We find that the trends
observed in the FLA using both estimations do not significantly differ1.

4.1.4 Outlook

Next, we discuss areas of research that could benefit from the current research, as
well as ideas of extensions for the current work.

Enabling Comparisons: First, is about exploring the ability to compare search
problems. An example of a question that could be tackled with this tool is the fol-
lowing. How does the AutoML problem change when key elements of the ML setting
are changed?. Answers to these questions could be a quantitative appraisal, based
on the features gathered in the footprint, of the changes generated by comparing
the landscapes of the different problems. A potential topic of interest for such com-
parison would be multi-fidelity in NAS, i.e. NAS search problems in the context of
approximations in the fitness measurements based on varying experimental settings.
This is explored in the form of multi-modal decision-making, i.e. sensor-fidelity, in
Section 4.2. Other aspects of multi-fidelity in NAS could also be relevant, such as
data-fidelity or training-fidelity.

Beyond Classification: Classification is at the basis of CV and remote-sensing-
based decision-making. Besides, many modern applications have spanned from it,
with as examples, Object Detection, image and scene segmentation, or even gen-
erative tasks such as image super-resolution and cloud-removal. These are getting
widely adopted by RS experts and practitioners, solving real-world use cases. For
these reasons, we find that investigating NAS for the respective scenarios and in-
stances could bring novel insights that would benefit the respective research com-
munities. In practice, researching the application of the footprint to such a problem
would involve some research and development on the specification of the landscapes.
For instance, this would require identifying relevant search space definitions, archi-
tecture solution representation and neighbourhood operators.

Beyond NAS: As a sub-field of AutoML, NAS mainly specializes in designing
optimal architectures for data-driven decision-making. While this aspect plays a
vital role in improving the capabilities of the overall system, tuning other aspects of a
pipeline could also benefit this purpose. Thus, we propose to consider not only NAS
AutoML optimization problems, but go beyond and consider the generic problem
of HPO13, or even the the problem of jointly optimizing a target architecture and
hyperparameters relevant to it. More precisely, we propose to study the landscape of
problems where the fitness function, the search space, as well as the neighborhood
operator involved, are dedicated to the respective HPO, or joint HPO and NAS
optimization problems. Section 4.3 explores this direction.

27

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

4.2 Enabling Sensor-aware NAS for Multi-modal

Remote Sensing Scene Classification

This current chapter tackles the topic of sensor-fidelity in NAS, for tasks where
identifying the most beneficial sensor, or combination of several, is important for
improving decision-making abilities.

Research questions tackled: RQ2, RQ3.

Related contributions: C2.

4.2.1 Motivations

Modern Deep Learning-based decision-making models have positively impacted the
development of RS technologies, addressing the need for more accurate and versatile
models. While the community initially focused on single-modality-based models,
the limitations of such solutions led to investigating means of incorporating more
modalities64. Indeed, the ability to sense the object of the ground highly depends on
the type of sensor being used. Thus, leveraging the complementary of several sensors
in their coverage of the information being retrieved would be a desirable feat for a
data-driven model. Furthermore, being able to provide with optimal multi-modal
data-driven model by means of automation and optimization (NAS), could lead to
additional breakthroughs in the field.

For this purpose, we propose to see multi-modal decision-making NAS search
instances, as instances of multi-fidelity optimization. More precisely, sensor-fidelity
NAS, i.e., a setting where the amount of sensor used during the search can vary.
This is could happen, for instance, in the context of the EO classification tasks
where several sources of input data are available, and combining several sources of
input comes at an increased computational cost. Then, sensor-fidelity NAS would
help to find an optimal classifier at a reduced computational cost. We propose to
study the influence of this fluctuation in input sensors on the behavior of search,
using the fitness landscape footprint introduced in Section 4.1.

4.2.2 A Landscape Analysis of NAS using Various Sensors

In this section, we present the results of landscape analysis in the context of mul-
tiple data-fidelity-oriented neural architecture optimization. Experiments are con-
ducted using the same experimental protocol and input data as in Section 4.1.3.
More precisely, the task being tackled is classifying Local Climate Zones using the
So2Sat LCZ-42 dataset, considering both Sentinel-1 and Sentinel-2 sensors. The
landscape analysis is mainly conducted using the fitness landscape footprint, and
aims at comparing the effect of the input sensor on the NAS optimization process
and performances.

Ruggedness Figure 4.4 displays the results of a random walk route (N=100 steps)
being evaluated on the instance of the So2Sat LCZ-42, using various sensors as input.
In blue, yellow, green, and red are the results, respectively, for using Sentinel-1,
Sentinel-2, both sensors and Cifar-10. The route is the same for all sensors, is

28

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

obtained using the search space of NASBench-101, and the solutions in the route
are all trained for 36 epochs using the same hyperparameters. We find that using
Sentinel-2 provides the largest mean fitness, closely followed by the case of using both
sensors. Additionally, the routes have a very similar curvature, with LO appearing
to be at the same steps in the walk. When using Cifar-10, the observed mean fitness
is much lower. It is at its lowest when using Sentinel-1. Given that the search space
and route have displayed good fitting capabilities (e.g., when using Sentinel-2), this
suggests that fitting Sentinel-1 and Cifar-10 are much more challenging tasks. The
route might benefit from a longer training budget in order to improve its fitness for
these two sensors.

Besides, we find that the better the fitness, the lesser the irregularities in the
routes, measured by a larger ruggedness. On the other hand, the lower the fitness,
the more irregularities in the routes, and the larger the ruggedness.

0 20 40 60 80 100
Steps

0.4

0.5

0.6

0.7

0.8

0.9

Fi
tn

es
s

Random Walk

Sentinel 1
Sentinel 2
Both Sentinel
cifar-10

Figure 4.4: Results2 of a random walk evaluated using various input sensors, on
the search space of NASBench-101. All solutions are trained for 36 epochs, and the
routes are N = 100 steps long.

Fitness Footprint Next, we show how the Fitness Landscape Footprint is used
to make a quantitative, summarized description of the sensor-aware NAS problem
that is being tacked.

First, let’s consider the overall fitness, captured in the Footprint with the
Average Fitness. As discussed before, we found that the NASBench-101 search
space achieves a larger mean fitness in this task when using the Sentinel-2 sensor, fol-
lowed by input-level fusion and, lastly, the Sentinel-1 sensor only. This phenomenon
is possibly explained by the fact that fitting the So2Sat LCZ-42 using SAR imagery
might be harder than optimal imagery (Sentinel 2), due to the lack of information in
the sensor relevant for distinguishing certain classes. Then the sensor fusion might
yield intermediate performances for the same reasons. When it comes to Cifar-10,

29

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

we know from other studies that the NASBench-101 search space is able to properly
fit the task. The poorer fitness could be improved with a larger training budget.

Besides, the larger the fitness of a given sensor, the fewer irregularities in the
landscape, as seen in the random walk routes. This is captured by measuring lower
ruggedness scores, as well as a lower standard deviations in the overall fitness.

Regarding the persistence of the fitness, the scores are reported in our study
published in the annals of ISPRS in 20222. Overall, we found that the persistence,
whether positive or negative, is larger in the case of searching with a sensor that is
easier to fit (larger overall fitness), and with a lower ruggedness.

Figure 4.5: Fitness landscape footprint applied to the NASBench-101 search sce-
nario, given 36 epochs of training. In blue, yellow, and green are the results re-
spectively for using as sensor Sentinel-1, Sentinel-2, and an input-level fusion of
Sentinel-1 and Sentinel-2.

To summarize, this comparative analysis of the Footprints generated from using
the search space in the different sensor settings suggest an easier landscape when
using Sentinel-2 only, followed by the use of the input-level fusion. This demonstrates
the ability of this tool to successfully support the analysis and design of sensor-aware
AutoML problems.

4.2.3 Outlook

Next, we discuss aspects of the project that deserve to be explored more in the
future. An instance of the fruitful topic is data-fidelity in NAS, already explored in

30

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

the current project in the form of sensor-fidelity, i.e., researching if a NAS search
problem difficulty on a given dataset changes based on the sensor used to tackle it
(including sensor fusion). We identified that the landscape of the search problem
would have a similar feature regardless of the sensor being used, in particular when
training budgets were large. We speculate that this would hold true even on prob-
lems where the number and variety of input modalities are much larger65. Future
work might research the validity of the hypothesis and how insights gained on the
topic could help improve NAS search strategies by means of performance prediction
for expensive multi-modal problems, approximated by the model performance of a
lesser sensor-fidelity (i.e. less expensive modalities).

31

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

4.3 Beyond Search Spaces: how do other impor-

tant components affect autoML problems ?

This chapter explores the idea of a landscape analysis of AutoML problems for
investigating the role of sometimes overlooked elements (evaluation pipelines) in the
success of AutoML search strategies.

Peer-reviewed publication: Traoré, Kalifou René and Camero, Andrés
and Zhu, Xiao Xiang, We Won’t Get Fooled Again: When Performance Metric
Malfunction Affects the Landscape of Hyperparameter Optimization Problems,
International Conference on Optimization and Learning, CCIS, 2023.

Research questions tackled: RQ3.

Related contributions: C3.

4.3.1 Motivations

Previous research at the intersection of landscape analysis and AutoML has mainly
focused on providing novel insight into the target optimization problems using the
search space as the main factor of influence for the search difficulty and performance.
For instance, authors have researched the correlation between the metric of neutral-
ity in the optimization landscapes of hybrid end-to-end AutoML systems66, with
the fitness. Other authors have analyzed the landscapes associated with optimiz-
ing graph-based decision-making models (GNNs)67, providing an appraisal of the
general difficulty of the respective NAS problem. However, to our knowledge, very
few works have gone beyond the analysis of the effect of this particular component
on the search process. This project is an attempt at using FLA and the footprint,
introduced in Section 4.1, to characterize generic HPO problems. In particular, it
researches the effect of performance estimation pipeline definition on HPO search
difficulty.

4.3.2 Tracking the Impact of Evaluation Metric Failures on
the Easiness of HPO Problems

We propose to analyze the HPO problems using a variety of tools68. First, we
consider the landscape of HPO problems L = (S, f,N), where S denotes the HP
configuration space, f the fitness evaluation function, and N a neighborhood op-
erator. Note that N designed to handle HP configuration space of very heteroge-
neous nature (i.e. mixed types), when attributing neighbors to a solution. Since
we aim to understand the effect of the fitness function on the HPO optimization
landscapes, we propose to analyze the problems on interest using the FDC68. In-
deed, by investigating the correlation between the fitness values in a configuration
space, and the distribution of distances of HP configurations to the GO, we expect
to notice any side effects in fitness evaluation functions. In particular, any mis-
attribution in fitness to an HP solution might be easily identifiable in the FDC.
Second is an analysis of the local relationship between solutions and their neigh-
bors, in terms of fitness. Similarly, pathological fitness evaluation functions might

32

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

be associated with an altered relationship between those quantities. Third, related
to the locality, is an analysis of the neutrality in the landscapes. It defines as
Nd(x) = |{x′ ∈ N(x) || f(x′

) − f(x) |< ϵ}|, where the neutrality degree Nd of a
solution x corresponds to the number of neighbors of similar fitness it has. This
quantity would also be affected in case of misattributed fitness.

4.3.3 The Case of the MMCE Metric

The following section introduces results obtained considering the HPO benchmark
DS-201969. It consists in the scenario of tuning the HPs of CNNs on ten image clas-
sification instances. For all instances, HP configurations were evaluated considering
the mean misclassification error (MMCE) as a performance evaluation function. Addi-
tional experiments were conducted using the YAHPO benchmark70, encompassing
up to 119 classification instances, restricted in our case on the tuning HPs of CNNs,
considering the predictive accuracy (opposite of MMCE) or Log Loss.

Fitness Distance Correlation Next, we analyze the landscapes from the per-
spective of the FDC. Figure 4.6 shows results of FDC for the instances of CIFAR-10,
FLOWER, SCMNIST and SVHN. These findings are representative of those made
across all the other instances in the DS-2019 dataset. Overall, we find that there
is little correlation between the two variables of interest: the fitness of a given HP
configuration does not always improve with its proximity to the Global Optimum
(GO). Note that we approximate the GO as being the HP configuration with the
highest fitness (predictive accuracy) in the configuration space. Besides, we observe
that the distributions of distances of HP samples to the GO are all wide and appear
uniform. This suggests that there is diversity among the sampled HPs and possi-
bly across the HP configuration space. Regarding the distributions of fitness of the
samples, we make two different types of observations. First, for the classification
instance CIFAR-10, we find that the distribution is large and uni-modal, with a
mode at large values (80% of accuracy).

Second, for the instances FLOWER, SCMNIST and SVHN, we find an unex-
pected mode at odd values in the distributions of fitness. There are observed for the
around 22% (FLOWER), 65% (SCMNIST) and 20% (SVHN) of fitness. Moreover,
the distances to the GO of the solutions having this unexpected performance cover
about 50% of the possible range in most cases. This suggests that the solutions in
the set exhibit this behaviour irrespective of their HP configurations.

After analyzing the dataset, we find that they have an imbalance in their distri-
butions of labels, and that these numerical values are close to the prevalence of the
majority class. This suggests that these solutions are naive classifiers, i.e. majority
class predictors.

Average Fitness in the Neighborhood Next, we analyze the instance from the
perspective of the locality, in order to generate additional insights about the effects
on the respective landscapes. Figure 4.7 introduces the result for the same instances.
We find that in the case of the nonexistence of naive classifiers (CIFAR-10), the
correlation between the two variables of interest seems strong. More precisely, for
solutions exhibiting a fitness in any of the possible ranges of values, the average

33

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

Figure 4.6: Fitness Distance Correlation (FDC) for the HPO instances of CIFAR-
10, FLOWER, SCMNIST and SVHN. All plots obtain considering a sample size of
N = 1000 of hyperparameter configurations, for the problem of tuning the HPs of
a ResNet-18 image classifier3.

fitness of their neighbors will be similar. This could be interpreted as the landscapes
having little irregularities.

On the other hand, we find that the correlation is worse, when the landscapes
have multi-modal distributions of fitness, with potentially many unexpected naive
classifiers. In these cases, there are many ranges of fitness for which the average
fitness in the neighborhood is dissimilar but close to the value associated with the
prevalence of the predominant class.

This also suggests that the landscape is has ruggedness, with possibly many local
optima that are in fact sub-optimal naive classifiers.

Neutrality Next, we complement the previous analysis with results covering the
aspect of the neutrality of the landscapes. Figure 4.8 introduces these results for
the same instances. We find that whenever the correlation between the fitness of a
current solution and its neighbors is low, the neutrality degree is also relatively low.

To summarize, the FDC enables us to detect a way in which the vulnerability
of the performance metric affects the landscape of the HPO instances being tack-
led. More precisely, in the case of the predictive accuracy, the vulnerability is the
possibility of turn any classifier into a naive classifier, a sub-optimal behaviour ran-

34

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

Figure 4.7: Average neighbor fitness as a function of the observed fitness, for the
instances of CIFAR-10, FLOWER, SCMNIST and SVHN. All plots are obtained
considering a sample size of N = 1000 of hyperparameter configurations for the
problem of tuning the HPs of a ResNet-18 image classifier3.

Figure 4.8: Neutrality scores for the instances of CIFAR-10, FLOWER, SCMNIST
and SVHN. All plots are obtain considering a sample size of N = 1000 of hyper-
parameter configurations, for the problem of tuning the HPs of a ResNet-18 image
classifier3.

domly arising during training. This would happen irrespective of the models’ HP
configuration, but instead in relationship with the nature of the class distribution
(imbalance) of the dataset, for the instance being tackled.

Analyzing the relationship between solutions and their neighbors, for the same
instances, suggests that the existence of naive classifiers is associated with more
rugged landscapes. Results on the neutrality degree of the landscapes support the
claim. Indeed, areas with a low correlation of fitness between solutions and their

35

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

neighbors are associated with lower neutrality degrees, indicating more irregularities
(local optima) in the landscapes.

Similar results are observed regarding the influence of sub-optimal models gen-
erated when using the Log Loss for classification.

4.3.4 Outlook

Next, we discuss directions in which this research could be extended. First is regard-
ing the aspect of quality control of benchmarks. Creating of AutoML benchmarks,
whether specific to HPO71, NAS40,44, or for hybrid72,45 search scenarios, requires
investing a large number of computational resources in order to evaluate partially 40,
or exhaustively 41 large search spaces. Our findings suggest that some design choices,
e.g. performance metrics, can have adverse side effects, e.g. diverse HPs turned into
naive classifiers. These side effects are hard to track but might have an impact on
the quality of the benchmarks, by biasing and altering the underlying search land-
scapes. Future research might investigate how to use FLA more systematically in
order to build robust AutoML benchmarks (see Section 6).

Second, is about understanding how the results obtained transfer to the domain
of EO. Given the scarcity in the occurrence of certain phenomenon or classes of
interest in EO-related applications, such as the unbalance in the distribution of
population across the globe65, EO datasets designed for data science-based analysis
tend to have a class imbalance. Future research might investigate how the choice in
evaluation metrics could affect the success of AutoML algorithms used to solve such
EO classification tasks. In particular, what is the predominance of naive classifiers
among all sampled and evaluated solutions? What fix to the evaluation metrics
could help reduce it?

36

CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

This page is intentionally left blank.

37

Chapter 5

Mechanisms for Efficient Search in
AutoML

The current chapter introduces contributions to the topic of Efficient AutoML. First,
we describe our work dealing with search initialization and its connection to the
efficiency of NAS search algorithms. Second, we introduce our research on using
differentiable search for finding compact and efficient classifiers.

5.1 A Data Science-based Approach to Improving

AutoML Search Algorithms

This section introduces our first contribution to the topic of mechanisms for search
efficiency in AutoML for EO. More particularly, it revolves around improving the
initialization of NAS search algorithms using a data-science-based approach.

Peer-reviewed publication: Traoré, Kalifou René and Camero, Andrés
and Zhu, Xiao Xiang, A Data-driven Approach to Neural Architecture Search
Initialization, Annals of Mathematics and Artificial Intelligence, Springer 2023.

Research questions tackled: RQ1, RQ2.

Related contributions: C4.

5.1.1 Motivations

Initialization search algorithms in AutoML are traditionally based on a (random)
sampling of solutions in a manner agnostic (independent) of the task. Besides, the
recent growing availability of databases in all areas of Data Science has encouraged
the AutoML research community to explore the benefits of databases and platforms
specific to that area of expertise. This has resulted in the creation of databases
and open-source platforms gathering performance data of all kinds (e.g., HPO, NAS
solution configurations) in order to ease the prototyping and benchmarking and
support reproducibility in methodological research in the field. An example of this,
NASBench-10140, provides the exhaustive evaluation of a NAS search space cover-
ing about distinct 500k NN configurations. In this context, the following questions

38

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

arise: can we benefit from such data to help better initialize AutoML search al-
gorithms? Would a better initialization help improve short and long-term search
algorithm performance? The research conducted on this topic aims at answering
these questions.

5.1.2 Data-driven Initialization for Population-based NAS
Heuristics

Next, we introduce the proposed initialization method. First, we describe the overall
procedure visualized in Figure 5.1. Then, we present the feature encoding designed
to represent solutions in the following experiments.

Objective: The proposal aims to help search algorithms reach better short- and
long-term performance improvements. The type of search algorithm we target is a
population-based search algorithm. For instance, meta-heuristics, Bayesian-based
approaches, etc.

Search Space

Clustering

Search
Sampling

& Evaluating

Sample

Clusters

centroids

InitializingExtracting

Is the clustering quality
improving ?

Yes

Reiterating

No

Data-driven population initialization Population exploitation

Figure 5.1: Flowchart of the data-driven initialization methodology4

Main Algorithm Algorithm 3 introduces the algorithm behind the proposed pro-
cedure. In order to operate, it requires the following inputs: µ, the size of the popu-
lation used to operate the search strategy, a list of sample sizes list sample sizes, the
feature encoding type ε, a clustering algorithm α, a list‘ M of metrics to evaluate
the clustering, and the search space Ω.

Then, it iterates over all sample sizes in list sample sizes, in order to find
the value helping reach the best clustering quality. For each value of sample
size, it will collect an appropriate sample from the search space Ω, using the
procedure RandomSampling(·). Then, it evaluates the fitness of the sample us-
ing EvaluateModel(·). Then, it proceeds with retrieving the proper representation
for the sample using the feature encoding ε and the procedure EncodeModel(·).
Moreover, we find that the computational complexity of the several steps of the
algorithm depends on the size of the feature representation used. In order to alle-
viate this aspect, we proceed with reducing the dimensions of the encoded sample
using (ReduceDimensions(·)). In order to obtain the corresponding clustering la-
bels, ClusterFeatures(·) is applied. The quality of the current sample is measured
using the set of metrics M, labels, and the function Assess(·). Finally, the clusters
are obtained as the combination of the encoded samples and their clustering labels,

39

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

Algorithm 3: Data-driven Initialization Technique4

input: The desired population size µ, a list of sample sizes list sample sizes
(decreasing order), the feature encoding type ε, a clustering algorithm α, the list
of metrics to evaluate the clustering quality M, and a search space Ω.

cluster quality← ∅
for sample size ∈ list sample sizes do

sample← RandomSampling(Ω, sample size)
sample← EvaluateModel(sample)
encoded← EncodeModel(sample, ε)
reduced← ReduceDimensions(encoded)
labels← ClusterFeatures(reduced, α, µ)
new cluster quality← Assess(reduced, labels,M)
if cluster quality > new cluster quality then

break
end
cluster quality← new cluster quality
clusters← (encoded, labels)

end
centroids← ExtractCentroids(clusters)
init architectures← DecodeModel(centroids, ε)
return init architectures

Once an appropriate sample size is identified, the centroids are extracted from the
corresponding clusters (ExtractCentroids(·)). The initial population is obtained
after retrieving the solutions in the search space associated with the encoding of the
centroids (DecodeModel(·)). The procedure then returns the initial population to
the search strategy.

Encoding of the Data: The initialization algorithm relies on a cluster analysis
of the search space. In order to be successful (high clustering quality based on
metrics M), it collects a sample that is encoded using specific feature representation,
followed by a dimension reduction and clustering. This section focused on describing
the custom feature representation we design for the purpose.

It aims at constructing an encoding that helps represent all models from the
search space compactly. The desired properties are for it to be generic, i.e., task
agnostic, to contain information about model structure and performance in train
and validation, at least. Then, the output is to be provided to any search algorithm
and help it retrieve models based on the relevant information it contains (model
structure and performance).

There are two versions of the encoding: the first is referred to as Original, or
Short encoding, and the second, Binary, or Long encoding. Both feature represen-
tations combine the following elements identifying solutions in the search space as
shown in Table 5.1: the adjacency matrix, the list of operations, and the list of all
measured fitness. The representation mainly differs in the way they allow to express
the combination made in the selection of constituents in each NN solution, as shown
in Figure 5.2. The Original (Short) encoding is obtained by flattening (Major row)
of the original adjacency matrix, concatenating it to the list of operations in the se-
lected solution, also concatenated with the list of fitness of the solution, in the order

40

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

described in Table 5.1. The Binary (Long) encoding is obtained by the same series
of operations, except it makes use of an alternative representation of the solution in
the expanded adjacency matrix, that is visualized in Figure 5.2.

in n1 n2 n3 n4 n5 out

in

n1

n2

n3

n4

n5

out

List of labels: Op1, Op2, Op3

Op1

Action: Label node n2 with operator Op1
and create an edge to the output node out

in n1 n2 n3 n4 n5 outn1 n2 n3 n4 n5 n1 n2 n3 n4 n5

in

out

Op2
Op3Op1

n1

n2

n3

n4

n5

n1

n2

n3

n4

n5

n1

n2

n3

n4

n5

Op2

Op3

Op1

x

Transform an adjacency matrix
to an expanded matrix

OUT

IN

Adjacency matrix

Expanded adjacency matrix

OUT

IN

Figure 5.2: Description of the DAG attributes used to represent a solution sampled
from the cell-based search space: a pair of adjacency matrix and list of operations,
or a unique identifier, i.e. the custom adjacency matrix4.

Feature representation Components
Short Adjacency matrix + operations + fitness
Long Expanded adjacency matrix + operations + fitness

Table 5.1: Description of the custom encodings (Short and Long) designed in order
to perform a cluster analysis of the search space.use Each encoding is in the form of
a vector. The symbol + stands for the concatenation operator.

Baseline Search Algorithm: In order to perform an experimental benchmark
evaluating the proposed initialization approach, we select three baseline algorithms
to initialize: a Genetic Algorithm (GA), an Evolutionary Algorithm ((µ + λ)EA) and
the Aging Evolution (EA). These algorithms are population-based meta-heuristics
inspired by natural computation, which evolve a population of solutions using var-
ious mechanisms. GA uses selection, crossover, mutation, and replacement opera-
tions to completely replace a population of fixed size, after a generation. On the
other hand, (µ+λ) EA evolves a population of size µ by replacing it with the best µ
individuals of the current population concatenated to a set of λ offsprings. Last but
not least, the Aging Evolution is similar to GA, except that it discards the solution
that remained the longest in the current population, i.e. the aging individual, at
the each generation. A detailed description of each algorithm is provided in Sec-

41

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

tion 2.3 (Baseline algorithms) of publication P2 4, also available in the Appendix of
this manuscript.

Initialization of an Algorithm: In order to initialize a search baseline, we first
collect a set of points retrieved using a desired initialization technique. Then, we
provide this set as the initial population of size initial size, to the population-based
search algorithm (e.g. GA). Given a set of hyperparameters, including the budget of
iteration, the algorithm then returns the population of solutions obtained at the last
iteration, as well as the history of the solutions encountered. Given this history, we
can retrieve the best-encountered solution. The performance of the search baseline
is then measured using the mean fitness of the population in validation, as well as
best-reached fitness in validation.

Figure 5.3 displays the results of a benchmark of algorithm performance, using
various initialization methods. The top (resp. bottom) row displays results given
a budget of 36 (resp. 108) epochs of training. The algorithms in the benchmark,
from left to right, are GA, (µ+λ) EA, and Aging Evolution. They were all deployed
100 different times, each time considering a budget of 2000 search evaluations. The
red, green, and blue curves are for initializing using, respectively, random sampling
(rand), centroids and Latin hypercube sampling (lhs). The centroids (N = 19)
were extracted from a clustering using the Bayesian Gaussian Mixture of models
(BGM), with the Short Encoding as feature representation. In bold is the mean fitness
of the current population, and lighter colours are the fitness ranges (min/max).

We find that for all the search baselines, the centroids provide the largest mean
fitness for the initial population. Indeed, we report a difference in fitness with lhs

and rand of up to 20 percentage points in validation accuracy.
Besides, EA is the algorithm that takes the best advantage of this initial boost :

it converges faster and maintains an improved mean fitness over lhs and rand, in-
dependently of the training budget of the evaluations. Moreover, additional results4

on the performance of the search algorithms after 2000 evaluations, indicate that
EA and GA benefit from significant performance improvement using the centroids,
over initializing with lhs or rand.

Transferring from CV to EO: Next, we investigate the possibility of a transfer
of performance from the Computer Vision domain to the Earth Observation domain.
Based on previous studies, we know that using the same search space for different
instances, i.e., different classification datasets, might result in similar model perfor-
mances and behavior. Then, we ask ourselves, is it possible to use a population
of solutions collected from the CV domain40, to initialize a search algorithm to be
deployed on an EO classification instance, using the proposed method ?

We compare the convergence of search baselines using the scenario of Nasbench-
101, considering the classification instance So2sat LCZ-42. Figure 5.4 displays the
results for the initialization benchmark using random sampling (rand) and our ap-
proach (centroids). Note that the centroids are collected on NASBench-101, us-
ing the data-driven initialization taking into account fitness evaluation on CIFAR-10,
while random sampling is task agnostic. The algorithm deployed is EA (λ = 19),
considering a budget of 4 epochs of training, 100 evaluations, and 5 independent
runs. Note that the number of independent runs of the experiments is limited
to N = 5 due to the computationally expensive nature of measuring a fitness eval-

42

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

Figure 5.3: Benchmark of NAS algorithm performances, using various initialization
methods4. The search is performed either when training solutions for 36 (top) or
108 (bottom) epochs. The data-driven initialization techniques involve the Short
encoding.

use

43

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

uation on the instance So2sat LCZ-42. Indeed, a single full evaluation requires 10
to 15 hours using a NVIDIA A100 GPU accelerator. We find that initializing EA

using the centroids provides a much larger initial mean test accuracy (about 14
percentage points), as well as a maintained higher performance over time.

Our early results regarding domain and instance transfer in the context of search
algorithm initialization indicate that collecting an initial population on NASBench-
101 using the proposed approach also enables faster convergence on another dataset
(So2Sat LCZ-42). This is the case even considering the low training budget for the
evaluations.

Figure 5.4: Benchmark of initialization4 (5 seeds), considering the search scenario of
NASBench-101, the scene classification instance of the So2Sat LCZ-42. The search
baseline is (µ + λ)EA, with a budget of 100 evaluations, 4 epochs of training, and
µ = λ = 19.

Analysis of Solutions Found Next, we analyze the obtained solutions to iden-
tify potential model archetypes based on the initialization baselines used to deploy
a search strategy. We analyse solutions found using various initialization baselines
on the task of searching for classification models on the NASBench-101 search envi-
ronment. We look for patterns emerging and see if they are specific to the (induced
by the) initialization method used. This is done by comparing the distributions of
extended adjacency-matrix, i.e., encoding of the retrieved models.

Figure 5.5 introduces results of solutions found using the Short Encoding. More
precisely, it shows the distribution of activation in the adjacency matrices of solu-
tions gathered based on the initialization and the search algorithm used. Table 5.2
provides the legend to interpret the adjacency matrix representing a solution. Each
letter is associated with the following information: the node label (given operation,
input, or output node), and its index in the DAG representing the solution. Figures

44

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

5.5a (top) and 5.5b (bottom) are respectively for solutions found using a budget of
training of 36 and 108 epochs. The first, second and third rows are, respectively, for
initializing using a random sample (rand), the proposed method (centroids) and
LHS. The first, second and third columns are, respectively, for initializing GA, EA,
and Aging Evolution.

We find that the activations in the adjacency matrices are distributed in the form
of more widespread clusters, the longer the training budget allowed for evaluating
solutions. Besides, the type of algorithm used tends to have a slight influence on the
results: AE provides solutions with activations gathered in smaller clusters than GA
and Aging evolution. Similarly, the initialization procedure is also of importance:
there appears to be more diversity (widespread activations) in the solutions obtained
using LHS or Random Sampling than with the centroids.

To summarize, we find that the diversity in the solutions found is influenced
by various factors such as the training budget, as well as the initialization method
used. The longer the training, the more diverse the solutions: this suggests that the
flatness in the search landscapes that comes with a more considerable training time
enables the retrieve of local optima in various regions of the search space. Regarding
the initialization, the centroids might already be local optima; thus, using them as
an initial population might limit the exploration of the search space and result in
less diversity.

Figure label Node Label Node index
a input 0
b Conv 1x1 + BatchNorm + Relu 1
c Conv 1x1 + BatchNorm + Relu 2
d Conv 1x1 + BatchNorm + Relu 3
e Conv 1x1 + BatchNorm + Relu 4
f Conv 1x1 + BatchNorm + Relu 5
g Conv 3x3 + BatchNorm + Relu 1
h Conv 3x3 + BatchNorm + Relu 2
i Conv 3x3 + BatchNorm + Relu 3
j Conv 3x3 + BatchNorm + Relu 4
k Conv 3x3 + BatchNorm + Relu 5
l MaxPool 3x3 + BatchNorm + Relu 1
m MaxPool 3x3 + BatchNorm + Relu 2
n MaxPool 3x3 + BatchNorm + Relu 3
o MaxPool 3x3 + BatchNorm + Relu 4
p MaxPool 3x3 + BatchNorm + Relu 5
q output 6

Table 5.2: Legend for understanding Figure 5.5 : a character used to label the axis
of the adjacency matrix of a solution is associated with a pair of node label and
index, appearing in the formal DAG representation of a solution.

5.1.3 Outlook

Next, we discuss future research directions and spin-off research products that could
extend the current research project. First is regarding using other NAS Benchmark
databases as input to the data-driven initialization method. This is when targeting
classification instances. The idea is to explore the robustness of the task-agnostic ini-
tialization technique to using alternative data sources (other than NASBench-101),

45

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

(a) With a budget of 36 epochs

(b) With a budget of 108 epochs

Figure 5.5: Visualization of N = 100 solutions obtained with the benchmark4.

46

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

for initializing population-based search strategies. In practice, the challenge would
be providing suitable sampling and encoding functions to the alternative search
spaces. In the case of model encoding, it would consist of designing a function map-
ping the initial model representation (adjacency matrix, list of operations, etc.) in
the source database to the target binary vector format. Then, the general procedure
described in Figure 5.1 and Algorithm 3 could be applied and benchmarked with
the new data source.

Second, is regarding the initialization of other families of population-based search
strategies. Indeed, we found that population-based meta-heuristics such as GA and
EA can benefit from the proposed approach. In particular, (µ+ λ) EA takes advan-
tage of very fit initial populations to achieve faster convergence and larger final per-
formances than with sampling-based initialization baselines. We propose to explore
the benefit of the data-driven approach for alternative population-based methods,
such as those relying on Reinforcement Learning or even Bayesian Optimization.
Once again, the proposal would benchmark various initialization baselines again the
proposed one and identify the settings enabling those alternative families of search
strategies to take advantage of the proposal.

47

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

5.2 Searching for Efficient and Compact Classifi-

cation Models

Next, we describe an approach addressing the problem of finding high-performing
but resource-efficient solutions for classification tasks in EO. The motivation behind
this research is to answer the growing need for computationally efficient models that
can run on resource-constrained environments such as satellite constellations. An
example of use would be the processing of newly acquired remote sensing data and
the early decision-making onboard as a component of the software stack embedded
in the target resource-constrained hardware.

Peer-reviewed publication: Traoré, Kalifou René and Camero, Andrés and
Zhu, Xiao Xiang, Compact Neural Architecture Search for Local Climate Zones
Classification, European Symposium on Artificial Neural Networks, Computa-
tional Intelligence and Machine Learning, 2021.

Research questions tackled: RQ3.

Related Contributions: C5.

5.2.1 Complexity-aware Differentiable Neural Architecture
Search

The proposed search strategy aims at finding an optimal neural architecture con-
figuration for classification tasks in EO. The search strategy is based on a flavour
of continuous bi-level optimization, known as differentiable search 35,36. Figure 5.6
provides a visual description of the search space of classification models we search
for: a model consists of a downsampling module (head), followed by a sequence of N
units, combining a block and reduction cell (or Softmax). Each block i consists in a
sequence of length δi of repeating a given element, the normal cell. This normal cell,
which can be represented as DAG of operation processing features generated from an
EO sensor, is variable. An architecture α is then identified by two elements: a neural
cell configuration αcell, and a vector ∆ encoding the depth of all N blocks.

Image z Reduction
Cell

...
Output

Normal
Cell 𝜶cell

depth 𝜹1

Reduction
Cell

 Normal cell 𝜶cell

An architecture 𝜶 = { 𝜶cell, 𝛥}, with its Depths 𝛥 = { 𝜹1, …, 𝜹N}

Block 1

Block i

𝜹1

𝜹i

Head SoftMaxBlock N

𝜹N Output

Normal
Cell 𝜶cell

Normal
Cell 𝜶cell

Normal
Cell 𝜶cell

𝜶cell k-1

node I 0

node I 1

𝜶cell k-2

Figure 5.6: Visualization of an architecture α, optimized using Algorithm 45.

In practice, the search strategy aims at finding the optimal neural architecture
by finding a tensor A = {Acell} ∪ {Ωdepth}, which encodes the distributions of pos-
sible cells and depth configurations to sample from, and a set of trainable weights
W of the model, providing the best performances in validation and training splits,
respectively. Algorithm 4 provides a general description of the gradient-based search
procedure. Once an architecture α is found, it is re-trained from scratch and evalu-
ated on the test split of the data to assess its final performance.

48

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

Algorithm 4: Searching for αcell and ∆5

Input: Two disjoint sets DT and DV , randomly initialized A and W, batch size;
while not at convergence do

Sample a batch Dt = {(xi, yi)}ni=1 from DT

Calculate LT =
∑n

i=1 L(xi, yi)
Update W by gradient descent: W = W−∇WLT

Sample a batch Dv = {(xi, yi)}ni=1 from DV

Calculate LV =
∑n

i=1 L(xi, yi)
Update A by gradient descent: A = A−∇ALV

end
Derive the final architecture α = {αcell,∆} from A;
Optimize α = {αcell,∆} on the whole training set for future inference on the test
set.

Method ResNet08 ResNet32 ResNet110 S S+C S+D S+C+D

OA (d1) 60.25 64.85 67.60 64.05 64.25 64.96 64.00
AA (d1) 47.86 52.24 53.34 50.39 51.63 54.02 52.20
Kappa (d1) 0.565 0.615 0.645 0.61 0.61 0.62 0.61

OA (d2) 96.18 96.89 98.59 98.15 97.81 98.00 97.74
AA (d2) 88.91 89.75 91.91 91.61 91.12 91.44 91.08
Kappa (d2) 0.958 0.966 0.984 0.980 0.975 0.980 0.975

Size (MB) 0.08 0.27 1.73 0.224 0.165 0.14 0.130
FLOPs (M) 13.53 41.85 253.89 30.37 24.10 20.05 18.42

Block’s Depth NA NA NA 3x3 3x3 1x3 1x3

Table 5.3: Benchmark5 of model performance in test (5 seeds), on the classification
instance So2Sat LCZ-42 (Sentinel-2), and two data distributions (d1 and d2).

5.2.2 Results

This section presents the main results obtained using the proposed approach. Ta-
ble 5.3 presents a benchmark of the performance in test for the architecture solu-
tions found using the instance So2Sat LCZ-42. In addition, it also compares them to
state-of-the-art classification baselines of similar complexity ResNet08, ResNet32,
and ResNet110. The complexity of the models is measured in size and FLOPs. The
performance is assessed using the metrics of Overall Accuracy (OA), Average Ac-
curacy (AA), and the Kappa Cohen score (Kappa). With respect to the solutions
found, they are identified by the search setting from which they are resulting. In-
deed, S refers to optimizing a single (normal) cell, C stands for the use of complexity
reducing loss, and D for searching for the appropriate architecture depth. Then ’+’

stands for combining different search mechanisms.

We find that on the data distribution d1, S+D and S+C positively improve against
only using S, considering all metrics of accuracy (OA, AA and Kappa). S+D brings
the most improvements in performance while enabling to find a model of lower
complexity in size and FLOPs. S+D is competitive, i.e. TOP-2 in performance
and complexity, and outperforms the manually designed ResNet08 and ResNet32

baselines of comparable model complexity. Combining S+C+D does improve the
Average Accuracy over the setting S and S+C, but not over S+D.

When using the data distribution d2, we find that combining the complexity-

49

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

aware mechanisms (S+D, S+C, S+C+D) does not improve over the conventional single
cell search (S). However, S+D helps reach the best trade-off for performance and low
complexity. Its performance scores are 98.00% OA, 91.44% AA, and 0.98 for the
Kappa Cohen score, which is a respective difference of 0.58% OA, 0.47% AA, and
0.004 Kappa from ResNet110, the best performing model. Note that it does so while
being about 92% more compact in Size and FLOPs.

To summarize, we have developed a search strategy that helps find efficient
classification models of high-performance and compactness, competing with popular
and state-of-the-art manually designed baselines.

5.2.3 Outlook

Moreover, we identify connections between the proposed approach and other sci-
entific topics of relevance and importance to AutoML. First, the topic of model
pruning 73 comes to mind. It encompasses all methods enabling the transform of an
overparametrized model with good performances into a more spare model without
loss in performance. Given that the proposed method can tremendously reduce the
complexity in Size and FLOPS while improving or preserving model performances,
we argue that it can be interpreted as a form of model pruning or model sparsifi-
cation. Let us consider the particular case (S+D) of searching for a normal cell in
combination with searching for an optimal architecture depth. We speculate that
optimizing the blocks’ depth might result in sparsification by reducing stages in an
over-parametrized initial backbone architecture. To confirm this idea, future work
might investigate the effectiveness of the search strategy in finding efficient but com-
pact architectures based on the complexity of the starting solutions, the backbone
architecture.

Besides, the topic of data-driven search initialization appears of relevance to the
current research project. Indeed, we have identified in Section 5.1 that population-
based search strategies could benefit from a data-driven selection technique for their
initial population, helping them converge faster and reach better long-term per-
formances. Despite not being tested in the case of non-population-based search
strategies, future work might investigate how the use of benchmark data, in particu-
lar, the use of data related to distributions of cell configurations, could help bias the
initialization of the architecture weight matrix A (tied to the configuration of the
normal cells and depth), in order to achieve better convergence. For this purpose,
a complementary data source could be the distributions of optimal solutions found
in Section 5.1, Figure 5.5.

50

CHAPTER 5. MECHANISMS FOR EFFICIENT SEARCH IN AUTOML

This page is intentionally left blank.

51

Chapter 6

Benchmark for AutoML in Earth
Observation

This last chapter introduces contributions to the benchmarking of AutoML algo-
rithms in EO applications. More precisely, the works conducted here deal with the
creation of a platform aiming at making it easier to prototype and develop NAS
algorithms, on an EO use-case.

Research questions tackled: RQ3.

Related contributions: C6.

6.1 Motivations

This project aims to provide a tool enabling researchers and practitioners of the
EO community to research and develop AutoML methodologies with ease. Accord-
ing to the best practices and recommendations38 in the AutoML community, NAS
benchmarks should be reproducible, use standard solutions and components (search
space, evaluation pipeline) and be open-source. For this purpose, we have prepared
a database74 in the form of NAS Benchmark providing freely available architec-
ture performance evaluations for an EO application75. This database builds on top
of previously published work, in particular for the NAS search scenario (cell-based
search space with a fixed classification backbone) 40 and the concept of surrogate
benchmarks41.

6.2 Database

The database tackles the search scenario of NASBench-10140, which consists in
finding an optimal solution in the search space of the ResNet-like image classification
architecture backbone. The backbone is fixed but contains an elementary unit, a.k.a.
cell, in the form of a DAG of neural network features and operations, then repeating
following a specific pattern (several blocks, or sequence fixed length of cells). We
chose this search scenario because there is evidence40 that the search space can
express a variety of architectures in terms of configurations (includes Inception-
Net), but also in terms of complexity (e.g. number of trainable parameters), and
performance.

52

CHAPTER 6. BENCHMARK FOR AUTOML IN EARTH OBSERVATION

Figure 6.1: Cumulative distribution of fitness (overall accuracy) in training, valida-
tion, and test after 108 epochs of training on the NAS instance So2Sat LCZ-42.

We randomly sample N = 1000 architectures from the search space and evalu-
ated them on the scene classification task So2Sat LCZ-42. Figure 6.1 displays the
distribution of the models’ fitness (overall accuracy) on the various splits of the
So2Sat scene classification task. As observed in the publication associated with the
classification instance75, we find that differences in the distribution performance on
the data splits align with the differences in geographical distribution behind the im-
age observations. In other words, the performances on the validation and test split
are similar since the observations in the splits are from the same cities. In contrast,
the training splits originate from another set of cities with more diversity.

Besides, we also provide measurements for a model complexity-related metric,
the latency of the models. Figure 6.2 displays the distribution of the latency of the
search space, a.k.a. the time in milliseconds needed for the sampled solutions. We
find that the behaviour of the models is diverse: it should be possible to discriminate
models using this metric as an objective. We provide this value for researchers
interested in multi-objective NAS for EO applications.

6.3 Outlook

Next, we discuss existing opportunities for extending this work. The current
database prototype is a surrogate NAS benchmark, providing a mix of real and
synthetic performance estimations for solutions in the search space of NASBench-
101. The real fitness evaluations are made on the classification instance So2Sat
LCZ-42 (Sentinel-2 sensor). Future work might explore the benchmarking of addi-
tional surrogate models76 to better understand how this design choice might affect
our NAS search settings in EO applications.

Besides, exploring additional EO classification instances (datasets) or additional

53

CHAPTER 6. BENCHMARK FOR AUTOML IN EARTH OBSERVATION

Figure 6.2: Cumulative distribution of the average latency (in Milliseconds) on the
test split for the N=1000 models.

NAS Scenarios (search spaces) could also provide value. Indeed, to study the cor-
relation and transferability of performance across instances (datasets) has been pri-
marily studied at the scale of individual models. The availability of evaluations for
additional instances in the NAS database could enable such study at a larger scale,
the one of search spaces. Moreover, the availability of performance estimations on
alternative search spaces, for given instances, could, on the other hand, compare the
suitability of search spaces and their components to EO-specific applications. This
could open the door to valuable research in the direction of search space engineer-
ing77,78.

54

CHAPTER 6. BENCHMARK FOR AUTOML IN EARTH OBSERVATION

This page is intentionally left blank.

55

Chapter 7

Conclusion

The research conducted in this dissertation can be summarized as follows:

Landscape-aware AutoML: The aspect of explainability in AutoML systems is
a desirable quality that is hard to achieve. Indeed, AutoML systems (e.g. NAS,
HPO) aim at automating the design of decision-making algorithms for given tasks,
using various components such as search spaces of desirable solutions, performance
evaluation strategies, and optimizers. Given the complexity of the systems, identify-
ing the contributions of components to a resulting solution is challenging. Moreover,
how do changes in the experimental setting of AutoML systems affect algorithm per-
formances? This research question is instrumental to the development of the works
in this manuscript. To answer this, we have developed a framework that quantita-
tively assesses key features of the landscapes of an AutoML problem (e.g. rugged-
ness, multi-modality) and relate them to algorithmic performance. Besides, we have
demonstrated the use of the tool in the following context: firstly, in characterizing
the landscape of a NAS problem using an EO-specific classification instance; sec-
ondly, in the comparison of the characteristics of the landscapes of a NAS problem,
in the context of various domains of application (EO and CV). This has led to the
publication of P1 (and P5). In the same vein, by analyzing AutoML problems and
their performance evaluation strategies, we have discovered that the choice of the
fitness evaluation metric could negatively affect the landscapes, making it harder to
navigate for search strategies. This has led to the publication of P4. Regarding this
chapter, we believe that the research conducted could be extended by investigating
more complex AutoML scenarios for EO applications, such as NAS for the tasks of
Object Detection, Semantic Segmentation, or even Change Detection. Indeed, these
scenarios would require the study and design of dedicated search spaces or perfor-
mance evaluation strategies and would constitute a great opportunity to develop the
topic of landscape analysis for NAS in EO.

Efficient AutoML: Another important aspect of Data Science for EO is the no-
tion of efficiency. Indeed, given the tremendous volume of data to process by data-
driven methodologies, the ability to design solutions of low complexity or strate-
gies to find such solutions given limited resources is crucial. In order to address
these concerns, we have developed a method that helps AutoML search strategies
(population-based NAS metaheuristics) converge faster and achieve better long-term
performances (fitness of decision-making solutions found), with a data-driven ini-

56

CHAPTER 7. CONCLUSION

tialization technique. We have demonstrated the effectiveness of the method using a
CV application, as well as a successful transfer for initializing a search algorithm in
an EO NAS instance. This work has led to the publication of P2 (and P6). More-
over, we have proposed an NAS methodology that searches for low computational
complexity decision-making solutions, constructed from a hybrid search space, with
a modular backbone and variable elementary feed-forward units (normal cells). This
enables to find solutions of competitive fitness, compared to manually designed and
popular baseline classifiers of comparable complexity. This work led to the publi-
cation of P3. Future work might examine how to provide initialization strategies
for population-based AutoML algorithms, beyond the case of metaheuristcs (e.g.
Reinforcement Learning-based, Bayesian approaches), beyond the single objective
of fitness (Multi-objective NAS), or beyond the scenario of classification (e.g. search
spaces for Object Detection, etc.).

Accessible AutoML: The potential benefits of AutoML to the field of Remote
Sensing are numerous. Indeed, from helping automate the tedious design of Machine
Learning and Data Science pipelines, to discovering more optimal data-driven mod-
els (NAS) and their hyperparameters (HPO), the positive outcomes could affect a
wide range of applications. However, AutoML is expensive to perform. For this rea-
son, and in line with previous works in CV39 and NLP43, we have proposed a novel
NAS benchmark to help enable free-of-cost and reproducible NAS research on an
EO application. The prototype benchmark is in the form of a surrogate and tabular
dataset of model evaluation, making use of an established search space for image
classification. It uses a cell-based search space evaluated for the task of real-work
EO scene classification, the So2Sat LCZ-42 dataset. It enables the development and
benchmarking of single and multi-objective NAS search strategies. This work led to
the publication of P7. Future work might explore extending the database to more
EO instances (datasets), and scenarios (search spaces).

57

Bibliography

[1] Traoré, K. R.; Camero, A.; Zhu, X. X. Fitness Landscape Footprint: A
Framework to Compare Neural Architecture Search Problems. CoRR 2021,
abs/2111.01584 .

[2] Traoré, K. R.; Camero, A.; Zhu, X. X. Landscape of Neural Architecture Search
Across Sensors: how much do they differ? ISPRS Annals of the Photogramme-
try, Remote Sensing and Spatial Information Sciences 2022, V-3-2022, 217–
224.

[3] Traoré, K. R.; Camero, A.; Zhu, X. X. We Won’t Get Fooled Again: When
Performance Metric Malfunction Affects the Landscape of Hyperparameter Op-
timization Problems. Optimization and Learning. Cham, 2023; pp 148–160.

[4] Traoré, K. R.; Camero, A.; Zhu, X. X. A data-driven approach to neural archi-
tecture search initialization. Annals of Mathematics and Artificial Intelligence
2023,

[5] Traoré, K. R.; Camero, A.; Zhu, X. X. Compact Neural Architecture Search for
Local Climate Zones Classification. European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning 2021,

[6] Yuan, X.; Shi, J.; Gu, L. A review of deep learning methods for semantic
segmentation of remote sensing imagery. Expert Syst. Appl. 2021, 169, 114417.

[7] Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic
Segmentation. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2015.

[8] Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 2015, 39, 2481–2495.

[9] Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for
Biomedical Image Segmentation. Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015. Cham, 2015; pp 234–241.

[10] Li, Z.; Wang, Y.; Zhang, N.; Zhang, Y.; Zhao, Z.; Xu, D.; Ben, G.; Gao, Y.
Deep Learning-Based Object Detection Techniques for Remote Sensing Images:
A Survey. Remote Sensing 2022, 14 .

[11] Cheng, G.; Huang, Y.-M.; Li, X.; Lyu, S.; Xu, Z.; Zhao, Q.; Xiang, S. Change
Detection Methods for Remote Sensing in the Last Decade: A Comprehensive
Review. ArXiv 2023, abs/2305.05813 .

58

BIBLIOGRAPHY

[12] Hutter, F., Kotthoff, L., Vanschoren, J., Eds. Automated Machine Learning -
Methods, Systems, Challenges ; Springer, 2019.

[13] Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.;
Ullmann, T.; Becker, M.; Boulesteix, A.-L.; Deng, D.; Lindauer, M. Hyper-
parameter optimization: Foundations, algorithms, best practices, and open
challenges. WIREs Data Mining and Knowledge Discovery 2023, 13, e1484.

[14] Elsken, T.; Metzen, J. H.; Hutter, F. Neural Architecture Search: A Survey.
Journal of Machine Learning Research 2019, 20, 1–21.

[15] Brazdil, P.; van Rijn, J. N.; Soares, C.; Vanschoren, J. Metalearning. Cognitive
Technologies 2022,

[16] Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J. T.; Blum, M.; Hut-
ter, F. Efficient and Robust Automated Machine Learning. NIPS. 2015.

[17] Thornton, C. J.; Hutter, F.; Hoos, H. H.; Leyton-Brown, K. Auto-WEKA: com-
bined selection and hyperparameter optimization of classification algorithms.
Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining 2012,

[18] Zöller, M.-A.; Huber, M. F. Benchmark and Survey of Automated Machine
Learning Frameworks. Journal of Artificial Intelligence Research 2019, 70, 409–
472.

[19] Ren, P.; Xiao, Y.; Chang, X.; Huang, P.-y.; Li, Z.; Chen, X.; Wang, X. A Com-
prehensive Survey of Neural Architecture Search: Challenges and Solutions.
ACM Comput. Surv. 2021, 54 .

[20] Chitty-Venkata, K. T.; Somani, A. K. Neural Architecture Search Survey: A
Hardware Perspective. ACM Computing Surveys 2022, 55, 1 – 36.

[21] Malan, K. M. A Survey of Advances in Landscape Analysis for Optimisation.
Algorithms 2021, 14, 40.

[22] Hernando, L.; Mendiburu, A.; Lozano, J. An Evaluation of Methods for Esti-
mating the Number of Local Optima in Combinatorial Optimization Problems.
Evolutionary computation 2012, 21 .

[23] Matthew, R. C.; Mullin, M. Estimating the Number of Local Minima in Big,
Nasty Search Spaces. In Proceedings of IJCAI-99 Workshop on Statistical Ma-
chine Learning for Large-Scale Optimization. 1999.

[24] Xiong, Z.; Zhang, F.; Wang, Y.; Shi, Y.; Zhu, X. X. EarthNets: Empowering
AI in Earth Observation. ArXiv 2022, abs/2210.04936 .

[25] Xia, J.; Yokoya, N.; Adriano, B.; Broni-Bediako, C. OpenEarthMap: A
Benchmark Dataset for Global High-Resolution Land Cover Mapping. 2023
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
2022, 6243–6253.

59

BIBLIOGRAPHY

[26] Toker, A.; Kondmann, L.; Weber, M.; Eisenberger, M.; Camero, A.; Hu, J.;
Hoderlein, A. P.; Çaglar Senaras,; Davis, T.; Cremers, D.; Marchisio, G. B.;
Zhu, X. X.; Leal-Taix’e, L. DynamicEarthNet: Daily Multi-Spectral Satellite
Dataset for Semantic Change Segmentation. 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) 2022, 21126–21135.

[27] Kondmann, L.; Toker, A.; Rußwurm, M.; Camero, A.; Peressuti, D.; Milcin-
ski, G.; Mathieu, P.-P.; Longépé, N.; Davis, T.; Marchisio, G. B.; Leal-Taixé, L.;
Zhu, X. DENETHOR: The DynamicEarthNET dataset for Harmonized, inter-
Operable, analysis-Ready, daily crop monitoring from space. NeurIPS Datasets
and Benchmarks. 2021.

[28] Zhang, B.-T.; Mühlenbein, H. Evolving Optimal Neural Networks Using Ge-
netic Algorithms with Occam’s Razor. Complex Syst. 1993, 7 .

[29] Dasgupta, D.; McGregor, D. R. Designing application-specific neural networks
using the structured genetic algorithm. [Proceedings] COGANN-92: Interna-
tional Workshop on Combinations of Genetic Algorithms and Neural Networks
1992, 87–96.

[30] Stanley, K. O.; Miikkulainen, R. Evolving Neural Networks through Augment-
ing Topologies. Evolutionary Computation 2002, 10, 99–127.

[31] Stanley, K. O.; Bryant, B. D.; Miikkulainen, R. Evolving Neural Network
Agents in the NERO Video Game. 2005.

[32] Real, E.; Aggarwal, A.; Huang, Y.; Le, Q. V. Regularized Evolution for Image
Classifier Architecture Search. Proceedings of the AAAI Conference on Artificial
Intelligence 2019, 33, 4780–4789.

[33] Zoph, B.; Le, Q. V. Neural Architecture Search with Reinforcement Learning.
ArXiv 2016, abs/1611.01578 .

[34] White, C.; Neiswanger, W.; Savani, Y. BANANAS: Bayesian Optimization
with Neural Architectures for Neural Architecture Search. AAAI Conference
on Artificial Intelligence. 2019.

[35] Hanxiao, L.; Karen, S.; Yiming, Y. DARTS: Differentiable architecture search.
ICLR 2019,

[36] Dong, X.; Yang, Y. Searching for A Robust Neural Architecture in Four GPU
Hours. CVPR 2019,

[37] Zela, A.; Elsken, T.; Saikia, T.; Marrakchi, Y.; Brox, T.; Hutter, F. Understand-
ing and robustifying differentiable architecture search. International Conference
on Learning Representations (ICLR). 2020.

[38] Lindauer, M.; Hutter, F. Best Practices for Scientific Research on Neural Ar-
chitecture Search. Journal of Machine Learning Research 2020, 21, 1–18, To
appear.

60

BIBLIOGRAPHY

[39] Chitty-Venkata, K. T.; Emani, M. K.; Vishwanath, V.; Somani, A. Neural
Architecture Search Benchmarks: Insights and Survey. IEEE Access 2023, 11,
25217–25236.

[40] Ying, C.; Klein, A.; Christiansen, E.; Real, E.; Murphy, K.; Hutter, F. Nas-
bench-101: Towards reproducible neural architecture search. International Con-
ference on Machine Learning. 2019; pp 7105–7114.

[41] Siems, J.; Zimmer, L.; Zela, A.; Lukasik, J.; Keuper, M.; Hutter, F. NAS-Bench-
301 and the case for surrogate benchmarks for neural architecture search. arXiv
preprint arXiv:2008.09777 2020,

[42] Mehta, Y.; White, C.; Zela, A.; Krishnakumar, A.; Zabergja, G.; Moradian, S.;
Safari, M.; Yu, K.; Hutter, F. NAS-Bench-Suite: NAS Evaluation is (Now)
Surprisingly Easy. International Conference on Learning Representations. 2022.

[43] Klyuchnikov, N.; Trofimov, I.; Artemova, E.; Salnikov, M.; Fedorov, M.; Filip-
pov, A.; Burnaev, E. NAS-Bench-NLP: Neural Architecture Search Benchmark
for Natural Language Processing. IEEE Access 2022, 10, 45736–45747.

[44] Dong, X.; Yang, Y. NAS-Bench-201: Extending the Scope of Reproducible Neu-
ral Architecture Search. International Conference on Learning Representations
(ICLR). 2020.

[45] Bansal, A.; Stoll, D.; Janowski, M.; Zela, A.; Hutter, F. JAHS-Bench-201: A
Foundation For Research On Joint Architecture And Hyperparameter Search.
Thirty-sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track. 2022.

[46] Xie, S.; Kirillov, A.; Girshick, R.; He, K. Exploring Randomly Wired Neural
Networks for Image Recognition. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV). 2019; pp 1284–1293.

[47] Radosavovic, I.; Kosaraju, R. P.; Girshick, R.; He, K.; Dollár, P. Designing
Network Design Spaces. 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2020; pp 10425–10433.

[48] Dollár, P.; Singh, M.; Girshick, R. B. Fast and Accurate Model Scaling. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
2021, 924–932.

[49] Yuan, J.; Liu, M.; Tian, F.; Liu, S. Visual Analysis of Neural Architecture
Spaces for Summarizing Design Principles. IEEE Transactions on Visualization
and Computer Graphics 2022, 29, 288–298.

[50] Ono, J. P.; Castelo, S.; Lopez, R.; Bertini, E.; Freire, J.; Silva, C. T. Pipeline-
Profiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines.
IEEE Transactions on Visualization and Computer Graphics 2020, 27, 390–
400.

[51] Yang, A.; Esperança, P. M.; Carlucci, F. M. NAS evaluation is frustratingly
hard. International Conference on Learning Representations. 2020.

61

BIBLIOGRAPHY

[52] Thomson, S. L.; Ochoa, G. On funnel depths and acceptance criteria in stochas-
tic local search. Proceedings of the Genetic and Evolutionary Computation Con-
ference 2022,

[53] Pitzer, E.; Werth, B.; Karder, J. Dynamic Fitness Landscape Analysis. Inter-
national Conference/Workshop on Computer Aided Systems Theory. 2022.

[54] Tong, H.; Minku, L. L.; Menzel, S.; Sendhoff, B.; Yao, X. What makes the
dynamic capacitated Arc routing problem hard to solve: insights from fitness
landscape analysis. Proceedings of the Genetic and Evolutionary Computation
Conference 2022,

[55] Ochoa, G.; Malan, K. M.; Blum, C. Search trajectory networks: A tool for
analysing and visualising the behaviour of metaheuristics. Appl. Soft Comput.
2021, 109, 107492.

[56] Ochoa, G.; Tomassini, M.; Vérel, S.; Darabos, C. A Study of NK Landscapes’
Basins and Local Optima Networks. Proceedings of the 10th Annual Confer-
ence on Genetic and Evolutionary Computation. New York, NY, USA, 2008; p
555–562.

[57] Potgieter, I.; Cleghorn, C. W.; Bosman, A. S. A Local Optima Network Anal-
ysis of the Feedforward Neural Architecture Space. 2022 International Joint
Conference on Neural Networks (IJCNN). 2022; pp 1–8.

[58] Mitchell, P.; Ochoa, G.; Lavinas, Y.; Chassagne, R. Local Optima Networks for
Assisted Seismic History Matching Problems. EvoApplications@EvoStar. 2023.

[59] Shirakawa, S.; Nagao, T. Bag of local landscape features for fitness landscape
analysis. Soft Computing 2016, 20, 3787–3802.

[60] Liefooghe, A.; Daolio, F.; Verel, S.; Derbel, B.; Aguirre, H.; Tanaka, K.
Landscape-Aware Performance Prediction for Evolutionary Multiobjective Op-
timization. IEEE Transactions on Evolutionary Computation 2020, 24, 1063–
1077.

[61] Pimenta, C. G.; de Sá, A. G. C.; Ochoa, G.; Pappa, G. L. Fitness Landscape
Analysis of Automated Machine Learning Search Spaces. Evolutionary Com-
putation in Combinatorial Optimization. Cham, 2020; pp 114–130.

[62] Rodrigues, N. M.; Malan, K. M.; Ochoa, G.; Vanneschi, L.; Silva, S. Fitness
landscape analysis of convolutional neural network architectures for image clas-
sification. Inf. Sci. 2022, 609, 711–726.

[63] Nunes, M.; Fraga, P. M.; Pappa, G. L. Fitness Landscape Analysis of Graph
Neural Network Architecture Search Spaces. Proceedings of the Genetic and
Evolutionary Computation Conference. New York, NY, USA, 2021; p 876–884.

[64] Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B.
More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing
Imagery Classification. IEEE Transactions on Geoscience and Remote Sensing
2021, 59, 4340–4354.

62

BIBLIOGRAPHY

[65] Doda, S.; Wang, Y.; Kahl, M.; Hoffmann, E. J.; Ouan, K.; Taubenböck, H.;
Zhu, X. X. So2Sat POP - A Curated Benchmark Data Set for Population Es-
timation from Space on a Continental Scale. Scientific Data 2022, 9, 715,
Number: 1 Publisher: Nature Publishing Group.

[66] Pimenta, C. G.; de Sá, A. G. C.; Ochoa, G.; Pappa, G. L. Fitness Landscape
Analysis of Automated Machine Learning Search Spaces. EvoCOP. 2020.

[67] Nunes, M.; Fraga, P. M.; Pappa, G. L. Fitness landscape analysis of graph
neural network architecture search spaces. Proceedings of the Genetic and Evo-
lutionary Computation Conference 2021,

[68] Clergue, M.; Verel, S.; Formenti, E. An Iterated Local Search to find many
solutions of the 6-states Firing Squad Synchronization Problem. Applied Soft
Computing 2018, 66, 449–461.

[69] Sharma, A.; van Rijn, J. N.; Hutter, F.; Müller, A. Hyperparameter Importance
for Image Classification by Residual Neural Networks. Discovery Science. Cham,
2019; pp 112–126.

[70] Pfisterer, F.; Schneider, L.; Moosbauer, J.; Binder, M.; Bischl, B. YAHPO Gym
- An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter
Optimization. Proceedings of the First International Conference on Automated
Machine Learning. 2022; pp 3/1–39.

[71] Eggensperger, K.; Müller, P.; Mallik, N.; Feurer, M.; Sass, R.; Klein, A.;
Awad, N.; Lindauer, M.; Hutter, F. HPOBench: A Collection of Reproducible
Multi-Fidelity Benchmark Problems for HPO. Proceedings of the Neural Infor-
mation Processing Systems Track on Datasets and Benchmarks. 2021.

[72] Hirose, Y.; Yoshinari, N.; Shirakawa, S. NAS-HPO-Bench-II: A Benchmark
Dataset on Joint Optimization of Convolutional Neural Network Architecture
and Training Hyperparameters. Proceedings of The 13th Asian Conference on
Machine Learning. 2021; pp 1349–1364.

[73] Hoefler, T.; Alistarh, D.; Ben-Nun, T.; Dryden, N.; Peste, A. Sparsity in Deep
Learning: Pruning and growth for efficient inference and training in neural
networks. J. Mach. Learn. Res. 2021, 22, 241:1–241:124.

[74] Demir, E.; Traoré, K. R.; Camero, A. Leveraging performance-based metadata
for designing multi-objective NAS strategies for efficient models in Earth Ob-
servation. European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning 2024,

[75] Zhu, X. X. et al. So2Sat LCZ42: A Benchmark Data Set for the Classification
of Global Local Climate Zones [Software and Data Sets]. IEEE Geoscience and
Remote Sensing Magazine 2020, 8, 76–89.

[76] White, C.; Zela, A.; Ru, R.; Liu, Y.; Hutter, F. How Powerful are Performance
Predictors in Neural Architecture Search? Advances in Neural Information
Processing Systems. 2021; pp 28454–28469.

63

BIBLIOGRAPHY

[77] Radosavovic, I.; Kosaraju, R. P.; Girshick, R.; He, K.; Dollár, P. Designing
Network Design Spaces. 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2020; pp 10425–10433.

[78] Dollár, P.; Singh, M.; Girshick, R. Fast and Accurate Model Scaling. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2021; pp 924–932.

64

BIBLIOGRAPHY

This page is intentionally left blank.

65

Appendix A

Problems and Datasets

This section is dedicated to describing the datasets used for the various projects of
the dissertation.

A.1 So2Sat LCZ-42

The So2Sat LCZ-4275 is a database of multi-modal multi-spectral imagery serving as
a benchmark for the task of LCZ classification. It consists of 400k pair of Sentinel-1
and Sentinel-2 images, and their LCZ labels. Each image covers 320 square meters
on the ground and is recorded at a 10-meter resolution. Thus, they are visualized
as 32 by 32-pixel images, with variable numbers of channels. In total, 17 labels are
considered for the labeling, one for each LCZ.

Moreover, the dataset gathers images from 42 cities, aiming to help train global
climate zone classifiers. Indeed 42 cities across the 5 continents are selected to collect
the images constituting the training set. Then, 10 more cities are selected to create
the validation and test sets.

A.2 NASBench-101

The NASBench-10140 is a database of neural network models serving as a bench-
marking platform for AutoML search algorithms. It contains 423k distinct model
architectures labelled with their performances, after their training and evaluation on
the task of image classification, CIFAR-10. The dataset is generated using a micro
search space of image classifiers, where a backbone architecture resembling ResNet
is fixed, but its building block is modified. This elementary building block, referred
to as cell, is a DAG with constraints on the number of edges and nodes allowed. In
practice, a cell represents a feed-forward module capable of learning advanced image
features, an ability needed for building large classifiers. With this large amount of
adjacent cells in the search space, NASBench-101 enables the bench-marking of
single-objective or multi-objective search algorithms, optimizing the configuration
of cells in a classification architecture, for reaching high classification performances.

66

APPENDIX A. PROBLEMS AND DATASETS

A.3 YaHPO-Gym

YAHPO Gym70 is a database of HP configurations dedicated to the bench-marking
of HPO optimizers. It consists of HP configurations in 14 different scenarios (XG-
Boost, SVM, ResNet, etc) evaluated on up to 700 instances of classification or re-
gression. For each HP configuration, data regarding performances has been recorded
using various metrics, after training and evaluating a given scenario (model) and in-
stances (task). Besides, YAHPO Gym is a multi-fidelity surrogate HPO benchmark:
it contains a mix of real and synthetic performance measurements, demonstrating
in practice the reliability of surrogates in HPO problems.

A.4 DS-2019

DS-201969 is also a database of evaluations of HP configurations, designed for bench-
marking HPO Algorithms. It consist of N=2000 evaluations of HP configurations of
a ResNet classifier, obtained for 10 popular instances of image classification. The HP
configuration space contains 12 variables affecting the stochastic gradient descent
training algorithm, the training regularization protocol, as well as the method for
early stopping of the ResNet classifier.

67

APPENDIX A. PROBLEMS AND DATASETS

This page is intentionally left blank.

68

Appendix B

List of Publications

This section presents the publications related to the work introduced in this disser-
tation.

B.1 Publications in Journals

• Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang, Fitness Land-
scape Footprint: A Framework to Compare Neural Architecture Search Prob-
lems, Under review at Journal of Machine Learning Research (JMLR), 2023

• Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2023), A
Data-driven Approach to Neural Architecture Search Initialization, Annals
of Mathematics and Artificial Intelligence, pp. 1-28. Springer Nature, doi:
10.1007/s10472-022-09823-0. ISSN 1012-2443.

B.2 Publications in the Proceedings of Confer-

ences

• Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2021), Com-
pact Neural Architecture Search for Local Climate Zones Classification, In:
29th European Symposium on Artificial Neural Networks, Computational In-
telligence and Machine Learning, pp. 393-398. The 29th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learn-
ing (ESANN), 06. - 08. Oct. 2021, Online. doi: 10.14428/esann/2021.ES2021-
55. ISBN ISBN 978287587082-7

• Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2023), We
Won’t Get Fooled Again: When Performance Metric Malfunction Affects the
Landscape of Hyperparameter Optimization Problems, In: 6th International
Conference on Optimization and Learning, OLA 2023, 1824, pp. 148-160.
Springer, Cham, International Conference on Optimization and Learning,
OLA 2023, 3-5 May 2023, Malaga, Spain, doi: 10.1007/978-3-031-34020-8 11.
ISBN 978-303134019-2. ISSN 1865-0929

69

APPENDIX B. LIST OF PUBLICATIONS

B.3 Other publications not included in the cumu-

lative dissertation

• Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2022) Land-
scape of Neural Architecture Search across sensors: how much do they differ?,
In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, 3-2022, pp. 217-224, XXIV ISPRS Congress, 6.-11. June
2022, Nice, France, doi: 10.5194/isprs-annals-V-3-2022-217-2022. ISSN 2194-
9042

• Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2021),
Lessons from Clustering of a Search Space: a Data-driven initialization tech-
nique to Search, Workshop on Data Science meets Optimization, International
Joint Conferences on Artificial Intelligence (IJCAI), Online

• Demir, Emre and Traoré, Kalifou René and Camero, Andrés (2024), Lever-
aging performance-based metadata for designing multi-objective NAS strate-
gies for efficient models in Earth Observation, In: The 32nd European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Ma-
chine Learning (ESANN), 09. - 11. Oct. 2024, Brugges, Belgium, doi:
10.14428/esann/2024.ES2024-94, ISBN 978-2-87587-090-2.

70

APPENDIX B. LIST OF PUBLICATIONS

This page is intentionally left blank.

71

Journal of Machine Learning Research N/A (N/A) 1-32 Submitted N/A; Revised N/A; Published N/A

Fitness Landscape Footprint: A Framework to Compare
Neural Architecture Search Problems

Kalifou René Traoré kalifou.traore@dlr.de
Data Science in Earth Observation
Technical University of Munich
Arcisstrasse 21, Munich, 80333, Germany
&
Remote Sensing Institute
German Aerospace Center (DLR)
Münchener Strasse 20, Weßling, 82234, Germany

Andrés Camero andres.camerounzueta@dlr.de
Remote Sensing Institute
German Aerospace Center (DLR)
Münchener Strasse 20, Weßling, 82234, Germany
&
Helmholtz AI, Germany

Xiao Xiang Zhu xiaoxiang.zhu@tum.de

Data Science in Earth Observation

Technical University of Munich

Arcisstrasse 21, Munich, 80333, Germany

Editor: N/A

Abstract

Neural architecture search is a promising area of research dedicated to automating the
design of neural network models. This field is rapidly growing, with a surge of methodolo-
gies ranging from Bayesian optimization, neuroevoltion, to differentiable search. However,
despite all great advances, few studies have presented insights on the difficulty of the prob-
lem itself, thus the success (or failure) of these methodologies remains unexplained. In
this sense, the field of optimization has developed methods that highlight key aspects to
describe optimization problems. The fitness landscape analysis stands out when it comes to
characterizing reliably and quantitatively search algorithms. In this paper, we propose to
use fitness landscape analysis to study a neural architecture search problem. Particularly,
we introduce the fitness landscape footprint, an aggregation of eight (8) general-purpose
metrics to synthesize the landscape of an architecture search problem. We studied two
problems, the image classification benchmark CIFAR-10, and the Remote-Sensing problem
So2Sat LCZ42. The results present a quantitative appraisal of the problems, allowing to
characterize the relative difficulty and other characteristics, such as the ruggedness or the
persistence, that helps to tailor a search strategy to the problem. Also, the footprint is a
tool that enables the comparison of multiple problems.

Keywords: Neural Architecture Search, Fitness Landscape Analysis

©N/A N/A.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/vN/A/N/A.html.

1. Introduction

Neural architecture search (NAS) has seen lots of advances in recent years (Ojha et al.
(2017); Elsken et al. (2019); Ren et al. (2020)). State-of-the-art techniques have brought
attention to evolutionary algorithms (Esteban et al. (2019)) as well as to differentiable
search strategies (Liu et al. (2018); Dong and Yang (2019)) making NAS increasingly faster.
Moreover, lots of efforts have been made to improve the reproducibility of research in the
field, by proposing benchmarks (eg., Ying et al. (2019); Dong and Yang (2020); Siems et al.
(2020)) and guidelines (Lindauer and Hutter (2020); Traoré et al. (2021)).

However, despite all improvements made so far, limited insights have been presented
explaining the success of state-of-the-art strategies or the difficulty of performing the search
itself on a given task (Yang et al. (2020)). Surprisingly given enough budget it has been
proven that simple baselines such as local search are still top performers (White et al.
(2020)). This holds for various search spaces and datasets in computer vision (CV) (Lin-
dauer and Hutter (2020)).

On the other hand, the optimization field has explored and provided tools to address the
issue of characterizing optimization problems. Among these, the fitness landscape analysis
(FLA) (Watson (2010); Pitzer and Affenzeller (2012)), gives an intuitive idea of where (and
how) the search is done and can be improved. It has been used to study problems and to
benchmark algorithms in applications ranging from the field of physics, biology, to chemistry
or pure mathematical optimization problems (Reidys and Stadler (2002)).

This study proposes to fill the gap by using FLA to quantitatively characterize the
difficulty of performing NAS on a given search space and setting. Particularly, we propose
to characterize the landscape of a NAS problem (𭟋) by relying on aspects such as the density
of fitness, fitness distance correlation (FDC), ruggedness, and persistence. Therefore, the
main contributions of this study are:

• We introduce the fitness landscape footprint, a framework to characterize the land-
scape of a NAS problem (𭟋). In practice, this framework helps compare landscapes
associated to various search spaces, fitness functions, neighborhood operators or even
datasets.

• Using the fitness landscape footprint, we studied two image classification datasets,
the classical CIFAR-10 (Krizhevsky (2012)) as well as the real-world remote sensing
problem, So2Sat LCZ42 (Zhu et al. (2020)). Among the findings, we identify several
clues indicating that NAS could be performed at shorter regimen (36 epochs), finding
elite models early. Other findings show a common signature of fitness of the search
space on both datasets and the visualization of landscape of both problems for various
training settings.

The remainder of this paper is organized as follows. The next section briefly introduces
the related work. Section 3 presents our proposal. Section 4 outlines the experimental
setup. Section 5 presents the results. Section 7 summarizes the conclusions and proposes
future work.

2

Figure 1: Fitness landscape footprint of samples trained for 36 epochs on CIFAR-10 and
So2Sat LCZ42.

3

2. Related Work

This section introduces the related work in NAS as well as in fitness landscape analysis.

2.1 Neural Architecture Search (NAS)

In the late 1980s, researchers started exploring the use of evolutionary computation to
design and train neural networks, a.k.a., neuroevolution (eg., Engel (1988); Montana and
Davis (1989); Alba et al. (1993a,b); Yao (1993)). Neuroevolution gained popularity in the
2000s thanks to the NeuroEvolution of Augmenting Topologies (NEAT) method (Stanley
and Miikkulainen (2002)). NEAT is a genetic algorithm (GA) that increasingly evolves
complex neural network topologies (structures) and weights. More recently, Garciarena
et al. (2021) take advantage of information obtained during deployment of neuroevolutionary
NAS algorithm, to inform future runs of search. This information is to be stored in a
Bayesian network-based metamodel and used in the case of search of generative adversarial
networks (GAN) architectures in CV. The metamodel is shown to successfully guide a
strategy based on local search, to find competitive models on the task of generating images
from the MNIST image benchmark.

With the rise of deep learning, there has been a resurgence of these old methods in
recent years to tackle the complex task of neural network design (Ojha et al. (2017)). For
example, some authors proposed to used harmony search (Rosa et al. (2015)), GA (Zhin-
ing and Yunming (2015)), and mixed integer parallel efficient global optimization technique
(van Stein et al. (2019)) to design convolutional neural networks (CNNs). Related to recur-
rent neural networks (RNNs), Bayesian optimization (Camero et al. (2020); Springenberg
et al. (2016)), neuroevolution (Ororbia et al. (2019)), and hybrid approaches (Camero et al.
(2019)), has been explored. Also, NEAT has been extended to fulfill the current needs of
CNN (Miikkulainen et al. (2019)) and RNN (Rawal and Miikkulainen (2016)).

On the other hand, recent methods such as DARTS (Liu et al. (2018)) take advantage
of continuous optimization to make search over a large graph of overlapping configurations
(Super-Net) differentiable. These recent improvement result in large speedups in terms
of search time (Elsken et al. (2019)) but also in some case in a lack of robustness and
interpretability (Yang et al. (2020)).

In an attempt to make NAS more reproducible and accessible to the research commu-
nity, additional efforts has been directed in providing open-source benchmarks of neural
network configurations and their evaluations. These have been spanning several areas of
applied machine learning, (ML) such as CV (eg., Ying et al. (2019); Dong and Yang (2020);
Zela et al. (2020); Siems et al. (2020)) or even natural language processing (Klyuchnikov
et al. (2020)). Given such available resources, the barrier for prototyping as well as better
understanding NAS are progressively lowered.

2.2 Fitness Landscape Analysis

When it comes to the study of optimization problems, fitness landscape analysis (FLA)
(Pitzer and Affenzeller (2012)) has been long used to characterize optimization problems,
with applications ranging from Physics, Biology, to Chemistry or pure Mathematical opti-
mization (Reidys and Stadler (2002)). At the conceptual level, FLA leverages knowledge

4

of underlying structures of the tackled problems, while using general-purpose features to
characterize them. One of the aims of FLA is to help predict performances and tuning
algorithms, when solving an optimization problem. It does so by carefully considering ap-
propriate descriptions of a fitness function, a search space and transition operators (Stadler
(2002); Hernando et al. (2012); Matthew and Mullin (1999)) to model a problem. The
use of descriptive features of the extracted landscapes include analysis of density of states,
enumeration of optima (Hernando et al. (2012); Matthew and Mullin (1999)) and neutral
sets or basins. Another example of a general-purpose FLA feature is the fitness distance
correlation (Jones and Forrest (1995)), first applied to study the performances of a ge-
netic algorithm on a white-box optimization problem. It aims at describing the hardness
of a problem, using limited knowledge of an algorithm to be used. Its authors discuss a
limitation in describing unknown functions to optimize for, i.e., in the case of black-box
settings.

FLA has been successfully applied to predict performance (or performance enhance-
ment). The work of Daolio et al. (2012) investigates the use of local optima networks
(LON) to model fitness landscapes of combinatorial problems using a graph. It studies the
relationships between LON features and the performance of meta-heuristics such as iter-
ated local search algorithms. Their results show that some LON features can be used for
the prediction of the running time to success. In Clergue et al. (2018), a general-purpose
landscape-aware hill-climbing iterated local search strategy is introduced to solve the cellular
automata problem of the 6-states firing squad synchronization problem (FSSP). In partic-
ular, an acceptance criterion (neutral hill climbing or netcrawler) based on the neutrality
of the landscape is proposed, to prevent the search algorithm from being stuck in search
spaces with large plateaus.

The value constraint satisfaction problem (VCSP) framework is introduced in Kaz-
natcheev et al. (2020) to represent fitness landscapes. The work aims at finding classes
of fitness landscapes enabling local search strategies to be tractable, i.e., solvable in poly-
nomial time. This is done by identifying useful properties of VCs to be used, such as
tree-structured graphs and boolean VCSP settings. Ochoa et al. (2008) is among the first
topological and statistical analyses providing a characterization of combinatorial landscapes.
Its authors use the concept of inherent networks, borrowed from statistical physics, to better
represent landscapes graphically. They focus on the case of NK-landscapes and analyze
its attributes such as basins of attractions, their size, and clustering coefficients.

Also, FLA has been used to characterize multi-objective optimization (MO) problems.
For instance, in Liefooghe et al. (2020) it is proposed to predict the performance of evolution-
ary multi-objective (EMO) search algorithms on blac-box functions. The authors highlight
that the use of manually designed features to analyze EMO performances is a common
practice, and propose additional general-purpose features (ruggedness and multi-modality)
to tackle some black-box MO problems. In Essiet and Sun (2020), the focus is put on
dynamical multi-objective optimization problems (DMOPs) with a time-dependent MO fit-
ness landscape. They propose a landscape-aware dynamical version of a classical algorithm
(NSGA-III), using adaptive mutation and recombination operators in mating. The aim is
to keep track of the moving MO fitness landscape, i.e., the Pareto front.

Recently, some authors have study ML problems using FLA. For example, Bosman et al.
(2017) addresses the case of complexity reduction of neural networks using cost penalty

5

regularization for weight elimination, by studying the change in the error landscape of the
regularized neural networks. Particularly, the study proposes hyperparameter changes to
the regularization, to make the error landscape more maneuverable to the back-propagation
algorithm used in training. In Rodrigues et al. (2020), they study the generalization ability
of CNNs on various ML problems. A strong emphasis is made to provide insight on tuning
neuroevolution algorithms to fit the tasks.

When it comes to the particular topic of NAS, the exploitation of FLA is nascent. In
Pimenta et al. (2020), authors propose to represent an AutoML pipeline in the framework
on FLA, and analyze its heterogeneous search space using measures of FDC and neutrality
ratio. Nunes et al. (2021) is among the first works to use FLA features to characterize
the search space explored by NAS methods for automatically designing graph neural net-
works (GNNs). They use established metrics (fitness distance correlation, dispersion) to
characterize the difficulty for NAS on several GNNs benchmarks.

3. Fitness Landscape Footprint

This section introduces the fitness landscape footprint. First, the fitness landscape 𭟋 is de-
fined. Then, we introduce general-purpose features for FLA, including the fitness distance
correlation, local optima and the ruggedness. Next, we propose the concept of persistence to
characterize over time the behavior of sampled configurations. Last but not least, we intro-
duce the fitness footprint framework to describe and compare NAS optimization problems
in a simple manner.

3.1 Fitness Landscape

A fitness landscape 𭟋 is a framework to help study any optimization problem defined by a
search space Ω, a measurement of fitness f for samples in Ω, and a neighborhood operator N
to navigate Ω. It is defined as the triplet combination 𭟋 = (Ω, f,N) (Stadler (2002)).

In a landscape, the fitness function f assigns a fitness value to every configuration x in
the search space Ω:

f : Ω −→ R

x 7−→ f(x) (1)

In the context of NAS, we consider f as being the evaluation of performance for a neural
network configuration x ∈ Ω after a training regime of length ti.

In order to provide a structure to the fitness landscape, one needs to think of a way to
arrange the configurations of the search space Ω, and how they can be reached from one
another. This is the role of the neighborhood operator N which assigns to each solution x
in the search space Ω a set of neighbors N(x) ∈ P (Ω). For our NAS use case, we consider
the Hamming distance as the metric to define a neighborhood N as shown in Equation 2:

N(x) = {y ∈ Ω | dhamming(x, y) = 1}
(2)

where for each configuration x ∈ Ω, its neighbors N comprise all configurations y ∈ Ω
distant of a Hamming unit (1) to x.

6

3.2 Fitness Distance Correlation (FDC)

The fitness distance correlation (Jones and Forrest (1995); Pitzer and Affenzeller (2012))
is a classical FLA concept used to characterize the hardness of optimization problems.
Originally used as a general-purpose score to study fitness landscapes, it can also be visually
assessed as the fitness versus distance to a global optimum x∗, for all solutions y ∈ Ω.
Equation 3 introduces the concept:

FDC(x∗,Ω, f) = {(dhamming(x
∗, y), f(y)), ∀y ∈ Ω} (3)

where x∗ is the global optimum, Ω is the search space, f is a fitness function, and dhamming

is the hamming distance.

3.3 Ruggedness

In the context of NAS, a random walk represents a path of consecutive random steps in
the space of neural networks representations, where for each pair of consecutive solutions
dhamming(x

i, xi+1) = 1. For instance, when configurations are represented by a binary
vector, a step of random walk consist in the action of randomly flipping a bit in the vector,
resulting in a new state.

In this context, an additional feature to characterize the difficulty of optimizing over
a fitness landscape 𭟋 is to measure its ruggedness (Stadler (2002)). A common metric of
ruggedness is the autocorrelation ρ (serial correlation) on a series of fitness values f for
configurations in a random walk W = {x0, ..., xj , ..., xn} in Ω. Once ρ is derived, the final
ruggedness τ is the inverse of the autocorrelation for all consecutive samples (k = 1 lags):
τ = 1

ρ(1) . Equation 4 introduces the formula of the autocorrelation function ρ:

ρ(k) =
E[(f(xi)− f̄)(f(xi+k)− f̄)]

V ar(f(xi))
,∀i ∈|W |

(4)

In NAS, measuring the ruggedness of 𭟋 can be interpreted as the variability in fitness f
one can expect from a local search baseline algorithm in Ω.

3.4 Local Optima

Combinatorial optimization problems often aim at finding solutions either maximizing or
minimizing a cost function f , in the case of single-objective problems (Pitzer and Affenzeller
(2012)). Therefore, looking for such optimal configurations should not be diverted by the
existence of locally optimal solutions.

Considering a fitness function f , and a neighborhood structure N , a configuration x∗ in
search space Ω is a local optimum (minimum) if its fitness is lower than any of its neighbors,
i.e., f(x∗) ≤ f(y), ∀y ∈ N(x∗). In this case, x∗ is a local minimum. In the case of a fitness
lower than any other solution in the search space, i.e., f(x∗) ≤ f(y), ∀y ∈ Ω, then x∗ is the
global minimum. The same can be defined for local maximum and global maximum.

Moreover, a way to measure the difficulty of a fitness landscape 𭟋 is to enumerate the
existing local optima in Ω. On the individual basis, a local optimum can be retrieved using
a local search procedure (Hernando et al. (2012)), e.g., a best-improvement local search
(BILS) for a local maximum. The algorithm 1 describes the procedure of BILS.

7

Algorithm 1: Best-improvement local-search (BILS)

Choose an initial solution x ∈ Ω;
repeat

x∗ = x;
for i = 1 to | N(x∗) | do

Choose yi ∈ N(x∗);
if f(yi) < f(x) then

x = yi;
end

end

until x = x∗;

Several methodologies have been defined to estimate the number of optima in Ω (Her-
nando et al. (2012)). One of the simplest, and least computationally expensive, is the
birthday problem (Matthew and Mullin (1999)). As described in Algorithm 2, the proce-
dure consist in an average estimation over T trials. For each trial i, we collect M local
optima by applying BILS from M distinct and randomly selected starting points. Then, we
measure ki, the number of distinct local optima, until the first duplication out M samples
at trial i. Then, we derive kmean as the average rank of first duplicate for all T trials.

Algorithm 2: Analytics of the birthday problem

Let T the total number of trials of enumeration;
for i = 1 to T do

Choose M distinct random starting points in Ω;
Iteratively collect the M Local Optima using BILS;
Let ki the number of Optima at first duplication;

end
Let kmean the average number of Optima at duplication;
Derive N the number of Optima using kmean and Eq. 5;

Equation 5 describes how to obtain the final estimation of number of optima N :

N ≈ k2mean

−2 ∗ ln(1− PD)
(5)

where PD = 0.5 is the fixed probability of duplicated local optima, and kmean the average
number of (different) local optima found until the first duplication. In other words, if kmean

configurations are observed on average, with a chance PD = 0.5 that two or more of them
share the same rank, then the number of local optima approximates to N . It is analogous
to the original birthday problem, where one tries to estimate the number kmean of persons
that can fit in a room until two or more share the same birthday (given a fixed chance of
duplicates PD = 0.5 and N = 365 days in a year). In our case, N is unknown, so we are
tackling the reverse birthday problem (a.k.a., the estimation of the martian year length).

8

3.5 Persistence

NAS aims to find neural network configurations maximizing fitness f on unseen data (test
sets) after a given budget of training time ti. While performances are usually only considered
at the end of the training time ti, we propose to study configurations based on how their fit-
ness evolve thought training time, given a series of fitness measurement {f(t0), ..., f(ti), ..., f(tn)}
and respectively increasing training budget {t0, ..., ti, ..., tn}.

Let us consider a ranking function Ranking(N, ti), that retrieves all models y ∈ Ω, with
respect to a rank N , based on f(y) at training time ti; and an ordered series of training
duration Rall = {t0, ..., ti, ..., tn}.

Then, we define persistence Π as the probability for model configurations ranked by
function Ranking(·) to keep their initial rank (i.e., the one observed at t0) through Rall.
Equation 6 outlines Π:

Π(Ranking(·), N) =
P (∩ti∈Rall

Ranking(N, ti)

P (Ranking(N, t0))
(6)

Particularly, we consider Ranking(·) to be either TopRank(·), i.e., retrieving all models
ranked TOP − N(percentiles), or BottomRank(·), for the Bottom − N(percentiles) per-
formers at training time ti. Then, the positive persistence ΠPositive(N) and ΠNegative(N)
informs on the probability for configurations in Ω to remain Top − N or Bottom − N
performers over time, respectively.

ΠPositive(N) = Π(TopRank(·), N)

ΠNegative(N) = Π(BottomRank(·), N) (7)

We also propose to measure the area under the curve of the persistence. This metric
shall inform on the evolution of the persistence as a function of the rank N (Equation 8).

AuC(Π(·, N)) =

∫ Nmax

1
Π(·, k) dk (8)

3.6 Fitness Landscape Footprint

In order to provide researchers with a tool that helps them to characterize, and analyze the
potential and difficulty of a NAS problem, and to compare different problems (including
different landscapes, fitness functions, neighborhood operators, and search spaces), we pro-
pose the fitness landscape footprint. The footprint is defined as a set of the following
key quantities, derived from the analysis of the landscape:

• Overall fitness: A measure of the expected overall fitness f , and its standard deviation
for all sampled configurations y ∈ Ω. These inform on how easy it is to fit the ML
task at hand with search space Ω.

• Ruggedness: A measure of the difficulty of performing local search in Ω via analysis
of random walks (Section 3.3). In the case of several available walks, we select the
ruggedness ρmean(1) as the average of ρi(1) for all evaluated routes i on a given

9

dataset d. The final measurement of the ruggedness τd is obtained as τd = 1/ρmean(1).
A large ruggedness would imply large fluctuation (little correlation) from one step to
the other of a local search. Little values indicate smoothness (high correlation) in
fitness.

• Cardinal of optima: An estimation of the number of local optima in Ω (Algorithm 2).

• Positive & negative persistence: The probabilities Π for model configuration y ∈ Ω
to remain among the best (or worse) over time (Section 3.5). In particular, the prob-
ability Π(N = 25) of keeping a Q1 rank(Top or Bottom −25%), and the area under
the curve AuC(N = 25) of the persistence for N =< 25. While the measurement of
persistence at Q1 would inform on the chance of getting an elite model, its AuC (see
Equation 8) would tell us about the evolution of such persistence at more restricted
ranks (N < 25).

4. Experimental Setup

Our experiments aim to describe and compare the landscape of NAS problems using the fit-
ness footprint. This section describes the datasets used to derive NAS landscapes, and
provides additional details regarding the experiments.

4.1 Data Sets

CIFAR-10 is an image classification data se (Krizhevsky (2012)). It consists of 60000
images (32x32 pixels) and its correspondent label (with no overlap). The data is split in
10 classes (6000 images per class), namely: airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. Also, the data is split into training (50000 samples) and test
(10000 samples).

The So2Sat LCZ42 is an Earth observation image classification dataset (Zhu et al. (2020)).
It contains co-registered image patches from the Sentinel-1 and Sentinel-2 satellite sensors,
all assigned to a single label out of 17 classes. Each pair is of 32x32 pixels, 10 multi-spectral
bands for Sentinel-1 images and 8 bands for Sentinel-2. The existing classes describe each
image patch in the global land cover framework of local climate zones (LCZs), with 10
classes assigned to urban or built areas (1 to 10) and 7 to natural sites (11 to 17). The
classes are as follows: compact high-rise (1), compact mid-rise (2), compact low-rise (3),
open high-rise (4), open mid-rise (5), open low-rise (6), lightweight low-rise (7), large low-
rise (8), sparsely built (9), and heavy industry (10), dense trees (11), scattered tree (12),
bush, scrub (13), low plants (14), bare rock or paved (15), bare soil or sand (16), and water
(17). Note that in the original data set the classes 11 to 17 are related as A to G. Figure 2
displays four (4) pairs of Sentinel-1 and Sentinel-2 image patches respectively from classes
2, 6, 14 and 17.

The data is split into training (352366 images), validation (24188) and test (24119).
It is important to note that two various pools of cities were used to build So2Sat LCZ42:
samples collected from 32 cities around the globe were selected to form the training set, while
samples from 10 other cites were used for the validation and test set, with a geographical
split (east and west) to insure distinct samples.

10

Figure 2: So2Sat LCZ42 samples. The top row contains SAR patches (Sentinel-1), followed
by the associated Multi-spectral patches (Sentinel-2) in the bottom row.

Variable cell

Cell 1

Cell 2

Cell 3

in

out

Fixed stack

Stack 1

Stack 2

Stack 3

Fixed backbone

Conv stem

Downsample

Downsample

Global avg pool

Dense

Figure 3: Visual description of the backbone of image classifier samples in NASBench-101.

The NasBench-101 is a benchmark for NAS methodologies in the context of image classifi-
cation (Ying et al. (2019)). It consists of Nsol = 453k distinct CNN architectures and their
fitness evaluation at various training steps (4, 12, 36 and 108 epochs), on the dataset of
CIFAR-10. Its underlying search space Ω is of CNN configurations with a fixed backbone
consisting of a head, a sequence of three (3) repeated blocks, followed by a dense softmax
decision layer. The head (conv stem) is a 3 x 3 convolution with 128 output channels.
Each block or stack, is a sequence repeating three (3) times an elementary unit, referred
to as cell. In this micro search-space, a cell is a DAG containing at most V = 7 nodes and
Nedges = 9 edges. Moreover, each node has a label selected out of L = 3 possibilities: {3x3

11

convolution, 1x1 convolution, 3x3 maxpool}. In practice, a solution x ∈ Ω is represented
by an adjacency matrix of variable size and its list of operators. Figure 3 illustrates the
structure of the image classification backbone used in The NasBench-101.

4.2 Additional details

The following paragraphs provide experimental details. First, we explain the custom encod-
ing used to represent samples involved in the FLA of both CIFAR-10 and So2Sat LCZ42.
Then we detail the sampling of the search space, the performance evaluation speed-up, data
distribution and others, only involved in So2Sat LCZ42 experiments.

Custom encoding: In order to analyze the landscape of both datasets, we use an al-
ternative encoding to Ying et al. (2019), for solutions of the search space. In the original
DAG, there are at most five (5) intermediate nodes (excluding IN and OUT), each labelled
using L. In the new DAG, we consider non-labelled nodes by replacing each with three
(3), for each possible state of operator in L. The new graph has a fixed number of nodes,
V = 1 + 5 ∗ 3 + 1 = 17 and the resulting adjacency matrix is non upper-triangular and of
size S = 17 ∗ 17 = 289. We decide to identify each candidate by the binary vector obtained
after flattening the matrix.

Sampling of the search space: Training numerous models can be expensive (time and
hardware resources), thus we identified the smallest number of sample to consider for rep-
resentative results. Figure 4 displays the density of fitness (on validation, 36 epochs of
training on CIFAR-10) for various sample sizes. The curves represent the fitness density for
randomly selected models. Based on this information, we set N = 100 samples, because it
presents a good trade-off between quality and number of evaluations. In practice, we use a
Latin hypercube sampling (LHS) strategy to draw the samples (to have a well distributed
sample). Because of the complexity of sampling on the larger encoding, we perform LHS
on the joint representation of original adjacency matrix and list of operators.

Data distribution: Regarding experiments on So2Sat LCZ42, we split the original train-
ing set randomly into final training (80%) and final test (20%). The motivation is to ensure
training and evaluation of models on the same data distribution, as done in CIFAR-10. For
each data sample, we only consider Sentinel-2 as source of input.

Performance evaluation speed-up: In order to speed up the evaluation of models on
So2Sat LCZ42, we look for the smallest subset of training data enabling representative
fitness in test. Figure 5 shows fitness in test as a function of the share (%) of the training
set, assessed with the overall accuracy, kappa Cohen coefficient, and average accuracy. The
values are normalized with respect to using 100% of the training set. We identify that using
35% of the training set enables to reach 96.5% of the reference performance. Thus, we ran
our experiments using this setting. For each model, we consider the fitness as the average
fitness of three independent runs.

Miscellaneous: Due to memory limitations, we set the size of the batches to 128 (instead
of 256) when training or evaluating on So2Sat LCZ42. The rest of the experimental hyper-
parameters are default as in Ying et al. (2019). The training and inference were done on
an Nvidia V100 GPU.

12

Figure 4: Density of fitness for various sizes of samples of CIFAR-10.

Figure 5: Fitness as a function of the share of training data on So2Sat LCZ42.

13

5. Results

This section introduces the experimental results. First, we study the fitness distribution for
both problems. Then, we analyze the landscape characteristics, such as the fitness distance
correlation, the ruggedness and local optima. Next, we present the persistence results.
Finally, we assess and compare the respective fitness footprints.

5.1 Density of Fitness

In the context of NAS, the density of fitness measures the potential of a search space in
fitting a given task. Figures 6 and 7 show the density of fitness in test for various training
budgets for CIFAR-10 and So2Sat LCZ42, respectively.

Figure 6: Density of fitness for various training budgets on CIFAR-10.

In both cases, the longer the training, the closer is the density to 1, the highest (and best)
possible fitness value, with most fitness above 75% after 36 epochs. Thus, when trained long
enough (≥36 epochs), most solutions of the search space show very good fitting capacity on
both data sets. Therefore, from the search perspective, there is a high chance of retrieving
a good solution from Ω on both domains, regardless of the ability of the NAS algorithm
itself.

14

Figure 7: Density of fitness for various training budgets on So2Sat LCZ42.

In addition to measuring empirical densities of fitness, we investigate how they compare
to theoretical distributions. Figure 8 provides results for such comparison on CIFAR-10.
The theoretical distributions are the Beta (red), Weibul (green) and Lognormal (blue). The
top-left and bottom-left hand figures show the associated histograms and plots of cumulative
density functions (CDFs) of fitness. The top-right and bottom-right hand figures show the
quantile-quantile (QQ) and percentile-percentile (PP) plots.

Table 1 presents the fitting error for each theoretical distributions. The fitness is ob-
served in validation after 36 epochs of training. On CIFAR-10, PDF fitting is feasible and
in favor of the Weibul distribution, which is close or on par with the empirical distribution
of accuracy. Indeed, in terms of fitting error the Weibul distribution generates the highest
likelyhood and lowest AIC and BIC error values.

Error Metric / Function Beta Weibull LogNormal
Likelihood 5007293 534817 250868
AIC -1001455 -1069630 -501732
BIC -1001433 -1069608 -501710

Table 1: PDF fitting error on CIFAR-10

15

Figure 8: Comparison of empirical and theoretical densities of fitness on CIFAR-10, after
36 epochs of training.

Figure 9 and Table 2 present the results on So2Sat LCZ42. In this case, the LogNor-
mal distribution fits better the challenging multi-modal empirical distribution. The other
theoretical distributions fail to capture its second modality.

Error Metric / Function Beta Weibull LogNormal
Likelihood 84.47 83.32 92.24
AIC -164.91 -162.64 -180.48
BIC -159.73 -157.43 -175.27

Table 2: PDF fitting error on So2Sat LCZ42

To summarize, the evaluated search space provides with high fitness values already after
36 epochs of training, on both datasets. Results also indicate the possibility to model the
distribution of fitness of Ω for both datasets.

16

Figure 9: Comparison of empirical and theoretical densities of fitness on So2Sat LCZ42,
after 36 epochs of training.

5.2 Fitness Distance Correlation

Figures 10 and 11 shows the FDC for CIFAR-10 and So2Sat LCZ42, respectively. The
top-left plot shows the histogram of the Hamming distance to the global optimum. The
top-right plot compares the FDC (linear fit) with the trained models (36 or 108 epochs).
The bottom-left and right figures show the individual FDC (36 and 108 epochs of training).
In all cases, the fitness is measured on the test set.

The histograms of distance to the optimum show, for both datasets, distributions ap-
pearing to be uni-modal and bell-shaped. They are centered around distance dhamming = 10
and covering a wide range of distances. These results suggest that the models sampled on
So2Sat LCZ42 are diverse and representative (of the search space). It also establishes a
common ground for comparison of the FDC on both problems.

Regarding CIFAR-10, after 36 epochs of training, most solutions show a good fitness,
i.e., above 70%, on the whole spectrum of distances. Also, a consistent increase in fitness
(close to 1.66%) per unit of distance travelled towards the optimum is observed. Moreover,
aside from the outliers, we notice the regrouping of poorer performers at dhamming = 14,
creating a valley-like shape in the landscape. After 108 epochs of training, the increase of
fitness when approaching the optimum diminishes, indicating a flat landscape or plateau.

17

Figure 10: Fitness distance correlation on CIFAR10.

Regarding So2Sat, most of the solutions perform well (above 60% of fitness) after 36
epochs, regardless of their proximity to the optimum. The non-consistent increase in fitness
when approaching the optimum suggest high ruggedness and the existence of several local
optima (e.g., dhamming = 10, 11, 14). In the long run the landscape becomes flat, with most
solutions exhibiting high fitness (above 92%).

To summarize, the FDC of both problems show a landscape improving towards high
fitness as the training budget increases, and with a plateau-like shape. Despite an apparent
higher ruggedness, NAS trajectories could benefit with higher gain from training only for 36
epochs. Therefore, we decided to focus the remainder of this study in the more challenging
scenario of a training limited to 36 epochs.

5.3 Ruggedness

To analyze the ruggedness, we study the behavior of random walks in Ω. Figure 12 shows
evaluations of thirty (30) independent random walk routes on CIFAR-10. Each route is
composed of one hundred (100) steps, starting from a randomly sampled configuration.

18

Figure 11: Fitness Distance Correlation on So2Sat LCZ42.

Figure 13 shows the fitness distribution for each route. Overall, there is a high fluctua-
tion in fitness from one route to the other. Most exhibit a fitness above 75%, even though
some have distributions in the lower end, suggesting walks being stuck near local minima.
For example, route 22.

Particularly, two routes stand out given their distributions of fitness. Route 1 (R1)
displays a median (med=0.89) in the higher end, with little variance (std=0.03), while
route 16 (R16) has the lowest median of all (med=0.58), with a widespread distribution
(std=0.14).

As a ground of comparison, we also evaluate those two extremes on So2Sat LCZ42.
Results for both datasets are presented in Figure 14. All curves result from a processing
with a moving average of five (5) steps.

For R1, we observe distributions that are centered around high values with little variance.
Both paths show several identical bumps and curvatures. Subtracting a constant value
K = 6% to the fitness on So2Sat LCZ42 results in a curve close to R1 on CIFAR-10.
Similarly, for R16, the route on So2Sat LCZ42 shows a curvature similar to CIFAR-10.
Removing a constant K = 20% from the fitness on So2Sat LCZ42 results in a curve closely
fitting R16 on CIFAR-10. Therefore, the results suggest a similar ruggedness on both
datasets, for the areas of the landscape being explored with R1 and R16. Additionally, it

19

Figure 12: Random walk routes after 36 epochs on CIFAR-10.

is an indication of a common imprint of the search space Ω on trajectories of NAS, across
datasets. So far, we identify a variability K in fitness, such as: 6% ≤ K ≤ %20.

Summarizing, the variability (fitness) observed in the random walks suggests that there
are areas in Ω with higher (or lower) fitness potential. The comparison of a few routes show
similar trajectories and ruggedness on both datasets.

5.4 Local Optima

To complement the analysis of ruggedness, we look to quantify the number of local optima
in Ω. Table 3 presents the results of the estimation on CIFAR-10. The fitness consist in
the accuracy in test after 36 epochs of training. The estimation is obtained by executing
Algorithm 2 for T = 9 trials. For each trial i, we perform M = 200 runs of best improvement
local search in order to measure the index of the first occurrence of duplicates ki. Note that
because of the ascending nature of the BILS algorithm, it leads to local maxima.

On average, the length of the step is 2.86, with an improvement in the fitness of 5.03%.
Over the whole experiment, the average index of repeat for a budget ofM runs is kmean = 94.
Using Equation 5 and kmean, we estimate NCIFAR−10 = 6373 local optima (maxima) on
Ω (CIFAR-10). Besides, we report six (6) additional failing runs with no duplicates found
within M runs.

Next, we look to approximate this value on So2Sat LCZ42 with only a few evaluations.
Assuming a continuity in fitness for neighboring solutions in Ω, i.e., locality, we derive the

20

Figure 13: Distribution of the fitness of the random walks on CIFAR-10 (36 epochs training).

Trial Avg. Step Avg. Improvement(%) First Repeat k Cardinal
1 2.90 4.53 94 6373
2 2.89 5.48 57 2343
3 2.78 4.76 26 487
4 3.02 5.55 58 2426
5 2.86 5.06 38 1041
6 3.01 4.5 195 27429
7 2.83 5.77 52 1950
8 2.80 4.78 129 12003
9 2.70 4.79 197 27994

Summary 2.86 5.03 94 6373

Table 3: Enumeration of local optima (maxima) in CIFAR-10 via the birthday problem
statistics.

number of local maximaNproxi by counting solutions with higher fitness than theirNnei = 10
nearest neighbors. Using such approximation for the Nsamples = 100 identical samples on
both datasets, we derive a ratio of enumeration using:

roptima =
Nproxi−LCZ42

Nproxi−CIFAR−10
(9)

Then, we derive final the enumeration on So2Sat LCZ42 using:

NLCZ42 = roptima ∗NCIFAR−10 (10)

21

Figure 14: Random walk routes 1 and 16 on CIFAR-10 and So2Sat LCZ42. Fitness in test
for models trained 36 epochs.

where, roptima = 75% is the obtained ratio, and NCIFAR−10 = 6373 the ground truth
approximation on CIFAR-10. This leads us to NLCZ42 = 11153, the approximation of the
enumeration on LCZ-42.

Overall, results indicate approximately 75% more local optima on the landscape of LCZ-
42 than on CIFAR-10.

5.5 Persistence

Also, we analyzed the samples from the perspective of persistence in their rank over time.
Figure 15 depicts results of persistence on CIFAR-10, considering Nsamples = 1000 sam-
ples and their fitness in test. The top and bottom plots show the positive and negative

22

persistence, respectively. For each plot, the blue curve represent the reference population,
i.e., the set of models at a given Rank −N (Nth percentile) considering the fitness after 4
epochs of training. The yellow curve stands for the share of these models maintaining the
same Rank − N after 12 epochs. The green and red curves are for the remaining models
also maintaining the same Rank −N after 36 and 108 epochs of training.

(a)

(b)

Figure 15: Positive and Negative Persistence across training regimes in CIFAR-10.

Regarding CIFAR-10, the chance of remaining Top−N% until 12 epochs is rather high
for all N (all above 30%), despite an important drop with N below 40. We notice that the
chance of remaining Top−N% performer until 36 epochs and until 108 epochs, are almost
overlapping, with a consistent decrease as N increases. Similarly, the chance of remaining

23

Bottom−N% performer until 36 and until 108 epochs are tied, even tough for N below 20,
chances tend to zero. If a model is Top−N% (or Bottom−N%) performer until 36 epochs,
it will most likely remain Top−N% (or Bottom−N%) performer until 108 epochs.

Figure 16 introduces the persistence for So2Sat LCZ42. In this case, the positive persis-
tence remains quite high (above 25% for all N). For the elite performers (Q1), we notice a
high peak in persistence as N drops below 30. On the other hand, the negative persistence
displays a steady drop until N equals 20. Results on this problem indicate in general higher
positive and negative persistence, in particular for the elite N-performers, solidifying their
rank over time.

(a)

(b)

Figure 16: Positive and Negative Persistence across training regimes in So2Sat LCZ42.

24

Overall, the positive persistence in both problems evolves similarly, and it is noticeable
even for ranks below the first quartile (Q1). On the other hand, the negative persistence
on LCZ-42 remains consistently higher.

5.6 Fitness Landscape Footprints

Finally, we present the fitness footprint for both datasets. Figure 1 depicts the footprint of
CIFAR-10 in blue, and So2Sat LCZ42 in orange. Except for persistence, the fitness (test)
is considered for 36 epochs, as the landscapes appear more challenging at this stage. The
main takeaways are:

• Overall fitness: Both data sets show a similar overall fitness (around 83%), but
So2Sat LCZ42 present a slightly higher deviation (10%), suggesting more variability
in the fitness of its search space.

• Ruggedness: The 10% higher ruggedness on CIFAR-10 (1.93 instead of 1.75) is coher-
ent with the qualitative assessment made of the random walks (Figure 14), suggesting
more fluctuations and difficulties to overcome by local search-based algorithms on
CIFAR-10 than on So2Sat LCZ42. While this was assessed on 36 epochs, we expect
it to hold true for longer training regimes.

• Cardinal of optima: With approximately 75% more local optima on So2Sat LCZ42
(11153 versus 6373), the chances of being trapped in a non-optimal region of the space
are higher on So2Sat LCZ42 than on CIFAR-10. Then, solution diversity should be
considered when designing a (local search-based) algorithm to do NAS on So2Sat
LCZ42 (i.e., exploration-exploitation).

• Positive persistence: Elite models persist over time, i.e., the chances of finding a
model that will be top-25% performer in test from 4 until 108 epochs of training is
32%. Moreover, on So2Sat LCZ42, elite models (rank < 25%) will remain on the top
with higher probability (0.48). Therefore, spotting elite performers early could help
to improve NAS performance.

• Negative persistence: Furthermore, we observe on So2Sat LCZ42 a higher chance
of models remaining bottom-25% performers across training time (28% versus 6.4%)
and a larger AuC of persistence for ranks below 25%. In other words, it is important
to avoid poor performers early is more critical on So2Sat LCZ42, while it is not a
concern on CIFAR-10.

Overall, we observe similarities in the characteristics of the footprints of both problems.
Some key aspects such as the persistence could be help improve local search baselines on
both problems.

6. Discussion

The following paragraphs provide a discussion of the results obtained. First, we discuss
results of each individual aspects of the fitness landscape analysis. Then we discuss the foot-
print as a way to summarize the analysis.

25

Density of fitness: Our first experiments consisted in measuring the PDFs of fitness
on both problems, and attempting to fit them with various theoretical distributions. In
doing so, we notice similarities in the evolution of densities in both problems. Indeed,
the PDFs tend to be uni-modal, very narrow distributions and close to 1, the longer the
training. In other words, most solution of the search space have high-capacity fitting both
datasets, given enough training. We consider this as a first indication that most NAS search
strategies might perform well with 108 epochs of training, regardless of their search ability
(on the given problems). Thus, when benchmarking NAS performances on both datasets,
we recommend the use of less training in order to better differentiate the algorithm ability.

Fitness Distance Correlation: Investigating the FDC enabled us to uncover the potential
gain in fitness per travelled hamming distance for a NAS optimizer. The longer the training,
the flatter the fitness landscapes, with high fitness across all the distances to the global
optimum. These results indicate that a NAS algorithm can expect higher gain per iteration
with intermediate training budget, i.e., 36 epochs. Indeed, the flat shape of the landscape
after 108 epochs allows for a more limited margin in NAS trajectories.

Moreover, the results hold for local search based algorithms, as well as evolutionary
computation-based approaches, on the given search space and sample encoding.

Ruggedness: Besides, the analysis of the random walks on both problems (see Figure
14) for two different routes shows that the fitness on both datasets are just at a constant
K away, with a similar curvature. This suggests a strong influence from a common element
of the landscapes: the search space Ω.

Additionally, the slightly larger ruggedness coefficient on CIFAR-10 suggests slightly
more fluctuations in local search trajectories for the dataset. However, because of the
expensive nature of the experiments, we estimated the coefficient on LCZ-42 out of fewer
walks (2 versus 30). Future work could investigate a more in depth measurement and
comparison, given a larger budget of evaluations. This could help better understand how
the locality in fitness differs from one landscape (dataset) to the other.

Local optima: We proceeded to describe the landscapes by assessing the existence of local
optima. Our estimation indicated a larger number of local optima on So2Sat LCZ42 than
on CIFAR-10. This suggests adapting local search-based NAS Algorithms to this problem,
in order to avoid getting stuck in suboptimal areas of the landscape.

Besides, we hereby comment some aspects of the enumeration on CIFAR-10, using the
Algorithm 2. We reported a few (6) failing attempts to recover collisions out of M = 200
runs. This suggests that for some seeds, the limited budget M of repetition was not enough,
and involved a slight underestimation of the average index at collision Kmeans. A more
accurate estimation could be obtained with a larger budgetM of repetition. In this work, we
mainly aimed at providing an early approximation of this value with a restricted budget M ,
following Matthew and Mullin (1999).

Persistence: Then, we investigated the samples from the perspective of a proposed
metric, the persistence. Results indicate a similar positive persistence of 33% on So2Sat
LCZ42 and CIFAR-10. This implies that chances are significant of finding good models
early in their training, in both datasets. From the perspective of search, this also suggest
that the chances that an area of the search space remains fruitful (Top−Nth performers)
are high.

26

On the other hand, we observed a higher negative persistence and greater areas under
the curve (positive and negative) on So2Sat LCZ42. Overall, the high persistence (positive
or negative) on So2Sat LCZ42 indicate good chances of finding early in training models, that
will perform god (or bad) after longer training. Suggesting a potential gain by spotting good
and bad performers early (i.e., considering a short training regime). From the perspective
of the search, this also suggest that chances are quite high that a region of the search space
remains fruitful (with Top−Nth performers) or bad (with Bottom−Nth performers) over
training time.

Overall, results are in favor of performing search with a short training budget (at most
36 epochs), as models might have a good persistence in their fitness.

Fitness footprint: Finally, we introduced the footprint as a way to summarize the pre-
vious aspects of a FLA.

Regarding So2Sat LCZ42, the fitness footprint tells us that we can expect good but
slightly more variable fitness on the search space of NASBench-101. It also informs us that
when deploying NAS on So2Sat LCZ42 there might be potential margin to gain and losses
to avoid using simple heuristics. Indeed, a heuristic to spot elite models early in training
could help filter the search space in order to focus on more fruitful areas of the search
space. On the other hand, a heuristic to avoid poor performers early could help reduce the
overall complexity by saving training time in selection. Another critical heuristic to have is
one enabling diversity in local search helping to avoid bad regions of the search space. As
there is potentially more adjustment in terms of heuristics in order to avoid losses in fitness
(larger cardinal of optima, negative persistence), So2Sat LCZ42 might be a slightly more
challenging problem for NAS given the current search space.

Regarding CIFAR-10, the fitness footprint also describes overall good and stable per-
formances on the search space. A larger ruggedness lets us anticipate more difficulties for
deploying local search. On the other hand, CIFAR-10 also exhibits potential gains to have
by incorporating heuristics for spotting early elite models when deploying NAS algorithms.

Overall, we observe similar characteristics in both footprints. Therefore, we may extrap-
olate from one problem to the other.

7. Conclusion

In this paper, we apply fitness landscape analysis tools to evaluate the hardness of NAS
instances, i.e., the fitness landscape of the architecture search optimization problem in a
fixed search space, and with a defined fitness function and neighborhood operator. Given
this context, we propose the fitness landscape footprint, a novel general-purpose framework
to characterize and compare NAS problems. The insights provided by the footprint may be
used to assess the expected performance and to relate the difficulties that a search strategy
will face at an instance level, among others.

We evaluate our proposal on instances from two image classification datasets: CIFAR-10
and the real-world Remote Sensing dataset of So2Sat LCZ42 for local climate zone image
classification. For both, we consider the NAS problem of optimizing convolutional neural
networks based on the well-known search space of NASBench-101 (Ying et al. (2019)).

Among the findings, we identify several clues indicating that NAS could be performed at
shorter regimen (36 epochs), finding elite models early in their training. Other findings show

27

a common signature of fitness of the search space on both datasets and the visualization of
landscape of both problems for various training settings.

Last but not least, we believe that ability to compare NAS instances using the footprint
could help (I) identifying the search space generating the most favorable NAS instance out
of several possibilities, (II) identifying the fitness evaluation setting (sensor fusion, dataset)
generating the most favorable NAS instance out of several possibilities, (III) identifying the
neighborhood operator (sample encoding, distance or mutation function) generating the
most favorable NAS instance out of several possibilities. Or (IV) identifying a favorable
instance using a combination of (I), (II) and or (III). For future work might investigate
some points listed above, as well as the use of insights provided by a footprint to help
better calibrate a search strategy in a given NAS instance.

Acknowledgments and Disclosure of Funding

Authors acknowledge support by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement No. [ERC-
2016-StG-714087], Acronym: So2Sat), by the Helmholtz Association through the Frame-
work of Helmholtz AI [grant number: ZT-I-PF-5-01] - Local Unit “Munich Unit @Aeronau-
tics, Space and Transport (MASTr)” and Helmholtz Excellent Professorship “Data Science
in Earth Observation - Big Data Fusion for Urban Research”(grant number: W2-W3-100),
by the German Federal Ministry of Education and Research (BMBF) in the framework of
the international future AI lab ”AI4EO – Artificial Intelligence for Earth Observation: Rea-
soning, Uncertainties, Ethics and Beyond” (Grant number: 01DD20001) and grant DeToL,
and a DAAD Doctoral Research fellowship.

References

E Alba, JF Aldana, and JM Troya. Genetic algorithms as heuristics for optimizing ann
design. In Artificial Neural Nets and Genetic Algorithms, pages 683–690. Springer, 1993a.

Enrique Alba, JF Aldana, and José M Troya. Full automatic ann design: A genetic
approach. In International Workshop on Artificial Neural Networks, pages 399–404.
Springer, 1993b.

A. S. Bosman, A. Engelbrecht, and Mardé Helbig. Fitness landscape analysis of weight-
elimination neural networks. Neural Processing Letters, 48:353–373, 2017.

Andrés Camero, Jamal Toutouh, and Enrique Alba. Random Error Sampling-based Re-
current Neural Network Architecture Optimization. arXiv preprint arXiv:1909.02425,
2019.

Andrés Camero, Hao Wang, Enrique Alba, and Thomas Bäck. Bayesian Neural Architecture
Search using A Training-Free Performance Metric. arXiv preprint arXiv:2001.10726,
2020.

Manuel Clergue, Sébastien Verel, and Enrico Formenti. An iterated local search to find many
solutions of the 6-states firing squad synchronization problem. Applied Soft Computing,

28

66:449–461, 2018. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.2018.01.026. URL
https://www.sciencedirect.com/science/article/pii/S1568494618300322.

Fabio Daolio, Sebastien Verel, Gabriela Ochoa, and Marco Tomassini. Local optima net-
works and the performance of iterated local search. GECCO’12 - Proceedings of the
14th International Conference on Genetic and Evolutionary Computation, 10 2012. doi:
10.1145/2330163.2330217.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours.
CVPR, 2019.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In International Conference on Learning Representations (ICLR),
2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A
survey. Journal of Machine Learning Research, 20(55):1–21, April 2019.

Jonathan Engel. Teaching Feed-Forward Neural Networks by Simulated Annealing. Complex
Systems, 2:641–648, 1988.

Ima Okon Essiet and Yanxia Sun. Tracking variable fitness landscape in dynamic multi-
objective optimization using adaptive mutation and crossover operators. IEEE Access,
8:188927–188937, 2020. doi: 10.1109/ACCESS.2020.3031498.

Real Esteban, Aggarwal Alok, Huang Yanping, and V. Le Quoc. Aging evolution for image
classifier architecture search. AAAI, 2019.

Unai Garciarena, Nuno Lourenço, Penousal Machado, Roberto Santana, and Alexander
Mendiburu. On the exploitation of neuroevolutionary information: Analyzing the past
for a more efficient future, 2021.

Leticia Hernando, Alexander Mendiburu, and Jose Lozano. An evaluation of methods for
estimating the number of local optima in combinatorial optimization problems. Evolu-
tionary computation, 21, 12 2012. doi: 10.1162/EVCO a 00100.

Terry Jones and Stephanie Forrest. Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In Proceedings of the 6th International Conference on
Genetic Algorithms, page 184–192, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc. ISBN 1558603700.

Artem Kaznatcheev, David A. Cohen, and Peter Jeavons. Representing fitness landscapes
by valued constraints to understand the complexity of local search. J. Artif. Intell. Res.,
69:1077–1102, 2020. doi: 10.1613/jair.1.12156. URL https://doi.org/10.1613/jair.

1.12156.

Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov, Maxim Fedorov,
and Evgeny Burnaev. Nas-bench-nlp: Neural architecture search benchmark for natural
language processing. CoRR, abs/2006.07116, 2020. URL https://arxiv.org/abs/2006.

07116.

29

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of
Toronto, 05 2012.

Arnaud Liefooghe, Fabio Daolio, Sébastien Verel, Bilel Derbel, Hernan Aguirre, and
Kiyoshi Tanaka. Landscape-aware performance prediction for evolutionary multi-
objective optimization. IEEE Transactions on Evolutionary Computation, 24(6):1063–
1077, 2020. doi: 10.1109/TEVC.2019.2940828. URL https://hal.archives-ouvertes.

fr/hal-02294201.

Marius Lindauer and Frank Hutter. Best practices for scientific research on neural archi-
tecture search. Journal of Machine Learning Research, 21:1–18, December 2020. URL
https://arxiv.org/abs/1909.02453. To appear.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

Rich Caruana Matthew and Matthew Mullin. Estimating the number of local minima in
big, nasty search spaces. In In Proceedings of IJCAI-99 Workshop on Statistical Machine
Learning for Large-Scale Optimization, 1999.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Fran-
con, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep
neural networks. In Artificial Intelligence in the Age of Neural Networks and Brain Com-
puting, pages 293–312. Elsevier, 2019.

David J Montana and Lawrence Davis. Training Feedforward Neural Networks Using Ge-
netic Algorithms. Proceedings of the 11th International Joint Conference on Artificial
intelligence - Volume 1, 89:762–767, 1989.

Matheus Nunes, Paulo M. Fraga, and Gisele L. Pappa. Fitness landscape analysis of graph
neural network architecture search spaces. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’21, page 876–884, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery. ISBN 9781450383509. doi: 10.1145/3449639.3459318.
URL https://doi.org/10.1145/3449639.3459318.

Gabriela Ochoa, Marco Tomassini, Sebastien Verel, and Christian Darabos. A study of
nk landscapes’ basins and local optima networks. GECCO’08: Proceedings of the 10th
Annual Conference on Genetic and Evolutionary Computation 2008, 11 2008. doi: 10.
1145/1389095.1389204.

Varun Kumar Ojha, Ajith Abraham, and Václav Snášel. Metaheuristic design of feedfor-
ward neural networks: A review of two decades of research. Engineering Applications of
Artificial Intelligence, 60(January):97–116, 2017.

Alexander Ororbia, AbdElRahman ElSaid, and Travis Desell. Investigating recurrent neural
network memory structures using neuro-evolution. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 446–455. ACM, 2019.

30

Cristiano G. Pimenta, Alex G. C. de Sá, Gabriela Ochoa, and Gisele L. Pappa. Fitness land-
scape analysis of automated machine learning search spaces. In Lúıs Paquete and Chris-
tine Zarges, editors, Evolutionary Computation in Combinatorial Optimization, pages
114–130, Cham, 2020. Springer International Publishing. ISBN 978-3-030-43680-3.

Erik Pitzer and Michael Affenzeller. A comprehensive survey on fitness landscape analysis.
In Recent advances in intelligent engineering systems, pages 161–191. Springer, 2012.

Aditya Rawal and Risto Miikkulainen. Evolving deep lstm-based memory networks using
an information maximization objective. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016, pages 501–508. ACM, 2016.

Christian M. Reidys and Peter F. Stadler. Combinatorial landscapes. SIAM Review, 44(1):
3–54, 2002. ISSN 00361445. URL http://www.jstor.org/stable/4148412.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen,
and Xin Wang. A comprehensive survey of neural architecture search: Challenges and
solutions. arXiv preprint arXiv:2006.02903, 2020.

Nuno M. Rodrigues, Sara Silva, and Leonardo Vanneschi. A study of generalization and
fitness landscapes for neuroevolution. IEEE Access, 8:108216–108234, 2020. doi: 10.
1109/ACCESS.2020.3001505.

Gustavo Rosa, João Papa, Aparecido Marana, Walter Scheirer, and David Cox. Fine-
tuning convolutional neural networks using harmony search. In Alvaro Pardo and Josef
Kittler, editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications, pages 683–690, Cham, 2015. Springer International Publishing.

Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hut-
ter. Nas-bench-301 and the case for surrogate benchmarks for neural architecture search.
arXiv preprint arXiv:2008.09777, 2020.

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian opti-
mization with robust bayesian neural networks. In NIPS, 2016.

Peter F. Stadler. Fitness landscapes. In Michael Lässig and Angelo Valleriani, editors,
Biological Evolution and Statistical Physics, volume 585 of Lect. Notes Phys., pages 187–
207, Berlin, 2002. Springer-Verlag. doi: 10.1007/3-540-45692-9 10.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

Kalifou René Traoré, Andrés Camero, and Xiao Xiang Zhu. Lessons from the clustering
analysis of a search space: A centroid-based approach to initializing nas. arxiv, 2021.

Bas van Stein, Hao Wang, and Thomas Bäck. Automatic configuration of deep neural net-
works with parallel efficient global optimization. In 2019 International Joint Conference
on Neural Networks (IJCNN), pages 1–7. IEEE, 2019.

31

Jean-Paul Watson. An introduction to fitness landscape analysis and cost models for local
search. In Handbook of metaheuristics, pages 599–623. Springer, 2010.

Colin White, Sam Nolen, and Yash Savani. Local search is state of the art for neural
architecture search benchmarks. International Conference on Learning Representations,
Workshop on AutoML, 2020.

Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci. Nas evaluation is frustratingly
hard. In International Conference on Learning Representations, 2020. URL https:

//openreview.net/forum?id=HygrdpVKvr.

Xin Yao. A review of evolutionary artificial neural networks. International journal of
intelligent systems, 8(4):539–567, 1993.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hut-
ter. Nas-bench-101: Towards reproducible neural architecture search. In International
Conference on Machine Learning, pages 7105–7114. PMLR, 2019.

Arber Zela, Julien Siems, and Hutter Frank. Nas-bench-1shot1: Benchmarking and dissect-
ing one-shot neural architecture search. International Conference on Learning Represen-
tations, 2020.

You Zhining and Pu Yunming. The genetic convolutional neural network model based on
random sample. International Journal of u-and e-Service, Science and Technology, 8(11):
317–326, 2015.

Xiao Xiang Zhu, Jingliang Hu, Chunping Qiu, Yilei Shi, Jian Kang, Lichao Mou, Hossein
Bagheri, Matthias Haberle, Yuansheng Hua, Rong Huang, et al. So2sat lcz42: A bench-
mark data set for the classification of global local climate zones [software and data sets].
IEEE Geosci. Remote Sens., 8(3):76–89, 2020.

32

APPENDIX B. LIST OF PUBLICATIONS

This page is intentionally left blank.

104

Annals of Mathematics and Artificial Intelligence
https://doi.org/10.1007/s10472-022-09823-0

A data-driven approach to neural architecture search
initialization

Kalifou René Traoré1,2 ·Andrés Camero2,3 ·Xiao Xiang Zhu1,2

Accepted: 19 October 2022
© The Author(s) 2023

Abstract
Algorithmic design in neural architecture search (NAS) has received a lot of attention, aim-
ing to improve performance and reduce computational cost. Despite the great advances
made, few authors have proposed to tailor initialization techniques for NAS. However, the
literature shows that a good initial set of solutions facilitates finding the optima. There-
fore, in this study, we propose a data-driven technique to initialize a population-based NAS
algorithm. First, we perform a calibrated clustering analysis of the search space, and sec-
ond, we extract the centroids and use them to initialize a NAS algorithm. We benchmark
our proposed approach against random and Latin hypercube sampling initialization using
three population-based algorithms, namely a genetic algorithm, an evolutionary algorithm,
and aging evolution, on CIFAR-10. More specifically, we use NAS-Bench-101 to leverage
the availability of NAS benchmarks. The results show that compared to random and Latin
hypercube sampling, the proposed initialization technique enables achieving significant
long-term improvements for two of the search baselines, and sometimes in various search
scenarios (various training budget). Besides, we also investigate how an initial population
gathered on the tabular benchmark can be used for improving search on another dataset,
the So2Sat LCZ-42. Our results show similar improvements on the target dataset, despite
a limited training budget. Moreover, we analyse the distributions of solutions obtained and
find that that the population provided by the data-driven initialization technique enables
retrieving local optima (maxima) of high fitness and similar configurations.

� Xiao Xiang Zhu
xiaoxiang.zhu@tum.de

Kalifou René Traoré
kalifou.traore@dlr.de

Andrés Camero
andres.camerounzueta@dlr.de

1 Data Science in Earth Observation, Technical University of Munich, Arcisstrasse 21, 80333,
Munich, Bavaria, Germany

2 Remote Sensing Institute, German Aerospace Center (DLR), Münchener Strasse 20, 82234,
Weßling, Bavaria, Germany

3 Helmholtz AI, Munich, Germany

K.R. Traoré et al.

Keywords AutoML · Neural architecture search · Evolutionary computation · Search ·
Initialization

Mathematics Subject Classification (2010) 68Txx · 68T20 · 68T45

1 Introduction

Deep learning has successfully been applied to a wide variety of problems, showing (in
many cases) super human performance [1, 2]. However, this success has been followed
by an increasing complexity of the deep learning models, that in most cases are manu-
ally designed [3]. State-of-the-art deep neural networks (DNNs) may have several million
parameters, thus automating the design of DNNs is the logical next step.

Neural architecture search (NAS) is the process of automating architecture engineer-
ing [3, 4]. Great advances have been made in this matter, but in practice NAS has not
been adopted yet [3, 4]. From an optimization point of view, NAS is a challenging task. It
requires dealing with huge search spaces (the deeper the model, the bigger the search space),
mixed type solutions (i.e., a combination of integer, discrete, and real values to represent
the model), and solutions that are expensive to evaluate (i.e., training a DNN on a large data
set may take several days).

Researchers are working to alleviate NAS challenges. Several (optimization) approaches
have been tailored to design neural networks [5–7], to speed up model evaluation [8, 9], and
a lot of effort have been put to design NAS search spaces [5, 6]. Recently, some authors
have released performance evaluation databases [10, 11], aiming to democratize NAS, i.e.,
everyone can test a NAS algorithm regardless of having powerful computational resources,
and to improve the reproducibility [3].

Despite the great advances made so far, there remain open questions. For example, many
NAS approaches can be categorized as population-based algorithms [3, 4]. However, little
attention has been drawn to the initialization of the population. Considering all the available
resources, including NAS databases, we propose to address the following question: Can we
improve the performance of a population-based NAS algorithm by initializing its population
with a data-driven approach? To this problem, we propose a novel approach to initializing
population-based NAS algorithms. First, a tailored clustering analysis of a target search
space is performed. Second, after obtaining satisfying clustering results, the centroids are
extracted and used to initialize a population based NAS algorithm.

To validate our proposal, we selected three population-based NAS algorithms: an evolu-
tionary algorithm (EA) [12], a genetic algorithm (GA) [13], and aging evolution (AE) [6],
and benchmark it on the NAS-bench-101 [10] dataset, against the most popular initializa-
tion methods (random initialization and Latin hypercube sampling). We find that centroids
extracted using Bayesian Gaussian Mixture of models (BGM) for clustering are a promising
approach to initialize the population. Particularly, our approach used with GA shows sig-
nificant long-term improvements (after 2000 iterations, in test) over random initialization
and Latin hypercube sampling. When used with EA, a faster convergence (in validation)
and a significant long-term improvement over random initialization and Latin hypercube
sampling is observed. Besides, we also investigate how an initial population gathered with
our proposal on a tabular benchmark can be used for augmenting search on a real world
problem, the So2Sat LCZ-42 scene classification dataset. Our results show that this set of

A data-driven approach to neural architecture...

solutions help accelerate the convergence EA on the target dataset, despite a short training
budget.

Last but not least, we investigate the distributions of the solutions found by the
benchmarked algorithms. More precisely, we compare their configurations based on the
initialization used for each algorithm. Our results suggest that the proposed initialization
method (centroids) enable retrieving local optima (maxima) of high fitness and similar
configurations.

To summarize, the contributions of this paper are the following:

• We propose a novel data-driven initialization method for population-based NAS algo-
rithms: After performing a clustering analysis of the search space, we use the obtained
centroids to initialize a NAS algorithm. The aim of the proposal is to improve the
convergence and long-term performances of a target algorithm, without modifying it.

• We benchmark the proposal on three NAS algorithms and against popular initialization
baselines, and report improvements over other initialization techniques.

• We investigate how the proposed method using a tabular benchmark as input can be
used for augmenting search on another dataset, the So2Sat LCZ-42. We report similar
improvements on the target dataset, despite a limited training budget.

The remainder of this article is organized as follows: The following section introduces
NAS and briefly summarizes the state-of-the-art of initialization techniques. Section 3
describes the proposed methodology. Section 4 introduces the experimental setup. Section 5
presents the results. Finally, Section 6 outlines the conclusions and proposes future work.

2 Related work

In this section, we summarize some of the most relevant works related to our proposal. First,
we introduce NAS and highlight the state-of-the art, with a special emphasis on metaheuris-
tic approaches. Second, we outline the population initialization problem. Third, we describe
the three baseline algorithms that we aim to initialize.

2.1 Neural architecture search

NAS is the process of automating architecture engineering [3]. Currently, it is considered
to be a subfield of AutoML [14]. However, its roots can be tracked to the late 1980s, where
the use of evolutionary computation was explored to design and train neural networks [15–
19]. These ideas gather together under the neuroevolution concept, and in the 2000s gained
popularity thanks to the NeuroEvolution of Augmenting Topologies (NEAT) method [20],
a genetic algorithm (GA) that increasingly evolves complex neural network topologies and
weights. Later, due to apparition of deep learning, the neuroevolution research started to
attract attention again [3, 4].

From the optimization (algorithm) point of view, many approaches can be found in the
neuroevolution literature, ranging from evolutionary algorithm (EA) [21], GA [22], har-
mony search [23] and mixed integer parallel efficient global optimization technique [24], to
Bayesian optimization [7]. And also, from the point of view of the neural network architec-
ture, e.g., recurrent neural network [25], convolutional neural network [26] and generative
adversarial networks [27].

On the other hand, in the past few years, a new branch of NAS approaches emerged
based on continuous optimization (e.g., DARTS [5]). Particularly, these approaches search

K.R. Traoré et al.

over a large graph of overlapping configurations (i.e., the Super-Net) using a gradient-based
approach. These recent improvements result in large speedups in terms of search time [3]
but also in some case in a lack of robustness and interpretability [28].

Despite the NAS approach used, the literature stresses the importance of optimizing the
architecture of a deep neural network (given a particular problem). The main challenges
of NAS are three-fold: First, the number of the parameters increases in proportion to the
number of layers, thus the search space is huge. Second, the search space is (usually) a
mix of categorical (e.g., the type of operation, the activation functions, ...), real (e.g., the
weights), and integer (e.g., the number of hidden layers, the number of neurons per layer,
...) or discrete (e.g., the adjacency matrix) values, resulting in a complicated problem, i.e.,
each parameter type require a different optimization approach. Third, the evaluation of an
architecture is extremely resource and time-consuming. Therefore, NAS problems fall into
the family of expensive optimization problems.

To cope with the latter problem, i.e., the evaluation cost, and aiming to improve repro-
ducibility, lots of effort have been made to provide open-source benchmarks for NAS.
Several areas of applied machine learning have been included in these benchmarks, includ-
ing computer vision (CV) [11, 29–31] and natural language processing (NLP) [32], among
others [3]. Also, some authors have explored techniques to speed up the performance eval-
uation, including learning curve-based estimation [8], one-shot (weight sharing) [33, 34],
training-free methods (a.k.a., 0-shot) [9, 35, 36], among others. The mixed search space
problem has been faced from multiple perspectives, ranging from tailored encoding [37,
38], and specific operations [25], to mixed (hybrid) approaches [39].

Finally, to tackle the problems that arise due to the size of the search space (first chal-
lenge), several authors have invested time tailoring the design of the search space [5, 6],
providing tools to assess its quality [40, 41], and proposing techniques to adapt the search
space [7, 42], among others. Despite all the advances made in this regard, the initialization
of NAS algorithms (especially the population-based ones) has not received much attention.
However, it is important to remark that starting from a set of good solutions is key to solve
large-scale optimization problems using a population of finite size [43].

2.2 Population initialization techniques

All population-based metaheuristic algorithms share a common step: The population ini-
tialization. The goal of this initialization is to provide a first set of solutions, that (normally)
will be improved in an iterative way until the termination criteria is met. A good (or bad)
initial population facilitates (or prevents) finding the optima [43–45], and this is especially
true for large-scale optimization problems that use a small population size [43], which is
the most common case. Therefore, the greater the search space (given a limited population
size), the smaller the chance to cover promising regions of the search space [46].

In the past few decades, some authors have started to propose initialization techniques
aiming to boost the performance of population-based metaheuristic algorithms (mainly
EA) [47, 48]. Great advances have been made, for example, [49] shows that initialization can
increase the probability of finding global optima, [50] shows that stability can be improved,
and in [51] it is show that the solution quality is related to the initialization, among many
others [47, 48].

However, in black-box optimization problems, such as NAS, it is not possible to deter-
mine beforehand what is a good and bad solution. Therefore, not all initialization techniques
are suitable for NAS. Moreover, few practical rules of thumb are provided in the literature

A data-driven approach to neural architecture...

to choose an appropriate initialization technique. Thus, from a practitioner perspective, it is
unclear how to choose the right initialization technique [47].

Considering all these limitations, most practical NAS implementations rely on
(quasi)random [49] initialization or Latin hypercube sampling (LHS) [7, 52–54]. Therefore,
in this study, we propose to tackle the population initialization problem for NAS.

2.3 Baseline algorithms

Next, we introduce three important population-based algorithm, that we consider as base-
lines for the benchmark of initialization techniques. Particularly, a Genetic Algorithm (GA),
an Evolutionary Algorithm (EA), and the Aging Evolution (AE) [6], a popular EA-based
algorithm specifically designed for NAS on CV problems.

2.3.1 Genetic algorithm

A GA is a population-based meta-heuristic algorithm inspired by natural evolution [13]. At
a glance, a population of individuals (a.k.a. solution) is evolved using selection, crossover,
mutation, and replacement operations. Particularly, we use the implementation available in
the latest version (1.3.1) of DEAP library [55]. Algorithm 1 presents a high-level view of
the implemented GA.

Algorithm 1 Genetic algorithm.

K.R. Traoré et al.

Particularly, an individual encodes a neural network architecture (in the given search
space) by a mix of binary entries, that represent the adjacency matrix of the architecture, and
categorical values, that correspond to the operations on the edges of the adjacency matrix.
Please refer to Section 4.1 for more details.

An initial population of size pop size is initialized by the function Initialize(·).
Particularly, we define three variations to initialize the population: Random initialization,
LHS, and our proposed method (Section 3). An individual is evaluated by the function
Evaluate(D1, D2). The decoded architecture is trained using SGD on D1 data set, and
evaluated (accuracy) on D2 data set (a.k.a., the fitness). Then, the best solution (i.e., the one
with the highest accuracy) of the population is selected by the Best(·) function.

Then, the evolution takes place. First, an offspring of size pop size is created. More
specifically, each offspring individual is created by a single point crossover opera-
tion SinglePointCrossover(P1, P2, cx p) with probability cx p, where Pi is
selected using a binary tournament operation BinaryTournament(·). Note that with
probability 1 - cx p one of the parents Pi is returned unmodified. Later, the offspring is
mutated with probability mut p by the function Mutate(·). If mutated, each position is
mutated using bit-flip (for the binary entries) or round-robin (for the categorical values) with
probability mut i. The offspring is evaluated using Evaluate(·), and the current popula-
tion is replaced by the offspring. Finally, the best solution is updated, i.e., if the fitness of
the best individual in the population is higher than the current best solution, then the best
individual become the best solution. Once the number of max evaluations is reached, the
best solution is evaluated using the test data set.

2.3.2 (μ + λ) Evolutionary algorithm

The (μ + λ)EA [12], a generic population-based metaheuristic algorithm, evolves a pop-
ulation of μ individuals by creating λ offspring. Then, both the original population and
the offspring are combined, and the best μ individuals replace the population. Algorithm 2
presents a high-level view of the (μ + λ)EA basic implementation provided by the latest
version (1.3.1) of DEAP library [55].

The population (refer to Section 2.3.1) of size μ is initialized using the
Initialize(·) function. Then, the population is evaluated using the Evaluate(·)
function (refer to Section 2.3.1). Then, the evolutionary process takes place. First, an off-
spring of size λ is generated by randomly sampling (with uniform probability) individuals
from the population. Following, the offspring is mutated using the Mutate(·) function
(refer to Section 2.3.1), and the offspring is evaluated. In the last evolutionary step, the
population and the offspring are combined, ranked according to their fitness, and the top μ

individuals are selected by the RankSelection(·) to replace the current population.
Once the number of evaluations is greater than max evaluations, the best individual of

the population is selected by Best(·), i.e., the solution. Finally, the solution is evaluated
on the test data set.

2.3.3 Aging evolution

A few years ago, the Aging Evolution (AE) [6], an EA-based approach to NAS, became
popular because it achieved state-of-the-art performance on classical CV benchmarks.

A data-driven approach to neural architecture...

Algorithm 2 (μ + λ) Evolutionary algorithm.

Algorithm 3 outline AE. Notice that the nomenclature does not match exactly the one pro-
posed in [6], instead the algorithm presents a version that is closer to Algorithms 1 and 2.
Also, we used the implementation available on NASBench-101 repository.

Algorithm 3 Aging evolution.

AE is a steady state EA, where the oldest individual of the population is replaced by
the offspring. Particularly, the population of size pop size is initialized using the function

K.R. Traoré et al.

Initialize(·), evaluated using the function Evaluate(·) (we are reusing the function
defined above in this section), and the best solution is selected from the population by the
function Best(·).

Then, the evolution begins. First, an individual (i.e., the offspring) is selected using a k
tournament selection. Second, the offspring is mutated by a two-step process Mutate(·):
(i) a hidden state mutation, the connections between operations in a graph-represented solu-
tion (cell) are modified, and (ii) an operation mutation, the operation within the cell is
modified. Then, the offspring is evaluated, and if its performance is higher than the previous
best seen solution, the solution is replaced by the offspring using the function Best(·), In
the last step of the evolution, the oldest individual of the population (i.e., the earliest eval-
uated one in the population) is replaced by the offspring using the Enqueue(·) (add the
new one) and Dequeue(·) (remove the oldest one) functions. The authors of AE claim
that exists a parallel between the introduced age-based removal to a regularization of the
evolution.

The evolution continues until the number of evaluated candidate solutions exceed the
predefined budget max evaluations. Finally, the best solution of the population is returned.

3 A data-driven approach to initializing a NAS search strategy

This section introduces our search initialization technique. First, we describe the overall
pipeline of the methodology. Second, we detail the feature engineering of the proposed
approach.

3.1 Pipeline

This study sets out to answer the following question: Can we improve the convergence of a
population-based NAS algorithm by initializing it with a data-driven approach?

To address this issue, we propose a data-driven initialization technique, depicted in Fig. 1
and formally described in Algorithm 4. Particularly, we propose to perform a cluster analysis
on a randomly selected set of solutions. Then, we propose to use the centroids to initialize
the population of a population-based NAS algorithm.

Let us consider a machine learning task and a search space � (i.e., a set of neural archi-
tectures). Then, let α be a clustering algorithm, and μ the size of the population to retrieve.
First, (i) we sample a set of N architectures (RandomSampling(·)), were N comes from

Search Space

Clustering

Search
Sampling

& Evaluating

Sample

Clusters

centroids

InitializingExtracting

Is the clustering quality
improving ?

Yes

Reiterating

No

Data-driven population initialization Population exploitation

Fig. 1 The pipeline of the proposed data-driven approach to search initialization

A data-driven approach to neural architecture...

a predefined list of sample sizes (list sample size). Then, (ii) we train and evaluate the
performance of all sampled architectures (EvaluateModel(·)). Later, (iii) we encode
(EncodeModel(·)) each solution using the desired feature representation ε (for more
details, refer to Section 3.2). Note that as the feature vector consists of an architecture rep-
resentation and its performance in test (see Table 1), the resulting clusters should relate to
specific behaviors (performances) on the learned task.

Then, (iv) we reduce the dimension of the input features (ReduceDimensions(·)),
as processing high dimensional and sparse data could be extremely challenging. Following,
(v) we assign a cluster to all samples (ClusterFeatures(·)) using the desired cluster-
ing technique α and a predefined number of clusters μ (a.k.a., the population size). In the
following step, (vi) we assess qualitatively and quantitatively the results using the metrics
M (Assess(·)). If the quality of the new clustering is not improving the quality achieved
so far, the process is stopped. Otherwise, the clusters are stored, a new sample size is
retrieved from list sample size, and the whole process is repeated.

Once the termination criteria is met, i.e., all the sample sizes (from list sample size)
have been evaluated or the clustering quality is not improving (refer to Assess(·)), the
centroids of the clusters are extracted (ExtractCentroids(·)) and decoded
(DecodeModel(·)).

Finally, the set of decoded centroids, i.e. the set of architectures that correspond to the
centroids of the clusters (init architectures), is returned. Then, the idea is to use
this set of architectures (init architectures) to initialize a population-based NAS
algorithm.

To summarize, our data-driven initialization approach is:

• Composite: It is a multistep initialization procedure relying on sampling a search space,
clustering it, and initializing an algorithm with the centroids extracted.

• Generic: It is not application-specific, in fact the clustering could be done on any type
of search space given an encoding including a solution representation and its fitness
evaluation.

• Stochastic: The stochasticity of the procedure depends on the randomness of the tool
selected for clustering.

Also, it is important to note that the clusters may be analyzed to obtain insights regarding
the archetypes (i.e., the representative architectures), including the most frequent operations
and the connection between the operations (i.e., the edges in the graph).

Besides, our method does not require a target search baseline to be adapted. It can be
seen as an external and complementary module helping augment a pre-existing algorithm.
Indeed, an algorithm to be initialize would receive an initial population of desired sized, and
ready to be used for deployment.

Table 1 Description of the feature representation encoding the solutions of the search space

Feature representation Components

Short Adjacency matrix + operations + fitness

Long Expanded adjacency matrix + operations + fitness

Each component is in the form of a list, and the ‘+’ symbol refers to the concatenation operator. The fitness
component consists in the list of fitness measured for the various training budget available for a given solution

K.R. Traoré et al.

Algorithm 4 Data-driven initialization technique.

3.2 Feature representation

To best take advantage of information about the search space when clustering, we first
introduce a minimal feature engineering.

As we look to uncover models and structures relevant to NAS algorithms via clustering,
we seek a feature representation encoding an architecture as well as its performances. As
in [10], we consider neural architectures identified by an elementary component repeated in
blocks, a feed-forward cell. This cell is a directed acyclic graph (DAG), with a maximum
number of operations (nodes), a maximum number of transformations (edges) and a fixed
set of possible operations (e.g., max pool, convolution 3x3) labeling each node. A cell is in
practice represented as a list of selected operations and an adjacency matrix of variable size.

In order to use such data in the proposed pipeline, we construct two versions of clustering
feature representation, briefly described in Table 1. The first one (Original, or Short Encod-
ing) consists in concatenating for each model, its adjacency matrix, the list of operations,
and the list of performances in test for all available training duration {t0, t1, t2, t3}. Note that
this is a variable length feature representation due to the nature of the adjacency matrix.

Alternatively, the second representation (Binary, or Long Encoding) corresponds to
using the expanded adjacency matrix, i.e., the matrix that considers all possible operations
(according to the constraints of the search space). This is a fixed length encoding. Figure 2
shows an example of a generic adjacency matrix being tranformed into an expanded one,
right before the step of flattening. Additionaly, Fig. 13 (and Table 3) provide a visualization
of such matrix for solutions retrieved in various algorithm initialization settings.

Moreover, for both encodings, the vector form of the adjacency matrix is obtained by a
flattening in row-major fashion, where consecutive elements in a row are put next to each
other, while iterating over the different rows.

A data-driven approach to neural architecture...

in n1 n2 n3 n4 n5 out

in

n1

n2

n3

n4

n5

out

List of labels: Op1, Op2, Op3

Op1

Action: Label node n2 with operator Op1
and create an edge to the output node out

in n1 n2 n3 n4 n5 outn1 n2 n3 n4 n5 n1 n2 n3 n4 n5

in

out

Op2
Op3Op1

n1

n2

n3

n4

n5

n1

n2

n3

n4

n5

n1

n2

n3

n4

n5

Op2

Op3

Op1

x

Transform an adjacency matrix
to an expanded matrix

OUT

IN

Adjacency matrix

Expanded adjacency matrix

OUT

IN

Fig. 2 A visual description of the transformation of a standard adjacency matrix into an expanded adjacency
matrix for a neural cell in NASBench-101

4 Experimental setup

The experiments performed aim to validate that the initialization of a population-based NAS
Algorithm can benefit from models identified via Clustering Analysis of a search space.
In this Section, first, we introduce the problem used to validate our proposal. Second, we
present the parameters used for performing the experiments on clustering. Third, we detail
the performance metrics used to assess the quality of the clustering.

4.1 NASBench-101

NASBench-101 is a database of neural network architectures and their performance evalu-
ated on the data set of CIFAR-10. It contains N = 450K unique architectures [10]. Indeed,
to tackle the given machine learning task of CIFAR-10, all contained models use of a clas-
sical image classification structure similar to ResNet. Indeed, the backbone of a model
contains a head, a body, and a tail. Its body is made by alternating three (3) times a block
with a down-sampling module. Each block is obtained by repeating three (3) times a module
called ‘cell’. A cell is a computational unit that can be represented by a DAG. It consists of
an input node, an output node and intermediate nodes representing operations (convolution
3x3, convolution 1x1, maxpool 3x3), and connections indicating features being transformed.
Therefore, each architecture differs by its cell. In practice, the DAG of a model is encoded
by an adjacency matrix and a list of operations labelling the associated nodes. The con-
straints on such DAG are the following: There can be at most N = 7 nodes and E = 9
edges in a cell.

Moreover, all models were trained for 108 epochs using the same experimental setting
(i.e., learning rate, etc.), but performance evaluations in training, validation, and test were
also provided after 4, 12 and 36 epochs.

K.R. Traoré et al.

4.2 Hyperparameters for clustering

The clustering experiments were done with a set of randomly sampled models. The size of
the sample is identified in Section 5.2. The considered clustering algorithms are k-means,
DBSCAN, BIRCH, spectral clustering, and a BGM. All were obtained from the latest ver-
sion (0.24.1) of the scikit-learn library [56]. Table 2 shows the hyperparameters selected
for each method, including the maximum number of iterations (Max iter), the number of
samples used at initialization (N init), and other algorithm-specific parameters (Other).
Note that they are either default (NA) or slightly modified to provide satisfying clustering
performances.

4.3 Clustering performance evaluation

Moreover, we use various ways of assessing the quality of the results for each step of the
approach. Regarding the preparation of the initialization, we propose to measure the cluster-
ing performance using the following three (3) standard metrics: Silhouette coefficient [57],
Calinski-Harabasz [58] and Davies-Bouldin index [59]. These metrics inform on how well
separated and dense are the resulting clusters. They all apply in the context of cluster-
ing with missing labels, which is relevant, as we seek to investigate relevant clusters and
features for NAS algorithms without prior assumptions, and well-defined clusters should
provide us with centroids (i.e., models) that are good representatives of all the architectures
in the search space. The Silhouette coefficient is a metric comprised between -1 and +1,
with higher values associated to more dense and separated clusters The Calinski-Harabasz
index also rates a better defined clusters with higher values. Similarly, the Davies-Bouldin
index, measures a similarity between clusters, providing smaller values for better cluster-
ing. Additionally, we propose to corroborate the quantitative assessment with a qualitative
analysis (visual inspection) for validation before the next step.

Regarding the step of exploitation, we assess the quality of the proposed initialization
method using the performance of the search algorithm initialized (best obtained accuracy in
test). More importantly, we compare the performance against initializing the same algorithm
with random and LHS initialization. Also, as a sanity check, we compare the results against
a random search.

5 Results

In this section, we present results on clustering for accelerating NAS algorithms. First, we
show results on selecting the proper tool for dimension reduction and the hyperparameters

Table 2 Hyperparameters of the clustering algorithms

Method Max iter N init Other

KMEANS 500 50 kmeans++ init

DBSCAN 500 200 eps=0.30

BIRCH 500 NA threshold=0.12

SPECTRAL 500 NA NA

BGM 500 NA Dirichlet weight distribution, full co-variance

A data-driven approach to neural architecture...

for the clustering. Then, we show results on identifying the number of clusters providing
satisfying clustering performances. We also present results on qualitatively assessing the
clusters quality for various algorithms. Then, we provide results on improving NAS per-
formances using a centroid-based initialization for three (3) NAS evolutionary algorithms.
Last but not least, we show results of a quantitative assessment for solutions found from the
bench-marking, in the form of matrices of cell occurrence.

5.1 Dimension reduction

To begin our experimental study, we seek to calibrate the dimension reduction of the input
features. To do so, we arbitrarily fix the number of samples to N = 10000, in order to
perform relevant experiments.

Figure 3 shows clustering performance as a function of the number of components of
input features. The blue and red curves display performance using respectively the Short
(Original) and the Long encoding (Binary). The dimension reduction is performed using
PCA, and the clustering with k-means using a fixed number of clusters N = 10.

Using the Short encoding, the three metrics are in favor of using a small number of
components for input features via PCA. Indeed, the smaller the number of components
the higher the Silhouette and Calinski-Harabasz scores, and the lower the Davies-Bouldin
index, with optimal values for using two (2) components. The same is observed when using
the Long encoding.

Using the Long encoding yields slightly better performance than the Short encoding,
with a sensible improvement on larger number of components with PCA.

As both encoding are rather sparse (length of up to 58, or up to 298), we study the effect
of this sparsity in the dimension reduction tool. Figure 4 shows clustering performances as
a function of the number of components of input features, for various reduction tool. The
blue and red curves display performances using respectively PCA and Truncated SVD as
dimension reduction tools. Plot (a) and (b) display results using respectively the Short and
the Long encoding. The clustering is performed with k-means.

Trying an alternative dimensional reduction tool (Truncated SVD) more suitable for
highly sparse data does not worsen results on the Short encoding (see Fig. 4a). Moreover, it
allows for a slight improvement over PCA when using the Long encoding (see Fig. 4b).

To summarize, the findings show that reducing the dimensions of the input features to
2D provides the best performances on both encoding. Using the Long encoding improves
the results. Also, using Truncated SVD shows slight improvements as it is more suitable for
sparse data. Given these findings, the following experiments are performed using Truncated
SVD for a 2D reduction of input.

Fig. 3 Input feature reduction for clustering, with an arbitrary number of clusters N = 10

K.R. Traoré et al.

Fig. 4 Identifying the proper reduction tool for sparse data, using an arbitrary number of clusters of N = 10

5.2 Number of samples

Having identified a suitable dimension reduction tool (Truncated SVD) and value for the
number of components to reduce to (N=2), we now seek to find a satisfying number of
samples for the clustering.

Figure 5 shows clustering performances as a function of the number of clusters, for var-
ious sample sizes. All were obtained when clustering with the Short encoding for feature
representation. The blue, orange, green, red, purple and brown curves are for respectively
using 100, 500, 1000, 2500, 5000 and 10000 random samples. This range of values enables
us to consider small to intermediately large complexity for our proposal.

Overall, all performance metrics points towards the use of large number of clusters.
Indeed, the higher the number of clusters, the higher the Silhouette and Calinski-Harabasz

Fig. 5 Identifying the proper sample size, when clustering using Truncated SVD for dimension reduction
(N = 2 components) and k-means

A data-driven approach to neural architecture...

scores, and the lower the Davies-Bouldin index. These trends are observed for all sample
sizes. Moreover, for both the Silhouette score and the Davies-Bouldin index, the plotted
functions are of similar values (overlap of clustering score as function of the number of
clusters) for most sample sizes. Only the Calinsky-Harabasz index discriminates towards
the use of increasingly larger sample sizes.

Given these findings, we identify N = 10000 (the largest tested value) as the sample size
to use for optimal clustering in future experiments.

5.3 Number of clusters

Next, we look closer into the number of clusters to use, when clustering with various feature
representations.

Figure 6 shows clustering performance as a function of the number of clusters. The blue
and red curves display the performance results using respectively the Short and the Long
encoding. All input features were reduced to two (2) components using Truncated SVD,
and the clustering is performed with k-means.

Using both encodings, all performance metrics point towards the use of large number of
clusters. The higher the number of clusters, the higher the Silhouette and Calinski-Harabasz
scores, and the lower the Davies-Bouldin index. Additionally, the clustering performances
seem to reach a plateau for intermediate values of number of clusters between twenty (20)
and thirty (30). This is observed when considering the Calinski-Harabasz score and the
Davies-Bouldin index, and for both encodings. Then, the performance slightly improves,
when the number of clusters exceeds this range. In practice, we found in Section 5.4 that for
a queried number of clusters greater or equal to twenty (20), the number of retrieved clusters
using the scikit-learn toolbox is of Nshort = 19 and Nlong = 13 when using, respectively,
the Short and Long Encodings.

Therefore, results suggest using an intermediate- to-large number of clusters for improv-
ing the k-means clustering performances, with a preference for the Short encoding.
Therefore, we set the number of clusters to Nshort = 19 and Nlong = 13 when using,
respectively, the Short and Long Encodings for the following experiments.

5.4 Qualitative cluster analysis

As an additional way to validate the clustering results, we seek to visualize the clusters, and
compare them to the natural layout of the reduced data.

Fig. 6 Identifying the proper number of clusters, using Truncated SVD for dimension reduction (N = 2
components) and k-means

K.R. Traoré et al.

Figure 7 depicts visual clustering results for five algorithms: k-means, spectral clustering,
DBSCAN, Birch, and BGM. All input features were reduced to two (2) components using
Truncated SVD. Plots (a) and (b) display results using the Short and the Long encoding,
respectively.

When using the Short encoding (Fig. 7a), the clusters seem to have natural horizontal to
diagonal (45 degree) layout. This layout is not well captured by the evaluated algorithms.
The BGM seems to provide the most satisfying results, despite little calibration.

When using the Long encoding (Fig. 7b), clusters naturally layout in well separated
vertical columns. This is also best captured by BGM.

Overall, results suggest using BGM for robust clustering on both feature representations.

5.5 Initialization benchmark

5.5.1 CIFAR-10

In order to assess the quality of the centroids extracted, we use them for initializing the
baselines algorithms GA, (μ + λ)EA, and Aging Evolution.

Figure 8 shows performance in validation for the three search baselines. The color red
stands for the random sampling initialization (rand), blue for LHS, and green for centroids
(i.e., our approach). From left to right, the GA, EA, and Aging Evolution results are plotted.
The top row corresponds to 36 epochs of training, and the bottom one to 108 epochs. In all
cases, each algorithm is executed 100 independent times. Each plot provides with the mean
fitness of the current population (bold), complemented with the range of fitness (min/max).
The centroids are initialized considering the Short encoding and BGM previous results. The
population size is set to 19 (i.e., the number of centroids) in all cases (refer to Section 5.3).

Fig. 7 Qualitative analysis of clustering for both feature representations. Here we use Truncated SVD for
dimension reduction, and N = 2 components

A data-driven approach to neural architecture...

Fig. 8 Performances in validation of various NAS algorithms, when clustering with the Short Encoding

Regarding GA (Algorithm 1), pop size=19, max evaluations=1995 (i.e., population
size 19, evolved 104 generations), mut p=0.2, cx p=0.5, and ind pb=0.05. Regarding EA
(Algorithm 2), μ = λ=19, mut p=0.8, and ind pb=0.1. Regarding Aging Evolution
(Algorithm 3), it is run with a tournament size k = 10.

For all three baselines, we observe that the centroid-based initialization provides with the
highest initial mean population fitness. On the other hand, both LHS and random sampling-
based initialization provide with a very low initial mean fitness (up to 20 percentage points
of difference). The EA takes the best advantage of this improved initial population: It con-
verges faster and has long-term improvements over an initialization with random sampling
or LHS. Both GA and Aging Evolution fail to benefit from such improvements as their
mean population fitness plummets after a few iterations, and reaches similar values to those
of the alternative initialization techniques (rand or LHS). This is observed when searching
either after 36 or 108 epochs of training.

Figure 9 summarizes the benchmark provided in Fig. 8. In particular, it provides box plots
of performance in test for the best found solutions (100 runs) after 2000 search evaluations.
It also complements the three baseline algorithms, i.e., GA, EA, and Aging Evolution, with
random search (RS). The plot on the left corresponds to 36 epochs of training (i.e., the
evaluation of the solutions), and the right one to 108 epochs.

Overall, performances in test after deployment (2000 evaluations) are similar to those in
validation. Indeed, the ranking is preserved: The EA reaches the highest mean fitness, for
all initialization settings. EA and GA have very narrow fitness distributions, while Aging

K.R. Traoré et al.

Fig. 9 Benchmark of NAS algorithm performances after 2000 iterations. The search is performed either when
training solutions for 36 or 108 epochs. The data-driven initialization techniques involve the Short encoding

Evolution has a more spread one. All the baselines improve over Random Search. For GA
and EA, centroids help reach higher mean test fitness over other initialization techniques.

To complement these results, we performed a Wilcoxon rank-sum test. For GA and when
selecting after 36 epochs of training, the p-value for the centroid-based initialization versus
random sampling is 4.093 · 10−7. Versus LHS, it is 2.324 · 10−7. When selecting after
108 epochs, it is 0.69 versus random sampling, and 0.039 versus LHS. For EA and when
selecting after 36 epochs of training, the p-value for the centroid-based initialization versus
random sampling is 5.611 · 10−8. Versus LHS, it is 3.767 · 10−6. When selecting after 108
epochs, it is 0.006 versus random sampling, and 0.006 versus LHS. Thus, the centroid-based
initialization significantly improves over LHS and random sampling, for both EA and GA
when selecting after 36 epochs of training. For EA, it improves significantly over LHS and
random sampling in all training budgets.

Figure 10 depicts the results for Long encoding benchmark. In all cases, we set the
pop size=13 (=μ = λ), following the recommendations from Section 5.3. The number of
evaluations is set to 1989 (153 generations).

Similarly, centroids obtained considering the Long encoding enable all baseline algo-
rithms to have an improved initial mean population fitness. Also, EA is the best at taking
advantage of this initialization (centroids), with an improved convergence, up until 500 to
1000 evaluations.

Figure 11 summarizes the benchmark provided in Fig. 10 with performances in test, in
the same fashion as Fig. 9

A data-driven approach to neural architecture...

Fig. 10 Performances in validation of various NAS algorithms, when clustering with the Long encoding

Results of performance in test after deployment are similar to those obtained considering
the Short encoding for finding the initial population. However, the centroids do not provide
with improvements to the final performance of the baseline algorithm. Also, we notice that
the centroid-based initialization worsen the distribution of fitness of solutions found by
Aging Evolution (i.e., larger variance).

To summarize, the centroids extracted from a fitness-based clustering of the search space
seem to be a promising strategy to initialize a population-based search algorithms. We
observe improved convergence and long-term performances of EA with a centroid-based
initialization, over LHS and rand, when considering the Short encoding. In the case of
searching with only 36 epochs of budget, it also helps final test performances for GA (Short
encoding).

The limited improvements when clustering with the Long encoding might be explained
by the fact that the baselines (EA, GA, and Aging Evolution) are deployed on models using
the Short encoding. Note that experiments using the Long encoding were discarded because
of the increased complexity for the search procedure. Future work might explore this option,
as it could help better exploit the extracted population.

5.5.2 So2Sat LCZ-42

Next, we ask ourselves: can we re-use an initial population provided by the proposed
technique, but for other purposes (e.g., datasets)?

K.R. Traoré et al.

Fig. 11 Benchmark of NAS algorithm performances after 2000 iterations. The search is performed either
when training solutions for 36 or 108 epochs. The data-driven initialization techniques involve the Long
encoding

To answer this question, we perform experiments using the real-world image classifi-
cation dataset So2Sat LCZ-42. More precisely, we seek to know if an initial population
obtained using as input a sample from NASBench-101, can benefit a search algorithm
deployed on the So2Sat LCZ-42 [60]. Given the results obtained in the previous sections
and because of practical limitations, we only consider EA for search and random sampling
as alternative sampling baseline. Indeed, EA is the algorithm for which the most success is
observed using our approach, and random sampling is more stable than LHS. We also limit
the number of evaluations to Nevaluations = 100 and training budget of 4 epochs. Figure 12
shows such results using the Short Encoding, with pop size=19 (=μ = λ). Both settings are
executed five independent times.

Overall, we observe similar results of convergence on LCZ42 than initially seen on
CIFAR-10. Indeed, over all the trials, the mean test accuracy of the initial population pro-
vided by the centroids is much larger (about 14 percentage points) than the one obtained
by random sampling. Besides, this gap reduces after 1 generation (19 evaluations), but the
centroid-based approach remains improving.

To summarize, early results of initializing search on a complementary dataset, indicate
that initial population gathered on NASBench-101 also enables to accelerate the conver-
gence of the algorithm on another dataset, even in the case of low training budgets. Since
the improvements in fitness increases with more training budget, this suggests that the gap
in fitness might even become wider in profit of the proposed method when training longer.

A data-driven approach to neural architecture...

Fig. 12 Performances in test of various initialization techniques used with EA, when clustering with the Short
Encoding, on the So2Sat LCZ42. Each curve shows the mean (bold line) and deviation of the performance
in test, for its respective setting (five runs)

5.6 Visualization of the solutions found

Last but not least, we look to gain insights into the solutions found by the algorithms
deployed in Section 5.5.1.

Figure 13 provides a visualization of solutions found (100 independent runs) by the
search baselines, for all initialization settings, considering the Short encoding. More pre-
cisely, it shows the frequency of connections on the expanded adjacency matrix (100
solutions), for each baseline. The darker, the higher the frequency. Figure 13a and b show
results when searching respectively after 36 or 108 epochs of training. From left to right
appear results for GA, EA, and Aging Evolution. From top to bottom appear results using
as initialization random sampling (rand), centroids, and LHS.

Figure 14 provides the same visualization of solutions found, but considering the Long
encoding.

Table 3 provides a legend for the labelling of both Figs. 13 and 14. Note that the matrices
shown describe distributions of elementary feed-forward modules that are DAGs with nodes,
edges and node labels. In each figure, all adjacency matrices are labelled using seventeen
characters ranging from a to q, where each reffers to either the input node (resp. a), the
output node (resp. q), or one of the five possible intermediated nodes (at most) and its node
label. Then, the remaining letters are reffering to the intermediated nodes being tagged with
either the first (resp. b to f), the second (resp. g to k) or third (resp. l to p) node label.
Section 4.1 and Fig. 2 offer explainations on the construction of such matrices.

Overall, the connections gathered from the solutions found after 36 epochs of training
differ from those found after 108 epochs. In the first case, the activations on the adjacency
matrices have clusters that are more restricted, as opposed to the more widespread and larger
clusters obtained when searching after 108 epochs of training.

Besides, we also observe a difference in the output based on the algorithm used to find the
solutions. EA and GA provide solutions whose connections are overall similar, in the form

K.R. Traoré et al.

Fig. 13 Visualization of solutions found (N=100) considering the Short Encoding

A data-driven approach to neural architecture...

Fig. 14 Visualization of solutions found (N=100) considering the Long Encoding

K.R. Traoré et al.

Table 3 Legend for Figs. 13 and 14: Each character is associated to a combination of node label and node
index according to the search-space of the NASBench-101 database

Figure label Node Label Node index

a input 0

b Conv 1x1 + BatchNorm + Relu 1

c Conv 1x1 + BatchNorm + Relu 2

d Conv 1x1 + BatchNorm + Relu 3

e Conv 1x1 + BatchNorm + Relu 4

f Conv 1x1 + BatchNorm + Relu 5

g Conv 3x3 + BatchNorm + Relu 1

h Conv 3x3 + BatchNorm + Relu 2

i Conv 3x3 + BatchNorm + Relu 3

j Conv 3x3 + BatchNorm + Relu 4

k Conv 3x3 + BatchNorm + Relu 5

l MaxPool 3x3 + BatchNorm + Relu 1

m MaxPool 3x3 + BatchNorm + Relu 2

n MaxPool 3x3 + BatchNorm + Relu 3

o MaxPool 3x3 + BatchNorm + Relu 4

p MaxPool 3x3 + BatchNorm + Relu 5

q output 6

of widespread clusters. On the other had, the Aging Evolution has patterns of connections
in its cells that are regrouped and in slightly smaller cluster.

Furthermore, we analyzed the solutions based on the initialization technique used when
deploying search. Across all settings, it appears to be more diverse solutions (on average
more activated cell in adjacency matrices) obtained via LHS and random sampling, than for
a centroid-based initialization.

To summarize, the longer the training allowed when selecting models, the more diverse
are the solutions retrieved. Also, EA and GA tend to find more diverse solutions than Aging
Evolution. When it comes to initialization, the centroids-based approach results in solutions
that are more similar to each other, with matrices of adjacency that are less activated.

We find that the patterns highlighted in this section correlate with the findings of the
authors in [41]. In the study, the authors show that on the search space of NASBench-
101, the longer the training the more narrow the fitness distribution with most solutions
having close to the top fitness after 108 epochs of training. They also showed that the fitness
landscape becomes flat, with many local optima. Therefore, when searching with a training
budget of 108 epochs and a fixed number of iterations, a search algorithm is likely to retrieve
more diverse solutions than after 36 epochs, since most of them satisfy the criterion of high
fitness.

When it comes to the differences based on the algorithm to be used, this could be
explained both the very rugged landscape (many local maxima) and the nature of the algo-
rithms. Indeed, as Aging Evolution provides with non-diverse sets of solutions, which could
be explained by it being stuck in local maxima and not diversifying enough, i.e., discarding
old solutions.

Regarding the centroids, Section 5.5 already shows that they consist of an initial popula-
tion of particularly high average fitness, with little variance. This could be explained by the

A data-driven approach to neural architecture...

centroids being potential local maxima of high fitness and very diverse nature, since coming
from distinct clusters.

6 Conclusion

In this study, we seek to gain insights about a search space of image classification models
in order to improve the performance of NAS algorithms. More precisely, we want to know
if the convergence of a search strategy could be improved using a data-driven initialization
technique exploiting the search space.

For this purpose, we propose a novel approach to improve the performances of a NAS
search strategy. First, we perform a clustering analysis of the search space, involving a
sequence of sub-tasks. It summarizes as follows: we sample models from a search space,
reduce their dimension, perform a clustering. After a careful tuning of the clustering pipeline
(number of dimensions, clusters, etc.), we select the algorithm providing the best qualitative
and quantitative results. Second, we extract and use the centroids as an initial population to
a search strategy.

We validate our proposal by initializing three (3) evolutionary algorithms, namely
a genetic algorithm (GA), an evolutionary algorithm (EA), and Aging Evolution (AE),
and benchmark our data-driven initialization method against conventional initialization
baselines, i.e., random initialization and Latin Hypercube Sampling (LHS). To test the
algorithms, we query the dataset of NAS-Bench-101, providing with a search space of
image classifiers and their fitness evaluation on CIFAR-10. Our results show that centroids
extracted using BGM for clustering are a promising approach to initialize a population-
based algorithm. In the scenario of selecting models trained only 36 epochs, this approach
used with GA shows significant long-term improvements (after 2000 iterations, in test) over
random initialization and LHS, when using a Short encoding. When used with EA, it shows
faster convergence (in validation) and significant long-term improvements over random ini-
tialization and LHS, when using a Short encoding and for all training budgets. Additional
investigations on the distributions of the solutions found by the algorithms suggest that cen-
troids enable retrieving local optima (maxima) of high fitness and similar configurations.
Besides, we also investigate how an initial population gathered with our proposal on a tab-
ular benchmark can be used for augmenting search on a real world problem, the So2Sat
LCZ-42 scene classification dataset. Our early results show that this set of solutions help
accelerate the convergence of EA on the target dataset, despite a short training budget.

Moreover, the cost of the approach lies in the size of the sample to collect (10k individ-
uals), to serve as input to the initialization technique. More precisely, the computationally
costly steps are the training and evaluation of the sample, while the sampling and cluster-
ing only require a few minutes to run. We argue that this drawback (computational cost)
can be alleviated by using tabular or surrogate NAS benchmarks for obtaining free fitness
evaluations of the sample. We demonstrate that once collected, the sample help initialiaze
search for other applications. In order words, this cost can either be avoided (use of available
benchmarks) and or limited (transfer to other applications).

As future work, we propose to investigate performances of this approach when selecting
models on the Long Encoding. We also propose to study in depth the obtained clusters to
gain more insights on obtained performances , and to explore different sampling strategies
to select the models for the clustering. One might also explore the benefits of such data-
driven initialization method on other families of algorithms (Bayesian optimization, local
search, etc.).

K.R. Traoré et al.

Acknowledgements Authors acknowledge support by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No. [ERC-2016-StG-
714087], Acronym: So2Sat), by the Helmholtz Association through the Framework of Helmholtz AI
[grant number: ZT-I-PF-5-01] - Local Unit “Munich Unit @Aeronautics, Space and Transport (MASTr)”
and Helmholtz Excellent Professorship “Data Science in Earth Observation - Big Data Fusion for Urban
Research”(W2-W3-100), by the German Federal Ministry of Education and Research (BMBF) in the frame-
work of the international future AI lab “AI4EO – Artificial Intelligence for Earth Observation: Reasoning,
Uncertainties, Ethics and Beyond” (Grant number: 01DD20001), the grant DeToL, and a DAAD Research
fellowship.

Funding Open Access funding enabled and organized by Projekt DEAL. The funding is stated in
Acknowledgment section.

Data Availability https://github.com/kalifou/data-driven-initialization-to-search.

Code Availability https://github.com/kalifou/data-driven-initialization-to-search.

Declarations

Consent for Publication All authors have checked the manuscript and have agreed to the submission.

Conflict of Interests The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Haykin, S.: Neural Networks and Learning Machines, vol. 3. Pearson Upper Saddle River, Hoboken
(2009)

2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
3. Elsken, T., Metzen, J.H., Hutter, F., et al.: Neural architecture search: A survey. J. Mach. Learn. Res.

20(55), 1–21 (2019)
4. Ojha, V.K., Abraham, A., Snášel, V.: Metaheuristic design of feedforward neural networks: a review of

two decades of research. Eng. Appl. Artif. Intel. 60, 97–116 (2017)
5. Hanxiao, L., Karen, S., Yiming, Y.: Darts: Differentiable architecture search. International Conference

on Learning Representations (2019)
6. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture

search. Proceedings of the AAAI Conference on Artificial Intelligence 33(01), 4780–4789 (2019).
https://doi.org/10.1609/aaai.v33i01.33014780

7. Camero, A., Wang, H., Alba, E., Bäck, T.: Bayesian neural architecture search using a training-free
performance metric. Applied Soft Computing 107356 (2021)

8. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparameter optimization of deep
neural networks by extrapolation of learning curves. In: Proceedings of the 24th International Conference
on Artificial Intelligence. IJCAI’15, pp. 3460–3468. AAAI Press (2015)

9. Camero, A., Toutouh, J., Alba, E.: Low-cost recurrent neural network expected performance evaluation.
arXiv:1805.07159 (2018)

10. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-bench-101: Towards repro-
ducible neural architecture search. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97,
pp. 7105–7114. PMLR, Long Beach (2019). http://proceedings.mlr.press/v97/ying19a.html

11. Dong, X., Yang, Y.: Nas-Bench-201: Extending the scope of reproducible neural architecture search. In:
International Conference on Learning Representations (ICLR) (2020)

A data-driven approach to neural architecture...

12. Back, T.: Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary program-
ming, genetic algorithms. Oxford University Press, Oxford (1996)

13. Holland, J.H.: Outline for a logical theory of adaptive systems. J. ACM (JACM) 9(3), 297–314 (1962)
14. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning - Methods, Systems, Challenges.

Springer, Berlin (2019)
15. Engel, J.: Teaching Feed-Forward neural networks by simulated annealing. Complex Systems 2, 641–

648 (1988)
16. Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. Proceedings

of the 11th International Joint Conference on Artificial intelligence 1(89), 762–767 (1989)
17. Alba, E., Aldana, J., Troya, J.: Genetic algorithms as heuristics for optimizing ANN design. In: Artificial

Neural Nets and Genetic Algorithms, pp. 683–690. Springer, Berlin (1993)
18. Alba, E., Aldana, J., Troya, J.M.: Full automatic ann design: A genetic approach. In: International

Workshop on Artificial Neural Networks, pp. 399–404. Springer (1993)
19. Yao, X.: A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 8(4), 539–567 (1993)
20. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol.

Comput. 10(2), 99–127 (2002)
21. Camero, A., Toutouh, J., Alba, E.: Random error sampling-based recurrent neural network architecture

optimization. Eng. Appl. Artif. Intel. 103946, 96 (2020)
22. Zhining, Y., Yunming, P.: The genetic convolutional neural network model based on random sample. Int.

J. u-and e-Service Sci. Technol. 8(11), 317–326 (2015)
23. Rosa, G., Papa, J., Marana, A., Scheirer, W., Cox, D.: Fine-Tuning Convolutional Neural Networks

Using Harmony Search. In: Pardo, A., Kittler, J. (eds.) Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, pp. 683–690. Springer, Cham (2015)

24. Van Stein, B., Wang, H., Bäck, T.: Automatic configuration of deep neural networks with parallel effi-
cient global optimization. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–7.
IEEE (2019)

25. Ororbia, A., ElSaid, A., Desell, T.: Investigating recurrent neural network memory structures using
neuro-evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 446–
455. ACM (2019)

26. Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H.,
Navruzyan, A., Duffy, N., et al.: Evolving deep neural networks. In: Artificial Intelligence in the Age of
Neural Networks and Brain Computing, pp. 293–312. Elsevier, Netherlands (2019)

27. Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial networks. IEEE Trans. Evol.
Comput. 23(6), 921–934 (2019)

28. Yang, A., Esperança, P.M., Carlucci, F.M.: Nas evaluation is frustratingly hard. In: International Confer-
ence on Learning Representations (2020). https://openreview.net/forum?id=HygrdpVKvr. Accessed 01
April 2022

29. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: Nas-bench-101: Towards repro-
ducible neural architecture search. In: International Conference on Machine Learning, pp. 7105–7114.
PMLR (2019)

30. Zela, A., Siems, J., Frank, H.: Nas-bench-1shot1: Benchmarking and dissecting one-shot neural
architecture search. International Conference on Learning Representations (2020)

31. Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., Hutter, F.: Nas-bench-301 and the case for
surrogate benchmarks for neural architecture search. arXiv:2008.09777 (2020)

32. Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., Burnaev, E.: NAS-Bench-NLP:
Neural architecture search benchmark for natural language processing. arXiv:2006.07116 (2020)

33. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search via parameters
sharing. In: International Conference on Machine Learning, pp. 4095–4104. PMLR (2018)

34. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Smash: one-shot model architecture search through
hypernetworks. arXiv:1708.05344 (2017)

35. Camero, A., Toutouh, J., Alba, E.: Comparing deep recurrent networks based on the mae random sam-
pling, a first approach. In: Conf of the Spanish Association for Artificial Intelligence, pp. 24–33. Springer
(2018)

36. Lin, M., Wang, P., Sun, Z., Chen, H., Sun, X., Qian, Q., Li, H., Jin, R.: Zen-nas: a zero-shot nas for
high-performance image recognition. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 347–356 (2021)

37. Dürr, P., Mattiussi, C., Floreano, D.: Neuroevolution with Analog Genetic Encoding. In: Parallel Problem
Solving from Nature-PPSN Ix, Pp, pp. 671–680. Springer, Berlin (2006)

K.R. Traoré et al.

38. Ning, X., Zheng, Y., Zhao, T., Wang, Y., Yang, H.: A generic graph-based neural architecture encoding
scheme for predictor-based nas. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIII 16, pp. 189–204. Springer (2020)

39. Chu, X., Zhang, B., Ma, H., Xu, R., Li, Q.: Fast, accurate and lightweight super-resolution with neural
architecture search. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 59–64.
IEEE (2021)

40. Nunes, M., Fraga, P.M., Pappa, G.L.: Fitness landscape analysis of graph neural network architecture
search spaces. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’21,
pp. 876–884. Association for Computing Machinery (2021). https://doi.org/10.1145/3449639.3459318

41. Traoré, K.R., Camero, A., Zhu, X.X.: Fitness Landscape Footprint: A Framework to Compare Neural
Architecture Search Problems (2021)

42. Zhang, T., Lei, C., Zhang, Z., Meng, X.-B., Chen, C.P.: As-nas: Adaptive scalable neural architecture
search with reinforced evolutionary algorithm for deep learning. IEEE Transactions on Evolutionary
Computation (2021)

43. Maaranen, H., Miettinen, K., Mäkelä, M.M.: Quasi-random initial population for genetic algorithms.
Comput. Math.. Appl. 47(12), 1885–1895 (2004)

44. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Quasi-oppositional differential evolution. In: 2007
IEEE Congress on Evolutionary Computation, pp. 2229–2236. IEEE (2007)

45. Clerc, M.: Initialisations for particle swarm optimisation Online at http://clerc.maurice.free.fr/pso.
Accessed 01 April 2022 (2008)

46. Helwig, S., Wanka, R.: Theoretical analysis of initial particle swarm behavior. In: International
Conference on Parallel Problem Solving from Nature, pp. 889–898. Springer (2008)

47. Kazimipour, B., Li, X., Qin, K.: A review of population initialization techniques for evolutionary algo-
rithms. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014 (2014).
https://doi.org/10.1109/CEC.2014.6900618

48. Kazimipour, B., Li, X., Qin, A.K.: Initialization methods for large scale global optimization. In: 2013
IEEE Congress on Evolutionary Computation, pp. 2750–2757. IEEE (2013)

49. Kimura, S., Matsumura, K.: Genetic algorithms using low-discrepancy sequences. In: Proceedings of the
7th Annual Conference on Genetic and Evolutionary Computation, pp. 1341–1346 (2005)

50. Morrison, R.W.: Dispersion-based population initialization. In: Genetic and Evolutionary Computation
Conference, pp. 1210–1221. Springer (2003)

51. Ma, Z., Vandenbosch, G.A.: Impact of random number generators on the performance of particle
swarm optimization in antenna design. In: 2012 6th European Conference on Antennas and Propagation
(EUCAP), pp. 925–929. IEEE (2012)

52. Poles, S., Fu, Y., Rigoni, E.: The effect of initial population sampling on the convergence of multi-
objective genetic algorithms. In: Multiobjective Programming and Goal Programming, pp. 123–133.
Springer, Berlin (2009)

53. Mousavirad, S.J., Bidgoli, A.A., Rahnamayan, S.: Tackling deceptive optimization problems using
opposition-based de with center-based latin hypercube initialization. In: 2019 14th International Confer-
ence on Computer Science & Education (ICCSE), pp. 394–400. IEEE (2019)

54. Medeiros, H.R., Izidio, D.M., Ferreira, A.P.D.A., Da, S., Barros, E.N.: Latin hypercube initialization
strategy for design space exploration of deep neural network architectures. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pp. 295–296 (2019)

55. Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., Gagné, C.: DEAP: Evolutionary
Algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

56. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
Duchesnay, E.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

57. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J.
Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

58. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27 (1974).
https://doi.org/10.1080/03610927408827101

59. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-1(2) 224–227 (1979)

60. Zhu, X.X., Hu, J., Qiu, C., Shi, Y., Kang, J., Mou, L., Bagheri, H., Haberle, M., Hua, Y., Huang, R.,
et al.: So2sat lcz42: a benchmark data set for the classification of global local climate zones [software
and data sets]. IEEE Geosci. Remote Sens. 8(3), 76–89 (2020)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

APPENDIX B. LIST OF PUBLICATIONS

This page is intentionally left blank.

133

We Won’t Get Fooled Again: When
Performance Metric Malfunction Affects

the Landscape of Hyperparameter
Optimization Problems

Kalifou René Traoré1,2(B), Andrés Camero2,3, and Xiao Xiang Zhu1

1 Data Science in Earth Observation, Technical University of Munich,
Arcisstrasse 21, Munich, Germany

xiaoxiang.zhu@tum.de
2 Remote Sensing Institute, German Aerospace Center (DLR),

Münchener Strasse 20, Weßling, Germany
{kalifou.traore,andres.camerounzueta}@dlr.de

3 Helmholtz AI, Neuherberg, Germany

Abstract. Hyperparameter optimization (HPO) is a well-studied
research field. However, the effects and interactions of the components in
an HPO pipeline are not yet well investigated. Then, we ask ourselves:
Can the landscape of HPO be biased by the pipeline used to evaluate indi-
vidual configurations? To address this question, we proposed to analyze
the effect of the HPO pipeline on HPO problems using fitness land-
scape analysis. Particularly, we studied over 119 generic classification
instances from either the DS-2019 (CNN) and YAHPO (XGBoost) HPO
benchmark data sets, looking for patterns that could indicate evaluation
pipeline malfunction, and relate them to HPO performance. Our main
findings are: (i) In most instances, large groups of diverse hyperparame-
ters (i.e., multiple configurations) yield the same ill performance, most
likely associated with majority class prediction models (predictive accu-
racy) or models unable to attribute an appropriate class to observations
(log loss); (ii) in these cases, a worsened correlation between the observed
fitness and average fitness in the neighborhood is observed, potentially
making harder the deployment of local-search-based HPO strategies. (iii)
these effects are observed across different HPO scenarios (tuning CNN
or XGBoost algorithms). Finally, we concluded that the HPO pipeline
definition might negatively affect the HPO landscape.

Keywords: Hyperparameter Optimization · Fitness Landscape
Analysis · Benchmarking

1 Introduction and Related Work

Modern data-driven approaches dealing with large-scale data require domain,
data science, and technical expertise. The variety of application tasks (e.g., clas-
sification and object detection) often require designing models that are not nec-
essarily reusable in other tasks, and this process is both resource-demanding
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Dorronsoro et al. (Eds.): OLA 2023, CCIS 1824, pp. 148–160, 2023.
https://doi.org/10.1007/978-3-031-34020-8_11

When Performance Metric Malfunction Affects the Landscape of HPO 149

and error-prone [3,8,12]. Thus, automating the design of ML pipelines, a.k.a.
AutoML [6], is much more desirable.

AutoML is usually split into four main activities: data preparation, feature
engineering, model generation, and model estimation [5]. Hyperparameter opti-
mization (HPO [1]) is an important task in model generation. HPO aims at
automatically tuning the hyperparameters of learning algorithms, and as with
all optimization problems, it is facing the process of minimizing/maximizing
a target function (e.g., the performance metric of the model) subject to a set
of constraints. HPO is a well-studied field [1], but the effects and interaction
between the components of its pipeline are not yet well investigated. Recently,
authors [10] have proposed to characterize the search space of AutoML pipelines
using fitness landscape analysis (FLA [11]). In the same line, [15] proposed a
FLA-base framework to characterize NAS problems, and applied it to a multi-
sensor data fusion problem [14]. Despite the great results and insights provided
by these studies, the relation between HPO and the rest of the HPO pipeline
remains barely explored.

Therefore, in this study, we pose the following research question: Can the
landscape of HPO be biased by the pipeline used to evaluate individual
configurations? To address this question, we propose to study HPO in the
context of AutoML using FLA. Particularly, using fitness distance correlation
(FDC [7]), locality and neutrality [2], we aim at patterns that arise from eval-
uation pipeline issues and assess how they could alter the landscapes of HPO
problems. The results on over 119 instances from either the DS-2019 [13] or
the YAHPO [9] HPO benchmarks show the existence of large groups of diverse
HP configurations that yield the same ill fitness value. This illness could be
explained by the fitness metric selection (e.g., predictive accuracy and log loss),
that induce various suboptimal model behavior, in scenarios of different natures
(tuning CNN and XGBoost algorithms). More precisely, for the predictive accu-
racy, we suspect the generation of majority class predictors. In the case of the
log loss criterion, the generation of models unable to classify. A complementary
analysis of locality shows that the resulting landscapes are more rugged, with
lesser correlation between the observed fitness and the fitness in the neighbor-
hood. In other words, these problems are hard to tackle using a local-search
strategy.

The rest of the paper is as follows: The next section introduces the method-
ology used in the study, Sect. 3 presents results of landscape analysis on HPO
problems, and Sect. 4 provides conclusions.

2 Methodology

Given a HPO problem, let S be the HP configuration space, f the fitness function
that assigns a value f(x) ∈ R to all configurations x ∈ S, and N(x) a neigh-
borhood operator that provides a structure to S. Then, the fitness landscape is
defined as L = (S, f,N).

We are interested in exploiting the landscape definition to study the rela-
tion between the HPO landscape and the HPO pipeline, and check whether the

150 K. R. Traoré et al.

pipeline may bias the HPO landscape. Particularly, we propose to use the FDC
and locality to characterize this relation. The motivation is that issues related to
the evaluation pipeline should affect the fitness of configurations irrespectively
of their configuration, and thus their distance to the optimum. In other words,
repetitive or grouping patterns (such as lines) might appear when visualizing
distributions of distances to the optimum. Moreover, the locality of the con-
figuration space should be arbitrarily affected, i.e., some configurations should
present an unexpected or random behavior (in relation to the neighborhood).

Without loss of generality, we consider the problem of tuning the HPs of a
fixed model, e.g. neural network architecture or XGBoost ensemble, to perform a
task (e.g., classification). Typically, the HP configuration space consists of mixed
type features (continuous, discrete or categorical). Thus, we propose to evaluate
the distance between individuals using a dedicated similarity function, δ(x, y),
introduced by [4]. Then, we define a neighborhood function N(x) = {y ∈ S |
δ(x, y) < Δ}.

The FDC is often interpreted as a measure of the existence of search tra-
jectories from randomly picked configurations to the known global optimum.
In practice, the FDC is not collected as a correlation score but visualized as
the distribution of fitness versus distance to the global optimum. It writes
as: FDC(f, x∗, S) = {(δ(x∗, y), f(y)) | ∀y ∈ S}, where x∗ ∈ S is the global opti-
mum. On the other hand, locality corresponds to the relationship between the
observed fitness and the distribution of average fitness in the neighborhood [2].

Moreover, the neutrality degree [2] provides an additional picture of the inter-
action between solutions in the landscape. It is defined as Nd(x) = |{x′ ∈ N(x) ||
f(x

′
)−f(x) |< ε}|, and is interpreted as the number of neighbors of x that have

a similar fitness. In this case, we set ε = maxfitness/C. Besides, Table 1 and 2
give a description of abbreviations and symbols used in the paper.

Table 1. Table of abbreviations used in the paper.

Abbreviation Description

HP Hyperparameter

HPO Hyperparameter Optimization

CV Computer Vision

FLA Fitness Landscape Analysis

FDC Fitness Distance Correlation

CNN Convolutional Neural Network

MMCE Mean Misclassification Error

3 Results

To evaluate the proposed methodology, we propose to analyze the DS-2019 and
YAHPO HPO benchmark data sets. DS-2019 consists of a tabular benchmark
for the scenario of tuning the HPs of a (fixed) convolutional neural network

When Performance Metric Malfunction Affects the Landscape of HPO 151

(CNN), a ResNet-18, on ten instances of CV classification. For each instance,
15 hyperparameters should be optimized, including the batch size, number of
epochs, and momentum, among others.

Table 2. Table of symbols used in the paper.

Symbol Description

S Hyperparameter Configuration Space
N Neighborhood operator
f Fitness evaluation function
L Fitness landscape derived from the combination

of S, N , f

maxfitness Maximum fitness value observed in S

maxdist Maximum pairwise distance (to the optimum)
measured in S

Nd(x) Neutrality degree of a HP solution x

δ(x, y) Gower distance between HP solutions x and y

Δ Threshold (in Gower distance) used by N to
assign neighbors

ε Threshold (in fitness) used by Nd to assign
neutral neighbors

C Constant used to define the fitness neutrality
threshold ε

YAHPO consists of a tabular benchmark for the scenarios of tuning vari-
ous learning algorithms (e.g. XGBoost, Neural Networks) for 119 instances of
classification, in various domains of applications. Many of the instances were
obtained from the collaborative open-source OpenML platform, gathering an
ever-growing number of machine learning instances. In this study, we focus on
the specific scenario tuning a set of 15 HPs for the XGBoost learning algorithm.

The code used for the experiments is available following the anonymized link:
https://github.com/anonymous-for-open-review/late-breaking-automlConf-
2022.

3.1 Classification Accuracy

The following paragraphs introduce results when evaluating solutions using the
metric of predictive accuracy (DS-2019). In the case of YAHPO, the available
metric is the mean misclassification error (MMCE = 1 − predictive accuracy),
and we focus on the instances WDBC, YEAST, MINIBOONE, and ISOLET.
Similar observations are made for the rest of the 119 instances.

152 K. R. Traoré et al.

Fitness Distance Correlation (FDC)
First, for each instance, we randomly sampled 1000 HP configurations and com-
puted the FDC. Results are shown in Figs. 1 and 2, respectively, for DS-2019
and YAHPO.

Overall, the distances to the global optimum cover a wide range of values:
the distribution of distances is wide and uniform in most instances. This is the
case for both benchmarks. This suggests a large diversity in the HP configura-
tions (with respect to the optimum), for the sample and potentially the whole
configuration space. This is true for both benchmarks, with slightly more narrow
distributions of distances for YAHPO. This suggests slightly less diversity within
the XGBoost HP configuration space (YAHPO), than one of the CNN classifiers
(DS-2019).

In most instances of DS-2019, the fitness also covers a wide range of values,
as opposed to relatively more narrow distributions of fitness on YAHPO. This
suggests a larger influence on HP configuration on the fitness of CNN classifiers
(DS-2019) than on more classical and notoriously robust ensembles of models,
i.e XGBoost (YAHPO). Overall, the distributions of fitness all seem to be multi-
modal, with a principal mode for large fitness values (i.e., good configurations),
and another mode for odd values, for both benchmarks.

Fig. 1. FDC plot for instances from the DS2019 benchmark, and the corresponding
regression line in blue. The fitness function is the predictive accuracy. (Color figure
online)

Fig. 2. FDC plot for a few instances from the YAHPO HPO benchmark, and the
corresponding regression line in blue. The fitness function is the MMCE. (Color figure
online)

When Performance Metric Malfunction Affects the Landscape of HPO 153

Besides, we checked the data distribution for each instance, and we notice
that the odd modes could be correlated to the majority class. Note that the fit-
ness metric used is predictive accuracy for DS-2019, and its opposite the MMCE
for YAHPO. For example in DS-2019, on FLOWER it is around 25%, SCMNIST
around 65% and SVHN around 20%. In YAHPO, on WDBC it is around 38%,
on YEAST around 70%, and ISOLET around 97%, among others. In particular,
configurations are affected regardless of the distance to the optimum. In other
words, very diverse configurations yield the same fitness value. This phenomenon
could be attached to issues with the learning process, failing to properly fit the
data and being stuck in poor local optima (i.e., majority class prediction), pre-
venting them to reach the fitness that their HP configuration would normally
yield. Besides, there is no clear global correlation between the observed fitness
and distance to the global optimum. This could be caused by the multi-modal
nature of the distributions of fitness.

Neighborhood
Next, we seek to identify how the observed artifacts, i.e., the majority class
predictors, affect the locality of landscapes. Figures 3 and 4 show the distribution
of average neighbor fitness as a function of the observed fitness, respectively, for
instances from DS-2019 and YAHPO. The black dash-dotted line represents
the bisector, i.e., the line connecting all points of equal value on both axis. To
generate the plots, we used the previously sampled configurations, and identified
the maximal pairwise distance (of any individual) to the optimum maxdist, and
maximum observed fitness maxfitness. Given a constant C = 40, we discretize
the range of fitness values into intervals, where a step is equal to the maximum
observed fitness maxfitness divided by C. In order to decide if a configuration is
a neighbor, we set Δ = maxdist/C.

Fig. 3. Distribution of the average fitness of neighbors as a function of the observed
fitness (predictive accuracy), for a few instances of the DS2019 benchmark.

154 K. R. Traoré et al.

Overall, we observe in many instances of DS-2019 a strong correlation
between the observed fitness and the average fitness in the neighborhood. Indeed,
the box-plots are aligned with the bisector. From the perspective of local search,
it is easy to navigate the configuration space by consistently improving the fit-
ness, from randomly distant and bad configurations to configurations of high
fitness, for instances from DS-2019. This is less the case in YAHPO, as show
in Fig. 4. Indeed, we observe a weaker correlation between the two variables. In
the presence of unexpected mode in the distributions of fitness (see Fig. 2), e.g.
YEAST and ISOLET, we find that a majority of neighbors tend to have the
fitness of the observed mode, respectively around 70% and 97%. This suggests
that the respective landscapes might have many local optima surrounded by
plane areas at the odd fitness value. Thus, the chances for local search of being
stuck are higher in such instances. Besides, the instances with more uniform
and wider distribution of fitness (Fig. 1) tend to have a near perfect correlation.
On the other hand, the more the distributions are multi-modal and with peaky
modes, the worse the correlation between the variables of interest. This is the
case for both benchmarks.

Fig. 4. Distribution of the average fitness of neighbors as a function of the observed
fitness (MMCE), for a few instances from the YAHPO benchmark.

To summarize, results indicate that the evaluation protocol could have an
impact on the easiness and practicability of HPO landscapes, assessed by the
correlation.

When Performance Metric Malfunction Affects the Landscape of HPO 155

Neutrality
Next, we look into the neutrality of the landscape. Figures 5 and 6 show
the distribution of neutral neighbor counts as a function of the current fitness,
respectively, for instances from DS-2019 and YAHPO.

For instances from DS-2019, the neutrality degree is equal to or greater than
one, for most ranges of fitness values. In order words, most configurations have
at least one neutral neighbor. Also, note that the FDC and locality results for
CIFAR-10 are good, while for SCMNIST adn SVHN, with a multi-modal distri-
bution of fitness (Fig. 1), coupled with lower local correlation (i.e., between the
fitness and the fitness in the neighborhood, Fig. 3), the results are bad. Regarding
CIFAR-10, the neutrality degree is on average consistently greater than two. In
other words, most configurations have two or (many) more neutral neighbors.
On the other hand, for SCMNIST and SVHN, the neutrality degree is incon-
sistent and with lower values on average. In particular, Nd is lower for fitness
values ranging from 6.28 to 43.98% for SCMNIST, i.e., generally bad configura-
tions have fewer neutral neighbors than mid and good configurations. Also, as
expected, there is a huge number of neutral neighbors around the majority class
prediction fitness: around 65% for SCMNIST and 20% for SVHN.

In YAHPO, we find that the range of fitness for which one can find solutions
with neutral neighbors is limited. In practice, it represents a fraction of the range
covered by all evaluated solutions. Besides, the neutrality degree is generally
above 2, with larger counts associated to the modes in the distributions of fitness
(See Fig. 2). These two facts suggest that the landscapes might be highly rugged
with many local optima (no neutral neighbors), with areas centered towards
values of the observed modes.

Fig. 5. Neutrality degree as a function of the observed fitness (predictive accuracy),
for a few instances from the DS2019 benchmark.

156 K. R. Traoré et al.

Fig. 6. Neutrality degree as a function of the observed fitness (MMCE), for a few
instances from the YAHPO benchmark.

As a summary, the evaluation pipeline malfunction is responsible for an
imbalanced landscape, i.e., the AutoML pipeline generates arbitrary peaks of
fitness (low Nd) in areas of expected continuous fitness.

3.2 Log Loss

The following paragraphs present the results of the analysis when evaluating
solutions using the Log Loss for classification. This is done on a sub-sample
of the YAHPO benchmark, namely SEMEION, VEHICLE, SEGMENT, KC1.
Similar observations are made for the remaining 115 instances.

Fitness Distance Correlation (FDC)
First, we look at the FDC for the four instances SEMEION, VEHICLE, SEG-
MENT, KC1, as shown in Fig. 7.

Fig. 7. FDC plot for a few instances from the YAHPO HPO benchmark, and the
corresponding regression line in blue. The fitness function is the Log Loss. (Color
figure online)

When Performance Metric Malfunction Affects the Landscape of HPO 157

Similarly to results gathered in Sect. 3.1 (predictive classification accuracy),
we find that the distributions of fitness are also covering a wide range of values,
and are multi-modal. Several distributions also have the artifact identified pre-
viously: an unexpected mode around large (poor) fitness values, associated with
HP configurations of highly variable Gower dissimilarity to the optimum. For
instance, it is around the Log Loss value of 2.25 for SEMEION, 1.55 for VEHI-
CLE, and 1.98 for SEGMENT. It affects HP configurations at Gower distances
0.15 to 0.45, i.e. covering the whole range of dissimilarity to the optimal HP.
This phenomenon is also observed for a majority of the 119 analyzed instances
of YAHPO. Besides, another mode can exist (around 0.35 for KC1) at low fitness
values, i.e good HP configurations.

When looking at the nature of the instances (number of classes), we find
that the unexpected mode correlates with the fitness value yielded by the Log
Loss metric when attributing an equal probability of occurring to all classes, for
all observations. In other words, solutions associated with the mode are likely
solutions with no classification ability. This phenomenon could occur since the
Log Loss metric does not penalize such behavior, a local optimum to which many
solutions could naturally converge to.

Neighborhood
Next, we look at the neighborhood in the landscapes generated by the Log Loss
metric. This is shown in Fig. 8. Overall, we find that the correlation between
the average fitness of neighbors and the observed fitness, is weak in the case of
distributions of fitness with the identified artifact (peaks). Most neighbors have a
fitness value of the unexpected mode, e.g. a Log Loss value of 2.25 for SEMEION

Fig. 8. Distribution of the average fitness of neighbors as a function of the observed
fitness (Log Loss), for a few instances from the YAHPO benchmark.

158 K. R. Traoré et al.

and 1.35 for VEHICLE. This observation is in line with those made when using
the metric of MMCE (see Figs. 1 and 2).

To summarize, using the Log Loss as an evaluation metric might also neg-
atively impact the easiness of the associated landscapes, by increasing their
ruggedness and decreasing their fitness potential.

Neutrality
Next, we look into the neutrality of the landscapes, as shown in Fig. 9. Similar
to the analysis provided when evaluating with the MMCE, we find that few
solutions have a neutral neighbor, and these are found within a restricted range
of fitness. This suggests highly rugged landscapes. Besides, the highest counts of
neutral neighbors are for solutions associated with the modes in the distributions
of fitness (see Fig. 7). For instance, at a Log Loss value of 2.2 for SEMEION,
and between 1.23 and 1.35 for VEHICLE. In other words, the landscapes are
highly rugged (numerous local minima), and surrounded by a plateau of HP
configurations associated with the high Log Loss values of the observed mode.

Fig. 9. Neutrality degree as a function of the observed fitness (Log Loss), for a few
instances from the YAHPO benchmark.

4 Conclusions and Future Work

In this paper, we investigate if AutoML pipelines can negatively affect the land-
scape of HPO problems. More precisely, we address the following question: Can
the landscape of HPO be biased by the pipeline used to evaluate individual con-
figurations? To tackle this question, we have studied the fitness landscape of
over 119 HPO instances obtained from either the DS-2019 (CNN) or YAHPO

When Performance Metric Malfunction Affects the Landscape of HPO 159

(XGBoost) HPO benchmark data sets, using the concepts of fitness distance
correlation, locality, and neutrality.

The FDC analysis shows unhealthy patterns in many HPO instances, with
large groups of very diverse HP configurations with the same ill fitness value.
These resulting peaks in fitness appear to be outliers in the respective distri-
butions. Looking at the locality (fitness versus fitness in the neighborhood), we
observe two things: First, there is a correlation between both variables of interest
in healthy landscapes, suggesting that an easy path from randomly picked HP
configurations could lead to the best performers, i.e., local-search may do the job.
Second, for HPO problems negatively affected by the mentioned illnesses (i.e.,
the majority class predictors, or the inability to classify), the correlation between
the current fitness and fitness in the neighborhood is worsened, indicating more
rugged local landscapes.

Even though the majority class prediction problem for models trained and
evaluated using some metrics (e.g., accuracy) is well known, the results show
that the problem may not be taken seriously into account. This is also the case
with the inability to classify arising when using the Log Loss as a training and
evaluation criterion.

Thus, a great amount of resources is wasted when addressing HPO (i.e.,
many simple majority class or inable models are evaluated). Furthermore, the
evidence shows that the landscape of HPO problems could be negatively affected
by the evaluation pipeline being used.

Future work will further investigate how such artifacts affect HPO algorithms
in practice.

Acknowledgements. Authors acknowledge support by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation program
(grant agreement No. [ERC-2016-StG-714087], Acronym: So2Sat), by the Helmholtz
Association through the Framework of Helmholtz AI [grant number: ZT-I-PF-5-01] -
Local Unit “Munich Unit @Aeronautics, Space and Transport (MASTr)” and Helmholtz
Excellent Professorship “Data Science in Earth Observation - Big Data Fusion for Urban
Research” (W2-W3-100), by the German Federal Ministry of Education and Research
(BMBF) in the framework of the international future AI lab “AI4EO – Artificial Intel-
ligence for Earth Observation: Reasoning, Uncertainties, Ethics and Beyond” (Grant
number: 01DD20001) and the grant DeToL. The authors also acknowledge support by
DAAD for a Doctoral Research Fellowship.

References

1. Bischl, B., et al.: Hyperparameter optimization: foundations, algorithms, best prac-
tices and open challenges (2021). https://doi.org/10.48550/ARXIV.2107.05847,
https://arxiv.org/abs/2107.05847

2. Clergue, M., Verel, S., Formenti, E.: An iterated local search to find many
solutions of the 6-states firing squad synchronization problem. Appl. Soft Com-
put. 66, 449–461 (2018). https://doi.org/10.1016/j.asoc.2018.01.026, https://
www.sciencedirect.com/science/article/pii/S1568494618300322

160 K. R. Traoré et al.

3. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach.
Learn. Res. 20(1), 1997–2017 (2019)

4. Gower, J.C.: A general coefficient of similarity and some of its properties. Biomet-
rics 27(4), 857–871 (1971). http://www.jstor.org/stable/2528823

5. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based
Syst. 212, 106622 (2021)

6. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning - Methods,
Systems, Challenges. Springer, Berlin (2019). https://doi.org/10.1007/978-3-030-
05318-5

7. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem diffi-
culty for genetic algorithms. In: Proceedings of the 6th International Conference
on Genetic Algorithms, pp. 184–192. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1995)

8. Ojha, V.K., Abraham, A., Snášel, V.: Metaheuristic design of feedforward neu-
ral networks: a review of two decades of research. Eng. Appl. Arti. Intell.
60, 97–116 (2017). https://doi.org/10.1016/j.engappai.2017.01.013, https://www.
sciencedirect.com/science/article/pii/S0952197617300234

9. Pfisterer, F., Schneider, L., Moosbauer, J., Binder, M., Bischl, B.: YAHPO gym - an
efficient multi-objective multi-fidelity benchmark for hyperparameter optimization
(2021)

10. Pimenta, C.G., de Sá, A.G.C., Ochoa, G., Pappa, G.L.: Fitness landscape analysis
of automated machine learning search spaces. In: Paquete, L., Zarges, C. (eds.)
EvoCOP 2020. LNCS, vol. 12102, pp. 114–130. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-43680-3_8

11. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis.
In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intel-
ligent Engineering Systems. Studies in Computational Intelligence, vol. 378, pp.
161–191. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23229-
9_8

12. Ren, P., Xiao, Y., Chang, X., Huang, P.y., Li, Z., Chen, X., Wang, X.: A com-
prehensive survey of neural architecture search: challenges and solutions. ACM
Comput. Surv. 54(4) (2021). https://doi.org/10.1145/3447582

13. Sharma, A., van Rijn, J.N., Hutter, F., Müller, A.: Hyperparameter importance
for image classification by residual neural networks. In: Kralj Novak, P., Šmuc,
T., Džeroski, S. (eds.) DS 2019. LNCS (LNAI), vol. 11828, pp. 112–126. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33778-0_10

14. Traoré, K.R., Camero, A., Zhu, X.X.: Landscape of neural architecture search
across sensors: how much do they differ ? ISPRS Ann. Photogr. Remote Sens.
Spat. Inf. Sci. V-3-2022, 217–224 (2022). https://doi.org/10.5194/isprs-annals-
V-3-2022-217-2022, https://www.isprs-ann-photogramm-remote-sens-spatial-inf-
sci.net/V-3-2022/217/2022/

15. Traoré, K.R., Camero, A., Zhu, X.X.: Fitness landscape footprint: a framework to
compare neural architecture search problems (2021)

APPENDIX B. LIST OF PUBLICATIONS

This page is intentionally left blank.

147

Compact Neural Architecture Search for Local
Climate Zones Classification

Kalifou Rene Traore1,2 Andrés Camero2

Xiao Xiang Zhu1,2

1- Technical University of Munich, Data Science in Earth Observation
2- German Aerospace Center (DLR), Remote Sensing Technology Institute (IMF)

Abstract. State-of-the-art Computer Vision models achieve impressive
performance but with an increasing complexity. Great advances have been
made towards automatic model design, but accounting for model perfor-
mance and low complexity is still an open challenge. In this study, we
propose a neural architecture search strategy for high performance low
complexity classification models, that combines an efficient search algo-
rithm with mechanisms for reducing complexity. We tested our proposal
on a real World remote sensing problem, the Local Climate Zone clas-
sification. The results show that our proposal achieves state-of-the-art
performance, while being at least 91.8% more compact in terms of size
and FLOPs.

1 Introduction

Modern data-driven approaches to deal with large-scale data, particularly Deep
Learning (DL), require domain and data science expertise. The variety of ap-
plication tasks (e.g., classification and object detection) often require designing
models that are not necessarily reusable in other tasks [1]. Moreover, manu-
ally designing models is time consuming and error prone. Thus, automating the
Machine Learning (ML) pipeline design (a.k.a. AutoML [2]) is much desirable.

Neural Architecture Search (NAS) [3], a sub-field of AutoML focusing on the
design of ML models, has already proven to be successful for a wide variety of
problems, including Computer Vision (CV) [3].

In Earth observation (EO), satellite remote sensing enables recovering contact-
free large-scale information about the physical properties of the Earth from
space. Thanks to ESA’s Sentinel missions and NewSpace companies, petabytes
of satellite data has become available, leveraging large-scale datasets that have
boosted the study of tailored models, in particular for multi-spectral and Syn-
thetic Aperture Radar (SAR) data classification [4]. However, the application
of NAS for further improvements remains quite unexplored.

In this paper, we propose a NAS strategy to automatically design high-
performance low complexity image classification models. Particularly, we com-
bine a differentiable search strategy to optimize the elementary normal cells of
a backbone architecture, with a structural depth and a complexity reducing loss.
We validate our proposal on a real world problem, the So2Sat LCZ42 [5] data
set for classification of Local Climate Zones (LCZ). Our results show that the
best found models are on par with state-of-the-art baselines, while accounting
for at least 91.8% less FLOPs and size.

393

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

2 Related Work

The increase in remote sensing missions and sensors has allowed more data
collection, which in turn has motivated the creation of larger EO datasets for
scientific purposes [6]. In order to analyse these large data sets, the remote
sensing community has embraced the use of DL models classically used in CV
for similar tasks [4]. However, due to the particularities of these EO data sets
(e.g., multi-modal, geo-located, time-variable data), it is necessary to develop
domain-specific models [7]. Therefore, AutoML (and particularly NAS), has the
potential to ease and improve the quality of the future tailored models.

Great advances have been made in the NAS field [3, 8]. However, most
approaches have not yet been adopted because they require a lot of computa-
tional resources and time [3, 8]. To cope with these limitations, some authors
have leveraged the differentiable architecture search (DARTS) [9], dramatically
reducing the search budget time (GDAS [10]), without compromising the per-
formance. On the other hand, some authors have explore NAS for low com-
plexity models, including the design of models for constrained hardware [11, 12],
compression-based approaches [13], and pruning techniques [14], among others.

3 NAS for Compactness

A Differentiable Search Strategy: Let α = {αcell,∆} be a candidate neural
architecture defined by an elementary module αcell, a backbone configuration ∆,
and ωcell and Ωdepth the respective weights. The objective is to find α∗ that
minimizes a validation loss, while identifying its optimal parameters ωcell∗ in
training:

min(αcell,∆)E(x′ ,y′)∼DV
L(x

′
, y

′
) s.t. ω∗cell = argminωE(x,y)∼DT

L(x, y) (1)

The optimized loss L is the sum of a prediction loss LNLL and a weighted
complexity reducing loss Lcpl: L(x, y) = LNLL(x, y) +Ccpl ·Lcpl. Here LNLL is
the negative log likelihood of predicting the correct label y, given a data sample
x, αcell, ∆ and ωcell ∈ W. Both αcell, ∆ are respectively sampled from τA
and τ∆ the probability distributions over the cells and depths configurations. In
practice, τA and τ∆ are encoded by the matrices Acell, and Ωdepth. Thus, the
distribution over α is A = {Acell} ∪ {Ωdepth}. To sample, we use a continuous
and smooth Gumbel-Softmax function (i.e., the sampling on α is differentiable),
thus we can learn τA via Gradient Descent. To tackle our Equation 1, we propose
to use Algorithm 1 alternating between updating the trainable parameters of an
architecture, sampled in W, and its structural parameters sampled in A [10] .
Cells and Depth Search Space: All considered model α use the backbone
architecture introduced in Figure 1 [10]. As in [13], each block i of α is made of a
sequence of identical cells αcell, of variable length δi.Therefore, α is parametrized
by ∆ = [δ1, δ2, ..., δN], s.t. δi < δmax, the set of depths for all block i. As
in [10], we search for the topology of αcell. Such module is defined as a directed
acyclic graph G, with an ordered sequence of B features (nodes). Each node is
the resulting transformation of its T = 2 preceding nodes as: Ii = fi,j(Ij) +
fi,k(Ik) s.t. j < i & k < i where Ii, Ij, Ik represent nodes of respective indices

394

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

i, j, k. fi,j , fi,k represent operations sampled from a set F. The final αcell
obtained by selecting the function fi,j between each pair of nodes i and j with
the highest probability to appear.
Complexity Reducing Loss: In order to reduce the complexity of a searched α,
we formulate a complexity loss to minimize [11, 13]: Lcpl =

∑
δk∈∆ Lcpl−cell · δk,

a function of the selected depth δk for all k blocks. At a cell-level, it writes as
Lcpl−cell = 1

Nops

∑
oi,j∈αcell

FLOPs(oi,j) · ωi,j , where Nops is the total number

of operations, and ωi,j the probability of selecting an operation oi,j in αcell. It
is made differentiable only with respect to the cells’ weights ωi,j .
Architecture Depth Search: We look for the optimal depth of each block
in α [13]. This aspect is capture by matrix: Ωdepth = [Ω1, ...,Ωi, ..,ΩN], s.t. Ωi ∈
Rδmax where δmax is the maximal depth per block, and Ωi the depth parameters
for block i. These parameters are involved in the training process as follows:
fblocki+1 =

∑
Ωj

i∈Ωi
fblocki · Ωji where fblocki is the feature map resulting from

block i. The final feature map is a sum of the original block’s feature map
weighted by the parameters Ωji of all potential depth j at layer i.

Algorithm 1: Searching for αcell and ∆

Input: Two disjoint sets DT and DV , randomly initialized A and W, batch size;
while not at convergence do

Sample a batch Dt = {(xi, yi)}ni=1 from DT

Calculate LT =
∑n

i=1 L(xi, yi)
Update W by gradient descent: W = W−∇WLT

Sample a batch Dv = {(xi, yi)}ni=1 from DV

Calculate LV =
∑n

i=1 L(xi, yi)
Update A by gradient descent: A = A−∇ALV

end
Derive the final architecture α = {αcell,∆} from A;
Optimize α = {αcell,∆} on the whole training set for future inference on the test set.

Image z Reduction
Cell

...
Output

Normal
Cell 𝜶cell

depth 𝜹1

Reduction
Cell

 Normal cell 𝜶cell

An architecture 𝜶 = { 𝜶cell, 𝛥}, with its Depths 𝛥 = { 𝜹1, …, 𝜹N}

Block 1

Block i

𝜹1

𝜹i

Head SoftMaxBlock N

𝜹N Output

Normal
Cell 𝜶cell

Normal
Cell 𝜶cell

Normal
Cell 𝜶cell

𝜶cell k-1

node I 0

node I 1

𝜶cell k-2

Fig. 1: An architecture α, with a reduction cell is fixed according to [10].

4 Experimental Setup

Data: The So2Sat LCZ42 classification benchmark [5] consist of samples from
42 urban areas (plus 10 smaller areas for validation and test) across all conti-
nents. Including 400,673 co-registered Sentinel-1 SAR (8 real-valued bands) and
Sentinel-2 multi-spectral (10 real valued bands) image patches and its respective
labels. Each patch is a 32x32 pixel image (320x320 meters spatial resolution).
The data set defines 17 LCZ classes, ten urban classes and seven vegetation ones.
Data distribution: We consider two distributions using Sentinel-2 and the la-
bels, exclusively. In d1, the training-set consist of samples from 42 cities (352,366
patches). Validation (24,188 patches) and test (24,199 patches) contain samples

395

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

from 10 different cities, respectively taken from east and west part of each city.
In d2, train and test sets are randomly draw from d1 training-set (80% and 20%
respectively). Thus, both have the same data distribution. At search time, the
train set is split into two halves: DT (training) and DV (validation).
Hyperparameters: We set the number of channels in the first layer 16, the
number of nodes in αcell to 4, the number of incoming cells to 2, and the initial
depth δ in all blocks to 3. The max depth per block is set as 5. We use SGD
(105 epochs) for training, and we set the learning rate to 0.025, weight decay to
3e−4, annealed to 1e−3, and momentum of 0.9. The Gumbel-Softmax sampler
temperature is set to 10 (linearly reduced to 1). Also, we set Ccpl = 0.01, to
enable balancing the optimization of both LNLL and Lcpl. We observed that
larger values tend prevent the convergence of the overall objective L. Addition-
ally, following [10], we set F as: the (1) identity, (2) zeroize, (3) 3x3 depth-wise
separate convolutions, (4) 3x3 dilated depth-wise separate convolutions, (5) 5x5
depth-wise separate convolutions, (6) 5x5 dilated depth-wise separate convolu-
tions, (7) 3x3 average pooling, (8) 3x3 max pooling. The stride is set to 1 for
normal cells, and to 2 for reduction cells.
Implementation: We used GDAS [10] and TAS [14] source code as basis, and
ResNet08, ResNet32 and ResNet110 models (available on the same repository)
as baselines. The experiment were run on a Nvidia V100 GPU.

5 Results

Performance in d1: Table 1 presents the mean performance on test data (4
independent runs). S stands for Single Cell Search, C for Complexity Loss,
D for Depth Search, and ’+’ indicates the combination of these settings. The
individual effect of Depth Search (S + D) and the Complexity Aware Loss (S
+ C) is positive in improving performance on both OA, AA, and Kappa metrics
over Single Cell Search (S). The combination (S + C + D) does not accumulate
their benefice. The model (S + D) brings the most improvements while keeping
the complexity low over, compared to (S). When compared to manually designed
baselines (Table 1 - left), (S + D) is a TOP-2 low complexity model (FLOPs
and Size), a TOP-2 performer for two accuracy metrics (OA and Kappa), while
best on the AA metric. The best selected model (S + D) outperforms manually
designed baselines of similar complexity. Also, all selected models are performing
well in test on d1 while being selecting on data distribution d2.

Method ResNet08 ResNet32 ResNet110 S S+C S+D S+C+D
OA 60.25 64.85 67.60 64.05 64.25 64.96 64.00
AA 47.86 52.24 53.34 50.39 51.63 54.02 52.20
Kappa 0.565 0.615 0.645 0.61 0.61 0.62 0.61

Size (MB) 0.08 0.27 1.73 0.224 0.165 0.14 0.130
FLOPs (M) 13.53 41.85 253.89 30.37 24.10 20.05 18.42
Block’s Depth NA NA NA 3x3 3x3 1x3 1x3

Table 1: Mean performance benchmark in test for setting d1.

Performance in d2: Table 2 presents the mean performance for 4 inde-
pendent runs on d2. The individual effect of Depth Search (S + D) and the
Complexity Aware Loss (S + C) are non beneficial over Single Cell Search (S)

396

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

in test. Combining with (S + C + D) does not improve performances neither.
However, overall performance of all models are very good, suggesting that the
d2 data distribution is much easier to fit than d1. The best model found using
the proposed approach is (S + D), with 98% OA, 91.44% AA and 0.98 Kappa.

Method ResNet08 ResNet32 ResNet110 S S+C S+D S+C+D
OA 96.18 96.89 98.59 98.15 97.81 98.00 97.74
AA 88.91 89.75 91.91 91.61 91.12 91.44 91.08
Kappa 0.958 0.966 0.984 0.980 0.975 0.980 0.975
Size (MB) 0.08 0.27 1.73 0.224 0.165 0.14 0.130
FLOPs (M) 13.53 41.85 253.89 30.37 24.10 20.05 18.42
Block’s Depth NA NA NA 3x3 3x3 1x3 1x3

Table 2: Mean performance benchmark in test for setting d2.

Compared to modern classification baselines (Table 2 - ResNets), the model
(S + D) is TOP-2 in performance and is very close (0.59% - OA, 0.47% - AA and
0.004 - Kappa) to ResNet110 (TOP-1), while it is nearly 92% smaller (FLOPs
and Size) than ResNet110. Also, it outperforms similar complexity competitors.

Confusion: Figure 2 depicts the confusion matrix of (S + D) on d1 (left)
and d2 (right). The confidence increases from blue to yellow. In both cases, the
confusion is higher for urban classes (1 to 10). This resemblance suggests that
the 42 cities selected on d1 and the 10 introduced on d2 are similar. Also, the
confusion for the vegetation classes (11 to 17) is lower on d2 than on d1. This
difference could be explained by the vegetation disparity around the globe.

Fig. 2: Confusion matrix for model (S + D) on test d1 (left) and d2 (right).

6 Conclusions and Future Work

In this paper, we proposed a differentiable search strategy combined with two
mechanisms to reduce the model complexity for finding high performing and
low complexity classification models. We tested our proposal on a real World
problem, the So2Sat LCZ42, using two different data distributions (d1 and d2).
In test, our approach achieves state-of-the-art performance (ResNet-110), while
being 91.8% smaller in both FLOPS and size, and outperforms all baselines of
similar complexity (ResNet-08). However, in test, these cumulative improve-
ments are not consistent, in particular on the data distribution d2. As future

397

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

work, we propose to investigate how to improve model selection in validation to
get the most of fully retrained models in test.

Acknowledgments

Authors acknowledge support by the European Research Council (ERC) under the EU

Horizon 2020 (ERC-2016-StG-714087, So2Sat), the Helmholtz Association through the

Helmholtz AI (ZT-I-PF-5-01), the German Federal Ministry of Education and Research

(BMBF) international future AI lab ”AI4EO” (01DD20001), and DeToL.

References

[1] Krizhevsky Alex, Sutskever Ilya, and E. Hinton Geoffrey. Imagenet classification
with deep convolutional neural networks. NIPS, 2012.

[2] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated Ma-
chine Learning - Methods, Systems, Challenges. Springer, 2019.

[3] Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. Neural architecture
search: A survey. JMLR, 20(55):1–21, 2019.

[4] Xiao Xiang Zhu, Devis Tuia, Lichao Mou, Gui-Song Xia, Liangpei Zhang, Feng
Xu, and Friedrich Fraundorfer. Deep learning in remote sensing: A comprehensive
review and list of resources. IEEE Geosci. Remote Sens., 5(4):8–36, 2017.

[5] Xiao Xiang Zhu, Jingliang Hu, Chunping Qiu, Yilei Shi, Jian Kang, Lichao Mou,
Hossein Bagheri, Matthias Haberle, Yuansheng Hua, Rong Huang, et al. So2sat
lcz42: A benchmark data set for the classification of global local climate zones
[software and data sets]. IEEE Geosci. Remote Sens., 8(3):76–89, 2020.

[6] John E Ball, Derek T Anderson, and Chee Seng Chan. Comprehensive survey of
deep learning in remote sensing: theories, tools, and challenges for the community.
J. Appl. Remote Sens., 11(4):042609, 2017.

[7] Qingpeng Li, Lichao Mou, Qizhi Xu, Yun Zhang, and X. X. Zhu. R3-net: A deep
network for multi-oriented vehicledetection in aerial images and videos. IEEE
Tran. Geosci. Remote Sens., 2019.

[8] Varun Kumar Ojha, Ajith Abraham, and Václav Snášel. Metaheuristic design of
feedforward neural networks: A review of two decades of research. Eng. Appl.
Artif. Intell., 60(January):97–116, 2017.

[9] Liu Hanxiao, Simonyan Karen, and Yang Yiming. Darts: Differentiable architec-
ture search. ICLR, 2019.

[10] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu
hours. CVPR, 2019.

[11] Cai Han, Zhu Ligeng, and Han Song. Proxilessnas: Direct neural architecture
search on target task and hardware. ICLR, 2019.

[12] Xie Sirui, Zheng Hehui, Liu Chunxiao, and Lin Liang. Snas: Stochastic neural
architecture search. ICLR, 2019.

[13] Chen Daoyuan, Li Yaliang, Qiu Minghui, Wang Zhen, Li Bofang, Ding Bolin,
Deng Hongbo, Huang Jun, Lin Wei, and Zhou Jingren. Adabert: Task-adaptive
bert compression with differentiableneural architecture search. Arxiv, 2019.

[14] Xuanyi Dong and Yi Yang. Network pruning via transformable architecture
search. In NeurIPS, 2019.

398

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7.
Available from http://www.i6doc.com/en/.

	List of Figures
	List of Tables
	Introduction
	Motivations and Challenges
	Problem Statements
	Contributions
	Outline
	Publications

	Fundamentals
	Modern Deep Learning Methodologies for Earth Observation
	Automated Machine Learning
	Neural Architecture Search
	Fitness Landscape Analysis

	Related work
	Deep Learning in Earth Observation
	Neural Architecture Search
	Understanding the Behavior of Search Algorithms

	Landscape-aware Search for Automated Machine Learning
	Toward Landscape-aware Neural Architecture Search
	Motivations
	A Framework of General-purpose Features for NAS Problems
	A Landscape Analysis of NAS in Various Domains
	Outlook

	Sensor-aware NAS for Multi-modal Classification
	Motivations
	A Landscape Analysis of NAS using Various Sensors
	Outlook

	Effect on Performance of Other Components in an AutoML Framework
	Motivations
	Impact of the Failure of an Evaluation Metric on HPO
	The Case of the MMCE Metric
	Outlook

	Mechanisms for Efficient Search in AutoML
	Improving AutoML Search using Data-Science
	Motivations
	Data-driven Initialization for Population-based NAS Heuristics
	Outlook

	Searching for Efficient and Compact Classification Models
	Complexity-aware Differentiable Neural Architecture Search
	Results
	Outlook

	Benchmark for AutoML in Earth Observation
	Motivations
	Database
	Outlook

	Conclusion
	Bibliography
	Problems and Datasets
	So2Sat LCZ-42
	NASBench-101
	YaHPO-Gym
	DS-2019

	List of Publications
	Publications in Journals
	Publications in the Proceedings of Conferences
	Other publications not included in the cumulative dissertation

