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Summary

This work deals with reduced order methods for the solution of parametrized partial
differential equations with moving features. Solutions of these class of equations are
well known to be hard to approximate using linear reduced basis methods. We utilize
results from optimal transportation theory to extend these methods. In particular,
we present a novel registration method that is based on aligning solution features
using an approximation of optimal transport maps.

Zusammenfassung

Diese Arbeit beschäftigt sich mit Reduzierten Methoden zur Lösung von parame-
terabhängigen partiellen Differentialgleichungen, welche von Advektionseffekten do-
miniert werden. Es ist bekannt, dass Lösungen dieser Gleichungen nur schwer mit
linearen Reduzierten Basis Methoden dargestellt werden können. Wir nutzen Ergeb-
nisse aus der Theorie des Optimalen Transportes, um diese Methoden zu erweitern.
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Chapter 1

Introduction

Numerical simulations are an indispensable tool in order to understand the behavior
of complex physical systems. They are ubiquitous in many more fields of applications
of science and engineering, used to gain insights on questions from economics to
biology, from the scale of subatomic particles to the construction of skyscrapers or
even cosmological structures.

The algorithms and frameworks employed (finite element methods, Monte Carlo
methods, and, more recently, neural networks, to name a few) have seen a massive
development since the inception of the first computers to solve mathematical prob-
lems around the time of the second world war. The number of simulation software
grows daily and, since the available computing power also increased, the problems
that can be tackled have grown from Monte Carlo simulations of hundreds of neu-
trons to simulations with over 500 billion particles and 28 billion grid points [59].

Next to experimental observation and theoretical modelling, numerical simula-
tion is one of the three pillars of scientific work and engineering design processes.
Naturally, simulation software is developed to carry out a large number of simula-
tions. This is precisely the advantage of simulation-based design compared to the
construction of prototypes and experimental setups.

1.1 Parametrized and many-query problems

In typical cases, simulation runs are performed for a number of parameter con-
figurations. Parameters can encode initial and boundary conditions, geometrical
configurations, or physical and material properties. Consider the case where the
simulation solves a parameter-dependent partial differential equation (PPDE):

Definition 1.1 (Parametrized partial differential equation problem). Given a do-
main Ω ⊂ Rd, parameter µ ∈ A ⊂ Rp, function space V , and L : V ×A → R, find
u(µ) ∈ V such that

L(µ, u(µ)) = 0. (1.1)

The operator L includes the differential operators, boundary conditions, and forcing
terms of the problem.

Example 1.1 (Optimization). Consider the task of finding a particular parame-
ter value minimizing some functional minµ∈A J(µ, u(µ)) where u(µ) is defined by
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4 CHAPTER 1. INTRODUCTION

Equation (1.1). It is clear that any form of iterative method to minimize J(µ, u(µ))
requires solving Equation (1.1) numerous times for different µ.

Example 1.2 (Inverse problems). Consider the case where uobs := u(µobs) is known
(for example through measurements) and we want to find the corresponding µobs.
After adequate regularization (the data is typically noisy and we have no knowl-
edge about the continuity of u(µ) 7→ µ), this can be written as a PDE-constrained
optimization problem.

Practical considerations may require these problems to be solved very quickly,
possibly in real time, and with limited computational resources. Consider, for ex-
ample, that J(u(µ)) is a security-relevant diagnostic of a power plant and µ are
parameters of operation. These cases fall into what is commonly referred to as
many-query context.

This setting adds additional challenges to the solution method for PPDE problem
(1.1). While a classical high-fidelity numerical method such as a highly resolved finite
element method is adequate to solve Equation (1.1) once, placing the same method
inside an optimization loop will mean that it gets called hundreds of times. This
drastically increases the computational time and energy consumption. In the case
of embedded systems or real-time applications, running the high fidelity model once
can already be infeasible. Furthermore, storing the results of numerous simulations
in high resolution can lead to extreme memory requirements.

1.2 Reduced order modelling

The goal of reduced order models (ROMs) is to build a computationally cheap,
yet sufficiently accurate approximation of the map µ 7→ J(µ, u(µ)) in the case of
Example 1.1, or uobs 7→ µobs in the case of Example 1.2, or µ 7→ u(µ) in general.
One might wonder if such an approximation even exists, given that the solution of
Equation (1.1) typically requires the use of sophisticated numerical methods that
approximate u(µ) with a large number N of discrete degrees of freedom. Even when
J and L(·;µ) are linear (in u or even in both arguments), this map is in general
non-linear.

At the same time, the dimension p of A 3 µ = (µ1, . . . , µp) is often moderate, and
the map µ 7→ u(µ) is regular. For example, in the case of elliptic PDEs (uniformly
with respect to µ), the latter can be rigorously proved as we will discuss in Chapter 2.

General and tailored approximation spaces

General numerical approaches to solve PDEs do so by approximating elements of
function spaces V using elements of large, finite dimensional vector spaces. In the
case of an elliptic problem, V is usually given by the space H1, comprised of square
integrable functions with square integrable (weak) derivative.

In order to achieve a satisfactory approximation to this space, high resolution
and a large number N of degrees of freedom is necessary. Ultimately, commonly
used numerical methods, when applied to Equation (1.1), lead to a large system
of equations that stems from the discretization of Equation (1.1) and requires the
inversion of large (albeit sparse) N ×N matrices.
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Remark 1.1. In many application cases, the solution u(µ) is only needed as an
intermediate step to evaluate J(µ, u(µ)). As such, both input µ and output J(µ, u(µ))
can be low-dimensional even if N is very large.

When solving several instances of a PPDE as in Example 1.1, one does not
explore the entire space V but only a small (in a sense to be made more precise
in Definition 2.1) fraction of it, namely those elements of V that are solutions to
Equation (1.1) for some µ ∈ A. This set we refer to as the solution manifold of the
PPDE problem:

Definition 1.2 (Solution manifold). The solution manifold of the PPDE problem
defined by Equation (1.1) is given by

M := {u(µ) ∈ V : L(u(µ);µ) = 0 where µ ∈ A}. (1.2)

Remark 1.2. The term manifold is used in the literature interchangeably with so-
lution set. In particular, it is used without verifying that M is in fact locally home-
omorphic to Euclidean space.

For the sake of multi-query problems, the numerical method employed only has
to be able to approximate elements of M.

Remark 1.3. At first glance, it seems that one can use the parameters µ1, . . . , µp
as coordinates on M through the functions µ→ u(µ) and that p is an indicator for
how hard M is to approximate.

This can be misleading in two ways. The map µ → u(µ) can be discontinuous
or very irregular. As pointed out in [18], it can have properties similar to those
of a space-filling curve and require a large number of (more regular) functions to
approximate.

On the other hand, the parametrization of the problem can be redundant and the
dimension of M in fact much smaller than p. In practice, it is often the case that
even if a physical system is described by hundreds of parameters, an experienced
domain scientist can make reliable heuristic predictions based on the knowledge of
only a few variables. We take this as an indication that the intrinsic dimension of
the system is in fact much smaller.

Offline-online splitting

The field of reduced complexity modelling is of practical interest for numerous multi-
query and real-time applications. In this work, we investigate methods with an
offline-online-splitting.

First, the reduced model is constructed in the offline or training phase, leveraging
the strengths of high-performance computing infrastructure. After construction,
reduced models are evaluated at low computational cost in the online phase, reducing
the time, money, and energy spent on optimization loops, inverse problems, or
routine calculations.

Classical methods such as the reduced basis approach [108, 101] provide ways to
reduce computational cost by orders of magnitude while at the same time ensuring
rigorous error bounds for the reduced simulation of elliptic and parabolic equations.
However, they are notoriously ill-suited when working with hyperbolic systems or
solutions with moving features and sharp discontinuities as will be discussed in
Section 2.6.
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1.3 Scope of this thesis

This thesis covers reduced order modelling, a topic on the intersection of data science
and scientific computing. We draw heavily on concepts from optimal transport
theory, which establishes connections to convex analysis.

The presentation is targeted at an audience with a background in scientific com-
puting. An effort has been made to keep the presentation of most concepts from
optimal transport theory and reduced complexity modelling self-contained, therefore
the content of important results, algorithms, and theorems is included. Whenever
possible, these results are accompanied by proofs, possibly in a less general, simpli-
fied setting, or at least formal considerations that make them plausible. When it
seems unfeasible to do so, and for an exhaustive treatment of the theory in general,
we refer to the provided references.

The thesis is structured as follows: Chapter 2 introduces the reduced basis
method as well as registration methods in particular. Results from optimal transport
theory are covered in Chapter 3, while Chapter 4 introduces results and algorithms
used to compute it. Chapter 5 discusses existing and new concepts of how to lever-
age optimal transport theory for reduced complexity modelling of partial differential
equations that are characterized by moving features or can be formulated naturally
on the space of probability densities. In Chapter 6, we introduce a novel method
to build a registration-based reduced basis method using the ideas presented so far.
Connections between optimal transport theory and variational models in fluid me-
chanics that are not directly related to the reduced order modelling, yet interesting
especially for plasma physics applications, are discussed in Appendix B.

Our main contributions to the field are presented in Section 5.4 and Chapter 6.
The results of Section 5.4 were largely produced during a stay of the author at
the CEMRACS event of 2021 in collaboration with Beatrice Battisti, Guillaume
Enchéry, Virginie Ehrlacher, Damiano Lombardi, and Olga Mula.

The numerical results presented throughout this work have been obtained using
codes developed by the author which are available at https://github.com/ToBlick.

1.4 Notation

We briefly go over our notational choices. A table of commonly used symbols,
operators, and abbreviations is also given in Appendix A.

Functions, spaces, function spaces

Unless explicitly stated otherwise, Ω will denote a subset of Rd, d ∈ N = {1, 2, . . . }.
R>0 denotes strictly positive elements of R.

The closure of Ω, denoted Ω, is the smallest closed set containing Ω. The bound-
ary of Ω is denoted by ∂Ω and is the difference between its closure and interior, the
latter is the smallest open set that contains Ω.

The space of Rd-valued continuous functions on Ω will be denoted by C(Ω,Rd)
and equipped with the supremum norm. The space of continuous functions valued
in R is denoted C(Ω). The space of continuous functions on Ω that vanish on ∂Ω
is denoted C0(Ω) and that of bounded continuous functions is denoted Cb(Ω). The
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space Ck(Ω) for k ∈ N ∪ {0,+∞} consists of continuous functions on Ω with k
continuous derivatives and C0,α : α ∈ (0, 1) denotes Hölder continuous functions,
i.e. those f that satisfy

|f(x)− f(y)| ≤ C|x− y|α (1.3)

for all x, y ∈ Ω and some C > 0. The space Ck,α is the subset of Ck with (α−)Hölder
continuous kth partial derivatives. If f ∈ C0,1, it is Lipschitz continuous. The special
case when C = 1 in Equation (1.3) we call 1-Lipschitz.

We denote by Lp(Ω, ρ,Rd) the space of functions u : Ω→ Rd such that

‖u‖pL2(ρ) :=

∫
|u|p dρ < +∞. (1.4)

For the sake of brevity, we will also use the shorthand notation Lp(ρ), as in the
definition of the norm above.
V will denote a Hilbert space with inner product 〈·, ·〉V . Examples are L2(Ω), the

space of square integrable functions on Ω with square integrable weak first derivative,
denoted H1(Ω), and the closure of C∞0 (Ω) in H1(Ω), denoted H1

0 (Ω). Again for the
sake of brevity, we write ‖·‖L2 , ‖·‖H1 , . . . for the corresponding norms. The notation
‖u‖2

Ḣ1 :=
∫
∇u(x) · ∇u(x) dx denotes the squared H1 semi-norm.

We reserve this notation for the inner product and norms to function spaces. The
inner product in Rd will be denoted x · y and the Euclidean norm |x|.

When considering functions with parameter dependence u : A × Ω → R valued
u(µ, x), we will often write uµ to refer to u(µ, ·) : Ω→ R.

Measures

A probability measure ρ ∈ P(Ω) assigns a positive number ρ[Ω′] to any measurable
subset of Ω where ρ[Ω] = 1. As already stated, we denote the integration of a
measurable function f by ρ(f) =

∫
f dρ or

∫
Ω
f(x) dρ(x) for additional clarity. We

mention but do not use the equivalent notations 〈f, ρ〉 and EX∼µ[f(X)]. The support
supp(ρ) of a measure ρ is defined as the smallest closed set such that ρ[Ω \ supp(ρ)] =
0.

The (d-dimensional) Lebesgue measure of a set Ω will be denoted |Ω|.
When we say that a measure is absolutely continuous, we always mean with

respect to the Lebesgue measure unless explicitly stated otherwise. If ρ is absolutely
continuous, we write ρ ∈ Pac(Ω) and we will call it a density. In order to avoid
introducing additional notation and by abuse of notation, we will call the density of
ρ with respect to the Lebesgue measure ρ as well.

The Dirac measure at x will be denoted δx and is defined by
∫
ϕδx = ϕ(x) ∀ϕ ∈

C(Ω).
The narrow convergence of measures ∈ P(Ω) in duality with Cb(Ω) is denoted by

ρn ⇀ ρ ⇔
∫
ϕdρn →

∫
ϕdρ ∀ϕ ∈ Cb(Ω). Note that narrow convergence coincides

with weak convergence in duality with C(Ω) in the case where Ω is compact.





Chapter 2

The reduced basis method

In this work, we will employ the reduced basis (RB) approach for parametrized
partial differential equations. Standard references on this topic that we will use
and refer to are [108, 18]. Recall the PPDE problem from Definition 1.1: Given
parameters µ ∈ A ⊂ Rp, we seek to solve many iterations of the following problem:
Find a function u(µ) ∈ V , a Hilbert space, such that

L(µ, u(µ)) = 0 in Ω.

To solve this problem numerically, classical numerical methods such as the finite
difference, finite element, spectral, or finite volume methods approximate the space
V using a high-dimensional vector space Vh (dimVh = N). Elements of Vh, denoted
by uh, are determined by a degree of freedom vector u ∈ RN . Using a suited
discretization of L denoted Lh (in the conforming case Vh ⊂ V , one can use the
restriction of L to Vh), one obtains the discretized system Lh(µ, uh(µ)) = 0. In
general, this corresponds to a very large non-linear system of equations for u.

2.1 n-width

Recall the definition of the solution manifold

M := {u(µ) ∈ V : L(u(µ);µ) = 0 where µ ∈ A}.

As mentioned in Chapter 1, one approach in reduced order modelling is to build
a tailored, low-dimensional approximation space for elements of M rather than
general elements of V . In the case of the reduced basis method, this is a linear
subspace that we will denote Vn (dimVn = n). How the approximation error decays
as the dimension grows is a property ofM that we call linear compressibility1. This
is formalized with the concept of n-width ([108], Section 5.4):

Definition 2.1 (n-width). The (Kolmogorov) n-width of M from Definition 1.2 is
given by

dn(M, Vh) := inf
Vn⊂Vh

dimVn=n

sup
µ∈A

inf
urb∈Vn

‖urb(µ)− u(µ)‖V . (2.1)

1Compressibility is used here to refer to the succinct description of data and has little to do
with divergence-free vector fields in fluid dynamics.

9
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The n-width is a worst-case error indicator: the distance between V and Vn
is measured by the worst case (with respect to µ) of the best approximation of
u(µ) by urb(µ). Since V is a Hilbert space, there exists an orthogonal projection
Projn : V → Vn onto the reduced space.2 We can therefore also write

dn(M, Vh) = inf
Vn⊂Vh

dimVn=n

sup
µ∈A
‖Projnu(µ)− u(µ)‖V . (2.2)

Instead of a worst-case error, we can also consider an average:

δ2
n(M, Vh) := inf

Vn⊂Vh
dimVn=n

∫
A
‖Projnu(µ)− u(µ)‖2

V dµ. (2.3)

Note that δn(M, Vh) ≤
(∫
A dµ

)1/2
dn(M, Vh). One can extend this definition by

introducing a distribution on A that weighs the error according to the spread of
parameter values for the problem at hand.

Example 2.1. The n-width of the solution manifold consisting of u ∈ H1
0 (Ω) solving

−∇ · (a(x;µ)∇u(x;µ)) = f(x;µ) in Ω (2.4)

where a(x;µ) is bounded from below by a positive function, uniformly in µ, decays
exponentially ([108], Section 5.5).

A very good reference for the notions of reducibility of solution sets as well as
non-linear extensions of the n-width is Chapter 3 in [18].

2.2 Proper orthogonal decomposition

So far, our presentation concerned the continuous picture, where u are elements of
a Hilbert space and a continuous distribution of parameters is available. In fact,
many of the following considerations can be done while staying in this framework.

In practice, however, we are already starting from a finite-dimensional approxi-
mation of u(µ) given by uh(µ), which is, for example, an element of a finite element
space. We refer to uh(µ) as the high fidelity solution. When discussing the error of
a reduced method, we usually mean the deviation from this high fidelity solution,
since we do not have access to u(µ). In the interest of staying close to the applica-
tion and the numerical examples, we will from now on stay in this finite-dimensional
setting.

Compression of degree of freedom data

Furthermore, assume the parameter space is sampled at ns points µi, . . . , µns , giving
us a set of snapshots uh(µi) ∈Mh, whereMh is the solution manifold of the discrete
full-order problem. Note that the sampling need not be uniform, this implies the
introduction of a weighting of the integral over A. We do not consider this case here,

2If u∗rb = arg minurb∈Vn
‖urb−u‖V , then ‖urb−u‖2V ≤ ‖urb+εv−u‖2V ⇔ 2ε〈urb−u, v〉 ≤ ε2‖v‖2V

for any v ∈ Vn, ε ∈ R which implies the orthogonality urb − u ⊥ Vn.
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but introducing it in the following expressions is straightforward. In this setting,
Equation (2.3) reads

min
Vn⊂Vh

dimVn=n

1

ns

ns∑
i=1

‖Projnuh(µi)− uh(µi)‖2
Vh
. (2.5)

On the level of degrees of freedom, 〈uh, vh〉Vh = uTMv with mass matrix M
(symmetric, positive definite). Furthermore, an orthogonal (with respect to 〈·, ·〉Vh)
projection Projn has a matrix representation as WWTM where the columns of W ∈
RN×n are M-orthonormal, i.e. WTMW = Idn.

The solution to this problem is given by the Schmidt-Eckart-Young (also known
as Eckart-Young-Mirsky) Theorem ([108], Theorem 6.1): The optimal matrix is
obtained from a singular value decomposition of the snapshot matrix with elements∑N

k=1 M
1/2
ik k(µj), where 1 ≤ i ≤ N and 1 ≤ j ≤ ns. In particular, a basis of the

optimal subspace is given by the left eigenvectors of the snapshot matrix, scaled
with M−1/2.

In our application cases, N � ns, and it is convenient to obtain the basis from
the correlation matrix Cu:

Definition 2.2 (Snapshot correlation matrix). Given snapshots {uh(µj)}nsj=1 ⊂Mh,
the elements of the snapshot correlation matrix are given by

Cu
ij := 〈uh(µi), uh(µj)〉Vh 1 ≤ i, j ≤ ns. (2.6)

Obtaining the POD basis is described in Algorithm 1.

Algorithm 1 POD algorithm

1: function podbasis({uh(µ1), . . . , uh(µns)}, τ)
2: for i = 1, . . . , ns and j = 1, . . . , ns do
3: Cu

ij ← 〈uh(µi), uh(µj)〉Vh
4: end for
5: for i = 1, . . . , ns do
6: λui , f

u
i ← evd(Cu) . Cufui = λui f

u
i such that λu1 ≥, λu2 ≥ . . . .

7: ζi ← (λui )
−1/2

∑ns
j=1 uh(µj)(f

u
i )j . (fui )j is (fui )s jth component.

8: end for
9: n← minn′ :

∑n′

i=1 λ
u
i > (1− τ)

∑ns
j=1 λ

u
j

10: return {ζ1, . . . ζn} . The reduced basis
11: end function

The resulting basis enjoys the following optimality property, a direct consequence
of the Schmidt-Eckart-Young Theorem.

Proposition 2.1 ([108], Proposition 6.2). The POD basis constructed by Algo-
rithm 1 spans the optimal n-dimensional subspace in the sense of Equation (2.5)
and the approximation error is given by

ns∑
i=1

∥∥∥∥∥
n∑
j=1

〈ζj, uh(µi)〉Vhζj − uh(µi)

∥∥∥∥∥
2

Vh

=
ns∑

i=n+1

λui . (2.7)
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M⊂ Vh

u(µ)

ProjVnu(µ)

ζ1

ζ2,...,n

Figure 2.1: Illustration of the reduced basis approach.

When we consider a reduced basis approximation ∈ span{ζi}ni=1, we denote its
coefficients by ũi : i = 1, . . . , n, i.e.

urb(µ, x) :=
n∑
i=1

ũi(µ)ζi(x). (2.8)

Generalizations

As mentioned, we usually rely on an eigenvalue decomposition of the ns×ns correla-
tion matrix Cu rather than the N ×ns snapshot matrix. The notation we employed
suggests that as long as we stay in a separable Hilbert space setting where we can
work with orthogonality and bases, analogous considerations hold, and this is indeed
the case.

Remark 2.1. In a semi-discrete setting, we consider uh(µ) an element of L2(A, Vh).
In this case, the snapshot correlation matrix Cu is replaced by the operator

Cu
L2(A,Vh) : L2(A)→ L2(A) : g 7→

∫
A
〈uh(µ), uh(µ

′)〉Vhg(µ′)dµ′. (2.9)

Cu
L2(A,Vh) shares eigenvalues with the operator

Vh 3 v 7→
∫
A
〈uh(µ), v〉Vhuh(µ)dµ ∈ Vh, (2.10)

which is of finite rank ≤ N and bounded, as uh(µ) ∈ L2(A, Vh). Hence,∫
A
〈uh(µ), v〉Vhuh(µ)dµ ≤ ‖uh(µ)‖2

L2(A,Vh)‖v‖Vh . (2.11)

Any bounded finite-rank operator between Hilbert spaces is compact3 and allows an
eigendecomposition of the form

Cu
L2(A,Vh)(g) =

∑
i

λui

∫
A
fui (µ′)g(µ′)dµ′ fui (µ), (2.12)

3We call an operator between Hilbert spaces U and V is compact if its image of any bounded
sequence in U has a convergent subsequence in V .
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where {fui }i ⊂ L2(A) are orthonormal. This setting is discussed in [108], Section
6.4.

Remark 2.2. When Vh is replaced by a general Hilbert space V , Equation (2.12)
is still valid, as Cu

L2(A,V ) is a Hilbert-Schmidt integral operator. In the present case

where L2(A) is separable, u(µ) ∈ L2(A, V ), and µ 7→ 〈u(µ′), u(µ)〉V is in L2(A) for
all µ′ ∈ A, it is in fact trace-class. Its eigenvalues are at most countably infinite,
real, and converge to zero. The sequence {λui }i is summable and

‖Cu
L2(A,V )‖2

HS =
∑
i

λui =

∫
A
〈u(µ), u(µ)〉V dµ. (2.13)

For definitions and proofs we refer to [43] and [127].

Eigenvalue criteria

The eigenvalue decay of Cu is a good indicator of the best average approximation
δn(M, Vh) as long as the error introduced by approximating the integral over A is
small compared to the approximation error itself. A common strategy to pick the
right size n of a reduced basis is based on a user-defined tolerance τ and an energy
criterion, as already shown in Algorithm 1.

Definition 2.3 (Eigenvalue energy criterion). Given the snapshot correlation matrix
Cu ∈ Rns×ns with eigenvalues λu1 ≥ λu2 ≥ . . . and a tolerance τ , the size of the POD
basis n = n(τ) is given by

n := arg min

(
n′ ∈ N : E(n′, {λui }i) :=

∑n′

i=1 λi∑ns
j=1 λs

> 1− τ

)
. (2.14)

We call E(n, {λui }i) the (n-dependent) eigenvalue energy of Cu.

2.3 Greedy algorithms

Another strategy to determine a set of reduced basis elements ζ1, . . . , ζn relies on a
greedy procedure: In an iterative process, elements are added to the basis that at
this moment offer the biggest increase in approximation accuracy, measured in the
L∞ norm. A straightforward version of this is given in Algorithm 2.

In practice, the optimality criterion in Line 8 is replaced with an a posteriori error
estimate that can be computed at low cost. If this is done, the greedy algorithm
requires solving the full-order PDE problem only n times, while the error estimate
is evaluated ≈ n × ns times. This allows one to choose much larger values of
ns compared to the POD case. This procedure is sometimes called a weak greedy
approach.

Error estimates are an important feature of reduced basis methods. They are
similar in nature to those employed in high fidelity methods. The residual of the
approximate solution is used to infer information about the error compared to the
true solution. RB methods come with reliable error estimates are often referred to
as certified.
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Algorithm 2 POD algorithm

1: function greedybasis({µ1, . . . , µns}, τ)
2: µ(1) ← Initial(µ1, . . . , µns)
3: n← 1
4: ∆← 2τ
5: while ∆ > τ do
6: uh(µ

(n))← pdesolve(µ(n))
7: ζn ← orthonormalize(uh(µ

(n)), {ζi}n−1
i=1 )

8: ∆, µ(n+1) ← maxµ∈{µ1,...,µns} ‖uh(µ)− Projζ1,...,ζnuh(µ)‖Vh
9: n← n+ 1

10: end while
11: return {ζ1, . . . ζn} . The reduced basis
12: end function

We will come back to the computation of error indicators after we introduced
reduced basis solutions in the next section.

The greedy method is a feasible way to find a suited approximation space in the
sense of the Kolmogorov n-width dn, (c.f. Equation (2.1)), in an iterative manner.
Note, however, that the employed optimality criterion is local, as is characteristic of
greedy optimization. At iteration n, ζn is chosen with ζ1, . . . , ζn−1 fixed.

Remark 2.3. Exponential/algebraic n-width decay translates to exponential/algebraic
decay of the RB approximation error when using a greedy method to construct the
basis [32, 23].

Remark 2.4. Just as for the proper orthogonal decomposition, it is crucial that the
samples {µ1, . . . , µns} ⊂ A are chosen in a way that represents the entire parameter
space.

2.4 Reduced basis solutions

We will illustrate the solution of a reduced basis problem using the following exam-
ple.

Example 2.2 (Linear uniformly coercive PPDE problem). Let V be a Hilbert space,
A ⊂ Rp, and Vh ⊂ V finite-dimensional. a(·, ·;µ) : V × V → R is a bilinear form,
symmetric, uniformly (in µ) continuous and uniformly coercive. f(·;µ) : V → R is
a continuous linear form. Find u(µ) ∈ Vh ⊂ V such that

aµ(uh(µ), vh) = fµ(vh) ∀vh ∈ Vh. (2.15)

By the Lax-Milgram Theorem and Céa’s Lemma, solutions to this problem satisfy

‖uh(µ)− u(µ)‖V ≤
c

α
inf
vh∈Vh

‖u(µ)− vh‖V , (2.16)

where c and α denote the µ-independent bounds on the constants of continuity c(µ)
and coercivity α(µ) of a(µ, ·, ·). More details are given, for example, in Section 2.4
of [108].
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Galerkin reduced basis approach

In this work, we focus on Galerkin-type reduced basis solutions. That is, both trial
and test space are replaced by Vn := span{ζi}ni=1. Since Vn ⊂ Vh ⊂ V in this case,
the coercivity is preserved when moving from Vh to Vn, just as it was in the case of
the full-order discretization:

αn(µ) = inf
vn∈Vn

aµ(vn, vn)

‖vn‖2
V

≥ inf
vh∈Vh

aµ(vh, vh)

‖vh‖2
V

= αh(µ) ≥ α > 0 ∀µ ∈ A. (2.17)

We define the RB solution urb(µ) = un(µ) ∈ Vn by

aµ(un(µ), vn) = fµ(vn) ∀vn ∈ Vn. (2.18)

Note that vn is also an admissible test function for the continuous problem, therefore
we immediately find

aµ(un(µ)− u(µ), vn) = 0 ∀vn ∈ Vn. (2.19)

Proposition 2.2. For the setting of Example 2.2 and for all µ ∈ A, the RB ap-
proximation is optimal in the sense that

‖un(µ)− u(µ)‖V ≤
c(µ)

α(µ)
inf
vn∈Vn

‖vn − u(µ)‖V . (2.20)

Proof. For any vn ∈ Vn,

α(µ)‖un(µ)− u(µ)‖2
V ≤ aµ(un(µ)− u(µ), un(µ)− u(µ)) (2.21)

= aµ(un(µ)− u(µ), un(µ)− vn)︸ ︷︷ ︸
= 0

+aµ(un(µ)− u(µ), vn − u(µ))

(2.22)

≤ c(µ)‖un(µ)− u(µ)‖V ‖vn − u(µ)‖V . (2.23)

As un(x;µ) =
∑n

i=1 ũi(µ)ζi(x) with coefficients ũi(µ) ∈ R, in the case of a linear
equation such as Equation (2.15),

a(un(µ), vn;µ) = f(vn;µ) ∀vn ∈ Vn

⇔
n∑
i=1

ũi(µ)aµ(ζi, ζj) = f(ζj;µ) ∀j = 1, . . . , n. (2.24)

Parameter separability

An important special case is when the parameter dependence of a and f is separable:

Definition 2.4 (Parameter separable form). The bilinear form aµ : V × V → R is
parameter separable if there exist functions θaq : A → R and parameter-independent
bilinear forms aq : V × V → R, with 1 ≤ q ≤ Qa and

a(µ, ·, ·) =

Qa∑
q=1

θaq (µ)aq ∀µ ∈ A. (2.25)

Separability of the linear form f(µ, ·) : V → R is defined analogously.
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Remark 2.5. Equation (2.25) is also known as affine parameter dependence in the
literature. The functions µ 7→ θaq (µ) can still be non-linear.

Remark 2.6. If the aq are coercive with constants αq, then a sufficient criterion

for uniform coercivity of aµ is
∑Qa

q=1 θ
a
q (µ)αq ≥ α0 > 0.

If Definition 2.4 applies to the problem at hand, then Equation (2.24) can be
written as

n∑
i=1

ũi(µ)

Qa∑
q=1

θaq (µ)aq(ζi, ζj) =

Qf∑
q=1

θfq (µ)fq(ζj) ∀1 ≤ j ≤ n. (2.26)

As discussed in the introduction, one of the paradigms of reduced basis methods
is to split computations into an offline phase, which can involve costly operations
that in particular depend on the size of the full-order model N and an online phase,
where the PPDE is solved for a new parameter value µ ∈ A in a quick manner
- independent of N . In the case of a linear, parameter separable equation, this is
realized: The offline phase consists of constructing the reduced basis {ζi}ni=1 and pre-
computing aq(ζi, ζj) and fq′(ζj) for all 1 ≤ q ≤ Qa, 1 ≤ q′ ≤ Qf , and 1 ≤ i, j ≤ n.

In the online phase, given µ, we evaluate all θaq (µ) and θfq′(µ), assemble the matrix

{
∑Qa

q=1 θ
a
q (µ)aq(ζi, ζj)}1≤i,j≤n ∈ Rn×n and vector {

∑Qf
q=1 θ

f
q (µ)fq(ζj)}1≤j≤n ∈ Rn, and

solve the resulting linear n× n system.

Remark 2.7. The matrix {a(ζi, ζj;µ)}1≤i,j≤n arising in the RB method plays the role
the stiffness matrix from finite element (and finite volume, discontinuous Galerkin)
methods. In contrast to the latter, however, it is dense and small rather than large
and sparse.

Remark 2.8. For quadratic problems involving trilinear forms such as bµ(u, v, w) =∫
µ(u · ∇v)w, it is possible to pre-compute a third order tensor of the form

{b(ζi, ζj, ζk)}1≤i,j,k≤n. (2.27)

In principle, polynomial nonlinearities of higher order can be treated in this way as
well, however this is feasible only when n is sufficiently small.

Remark 2.9. For problems that satisfy a (uniform) inf-sup condition, which in the
discrete form for two Hilbert spaces Vh ⊂ V,Wh ⊂ W reads

inf
v∈Vh

sup
w∈Wh

aµ(v, w)

‖v‖V ‖w‖W
= βh > 0 ∀µ ∈ A, (2.28)

stability of the full-order model is not enough to deduce stability of a reduced order
model even when Vn = span{ζi}ni=1 ⊂ Vh and Wk = span{χi}ki=1 ⊂ Wh.

This is analogous to the situation when discretizing an inf-sup stable continuous
problem. In this case, Vh and Wh have to be chosen such that Equation (2.28) holds.
A classical example of this is the Stokes equation, we refer in particular to Chapter
5 in [26].

The reason why inf-sup stability might get lost is evidently because supw∈Wk
≤

supw∈Wh
as Wk ⊂ Wh. In the reduced basis setting, there is a computationally
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feasible option to restore it: Enrich the space Wk with those elements sµ(v) such
that 〈sµ(v), w〉W = a(µ, v, w) ∀v ∈ Vn. We denote this enriched space W

sµ
k+n. These

additional elements sµ(v) are called supremizer modes and guarantee the existence of
an element in W

sµ
k+n that is as good as any element in Wh to satisfy Equation (2.28).

Furthermore, sµ is a linear operation, hence it can be applied to the basis of Vn to
construct

W
sµ
k+n = Wk ∪ span{sµ(ζi)}ni=1. (2.29)

Since the infimum over the smaller space Vn is strictly greater than that over Vh,
the inf-sup stability holds for the reduced system with constant βn ≥ βh.

However, note that the reduced basis space W
sµ
k+n is now parameter-dependent.

This space can be replaced by one that is spanned by all supremizer modes of a fixed
training set {sµi ◦ v(µi)}nsi=1. While this does not guarantee the inf-sup stability, it
leads to a µ-independent basis and is often sufficient in practice, see [108], Section
9.3.

Error estimates

Lastly, let us return to the question of how to estimate ‖urb(µ)− uh(µ)‖Vh when we
only have access to the former. It holds that

aµ(uh(µ)− urb(µ), vh) = fµ(vh)− aµ(urb(µ), vh) ∀vh ∈ Vh, (2.30)

since uh(µ) solves the PPDE from Example 2.2. The term on the right-hand side is
the residual of the RB approximation evaluated on the high fidelity space:

V ′h 3 rµ : Vh → R : vh 7→ fµ(vh)− aµ(urb(µ), vh), (2.31)

where V ′h denotes the dual space of Vh. The residual only contains parameter-
dependent forms and the reduced basis solution urb. Yet, since we can bound
aµ(uh(µ)−urb(µ), vh) from above by continuity and from below by coercivity, ‖rµ‖V ′h
allows us to control ‖urb(µ)− uh(µ)‖Vh . If aµ and fµ are parameter-separable, eval-
uation of ‖rµ‖V ′h can be a computationally cheap way to obtain the upper bound
‖urb(µ)− uh(µ)‖Vh ≤ ‖rµ‖V ′h/α(µ).

2.5 Hyper-reduction

A natural question is what one does in the case where the problem at hand is not
parameter separable. A priori, for a general function ah : Vh × Vh × A → R :
(uh, vh, µ) 7→ ah(uh, vh;µ), it is not possible to evaluate the quantity

ah

(
µ,
∑
i=1

ũi(µ)ζi, ζj

)
, (2.32)

which is needed to assemble the reduced system, independent of N . While the use
of a reduced basis method in this case might still offer moderate computational cost
reduction (for example, the assembly of the linear system might be N -dependent,
but solving it is not), this is in most cases not satisfactory.
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The mapping µ 7→ ah (
∑

i=1 ũi(µ)ζi, ζj;µ) itself has a low-dimensional input µ ∈
A ⊂ Rp and output ∈ R. Hyper-reduction methods are designed to provide an
approximation of this mapping that does no longer depend on N . A number of
hyper-reduction methods have been developed and are widely applied, among them
Gappy POD [58, 37], empirical quadrature [145], and empirical interpolation [13,
39, 53] methods. We will describe the latter in detail as we will use it later.

Empirical interpolation

The empirical interpolation method (EIM) seeks to approximate the evaluation of a
general parameter-dependent function g : (x, µ) → g(x;µ), where g(µ) := g(·;µ) ∈
L∞(Ω) for all µ, using a separable form g(x;µ) ≈

∑Qg
q=1 θ

g
q(µ)Xg

q (x). The coefficients
{θgq(µ)}q are calculated online by solving an interpolation problem:

g(xeim
q ;µ) =

Q∑
q′=1

θq′(µ)Xq′(x
eim
q ) ∀1 ≤ q ≤ Q. (2.33)

The functions {Xg
q }q and points {xeim

q }q are constructed in the offline phase based
on instances of g from the training set. There exist two approaches, just as in the
construction of the reduced basis {ζi}i: a greedy algorithm and one based on POD.
Again, we will focus on the latter as it is used in the examples of Section 6.8 and
refer to the references for the former.

The empirical interpolation method based on POD selects the interpolation func-
tions {Xg

q }q starting from a POD basis obtained from the snapshot correlation ma-
trix of g with elements

Cg
ij = 〈g(µi), g(µj)〉 1 ≤ i, j ≤ ns. (2.34)

The inner product can be chosen depending on the problem at hand, the L2 inner
product is a sensible choice to fall back on. When g is part of a PPDE problem that
we seek to solve using a POD-RB approach, the functions {g(µi)}nsi=1 will be available
from solving the full-order model to calculate the snapshots {u(µi)}nsi=1. In general,
however, the samples of A used to construct the reduced basis and the EI functions
need not agree. Proceeding as for the construction of the reduced basis, we obtain
eigenfunctions {Ξq}Qgq=1 ⊂ L∞, where Qg is determined by an energy criterion τeim.
These eigenfunctions serve as the starting point to build the interpolation functions
{Xq}q, as described in Algorithm 3.

By construction, the resulting interpolation problem is solvable in O(Q2) opera-
tions. The resulting approximation is always of parameter separable form and allows
an evaluation in the online phase independent of N .

Remark 2.10. Just as in the case of the POD construction of a reduced basis for
solutions of a PPDE, the decay of eigenvalues of Cg gives a good indication of how
well g can be approximated by empirical interpolation.

Remark 2.11. Oversampling techniques have been shown to improve the stability
of the empirical interpolation method in the presence of noisy data [105].
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Algorithm 3 Empirical interpolation algorithm

1: function empiricalinterpolation({Ξq}Qq=1)
2: for q = 1, . . . , Q do
3: if q is 1 then
4: r ← Ξq

5: else
6: θ ← B−1 [Ξq(x

eim
1 ), . . . , [Ξq(x

eim
q−1)]

7: r ← Ξq − θ ·X
8: end if
9: xeim

q ← arg maxx∈Ω ‖r(x)‖∞
10: Xq ← r/r(xeim

q )
11: for q′ = 1, . . . , Q do
12: Bq,q′ ← Xq(x

eim
q′ ) . B is lower-triangular with unit diagonal

13: end for
14: end for
15: return {Xq}Qq=1, {xeim

q }
Q
q=1, B . Interpolation functions, points, and matrix.

16: end function

2.6 Registration methods

Reduced basis approaches build on very well understood and established linear ap-
proximation methods and can provide provable error bounds, something that sets
them apart from other ROMs which are of a more black-box nature. However,
when looking beyond elliptic and parabolic PDEs, one encounters the problem that
the n-width of the solution manifold of (even very simple) transport and hyper-
bolic problems decays as slowly as O(n−1/2) [56, 69, 101]. Linear RB methods are
fundamentally not suited to tackle these problems.

Limitations of reduced basis methods

Reduced basis methods can be interpreted as a special class of spectral methods that
do not rely on classes of functions with general approximation qualities (polynomials,
Fourier spaces, ...) but instead use functions tailored to the problem at hand. As
such, they share the shortcomings of spectral methods when approximating jump
discontinuities and moving features. The ansatz urb(µ, x) =

∑n
i=1 ui(µ)ζi(x) relies

on a separation of variables that is not readily applicable to solutions of the form
u(µ, x) = u0(x− µ).

Example 2.3 (Examples for fast and slow n-width decay). Consider two PPDE
problems in Ω = [0, 1]2 ⊂ R2 with homogeneous Dirichlet boundary conditions.

First,
∇ · (K(µ, x)∇u(x)) = 1 ∀x ∈ Ω, (2.35)

where x 7→ K(µ, x) ∈ R>0 are piece-wise constant functions:

K(µ, ·) = µ11[0,1/2]×[0,1/2] +µ21(1/2,1]×[0,1/2] +µ31(1/2,1]×(1/2,1] +µ41[0,1/2]×(1/2,1] (2.36)

and µ ∈ [µmin, µmax]4 with µmax = 1/µmin = 50. Second,

∆u(x) = f(µ, x) ∀x ∈ Ω, (2.37)
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where f(µ, ·) = N (µ, var) is a narrow Gaussian centered at µ ∈ [µmin, µmax]2 with
µmax = −µmin = 7/20.

We plot the eigenvalues of Cu for these two cases in Figure 2.2.

Figure 2.2: Eigenvalues of Cu for the two cases described in Example 2.3.

The first problem in Example 2.3, where K varies with the parameter value,
exhibits fast n-width decay. The eigenvalue energy E(n) is large already for very
small n. For example, 1 − E(4) < 3 × 10−3 and 1 − E(10) < 3 × 10−7. The
problem is also parameter-separable and uniformly elliptic (with constant µmin), so
it is extremely favorable to reduction. The second problem, even though it is also
elliptic, shows slow n-width decay (1− E(3) > 10−1 and 1− E(10) > 2× 10−2).

Parameter-dependent mappings

One common strategy to overcome the slow n-width decay it is to find a suitable,
parameter dependent mapping Φµ such that the manifold of mapped solutions

Φµ(M) := {u(µ) ◦ Φ−1
µ : u(µ) ∈M} (2.38)

has a much smaller n-width [112, 128, 97, 35, 142, 72]. This approach we refer to as
registration methods.

Example 2.4. In the simple one-dimensional case M = {x 7→ u0(x− µ) : µ ∈ R},
the n-width decays only as n−1/2, yet the mapped solution manifold Φµ : x 7→ x− µ
consists of the single element u0.

As obvious as the previous example is, registration problems are not without
challenges. The function µ 7→ Φµ has to be evaluated online, therefore has to be
computationally cheap, and return a bijection. Solving Definition 1.1 with the ansatz

utrb(µ, x) :=
n∑
i=1

ui(µ)φi ◦ Φµ(x) (2.39)

for a reduced basis {φi}ni=1 built for Φµ(M) may require taking x-derivatives of Φµ,
which therefore have to exist and be bounded for numerical stability. Besides these
issues of regularity, a good measure for the registration performance of the mapping
has to be selected.
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Example 2.5. If, for example, one wants to align two features fx· centered around
x1 and x2, then a gradient-based minimization of ‖fx1 − fx2 ◦ Φ‖L2 may very well
fail if x1 and x2 are far enough apart such that the support of fx1 and fx2 ◦ Φ does
not overlap at the starting point of the optimization.

Example 2.6. Consider the set M := {u(µ) = N (µ, var) : µ ∈ [0, 1]} of shifted
Gaussian distributions on R. One has

‖u(µj)− u(µi)‖L2 =

(
1√
πvar

− 1√
πvar

exp

(
−(µi − µj)2

4var

))1/2

. (2.40)

For var � 1, gradients with respect to µi of this quantity are essentially zero once
|µi − µj| > 3

√
2var and the gradient takes extreme values ∝ var−3/4 when µi ≈ µj.

Remark 2.12. Reduced order modelling applications are only one (fringe) example
of registration problems, which are common in imaging sciences, e.g. with medical
applications [60]. Broadly speaking, these methods combine fidelity or proximity
terms Prox(Φ) and regularization terms Reg(Φ), typically weighted by a hyperpa-
rameter, to find an optimal mapping. The result is a minimization of the form

min
Φ

(Prox(Φ) + αReg(Φ)) (2.41)

for α > 0, coupled with constraints to enforce invertibility and regularity of Φ.
One example, the large deformation diffeomorphic metric mapping utilizes defor-

mations Φ that are the flow of vector fields from a reproducing kernel Hilbert space
and the corresponding norm serves as regularization [134].

Another example in reduced order modelling that is an application of registra-
tion methods are problems with parameter-dependent geometry. When the PPDE
problem is formulated on a family of domains {Ωµ : µ ∈ A}, it is not possible to
build a single reduced basis for all parameter values, as the domains of the reduced
bases differ. Instead, a mapping Φµ(Ω0) = Ωµ can be used to construct a reduced
basis in a reference domain Ω0, which is then used to solve the PPDE problem.

Map-then-discretize and discretize-then-map

For the sake of exposition, consider the second problem from Example 2.3 in weak
form. We are interested in finding u : A → H1

0 (Ω) such that∫
Ω

∇u(µ, x) · ∇v(x)dx =

∫
Ω

f(µ, x)v(x)dx ∀v ∈ H1
0 (Ω). (2.42)

Furthermore, assume we have found a family of invertible mappings Φµ : Ω → Ω
such that we expect {u(µ) ◦ Φ−1

µ : µ ∈ A} to be compressible using a reduced basis
approach.

If we let y = Φ(x), then a Laplace operator in weak form after the registration
process can be expressed as∫

Ω

∇(φj ◦ Φµ) · ∇(φj ◦ Φµ) dx =

∫
Φµ(Ω)

∇φj · [DΦ−1
µ ]−1[DΦ−1

µ ]−T∇φj| detDΦ−1
µ | dy.

(2.43)
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In the case where the domain Ω = Ωµ is parameter dependent, the left-hand side
of Equation (2.43) will be posed on Ωµ while the right-hand side will be on Ω0.
This approach is called map-then-discretize (MtD) in [130] and has been used in,
for example [12, 114].

The weak form in the reference frame is significantly more complex than the
original one though the (µ-dependent) matrix Kµ := [DΦ−1

µ ]−1[DΦ−1
µ ]−T detDΦ−1

µ .
Depending on the complexity of Φµ, this means that, for example, a higher order
quadrature rule should be used during the assembly step. In reduced order modelling
approaches, any method that requires modifications of the high fidelity solver has to
be handled with care. In realistic cases, these codes are highly optimized and might
not be easily accessible.

If the map Φµ is represented by a finite element function itself (as is the case in
the example in Chapter 6), it is pointed out in [130] that it is beneficial if the meshes
that Φµ and u(µ) are defined on are conforming. If they are not, discontinuities of
DΦµ, and therefore Kµ, will drastically decrease the performance of the numerical
quadrature.

An alternative method is to still solve the original problem, i.e. the unmodified
weak form, and instead move the mesh. As long as the high-fidelity method can
handle unstructured meshes, it can be used as-is to compute this discretize-then-
map (DtM) formulation. Furthermore, the mapping only needs to be evaluated at
the mesh nodes, and no derivatives have to be taken. Note the method still requires
constraints on detDΦµ in order to not produce mesh cells that are very anisotropic
or even inverted.



Chapter 3

Optimal transport

Optimal transport (OT) theory provides a notion of discrepancy between probability
measures ρ, σ ∈ P(Ω1)×P(Ω2). In particular, a cost is modelled through a function
c : Ω1 × Ω2 → R where c(x, y) gives the cost of moving a differential unit of mass
from x to y. The larger the cost to move the total mass, the more different the
two probability densities are to one another. This defines a distance on the space of
probability densities with a number of appealing properties.

With our application in mind, we will make the following simplifying assumptions:
Ω1 and Ω2 are bounded subsets of Rd. In most cases, we will consider the case
Ω1 = Ω2 = Ω. We remark that optimal transport theory has been developed for
much more general spaces and (lower semi-continuous) cost functions.

Furthermore, we will focus on the choice c(x, y) = 1
2
|x − y|2 and where the

measures ρ, σ admit a density with respect to the Lebesgue measure, i.e. they are
absolutely continuous. This will be explicitly started when required.

The research on OT theory and its applications in physics, economics, imaging
sciences, et cetera is extensive. Several excellent textbooks and lecture notes on the
topic are available. Villani’s works can be called standard references in the field
[140, 139]. A stronger emphasis on the relation to partial differential equations is
made in [115, 57] and computational aspects are thoroughly treated in [106, 138].

3.1 Short history of the optimal transport prob-

lem

The inception of optimal transport is usually attributed to French geometer Gaspard
Monge1 in the year 1781.

The Monge problem

Motivated by the question of how to optimally extract construction materials, he
asked what is the optimal way to move, say, a pile of sand from one configuration
(déblai) into another (remblai). The optimization is an assignment problem, without
loss of generality we can assume that the sand piles have unit mass and are modelled
by probability densities.

1Monge was also a Minister of the Marine, founder of the École Polytechnique, close friend of
Napoleon Bonaparte, and once won a race up a pyramid ([139], Chapter 3, [65], Appendices I)

23
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Definition 3.1 (Monge problem). Given two probability measures ρ, σ ∈ P(Ω), find
the optimal transport map T : Ω→ Ω solving

inf
T :σ=T]ρ

∫
c(x, T (x))dρ. (3.1)

Here, T]ρ denotes the push-forward measure of ρ under T , defined as

Definition 3.2 (Push-forward). The push-forward of ρ under T : Ω → Ω, denoted
by T]ρ, is defined by (T]ρ)[Ω′] = ρ[T−1(Ω′)] for all measurable Ω′ ⊂ Ω. If both ρ
and σ are absolutely continuous with densities denoted again ρ, σ, and T is a C1

diffeomorphism, then σ = T]ρ is equivalent to

ρ = (σ ◦ T ) | detDT |. (3.2)

In Monge’s original work he assumed c(x, y) = |x − y|, a natural choice but
ambitious to treat as this cost function is not strictly convex.

The optimization problem Equation (3.1) is challenging. The functional and the
constraint are non-linear, the latter non-local. If we assume that T is a smooth
diffeomorphism, it is equivalent to the fully non-linear partial differential equation
ρ(x) = (σ ◦ T (x)) | detDT (x)|, which has to hold ρ-almost everywhere. It is not
clear if a solution to this problem exists. In fact:

Example 3.1. Let ρ = δx and σ any measure that is not of the form δy for some
y ∈ Ω. As T]δx = δT (x), no transport map exists.

The Kantorovich problem

In 1942, Leonid Kantorovich introduced a similar transport problem that can be
seen as a relaxation of Monge’s. He himself noted this connection in 1948 [76].

Definition 3.3 (Kantorovich problem). Given two probability measures ρ, σ ∈ P,
find the optimal transport plan π ∈ P(Ω× Ω) solving

inf
π∈Π(ρ,σ)

∫
Ω×Ω

c(x, y)dπ(x, y), (3.3)

where Π(ρ, σ) is the set of admissible transport plans with fixed marginals:

Π(ρ, σ) := {π ∈ P(Ω× Ω) : π(·,Ω) = ρ and π(Ω, ·) = σ}. (3.4)

We will refer to c as the cost function and to the value
∫
cdπ as the (total)

transport cost corresponding to the plan π.

Remark 3.1. The set Π(ρ, σ) is non-empty, as it always contains the product mea-
sure ρ⊗ σ. Existence of a solution to Equation (3.3) can be shown for very general
cost functions (lower semi-continuous and bounded from below), see for example
[115], Theorem 1.5.

For Ω′,Ω′′ ⊂ Ω, the value of π(Ω′,Ω′′) is the amount of mass that is transferred
from Ω′ to Ω′′. Kantorovich’s formulation therefore allows mass splitting, something
Monge ruled out by requiring the existence of a transport map T , which is not
multivalued. Kantorovich’s formulation is a generalization of Monge’s problem in
the following sense:

Remark 3.2. If a transport plan π is of the form (id, T )]ρ, i.e. supported on the
graph (x, T (x)), then Equation (3.3) takes the form of Equation (3.1).
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Duality

The Kantorovich problem consists of the minimization of a linear functional over a
convex set, P(Ω× Ω). As such, it admits a dual problem:

Theorem 3.1 (Kantorovich duality ([140], Theorem 1.3)). The dual problem of
Equation (3.3) is given by

sup
ψρ,ψσ∈C(Ω)

{∫
Ω

ψρdρ+

∫
Ω

ψσdσ : ψρ(x) + ψσ(y) ≤ c(x, y)

}
, (3.5)

where c : Ω × Ω → R≥0 ∪ {+∞} is a lower semi-continuous cost function. The
supremum in Equation (3.5) and the infimum in Equation (3.3) are equal, and both
are attained.

We will refer to the functions ψρ, ψσ as transport potentials. Those potentials
that realize the maximum in Equation (3.5) we will refer to as optimal transport
potentials.

Remark 3.3. While it is somewhat natural to consider transport potentials in Cb(Ω),
as continuous functions are in duality with measures, it is not obvious a priori that
optimal transport maps are continuous instead of, for example, elements of L1(ρ)
and L1(σ). As we will see, the potentials in fact inherit their continuity from the
cost function.

This duality has an intuitive interpretation, cited here after [140], who credits
Caffarelli: The primal problem Equation (3.3) corresponds to a centralized distri-
bution of goods from suppliers ρ to consumers σ.

The goal is to assign the goods in a way such that the transport cost is minimal
and at the same time the entire supply is used and the demand is met.

The dual problem Equation (3.5) solves this by delegating it to a logistics com-
pany that charges a fee ψρ to pick up the goods at the suppliers and another fee ψσ
to drop them off at the consumers (both ψρ and ψσ can also be negative in some
places). The logistics company wants to maximize its profit but operates under the
constraint that it cannot charge more than what the cost would be if the goods were
transported by the central actor from the primal problem: ψρ(x) + ψσ(y) ≤ c(x, y).

Transport induced by maps

What remains is the question when the Monge and Kantorovich formulation coin-
cide, i.e. when the transport plan is in fact concentrated on a graph and there exists
an optimal transport map.

Theorem 3.2 (Brenier’s theorem). If ρ ∈ Pac(Ω), then the unique solution to Equa-
tion (3.3) with quadratic cost is concentrated on the graph (x, T (x)) of a transport
map T . In particular,

inf
π∈Π(ρ,σ)

∫
Ω×Ω

|x− y|2dπ(x, y) = inf
S:σ=S]ρ

∫
Ω

|S(x)− x|2dρ(x). (3.6)
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The minimum is attained by an optimal T , which is the gradient of a Lipschitz
continuous convex function:

T (x) = ∇ϕ = x−∇ψ(x). (3.7)

The function ψ is the optimal transport potential of Equation (3.5), denoted ψρ
therein.

Remark 3.4. The result holds for more general cost functions satisfying a twist
condition, i.e. x−differentiability and injectivity of y 7→ ∇xc(x, y), see [115], Section
1.3.

3.2 Dual problem

We do not repeat here the proof of Kantorovich’s duality result, referring to e.g.
[115], Section 1.6. We do, however, repeat a formal calculation performed therein
that provides some context for the form of the dual problem. Note that

sup
ψρ,ψσ∈C

(∫
Ω

ψρdρ+

∫
Ω

ψσdσ −
∫

Ω×Ω

(ψρ + ψσ)dπ

)
=

{
0 if π ∈ Π(ρ, σ)

+∞ else.
(3.8)

We now add the marginal constraints into the objective function to obtain the
following formulation, equivalent to Equation (3.3):

inf
π∈P(Ω×Ω)

(∫
Ω×Ω

c dπ + sup
ψρ,ψσ∈C

(∫
Ω

ψρdρ+

∫
Ω

ψσdσ −
∫

Ω×Ω

(ψρ ⊕ ψσ)dπ

))
. (3.9)

If it is possible to exchange the sup and inf in this term - and the duality proof is
concerned with just that - then we arrive at

sup
ψρ,ψσ

(∫
Ω

ψρdρ+ inf
π

(∫
Ω×Ω

(c− (ψρ ⊕ ψσ))dπ

))
. (3.10)

Since

inf
π

∫
Ω×Ω

(c− (ψρ ⊕ ψσ))dπ =

{
0 if c− (ψρ ⊕ ψσ) ≤ 0

−∞ else,
(3.11)

we obtain Equation (3.5).
The dual problem is appealing as the constraint is linear and so is the space C(Ω).

c-transform

Assume that we are given a candidate potential ψρ. In order to maximize the
objective of Equation (3.5), it is natural to choose as ψσ the largest possible function
(recall that σ is non-negative) that does not violate the constraint:

Definition 3.4 (c-transform). The c-transform of a function ψ : Ω → R ∪ {+∞}
is given by

ψc(y) := inf
x∈Ω

(c(x, y)− ψ(x)) . (3.12)



3.2. DUAL PROBLEM 27

Going further, we can replace ψρ by ψcσ = ψccρ . From the definition of the c-
transform, this will only increase the value of the integrals in the dual problem. We
could go on, but ψcccρ = ψcρ as, for any ψ1, ψ2, we have ψcc1 ≥ ψ1 and ψ1 ≥ ψ2 ⇒
ψc1 ≤ ψc2.

We say a function ψ1 is c-concave if there exists ψ2 such that ψ1 = ψc2. Fur-
thermore, ψ and ψc are called c-conjugate. In the following, we will often drop
the subscript on ψ once it is established what is the initial and what is the target
measure.

With the notion of c-transform, we have a strategy at hand to maximize the
objective of the dual problem:

Proposition 3.1 ([115], Proposition 1.11). Assume c is continuous and bounded.
The dual problem Equation (3.5) admits a solution of the form

max
ψρ c-concave

∫
ψρdρ+

∫
ψcρdσ. (3.13)

The proof of Proposition 3.1 is omitted here for brevity. The strategy is as fol-
lows: start with a maximizing sequence (ψ

(n)
ρ , ψ

(n)
σ ). Applying the c-transform to

the sequence elements evidently only improves it. One can then use the definition
of the c-transform to show that the modified sequence shares its modulus of conti-
nuity with the cost function and derive uniform bounds. Therefore, the sequence is
equicontinuous and equibounded and one can apply the theorem of Ascoli-Arzelà to
obtain a uniformly convergent subsequence.

Remark 3.5. The fact that the optimal transport potential ψρ shares its modulus of
continuity with c implies that it is differentiable almost everywhere by Rademacher’s
Theorem ([70], Theorem 4.2.3). By the assumptions in Theorem 3.2, almost ev-
erywhere with respect to the Lebesgue measure is ρ-almost everywhere, so ∇ψρ is
well-defined.

Convexity and the quadratic cost function

When dealing with the quadratic cost, we can relate the c-transform to the known
notion of the Legrendre transform of convex functions. Indeed, convexity takes the
place of c-concavity and leads to the result of Brenier’s Theorem 3.2:

Proposition 3.2. In the case of c(x, y) = 1
2
|x− y|2, it holds that |y|

2

2
− ψc(y) is the

Legendre transform of ϕ(x) := |x|2
2
− ψ(x), defined by

ϕ∗(y) := sup
x∈Rd

(x · y − ϕ(x)). (3.14)

Proof.

|y|2

2
−ψc(y) =

|y|2

2
− inf

x∈Ω

(
1

2
|x− y|2 − ψ(x)

)
= sup

x∈Ω

(
x · y − |x|

2

2
+ ψ(x)

)
. (3.15)
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Remark 3.6. The factor 1
2

leads to the convenient form of ∇ϕ = id−∇ψ. However,
including this factor is not standard, hence we will refer to |x − y|2 when we speak
of the quadratic cost case. Naturally this factor can be absorbed in the potentials ψ
if needed. However, when we write ψ and ψc, we will always do so with respect to
the cost c(x, y) = 1

2
|x− y|2, therefore

W2(ρ, σ)2 = 2

∫
ψρdρ+ 2

∫
ψσdσ, (3.16)

where ψρ, ψσ are the optimal transport potentials, i.e. solutions of the dual problem
Equation (3.5).

In summary: ϕ, ϕ∗ are the convex functions whose gradients give the transport

maps, while ψ(x) = |x|2
2
− ϕ(x) and ψc(y) = |y|2

2
− ϕ∗(y).

Remark 3.7. Note that the Legendre transform is typically defined on the entirety
of Rd. Likewise, the value of the transport potentials is only determined ρ- (respec-
tively σ-) almost everywhere by the optimal transport dual problem. Through the
c-transform, one can extend the domain of the potentials to Ω or even Rd.

Remark 3.8. When Brenier’s theorem is applicable, this result implies that we can
invert the mapping T : x 7→ ∇ϕ(x) by evaluating the c-transform. As we will see,
this can be an interesting option in numerical applications.

Proposition 3.3. Assume ϕ : Rd → R is strictly convex, differentiable, and in-
creases faster than any linear function as |x| → +∞. Then, (∇ϕ)−1 = ∇ϕ∗.
Proof. By the assumptions, there exists for every y a unique x∗(y) ∈ Rd where the
minimum is attained, characterized by the condition y = ∇ϕ(x∗(y)). At the same
time, ∇ϕ∗(y) = x∗(y) − (∇ϕ(x∗(y)) − y) · ∇x∗(y) = x∗(y) and thus ∇ϕ(x) = y if
and only if ∇ϕ∗(y) = x.

Sufficient criteria

After establishing that optimal transport maps of densities necessarily have gradient
structure, it is a natural question if this relation holds both ways.

Theorem 3.3 (Sufficient criterion for optimal maps ([115], Theorem 1.48)). Sup-
pose ρ ∈ Pac and ϕ : Ω → R ∩ {+∞} is a convex function, differentiable almost
everywhere. Then, ∇ϕ is the optimal transport map between ρ and ∇ϕ]ρ.

Proof. Recall from the definition of the Legendre transform that ϕ(x)+ϕ∗(y) ≥ x ·y
for all x, y ∈ Rd. Furthermore, equality only holds if ∇ϕ(x) = y. Let ∇ϕ]ρ =: σ.
For any admissible transport plan between ρ and σ, we have

1

2

∫
|x− y|2dπ(x, y) =

1

2

∫
|x|2dρ+

1

2

∫
|x|2dσ −

∫
x · ydπ(x, y). (3.17)

The first two terms do not depend on the plan. For the last term, we can use the
bound∫

x · ydπ(x, y) ≤
∫

(ϕ(x) + ϕ∗(y))dπ(x, y) (3.18)

=

∫
ϕ(x)dρ+

∫
ϕ∗(y)dσ(y) (3.19)

=

∫
(ϕ+ ϕ∗ ◦ ∇ϕ)dρ. (3.20)
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Equality is attained by the plan induced by the map x 7→ ∇ϕ(x), hence the latter
is optimal.

Remark 3.9. When ρ and σ do not allow a transport map, the condition that
T = ∇ϕ has a counterpart: When π is the optimal transport plan between ρ and σ,
then π is supported in the subdifferential of a proper lower semi-continuous convex
function ([140], Theorem 2.29). If furthermore the total cost is finite for the trial
plan ρ⊗σ, this condition is also sufficient (see the discussion after Proposition 2.24
therein).

Furthermore, by Rockafellar’s Theorem ([140], Theorem 2.27), this implies that
the support of π is cyclically monotone. This relation is in fact if and only if.

Definition 3.5 (Cyclical monotonicity). A set Γ ⊂ Rd ×Rd is cyclically monotone
if for all m ∈ N and for all (x1, y1), . . . , (xm, ym) ∈ Γ

m∑
i=1

|xi − yi|2 ≤
m∑
i=1

|xi − yperm(i)|2 (3.21)

for any permutation perm.

To interpret this condition, assume that we have a trial transport plan π′. Looking
at the pair of points (x1, y1) ∈ supp(π′), we can lower the total cost by instead linking
x1 and yi, where |x1− yi| is strictly smaller than |x1− y1|. Say this lowers the total
cost by δ. Naturally, the marginal constraints are now violated: there is an excess
of mass at yi and a deficit at y1. Hence, we have to find another point, which can
without loss of generality be called x2, that is linked with yi in the trial plan. We
then link x2 with another point yj and so on. Eventually we close this cycle to
restore the marginal constraints when we link xm to y1. If we increase the cost only
by δ′ < δ during this correction process, we have found a permutation perm that
improves the trial plan:

m∑
i=1

|xi − yi|2 >
m∑
i=1

|xi − yperm(i)|2. (3.22)

3.3 Monge-Ampère equation

From Theorem 3.3 (Sufficient criterion for the optimality of a transport map), one
can derive a Euler-Lagrange equation for the optimal transport problem. Assume
that ϕ ∈ C2(Ω) is strictly convex. Then, if ∇ϕ pushes ρ ∈ Pac(Ω) forward to
σ ∈ Pac(Ω), it necessarily holds that (c.f. Equation (3.2)):

ρ(x) = σ(∇ϕ(x)) detD2ϕ(x) ∀x ∈ Ω. (3.23)

If we furthermore assume that σ is strictly positive, then

detD2ϕ(x) =
ρ(x)

σ ◦ ∇ϕ(x)
∀x ∈ Ω. (3.24)

This is known as a Monge-Ampére type equation, which take the form

detD2ϕ(x) = f(x, ϕ,∇ϕ) (3.25)

for some function f . For the purposes of this work, we are only interested in the
specific instance given in Equation (3.24), and will refer it as the Monge-Ampére
equation.
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Properties

Equation (3.24) comes without a boundary condition, it only requires that ∇ϕ maps
the support of ρ to that of σ. To be more precise, let Ω1 and Ω2 be two open, bounded
subsets of Rd such that supp(ρ) = Ω1, supp(σ) = Ω2, and both ∂Ω1 and ∂Ω2 are of
Lebesgue measure zero. Furthermore, assume that ρ and σ are bounded away from
both zero and infinity on their supports. Then, Equation (3.24) together with the
condition

∇ϕ(Ω1) = Ω2, (3.26)

is called a second boundary value problem for the Monge-Ampére equation. If
∇ϕ is continuous with continuous inverse, then this condition is equivalent to
∇ϕ(∂Ω1) = ∂Ω2 ([115], Section 1.7.6).

The Monge-Ampére equation is a so-called fully non-linear elliptic equation (c.f.
[140], Definition 4.2). The ellipticity of the equation in this sense is a consequence
of the monotonicity of the determinant in the following sense: If A−B is a negative
semi-definite matrix (write A ≤ B), then detA ≤ detB. However, this monotonicity
is very degenerate.

Even in the simplest case where the transported densities are uniform on their
respective supports, and |supp(ρ)| = |supp(σ)|, the resulting equation detD2ϕ(x) =
1 is invariant under a number of transformations including any affine transformation
with determinant equal to one. For example, if ϕ solves detD2ϕ(x) = 1 on Rd, then
so does (x, y) 7→ ϕ(εx, y/ε) for any ε > 0 (see for example [47], Section 2.3).

Linearization

The ellipticity of Equation (3.24) is clearer in the linearized case or when the trans-
port is (formally) small, see [140], Exercise 4.1. Recall that ∇ϕ]ρ = σ corresponds
to

(σ ◦ ∇ϕ) detD2ϕ = ρ (3.27)

in the case where ∇ϕ is C1 and strictly convex. Assume for now that ρ is a smooth,
strictly positive density that is transported to the density σε = ρ(1 − εν + O(ε2)).

If we make the ansatz φ(x) = |x|2
2
− εψ(x) +O(ε2), then Equation (3.24) becomes

(ρ(x)− ε∇ρ(x) · ∇ψ − εν(x)ρ(x))(1− ε∆ψ(x)) = ρ(x) +O(ε2). (3.28)

Neglecting the second order-terms, ψ is the solution to the following linear elliptic
problem in weak form:∫

∇ψ · ∇χ dρ =

∫
χν dρ ∀χ ∈ C∞0 (Ω). (3.29)

Weak solutions

A rigorous study of the Monge-Ampére equation requires the introduction of weak
solutions, since we do not know if ϕ is twice differentiable, i.e. the left hand side of
Equation (3.24) is measure-valued.

In the setting of Theorem 3.2, we only know that ϕ is differentiable almost
everywhere. In this case, one needs to generalize what is detD2ϕ in the smooth



3.4. REGULARITY 31

case. One way to do so is the following: Define the Hessian measure

det
H
D2ϕ : det

H
D2ϕ[Ω′] =

∣∣∣∣∣ ⋃
x∈Ω′

∂ϕ(x)

∣∣∣∣∣ for all measurable sets Ω′ ⊂ Rd. (3.30)

If detH D
2ϕ is absolutely continuous and Equation (3.24) holds almost everywhere,

then ϕ is an Alexandrov solution of the Monge-Ampére equation.
The weakest of the commonly used notions is that if ∇ϕ]ρ = σ, one calls ϕ a

Brenier solution of Equation (3.24).
The theory of regularity of optimal transport maps is thus closely linked to the

study of the regularity of the Monge-Ampére equation. This is a very involved
topic and a discussion that does it justice is beyond the scope of this thesis. An
introduction is given in the optimal transport references [115] (Section 1.7.6) and
[140] (Chapter 4). For a more detailed overview, we refer to [48, 47] as well as [135]
and [139], Chapter 12.

We will require some of the results from this theory when employing the optimal
transport maps in Chapter 6.

3.4 Regularity

We already know that the transport potential ψ from ρ to σ introduced in Brenier’s
Theorem 3.2 is differentiable almost everywhere as long as ρ is absolutely continuous.

One-dimensional case

In one spatial dimension, computing the optimal transport distance reduces to a
sorting problem. The gradients of functions in this case are non-decreasing functions
and the Monge-Ampére equation for the transport map T from a density ρ to σ reads

ρ = (σ ◦ T )∂xT (x). (3.31)

Introducing the cumulative distribution function valued

cdf(ρ)(x) :=

∫ x

−∞
dρ, (3.32)

integration of Equation (3.31) gives

cdf(ρ)(x) =

∫ x

−∞
dρ(y)

∫ x

−∞
∂yT (y) d(σ ◦ T (y)) = cdf(σ) ◦ T (x). (3.33)

The cumulative distribution function might not be invertible, but it is always non-
decreasing, so we can define its pseudo-inverse as

cdf[ρ][−1](t) : inf{x ∈ R : cdf[ρ](x) ≥ t}, (3.34)

which allows us to obtain the optimal transport map through the explicit form

Tρ→σ = cdf(σ)[−1] ◦ cdf(ρ). (3.35)

Hence, if Ω ⊂ R, it follows that Tρ→σ = cdf(σ)[−1] ◦ cdf(ρ) for two measures ρ, σ.
The cumulative distribution function of a measure ρ might be discontinuous (if ρ
has atoms) or not strictly increasing (if ρ does not have full support in the domain).
If both ρ and σ admit continuous densities that are bounded away from zero, then
we can write Tρ→σ = cdf(σ)−1 ◦ cdf(ρ) and this map is a C1 diffeomorphism.
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Counter-examples

Moving to d > 1, let us recall one of the most famous counterexamples to regularity
of the optimal map even if the involved measures are very smooth and bounded from
above and below. It is attributed to Caffarelli [34]. We recall the version given in
[139], Theorem 12.3.

Example 3.2. Consider ρ ∝ 1B(0,1) constant on the unit ball in R2 centered at zero
and σ ∝ 1

2
1B(ê1,1)∩{x1>1} + 1

2
1B(−ê1,1)∩{x1<1} two half balls that are shifted by one

unit in positive and negative x1 direction, respectively. The optimal map in this case
cannot be continuous, indeed it is given by Tρ→σ(x) = ∇(|x|2/2 + |x1|).

The disjoint support of the target measure is an obvious obstacle to the continuity
of T . However, as it turns out, the non-convexity of the support of the target measure
is already enough.

Let us connect the two halves by a strip of mass of diameter δ and denote the
resulting set Dδ. By the continuity of optimality, the optimal transport maps Tδ
that map ρ into σδ ∝ 1Dδ will converge to T = ∇(|x|2/2 + |x1|) as δ → 0.

We argue that as soon as δ is small enough, these maps can no longer be contin-
uous. Take a small section S near the top of the ball (x2 ≈ 1). Since T splits this
set to the top halves of the left and right half-ball, as soon as δ is small enough, Tδ
also has to map a large amount of the mass in S to the left and right. But since
the image of a connected set (which S is) under a continuous map is connected,
this implies that Tδ(S) connects the top of the two connected half-balls and extends
across the bridge connecting them.

Clearly, for small δ, this cannot be optimal. Indeed, it would require to map
some points {xV } of S a far distance downwards, while all other points {xH} in S
are mapped almost purely horizontally. There must some xH that lies above some
xV , indeed if the x2 component of all xV would be smaller than some x∗2 < 1, then
the map would be discontinuous for all x : x2 > x∗2. Therefore, there exists two
points xH , xV such that

(xH − xV ) · (Tδ(xH)− Tδ(xV )) < 0

⇔ |xH − Tδ(xH)|2 + |xV + Tδ(xV )|2 > |xH − Tδ(xV )|2 + |xV − Tδ(xH)|2. (3.36)

However, this contradicts the cyclical monotonicity (c.f. Definition 3.5) of the opti-
mal plan that Tδ induces.

While the non-convexity of the target set might be not extreme enough to induce
a discontinuity, it is enough to rule out continuous transport in general.

Theorem 3.4 (Existence of discontinuous transport maps ([49], Theorem 1.1)). If
Ω1 and Ω2 are bounded, open subsets of Rd and Ω2 is not convex, there exist smooth
densities ρ ∈ P(Ω1), σ ∈ P(Ω2), bounded away from zero and bounded, such that the
optimal transport map from ρ to σ is not continuous.

Sufficient conditions

At the same time, one can show that convexity of the support of the target measure
is sufficient to obtain regularity of the optimal transport map for the quadratic cost
of Rd.
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S

Dδ
B(0, 1)

xV

Tδ(xV )

xH

Tδ(xH)

Figure 3.1: Illustration of Example 3.2.

Theorem 3.5 (Caffarelli’s regularity theory ([139], Theorem 12.50)). Let ϕ : Ω→ R
be a convex function such that ∇ϕ is the optimal transport map from ρ ∈ Pac(Ω1)
to σ ∈ Pac(Ω2), where Ω1,Ω2 are bounded, connected, and open subsets of Rd and
ρ, σ are bounded and bounded from below.

If Ω2 is convex, then ϕ ∈ C1,β(Ω1) for some β ∈ (0, 1). If furthermore the densities
ρ, σ are Ck,α for some k ∈ N0 and α ∈ (0, 1), then ϕ ∈ C2,α(Ω1).

Remark 3.10. The results in Theorem 3.5 can be tightened further, see Chapter 2
in [47] or Chapter 12 in [139]. In particular, the regularity can be extended to the
boundary of the domain under sufficient regularity thereof.

Remark 3.11. We saw in Example 3.2 that T was smooth almost everywhere, i.e.
the set of singularities was supported on a line. This holds more generally: if the
transported densities are smooth, then the transport map is a smooth diffeomorphism
between open subsets of Ω1,Ω2 and the respective complements of these subsets are
of Lebesgue measure zero ([49], Theorem 1.2, see also [67, 61]).

3.5 Optimal transport metric

Definition 3.6 (Wasserstein distance). We define the Wasserstein-p distance for
p ∈ [1,∞) between two probability measures ρ, σ ∈ P(Ω) by

Wp(ρ, σ)p := min
π∈Π(ρ,σ)

∫
Ω×Ω

|x− y|pdπ(x, y), (3.37)

where Π is the set of admissible transport plans as defined in Definition 3.3.

Remark 3.12. The name Wasserstein distance is named after Leonid Vaserštĕın,
who did however not play a big role in the development of the theory [137]. In
any case, the name is established by now and we will make no attempt to change
this. Other names include Kantorovich-Rubenstein distance or optimal transport
distance. We will use the terms metric and distance interchangeably.

Proposition 3.4. Wp is a metric on P(Ω).
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Proof. We will give a proof of this fact only for the case p = 2 and when ρ and σ
admit a transport map and refer to [115], Section 5.1 for the general case. Positivity
and symmetry of W2 is clear from its definition as is W2(ρ, ρ) = 0 by taking T =
id. W2(ρ, σ) = 0 implies T = id ρ-a.e. and thereby ρ = σ. For the triangle
inequality, consider a third, arbitrary density ν. Denote by Tρ→ν and Tν→σ the
optimal transport maps between ρ and ν and ν and σ, respectively. Then,

W2(ρ, σ)2 ≤
∫
|Tν→σ ◦ Tρ→ν(x)− x|2dρ (3.38)

= ‖Tν→σ ◦ Tρ→ν − id‖2
L2(ρ) (3.39)

≤ ‖Tν→σ ◦ Tρ→ν − Tρ→ν‖2
L2(ρ) + ‖Tρ→ν − id‖2

L2(ρ) (3.40)

The first term describes an admissible competitor for the transport from σ to ν
and is therefore bounded from above by W2(σ, ν)2 while the second term equals
W2(ν, ρ)2.

Proposition 3.5. W2 factors out translations in the following sense: Let Shifta :
x 7→ x − a be the shift operator by a vector a and denote by mρ =

∫
xdρ(x) the

mean of ρ, where ρ is a probability measure on Rd with finite second moment, as is
σ. Then,

W2(Shifta,]ρ, Shifta′,]σ)2 = W2(ρ, σ)2 − 2(a− a′) · (mρ −mσ) + |mρ −mσ|2. (3.41)

In particular, W2(ρ, σ)2 = |mρ − mσ|2 + W2(ρo, σo)
2 where a = mρ, a

′ = mσ, and
ρo, σo are centered at the origin.

Proof.

W2(Shifta,]ρ, Shifta′,]σ)2 = min
π∈Π(Shifta,]ρ,Shifta′,]σ)

∫
|x− y|2dπ(x, y) (3.42)

= min
π∈Π(ρ,σ)

∫
|x+ a− y − a′|2dπ(x, y) (3.43)

The claim follows by expanding the square and applying the marginal constraints.

Lastly, we recall that the optimal transport distance metrizes narrow convergence,
i.e.

Proposition 3.6 ([115], Theorem 5.11). On (subsets of) Rd, W2(ρn, ρ)→ 0 if and
only if ρn ⇀ ρ and

∫
|x|2dρn →

∫
|x|2dρ.

Remark 3.13. Note that the narrow convergence fulfills a number of criteria that
other notions of convergence do not. For example, weak-∗ convergence, in duality
with C0 allows loss of mass at the boundary. Consider Ω = R and a sequence of
Dirac measures {δxn}n where xn → +∞. Then

∫
ϕδxn → 0 for all ϕ ∈ C0 and the

limit is not even a probability measure.
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3.6 Dynamical formulation

Given an optimal transport plan T , we know for every x ∈ supp(ρ) its destination
y ∈ supp(σ). We can visualize this transport by introducing a time-like variable t:

Definition 3.7 (Displacement interpolation). If the assumptions of Brenier’s The-
orem 3.2 are met, the curve

t 7→ ρt := ((1− t)id + tTρ0→ρ1)] ρ (3.44)

is called the displacement interpolation between ρ0 and ρ1, where Tρ0→ρ1 is the op-
timal transport map connecting them.

Remark 3.14. The displacement formulation can more generally be defined for the
transport plan π between ρ0 and ρ1 as ρt := ((x, y) 7→ (1− t)x+ ty)]π.

As illustrated in Figure 3.2, the displacement interpolation between two mea-
sures resembles a transport process while the L2 interpolation could be called a
teleportation process at best.

Figure 3.2: L2 interpolation and displacement interpolation between two Gaussians.

Lagrangian picture

Note that if we track a single parcel of mass originating at x over time, it will move
in a straight line t 7→ Tt(x) with constant speed ∂tTt(x) = T (x) − x towards its
destination. In the language of Lagrangian fluid mechanics, this vector field

vOT(t, Tt(x)) := T (x)− x (3.45)

generates the flow of particles. Note that this is for now purely a formal statement,
as we do not discuss if the vector field satisfies a Lipschitz condition to guarantee
the well-posedness of the Cauchy problem defining the flow, which is given, for an
arbitrary vector field v : [0, 1]× Ω→ Rd, by

d

dt
Ft(x0) = v(t, Ft(x0)) with initial condition F0(x0) = x0 ∀x0 ∈ Ω. (3.46)

Let us follow this line of thinking further and forget for now the optimal transport
map and issues of regularity. Assume we are given a flow Ft that is moving our
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(smooth) initial density ρ0 around Ω: ρFt := (Ft)]ρ0. We can obtain an evolution
equation for ρFt by differentiating this relation with respect to t, using the definition
of the flow as well as

d

dt
detDFt(x0) = (∇ · v(t, Ft(x0))) detDFt(x0), (3.47)

a special case of Liouville’s formula. We find

∂tρFt(x) = ∇ · (v(t, x)ρFt(x)) ∀x ∈ Ω (3.48)

and recognize the continuity equation. Next, assume we want the flow to move
ρF0 = ρ0 to the configuration ρF1 = ρ1.

Minimum energy flows

There are naturally many flows that do this. For the sake of uniqueness we choose
a selection criterion. A natural one is to choose a flow of minimal action, given by
the integral of the kinetic energy density 1

2
|v(t, x)|2ρFt(x). We obtain the following

minimization problem:

min
v,ρFt

1

2

∫ 1

0

∫
Ω

|v(t, x)|2dρFt(x)dt (3.49)

subject to ∂tρFt(x) = ∇ · (v(t, x)ρFt(x)) and ρF0 = ρ0, ρF1 = ρ1.
By the definition of the flow and its generating vector field, F0 = id, Fubini’s

theorem, and Jensen’s inequality, we can quickly find a lower bound on this quantity:

1

2

∫ 1

0

∫
Ω

|v(t, x)|2dρFt(x)dt =
1

2

∫ 1

0

∫
Ω

∣∣∣∣ d

dt
Ft(x0)

∣∣∣∣2 dρ0(x0)dt (3.50)

≥ 1

2

∫
Ω

∣∣∣∣∫ 1

0

d

dt
Ft(x0)dt

∣∣∣∣2 dρ0 (3.51)

=
1

2

∫
Ω

|F1(x0)− x0|2dρ0 (3.52)

In fact, we know that the inequality in Equation (3.50) is an equality if and only
if dFt/dt is constant in t. But we also know that this is the case for the choice
v(t, Ft(x0)) = F1(x0)− x0.

The remarkable conclusion is that a solution of the minimization problem given
by Equation (3.49) is given by the displacement interpolation ρt and its vector field

vOT : (t, Tt(x)) 7→ T (x)− x, (3.53)

Since the energy we minimize is convex, it is straightforward to show that this
minimizer is unique.

In the Eulerian description, vOT satisfies

∂tvOT + vOT · ∇vOT = 0, (3.54)

the pressure-less Euler equation.
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If vOT is indeed the minimizer of Equation (3.49), then variations of the energy
have to vanish at vOT. Note that the variations, which we assume to be localized
in time, have to be chosen such that the continuity equation is still fulfilled, that is
if we let vε = vOT + εv′, then necessarily ∇ · (v′ρt) = 0. Hence, this quantity is a
divergence-free vector field. Since

d

dε

∣∣∣∣
ε=0

∫
Ω

1

2
|vOT + εv′|2dρt =

∫
Ω

vOT · (v′ρt)dx
!

= 0, (3.55)

the vector field vOT is L2-orthogonal to arbitrary divergence-free vector fields.
Consequently, it is a gradient field. This ends our formal calculations and reproduces
the result from Brenier’s theorem, which followed then from the relation of the c-
transform and Legendre transform for the quadratic cost.

A rigorous formulation and proof of the correspondence sketched here can be
found in [115], Theorems 5.14 and 5.28. The equivalent definition of the OT distance
through this dynamical problem is known as the Bennamou-Brenier formula:

W2(ρ, σ)2 = min
vt,νt

(∫ 1

0

‖vt‖2
L2(νt)

dt : ∂tνt +∇ · (vtνt) = 0, ν0 = ρ, ν1 = σ

)
. (3.56)

3.7 The tangent space of (P(Ω),W2)

The pair (P (Ω),W2) forms a metric space, commonly referred to as the Wasserstein-
2 space. The following result, Theorem 5.27 in [115], shows that the shortest path
from ρ0 to ρ1 in this sense is given by the displacement interpolation:

Proposition 3.7. The displacement interpolation between ρ0, ρ1 ∈ P(Ω) is the con-
stant speed geodesic connecting them, i.e.

W2(ρt, ρs)
2 = |t− s|2W2(ρ0, ρ1)2 ∀t, s ∈ [0, 1]. (3.57)

We have a notion of Lipschitz continuity and also the metric derivative of a curve
t 7→ ρ(t) ∈ P(Ω), given by

|ρ̇|(t) := lim
h→0

1

h
W2(ρ(t+ h), ρ(t)). (3.58)

It is possible to relate to every absolutely continuous (see [115], Section 5.3) curve
t 7→ ρt through (P(Ω),W2) a vector field vt ∈ L2(Ω, µt,Rd) such that the continuity
equation ∂tρt + ∇ · (ρtvt) = 0 is satisfied weakly. A proof of this can be found in
[115], Theorem 5.14 for compact Ω and [8], Theorem 2.29 for Ω = Rd. We have
already seen the formal considerations in the previous section, but this result in its
generality assumes no regularity for the densities ρt. By the variational argument
sketched in Equation (3.55), one knows that those vt of minimal L2(ρt) norm are in
fact gradients.

This space of vector fields is linear, and it is natural to call it the tangent space
of P(Ω). Indeed, we recall here Definition 2.31 from [8]:

Definition 3.8 (Tangent space of (P(Ω),W2)). The tangent space of (P(Ω),W2) at
ρ ∈ P(Ω) is given by

TρP(Ω) :=

{
v ∈ L2(Ω, ρ,Rd) :

∫
v · w dρ = 0 ∀w ∈ L2(Ω, ρ,Rd) : ∇ · (wρ) = 0

}
.

(3.59)
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At the same time, formally and geometrically, the tangent space of P(Ω) at ρ0,
denoted Tρ0P(Ω), is the set of tangent vectors to (smooth) curves

ρ : (−ε, ε)→ P(Ω), t 7→ ρt (3.60)

passing through ρ0. If ρ0 is a smooth, strictly positive density on Ω, then this space
contains functions ϕ : Ω→ R with

∫
Ω
ϕ = 0, as ρ0 +εϕ remains a probability density

for suitably small ε. This notion of tangent space is introduced in [102] and sketched
in Figure 3.3. In the case where transport is induced by maps, the two notions of
tangent spaces coincide and one can move from one to the other by taking ∇ψ and
considering the curve t 7→ (id− t∇ψ)]ρ0 since

∂tρt
∣∣
t=0

=
d

dt

∣∣∣∣
t=0

(id− t∇ψ)]ρ0(x) (3.61)

=
d

dt

∣∣∣∣
t=0

(
ρ0(x− t∇ψ(x)) det(Id− tD2ψ(x))

)
(3.62)

= −∇ · (ρ0∇ψ). (3.63)

We refer to [8], Section 6.2, for a detailed description of the two concepts and
how they relate in more general cases.

P(Ω)

ρ0

ρ1

Tρ0P(Ω)

∇ψ

Figure 3.3: The geometric tangent space of Pac(Ω).

We will continue on a formal level with using these ideals to consider a Rieman-
nian structure on (P(Ω),W2), following the work of Otto in [102]. On Tρ0P(Ω),
introduce the following inner product between tangent vectors to two curves t 7→
ρ

(1)
t , t 7→ ρ

(2)
t passing through ρ0:

〈∂tρ(1), ∂tρ
(2)〉ρ0 :=

∫
∇ψ(1) · ∇ψ(2) dρ0, (3.64)

where ∂t
∣∣
t=0
ρ(i) + ∇ · (ρ0∇ψ(i)) = 0 for i = 1, 2. Note that by comparison with

Equation (3.56), this implies that

W2(ρ, σ)2 = min
νt

(∫ 1

0

‖∂tνt‖2
νtdt : ν0 = ρ, ν1 = σ

)
. (3.65)
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Following [102], this choice of inner product on Tρ0P(Ω) implies that the push-
forward operation of the measure ρ0 is an isometric submersion from (Diff(Ω), 〈·, ·〉F )
into (P(Ω), 〈·, ·〉ρ0). The space Diff(Ω) consists of diffeomorphisms F : Ω → Ω.
Again formally, the tangent space of Diff(Ω) can be identified with smooth vector
fields on Ω that are tangent to its boundary.

Remark 3.15. An idea popularized by Arnold [10] is to interpret the equations of
fluid mechanics as curves of shortest length on Diff(Ω). When one considers in-
compressible fluid mechanics, these diffeomorphisms have to be measure-preserving,
i.e. S]ρ = ρ, which implies that their corresponding vector fields are divergence-free
in the sense that ∇ · ((v ◦ S−1)ρ) = 0. This makes them orthogonal to those from
optimal transport in the sense of the polar decomposition theorem.

More on this connection is presented in Appendix B.

3.8 Monge embeddings

Let us fix a reference density ρ̄ ∈ P(Ω). If we follow the geometric interpretation
from the previous section further, the map that sends ρ to Tρ̄→ρ is the right inverse of
the exponential map in Riemannian geometry: it takes an element of the non-linear
space P(Ω) and assigns to it an element of the linear space Tρ̄P(Ω) ⊂ L2(ρ̄,Rd).

Remark 3.16. The exponential map itself is given by the push-forward operation
that assigns to a vector field v ∈ L2(Ω, ρ,Rd) the element (id− v)]ρ̄ ∈ P(Ω). From
the inequality

W2((id− v(1))]ρ̄, (id− v(2))]ρ̄)2 ≤
∫
|v(1) − v(2)|2dρ̄, (3.66)

(which follows from taking the trial plan ((id− v(2), id− v(1))−1)]ρ̄), we can conclude
that the exponential map is non-expansive. This hints at the fact that (P(Ω),W2)
has negative curvature [66].

Definition 3.9 (Monge embedding [94, 141]). Given a reference density ρ̄ ∈ P(Ω),
absolutely continuous with respect to the Lebesgue measure, we call

MEρ̄ : P(Ω)→ L2(Ω, ρ,Rd), ρ 7→ Tρ̄→ρ (3.67)

the Monge embedding with respect to ρ̄.

Remark 3.17. We will omit the reference density ρ̄ when there is no risk of ambi-
guity and write Tρ for Tρ̄→ρ. In these cases, we denote ϕρ the convex function such
that ∇ϕρ = Tρ and ψρ the potential such that Tρ = id−∇ψρ. We enforce uniqueness
of the potential by letting

∫
ϕρdρ = 0.

We recall some properties of the Monge embedding.

Proposition 3.8. The Monge embedding is continuous.

This is a result of the stability of optimality. For a sequence of densities ρk
narrowly converging to ρ, if corresponding optimal transport maps Tk between ρk
and a given ρ̄ exist, and if there exists a unique optimal transport map from ρ to
ρ̄, denoted T , then the Tk converge to T in measure, relative to ρ̄ ([139], Corollary
5.23).
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Proposition 3.9. For any measures ρ1, ρ2,

W2(ρ1, ρ2) ≤ ‖MEρ̄(ρ1)−MEρ̄(ρ2)‖L2(ρ̄) = ‖Tρ1 − Tρ2‖L2(ρ̄). (3.68)

Proof. The transport plan (Tρ1 , Tρ2)]ρ̄ is an admissible competitor in Π(ρ1, ρ2) and

W 2
2 (ρ1, ρ2) ≤

∫
|x− y|2d((Tρ1 , Tρ2)]ρ̄)(x, y) =

∫
|Tρ1(x)− Tρ2(x)|2dρ̄(x). (3.69)

Hölder continuity

Next, we give a result improving Proposition 3.8, taken from [66] and attributed to
Ambrosio.

Proposition 3.10. Let [0, 1] 3 t 7→ ρt be a Lipschitz curve with constant L through
(P(Ω),W2). Assume that ρ̄ and ρ0 satisfy the assumptions of Theorem 6.1 (Sufficient
conditions for strict convexity of the transport map). Denote by Tt the optimal
transport map from ρ̄ to ρt for 0 ≤ t ≤ 1. Then,

lim sup
t→0

‖Tt − T0‖L2(ρ̄)√
t

< +∞. (3.70)

We will repeat the proof here because it is quite instructive.

Lemma 3.1. Let ρ and σ as in Theorem 3.5 (Caffarelli’s regularity result) and let
denote by λ the modulus of convexity of ϕρ→σ, i.e. the largest λ′ > 0 such that

x 7→ ϕρ→σ(x)− λ′ |x|
2

2
is convex on the support of ρ. Let Tσ→ρ = (∇ϕρ→σ)−1. Then,

for any map Sσ→ρ, it holds that

‖Sσ→ρ − Tσ→ρ‖2
L2(σ) ≤

2

λ

(
‖Sσ→ρ − id‖2

L2(σ) − ‖Tσ→ρ − id‖2
L2(σ)

)
. (3.71)

Proof. We omit the subscripts from T and S for brevity. Note that
∫
ϕ(x)dρ(x) =∫

ϕ(S(x))dσ(x) =
∫
ϕ(T (x))dσ(x) by definition. From the strict convexity of ϕ, we

obtain ∫
(∇ϕ ◦ T ) · (S − T )dσ +

1

2
λ‖S − T‖2

L2(σ) ≥ 0. (3.72)

On supp(σ), ϕ ◦ T (x) = x by definition, hence∫
(∇ϕ ◦ T (x)) · (S(x)− T (x))dσ(x) =

∫
x · (S(x)− T (x))dσ(x) (3.73)

=
1

2
‖S − id‖2

L2(σ) −
1

2
‖T − id‖2

L2(σ) (3.74)

and the claim follows.

Proof of Proposition 3.10. Denote by St the optimal transport map from ρt to ρ0.
Both T0 and St ◦ Tt map ρ̄ into ρ0. From Lemma 3.1, we obtain

‖St ◦ Tt − T0‖2
L2(ρ̄) ≤ C

(
‖St ◦ Tt − id‖2

L2(ρ̄) − ‖T0 − id‖2
L2(ρ̄)

)
(3.75)
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with C = 2
λ0

, depending on the convexity of T0 but not on t. Next,

‖St ◦ Tt − id‖L2(ρ̄) ≤ ‖St ◦ Tt − Tt‖L2(ρ̄) + ‖Tt − id‖L2(ρ̄) (3.76)

= ‖St − id‖L2(ρt) +W2(ρt, ρ̄) (3.77)

= W2(ρt, ρ0) +W2(ρt, ρ̄) (3.78)

≤ 2W2(ρt, ρ0) +W2(ρ0, ρ̄) (3.79)

≤ 2Lt+W2(ρ0, ρ̄) (3.80)

At the same time,

‖St ◦ Tt − T0‖L2(ρ̄) ≥ ‖Tt − T0‖L2(ρ̄) − ‖St ◦ Tt − Tt‖L2(ρ̄) (3.81)

= ‖Tt − T0‖L2(ρ̄) − ‖St − id‖L2(ρt) (3.82)

≥ ‖Tt − T0‖L2(ρ̄) − Lt. (3.83)

With this, Equation (3.75) becomes

(‖Tt − T0‖L2(ρ̄) − Lt)2 ≤ C((2Lt+W2(ρ0, ρ̄))2 −W2(ρ0, ρ̄)2) (3.84)

= C(4L2t2 + 2LtW2(ρ0, ρ̄)) (3.85)

The claim follows.

There exist a number of explicit examples that show that 1
2
-Hölder regularity is

the best one can expect in general ([66], Section 4).
In the case where ρ, σ do not enjoy the regularity conditions assumed in the

previous proposition, the following results hold.

Proposition 3.11 ([19], Proposition 3.4, [94], Theorem 3.1). For ρ1, ρ2 ∈ P(Ω) on
a compact, convex Ω ⊂ Rd with unit volume and ρ̄ ≡ 1,

‖Tρ1 − Tρ2‖L2(ρ̄) ≤ CW1(ρ1, ρ2)2/15 (3.86)

and
‖Tρ1 − Tρ2‖L2(ρ̄) ≤ CW1(ρ1, ρ2)1/(2d−1(d+2)), (3.87)

where the constants depend only on Ω.

Compatible measures and maps

As was already hinted at in the proof of Proposition 3.10, the difference between
W2(ρ1, ρ2) and ‖Tρ̄→ρ1 − Tρ̄→ρ2‖L2(ρ̄) is introduced by linking them via ρ̄ and the
triangle inequality. This is most obvious if Tρ̄→ρ2 is invertible:

‖Tρ̄→ρ1 − Tρ̄→ρ2‖L2(ρ̄) −W2(ρ1, ρ2) = ‖Tρ̄→ρ1 ◦ Tρ2→ρ̄ − id‖L2(ρ2) − ‖Tρ2→ρ1 − id‖L2(ρ2)

(3.88)

≤ ‖Tρ̄→ρ1 ◦ Tρ2→ρ̄ − Tρ2→ρ1‖L2(ρ2), (3.89)

The following proposition is a direct consequence.

Proposition 3.12. For ρ1, ρ2, ρ̄ ∈ Pac(Ω), the Monge embedding is an isometry if

Tρ̄→ρ1 = Tρ2→ρ1 ◦ Tρ̄→ρ2 (3.90)
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Definition 3.10 (Compatibility between Monge embedding and push-forward [91]).
We say that the Monge embedding with reference density ρ̄, a measure σ ∈ P(Ω),
and a map F ∈ L2(Ω,Rd, ρ̄) are compatible if

Tρ̄→F]σ = F ◦ Tρ̄→σ i.e. MEρ̄(F]σ) = F ◦MEρ̄(σ). (3.91)

Moreover, we say that a set of measures {ρi}mi=1 ⊂ Pac(Ω) is compatible if

Tρj→ρk ◦ Tρi→ρj = Tρi→ρk (3.92)

for all 1 ≤ i, j, k ≤ m.

Remark 3.18. If we denote by ]ρ̄ the operation that takes a map F ∈ L2(Ω,Rd, ρ̄)
to F]ρ̄ ∈ P(Ω), for any σ ∈ P(Ω),

]ρ̄ ◦MEρ̄(σ) = (Tρ̄→σ)]ρ̄ = σ. (3.93)

In contrast,

MEρ̄ ◦ ]ρ̄(F ) = Tρ̄→F]ρ̄ (3.94)

is only equal to F if F itself is an optimal transport map, i.e. a gradient ∈ Tρ̄P(Ω).
This is in agreement with the Riemannian picture of optimal transport, where ]ρ̄
plays the role of the exponential map. The condition MEρ̄ ◦ ]ρ̄(F ) = F is a special
case of Equation (3.91) for σ = ρ̄.

The compatibility condition is in particular fulfilled by maps T that have the
form of shifts and scalings:

Proposition 3.13. If ρ1, ρ2 ∈ P(Ω) are related by shifts and scalings, i.e. there
exists Tρ2→ρ1 : x 7→ sx+ a with a ∈ Rd and s ∈ R>0, then Equation (3.90) holds.

Proof. It is enough to show that the map Tρ2→ρ1 ◦ Tρ̄→ρ2 is the gradient of a convex
function, as it satisfies the push-forward condition. This is clear from the assump-
tions, in particular

Tρ2→ρ1 ◦ Tρ̄→ρ2(x) = ∇(sϕρ̄→ρ2(x) + a · x). (3.95)

In [3], it is shown that this is in general a necessary condition in the following
sense:

Proposition 3.14 ([3], Theorem 4.4). Let d > 1 and consider F := {∇ϕ : ϕ ∈
C2(Rd) strictly convex}. Furthermore, if for any σ ∈ Pac(Rd) with compact support,
it holds that

Tρ̄→F]σ = F ◦ Tρ̄→σ (3.96)

for all F = ∇χ in a subset of F , then all of these F have the form of shifts and
scalings.
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The proof of this proposition follows directly from the following result: Without
any further restriction on the form of ∇ϕρ̄→σ, the function ∇χ ◦ ∇ϕρ̄→σ can only
be written as the gradient of another strictly convex function ϕρ̄→∇χ]σ if D2χ ≡ sId
for some s ∈ R>0 ([3], Proposition 4.12).

The Monge embedding is very intriguing, as it allows us to move from the non-
linear (P(Ω),W2) to the linear L2(Ω, ρ̄,Rd) while retaining information about trans-
lations and uniform dilations. Note that this was one of the main reasons we intro-
duced the optimal transport framework in this work in the first place, c.f. Figure 3.2.
Furthermore, the reference density ρ̄ is free to choose, and we can always choose one
that admits a density.

Hilbertian distances

However, it should be noted that no matter how well-chosen it is, the Monge em-
bedding can not encode all information of W2, as the Wasserstein distance is not
Hilbertian for d > 1.

Definition 3.11 (Hilbertian distance). We say that a distance dist on a set Σ
is Hilbertian if there exists a map F : Σ → V , where V is a Hilbert space and
dist(s, s′) = ‖F(s)− F(s′)‖V ∀s, s′ ∈ Σ.

Remark 3.19. We call the map F a feature map. Hilbertian distances are of great
interest in data science applications as they form the basis for Kernel methods, where
one can use the properties of the feature space V without ever having to evaluate the
map F explicitly.

Proposition 3.15 ([106], Proposition 8.1). dist is Hilbertian if and only if dist2 is
negative definite.

We refer to the references for a proof and state the following corollary:

Remark 3.20. If D is a ns × ns matrix with entries {W2(ρi, ρj)
2}1≤i,j≤ns for a set

of measures {ρi}i, then the centered distance matrix (ADA where Aij = δij − 1
ns

is

not negative definite. In contrast, if DV is the matrix of distances ‖ui − uj‖2
V for

{ui}i ⊂ V , a finite-dimensional Hilbert space, then ADVA corresponds to the Gram
matrix with entries 〈ui, uj〉V : 1 ≤ i, j ≤ ns, from which one can re-construct the
positions ui up to a global translation and rotation [52].

Almost compatible maps and measures

At this point, it is worth to revisit two assumptions we have taken so far: If Ω
is assumed to be bounded and ρ̄ is assumed to be strictly positive in the entire
domain (to apply the regularity results of Theorem 3.5), then Tρ̄→ρ is not going to
correspond to a pure shifting and scaling operation. However, we can imagine a
situation where the transport is ε-close to a shift-and scaling operation in the sense
that ‖Tρ̄→ρ − S‖L2(ρ̄) ≤ ε where S is of the form S(x) = sx+ a as before.

For such maps which are ε-close to shifting and scaling maps, the following result
is shown in [91], Theorem 4.1:
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Proposition 3.16. Let ρ̄, σ ∈ P(Ω), ρ̄ absolutely continuous, R, ε > 0, and

Gσ,R,ε := {G ∈ L2(ρ̄,Rd) : ∃F ∈ L2(ρ̄,Rd), a ∈ Rd, s ∈ R>0 :

F (x) = sx+ a, ‖F‖L2(σ) ≤ R, and ‖G− F‖L2(σ) ≤ ε}. (3.97)

Then, for ρ̄ ≡ |Ω|−1 with Ω ⊂ Rd convex and compact, and G1, G2 ∈ Gσ,R,ε:

0 ≤ ‖MEρ̄((G1)]σ)−MEρ̄((G2)]σ)‖L2(ρ̄)−W2((G1)]σ, (G2)]σ) ≤ Cε2/15 +2ε. (3.98)

Furthermore, if ρ̄ and σ satisfy Caffarelli’s regularity assumptions of Theorem 3.5,
then

0 ≤ ‖MEρ̄((G1)]σ)−MEρ̄((G2)]σ)‖L2(ρ̄)−W2((G1)]σ, (G2)]σ) ≤ C ′ε1/2 +Cε. (3.99)

All constants depend on ρ̄, σ, and R.

Proof. We will show only the second case, which can be proved using Proposi-
tion 3.10. Let F1 be a compatible map ε-close to G1. Let (Fi)]σ =: ρεi and
(Gi)]σ =: ρi for i = 1, 2.

First, note that since the transport via σ is an admissible competitor plan,

ε > ‖Gi − Fi‖L2(σ) ≥ W2(ρi, ρ
ε
i) ∀i ∈ {1, 2}. (3.100)

Second, by the triangle inequality,

‖Tρ̄→ρ1 − Tρ̄→ρ2‖L2(ρ̄)

≤ ‖Tρ̄→ρ1 − Tρ̄→ρε1‖L2(ρ̄) + ‖Tρ̄→ρ2 − Tρ̄→ρε2‖L2(ρ̄) + ‖Tρ̄→ρε1 − Tρ̄→ρε2‖L2(ρ̄) (3.101)

By the compatibility of (MEρ̄, σ, Fi), the last term is bounded by

‖Tρ̄→ρε1 − Tρ̄→ρε2‖L2(ρ̄) ≤ 2ε+W2(ρ1, ρ2), (3.102)

using Equation (3.100). The last step is to bound ‖Tρ̄→ρi − Tρ̄→ρεi‖L2(ρ̄) using Equa-
tion (3.75) where ρi plays the role of ρ0 and ρεi that of ρt. For i = 1, we arrive
at

‖Tρ̄→ρ1 − Tρ̄→ρε1‖L2(ρ̄) −W2(ρ1, ρ
ε
1)︸ ︷︷ ︸

≤ ε

≤
√

4

λρε1

(
W2(ρ1, ρ

ε
1) +

√
W2(ρε1, ρ1)W2(ρε1, ρ̄)

)
,

(3.103)
where λρε1 is the modulus of convexity of the transport potential from ρ̄ to ρε1.
To conclude, we need to show that λρε1 and W2(ρε1, ρ̄) are bounded by constants
independent of F1 and G1. For this, we use the assumption that ‖F‖L2(σ) ≤ R:

W2(ρε1, ρ̄) ≤ W2(σ, ρ̄) +W2(σ, ρε1) = W2(σ, ρ̄) + ‖F − id‖σ ≤ W2(σ, ρ̄) +R + ‖id‖σ.
(3.104)

We can bound λρε1 using λσ, the modulus of convexity of the transport potential
from ρ̄ to σ, as the two are connected by the shift and scaling operation F1. The
shifting operation does not change the modulus of convexity, while the scaling with
s implies 1/λρε1 = s/λσ < R/(λσ‖id2‖σ) ([91], Corollary 6.6).
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3.9 Closed forms

There are some cases where the optimal transport problem simplifies to the point
where explicit formulas are available for its computation.

One dimension

We have already seen in Equation (3.35) that if Ω ⊂ R, it holds that

Tρ→σ = cdf(σ)[−1] ◦ cdf(ρ).

This is a special case of a Monge embedding. Since the composition of two non-
decreasing functions is always non-decreasing, we can conclude that all measures are
compatible with each other in one spatial dimension. We can thus choose 1[0,1] as a
reference and compute the optimal transport distance through

W2(ρ, σ) = ‖cdf(ρ)[−1] − cdf(σ)[−1]‖L2([0,1]). (3.105)

Gaussian measures

Let ρ and σ are Gaussian measures on Rd, with respective means mρ and mσ as well
as covariance matrices Varρ and Varσ. They can be connecting by a shifting and
(not necessarily uniform) scaling operation S. If one can show that this operation
can be written as the gradient of a convex (in fact: quadratic) map, then S = T is
necessarily optimal.

By substituting a quadratic ansatz into the push-forward condition, one obtains
(see, for example, [103], Section 1.6.3)

Tρ→σ(x) = mσ + Var−1/2
ρ

(
Var1/2

ρ VarσVar1/2
ρ

)1/2

Var−1/2
ρ (x−mρ). (3.106)

This also gives an explicit formula for the total transport cost, which serves as a
lower bound for general measures.

Proposition 3.17 ([103], Proposition 1.6.5). Let ρ, σ ∈ P(Ω) with respective means
mρ,mσ and covariance matrices Varρ,Varσ. Then,

W2(ρ, σ)2 ≥ |mρ −mσ|2 + tr(Varρ + Varσ − 2(Var1/2
ρ VarσVar1/2

ρ )1/2). (3.107)

Furthermore, equality holds if ρ and σ are Gaussian.

Remark 3.21. The trace expression in Equation (3.107) is known as the Bures
metric on the space of symmetric positive semi-definite matrices.

Remark 3.22. The explicit form of T in the Gaussian case allows for a condition
under which a set of Gaussian measures is compatible. Let ρ̄ = N (0, Id). Assume
that mρ = mσ = 0 without loss of generality (we know that optimal transport factors
translations and that translated copies of a measure are compatible). Then,

Tρ̄→σ ◦ Tρ̄→ρ = Tρ→σ ⇔ Var1/2
σ Var−1/2

ρ = Var−1/2
ρ

(
Var1/2

ρ VarσVar1/2
ρ

)1/2

Var−1/2
ρ .

(3.108)
This condition is fulfilled if and only if Varσ and Varρ commute.
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Applicability of the Monge embedding approximation

The Monge embeddings provide a linearization of the Wasserstein space (P(Ω),W2)
that retains some of the information encoded in the optimal transport distance.
The cases where the embedding is an isometry are limited to d = 1 and other
cases that are in essence one-dimensional, such as pure shifts and uniform scalings
or cases where the dimensions are separable. The case of Gaussian measures with
simultaneously diagonalizable covariance matrices can be seen as an example of the
latter.

That said, the linear nature of the tangent space makes it possible to apply
established linear separation methods on the Monge embeddings, which has been
done for example in [91, 94, 141]. In these applications, the linear approximation
was able to provide very good results, comparable to those obtained using the fully
non-linear true optimal transport distance.

We will employ a similar strategy in Chapter 6, where we use a combination of a
linear reduced basis approximation in a reference frame together with a registration
map Φµ in order to represent solutions u(µ) of a PPDE problem. The mapping Φµ

is built from Monge embeddings, which allows us to use linear dimension-reduction
methods. The fact that the Monge embeddings come with a loss of information
is not critical since we expect this loss of information to be representable in the
reduced basis of the reference frame.



Chapter 4

Computing optimal transport

It is straightforward to think of a discrete counterpart to the optimal transport
problem given in Definition 3.3. If we represent the distributions ρ and σ by a sum
of weighted Dirac measures ρ ≈

∑M
i=1 ρ̂iδxi and σ ≈

∑M
j=1 σ̂jδyj , then Equation (3.3)

becomes

min
π̂∈RM×M≥0

M∑
i,j=1

ĉijπ̂ij :
M∑
j=1

π̂ij = ρ̂i ∀j = 1, . . . ,M and
M∑
j=1

π̂ij = σ̂j ∀i = 1, . . . ,M,

(4.1)
where ĉij := c(xi, yj).

Remark 4.1. We assume here for simplicity that ρ and σ are represented by the
same number of Dirac measures. It is straightforward to extend all following con-
siderations to the case where σ ≈

∑M ′

j=1 σ̂jδyj with M ′ 6= M .

Equation (4.1) is a linear programming problem: a linear function is to be mini-
mized with linear equality and inequality constraints. The challenge lies in the size
of the problem: the transport plan is of size M ×M , which is much too large for
practical values of M .

The dual problem Equation (3.5) is a more favorable starting point. In the
discrete setting we just introduced it reads

max
ψ̂ρ,ψ̂σ∈RM

(
M∑
i=1

ψ̂ρ,iρ̂i +
M∑
j=1

ψ̂σ,jσ̂j

)
: ψ̂ρ,i + ψ̂σ,j ≤ ĉij ∀1 ≤ i, j ≤M. (4.2)

At first glance, it looks like the c-transform from Definition 3.4 provides us with a
strategy to move up the dual problem in an iterative manner: start with an arbitrary
initial potential ψρ (e.g. identically zero), apply the c-transform to obtain ψcρ and
so on.

However, as already noted, this strategy will stall quickly, since ψcccρ = ψcρ, as
already pointed out in Section 3.2. The way out is to relax the optimality condition
to only enforce ψρ(x) + ψσ(y) ≥ c(x, y) + ε for some ε > 0. The resulting method,
called an auction algorithm provides potentials that are εN -close to optimality in
(at its most naive implementation) ε−1N3 maxρ⊗σ c iterations [106], Section 3.7).
We refer to [22] for a more detailed introduction to auction algorithms.

47
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4.1 Entropic optimal transport

As it turns out, one can use a similar method of relaxation in order to obtain an
iterative method that ascends the dual problem in, using the title of one of the most
influential papers in this field, light speed [44].

Entropic optimal transport introduces a regularization term to the transport prob-
lem that relaxes the marginal constraint. This modification turns the primal problem
strictly convex and the dual problem strictly concave. We describe it here first in
its continuous form.

Primal and dual formulation

Definition 4.1 (Entropic optimal transport). Let ρ, σ, c,Π(ρ, σ) as in Definition 3.3
and ε > 0. The OT problem with entropic regularization reads

W 2
2,ε(ρ, σ)2 := min

πε∈Π(ρ,σ)

(∫
Ω×Ω

c(x, y)dπε(x, y)+ε

∫
Ω×Ω

log

(
dπε(x, y)

dρ(x) dσ(y)

)
dπε(x, y)

− ε
∫

Ω×Ω

dπε(x, y) + ε

∫
Ω×Ω

dρ(x) dσ(y)

)
. (4.3)

The corresponding dual problem has the form

W2,ε(ρ, σ)2 = max
ψερ,ψ

ε
σ∈Cb(Ω)

(∫
Ω

ψερ(x)dρ(x) +

∫
Ω

ψεσ(y)dσ(y)

− ε
∫

Ω×Ω

exp

(
ψερ(x) + ψεσ(y)− c(x, y)

ε

)
dρ(x)dσ(y) + ε

)
. (4.4)

Remark 4.2. Note that we recover the constraint ψρ ⊕ ψσ ≤ c as ε → 0 in Equa-
tion (4.4).

Remark 4.3. In the entropic case, the form of the dual problem can be motivated by
introducing the potentials as Lagrange multipliers of the form

∫
Ω
ψρdρ +

∫
Ω
ψσdσ −∫

Ω×Ω
(ψρ(x) + ψσ(y))dπ(x, y) and calculating the stationarity condition for π.

Remark 4.4. Importantly, the derivative of x 7→ x log x
y
− x + y goes to +∞ as

x → 0+. This moves the optimizer of the primal problem to the interior of the
admissible set. Most obvious is the following discrete case: the collocated form of
Equation (3.3) with Dirac masses of equal weights ρ̂i = σ̂j = 1/M ∀1 ≤ i, j ≤ M
reads

min
π̂∈RM×M

M∑
i,j=1

ĉijπ̂ij :
∑
i

π̂ij = 1 ∀j = 1, . . . ,M,
∑
j

π̂ij = 1 ∀i = 1, . . . ,M. (4.5)

This is a linear minimization problem over bi-stochastic matrices, which form a
compact convex non-empty set. By the fundamental lemma of linear programming,
the minimum will lie on the extreme points of this set, which are the permutation
matrices. In contrast, the minimizer of

min
π̂∈RM×M

m∑
i,j=1

(ĉijπ̂ij + επ̂ij log π̂ij) :
∑
i

π̂ij = 1 ∀j,
∑
j

π̂ij = 1 ∀i (4.6)
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has strictly positive entries. Indeed, if π̂i∗j∗ = 0 for some i∗, j∗, then for the family
of plans π̂(t) := (1− t)π̂ + t/M2 for some t > 0, we have

d

dt

∣∣∣∣
t=0+

m∑
i,j=1

(ĉijπ̂(t)ij + επ̂(t)ij log π̂(t)ij) = −∞, (4.7)

so π̂(t)
∣∣
t=0

cannot be optimal.

Remark 4.5. The entropic primal problem Equation (4.3) can be reformulated as

W2,ε(ρ, σ)2 = min
πε∈Π(ρ,σ)

ε

∫
Ω×Ω

log

(
1

kε(x, y)

dπε(x, y)

dρ(x) dσ(y)

)
dπε(x, y), (4.8)

where kε(x, y) := exp (−c(x, y)/ε) is called the Gibbs kernel. This formulation is
reminiscent of the Schrödinger bridge problem, see [86].

A formal computation shows that the stationarity conditions for Equation (4.4)
read

exp

(
−ψεσ(y)

ε

)
=

∫
Ω

exp

(
ψερ(x)− c(x, y)

ε

)
dρ(x) σ − a. e. and (4.9)

exp

(−ψερ(x)

ε

)
=

∫
Ω

exp

(
ψεσ(y)− c(x, y)

ε

)
dσ(y) ρ− a. e.. (4.10)

We call these two conditions the Schrödinger equations.

Remark 4.6. At optimality, the double integral in Equation (4.4) evaluates to one
due to Equation (4.9) and W2,ε(ρ, σ)2 is given by the sum of two weighted integrals
of the potential functions.

softmin and softmax

Taking the logarithm of Equation (4.9) defines the softmin, which replaces the c-
transform:

Definition 4.2 (softmin).

ψc,ε(y) = −ε log

∫
Ω

exp

(
ψε(x)− c(x, y)

ε

)
dρ(x)

=:
ε

min
x∼ρ
{c(x, y)− ψε(x)} (4.11)

The parameter ε determines the strength of the regularization. A useful practical
interpretation of ε is this: as the softmin operation is a Gaussian convolution, the
entropic transport plan practically ignores features below the scale of

√
ε.

Proposition 4.1. Assume that Ω is compact and denote by x∗ the (not necessarily
unique) arg minx∈supp ρ(c(x, y)−ψε(x)) (recall that x 7→ c(x, y)−ψε(x) is a bounded
continuous function for all y). Then,

ε

min
x∼ρ
{c(x, y)− ψε(x)} ε→+∞−→

∫
(c(x, y)− ψε(x))dρ(x) (4.12)

and
ε

min
x∼ρ
{c(x, y)− ψε(x)} ε→0−→ min

x∈supp ρ
(c(x, y)− ψε(x)). (4.13)
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Proof. As all functions involved are smooth, the claim follows by Taylor expansion.
Denote fy(x) := c(x, y)− ψε(x). As ε→ +∞,

ε

min
x∼ρ
{c(x, y)− ψε(x)} = −ε log

(
1− ε−1

∫
fydρ+

ε−2

2

∫
f 2
ydρ+O(ε−3)

)
(4.14)

=

∫
fydρ−

ε−1

2

∫
f 2
ydρ− ε−1

2

(∫
fydρ

)2

+O(ε−2) (4.15)

ε→+∞−→
∫

(c(x, y)− ψε(x))dρ(x). (4.16)

For ε→ 0,

ε

min
x∼ρ
{c(x, y)− ψε(x)} = −ε log exp

(
−fy(x∗)

ε

)
+ ε log

∫
exp

(
fy(x

∗)− fy(x)

ε

)
dρ(x). (4.17)

By definition, the exponent appearing in the integral is negative and the integral is
bounded by one. Therefore,

ε

min
x∼ρ
{c(x, y)− ψε(x)} ε→0−→ c(x∗, y)− ψε(x∗). (4.18)

Just as in the case with no regularization, the potentials are linked to convex
functions, defined through an approximate maximum:

Proposition 4.2. Let c(x, y) = 1
2
|x− y|2. The function

y 7→ 1

2
|y|2 − ψc,ε(y) = ε log

∫
Ω

exp

(
1

ε

(
x · y − 1

2
|x|2 + ψε(x)

))
dρ(x) (4.19)

=:
ε

max
x∼ρ

{
x · y −

(
|x|2

2
− ψε(x)

)}
(4.20)

=:
ε

max
x∼ρ
{x · y − ϕε(x)} (4.21)

=: ϕ∗,ε(y) (4.22)

is convex.

Proof. Evaluating the function at yt := ty1 + (1− t)y2 : 0 < t < 1 gives

ε log

∫
Ω

exp

(
1

ε
(x · (ty1 + (1− t)y2)− ϕε(x))

)
dρ(x)

= ε log

∫
Ω

(
exp

(
1

ε
(x · y1 − ϕε(x))

))t(
exp

(
1

ε
(x · y2 − ϕε(x))

))(1−t)

dρ(x).

(4.23)

Applying Hölder’s inequality with exponents 1/t, 1/(1− t) and using

ε log

∫
(. . . )tdρ ≤ ε log

(∫
. . . dρ

)t
= tε log

∫
. . . dρ (4.24)
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leads to
ϕ∗,ε(ty1 + (1− t)y2) ≤ tϕ∗,ε(y1) + (1− t)ϕ∗,ε(y2) (4.25)

as claimed.

Remark 4.7. In fact, the convexity is strict as Hölder’s inequality is an equality if
and only if there exists a constant C > 0 such that x · (y1 − y2) = ε logC for ρ-a.e.
x, which would imply y1 = y2.

Remark 4.8. The limit cases ε → 0 : maxεx∼u → maxx∈support ρ and ε → ∞ :
maxεx∼ρ →

∫
Ω

dρ are also convex.

Remark 4.9. The mapping ψ 7→ ψc,ε(y) is furthermore 1-Lipschitz for all y, i.e.
|ψc,ε1 (y)− ψc,ε2 (y)| ≤ ‖ψ1 − ψ2‖L∞ ([138], Proposition 17).

Lastly, we improve the estimate for minεx∼ρ {c(x, y)− ψε(x)} as ε→ 0.

Proposition 4.3. Assume ϕε = id − ψε is strictly convex and let ∇ϕε(Ω) =: Ωε.
For any y ∈ Ωε, call x∗ the point in Ω such that ∇ϕε(x∗) = y. Denote ϕ∗,ε(y) =
maxεx∼ρ {x · y − ϕε(x)}. Assume that in a neighborhood around x∗, ρ ∈ Pac(Ω) is
strictly positive and both ϕε and ρ are smooth. Then,

ε
max
x∼ρ
{x · y − ϕε(x)}

= x∗ · y − ϕε(x∗) + ε log

(
(2πε)d/2ρ(x∗)(detD2ϕε(x∗))−1/2

(
1 +

∞∑
j=1

ajε
j

))
(4.26)

for coefficients {aj}j depending on higher order derivatives of ρ and ϕε at x∗.

Proof. The proposition is a direct application of Laplace’s integral method, see Sec-
tion 15.2 in [123].

Dual ascent algorithm

In practice, the entropic dual problem is solved by iteratively applying the softmin
operation until the potentials fulfill Equation (4.9) and ψερ = ψc,εσ .

Proposition 4.4 ([138], Proposition 16). The sequence {(ψε)(n), (ψc,ε)(n)}n obtained
from

(ψc,ε)(n)(y) :=
ε

min
x∼ρ

{
c(x, y)− (ψε)(n)(x)

}
, (4.27)

(ψε)(n+1)(x) :=
ε

min
y∼σ

{
c(x, y)− (ψc,ε)(n)(y)

}
(4.28)

converges in (C(Ω), ‖·‖L∞) to the unique (up to a constant) potentials that maximize
the dual problem Equation (4.4).

We refer to the reference for the proof. The strategy is much as in the un-
regularized case. The sequence {(ψε)(n), (ψc,ε)(n)}n is both equi-bounded and equi-
continuous, with modulus of continuity bounded by that of c (see Remark 4.9). This
allows the extration of a converging subsequence in the sup-norm.

Furthermore, it holds that ‖∇kψ‖∞ = O(1 + ε1−k) [64].
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Remark 4.10. The solution to the primal problem (4.3) is given by

πε = ρ⊗ σ exp

(
1

ε

(
ψερ ⊕ ψεσ − c

))
. (4.29)

Remark 4.11. The number of iterations needed to solve the entropic OT problem
in practice go up dramatically as ε → 0. In particular, in cases where the solution
for ε = 0 is a smooth map, the error after the lth iteration is of order (1−ε)l ([106],
Remark 4.15).

In general, the number of iterations is expected to be of order ‖c‖L∞/ε [83, 24,
119, 84].

For moderately small values of ε (when compared to the characteristic scale of
the cost function), this is not yet very restrictive. Beyond that, however, simulated
annealing and multiscale methods become necessary (c.f. [60], Section 3.3.3 and
[106], Section 4.2).

Convergence as ε→ 0

The properties of W2,ε, including its convergence as ε goes to zero, have been studied
extensively. We give here the result from [38] for the quadratic cost. The proof
therein, based on Γ-convergence, is recommended to the reader as it is rather short
and fully self-contained. For more general results, we refer to [85, 100, 20].

Theorem 4.1 (Convergence of entropic optimal transport ([38], Theorem 2.7)).
Let Ω ⊂ Rd bounded and ρ, σ ∈ P(Ω) have finite entropy, i.e. they are absolutely
continuos with respect to the Lebesgue measure and

∫
log ρ dρ < +∞,

∫
log σ dσ <

+∞. Let {εk}k be a non-negative sequence converging to zero. Then,

lim
k→+∞

W2,εk(ρ, σ) = W2(ρ, σ). (4.30)

Furthermore, the optimal transport plans πεk in W2,εk(ρ, σ) converge narrowly to the
optimal transport plan π in W2,εk(ρ, σ).

Remark 4.12. The potentials of the entropic dual problem also converge to the
potentials of the unregularized dual problem (in the L1(Ω, ρ) and L1(Ω, σ) norm,
respectively), see [100], Theorem 1.1.

The entropic transport map

The entropic OT problem does not admit a transport map as a solution, as the
transport plan is necessarily supported on the entirety of ρ ⊗ σ. It is a natural
question what the map x 7→ x − ∇ψερ(x) corresponds to. From the stationarity
condition Equation (4.9), we find, for c(x, y) = 1

2
|x− y|2,

∇ψερ(x) =

∫
(x− y) exp ((ψεσ(y)− c(x, y)) /ε) dσ(y)∫

exp ((ψεσ(y)− c(x, y)) /ε) dσ(y)
(4.31)

= x−
∫
y exp ((ψεσ(y)− c(x, y)) /ε) dσ(y)∫
exp ((ψεσ(y)− c(x, y)) /ε) dσ(y)

(4.32)

=: x− T ερ→σ(x) (4.33)
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Definition 4.3 (Entropic transport map). We call

T ερ→σ = id−∇ψερ (4.34)

the entropic transport map between ρ and σ.

It must be stressed that T ε] ρ 6= σ in general. Nevertheless, the map has appealing
properties: It is defined for all y ∈ Ω (not only ρ - almost everywhere) and converges
to the transport map of the unregularized problem as ε→ 0.

The entropic transport map can also be interpreted as an extension of the ex-
pected value x 7→ Eπε [Y |X = x] from support(ρ) to the entire domain. It is also
referred to as the barycentric mapping [60] or barycenter projection of the transport
plan πε [107] as it has the form of a weighted mean with normalized weights.

In [107], the convergence of an entropic transport map obtained from M samples
from ρ and σ, respectively, to the unregularized optimal transport map between
ρ and σ is investigated. Using an optimal choice of ε(M), it is established that
the empirical entropic transport map obtained from the samples converges to the
true transport map Tρ→σ with approximate rate M−1/d under certain regularity
assumptions on the densities and ϕ : ∇ϕ = Tρ→σ. There are numerous other results
regarding the convergence of such regularized empirical transport costs, plans, and
maps [6, 64, 20].

A central property of the transport maps was that we were able to define their
inverse through the c-transform transform of the corresponding potentials. Propo-
sition 4.3 suggests that this is the case in the entropic case as well. We can show
that it holds up to order ε:

∇ϕ∗,ε(y) =

∫
x exp ((x · y − ϕ∗(x)) /ε) dρ(x)∫
exp ((x · y − ϕ∗(x)) /ε) dρ(x)

(4.35)

=
x∗(1 +O(ε))

1 +O(ε)
, (4.36)

since the factors of the leading order from Proposition 4.3 are identical in the nom-
inator and denominator.

4.2 The Sinkhorn algorithm

Let us consider the discrete case of ρ(x) =
∑M

i=1 ρ̂δxi and σ(y) =
∑M

j=1 σ̂δyj . We
can without loss of generality assume that ρ̂i and σ̂j are strictly positive for all i, j.
Indeed, points without mass would not play any role in the optimization.

Log-domain formulation

The iterative updates of the potentials in Equation (4.27) take the form

(ψ̂c,ε)
(n)
j ← −ε log

M∑
i=1

exp

(
(ψ̂εi )

(n) − ĉij
ε

+ log ρ̂i

)
∀1 ≤ j ≤M (4.37)

(ψ̂ε)
(n+1)
i ← −ε log

M∑
j=1

exp

(
(ψ̂c,ε)

(n)
j − ĉij
ε

+ log σ̂j

)
∀1 ≤ j ≤M. (4.38)
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We define the logsumexp function as

LSE : RM → R : f 7→ log
M∑
i=1

exp fi. (4.39)

The LSE function is a commonly used tool in computer science, in particular
data analysis and machine learning. A naive implementation can cause numerical
overflow problems, since

∑
i exp fi can take very large values.

This problem can be mitigated by letting f∗ = maxi fi and using the identity
LSE(f) = f∗ + LSE(f − f∗1), where now all elements of the sum are bounded by
one. The symbol 1 denotes a vector of ones.

An even better approach, used in the package LogExpFunctions.jl1 and de-
scribed in [99], is to calculate the maximum element in a streaming manner, updat-
ing it when necessary. This avoids the one additional loop over f.

Matrix-scaling formulation

The operations carried out in the iterative updates Equation (4.27) can be expressed
as matrix-vector operations. We introduce the scaling factors a, b ∈ RM with entries

ai := exp(ψ̂εi /ε) and bj := exp(ψ̂c,εj /ε) ∀i, j = 1, . . . ,M (4.40)

and collocated Gibbs kernel K ∈ RM×M with entries

Kij := exp(−ĉij/ε) ∀i, j = 1, . . . ,M. (4.41)

With respect to these quantities, the iterates on the dual problem can be writ-
ten in the form of matrix-vector products and element-wise operations on vectors
entirely, see Algorithm 4. The operations .←, .∗, ./ denote element-wise assignment,
multiplication, and division, respectively. We write C for the M ×M matrix with
entries ĉij for all i, j.

Algorithm 4 Sinkhorn’s algorithm

1: function sinkhorn(ρ̂, σ̂, c, ε, tol)
2: a, b .← 1

3: K .← exp.(−C/ε)
4: while ‖ρ̂− ρ̂ .∗ a .∗ K(b .∗ σ̂)‖1 > tol do . l1 error of the marginal condition
5: a .← 1 ./ K(b .∗ σ̂)
6: b .← 1 ./ K(a .∗ ρ̂)
7: end while
8: return ε log.a, ε log.b . The Kantorovich potentials
9: end function

In this form, the values of ε that can be used are restricted by issues of numerical
stability and overflow, as elements of K can become extremely small and elements
of a, b can become extremely large. On the other hand, the algorithm is easy to
implement and very fast.

1https://github.com/JuliaStats/LogExpFunctions.jl
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Nomenclature

Algorithm 4 is named after the author of [125], where the convergence of the method
in the discrete case is shown. In particular, this work is concerned with finding the
representation of a matrix with strictly positive entries as the product of a diagonal
matrix, a bi-stochastic matrix, and another diagonal matrix. The procedure itself is
much older and known in different fields as iterative proportional fitting procedure,
RAS 2 method, gravity method, iterative Bregman projections, or softassign. Remark
4.5 in [106] and Section 3.3.1 of [60] give historical overviews and more context.

Stabilization

In [41, 119], a strategy of stabilizing the algorithm without moving it entirely into
the log-domain is given. It relies on the fact that ψε⊕ψc,ε− c remains bounded and
close to zero throughout the iterations. A redundant parametrization of the form
a = a′ .∗ exp((ψ̂ε)′i/ε) (and analogously for b) is used, where extreme values of a′ are
absorbed by (ψ̂ε)′ every few iterations. The entries of the stabilized kernel K′ij :=

exp((ψ̂ε)′i + ψ̂c,ε)′j − Cij)/ε) stay under control and Kb = exp.(ψ̂ε)′/ε) .∗ K′(b′ .∗ σ̂).

Separable kernels

Naive implementations of both the matrix-vector products from Algorithm 4 and
the LSE evaluation in (4.37) are of O(N2) complexity due to nested loops over i and
j. Note that M scales exponentially with the spatial dimension of the problem when
it is discretized on a grid. However, in the special case of c(x, y) = |x − y|2 we are
working with, we can do better, as pointed out in [126]. Note that in dimension d, the
cost is separable in d terms along each dimension: |x−y|2 = |x1−y1|2+· · ·+|xd−yd|2.
Now assume the points xi are sampled on a regular tensor grid and therefore can
be indexed as xi1,...,id : 1 ≤ i1, . . . , id ≤ M1/d. Note that xli1,...,id can be denoted
with xlil , as only the lth coordinate changes when varying the indices i1, . . . , id. Let
Clij := |xlil − y

l
jl
|2 and Kl = exp.(−Cl/ε) for l = 1, . . . , d. In this case,

(Ka)j =
∑

1≤i≤M

Kijai ∀j = 1, . . . ,M (4.42)

is equal to

(Ka)j1,...,jd =
∑

1≤i1,...,id≤M1/d

K1
i1j1
· · · Kdidjdai1,...,id

=
∑

1≤i1≤M1/d

K1
i1j1

∑
1≤i2≤M1/d

K2
i2j2
· · ·

∑
1≤id≤M1/d

Kdidjdai1,...,id (4.43)

for all j1, . . . , jd ∈ 1, . . . ,M . As a result, instead of computing one large matrix-
vector product of complexity M2, we are computing d tensor contractions of com-
plexity M1+1/d each.

An analogous trick can be applied in the log-domain as well.

2Interestingly, the origin of this name appears to be unknown [33]
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Annealing strategies

As one decreases ε, the number of iterations needed to reach convergence in Al-
gorithm 4 increases approximately as ‖c‖L∞/ε. The strategy of ε-scaling, where ε
is initialized with a rather large value initially and then gradually decreased, was
introduced for the auction and Sinkhorn algorithm already in [21] (citing an earlier
unpublished paper from 1987) and [79]. It has proven very efficient in practice,
decreasing the iterations needed until convergence to O(log(‖c‖L∞/ε)) [60, 119].

The heuristic is that the steps when ascending the regularized dual problem are
of size ε.

When employing ε-scaling, large steps are taken initially to find an approximate
coupling between ρ and σ, which is then gradually refined as ε is reduced.

In practice, the scaling can be done by starting at, e.g. ε(0) = ‖c‖L∞ and then mul-
tiplying it by some scaling factor s ∈ (0, 1) in every iteration, such that ε(l) = slε(0).
Therefore, if we set ε(l) =: ε, this implies l = log(‖c‖L∞/ε)/ log(1/s) iterations. Just
as in line-search methods, the choice of s constitutes a trade-off between speed and
safety.

Further modifications

A number of other modifications to the Sinkhorn algorithm have been proposed and
shown to increase its speed. Among them are multiscale methods [93, 60, 119], low-
rank approximations of the kernel matrix K [4], methods where only select entries
of a,b are updated in each iteration in a greedy manner [5], regularized nonlinear
acceleration methods [132], and momentum methods [117]. In [60], the author also
advocates the use of averaged updates of the dual potentials, i.e.

(ψc,ε)(n+1)(y)← 1

2
(ψc,ε)(n)(y) +

1

2

ε

min
x∼ρ

{
c(x, y)− (ψε)(n)(x)

}
, (4.44)

(ψε)(n+1)(x)← 1

2
(ψε)(n)(x) +

1

2

ε

min
y∼σ

{
c(x, y)− (ψc,ε)(n)(y)

}
. (4.45)

This modification ensures symmetry of the computed entropic transport distance
at every iteration. Especially when the two input measures ρ and σ are very close
to each other, significant speed-up of convergence is reported.

Another interesting extension is [126], where c(x, y) = d(x, y)2, the squared
geodesic distance on a compact Riemannian manifold. The authors note that in
the Euclidean case, the Gibbs kernel

k(x, y) = exp

(
−|x− y|

2

2ε

)
corresponds to the heat kernel at time t = ε/2. Hence, convolution of a function
against k is equivalent to solving the heat equation ∂tu = ∆u until time t = 2ε with
that function as an initial condition. The rigorous justification of this idea is given
by Varadhan’s formula [89].

4.3 Sinkhorn divergences

Despite the widespread applications of W2,ε and the efficient algorithms available to
compute it, there is a substantial downside. The function W2,ε : P(Ω)×P(Ω)→ R≥0
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does not define a distance.
This is most obvious in the limit where ε → ∞: the minimization in Equa-

tion (4.3) will select π = ρ ⊗ σ, so Wp,ε(ρ, σ)2 ε→+∞−→
∫
c(x, y)dρ(x)dσ(y). In

this limit, minσWp,∞(ρ, σ)2 6= ρ. The measure that achieves minσWp,∞(ρ, σ)2 =
minσ

∫
|x − y|2dρ(x)dσ(y) is a Dirac measure centered at the mean of ρ, denoted

δmρ . To see this, notice that∫
|x− y|2dρ(x)dσ(y) =

∫
|x|2dρ(x) +

∫
|y|2dσ(y)− 2mσ ·mρ (4.46)

≥
∫
|x|2dρ(x) +m2

σ − 2mσ ·mρ (4.47)

≥
∫
|x|2dρ(x)−m2

σ (4.48)

= Wp,∞(ρ, δmρ)
2. (4.49)

As a result, using Wp,ε as loss function in optimization is bound to lead to unsat-
isfactory results - unless one wants to explicitly use the entropic bias as a denoising
method [111].

Debiasing

In [109], the authors introduce a modification of the entropic Wasserstein distance
that does vanish when comparing the same measure.

Definition 4.4 (Sinkhorn divergence). Given two measures ρ, µ ∈ P(Ω) and ε > 0,
their (debiased) Sinkhorn divergence Sε is given by

Sε(ρ, σ) := W2,ε(ρ, σ)2 − 1

2
W2,ε(ρ, ρ)2 − 1

2
W2,ε(σ, σ)2. (4.50)

Remark 4.13. Introducing the optimal transport potential ψερ↔ρ and ψεσ↔σ for W2,ε(ρ, ρ)2

and W2,ε(σ, σ)2, respectively,

1

2
Sε(ρ, σ) =

∫
Ω

(
ψερ→σ − ψερ↔ρ

)
dρ+

∫
Ω

(
ψεσ→ρ − ψεσ↔σ

)
dσ. (4.51)

Theorem 4.2 (Properties of the Sinkhold divergence ([60], Theorem 3.1)). When
Ω ⊂ Rd is compact and ρ, µ ∈ P(Ω) with bounded support, then

0 = Sε(ρ, ρ) ≤ Sε(ρ, σ) (4.52)

Sε(ρ, σ) = 0 ⇔ ρ = σ (4.53)

ρn ⇀ ρ ⇔ Sε(ρn, ρ)→ 0 (4.54)

for any ε > 0.

Proof and discussion of Theorem 4.2 can be found in appendix A of [60]. The
Sinkhorn divergence can be computed with the same iterative algorithm as the
entropic Wasserstein distance, extended by computation of the debiasing potentials
corresponding to the W2,ε(ρ, ρ)2 and W2,ε(σ, σ)2 terms, which are always solved using
a symmetric update rule. We present it in Algorithm 5 in its matrix-scaling form.
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Algorithm 5 Debiased Sinkhorn algorithm

1: function sinkhorn(ρ̂, σ̂, c, ε, tol)
2: a, b, dρ, dσ .← 1

3: K .← exp.(−C/ε)
4: while ‖ρ̂− ρ̂ .∗ a .∗ K(b .∗ σ̂)‖1 > tol do
5: a .← 1 ./ K(b .∗ σ̂)
6: b .← 1 ./ K(a .∗ ρ̂)
7: dρ .← (dρ ./ K(dρ .∗ ρ̂)) .1/2

8: dσ .← (dσ ./ K(dσ .∗ σ̂)) .1/2

9: end while
10: return ε log.a− ε log.dρ, ε log.b− ε log.dσ . Debiased transport potentials
11: end function

The formulation in the log-domain is analogous and can be found, for example, in
[60], Algorithm 3.4.

The analogue to the entropic transport map from Definition 4.3 is

T εS,ρ→σ : x 7→ x−∇ψερ→σ(x)−∇ψερ↔ρ(x). (4.55)

Remark 4.14. The modifications and improvements to the Sinkhorn algorithm can
be applied to the debiased variant as well. In particular, this includes separation
of kernels and ε-scaling and from Section 4.2 and Section 4.2. The convergence
criterion can also be modified if one wants to avoid computing the l1 error of the
marginal condition. For example, a relative tolerance on the size of the updates of
the potentials can be used.

4.4 Methods without regularization

To conclude this chapter, we want to remark on a number of other computational
methods that have been developed to solve optimal transport problems. These are
not the focus of the present work and therefore their presentation will be rather
short. That is not to say that they are inferior to the schemes presented so far, on
the contrary, some of these methods have very strong links to PDE theory which
could possibly be used in our application case.

Direct method for the two-dimensional case

In [96], the authors consider the problem of optimal transport on a rectangular
domain ⊂ R2. They approximate transport maps Tρ→σ by Tρ̄→σ ◦ Tρ→ρ̄, akin to
the Monge embedding approach. When ρ̄ is chosen constant and equal to |Ω|−1,
the Monge-Ampére equation for ψ, the optimal transport potential corresponding
to the transport from ρ to ρ̄, simplifies to det(Id−D2ψ) = ρ.

In two dimensions, this equation satisfies

det(Id−D2ψ) = 1−∆ψ + detD2ψ = ρ. (4.56)

Equation (4.56) is an equality, and should not be confused with the approximation
det(Id + εD2f) ≈ 1 + ε∆f for small ε > 0. It allows a very fast solution of the
Monge-Ampére equation by an iterative scheme:
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The approach relies on solving the Poisson equation−∆ψ(n) = ρ−1+detD2ψ(n−1)

where detD2ψ(n−1) is treated as a source term. After ψ(n) is computed, detD2ψ(n)

is calculated and used as a source term in the next iteration.
The boundary conditions in the special case of a rectangular domain are of Neu-

mann type: ∇ψ · n̂ = 0 on ∂Ω with n̂ the unit outward normal vector. The map
Tρ̄→σ is obtained by inverting Tσ→ρ̄. The latter can be computed using the same
iterative method that was used to obtain Tρ→ρ̄.

The authors prove convergence of this scheme using a quasi-Newton method
using a special conjugate gradient descent. By pre-factoring the Laplace operator,
the computation is extremely fast, depending on the problem size up to factors 50
faster than dynamical and semi-discrete schemes, which we discuss later.

Dynamical schemes

The method we describe next goes back to [16]. Overviews of the method, its variants
and applications can be found in [115], Chapter 6, as well as [15]. More details and
proofs of convergence can be found in [71, 81]. Two examples of implementation
are [104], a finite difference version, and [98], based on mixed finite elements. The
presentation we give largely follows [71].

Through the Bennamou-Brenier formula, it is possible to reformulate the optimal
transport problem to a minimization of the kinetic energy of the flow transporting a
measure ρ0 to ρ1, see Section 3.6. The evolution of the density throughout this trans-
port will be given by a curve t 7→ ρ(t, ·). Let us denote by v the (time-dependent)
vector field generating the transporting flow and introduce a new variable, the mo-
mentum M := ρv. In these variables, we seek

min
ρ,M

(∫ 1

0

∫
Ω

|M(t, x)2|
2ρ(t, x)

dxdt : ∂tρ+∇xM = 0 and either ρ > 0 or ρ = M = 0

)
.

(4.57)
The boundary conditions (in the space-time domain) are given by ρ(0, ·) = ρ0,
ρ(1, ·) = ρ1, and no-flux boundary conditions on ∂Ω for t ∈ (0, 1). Introducing
a Lagrange multiplier χ, the problem can be written as the following saddle-point
problem:

inf
ρ,M

sup
χ

(∫
(0,1)×Ω

|M |2

2ρ
−
∫

(0,1)×Ω

(∂tχρ−M · ∇xχ) +

∫
Ω

(χ(0, ·)ρ0 − χ(1, ·)ρ1)

)
.

(4.58)
What is missing so far is the constraint ρ > 0. The crucial trick is to write the
kinetic energy density function K(ρ,M) := |M |2/2ρ as the Legendre transform of
its Legendre transform

K∗(a,B) = sup
ρ,M

(
aρ+B ·M − |M |

2

2ρ

)
=

{
0 if a ≤ −|B|2/2
+∞ else.

(4.59)

By considering K∗∗(ρ,M), one guarantees the necessary constraints on ρ, since
K∗∗(ρ,M) = +∞ when ρ > 0. All together, the problem can be written as

inf
χ,(a,B)

sup
ρ,M

L(χ, (a,B), (ρ,M)), (4.60)
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where the Lagrangian L(χ, (a,B), (ρ,M)) consists of the sum of three terms: the
characteristic function of the (convex) set {(a,B) : a ≤ −|B|2/2}, the second term
in Equation (4.58), and the bi-linear term

〈(ρ,M), (∂tχ,∇xχ)− (a,B)〉L2((0,1)×Ω). (4.61)

This saddle point problem on the space of measures (M is a measure valued in
Rd), can be solved with first-order optimization methods from convex analysis and
the proximal splitting algorithm in particular. Note that the non-linearity in M is
replaced by the presence of the indicator function. We refer to the references given
at the start of this section for further details.

Solving the dynamical optimization problem takes place in Rd+1 due to the in-
troduction of a time variable. This of course increases the computational cost of the
method. One of the advantages is that additional dynamics and constraints, such
as upper or lower bounds on ρ or forcing and interaction terms can be added into
the action functional.

Semi-discrete OT

This case deals with the transport between a continuous density σ and a density
ρ =

∑M
i=1 ρ̂iδxi localized on a number of Dirac measures. The dual problem in this

case turns into

max
ψ∈Cb(Ω)

(
M∑
j=1

ρ̂jψ(xj) +

∫
ψcdσ

)
. (4.62)

All points y such that ψ(xj) + ψc(y) = c(xj, y) will be transported to xj, since

ψc(y) = inf
x

(c(x, y)− ψ(x)) ≤ c(xk, y)− ψ(xk) ∀k = 1, . . . ,M. (4.63)

When c is the quadratic cost, and if all Dirac measures have the same weight, every
point of mass is transported to the closest Dirac measure. The result are Voronoi
cells.

Through the additional factor ψ(xj), every cell around δxj , which we will denote
Vj, gets an additional parameter which can increase or decrease its volume relative
to this case. Vj are called Laguerre cells and, as Voronoi cells, are convex polyhedra.
At optimality, it holds that

ρ̂j =

∫
Vj

dσ ∀j = 1, . . . ,M. (4.64)

The computation of power cells is for example implemented in the Geogram3 library,
see also [93, 88, 78, 87]. These methods allow the solution of semi-discrete OT
problems with up to 106 Dirac measures.

We mention these methods because a number of interesting papers use this ap-
proach to derive Lagrangian schemes to solve equations from fluid dynamics, in
particular the incompressible Euler equation, see [63, 95] and Appendix B.

3https://github.com/BrunoLevy/geogram



Chapter 5

Reduced models in P(Ω)

The theory of optimal transport is interesting in its own right as a field of pure
mathematics, for example because of the connection to the Monge-Ampère equation
and a number of other known PDEs (see Appendix B). However, its properties also
make it an attractive tool for several applications in data science, as we motivate
now.

5.1 Motivation

Example 5.1. Assume that we are given a target measure σ ∈ P(Ω) and a family
of measures {ρ(µ) : µ ∈ A} ⊂ P(Ω) that are parametrized through µ. Suppose we
want to find an optimal value µ∗ such that σ ≈ ρ(µ∗), i.e.

µ∗ = arg min
µ∈A

Loss(ρ(µ), σ). (5.1)

The setting of Example 5.1 is that of a measure-fitting or registration problem. It
arises in applications of image processing, computational anatomy, and also in the
construction of generative adversarial networks (GANs) [68]. A possible solution
strategy is then a gradient descent method along the lines of

µ(n+1) ← µ(n) − t∇µLoss(ρ(µ(n)), σ) (5.2)

with some step size t.

Loss functions

The success of such a method hinges on the correct choice of loss function, which
needs to be differentiable and capture the discrepancy between measures in a mean-
ingful way. Note that these measures might be challenging to handle. When Ω ⊂ R2,
the features might be supported on curves or even points, hence the measures give
mass to small sets.

Even if the measures admit a smooth density, Lp type norms might fail completely.
As long as the supports of ρ(µ) and σ do not overlap, their L1 distance is simply
equal to two and the gradient is zero. The problem can persist even if the measures
are strictly positive as we have seen in Example 2.6.

61



62 CHAPTER 5. REDUCED MODELS IN P(Ω)

Other notions of discrepancy that are commonly used such as the KL divergence
share this problem. In particular, the KL divergence KL(ρ|σ) requires ρ to be
absolutely continuous with respect to σ. The large class of kernel norms can also
struggle with the problem. Norms based on kernels that are not heavy-tailed are
blind to features lie far apart and at the same time, kernels that are too smooth will
not be able to resolve small-scale differences. This is evident in the case of the very
well known Gaussian kernel (x, y) 7→ kε(x, y) := exp(−|x− y|2/2ε), which is for all
intents and purposes equal to zero once |x−y| > 3

√
ε. These phenomena are known

in the literature as vanishing gradients and electric shielding. We refer to Section
3.2 of [60] for an excellent summary of the topic.

The optimal transportation distance looks like an attractive choice for this appli-
cation. It can handle very general measures, gives meaningful distances even when
their support is far apart (Proposition 3.5), and, as we will see, has a computable
gradient.

Remark 5.1. Another comment is in order regarding the terminology Wasserstein-
GAN (W-GAN) [9]. In generative neural networks, the distance between measures is
measured in a weak sense by testing ρ(µ)−σ with a family of discriminator functions
gΘ, represented by a neural network and parametrized by a set of weights Θ. Taking
the most strict discriminator as the loss function, one arrives at

Loss(ρ(µ), σ) := max
Θ

∫
gΘd(ρ(µ)− σ). (5.3)

It is clear that without any constraints on gΘ, the discriminators can be too critical:
for example, allowing step functions in the set of {gΘ}Θ, the discrepancy between
any measures with disjoint support can be made arbitrarily large. In W-GANs, the
set of discriminators is (loosely) enforced to be 1-Lipschitz. The problem

max
ψ: 1-Lipschitz

∫
ψd(ρ(µ)− σ) (5.4)

has the form of the dual optimal transport problem with cost c(x, y) = |x−y|. Indeed,
the constraint in the dual problem ψ(x) +ψc(y) ≤ |x− y| is precisely the 1-Lipschitz
condition, since ψc = −ψ in this case ([115], Proposition 3.1).

It is important to note, however, that the optimization over gΘ is not the same
as an optimization over all 1-Lipschitz functions. The latter is a very large space,
while the elements of {gΘ}Θ should be designed to encode a problem-specific notion
of similarity that is unlikely to coincide with the W1 distance.

The second argument for the use of the optimal transport is that the displacement
interpolation is a natural choice in several applications where a standard weighted
mean fails. We have already seen this in Figure 3.2, where the former lead to a
physical advection-diffusion-like transport while the latter corresponds to nonphys-
ical teleportation of mass. In [73], it is shown that the displacement interpolation
between a measure ρ0 and ρt coincides with the solution of a PDE with initial con-
dition ρ0 on the interval (0, t) up to a re-scaling of time and multiplicative constants
for the heat equation ∂tρ = ∆ρ, the non-linear diffusion equation ∂tρ = ∆ρm with
1 < m ∈ N, and the Riemann problem of the Sod shock tube problem.
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5.2 Differentiability of W2

When we use the W2 distance as a loss function, the vast majority of optimization
algorithms used in measure fitting applications require us to compute its gradient
with respect to the input measures.

Recall the dual formulation of the optimal transport distance, Equation (3.5):

W2(ρ, σ)2 = max
ψρ,ψσ∈C(Ω)

{∫
Ω

ψρdρ+

∫
Ω

ψσdσ : ψρ(x) + ψσ(y) ≤ c(x, y)

}
.

A formal derivative of W2(ρ, σ) therefore will return the optimal transport po-
tential ψρ that maximizes the objective plus additional terms that follow from the
implicit dependence of ψρ and ψσ (which, as we know, equals ψcρ) on ρ.

However, one might hope that these additional terms in fact do not contribute,
since the variation of the objective with respect to the potentials should vanish when
evaluated at optimal potentials. In this case, the derivative of W2(ρ, σ) with respect
to ρ would be just ψρ.

This statement is sometimes called the envelope theorem in optimization: If we
assume that x∗µ := arg minx F (µ, x) for a set of µs is the family of solutions to a
smooth, convex optimization problem in Rd parametrized by µ, then necessarily
∇xF (µ, x∗µ) = 0 ∀µ and

d

dµ
F (µ, x∗µ) =

∂

∂µ
F (µ, x∗µ) +

∂x∗µ
∂µ
· ∇xF (µ, x∗µ)︸ ︷︷ ︸

= 0

=
∂

∂µ
F (µ, x∗µ). (5.5)

In the case of W2(ρ, σ), µ corresponds to ρ while xµ corresponds to the pair of
optimal transport potentials (ψρ, ψ

c
ρ).

Indeed, the assumed result can be made rigorous.

Theorem 5.1 (Subdifferential of the W2 distance [116], Proposition 4.8). Let ρ, σ ∈
P(Ω). The function ρ → W2(ρ, σ)2 is convex and its subdifferential at ρ0 is the set
of optimal transport potentials{

ψ ∈ C(Ω) :
1

2
W2(ρ0, σ)2 =

∫
ψdρ0 +

∫
ψcdσ

}
. (5.6)

If there is one (up to an additive constant) unique c-concave optimal transport po-
tential ψρ0, then

δW2(·, σ)2

δρ
(ρ0) = 2ψρ0 . (5.7)

A proof for the case of compact Ω can be found in [115], Proposition 7.17. We
also have the following, related result:

Theorem 5.2 (Chain rule for the W2 derivative [140], Theorem 8.13). Let Ω ⊂ Rd

and (ε, ε) 3 t 7→ ρt be an absolutely continuous curve through Pac(Ω), i.e. there
exists an L2 integrable t 7→ c(t) such that W2(ρs, ρt) ≤

∫ t
s
c(τ)dτ ∀s, t. Furthermore,

let σ ∈ Pac(Ω) and assume t 7→ ρt satisfies

∂tρt +∇ · (vtρt) = 0 (5.8)



64 CHAPTER 5. REDUCED MODELS IN P(Ω)

for a globally bounded (x, t) 7→ vt(x) ∈ C1(Ω, (−ε, ε);Rd). Then,

d

dt
W2(ρt, σ)2

∣∣∣∣
t=0

= 2

∫
∇ψ · v0dρ0

= 2

∫
(id−∇ϕ) · v0dρ0

= −2

∫
(id−∇ϕ∗) · (v0 ◦ ∇ϕ∗)dσ, (5.9)

where ∇ϕ is the optimal transport map between ρ0 and σ.

We refer to the reference for a proof. Note that the result agrees with what
another formal computation yields:

d

dt
W2(ρt, σ)2 =

∫
δW2(ρt, σ)2

δρ
∂tdρt = 2

∫
ψρt∂tdρt = 2

∫
∇ψρt · vtdρt, (5.10)

where we used the continuity equation in the last step. The last line in Equation (5.9)
follows from a change of variables using ∇ϕ∗]σ = ρ0 and the identity ∇ϕ◦∇ϕ∗ = id.

Remark 5.2. The results from Theorem 5.1 and Theorem 5.2 extend to the case
with entropic regularization, i.e.

1

2

δW2,ε(ρ0, σ)2

δρ
= ψερ0

(5.11)

and
1

2

δSε(ρ0, σ)2

δρ
= ψερ0→σ − ψ

ε
ρ0↔ρ0

. (5.12)

Sketch of proof. Denote by ψεt the optimal transport potentials for the transport
between ρt and σ and by ψc,εt its c-transform. Furthermore, recall that at optimality,
1
2
W2,ε(ρt, σ)2 =

∫
ψεtdρt +

∫
ψc,εt dσ. Now, use the fact that ψε0 is suboptimal for

W2,ε(ρt, σ), hence

1

2
W2,ε(ρt, σ)2 ≥

∫
ψε0dρt +

∫
ψc,ε0 dσ − ε

∫
exp

(
ψε0 ⊕ ψ

c,ε
0 − c
ε

)
dρtdσ + ε. (5.13)

As (ψε0, ψ
c,ε
0 ) are optimal for (ρ0, σ),

∫
exp ((ψε0(x) + ψc,ε0 (y)− c(x, y))/ε) dσ(y) =

1 ρ0-a.e., which by assumption is ρt-a.e., so the last two terms cancel. We conclude
that

1

2
W2,ε(ρt, σ)2 − 1

2
W2,ε(ρ0, σ)2 ≥

∫
ψε0d(ρt − ρ0). (5.14)

Repeating the same considerations with the roles of ρt and ρ0 reversed yields

1

2
W2,ε(ρt, σ)2 − 1

2
W2,ε(ρ0, σ)2 ≤

∫
ψεtd(ρt − ρ0). (5.15)

By the stability of optimality, as ρt ⇀ ρ, ψεt → ψε0 uniformly, so that

1

2

W2,ε(ρt, σ)2 −W2,ε(ρ0, σ)2

t

t→0+

−→
∫
ψε0∂tdρ0. (5.16)
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5.3 Wasserstein barycenters

The first variational problem in (P(Ω),W2) we consider is the following: Given a
set of measures {ρi}mi=1, which element of P (Ω) minimizes the sum of W2 distances
to each element of this set?

An element that solves this problem is an average of the input elements {ρi}i in
the sense of the optimal transport distance.

In fact, the displacement interpolation ρt := ((1− t)id + tTρ0→ρ1)]ρ0 is a special
case for m = 2. The displacement interpolation defines a weighted convex combi-
nation of elements in (P(Ω),W2). The extension to arbitrary m ∈ N we denote the
optimal transport barycenter (the names Wasserstein barycenter, Karcher mean, or
Fréchet mean are also used).

Definition 5.1 (Optimal transport barycenter). Let {ρi}mi=1 a set of probability
measures on Ω and {ωi}mi=1 a set of positive real numbers that sum to one, i.e.
{ωi}mi=1 ∈ Σm We call

inf
σ∈P(Ω)

1

2

m∑
i=1

ωiW2(ρi, σ)2 (5.17)

the optimal transport barycenter problem. A solution of this problem will be called
the barycenter of {ρi}i with weights {ωi}i and denoted W2Bar({ρi, ωi}i).

For a number of applications, the optimal transport barycenter provides a smooth
transition between input elements for applications in shape interpolation. In partic-
ular, we refer to the examples in [126].

5.3.1 Existence, uniqueness, and properties

We recall the following results without proof:

Proposition 5.1 ([1], Propositions 2.3, 3.8 and Theorem 5.1). The optimal trans-
port barycenter problem admits the dual formulation

sup

{
m∑
i=1

∫
inf
y∈Ω

(ωi
2
|x− y|2 − ψi(y)

)
dρi(x) : ψ1, . . . , ψm ∈ Cb(Ω),

m∑
i=1

ψi = 0

}
.

(5.18)
Both primal and dual problems admit solutions and their values coincide. As long
as one of {ρi}i is absolutely continuous, Equation (5.17) has a unique solution. If
all of {ρi}i are absolutely continuous, the transport potentials ψi between ρi and
W2Bar({ρi, ωi}i) satisfy

m∑
i=1

ωi∇ψci = 0 (5.19)

and this condition is sufficient for optimality. Furthermore, if ρ1 has a density
bounded from above, then

‖W2Bar({ρi, ωi}i)‖L∞ ≤ ω−di ‖ρ1‖L∞ . (5.20)

Remark 5.3. In [1], the notation ψ is used for the convex function whose gradient
is the transport map, denoted ϕ in this work. In this variable, the condition reads∑

j ωj∇ϕ∗j = id. The two are equivalent as ∇ϕ∗j = id−∇ψcj and
∑

j ωj = 1.
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Note that we can obtain the condition Equation (5.19) from a variational argu-
ment of the form

0
!

=
d

dε

1

2

∑
i

ωiW2(ρi, σ
ε)2 =

∑
i

ωi

∫
∇ψci · v dσ ∀v, (5.21)

using the results from Section 5.2.
Similar to the factorization of translations from Proposition 3.5, we have the

following result:

Proposition 5.2. Let {ρi}mi=1 ⊂ P(Ω) with at least one element ∈ Pac(Ω) and
{ωi}mi=1 ∈ Σm. Then,∫

x d(W2Bar({ρi, ωi}mi=1))(x) =
m∑
i=1

ωi

∫
x dρi(x). (5.22)

Proof. Let σ := W2Bar({ρi, ωi}i) ∈ Pac(Ω). Note that (id − ∇ψcj)]σ = ρj ∀j =
1, . . . ,m. Hence,∑

i

ωi

∫
xdρi(x) =

∑
i

ωi

∫
xd((id−∇ψci )]σ)(x) (5.23)

=

∫
ydσ(y)−

∫ (∑
i

ωi∇ψcj(y)

)
dσ(y) (5.24)

and the last term vanishes by Equation (5.19).

Lastly, we recall the following result that characterizes the properties of the map
{ρi, ωi}i → W2Bar({ρi, ωi}i) that is crucial for the encoding approaches discussed
in Section 5.3.5.

Proposition 5.3 ([51], Lemma 2.1). Let {ρi}mi=1 ⊂ P(Ω) and {ωi}mi=1 ∈ Σm. The
map ({ρi}i, {ωi}i) → W2Bar({ρi, ωi}i) is continuous in its second argument and
lower-semicontinuous in its first argument with respect to narrow convergence.

Furthermore, if Ω is compact and {ρi}i has at least one element ∈ Pac(Ω), then
the map {ωi}i → W2Bar({ρi, ωi}i) with {ρi}i fixed is differentiable in Σm. In this
case, the set {

σ ∈ P(Ω) : ∃{ωi}i ∈ Σm : σ = W2Bar({ωi; ρi}i)
}

(5.25)

of all possible barycenters of {ρi}i is weakly sequentially compact in (P(Ω),W2).

5.3.2 Entropic regularization and bias

An entropic optimal transport barycenter can be defined by replacing W2 in Equa-
tion (5.17) by W2,ε. However, as we have already seen in Section 4.3, optimization
problems with respect to the entropic transport cost are subject to the phenomenon
of entropic bias: Let π, ς ∈ P(Ω× Ω) and

KL(π|ς) :=

∫
Ω×Ω

(
log

(
dπ

dς

)
dπ − dπ + dς

)
. (5.26)
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We observe that

W2,ε(ρ, σ)2 = min
πε∈Π(ρ,σ)

(∫
Ω×Ω

c(x, y)dπε(x, y) + εKL(πε|ρ⊗ σ)

)
(5.27)

and

KL(π|ς1) = KL(π|ς2) + KL(ς2|ς1) ∀ς1, ς2 ∈ P(Ω× Ω). (5.28)

Let W ς
2,ε(ρ, σ)2 := minπε∈Π(ρ,σ)(

∫
Ω×Ω

c(x, y)dπε(x, y) + εKL(πε|ς)). The choice
ς = ρ⊗σ in the definition of W2,ε(ρ, σ) (no superscript) is natural, as πε is guaranteed
to be absolutely continuous with respect to this product measure. However, many
other choices (e.g. one that is constant on supp(ρ⊗σ)) are also possible. Replacing
ς1 by ς2 changes the value of W ς1

2,ε by the constant KL(ς2|ς1).

Smoothing and shrinking

When computing entropic optimal transport barycenters, a different choice of ς leads
to

W2,εBarς({ωi; ρi}i) = arg min
σ∈P(Ω)

m∑
k=1

ωk
(
W2,ε(ρk, σ)2 + εKL(ς|ρk ⊗ σ)

)
. (5.29)

Selecting a constant ς leads to entropic smoothing. To minimize the second term
and reduce the discrepancy between ρk ⊗ σ and the constant ς, the barycenter is
blurred. This effect is discussed in [45, 126]. In [74], it is shown that when all input
measures are Gaussian ρk = N (µk, var), the entropic barycenter using the Lebesgue
measure in KL will be a Gaussian, namely N (

∑
k ωkµk, var + ε). The choice of the

product measure leads to N (
∑

k ωkµk, var− ε) for var > ε and δ∑
k ωkµk

otherwise.

This smoothing (resp. shrinking) bias can be seen as a feature of the method, as
in [111] it is shown that the entropic shrinking corresponds to a maximum-likelihood
deconvolution technique. A smoothing of the barycenter can also be beneficial in
applications, especially as it can translate to more regular transport maps.

Sinkhorn divergence barycenters

Alternatively, one can remove the effect of the choice in KL by replacing W2,ε with
Sε: It is straightforward to show that the value of Sε no longer depends on ς, but only
on KL(περ,σ|περ,ρ) and KL(περ,σ|πεσ,σ). For the example of Gaussians ρk = N (µk, var),
the Sε barycenter is N (

∑
k ωkµk, var) ∀ε > 0 ([74], Theorem 3) and coincides with

the true W2 barycenter.

Definition 5.2 (Entropic optimal transport barycenters). We call

min
σ∈P(Ω)

1

2

n∑
i=1

ωiW2,ε(ρi, σ)2 and min
σ∈P(Ω)

1

2

n∑
i=1

ωiSε(ρi, σ)2 (5.30)

the entropic barycenter problem and debiased entropic barycenter problem, respec-
tively.
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5.3.3 Computation

In [74], following [17], a modified Sinkhorn algorithm is presented that can compute
the debiased optimal transport barycenter for a set of measures, represented by a
list of vectors via collocation as before. We repeat the method in Algorithm 6.

We denote the multiple input densities by ρ(i), and the corresponding scaling
factors by a(i), b(i) ∈ RM to emphasize the difference to individual components of
these vectors.

Algorithm 6 Debiased Sinkhorn barycenter algorithm

1: function barycenter({ρ̂(i)}mi=1, {ωi}mi=1, c, ε, tol)
2: for i = 1, . . . ,m do
3: a(i), b(i) .← 1

4: end for
5: d .← 1

6: K .← exp.(−C/ε)
7: while maxi ‖ρ̂(i) − a(i) .∗ Kb(i)‖1 > tol do
8: for i = 1, . . . ,m do
9: a(i) .← ρ̂(i) ./ Kb(i)

10: end for
11: σ̂ .← d .∗ .

∏m
i=1(Ka(i)).

ωi

12: for i = 1, . . . ,m do
13: b(i) .← σ̂ ./ Ka(i)

14: end for
15: d .← (d ./ Kdσ) .1/2

16: end while
17: return σ̂ . The debiased barycenter SεBar({ωi; ρi}i)
18: end function

When compared to Algorithm 5, the scaling factors a(i), b(i), and d are defined
differently, namely as

a(i) .∗ ρ̂(i) := exp.(ψ̂ε(i)/ε) (5.31)

b(i) .∗ σ̂ := exp.(ψ̂c,ε(i)/ε) and (5.32)

d .∗ σ̂ := exp.(ψ̂εσ↔σ/ε), (5.33)

where ψε(i) = ψερi→σ. With this definition, Line 11 in Algorithm 6 corresponds to the
stationarity condition∑

i

ωi(ψ
c,ε
i − ψεσ↔σ) =

∑
i

ωiψ
c,ε
i − ψεσ↔σ = 0. (5.34)

5.3.4 Monge embedding barycenters

In Rd, the Euclidean barycenter of a collection of points {xi}i has the simple closed
form Bar({ωi;xi}i) =

∑
i ωixi. On TρP(Ω), we can define an analogous object:
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Definition 5.3 (Monge embedding barycenter). Let ρ̄ ∈ Pac(Ω), {σi}i ⊂ P(Ω), and
{ωi}i ∈ Σm. We define the Monge embedding barycenter of {σi}i with weights {ωi}i
as

MEρ̄Bar({ωi;σi}mi=1) :=

(
m∑
i=1

ωiTρ̄→σi

)
]

ρ̄ = ]ρ̄ ◦

(
m∑
i=1

ωiMEρ̄(σi)

)
. (5.35)

Proposition 5.4. Let ρ̄, {σi}i, {ωi}i as in Definition 5.3. If (ρ̄, σi, Tρ→σi) are com-
patible for all i = 1, . . . ,m, then

MEρ̄Bar({ωi;σi}mi=1) = W2Bar({ωi;σi}mi=1). (5.36)

Sketch of proof. In the compatible case,

W2Bar({ωi;σi}mi=1) = arg min
ν

1

2

∑
i

ωi‖Tρ̄→ν − Tρ̄→σi‖2
L2(ρ̄) (5.37)

= arg min
ν

1

2

∑
i

ωi‖MEρ̄(ν)−MEρ̄(σi)‖2
L2(ρ̄) (5.38)

For MEρ̄(ν), this is a quadratic problem with stationarity condition∑
i

ωi
(
MEρ̄ ◦W2Bar({ωj;σj}mj=1)−MEρ̄(σi)

)
= 0. (5.39)

Therefore, MEρ̄ ◦W2Bar({ωi;σi}mi=1) =
∑m

i=1 ωi MEρ̄(σi) and

W2Bar({ωi;σi}mi=1) = ]ρ̄◦MEρ̄◦W2Bar({ωi;σi}mi=1) = ]ρ̄◦

(
m∑
i=1

ωi MEρ̄(σi)

)
. (5.40)

Note that the condition {ωi}i ∈ Σm guarantees that
∑m

i=1 ωi MEρ̄(σi) is itself
again an optimal transport map, as it can be written as the gradient of a convex
combination of convex functions.

5.3.5 Barycenter encoding

Optimal transport barycenters allow us to take convex combinations of measures on
(P(Ω),W2). We now consider the encoding problem of approximating one measure
ρ ∈ P(Ω) as a convex combination of a set {σi} ⊂ P(Ω).

Given this set of probability measures {σi}i, recall the set of all possible barycen-
ters of {σi}i from Equation (5.25):

{ρ ∈ P(Ω) : ∃{ωi}i ∈ Σm : ρ = W2Bar({ωi;σi}i)} .

This set is similar in principle to the space spanned by a set of basis functions
{ζi}i, however it is of course not a linear space. One can see it as a non-linear
dictionary learning approach, where a high dimensional feature is encoded using a
set of atoms that form the dictionary and a list of codes that relates data points
and codes.
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Dictionary approximations

More precisely, let us assume that the data is given in form of a large N ×ns matrix
S whose columns are the data points. The atoms {ai}mi=1 are a set of m vectors in
RN and the jth code wj is represented as a vector in Rm. In the case where the
reconstruction of data from codes is linear, we have

Sij ≈
m∑
k=1

(ai)m(wj)m ∀i, j. (5.41)

If we want to minimize the approximation error of S in the Frobenius norm, we
find ourselves back in the setting of the Schmidt-Eckart-Young theorem and the
discussion from Section 2.2. Different norms such as l1 or l0 can be used to promote
sparsity of the representation [2].

In the non-linear case, codes and atoms can be related by a non-linear recon-
struction function. This is the setting of Equation (5.25), where this reconstruction
is the mapping {ωi;σi}i 7→ W2Bar({ωi;σi}i). The encoding step that assigns an
element in P a weight vector is defined as

Definition 5.4 (Barycenter encoding). Given a set of measures {σi}i ⊂ P(Ω), we
define the barycenter encoding or barycenter coordinates of ρ ∈ P(Ω) as

{ωρi }i ∈ arg min
{ωi}i∈Σm

Loss (ρ,W2Bar({ωi;σi}i)) . (5.42)

The loss function Loss : P × P → R is free to choose, one can for example use
Loss(ρ, σ) = W2(ρ, σ)2.

Recall that Proposition 5.3 gave sufficient conditions for the map

{ωi}i 7→ W2Bar({ωi;σi}i) (5.43)

to be differentiable.

Optimization using iterative scaling methods

In [27], the authors apply the barycentric encoding to a number of problems from
computer graphics. In these examples, the atoms selected by the user and represent
a range of images or shapes. The optimal transport barycenter is then used as a
non-linear interpolation method. Barycenters are computed using entropic regular-
ization and a number of loss functions (L1, L2,KL, and W2) are investigated. The
fitting problem itself is solved using standard quasi-Newton methods. While the op-
timization proved robust, the authors note that the optimal weights are often sparse.
Since sparse weight vectors correspond to faces of the simplex Σm, this could hint
towards the fact that the addition of another atom could improve the approximation
quality.

Linear characterization

A different approach is proposed in [143]. Therein, the authors use the following
fact: if ρ ∈ Pac(Ω) can be expressed as the barycenter of {σi}i ⊂ Pac(Ω), all bounded
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from above and below, for some weights {ωρi }i ∈ Σm, then necessarily∥∥∥∥∥ δδρ
m∑
i=1

ωρiW2(σi, ρ)2

∥∥∥∥∥
2

L2(ρ)

=
m∑

i,j=1

ωρi ω
ρ
j 〈∇ψρ→σi ,∇ψρ→σj〉L2(ρ)

!
= 0. (5.44)

Note that the matrix {〈∇ψρ→σi ,∇ψρ→σj〉L2(ρ)}1≤i,j≤m must not have full rank for
the stationarity condition to be fulfilled, as solutions correspond to eigenvectors of
zero eigenvalues. If the rank is smaller than m− 1, there might be several solutions,
showing redundancy in the set of atoms. Note that these conditions are not sufficient
for solutions to exist, as the weight vectors are also constrained to lie in Σm.

Furthermore, it cannot be expected in practice that Equation (5.44) admits a
solution, i.e. that ρ can be exactly expressed as a weighted barycenter of {ρi}i.

The (approximate) barycenter coordinates are then defined as those weights that
minimize {ωi}i 7→ ‖ δδρ

∑m
i=1 ωiW2(σi, ρ)2‖2

L2(ρ). This approach avoids the solution of
a non-linear and in general non-convex optimization problem. However, unless the
minimum is exactly zero, solving the quadratic problem from Equation (5.44) is only
equivalent to the exact barycenter encoding problem if (ρ, σi, Tρ→σi) are compatible
for all i = 1, . . . ,m, as we have seen in Section 5.3.4. In general, the minimization
on P(Ω) gives a different result than that on TρP(Ω).

5.3.6 Wasserstein dictionary learning

In [92, 117], the authors do not work with a given set of atoms, but instead determine
them by optimization.

Definition 5.5 (Wasserstein dictionary learning). Given a training set {ρi}nsi=1 ⊂
P(Ω) and m ∈ N, the Wasserstein dictionary learning problem determines atoms
{σ∗j}j=1m and weights ω∗j (ρi)}j ∈ Σm by solving

min
{ωj(ρi)}j∈Σm ∀i
σ1,...,σn∈P(Ω)

ns∑
i=1

Loss
(
ρi,W2Bar({ωj(ρi);σj}mj=1)

)
. (5.45)

Learning the atoms from data requires the solution of a complicated multilevel
optimization problem in Equation (5.45). After entropic regularization, the gradi-
ents involved can be computed from the closed formulas available ([117], Section
3.2) or by automatic differentiation techniques.

Note that the gradient of ρ 7→ W2(ρ, σ)2 is a by-product of the Sinkhorn algorithm
in any case. The time needed to solve for weights and atoms can be drastically
reduced by employing a warm-start method: when using a quasi-Newton method,
instead of running the Sinkhorn algorithm to convergence at every Newton iteration,
one can calculate the value of

({ωi;σi}i 7→
ns∑
i=1

Loss
(
ρi,W2Bar({ωj(ρi);σj}nj=1)

)
(5.46)

by using only a few Sinkhorn iterations, save the scaling factors {a(l)
(i), b

(l)
(i)}i, update

the weights and atoms, and then perform another small number of Sinkhorn itera-
tions, starting from the scaling factors {a(l)

(i), b
(l)
(i)}i. By interweaving the two iterative

procedures in this way, the authors achieve large speed-up at comparable accuracy
even when doing as few as two Sinkhorn iterations per Newton step.
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Sparsity

Another contribution of [92] is the introduction of a sparse regularizer. The authors
introduce the modified problem

min
{ωj(ρi)}j∈Σm ∀i
σ1,...,σn∈P(Ω)

ns∑
i=1

W2

(
ρi,W2Bar({ωj(ρi);σj}nj=1)

)2
+ α

ns∑
i=1

m∑
j=1

ωj(ρi)W2(ρi, σj)
2

(5.47)
with a hyperparameter α > 0. The added term promotes non-zero weights ωj(ρi)
for the nearest neighbor of ρi in the set of atoms σj. In the limit of α → ∞,
for fixed atoms, the optimal weight vector for ρi only has one non-zero element
for j∗ = arg minjW2(ρi, σj)

2. The approach is called soft Wasserstein K-means
accordingly, in analogy to the K-means clustering method which assigns to each
observation the nearest of K cluster points.

Sparsity in this sense is not only beneficial for the memory footprint and run-time
and of the reconstruction problem {ωρi ;σi}i 7→ W2Bar({ωρi ;σi}i), it also promotes
uniqueness of the solution to Equation (5.45). Indeed, consider the following exam-
ple:

Example 5.2 (Non-uniqueness of the Wasserstein dictionary learning problem).
Assume that all input densities {ρi}i lie on a subset of the displacement interpolant
between two densities ρ∗1 and ρ∗2, i.e.

ρi = ρ(ti) = ((1− ti)id) + tiTρ∗1→ρ∗2)]ρ
∗
1 (5.48)

for ti ∈ [1
4
, 3

4
]. In this case, any set of measures {σj}mj=1 = {ρ(tj)}mj=1 lead to the

same minimum in Equation (5.45) as long as at least one element of {tj}j lies in
[0, 1

4
] and [3

4
, 1], respectively.

Additional redundant atoms along the interpolant can be added without affect-
ing the optimality. Both of these issues are remedied by the added term in Equa-
tion (5.47). After the modification, the unique optimal atoms are given by σ1 =
ρt=1/4 and σ2 = ρt=3/4. However, how to rigorously extend this result to the case
of data that does not lie on a single geodesic through (P(Ω),W2) remains an open
problem [92].

ρ(t = 0)

ρ(t = 1/4)

ρ(t = 3/4)

ρ(t = 1)

ρi

Figure 5.1: Illustration of Example 5.2.
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Applications

There is a steadily growing body of literature on the barycentric encoding method;
we can not cover the existing approaches in their entirety here. An incomplete
list of application cases are computer graphics (color transfer, representation of 3d
shapes, reflectance data) [27], images from medical and biological applications (MRI
scans, cardiac sequences, facial expressions) [27, 117], correction of telescope images
[117], encoding of hand-written digits [117, 92, 143], semantic clustering of texts
[117, 144, 124, 42, 80, 92], and building interpolating models for general parametric
or time-series data [133, 40].

5.3.7 Parametrized partial differential equations

In this section, we provide a summary of the application of methods based on inter-
polation and convex combinations in (P(Ω),W2) to PPDE problems.

Convex displacement interpolation

Convex displacement interpolation (CDI), introduced in [73], is based on a linear
approximation of the displacement interpolation between two measures. Given one
(scalar) parameter s ∈ [0, 1], the CDI provides a mapping

s 7→ CDI(s, u(0), u(1)) ≈ u(s). (5.49)

This approximation is motivated by the fact that displacement interpolation be-
tween u(0) and u(1) is close - or in some cases identical to - the solution of a PDE
problem with initial condition u(0) on the time interval t ∈ [0, T ] with an appro-
priate rescaling t 7→ s(t). In order to solve the OT problems needed to build the
displacement interpolations, the authors rely on the closed form available for the
transport between multivariate Gaussian densities given in Section 3.9.

In cases where the solution to the PDE problem at hand is not itself a probability
measure, the authors propose a method to identify coherent features of the solution
using a suitable testing function that will be discussed in Section 6.1. Points in the
domain where the testing function returns, for example, positive values are inter-
preted as independent identically distributed realizations of a multivariate Gaussian
distribution.

Greedy barycenter methods

In [56], barycentric encoding is used to obtain reduced models for PPDE problems
where the solutions can be represented by probability densities, namely the Burger’s
equation, Camassa-Holm equation, and Korteveg-de-Vries equation.

In particular, given a set of atoms {σj}j = {ρ(µj)}j where L(µj, ρ(µj)) = 0 for
some parameter value µj ∈ A, the solution to the parametrized PDE problem for
µ∗ ∈ A is expressed as

ρ(µ∗) ≈ W2Bar({ωj(µ∗);σj}mj=1). (5.50)

Just as in a number of the applications in the previous section, the optimal transport
barycenter is used as a non-linear interpolation method between snapshots of PPDE
solutions.
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Note that finding the optimal weights ωj(µ
∗) by solving the encoding problem

(5.25) requires knowledge of ρ(µ∗), which is not available in the online phase. There-
fore, the mapping µ 7→ ωj(µ) ∀j = 1, . . . ,m is approximated by interpolation.

In the offline phase, the PPDE is solved for the training values {µi}nsi=1 ⊂ A.
Then, the optimal weights ωj(µi) ∀j = 1, . . . ,m and i = 1, . . . , ns are obtained by
solving the barycenter encoding problem (5.42). The pairs {µi, {ωj(µi)}j}i are then
used to build the interpolation µ 7→ {ωj}j.

The online phase consists of evaluating this interpolating function and computing
the corresponding barycenter, which approximates ρ(µ∗).

In order to obtain the atoms, a greedy algorithm as in Section 2.3 is used. For
every element of the training set {ρ(µi)}nsi=1, the best approximation using optimal
barycentric coordinates given the present set of atoms is calculated. Then, the
element of the training set with the largest approximation error is added as an
additional atom until a given tolerance is reached.

Assuming m snapshots {ρ(µi1), . . . , ρ(µim)} =: {σj}mj=1 have been selected, one
lets

im+1 = arg max
1≤i≤ns

min
{ωj}mj=1∈Σm

Loss
(
ρ(µi),W2Bar({ωj;σj}mj=1)

)
(5.51)

and ρ(µim+1) =: σm+1 is added to the set of atoms.
Since the examples in [56, 14] take place in one dimension, the calculations are

greatly simplified. Recall that in one spatial dimension, there is a closed formula
available for the transport from ρ to σ, given by their cumulative distribution func-
tions (cdf):

Tρ→σ = cdf(σ)[−1] ◦ cdf(ρ).

When Ω = [0, 1] and ρ̄ = 1[0,1], the Monge embedding coincides with the inverse cdf
operation, i.e. Tρ̄→σ = cdf(σ)[−1]. For any ρ, σ ∈ P(R)

W2(ρ, σ) = ‖cdf(ρ)[−1] − cdf(σ)[−1]‖L2([0,1]), (5.52)

and the optimal transport barycenter has the closed form

(cdf ◦W2Bar({ωi;σi}mi=1))[−1] =
m∑
i=1

ωi cdf(σi)
[−1], (5.53)

which is a special case of Definition 5.3. If one lets Loss = W 2
2 in Equation (5.25),

the barycenter encoding problem is therefore a quadratic optimization problem over
the convex set Σm:

{ωρi }i = arg min
{ωi}i∈Σm

∥∥∥∥∥cdf(ρ)[−1] −
m∑
i=1

ωi cdf(σi)
[−1]

∥∥∥∥∥
2

L2([0,1])

. (5.54)

Sparse barycenters and local Euclidean embedding

The approach from [56, 14] is extended in [51] in two ways. Firstly, the method is
used to treat a two-dimensional Burger’s equation by using the debiased entropic
optimal transport barycenters from Definition 5.2. The barycenter encoding and
reconstruction are solved using the iterative methods introduced in Section 4.3 with
automatic differentiation techniques to obtain the needed gradients.
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Secondly, instead of relying on one fixed set of atoms {σi}mi=1, the method in-
troduces the notion of best m-term barycenter. Here, the set of atoms is the entire
training set {ρi}nsi=1, but for every encoding, only m of the entries of {ωi}nsi=1 are non-
zero. The set of such m-sparse weight vectors is denoted Σm

ns , which is a collection
of
(
ns
m

)
m-simplices.

While the approximation error with an m-sparse barycenter is necessarily equal
or worse than one using the entire training set as atoms (since the former consti-
tutes a subset of the latter), it is preferable in practice. The sparse approach saves
computational time in the reconstruction step, which linearly scales with the num-
ber of atoms. Furthermore, too large a set of atoms might introduce redundancies
and local minima in the encoding problem. Lastly, approximation by an optimal
m-sparse barycenter will always be better or equal than a barycenter using m atoms
constructed by a greedy method.

Since the problem of finding an optimal m-sparse barycenter corresponding to
a parameter value µ∗ ∈ A as in Equation (5.50) requires knowledge of ρ(µ∗), a

surrogate needs to be built for the mapping µ 7→ {ωρ(µ)
j }j ∈ Σm

ns from parameters to
optimal sparse barycenter weights. This is done by learning a function

approxdist : A×A → R : approxdist(µ1, µ2) ≈ W2(ρ(µ1), ρ(µ2))2. (5.55)

Then, the sparse weights are optimized until

W2(ρ(µi),W2Bar({ωj(µ∗); ρj}j))2 ≈ W2(ρ(µi), ρ(µ∗))2 ≈ approxdist(µi, µ
∗) (5.56)

for all parameter values µi in the training set.
This construction is motivated by the fact that in Euclidean spaces, given a

point in an m-simplex (corresponding to ρ(µ∗)), the position of this point (given
by {ωi(µ∗)}i) is uniquely determined by its distance to all vertices of the simplex
(corresponding to {ρ(µi)}i).

5.4 Application to a porous media equation

In this section, we recall some results from [14], where we applied the methodology
from [56] that was described in Section 5.3.7 to a one-dimensional porous media
equation as it is used in hydrology and reservoir engineering. We will use the nota-
tion from [14], which might lead to some duplications of symbols that were used in
other parts of this thesis, but their meaning should be clear from the context.

Described physical system

The system describes the flow of the wetting saturation sw, which follows a non-linear
continuity equation of the form

φ(x)∂tsw(x, t) + ∂x

(
λw(sw(x, t)) v(x, t)

λw(sw(x, t)) + λnw(1− sw(x, t))

)
= 0 ∀x ∈ [0, 1], t ∈ [0, tF ],

(5.57)
where φ ∈ (0, 1] is the porosity of the medium, The total Darcy velocity v is given
by

v(x, t) = (λw + λnw)k(x)∂xp(x, t) (5.58)
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and subject to the constraint ∂xv(x, t) = 0, i.e. it is defined via an elliptic problem
for the pressure p. The permeability of the medium is denoted by k, while λw and
λnw are the phase mobilities of sw and snw = 1 − sw, which depend on the phase
viscosities µw and µnw through the power law

λw = µ−1
w sβw and λnw = µ−1

nw(1− sw)β (5.59)

with β ∈ R>0.
The system is accompanied by constant Dirichlet boundary conditions for the

pressure (with p(0, t) > p(L, t) to drive the flow) and the datum sw(0, t) = 1 ∀t ∈
[0, tF ]. The initial condition is sw(x, 0)|x>0 = 0.

For the example we will present here, φ, k, and µnw are kept constant while
β, µ := µnw/µw, and t are treated as varying parameters.

Offline and online phase

The high fidelity solutions are computed using a finite-volume method with implicit
time-stepping for the pressure equation and explicit time-stepping for the saturation
evolution equation. To respect the CFL condition, the time-step size in the latter is
adaptive. The spatial discretization consists of N = 1002 cells.

The solutions sw are not probability densities since the Dirichlet boundary con-
dition acts like a source term. Therefore, to apply the procedure outline above, the
snapshots sw are first normalized to obtain densities

ρ(β, µ, t) :=
sw(β, µ, t)

mw(β, µ, t)
:=

sw(β, µ, t)∫
[0,1]

sw(β, µ, t)
. (5.60)

As for the barycenter weights, an interpolation is built for the map (β, µ, t) 7→
m(β, µ, t) :=

∫
[0,1]

sw(β, µ, t).

In the online phase, given µ∗, we approximate ρ(µ∗) using a barycenter approxi-
mation and the interpolation (β, µ, t) 7→ {ωi(µ∗)}i. In particular, a linear interpola-
tion and subsequent projection to Σm is used. The mass is recovered by evaluating
the interpolation function (β, µ, t) 7→ mw.

Example problem

In the example we present here, the training set consists of the densities

{ρ(β, µ, t)i}nsi=1 ⊂ L∞([0, 1]) :

µ ∈ {1, 2, 3, 6, 12, 25}, β ∈ {2, 3, 4, 5, 6}, t ∈ {0.2, 0.4, . . . , 5}, (5.61)

hence ns = 750. As shown in Figure 5.2, the solutions are characterized by a moving
front of sw, whose shape and speed changes with β and µ.

Greedy dictionary construction

The results of the greedy algorithm are shown in Figure 5.3 and Figure 5.4. The
algorithm is initialized with those two elements of {ρ(β, µ, t)i}nsi=1 as atoms that have
the largest distance to one another, measured in the W2 norm.
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Figure 5.2: Elements of the training set {ρ(β, µ, t)i}nsi=1.

If the minimization algorithm fails to converge for a specific snapshot ρi, then the
approximation from a previous iteration is used and ρi is added to the set of atoms.
This does happen in practice, since the greedy algorithm is only a heuristic to avoid
redundancies in the set of atoms. This issue is discussed in more detail below.

Figure 5.3: Evolution of the average and maximum of
{min{ωj}mj=1∈Σm Loss

(
ρ(µi),W2Bar({ωj;σj}mj=1)

)
}nsi=1 throughout the iterations

of the greedy algorithm where Loss = W2.

Reconstruction errors

In Figure 5.5, we show two reconstructions of sw for m = 5 and compare them to
their projection to a POD basis with n = 50. The POD approximation exhibits the
expected shortcomings when approximating functions with a jump discontinuity.
In contrast, the approximation based on the optimal transport barycenter exhibits
the characteristic wavefront without spurious oscillations. In the worst-case ap-
proximation, there is a notable discrepancy close to x = 0, where the barycenter
approximation greatly underestimates the value of the saturation. This is an ar-
tifact of the normalizing and a consequence of the lacking resolution of the mass
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Figure 5.4: The first five atoms selected by the greedy algorithm (top, from dark to
bright) and their corresponding inverse cumulative distribution functions (bottom).

interpolation function for solutions with very small mass. One could circumvent
this problem by enforcing the value sw|x=0 = 1 in the reconstruction step instead of
relying on an interpolation. However, the latter approach is more general.

Properties of the minimization problem

Next, we consider the energy landscape of the minimization problem in Figure 5.6.
The values of the W2 distance between the density corresponding to the saturation
on the left in Figure 5.5 and its approximation by an optimal transport barycenter of
m = 3 atoms is plotted for different weight values, corresponding to the barycentric
coordinates on the pictured triangle.

We see that the contour lines of the loss function are very eccentric and that there
are several weight vectors that give nearly identical reconstruction errors. This is
confirmed when we consider the function

(δω2, δω3) 7→ W2(ρ(µ∗),W2Bar(ω1(µ∗)− δω2 − δω3, ω2(µ∗) + δω2, ω3(µ∗) + δω3;

σ1, σ2, σ3)) (5.62)

that describes the approximation error in the neighborhood of the optimal weights
{ωi(µ∗)}mi=1. This energy landscape is depicted in Figure 5.6 in log10 scale. From
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Figure 5.5: The best (top) and worst (bottom) approximation from the training
set for t > 1, compared with a POD projection. Note that the lower figure only
shows a fraction of the domain.

these results we can conclude that the greedy algorithm is susceptible to creating
redundancy in the set of atoms.

Atom redundancy

Lastly, we use the fact that in one spatial dimension, the set of possible barycenters
obtained from atoms {σi}i (c.f. Equation (5.25)) is given by the convex hull of
{cdf(σi)

[−1]}i, who are elements of a Hilbert space and form a simplex. The volume
of this simplex can be computed using the Cayley-Menger determinant. Figure 5.7
shows how this volume, normalized with the volume of the unit m-simplex (m!)−1,
changes as the greedy algorithm adds atoms to the dictionary.

We see that the volume decreases exponentially at a fast rate. Note that the
following recursive relation holds for the volume of two subsequent normalized sim-
plices:

Vol(Σ({cdf(σi)
[−1]}m+1

i=1 ))

Vol(Σm+1

) = δm+1 Vol(Σ({cdf(σi)
[−1]}mi=1))

Vol(Σm

, (5.63)

where δm+1 is the orthogonal distance of cdf(σm+1)[−1] to the simplex after m
iterations. We can conclude that many of the atoms added in the later greedy
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Figure 5.6: Values of the approximation error to the density corresponding to the
saturation on the left in Figure 5.5. Top: Values of the error for all possible weight
vectors. The colorbar is linear in [0, 0.2]. Bottom: Values around the optimal weight
vector ω1,2,3(µ∗) ≈ (0.83, 0.03, 0.13) in log10 scale.

iterations lie very close to the simplex generated in the previous iterations, i.e. δm+1

is very small.

Further details on the implementation of the optimization algorithm, the inter-
polation methods, and further numerical examples can be found in the original
reference [14].

5.5 Conclusion

Methods inspired by and using results from optimal transportation theory to ap-
proximate data in the space of probability measures have been developed in great
number in recent years. This has been facilitated by the development of fast methods
for computational optimal transport like the ones we described in Chapter 4.
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Figure 5.7: Normalized volume of the convex hull of the dictionary atoms through
the iterations of the greedy algorithm.

Interpolation and residual-based methods

Concerning the application to the model order reduction of parametrized partial
differential equations, the methods in [73, 56, 51, 14, 133] all rely on interpolation
methods in their online phase. If one wants to avoid this, the optimal weights can be
obtained by substituting Equation (5.50) directly into the PPDE problem to solve,
for example,

min
{ωj}j∈Σm

∣∣Lµ (W2Bar({ωj;σj}mj=1)
)∣∣2 . (5.64)

The difficulty here lies in the cost, which is restrictive for the use in a reduced model
online phase, since the barycenter has to be reconstructed from the weights and the
PDE residual has to be evaluated in the high-fidelity space.

Encoding uniqueness

Another open question is how to handle the issue of redundancy in the set of
atoms. Both the greedy and the POD algorithm from the reduced basis method
rely on orthogonalization in order to keep the projection onto the reduced basis
well-conditioned. While the greedy barycenter algorithm from [56, 14] provides a
heuristic to avoid elements to the set of atoms that are already within reach of the
dictionary, we see in practice that the optimal weights are not unique (c.f. Fig-
ure 5.6). The adaptive method from [51] shares this difficulty, see in particular
Figure 6(b) therein.

Wasserstein dictionary learning approaches [117, 92] and in particular the ad-
ditional term to enforce sparsity in the weights in [92] might be able to overcome
these issues. However, determining the atoms by optimization leads to a highly
non-linear optimization problem that is both multi-level and non-convex. When
optimizing for both the weights and atoms simultaneously, it is possible to reach
local minima where, for example, the weights are optimal for the current iteration
of atoms. In this case, it is necessary to restart the optimization and to introduce
additional weighting hyperparameters in order to force the optimization to focus on
either atoms or weights. While such tricky optimization problems are not uncom-
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mon in dictionary learning or machine learning in general, they still constitute a
challenge to implementation of these methods.



Chapter 6

Transport-based registration

We have seen in Chapter 5 that the optimal transport barycenter approximation
achieves good accuracy with already very few atoms. However, when trying to push
this accuracy further, one has to face issues of redundancy in the set of atoms and
the rising cost of the reconstruction problem.

In this section, we will present the method from [25], which uses the ideas from
the barycenter encoding to build a more classical registration method as discussed
in Section 2.6. As a result, the content of this section and the cited work by the
author are largely identical.

Given a set of densities {ρ(µi) = ρi}nsi=1, we fix a reference density ρ̄ (this can,
but does not have to be, a weighted barycenter of the ρis). Then, the maps Tρ̄→ρi =
MEρ̄(ρi) are computed for all i.

The idea is now to use these maps as a starting point for the construction of
the registration map Φµ that should inherit the good interpolation properties of the
displacement interpolation and barycenter encoding. In order to resolve the solution
further, we rely on a classical reduced basis in the reference frame, i.e. after the
registration step.

Remark 6.1. In this section, all optimal transport quantities (ψ, ψc, T, . . . ) are
denoted by their un-regularized form. The proposed method is applicable in this
setting under sufficient regularity assumptions discussed in Section 3.4.

For computational feasibility, we use entropic regularization in the numerical ex-
amples of Section 6.8. To apply the method in this case, one has to make the appro-
priate replacements, i.e. the c-transform becomes an application of the softmin, W2

becomes W2,ε or Sε, ψρ→σ becomes either ψερ→σ or ψερ→σ−ψερ→ρ, and so forth. When
specific assumptions or steps change depending on what regularisation is used, it is
explicitly stated.

6.1 Dimension reduction on the Monge embed-

dings

We begin our presentation with the strategy to obtain a small number of transport
modes that are the basis for registration. Consider the following two motivating
examples.

83



84 CHAPTER 6. TRANSPORT-BASED REGISTRATION

Example 6.1. Recall the caseM = {x 7→ u0(x−µ) : µ ∈ R} from Example 2.4, the
solution manifold of a pure equation with slow n−1/2 n-width decay. If u0 ∈ L1(R) is
normalized (and this can be done without loss of generality), we can choose ρ̄ = u0

and let ρ(µ) := u0(x− µ). The Monge embeddings of the set of solutions are of the
form

MEρ̄(ρ(µ)) = id + µ (6.1)

with the corresponding potentials {ψcµ : y 7→ −µy}.

Example 6.2. Let s ∈ L1(R≥0) be a non-increasing function with compact support
such that

∫ +∞
0

s(x)dx = 1. Consider the set M = {x 7→ s(x/µ) : µ ∈ R>0}. Let
ρ̄ = s and ρ(µ) := µ−1s(x/µ). The Monge embeddings of elements of M take the
form

MEρ̄(ρ(µ)) = µ id (6.2)

with the corresponding potentials {ψcµ : y 7→ 1
2
µy2}.

Remark 6.2. In Example 6.2, we can take s(y) = 1[0,1](y) or s(y) = C exp(−1/(1−
y2))1[0,1] with normalizing factor C. Note that these functions are similar in shape
to the solutions of the porous media equation from Section 5.4. As such, they are
very hard to approximate using a linear reduction method.

These examples illustrate that the set of Monge embeddings is extremely easy
to approximate for the cases of translations and dilations, while the corresponding
solutions themselves are not.

Consider a PPDE problem with solution u(µ) and related densities ρ(u)(µ) =:
ρ(µ). In some cases, ρ(u) = u is a possible choice, as in Example 6.1. The require-
ments for ρ are that it returns probability densities that coincide with the features
of the solution that have to be registered.

Example 6.3. In [73], a scalar testing function T is chosen to determine the dis-
tribution of features (which are sets of points {x ∈ Ω : T (x;u) > 0}). Examples for
T considered therein include ‖∇ × u‖, ‖∇u‖, the derivative of the Mach number of
a flow, and a shock discontinuity indicator (Equation (34) therein).

For the proposed method, ρ should return continuous densities supported on
the entire domain to allow the application of the regularity results presented in
Section 3.4.

Remark 6.3. The discretization of u and ρ need not agree. It can be beneficial
to discretise the latter on a regular tensor grid to accelerate the computation of the
transport mappings, c.f. Section 4.2.

Transport mode construction

We now describe the proposed method, assuming that we have access to a set of
snapshots {u(µi)}nsi=1 ⊂ Vh that are solutions to some high-fidelity discretization of
the PPDE in question at different parameter values.

First, compute {ρ(u)(µi)}nsi=1 and denote by ρ̄ a suited reference density, e.g.
ρ(µ̄) for a certain parameter value µ̄, or a weighted optimal transport barycenter of
{ρ(µi)}nsi=1. Next, calculate the Monge embeddings {Tρ̄→ρ(µi)}

ns
i=1. We denote by ψci

the transport potential such that Tρ̄→ρ(µi)(y) = y −∇ψci (y).
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Definition 6.1. The transport modes of a set of probability measures {ρ(µi)}nsi=1

and a reference ρ̄ are given by

y 7→ ξcj(y) = (λψj )−1/2

ns∑
i=1

(vψj )iψ
c
i (y), (6.3)

where λψj and vψj are jth non-zero eigenvalue and eigenvector of the Monge embedding
correlation matrix

Cψ := {〈∇ψci ,∇ψcj〉L2(ρ̄)}1≤i,j≤ns . (6.4)

Note the similarities with Algorithm 1 for the POD modes.

Example 6.4. For snapshots of the pure advection equation from Example 6.1 at
different values µi, {ρ̄(x−µi)}nsi=1, we find (Cψ)ij = µiµj with one non-zero eigenvalue

λψ1 =
∑ns

i=1 µ
2
i and eigenvector (vψ1 )i = µi(

∑ns
j=1 µ

2
j)
−1/2. The corresponding transport

mode is given by ξc1 : y 7→ −y.
The case of the moving front in Example 6.2 is almost identical, as (Cψ)ij =

µiµj
∫
y2dρ̄(y). Also in this case, there is only one transport mode which is propor-

tional to y 7→ y2.

If the eigenvalues of Cψ decay fast enough, all transport potentials ψc(µ) can be
accurately (in the sense of a ρ̄-weighted L2 norm of their derivatives) approximated
by a linear combination of the form ψc(µ) ≈

∑m
j=1 wj(µ)ξcj where m� ns.

Limits of the linear treatment

Note that we cannot completely escape the non-linearity of P(Ω). In order to guar-
antee that the approximate transport potential

∑m
j=1wj(µ)ξcj is in fact a transport

potential (i.e.: convex) it would be sufficient to take convex combinations of the
snapshot potentials: ψc(µ) ≈

∑ns
i=1 ωi(µ)ψci with non-negative weights ω1,...,m that

sum to one. In that case, the function 1
2
|y|2−

∑ns
i=1 ωi(µ)ψci is again a convex function,

the same one that appears in the definition of the Monge embeddings barycenter.
Using a linear combination of transport modes, we expect the resulting function

1
2
|y|2−

∑m
j=1wj(µ)ξcj(y) still to be convex, but this is not guaranteed by construction

but a consequence of the quality of approximation through the modes {ξci }mi=1.

6.2 Reference reduced basis

Evaluating

u(µi) ◦

(
id−∇

m∑
j=1

wj(µi)ξ
c
j

)
=: u(µi) ◦ Φ−1

µi
(6.5)

applies the approximated transport mapping to the ith snapshot and yields elements
of the mapped snapshot manifold Φµ(M). By construction, we expect this set
to be more amicable to linear approximation. Returning to the simple cases of
Example 6.1 and Example 6.1, there is only one transport mode each. They have
the form ξc1(y) = −y and ξc1(y) = const. y2. The approximation of the snapshot
potentials ψci = −µiy ∈ span{ξc1} ∀i and ψci = 1

2
µiy

2 ∈ span{ξc1} ∀i is exact in both
cases and the mapped snapshot manifold consists of one single element ρ̄.
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More generally, we proceed by building a reduced basis in the reference space
using the correlation matrix of transported snapshots

Cu◦Φ−1

:= {〈u(µi) ◦ Φ−1
µi
, u(µj) ◦ Φ−1

µj
〉Vh}1≤i,j≤ns . (6.6)

Just as in the classical RB method described in Chapter 2, we obtain a set of reduced
basis functions which we will denote by φ1,...,nm . Now, any element of M can be
approximated via

utrb(µ) :=
nm∑
i=1

ũ(µ)i φi ◦

(
id−∇

[
m∑
j=1

wj(µ)ξcj

]c)
=

nm∑
i=1

ũ(µ)i φi ◦ Φµ. (6.7)

Remark 6.4. The relation

Φµ(x) = x−∇

[
m∑
j=1

wj(µ)ξcj

]c
(x) (6.8)

holds as long as
∑m

j=1wj(µ)ξcj is in fact a transport potential, i.e. a convex function.
In this case, we can use the properties of the c-transform to invert the mapping. This
trick is possible since the gradients of Legendre transforms are inverses of each other
and the c-transform and Legendre transform are related through Proposition 3.2.

When working with regularized potentials, we still expect that

id−∇ψc,ε ≈ (id−∇ψε)−1 (6.9)

for small ε because of the convergence of the entropic transport map to the transport
map of the un-regularized problem as ε→ 0 and the estimates given in Section 4.1.

We conclude this subsection with an example for a one-dimensional PPDE that
forms boundary layers from [128]:

Proposition 6.1. The solutions to the equation

−∂2
xxuµ + µ2uµ = 0 (6.10)

on the domain Ω = [0, 1] with boundary conditions uµ(0) = 1, uµ(1) = 0 and
µ, µ̄ ∈ [µmin, µmax] =: A, µmax = ε−2µmin, µmin > 1, ε ∈ (0, 1) satisfy

inf
ξc1∈span{ψcµ:µ∈A}

sup
µ∈A

inf
w1(µ)∈R

Φ−1(y)=y−w1(µ)∂yξc1(y)

Φ−1
µ :Ω→Ω is a bijection

‖uµ̄ − uµ ◦Φ−1
µ ‖L2(Ω) ≤ e−µmin(4 + ε). (6.11)

where ρ(u) = u/
∫
u, ρ̄ = W2Bar({ρµ : µ ∈ A}), ψcµ denotes the function such that

Tρ̄→ρµ(y) = y − ∂yψcµ(y), and
∫
ψcµ = 0.

In other words, we can show a bound on the Kolmogorov n-m-width (in the
limit of tolerance → 0, c.f. [128], section 3.2) of M for n = m = 1. The proof of
this proposition can be found in Appendix C. It relies on the fact that, just as in
Example 6.2, the transport mode is very close to the mapping y 7→ µ̄y/µ for y ≤
min{µ/µ̄, 1}, and therefore aligns the boundary layers, since u(µ, x) ≈ exp(−µx).
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6.3 Online phase

The proposed approximation of u(µ),

utrb(µ) =
nm∑
i=1

ũi(µ)φi ◦

(
id−∇

[
m∑
j=1

wj(µ)ξcj

]c)

is determined by the values of ũ(µ)i and w(µ)j for all i = 1, . . . , nm and j =
1, . . . ,m.

Optimization of the basis and mapping coefficients

One option to determine the optimal values of both is to minimize the norm of
the PPDE residual with respect to both of these variables. While the dependence
of utrb on {wj}j is non-linear, the Jacobian of this relation has a simple form in
the reference frame, see Remark 6.6. The resulting optimization problem in a least
squares approach would be of the form

min
{ũi}i,{wj}j

∣∣∣∣∣Lµ
(∑

i

ũi φi ◦

(
id−∇

[
m∑
j=1

wjξ
c
j

]c))∣∣∣∣∣
2

. (6.12)

In this work, we opt for a different approach. The values of the transport mode
coefficients is predicted based on the value of µ. Then, the coefficients of the refer-
ence frame reduced basis are determined by Galerkin projection.

We learn the mapping µ 7→ w1,...,m(µ) using a Gaussian process [110] and the
data from the snapshot set {µi, w1,...,m(µi)}nsi=1. The functions could also be de-
scribed by interpolation or any related method. We use the Gaussian process as it
is computationally cheap also for high-dimensional data.

Online residual assembly

To solve the PPDE problem for a new parameter value µ, we evaluate the mapping
Φµ, which is determined by the values of {wj(µ)}mj=1. The system of equations for
{ũi(µ)}nmi=1 is then obtained by Galerkin projection using the reference reduced basis
φ1,...,nm .

For example, the already considered bilinear form corresponding to a Laplace
operator reads, c.f. Equation (2.43), reads∫

Ω

∇(φj ◦ Φµ) · ∇(φj ◦ Φµ) dx =

∫
Φµ(Ω)

∇φj · [DΦ−1
µ ]−1[DΦ−1

µ ]−T∇φj detDΦ−1
µ dy

where Φµ(Ω) = Ω and DΦ−1
µ = Id−

∑m
j=1wj(µ)D2ξcj .

Remark 6.5. The drawback is that these forms have to be assembled for every
new parameter value, and the computational cost for this depends on the dimension
of the full-order problem. This is a challenge to any projection-based model order
reduction method that utilizes a parameter-dependent mapping and requires hyper-
reduction techniques to solve, see Section 2.5.
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Remark 6.6. If the parameters are time-dependent, or time is itself a parameter,
the online phase will also feature an additional advection-like term:

d

dt
utrb(µ) =

nm∑
i=1

(
dũ(µ)i

dt
φi ◦ Φµ + ũ(µ)i

dΦµ

dt
· (∇φi ◦ Φµ)

)
(6.13)

In the reference domain, this requires the evaluation of

dΦµ

dt
◦ Φ−1

µ = −[DΦ−1
µ ]−T

dΦ−1
µ

dt
. (6.14)

Evaluating the latter expression is done using

dΦ−1
µ

dt
= −

m∑
j=1

dwj(µ)

dt
∇ξcj . (6.15)

In summary, the proposed approach relies on snapshot remapping. The differ-
ence to other existing methods of this form is how the mappings are obtained. Our
approach is data-driven and based on a POD of Monge embeddings. Other choices
for parameter dependent mappings in the literature include problem-dependent
parametrizations [35], polynomial expansion [97, 142], and high-fidelity piece-wise
polynomial mappings [128].

6.4 Invertibility and boundary conditions

For now, assume Ω = [0, 1]d∈{2,3}, the unit square or cube. Proposition 2.3 in
[128] proves two sufficient conditions in order for a mapping of the form Φ−1(y) =
y −

∑m
j=1 wj∇ξcj to be a bijection in this case: Firstly, ∇ξcj · êi = 0 : 1 ≤ i ≤ d

on all edges (or, if d = 3, faces), where ê1,...,d are normal vectors, and secondly
detDΦ−1 > 0 in Ω ∪ ∂Ω. In the case of more general mappings from Ω2 to Ω1, the
first condition reads dist(Φ−1(y), ∂Ω1) = 0 ∀y ∈ ∂Ω2 (Proposition 2.4 therein).

Un-regularized case

A natural question is if these conditions are met by the mappings defined in this
section. Let us begin by considering the case without entropic regularization. Denote
by ψc the optimal transport potential for the transport from ρ̄ ∈ Pac(Ω2) to ρ ∈
Pac(Ω1). From Section 3.3 we know that the second boundary value problem for
the Monge-Ampére equation that ϕ∗ = 1

2
| · |2 − ψc solves implies that id − ∇ψc

maps ∂Ω1 into ∂Ω2 provided that supp(ρ̄) = Ω1 and supp(ρ) = Ω2. Invertibility of
id−∇ψc requires strict convexity of ϕ∗. This is given by the following theorem, due
to Caffarelli [34].

Theorem 6.1 (Sufficient conditions for strictly convex transport maps ([47], The-
orem 2.2)). Let ρ, σ ∈ Pac(Rd) with supp(ρ) = Ω1, supp(σ) = Ω2, and both ∂Ω1 and
∂Ω2 are of Lebesgue measure zero. Furthermore, assume that there exists a constant
Λ > 0 such that Λ ≤ ρ, σ ≤ 1/Λ on the respective supports of the densities. Further-
more, assume that Ω2 is convex. Then, if ∇ϕ is the optimal transport map between
ρ and σ, ϕ is strictly convex. The modulus of strict convexity of ϕ depends only on
Λ,Ω1, and Ω2.
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According to Theorem 6.1, it is enough for ρ̄, {ρi}i to be bounded below and
above and Ω to be convex such that the maps id−∇ψci are invertible for all i.

A sufficient condition to enforce positivity of the Jacobian determinant

detDΦ−1 = Id−
ns∑
j=1

wjD
2ψcj (6.16)

would be that the coefficents w1,...,ns are normalized, non-negative weights ω1,...,ns ,
and det(Id − D2ψcj∗) > 0, ωj∗ > 0 for at least one j∗. Again, this is the setting of
Monge embedding barycenters.

By opting for linear combinations over convex ones in order to make use of the
POD compression on the tangent space, we lose the guaranteed bijectivity. A similar
approach is taken in [128].

Regularized case

In the entropic case, the transport maps are also gradients of convex functions (Re-
mark 4.8). However, the entropic Monge map does not exactly solve the optimal
transport boundary value problem. Since ψε is defined as a Gaussian convolu-
tion of exp(ψc,ε/ε)σ, at best we can assume that the potential is very small once
dist(x, supp(σ)) > 3ε1/2.

Because of this, the boundary condition has to be enforced in a post-processing
step. Denote by ψcpre−proj. denotes the output of the entropic optimal transport
calculations. We opt for a global correction, by finding a potential ψc closest to
ψcpre−proj. in a weighted H1 norm that satisifes ∇ · ψc · n̂ = 0 on ∂Ω.

To be precise, we solve the system∫
Ω

(κ2∇ψc,ε · ∇v + ψc,εv) + δ−1

∫
∂Ω

(∇ψc,ε · n̂)v

=

∫
Ω

(κ2∇ψc,εpre−proj.(µi) · ∇v + ψc,εpre−proj.(µi)v) ∀v ∈ Vh (6.17)

for every i = 1, . . . , ns.
There are two parameters to set: δ is a penalty term to enforce the boundary

condition and is set to 10−9 in our numerical experiments. The value of κ determines
the scale on which the function changes shape to fit the boundary condition. Since
we expect the error introduced by the entropic smoothing to be of the scale

√
ε and

we want to limit the number of free parameters in our method, we set κ2 = ε−1.
Equation (6.17) implies that ψc∆ := ψc,εpre−proj. − ψc,ε solves

− κ2∆ψcδ + ψcδ = 0 (6.18)

in Ω with the Neumann boundary condition

∂nψ
c
δ = ∂nψ

c,ε
pre−proj. (6.19)

on ∂Ω. This problem is well defined, c.f. [90], Section 3.3 and in particular Theorem
3.15.
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Remark 6.7. If ψc,εpre−proj. is very far from fulfilling the boundary conditions, this

step can deform the potential to the point that y 7→ |y|2
2
− ψc(y) is no longer convex

and the mapping no longer invertible. It is therefore crucial that ε is chosen small
enough such that ψc,εpre−proj. is close to ψc, the optimal potential of the un-regularized
problem, that will fulfill the boundary condition.

We show the effect of the H1 projection in Figure 6.1. The projected transport
potential is taken from the example presented in Section 6.8.1.

Figure 6.1: Cross-sections of ψc before (top row) and after (bottom row) application
of the boundary projection. The depicted transport potential is taken from the
example problem discussed in Section 6.8.1 and corresponds to µ ≈ [0.348, 0.174].
We see that the correction at the boundary is minimal. In this example, ε = κ−2 =
10−2.

6.5 Regularity

When expressing the residual of the PPDE in the reference domain as in Equa-
tion (2.43), we require additional regularity of Φ−1

µ to allow for the computation of
its derivatives. A sufficient condition is Φ−1

µ ∈ C1(Ω,Rd). We therefore require the
optimal transport potentials {ψci}nsi=1 from which Φ−1

µ is constructed to be ∈ C2(Ω).

For the un-regularized case, we have discussed sufficient conditions for this in Sec-
tion 3.4. Recall from Caffarelli’s regularity results (Theorem 3.5) that Ck,α densities
and convexity of the support of the target measure guarantee the optimal transport
potential to be Ck+2,α.

When employing entropic regularization, the optimal potentials are smooth, as
they are defined through a Gaussian convolution. The H1 projection step is a
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elliptic problem and will preserve this regularity up to the boundary, with a constant
depending on κ.

Vanishing densities

For practical purposes, it is also interesting what we can say about the size of
‖Φ−1

µ ‖L∞ and det Φ−1
µ . Consider the example from Proposition 6.1. As shown in

Appendix C, the transport map reads

Tρµ̄→ρµ(y) = 1− 1

µ
sinh−1

(
sinhµ

sinh µ̄
sinh(µ̄(1− y))

)
(6.20)

and therefore
∂yTρµ̄→ρµ(1) ≈ µ̄

µ
eµ−µ̄. (6.21)

For typical values of ε2 = 10−1, µmin = 20, µ̄ ≈ 78, these values can be as extreme as
1052 or 10−25, which makes this mapping unusable in practice.

In practice, the best option to prevent detDΦ−1
µ from taking extreme values is

via the bounds on the densities ρ̄ and ρ(µ), since

detDΦ−1
µ ≈ detD2ϕρ̄→ρ(µ) =

ρ̄

ρ(µ) ◦ ϕρ̄→ρ(µ)

. (6.22)

The entropic smoothing for optimal transport barycenters discussed in Section 5.3.2
can provide this effect as well.

Figure 6.2: Transport maps for the problem from Proposition 6.1 with ε2 = 10−1

and µmin = 20 for different values of s with ε constant at 10−4. We see that the
parameter s that sets a lower bound to the densities can control the derivatives of
the mapping in this example. Note that modification of T beyond the point x∗ ≈
µ
µ̄
≈ 0.26 does not impact the approximation result in Proposition 6.1 (Appendix C)

so that the choice s = 10−7 provides the same error bounds while keeping the
derivatives of T and T−1 under control.

As an illustration, when using ρ(u) = (1 − s)u/
∫
u + s with s > 0 in Proposi-

tion 6.1, we see that the derivative of the transport map is controlled (Figure 6.2).
Note in particular that the bound on the derivative is in fact much better than
the obvious (max ρ)/(minσ) type bounds, which would imply ∂yΦ

−1
µ (y) ∈ (s/(µ +

s), (µ̄+ s)/s).
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Mass splitting

The results for the un-regularized case are also of practical interest for the sake
of guarantees as ε → 0. Recall from Section 3.4 and in particular Example 3.2
that transport to non-convex target sets can lead to singularities. The entropic
regularisation avoids these singularities, but at the same time does not exactly fulfil
the marginal constraints. As ε→ 0, the entropic transport map T ε converges to the
un-regularized T , which can be discontinuous.

In Figure 6.3 and Figure 6.4 we illustrate this for the transport problem between
the uniform measure on a disk and a crescent shape in Ω = [0, 1]2. The entropic
OT problem is solved using the setup from Section 6.8 with ε = 10−2. Since the
computational method is designed for strictly positive measures, we set the density
outisde of the respective shapes to 10−16.

Figure 6.3: Visualization of the de-biased entropic optimal transport potential ψε

and the displacements 1
4
(id−∇ψε) for the uniform measure on a ball and a crescent.

In the first row, the displacements are re-scaled for a clearer plot. The second row
shows the displacements for all points on the boundary.



6.6. HYPER-REDUCTION 93

We observe that the x2-derivative of the mapping is well under control, how-
ever this comes at the price of violating the marginal constrains. As expected, the
violation is of the order

√
ε = 0.1. We furthermore observe that the violations

are more pronounced at points where the un-regularized mapping would develop
discontinuities.

Figure 6.4: Derivatives of the de-biased entropic optimal transport potentials ψε

from Figure 6.3 in the x2 direction for x1 ∈ {0, 0.1, . . . , 1} from dark to bringt. Solid
lines denote those cases where the plotted cross-sections intersect the support of the
ball (the transported density).

6.6 Hyper-reduction

When the online phase can be made fully independent of the size N of the high-
fidelity problem, its computational cost can be reduced dramatically. For now, the
assembly of linear and bilinear forms has to be done online and depends on N (c.f.
Remark 6.5).

We can remedy this shortcoming using the empirical interpolation method intro-
duced in Section 2.5 and in particular Algorithm 3. We utilize a version of EI based
on a POD of the parameter-dependent forms [39, 128]. We briefly recall the method
using the example of the mapped Laplace operator from Equation (2.43).

Based on the data from the training set, a collection of snapshots

{[DΦ−1
µi

]−1[DΦ−1
µi

]−T detDΦ−1
µi
}nsi=1 =: {Kµi}nsi=1 (6.23)

is used to obtain a POD basis from the correlation matrix CK with entries

CK
ij =

∫
Ω

tr(KT
µi
Kµj) dy, 1 ≤ i, j ≤ ns. (6.24)

Using an energy criterion τeim, the eigenvectors Ξq : 1 ≤ q ≤ Q corresponding to
the Q largest eigenvalues are selected to span an approximation space. Coefficients
θq(µ) and functions Xq : 1 ≤ q ≤ Q are determined such that Kµ ≈

∑Q
q=1 θq(µ)Xq

for all µ. The way the interpolation points and functions are selected guarantees
that the matrix B ∈ RQ×Q : Bq′q = Xq′(y

eim
q ) is lower-triangular with unit diagonal,

so the interpolation problem is well-defined and quickly (i.e. in O(Q2) time) solved.
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Online, Kµ is evaluated at the points {yeim
q }

Q
q=1 and the interpolation problem

Kµ(yeim
q ) =

∑Q
q′=1 θq′(µ)Xq′(y

eim
q ) : 1 ≤ q ≤ Q is solved to obtain {θq(µ)}Qq=1. The

full form is approximated using

∫
Ω

∇φj ·Kµ∇φj dy ≈
Q∑
q=1

θq(µ)

∫
Ω

∇φj ·Xq,ij∇φj dy, (6.25)

where the integral defines a Q×nm×nm tensor that can be pre-computed offline. As
a result, no integration in the high-fidelity space has to be performed in the online
phase.

The online cost of the EIM procedure consists of Q evaluations of Kµ, the O(Q2)
interpolation problem, and a O(Qn2

m) tensor contraction. Importantly, it does not
depend on N .

6.7 Comparison with other works

In this section, we contrast the proposed method to three approaches that have
been proposed in the past and relate to this work. Naturally, any of the registration
methods cited so far [112, 128, 97, 35, 142, 72] would be a candidate for comparison.

6.7.1 Optimization-based registration

In [128], the author presents an optimization-based registration method for PPDE
problems. Given a set of snapshots {u(µi)}nsi=1 with {µi}nsi=1 ⊂ A, it returns a
parameter-dependent bijective mapping Φ : A× Ω→ Ω.

Objective function

The mappings are approximated as

Φhf
µ (y) :=

mhf∑
j=1

whf(µ)jχ
hf
j (y). (6.26)

As in Equation (6.7) , {whf(µ)j}m
hf

j=1 are parameter-dependent coefficients, while

{χhf}mhf

i=1 are elements of a general approximation space such as Legendre polynomials
or Fourier expansions. The mappings are constructed such that

Prox(µ,Φhf) :=

∥∥∥∥∥∥u(µ) ◦

id +
mhf∑
j=1

whf
j χ

hf
j

− ū
∥∥∥∥∥∥

2

L2(Ω)

(6.27)

is small, given a reference ū. Besides this proximity measure, the optimization
penalizes the H2 semi-norm of the mappings and enforces constraints to keep the
Jacobian of the mappings strictly positive. In particular, the complete minimization
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problem reads

min
{whf

j }j∈Rm
hf

(
Prox(µ,Φhf) + α‖Φhf‖2

Ḣ2(Ω)

)
subject to

∥∥∥∥exp
ε− detDΦhf

C
+ exp

detDΦhf − 1/ε

C

∥∥∥∥
L1(Ω)

≤ δ. (6.28)

The hyper-parameters ε, C, and δ are set to 0.1, 0.025ε, and |Ω|, respectively in
[128]. The value of α has to be chosen depending on mhf and can vary substantially
- between 10−10 and 101. The constraint weakly enforces ε < detDΦhf < 1/ε.

Reduction

To guarantee a sufficiently rich set of mappings to optimize over, mhf has to be
rather large, which can be restrictive when evaluating mappings in the online phase.
Consequently, the authors also opt for a POD approach, reducing the number of
mapping terms to m based on an eigenvalue decomposition of the matrix Cw ∈
Rmhf×mhf

with elements
Cw
ij = whf(µ)i · whf(µ)j. (6.29)

The POD approximation leads to

mhf∑
j=1

whf(µ)jχ
hf
j ≈

m∑
j=1

w(µ)jχj. (6.30)

This method is similar to the one we propose in the present work. Note that also
in this case, it cannot be guaranteed that this approximate mapping is invertible,
even if the high fidelity one is. However, the method proved stable in the numerical
test cases considered.

Connection to optimal transport maps

The mappings Φhf
µ correspond to the transport maps y 7→ y−∇ψcµ(y) in the present

work. Note that similar constraints can be enforced in this case: The upper and
lower bounds on ρ(µ) control detDΦµ through the Monge-Ampére equation (3.24).
The proximity measure is related to the condition (id − ψci )]ρ̄ = ρi. From the
discussion following Definition 4.3, we expect this to be satisfied to order ε. Lastly,
the transport cost ‖∇ψcµ‖L2(ρ̄) controls the H1 semi-norm of ψci .

Remark 6.8. Note that control over ∇ψc does not guarantee anything for the higher
order derivatives of ψc by itself. Consider the simple example of ρ(x) = 1[0,1](x) and
σ(y) = 2y 1[0,1](y). We find ∂xψρ→σ(x) = x −

√
x, so ‖∂xψ‖2

L2(ρ) = 1/30, and

‖∂2
xψ‖2

L2(ρ) = +∞. We assume that more can be said for the case where Λ ≤ ρ, σ ≤
1/Λ, but these are non-trivial questions even when we know that ψ is smooth (c.f.
Section 3.4).

One classical result in this direction is given in [36]: Let Ω ⊂ Rd open with d ≤ 5
contain the ball B(0, r). Furthermore, assume ϕ ∈ C5(Ω) solves detD2ϕ = 1 on
Ω and that D2ϕ(0) = Id. Then,

∑d
i,j,k=1(∂xi∂xj∂xkϕ)2(0) ≤ 4Md/r

2, where Md are
universal constants with M2 ≤ 4 and M3 < 2660.
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6.7.2 Point set registration

In the later work [129], the authors employ a similar optimization-based registration
method for point registration applications. In this case, the proximity measure is
based on a number of pairs (x(i), y(j)) : i = 1, . . . , np and the mapping has to satisfy
Φ(xi) ≈ yi ∀i, with the discrepancy measured either as the average error

∑
i |Φ(xi)−

yi|2 or weakly enforced as maxi |Φ(x(i))− y(j)|∞ ≤ δ. Furthermore, additional terms
enforce boundedness of the Jacobian determinant of Φ or the anisotropy of the mesh.

Restriction to gradient mappings in the optimization

The author compares the best mapping obtained by the method in two cases: In
the first case, Φ is obtained through optimization on general polynomial functions
up to a certain degree on Ω valued in R2. In the second case, Φ is restricted to be
of the form Φ(x) = x+∇ϕ for a real-valued polynomial function ϕ. In both cases,
Φ(∂Ω) = ∂Ω for all candidate mappings. The polynomial degree in the two cases
are chosen such that the trial spaces have comparable dimension.

It is observed (c.f. Figure 5 in [129]) that while the mapping is of similar quality
for most deformations, the optimization returns worse or even inadmissible map-
pings when restricted to gradient functions in the case of large deformations. This
poses questions about the quality of optimal transport maps for the purposes of
registration.

Entropic transport maps for point set registration

In the example considered where np = 3 points are matched, the optimal transport
problem is clearly trivial. However, the optimal transport potential is only defined
at the point values {xi}npi=1. While entropic regularization defines ψc,ε for all values
in Ω (or in Rd, even), this extension is not necessarily a good map. By substi-
tuting the formula for two densities of the form ρ =

∑
i ρ̂iδx(i) , σ =

∑
i σ̂jδy(j) into

Equation (4.9), we obtain

exp

(
−ψ

c,ε(y)

ε

)
=
∑
i

exp

(
−|x(i) − y|2

2ε

)
ρ̂i

(∑
j

exp

(
−|x(i) − y(j)|2

2ε
+
ψc,ε(yj)

ε

)
σ̂j

)−1

. (6.31)

Therefore, as ε→ 0,

y −∇ψc,ε(y) = T εσ→ρ(y) ≈ x(i∗), where i∗ := arg min
1≤i≤np

|x(i) − y|2. (6.32)

The proposed method is not designed for point registration approaches, as it
requires ρ to admit a density that is bounded from below in the entire domain. That
said, if ε is chosen large enough and the points to be registered are approximated by
narrow (e.g.) Gaussians, one can apply it to the problem in [129]. We let ε = 10−2

and discretize the domain Ω = [0, 1]2 using a uniform 96× 96 grid of quadrilaterals.
The transported densities are approximated as Gaussians with standard deviation
equal to 7× 10−3 centered at the registration points:

{x(i)}3
i=1 = {(1/2, 1/2), (1/4, 1/4), (3/4, 1/4)} (6.33)
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and

{y(j)}3
j=1 = {(1/4, 3/4), (1/16, 1/16), (1/2, 1/4)} (6.34)

Since both ρ = 1
3

∑
i δx(i) and σ = 1

3

∑
j δyj are effectively zero throughout most

parts of the domain, the OT boundary condition Φ(supp(ρ)) = supp(σ) does not
resemble Φ(Ω) = Ω. We therefore apply the proposed H1 projection to enforce it.

Figure 6.5: Visualization of the entropic optimal transport potential ψε and the
displacements 1

4
(id−∇ψε) for the point registration example before (left) and after

(right) application of the boundary condition projection from Equation (6.17). The
displacements are re-scaled for a clearer plot, at the points {xi}i, the longer arrows
show the true displacement id−∇ψε.

Figure 6.5 displays the contour lines of the entropic OT potential, extended to all
x ∈ Ω through the Schrödinger equations Equation (4.9). Note that the boundary
condition is not met by a significant margin. After projection, it holds.

However, while we find maxi minj |x(i) − ∇ψε(x(i)) − y(j)| = 6.9 × 10−4 be-
fore the boundary conditions are enforced, this error grows to maxi minj |x(i) −
∇ψε(x(i)) − y(j)| = 2.3 × 10−2 in the right picture. For the inverse mapping, since
y(2) lies very close to the domain boundary, this effect is even more pronounced, and
maxj mini |y(j) −∇ψc,ε(y(j))− x(i)| grows from 4.4× 10−4 to 1.4× 10−1 by applying
the boundary condition projection.

This example was discussed to illustrate the extension of the transport potential
defined at point values {x(i)}i to the entire domain Ω. If the transport map is to
respect the boundary condition Φ(Ω) = Ω, then we necessarily need to have mass
near ∂Ω.

How restrictive are gradient mappings?

It is an interesting result that the performance of the optimization-based method
degrades when restricting the trial space to gradient mappings. In the case of mass
transport of continuous density, the restriction of transport maps S to the form
S = ∇ϕ is the basis of the regularity theory of the Monge-Ampére equation. In
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[47], this is compared to the situation of a divergence-free vector field v : ∇ · v = 0,
which can be arbitrarily irregular, and a divergence-free gradient field ϕ : ∇·∇ϕ = 0,
which is as regular as the boundary conditions permit.

It is also worth noting that the gradient maps perform as well as their superset
of polynomial vector-valued maps as long as the deformations are not large. To
be more precise, the points {y(i)}i are moved along the lines x(i) + t(y(i) − x(i)) for
t ∈ [0.1, 1]. For all t ≤ 0.8, the gradient maps yield good results. The case shown in
Figure 6.5 is t = 1.

Gradient maps will certainly fail in an optimization-based approach if the regis-
tration problem corresponds to a case where the optimal transport map is discontin-
uous such as Caffarelli’s Example 3.2. In this case, the optimization will not be able
to fulfil the regularity requirements since to do so, it would have to violate the cyclic
monotonicity. However, the latter is enforced by construction of the trial space.

6.7.3 Advection modes

The registration method presented in [72] uses OT techniques to build the mapping
Φµ. Compared to the present work, there are three main differences: Firstly, the
mapping of the snapshots is done in the sense of push-forward measures, that is

ρ(µ) ≈ (ρ̄ ◦ Φµ + r(µ) ◦ Φµ) detDΦµ (6.35)

where r(µ) is a residual defined in the reference configuration. Note the presence of
the Jacobian determinant of the mapping when compared to our formulation for utrb

in (6.7). As in the present work and as in [128, 131] the residual is approximated
by linear combinations of POD modes. The mapping is approximated as a linear
combination of advection modes.

These modes are obtained using the distance matrix D with entries

Dij := W2(ρ(µi), ρ(µj))
2 ∀i, j ∈ 1, . . . , ns (6.36)

Recall that if one were to replace W2 by ‖ · ‖2
2, one could reconstruct the positions

of ρ(µ1), . . . , ρ(µns) ∈ RN up to rotations and translations of the entire set solely
from the relative distance information contained in D by performing a singular value
decomposition of the matrix B := −1

2
JDJ with J = Id− 1

ns
11T .

Furthermore, retaining only the m largest singular values, one can obtain the
best approximate positions in an m-dimensional space. We refer again to the com-
prehensive review of Euclidean distance matrix methods given in [52].

For the W2 distance, however, we know that B is not positive semi-definite.
By omitting the negative singular values, the authors obtain approximations of
the positions of ρ(µ1), . . . , ρ(µns in a low-dimensional space. By inspection, they
find parametrizations of µ 7→ Φµ. For example, if the reconstructed positions lie
approximately on a line, then the dominant advection mode is set as the transport
map connecting the solution at its beginning to the one at the end.

The definition utrb(µ) =
∑nm

i=1 ũi(µ)φi ◦ Φµ used in our work corresponds to the
push-forward of a function using Φ−1

µ . The same operation is used to obtain the
reference reduced basis. Especially in the case where u itself is used to construct the
transport mappings, one could also use the push-forward as applied on a density.
In a sense, this is a natural choice, since the transport mappings are constructed to
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fulfil the push-forward relation for a density. Up to numerical inaccuracies, it holds
on the training set that

ρ̄ = ρ(µi) ◦ (id−∇ψc(µi)) det
(
Id−D2ψc(µi)

)
∀i = 1, . . . , ns, (6.37)

and therefore the only reference reduced basis function is expected to be ρ̄/‖ρ̄‖L2 .
We chose to not follow this approach for two reasons: First, relation (6.37) only

holds if the transport mappings are constructed directly from u itself and not another
derived quantity. This naturally limits the range of application cases.

Second, substituting the push-forward relation for a density into a PDE residual
requires evaluating derivatives of det (Id−D2ψc(µi)), which requires even more reg-
ularity of ψc, higher order basis functions in the discretization., and a higher order
numerical quadrature in the high-fidelity problem.

6.8 Numerical examples

We will demonstrate the proposed method and the impact of some of the hyperpa-
rameters on two test cases. For finite element calculations, we rely on the Gridap.jl
library1 [136, 11], while GaussianProcesses.jl2 is used for the computation of the
Gaussian processes. The computational optimal transport routines used are avail-
able in the package WassersteinDictionaries.jl3. The code to reproduce the
examples in this section is published in the package OptimalMappings.jl4.

6.8.1 Poisson’s equation with moving source

Let Ω = [0, 1]2, discretized by a 64× 64 grid of quadrilateral cells. For Vh, we chose
H1

0 -conforming Legendre basis functions of order p = 3, which leads to N = 36481
degrees of freedom. The grid size is denoted with h. The equation we solve is

∆u(x;µ) = f(x;µ) : x ∈ Ω, u(x;µ) = 0 : x ∈ ∂Ω, (6.38)

where f is a narrow Gaussian with variance var = 10−3 and mean (1
2
, 1

2
) + µ, µ ∈

[− 7
20
, 7

20
]2 = A.

Training set and parameter choices

To construct the mappings and reduced basis we draw ns = 100 samples of µ
uniformly from A. The solutions to this equation are not probability densities, so
we define rho either as

ρ(u)(µ) =
u(µ)2∫
u(µ)2

or ρ(u)(µ) = f(µ) (6.39)

to calculate the transport mappings. These computations, which rely on collocation,
are performed on a finer 192 × 192 grid of quadrilaterals. The iterative OT solver

1https://github.com/gridap/Gridap.jl
2https://github.com/STOR-i/GaussianProcesses.jl
3https://github.com/JuliaRCM/WassersteinDictionaries.jl
4https://github.com/ToBlick/OptimalMappings.jl
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is set to stop when the l1 error of the marginal constraint reaches 10−3 or at the
maximum number of iterations of d10/εe.

As reference density ρ̄ we chose the optimal transport barycenter of the training
snapshot densities.

We emphasize again that this choice is not crucial for the proposed method. Any
reference density, even ρ̄ ≡ |Ω|−1, can be used. However, when ρ̄ is an average of the
data {ρ(µi)}nsi=1 in a meaningful sense (which the barycenter is in these cases), we
expect the transport maps to have a simpler structure and require fewer modes m to
approximate. In particular, the choice of the barycenter means that the transport
maps are much closer to shifts and scalings compared to using for example ρ̄ ≡ |Ω|−1.
This is the setting where working on the tangent space, as we do in this method,
works best.

We employ an annealing strategy as described in Section 4.2, initializing the
regularization parameter to one and then halving it at every iteration until we reach
ε. To invert the mapping at the last step, we use the c-transform with εfine = h2/10.

Given a threshold τ ∈ (0, 1), m is chosen such that 1− E(m;λ) < τ , where

E(m;λ) =

∑m
i=1 λi∑rankC

j=1 λj
. (6.40)

We set τeim = 0.1τ to account for the difficulty in approximating the moving source
term.

The Gaussian process we use is taken as-is from the reference package. In partic-
ular, we select a zero mean function, a squared exponential kernel with characteristic
length and standard deviation set to one (the default settings). The log standard
deviation of observation noise is set to −6. These parameters have not been opti-
mized.

Choice of density ρ(u)(µ) ∝ u(µ)2

Since ρ(µ) is positive on all of Ω in this case, we use debiased calculations using
Sε. The transport maps are now given by the debiased potentials as defined in
Equation (4.55). We see that debiasing improves the performance of the method,
both by increasing the accuracy and by reducing the number of approximation
functions nm and Q, in Table 6.2.

Figure 6.6 displays the eigenvalue decay for the correlation matrices of snapshots
Cu, transported snapshots CΦ∗u, and Monge embeddings Cψ. As expected, the
eigenvalues of the mapped snapshots are indicative of a much faster n-width decay
of Φµ(M) compared to that of M.

Transport modes

Figure 6.7 shows the first four transport modes ξc1,...,4 and the Gaussian process
approximations of µ 7→ wj(µ) for j = 1, . . . , 4, the transport mode coefficients used
in the mapping Φ−1

µ = id − ∇
∑m

j=1 wj(µ)ξcj . The first two modes are essentially
translations, the third mode is a contraction (or expansion, depending on the sign
of its coefficient), and the fourth mode is a contraction along one diagonal and an
expansion along the other.
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Figure 6.6: Top: Eigenvalues of the correlation matrices Cu, CΦ∗u, and Cψ. Bot-
tom: Eigenvalues of the correlation matrices Cf , CK , and CΦ∗f used in the hyper-
reduction. ε = 10−2, τ = 10−4, ρ(u)(µ) ∝ u(µ)2, and debiasing are used.

As indicated by the very fast eigenvalue decay of the correlation matrix Cψ,
transport mappings can be approximated accurately as a linear combination of only
a few transport modes.

Errors

Next, we compare the error in the solution of the PPDE for the entire online phase.
This includes approximating the mapping with transport modes, obtaining the co-
efficients of the transport modes with a Gaussian process, solving the PPDE in the
reference domain as in (2.43), and mapping the solution back to the physical domain
as in (6.7).

Average and maximum errors are calculated for a test set using nt = 50 samples
fromA. The results are compared to the classical POD method without registration,
i.e. the m = 0 case.

The hyper-reduction uses EI to evaluate the mapped Laplacian as described in
Section 2.5 as well as the right-hand-side term

∫
Ω
φifµ detDΦ−1

µ dy ∀i = 1, . . . , nm.
The number of interpolation functions are denoted QK and Qf , respectively.

Values for the cases of m = 0 using hyper-reduction are not given, since the set
{f(µ)}µ∈A shows extremely slow n-width decay. In contrast, the n-width decay of
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Figure 6.7: First row: first four transport modes with an added constant such that
ξc1,...,4(1/2, 1/2) = 0. Second row: Gaussian process approximation of the functions
w1,...,4(µ). Values used to construct the basis are marked in white. The parameters
chosen are as in Fig. 6.6.

{f(µ) ◦ Φ−1
µ detDΦ−1

µ }µ∈A allows the use of EI albeit with large values of Qf .
We also report the relative error of the H1 semi-norm of u(µ), i.e. the error in the

energy of the solution for an electrostatic problem. We choose this as an example
of a quantity of interest that can be computed in the reference domain.

τ(E) n m QK Qf relative L2 error of u(µ) relative H1 error of u(µ) relative error of ‖u(µ)‖Ḣ1

avg max avg max avg max
10−3 41 0 - - 7.87× 10−2 3.32× 10−1 2.99× 10−1 7.08× 10−1 1.09× 10−1 5.07× 10−1

5 4 - - 4.48× 10−2 1.27× 10−1 9.80× 10−2 2.16× 10−1 1.11× 10−2 4.67× 10−2

5 4 12 19 4.94× 10−2 1.25× 10−1 1.02× 10−1 2.20× 10−1 2.12× 10−2 7.13× 10−2

10−4 64 0 - - 5.85× 10−2 3.19× 10−1 2.28× 10−1 6.93× 10−1 7.75× 10−2 4.85× 10−1

9 6 - - 1.53× 10−2 4.04× 10−2 4.27× 10−2 1.01× 10−1 1.71× 10−3 8.20× 10−3

9 6 19 24 1.67× 10−2 5.10× 10−2 4.42× 10−2 1.08× 10−1 8.17× 10−3 4.70× 10−2

10−5 82 0 - - 5.10× 10−2 2.99× 10−1 2.02× 10−1 6.71× 10−1 6.68× 10−2 4.55× 10−1

11 10 - - 7.23× 10−3 2.36× 10−2 2.79× 10−2 6.20× 10−2 5.43× 10−4 2.32× 10−3

11 10 28 30 9.88× 10−3 5.23× 10−2 3.02× 10−2 9.15× 10−2 6.26× 10−3 5.31× 10−2

Table 6.1: PPDE solution errors in the test set as a function of the retained eigen-
value energy for ε = 10−2, ρ(µ) ∝ u(µ)2, and debiased calculations.

debiasing n m QK Qf relative L2 error of u(µ) relative H1 error of u(µ) relative error of ‖u(µ)‖Ḣ1

avg max avg max avg max
yes 9 6 - - 1.53× 10−2 4.04× 10−2 4.27× 10−2 1.01× 10−1 1.71× 10−3 8.20× 10−3

9 6 19 24 1.67× 10−2 5.10× 10−2 4.42× 10−2 1.08× 10−1 8.17× 10−3 4.70× 10−2

no 10 7 - - 1.52× 10−2 5.42× 10−2 4.89× 10−2 1.02× 10−1 2.61× 10−3 9.97× 10−3

10 7 15 35 1.97× 10−2 8.00× 10−2 5.19× 10−2 1.18× 10−1 1.22× 10−2 5.27× 10−2

Table 6.2: PPDE solution errors in the test set with and without debiasing, using
ε = 10−2, τ = 10−4, ρ(µ) ∝ u(µ)2.

In order to determine how much of the overall error of the method is made when
inverting Φ−1

µ , we compare utrb ◦ Φ−1
µ to u ◦ Φ−1

µ in the case τ = 10−5 when using
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Figure 6.8: Cross-section of u(mu) and its approximation by classical POD, as well
as the proposed method with and without the use hyper-reduction. Depicted is that
value of µ that leads to the largest H1 error of utrb in the test set.

hyper-reduction. Calculating the approximation error in the reference domain in
this way, we find average and maximum L2 errors of 9.31 × 10−3 and 5.62 × 10−2.
The average and maximum H1 errors are 2.13× 10−2 and 8.61× 10−2.

Using no hyper-reduction, these errors decrease to 5.04 × 10−3, 2.57 × 10−2,
1.47× 10−2, and 4.68× 10−2, respectively.

We conclude that the approximation error in the reference domain dominates in
the overall error of the method. The inversion of the registration mapping using an
entropic approximation of the c-transform with εfine proves both fast and sufficiently
accurate.

Choice of density ρ(u)(µ) = f(µ)

This case is added here to see how the effect of entropic smoothing can be used to
apply the method even when ρ takes very small values in Ω. In this case, we do not
use debiased potentials and barycenters. Indeed, when using debiased quantities,
the performance of the method is heavily degraded with this choice of ρ.

Recall that {f(µi)}nsi=1 consists of narrow Gaussians that differ from one another
by translation. As expected, there are only three eigenvalues of Cψ different from
machine zero in when ρ = f . The corresponding transport modes are two trans-
lations and one scaling mode (i.e. y 7→ const. · y2), which is a consequence of
the entropic smoothing. The eigenvalue decay of CK and CΦ∗f is also improved
(Fig. 6.9).

Errors

Approximation errors for this case are shown in Table 6.3 and are comparable to
the case ρ(u) ∝ u2 even at m = 3. However, note that the online cost is mostly
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Figure 6.9: Top: Eigenvalues of the correlation matrices Cu, CΦ∗u, and Cψ for the
case ρ(µ) = f(µ). Bottom: Eigenvalues of the correlation matrices Cf , CK , and
CΦ∗f used in the hyper-reduction. No debiasing, ε = 10−2, τ = 10−4, ρ(µ) = f(µ).

dependent on n, not m, see Section 6.8.1.

τ(E) n m QK Qf relative L2 error of u(µ) relative H1 error of u(µ) relative error of ‖u(µ)‖Ḣ1

avg max avg max avg max
10−3 41 0 - - 7.87× 10−2 3.32× 10−1 2.99× 10−1 7.08× 10−1 1.09× 10−1 5.07× 10−1

3 3 - - 7.46× 10−2 2.03× 10−1 1.33× 10−1 2.68× 10−1 1.81× 10−2 6.76× 10−2

3 3 9 12 7.84× 10−2 2.17× 10−1 1.35× 10−1 2.69× 10−1 1.58× 10−2 9.24× 10−2

10−4 64 0 - - 5.85× 10−2 3.19× 10−1 2.28× 10−1 6.93× 10−1 7.75× 10−2 4.85× 10−1

6 3 - - 3.00× 10−2 8.91× 10−2 8.03× 10−2 1.24× 10−1 4.00× 10−3 1.32× 10−2

6 3 12 19 3.00× 10−2 8.10× 10−2 8.08× 10−2 1.28× 10−1 8.68× 10−3 4.49× 10−2

10−5 82 0 - - 5.10× 10−2 2.99× 10−1 2.02× 10−1 6.71× 10−1 6.68× 10−2 4.55× 10−1

9 3 - - 1.09× 10−2 2.75× 10−2 6.69× 10−2 9.01× 10−2 1.73× 10−3 5.74× 10−3

9 3 15 26 1.27× 10−2 3.85× 10−2 6.73× 10−2 9.31× 10−2 5.38× 10−3 4.09× 10−2

Table 6.3: PPDE solution errors in the test set as a function of the retained eigen-
value energy. No debiasing, ε = 10−2, τ = 10−4, ρ(µ) = f(µ).

Again, we compute the error in the reference domain to estimate the error induced
by inverting the mapping. Using hyper-reduction, the average L2 error is 6.71×10−3

with a maximum of 2.76×10−2. For the H1 error, we find 1.60×10−2 and 4.91×10−2.
We conclude that the error contributions are of the same order of magnitude in this
case.
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Influence of the smoothing parameter

The parameter ε influences the method in two ways. Firstly, it acts as a hyperpa-
rameter that influences the fidelity and regularity of the mapping Φ. Secondly, when
using ρ̄ = W2Barε{ρi}nsi=1, ε influences the shape of ρ̄. Especially with no debiasing,
the entropic bias (see Section 5.3.2) leads to a smoothing of ρ̄.

When ρ(µ) = f(µ), we know from Section 5.3.2 that ρ̄ ≈ N (µ̄ := 1
ns

∑
i µi, var +

ε). Therefore, Φ−1
µ (y) ≈

√
1 + ε

var

−1
(y+µ− µ̄) and detDΦ−1

µ ≈ (1+ ε
var

)−1. Clearly,
this degrades for ε � var, which has been verified numerically. Therefore, when
studying the dependence of the method on ε, one has to fix the value used to
compute the reference density to a value such as εBar = 10−2. This value is not
optimized extensively and values in [1

2
, 2]× εBar are also stable.

When ρ(µ) ∝ u(µ)2, the densities are supported on the full domain, and we vary
ε for all calculations. We report results in Fig. 6.10.

Firstly and importantly, we observe that the approximation quality does not
strongly depend on ε ∈ [10−3, 10−2]. Reducing ε significantly below 10−3 would
require all OT calculations to be moved to the log-domain, as minx,y exp(c(x, y)/ε)
becomes numerically zero in double precision.

As ε becomes too large, the empirical interpolation method does not work as
well, as the source terms {f(µi)}i are no longer well aligned, leading to an increase
in Qf . As discussed in Section 6.4, the mapping can even be non-invertible in these
cases. Note that the value ε = 4× 10−2 corresponds to a characteristic scale of the
transport problem of

√
ε = 0.2, which is already one fifth of the domain size.

Secondly, the method with debiasing is no longer robust: The mapping is not
invertible and the error explodes. It is possible that this can be remedied by, for
example, setting a minimum value for m (note that it drops to m = 2), but we do
not explore this further. Since we rely on the entropic mappings to approximate the
true transport mappings, the performance for large values of ε is not concerning.

Run times

Comparisons between the high-fidelity solver, the POD method, and the presented
method depend on the size of high fidelity simulation N , the size of training- and
test-set ns and nt, and several other factors. Depending on the choice of these
parameters, one or another method might seem favorable. Regardless, we show
some examples in Table 6.4. The parameters chosen in these runs are a subset of
those in Table 6.1 and Table 6.3, where the corresponding errors can be found.

We clearly see the additional cost induced by the transport and registration.
Hyper-reduction leads to large computational speed-up (≈ 100 to 200) in the online
phase by removing the dependence on N . We also see that nm has a larger impact
on the cost of the method than m. The post-processing step to map the solutions
back to the physical domain is costly, as it again depends on the size of the full
order model.

In several applications, this last step is not needed. Quantities of interest can
be obtainable in the reference domain, so the inversion of Φ−1

µ is not necessary. For
example, the energy 1

2

∫
∇u · ∇u that we report here, or linear functionals of the

form l(u) =
∫
ufl can be calculated in the reference domain with no cost depending

on the dimension of the full problem. For time-dependent problems, mapping back
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Figure 6.10: Influence of the regularization parameter ε. In all cases, τ = 10−4 =
10τeim, ρ(µ) ∝ u(µ)2. For the left column, no debiasing is used and for the right
column, debiasing is applied. First row: the relative average (solid) and maximum
(dashed) L2 error over the test set. The error in calculated in the reference do-
main here to separate the effect of inaccuracies when inverting Φ−1

µ . Second row:
minimum value of the determinant of the mapping and its inverse: average (solid)
and minimum (dotted) over µ ∈ Atest. The inverse mapping is calculated using the
entropic c-transform with εfine. Third row: number of approximation modes.

to the physical domain is only needed for diagnostics and plotting of the solution
and thus usually not done at every time-step.

6.8.2 Non-linear advection equation

As a second test case, we consider the equation

∂tu(x, t) + ā(θ) · ∇
(
u(x, t) + γu(x, t)2

)
= β∆u(x, t), (6.41)
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offline phase I: transport calculations (all µ ∈ Atrain)
OT barycenter and potentials boundary projection transport modes mapped snapshots

ρ(µ) ρ̄ and {ψcpre−proj.(µi)}nsi=1 {ψc(µi)}nsi=1 {ξcj}mj=1 {u(µi) ◦ Φ−1
µi
}nsi=1

∝ u(µ)2 27s 19s 33s 43s
f(µ) 6.6s 19s 33s 43s

offline phase II (all µ ∈ Atrain)
Gaussian process reduced basis assembly hyper-reduction

ρ(µ) n m QK Qf {w(µ)}mi=1 {ζi}ni=1 or {φi}nmi=1

∫
∇ζi · ∇ζj EIMK EIMf

none 64 - - - - 19s 9.4s - -
82 - - - - 18s 15s - -

∝ u(µ)2 10 7 19 24 2.3s 18s - 86 42s
11 10 28 30 3.6 17s - 93s 50s

f(µ) 6 3 12 19 1.3s 18s - 83s 43s
9 3 12 19 1.2s 18s - 86s 43s

online (per µ ∈ Atest) post-processing (per µ ∈ Atest)
no EIM EIM re-mapping

ρ(µ) n m QK Qf urb or utrb ◦ Φ−1
µ [

∑m
j=1wj(µ)ξcj ]

c
pre−proj. Φ(µ) utrb(µ)

none 64 - - - 0.14s - - - -
82 - - - 0.17s - - - -

∝ u(µ)2 10 7 19 24 0.71s 4.9ms 0.24s 0.19s 0.41s
11 10 28 30 0.95s 5.5ms 0.24s 0.20s 0.41s

f(µ) 6 3 12 19 0.43s 4.5ms 0.24s 0.19s 0.40s
9 3 15 26 0.71s 5.1ms 0.24s 0.19s 0.41s

Table 6.4: Run times for different choices of ρ. Parameters are as in Table 6.1 and
Table 6.3.

where x ∈ Ω = [0, 1]2 and t ∈ [0, T ]. The advecting velocity is given by ā(α) =
1
5
(cosα, sinα), depending on the parameter α ∈ [0, 2π]. The strength of the non-

linearity is set to γ = 10−2 and β is set to 10−3. The parameter space is therefore
A := [0, 1] × [0, 2π] 3 (t, α) = µ. As an initial condition, we choose a Gaussian
centered at (1

2
, 1

2
) with a variance of 5× 10−3. The solution is discretized using the

same basis as in the previous example on a coarser 32 × 32 grid of quadrilaterals,
using N = 9025 degrees of freedom. Time-integration is performed by an implicit
midpoint method with time-step ∆t = 5× 10−2.

The reduced basis and transport modes are computed using the solutions at every
time-step in [0, T train = 4

5
] for ten different values of α on a uniform grid between 0

and 2π, thus ns = 170. The solutions u themselves are used as the densities ρ(u) = u
for the OT computations, which are performed on a 96× 96 grid. We set ε = 10−2

and use the OT barycenter of the training set as a reference density. No debiasing is
used and we let τeim = τ = 10−3. All other parameters are identical to the previous
example.

The selected energy criterion leads to n = 24 for the classical RB method and
nm = 5,m = 3 for the proposed one.

For the hyper-reduction, the RB method with m = 0 requires no application of
the EI method for ā, as the equation is already parameter-separable.

The method with transport requires EI approximations for detDΦ−1
µ , DΦ−1

µ ∂tΦ
−1
µ

detDΦ−1
µ , DΦ−1

µ ā(µ) detDΦ−1
µ , and Kµ = [DΦ−1

µ ]−1[DΦ−1
µ ]−T detDΦ−1

µ . The val-
ues of Q for these terms are 4, 4, 3, and 4, respectively. The corresponding eigenvalue
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decay is shown in Fig. 6.11.

Figure 6.11: Top: Eigenvalues of the correlation matrices Cu, CΦ∗u, and Cψ. Bottom:
Eigenvalues of the correlation matrices used in the hyper-reduction.

Figure 6.12 shows the relative L2 errors over time for 20 values of α randomly
chosen from [0, 2π] and for t ∈ [0, T test = 1]. The average approximation L2 error of
{u(T test, αj)}1≤j≤10 in the proposed method is 1.01 × 10−1, while the maximum is
1.11×10−1. We see that the classical RB method is only accurate for solutions close
to the initial condition and for some select values of α close to those in the training
set. This issue cannot be remedied by adding more reduced basis functions, since the
solutions for values of α not in the training set and t > T train cannot be expressed
by any linear combination of training snapshots. In contrast, the proposed method
yields qualitatively correct results even with the low number of modes employed.

6.9 Conclusion

In the simple numerical examples we considered, the proposed method proved ro-
bust and showed the expected improvements compared to an approach without
registration.

We require three central inputs from the user: An entropic regularization param-
eter ε, an energy cut-off criterion τ , and a choice of density ρ.
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Figure 6.12: Top: Relative L2 errors for the non-linear advection-diffusion equation
as a function of time. Plotted is the average error across all ten values of α. The
shaded area is bounded above and below by the maximum and minimum error. The
dashed line indicates T train and the beginning of the extrapolation region. Bottom:
cross-sections in propagation direction (parametrized by s) for the value of α where
the proposed method performs the worst and for t ∈ {0, 1

2
, 1}.

In order to stay close to the true OT problem, ε should be chosen small, keeping
in mind that the transport plan will essentially ignore all features smaller than

√
ε.

This parameter also has a significant influence on all transport-related computations
in the offline phase, as the cost of the Sinkhorn algorithm scales with 1/ε. The choice
of τ depends on the desired accuracy versus cost of the approximation.

Selecting ρ is the most intricate issue as it has the biggest impact on regularity
and fidelity of the obtained registration maps. If the PPDE solution itself is a
probability density, this is a natural choice. For maximum robustness, ρ should be
bounded from below on the entire domain by a positive constant. The size of this
constant can have a significant effect on ‖DΦµ‖ as discussed in Section 3.4.

6.9.1 Extensions and future work

Several possible extensions and open questions regarding the method have been
mentioned throughout the text.
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Smaller or no regularization

When all transported densities are strictly positive in Ω, the unregularized trans-
port maps satisfy ∇ϕ(∂Ω) = ∂Ω. If Ω is also convex and the densities continuous,
this guarantees C2 regularity of the transport maps without any entropic regulariza-
tion. In this case, no post-processing of the transport maps in order to enforce the
boundary conditions as in Equation (6.17) is necessary.

When employing entropic regularization, the multiscale methods from [118, 60]
can drastically improve the speed of the offline calculations and allow the use of
much smaller values of ε. The OT computations, in particular the application of
the softmin and softmax operations (c.f. Definition 4.2), can also be performed
using the same finite element spaces as used to calculate the PPDE solution itself
to take advantage of higher order quadrature rules. Note also that the softmin
operation provides an approximation to the c-transform (and thereby the inverse of
the transport map) that is both fast and easy to implement.

We note once again that in these cases it is crucial to use choices of µ 7→ ρ(µ)
that lead to regular transport maps in the limit of ε → 0. Larger regularization
parameters can provide regular maps at the cost of accuracy if this is not given, as
illustrated in Figure 6.3. In many cases, the features that have to be aligned by
the registration step are not supported everywhere in the domain, as seen in the
examples in [73].

Representation of the transport potentials

In the present work, the potentials are represented by H1 conforming finite element
functions, which are crucially element-wise twice differentiable. We would expect
the method to profit from a C2 conforming approximation, for example using a
spectral polynomial basis.

Hyper-reduction

Due to the parameter-dependence of the mapped forms, hyper-reduction methods
are crucial to make the method performant in the online phase. We see in our nu-
merical experiments that the hyper-reduction can increase the approximation error
by an order of magnitude in cases where the number of reduced bases and transport
modes is large and can resolve the solution well (c.f. the rightmost columns in Ta-
ble 6.1 and Table 6.3). Several other hyper-reduction methods exist that have been
used successfully in different applications, such as the empirical quadrature method
[145]. We intend to apply these methods for comparison in future work.

6.9.2 Optimal transport and gradient mappings in model
order reduction

Finally, we want to comment more generally on the strengths and weaknesses of
optimal transport theory as a tool in model order reduction.

It is evident that is beneficial for a large class of reduced complexity modeling
applications to move beyond linear approximation methods. A number of non-linear
approaches has been proposed. These include classical methods such as wavelet
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bases, piece-wise polynomial approximations [50] and kernel-based methods [120].
In recent years, approaches based on neural networks have become popular in this
field (for example, [113, 82, 62], to name only a few) after these methods have proved
to be effective, sometimes revolutionary, in many applications ([75], to cite just one
example).

The tools from optimal transport theory join this list of approaches available to
tackle the challenge of slow n-width decay in reduced order problems with moving
features and dominating advection effects. Several approaches have been proposed,
motivated by the physically meaningful non-linear displacement interpolation [56,
73] and the information encoded in the W2 distance between snapshots [77, 72].

What optimal transport theory can offer is an extensive theoretical framework
(c.f. Chapter 3), accompanied by a number of established and optimized computa-
tional tools and algorithms (c.f. Chapter 4). Moreover, many of these results allow
a physical interpretation.

However, the notion of optimality in OT will, in all generality, not coincide with
what is optimal for the reduced order problem at hand. In cases where measures
have non-convex support or vanishing densities, optimal transport maps can lack the
regularity required for registration methods. As a result, one has to compromise by
regularizing either the transport process itself in the sense of entropic regularization,
or to modify the transported measures, for example to bound them away from zero.

At the same time, restricting mappings to be of gradient structure adds a number
of helpful restrictions to the registration process. Note that optimization problems
of the form

min
Φ
‖u ◦ Φ−1 − ū‖ (6.42)

are in general non-linear and non-convex. The condition that Φ maps u into ū
admits a wide range of solutions. Consequently, further properties of the mapping
have to be enforced with additional terms that control, for example, a norm of Φ as
well as its Jacobian determinant to guarantee invertibility.

We argue that the mass transportation problem can provide a similar effect. The
Jacobian determinant enters through the relation

ρ̄ = (ρ ◦ Φ)| detDΦ|. (6.43)

Still this equation does not necessarily tell us much about Φ. As pointed out in [47],
in the simple case where ρ̄ = 1Ω′ and ρ = 1Ω′′ for some smooth sets Ω′,Ω′′, we can
right compose Φ with any map S such that S(Ω′) = Ω′ and detDS = 1, and still
satisfy Equation (6.43). If Φ transports ρ̄ to ρ, then so does Φ ◦ S and the latter
map can be chosen to violate any desirable properties that Φ might have had.

Requiring Φ to an optimal transport map restricts it to the form Φ = ∇ϕ and
immediately establishes existence and uniqueness when ρ admits a density. The
Monge-Ampére equation ρ̄ = (ρ ◦ ∇ϕ) detD2ϕ is an elliptic problem. While non-
linearity and degeneracy make its study challenging, we argue that it provides a
promising starting point for registration problems. While strictly optimal transport
maps can violate necessary conditions such as continuity of Φ, suitable regularization
can yield almost optimal maps that avoid these singularities.

In this work, we aimed to connect the fully non-linear approximation methods
based on barycentric encoding to the more classical registration methods of the form
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of Equation (6.42). We proposed an approach that covers the construction of the
registration maps from a small number parameter choices and in a fully data-driven
way. By reducing the non-linearity to the point where

u(µ) ◦ Φ−1
µ (y) ≈ u(µ) ◦

(
y −

∑
j

wj∇ξcj(y)

)
=
∑
i

ũi(µ)φi(y) (6.44)

is composed of two linear approximations, we obtain a method that is suited for
established hyper-reduction methods and admits a performant online phase.
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Notation

The following table repeat some of the notation and abbreviations that are repeat-
edly used throughout the article:

〈·, ·〉H inner product in the Hilbert space H

.∗, ./, . . . element-wise operations, e.g. (â .∗ b̂)i = âi ∗ b̂i;
(̂·) collocated quantity âi = a(xi)
⊕ notation for (ψρ ⊕ ψσ)(x, y) = ψρ(x) + ψσ(y)
(·)] push-forward operation for a density
(·)∗ Legendre transform f ∗(y) := supx (〈x, y〉 − f(x))
1 indicator function: 1Ω′(x) = 1 if x ∈ Ω′ and zero otherwise
A parameter space
ρ-a.e. ρ-almost everywhere, i.e. except on Ω′ : ρ[Ω′] = 0
B interpolation matrix used in empirical interpolation
c cost function, usually c(x, y) = |x− y|2
(·)c c-transform, see Definition 3.4
Cu correlation matrix of u1, . . . , uns
cdf, cdf [−1] (inverse) cumulative distribution, see Equation (3.34)
E(n;λ) eigenvalue energy, see Eq. (6.40)
EI(M) empirical interpolation (method), see Section 2.5
h grid width
id, Id identity x 7→ x, identity matrix
k Gibbs kernel k(x, y) = exp (−c(x, y)/ε)
Lµ parameter-dependent PDE operator, see Definition 1.1
m number of transport modes, see Definition 6.1
M solution manifold, see Eq. (1.2)
MEρ̄ Monge embedding with respect to ρ̄, see Definition 3.9
maxε(·)∼u,minε(·)∼u softmax and softmin operations, see Definition 4.2

n, nm number of reduced basis functions
ns, nt number of solution snapshots in the training and test set
N dimension of the high fidelity discretization
N (m, var) normal distribution with mean m and variance var
OT optimal transport
P(Ω) set of probability measures on Ω
POD proper othogonal decomposition
Q number of empirical interpolation modes

113
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T transport or Monge map, see Equation (3.7)
RB(M) reduced basis (method)
u, v elements of Hilbert space V or Vh
u, v degree of freedom vectors ∈ RN of u, v ∈ Vh
ũ coefficients used to approximate utrb, see Equation (6.7)
v matrix eigenvector
V, Vh Hilbert space and its discretization
w transport mapping coefficient, see Section 6.1
W2(ρ, σ) optimal transport or Wasserstein distance between ρ and σ.
W2Bar optimal transport barycenter, see Definition 5.1
X empirical interpolation mode, see Section 2.5
ε entropic regularization parameter, see Eq. (4.3)
εfine regularization used when inverting Φ−1. Set to the order of h2.
ζ POD basis function
θ empirical interpolation coefficients
κ H1 projection parameter, see Section 6.4. Set to ε−1/2

λ matrix eigenvalue, non-increasing: λ1 ≥ λ2 ≥ . . .
µ parameter in A
π transport plan, see Definition 3.3
Π(ρ, σ) admissible transport plans for ρ, σ, see Definition 3.3
ρ, σ probability measures
ρ̄ reference density, see Definition 3.9 and Section 6.1
Σm m-unit simplex: {ωi}mi=1 ∈ Σm ⇔ ωi ≥ 0 ∀i,

∑
i ωi = 1

τ, τeim energy criterion for POD: 1− E(n;λ) < τ defines n

ϕ x 7→ |x|2
2
− ψ(x), see Theorem 3.2

φ POD basis function in the reference domain, see Equation (6.7)
Φµ parameter-dependent mapping, see Equation (2.38)
ξc transport mode, see Definition 6.1
Ξ POD modes used in the EIM construction, see Section 2.5
ψ transport potential, see Equation (3.5)
ω barycenter weights {ωi}mi=1 ∈ Σm, see Definition 5.1
Ω domain ⊂ Rd
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Optimal transport and fluid
mechanics

In this section, we want to describe two fluid dynamics applications where optimal
transport problems arise. In doing so, we hope to extend the geometric picture of
P(Ω) introduced in Section 3.7.

B.1 Fluid dynamics as geodesic equations

It is possible to express a number of ideal fluid equations as action principles on
the set of diffeomorphisms on a domain Ω, denoted by Diff(Ω). This idea has been
around for some time, one of the earlier references one can find is the doctoral
thesis of Paul Ehrenfest [55]. In [30], this connection is attributed to Euler himself.
Today, this approach is strongly linked to the works of Arnold [10]. We provide
a very brief and completely formal presentation in the following. All quantities
in this chapter are assumed to be smooth and we use subscript notation freely
to denote dependencies on time or other parameters. Densities are assumed to be
strictly positive. A thorough presentation of the variational formulation of the Euler
equations in this way is given in [7, 46, 30, 29].

Let Diff(Ω) 3 Ft : Ω → Ω ⊂ R3 be a time-dependent diffeomorphism at time t.
In particular, Ft is the flow of a time-dependent vector field ut:

∂tFt(x) = ut ◦ Ft(x) where F0(x) = x. (B.1)

We denote by F ε
t a variation of this diffeomorphism, at is a one-parameter family

of diffeomorphisms where F ε
t

∣∣
ε=0

= Ft and ∂εF
ε
t = vεt ◦ F ε

t . If we require ∂ε∂tF
ε
t

!
=

∂t∂εF
ε
t , we obtain the relation

∂ε(u
ε
t ◦ F ε

t ) = (∂εu
ε
t + vεt · ∇uεt) ◦ F ε

t = ∂t(v
ε
t ◦ F ε

t (x)) = (∂tv
ε
t + uεt · ∇vεt) ◦ F ε

t . (B.2)

If we define δut := ∂εu
ε
t

∣∣
ε=0

the variation of u, then we see that variations of F ε
t

induce variations of ut of the specific form

δut = ∂tvt + ut · ∇vt − vt · ∇ut = ∂tvt +∇× (vt × ut)− vt∇ · ut + ut∇ · vt, (B.3)

where vt = vεt
∣∣
ε=0

an arbitrary, time-dependent vector field that is tangent to ∂Ω (if
it was not, F ε

t would no longer be a diffeomorphism on Ω). Furthermore, if we define
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ρt := (Ft)]ρ0 for some initial density ρ0, then, by the definition of the push-forward
formula for densities,

0 = ∂ερ0 = ∂ε((ρ
ε
t ◦ F ε

t ) detDF ε
t )

= (∂ερ
ε
t) ◦ F ε

t + ((vεt · ∇ρεt) + ρεt∇ · vεt) ◦ F ε
t detDF ε

t (B.4)

by Liouville’s formula as in Section 3.6. Consequently, and since detDF ε
t > 0

by assumption, δρt := ∂ερ
ε
t

∣∣
ε=0

= −∇ · (vtρt). By the same procedure, we obtain
∂tρt = −∇ · (utρt).

B.2 Euler equations

With these preliminary computations done, we can compute the variation of an
action functional, defined in this first simple model as

A(t 7→ Ft; ρ0)T0 :=

∫ T

0

∫
Ω

1

2
|ut|2dρt.dt (B.5)

By the principle of stationary action, we set δA(Ft; ρ0) := ∂εA(F ε
t ; ρ0)

∣∣
ε=0

!
= 0.

We obtain

0 = δA(t 7→ Ft; ρ0)T0 =

∫ T

0

∫
Ω

(
u · δudρt +

1

2
|ut|2d(δρt)

)
dt. (B.6)

Substituting δut and δρt, we obtain a lengthy expression under the integral
that we can simplify using some basic vector calculus identities, the fact that
δtvt
∣∣
t∈{0,T} = 0 (as the variation vanishes here in the stationary action principle),

and the continuity equation. Ultimately, we arrive at

0 =

∫ T

0

∫
Ω

v · (∂tu+ u · ∇u) dρtdt. (B.7)

If we recall that vt is arbitrary (and can, in particular, be localized in time), we
formally obtain the pressure-less Euler equation ∂tu+ u · ∇u = 0.

Incompressible Euler equation Incompressible flows are generated by divergence-
free vector fields, i.e.

d

dt
Ft(x) = ut(x, Ft(x)) with ∇ · ut = 0. (B.8)

Consequently, (Ft)]ρ0 = ρ0. We define the set

SDiff(Ω; ρ0) := {Ft ∈ Diff : (Ft)]ρ0 = ρ0}. (B.9)

If ρ0 is constant, we omit it and write SDiff(Ω). The condition on the push-forward
adds an additional constraint to the flows Ft and their variation, which reads

−∇ · (utρt) = 0 and −∇ · (vtρt) = 0. (B.10)
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As a result, vt is no longer fully arbitrary. While the calculation from Equation (B.6)
can be done in the same way,∫ T

0

∫
Ω

v · (∂tu+ u · ∇u) dρtdt (B.11)

no longer allows us to conclude that ∂tu+ u · ∇u = 0. Instead, we can also say that
∂tu + u · ∇u = −∇pt, where pt is a scalar function on Ω, since (and we have seen
this calculation before in Equation (3.55))∫ T

0

∫
Ω

v · ∇ptdρtdt = 0 ∀vt : −∇ · (vtρt) = 0. (B.12)

There is no evolution equation for the function pt. It is naturally interpreted as the
Lagrange multiplier corresponding to the incompressibility constraint.

Remark B.1. Typically, since the density does not enter the dynamics of the prob-
lem, it is set to a constant. The incompressibility constraint reduces to ∇ ·ut = 0 in
this case and flows with detDFt = 1 are called volume-preserving.

Before we continue, we want to repeat a positive and two negative existence
results that are classical in this field.

Theorem B.1 (Existence for short times ([54], Section 15.2)). For Ω compact,
simply connected and either without boundary or with C∞ boundary. For u0 =
ut
∣∣
t=0

in the Sobolev space Hs(Ω;Rd), s > d/2 + 1, divergence-free and parallel

to the boundary of Ω, there exists a unique ut ∈ Hs(Ω,Rd) for t ∈ (−ε, ε) for
some ε > 0 that solves the incompressible Euler’s equations. In particular, it is
a classical solution, i.e. C1((−ε, ε) × Ω,R3) and the flow Ft generated by ut is a
volume-preserving C1 diffeomorphism.

Theorem B.2 (Non-existence of curves with finite action for d = 2 ([122], Theorem
2.6)). For Ω = [0, 1]2, there exists χ ∈ SDiff(Ω) such that there is no curve t 7→ Ft :
[0, T ]→ SDiff(Ω) connecting id to χ with A(t 7→ Ft)

T
0 <∞.

Theorem B.3 (Existence of curves with finite action for d ≥ 3 ([121], Theorem
A)). For Ω = [0, 1]d, d ≥ 3, any element in SDiff(Ω) can be connected with id by a
curve t 7→ Ft : [0, T ]→ SDiff(Ω) with A(t 7→ Ft)

T
0 <∞.

Remark B.2. As a consequence of the two preceding theorems, inf A(t 7→ Ft)
T
0 is

not always attained if d ≥ 3. Consider the case d = 3. Any element of SDiff(Ω)
that acts as (x, y, z) 7→ (χ(x, y), z) with χ as in Theorem B.2 cannot be connected
to the identity with a curve that leaves the third component untouched, as then the
action would be infinite. At the same time, however, one can reduce the action by
re-scaling this non-trivial third component.

Projection onto measure-preserving maps

This section follows [46].
One possible strategy to obtain a geodesic on SDiff(Ω; ρ0) is the following: em-

bed SDiff(Ω; ρ0) in a larger space, say, L2(Ω, ρ0,Rd). Second, since SDiff(Ω; ρ0)
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SM(Ω; ρ0)

id

F

∇ϕ ◦ F

Figure B.1: Illustration of the projection of F onto SM(Ω; ρ0).

is not closed, replace it with the more workable space of measure-preserving maps
SM(Ω; ρ0) := {S ∈ L2(Ω, ρ0,Rd) : S]ρ0 = ρ0} [31, 28]. Discretizing in time, we then
follow the geodesics in this larger space for a time ∆t, ignoring the constraint, and
project back to SDiff(Ω; ρ0) before repeating the steps. If we take as a measure of
distance (and orthogonality) the inner product of L2(Ω, ρ0,Rd), then the optimiza-
tion problem becomes the following (without changing the notation for the map F ,
which is now no longer assumed to be a diffeomorphism): for F ∈ L2(Ω, ρ0,Rd), find

min

(∫
Ω

|S − F |2dρ0 : S ∈ L2(Ω, ρ0,Rd) : S]ρ0 = ρ0

)
=: dist2(F, SM(Ω)). (B.13)

The projection turns out to be an optimal transport problem with marginals S]ρ0 =
ρ0 and F]ρ0. As long as F]ρ0 is absolutely continuous with respect to the Lebesgue
measure, there exists an optimal transport map ∇ϕ = TF]ρ0→ρ0 and ∇ϕ ◦ F gives
the projection of F to the measure-preserving maps, i.e. it minimizes B.13.

In [63, 95], a numerical method is constructed based on this procedure. It is a
Lagrangian scheme where the density is described by particles that follow a Hamil-
tonian system. The distance dist2(F, SM(Ω)) plays the role of the potential.

B.3 Cold two-fluid plasma model

The cold two-fluid model is a simplified model to describe the dynamics of a large
number of electrons and ions in a continuum approximation. We will show how one
can obtain it from a physicists’ derivation as we did for the Euler equations which
we learned from Omar Maj. We are back to assuming a smooth setting. We begin
with the action functional

A(t 7→ (F e
t , F

i
t ); ρ0, A0)T0 :=∫ T

0

∫
Ω

((me

2
|uet |2 − eA0 · uet

)
d(F e

t )]ρ0 +
(mi

2
|uit|2 + eA0 · uit

)
d(F i

t )]ρ0

)
dt.

(B.14)
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Some comments are in order: F e
t and F i

t denote two time-dependent flows that
describe the evolution of the ion and electron densities ρet := (F e

t )]ρ0 and ρit :=
(F i

t )]ρ0. These densities denote the number of electrons and ions per unit volume,
respectively (in particular, they are not mass densities). The flows are generated by
the vector fields uet and uit, respectively. Initially, the electron and ion densities are
identical and equal to n0. A0 is an external vector potential, that is ∇×A0 =: B0 is
a magnetic field. Lastly, me,mi, and e are constants that denote the electron mass,
ion mass, elementary charge.

The absence of a term accounting for the internal energy of the plasma gives it its
name as a cold plasma model. Lastly, we assume that the ions have a charge number
of one. Both of these assumptions are done in order to shorten the equations but
are easy to drop.

The system comes with a constraint known as quasi-neutrality that couples the
two flows and enforces ρet = ρit =: ρt, i.e. (F e

t )]ρ0 = (F i
t )]ρ0 at all times. For uet and

uit, this constraint reads −∇ · (e(uit − uet )ρt) = 0, which physically means that the
current density jt = e(uit − uet )ρt is divergence-free.

Carrying out the variations of A(t 7→ (F e
t , F

i
t ); ρ0, A0)T0 using variations of the

form

δuet = ∂tv
e
t + uet · ∇vet − uet · ∇vet and δuit = ∂tv

i
t + uit · ∇vit − uit · ∇vit (B.15)

as well as
δρet = −∇ · (ρetvet ) and δρit = −∇ · (ρitvit), (B.16)

we find

δA(t 7→ (F e
t , F

i
t ); ρ0, A0)T0

=

∫ T

0

∫
Ω

vet · (−me∂tu
e
t −meu

e
t · ∇uet − euet ×B0) dρetdt

+

∫ T

0

∫
Ω

vit ·
(
−mi∂tu

i
t −miu

i
t · ∇uit + euit ×B0

)
dρitdt

!
= 0. (B.17)

The calculation is rather tedious but straightforward and largely identical to
the case of the Euler equations. Now, recall that vet and vit are not independent,
but coupled through the quasi-neutrality condition that demands that variations
of F e

t and F i
t still satisfy the condition (F e,ε

t )]ρ0 = (F i,ε
t )]ρ0 = ρt. This implies

−∇ · (e(vit − vet )ρt) = 0. Next, note that vit = vet is always an admissible variation.
Therefore,

(−me∂tu
e
t −meu

e
t · ∇uet − euet ×B0) = −

(
−mi∂tu

i
t −miu

i
t · ∇uit + euit ×B0

)
=: wt

(B.18)
for some vector field wt. Then,

δA(t 7→ (F e
t , F

i
t ); ρ0, A0)T0 =

∫ T

0

∫
Ω

(vet − vit) · wtdρtdt = 0

∀vet , vit : −∇ · (e(vit − vet )ρt) = 0 (B.19)

implies that wt = −e∇φt for some scalar function φt which physically corresponds
to an electric potential. Just as for the incompressible Euler equation, it plays the
role of a Lagrange multiplier. Physically, it is a reasonable consequence of ∂tB0 = 0
and Faraday’s law ∂tB0 = −∇× E.
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Projection onto quasi-neutral maps

If we want to repeat the procedure from Appendix B.2 for the two-fluid model, we
require a projection that, given two maps Gi, Ge such that Gi

]ρ0 6= Ge
]ρ0, returns two

maps F i, F e where F i
]ρ0 = F e

] ρ0. A possible choice for the notion of squared distance

between (Gi, Ge) and F i, F e is given by 1
2
‖F i − Gi‖2

L2(ρ0) + 1
2
‖F e − Ge‖2

L2(ρ0), such

that we arrive at the following minimization problem: Given Gi, Ge ∈ L2(Ω, ρ0,Rd),
find

min
F i,F e∈L2(Ω,ρ0,Rd)

(∫
Ω

(
1

2
|F i −Gi|2 +

1

2
|F e −Ge|2

)
dρ0 : F i

]ρ0 = F e
] ρ0

)
=: dist2((Gi, Ge),QN(Ω; ρ0)). (B.20)

Proposition B.1. Let Ω ⊂ Rd be a bounded domain and Gj ∈ L2(Ω, ρ0,Rd) for
1 ≤ j ≤ m. Denote by {ωj}mj=1 a set of positive weights that sum to one. Assume

that ρ0 and {Gj
]ρ0}mj=1 are absolutely continuous with respect to the Lebesgue measure

and their densities are bounded from above. Then,

min
F 1,...,Fm∈L2(Ω,ρ0,Rd)

(
m∑
j=1

ωj

∫
Ω

|F j −Gj|2dρ0 : F j
] ρ0 = F 1

] ρ0 ∀1 ≤ j ≤ m

)

= min
ρ∈P(Ω)

m∑
j=1

ωjW2(Gj
]ρ0, ρ)2. (B.21)

Furthermore, the minimum in Equation (B.21) is realized by the maps F j = ∇ϕj◦Gj

where ∇ϕj are optimal transport maps from Gj
]ρ0 to

W2Bar({ωj, Gj
]ρj}

m
j=1) := arg min

ρ∈P(Ω)

m∑
j=1

ωjW2(Gj
]ρ0, ρ)2, (B.22)

the Wasserstein barycenter of {Gj
]ρ0}j with weights {ωj}j.

Proof. Let Gj
]ρ0 =: σj ∀1 ≤ j ≤ m and let W2Bar({ωj, Gj

]ρj}mj=1) =: ρ̄. We write
Equation (B.21) as

min
F 1,...,Fm∈L2(Ω,ρ0,Rd)

ρ∈P(Ω)

(
m∑
j=1

ωj

∫
Ω

|F j −Gj|2dρ0 : F j
] ρ0 = ρ ∀j

)

= min
ρ∈P(Ω)

(∑
j

ωj min
F j] ρ0=ρ

∫
Ω

|F j −Gj|2dρ0

)
. (B.23)

Consider any of the inner minimization problems:

min
F j] ρ0=ρ

∫
Ω

|F j −Gj|2dρ0 = min
F j] ρ0=ρ

∫
Ω×Ω

|x− y|2d((F j, Gj)]ρ0)(x, y) (B.24)

≥ min
π∈Π(σj ,ρ)

∫
Ω×Ω

|x− y|2dπ(x, y) (B.25)

= W2(σj, ρ)2. (B.26)
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Therefore,

min
ρ∈P(Ω)

(∑
j

ωj min
F j] ρ0=ρ

∫
Ω

|F j −Gj|2dρ0

)
≥ min

ρ∈P(Ω)

∑
j

ωjW2(σj, ρ)2 (B.27)

=
∑
j

ωjW2(σj, ρ̄)2.

By the assumptions on σj for all j and the result on the regularity of the Wasserstein
barycenter ([1], Theorem 5.1), the barycenter ρ̄ is also absolutely continuous and
bounded from above. Then, by Brenier’s Theorem 3.2, the OT plan between σj and
ρ̄ is of the form (id,∇ϕj)]σj for all j. Consequently,∑

j

ωjW2(σj, ρ̄)2 =
∑
j

ωj min
π∈Π(σj ,ρ̄)

∫
Ω×Ω

|x− y|2dπ(x, y) (B.28)

=
∑
j

ωj

∫
Ω×Ω

|x− y|2d((id,∇ϕj)]σj)(x, y) (B.29)

=
∑
j

ωj

∫
Ω

|∇ϕj ◦Gj −Gj|2dρ0 (B.30)

≥ min
ρ∈P(Ω)

(∑
j

ωj min
F j] ρ0=ρ

∫
Ω

|F j −Gj|2dρ0

)
. (B.31)

We end these considerations with another formal calculation. Consider a variation
of (F i, F e)ε with (δF i, δF e) = ∂ε(F

i, F e)ε
∣∣
ε=0

= (ve, vi). Recall that in this case

δρe = ∂ε(F
i)ε]ρ0

∣∣
ε=0

= −∇(veρe) and δρi = −∇(viρi). (B.32)

Furthermore, for the Wasserstein barycenter ρ̄ of a set of densities {ρj}j, we have,
from [1], Proposition 3.8,

1

2

∑
j

ωjW2(ρj, ρ̄)2 =
∑
j

ωj

∫
ψjdρj (B.33)

where ψj is the transport potential from ρj to ρ̄, i.e. Tρj→ρ̄ = id−∇ψj. Therefore,
formally,

∂ε dist2((F i, F e)ε,QN(Ω); ρ0)
∣∣
ε=0

= δ

(∫
ψedρe +

∫
ψidρi

)
(B.34)

=

∫
ψed(δρe) +

∫
ψid(δρi) (B.35)

=

∫
∇ψe · vedρe +

∫
∇ψi · vidρi, (B.36)

where we used the differentiability of the W2 distance with respect to the marginals.
The potentials ψe and ψi are related by ∇(ψe)c +∇(ψi)c = 0. Of course, what we
observe here is just a specific case of Equation (5.19):∑

j

ωj∇ψcj = 0.
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In this way, the gradient functions that appear as the optimal transport potentials
of the barycenter projection problem can be physically interpreted as the electric
field −e∇φ acting on the two charged distributions with opposite sign.



Appendix C

Proof of Proposition 6.1

In this section we re-visit the one-dimensional example from Proposition 6.1, where
analytical solutions can be calculated. The example is taken from appendix B of
[128].

Proposition C.1. The solutions to the equation

−∂2
xxuµ + µ2uµ = 0 (C.1)

on the domain Ω = (0, 1) with boundary conditions uµ(0) = 1, uµ(1) = 0 and
µ, µ̄ ∈ [µmin, µmax] =: A, µmax = ε−2µmin, µmin > 1, ε ∈ (0, 1) satisfy

‖uµ̄ − uµ ◦ Tρµ̄→ρµ‖L2(Ω) ≤
∣∣∣∣ 1

coshµ
− 1

cosh µ̄

∣∣∣∣ ≤ 2e−µmin , (C.2)

where ρ(u) = u/
∫
u.

Proof. The solution manifold is given by

M =

{
cosh(µ(1− x))

coshµ
: µ ∈ A

}
. (C.3)

In this one-dimensional example, the OT maps can be calculated analytically using
cumulative density functions. Since ρ(u) = u/

∫
u, we find

ρ(uµ) =: ρµ = µ
cosh(µ(1− x))

sinhµ
. (C.4)

Furthermore, cdf(ρµ)(x) = 1−sinh(µ(1− x))/sinhµ, cdf(ρµ)[−1](p) = 1−sinh−1((1−
p) sinhµ)/µ, and

Tρµ̄→ρµ(y) = cdf(ρµ)[−1]◦cdf(ρµ̄)(y) = 1− 1

µ
sinh−1

(
sinhµ

sinh µ̄
sinh(µ̄(1− y))

)
. (C.5)

The map Tρµ̄→ρµ is a bijection as it is strictly increasing and Tρµ̄→ρµ(∂Ω) = ∂Ω. The
former is a consequence of 0 < ρµ < +∞ ∀µ.

Using cosh ◦ sinh−1(x) =
√

1 + x2, and letting z = µ̄(1− y), we write

‖uµ̄ − uµ ◦ Tρµ̄→ρµ‖2
L2(Ω)

=
1

µ̄

∫ µ̄

0

1

coshµ2

(
coshµ

cosh µ̄
cosh z −

√
1 +

sinhµ2

sinh µ̄2
sinh z2

)2

dz (C.6)

123
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where sinh z2 denotes (sinh z)2. We can check using symbolic numerical software
that the integrand has no local maximum, as any stationary condition at z 6= 0
requires either

sinhµ2

sinh µ̄2
<

coshµ

cosh µ̄
<

sinhµ

sinh µ̄
⇔ sinhµ

sinh µ̄
<

tanh µ̄

tanhµ
< 1 (C.7)

or the same relation will all inequalities reversed, either of which lead to contradiction
for µ, µ̄ > 0. As the integrand vanishes at z = µ̄, its maximum value is attained at
z = 0, i.e. y = 1, and we find

‖uµ̄ − uµ ◦ Tρµ̄→ρµ‖L2(Ω) ≤ |Ω||uµ̄(1)− uµ ◦ Tρµ̄→ρµ(1)| =
∣∣∣∣ 1

cosh µ̄
− 1

coshµ

∣∣∣∣ . (C.8)

Remark C.1. If we chose ρ̄ = OTBar{ρµ : µ ∈ A} with uniform weights, we find
ρ̄ = ρµ̄ with

µ̄ = µmax−µmin

log µmax−logµmin
, (C.9)

the logarithmic mean. The choice made in [128] is µ̄ =
√
µminµmax.

Remark C.2. Note that

Tρµ̄→ρµ(y) ≈ Tρµ̄→ρµ(0) + y∂yTρµ̄→ρµ(0) =
µ̄

µ

tanhµ

tanh µ̄
y ≈ µ̄

µ
y (C.10)

and this approximation is close until either y ≈ µ/µ̄ (when µ < µ̄) or y ≈ 1 (when
µ > µ̄).

The derivative of Tρµ̄→ρµ can take extreme values: ∂yTρµ̄→ρµ(1) = µ̄
µ

sinhµ
sinh µ̄

≈ µ̄
µ
eµ−µ̄.

We now give the proof of Proposition 6.1:

Proof. We want to show that (c.f. Eq. (6.11))

inf
ξc1∈span{ψcµ:µ∈A}

sup
µ∈A

inf
w1(µ):Φ−1(y)=y−w1(µ)∂yξc1(y)

Φ−1
µ :Ω→Ω is a bijection

‖uµ̄ − uµ ◦ Φ−1
µ ‖L2(Ω) ≤ e−µmin(4 + ε).

By Remark C.1, ρ̄ = ρµ̄ with µ̄ = (µmax − µmin)/(log µmax − log µmin). Let

c(µ) =
µ̄− µ
µ

and w(µ) = − c(µ)

c(µmin)
. (C.11)

We will show the bound by evaluating it at the trial function

Φ−1
µ (y) := y − w(µ)

(
Tρµ̄→ρµmin

(y)− y
)
, (C.12)

i.e. ∂yξ
c
1(y) := Tρµ̄→ρµmin

(y) − y. Note that, by the properties of the logarithmic
mean, µmin/ε ≤ µ̄ ≤ µmin/2ε

2. As a consequence, −1 ≤ w(µ) ≤ ε. As Tρµ̄→ρµmin

is concave, Φ−1
µ is concave for µ < µ̄ and convex otherwise. Consequently, Φ−1

µ is
strictly increasing, with ∂yΦ

−1
µ (y) ≥ ∂yΦ

−1
µmin

(1) > µ̄(µmin)−1eµmin−µ̄ for µ < µ̄ and
∂yΦ

−1
µ (y) ≥ Φ−1

µmax
(0) ≥ ε for µ ≥ µ̄.
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Let δ′ := µmin/µ̄ and write

‖uµ̄ − uµ ◦ Φ−1
µ ‖2

L2(Ω) ≤
∫ δ′

0

(
uµ̄(y)− uµ ◦

µ̄

µ
y

)2

dy

+

∫ δ′

0

(
uµ ◦ Φ−1

µ (y)− uµ ◦
µ̄

µ
y

)2

dy +

∫ 1

δ′

(
uµ̄(y)− uµ ◦ Φ−1

µ (y)
)2

dy. (C.13)

For the first term, we can simplify |uµ̄(y) − uµ ◦ (µ̄y/µ)| = sinh(µ̄y)| tanh µ̄ −
tanhµ| ≤ 2 sinh(µmin)|e−2µ − e−2µ̄| ≤ e−µmin ∀y ∈ [0, δ′].

For the second term, since Φ−1
µ is either concave or convex, we find that∣∣∣∣ µ̄µy − Φ−1

µ (y)

∣∣∣∣ ≤ ∣∣∣∣ µ̄µy − ∂yΦ−1
µ (0)y

∣∣∣∣ (C.14)

≤
∣∣∣∣ µ̄µ − 1 + w(µ)

µ̄

µmin

tanhµmin

tanh µ̄
− w(µ)

∣∣∣∣ µmin

µ̄
(C.15)

= |w(µ)

∣∣∣∣(1− tanhµmin

tanh µ̄

∣∣∣∣ ∀y ∈ [0, δ′]. (C.16)

Therefore,∣∣∣∣uµ ◦ Φ−1
µ (y)− uµ ◦

µ̄

µ
y

∣∣∣∣
0≤y≤δ′

≤ µ max
0≤y≤δ′

sinh(µ(1− y))

coshµ︸ ︷︷ ︸
=tanhµ

|w(µ)|
(

1− tanhµmin

tanh µ̄

)
.

(C.17)
Using the bounds on w(µ), µ̄, and 1 − tanhµ ≤ 2e−2µ, this expression is bounded
by µ̄ · 1 · 1 · 2e−2µmin = 2µ̄e−2µmin for µ ≤ µ̄ and µmax · 1 · ε · 2e−2µmin ≤ 2µ̄e−2µmin

otherwise.
For the third term, assume µ ≤ µ̄. Recall that in this case, Φ−1

µ (y) ≤ µ̄y/µ and
therefore uµ(µ̄y/µ) ≤ uµ ◦ Φ−1

µ (y). Since the mapping is increasing, the maximum
of the integrand is reached at y = δ′. We find the following chain of inequalities:

uµ̄(δ′) = coshµmin − tanh µ̄ sinhµmin (C.18)

≤ coshµmin − tanhµ sinhµmin (C.19)

= uµ ◦
µ̄

µ
δ′ (C.20)

≤ uµ ◦ Φ−1
µ (δ′). (C.21)

Lastly, using

Tρµ̄→ρµmin
(δ′) = 1− 1

µmin
sinh−1( sinhµmin

sinh µ̄
sinh(µ̄− µmin)) ≥ 1− 1

µmin
, (C.22)

we arrive, after some simplifications, at

µ(1− Φ−1
µ (δ′)) ≤ µ− µmin + µ̄−µ

µ̄−µmin
≤ µ− µmin + 1 (C.23)

and

uµ ◦ Φ−1
µ (δ′) ≤ cosh(µmin − 1)− sinh(µmin − 1) tanhµ (C.24)

= e1−µmin + sinh(µmin − 1)(1− tanhµ). (C.25)
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Therefore,∣∣uµ̄(δ′)− uµ ◦ Φ−1
µ (δ′)

∣∣ ≤ uµ ◦ Φ−1
µ (δ′) ≤ e1−µmin + eµmin−1e−2µ ≤ e−µmin(e+ e−1).

(C.26)
When µ ≥ µ̄, the reversed inequalities hold and we obtain∣∣uµ̄(δ′)− uµ ◦ Φ−1

µ (δ′)
∣∣ ≤ uµ̄ ◦ Φ−1

µ̄ (δ′) = coshµmin − sinhµmin tanh µ̄ ≤ 2e−µmin .
(C.27)

Collecting all terms, we find

‖uµ̄−uµ ◦Φ−1
µ ‖L2(Ω) ≤ δ′e−µmin +δ′2µ̄e−2µmin +(1−δ′)(e+e−1)e−µmin < e−µmin(4+ ε),

(C.28)
using 0 < δ′ = µmin

µ̄
< ε and µmin > 1.
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brairie Hachette, Paris, 1901.
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