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Abstract

Remote Sensing (RS) is a very active field of research, with a high pace of innovation,
and developments in numerous areas including the emergence of novel sensors, and
the launch of programs for the acquisition of ever-growing volumes of data, to name
a few. From the monitoring of environmental changes to the monitoring of urban
growth, or the detection of crises and disasters, the available data has the potential
to support highly impactful decision-making. In order to make this decision-making
efficient and reliable, the research area of Automated Machine Learning (AutoML)
provides tools for autonomously designing well-suited Data Science pipelines. The
works presented in this dissertation explore the aspects of explainability, efficiency
and accessibility of AutoML for tailored decision-making in Earth Observation-based
(EO) applications. The objectives and contributions of this dissertation can be
summarized as follows:

o Faplainability: AutoML systems generally consist of an ensemble of compo-
nents all playing an essential role in the quality of the resulting decision-making
solutions. We are interested in understanding the influence of all components
in the output of AutoML systems in RS applications. In particular, we pro-
pose to analyze Neural Architecture Search (NAS) problems using a bag of
features characterizing key optimization aspects explaining search algorithm
performances. We provide novel insights on the influence of such elements on
search algorithm behavior, and how these could be used to better design or
calibrate AutoML search algorithms in EO.

o KEfficiency: Designing modern decision-making solutions is still mostly per-
formed manually, which can require considerable time investments and pro-
vide results of variable quality. In this dissertation, we present methodolo-
gies for making such activity time-efficient, and resulting in resource-efficient
well-performing solutions for EO applications. To do so, we have developed
a methodology helping specific AutoML search algorithms (population-based
metaheuristics) to achieve faster convergence and better performances (quality
of identified decision-making solutions) on EO applications. This is done by
providing a data-driven initialization strategy that uses freely available search
space performance evaluations. Besides, we have also introduced a methodol-
ogy able to find high-performing image classifiers of low complexity, competing
with popular and manually-designed baselines of similar complexity.

o Accessibility: Given the high computational cost of conducting AutoML exper-
iments, researching the topic with data-intensive domain-specific EO applica-
tions is not always an easy endeavour. To contribute to making AutoML more
accessible to the EO community, we explore the creation of a NAS Benchmark
in EO, helping develop and benchmark AutoML search algorithms without
the need for model evaluation on an EO scene classification task.
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Zusammenfassung

Fernerkundung ist ein sehr aktives Forschungsgebiet mit einem hohen Innovation-
stempo und Entwicklungen in zahlreichen Bereichen, darunter das Aufkommen
neuartiger Sensoren und die Einfiihrung von Programmen zur Erfassung standig
wachsender Datenmengen, um nur einige zu nennen. Die verfiigharen Daten haben
das Potenzial, &uflerst wirkungsvolle Entscheidungen zu unterstiitzen. Diese reichen
von der Uberwachung von Umweltveranderungen und stadtischen Wachstum bis
zu der Erkennung von Krisen und Katastrophen. Um diese Entscheidungsfindung
effizient und zuverléssig zu gestalten, stellt der Forschungsbereich Automatisiertes
Maschinelles Lernen (AutoML) Werkzeuge zur autonomen Gestaltung geeigneter
Data-Science-Pipelines bereit. Die in dieser Doktorarbeit vorgestellten Arbeiten
untersuchen die Aspekte der Erklirbarkeit, Effizienz und Zugdanglichkeit von Au-
toML fiir ma3geschneiderte Entscheidungen der Anwendung von Erdbeobachtung.
Die Ziele und Beitrage dieser Dissertation lassen sich wie folgt zusammenfassen:

o FErklarbarkeit: AutoML-Systeme bestehen im Allgemeinen aus einem Ensem-
ble von Komponenten, die alle eine wesentliche Rolle fiir die Qualitat der
resultierenden Entscheidungslosungen spielen. Wir sind daran interessiert,
den Einfluss aller Komponenten auf die Ausgabe von AutoML-Systemen in
FK-Anwendungen zu verstehen. Insbesondere schlagen wir vor, Probleme der
Neural Architecture Search (NAS) mithilfe einer Reihe von Merkmalen zu
analysieren, die wichtige Optimierungsaspekte charakterisieren und die Leis-
tung von Suchalgorithmen erklaren. Wir liefern neue Erkenntnisse iiber den
Einfluss solcher Elemente auf das Verhalten von Suchalgorithmen und wie diese
genutzt werden konnten, um AutoML-Suchalgorithmen fiir die Erbeobachtung
besser zu entwerfen oder zu kalibrieren.

o Fffizienz: Der Entwurf moderner Entscheidungslosungen wird immer noch
grofitenteils manuell durchgefiihrt, was einen erheblichen Zeitaufwand er-
fordert und Ergebnisse unterschiedlicher Qualitét liefern kann. In dieser Dis-
sertation stellen wir Methoden vor, um solche Aktivititen zeiteffizient zu
gestalten und zu ressourceneffizienten, leistungsstarken Losungen fiir Erd-
beobachtungsanwendungen zu fithren. Zu diesem Zweck haben wir eine
Methodik entwickelt, die bestimmten AutoML-Suchalgorithmen (populations-
basierte Metaheuristik) hilft, schnellere Konvergenz und bessere Leistun-
gen (Qualitdt der identifizierten Entscheidungslésungen) bei Erdbeobach-
tungsanwendungen zu erreichen. Dies geschieht durch die Bereitstellung
einer datengesteuerten Initialisierungsstrategie, die frei verfiighare Leistungs-
bewertungen des Suchraums verwendet. Dariiber hinaus haben wir eine
Methodik eingefiihrt, mit der leistungsstarke Bildklassifikatoren mit geringer
Komplexitat gefunden werden konnen, die mit beliebten und manuell entwor-
fenen Basislinien dhnlicher Komplexitat konkurrieren.

e Zugdanglichkeit: Angesichts des hohen Rechenaufwands fiir die Durchfithrung
von AutoML-Experimenten ist die Erforschung des Themas mit dateninten-
siven domanenspezifischen Erdbeobachtungsanwendungen nicht immer ein ein-
faches Unterfangen. Um dazu beizutragen, AutoML fiir die Erdbeobachtungs-
gemeinschaft zugénglicher zu machen, untersuchen wir die Erstellung eines
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NAS-Benchmarks fiir die Erbeobachtung, der bei der Entwicklung und dem
Benchmarking von AutoML-Suchalgorithmen hilft, ohne dass eine Modellbew-
ertung fiir eine Erdbeobachtungszenenklassifizierungsaufgabe erforderlich ist.
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Chapter 1

Introduction

This section provides an introduction to this doctoral dissertation by stating the
motivations behind the work being conducted, stating the research problems being
addressed, introducing the contributions that have been made, and providing a
general outline of the document.

1.1 Motivations and Challenges

With an ever-growing number of satellite programs being launched, the amount of
publicly available data is on the rise in the field of RS. This has led to a high demand
for technological solutions that can utilise these resources to generate novel insights
and support decision-making. Examples of real-world applications that benefit from
such technologies are precision agriculture and urban development monitoring, which
policymakers rely on for making accurate decisions by complementing data gathered
on the ground with remote-sensing data. In practice, many such technologies use
modern Computer Vision-based (CV) models to tackle their tasks. An example of
this is the use of Convolutional Neural Networks (CNNs). In order to improve the
decision-making abilities of such models, the research communities of CV and EO
have increasingly worked on developing novel configurations and architectures for
the models. However, these innovations have traditionally resulted from manual en-
gineering, a process that requires important time investments and is not guaranteed
to succeed. On the other hand, researchers in AutoML have developed method-
ologies to help automate and optimize the design of data-driven decision-making
models. This dissertation aims to investigate AutoML methodologies for helping
design solutions that are more efficient and better tailored to solve EO-related ap-
plications.

1.2 Problem Statements

Within the scope of this doctoral dissertation, we aim to find answers to the following
research questions:

e RQI: Can we expect AutoML search algorithms to perform similarly in the
EO domain, as they do in the CV domain?
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e RQ@2: Assuming that there exist similarities across domains of applications,
can we leverage domain-specific algorithmic knowledge from a non-EO appli-
cation, to help an AutoML search algorithm perform better in its EO coun-
terpart?

e R(Q)3: By looking at the characteristics of an AutoML optimization problem
(e.g. search space), is it possible to anticipate the behaviour and performances
of a search algorithm needed to solve it? Assuming the previous question has
a positive answer, what elements would have such an influence on the search
algorithm behaviour?

1.3 Contributions

The contributions of this manuscript are summarized as follows:

o Contribution C1: Optimizing neural network architectures for a target ap-
plication is a complex task that requires careful consideration of numerous
elements, some critical to the suitable functioning of the resulting solutions.
These include identifying the type of architecture to consider, the optimizer
to tune the architectures, and the evaluation protocol to measure their fitness.
We introduce the framework of the Fitness Landscape Footprint! enabling us
to quantify the impact of such elements on the landscape of a NAS search
problem. We demonstrate its ability to characterize and compare the diffi-
culty of finding good architectures for image classification tasks of two very
different domains (CV and EO). This work is introduced in Section and
associated with the publication P1 (see in section [L.5]).

e Contribution C2: As a Follow-up work to Contribution 1, we demonstrate
the use of the framework for a very practical problem: identifying the most
beneficial input-sensor setting when searching for an optimal model in the case
of a multi-modal RS image classification task®. We quantify the similarities
and anticipated benefits of each input for the considered NAS problem. This
work is introduced in Section 4.2l

o Contribution C3: Following up on the previous studies, we investigate how
the theory of fitness landscape analysis can help characterize the influence of
performance evaluation metrics on the task of tuning the hyperparameter of
decision-making models®. More particularly, we discover that a malfunction of
the performance metric can make AutoML landscapes harder for optimizers,
on a variety of Hyperparameter Optimization (HPO) scenarios and tasks. This
work is introduced in Section and associated with the publication P4.

e Contribution Cj: We propose a data-driving initialization technique for
population-based search algorithms®. We demonstrate the benefit of this
method against popular initialization baselines for three established search
algorithms. We demonstrate the possibility of initializing a search algorithm
deployed on the problem of tuning models for an EO target classification task
while using performance data from a different source domain (classification of
natural scenes). This work is introduced in Section and associated with
the publication P2.
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o Contribution C5: We propose a novel approach for searching efficient and
low-complexity scene classification models®, combining a modular backbone
architecture with a complexity-reducing loss. This work is introduced in Sec-
tion and associated with the publication P3.

e Contribution C6: We propose a novel NAS database for the EO, providing
both real and surrogate performance estimations over a large search space of
image classifiers. This work is introduced in Section [6]

1.4 Outline

This manuscript is structured in seven chapters, of which the remaining ones are
organized as follows: in Chapter [2] we describe general concepts that are impor-
tant to understand the state of the art in Data Science for EO, NAS, as well as
landscape analysis for AutoML. Then, in Chapter [3| we present relevant works in
Machine Learning for EO, AutoML, as well as Landscape Analysis methodologies
that are highly relevant in describing combinatorial AutoML optimization problems.
Chapter [4] presents our research output on the topic of landscape-aware AutoML.
Relevant contributions include a framework for describing generic NAS problems
(see Section , as well as its application to a multi-modal sensor-fusion NAS in-
stance (see Section [4.2). In Chapter [5 we introduce works on the topic of efficient
AutoML, with contributions to the subject of the initialization of population-based
NAS algorithms (see Section [5.1)), as well as to the subject of searching for effi-
cient decision-making models of low-complexity (see Section [5.2)). In Chapter [6 we
present our contributions to AutoML databases in EO. In Chapter [7], we provide
a conclusion to the manuscript by presenting future research plans on the topic
of landscape-aware neural architecture search for EO and providing additional dis-
cussions on the topics previously tackled. Moreover, in Appendix [A] we provide a
description of the datasets used in all experiments supporting the manuscript. Last
but not least, we provide a list of publications supporting the manuscript, in the
Appendix [B] followed by the publications themselves.

1.5 Publications

This section presents the publications related to the work introduced in this disser-
tation.

Publications in Journals

e P1: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang, Fitness
Landscape Footprint: A Framework to Compare Neural Architecture Search
Problems, Under review at Journal of Machine Learning Research (JMLR),
2023.

e P2: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2023),
A Data-driven Approach to Neural Architecture Search Initialization, Annals
of Mathematics and Artificial Intelligence, pp. 1-28. Springer Nature, doi:
10.1007/s10472-022-09823-0, ISSN 1012-2443.
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Publications in the Proceedings of Conferences

e P3: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2021),
Compact Neural Architecture Search for Local Climate Zones Classification, In:
The 29th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN), 06. - 08. Oct. 2021, Online.
doi: 10.14428/esann/2021.ES2021-55, ISBN 978287587082-7.

e P4: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2023),
We Won’t Get Fooled Again: When Performance Metric Malfunction Affects
the Landscape of Hyperparameter Optimization Problems, In: 6th International
Conference on Optimization and Learning, OLA 2023, 1824, pp. 148-160.
Springer, Cham, 3-5 May 2023, Malaga, Spain, doi: 10.1007/978-3-031-34020-
8_11. ISBN 978-303134019-2, ISSN 1865-0929.

Other publications not included in the cumulative disserta-
tion

e P5: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2022)
Landscape of Neural Architecture Search across sensors: how much do they
differ?, In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 3-2022, pp. 217-224, XXIV ISPRS Congress, 6.-11. June
2022, Nice, France, doi: 10.5194/isprs-annals-V-3-2022-217-2022, ISSN 2194-
9042.

e P6: Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2021),
Lessons from Clustering of a Search Space: a Data-driven initialization tech-
nique to Search, Workshop on Data Science meets Optimization, International
Joint Conferences on Artificial Intelligence (IJCAI), Online.

e P7: Demir, Emre and Traoré, Kalifou René and Camero, Andrés (2024), Lever-
aging performance-based metadata for designing multi-objective NAS strate-
gies for efficient models in Farth Observation, In: The 32nd European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Ma-
chine Learning (ESANN), 09. - 11. Oct. 2024, Brugges, Belgium, doi:
10.14428 /esann /2024.E52024-94, ISBN 978-2-87587-090-2.
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Chapter 2

Fundamentals

In this chapter, we introduce the fundamental concepts behind the works presented
in this manuscript. These concepts cover the research areas of Data Science for EO,
NAS, and Evolutionary Computation (FLA).

2.1 Modern Deep Learning Methodologies for
Earth Observation

Deep learning-based methodologies have helped tackle plenty of applications in RS.
Examples of use cases span from Precision Agriculture with Crop Monitoring to
Disaster Management with systems for Flood Detection. An RS application requir-
ing data-driven decision-making can be classified into various categories of tasks,
requiring task-specific methodologies and data. The following paragraphs intro-
duce the fundamental tasks of Semantic Segmentation, Object Detection, as well as
Change Detection, to give examples of methods used to tackle popular relevant RS
applications.

Semantic Segmentation Semantic segmentation is an important task in RS.
Given an image of objects sensed on the ground, it consists of assigning a semantic
label to every pixel of the image, a.k.a. pixel-wise classification®. As a result, all
instances of objects present in a scene usually have associated pixels assigned the
same semantic label. Early methodologies for RS semantic segmentation have been
highly inspired by works from the Compute Vision community, where various solu-
tions use a Deep Learning-based feature extractor to tackle the task. A particularly
recognizable feature of such methods is their use of a neural network architecture
that has two main feature processing stages. In the first stage, low-dimensional
features are extracted from an input image using a series of (convolutional) layers
of decreasing filter size. Then, it is followed by a symmetric structure aiming at
constructing an image-like semantic map from the low-dimensional features. This
is done using a series of (convolutional) layers of increasing kernel sizes, a.k.a. de-
convolution. This two-step structure is present in various architectures such as the
Fully Convolutional Network™ (FCN), SegNet®, as well as U-Net”, with variations
in the type of layers being used (fully connected etc.), and other layer characteristics
(up-sampling etc.). Recent works in RS have focused on tackling domain-specific
challenges present in the RS data such as the lack of data annotations to train the
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models, the importance of pixel-level accuracy, as well as dealing with images from
specific sensors (multi-spectral, hyper-spectral), or combination of (sensor fusion).

Output Image
%9 R

Post
processing

Detection and | 7
classification | (\

Input Image Feature extraction and processing

Data
Preprocessing

.| Generate
| bounding box

Figure 2.1: Overview of the Framework of Object Detection for Remote Sensing™”.

Object Dectection Moreover, some RS data analysis scenarios may require cat-
egorizing remotely sensed objects and locating them geographically. This is the task
of Object Detection, which supports real-world applications such as building plan-
ning or urban monitoring, where these object locations and characterization play
an important role and are crucial’’. The challenges to Object Detection method-
ologies lie in the characteristics of the objects to detect (coexistence of objects, size,
ambiguity in the category), the complexity of the background of the images being
used, and the quality of the labelling of the data. The standard framework of RS
Object Detection methodologies is outlined in Figure 2.1, The first step consists
of preparing the input data for feature extraction: most techniques consist of data
augmentation, as well as clipping, i.e., the slicing of large images into smaller ones
in order to reduce the cost of feature extraction. Then, the processed data is passed
to a feature-extracting model, which is needed to categorize and locate the objects.
Figure displays statistics regarding the usage of feature extractors, with the
seminal VGGNet and popular ResNet architectures being used 67% of the time.
Next is the step of bounding box generation performed using a dedicated algorithm,
followed by the steps of object classification and a final prepossessing.

Change Detection RS data analysis also involves dealing with data of various
forms, including sequential data, that requires tailored models. For this purpose,
RS experts have developed a variety of decision-making models able to deal with
time series, with an example of a use case being Change Detection. In RS, Change
Detection™ aims at accurately detecting changes occurring on a remotely sensed
object located at the surface of the Earth, using a sequence of measurements taken
at various moments in time. This framework supports the monitoring of all types of
relevant events for which the effect can be remotely sensed, such as natural disasters
(flood detection, etc.) or environmental changes (deforestation), to name a few.
Figure provides the visualization of an example of change detection, where
the aim is to detect changes in land use using consecutive optical images (pairs)
of the areas of interest. The baselines that are shown are based on data fusion of
the elements in the sequence and use an encoder-decoder type of architecture with

7
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Backbone

© MobileNet, 2

Total 78 DLA-34,2
AlexNet, 3

© ZFNet, 4
DarkNet, 5

© Other,7

© VGGNet, 18

© ResNet, 37

Figure 2.2: Statistics about the distribution of usage in of modern image classifica-
tion backbones in Object Detection-oriented mythologies in Remote Sensing™”

data fusion occurring at various stages of the models. The objective is to detect
the pixels (and associated geographical locations) where the changes occur in the
sequence elements.

(b) Middle-fusion based methods

o] ] |

Shared We ight Shared We ght

¥
— EnooJer —»| Decoder

(c) Late-fusion based methods

Figure 2.3: Example of change detection baseline using pairs of images from scenes
where changes occur from one image to the other™. The method used is based
on manually designed Deep Learning-based baselines of varying architectures: an
auto-encoder with early, middle or late-fusion.

To summarize, the span of EO applications that have benefited from the Deep
learning revolution is wide and continuously growing. Most EO applications for
which large amounts of data can be gathered to simulate real-world use cases, could
be supported by modern, high-performing, but data-hungry decision-making mod-
els. However, the design of models that are specific to EO applications is often done
manually, an activity that requires a considerable time investment, with no cer-
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tainty in the optimality of the resulting solutions. This constitutes an opportunity
for AutoML and NAS to support EO experts in identifying more reliably suitable
solutions.

2.2 Automated Machine Learning

AutoML as a research field, aims to support data scientists in designing robust
general machine learning pipelines in a systematic and efficient manner'®. It is
subdivided into three main research areas that are HPO", NAS*™* and Meta Learn-
ing™. Since most modern ML algorithms have many hyperparameters, HPO-related
methods focus on providing HP configurations, improving performances over man-
ual tuning while dealing with complex HP spaces and costly fitness estimations by
means of Multi-fidelity approximations®®. On the other hand, NAS encompasses all
methods explicitly dealing with the automated design of NN-based decision-making
algorithms and overlaps with the field of HPO"™. Other AutoML research enables
algorithms to learn from data about past deployment, i.e. meta-data, such as model
evaluations (fitness, training time, etc.), to help deploy optimizers at reduced com-
putational cost"?.

Besides, another important aspect of AutoML research is providing systems
working in the real world®?. An example is auto-sklearn’®, an AutoML system able
to autonomously handle the tuning of the hyperparameters of numerous decision-
making models, feature and data preprocessing methods. Formally, auto-sklearn
uses the framework of Combined Algorithm Selection and Hyperparameter optimiza-
tion (CASH)"™ in order to jointly find the appropriate decision-making algorithm and
a hyperparameter setting yielding optimal performances for the task at hand (e.g.
data preprocessing). It has proven its value in real-world scenarios by winning sev-
eral AutoML competitions against SOTA competing systems. Besides, other works
provide an overview of existing open-source frameworks for building ML pipelines
automatically and provide a detailed benchmark of their performance™®. In particu-
lar, their analysis considers ML systems from the perspective of the pipeline creation
problem, analogous to CASH, which describes systems with variable pipeline struc-
tures (i.e. an internal data and feature processing graph of variable complexity).

2.3 Neural Architecture Search

NAS refers to the topic of research dealing with the autonomous design of Neural
Network-based (NN) decision-making models. It is a sub-field of AutoML and is
closely tied to HPO, with a specific focus on NN architecture-related hyperparameter
tuning.

The general framework encompassing most NAS methods is depicted in Fig-
ure 2.4l Tt consists of three main components: a search space, a search strategy
(a.k.a. controller), and an evaluation strategy. The search space defines NN con-
figurations that are of interest. The search strategy, a.k.a. controller, aims to find
solutions that maximize performances on unseen data. The performance evalua-
tion strategy provides a measurement of fitness for solutions sampled by the search
strategy. In NAS problems that can be described with this framework, the search
strategy iteratively samples a candidate solution (or set of) from the search space,
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and then this candidate has its fitness estimated by the evaluation strategy. The
fitness measurement is then returned it to the search strategy in order for it to make
an informed decision on which candidate to sample next. This iteration is ended
once the budget of the search iteration is reached, and the configuration (or set of)
having reached the best fitness is returned as the optimal architecture.

Search Space

Performance

Controller Candidate Evaluation | Select Optimal E"“l”3[[“"_=
Architecture Strategy Architecture

Training & Rank

Figure 2.4: Overview of the general framework of NAS, showing the interaction
between the components in a NAS pipeline™.

Search Strategies: Search strategies are tools used to explore search spaces and
retrieve competitive solutions, given budgets of computation. Most search strate-
gies can be categorized as black-box optimization algorithms, at the exception of
the more recent one-shot NAS strategies. Early NAS methodologies have relied on
black-box methods that are based on Evolutionary or Genetic algorithms. More re-
cent methods make use of Reinforcement Learning or Bayesian optimization-based
search algorithms. When performance is the only considered metric, search strate-
gies can optimize for a single objective. They can also consider multiple objectives
in scenarios where other costs, such as model complexity-based metrics, are of in-
terest. Figure [2.5]illustrates an example of a search strategy, using the framework
of Reinforcement Learning?’.

Sample CNN Models

:“ with probability "p”
RNN
State Reward Action Controller
{S} {R} { A} Compute gradient and
M Upsdate the Controller
(a) RL setup (b) RL-NAS

Figure 2.5: Overview of a prototypical Reinforcement Learning-based NAS search
strategy (right, RL-NAS), based on the standard RL computational framework
(left )20,

Search Spaces: Search spaces are containers for all the solutions that are con-
sidered in given NAS problems. They play a crucial role in the NAS framework since
the performance of search strategies will, by default, be bound to their definition.
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In practice, search spaces are parameterized by a set of HPs that aim to affect the
structure of NN candidate solutions, and in turn, their performance. When com-
paring modern NN architecture configurations with similarities, the level at which
their differences occur highlights the nature of search spaces that could express
them. For instance, NN architectures that follow the design principle of the popu-
lar ResNet architecture and only differ in the number of stages or blocks contained
could be generated by macro search spaces or chain-structured search spaces. Both
methodologies help express configurations with variations of macro-level features,
with macro search spaces allowing for more complex solutions. On the other hand,
NN configurations of identical macro-level features, but differences in design choices
(operations, variable connections between layers, etc.) that are affecting elementary
building blocks, can be expressed by cell-based search spaces or even hierarchical
search spaces. Figure provides a visualization of an example of search space that
is cell-based™. Each image classification architecture sampled from it has a fixed
chain-like structure to its backbone, that alternates between two types of feature
processing modules. The first module is a sequence of variable, but repeating units
called normal cells. The second module contains a single unit, the reduction cells.
The normal cell does the most computationally expensive operations, while the re-
duction cell aims at extracting higher-level features through dimension reduction.
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Figure 2.6: Overview of a Neural Network configuration instance, generated from a
chain-structured image classification backbone, where the variable hyperparameters
are associated to the normal cell*. This setting falls under the umbrella of cell-
based search spaces.

Evaluation Strategies Performance evaluation strategies play the role of assess-
ing the quality of solutions sampled by the NAS search strategy from the search
space 120042 Thig is done by direct measurement of fitness using performance
metrics while training the models, or indirect measurements with metrics that are
approximations of model performance. Other variants of performance estimation
strategies might rely on fitness measurements, while reducing the fidelity of some
resources, such as reduced training budgets or even training data, as an approx-
imation of the fitness for full fidelity (resources completely available). Figure
illustrates an example’™ of such, particularly suitable for highly constrained NAS
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systems where computational efficiency is essential. Indeed, it is based on learning
curve prediction that aims at approximating the performances of a model at full
training budget fidelity (black dashed line), after only a few iterations of training
(back line). Thus, when used for estimating the performance of numerous solu-
tions, it can reduce the entire training computation need by a considerable margin.
Learning curve prediction models usually require to be trained using the complete
performance evaluation of a training and evaluation set of solutions (red lines).

- N WS R =
. —-——

“alidation Accuracy

Early
| terrmination

[terations

Figure 2.7: Example of performance prediction with an instance of learning curve
extrapolation®®. More precisely, this example shows how a learning curve extrap-
olation method could select and rank a model for a given budget of training (full
fidelity), after only few iterations of training.

2.4 Fitness Landscape Analysis

Fitness Landscape Analysis (FLA) is an area of research at the intersection of var-
ious fields dealing with Optimization“'. Researchers in Evolutionary Computation
invented it to help them better understand the Optimization problem they were tack-
ling. Recent FLA-related methodologies aim at providing a quantitative appraisal
of search difficulty through the use of various sampling strategies and metrics. The
resulting features aim to characterize various aspects of the search processes (fit-
ness, ruggedness, evolvability, epistasis) that may correlate with the behaviour and
outcome of the solvers being used to tackle the problem at hand. The following
paragraphs introduce a few popular features, helping describe search difficulty in
generic optimization problems. These features also apply to applied optimization
problems, such as NAS problems, with dedicated search spaces and solvers.

Fitness Distance Correlation The Fitness Distance Correlation (FDC) is often
considered an established way to assess the difficulty of optimization problems. It
measures the correlation between the fitness of solutions in the search space and
their distance to the global optimum. Besides, it is challenging to interpret. Instead
of considering its numerical quantity, we propose to visualize it, and we formulate
in Equation [2.1] as :

FDC(z",Q, f) = {(d(z",y), f(y)), Yy € Q} (2.1)

where d(-) is a distance operator, and z* € €2 the global optimum.
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Ruggedness Another way to analyze an optimization problem’s difficulty is by
identifying how irregular the associated landscape is. Indeed, a high level of ir-
regularities could affect local search-based algorithms in reaching global optima.
Examples of effective indicators of irregularity in a landscape are the ruggedness
and multi-modality. We focus here on a method to assess the ruggedness.

The ruggedness is a local descriptor of optimization landscapes: it does not
require a knowledge of all the whole search space, but can instead be estimated using
local sampling strategies. In practice, an appropriate sampling strategy consists
of deploying and evaluating several random walks over the search space, always
considering randomly selected and distinct starting points. In this way, one can
obtain global appreciation of the ruggedness by aggregating its value at the local
level in various regions on the landscape. Then, the next is to compute the serial
correlation p(-) of the fitness of the walks, as introduced in Equation

E[(f(z) = )(f (@) = f)]

plk) = Var(f(w)

Vie|l W |

(2.2)

where for a given random walk W € Q, z; and x;,; are elements of the walk at an
interval of k steps (lags), f is the functions evaluating the fitness of these elements,
and p(k) is the serial correlation considering k lags of interval. Then, the ruggedness
is obtained as the inverse of the serial correlation at k =1 lags 7 = ﬁ: it is high
when the fitness at a local level is highly variable (low p(k = 1)), and low in the
case of a relatively continuous local fitness (large p(k = 1)).

Local Optima Another relevant descriptor is the estimation of the number of local
optima (LO) existing in the search landscape. We consider local maxima for NAS
scenarios, given that we use an objective that we maximize (classification accuracy).
We also consider problems that fall into the category of combinatorial optimization.
Here, we describe a series of steps to approximate the number of existing LO in an
optimization landscape. First, we can retrieve a local optimum at the individual
level using a local search-based solution. In the case of local maxima, we can use
the procedure of Best Improvement Local Search (BILS), described in Algorithm

Algorithm 1: Best-improvement local-search (BILS)

Choose an initial solution z € €Q;
repeat
Tt =ux;
fori=1to | N(z*)| do
Choose y; € N(z*);
if f(y;) < f(z) then
‘ T = Yi;
end
end

until x = z*;

In order to provide an enumeration of all LO in the landscape, one would ideally
run the BILS(-) several times until no new solutions are reached. However, such a

13



CHAPTER 2. FUNDAMENTALS

procedure would possibly be exceptionally computationally and time-costly since the
duration of execution of BILS(-) algorithm (stochastic algorithm) and the number
of LO are both variable??. The least costly but reliable procedure would be based
on the solution to the Birthday problem™>.

Algorithm 2: Analytics of the birthday problem
Let T the total number of trials of enumeration;
fort=1 to T do

Choose M distinct random starting points in €2;

Iteratively collect the M Local Optima using ;

Let k; the number of Optima at first duplication;
end

Let kpmean the average number of Optima at duplication;
Derive N the number of Optima using k,eqn and Eq.

The estimation is based on large-scale deployment BILS(-), as described in Al-
gorithm [2| First is defined 7', the number of trials used in the estimation. Then,
for each trial 7, we randomly select M distinct starting points in the search space Q.
Then, using the sample, the BILS(-) procedure is used to collect M LO. While the
retrieval of LO is being performed in an iterative manner, we identify k;, the number
of optima for which the first duplicate occurs. Once the T trials are performed, we
compute the quantity k,,eqn, the average number of optima that can be collected
until a first duplication occurs. Last but not least, we use kj,eqn together with
Equation [2.3] in order to estimate the total number of LO N in the search space

N ~ mean 2.3
where N approximates the number of LO given an average number k,,cq, of optima
retrieved until duplication, and a fixed probability of duplication Pp in the search
space.
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Chapter 3

Related work

This chapter presents an overview of the literature relevant to this dissertation, with
works regarding the topic of Deep Learning for decision-making in EO, NAS, as well
as the general understanding of search algorithms.

3.1 Deep Learning in Earth Observation

Recent advances in RS missions have enabled the collection of large amounts of data
that help support various applications, where aerial imaging can contribute to more
reliable and systematic decision-making?*. Examples of this include data in the
context of global land-cover mapping®®, the monitoring of environmental changes
using change detection?, or even precision agriculture with the monitoring of crops
overtime*”. This evolution in the increasing availability of curated EO datasets is
well captured in Figure

In order to take advantage of the opportunities brought by the newly available
data, researchers in the RS community have developed plenty of decision-making
models in order to cover tasks such as LULC classification, the semantic segmen-
tation of Land-covers, object detection in Edge-detection scenarios, or time-series
analysis in change detection-related applications. Besides, the particularities of these
EO data sets (e.g., multimodal, geolocated, time-variable data, massive) have also
provided an opportunity to develop more domain-specific models, a challenge for
solutions highly inspired by the Computer Vision (CV) community.

3.2 Neural Architecture Search

The topic of NAS has been investigated since early 90s***® first under the name
of Neuro-evolution, popularized with methods such as NEAT“" already showing
prowess evolving architectures to adapt to complex tasks such as vision-based
decision-making for video games®!. More recently, other evolutionary methods have
reestablished the SOTA in CV-based decision-making, with methods such as the
Aging Evolution®?, helping find the very competitive families of image classifiers
AmoebaNets.

Simultaneously, many competing NAS methods have emerged!® with search
strategies classified as part of very different families of optimization algorithms.
For instance, authors have used Reinforcement Learning-based approaches®® to au-
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Figure 3.1: Visualization of the datasets published in the field of RS, by time of
publication, volume, and application being tackled?®. It appears that the pace of
publication and their volume are considerably increasing.

tonomously design image classification architectures. Other authors have developed
Bayesian-based search strategies®® striving for sample efficiency, helping reduce the
computational cost of NAS. Alternatively, continuous Bi-level optimization-based
methods have also shown tremendous success in NAS™ with methods such as
DARTS® and GDASB®, helping find SOTA image classifiers while requiring small
budgets of computation. They have been the topic of extensive studies, such as

works exploring their instability and proposing fixes for more robustness®’.

As an attempt to look beyond the single lens of performance, NAS researchers
have also explored methods for helping design more efficient decision-making mod-
els, in particular by taking into account hardware capabilities and constraints, a.k.a.
Hardware-aware NAS20, Such methodologies focus on elements susceptible to im-
proving the efficiency of the models w.r.t. to the hardware, such as the design of
better search spaces, search strategies, optimizing the numerical precision of the
models, as well as the considering model evaluation metrics that are hardware or
complexity-related, as additional objective functions.

Besides, recent contributions to the field of NAS have provided efficient search
strategies and search spaces. However, the diversity in implementations and the
cost of deployments remain significant barriers when it comes to the adequate re-
producibility of the methods®®. NAS Benchmarks3? aim at alleviating this problem
by providing databases with free-of-cost evaluations of NN configurations, enabling
anyone to benchmark and prototype any NAS method. These benchmarks come
in the form of databases with exhaustive NN, evaluations or a mix of real®® and
predicted evaluations® (surrogate NASBenchmarks). They usually cover a wide
range of applications®® (classification, segmentation, object detection, etc.), and
domains®34 (CV, Speech, NLP, etc). Besides, more recent benchmarks investigate
model efficiency, such as Hardware-aware NAS Benchmarks, or even hybrid settings,

16



CHAPTER 3. RELATED WORK

such as joint HPO and NAS#?. Figure shows an overview of such benchmark,
with the particular case of NAS-Bench-Suite*2.
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Figure 3.2: Overview of NAS-Bench-Suite, a collection of benchmarks helping de-
velop and evaluate numerous search algorithms, on various search spaces, and do-
mains (Speech, Natural Language Processing, Computer vision)*

Most modern CV models have been designed following design patterns that in-
volve a sequential repetition of modular units to build the backbones of CV models.
The benchmarking of Deep models has shown the importance of depth in increasing
their capacity to fit datasets, resulting in better decision-making. However, instead
of following such heuristics, some authors have proposed an innovative NAS ap-
proach based on randomly wiring the elementary units within the desired models.
They demonstrate competitive results against SOTA baseline, designed using more
conventional principles*®. Other works have later explored similar ideas, emphasiz-
ing the design of search spaces for better model properties. Instead of providing
tunable neural architecture backbones, a recent study proposes formulating design
spaces. Design space would provide specifications for generating search spaces with
desirable properties such as computational efficiency and high performance. The
approach is called designing design spaces*”. Similarly, another study proposes a
search for models through scaling pre-existing CV models and empirically identi-
fying a formula considering several factors such as the model depth, width, and
resolution. The proposed approach achieves a target efficiency level by enabling
high performance and low complexity®®. According to these recent findings, var-
ious ways of dealing with model architecture design have emerged, all being very
promising in terms of future outlook.

The quest for a better understanding of the factors that influence model perfor-
mances is also supported by researchers interested in qualitative analysis of existing
AutoML systems. For instance, ArchExplorer was introduced to enable users to vi-
sually analyze NAS search spaces to get insights into design principles that influence
architecture performance and complexity. ArchExplorer is based on clustering the
search space that uses structural similarity (edit distance) to define local and global
relationships between the solutions®”. Similarly, the authors introduce PipelinePro-
filer, a tool for visually inspecting end-to-end AutoML systems. It enables us to
identify how primitives used in the systems affect their performances, simply de-
bugging or even comparing several systems when deployed on Data Science tasks
of any kind®Y. Similar studies have followed in the particular context of NAS for
vision-based decision-making®!, helping establish best practices for benchmarking,
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comparing and designing NAS methodologies with an increased awareness of the
role played by each component in their systems.

3.3 Understanding the Behavior of Search Algo-
rithms

Aside from contributing to the development of search algorithms and their appli-
cation to the real world, the field of Optimization has also investigated the more
fundamental problem of understanding already existing algorithms and how their
inner components contribute to the successes or failures of the whole. This research
activity, referred to as Fitness Landscape Analysis (FLA)“Y has been applied to
various optimization problems in order to help better design search algorithms. The
general idea behind this novel paradigm is to study and model the structure of
the landscape of optimization problems and identify how the underlying structures
explain and relate to algorithm performances.

For instance, authors have studied the relationship between funnels present in
the landscape of quadratic assignments’ optimization problems and the performance
of search heuristics®®. They identify critical elements in the structure of funnels
(depth) that might affect the difficulty in solving the optimization problems. Other
examples appear in the case of dynamic optimization problems, where authors have
performed the first analysis of dynamic vehicle routing problems (DVRPs) using
static fitness landscape analysis and identify how the temporal or dynamic aspect of
the studied problems is captured (or not) using the tools®®. Similarly, another study
has tackled the instances of the dynamic capacitor arc routing problem (DCARPs)
to identify how dynamic hyperparameters contribute to the problem difficulty®*.

Furthermore, authors have recently introduced the concept of Search Trajectory
Networks (STNs) aiming at modelling the deployment process of search heuristics
using a graph-based approach. Their method is compatible with population-based
or single-point search heuristics in discrete or continuous search settings. STNs are
generated using data collected during several independent runs of algorithms. Thus,
STNs can reveal the search space’s topology in terms of LO’s connectedness and how
different regions are navigated (or shared) by a group of competing algorithms®?.
An example of STN is visualized in Figure [3.3]

Alternatively, it is also possible to model fitness landscapes using the concept of
Local Optima Networks (LONs)?%2C highlighting the distribution of LO and their
connectedness in the search space. Examples of applications of LONs to analyze
optimization problems include the study of the Assisted Seismic History Matching
problem®®, where a preliminary study of the problems using LONs helps prepare
design an accurate strategy to solve this computationally expensive industrial prob-
lem.

Moreover, a novel framework is introduced for analyzing the fitness landscapes
of (continuous) optimization problems. They propose a bag of features to gather
information about the local aspects of the landscapes, as well as their evolvability,
and have shown to be valuable predictors of algorithm run-time (ERT) on classi-
cal optimization benchmarks (BBOB).*”. Another seminal work demonstrates how
global and local landscape features, in the context of MO optimization problems,
can help reliably quantify problem hardness and predict algorithm performance®.
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Figure 3.3: Example of Search Trajectory Network generated for two search base-
lines, the Iterated Local Search (ILS) algorithm, and Differential Evolution (DE)55.

More recently, authors have started researching how tools from FLA could help
better understand AutoML5! and NAS search problems®63 Part of the work con-
ducted during this thesis carries such research objectives, in particular, search prob-
lem understanding in the context of NAS for EO-related decision-making tasks.
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Chapter 4

Landscape-aware Search for
Automated Machine Learning

This chapter is dedicated to the methodological contributions of this thesis aim-
ing at better characterizing and designing efficient AutoML search algorithms. It
introduces the contributions of C1, C2 and C3, while tackling all research questions.

4.1 Toward Landscape-aware Neural Architec-
ture Search

The following section introduces a framework for quantitatively describing the dif-
ficulty of generic NAS search problems.

Peer-reviewed publication:: Traoré, Kalifou René and Camero, Andrés and
Zhu, Xiao Xiang, Fitness Landscape Footprint: A Framework to Compare Neu-
ral Architecture Search Problems, Under Review, Journal of Machine Learning
Research, 2023.

Research questions tackled: RQI, RQ2, RQ3.

Related contributions: C1.

4.1.1 Motivations

With the growing availability of AutoML solutions helping Data Scientists better
design decision-making pipelines, deciding what search methodology to use, or even
hyperparameters to tune among all possible options, becomes harder. Indeed, given
the complexity of modern pipelines in their number of components, how does one
ensure that the resulting system remains optimal for a given task? This work aims
to investigate ways to better understand the influence of the components of an Au-
toML pipeline, on the behaviour and performances of a search algorithm. Indeed,
it aims to do so by highlighting key characteristics in AutoML problems and relat-
ing such characteristics to algorithmic performance. The objective is to design an
approach that is problem-agnostic, i.e. independent of the AutoML scenario, and
task-agnostic, i.e. independent of the decision-making task being tackled (dataset).
This should enable us to study, in a systematic manner, any AutoML problems on
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any scenario and applications in EO. Besides, the approach should also enable us to
quantitatively relate the characteristics of a given AutoML problem to alternative
scenarios or tasks. Recent advancements in Evolutionary Computation, AutoML
and optimization have been of high relevance, in particular work at their intersec-
tion, i.e. landscape analysis of AutoML problems, aiming to relate search problem
hardness and search performances. We propose a framework based on recent ad-
vances in the fields described in Chapter [3]

4.1.2 A Framework of General-purpose Features for NAS
Problems

This section introduces the proposed framework for characterizing generic NAS prob-
lems. First, we introduce the feature of Persistence, helping characterize the tempo-
ral dynamic in the performances of solutions in a search space. Then, we present the
proposed concept as a bag of features tackling several aspects of NAS combinatorial
optimization.

Persistence: In order to capture aspects specific to NAS, we introduce metrics
aiming at capturing the dynamics in the fitness of a population of solutions in the
search space. We consider the situation where each solution z € (2, is a neural
network trained and evaluated for a given budget of iteration (or epochs) t,, with
additional fitness measurements collected at intermediate time steps in the form of a
list M = {f(to), f(t:), ..., f(tn)}. Then, we consider a ranking operator Ranking (N,
t;, ), which returns the set of solutions in the search space €2 that rank N, when
considering the evaluation time step ¢;, and the fitness operator f. Then, we formu-
late the metric of Persistence 11, outlined in Equation as:

P(N¢,er,, Ranking(N,t;))

II(Ranking(-), N) = P(Ranking(N, t))

(4.1)

where the numerator estimates the probability P that solutions in €2 keep their rank
N across all evaluation time steps t; € R,y;. Given that the numerator estimates the
probability that solutions have the rank N at the initial time step ty, the Persis-
tence measures the chances for solutions initially at rank NV, of keeping their rank
throughout the training and evaluation procedure. Then, we formulate the positive
and negative Persistence, outlined in Eq[.2}

HPositive(N) = H(TOpRCZTLk‘(), N)
U negative(N) = II(BottomRank(-), N) (4.2)

where the T'opRank(-) (resp. BottomRank(-)) is the ranking function retrieving the
Top (resp. Bottom) N percentile performers in €2. Then, the positive (resp. negative)
Persistence measures the chances for solutions in €2 to remain Top-N (resp. Bottom-
N) performers. Then, we also consider the area under the curve of the Persistence

AuC(II(-, N)), outline in Eq[4.3] as:

AuC(TI(-, N)) = /1 Uk di (4.3)
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Fitness Landscape Footprint: a bag of features enabling a comparative
analysis Furthermore, we introduce a novel framework, fitness landscape footprint.
It gathers the optimization landscape descriptors introduced in Section [2.4] as well
as the Persistence, in the form of a bag of features. It aims to help characterize
a NAS optimization problem by considering the various aspects of its landscape,
captured by the selected features. It is best visualized in the form of a radar plot,
with an axis for each feature. Aside from describing individual NAS problems, it
also enables the comparison of several instances. This is possible by a simple overall
pair-wise comparison of the Footprints of the different instances. The bag of features
contains the following metrics introduced previously:

e Quverall Fitness: an estimation of the fitness potential of the search space €2,
by measuring the mean and variance in the fitness f.

e Ruggedness: a first descriptor of the irregularity of the landscape associated
with the given NAS problem.

e Enumeration of Local Optima: an additional descriptor of the multi-modality
of the landscape.

e Persistence: a feature informing on the temporal consistency in the fitness of
solutions in ). Four quantities are associated with this metric: the positive
and negative Persistence, as well as the associated areas under the curve.
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4.1.3 A Landscape Analysis of NAS in Various Domains

Next, we describe FDC results, as shown in Figure 4.1} for the classification in-
stance CIFAR-10. The bottom left and right-hand corner figures show the FDC,
respectively, when using training budgets of 36, and 108 epochs.

We find a relatively low negative correlation between randomly picked solutions
in the search space and the global optimum (GO). More precisely, after 36 epochs
of training, the gain in fitness per hamming distance to the optima is positive and
about 1.66 percentage point in fitness.
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Figure 4.1: Fitness distance correlation for the classification instance CIFAR-10,
using the search space of NASBench-101.

After 108 epochs of training, we find that the previously observed negative cor-
relation is slightly decreased: the gain in fitness per reduced hamming distance is
lower. Moreover, the overall fitness centers at much more significant values (~91%).

The existence of a negative correlation for both training regimes suggests the ex-
istence of favourable trajectories for local search-based strategies in finding the GO,
from randomly picked solutions in the search space. The decrease in the correlation
and increase in the average performance of solutions suggests that when training for
108 epochs, the absolute gain in fitness obtained by such an optimizer is decreased
for the current search space.

Next, we analyze the landscape from the perspective of the ruggedness. Fig-
ure 4.2 provides the visualization of the evaluation of a random walk using CIFAR-
10 (green), and the So2Sat LCZ-42 (blue), as input data. Overall, we find that
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Figure 4.2: Visualization of a random walk route being evaluated on both classi-

fication instances CIFAR-10 (green) and So2Sat LCZ42 (blue). The fitness of the
solutions in the route is measured on the test set after 36 epochs of training.

the route is of relatively large ruggedness, as the fitness of consecutive solutions ap-
pears to fluctuate a lot, for both instances. Surprisingly, we observe a similar visual
appearance of the routes for both instances, with what appears to be a constant
absolute difference K in fitness between the two routes (blue for LCZ-42, and green
for CIFAR-10). We identify K = 20%, such that when removed from the fitness
of solutions in the route obtained for the instance LCZ-42, we can retrieve a route
close to the one of CIFAR-10.

To summarize, even though the route evaluated using the So2Sat LCZ-42 reaches
a larger average fitness, the route obtained using a sensor from another domain
(LCZ-42) provides similar curvature, with absolute distance in fitness relatively
constant between both. This suggests that there are areas of the search space that
provide with the same ruggedness, for landscapes generated using instances from
different domains.

Trial Avg. Step | Avg. Improvement(%) | First Repeat k | Cardinal
1 2.90 4.53 94 6373

2 2.89 5.48 57 2343

3 2.78 4.76 26 487

4 3.02 5.55 58 2426

5 2.86 5.06 38 1041

6 3.01 4.5 195 27429

7 2.83 5.77 52 1950

8 2.80 4.78 129 12003

9 2.70 4.79 197 27994

| Summary | 2.86 | 5.03 | 94 | 6373 |

Table 4.1: Results of enumerating local optima (maxima) for the CIFAR-10 classi-
fication instance.

Next, we look at the multi-modality of the landscapes. Table displays the
enumeration results of local-optima for CIFAR-10. The estimation is performed
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Figure 4.3: Fitness landscape footprint describing the classification instances
CIFAR-10 and So2Sat LCZ42, using the NASBench-101 search space.

considering T' = 9 trials. We find that for BILS(-), the average improvement in
fitness until reaching a local maximum is of 5.03 percentage point in accuracy. In
average, we manage to deploy BILS(-) consecutively for kp,cq, = 94 times, until a
LO is found twice. Overall, we estimate the number of LO 6373, which appears
relatively large, considering the low number of steps needed to reach one.

Next, we analyze the fitness footprint obtained for the instances CIFAR-10 and
So2Sat LCZ-42, as visualized in Figure [4.3] respectively, in blue and orange. We
find that there is a larger number of O on the landscapes of the So2Sat LCZ-42 NAS
instance with 11153 LO against 6373, for CIFAR-10. This suggests more chances for
local search-based strategies to get stuck in suboptimal solutions, when using LCZ-
42 as training data, as opposed to CIFAR-10. Moreover, the overall fitness is similar
for both datasets, with a slightly larger mean fitness for CIFAR-10 of about 83% of
overall accuracy after 36 epochs, and slightly larger variance for LCZ-42 of about
10%. This suggests that the overall performance might be similar when doing NAS
using either dataset. Besides, we find that the ruggedness is more prominent when
using CIFAR-10 (1.93 against 1.75), suggesting a more challenging landscape for lo-
cal search-based NAS heuristics. Overall, the persistence is more considerable using
LCZ-42 than CIFAR-10 (positive and negative). This indicates more predictabil-
ity in the performances of models from early in their training. This suggested that
performance estimation strategies such as learning curve extrapolation could benefit

more when performing NAS using LCZ-42 than CIFAR-10.

To summarize, we have successfully provided a quantitative appraisal of key
elements of the landscapes of two different NAS classification instances using the
bag of features included in the fitness footprint. The following section presents ideas
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that could be explored in the future to best take advantage of the current framework
or extend it.

Note: Several of our FLA experiments capture results with respect to a GO. When
using CIFAR-10, the GO (global maximum) consists of the best solution within an
exhaustively evaluated search space, while for So2Sat LCZ-42, it is approximated
as the best solution within a set of LHS sampled solutions. We find that the trends
observed in the FLA using both estimations do not significantly differ?.

4.1.4 Outlook

Next, we discuss areas of research that could benefit from the current research, as
well as ideas of extensions for the current work.

Enabling Comparisons: First, is about exploring the ability to compare search
problems. An example of a question that could be tackled with this tool is the fol-
lowing. How does the AutoML problem change when key elements of the ML setting
are changed?. Answers to these questions could be a quantitative appraisal, based
on the features gathered in the footprint, of the changes generated by comparing
the landscapes of the different problems. A potential topic of interest for such com-
parison would be multi-fidelity in NAS, i.e. NAS search problems in the context of
approximations in the fitness measurements based on varying experimental settings.
This is explored in the form of multi-modal decision-making, i.e. sensor-fidelity, in
Section [4.2] Other aspects of multi-fidelity in NAS could also be relevant, such as
data-fidelity or training-fidelity.

Beyond Classification: Classification is at the basis of CV and remote-sensing-
based decision-making. Besides, many modern applications have spanned from it,
with as examples, Object Detection, image and scene segmentation, or even gen-
erative tasks such as image super-resolution and cloud-removal. These are getting
widely adopted by RS experts and practitioners, solving real-world use cases. For
these reasons, we find that investigating NAS for the respective scenarios and in-
stances could bring novel insights that would benefit the respective research com-
munities. In practice, researching the application of the footprint to such a problem
would involve some research and development on the specification of the landscapes.
For instance, this would require identifying relevant search space definitions, archi-
tecture solution representation and neighbourhood operators.

Beyond NAS: As a sub-field of AutoML, NAS mainly specializes in designing
optimal architectures for data-driven decision-making. While this aspect plays a
vital role in improving the capabilities of the overall system, tuning other aspects of a
pipeline could also benefit this purpose. Thus, we propose to consider not only NAS
AutoML optimization problems, but go beyond and consider the generic problem
of HPO", or even the the problem of jointly optimizing a target architecture and
hyperparameters relevant to it. More precisely, we propose to study the landscape of
problems where the fitness function, the search space, as well as the neighborhood
operator involved, are dedicated to the respective HPO, or joint HPO and NAS
optimization problems. Section explores this direction.
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4.2 Enabling Sensor-aware NAS for Multi-modal
Remote Sensing Scene Classification

This current chapter tackles the topic of sensor-fidelity in NAS, for tasks where
identifying the most beneficial sensor, or combination of several, is important for
improving decision-making abilities.

Research questions tackled: RQ2, RQS5.

Related contributions: C2.

4.2.1 Motivations

Modern Deep Learning-based decision-making models have positively impacted the
development of RS technologies, addressing the need for more accurate and versatile
models. While the community initially focused on single-modality-based models,
the limitations of such solutions led to investigating means of incorporating more
modalities®®. Indeed, the ability to sense the object of the ground highly depends on
the type of sensor being used. Thus, leveraging the complementary of several sensors
in their coverage of the information being retrieved would be a desirable feat for a
data-driven model. Furthermore, being able to provide with optimal multi-modal
data-driven model by means of automation and optimization (NAS), could lead to
additional breakthroughs in the field.

For this purpose, we propose to see multi-modal decision-making NAS search
instances, as instances of multi-fidelity optimization. More precisely, sensor-fidelity
NAS, i.e., a setting where the amount of sensor used during the search can vary.
This is could happen, for instance, in the context of the EO classification tasks
where several sources of input data are available, and combining several sources of
input comes at an increased computational cost. Then, sensor-fidelity NAS would
help to find an optimal classifier at a reduced computational cost. We propose to
study the influence of this fluctuation in input sensors on the behavior of search,
using the fitness landscape footprint introduced in Section

4.2.2 A Landscape Analysis of NAS using Various Sensors

In this section, we present the results of landscape analysis in the context of mul-
tiple data-fidelity-oriented neural architecture optimization. Experiments are con-
ducted using the same experimental protocol and input data as in Section [4.1.3|
More precisely, the task being tackled is classifying Local Climate Zones using the
So2Sat LCZ-42 dataset, considering both Sentinel-1 and Sentinel-2 sensors. The
landscape analysis is mainly conducted using the fitness landscape footprint, and
aims at comparing the effect of the input sensor on the NAS optimization process
and performances.

Ruggedness Figure|d.4|displays the results of a random walk route (N=100 steps)
being evaluated on the instance of the So2Sat LCZ-42, using various sensors as input.
In blue, yellow, green, and red are the results, respectively, for using Sentinel-1,
Sentinel-2, both sensors and Cifar-10. The route is the same for all sensors, is
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obtained using the search space of NASBench-101, and the solutions in the route
are all trained for 36 epochs using the same hyperparameters. We find that using
Sentinel-2 provides the largest mean fitness, closely followed by the case of using both
sensors. Additionally, the routes have a very similar curvature, with LO appearing
to be at the same steps in the walk. When using Cifar-10, the observed mean fitness
is much lower. It is at its lowest when using Sentinel-1. Given that the search space
and route have displayed good fitting capabilities (e.g., when using Sentinel-2), this
suggests that fitting Sentinel-1 and Cifar-10 are much more challenging tasks. The
route might benefit from a longer training budget in order to improve its fitness for
these two sensors.

Besides, we find that the better the fitness, the lesser the irregularities in the
routes, measured by a larger ruggedness. On the other hand, the lower the fitness,
the more irregularities in the routes, and the larger the ruggedness.

Random Walk

0.9 A" i

0.8 /
n = Sentinel 1
0 0.7 —— Sentinel 2
_E - Both Sentinel
- 0.61 — cifar-10

0.5

0.4

0 20 40 60 80 100

Steps

Figure 4.4: Results? of a random walk evaluated using various input sensors, on
the search space of NASBench-101. All solutions are trained for 36 epochs, and the
routes are N = 100 steps long.

Fitness Footprint Next, we show how the Fitness Landscape Footprint is used
to make a quantitative, summarized description of the sensor-aware NAS problem
that is being tacked.

First, let’s consider the overall fitness, captured in the Footprint with the
Average Fitness. As discussed before, we found that the NASBench-101 search
space achieves a larger mean fitness in this task when using the Sentinel-2 sensor, fol-
lowed by input-level fusion and, lastly, the Sentinel-1 sensor only. This phenomenon
is possibly explained by the fact that fitting the So2Sat LCZ-42 using SAR imagery
might be harder than optimal imagery (Sentinel 2), due to the lack of information in
the sensor relevant for distinguishing certain classes. Then the sensor fusion might
yield intermediate performances for the same reasons. When it comes to Cifar-10,
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we know from other studies that the NASBench-101 search space is able to properly
fit the task. The poorer fitness could be improved with a larger training budget.

Besides, the larger the fitness of a given sensor, the fewer irregularities in the
landscape, as seen in the random walk routes. This is captured by measuring lower
ruggedness scores, as well as a lower standard deviations in the overall fitness.

Regarding the persistence of the fitness, the scores are reported in our study
published in the annals of ISPRS in 2022“. Overall, we found that the persistence,
whether positive or negative, is larger in the case of searching with a sensor that is
easier to fit (larger overall fitness), and with a lower ruggedness.

Ruggedness

Pos. Persistence

Pos. AuC

Neg. Persistence

Figure 4.5: Fitness landscape footprint applied to the NASBench-101 search sce-
nario, given 36 epochs of training. In blue, yellow, and green are the results re-
spectively for using as sensor Sentinel-1, Sentinel-2, and an input-level fusion of
Sentinel-1 and Sentinel-2.

To summarize, this comparative analysis of the Footprints generated from using
the search space in the different sensor settings suggest an easier landscape when
using Sentinel-2 only, followed by the use of the input-level fusion. This demonstrates
the ability of this tool to successfully support the analysis and design of sensor-aware
AutoML problems.

4.2.3 Outlook

Next, we discuss aspects of the project that deserve to be explored more in the
future. An instance of the fruitful topic is data-fidelity in NAS, already explored in
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the current project in the form of sensor-fidelity, i.e., researching if a NAS search
problem difficulty on a given dataset changes based on the sensor used to tackle it
(including sensor fusion). We identified that the landscape of the search problem
would have a similar feature regardless of the sensor being used, in particular when
training budgets were large. We speculate that this would hold true even on prob-
lems where the number and variety of input modalities are much larger®. Future
work might research the validity of the hypothesis and how insights gained on the
topic could help improve NAS search strategies by means of performance prediction
for expensive multi-modal problems, approximated by the model performance of a
lesser sensor-fidelity (i.e. less expensive modalities).

31



CHAPTER 4. LANDSCAPE-AWARE SEARCH FOR AUTOMATED
MACHINE LEARNING

4.3 Beyond Search Spaces: how do other impor-
tant components affect autoML problems ?

This chapter explores the idea of a landscape analysis of AutoML problems for
investigating the role of sometimes overlooked elements (evaluation pipelines) in the
success of AutoML search strategies.

Peer-reviewed publication: Traoré, Kalifou René and Camero, Andrés
and Zhu, Xiao Xiang, We Won’t Get Fooled Again: When Performance Metric
Malfunction Affects the Landscape of Hyperparameter Optimization Problems,
International Conference on Optimization and Learning, CCIS, 2023.

Research questions tackled: RQ@S3.

Related contributions: C3.

4.3.1 Motivations

Previous research at the intersection of landscape analysis and AutoML has mainly
focused on providing novel insight into the target optimization problems using the
search space as the main factor of influence for the search difficulty and performance.
For instance, authors have researched the correlation between the metric of neutral-
ity in the optimization landscapes of hybrid end-to-end AutoML systems®®, with
the fitness. Other authors have analyzed the landscapes associated with optimiz-
ing graph-based decision-making models (GNNs)®’ providing an appraisal of the
general difficulty of the respective NAS problem. However, to our knowledge, very
few works have gone beyond the analysis of the effect of this particular component
on the search process. This project is an attempt at using FLA and the footprint,
introduced in Section to characterize generic HPO problems. In particular, it
researches the effect of performance estimation pipeline definition on HPO search
difficulty.

4.3.2 Tracking the Impact of Evaluation Metric Failures on
the Easiness of HPO Problems

We propose to analyze the HPO problems using a variety of tools®®. First, we
consider the landscape of HPO problems £ = (S, f, N), where S denotes the HP
configuration space, f the fitness evaluation function, and N a neighborhood op-
erator. Note that N designed to handle HP configuration space of very heteroge-
neous nature (i.e. mixed types), when attributing neighbors to a solution. Since
we aim to understand the effect of the fitness function on the HPO optimization
landscapes, we propose to analyze the problems on interest using the FDC%. In-
deed, by investigating the correlation between the fitness values in a configuration
space, and the distribution of distances of HP configurations to the GO, we expect
to notice any side effects in fitness evaluation functions. In particular, any mis-
attribution in fitness to an HP solution might be easily identifiable in the FDC.
Second is an analysis of the local relationship between solutions and their neigh-
bors, in terms of fitness. Similarly, pathological fitness evaluation functions might
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be associated with an altered relationship between those quantities. Third, related
to the locality, is an analysis of the neutrality in the landscapes. It defines as
Ny(z) = {2' € N(x) || f(a') — f(z) |< €}|, where the neutrality degree Ny of a
solution x corresponds to the number of neighbors of similar fitness it has. This
quantity would also be affected in case of misattributed fitness.

4.3.3 The Case of the MMCE Metric

The following section introduces results obtained considering the HPO benchmark
DS-2019%, Tt consists in the scenario of tuning the HPs of CNNs on ten image clas-
sification instances. For all instances, HP configurations were evaluated considering
the mean misclassification error (MMCE) as a performance evaluation function. Addi-
tional experiments were conducted using the YAHPO benchmark™, encompassing
up to 119 classification instances, restricted in our case on the tuning HPs of CNN,
considering the predictive accuracy (opposite of MMCE) or Log Loss.

Fitness Distance Correlation Next, we analyze the landscapes from the per-
spective of the FDC. Figure 4.6 shows results of FDC for the instances of CIFAR-10,
FLOWER, SCMNIST and SVHN. These findings are representative of those made
across all the other instances in the DS-2019 dataset. Overall, we find that there
is little correlation between the two variables of interest: the fitness of a given HP
configuration does not always improve with its proximity to the Global Optimum
(GO). Note that we approximate the GO as being the HP configuration with the
highest fitness (predictive accuracy) in the configuration space. Besides, we observe
that the distributions of distances of HP samples to the GO are all wide and appear
uniform. This suggests that there is diversity among the sampled HPs and possi-
bly across the HP configuration space. Regarding the distributions of fitness of the
samples, we make two different types of observations. First, for the classification
instance CIFAR-10, we find that the distribution is large and uni-modal, with a
mode at large values (80% of accuracy).

Second, for the instances FLOWER, SCMNIST and SVHN, we find an unex-
pected mode at odd values in the distributions of fitness. There are observed for the
around 22% (FLOWER), 65% (SCMNIST) and 20% (SVHN) of fitness. Moreover,
the distances to the GO of the solutions having this unexpected performance cover
about 50% of the possible range in most cases. This suggests that the solutions in
the set exhibit this behaviour irrespective of their HP configurations.

After analyzing the dataset, we find that they have an imbalance in their distri-
butions of labels, and that these numerical values are close to the prevalence of the
majority class. This suggests that these solutions are naive classifiers, i.e. majority
class predictors.

Average Fitness in the Neighborhood Next, we analyze the instance from the
perspective of the locality, in order to generate additional insights about the effects
on the respective landscapes. Figure4.7|introduces the result for the same instances.
We find that in the case of the nonexistence of naive classifiers (CIFAR-10), the
correlation between the two variables of interest seems strong. More precisely, for
solutions exhibiting a fitness in any of the possible ranges of values, the average
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Figure 4.6: Fitness Distance Correlation (FDC) for the HPO instances of CIFAR-
10, FLOWER, SCMNIST and SVHN. All plots obtain considering a sample size of
N = 1000 of hyperparameter configurations, for the problem of tuning the HPs of
a ResNet-18 image classifier®.

fitness of their neighbors will be similar. This could be interpreted as the landscapes
having little irregularities.

On the other hand, we find that the correlation is worse, when the landscapes
have multi-modal distributions of fitness, with potentially many unexpected naive
classifiers. In these cases, there are many ranges of fitness for which the average
fitness in the neighborhood is dissimilar but close to the value associated with the
prevalence of the predominant class.

This also suggests that the landscape is has ruggedness, with possibly many local
optima that are in fact sub-optimal naive classifiers.

Neutrality Next, we complement the previous analysis with results covering the
aspect of the neutrality of the landscapes. Figure introduces these results for
the same instances. We find that whenever the correlation between the fitness of a
current solution and its neighbors is low, the neutrality degree is also relatively low.

To summarize, the FDC enables us to detect a way in which the vulnerability
of the performance metric affects the landscape of the HPO instances being tack-
led. More precisely, in the case of the predictive accuracy, the vulnerability is the
possibility of turn any classifier into a naive classifier, a sub-optimal behaviour ran-
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Figure 4.7: Average neighbor fitness as a function of the observed fitness, for the
instances of CIFAR-10, FLOWER, SCMNIST and SVHN. All plots are obtained
considering a sample size of N = 1000 of hyperparameter configurations for the
problem of tuning the HPs of a ResNet-18 image classifier®
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Figure 4.8: Neutrality scores for the instances of CIFAR-10, FLOWER, SCMNIST
and SVHN. All plots are obtain considering a sample size of N = 1000 of hyper-
parameter configurations, for the problem of tuning the HPs of a ResNet-18 image
classifier®
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domly arising during training. This would happen irrespective of the models’ HP
configuration, but instead in relationship with the nature of the class distribution
(imbalance) of the dataset, for the instance being tackled.

Analyzing the relationship between solutions and their neighbors, for the same
instances, suggests that the existence of naive classifiers is associated with more
rugged landscapes. Results on the neutrality degree of the landscapes support the
claim. Indeed, areas with a low correlation of fitness between solutions and their
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neighbors are associated with lower neutrality degrees, indicating more irregularities
(local optima) in the landscapes.

Similar results are observed regarding the influence of sub-optimal models gen-
erated when using the Log Loss for classification.

4.3.4 Outlook

Next, we discuss directions in which this research could be extended. First is regard-
ing the aspect of quality control of benchmarks. Creating of AutoML benchmarks,
whether specific to HPO™, NAS™ 4 or for hybrid“4° search scenarios, requires
investing a large number of computational resources in order to evaluate partially=,
or ezhaustively*! large search spaces. Our findings suggest that some design choices,
e.g. performance metrics, can have adverse side effects, e.g. diverse HPs turned into
naive classifiers. These side effects are hard to track but might have an impact on
the quality of the benchmarks, by biasing and altering the underlying search land-
scapes. Future research might investigate how to use FLA more systematically in
order to build robust AutoML benchmarks (see Section [f)).

Second, is about understanding how the results obtained transfer to the domain
of EO. Given the scarcity in the occurrence of certain phenomenon or classes of
interest in EO-related applications, such as the unbalance in the distribution of
population across the globe®, EOQ datasets designed for data science-based analysis
tend to have a class imbalance. Future research might investigate how the choice in
evaluation metrics could affect the success of AutoML algorithms used to solve such
EO classification tasks. In particular, what is the predominance of naive classifiers
among all sampled and evaluated solutions? What fix to the evaluation metrics
could help reduce it?
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Chapter 5

Mechanisms for Efficient Search in
AutoML

The current chapter introduces contributions to the topic of Efficient AutoML. First,
we describe our work dealing with search initialization and its connection to the
efficiency of NAS search algorithms. Second, we introduce our research on using
differentiable search for finding compact and efficient classifiers.

5.1 A Data Science-based Approach to Improving
AutoML Search Algorithms

This section introduces our first contribution to the topic of mechanisms for search
efficiency in AutoML for EO. More particularly, it revolves around improving the
initialization of NAS search algorithms using a data-science-based approach.

Peer-reviewed publication: Traoré, Kalifou René and Camero, Andrés
and Zhu, Xiao Xiang, A Data-driven Approach to Neural Architecture Search
Initialization, Annals of Mathematics and Artificial Intelligence, Springer 2023.

Research questions tackled: RQ1, RQ2.

Related contributions: Cj.

5.1.1 Motivations

Initialization search algorithms in AutoML are traditionally based on a (random)
sampling of solutions in a manner agnostic (independent) of the task. Besides, the
recent growing availability of databases in all areas of Data Science has encouraged
the AutoML research community to explore the benefits of databases and platforms
specific to that area of expertise. This has resulted in the creation of databases
and open-source platforms gathering performance data of all kinds (e.g., HPO, NAS
solution configurations) in order to ease the prototyping and benchmarking and
support reproducibility in methodological research in the field. An example of this,
NASBench-101%", provides the exhaustive evaluation of a NAS search space cover-
ing about distinct 500k NN configurations. In this context, the following questions
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arise: can we benefit from such data to help better initialize AutoML search al-
gorithms? Would a better initialization help improve short and long-term search
algorithm performance? The research conducted on this topic aims at answering
these questions.

5.1.2 Data-driven Initialization for Population-based NAS
Heuristics

Next, we introduce the proposed initialization method. First, we describe the overall
procedure visualized in Figure 5.1} Then, we present the feature encoding designed
to represent solutions in the following experiments.

Objective: The proposal aims to help search algorithms reach better short- and
long-term performance improvements. The type of search algorithm we target is a
population-based search algorithm. For instance, meta-heuristics, Bayesian-based
approaches, etc.

Data-driven population initialization Population exploitation

Samplin Is the clusterlng quality

& Evaluatin improving ? Search
) :\ Clustering Extractmg Initializing
~3 ———) g

"‘

Sample centrOIds
Search Space | Reiterating Clusters I

Figure 5.1: Flowchart of the data-driven initialization methodology*

Main Algorithm Algorithm [3|introduces the algorithm behind the proposed pro-
cedure. In order to operate, it requires the following inputs: u, the size of the popu-
lation used to operate the search strategy, a list of sample sizes list_sample_sizes, the
feature encoding type ¢, a clustering algorithm «, a list® M of metrics to evaluate
the clustering, and the search space 2.

Then, it iterates over all sample sizes in [list_sample_sizes, in order to find
the value helping reach the best clustering quality. For each value of sample
size, it will collect an appropriate sample from the search space 2, using the
procedure RandomSampling(.). Then, it evaluates the fitness of the sample us-
ing EvaluateModel(-). Then, it proceeds with retrieving the proper representation
for the sample using the feature encoding ¢ and the procedure EncodeModel(-).
Moreover, we find that the computational complexity of the several steps of the
algorithm depends on the size of the feature representation used. In order to alle-
viate this aspect, we proceed with reducing the dimensions of the encoded sample
using (ReduceDimensions(-)). In order to obtain the corresponding clustering la-
bels, ClusterFeatures(-) is applied. The quality of the current sample is measured
using the set of metrics M, labels, and the function Assess(-). Finally, the clusters
are obtained as the combination of the encoded samples and their clustering labels,
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Algorithm 3: Data-driven Initialization Technique®
input: The desired population size u, a list of sample sizes list_sample_sizes
(decreasing order), the feature encoding type ¢, a clustering algorithm «, the list
of metrics to evaluate the clustering quality M, and a search space {2.
CLUSTER_QUALITY <+ 0
for SAMPLE_SIZE € LIST_SAMPLE_SIZES do
SAMPLE <— RandomSampling ({2, SAMPLE_SIZE)
SAMPLE < EvaluateModel(SAMPLE)
ENCODED < EncodeModel(SAMPLE, ¢)
REDUCED < ReduceDimensions(ENCODED)
LABELS < ClusterFeatures(REDUCED, «, 1)
NEW_CLUSTER_QUALITY < Assess(REDUCED, LABELS, M)
if CLUSTER_QUALITY > NEW_CLUSTER_QUALITY then
break
end
CLUSTER_QUALITY ¢~ NEW_CLUSTER_QUALITY
CLUSTERS ¢ (ENCODED, LABELS)
end
CENTROIDS <« ExtractCentroids(CLUSTERS)
INIT_ARCHITECTURES <— DecodeModel(CENTROIDS, £)
return INIT_ARCHITECTURES

Once an appropriate sample size is identified, the centroids are extracted from the
corresponding clusters (ExtractCentroids(-)). The initial population is obtained
after retrieving the solutions in the search space associated with the encoding of the
centroids (DecodeModel(-)). The procedure then returns the initial population to
the search strategy.

Encoding of the Data: The initialization algorithm relies on a cluster analysis
of the search space. In order to be successful (high clustering quality based on
metrics M), it collects a sample that is encoded using specific feature representation,
followed by a dimension reduction and clustering. This section focused on describing
the custom feature representation we design for the purpose.

It aims at constructing an encoding that helps represent all models from the
search space compactly. The desired properties are for it to be generic, i.e., task
agnostic, to contain information about model structure and performance in train
and validation, at least. Then, the output is to be provided to any search algorithm
and help it retrieve models based on the relevant information it contains (model
structure and performance).

There are two versions of the encoding: the first is referred to as Original, or
Short encoding, and the second, Binary, or Long encoding. Both feature represen-
tations combine the following elements identifying solutions in the search space as
shown in Table [5.1} the adjacency matrix, the list of operations, and the list of all
measured fitness. The representation mainly differs in the way they allow to express
the combination made in the selection of constituents in each NN solution, as shown
in Figure 5.2l The Original (Short) encoding is obtained by flattening (Major row)
of the original adjacency matrix, concatenating it to the list of operations in the se-
lected solution, also concatenated with the list of fitness of the solution, in the order
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described in Table . The Binary (Long) encoding is obtained by the same series
of operations, except it makes use of an alternative representation of the solution in
the expanded adjacency matrix, that is visualized in Figure [5.2]

List of labels: Op,, Op,, Op, out
n5
Action: Label node n, with operator Op, n
and create an edge to the output node out op N
3 ns
out n,
ng ™
n "
4 n,
IN N, IN Op, ny
n, Op, n,
n, ™
in Ms
n n4

in n, n, n, n, ng out Op,
ourtr Ny

Adjacency matrix n, X
n|
Transform an adjacency matrix in
to an expanded matrix
in n, n, ngj n, ngn n, ngn, ng|n n, ngon, ngout
Op, Op, Op,
out

Expanded adjacency matrix

Figure 5.2: Description of the DAG attributes used to represent a solution sampled

from the cell-based search space: a pair of adjacency matrix and list of operations,

or a unique identifier, i.e. the custom adjacency matrix®.

Feature representation Components
Short Adjacency matrix + operations + fitness
Long Expanded adjacency matrix 4+ operations + fitness

Table 5.1: Description of the custom encodings (Short and Long) designed in order
to perform a cluster analysis of the search space.use Each encoding is in the form of
a vector. The symbol + stands for the concatenation operator.

Baseline Search Algorithm: In order to perform an experimental benchmark
evaluating the proposed initialization approach, we select three baseline algorithms
to initialize: a Genetic Algorithm (GA), an Evolutionary Algorithm ((p + A)EA) and
the Aging Evolution (EA). These algorithms are population-based meta-heuristics
inspired by natural computation, which evolve a population of solutions using var-
ious mechanisms. GA uses selection, crossover, mutation, and replacement opera-
tions to completely replace a population of fixed size, after a generation. On the
other hand, (u+ \) EA evolves a population of size u by replacing it with the best u
individuals of the current population concatenated to a set of A offsprings. Last but
not least, the Aging Fvolution is similar to GA, except that it discards the solution
that remained the longest in the current population, i.e. the aging individual, at
the each generation. A detailed description of each algorithm is provided in Sec-
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tion 2.8 (Baseline algorithms) of publication P2%, also available in the Appendix of
this manuscript.

Initialization of an Algorithm: In order to initialize a search baseline, we first
collect a set of points retrieved using a desired initialization technique. Then, we
provide this set as the initial population of size initial_size, to the population-based
search algorithm (e.g. GA). Given a set of hyperparameters, including the budget of
iteration, the algorithm then returns the population of solutions obtained at the last
iteration, as well as the history of the solutions encountered. Given this history, we
can retrieve the best-encountered solution. The performance of the search baseline
is then measured using the mean fitness of the population in validation, as well as
best-reached fitness in validation.

Figure displays the results of a benchmark of algorithm performance, using
various initialization methods. The top (resp. bottom) row displays results given
a budget of 36 (resp. 108) epochs of training. The algorithms in the benchmark,
from left to right, are GA, (u+ \) EA, and Aging Evolution. They were all deployed
100 different times, each time considering a budget of 2000 search evaluations. The
red, green, and blue curves are for initializing using, respectively, random sampling
(rand), centroids and Latin hypercube sampling (1hs). The centroids (N = 19)
were extracted from a clustering using the Bayesian Gaussian Mixture of models
(BGM), with the Short Encoding as feature representation. In bold is the mean fitness
of the current population, and lighter colours are the fitness ranges (min/max).

We find that for all the search baselines, the centroids provide the largest mean
fitness for the initial population. Indeed, we report a difference in fitness with 1hs
and rand of up to 20 percentage points in validation accuracy.

Besides, EA is the algorithm that <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>