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We develop a scalable workflow for
parallel earthquake source inver-
sion employing Bayesian methods.

Figure 1: Ridgecrest scenario with complicated fault structure, topography and
heterogeneous materials. Adapted from [3].

Earthquake simluations with SeisSol
SeisSol (https://seissol.org) is a well-established simulation
software for earthquakes source dynamics and seismic wave
propagation. SeisSol solves the hyperbolic PDE

∂tq + A∂xq + B∂yq + C∂zq = Eq.

Key features
Realistic Materials anisotropic elastic, isotropic elastic, poroe-

lastic and viscoelastic materials with optional plastic defor-
mation

Physics based sources dynamic rupture, rate-and-state friction
Geometric flexibility with tetrahedral meshes

Discontinuous Galerkin discretisation
High-order convergence polynomial basis functions + ADER

time-stepping
Element local predictor corrector scheme facilitates paral-

lelization.
Small matrix-matrix multiplications code-generator YATeTo

with architecture specific backend for node-level performance

Parallelisation strategy
MPI + X based on mesh partitioning
OpenMP for CPU clusters
CUDA/SYLC for GPU offloading

Fused simulations
Compute N simulations simultaneously by adding another di-

mension to the solution tensor.
Reduce I/O overhead Read mesh only once.
No padding for SIMD Choose number of simulations as a multi-

ple of the vector register width.
Reduce cache-transfers element-local mass/stiffness matrices

only loaded once per N simulations

Scaling results
CoolMUC-2 812 compute nodes, each with two Intel Xeon E5-

2697 v3 processors and 64 GB RAM
Improved strong scaling with fused simluations due to

higher computational workload per element
Eight fused simulations optimal 33 % improvement over single

simulations

Figure 2: Computational effort per simulation for different number of fused
simulations. The mesh contains 420000 elements. Using eight fused
simulations, reduces the computational time by up to 33%.
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Figure 3: Geometry of the LOH1 scenario. The scneario features an elastic
halfspace with a slow-velocity layer on top. A double couple source excites
elastic waves, which are recorded at four surface receivers.

Bayesian inverse problems with the Markov-Chain Monte-Carlo method

MCMC sampling
Bayesian inverse problems allow us to solve inverse problems in a
probabilistic manner, i.e. find the probabilty distribution of an unknown
parameter θ, which fits the data ŷ . Build a Markov chain of samples θi :
Draw new proposal θ′ from proposal distribution q(θi , ·).
Evaluate forward model y ′ = G(θ′).
Compute proposal likelikhood by comparing y ′ with data ŷ .
Accept/Reject Accept θi+1 = θ′ with certain probability otherwise keep

previous sample θi+1 = θi .
Stationary distribution P(θ|ŷ) ∝ P(ŷ |θ) · π0(θ)

Generalized Metropolis-Hastings algorithm
Metropolis-Hastings is sequenatial can only draw

new sample after Θ′ has been accepted or de-
nied.

Generalized Metropolis-Hastings enables parallel
model execution [1].

Draw N samples and evaluate forward model.
Compute stationary distribution.
Accept K ≤ N samples based on stationary distri-

bution.

Θi−1 Θi

ϑ′1

ϑ′2

ϑ′3

ϑ′4

Θi+1 Θi+2 Θi+3 Θi+4

Figure 4: Sketch of the GMH algorithm for N = K = 4. Based on the sample Θi , four new proposals ϑ′i are drawn. The forward model is executed and in
comparison to the data, a likelihood is assigned to each propoasal (indicated by the colors). Based on this likelihood estimator, four new samples
Θi+1, . . . ,Θi+3 are added to the Markov Chain.

Performance of the Generalized Metropolis-Hastings algorithm

Benchmarking GMH
We test the performance of the GMH algorithm on a sim-
ple ODE test case with two unknown model parameters.
Vary N = 1, . . . ,20, K = 1, . . . ,N to obtain 1000 samples.
K << N inefficient high execution time, waste too many

samples.
Acceptance ratio increases with N.
K << N generates more independent samples.
Use K = N with small N for best ESS per time ratio.
Note that in this benchmark test, the speed-up of using
fused simluations was not as high as it was for SeisSol.

Performance metrics
Acceptance Ratio describes how many proposals are accepted

as samples into the chain.
High acceptance ratio: exploration of the parameter space is
insufficient. Low acceptance ratio: waste a lot of (expensive)
samples.

Effective sample size subsequent samples of a Markov Chain
are dependent, but we want to generate independent sam-
ples. The effective sample size (ESS) characterizes how
many (approximately) independent samples have been
drawn.
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Figure 5: Performance metrics of the GMH algorithm for an ODE testcase. The vertical axis denotes the number of fused simluations (N) and the horizontal
axis denotes the number of accepted samples (K ).

Finding the source position of the LOH1 scenario with GMH sampling

Model setup
Unknown source position c.f. fig. 3
Ground truth θ̂ = (0,0,2000)T

Data ŷ semianalytic solution of receiver seismo-
grams

Implementation
Use SeisSol with fused simulation, N = 8.
Fused GMH kernel patch of MUQ library [2].
Compare result with data ŷ using ‖ · ‖1 norm.
Runtime 21 h on 32 nodes to collect 640 samples

Results
E(θ) slightly off with significant offset in x/y direc-

tion: (−471.4,733.7,2232)T

Receiver 2 and 4 match well.
Receiver 1 and 3 are troubled in particular v3.
Accepance ratio = 11%, ESS = 8

Upcoming work
Improve acceptance ratio and ESS.
More unknows e.g. source orientation, frequency
Realistic scenario dynamic rupture, topography Figure 6: Comparison of the reference solution (red) and the MCMC samples (blue).

Figure 7: Source depth samples gathered during the MCMC inversion of the LOH1 example.
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