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Abstract

Independent scaling of compute and storage, a fundamental advantage of
cloud infrastructure, presents unique opportunities for analytical query
processing. The ever-increasing volume of data can now be stored eco-
nomically with independently scalable cloud object storage. Cloud-based
analytical database systems employ a disaggregated storage architecture to
ensure the durability of data while also reducing cost by dedicating compu-
tational resources exclusively for query processing. Their elastic compute
layer accesses structured, semi-structured, and unstructured data residing
in cloud object storage. To achieve high-performance query processing
and reduce cost in the cloud, the storage-related components of database
systems require a redesign that reflects the architectural paradigm shift.

This thesis presents solutions to the distinct architectural challenges for
analytics in cloud environments and achieves improvements for process-
ing semi-structured data. First, our experimental study of cloud object
storage guides the development of a cost-effective and highly performant
storage engine. We present a blueprint for integrating cloud object stor-
age retrieval into database systems. This integration leverages our novel
retrieval library, which significantly reduces CPU consumption during
object downloads. Second, commercially available cloud-native database
systems use block-level caches to improve performance. When only a
few data items are relevant within a block, these caches lead to poor
storage space utilization. To address this issue, we advocate a new smart
caching strategy that uses the access patterns of the workload to selec-
tively store and process only dynamic regions of tables. Third, much
of today’s data originates from semi-structured formats, such as JSON,
because developers prefer flexibility over upfront schema design. To ac-
celerate semi-structured data analytics, we present a novel approach that
materializes JSON data. By extracting and reordering blocks of JSON doc-
uments, our materialization exhibits performance comparable to columnar
storage while being robust to heterogeneous datasets and facilitating query
optimization. Finally, the growth of data introduces additional challenges
for allocating memory during query processing. We investigate the impact
of various memory allocators on analytical query performance.



Zusammenfassung

Die unabhängige Skalierbarkeit von Rechenleistung und Speicher ist ei-
ne grundlegende Neuerung der Cloud-Infrastruktur und bietet einzig-
artige Möglichkeiten für die analytische Datenverarbeitung. Die stetig
wachsenden Datenmengen können nun mit unabhängig skalierbarem
Cloud-Objektspeicher kostengünstig gespeichert werden. Analytische
Cloud-Datenbanksysteme nutzen eine verteilte Speicherarchitektur, um
die Dauerhaftigkeit der Daten zu gewährleisten und gleichzeitig die Kos-
ten zu senken. Diese Kostenreduktion wird dadurch ermöglicht, dass
die elastische Serverschicht nur während der Anfragebearbeitung für
den Zugriff auf Daten im Cloud-Objektspeicher benötigt wird. Im Cloud-
Objektspeicher liegen verschiedene Datentypen vor, die entweder struk-
turierte, semi-strukturierte oder unstrukturierte Daten enthalten. Um die
Effizienz der Anfragebearbeitung zu erhöhen und die Kosten zu senken,
müssen die speicherbezogenen Komponenten des Datenbanksystems an
die Architekturänderungen in der Cloud angepasst werden.

In dieser Dissertation werden Lösungen für verschiedene architektonische
Herausforderungen bei der Verarbeitung analytischer Anfragen in der
Cloud entwickelt und Verbesserungen für die Analyse semi-strukturierter
Daten erzielt. Zunächst dient unsere experimentelle Studie über Cloud-
Objektspeicher als Grundlage für die Entwicklung einer kostengünstigen
und hochperformanten Datenbanklösung für die Verarbeitung analyti-
scher Anfragen. Wir verbessern das gleichzeitige Herunterladen und Ana-
lysieren von Daten aus Cloud-Objektspeichern durch die Integration un-
serer neu entwickelten Download-Bibliothek in Datenbanksysteme. Diese
reduziert die Prozessorlast beim Herunterladen signifikant. Außerdem
verwenden kommerziell erhältliche Cloud-Datenbanksysteme blockba-
sierte Zwischenspeicher, um die Performance zu verbessern. Wenn nur
eine kleine Anzahl von Tupeln innerhalb eines Blocks relevant ist, können
solche Zwischenspeicher zu einer schlechten Nutzung des lokalen Spei-
cherplatzes führen. Um dieses Problem zu lösen, schlagen wir eine neue
intelligente Zwischenspeicherstrategie vor, die die Semantik der Anfrage-
historie nutzt, um selektiv einzelne Segmente von Tabellen zu speichern.
Um die wachsende Menge semi-strukturierter Daten besser verarbeiten
zu können, präsentieren wir zudem eine neue Strategie zur Analyse von
JSON-Daten. Unsere Strategie extrahiert Daten aus JSON-Dokumenten
mit gemeinsamen Schlüsseln als Blöcke und ordnet Dokumente für eine
verbesserte Extraktion um, sodass eine schnelle Analyse möglich ist, ohne
die Flexibilität des Formats zu beeinträchtigen. Zusätzlich entstehen mit
zunehmender Datenmenge neue Herausforderungen für die Allokation
von Arbeitsspeicher. Wir untersuchen daher, wie sich verschiedene Ansät-
ze auf die Performance von analytischen Datenbanksystemen auswirken.
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CHAPTER 1
Introduction

Data is the new oil. More and more data is created every day, and forecasts
show that the growth rate of data is still increasing [Mil19]. Recent trends
exacerbate this phenomenon because much of the data is generated without
a human in the loop, such as sensor data or data from logging infrastructure.
Nevertheless, even human-generated data is growing; for example, tracking
page visitors across a website to study visitor patterns is critical to identifying
business opportunities. Regardless of the source, it is essential to analyze large
amounts of data to understand every aspect of a business or the reliability of a
system.
Analytics on a large body of data. All this data is collected in database
management systems (DBMS). Typically, these systems are classified as either
transactional database systems or data warehouses, also known as analytical
database systems, according to the workload they optimize for. Transactional
database systems store current business information, such as orders and cus-
tomer information. These systems are optimized for low latency on short-
running transactions. On the other hand, data warehouses are periodically
updated with extract-transform-load (ETL) pipelines from multiple sources,
including transactional database systems [Kar+17]. Data warehouses are used
to perform long-running online analytical processing (OLAP) workloads that
would overwhelm transactional systems [Mon23a]. Consequently, it is crucial
for analytical database systems to store, scan, and process large amounts of data.
Independent resource scaling. Traditionally, the collected data is stored on
multiple disks located on on-premises servers in redundant array of inexpensive
disks (RAID) configurations [Ora02]. On-premises solutions deploy distributed
data warehouses on general-purpose server clusters to increase storage capacity
beyond RAID configurations. This horizontal scaling of servers does not only
increase storage space but also compute capacity. However, most of the time,
only subsets of the data are queried, so the additional computing power is not
used efficiently. Scaling nodes is expensive because more compute resources are
added but partially unused, which results in high one-time cost and increased
power consumption. Thus, independent scaling of storage and compute is
desirable to reduce hardware cost.
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Database systemsmove to the cloud. Public cloud offerings address this need.
Cloud object stores enable the independent scaling of data cost-effectively (e.g.,
∼23$/TiB per month) [Ama23d] and can store petabytes of data. Additionally,
they provide very strong durability guarantees; for example, AWS S3 promises
a durability of 11 9’s per year [Ama23e]. Data warehouses are now taking
advantage of this trend by adopting a tiered or disaggregated storage model.
Their elastic compute tier accesses data that persists on independently scalable
remote cloud object storage, e.g., Amazon S3, Google Cloud Storage, and Azure
Blobs [Ama23b; Goo23; Mic23]. Today, almost all data warehouse systems,
such as AWS Redshift, Google Big Query, Azure Synapse, Apache Spark, and
Apache Presto, support querying cloud storage [AR20; Arm+15; Dag+16; Gup+15;
Mel+10]. For improving latency and throughput, most systems rely on local
caching during processing.
Main memory is a scarce resource. Disaggregating storage and computation
simplifies storing large amounts of data (up to petabytes per customer) [Ama23c].
In contrast to persistent disk storage, main memory is not easily scalable. Over
the last decade, the anticipated strong reduction in the cost of main memory
and the increase in single server memory capacity have not occurred [NF20].
Although most queries only touch a subset of the data, some queries produce
large intermediate query results that scale with the amount of the input data;
for example, chokepoint query Q13 of the TPC-H workload [BNE13]. Careful
management of this scarce resource is necessary to ensure sufficient main
memory for every query.
Semi-structured data is common. Besides classical structured relations, many
interfaces rely on semi-structured formats to exchange data. Semi-structured
formats interleave schema and content of the data within the same document.
Developers often favor these formats due to their ease of creation and transfer,
as all relevant information to access the data is contained within each document.
Notably, the JavaScript Object Notation (JSON) is commonly used by many web
applications [Li+17]. Because of its widespread use for data transfer, large JSON
datasets are accumulated by logging software events or collected from publicly
facing APIs [Met23; X C23; Yel23]. Analytics on such datasets is valuable, but
the interleaving of data and schema poses a challenge during data scanning.
Accessing the desired keys requires a traversal of the document. Efficiently
handling semi-structured data necessitates adaptations in the storage layer of
database systems.
Opportunities for database systems. From these observations, this thesis
identifies several challenges and opportunities for improving analytical query
processing in the cloud. In the remainder of this thesis, specific research ques-
tions are devised prior to discussing novel solutions to these issues, which were
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Figure 1.1: Our papers target different aspects of cloud-based data processing.

first presented in the publications included in this thesis. By leveraging our
novel solutions, database systems becomemore cost-effective and achieve higher
performance in the cloud. Figure 1.1 shows a schematic overview of the four
publications in the architectural landscape of cloud-based data processing:

• Paper P1 demonstrates efficient, inexpensive, and CPU-conscious retrieval.

• Paper P2 explores better local caching by improving SSD space utilization.

• Paper P3 facilitates fast and robust processing of semi-structured data.

• Paper P4 analyzes the impact of memory allocation for query processing.

1.1 High-Performance and Cost-Effective Analytics
on Cloud Object Storage

Network bandwidth increases fourfold. Until recently, the primary issue
of using cloud object storage for analytical purposes stemmed from the low-
bandwidth network connection between the compute tier and the storage in-
frastructure. Thus, the legacy database system design relies on storing large
amounts of data on local SSDs (∼2 GiB/s per dedicated SSD at AWS). In 2018,
instances with 100 Gbit/s (≈ 12 GiB/s) Ethernet networking capabilities were
introduced at AWS [Bar18; BL19]. This resulted in a fourfold increase in the
bandwidth available per instance. Compared to clusters connected with Infini-
band, 100 Gbit/s Ethernet is both cost-effective and readily available in public
clouds.
Accessing data from cloud object storage is cost-effective. To illustrate
this cost-effectiveness, we compare the on-demand pricing for two related
instance types on AWS: c5n.18xlarge, which offers 100 Gbit/s networking, and
c5.18xlarge, which provides 25 Gbit/s networking [Ama23a]. Although the
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c5n instance provides a fourfold boost in network throughput and has moremain
memory than the c5, it only results in a 22% increase in cost. This networking
boost closes the performance gap between remote network and local NVMe
SSD bandwidth, making cloud storage a more compelling choice for workloads
that heavily rely on bandwidth. For example, consider the i3en.24xlarge
instance, known for its local NVMe bandwidth. This instance provides a read
bandwidth of 16 GB/s, similar to the full-duplex 12 GB/s network bandwidth of
the c5n.18xlarge.
Persistent data is stored on cloud object storage. Nowadays, most cloud-
based database systems leverage cloud object storage for persisting data. Because
caching was already used in on-premises environments, many different strate-
gies were developed to avoid retrieving data from remote nodes [Jal+18; Yan+21;
Zha+22]. Recent work on using serverless cloud functions for analytics [BSA23;
MMA20; Per+20], such as Starling and Lambada, focuses on direct processing of
data from remote storage, as serverless functions cannot utilize local state. These
functions, however, have very limited bandwidth per invoked function com-
pared to modern network-optimized instances (e.g., a factor of 100×). Although
the high (first-byte) latency of remote storage has been discussed in previous
work [BA22], no comprehensive empirical study of analytics on cloud object
storage has been conducted examining both its performance (i.e., bandwidth,
latency, and concurrency in multiple configurations) and cost characteristics.
Challenges for analytics using high-bandwidth networks. Efficient use of
cloud object storage in database systems poses several key challenges. (i) To
fully utilize high-bandwidth networks, a large number of concurrent requests
must be outstanding due to the low bandwidth of individual object requests.
This necessitates a careful retrieval integration into the database system to fully
exploit the bandwidth potential. (ii) Retrieving data from the network (via TCP)
causes higher CPU overhead than from local disks, which reduces the number
of cores available for concurrent analytics. Since query engines compete for
computational resources, the CPU cores spent on network retrieval must be
minimized to ensure efficient data analysis. (iii) Many cloud database systems
support running in different cloud environments, allowing users to choose their
preferred cloud vendor. However, each cloud vendor typically offers its own
cloud object storage library. Integrating multiple networking libraries to support
multi-cloud functionality adds complexity to the system.
Exploiting the network bandwidth potential while optimizing cost. Effi-
cient analytics on data residing in cloud object storage is achieved by overcoming
the three mentioned challenges, taking full advantage of the instance’s band-
width while maximizing CPU resources for analytical query processing. In
addition to the query performance, the cost of analytics is equally important in
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the cloud. Therefore, a cloud-native database system must optimize for both
performance and cost characteristics, which leads to the following research
question:

Research Question 1: Given the high network bandwidth and
limited CPU resources on a single instance, how can database systems
efficiently and cost-effectively analyze data from cloud object storage?

Enabling cost-effective and high-performance analytics. Paper P1 of this
dissertation addresses performance and cost challenges, offering an innovative
approach for efficient analytics on data stored in disaggregated cloud object
stores. To this end, we first conduct an experimental study of cloud object
stores to optimize request size and concurrency for cost-effective and high-
throughput retrieval. The results of the experiments are used to developAnyBlob,
a low-overhead multi-cloud download manager that reduces CPU resource
consumption while maintaining instance throughput. Finally, we demonstrate a
blueprint for seamlessly integrating AnyBlob into database engines, enabling
efficient analytics by interleaving object retrieval with analytical processing. Our
integration facilitates inexpensive and efficient analytics at instance bandwidth
on data stored in cloud object storage, evaluated by incorporating AnyBlob into
our database system Umbra [NF20]. Umbra is a full-fledged database system
that generates executable code for queries [Gru+23; KLN21; KLN18; Neu11] and
introduces many high-performance analytical operators [BGN21; FN21; Fre+20;
NLK17; SN22; Win+22; Win+20].

1.2 Caching for Database Systems in Disaggregated
Storage Environments

Renewed interest in local caching. The transition from shared-nothing
database systems to the storage-disaggregated architecture in the cloud has also
sparked renewed interest in local node data caching. The majority of cloud
database systems cache data on local compute node disks to reduce access la-
tency or increase query throughput. Although high-bandwidth networks are
becoming more affordable, not all cloud vendors provide 100 Gbit/s networking
for general-purpose instances. Even in the presence of high-bandwidth net-
working, the additional utilization of local SSDs can improve the overall data
bandwidth, resulting in better query performance. Therefore, cloud database
systems aim to store hot data on the compute layer’s fast local storage, e.g.,
SSDs. But, the limited capacity of these fast storages necessitates a sophisticated
caching strategy. Caches, such as the Alluxio analytics accelerator [All23; Li18;
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Li+14], the Databricks Delta Cache [Arm+20; Dat23a], and the Snowflake Cache
Layer [Dag+16], are widely used in commercial cloud offerings.
Low cache utilization in block-level solutions. These caching solutions
usually operate as black-box systems. They cache at the file or block level and
employ standard cache replacement policies like LRU for cache management.
Block-level caching is commonly used because most data is already stored in
partition attributes across (PAX) layout [Ail+01], e.g., Apache Parquet [Apa23d;
Zen+23]. However, the existing solutions often suffer from low storage space
utilization, as a single record of interest results in the caching of the entire block,
wasting precious storage space. This problem persists even with optimized
columnar formats that employ zone maps to skip irrelevant blocks [Gra09;
Ora17; Sun+14]. Additionally, cloud databases increasingly support analytics
on heterogeneous data such as CSV, JSON, and row-oriented binary formats
like Apache Avro [Apa23c]. Because these formats do not follow a columnar
layout, block-level caching is often insufficient for analytics. Although LRU-
based caches use the history for deciding which blocks to keep, they fail to
capture the semantics of the workload, e.g., relevant table filters.
Caching filtered data tailored to the workload. Because current solutions
fail to capture workload semantics and operate at block granularity, local node
caches often store irrelevant data. Due to the limited storage space on local
nodes, it is important to utilize the caches as efficiently as possible. Storing
filtered data that is tailored to the workload promises to increase this storage
space utilization and may lead to better performance, which is summarized in
the following research question:

ResearchQuestion 2: What performance impact does smart caching
of filtered data tailored to the observed workload have on analytics,
considering disaggregated storage with limited local storage?

Crystal transparently manages a semantic cache. To overcome the low
utilization of caches, Paper P2 of this thesis proposes Crystal – a smart storage
middleware. Positioned between the database system and raw storage, Crystal
operates as a cache management system (CMS) dedicated to storage tasks on
the compute node. It efficiently manages high-speed local storage as a cache
and retrieves data from remote storage with the help of a download library,
such as the cloud-vendor-provided libraries or AnyBlob. Unlike traditional
block-level caches, Crystal dynamically selects which data regions (i.e., table
rows) to transform and to cache locally in a columnar format based on the
observed workload. If helpful for query performance, data can be cached in
multiple regions. Lightweight connectors facilitate the communication between
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Crystal and the host database system. First, the database system submits data
requests with filters on the relation. Crystal then returns the file path of the
requested data, which may reside locally in the cache or remotely on cloud
object storage. In essence, Crystal acts as a bridge between storage and database
systems. It enables efficient caching into semantically meaningful regions in a
DBMS-agnostic columnar format.

1.3 Fast Analytics on Semi-Structured Data

DBMSs must efficiently process JSON. As more and more semi-structured
data is generated, database systems must strive to store and analyze such modern
formats. Due to its widespread use in web applications, semi-structured data
is often transferred as human-readable JSON. Because of the importance of
analyzing these formats, several methods have been proposed to improve the
performance of JSON analysis.
Different strategies for handling JSON documents. Relational database
systems use three main strategies when dealing with JSON documents: They
either scan the rawfiles as an external table, store each object as a string, or use an
optimized binary representation on a per-object basis [Pos23b]. Fast processing
of raw data in database systems has been explored for both structured [Idr+11]
and semi-structured formats, coupled with code generation and indexes for
faster subsequent access [KAA16]. SIMD-JSON [LL19] and Mison [Li+17] allow
JSON parsing at rates up to one GiB per second per core. However, querying
raw JSON documents remains expensive because the entire dataset must be
parsed to access a single field. Storing complete documents, either as plain
text or binary-optimized, in the database requires subsequent accesses into the
documents when analyzing them. Accessing keys within documents has high
performance overhead compared to reading values from a columnar storage,
commonly used in relational databases. Sinew [TDA14] has been developed to
improve data access by extracting entire value columns from JSON documents.
This extraction is based on the observation that documents from the same system
have a similar structural schema. However, the effectiveness of Sinew depends
on a globally inherent internal document structure. Due to its global structure
analysis, dynamic or heterogeneous documents pose robustness challenges, and
the update process is resource-intensive. Dremel [Mel+10], implemented in
Apache Parquet [Apa23d], splits documents at the record level (shredding) and
reassembles them during query execution. However, this reassembly requires an
access automaton that becomes expensive during analysis. Processing Parquet
files is, therefore, often CPU-bound. This even applies to relational files without
nested and optional components [Can17].
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Robustly exploiting the common structure of documents. To analyze
JSON data efficiently, modern database systems must strive to achieve high
access performance, maintain robustness regarding heterogeneous data, and
facilitate join ordering. Because most documents are machine-generated, they
have a fairly predictable structure, which can be used for materializing columns.
Although these columns provide high access performance, documents may
change over time, or different document types may be inserted, making a global
extraction unusable. The following research question explores the utilization of
the inherent document schema for robust materialization:

Research Question 3: How can database systems efficiently infer
and exploit the structural information of a set of documents to enable
fast and robust analytics on semi-structured data?

JSON tiles enables fast analytical query processing. To improve JSON
processing in database systems, Paper P3 of this dissertation presents JSON tiles,
a comprehensive set of algorithms and methods to facilitate high-performance
analysis. JSON tiles automatically identifies the underlying common structure
within a group of documents, called a tile. We use this structural insight to
infer data types, instantiate common keys as relational columns, and generate
statistics for query optimization. With these strategies, JSON tiles achieves
analytical query performance on JSON data comparable to a native relational
columnar storage. For effectively handling heterogeneous data, JSON tiles
reorders documents between tiles to increase the number of extractable column
chunks. If uncommon data is inserted, we use an optimized binary format,
enabling fast key lookups. These techniques are automatic and transparent, so
JSON tiles does not sacrifice the flexibility of JSON documents.

1.4 Impact of Memory Allocation on Analytical
Query Performance

Workload dictates the memory allocation pattern. With cloud storage
being virtually unlimited, the amount of stored data increases faster than the
size of main memory. In analytical workloads, processing large datasets requires
the allocation of a significant amount of memory. Due to advancements in
the query performance of modern database systems, components are becoming
performance bottlenecks that were not a concern in traditional database systems,
such as memory management. Memory allocations and deallocations notably
impact query performance, evident in performance profiling. As the allocation
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pattern depends on the workload, efficiently managing large amounts of memory
operations is crucial.
Modern hardware stresses allocation bottlenecks. Modern hardware ampli-
fies this issue, as hundreds of general-purpose cores performmemory operations
simultaneously. Moreover, modern servers employ a many-core architecture
that consists of multiple CPU nodes. Accessing data from a remote non-uniform
memory access (NUMA) node is more expensive than accessing local memory.
Since memory allocators implement various strategies for allocating and deal-
locating memory, the choice of the memory allocator affects query processing.
We classify dynamic memory allocators based on four fundamental properties:

• Performance. How much CPU time is spent for malloc and free?

• Scalability. How well does the allocator scale on larger machines, and
how much overhead is introduced for multi-threaded allocations?

• Memory Fairness. Is the freed memory returned to the operating system
so that other processes can reuse it?

• Memory Efficiency. How much of the memory is unusable due to
fragmentation?

Understanding the impact of memory allocator choice. Despite being a
critical factor in query processing [App+17], no prior empirical study has been
conducted on different dynamic memory allocation approaches for analytical
database systems. As memory allocators vary significantly in their allocation
strategy, it is important to understand the implications of selecting a particular
memory allocator, which is the focus of the following research question:

Research Question 4: What impact does the selection of the mem-
ory allocator have on query performance, scalability, and memory
efficiency of analytical database systems?

Memory allocator analysis reveals performance differences. Paper P4 of
this thesis presents a thorough analysis of the impact of memory allocation on
high-performance query processing. We evaluate various approaches on analyt-
ical workloads according to the four dynamic memory allocator characteristics.
Our study reveals that the memory allocation strategy significantly impacts
query performance.



CHAPTER 2
Research Methodology

Methodology outline. This chapter discusses the details of the research
methodologies used in this publication-based dissertation. Prior to investi-
gating the specifics of each paper, this chapter outlines the general research
approach in the field of database systems.
The research process. Every research topic stems from identifying problems
and reviewing related work. Unresolved issues lead to open research questions,
driven by a desire to adapt to modern technological developments or achieve
verifiable improvements to a particular system. From this research question,
various ideas lead to testable research hypotheses that guide the research process.
In the database systems community, these hypotheses must be tested against a
modified system or prototype to validate whether they hold. This development
is a multi-stage process. First, the ideas that guide to the hypotheses are used
to create a system design. Then, this design is put into practice by implement-
ing new components of a system, replacing existing components with newly
developed ones, or implementing an entirely new prototype system. Finally, the
newly developed components are evaluated against state-of-the-art approaches
on standardized workloads that resemble real-world behavior. This process
is typically iterative and incremental. Adaptations and new ideas arise from
observations during the development and evaluation of test data. These ideas
are incorporated into the system to enhance its observable performance. The
steps are visualized in Figure 2.1.
Scientific contribution and section outline. In the following sections, a
short summary of the challenges introduces each paper’s research question.
One or more verifiable hypotheses are formulated for each research question.
Subsequently, this thesis highlights the key scientific contributions of our pub-
lications. A description of the testbed and a brief evaluation will be used to
verify the stated hypotheses. More information about the scientific contribution
and the experimental evaluation can be found in the original papers included in
this thesis. Please also refer to these publications for detailed explanations and
discussions.



2. Research Methodology: Exploiting Cloud Object Storage 11

1. 
Ide

nti�
ca

tio
n

2. 
�ues

tio
ns

3. 
Hyp

ot
hes

es

4. 
Dev

elo
pm

en
t

5. 
Eva

luati
on

Figure 2.1: The five steps of the research process.

2.1 Paper P1. Exploiting Cloud Object Storage for
High-Performance Analytics

Exploiting cloud object storage for analytics. The emergence of inexpensive
network technologies that support 100+Gbit/s makes retrieving large amounts of
data from external storage more attractive. Despite the widespread use of cloud
object storage, it is unclear how to efficiently retrieve data from cloud object
storage while simultaneously processing queries. Because a single request only
has limited bandwidth, many requests need to be outstanding simultaneously
to saturate the instance bandwidth. This large number of requests makes the
design and integration of cloud object storage retrieval challenging. Moreover,
the CPU resource utilization for data retrieval from the network is significantly
higher than for local storage drives. These observations lead to the following
research question:

Research Question 1. Given the high network bandwidth and lim-
ited CPU resources on a single instance, how can database systems
efficiently and cost-effectively analyze data from cloud object storage?

2.1.1 Hypotheses

Reducing CPU overhead of retrieval is crucial. HTTP is the most common
interface to cloud object storage. Unfortunately, this connection requires more
CPU resources than retrieving data from locally attached disks. Retrieving data
should use as few CPU cores as possible to free resources for query process-
ing. Thus, high-performance query processing relies on resource-conscious
retrieval. Modern IO stacks in the Linux kernel promise lower CPU usage. In
particular, io_uring communicates with the kernel via inexpensive shared ring
buffers [Axb19]. We anticipate lower CPU resource usage while retaining the
same throughput, as stated by the following hypothesis:
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Hypothesis 1.1: By using io_uring, a modern kernel stack for IO,
and an optimized download process, the CPU utilization for retrieving
data from cloud object storage can be significantly reduced without
affecting download performance.

Queries on remote data are processed at network line rate. Due to the
high bandwidth of network-optimized instances, processing at network line
rate could provide an end-to-end bandwidth comparable to local SSDs in RAID
configurations. Our system, even with disabled caches, should achieve query
throughput for bandwidth-dominated workloads similar to commercially avail-
able cloud analytics systems that utilize local disks. Therefore, the following
hypothesis should be experimentally validated:

Hypothesis 1.2: Database systems can efficiently retrieve and analyze
data from cloud object storage with a bandwidth utilization that is
close to the network bandwidth limit of the instance.

Analytics on cloud object storage is cost-effective. Besides performance,
cost is the major decision driver in cloud environments. Storing data on cloud
object storage is inexpensive, but additional access cost occur [Ama23d]. By
optimizing the request size, the storage access cost can be bound by the compute
instance cost, enabling cost-conscious processing that avoids unexpectedly high
bills. In accordance with cost simulations [LK21], processing queries in public
clouds should be multiple times cheaper in comparison to what users pay for
commercially available solutions. The following testable hypothesis summarizes
our expected results:

Hypothesis 1.3: Since careful analytics on cloud object storage is cost
effective, database systems can considerably reduce analytics cost com-
pared to commercial offerings while providing comparable throughput.

2.1.2 Scientific Method and Design

Characteristics of cloud object storage guide the design. To validate the
hypotheses, our goal is to integrate high-performance and cost-effective query
processing from remote storage in a modern relational database system. Our
contribution is three-fold. (i) To obtain a deeper understanding, we conduct an
extensive experimental study on the characteristics of cloud object storage. The
results of this study guide our development in achieving high-performance and
inexpensive analytics. (ii) Preliminary results indicate that retrieving data from
remote storage is particularly demanding on the CPU. In order to decrease the
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Figure 2.2: AnyBlob uses io_uring to asynchronously process state-machine-
based message tasks. Concurrency within a single thread facilitates higher
performance without thread oversubscription.

number of cores required for retrieving data, we create AnyBlob, an innovative
retrieval library. (iii) With AnyBlob and the results of the study, we demonstrate
a seamless integration of cloud object storage retrieval into database systems.
Cloud storage allows for high-bandwidth retrieval. Our study examines the
cost and durability service level agreements (SLAs) of various storage options,
including AWS S3, EBS, and local disks. Cloud object storage provides the
highest durability guarantees while also being the most cost-effective option.
We conduct experiments on multiple cloud vendors, demonstrating the latency
characteristics, total retrieval bandwidth, required concurrency of requests
for achieving the total bandwidth, and cost implications of the request size.
Interestingly, retrieving data from cloud object storage within a single location
(e.g., an AWS region) incurs only fixed access cost independent of request size
and monthly storage cost. Therefore, the larger the requests, the more data
can be retrieved per dollar, universal across all major cloud vendors. However,
database applications that rely on pruning unnecessary blocks prefer smaller
requests. Considering that the retrieval throughput plateaus when using request
sizes of several MiB, we recommend a size of 8 – 16 MiB, which we deem
cost-throughput optimal. Although a single object request only has limited
bandwidth (i.e., high latency per request), the full instance bandwidth of 100
Gbit/s can be exploited by retrieving hundreds of requests simultaneously.
More CPU resources for analytics due to AnyBlob. We use these findings
to create a low-overhead, open-source, and multi-cloud retrieval manager, called
AnyBlob [Dur22]. AnyBlob’s objective is to achieve instance network bandwidth
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Figure 2.3: Table scan design using different worker tasks. In this example, four
threads process queries, one prepares new requests, and three download data.

comparable to cloud-vendor-provided libraries while reducing CPU usage. To
avoid performance penalties and ensure smooth integration into the database
system’s worker thread model, AnyBlob must avoid thread oversubscription,
such that we do not use more download threads than hardware threads. AnyBlob
uses asynchronous networking based on the modern Linux kernel interface
io_uring, allowing a single thread to handle multiple concurrent requests. It
maintains a state machine for each request and suspends the request after
generating a new io_uring-based syscall. Once the syscall is completed, the task
is reevaluated, and new syscalls are scheduled if more network communication
is required or a callback finishes the task. While a single-threaded approach that
handles multiple concurrent requests already has high network throughput, it is
not sufficient for saturating modern high-bandwidth instances. Thus, multiple
retriever threads are grouped for better performance while retaining a simple
user interface via a group-global request queue. The design of AnyBlob with
two retriever threads that share one global queue is depicted in Figure 2.2.
Seamless object retrieval integration. To integrate data retrieval from cloud
object storage into database systems, we utilize the findings of our experimental
study andAnyBlob for resource-conscious and high-performance object retrieval.
Our integration, shown in Figure 2.3, takes advantage of the task-based design
of database systems and the internal management of database worker threads.
All major database systems require and implement the concept of tasks to switch
execution between different queries (e.g., in multi-tenant systems), preventing a
single long-running query from stalling the DBMS. We can repurpose worker
threads in this task system to retrieve data. At task boundaries, the job of a
worker thread can be adjusted, facilitating high adaptivity. In our design, a novel
scheduler determines the current job of a worker thread during table scanning.
It balances retrieval and processing performance by using observed throughput
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statistics. The worker threads are extended to also support data preparation
and data retrieval. During unmodified worker tasks, the scan data is simply
processed and passed to the upper-level operators. New requests are generated
during a preparation task, and memory in the buffer manager is allocated for
downloading. The download task schedules the worker as an AnyBlob retrieval
thread that continuously downloads the objects of the currently processed table.

2.1.3 Implementation Overview

AnyBlob is a multi-cloud and resource-conscious object retrieval library.
AnyBlob is designed as a library to be used in other programs. It is written
in C++ and relies on modern Linux kernel features. At its core, it processes
requests and retrieves or sends data to cloud object storage. The network
communication is handled via io_uring’s shared buffers. Although all cloud
object stores communicate via HTTP messages, the messages themselves differ
between vendors. We implement interfaces to multiple vendors, and our design
allows for an easy integration of more vendors. Authentication and encryption
are integrated into AnyBlob with the help of the OpenSSL library [Ope23].
Buffer manager and storage engine adaptations. We implement a new
storage engine within our modern database system Umbra, written in C++, that
enables reading from columnar chunks (PAX layout). Our format is based on
data blocks with small materialized aggregates (SMAs) [Lan+16; Moe98]. We
retrieve objects without additional userspace data copies by downloading them
directly into pages of our buffer manager. In contrast to regular pages of the
buffer manager, pages for remote retrieval are discarded at eviction and are not
written back to disk. Our buffer manager transparently manages both page
types, unifying the used buffer space.

2.1.4 Experimental Evaluation and Conclusion

Testbed. The experiments are conducted on AWS within the eu-central-1
region. Our data and metadata structure, stored on AWS S3, resembles Apache
Iceberg and Delta Lake [Apa23b; Dat23b; Hug21]. Except for Snowflake, all mea-
surements are executed using a single instance of c5n.18xlarge, comprising
72 vCPUs (36 cores, 72 threads), 192 GiB of RAM, and 100 Gbit/s Ethernet. For
Snowflake, we provision a large data warehouse. All experiments that compare
to AnyBlob leverage version 1.9.140 of the AWS C++ SDK [Ama23g].
Reducing CPU usage of retrieval. Hypothesis 1.1 states that AnyBlob reduces
CPU utilization without impacting performance. Figure 2.4 illustrates three
different retrieval strategies: AnyBlob, AWS SDK [Ama23g], and AWS SDK
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Figure 2.4: Throughput and CPU usage Pareto curves for AnyBlob, AWS C++
SDK S3, and AWS C++ SDK S3Crt libraries.

Crt [Ama23f]. The performance and CPU utilization Pareto curve demonstrates
that AnyBlob outperforms all other approaches. AnyBlob achieves the same
maximum throughput while decreasing CPU utilization by 30%. This experi-
ment validates Hypothesis 1.1 since our approach dominates all points of the
Pareto curve.
Achieving instance bandwidth during analytics. Hypothesis 1.2 asserts that
AnyBlob-enabled Umbra can saturate the instance network bandwidth during
analytical query processing. To showcase this, we compare a remote-only
version of Umbra with disabled caches to an in-memory Umbra on the same
instance. The remote Umbra version discards previously downloaded blocks
and retrieves them again. Table 2.1 presents different chokepoint TPC-H queries
for both versions [BNE13; Dre+20]. We distinguish between queries that are
limited by available bandwidth and those that are limited by computation. For
queries that are limited by bandwidth, specifically Q1, Q6, and Q19, we observe
end-to-end bandwidths of 75 Gbit/s or more, which is close to the instance limit.
Note that this bandwidth is only a lower bound because it is calculated based
on the total amount of data retrieved and the end-to-end query latency. The
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Table 2.1: In-memory and remote-only Umbra performance and cost comparison
(TPC-H, SF 500).

Query Q1 Q3 Q6 Q9 Q13 Q18 Q19 GM

In-Memory [s] 1.14 2.93 0.52 10.61 9.50 18.91 0.74 2.03
Remote [s] 3.52 5.87 2.47 13.34 12.47 22.20 3.82 4.94
Factor [×] 3.08 2.01 4.78 1.26 1.31 1.17 5.15 2.42
Bandwidth [Gbit/s] 75.00 55.76 77.73 40.67 30.86 15.41 76.87 49.80
Cost S3 [¢] 0.29 0.21 0.17 0.31 0.28 0.22 0.25 0.15
Cost EC2 (on demand) [¢] 0.38 0.63 0.27 1.44 1.34 2.39 0.41 0.53

observed bandwidth is comparable to the combined throughput of 5 NVMe
SSDs in the cloud (∼2 GiB/s at AWS). Computation-bound queries, for example
Q9, Q13, and Q18, have little performance difference between the fully remote
and in-memory databases. In these scenarios, our retrieval process has only
negligible CPU overhead. In summary, this experiment confirms Hypothesis 1.2.
Cost-effective analytics from cloud object storage. With the shift to cloud
computing, cost is now as important as performance. Hypothesis 1.3 claims
that cloud object storage analytics can be cost-effectively implemented, and that
database systems can process data much cheaper than current cloud offerings.
To verify this claim, we compare our remote-only Umbra version against a self-
hosted Apache Spark and a Snowflake warehouse of size L on TPC-H queries.
Table 2.2 shows that using Umbra on a spot instance is 6× less expensive than
using the configured Snowflake warehouse. Furthermore, Umbra is significantly
more affordable than a cold Snowflake warehouse, which we shut down after
each query to flush the cache. Note that this Umbra version actively discards
previously downloaded data and redownloads the necessary information, similar
to a cold Snowflake warehouse. Despite the huge cost reduction, Umbra’s
performance is similar to the best competitor. We also compared costs with Spark
and Athena1 but found that these systems are ten times more expensive than
our proposed solution. This significant cost difference verifies Hypothesis 1.3.
AnyBlob enables fast cloud analytics in DBMS. In summary, the study of
the characteristics of cloud object storage drives our development of AnyBlob.
AnyBlob allows for a significantly reduced CPU consumption while achiev-
ing instance bandwidth. The low number of threads required for downloading
simplifies the integration of retrieval into analytical database systems. The exper-
iments show that Umbra with AnyBlob is a cost-effective and high-performing
analytical query engine, even if all data requires remote retrieval.

1The Athena cost use a back-of-the-envelope calculation given a columnar format and
block-level pruning similar to our data block design. No caching is considered.
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Table 2.2: Performance and cost comparison on all TPC-H (SF 1000) queries. For
Umbra (remote-only version), we show costs for running the queries with spot
instances (may be terminated) and on-demand instances (most expensive).

Umbra Snowflake Snowflake Spark Athena1

(c5n.18xlarge) Cached (L) Remote (L) (c5n.18xlarge) (calc.)

[s] [¢𝑆] [¢𝐷] [s] [¢] [s] [¢] [s] [¢𝑆] [¢]

Q1 6.82 0.82 1.31 7.51 3.34 17.56 7.80 646.77 23.10 33.00
Q2 3.84 0.22 0.50 4.31 1.91 7.13 3.17 67.03 2.48 11.13
Q3 12.82 0.87 1.80 11.45 5.09 19.95 8.87 449.70 16.15 40.87
Q4 9.27 0.64 1.31 7.05 3.13 13.48 5.99 132.23 4.85 29.25
Q5 13.52 0.88 1.86 12.38 5.50 21.66 9.63 814.73 29.14 39.08
Q6 5.32 0.52 0.90 2.84 1.26 13.56 6.03 61.47 2.29 24.00
Q7 13.21 0.94 1.90 10.63 4.72 20.44 9.09 893.88 31.96 43.62
Q8 14.30 1.01 2.04 11.93 5.30 20.99 9.33 1001.26 35.78 53.46
Q9 30.69 1.81 4.03 30.26 13.45 38.65 17.18 1151.45 41.14 78.24
Q10 15.73 1.16 2.30 21.21 9.43 26.68 11.86 140.70 5.18 42.33
Q11 1.85 0.11 0.24 2.66 1.18 5.53 2.46 66.58 2.45 4.47
Q12 9.24 0.78 1.45 9.33 4.15 13.31 5.91 110.40 4.07 36.75
Q13 25.24 1.46 3.28 18.79 8.35 21.01 9.34 109.09 3.93 48.12
Q14 7.88 0.62 1.18 6.65 2.95 16.39 7.28 109.41 4.00 28.23
Q15 8.01 0.62 1.20 9.29 4.13 21.98 9.77 123.08 4.60 33.43
Q16 4.72 0.21 0.55 6.67 2.97 9.28 4.13 32.65 1.21 3.58
Q17 9.13 0.75 1.40 7.70 3.42 18.86 8.38 892.74 31.96 39.95
Q18 47.13 2.12 5.52 29.05 12.91 31.64 14.06 1322.92 47.31 42.75
Q19 7.08 0.76 1.27 8.90 3.96 18.94 8.42 121.27 4.42 30.82
Q20 9.15 0.74 1.41 8.64 3.84 21.78 9.68 127.79 4.71 41.79
Q21 24.29 1.73 3.49 21.56 9.58 30.55 13.58 1620.68 57.99 78.95
Q22 5.23 0.25 0.63 5.33 2.37 7.63 3.39 41.51 1.54 6.23

GM 9.97 0.70 1.43 9.44 4.20 17.08 7.59 228.84 8.33 28.37

2.2 Paper P2. Crystal: A Unified Cache Storage Sys-
tem for Analytical Databases

No unused data should be cached. Almost all cloud-native data warehouse
systems utilize caches for cloud object storage retrieval. Given their disaggre-
gated storage architecture, caches reduce the latency of small object requests
and enhance performance by leveraging fast local NVMe SSD storage. Even on
instances with high-bandwidth networking, caches help improve query through-
put by combining network and local disk bandwidth. In public clouds, however,
the size of the locally attached SSDs is limited. Current caching solutions op-
erate on file- or block-level granularity, often wasting precious storage space.
An optimized caching strategy that uses predicate information (i.e., filters) for
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storing only relevant data points may demonstrate improved query performance,
which leads to the following research question:

Research Question 2. What performance impact does smart caching
of filtered data tailored to the observed workload have on analytics,
considering disaggregated storage with limited local storage?

2.2.1 Hypotheses

Semantic caching provides better cache utilization. As mentioned, current
solutions operate on the file or block level. As soon as one tuple within such a
block is of interest, the entire block must be brought into the cache. Although
data is often accessed in a temporal manner, a static partitioning may lead
to imperfect caching. To demonstrate this issue, consider this example: A
bank partitions customers according to their locations, but some analyses are
performed across all customers with similar characteristics, e.g., earnings. In this
example, the static partitioning does not introduce any locality, as the partition
key is not aligned with the predicate. The following testable hypothesis promises
better cache utilization:

Hypothesis 2.1: By storing filtered data based on observable query
history, our cache becomes aware of the workload. This results in
superior query performance compared to existing block- and file-level
caches because of improved cache utilization.

Semantic caching is adaptive while providing high query performance.
The objective of caches is to improve performance and adapt to changing work-
loads. When query predicates change because users want to explore different
aspects of their data, the cache needs to adapt. Reusing our bank example,
after exploring one customer type, the data scientist analyzes another type with
different earning characteristics. To cope with predicate changes, our cache
needs to adapt to the workload, as summarized in the following hypothesis:

Hypothesis 2.2: Swiftly determining which filtered data to cache
and balancing short-term and long-term knowledge improves query
performance and guarantees a fast response to changing regions of
interest.
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Figure 2.5: Benefit of semantic vs. traditional caching when different queries
are frequently scheduled, given a maximum storage space of two blocks.

2.2.2 Scientific Method and Design

Semantic caching improves utilization. Traditional block-level caches can
suffer from poor storage space utilization, particularly when only a few records
per block are relevant. Figure 2.5 illustrates this for an example, which consists
of three queries accessing four blocks of data. With a traditional block-level
cache and a replacement strategy like LRU, none of the queries can be fully
computed from the local cache. However, semantic caching, which aggregates
only the necessary information for processing, enables the local execution of all
queries.
Crystal considers semantic overlap and remains responsive. Our devel-
oped cache management system, Crystal, uses push-down predicates to cache
subsets of data, called regions. These regions are views of database tables, and
the content of the cache is computed with the help of semantic caching. In
data warehouses, a large number of queries access similar parts of tables, often
resulting in queries with overlapping predicates. Crystal takes this overlap
into account when determining which cached data to evict, creating a complex
optimization problem. Crystal automatically optimizes for the observed work-
load without any prior knowledge on the queries or data. The cache is divided
into the requested region (RR) and the oracle region (OR). For the OR cache,
Crystal determines which potentially overlapping regions should be kept in
the cache. Previously uncached regions are then created and stored as Parquet
file. Due to the high computational complexity, this is only executed period-
ically. In contrast, the RR cache is designed for new queries and can quickly
adapt to workload changes. This two-region approach provides an efficient and
responsive data caching solution.
Crystal’s overlap-aware knapsack algorithm. The objective of the oracle is
to identify the best set of regions for the observed workload, given a size budget.
This problem can be viewed as a knapsack problem. Typically, knapsack prob-



2. Research Methodology: Caches for Disaggregated Storage Environments 21

Figure 2.6: Approximative merging generalizes to the region of interest. Merged
regions are marked in blue.

lems are solved either exactly through dynamic programming or approximately
through greedy algorithms. Practically, the straightforward 0.5-approximation
method yields effective and quick results (𝒪(𝑛 ⋅ 𝑙𝑜𝑔(𝑛))). This algorithm sorts
items (i.e., regions) by their cost-benefit ratio and repetitively selects the next
item with the highest cost-benefit ratio until the budget is reached. However,
Crystal’s knapsack differs from the standard definition due to the dependencies
introduced by overlap and the potentially reduced benefits after picking an item.
Both knapsack versions are inadequate in handling such overlapping depen-
dencies without adaptations. Crystal’s algorithm for the knapsack problem
reassesses the cost-benefit ratio at each step of selecting a new item. Hence, the
algorithm accounts for new overlap between the already-picked items and the
remaining choices. This reevaluation alters the computational complexity of the
greedy approximation used during Crystal’s cache optimization to 𝒪(𝑛2 ⋅ log(𝑛)).
Approximative merging generalizes to the region of interest. Crystal uses
our novel approximative merging algorithm to predict future data regions of
interest and generalize the cached regions. To avoid overfitting, this algorithm
augments the knapsack’s candidate set with previously unseen and enlarged
regions. After adding these augmented regions, their cost-benefit ratio is eval-
uated based on historical data. During the augmentation step, overlapping or
adjacent regions are merged. The resulting region’s dimensions are determined
by the global minimum and maximum values of the source regions. The aug-
mentation can help to generalize to the region of interest over time, as depicted
in Figure 2.6.

2.2.3 Implementation Overview

Crystal is a stand-alone cache management system. Crystal is a high-
performance cache management system that operates as a stand-alone applica-
tion, sitting between the DBMS and cloud object storage. It is written in C++ and
supports various data types and query predicates. The storage format is Apache
Parquet [Apa23d] and utilizes the Apache Arrow [Apa23a] library to perform
read and write operations. Crystal uses Gandiva [Apa18], a newly developed
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execution engine for Arrow, to improve the performance of filtering tables. Gan-
diva filters are compiled into LLVM code and executed on in-memory Arrow
data, resulting in a highly performant and flexible solution. Crystal efficiently
parallelizes operations, making it suitable for low-latency DBMS middleware.
Lightweight data source connectors communicate with Crystal. Crystal
communicates with the DBMS via socket connections and transfers data files
through shared disk space or ramdisk. Since DBMSs can already process Parquet
files, adapting the Parquet reader for interacting with Crystal is straightforward.
As Crystal returns Parquet files, the DBMS can work with them without any
code modifications. The interaction involves a minimal set of control messages,
including scan request and completion messages. We test Crystal with two
database systems – Apache Spark [Arm+15] and Greenplum [Lyu+21; VMw23].
Using only 350 lines of Scala code, we developed a new data source connector
that extends Spark’s Parquet processing. This connector overrides the Parquet
scan method to retrieve files recommended by Crystal. Similarly, we extended
the Parquet connector of Greenplum PXF, an extension framework, with Crystal
communications using less than 150 lines of code.

2.2.4 Experimental Evaluation and Conclusion

Testbed and workload. To test the hypotheses, we run experiments on a single
Azure DS14_v2 virtual machine that has 16 cores, 112 GiB of RAM, and 224 GiB
of SSD storage. This instance type has a maximum network bandwidth of 12
Gbit/s. The experiments include Apache Spark (3.0.1), pre-built for Hadoop (3.2),
and utilize Apache Arrow (3.0.0) and azure-storage-cpplite (be490ed) as part
of the software stack. All the following experiments are executed on the fact
table of TPC-H (lineitem) at a scale factor of 50, stored on standard Azure Blob
Storage. The query predicates use typically explored columns of lineitem. The
experiments build on multiple query types that, for example, answer questions
related to revenue generation. We test the caching capabilities by using a
regional access pattern on lineitem, similar to prior work [Din+20]. Each query
type targets a region comprising 10 - 15% of the total tuples. Individual queries
read a subset of a random sample within that region, equivalent to approximately
1% of the total tuples, simulating the deep-dive of data scientists into different
aspects of the data. These regions are accessed in a non-uniform distribution
for more realistic user patterns and are publicly available at [Cry21].
Crystal’s high cache utilization improves query performance. Hypothe-
sis 2.1 claims that semantic caching can utilize storage space more efficiently.
To test this hypothesis, we compare Crystal with Alluxio [All23; Li+14], a state-
of-the-art block-level caching solution for Apache Spark. Figure 2.7 visualizes
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Figure 2.7: Crystal’s semantic regions outperform Alluxio’s caching strategy.
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Figure 2.8: TPC-H workload with different caching strategies.

that Crystal exhibits robust performance, even with limited storage space. On
the other hand, Alluxio’s performance increases as more caching space becomes
available but lags behind Crystal’s performance until all data is cached. In
Figure 2.8a, we test various caching strategies in Crystal on the same workload.
We restrict the caching space to 20% of the original data size. While RR-LRU1,
a block-level LRU-based caching strategy, fails to enhance performance, our
fast and overlap-aware greedy algorithm OR-K𝐺 significantly improves query
latency. Although short-term knowledge is not helpful in this experiment, our
proposed RR-LRU / OR-K𝐺 combination has a performance similar to OR-K𝐺.
These experiments confirm Hypothesis 2.1.
Crystal adapts quickly to changing workloads. To demonstrate workload
adaptivity as stated in Hypothesis 2.2, we change the region of interest during the
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Figure 2.9: Adaptivity to changing regions of different caching strategies.

workload execution in Figure 2.9. After 400 queries, the query focus is changed
to a different region. Our overlap-aware greedy knapsack algorithm quickly
copes with these changes and continues to provide excellent cache utilization.
In contrast to the greedy version, the dynamic programming knapsack is slow
in adapting to new workloads due to its high computational complexity. A
pure LRU-based block-level algorithm would adapt quickly but cannot improve
query performance of the region workload due to inefficient cache utilization.
However, during hot queries such as the latest news on a news website, a small
LRU-based cache (RR) can improve performance, as depicted in Figure 2.8b.
Both experiments show that Crystal, using RR-LRU / OR-K𝐺, adapts quickly to
changes in the workload, validating Hypothesis 2.2.
High-performance and adaptive caching on limited disk space. The exper-
imental evaluation shows that Crystal has better cache utilization than current
caching solutions. Our overlap-aware knapsack algorithm, combined with our
novel approximative merging of neighboring regions, facilitates high query
performance, even with fluctuating query patterns. Crystal’s semantic regions
have proven to be especially useful in environments with limited local storage
space. Moreover, the small short-term knowledge cache ensures robustness
against predicate spikes in the workload.
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2.3 Paper P3. JSON Tiles: Fast Analytics on Semi-
Structured Data

JSON is used commonly, but analytics is expensive. In recent years, there
has been a growing trend towards storing data in a semi-structured format.
Every document contains the structure of the data, reducing API complexity.
Unfortunately, the structural information in each document is harmful for ana-
lytical performance. As every tuple can, in principle, contain arbitrary values,
scanning a raw or binary-optimized JSON document for a single value involves
an expensive lookup within each document. Although the structure can be
arbitrary, most of the time, JSON is machine-generated, and, therefore, docu-
ments from the same system have similar components. For example, documents
from logging services use similar keys, such as error code and message, even
for different types of errors. We want to exploit this structural similarity to
improve JSON document processing in relational database systems, as stated by
the following research question:

Research Question 3. How can database systems efficiently infer
and exploit the structural information of a set of documents to enable
fast and robust analytics on semi-structured data?

2.3.1 Hypotheses

Exploiting structural components improves JSON processing. Database
systems usually store JSON data in a column, where each cell represents a full
JSON document. These columns often use a textual or binary representation of
JSON. Accessing values within a JSON document involves at least one order of
magnitude more CPU cycles compared to a pure value scan of a column-oriented
database. By using the internal schema of JSON data and extracting columns
of the important values, significant performance improvements are expected,
similar to relational scans. Structural component changes within documents
often occur over time. When storing documents of the same type, document
changes over time are represented in the insertion order. Extracting columns
on only a small subset of documents (a tile) allows us to generalize to these
changes. These properties are summarized in the following hypothesis:

Hypothesis 3.1: Exploiting the implicit schema of a small subset
of JSON documents provides significant improvements in query per-
formance when analyzing stored data and robustness to document
changes over time.
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Reordering achieves robustness beyond the insertion order. Although doc-
ument changes are often aligned with the insertion order, it is not unlikely that
multiple different document types are stored within the same column, exploiting
JSON’s ability to store specialized information for each individual tuple. Even if
multiple document types are inserted randomly, the database system needs to be
able to provide fast analytics on these documents. However, the low frequency
of similar structures within a single tile prohibits the extraction of columns. Re-
ordering of documents between tiles helps to group similar documents together,
increasing the frequency of common structures and enabling materialization of
randomly inserted heterogeneous document types. The following hypothesis
summarizes the robustness objective:

Hypothesis 3.2: Reordering documents guarantees robustness and
handles random insertion of heterogeneous document types without
sacrificing the insertion performance.

2.3.2 Scientific Method and Design

Improvements for JSON processing. JSON tiles, our proposed collection
of algorithms and methods, addresses several challenges in managing JSON
data. First, it enhances access performance by storing JSON data in a colum-
nar representation, enabling fast scans. This is a considerable improvement
over standard JSON access that involves slow object traversal for every JSON
document. Second, JSON tiles maintains data statistics by collecting informa-
tion about individual keys during data loading. This allows for better query
optimization, particularly for complex multi-table queries. Third, it offers robust-
ness for handling heterogeneous data with varying document types, changes in
fields over time, and previously unseen data. It accomplishes this through local
computations, reordering of documents, and dealing with outliers effectively.
JSON tiles extraction algorithm. JSON tiles differs from the global schema
extraction presented in Sinew [TDA14] by detecting implicit document structures
at a fine granularity. Instead of attempting to extract a single global schema,
JSON tiles divides the input data into smaller tiles, each containing a local schema.
This approach takes advantage of the spatial locality found in many datasets.
For example, changes in the document structure over time is usually aligned
with the insertion order. Thus, extracting the new structural components in
subsequent tiles. The extraction process in JSON tiles involves three main steps,
demonstrated with a simplified example consisting of eight documents from
Twitter and a tile size of four, depicted in Figure 2.10:
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Figure 2.10: Materialization example on simplified Twitter data, using a tile size
of four and a frequency threshold of 75%.

1. For each tuple, all key paths are collected. A key path represents the full
path from the document root to the actual key-value pair, similar to an
absolute path in file systems. In this example, the first three tuples have
three key paths { id , create , text }.

2. Frequent itemset mining is applied to the collected key paths [AS94;
HPY00]. We determine the frequency of each itemset and prune itemsets
below the extraction threshold. From the remaining itemsets, we identify
the maximum itemsets. The only maximum itemset of the second tile is
({ id , create , text , replies }, 4).

3. JSON tiles extracts the union of these maximum itemsets, such that the
included key paths are materialized as relational columns.

Reordering improves robustness. After inserting enough tuples to reach the
tile size, a new tile is created. Therefore, the content of the tiles is based on the
order in which tuples are inserted. Although many datasets exhibit spatial local-
ity consistent with the insertion order, random insertion of multiple document
types is also common. Random insertions likely prohibit the materialization of
columns as the extraction threshold cannot be reached. To address this issue,
JSON tiles applies reordering to cluster tuples with common frequent itemsets
into the same tile, regardless of their original order. This reordering process
guarantees that more tiles fulfill the extraction threshold and can be materialized
efficiently. Tuples are matched according to the previously detected itemset
and grouped accordingly. After the clustered tuples are combined in one tile,
the original extraction algorithm identifies the columns to be materialized. In
conclusion, this reordering technique improves the organization of data within
JSON tiles, resulting in more data materialization for workloads with little spa-
tial proximity. This reordering is visualized in Figure 2.11, in which each cell
represents a tuple, and the texture highlights the best-matched itemset of this
tuple.
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Figure 2.11: Better materializable tiles by reordering of documents.

Query optimization with aggregated statistics. JSON tiles improves query
optimization for JSON data by providing per-key statistics and estimators. Dur-
ing the creation of tiles, additional information is collected for each individual
tile. This data is aggregated at the relation level and then used for query opti-
mization. This is particularly important for better cardinality estimations during
join ordering [Lei+15]. JSON tiles stores frequency counters and HyperLogLog
sketches for each frequent key path [Fla+07]. These distribution estimates en-
able reasoning on join and table predicates. Additional sampling of documents
improves estimates by evaluating query predicates on these samples.

2.3.3 Implementation Overview

Integration and storage of semi-structured documents. JSON tiles is im-
plemented as part of Umbra, written in C++. The main part of JSON tiles is its
storage engine that handles the extraction and reordering of JSON documents.
Every tile requires a header that describes the materialized data. This header
stores information on the key paths, the corresponding value types, and statistics
for fine-grained optimizer decisions. Since the headers of individual tiles differ
in size, only a pointer offset is kept in the fixed-size relational storage. The
header data and the extracted columns are stored as variable-sized data, similar
to storing long strings.
Extracted columns need predicate push-down and value casts. Because
syntactically JSON documents are stored within a column of the opaque type
JSON, accessing values within the JSON documents requires an extended syn-
tax. Umbra employs the PostgreSQL syntax to access values within docu-
ments [Pos23a]. These accesses are often performed by a join or group-by
operator to extract useful information from the document for joining or aggre-
gation purposes. However, we can only benefit from the materialized columns
at the scan operator. If the information is not passed to the scan operator, this
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Table 2.3: Execution times of TPC-H queries for different industry-grade systems
and internal strategies (in seconds).

PG. Spark Hyper Umbra

Mongo Parquet JSON JSONB Sinew Tiles

1 5.276 14.297 1.939 1.950 1.725 0.178 0.122 0.030
2 > 100 23.383 2.735 1.370 1.608 0.584 0.637 0.035
3 17.905 15.892 1.288 0.560 0.675 0.280 0.259 0.030
4 3.013 10.439 1.755 0.539 0.692 0.227 0.228 0.026
5 87.468 22.659 2.072 > 100 1.340 0.372 0.326 0.045
6 1.259 14.896 0.690 0.244 0.254 0.119 0.085 0.010
7 > 100 21.035 2.554 3.111 1.177 0.429 0.351 0.103
8 > 100 26.608 1.814 1.156 1.469 0.474 0.416 0.062
9 > 100 23.688 3.939 1.728 2.576 0.395 0.370 0.153
10 > 100 21.967 2.003 0.984 1.362 0.388 0.294 0.067
11 > 100 23.444 0.809 0.829 1.070 0.344 0.353 0.068
12 1.493 18.783 1.316 0.419 0.450 0.286 0.289 0.061
13 5.570 10.597 2.146 0.683 0.665 0.149 0.291 0.044
14 1.502 9.552 0.734 0.343 0.392 0.171 0.142 0.017
15 9.105 19.024 1.306 0.339 0.399 0.211 0.185 0.018
16 4.220 15.119 2.693 0.898 0.629 0.201 0.273 0.048
17 > 100 16.379 1.381 0.605 0.567 0.173 0.091 0.026
18 86.167 14.861 1.849 1.388 0.949 0.260 0.179 0.050
19 1.290 33.885 0.970 0.363 1.834 0.213 0.170 0.057
20 > 100 20.234 1.613 0.787 0.974 0.355 0.348 0.042
21 12.372 39.236 3.517 1.415 1.787 0.615 0.479 0.103
22 2.060 11.306 3.135 0.529 0.566 0.172 0.180 0.016

operator has to produce the full JSON value and push it to the parent operator.
To resolve this issue, we employ a strategy of pushing the JSON access down
into the scan operator during query optimization. Parent operators replace the
access with placeholders that are later filled with the values from the materi-
alized columns. Similar to the access information, the final value type can be
used to avoid intermediate value transformations. While Umbra stores the ma-
terialized columns with different value types, the access syntax strictly returns
a textual or JSON value. To minimize the need for expensive transformations
(e.g., casting text to date), we push type casts into the scan operator such that
the scan directly produces the correct type.

2.3.4 Experimental Evaluation and Conclusion

Testbed. JSON tiles is integrated into Umbra, our relational database system. We
compare Umbra (with different JSON strategies) with other industrial-strength
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Figure 2.12: Queries on a shuffled TPC-H dataset.

database systems, such as PostgreSQL (12.4), TableauHyper (0.11556), and Apache
Spark (3.0) with Apache Parquet (Dremel). Additionally, we compare Apache
Spark with MongoDB (3.6), where we employ Spark for query handling. The
experiments are conducted on an AMD Ryzen Threadripper 1950X system,
which has 16 cores, 32 threads, 64 GiB of RAM, runs Ubuntu 20.04, and utilizes
a 2 TiB Samsung 850 Pro SSD.
JSON tiles improves analytical query performance. Hypothesis 3.1 assumes
that exploiting the structural information and similarities among JSON docu-
ments enhances query performance. We evaluate this using a modified TPC-H
workload, where each record of the TPC-H tables is represented as a JSON object
utilizing the column names as keys. The documents from all tables are merged
into a unified table using a single JSON column. Table 2.3 shows the query
latencies of the adapted 22 TPC-H queries. Umbra with JSON tiles is at least
one order of magnitude faster than existing industry-grade database systems.
Internal comparisons show that JSON tiles outperforms all other strategies by
at least 5× on average, validating Hypothesis 3.1.
Reordering enables robustness beyond the insertion order. Unlike past ap-
proaches that materialize JSON data, using JSON tiles allows for tile reordering,
resulting in improved robustness and a more homogeneous extraction, as stated
in Hypothesis 3.2. To demonstrate the advantages of tile reordering, we evaluate
JSON tiles with different partition sizes and tile sizes using a completely ran-
domized TPC-H workload of shuffled documents in Figure 2.12 and a real-world
Twitter dataset in Figure 2.13. The size of the partition defines the number of
tiles involved in local reordering. We further analyze the insertion time of the
two datasets to argue about the cost of reordering. The experiments show that
a medium partition size of eight and small tile sizes of 210 – 212 improve query
performance significantly while preserving the insertion time. The partition
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Figure 2.13: Queries on a real-world Twitter dataset.

size is directly correlated to the minimum number of documents needed per
each type to meet the extraction threshold. Thus, a medium size of eight de-
creases this minimum frequency substantially, allowing for the materialization
of most initial tables from the shuffled TPC-H. The use of our block skipping
optimization in combination with JSON tiles results in low query latencies even
for heterogeneous workloads, proving Hypothesis 3.2.
Fast and robust analytical JSON processing. In conclusion, JSON tiles is the
first approach to facilitate fast and robust analytical query processing of JSON
documents while enabling advanced query optimization and join ordering. Our
experiments demonstrate that Umbra with JSON tiles reduces query latency by
one order of magnitude compared to industry-grade database systems. Because
statistics are collected for individual keys, large join queries can be efficiently
optimized and processed. Reordering guarantees robustness, even in workloads
with random insertion order.

2.4 Paper P4. Experimental Study of Memory Allo-
cation for High-Performance Query Processing

Memory allocation is on the critical path. Analytical queries can produce
intermediate results that are even larger than the input. To efficiently handle
large datasets, instances are equipped with faster and more CPU cores. Since
accommodating more cores on a single chip is not always possible (e.g., due to
heat distribution), many servers have multiple chips installed in different sockets.
Main memory is physically connected to one socket, but all sockets can access
all data via interconnects (e.g., QPI). All of this makes memory allocation more



2. Research Methodology: Impact of Memory Allocation 32

complex and raises the question of how strongly the chosen memory allocator
affects query performance, explored in the following research question:

Research Question 4. What impact does the selection of the mem-
ory allocator have on query performance, scalability, and memory
efficiency of analytical database systems?

2.4.1 Hypothesis

The choice of memory allocator impacts performance. During memory
allocation, the allocator requests either new memory from the operating system
or uses currently unused memory it requested previously. The allocator might
also decide to request more memory than needed to keep memory quickly
available, sacrificing memory utilization. Deallocations either return memory
to the operating system or keep it allocated to the process and reuse it for future
allocations. Because memory allocators use different strategies to perform
the mentioned operations, the characteristics of dynamic memory allocators
(performance, scalability, memory fairness, and memory efficiency) differ, which
is stated with the following hypothesis:

Hypothesis 4.1: Choosing the right memory allocator is crucial
for analytical query performance, scalability of the database system,
memory fairness to other processes, and memory efficiency.

2.4.2 Scientific Method and Design

Design of the memory allocation study. Memory allocation is closely tied to
the operating system, as it manages the mapping between physical and virtual
memory. Allocators must request virtual memory from the OS. The allocator ei-
ther uses already held memory or requests new memory from the OS, which can
be achieved through APIs provided by the kernel. The mechanism of requesting
and holding memory differs between various allocators. To determine the best
allocator in terms of performance, scalability, memory fairness, and memory effi-
ciency, we perform extensive experiments with five different memory allocators
within our modern database system Umbra.
Allocation pattern for decision support workloads. Our analysis of the
allocation pattern for TPC-DS [NP06] in Umbra reveals that the majority of
allocations are between 32 KiB and 512 KiB. In particular, tuple materialization
of group-by and join operators contributes most medium-sized allocations. Ad-
ditionally, larger memory regions are allocated for holding the bucket arrays of
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Figure 2.14: Memory utilization during single query execution of all TPC-DS
queries on the 4-socket Intel Xeon server.

chaining hash tables. Note that Umbra employs a transaction-local chunk alloca-
tor for small allocations (< 32 KiB) to improve transactional query throughput.
More realistic query patterns with exponential distributions. To create
a realistic workload, we use an exponentially distributed query arrival model.
The introduced variability in the number of concurrently active transactions
simulates workload variations and results in a more complex allocation pattern.
The different query types are chosen uniformly, but the starting times follow an
exponential distribution. Events arrive at an expected interval of 1/𝜆 and with
a variance of 1/𝜆2.

2.4.3 Implementation Overview

Details on collectingmemory statistics. A collection of methods is integrated
into Umbra to monitor memory statistics and allocations. Memory statistics are
polled from the kernel at short intervals during query execution. To retrieve
the statistics, we read the kernel’s virtual memory files located in /proc. Addi-
tionally, we track the allocated memory within the database’s memory pool per
operator. These statistics can be collected with minor performance implications.
To track memory usage patterns, additional tracing of every memory allocation
call can be enabled. This additional allocation call tracing is expensive and dis-
abled by default to avoid impacting benchmark results. A new driver executes
the exponentially distributed workload and allows us to precalculate the query
scheduling times for deterministic executions.
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Figure 2.15: Memory allocator scalability on different systems using the expo-
nentially distributed TPC-DS workload (𝜆 = 6 q/s, SF 10).

2.4.4 Experimental Evaluation and Conclusion

Memory allocation has performance and memory usage implications.
We conduct experiments that evaluate the impact of memory allocation to verify
Hypothesis 4.1. The experiments use the TPC-DS analytics benchmark with
a scale factor of 100. Figure 2.14 shows a sequential execution of all TPC-DS
queries in Umbra utilizing five allocators: glibc malloc 2.23, glibc malloc 2.28,
jemalloc 5.1, TBBmalloc 2017, and TCMalloc 2.5. Surprisingly, this straightforward
workload exhibits significant performance and memory usage differences. For
instance, the runtime is reduced by half when comparing jemalloc with glibc
malloc 2.23. On the other hand, malloc 2.23 tends to return memory earlier,
making it a fair allocator to other processes. The memory currently allocated is
an upper limit because any memory freed with madvise, a new kernel method
to return memory, is not accounted for due to its high runtime overhead. While
jemalloc and TCMalloc use this feature, only TCMalloc returns all memory to
the operating system. Scalability is assessed using a more practical workload
with arrival times that follow an exponential distribution. Figure 2.15 illustrates
that with larger instances higher differences are observed. In particular, the
4-socket Intel Xeon server shows significant performance differences. These
experiments confirm Hypothesis 4.1.
Huge differences between allocators. Our experimental study finds sig-
nificant differences among five tested memory allocators in terms of memory
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fairness, efficiency, scalability, and query performance. Extensive analysis of
TPC-DS workloads indicates that jemalloc is the top-performing allocator. As a
result, jemalloc is adopted as the default allocator for Umbra.



CHAPTER 3
Related Work

Rich line of analytics research. Due to the increasing demand for analytics
solutions in the cloud era, a plethora of new approaches and systems have
been developed to handle different storage architectures and heterogeneous
data [Adr22]. Ample research in cloud processing facilitates building cloud-
native database systems.

High-Performance Analytics on Cloud Object Storage

Database systems adapt a cloud-native design. Software-as-a-service
(SaaS) database management systems often specialize in catering to either
OLTP [Ant+19; Cao+22; Cao+21; Ver+17] or OLAP [AR20; Beh+22; Dag+16;
Mel+10; Mel+20; Pan21; Set+19; Van+18; Vup+20; Zha+19] requirements,
addressing the unique challenges posed by the cloud environment. For ex-
ample, AWS provides Aurora [Ver+17] for transactional workloads and Red-
shift [Arm+22] for analytical workloads. A survey of Alibaba shows that their
current products are usually assigned to one of these two tasks [Li19]. Although
most systems store their data on cloud storage, their strategy is to cache most
of the data on local nodes. An experimental study thoroughly examines and
contrasts the architectural distinctions between these systems [Tan+19a]. Our
system, Umbra, would be classified as an engine that can process data directly
from remote storage. Since cloud object storage is inexpensive, it is used as
a basis for durable storage solutions. Two examples are Apache Iceberg and
Data Lake [Apa23b; Arm+20]. By using metadata, which is stored alongside the
data, these data stores are able to provide snapshot isolation. Since Umbra also
stores all metadata in cloud object storage, these storage backends can be easily
integrated.
Challenges and opportunities in cloud data processing. Early work dis-
cusses challenges of processing data directly from Amazon S3 for OLTP use
cases [Bra+08]. An experimental study compares the different hardware re-
sources of the AWS EC2-provided instances [SDQ10]. Since instances have
different dollar-per-resource characteristics, recent work investigates instance
selection to optimize cost and performance for a given workload [LK21]. Pix-
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els [BA22] describes the high retrieval latency of data from cloud object storage
as a major challenge. It applies optimizations on the columnar PAX layout such
that columns are ordered according to their access frequency, and neighboring
PAX blocks are merged. Combined with IO scheduling optimizations that exploit
these storage properties, the number of requests can be reduced, resulting in
lower data latencies. Using these storage optimizations is orthogonal to our
developed low-overhead client AnyBlob and our task-based retrieval integration
in Umbra.
Cost savings with spot instances. Due to substantial discounts, research
has been conducted to address the issue of spot instance termination [SI17;
Sub+15]. One such solution is spot instance hopping, which relies on the cloud
vendors’ notification before the instance is taken away. Because Umbra has
no issues with cold starts on network-optimized instances, it is particularly
well-suited for this strategy. While Umbra processes queries (TPC-H, scale
factor 1000) faster than the AWS termination delay [Ama23h], research shows
the feasibility of live migration of query states to overcome full query restarts
at new instances [Win+22].
Analytics on serverless functions. To further increase flexibility, cloud ven-
dors provide serverless compute functions, which are executed on-demand
without specifying an instance. Although serverless functions provide cost and
maintainability benefits for short-running applications, steady-state workloads
are more expensive. Additionally, serverless functions come with many hard-
ware restrictions. They can only run for a limited amount of time and only come
with little memory, a small number of CPU cores, and low-bandwidth network-
ing [Hel+19]. Recent work proposes solutions to overcome the aforementioned
hardware restrictions and demonstrate analytics on serverless functions [BSA23;
MMA20; Per+20]. Although these systems research S3 retrieval in serverless
environments, the retrieval characteristics differ significantly between low-
bandwidth cloud functions and high-bandwidth EC2 instances.
Data center developments. Data centers are anticipated to be equipped with
high-throughput (1 Tbit/s) Ethernet connections in the following years [Cai+22].
A study focusing on kernel storage APIs has identified io_uring, utilized in
AnyBlob, as a promising technology [Did+22]. Particularly for NVMe SSDs,
io_uring is gaining widespread adoption and use [Did+22; HHL20; Lei+23;
LB21; Par+21]. Future data centers may additionally decouple memory from
computing, independent of the current storage disaggregation [Kor+22; Wan+22;
Zha+20; Zha+21].



3. Related Work: Caching in Disaggregated Storage Environments 38

Caching in Disaggregated Storage Environments

Resource-conscious caching is useful for many workloads. Due to high
access latencies from external storage, caching is still vital for workloads not
dominated by data bandwidth. Although high-bandwidth networks are becom-
ing more affordable, not all cloud vendors provide instances with 100 Gbit/s
networking. Even on network-optimized instances, caching improves analytical
query performance by utilizing the additional bandwidth to local storage. Be-
cause the caching space on the local node is limited, resource-conscious caching
is helpful for many database systems.
Building on ideas from semantic caching. Semantic caching, initially in-
troduced in Postgres [Sto+90], has seen subsequent enhancements through
extensive research [CR94; Dar+96; Des+98; KFD00; KR99; SSV96; SSV99]. There,
query results are cached to expedite recurring queries. The basic idea of the
caching approach within Crystal builds upon this rich line of work. Semantic
caching autonomously selects cached views while considering various factors
like size, access frequency, and materialization cost, often relying on cost-based
policies. Unlike previous work on semantic caching that caches entire query re-
sults, Crystal caches only intermediate results of query selection and projection
operators. While caching complete query views benefits repeated queries, it
reduces view reusability. Another differentiator is that most research does not
explore overlapping views. Although some research [Dar+96; Des+98] explores
overlapping, they propose to split queries into non-overlapping segments. How-
ever, this may lead to a large number of small views and increased processing
overhead. Chunk-based semantic caching [Des+98] addresses this by divid-
ing the hyper space into independent regions. Because this division is static,
this approach lacks adaptability to unknown query patterns. Modern cloud
storage solutions allow querying data given a predicate. New database architec-
tures [YLH23; Yan+21; Yu+20] rely on this feature; however, this push-down
of predicates to remote storage is expensive. Nonetheless, our predicate-aware
cache is well-suited for pushing down predicates to cloud storage.
Managing and storing intermediate results for accelerated queries. Ma-
terialized views store query results in separate tables [GL01; SDN98; Sri+96;
Zho+07]. In contrast to Crystal, users typically define views for caching or
materialization manually, often done by a DBA. Besides engineering efforts,
materialized views demand advanced query optimizer algorithms to determine
if a query can use a materialized view and when to update it after changes to
the base table. Several techniques focus on reusing intermediate query results
instead of final results. Some methods [TGO01; Tan+19b] share intermediate
results among concurrent queries. Other approaches [Dur+17; Iva+09; Jin+18a;
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Jin+18b; NBV13; PJ14] store intermediate results for reuse by subsequent queries
and employ a replacement policy for evicting intermediate results when size
limits are reached. However, integrating these intermediate result caching tech-
niques into a DBMS is complex, whereas Crystal’s base table caching can be
utilized with lightweight and easy-to-implement database-specific connectors.
Mid-tier caching reduces workload at the ground-truth database. In multi-
tier database setups, mid-tier caches reduce backend database workloads [Alt+03;
Bor+04; LGZ04]. These caches maintain shadow databases to store query results,
but users must usually define cached views manually. Vendors offer various
solutions to cache data on SSDs, such as Databricks Delta Cache [Arm+20],
Alluxio [All23], and Snowflake Cache Layer [Dag+16]. These solutions cache
files at the page or block level and leverage common replacement policies like
LRU. In comparison, Crystal serves as a versatile caching layer by caching data
in a more efficient layout (reorganizing rows based on queries) and format (e.g.,
Parquet), accelerating subsequent query processing. Modern formats allow
pruning data by push-down predicates, optimized with bit manipulations in
recent work [LLC23]. Different encoding schemes and compression algorithms
are used to improve the storage format [Kus+23]. Moreover, the challenges
in cloud storage fostered work on ephemeral storage systems [Kli+18] and
multi-tier storage solutions [Yan+21; Zha+22; ZBL22].

Fast Analytics on Semi-Structured Data

JSON processing in database systems. The rising popularity of JSON
among developers forces relational database systems to invest in handling
semi-structured data formats. Database systems either store JSON data in
their relational tables as an additional column or use the raw JSON files to
process queries. Both solutions also allow indexes for faster processing of JSON
documents [CLP13; KAA16; LG15; LHM14; Tab23].
Sinew uses coarsely grained chunks. Sinew [TDA14] is a PostgreSQL exten-
sion that is able to detect frequent document fields on an entire table granularity.
These fields are extracted to speed up analytical processing. However, Sinew
has robustness issues when dealing with changing or combined data due to the
coarse detection granularity. In contrast to Sinew, our system focuses on pro-
viding robust extracted relational chunks, even when heterogeneous document
types are randomly inserted.
Proteus produces customized code and leverages indexes. Proteus [KAA16]
generates code for accessing heterogeneous data. It creates structural indexes
when it first loads JSON documents to improve subsequent access performance
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on the raw JSON documents. ReCache, which is an extension of Proteus, acceler-
ates the processing of JSON documents by introducing cost-based caching of
heterogeneous data. This strategy monitors the query workload and uses rules
to determine the best memory layout of the cached data [AKA17].
Open-source formats used for JSON. Other systems, such as Apache
Spark [Arm+15; Zah+16] and Hive [Thu+09; Thu+10], employ storage plugins
for handling heterogeneous data. They rely on common open-source formats for
storing JSON data, like Apache Parquet [Apa23d] and Avro [Apa23c]. Apache
Parquet relies on record shredding, described in Dremel [Mel+10], to robustly
store JSON data. However, Spark’s query performance is slower than approaches
that extract data directly due to the high overhead of the access automata. To
improve query throughput in database systems using Parquet files, previous
work demonstrates how to better parallelize them [RFN23]. However, connect-
ing the nested and repeated levels is not explored in this work, which is needed
for general-purpose JSON documents. Another solution is to represent JSON
data with a lossless tree encoding, which helps find tuples according to their
edit distance. Analyzing the edit distance is useful for similarity-based duplicate
removal [Hüt+22].
Raw JSON processing avoids insertion. Instead of storing columnar JSON
data, raw files can be queried directly [Ala+12; Bla+14; CR14; Pav+18]. This
approach avoids the explicit insertion into the database system. The idea is that
queries can be specified over raw data files, which are then executed without
any loading delays [Idr+11]. The raw data access necessitates a fast data parser.
Parsers such as FAD.js, Mison, or SIMD-JSON use modern CPU features, e.g.,
SIMD, for fast reads that allow to saturate disk bandwidth [BB17; Ge+19; LL19;
Li+17]. These approaches can be combinedwith raw filters to speed up parsing or
reduce the amount of ingested data [Pal+18; Xie+19]. Optimizations for handling
distributed processing on JSON files help to improve performance [SEZ23]. Even
specialized hardware (FPGA) is considered to optimize JSON parsing [Dan+22].
Document stores use JSON internally. Document stores, such as Mon-
goDB [Mon23b], Couchbase [Cou23], and DocumentDB [Ama23i], build on the
usage of semi-structured data internally. As these document stores are built for
point accesses, analytical queries are slower compared to relational systems.
JSON description language infers schema. Due to the progress in building a
description language for JSON, known as JSON Schema [JSO20], recent work
studies the inference of the schema within documents [Baa+17; DA16]. These
schema file computations, however, are very CPU intensive because a detailed
list of optional and required schema fields needs to be inferred.
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Impact of Memory Allocation on Query Performance

Memory allocation must be reevaluated given the current architecture.
Ferreira et al. conducted an analysis of dynamic memory allocation in multi-
threaded workloads [Fer+11]. Although the study analyzes important factors, it
only considers multi-threading up to 4 cores. In contrast to today’s deployments,
where systems like HANA [MBL17] utilize hundreds of general-purpose cores
on a single instance, the number of parallelism is too low for a meaningful
recommendation. Modern analytics systems are built on top of allocation-
critical operators such as hash joins and aggregations. Therefore, a revised
evaluation is needed in this changed environment. Note that systems often
implement the aforementioned operators in slightly different flavors [Bal+13;
BLP11; Lei+14; ZDP19]. Thus, the allocation pattern is affected by these design
choices.
Chunk allocation benefits transactional queries. OLTP systems optimize
performance by managing memory allocations in chunks, which benefits short-
running transactional queries [DN19; SA13; Tu+13]. However, many database
systems also handle analytical workloads. Consequently, different memory
allocation patterns must be considered. Custom memory managers that allocate
larger chunks ofmemory can improve performance but at the expense ofmemory
efficiency. Using a coarser granularity reduces the number of memory calls
needed for smaller allocations. Therefore, Umbra uses transaction-local chunks
to improve the performance of small allocations. Despite this optimization,
allocations remain a performance problem. This emphasizes the importance of
choosing the right allocator to maximize throughput.



CHAPTER 4
Conclusions

Improvements for cloud-based data processing. The shift from on-premises
to cloud-native database systems introduces several distinct challenges and
opportunities. This dissertation’s publications introduced various methods to
help efficiently and cost-effectively process large data quantities in the era of
cloud computing.
High-performance analytics on cloud object stores. The emergence of fast
interconnects are facilitating the separation of storage and compute. To best uti-
lize disaggregated storage, database systemsmust transition from a disk-centered
design to managing network storage. We presented an experimental study that
analyzed the characteristics of cloud object storage for high-performance analyt-
ics. With the results, we developed AnyBlob, a novel low-overhead multi-cloud
retrieval library. Our findings showed that AnyBlob can reduce CPU usage by
30%, leading to more available resources for analytics. Through careful integra-
tion into database systems, we demonstrated the cost-effectiveness and high
performance of analytics on cloud object storage. Our database system reduces
the cost compared to cloud offerings by almost an order of magnitude while
maintaining similar performance, even when caching is disabled.
Adaptive semantic caching improves query performance significantly.
To address the increased latency and bandwidth limitations of network storage,
a typically employed solution is local disk caching. Even with today’s fast
networks, caching increases the total instance throughput by combining network
and disk throughput. Traditional caches use an eviction strategy comparable
to LRU and store cached data on a block or file level. However, this can lead to
poor storage space utilization if the data is not partitioned in accordance with
the accessed query predicates. Semantic caching can overcome this issue by
storing only necessary information, which is particularly important on public
cloud instances where SSD space is limited and expensive. We demonstrated the
feasibility of semantic caching by developing and evaluating Crystal. Its long-
term knowledge builds on semantic data regions based on the workload history.
Unlike previous research on semantic caching, Crystal embraces data overlap and
considers overlapping filters during knapsack computation. Our experiments
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showed that Crystal has superior cache utilization, quick adaptability, and
significantly enhances query performance.
JSON tiles enables fast analytics on semi-structured data. Because develop-
ers often prefer the simplicity of semi-structured formats, a large amount of data
stored in cloud object storage originated from JSON APIs. However, analytical
query processing of JSON documents is slow due to access overhead. To over-
come these issues, we introduced JSON tiles. In contrast to previous work, JSON
tiles enhances robustness, performance, and query optimization by exploiting
the structural information found in JSON documents. By materializing the
frequent columns of a small collection of documents (a tile), JSON tiles naturally
adapts to changes in the incoming data. Reordering of documents between
tiles provides strong robustness guarantees. Compared to other industry-grade
systems, Umbra with JSON tiles achieves at least one order of magnitude better
query latencies for analytical workloads on semi-structured data.
Memory allocation impacts query processing. As the amount of stored
and processed data continues to increase, efficient and fair memory allocation
becomes more important. To help understand the performance implications of
memory allocation, we presented the first experimental study of the impact of
memory allocation for analytics. Interestingly, the five tested memory allocators
demonstrated significant differences in terms of memory fairness, efficiency,
scalability, and query performance. Our research revealed that jemalloc per-
formed superior in most categories, which led to a switch to jemalloc as the
default allocator for Umbra.
Facilitating cost-effective and efficient cloud-based data processing. This
thesis presented a collection of solutions to pressing issues of analytical query
processing in public clouds. By combining these ideas, database systems can be-
come more cost-effective and achieve higher performance. Balancing local disks
and remote cloud object storage is crucial for inexpensive and high-performing
systems. Users demand fast analytical processing of heterogeneous data, particu-
larly the processing of JSON documents, a pillar of big data and a state-of-the-art
API format. To summarize, the architectural paradigm shift in the cloud of sepa-
rating storage and compute governed the solutions in this thesis. Our redesigned
and newly developed components enable modern database systems to become
cloud-aware and process analytical queries efficiently and economically.

Future Work

1 Tbit/s Ethernet on the horizon. Public cloud vendors introduced 100 Gbit/s
Ethernet in 2018, and 400 Gbit/s will be available soon. Recent research indicates
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that the next breakthrough in networking will be 1 Tbit/s Ethernet [Cai+22].
These high-bandwidth scenarios make cloud object storage even more appealing.
However, reducing the CPU usage of retrieval is necessary to manage these
fast networks efficiently. One solution is upgrading the default path MTU
between instances and cloud object storage. Traditional protocols such as
HTTP over TCP demand CPU resources by the number of processed packets,
almost independent of the size. Increasing the size of network packets, for
example by employing jumbo packets, can help to efficiently manage high-speed
networks even on medium-sized servers. Faster networks may require adjusting
the retrieval pipeline in database systems, for example, increasing the object
retrieval concurrency.
Disaggregating memory is the next leap in elasticity. In the future, cloud
vendors may provide not only disaggregated storage but also disaggregated
memory [Kor+22; Wan+22; Zha+20; Zha+21]. CXL, a newly developed standard,
appears to be a promising solution to extend byte-addressable memory during
query processing. While this idea is promising and has already sparked research
interest, hardware for seamless memory upgrades is not yet available. Provision-
ing additional memory on demand and the different access latencies between
local and remote memory further complicates memory allocation. These new
allocation patterns might require a redesign of how memory is allocated and
when it is freed. In contrast to today’s memory allocators, monetary cost can
serve as a valuable metric for memory allocation.
Opportunities in control plane management and distributed processing.
With the advancements achieved in this thesis, modern database systems can
now leverage public cloud infrastructure for efficient analytical query process-
ing. However, most commercial analytics offerings consist of multiple instances.
Managing instances and scheduling queries on different instances is challenging.
This is referred to as the control plane, which must be carefully designed to
deliver a cost-effective, multi-instance analytics solution. When data cannot be
managed on a single instance, cloud offerings typically distribute query process-
ing. These topics are beyond the scope of this thesis but raise exciting research
challenges that can build upon the presented solutions in this dissertation.
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Exploiting Cloud Object Storage
for High-Performance Analytics

Synopsis. The disaggregation of storage and compute is an essential design
principle in the cloud, and most cloud-native database systems rely on cloud
object storage as the ground-truth storage solution. Cloud object storage, such
as AWS S3, IBM COS, and GCP Storage, is inexpensive, scalable, and durable,
making it the perfect fit for analytical query engines. Traditionally, the major
challenge with cloud object storage was the limited network bandwidth between
instances and storage. Due to recent advances in networking technology, cloud
vendors offer affordable instances with 100 Gbit/s Ethernet or more.

This paper addresses the three key challenges associated with efficient analytics
on cloud object stores. (i) Achieving complete network bandwidth on network-
optimized instances is challenging because a large number of simultaneously
outstanding requests are required. Therefore, efficient network retrieval must
be tightly integrated with the database system. (ii) Network I/O incurs greater
CPU overhead than local disk accesses, decreasing the number of cores available
for concurrent analytics. Thus, reducing the CPU usage of network retrieval
is essential. (iii) Many cloud database systems offer the flexibility to run on
different cloud vendors. Yet, each cloud vendor provides its own network library,
leading to increased complexity when integrating multiple libraries.

To mitigate these challenges, this paper presents a blueprint for performing
efficient analytics on data residing in disaggregated cloud object stores. It
conducts an analysis of cloud object stores from multiple vendors to establish
retrieval configurations optimized for cost and performance. The results of the
study are used to develop a downloadmanager, calledAnyBlob, designed for large
data analytics. AnyBlob significantly reduces CPU resource consumption and
can retrieve data from multiple cloud vendors. By integrating high-bandwidth
object retrieval seamlessly with the database engine’s scan operator, the database
system Umbra, deployed on a single instance, achieves performance similar to
large configurations of state-of-the-art cloud database systems.
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ABSTRACT
Elasticity of compute and storage is crucial for analytical cloud
database systems. All cloud vendors provide disaggregated object
stores, which can be used as storage backend for analytical query
engines. Until recently, local storage was unavoidable to process
large tables e�ciently due to the bandwidth limitations of the net-
work infrastructure in public clouds. However, the gap between
remote network and local NVMe bandwidth is closing, making
cloud storage more attractive. This paper presents a blueprint for
performing e�cient analytics directly on cloud object stores. We
derive cost- and performance-optimal retrieval con�gurations for
cloud object stores with the �rst in-depth study of this foundational
service in the context of analytical query processing. For achieving
high retrieval performance, we present AnyBlob, a novel download
manager for query engines that optimizes throughput while mini-
mizing CPU usage. We discuss the integration of high-performance
data retrieval in query engines and demonstrate it by incorporating
AnyBlob in our database system Umbra. Our experiments show that
even without caching, Umbra with integrated AnyBlob achieves
similar performance to state-of-the-art cloud data warehouses that
cache data on local SSDs while improving resource elasticity.
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1 INTRODUCTION
Data warehousing moves to the cloud. Estimates show that the
revenue of cloud database systems has reached that of on-premise
systems in 2021 [1] – and by VLDB 2023, the cloud market share will
presumably be signi�cantly higher. A major part of this change is
the shift of data warehousing and analytical query processing to the
cloud. The main drivers behind that are elasticity and the �exibility
to provision storage and compute separately and on demand.
Cloud object stores. Cloud object stores such as AWS S3, IBM
COS, and GCP Storage enable separating compute from storage
in a cost-e�ective (e.g., ∼23$/TiB per month) way [13]. They also
provide strong durability guarantees (e.g., 11 9’s per year for S3 [4]),
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practically unlimited capacity, and scalable access bandwidth. These
properties make disaggregated cloud object storage a natural �t for
analytical database systems. In future data centers, database systems
may even run on hardware that separates memory and compute.
There, disaggregated storage is crucial to provide durability [83, 91].
High-bandwidth networks. Until recently, the major issue of
cloud object storage for analytics was the limited network band-
width between instances and storage. In 2018, AWS introduced in-
stances with 100 Gbit/s (≈12 GB/s) networking – resulting in a four-
fold increase in per-instance bandwidth [22, 26]. In contrast to In-
�niband, 100 Gbit/s Ethernet has not only become widely-available
but also a�ordable1. This e�ectively closes the gap between remote
network and local NVMe bandwidth2 and makes relying more on
cloud storage more attractive for bandwidth-dominated workloads.
Cloud storage analytics.Most cloud-native data warehouse sys-
tems, such as Snow�ake [33, 82], Databricks [25], and AWS Red-
shift [19], use cloud object storage as their ground-truth data source.
Although the bandwidth gap between local storage and network is
closing, most research focuses on caching to avoid fetching data
from remote storage [37, 46, 85, 89]. Early research investigates ob-
ject storage for transactional database systems but limits its focus
on OLTP [27]. Surprisingly, no empirical study for general-purpose
analytics (OLAP) on cloud object stores has been conducted.
Challenge 1: Achieving instance bandwidth. Because the la-
tency of each object request is high, saturating high-bandwidth net-
works requires many concurrently outstanding requests. Therefore,
a careful network integration into the DBMS is crucial to achieve
the complete bandwidth available on network-optimized instances.
Challenge 2: Network CPU overhead. In contrast to fetching
data from local disks, network retrieval has higher CPU overhead.
Query engines, however, also contend for computation resources to
simultaneously analyze large sets of data. Consequently, reducing
the CPU footprint of network retrieval is essential.
Challenge 3: Multi-cloud support.Many cloud database systems
are able to run in di�erent clouds – allowing the user to choose the
vendor of their liking. In contrast to the desire for multi-cloud sys-
tems, each cloud vendor provides its own networking library. Thus,
multiple libraries need to be integrated, which increases complexity.
Approach. In this paper, we present a blueprint for performing
e�cient analytics directly on data residing in disaggregated cloud
object stores. We studied the cloud object stores of di�erent vendors
to derive cost- and performance-optimal retrieval con�gurations.
To reduce resource utilization for network retrieval, we developed a
downloadmanager that is able to fetch data frommultiple cloud ven-
dors. We seamlessly integrate high-bandwidth object retrieval with
the database engine’s scan operator. Our DBMS Umbra, equipped
1Comparing the on-demand prices of c5n.18xlarge (100 Gbit/s) and c5.18xlarge (25
Gbit/s) while taking c5n’s larger DRAM into account (∼30% more DRAM), we �nd
that adding 100 Gbit/s networking increases cost by only 22%.
2Consider i3en.24xlarge, the AWS instance with the fastest local NVMe bandwidth. Its
local read bandwidth is 16 GB/s, while its full-duplex network bandwidth is 12 GB/s.
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Figure 1: Schematic architecture of AWS S3.

with our download manager and caching disabled, achieves similar
performance on a single instance as large con�gurations of state-of-
the-art cloud database systems that cache data on local SSDs. Our
fast and low overhead networking integration facilitates switch-
ing instances without performance cli�s, improving elasticity. As
switching comes without performance cli�s, our approach is able
to better utilize spot instances, available at huge discounts.
Contribution 1: Experimental study of cloud object stores. To
achieve high-bandwidth data processing, we �rst study the prop-
erties of cloud object stores. In Section 2, we explain the design of
disaggregated storage, discuss the cost structure, and then provide
detailed experiments on the latency and throughput of di�erent
object stores. We de�ne an optimal request size range that mini-
mizes cost while maximizing throughput. Our concurrency analysis
helps to schedule enough requests to meet the throughput goal (i.e.,
instance bandwidth). Our in-depth experimental study of this foun-
dational cloud service helps to exploit disaggregated storage for
analytical query processing.
Contribution 2: AnyBlob, a low overhead multi-cloud library.
With the insights gained from our characterization of object stores,
we developed AnyBlob, an open-source, multi-cloud download man-
ager for object stores that is optimized for large data analytics [36].
AnyBlob, described in Section 3, achieves the same throughput as
the libraries provided by the cloud vendors while reducing CPU re-
source consumption signi�cantly. CPU resource utilization is vital
to process data concurrently. In contrast to existing solutions, our
approach does not need to start new threads for parallel requests be-
cause it uses io_uring [21], which facilitates asynchronous system
calls. To saturate the network bandwidth, our analysis shows that
hundreds of requests have to be outstanding simultaneously. Our
solution helps to reduce thread scheduling overhead and allows
seamless integration into database query engines.
Contribution 3: Blueprint for retrieval integration. Tight inte-
gration of the download manager into the database engine enables
e�cient analytics on disaggregated storage. We present a blueprint
to incorporate AnyBlob into database engines in Section 4. By care-
fully designing the scan operator and developing an object retrieval
scheduler, we can seamlessly interleave the downloading of objects
with the analytical processing.

2 CLOUD STORAGE CHARACTERISTICS
Methodology. In order to design an e�cient analytics engine based
on cloud object storage, we need to understand its basic character-
istics. We start with an analysis on the performance characteristics
and cost of disaggregated object stores and compute instances. To
gain insights into the storage architecture, we perform various
micro-experiments on AWS S3 and two other cloud providers to
understand latency and throughput limitations. A study on AWS

Table 1: Cloud storage cost by cloud vendor for zone-
redundant replication (default; multiple AZs within region).

Cloud Provider
(cheapest region)

Storage
($ / TiB / month)

GET
($ / 1 M)

PUT
($ / 1 M)

AWS (us-east-2) [13] 23.55 0.40 5.00
GCP (us-east-1) [39] 20.48 0.40 5.00
IBM (us-east) [45] 23.55 0.42 5.20
Azure (East US 2) [60] 23.55 0.40 6.25
OCI (us-ashburn-1) [64] 26.11 0.34 0.34

shows that instances are able to achieve high network throughput
to S3 [80]. With the best practices in mind [10], we conduct this
in-depth experimental study that helps exploiting cloud storage for
analytical query processing. Unless otherwise speci�ed, we use our
AnyBlob library as the retrieval manager, presented in Section 3.

2.1 Object Storage Architecture
Overview. All major cloud vendors provide disaggregated storage
solutions such as AWS S3, Azure Blob, IBMCOS, OCI Object Storage,
and GCP Storage. Data is stored in immutable blocks called objects.
These objects are distributed and replicated across several storage
servers for availability and durability. After resolving the domain
name of the cloud object store, the user requests an object from a
storage server which then sends the data. All major cloud providers
use a similar API that transfers data via HTTP (TCP).
Architecture of S3. The architecture of S3 is depicted in Fig-
ure 1 [32]. AWS S3 de�nes pre�xes that are similar to unique �le
paths in operating systems. Objects are similar to �les and all levels
above objects are similar to directories. Data is stored in buckets
that resemble hard drive partitions in our analogy. According to
AWS, S3 partitions all pre�xes to scale to thousands of requests per
second [32]. A pre�x can range from covering a bucket down to
individual objects. With an update in 2020, S3 is now a strongly
consistent system [23]. Other providers were already strongly con-
sistent. S3 replicates the data to at least 3 di�erent availability zones
(AZs). A geographic region consists of AZs that are separated data
centers for increasing availability and durability [75].
Bandwidth limits. Data access performance is characterized by
the network connection of the instance, the network connection of
the cloud storage, and the network itself. At AWS, general-purpose
instances achieve 100 Gbit/s and more to the object stores [3, 5].

2.2 Object Storage Cost
Cost structure. All major cloud vendors structure their object
storage pricing similarly. They categorize expenses as storage cost,
data retrieval and data modi�cation cost (API cost), and inter-region
network transfer cost. Cloud providers operate object stores on the
level of a region (e.g., eu-central-1). When accessing data within
one region, only API costs are charged because intra-region tra�c
is free to the object store. On the other hand, AWS inter-region data
transfer, for example, from the US east to Europe costs 0.02$/GB.
Size-independent retrieval cost. Table 1 shows that the pricing of
cloud providers is similar for zone-redundant replication (default),
which provides high durability and optimal retrieval performance.
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sizes on hot and cold objects (AWS, eu-central-1, c5n.large).

Surprisingly, retrieval cost in the same region depends only on the
number of requests sent to the cloud object store, and does not
depend on the object size. Downloading a 1 KiB object costs the
same as a 1 TiB object, as long as only one HTTP request is issued.
Cloud storage alternatives. Other storage solutions are not as
elastic as disaggregated storage and are often more expensive.
For example, AWS Elastic Block Storage (EBS) (gp2 SSD) costs
102.4$/TiB compared to 23.2$/TiB per month. HDD storage pricing
is comparable to S3, but bandwidth is very limited. Although EBS is
elastic in its size, it can only be attached to a single node. Instance-
based SSD storage is also expensive. For example, the price di�er-
ence between c5.18xlarge and c5d.18xlarge is 0.396$/h and yields
in 1.8 TB NVMe SSD. There, instance storage costs 158.4$/TB per
month, which is 7× more expensive. Another example for instance-
based storage is the largest HDD cluster instance d3en.12xlarge.
This instance features 24 HDDs with 14 TB storage each at a price
of 13.5$/TB per month. Although this seems cheaper initially, such
an instance cannot provide S3’s durability guarantees (11 9’s). The
parallelism of disaggregated storage enables higher throughput
than local storage devices, which we will discuss in Section 2.8.

Finding 1: Cloud object storage provides the best durability
guarantees while being the cheapest storage option.

2.3 Latency
Di�erent request sizes. Disaggregated storage incurs higher la-
tency than SSD-based storage solutions. We examine the latency
distribution for di�erent request sizes to understand storage latency.
We distinguish between total duration and latency until the �rst
byte is retrieved. The results of using only a single request at a
time are depicted in Figure 2. We di�erentiate between the �rst and
20th consecutive iteration to simulate hot accesses. Our experiment
shows that �rst byte latency often dominates the overall runtime
for small sizes. First byte and total duration are similar for small
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Figure 4: Total latency distribution of di�erent object stores
over multiple runs on sparsely accessed data (12h interval).

request sizes. This highlights that round-trip latency limits the
overall throughput. For su�ciently large requests, bandwidth is the
limiting factor. From 8 to 16 MiB, we see minor improvements but
the duration already rises by ∼1.9× while object size doubles. In-
creasing the size from 16 to 32 MiB results in doubling the retrieval
duration. Thus, the bandwidth limit is reached, and further increas-
ing the size does not bene�t the retrieval performance. When data
is hot, �rst byte and total latency are generally reduced.
Noisy neighbors. Cloud-based storage solutions are shared be-
tween customers, resulting in less predictable latency. We continu-
ously retrieve a single object from a set of objects with one request
to analyze trends in access performance. We generate random 16
MiB objects since increasing the size does not lead to a lower la-
tency per byte. Figure 3 shows the bandwidth for accessing an
object (bytes divided by duration) over a period of 8 weeks. Object
bandwidth has a high variance ranging from ∼25 to 95 MiB/s, with
a considerable number of data points being at the maximum (15%).
The median performance stabilizes at 55-60 MiB/s. Weekly patterns
in the data show that the bandwidth is in�uenced by the day of the
week. Especially at the weekends (�rst day of the week is Monday),
the performance is higher – most likely due to lower demand from
other customers. When we zoom into one week, clear daily patterns
are visible. The performance �uctuations between day and night
indicate variations in network utilization during di�erent times
of the day. Surprisingly, no outlier lies above the large cluster at
∼95 MiB/s even though millions of objects were downloaded. This
suggests that the per-request bandwidth is limited within S3 or that
server-side caching e�ects are intentionally not passed on to users.
Latency variations between cloud vendors. In addition to using
AWS, we also examine latency characteristics of two other cloud
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Figure 5: Throughput distribution of di�erent object stores
over multiple runs on sparsely accessed data (12h interval).

providers. The experiment, plotted in Figure 4, accesses randomly
generated 16 MiB objects. After each run, the bucket is not accessed
until the next run. The interval between executions is (at least) 12
hours to reduce caching e�ects. AWS S3 has the highest overall
latency for individual objects. The other two providers have similar
average latencies, but Cloud Y has more variance. Latency between
di�erent executions is fairly stable across all cloud providers. As
mentioned, S3 has a minimum latency with no outliers below it,
which suggests a restricted per-request maximum bandwidth. In
contrast to AWS, outliers in the low latency spectrum indicate that
the other vendors do not hide caching e�ects.

2.4 Throughput
Importance of throughput. Aside from latency, we also show
insights on the throughput of accessing object stores. For analytics,
the most important factor is the combined throughput since OLAP
requires large amounts of data to be processed. Thus, the �rst byte
latency is less important for bandwidth-dominated workloads.
Cloud storage throughput similar to instance bandwidth.
Similar to our previous latency experiment, we access randomly
generated 16 MiB objects. One request retrieves one complete ob-
ject. In this experiment, we maximize the throughput available on
each cloud provider with a single instance. We schedule up to 256
simultaneous requests using many threads to maximize throughput.
Further increasing requests did not lead to higher throughput. Sec-
tion 2.8 discusses the optimal number of requests. We use instances
that achieve up to 100 Gbit/s (or the cloud’s maximum bandwidth)
and have similar on-demand pricing. Figure 5 shows the through-
put experiment with (at least) 12 hours between di�erent runs to
reduce caching e�ects. Each throughput data point is calculated as
an aggregate of all downloaded objects over a 1-second window.
The results show that we achieve a median bandwidth of at least
75 Gbit/s for AWS. Most runs have a median bandwidth between
80 and 90 Gbit/s in eu-central-1, close to the maximum instance
bandwidth. At Cloud X, we observe a bandwidth limit of ∼40 Gbit/s
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Figure 8: Cost vs. throughput of di�erent request sizes (AWS,
eu-central-1, c5n.18xlarge).

and almost no �uctuations. Cloud Y achieves a median bandwidth
of 50 Gbit/s to its object store, but we notice higher variance.
Di�erent regions have slightly di�erent performance.
Throughput is similar for the two tested regions of AWS; how-
ever, one region performs slightly better. The di�erence between
the two regions does not vary much between iterations.
High bandwidth is achievable for cold objects. In Figure 6, we
investigate the throughput di�erences between the �rst and the
20th consecutive execution. The access frequency spike of the same
objects does not result in vastly di�erent execution times.
Small instances allow bursting. In the AWS instance speci�ca-
tions, the network bandwidth of smaller instances is often denoted
with an up-to bandwidth limit. Instances achieve the baseline band-
width (relative to the number of CPUs) in the steady state after
utilizing all burst credits [14]. Figure 7 shows that the instance falls
back to the baseline throughput after bursting for ∼45 min.

Finding 2: Object retrieval can reach network bandwidth.

2.5 Optimal Request Size
Request size implications. An important design decision is the
size of requests. Requests can either be full objects or byte ranges
within objects. Themost crucial factors are performance and request
cost. Since cloud providers charge by the number of requests, larger
requests result in lower cost for the same overall data size. On the
other hand, the size should be as small as possible so that small
tables also bene�t from parallel downloads. Our experiments in
Section 2.3 demonstrate that performance does not improve beyond
the bandwidth limit for a single request.
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Cost-throughput optimal requests. In Figure 8, we show the
cost of retrieving data from S3 with di�erent request sizes. The
achieved throughput with hundreds of simultaneous requests and
many threads is denoted above the bars. Each request size class
contains randomly generated objects. We distinguish between com-
pute instance cost (c5n.18xlarge) and storage retrieval cost. Storage
cost dominates the total cost for small objects. Computational cost
is the most signi�cant contributor to requests in the ∼10 MiB range.
This applies to instances at on-demand prices and spot instances,
which come at a huge discount (we calculate with 60%). Because the
throughput plateaus in the same range of request sizes, we classify
request sizes of 8 - 16 MiB as cost-throughput optimal for OLAP.

Finding 3: Sizes of 8 - 16 MiB are cost-throughput optimal.

2.6 Encryption
CPU consumption of encryption. All experiments so far use an
unsecured connection to S3 (HTTP), but S3 also supports encrypted
connections through HTTPS. We measure the CPU overhead of
di�erent encryption strategies while reaching the same throughput
in Figure 9. HTTPS requires more than 2× CPU resources of HTTP,
but AES end-to-end encryption only increases CPU usage by ∼30%.
Encryption-at-rest superior to HTTPS. At AWS, all tra�c be-
tween regions and even all tra�c between AZs is automatically
encrypted by the network infrastructure. Thus, all tra�c leaving
an AWS physical location is automatically secured [8]. Within a
location, no other user is able to intercept tra�c between an EC2
instance and the S3 gateway due to the isolation of VPCs, making
HTTPS super�uous. However, encryption-at-rest is required to
ensure full data encryption outside the instance (e.g., at S3).

2.7 Tail Latency & Request Hedging
Hedging against slow responses.Missing or slow responses from
storage servers are a challenge for users of cloud object stores. In our
latency experiments, we see requests that have a considerable tail
latency. Some requests get lost without any notice. Tomitigate these
issues, cloud vendors suggest restarting unresponsive requests,
known as request hedging [10, 34]. For example, the typical 16 MiB
request duration is below 600ms for AWS. However, less than 5% of
objects are not downloaded after 600ms. Missing responses can also
be found by checking the �rst byte latency. Similarly to the duration,
less than 5% have a �rst byte latency above 200ms. Hedging these
requests does not introduce signi�cant cost overhead.

2.8 Model for Cloud Storage Retrieval
Concurrency analysis. During our analysis, we saw that the
bandwidth of individual requests is similar to accessing data on an
HDD. To saturate network bandwidth, many simultaneous requests
are required. Requests in the range of 8 - 16 MiB are cost-e�ective
for analytical workloads. We design a model to predict the number
of requests needed to reach a given throughput goal:

requests = throughput · baseLatency + size · dataLatency
size

For su�ciently large request sizes at S3, we calculate the median
base latency as ∼30 ms and the median data latency as ∼20 ms/MiB
The base latency is computed from the 1 KiB experiment in Figure 2,
the average latency of 16 MiB minus the base latency de�nes the
median data latency. Figure 4 shows that the median data latency of
Cloud X and Cloud Y is lower (12–15 ms/MiB). For S3, the optimal
request concurrency for saturating 100 Gibt/s instances is∼200–250.
Figure 10 evaluates themodel with the previous data latency and the
latency representing the 25th percentile (hot). The measurements
are between both models until the bandwidth limit is reached.
Storage medium. An access latency in the tens of ms and a per-
object bandwidth of ∼50 MiB/s strongly suggest that cloud object
stores are based on HDDs. This implies that reading from S3 with
∼80 Gbit/s is accessing on the order of 100 HDDs simultaneously.

Finding 4: Saturating high-bandwidth networks requires
hundreds of outstanding requests to the cloud object store.

3 ANYBLOB
Uni�ed interface with smaller CPU footprint. Di�erent cloud
providers have their own download libraries with di�erent APIs and
performance characteristics [7, 40, 44, 61, 65]. To o�er a uni�ed in-
terface, we present a general-purpose and open-source object down-
load manager called AnyBlob [36]. In addition to transparently sup-
porting multiple clouds, our io_uring-based download manager
requires fewer CPU resources than the cloud-vendor-provided ones.
Resource usage is vital as our download threads run in parallel with
the query engine working on the retrieved data. Existing download
libraries start new threads for each parallel request. For example,
the S3 download manager of the AWS SDK executes one request
per thread using the open-source HTTP library curl. In contrast to
spinning up threads for individual requests, AnyBlob uses asynchro-
nous requests, which allows us to schedule fewer threads. Because
hundreds of requests must be outstanding simultaneously in high-
bandwidth networks, a one-to-one thread mapping would result
in thread oversubscription. This results in many context switches,
which negatively impacts performance and CPU utilization.

3.1 AnyBlob Design
Multiple requests per thread. AnyBlob uses io_uring to manage
multiple connections per thread asynchronously [31]. With this
model, the system does not have to oversubscribe threads which
would incur additional scheduling cost. In the following, we discuss
the three major components of AnyBlob. The components and their
relationship are shown in Figure 11.
io_uring - low-overhead system call interface. io_uring (avail-
able since Linux kernel 5.1) provides a generic kernel interface for
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Figure 11: AnyBlob uses state-machine based message tasks that are asynchronously processed with the help of io_uring.

storage and network tasks. It builds on two lock-free ring bu�ers,
the submission and completion queues, that are shared between
user and kernel space. The user inserts new submission queue en-
tries (SQE), such as receive (recv) and send operations, into the
submission queue. Inserting into the queue does not require any
syscalls. To notify the kernel of new entries in the submission queue,
the io_uring_enter system call processes the entries on the kernel
side in a non-blocking fashion until the request is transmitted to
the network or storage device. This device uses interrupt requests
(IRQs) to notify the kernel of �nished operations. The request is then
processed during the interrupt and placed on the completion queue.
To check if a request was successful, the user periodically peeks for
available completion queue entries (CQE). io_uring was found to
be highly e�cient for storage applications [35, 41, 52, 55, 68], but
is less studied for networking tasks [28]. Didona et al. suggest to
study io_uring for networking in more depth [35].
State-machine-basedmessages.AnyBlob uses a state machine for
each request. The message information (address, port, and raw data)
combined with a state machine is denoted as a Message Task. Op-
tionally, a receive bu�er can be attached that avoids additional data
copies since the kernel transfers data directly from the network
device to our desired location. Cloud object stores use HTTP mes-
sages to transfer data. We implement the di�erent phases of an
HTTP request within the state machine. On successfully complet-
ing a phase, we transition to the next phase until the object is fully
fetched. The state machine enables asynchronous and multiplexed
messages with a single thread. Several send and recv system calls
are required during transfer until the object is downloaded. After
each system call, we suspend the execution of this message until we
are noti�ed about the successful syscall. Afterward, we reevaluate
the state machine until a �nal state is reached.
Asynchronous system calls. Our asynchronous handling of send
and recv system calls in theMessage Task is facilitated by io_uring.
Instead of directly scheduling the system call and waiting for the
result, we insert the operation into the submission queue of the
uring. Each SQE has a user-de�ned member that allows passing
information to later identify its origin Message Task. System calls
are processed only when the submission queue is submitted to the
kernel ( 1 ). This submission process is non-blocking, allowing the

executing thread to work on other requests while the transfer is
handled by the network device. The uring is periodically checked
for available completion queue entries (CQE) ( 2 ). When a CQE
is available, a system call has been processed. With the retrieved
information, we can evaluate the next Message Task step.
Task-based send-receive scheduler. With io_uring-based sock-
ets and Message Tasks, we develop a task-based send-receive sched-
uler. The task scheduler uses one thread that continuously executes
1 – 3 as an event loop. This event loop coordinates the execution
of the steps of Message Tasks ( 3 ) and processes completion en-
tries ( 2 ). Furthermore, new object requests are scheduled as new
Message Tasks ( 4 ). To optimize single-threaded throughput, a task
scheduler works concurrently on multiple Message Tasks. Multiple
Message Tasks’ send and recv system calls can be batched before sub-
mitting the submission queue to reduce system call overhead ( 1 ).
In multi-threaded environments, it is bene�cial to reduce system
calls as parts of them are protected by kernel locks. When aMessage
Task is �nished, it invokes a callback to notify the requester.
Send-receive groups. Although a single task-based send-receive
scheduler has high throughput (multiple Gbit/s), it is not su�cient
to satisfy network-optimized instances. Thus, multiple schedulers
need to run simultaneously. For ease of use, a lock-free send-receive
task group manages requests for multiple send-receive schedulers.

3.2 Authentication & Security
Transparent authentication. Although all cloud providers use a
similar API to access objects, some details of signing requests and
the authentication are di�erent. AnyBlob implements operations to
upload and download objects frommultiple cloud storage providers.
We implement a custom signing process using the library openssl
to maintain high throughput with as few cores as possible [20].
For users of AnyBlob, it is transparent which provider is chosen, as
the interaction with the library remains unchanged. For AWS, we
support the automatic short-term key metadata service [11].
AnyBlob enables encryption-at-rest. AnyBlob supports the user
application to use encryption-at-rest by providing easy-to-use, in-
place, and fast encryption and decryption functions for AES. Fur-
ther, AnyBlob allows the usage of HTTPS for requests. However,
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we discourage this in controlled environments, such as AWS EC2
connected to AWS S3, due to high CPU overhead. HTTPS is useful
for authentication if data is sent outside the controlled environment,
e.g., from your computer to S3. In contrast to the high overhead for
HTTPS, encryption-at-rest can be used with only moderate over-
head. As shown in Section 2.6, this client-side encryption provides
superior encryption against third parties, e.g., cloud providers.

3.3 Domain Name Resolver Strategies
Resolution overhead. In analytical scenarios, many requests are
scheduled to the cloud object storage. Section 2.1 highlights that
we can connect to di�erent server endpoints. Resolving a domain
name for each request adds considerable latency overhead due to
additional round trips. Thus, it is essential to cache endpoint IPs.
Throughput-based resolver. Our default resolver stores statistics
about requests to determine whether an endpoint is performing
well. We cache multiple endpoint IPs and schedule requests to
these cached IPs. If the throughput of an endpoint is worse than
the performance of the other endpoints, we replace this endpoint.
Thereby, we allow the load to balance across di�erent endpoints.
MTU-based resolver. We found that the path maximum trans-
mission unit (MTU) di�ers for S3 endpoints. In particular, the de-
fault MTU to hosts outside a VPC is typically 1500 bytes. Some S3
nodes, however, support Jumbo frames using an MTU of up to 9001
bytes [9]. Jumbo frames reduce CPU cost signi�cantly because the
per-packet kernel CPU overhead is amortized with larger packets.
MTU discovery. The S3 endpoints addressable with a higher path
MTU use 8400 bytes as packet size. Our AWS resolver attempts to
�nd hosts that provide good performance and use a higher path
MTU. We ping the IP with a payload (> 1500 bytes) and set the DNF
(do not fragment) �ag to determine if a higher pathMTU is available.

3.4 Performance Evaluation
Competitors. To demonstrate AnyBlob’s performance and CPU us-
age utilization, we experiment with di�erent settings on AWS. We
compare against two libraries provided by Amazon. They are both
part of the o�cial AWS C++ SDK (1.9.140). S3 is the traditional API
that uses the library curl internally to retrieve objects. Similar con-
cepts are applied by the download managers of other vendors’ SDKs.
S3Crt is a newer alternative S3 library released by AWS that uses
a custom C network implementation (C++ API). With AnyBlob’s
design, S3 Select can be implemented, but it would only support
few types (JSON, CSV, Parquet) and no client-side encryption [15].
Cost-throughput Pareto-optimal retrieval. Figure 12 shows
di�erent settings for each tested download manager. Note that we
plot performance and CPU utilization such that the optimal settings
lie in the top-left corner of the Pareto curve. Within one download
strategy, we highlight the points on their respective Pareto curve.
AnyBlob, with our throughput-based resolver, always dominates the
AWS-provided downloadmanagers.We achieve the samemaximum
throughput using only 0.7× the CPU resources of the best competi-
tor. Given a �xed CPU budget, we get up to 1.5× performance. Our
specialized AWS resolver achieves the same throughput but reduces
CPU usage by an additional 10%. We validated AnyBlob on recently
deployed Graviton instances (200 Gbit/s) [5] and observed greater
CPU reduction while retrieving objects with up to 180 Gbit/s.

Figure 12: Throughput and CPU usage Pareto curves for Any-
Blob, S3, and S3Crt (AWS, eu-central-1, c5n.18xlarge).

4 CLOUD STORAGE INTEGRATION
Query engine integration options. To unleash the full perfor-
mance potential of disaggregated cloud storage, we have to carefully
integrate the analytical query engine with the networking compo-
nents. A naive approach would let each worker thread download
its currently-needed data chunk synchronously. This way, each
worker thread would schedule at most one request at a time, but
the threads would be blockedmost of the time –waiting for network
I/O. A more common approach in database systems is the usage
of asynchronous I/O. Our cloud storage retrieval approach builds
upon this common I/O strategy. Database systems that use the
AWS S3 SDK [7] also leverage asynchronous retrieval from cloud
object storage. As discussed in Section 3, the AWS S3 SDK often
results in oversubscription, which has not only a negative impact
on performance but also other undesirable e�ects on database sys-
tems. For example, a huge download task with hundreds of threads
could make the DBMS unresponsive to newly arriving queries since
the DBMS has no control over the retrieval threads. Furthermore,
the mix of downloading and processing threads is hard to balance,
especially with this vast number of concurrently active threads.
Approach. In this section, we show how to integrate e�cient
object store retrieval into high-performance query engines. We
rely on AnyBlob and the empirical results presented in Section 2 to
saturate the available network bandwidth with low CPU resource
consumption. A key challenge is how to balance query processing
and downloading. Without enough retrieval threads, the network
bandwidth limit can not be reached. On the other hand, if we use too
few worker threads for computation-intensive queries, we lose the
in-memory computation performance of our DBMS. We, therefore,
propose a scheduling component to balance object store retrieval
and query processing, allowing us to schedule threads e�ectively
in terms of query performance and CPU usage. With this scheduler,
we then develop an e�cient table scan operator based on a cost-
e�ective columnar storage format.
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Figure 13: DBMS design overview for e�cient analytics with
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4.1 Database Engine Design
Tasks and scheduling of worker threads. The overall design of
our cloud storage-optimized DBMS centers around the table scan
operator. Like most database systems, our system Umbra uses a
pool of worker threads to process queries in parallel. In our design,
worker threads do not only perform (i) regular query processing,
but can also (ii) prepare new object store requests or (iii) serve as
network threads. Our object scheduler, which we present in Sec-
tion 4.3, dynamically determines each worker’s job (i-iii) depending
on network bandwidth saturation and processing progress.
Task adaptivity. To overcome issues with long-running queries
that block resources, many database systems use tasks to process
queries. These tasks can either be suspended or run only for a small
amount of time. Both concepts lead to a query engine that is able
to adapt to changing workloads quickly. Regardless of the speci�c
task system, our asynchronous retrieval integration only requires
the mechanism to switch tasks of workers during query runtime.
Columnar format. The raw data is organized in a column-major
relation format chunked in immutable blocks of columns. The meta-
data of a block, e.g., column types and o�sets, are stored in the block
header. The database schema information is also stored on cloud
storage, which requires fetching at start-up.
Table metadata retrieval. In the following, we describe the �ow
of information during a table scan operation, illustrated in Figure 13.
In steps 1 and 2 , the scan operator �rst requests table metadata,
i.e., the list of blocks. Afterward, all relevant block metadata is
downloaded as a requirement to start the table scan’s data retrieval.
Worker thread scheduling. After initializing the table scan, we
dedicate multiple worker threads to this operation. Because par-
titioning worker threads into retrieval and processing threads is
di�cult and requires adaptations over the duration of the query,
we implement an object scheduler to solve this problem. Step 3
shows that each scanning thread asks the scheduler which job to
work on. If enough data is retrieved, the worker thread proceeds to
process data, as demonstrated in 4A . Otherwise, we dedicate the
thread to preparing blocks for retrieval. Since we only execute jobs
for a short time, this decision can be quickly adapted.
Download preparation. To saturate the network bandwidth, it is
important to continuously download with enough retrieval threads
and many outstanding requests. In Step 4B , the preparation worker
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Figure 14: Table scan example with 8 threads.

creates new requests that allow the retrieval threads to execute
their event loop without interruption. The object manager holds
metadata of tables, blocks, and their column chunk data. The column
chunk data is managed by our variable-sized bu�er manager. If the
data is not in memory, we create a new request and schedule it for
retrieval, shown in 5B . Finally, retrieval threads fetch the data.

4.2 Table Scan Operator
Scan design preliminaries. We carefully integrate AnyBlob into
our RDBMS Umbra, which compiles SQL to machine-code and
supports e�cient memory and bu�er management [38, 48, 63].
Umbra uses worker threads to parallelize operators, such as table
scans, and schedules as many worker threads as there are hardware
threads available on the instance. If there is only one active query,
all workers are used to process that speci�c query. Umbra’s tasks
consist of morsels which describe a small chunk of data of the
task [53]. Worker threads are assigned to tasks and process morsels
until the task is �nished or the thread is assigned to a di�erent task.
Morsel picking. After Umbra initializes the table scan, the worker
threads start calling the pickMorselmethod. This function assigns
chunks of the task’s data to worker threads. This is repeated after
each morsel completion as long as the thread continues to work
on this table scan task. The only di�erence in our approach is that
our workers do not only need to process data but also prepare new
blocks or retrieve blocks from storage servers. Our object scheduler,
which we explain in Section 4.3, decides the job of a worker thread
based on past processing and retrieval statistics. Note that similar
to our pickMorsel, every task-based system has a method that
determines the next task of a worker thread.
Worker jobs. If a thread is assigned to process data, a morsel is
picked from the currently active block in pickMorsel. In contrast
to the processing job, the other jobs (preparation and retrieval) do
not pick a morsel for scanning. Instead, these jobs start routines
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Algorithm 1: Scheduler: Adaptivity Computation
1 retrieveSpeed = statistics[epoch].retrievedBytes / statistics[epoch].elapsed
2 processSpeed = (workerThreads - currentRetriever) *

statistics[epoch].processedBytes / statistics[epoch].processedTime
3 ratio = processSpeed / retrieveSpeed
4 requiredBandwidth = min(bandwidth, bandwidth * ratio)
5 requiredRetrieverThreads = min(maxRetrievers * ratio, maxRetrievers)

that are required to prepare or retrieve blocks. Regardless of the
job, all workers return to pickMorsel to get a new job assigned
after �nishing their current work.
Scan example overview. Figure 14 shows the full table scan oper-
ation with multiple (8) active threads working on di�erent jobs. In
the example table scan, 4 threads are dedicated to processing data,
3 for data retrieval, and 1 for preparing new blocks.
Processing job. After receiving a morsel for processing, the thread
scans and �lters the data according to the semantics of the table scan.
When all morsels of an active block (global or thread-local with
stealing) are taken, the thread picks the morsel from a new, already
retrieved block. In the example, each block is divided into 4 non-
overlapping morsels. Each thread works on its unique morsel range.
Preparation job. With the already retrieved table metadata,
threads prepare new blocks and register unknown blocks in the ob-
ject manager. If the data of all columns currently resides in physical
memory, the preparing thread marks the block as ready. Otherwise,
the preparing thread gets free space from the bu�er manager for
each un�xed column. With the block metadata (column type, o�set,
and size), HTTP messages for fetching columns from cloud storage
are created. After that, the block is queued for retrieval, where the
data is downloaded.
Retrieval job. In the example, three threads are scheduled to act as
AnyBlob retrieval threads. After �nishing the download of a block’s
column chunk, a callback is invoked and marks this column as
ready. Only if all columns have been retrieved, we mark the block as
ready. Note that di�erent retrieval threads may download column
chunks from the same block concurrently. The worker �nishes
when AnyBlob’s request queue gets empty. Because threads always
try to keep the queue at its maximum request length, unnecessary
retrieval threads will eventually encounter an empty queue and stop
downloading. These threads can then be reused to work on di�erent
jobs, such as processing or preparing new blocks. As long as enough
requests are in the queue, the threads constantly retrieve data.

4.3 Object Scheduler
Balance of retrieval and processing performance. The main
goal of the object scheduler is to strike a balance between pro-
cessing and retrieval performance. It assigns di�erent jobs to the
available worker threads to achieve this balance. If the retrieval
performance is lower than the scan performance, it increases the
amount of retrieval and preparation threads. On the other hand, re-
ducing the number of retrieval threads results in higher processing
throughput. Note that the retrieval performance is limited by the
network bandwidth, which the object scheduler considers.
Processing and retrieval estimations. The decision process re-
quires performance statistics during retrieval and processing. Each
processing thread tracks the execution time and the amount of

data processed. The aggregated data allow us to compute the mean
processing throughput per thread. For the network throughput, we
aggregate the overall retrieved bytes during our current time epoch.
Balancing retrieval threads and requests. Sections 2.8 and 3.4
analyze how many concurrent requests are needed to achieve our
throughput goal and the corresponding number of AnyBlob retriev-
ers. We track the number of threads used for retrieval and limit
it according to the instance bandwidth speci�cation. By counting
the number of outstanding requests (e.g., column chunks), we com-
pute an upper bound on the outstanding network bandwidth. An
outstanding request is a prepared HTTP request currently down-
loaded or awaiting retrieval. Because the number of threads and
the outstanding requests limit the network bandwidth, our object
scheduler always requires that the outstanding bandwidth is at
least as high as the maximum bandwidth possible according to the
current number of retrieval threads. Hence, it schedules enough
preparation jobs to match the number of retrieval threads.
Performance adaptivity. The scheduler computes the global ra-
tio between processing and retrieval to balance the retrieval and
processing performance. This ratio is used to adapt the number of
retrieval threads and the outstanding bandwidth. If processing is
slower, fewer blocks are prepared, and fewer retrieval threads are
scheduled. Some of the running retrieval threads will stop due to
fewer outstanding requests. These threads are then scheduled as
processing workers, increasing the global processing performance.
Algorithm 1 shows these adaptivity computations.
Overpreparation. Because it is undesirable to stall retrieval
threads due to unprepared columns, overpreparation is encouraged.
Our scheduler ensures that up to 2× of the required bandwidth is
outstanding and schedules preparation jobs accordingly.
Fast statistics aggregation. Lock-free atomic values for statistics
and global counters provide fast object scheduler decisions. For
every new scan request, we update the epoch to store representative
statistics of the current workload.

4.4 Relation & Storage Format
Columnar format. To leverage the cost-throughput optimal down-
load sizes, we require a column-major format that is chunked
into di�erent blocks. The database format is adapted from data
blocks [51]. For each column chunk, we store min and max values
in the metadata, enabling us to prune unnecessary blocks early.
Our blocks use low-overhead byte-level encodings, e.g., frame-of-
reference and dictionaries, to reduce storage requirements.
Tuple count in blocks. For cost-e�ective downloading, each col-
umn chunk of a block should have a desired size of 16 MiB. As query
processing usually works on a block granularity, all columns within
one block need to have the same number of tuples. However, this
results in imperfect column chunk sizes due to di�erent datatype
sizes and our byte-level encoding scheme. The range per tuple in an
encoded column is between 1 and 16 bytes, excluding the variable-
sized columns. Because of this wide byte spread, we need to balance
the sizes of the individual column chunks by optimizing the tuple
count. During block construction, we adaptively compute mean
tuple counts such that no encoded column falls below ∼2 MiB to
limit retrieval cost. Some �xed-sized and variable-sized columns
may exceed 16 MiB, which is undesirable for retrieval. To avoid
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large di�erences in download latency between columns, Umbra
splits larger column chunks into multiple smaller range requests.
Zero user-space copies. Our implementation is tightly coupled
with the bu�er manager to reduce copies of data. The blocks of data
are aligned to the page sizes of the bu�er manager, but we reserve
space for the HTTP header and the chunk size of the recv system
call. By using the result data o�set, we avoid user-space data copies.
Transparent paging. We extend the bu�er manager with anony-
mous pages not backed by �les to take advantage of the paging
and in-memory bu�er management features. If a new retrieval on
the same page is necessary, we check if the page is still available. If
not, we download the data again. With this uni�ed and transparent
bu�er manager, we avoid retrieval and bu�er space trade-o�s.
Structure of metadata. Figure 15 shows the object structure in
the cloud object storage. Within the database pre�x, we store the
schema information that contains all the necessary information
to initialize the database. Each table has its own subpre�x, which
contains a list of headers, headers, and data blocks. Because header
objects are also cost-throughput optimized, we store fewer header
objects than blocks, as each header object contains multiple block
headers. The data is organized for append-only storage, which
mimics most analytical engines. Because objects can be replaced
atomically in cloud storage, updating the list of headers creates con-
sistent data snapshots. Versioning the metadata is common in cloud
DBMSs to provide consistent views of the data. Apache Iceberg [17]
and Data Lake [18] use an analogous technique. Iceberg’s manifest
�les are similar to our list of headers and header objects [43].
Scan optimizations. Our implementation checks a header’s min/-
max values to avoid unnecessary downloads. A block is only sched-
uled for retrieval if all table scan restrictions match the min/max
values within the block metadata. Before scanning the encoded data,
the processing thread has to decode the data. We repeatably �ll a
small chunk with decoded data and process it. Umbra can either
decode the data entirely or only decode tuples that satisfy the re-
strictions. Both approaches leverage vectorized SIMD instructions.

4.5 Encryption & Compression
Size reduction with strong compression. Although the band-
width to external storage is high, modern engines might still wait
on data arrival. With the encoding schemes presented in Section 4.4,
the size of the columns is already reduced. Additional stronger com-
pression allows for reducing them further. We use bit-packing for
integer-encoded columns and apply LZ4 on the remaining ones.
Security due to encryption-at-rest. As already described in Sec-
tion 2.6, encryption-at-rest does not only secure the tra�c in transit
but also stores the data inaccessible to third-parties. Before upload-
ing a column, we use AnyBlob to encrypt the individual columns of
a block. Although encryption with AES has a slight performance
penalty, most real-world users prefer the gained security bene�ts.

5 EXPERIMENTAL EVALUATION
Setup.We extended our high-performance database system Umbra
to support e�cient analytics on disaggregated cloud object stores.
All experiments are conducted at AWS in region eu-central-1. Unless
otherwise noted, we use a single c5n.18xlarge (72 vCPUs / 36 cores,
192 GiB main memory, 100 Gbit/s network) instance with Ubuntu.

schema lineitem
H #1HList HList… … H #1H #m

orders

data_1 data_2 data_n

Figure 15: Object structure overview on S3 for TPC-H.

5.1 Data Retrieval Performance
Comparison with in-memory cached data. In order to analyze
the retrieval capabilities of Umbra, we perform self-tests against a
fully in-memory version of Umbra on the popular TPC-H bench-
mark. Although storing only the current query data is su�cient,
we are restricted to scale factor 500 to �t all query data into the
memory of our in-memory version. Table 2 shows the performance
of the remote-only (no caching of bu�er pages) and the in-memory
version of our database, the end-to-end bandwidth, and the cost of
the remote-only version. As mentioned, our remote-only version
ignores bu�ered pages and retrieves all required data from remote
storage. The bandwidth is computed by a sum of the retrieved data
divided by the total query runtime, which serves as a lower bound.
Processing at instance bandwidth. Queries can be separated
into retrieval-heavy and computation-heavy ones. The bandwidth
is a good indicator for categorizing the queries. For example,
Queries 1, 6, and 19 are the strongest representatives of the retrieval-
heavy group. Umbra achieves an end-to-end bandwidth of up to
78 Gbit/s which is close to the limit. However, the factor between
the in-memory and the remote execution time is large because
Umbra could process more tuples than the network can provide.
No overhead for computationally-intensive queries. On the
other hand, we observe only minor di�erences between the in-
memory and remote-only versions for computationally intensive
queries. For example, Queries 9 and 18 have a factor of ≤ 1.3×.
Because the DBMS is at its processing limit due to intensive joins
and aggregations, fetching of blocks is not very noticeable.
E�ective scheduling. This shows the e�ectiveness of our sched-
uling algorithm. If the query is retrieval intensive, we saturate
network bandwidth while continuing to process data. On the other
hand, if Umbra is limited by computation, our scheduler does not
waste CPU resources on idle downloading processes.
Spot instances. In the remote Umbra scenario, spot instances can
be leveraged without any performance cli�s. However, additional
safeguards need to be in place due to early instance termination.
Queries a�ected by termination might require restarts, and commit
persistence must be guaranteed.

5.2 Retrieval Manager Study
Di�erent retrieval managers on chokepoint queries. To
demonstrate the properties of our design and validate our Any-
Blob results, we test di�erent retrieval options within Umbra. We
test our DBMS on EBS (gp3, no page cache) and on cloud object
storage (no object cache). For retrieving data from S3, we imple-
mented three di�erent strategies. First, we use the worker threads to
download their currently required object from remote storage with
the AWS S3 library. The second strategy uses our asynchronous
retrieval integration design, shown in Section 4, and combines it
asynchronously with the AWS library. The last con�guration lever-
ages our integration andAnyBlob (Sections 3 and 4). To demonstrate
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Table 2: In-memory and remote-only Umbra comparison demonstrates small cloud retrieval overhead (SF 500, c5n.18xlarge).

Query GM Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

In-Memory [s] 2.03 1.14 0.38 2.93 2.08 3.35 0.52 2.73 3.38 10.61 4.27 0.25 1.99 9.50 1.35 0.99 1.81 1.36 18.91 0.74 1.45 6.04 1.75
Remote [s] 4.94 3.52 1.97 5.87 4.18 5.77 2.47 6.41 6.86 13.34 7.68 1.14 4.74 12.47 4.15 3.97 2.42 4.63 22.20 3.82 5.06 12.24 2.54
Factor 2.42 3.08 5.16 2.01 2.01 1.72 4.78 2.35 2.03 1.26 1.80 4.58 2.39 1.31 3.07 4.01 1.34 3.41 1.17 5.15 3.50 2.03 1.45
Gbit/s 49.80 75.00 46.00 55.76 55.95 65.20 77.73 64.43 69.40 40.67 52.42 40.73 62.01 30.86 64.63 67.35 14.13 73.65 15.41 76.87 66.34 65.35 23.20
Cost S3 [¢] 0.15 0.29 0.04 0.21 0.15 0.20 0.17 0.23 0.24 0.31 0.27 0.02 0.23 0.28 0.17 0.17 0.02 0.21 0.22 0.25 0.21 0.43 0.03
Cost EC2 [¢] 0.53 0.38 0.21 0.63 0.45 0.62 0.27 0.69 0.74 1.44 0.83 0.12 0.51 1.34 0.45 0.43 0.26 0.50 2.39 0.41 0.55 1.32 0.27
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Figure 16: Internal comparison of Umbra on EBS, and on S3,
+ ASync (Sec. 4), + AnyBlob (Sec. 3) (SF 1000, 2 instance types).

our cloud storage performance, all remaining experiments force
Umbra to ignore columns already available in the bu�er manager.
Umbra always fetches these columns from remote storage.
Higher throughput while reducing CPU usage. In Figure 16,
we test all TPC-H queries on two di�erent machine types, both sup-
porting 100 Gbit/s networking. EBS has the worst throughput due
to the bandwidth limit of 1 GB/s. Asynchronous retrieval of more
requests than cores is crucial for performance. By simply swapping
the retrieval library from the asynchronous AWS SDK to AnyBlob,
Umbra achieves up to a factor of 1.2× better geometric mean per-
formance and an improvement of up to 40% on computationally
expensive queries. Additionally, AnyBlob reduces the mean CPU
usage by up to 25%. Recent trends indicate that the networking
bandwidth increases faster than the number of CPU cores, making
the resource usage of networking essential [5].
Retrieval requires signi�cant CPU resources. Figure 17 breaks
the query resource CPU utilization down into �ne-grained tasks,
such as network I/O, memory and bu�er management, and process-
ing (similar to [66]). We used perf to trace the resource utilization
of di�erent functions and aggregate the results. Umbra achieves an
average CPU utilization of ∼75% with asynchronous networking.
Networking uses a large share of CPU time that accounts for up to
25% of the total utilization, signi�cantly reduced by AnyBlob.

5.3 Scaling Properties
Thread scaling on chokepoint queries. Since our approach is
highly elastic, it is very interesting to see how Umbra scales on a
varying number of cores and di�erent instances. Figure 18 shows
two chokepoint queries, which we already identi�ed in Section 5.1.
The results are measured on the same instance, but we arti�cially
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Figure 17: CPU usage traces for di�erent networking imple-
mentations collected with Linux perf (SF 1000, c5n.18xlarge).

reduce the amount of parallelism within our DBMS (number of
worker threads). We contrast to the aforementioned in-memory
version of our system. For retrieval-heavy queries (e.g., Query 1),
we can see a plateau if enough cores are available to utilize the
network completely. For the in-memory version, we measure a
linear increase in performance until the hyper-threading boundary
is reached. The performance of the computation-heavy queries
(Query 9) increases as we add more cores. The remote-only Umbra
version has almost the same throughput as the in-memory version.
Instance scaling. To demonstrate our scalability on di�erent in-
stances, we use smaller versions of the c5n.18xlarge. The c5n.9xlarge
has a maximum bandwidth of 50 Gbit/s and 36 vCPUs; the
c5n.4xlarge has 16 vCPUs and 25 Gbit/s bandwidth. The additional
resources of larger instances improve the query runtime. Because
our approach retains performance without warm caches, we can
switch to larger instances as the workload increases.

5.4 End-To-End Study with Compression & AES
Workload & competitors. In this experiment, we compare the
end-to-end performance on the TPC-H benchmark. To mimic a
realistic OLAP scenario analyzing large amounts of data, we test
scale factors (SF) of 100 (∼100 GiB) and 1,000 (∼1 TiB of data). Since
we optimize the retrieval properties, Umbra does not cache any
data to showcase our retrieval integration. We compare against
Spark on a single c5n.18xlarge instance and a large warehouse of
Snow�ake. In 2019, Snow�ake used c5d.2xlarge instances for xsmall
warehouses, which was reported by a Snow�ake error log [70].
Assuming this instance type for xsmall, a large warehouse would
use an instance or cluster similar to our instance but with local SSDs
(e.g., c5d.18xlarge or 8 × c5d.2xlarge). For Snow�ake, we measure
the throughput with warm cache (multiple TPC-H runs) and on
another large con�guration that is shut down after each query
execution to enforce remote retrieval.
Fast processing from cloud storage. Figure 20 shows the per-
formance results of di�erent systems. As discussed in Section 4.5,
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Figure 19: Scalability on dif-
ferent instances.

SF 100 SF 1000

Um
bra

Um
bra

+A
ES

Um
bra

+Co
mp

.

Um
bra

+Co
mp

. +A
ES

Sno
w�

ake
(Ca

che
d)

Sno
w�

ake
(Re

mo
te)

Spa
rk

Um
bra

Um
bra

+A
ES

Um
bra

+Co
mp

.

Um
bra

+Co
mp

. +A
ES

Sno
w�

ake
(Ca

che
d)

Sno
w�

ake
(Re

mo
te)

Spa
rk

0

5

10

15

20

>=25

0

25

50

75

>=100

Q
ue
rie

s/
M
in

Figure 20: End-to-end system comparison on SF 100 and 1000.

Umbra is able to encrypt data automatically and implements strong
compression. Compression improves performance, but encryption
has a slight overhead. In a real-world scenario, we recommend using
both settings for higher security without performance degradation.
Although Umbra always retrieves the data from cloud storage, the
performance is similar to Snow�ake, which uses data caching (e.g.,
local SSDs). As mentioned earlier, the actual hardware con�gura-
tion of Snow�ake is unknown. For example, the runtime of Query 6
suggests that the instance has higher disk bandwidth than both
mentioned instance settings. Clearly, these end-to-end results are
in�uenced by the database, its execution model, and the hardware.

6 RELATEDWORK
Cloud DBMS.With the dominance of the cloud for scalable solu-
tions, many software-as-a-service database management systems
emerged. Often specialized systems for either OLTP [16, 29, 30, 81]
or OLAP [2, 25, 33, 58, 59, 67, 79, 87] were developed to copewith the
new challenges in the cloud era [56]. Redshift [19] leverages Aqua, a
computational caching layer, una�ected by resizing nodes [6]. Until
recently, caching was unavoidable even for analytics dominated
by the bandwidth. However, the gap between network and NVMe
bandwidth is closing, making cloud storage more attractive. AWS
Athena, based on Presto [73], works directly on remote data. An
experimental study contrasts the architecture of these systems [77].
Processing in the cloud. Brantner et al. [27] discuss challenges
and opportunities of S3 for OLTP workloads. In 2010, an experi-
mental study provided insights into the computation power of EC2
instances; in particular, it studies the CPU resources, memory, and

disk operations [72]. Our experimental study on cloud storage pro-
vides an in-depth analysis that provides all details for fast analytics
on cloud storage. Leis and Kuschewski present a model for cost-
optimal instance selection [54]. Although systems such as Hive and
Spark can be self-hosted [78, 86], managed Hadoop is common [71].
Spot instances. Because spot instances come with huge discounts,
mitigating the termination risk and hopping between instances was
researched [74, 76]. Our approach is a perfect �t for spot hopping
since caching is not needed for good performance. Although our ex-
periments run faster than the termination delay of AWS (2 min) [12],
a migration to another instance can retain query state [84].
Serverless computing. Serverless functions are another short-
term service, which allow users to deploy resources only for the
duration of a request. Since a serverless function has little memory,
compute resources, and a time limit [42], many parallel function
invocations are required to execute a single query. Starling [69] and
Lambada [62] propose to run analytics on serverless functions. Al-
though Lambada and Starling provide a small study on S3 in server-
less environments, the characteristics are very di�erent as these
functions only have limited threads and networking (300 MiB/s),
which does not require a careful retrieval design such as AnyBlob.
Cloud storage for DBMS. Cloud object stores attract attention
as data warehouses due to their low costs. Two prominent storage
solutions are Apache Iceberg and Data Lake [17, 18]. Both systems
use metadata stored on the cloud object stores to provide consistent
snapshots. As our storage structure is similar, our fast processing on
remote data can be adapted to these storage backends. Ephemeral
storage systems, such as Pocket [49], and caching for cloud stor-
age [37, 46, 85, 89] sparked a wide variety of research. Caching
solutions extend from using semantic caching on a local node [37]
to leveraging spot instances as caching and o�oading layer [89].
Memory disaggregation. Similar to disaggregating storage, future
data centers may separate CPU from memory to improve resource
�exibility. Most research �nds that disaggregated memory is or-
thogonal to the current storage-separated design [50, 83, 90, 91].
Networking and kernel APIs. Following recent trends, future
data centers will be equipped with fast Ethernet connections
reaching Tbit/s [28]. OS and kernel research presents approaches
to integrate these high-bandwidth network devices with low la-
tency [28, 88]. RDMA is already explored in DBMS for fast networks
with low latency [24, 47, 57, 92]. A kernel storage API study found
io_uring, used in AnyBlob, to be promising [35]. Especially for fast
NVMe SSDs, it is already used widespread [35, 41, 52, 55, 68].

7 CONCLUSION
This paper discusses the e�cient and cost-e�ective usage of cloud
object storage for analytics. Our �rst contribution is a detailed
analysis on the characteristics of cloud object stores. With these
insights, we developed AnyBlob, a modern object storage down-
load manager based on io_uring. AnyBlob requires fewer CPU
resources to achieve the same or higher throughput compared to
libraries provided by cloud vendors. Finally, we demonstrated a
blueprint to utilize e�cient analytics on disaggregated object stores
in DBMSs. Our results show that even with disabled caching, Umbra
with AnyBlob achieves performance similar to large con�gurations
of state-of-the-art cloud database systems that cache data locally.
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PAPER P2
Crystal: A Unified Cache Storage System

for Analytical Databases

Synopsis. Cloud database systems employ a tiered or disaggregated storage
model, with the compute tier accessing data stored in scalable remote cloud
storage, such as Amazon S3 and Azure Blobs. Many popular big data systems,
including Apache Spark and Greenplum, support querying cloud storage, and
cloud vendors offer specialized services to cater to this growing demand. How-
ever, the high latency and limited bandwidth to remote storage led to a renewed
interest in caching technologies for analytics. These caching solutions store hot
data locally in fast storage, such as SSDs. Current caching solutions work at
the file or block level and employ LRU-based eviction policies. Because a single
tuple of interest requires the caching of the entire block, these approaches can
lead to poor storage space utilization if the data is not accessed according to the
block-level partitions.

To improve cache utilization, this paper introduces a smart storage middleware,
calledCrystal. Crystal is decoupled from theDBMS and sits between the database
system and cloud object storage, serving as a cache management system (CMS)
for storage. Crystal runs as two components: the stand-alone Crystal CMS and
the client connectors that are lightweight DBMS-specific adapters. The CMS
manages two local caches to provide both adaptive short-term and optimized
long-term caching of data. The small requested region (RR) cache is based on a
traditional cache to react quickly to workload spikes, and the large oracle region
(OR) cache uses an optimization algorithm for long-term knowledge.

The OR cache employs semantic caching by serving and storing single-table
hyper-rectangles, called regions. A knapsack algorithm optimizes the cached
regions according to the observed predicate history and considers overlap be-
tween the hyper-rectangles. Our approximative merging algorithm helps to
generalize to the region of interest without overfitting. Results with Apache
Spark and Greenplum show that Crystal has superior cache utilization, quick
adaptability, and significantly enhances query performance.
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ABSTRACT
Cloud analytical databases employ a disaggregated storage model,
where the elastic compute layer accesses data persisted on remote
cloud storage in block-oriented columnar formats. Given the high
latency and low bandwidth to remote storage and the limited size of
fast local storage, caching data at the compute node is important and
has resulted in a renewed interest in caching for analytics. Today,
each DBMS builds its own caching solution, usually based on file-
or block-level LRU. In this paper, we advocate a new architecture of
a smart cache storage system called Crystal, that is co-located with
compute. Crystal’s clients are DBMS-specific “data sources” with
push-down predicates. Similar in spirit to a DBMS, Crystal incorpo-
rates query processing and optimization components focusing on
efficient caching and serving of single-table hyper-rectangles called
regions. Results show that Crystal, with a small DBMS-specific
data source connector, can significantly improve query latencies on
unmodified Spark and Greenplum while also saving on bandwidth
from remote storage.
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1 INTRODUCTION
We are witnessing a paradigm shift of analytical database systems
to the cloud, driven by its flexibility and pay-as-you-go capabilities.
Such databases employ a tiered or disaggregated storage model,
where the elastic compute tier accesses data persisted on inde-
pendently scalable remote cloud storage, such as Amazon S3 [3]
and Azure Blobs [36]. Today, nearly all big data systems includ-
ing Apache Spark, Greenplum, Apache Hive, and Apache Presto
support querying cloud storage directly. Cloud vendors also offer
cloud services such as AWS Athena, Azure Synapse, and Google
BigQuery to meet this increasingly growing demand.

Given the relatively high latency and low bandwidth to remote
storage, caching data at the compute node has become important. As
a result, we are witnessing a renewed spike in caching technology
for analytics, where the hot data is kept at the compute layer in
fast local storage (e.g., SSD) of limited size. Examples include the
Alluxio [1] analytics accelerator, the Databricks Delta Cache [9, 15],
and the Snowflake cache layer [13].
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1.1 Challenges
These caching solutions usually operate as a black-box at the file or
block level for simplicity, employing standard cache replacement
policies such as LRU to manage the cache. In spite of their sim-
plicity, these solutions have not solved several architectural and
performance challenges for cloud databases:

• Every DBMS today implements its own caching layer tailored to
its specific requirements, resulting in a lot of work duplication
across systems, reinventing choices such as what to cache, where
to cache, when to cache, and how to cache.

• Databases increasingly support analytics over raw data formats
such as CSV and JSON, and row-oriented binary formats such as
Apache Avro [6] – all very popular in the data lake [16]. Com-
pared to binary columnar formats such as Apache Parquet [7],
data processing on these formats is slower and results in in-
creased costs, even when data has been cached at compute nodes.
At the same time, it is expensive (and often less desirable to users)
to convert all data into a binary columnar format on storage, par-
ticularly because only a small and changing fraction of data is
actively used and accessed by queries.

• Cache utilization (i.e., value per cached byte) is low in existing
solutions, as even one needed record or value in a page makes it
necessary to retrieve and cache the entire page, wasting valuable
space in the cache. This is true even for optimized columnar for-
mats, which often build per-block zone maps [21, 40, 48] (min and
max value per column in a block) to avoid accessing irrelevant
blocks. While zone maps are cheap to maintain and potentially
useful, their effectiveness at block skipping is limited by the fact
that even one interesting record in a block makes it necessary to
retrieve it from storage and scan for completeness.

• Recently, cloud storage systems are offering predicate push-down
as a native capability, for example, AWS S3 Select [4] and Azure
Query Acceleration [35]. Push-down allows us to send predicates
to remote storage and avoid retrieving all blocks, but exacerbates
the problem of how to leverage it for effective local caching.

1.2 Opportunities
In an effort to alleviate some of these challenges, several design
trends are now becoming commonplace. Database systems such as
Spark are adopting the model of a plug-in “data source” that serves
as an input adapter to support data in different formats. These data
sources allow the push-down of table-level predicates to the data
source. While push-down was developed with the intention of data
pruning at the source, we find that it opens up a new opportunity
to leverage semantics and cache data in more efficient ways.

Moreover, there is rapid convergence in the open-source com-
munity on Apache Parquet as a columnar data format, along with
highly efficient techniques to apply predicates on them using LLVM
with Apache Arrow [5, 8]. This opens up the possibility of system
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designs that perform a limited form of data processing and trans-
formation outside the core DBMS easily and without sacrificing
performance. Further, because most DBMSs support Parquet, it
gives us an opportunity to cache data in a DBMS-agnostic way.

1.3 Introducing Crystal
We propose a new “smart” storage middleware called Crystal, that is
decoupled from the database and sits between the DB and raw stor-
age. Crystal may be viewed as a mini-DBMS, or cache management
system (CMS), for storage. It runs as two sub-components:
• The Crystal CMS runs on the compute node, accessible to local
“clients” and able to interact with remote storage.

• Crystal’s clients, called connectors, are DB-specific adapters that
themselves implement the data source API with push-down pred-
icates, similar to today’s CSV and Parquet data sources.
Crystal manages fast local storage (SSD) as a cache and talks

to remote storage to retrieve data as needed. Unlike traditional
file caches, it determines which regions (parts of each table) to
transform and cache locally in columnar form. Data may be cached
in more than one region if necessary. Crystal receives “queries”
from clients, as requests with push-down predicates. It responds
with local (in cache) or remote (on storage) paths for files that cover
the request. The connectors pass data to the unmodified DBMS for
post-processing as usual. Benefits of this architecture include:
• It can be shared across multiple unmodified databases, requiring

only a lightweight DBMS-specific client connector component.
• It can download and transform data into automatically chosen

semantic regions in the cache, in a DBMS-agnostic columnar
format, reusing new tools such as Parquet and Arrow to do so.

• It can independently optimize what data to transform, filter, and
cache locally, allowing multiple views of the same data, and
efficiently match and serve clients at query time.
These architectural benefits come with technical challenges (Sec-

tion 2 provides a system overview) that we address in this paper:
• (Sections 2 & 3) Defining an API and protocol to communicate re-

gion requests and data between Crystal and its connector clients.
• (Section 3) Efficiently downloading and transforming data to

regions in the local cache, managing cache contents, and storing
meta-data for matching regions with push-down predicates over
diverse data types, without impacting query latency.

• (Section 4) Optimizing the contents of the cache while: (1) balanc-
ing short-term needs (e.g., a burst of new queries) vs. long-term
query history; (2) handling queries that are not identical but
often overlap; (3) exploiting the benefit of duplicating frequently
accessed subsets of data in more than one region; and (4) taking
into account the overhead incurred by creating many small files
in block columnar format, instead of fewer larger ones; and (5)
managing statistics necessary for the above tasks.

Using Crystal, we get lower query latencies and more efficient
use of the bandwidth between compute and storage, as com-
pared to state-of-the-art solutions. We validate this by implement-
ing Crystal with Spark and Greenplum connectors (Section 5). Our
evaluation using common workload patterns shows Crystal’s abil-
ity to outperform block-based caching schemes with lower cache
sizes, improve query latencies by up to 20x for individual queries
(and up to 8x on average), adapt to workload changes, and save
bandwidth from remote storage by up to 41% on average (Section 6).

We note that Crystal’s cached regions may be considered as
materialized views [20, 27, 44, 45] or semantic caches [14, 29, 30, 41–
43, 47], thereby inheriting from this rich line of work. Our caches
have the additional restriction that they are strictly the result of
single-table predicates (due to the nature of the data source API).
Specifically, Crystal’s regions are disjunctions of conjunctions of
predicates over each individual table. This restriction is exploited
in our solutions to the technical challenges, allowing us to match
better, generalize better, and search more efficiently for the best set
of cached regions. As data sources mature, we expect them to push
down cross-table predicates and aggregates in future, e.g., via data-
induced predicates [28]. Such developments will require a revisit
of our algorithms in future; for instance, our region definitions
will need to represent cross-table predicates. We focus on read-
only workloads in this paper; updates can be handled by view
invalidation (easy) or refresh (more challenging), and are left as
future work. Finally, we note that Crystal can naturally benefit from
remote storage supporting push-down predicates; a detailed study is
deferred until the technology matures to support columnar formats
natively (only CSV files are supported in the current generation).
We cover related work in Section 7 and conclude in Section 8.

2 SYSTEM OVERVIEW
Figure 1 shows where Crystal fits in today’s cloud analytics ecosys-
tem. Each compute node runs a DBMS instance; Crystal is co-
located on the compute node and serves these DBMS instances
via data source connectors. The aim is to serve as a caching layer
between big data systems and cloud storage, exploiting fast local
storage in compute nodes to reduce data accesses to remote storage.

2.1 Architecture
A key design goal is to make Crystal sufficiently generic so that
it can be plugged into an existing big data system with minimum
engineering effort. Therefore, Crystal is architected as two separate
components: a light DBMS-specific data source connector and the
Crystal CMS process. These are described next.
2.1.1 Data Source Connector. Modern big data systems (e.g., Spark,
Hive, and Presto) provide a data source API to support a variety of
data sources and formats. A data source receives push-down filter-
ing and column pruning requests from the DBMS through this API.
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Thus, the data source has the flexibility to leverage this additional
information to reduce the amount of data that needs to be sent back
to the DBMS, e.g., via block-level pruning in Parquet. In this paper,
we refer to such push-down information as a query or requested
region. A Crystal connector is integrated into the unmodified DBMS
through this data source API. It is treated as another data source
from the perspective of the DBMS, and as a client issuing queries
from the perspective of the Crystal CMS.

2.1.2 Crystal CMS. Figure 2 shows the Crystal CMS in detail. It
maintains two local caches – a small requested region (RR) cache
and a large oracle region (OR) cache – corresponding to short- and
long-term knowledge respectively. Both caches store data in an
efficient columnar open format such as Parquet. Crystal receives
“queries” from connectors via the Crystal API. A query consists of a
request for a file (remote path) with push-down predicates. Crystal
first checks with the Matcher to see if it can cover the query using
one or more cached regions. If yes (cache hit), it returns a set of file
paths from local storage. If not (cache miss), there are two options:
(1) It responds with the remote path so that the connector can

process it as usual. Crystal optionally requests the connector
to store the downloaded and filtered region in its RR cache.

(2) It downloads the data from remote, applies predicates, stores the
result in the RR cache, and returns this path to the connector.

Thus, the RR cache is populated eagerly by either Crystal or the
DBMS. Not every requested region is cached eagerly; instead an
LRU-2 based decision is taken per request.

More importantly, in the background, Crystal collects a historical
trace of queries and invokes a caching Oracle Plugin module
to compute the best content for the OR cache. The new content
is populated using a combination of remote storage and existing
content in the RR and OR caches. Section 3 covers region processing
in detail, while Section 4 covers cache optimization.

2.2 Generality of the Crystal Design
As mentioned above, Crystal is architected with a view to making
it easy to use with any cloud analytics system. Crystal offers three
extensibility points. First, users can replace the caching oracle with
a custom implementation that is tailored to their workload. Second,
the remote storage adapter may be replaced to work with any cloud
remote storage. Third, a custom connector may be implemented
for each DBMS that needs to use Crystal.

The connector interfaces with Crystal with a generic protocol
based simply on file paths. Cached regions are stored in an open
format (Parquet) rather than the internal format of a specific DBMS,
making it DBMS-agnostic. Further, a connector can feed the cached
region to the DBMS by simply invoking its built-in data source for
the open format (e.g., the built-in Parquet reader in Spark) to read
the region. Thus, the connector developer does not need to manu-
ally implement the conversion, making its implementation a fairly
straightforward process. In Section 5, we discuss our connectors
for Spark and Greenplum, which take less than 350 lines of code.

2.3 Revisiting the Caching Problem
Leveraging push-down predicates, Crystal caches different subsets
of data called regions. Regions can be considered as views on the
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Figure 3: Benefit of semantic vs. traditional file caching. The
DBMS schedules Q1, Q2, and Q3 more frequently. Only the
semantic cache can answer these without remote access.

table, and are a form of semantic caching [14, 29, 30, 42, 43, 47].
Compared to traditional file caching, the advantage of semantic
caching is two-fold. First, it usually returns a much tighter view
to the DBMS, and thus reduces the need to post-process the data,
saving I/O and CPU cost. Second, regions can be much smaller than
the original files, resulting in better cache space utilization and
higher hit ratios. For example, Figure 3 shows a case where regions
capture all views of all queries, whereas LRU-based file caching can
only keep less than half of these views.

Cached regions in Crystal may overlap. In data warehouses and
data lakes, it is common to see that a large number of queries
access a few tables or files, making overlapping queries the norm
rather than the exception at the storage layer. Therefore, Crystal
has to take overlap into account when deciding which cached data
should be evicted. To the best of our knowledge, previous work
on replacement policies for semantic caching does not consider
overlap of cached regions (see more details in Section 7).

With overlapping views, the replacement policy in Crystal be-
comes a very challenging optimization problem (details in Section 4).
Intuitively, when deciding if a view should be evicted from the cache,
all other views that are overlapping with this view should also be
taken into consideration. As a result, traditional replacement poli-
cies such as LRU that evaluate each view independently are not
suitable for Crystal, as we will show in the evaluation (Section 6).

Recall that we split the cache into two regions: requested region
(RR) and oracle region (RR). The OR cache models and solves the
above problem as an optimization problem, which aims to find
the nearly optimal set of overlapping regions that should be re-
tained in the cache. Admittedly, solving the optimization problem
is expensive and thus cannot be performed on a per-request basis.
Instead, the OR cache recomputes its contents periodically, and thus
mainly targets queries that have sufficient statistics in history. In
contrast, the RR cache is optimized for new queries, and can react
immediately to workload changes. Intuitively, the RR cache serves
as a “buffering” region to temporarily store the cached views for
recent queries, before the OR cache collects sufficient statistics to
make longer-term decisions. This approach is analogous to the C-
Store architecture [46], where a writable row store is used to absorb
newly updated data before it is moved to a highly optimized column
store in batches. Collectively, the two regions offer an efficient and
reactive solution for caching.

3 REGION PROCESSING
In this section, we focus on region matching and the creation of
cached regions. Before we explain the details of the process of
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creating regions and matching cached regions to requests, we first
show how to transform client requests into region requests.

3.1 API
Crystal acts as a storage layer of the DBMS. It runs outside the
DBMS and transfers information via a minimalistic socket connec-
tion and shared space in the filesystem (e.g., SSDs, ramdisk). During
a file request, the DBMS exchanges information about the file and
the required region with Crystal. Because access to remote files is
expensive, Crystal tries to satisfy the request with cached files.

The overall idea is that Crystal overwrites the accessed file path
such that the DBMS is pointed to a local file. For redirecting queries,
Crystal relies on query metadata such as the file path, push-down
predicates, and accessed fields. Crystal evaluates the request and re-
turns a cached local file or downloads the requested file. Afterward,
the location of the local file is sent to the DBMS which redirects
the scan to this local file. Crystal guarantees the completeness for
a given set of predicates and fields. Internally, Crystal matches the
query metadata with local cache metadata and returns a local file if
it satisfies the requirements.

We use a tree string representation for push-down predicates
in our API. Since predicates are conventionally stored as an AST
in DBMS, we traverse the AST to build the string representation.
Each individual item uses the syntax similar to operation(left, right).
We support binary operators, unary operators, and literals which
are the leaf nodes of the tree. The binary operation is either a
combination function of multiple predicates (such as and, or) or
an atomic predicate (such as gt, lt, eq, . . . ). Atomic predicates use
the same binary syntax form in which left represents the column
identifier and right the compare value. To include the negation of
sub-trees, our syntax allows operation(exp) with the operation not.

3.2 Transformation & Caching Granularity
Crystal receives the string of push-down predicates and transforms
it back to an internal AST. Because arguing on arbitrarily nested
logical expressions (with and and or) is hard, Crystal transforms the
AST to Disjunctive Normal Form (DNF). In the DNF, all conjunc-
tions are pushed down into the expression tree, and conjunctions
and disjunctions are no longer interleaved. In Crystal, regions are
identified by their disjunction of conjunctions of predicates. Regions
also contain their sources (i.e., the remote files) and the projection
of the schema. This allows us to easily evaluate equality, superset,
and intersection between regions which we show in Section 3.3.

The construction of the DNF follows two steps. First, all nega-
tions are pushed as far as possible into the tree which results in
Negation Normal Form (NNF). Besides using the De-Morgan rules
to push down negations, Crystal pushes the negations inside the
predicates. For example, not(lt(id, 1)) will be changed to gteq(id, 1).

After receiving the NNF, Crystal distributes conjunctions over
disjunctions. The distributive law pushes ors higher up in the tree
which results in the DNF. It transforms and(a, or(b, c)) to or(and(a,
b), and(a, c)). Although this algorithm could create 2𝑛 leaves in
theory, none of our experiments indicate issues with blow-up.

Because the tree is in DNF, the regions store the pushed-down
conjunctions as a list of column restrictions. These conjunctions of
restrictions can be seen as individual geometric hyper-rectangles.
Regions are fully described by the disjunction of these hyper-
rectangles. Figure 4 shows the process of creating the DNF and
extracting the individual hyper-rectangles. Although we use the
term hyper-rectangles, the restrictions can have different shapes.
Crystal supports restrictions, such as noteq, isNull, and isNotNull,
that are conceptually different from hyper-rectangles.

Crystal’s base granularity of items is on the level of regions,
thus all requests are represented by a disjunction of conjunctions.
However, individual conjunctions of different regions can be com-
bined to satisfy an incoming region request. Some previous work
on semantic caching (e.g., [14, 17]) considers only non-overlapping
hyper-rectangles. Non-overlapping regions can help reduce the
complexity of the decision-making process. Although this is desir-
able, non-overlapping regions impose additional constraints.

Splitting the requests into sets of non-overlapping regions is
expensive. In particular, the number of non-overlapping hyper-
rectangles grows combinatorial. To demonstrate this issue, we eval-
uated three random queries in the lineitem space which we artifi-
cially restrict to 8 dimensions [23]. If we use these three random
hyper-rectangles as input, 16 hyper-rectangles are needed to store
all data non-overlapping. This issue arises from the number of di-
mensions that allow for multiple intersections of hyper-rectangles.
Each intersection requires the split of the rectangle. In the worst
case, this grows combinatorial in the number of hyper-rectangles.

Because all extracted regions need statistics during the cache
optimization phase, the sampling of this increased number of re-
gions is not practical. Further, the runtime of the caching policies
is increased due to the larger input which leads to outdated caches.

Moreover, smaller regions require that more cached files are
returned to the client. Figure 5 shows that each additional region
incurs a linear overhead of roughly 50ms in Spark. The preliminary
experiment demonstrates that splitting is infeasible due to the com-
binatorial growth of non-overlapping regions. Therefore, Crystal
does not impose restrictions on the semantic regions themselves.
This raises an additional challenge during the optimization phase
of the oracle region cache, which we address in Section 4.5.

3.3 Region Matching
With the disjunction of conjunctions, Crystal determines the rela-
tion between different regions. Crystal detects equality, superset,
intersections, and partial supersets relations. Partial supersets con-
tain a non-empty number of conjunctions fully.

Crystal uses intersections and supersets of conjunctions to argue
about regions. Conjunctions contain restrictions that specify the
limits of a column. Every conjunction has exactly one restriction for
each predicated column. Restrictions are described by their column
identifier, their range (min, max), their potential equal value, their
set of non-equal values and whether isNull or isNotNull is set. If two
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restrictions 𝑝𝑥 and 𝑝𝑦 are on the same column, Crystal computes if
𝑝𝑥 completely satisfies 𝑝𝑦 or if 𝑝𝑥 has an intersection with 𝑝𝑦 . For
determining the superset, we first check if the null restrictions are
not contradicting. Second, we test whether the (min, max) interval
of 𝑝𝑥 is a superset of 𝑝𝑦 . Afterward, we check whether 𝑝𝑥 has
restricting non-equal values that discard the superset property and
if all additional equal values of 𝑝𝑦 are also included in 𝑝𝑥 .

For two conjunctions 𝑐𝑥 and 𝑐𝑦 , 𝑐𝑥 ⊃ 𝑐𝑦 if 𝑐𝑥 only contains
restrictions that are all less restrictive than the restrictions on the
same column of 𝑐𝑦 . Thus, 𝑐𝑥 must have an equal number or fewer
restrictions which are all satisfying the matched restrictions of 𝑐𝑦 .
Otherwise, 𝑐𝑥 ⊅ 𝑐𝑦 . 𝑐𝑥 can have fewer restrictions because the
absence of a restriction shows that the column is not predicated.

In the following, we show the algorithms to determine the rela-
tion between two regions 𝑟𝑥 and 𝑟𝑦 .
• 𝑟𝑥 ⊃ 𝑟𝑦 holds if all conjunctions of 𝑟𝑦 find a superset in 𝑟𝑥 .
• 𝑟𝑥 ∩ 𝑟𝑦 ≠ ∅ holds if at least one conjunction of 𝑟𝑥 finds an

intersecting conjunction of 𝑟𝑦 .
• ∃ conj ⊂ 𝑟𝑥 : conj ⊂ 𝑟𝑦 (partial superset) holds if at least one

conjunctions of 𝑟𝑦 finds a superset in 𝑟𝑥 .
• 𝑟𝑥 = 𝑟𝑦 : 𝑟𝑥 ⊃ 𝑟𝑦 ∧ 𝑟𝑦 ⊃ 𝑟𝑥

Figure 6 shows an example that matches a query that consists of
two hyper-rectangles to two of the stored regions.

3.4 Request Matching
During region requests, Crystal searches the caches to retrieve a
local superset. Figure 7 shows the process of matching the request.
First, the oracle region cache is scanned for matches. If the request
is not fully cached, Crystal tries to match it with the requested
region cache. If the query was not matched, the download manager
fetches the remote files (optionally from a file cache).

During the matching, a full superset is prioritized. Only if no full
superset is found, Crystal tries to satisfy the individual conjunctions.
The potential overlap of multiple regions and the overhead shown
in Section 3.2 are the reasons to prefer full supersets. If an overlap
is detected between 𝐴 and 𝐵, Crystal needs to create a reduced
temporary file. Otherwise, tuples are contained more than once
which would lead to incorrect results. For example, it could return
𝐴 and 𝐵 − 𝐴 to the client. The greedy algorithm, presented in
Algorithm 1 reduces the number of regions if multiple choices are
possible. We choose the region that satisfies most of the currently
unsatisfied conjunctions and continue until all have been satisfied.

We optimize the matching of regions by partitioning the cache
according to the remote file names and the projected schema. The
file names are represented as (bit-)set of the remote file catalog. This
set is sharded by the tables. Similarly, the schema can be represented
as a (bit-)set. The partitioning is done in multiple stages. After the

Algorithm 1: Greedy reduction of multiple matches
input :Region requestedRegion, List<Regions> partialMatches
output :List<Regions> regions
BitSet<requestedRegion.disjunctionCount> matches(0);
while true do

if matches.isAllBitsSet() then
return regions

bestRegion = {}; bestVal = 0
foreach p ∈ partialMatches do

curval = additionalMatches(p, matches)
if curVal > bestVal then

bestRegion = p; bestVal = curVal
if !bestRegion then return {}
partialMatches = partialMatches \ bestRegion
regions = regions ∪ buildTempFile(bestRegion, regions)
matches.setAll(requestedRegion.satisfiedConjunctions(bestRegion))

fast file name superset check, all resulting candidates are tested
for a superset of the schema. Only within this partition of superset
regions, we scan for a potential match. Although no performance
issues arise during region matching, multi-dimensional indexes
(e.g., R-trees) can be used to further accelerate lookups.

3.5 Creating Regions
The cached regions of Crystal are stored as Apache Parquet files.
Crystal leverages Apache Arrow for reading and writing snappy
encoded Parquet files. Internally, Parquet is transformed into Arrow
tables before Crystal creates the semantic regions.

Gandiva, which is a newly developed execution engine for Arrow,
uses LLVM compiled code to filter Arrow tables [8]. As this promises
superior performance in comparison to executing tuple-at-a-time
filters, Crystal translates its restrictions to Gandiva filters. When
Crystal builds new Parquet files to cache, the filters are compiled
to LLVM and executed on the in-memory Arrow data. Afterward,
the file is written to disk as snappy compressed Parquet file. If a file
is accessed the first time, Crystal creates a sample that is used to
predict region sizes and to speed up the client’s query planning.

3.6 Client Database Connector
Database systems are often able to access data from different for-
mats and storage layers. Many systems implement a connection
layer that is used as an interface between the DBMS and the dif-
ferent formats. For example, Spark uses such an abstraction layer -
known as data source.

Crystal is connected to the DBMS by implementing such a small
data source connector. As DBMSs can process Parquet files already,
we can easily adapt this connector for Crystal. Crystal interacts
with the DBMS via a socket connection and transfers files via shared
disk space or ramdisk. Since Crystal returns Parquet files, the DBMS
can already process them without any code modifications.
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The only additional implementation needed is the exchange of
control messages. These consist of only three different messages
and the responses of Crystal. One of the messages is optional and
is used to speed up query planning. The scan request message and
the message that indicates that a scan has finished are required by
all Crystal clients. The first message includes the path of the remote
file, the push-down predicates, and the required fields of the schema.
Crystal replies with a collection of files that can be used instead
of the original remote file. The finish message is required to delete
cached files safely that are no longer accessed by the client. The
optional message inquires a sample of the original data to prevent
storage accesses during query planning.

3.7 Cloud Connection
Crystal itself also has an interface similar to the data source. This
interface is used to communicate with various cloud connectors.
The interface implements simple file operations, such as listings of
directories and accesses to files. For blob storage, the later operation
basically downloads the file from remote storage to the local node.

Recently, cloud providers have been adding predicate push-down
capabilities to their storage APIs, e.g., S3 Select [4]. Clients can
push down filters to storage and receive the predicated subset. This
feature can incur additional monetary costs, as well as a per-request
latency. Crystal complements this feature naturally, as it is aware
of semantic regions and can use predicate push-down to populate
its cache efficiently. As Crystal can reuse cached results locally, it
can save on future push-down costs as well.

Crystal implements a download manager that fetches blobs from
remote and stores them into ramdisk. The client is pointed to this
location, and as soon as it finishes accessing it, the file is deleted
again. Multiple accesses can be shared by reference counting.

4 CACHE OPTIMIZATION
This section summarizes the architecture of our caches, followed
by more details on caching. Finally, we explain our algorithms that
explore and augment the overlapping search space.

4.1 Requested Region and Oracle Region Cache
Recall that Crystal relies on two region caches to capture short- and
long-term trends. The RR cache is an eager cache that stores the
result of recently processed regions. The long-term insights of the
query workload are captured by the OR cache. This cache leverages
the history of region requests to compute the ideal set of regions to
cache locally for best performance. Crystal allows users to plug-in
a custom oracle; we provide a default oracle based on a variant of
Knapsack (covered later). After the oracle determines a new set of
regions to cache, Crystal computes these regions in the background
and updates the OR cache. The creation in the background allows to
schedule more expensive algorithms (runtime) to gather meaningful
insights. This allows for computing (near-) optimal results and the
usage of machine learning in future work. The oracle runs in low
priority, consuming as little CPU as possible during high load.

An interesting opportunity emerges from the collaboration be-
tween the two caches. If the OR cache decided on a set of long-term
relevant regions, the requested region cache does not need to com-
pute any subset of the already cached long-term regions. On the

other hand, if the requested region cache has regions that are con-
sidered for long-term usage, the OR cache can take control over
these regions and simply move them to the new cache.

4.2 Metadata Management
A key component for predicting cached regions is the history of
requested regions. To recognize patterns, the previously accessed
regions are stored within Crystal. We use a ring-buffer to keep the
most recent history. Each buffer element represents a single historic
region request which has been computed by a collection of (remote)
data files. These files are associated with schema information, tuple
count, and size. The selectivity of the region is captured by result
statistics. The database can either provide result statistics, or Crystal
will compute them. Crystal leverages previously created samples to
generate result statistics. In conjunction with the associated schema
information, Crystal predicts the tuple count and the result size.

4.3 Oracle Region Cache
Long-term trends are detected by using the oracle region cache. An
oracle decides according to the seen history which regions need
to be created. The history is further used as a source of candidate
regions that are considered to be cached.

The quality of the cached items is evaluated with the recent
history of regions. Each cached region is associated with a benefit
value. This value is the summation of bytes that do not need to
be downloaded if the region is stored on the DBMS node. In other
words, how much network traffic is saved by processing the history
elements locally. Further, we need to consider the costs of storing
candidate regions. The costs of a region are simply given by the size
it requires to be materialized. The above caching problem can be
expressed as the knapsack problem: maximize

∑︁𝑛
𝑖=1 𝑏𝑖𝑥𝑖 subject to∑︁𝑛

𝑖=1𝑤𝑖𝑥𝑖 ≤𝑊 where 𝑥𝑖 ∈ {0, 1}. The saved bandwidth by caching
a region is denoted by 𝑏, the size of the materialized cache by𝑤 . If
the region is picked 𝑥 = 1, otherwise 𝑥 = 0. The goal is to maximize
the benefit while staying within the capacity𝑊 .

However, the current definition cannot capture potential overlap
in regions well. As the benefit value is static, history elements that
occur in multiple regions would be added more than once to the
overall value. Thus the maximization would result in a suboptimal
selection of regions. In Section 4.5, we show the adaptations of our
proposed algorithm to compensate for the overlapping issue.

4.4 Knapsack Algorithms
Dynamic programming (DP) can be used to solve the knapsack
optimally in pseudo-polynomial time. The most widespread algo-
rithm iterates over the maximum number of considered items and
the cache size to solve the knapsack optimal for each sub-problem
instance. Combining the optimally solved sub-problems results in
the optimal knapsack, but the algorithm lies in the complexity of
O(𝑛 ∗𝑊 ). Another possible algorithm iterates over the items and
benefit values, and lies in O(𝑛 ∗ 𝐵) (𝐵 denotes maximum benefit).

In our caching scenario, we face two challenges with the DP
approach. First, both𝑊 (bytes needed for storing the regions) and
𝐵 (bytes the cached element saves from being downloaded) are
large. Relaxing these values by rounding to mega-bytes or giga-
bytes reduces the complexity, however, the instances are not solved
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Algorithm 2: Overlap Greedy Knapsack
input :List<Region> history, List<Region> candidates, Int maxCacheSize
output :List<Region> cache
List<Region> cache = List<Region>(); Int currentCacheSize = 0
Map<Float, Region> benefitRatioMap = evaluate(candidates, history, cache)
foreach {benefit, region} ∈ benefitRatioMap do

if currentCacheSize + region.size > maxCacheSize then
return cache

foreach item ∈ cache do
if item ⊆ region then

cache = cache \ item
cache = cache ∪ region
benefitRatioMap = evaluate(candidates, history, cache)
currentCacheSize += region.size

return cache

optimally anymore. Second, the algorithm considers that each sub-
problem was solved optimally. To solve the overlapping issue, only
one region is allowed to take the benefit of a single history element.
An open question is to decide which sub-problem receives the
benefit of an item that can be processed with several regions.

Since many knapsack instances face a large capacity 𝑊 and
unbound benefit 𝐵, approximation algorithms were explored. In
particular, the algorithm that orders items according to the benefit-
cost ratio has guaranteed bounds and a low runtime complexity of
O(𝑛 ∗𝑙𝑜𝑔(𝑛)). The algorithm first calculates all benefit ratios 𝑣 = 𝑏

𝑤
and orders the items accordingly. In the next step, it greedily selects
the items as long as there is space in the knapsack. Thus, the items
with the highest cost to benefit ratio 𝑣 are contained in the knapsack.
This algorithm solves the relaxed problem of the fractional knapsack
optimal which loosens 𝑥 ∈ {0, 1} to 𝑥 ∈ [0, 1] [24].

4.5 Overlap-aware Greedy Algorithm
This greedy knapsack algorithm is used as the basis of our adap-
tations. In contrast to DP, this approach gives us an order of the
picked items which allows us to incorporate the benefit changes.

Algorithm 2 shows the adapted greedy knapsack algorithm. The
general idea is that we recompute the benefit ratio for each picked
item. For each iteration step, we reevaluate the benefit and size
of the current candidate set. The evaluation function sorts the
input according to this benefit ratio. Thus, regions that result in
higher returns in comparison to the caching size are picked earlier.
Note that we only consider regions that have a benefit ratio > 1
to reduce unnecessary computation for one-time requests. The
runtime complexity of the adapted algorithm is O(𝑛2 ∗ 𝑙𝑜𝑔(𝑛)).

The evaluation of the benefit ratio is adapted according to the
previously chosen regions. We define three geometric rules which
change the ratio of unpicked elements.
(1) if a candidate is a superset of a picked item, we reduce the

weight and the benefit by the values of the picked elements.
(2) if a candidate is a subset of an already picked item, we reduce

the benefit to 0 as it does not provide any additional value.
(3) if a candidate is intersected with an already picked item, we

reduce the benefit by the history elements that are covered
completely by both regions.
(1) A container region 𝑟𝑐 = {𝑟1, 𝑟2, . . . , 𝑟𝑛, 𝑟𝑥 } fully contains 𝑛

stand-alone regions and the remainder region 𝑟𝑥 . The cost of 𝑟𝑐 is
computed by𝑤𝑐 = 𝑤𝑥 +∑︁𝑛

𝑖=1𝑤𝑖 and the benefit 𝑏𝑐 = 𝑏𝑥 +∑︁𝑛
𝑖=1 𝑏𝑖 .

If a region 𝑟𝑘 is fully contained in another region 𝑟𝑐 , we reduce both

Algorithm 3: Approximative Merging Augmentation
input :List<Region> history, Int maxRegions, Int maxSize, Int maxCacheSize
output :List<Region> resultRegions
// RegionStruct consists of Region, Quality (0), and Size Savings (0)
List< RegionStruct<Region, Int, Int> > enlargedRegions

foreach 𝑟 ∈ history do
foreach 𝑟 ′ ∈ history \ {𝑟0 , . . . , 𝑟 } do

𝑟 .enlargeAll(𝑟 ′, enlargedRegions)
foreach 𝑟 ∈ enlargedRegions do

foreach 𝑟 ′ ∈ history do
if 𝑟 .region.satisfies(𝑟 ′) then

𝑟 .quality += 1; 𝑟 .sizeSavings += 𝑟 ′.size
sort(enlargedRegions, 𝜆 (r1, r2) { r1.quality > r2.quality })
while !enlargedRegions.empty() ∧ maxRegions > 0 do

𝑟 = enlargedRegions.pop(); considered = true
foreach 𝑟 ′ ∈ resultRegions do

if r’.satisfies(𝑟 .region) ∧ 𝑟 ′.size < maxSize then
considered = false

if !considered then
continue

𝑟 .region.computeStatisticsWithSample()
if 𝑟 .region.size < maxSize ∨ (𝑟 .region.size < 𝑟 .sizeSavings ∧ 𝑟 .region.size <
maxCacheSize) then

resultRegions = resultRegions ∪ 𝑟 .region; maxRegions -= 1
return resultRegions

the weight and benefit of 𝑟𝑐 when 𝑟𝑘 is picked. Thereby, we simulate
𝑟 ′𝑐 which is a non overlapping version of 𝑟𝑐 with 𝑣𝑘 >= 𝑣𝑐 >= 𝑣𝑐′ .
In the case, the greedy algorithm picks 𝑟 ′𝑐 in a future iteration, we
actually add 𝑟𝑐 and remove the previously picked item 𝑟𝑘 .

(2) If 𝑟𝑐 is picked, all the other included regions in 𝑟𝑐 are fully
contained with their benefits and weights. Since the greedy algo-
rithm picks 𝑟𝑐 ⇒ ∀𝑟 ∈ 𝑟𝑐 : 𝑣𝑐 >= 𝑣𝑟 . The benefit of all contained 𝑟
is reduced to 0 as all history elements are included in 𝑟𝑐 .

(3) Besides full containment, regions can have partial overlap.
Assume that 𝑟𝑥 and 𝑟𝑦 overlap partially, and 𝑟𝑥 is picked. Our algo-
rithm reduces the benefit𝑏𝑦 by all history elements that are covered
by both 𝑟𝑥 and 𝑟𝑦 . However, we cannot reduce the costs of caching
𝑟𝑦 as we would need to compute the non-overlapping part of the
regions. This is in direct contradiction to the goal of minimizing
region splits as shown in Section 3.2. For retaining optimality, all
interleaving regions must be considered as the potentially picked
item in an individual branch of the problem. The branch that yields
the maximum benefit is chosen as the winner. Unfortunately, this in-
troduces exponential growth of the search space. Our experiments
show that even without considering all paths, our greedy algorithm
produces highly effective OR caches. Although this revokes the
fractional knapsack optimality guarantee, our greedy algorithm
only picks the locally optimal choice and does not branch.

4.6 Region Augmentation
To predict regions that are accessed in the future, the oracle needs
to generalize. If the candidate set of the decision-making solely
consists of the seen history elements, the oracle will overfit. Thus,
a crucial part is the augmentation of the candidate set to include
unseen regions that are evaluated according to the seen history.

To find generalized candidate sets, we developed the approxima-
tive merging algorithm. This algorithm tries to merge intersecting
regions to find the generalized region of interest. In particular, we
combine two predicates and for each predicate the global min and
global max are used as new dimension restrictions. As this intro-
duces 𝑛2 new regions, we only merge conjunctions if they intersect
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in at least one dimension. To overcome the issue of non-intersecting
but neighboring hyper-rectangles (e.g., 𝑥 < 1, 𝑥 ≥ 1), we allow for
approximative intersections that add a small delta to the boundaries.

The full approximative merging procedure is presented in Algo-
rithm 3. First, we compute enlarged regions from the history and
consider the ones that match the previously described criteria. After
determining new enlarged regions, each enlarged region is assigned
a quality and size saving value. Quality counts how many history
regions can be processed with this enlarged region. The overall sum
of the size required by each region, that can be processed with this
new enlarged region, denotes the size saving. With these properties,
Crystal ranks the new regions according to quality and adds the
highest ranked ones to the candidate set. We only add new regions
if these cannot be represented by already existing regions and their
size overhead is either smaller than a defined maximum size or the
size saving is larger than the region itself. The sizes of the enlarged
regions are computed with the help of the samples already collected
for each file. In the experimental evaluation, we add at most 20%
of additional regions (according to the history size) and define a
maximum size of 20% of the total semantic cache size.

4.7 Requested Region Cache
The requested region cache is similar to a traditional cache but with
semantic regions instead of pages. It decides in an online fashion
whether the requested region should be cached. The algorithm
must be simple to reduce decision latencies. Traditional algorithms,
such as LRU and its variants, are good fits in terms of accuracy
and efficiency. Besides the classic LRU cache, experiments showed
the benefit of caching regions after the second (k-th in general)
occurrence. With the history already available for OR, this adaption
is simple and does not introduce additional latency. For combined
OR and RR with LRU-k, it is beneficial to reduce the history size by
the RR/OR split as long-term effects are captured by OR.

One of the biggest advantages of the RR cache is the fast reaction
to changes in the queried workload. In comparison to the OR cache
that only refreshes periodically, the request cache is updated con-
stantly. This eager caching, however, might result in overhead due
to additional writing of the region file. To overcome this issue, the
client DBMS can simultaneously work on the raw data and provide
the region as a file for Crystal; this extension is left as future work.

5 IMPLEMENTATION DETAILS
Crystal is implemented as a stand-alone and highly parallel process
that sits between the DBMS and blob storage. This design helps to
accelerate workloads across different database systems. Crystal is a
fully functional system that workswith diverse data types and query
predicates, and is implemented in C++ for optimal performance.
Parallel ProcessingwithinCrystal. Latency critical parts of Crys-
tal are optimized for multiple connections. Each new connection
uses a dedicated thread for building the predicate tree and matching
cached files. If a file needs to be downloaded, it is retrieved by a pool
of download threads to saturate the bandwidth. All operations are
either implemented lock-free, optimistically, or with fine-grained
shared locks. Liveness of objects and their managed cached files
is tracked with smart pointers. Therefore, Crystal parallelizes well
and can be used as a low latency DBMS middleware.

Crystal also handles large files since some systems do not split
Parquet files into smaller chunks. During matching we recognize
which parts of the original file would have been read and translate
it to the corresponding region in the cached files. Further, we are
able to parallelize reading and processing Parquet files.
Spark Data Source. For our evaluation, we built a data source to
communicate between Spark and Crystal, by extending the existing
Parquet connector of Spark with less than 350 lines of Scala code.
The connector overrides the scan method of Parquet to retrieve the
files suggested by Crystal. Because Spark pushes down predicates
to the data source, we have all information available for using the
Crystal API. As Spark usually processes one row iterator per file,
we developed a meta-iterator that combines multiple file iterators
transparently (Crystal may return multiple regions). The connector
is packaged as a small and dynamically loaded Java jar.
Greenplum Data Source. Further, we built a connector for Green-
plum which is a cloud scale PostgreSQL derivative with an external
extension framework – called PXF [34, 51]. PXF allows one to
access Parquet data from blob storage [52]. We modified the Par-
quet reader such that it automatically uses Crystal if available. Our
changes to the Greenplum connector consist of less than 150 lines
of code. Without recompiling the core database, Crystal accelerates
Greenplum by dynamically attaching the modified PXF module.

Both connectors currently do not support sending regions back
to Crystal; instead, Crystal itself handles additions to the RR cache.
Azure Cloud Connection. We use Azure Blob Storage to store
remote data, using a library called azure-storage-cpplite [37]
to implement the storage connector. The library just translates the
file accesses to CURL (HTTPS) requests. Other cloud providers have
similar libraries with which connections can be easily established.
Crystal infers the cloud provider from the remote file path. The file
path also gives insights into the file owner (user with pre-configured
access token) and the blob container that includes the file.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate Crystal as an acceleration unit for Spark,
and further report an experiment with Greenplum to showCrystal’s
generality. Our experiments utilize a single compute node that is
connected to standard Azure Blob Storage. The blob storage uses
the pre-selected configuration of standard storage and hot tier. All
experiments were performed on the DS14_v2 virtual machine. This
instance features 16 cores with 112 GB main memory. It comes
with 224 GB premium (SSD) storage attached and has a maximum
network bandwidth of 12 Gbit/s. The Apache Spark experiments
run on version 3.0.1 pre-built for Hadoop 3.2. Our software stack
includes Apache Arrow 3.0.0 and azure-storage-cpplite (be490ed).

6.1 Datasets and Caching Strategies
We test workloads comprising real-world data and benchmarks.
Following prior work [18], we synthesize queries that contain a
mix of range filters and equality filters. Each query is associated
with a query type. Within one type, all queries evaluate the same
question on a different region of data. For all workloads, we define 5
query types that drill down into distinct combinations of columns.

Lineitem: We generated TPC-H with a scale factor of 50. As
lineitem is the main fact table, we use it to schedule predicated
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(c) Stocks (after cache warm-up)

Figure 8: Violin plots of the regions workload. The blue bars report the 25th, 50th, and 75th percentiles, the red dot the mean.

Table 1: Datasets Statistics in MB.

Datasets TPC-H Lineitem Taxi Stocks

Raw 54,344 37,701 32,473 19,100
Parquet 16,822 10,915 6,858 4,021

queries. Query predicates build upon typical predicates of lineitem
and answer questions such as how much revenue was created in
the year with low-taxed products.

NYC Taxi: The New York City Taxi dataset includes detailed taxi
trips between different regions and locations of the city [22]. Each
ride is associated with the duration, price, range, start time, end
time, and locations. We drill down on this table to analyze multiple
aspects of the data. An example query answers how much tip was
accumulated for a region of fares during a certain date range.

Historical Stock Prices: Our second real-world dataset contains
historic stock prices of the New York Stock Exchange [39]. With
information on open, close, volume, and dates many analytics on
stock changes are possible. We execute queries that for example
help to determine which stocks had the highest intraday changes
in the last year while being traded with high volume.

For a fair comparison, the cache size is given in percentage of
the full Parquet remote data. The default value is 20%. Table 1
summarizes statistics on the size of the raw files and the converted
and snappy encoded Parquet files.
Crystal supports a wide variety of caches and caching policies:
• No Cache uses vanilla Spark without any code changes
• File Cache (F) caches on a block / file level (traditional cache)
• Requested Region Cache (RR) caches semantic regions eagerly
• Oracle Region Cache (OR) caches semantic regions lazily accord-

ing to decisions of an oracle
Crystal’s caching policies include LRU, LRU-k, DP Knapsack (K𝐷𝑃 ),
and our novel Overlap Greedy Knapsack (K𝐺 ). Both knapsack strate-
gies leverage our automatic approximative merging augmentation
to find region supersets. For the experiments, we keep a history of
128 regions (see Section 6.8). In the result plots, we combine the
cache handle with a caching policy. For example, RR-LRU2 denotes
a competitor that uses only the requested region cache with LRU-2
as caching policy. Because the number of combinations is large, we
focus on the individual strategies and show only two combinations.
First, an equal combination of F-LRU, RR-LRU2, and OR-K𝐺 cache,
that all get 1

3 of the caching space. Second, we combine the short-
term RR-LRU2 and the long-term OR-K𝐺 with 95% of the cache
denoted to OR. RR / OR uses mostly the OR cache because RR is
only used to cope with changes that are not yet considered by OR

(refresh latency). We propose to use RR / OR as it provides superior
long-term knowledge because of our overlap-aware OR-K𝐺 while
being able to adapt quickly to short-term changes with RR-LRU2.

6.2 Regions of Query Accesses
This scenario features a regional access pattern which can help
reduce future request latencies. Each of the query types spans a
region that contains 10 - 15% of the tuples. A query reads between
8 - 13% of a random sample of the region (∼1% of the tuples).

The regions workload explores a region by individual queries
that overlap in some of the dimensions. The overall union of all the
queries within a region represents a large fraction of the region’s
spanning space. We decide on the region before an individual query
is chosen. The regions are accessed in a non-uniform pattern as
these span a large percentage of the remote data. Next, one of
the 200 pre-computed queries per region is picked randomly. The
query parameters are chosen uniformly inside the borders of its
type region. The region experiments schedule 400 queries in total.
We have made the queries available at [12].

Figure 8 shows this long-term knowledge workload for the
lineitem, taxi, and stocks datasets. Note that, the lineitem and taxi
experiments run on cold caches. As violin plots give insights into the
distribution of the queries, we prefer them over box plots. The shape
represents the density of the observations at this value (smoothed
by a kernel). Violin plots also encode percentiles and the mean.

Overall, we see significant improvements of the oracle region
caches. The greedy knapsack and its RR/OR variant with the over-
lap adaptions outperform the competitors in all three workloads.
Because OR-K𝐺 benefits most from augmentation, more general re-
gions of interest are found. Especially, at the end of the experiment
better caches are used to significantly speed up query processing.

To demonstrate the effectiveness of the better caches, we show
the stocks queries after warm-up. At the warm-up phase, the se-
mantic caches (OR and RR-LRU2) have similar performance. They
can capture some of the frequent queries, but fail to generalize.
Over time, OR learns to cache a better subset. The improvements
are shown in Figure 8c. We analyze the cache refresh latency of
oracle region caches in Section 6.8.

6.3 Crystal vs. Block Caching
To highlight the performance benefits of Crystal compared to tra-
ditional caches, we run the regions workload with different cache
sizes. We compare Crystal’s RR / OR approach with a traditional
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Figure 9: Comparison against block-based (Alluxio) and file-based caching.
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Figure 10: Lineitem regions workload
with hot event queries.

file cache (F-LRU ) and a block-level cache. The block-level cache
is represented by Alluxio – which is a widely used accelerator for
analytics on disaggregated storage [1, 32, 33].

Figure 9a shows the average lineitem regions performance for
different cache values which is denoted by the percentage of the
original data. This experiment was conducted after the warm-up
phase. Crystal’s RR / OR is able to learn the set of data needed to
accelerate the workload even with limited cache available. Alluxio
is initially slower than the vanilla Spark implementation. The larger
the cache size, the better Alluxio performs as less blocks have to be
evicted.With 110% of the data themaximumperformance is reached
as all blocks reside on local SSD after the first hit. Only in this
extreme scenario, Alluxio is able to match the performance of RR /
OR. The file based F-LRU benefits from an optimized downloading
of Parquet files from Azure Blob Storage. Only at very high cache
sizes, F-LRU is able to improve its performance further.

Even in the high cache size scenarios, RR / OR can match the
query latencies after warm-up. Figure 9b plots the performance
over time compared to the 90% and 110% versions of Alluxio and
F-LRU with cold caches. Crystal’s RR / OR is only plotted for 90%
(no visible difference to 110%). The traditional caches directly reach
the maximum performance whereas RR / OR learns the best set of
tuples over time. After a sufficiently large number of queries seen,
RR / OR achieves a similar performance even in the 110% scenario.

6.4 Benefit of RR/OR
In the previous experiments, long-term knowledge was sufficient
to solve the scenarios optimally. Real-world workloads often in-
cur a combination of short-term bursts of queries and long-term
trends. Similar to a news-breaking event, we reformulate our re-
gions experiment. Regions are still accessed with their respective
distribution but additional queries arrive that target different data.
These queries access a specific event which first spikes and then
falls back to normal. In our scenario, event queries occur up to 8
times (out of 200 queries), before they disappear and another event
starts. We schedule 2

3 regions query and 1
3 event queries.

The results are shown in Figure 10. Long-term caches (OR) fail to
catch the events due to their latency constraints. Without long-term
knowledge, only event queries can be handled. Although RR-LRU1
performs better on short-term queries, the long-term deficits of
RR caches show that only combined strategies with RR and OR
can overcome both issues. RR/OR uses a small short-term cache
that catches spikes in reoccurring queries and retains the same
performance for long-term trends as OR caches.

6.5 Changing Regions
Besides the hot region detection, it is important that caches are re-
freshed if the workload changes. This experiment takes the regions
workload and applies a region change after 400 queries (offset to
random value of zipfian) and favors the current region (𝜃 = 2).

Figure 11 depicts the changing regions workload for the lineitem
and taxi data. For a better visibility, we only show the semantic base
algorithms. The performance is shown as moving average (𝑛 = 40
queries) over the number of queries. After 400 queries, the hotspot
region changes. Both workloads are dominated by OR-K𝐺 which is
able to reduce runtime while being able to quickly adapt. On the
other hand, OR-K𝐷𝑃 has a long latency until it reaches its optimum
again which is easily visible in the lineitem plot. OR-LRU1 could
adapt fast, however, the overall performance gains are smaller than
for OR-K𝐺 . The same is true for short-term caches such as RR-LRU
because they fail to generalize to the semantic regions of interest.

6.6 Crystal’s Database Agnostic Design
To evaluate our design principle of generality, we show that Crystal
can be used as a storage layer for a different DBMS, Greenplum
(6.16) [51]. The details of the connector are discussed in Section 5.

Figure 12 depicts the lineitem region workload executed within
the Greenplum database. For optimal performance, we configured
Greenplum such that it uses as many PostgreSQL workers (seg-
ments) as the compute node features hardware threads. Although
the performance of Greenplum is slightly worse compared to Spark,
the relative benefits of using Crystal stay similar.

6.7 TPC-H
Figure 13a shows the cumulative distribution function for queries
generated with the TPC-H Q6 template. We perform the selection
according to TPC-H but change the distribution of the shipdate.
In many real-world workloads, accesses on date dimensions are
heavily skewed. We mimic this behavior by sampling the shipdate
from the zipfian distribution. The experiment validates that the
(RR/) OR-K𝐺 caches capture the hot regions.

Further, we test all 22 queries of TPC-H which are executed
twice in this experiment. Due to the construction of TPC-H, only
a few queries have atomic predicates on the large tables. Most
restrictions come from join conditions which currently cannot be
pushed down. Thus, many queries need to get the full table from
the remote. Nevertheless, Figure 13b shows that the OR approaches
are able to improve the mean performance by up to 20%.
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Figure 11: In each third the hot region is changed, i.e. the zipfian is moved to the
next region. The plots show the moving average with window size 40 queries.
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Figure 12: Lineitem regions workload
benchmarked on Greenplum.
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(b) Violin plots of all 22 queries.

Figure 13: Performance on TPC-H.
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Figure 14: Operation break-down on the online end-to-end
and the offline background tasks for lineitem regions.

6.8 Microbenchmarks
To get more insights into the behavior of the caches, we conducted
several microbenchmarks. This section evaluates the breakdown of
operations, the different parameters, and the network footprint.

Figure 14 shows the breakdown of the individual operations
(mean) during query processing. We split the plots into online (Fig-
ure 14a) and offline threads (Figures 14b and 14c). The online thread
receives the region request and responses with either cached re-
gions or the raw files downloaded into ramdisk. The largest runtime
contributors are the downloading of files and the eager computa-
tion. Note that, Figure 14a does not rely on the DBMS to handle the
eager file creation. The plot shows that matching does not introduce
latency overhead. The background threads are only relevant for
oracle region caches. Crystal spawns a low-priority daemon that
periodically recomputes the cache. Figure 14b shows the latency
until a new cache is computed, Figure 14c sums up the wall-clock
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Figure 15: The total network traffic used by each strategy
plotted on a varying theta.

of all computing threads. As the threads run at a high nice level, the
scheduler does not often consider these threads as soon as load hits
the compute node. This results in higher latencies, however, the
query processing of the DBMS is not negatively affected by Crys-
tal’s background task. The OR-K𝐷𝑃 has an additional high latency
due to the computation of the knapsack. On the other hand, (RR/)
OR-K𝐺 has low computation effort while caching useful regions.
Thus, (RR/) OR-K𝐺 downloads and computes less unnecessary files
which results in superior background time. OR-LRU1 often down-
loads infrequent regions that will be discarded in the next iteration.
Hence, additional and unnecessary computation is introduced.

Figure 15 shows the network footprint for different 𝜃 values.
RR/OR-K𝐺 reduces the network traffic in comparison to our file
cache baseline. As more frequent regions are accessed, less traffic
is needed. OR-LRU1 is prune to downloads of infrequent regions.

Lastly, we vary the used parameters throughout the experimental
evaluation in Figure 16. For the regions workload, we show that
the algorithms perform similarly for different skew 𝜃 of the regions.
Nevertheless, the oracle region strategies outperform the baseline
in all scenarios. The cache size experiment shows that the oracle
algorithms pick the most valuable regions first. Even with a cache
that uses only 10% of the data size, good performance is achieved.
Smaller history sizes (< 64) decrease the performance as too few
queries are collected for predicting the workload. Large history
sizes are slower in adopting to new frequent regions.

7 RELATEDWORK
The basic idea behind Crystal is to cache and reuse computations
across multiple queries. This idea has been explored in a large body
of research work including at least four broad lines of research: ma-
terialized view, semantic caching, intermediate results reusing, and
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Figure 16: Microbenchmarks on lineitem regions.

mid-tier database caching. In general, Crystal differs from previous
work in some or all of the following ways: 1) integrating Crystal
with a DBMS requires no modification to the DBMS; 2) Crystal
focuses on caching views at the storage layer, and can be used
across multiple DBMSs; 3) Crystal can automatically choose cached
views based on a replacement policy, which takes into account the
semantic dependencies among queries. Below, we discuss the key
differences between Crystal and previous work in each line of the
four aforementioned research areas.

Materialized View. Materialized view is a well-known tech-
nique that caches the results of a query as a separate table [20,
44, 45]. However, unlike Crystal, views that need to be cached
or materialized are often defined manually by users (e.g., a DBA).
Additionally, implementing materialized views in a DBMS is a time-
consuming process, requiring advanced algorithms in the query
optimizer to decide: 1) if a given query can be evaluated with a
materialized view; and 2) if a materialized view needs to be updated
when the base table is changed.

Semantic Caching. Semantic caching was first proposed in
Postgres [47], and was later extended and improved by a large body
of work [11, 14, 17, 29, 30, 42, 43]. This technique also aims to cache
the results of queries to accelerate repeated queries. Similarly to
Crystal, a semantic cache can automatically decide which views to
keep in the cache, within a size budget. This decision is often made
based on a cost-based policy that takes several properties of views
into consideration such as size, access frequency, materialization
cost. However, this approach caches the end results of entire queries,
while Crystal caches only the intermediate results of the selection
and projection operators of queries. The cached view of an entire
query is especially beneficial for repeated queries, but on the other
hand decreases the reusability of the cached view, i.e., the chance
that this view can be reused by future queries. While most work in
this area does not take into account overlap of cached views, some
work [14, 17] does explore this opportunity. Dar et al. proposed to
split overlapping queries into non-overlapping regions, and thus
enable semantic cache to use traditional replacement policies to
manage the (non-overlapping) regions [14]. However, this approach
could result in a large number of small views, incurring significant
overhead to process as we showed in Sec 3.2. Maintaining non-
overlapping views is also expensive, as access to an overlapping
view may lead to splitting the view and rewriting the cached files.
Chunk-based semantic caching [17] was proposed to solve this
problem, by chunking the hyper space into a large number of re-
gions that are independent to queries. However, the chunking is
pre-defined and thus is static with respect to the query patterns.

Intermediate Results Reusing. Many techniques have also
been developed to explore the idea of reusing intermediate results
rather than end results of queries. Some of these techniques [49, 50]
share the intermediate results across concurrent queries only, and
thus impose limitations on the temporal locality of overlapping
queries. Other work [19, 25–27, 38, 41] allows intermediate results
to be stored so that they can be reused by subsequent queries.
Similarly to Crystal, these techniques also use a replacement policy
to evict intermediate results when the size limit is reached. However,
these techniques require extensive effort to be integrated with a
DBMS, whereas integrating Crystal requires only a lightweight
database-specific connector. Additionally, a Crystal cache can be
used with and share data across multiple DBMSs.

Mid-tier Database Caching. Another area where views can
be cached and reused is in the context of multi-tier database archi-
tecture, where mid-tier caches [2, 10, 31] are often deployed at the
mid-tier application servers to reduce the workload for the backend
database servers. As mid-tier caches are not co-located with DBMSs,
they usually include a shadow database at the mid-tier servers that
mirrors the backend database but without actual content, and rely
on materialized views in the shadow database to cache the results
of queries. Unlike Crystal, the definition of the cached views in a
mid-tier cache needs to be pre-defined manually by users, and it is
difficult to change the cached views adaptively.

Finally, many vendors have developed cache solutions for big
data systems to keep hot data in fast local storage (e.g., SSDs). Ex-
amples include the Databricks Delta Cache [9, 15], the Alluxio [1]
analytics accelerator, and the Snowflake Cache Layer [13]. These
solutions are based on standard techniques that simply cache files
at the page or block level and employ standard replacement policies
such as LRU. Compared to these standard approaches, Crystal is also
a generic cache layer that can be easily integrated with unmodified
big data systems, but has the flexibility to cache data in a more effi-
cient layout (i.e., re-organizing rows based on queries) and format
(i.e., Parquet), which speeds up subsequent query processing.

8 CONCLUSION
Cloud analytical databases employ a disaggregated storage model,
where the elastic compute layer accesses data on remote cloud stor-
age in columnar formats. Smart caching is important due to the high
latency and low bandwidth to remote storage and the limited size
of fast local storage. Crystal is a smart cache storage system that co-
locates with compute and can be used by any unmodified database
via data source connector clients. Crystal operates over semantic
data regions, and continuously adapts what is cached locally for
maximum benefit. Results show that Crystal can significantly im-
prove query latencies on unmodified Spark and Greenplum, while
also saving on bandwidth from remote storage.
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PAPER P3
JSON Tiles: Fast Analytics
on Semi-Structured Data

Synopsis. In addition to structured (relational) formats, semi-structured data
formats are commonly used. These formats combine both the data content and
the structural information. Thus, no upfront schema definition is required, which
reduces API complexity. Developers often prefer these formats for their flexibil-
ity and ease of data transfer. JSON is the most common type of semi-structured
formats and can represent arbitrarily complex hierarchical data. Because of
the widespread use as a transfer format, large JSON datasets are accumulated
by logging software or collected from publicly facing APIs. Analytics on such
datasets is valuable, but the interleaving of data and schema introduces overhead
in scanning and extracting valuable information.

The goals of processing semi-structured data are to achieve high access perfor-
mance, maintain robustness regarding heterogeneous data, and enable query
optimization. The traditional approach in database systems to store complete
documents (plain-text or binary-optimized) involves access into every docu-
ment for information retrieval, which is significantly slower than reading data
from columnar storage. Earlier research investigates raw JSON parsing at rates
exceeding one GiB per second per core. However, querying raw collections
remains CPU intensive as every query parses the entire dataset, and no statistics
for query optimization are collected. Although JSON is capable of representing
arbitrary data, documents from the same source exhibit structural overlap. Previ-
ous work explores this structural similarity by collecting globally common keys
and extracting them into columns but fails to provide robustness to changing or
even heterogeneous data.

This paper introduces JSON tiles, a collection of algorithms for high-performance
JSON processing. JSON tiles automatically identifies the implicit structure of a
fine-grained collection of documents (tile) and extracts data into column chunks,
which facilitate fast query processing. By using a finer granularity, changes in
the document structure over time are automatically accounted for. Additional
reordering of documents between different tiles allows JSON tiles to materialize
JSON documents from heterogeneous data sources, providing strong robustness
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guarantees. During insertion, statistics are collected for each tile, which are then
aggregated to table-wide statistics used for join ordering. Results on different
JSON collections show that JSON tiles is the first approach to address all three
defined goals of processing semi-structured data.
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ABSTRACT
Developers often prefer flexibility over upfront schema design, mak-
ing semi-structured data formats such as JSON increasingly popular.
Large amounts of JSON data are therefore stored and analyzed by
relational database systems. In existing systems, however, JSON’s
lack of a fixed schema results in slow analytics. In this paper, we
present JSON tiles, which, without losing the flexibility of JSON, en-
ables relational systems to perform analytics on JSON data at native
speed. JSON tiles automatically detects the most important keys and
extracts them transparently – often achieving scan performance
similar to columnar storage. At the same time, JSON tiles is capable
of handling heterogeneous and changing data. Furthermore, we
automatically collect statistics that enable the query optimizer to
find good execution plans. Our experimental evaluation compares
against state-of-the-art systems and research proposals and shows
that our approach is both robust and efficient.
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1 INTRODUCTION
A plethora of data is created every day and forecasts show that
data volume will rapidly increase in the next years [43]. Much of
this data is semi-structured, i.e., it combines the data content and
the schema. The most common semi-structured format today is the
JavaScript Object Notation (JSON), a human-readable plain text
storage format that allows representing arbitrarily-complex hier-
archies. Large JSON data sets are, for example, accumulated when
logging software system events or collecting data through public
web APIs, such as the JSON APIs of Facebook [24], Twitter [60], and
Yelp [64]. Public JSON data sets are also used to enrich proprietary
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data that is stored in relational systems. Analytics on large JSON
data is valuable but expensive. Specialized tools for log file analysis,
such as Splunk [55] exist, but lack the flexibility and functionality
of general-purpose data management systems.

To speed up analytical processing of JSON data, a number of
approaches have been proposed. Figure 1 classifies them with re-
spect to access performance, robustness to heterogeneous data, and
query optimization. SIMD-JSON [37] and Mison [39] allow parsing
JSON with up to one GB/s per core. However, querying documents
remains expensive because access to a single field requires a full
parse over the data. Relational database systems store each JSON
object as a string or use a per-object binary representation [52].
Both approaches are inefficient for analytical queries in comparison
with relational column stores. Sinew [57] therefore extracts com-
plete columns to speed up accesses. However, it can only produce
good columnar extracts if the data mostly consists of the same static
document structure. Sinew does not handle changing or heteroge-
neous data well and updates are expensive because new document
structures change the global frequency of common keys. Reassem-
bling shredded documents with different structures at a record level,
as performed with Dremel [42] and implemented in Apache Par-
quet [6], results in additional work during query execution: many
different optional fields have to be handled while evaluating the
access automata. Processing Parquet files is CPU-bound even for
purely relational files without optional fields [14].

This paper presents JSON tiles, a collection of algorithms and
techniques that enable high-performance analytics on JSON data.
The key idea behind JSON tiles is to automatically detect the im-
plicit common structure across a collection of objects. Using this
structural information, we infer types, materialize frequently oc-
curring keys as relational columns, and collect query optimizer
statistics – enabling performance close to that of native relational
column stores. Infrequent keys and heterogeneous (outlier) objects
are stored in an optimized binary format that allows fast access to
individual keys. All these techniques are automatic and transpar-
ent, enabling fast analytics on JSON data without sacrificing the
flexibility of the format.

We integrated JSON tiles into our RDBMSUmbra, which provides
SQL, columnar storage, a fast query engine, and a cost-based query
optimizer [34, 47]. Using JSON tiles, we leverage these mature
technologies, which have been developed in a relational setting, for
analytics on JSON data. This paper describes the deep integration
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necessary and may therefore serve as a blueprint showing how to
extend existing systems with high-performance JSON support.

2 DESIGN OVERVIEW
In principle, JSON objects can have very complex structures and
each object can have a different implicit schema. However, in prac-
tice, JSON data is often machine-generated and has a fairly rigid
and predictable structure. The key idea of our approach is to detect
and leverage this implicit structure to speed up query processing.

2.1 Challenges
We first define three design goals before outlining how JSON tiles
achieves these goals.

Access Performance: Accessing attributes of JSON documents
requires document traversal. This traversal introduces a large over-
head as every tuple requires a new lookup and all values are un-
typed. Accesses of relational columns, on the other hand, are cheap
– in particular in column stores. This creates a big performance
gap between JSON and relational attribute accesses. JSON tiles
gains insights during data loading such that data can be stored in a
columnar representation. This enables fast scans of JSON data.

Query Optimization: Traditional RDBMS collect statistics
(such as histograms and distinct counts) on each column. As each
JSON document is stored as one opaque tuple, the statistics are cre-
ated based on full (textual) JSON representation. For example, this
would likely result in the number of distinct values corresponding
to the table’s cardinality. However, scan and join conditions usually
access individual keys, and such statistics do not help in estimating
selectivities.

For meaningful statistics, each document must be traversed and
statistics on individual keys must be gathered. For example, join
ordering uses distinct values of attributes to estimate the join car-
dinality. Without individual statistics, the optimizer relies on im-
precise estimates. Thus, the query plan can be very inefficient [38]
(e.g., because a bad join order is selected).

JSON tiles exploits the structural information gathered during
loading to maintain data statistics. As the number of keys is un-
bounded, JSON tiles stores statistics on the frequent keys for precise
estimates. This enables complex multi-table queries without having
to manually transform the data to a relational schema first.

Robustness on Heterogeneous Data: The convenience of
putting arbitrary documents into the database is often the primary
reason for choosing semi-structured formats. Although the struc-
ture of objects is not arbitrary in practice, many data sets contain
heterogeneous document types. Consequently, the storage engine
needs to adapt to heterogeneous documents, changes of fields, and
previously unseen data. For example, documents tend to grow over
time as more and more fields are added to the original document
type. Another important use case is the combination of log data
from multiple sources. It is infeasible to define a global schema up-
front for analytics on combined log data. As the analytics on JSON
data was expensive in a general DBMS, log data is often analyzed
by specialized providers such as Splunk [55].

JSON tiles handles different document types and copes with
outliers through local computations. Further reordering helps in
randomized insertions of heterogeneous documents.

2.2 Leveraging Implicit Document Structure
We explain the key ideas of JSON tiles using a running example
that consists of real-world JSON documents from Twitter’s public
API. Figure 2 shows a simplified example of 8 JSON documents
representing information about tweets. Every document consists
of an identifier, the tweet text, a create field, and a user object. As
is common in many real-world data sets, the attributes of tweets
changed over time. For example, Twitter introduced the famous
hashtags after user feedback in 2007 and further attributes like reply
(2007), retweet (2009), geo-tags (2010) were added over time [61].

Observations: As the example illustrates, the JSON documents
in a collection often have the same set of keys and, therefore, have
a similar implicit schema. Furthermore, the values for a key have
matching types as well. In the example, the identifier attribute stores
integers and the tweets (not shown in the example) would be textual
strings. Another interesting type can be derived from create key.
Although it is represented as a string because JSON does not specify
a date data type, a query will most likely use it as date object. These
observations lead to the insight that real-world semi-structured
databases often effectively contain relational information.

Consequently, using the key structure and observed values, we
can materialize the common structures as typed relational columns.
However, detecting a single global relational schema, as proposed
by Sinew [57], may be problematic. Simply materializing all keys
as columns may lead to many null entries. Using some frequency
cutoff, e.g., only extracting a particular column if at least 80% of
all documents have that key, may prevent relevant columns from
being extracted. In our example, the replies and geodata cannot be
extracted by a global detection algorithm that extracts all keys that
are represented by more than 2

3 of all documents.
Our approach therefore breaks the input documents into mul-

tiple chunks – which we call JSON tiles. We search for local sub-
structures within the smaller chunks to find more common patterns.
We also automatically infer the data types and assume that values
that look like a certain type will most likely be used as such. The
small granularity of JSON tiles also enables parallelizing bulk load-
ing as tiles can be constructed largely independently.

Outlier Handling: As JSON tiles collects document structures
locally, it is likely that fewer document structures are observed in
comparison to a global collection of structures. This already reduces
the number of potentially materialized but unused columns, and
thereby the number of null entries from absent fields. Because
tiles are restricted in the number of tuples, a higher percentage of
potential outliers, such as the missing geo-info, can be accepted.
Hence, JSON tiles does not miss frequent keys and is able to adapt to
changes of data objects and arrays, which results in a more robust
system. New keys are added to the materialized parts, whereas
removed keys are not extracted in future tiles.

Column Extraction: Because data is materialized into a colum-
nar format, no semi-structured access computations are necessary.
The cost of accessing a column chunk is amortized by the number
of tuples scanned. Therefore, our approach achieves high analytical
columnar scan performance while being robust to heterogeneous
data objects or combined log data documents from different sources.
In the Twitter example, our approach is able to extract replies and
geodata into column chunks of the second tile.
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"id"

Int

"create"

Date

"user_id"

Int

"replies"

Int

"text"

Text

{"id":1, "create": "3/06", "text": "a", "user": {"id": 1}}

{"id":2, "create": "3/07", "text": "b", "user": {"id": 3}}

{"id":3, "create": "6/07", "text": "c", "user": {"id": 5}}

{"id":4, "create": "1/08", "text": "a", "user": {"id": 1}, "replies": 9}

{"id":5, "create": "1/10", "text": "b", "user": {"id": 7}, "replies": 3, "geo": {"lat": 1.9}}

{"id":6, "create": "1/11", "text": "c", "user": {"id": 1}, "replies": 2, "geo": null}

{"id":7, "create": "1/12", "text": "d", "user": {"id": 3}, "replies": 0, "geo": {"lat": 2.7}}

{"id":8, "create": "1/13", "text": "x", "user": {"id": 3}, "replies": 1, "geo": {"lat": 3.5}}
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Figure 2: Twitter Tweet JSON data extracted into two JSON tiles.

Statistics:Aswe collect the smaller JSON tiles, we trace whether
keys have been materialized and compute query optimizer statistics.
We store the statistics information in each JSON tile. The local
statistics are then propagated to generate table statistics such that
they give details about the input data. This information is used to
find efficient query plans that minimize intermediate join results.

3 EXTRACTION
This section presents the fundamental ideas behind JSON tiles and
the algorithms for constructing them.

3.1 JSON Tiles
Previous work by Tahara et al. [57] observed that documents in
real-world data sets often have similar structure and they therefore
propose extracting a single schema globally. However, such a global
approach is not robust with respect to heterogeneous or changing
data. Depending on the chosen extraction threshold, many keys will
either fall below the threshold or the resulting relation will have
many attributes with mostly null values. In both cases, performance
will not be optimal for heterogeneous data sets.

We therefore propose to detect the implicit document structure
at a fine granularity (hundreds or thousands of documents rather
than globally). We split the input data into disjunct JSON tiles, for
each of which we detect a local schema. This approach naturally
exploits the spatial locality contained in many data sets and finds
a sweet spot between fast scan performance and the reduction
of uncommon patterns. Our experiments show that a tile size of
210-212 tuples works well across many workloads.

In the following, we show the extraction steps for JSON tiles.
Tile #2 of Figure 2 acts as our running example. The tile size of the
tweet data is 4 tuples and we use an extraction threshold of 60%.

(1) Collect all key paths for each tuple: A key path is the path of
nested objects and arrays followed to the actual key-value pair. For
an easier notation, we will use only the first letter of each key and
encode the nesting with ’_’. For instance, the tuple with id 5 has the
key paths { i , c , t , u_i , r , g_l }. Tuples 7 and 8 have the same
key paths, whereas tuple 6 lacks g_l .

(2) Use the collected key paths as input for frequent itemset mining:
An itemset is frequent if it exceeds the extraction threshold. The
extraction threshold is the frequency count, which counts how
many tuples contain this itemset, divided by the overall number
of tuples. The itemset miner finds subsets within the collected key
paths that are frequent. In our example, theminer finds two frequent
maximum subsets and their frequency: ({ i , c , t , u_i , r }, 4) and

{"id":1, "date": "1/11", type: "story", "score": 3, "desc": 2, "title": "...", "url": "..."}
{"id":2, "date": "1/12", type: "poll", "score": 5, "desc": 2, "title": "..."}
{"id":3, "date": "1/13", type: "pollop", "score": 6, "poll": 2, "title": "..."}
{"id":4, "date": "1/14", type: "story", "score": 1, "desc": 1, "title": "...", "url": "..."}
{"id":5, "date": "1/15", type: "comment", "parent": 4, "text": "..."}
{"id":6, "date": "1/16", type: "comment", "parent": 1, "text": "..."}
{"id":7, "date": "1/17", type: "pollop", "score": 3, "poll": 2, "title": "..."}
{"id":8, "date": "1/18", type: "comment", "parent": 1, "text": "..."}

Figure 3: News items [28] with different document types.

({ i , c , t , u_i , r , g_l }, 3). They are maximum itemsets as each
further subset of ({ i , c , t , u_i , r }, 4) has the same frequency.
All details and constraints of the itemset mining algorithm are
explained in Section 3.3.

(3) Extract the union of the maximum itemsets: JSON tiles iterates
over the found itemsets and extracts the key paths as materialized
relational columns. All key paths are materialized from the first
maximum subset. As the first and second maximum subset over-
lap, only g_l is additionally materialized. This results in the final
extraction of { i , c , t , u_i , r , g_l } for Tile #2.

3.2 Tile Partitions and Tuple Reordering
A new tile is created whenever the number of newly-inserted tu-
ples reaches the tile size. Consequently, the content of JSON tiles
depends on the insertion order. For many applications, the inser-
tion order already provides strong spatial locality and therefore
high-quality JSON tiles. For instance, adding fields over time, as
in the Twitter example, results in almost perfect tiles. However,
workloads like the one shown in Figure 3, where each document
is of a different type, have little spatial locality. Even fine-granular
tiles would result in poor scan performance. In the following, we
describe an approach that solves this issue by reordering tuples
between neighboring tiles.

The goal of the reordering algorithm is to find frequent itemsets
across multiple tiles. The tuples are then reordered such that the
same frequent itemsets are clustered in a single tile. The neighbor-
ing tiles grouped together for reordering are denoted as a partition.

Reordering is illustrated in Figure 4, which uses a tile size of 5
tuples and shows 12 tiles that are split into partitions of size 4. Each
tile mines frequent itemsets with a reduced threshold. In the exam-
ple, every patterned rectangle represents a tuple and the pattern
denotes the frequent itemset that describes the tuple best. If we as-
sume that all of the different patterns have no key paths in common,
no materialization would be possible without reordering. JSON tiles
clusters tuples into the tiles such that every itemset cluster satisfies
the original threshold. The tuples are then distributed accordingly.
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Once the tile redistribution has been performed, most tiles are per-
fectly extractable in the example. Each tile has a frequent structure
that is over the extraction threshold. However, some tiles contain
tuples that cannot be materialized. In contrast, before reordering
none of the patterns exceeded the threshold in any tile. Our experi-
ments on multiple workloads show that a partition size of 8 tiles
yields good results.

The full algorithm for reordering proceeds as follows:
(1) The frequent itemsets of each individual JSON tile are mined.

As these itemsets are used for reordering, the threshold for being
frequent is reduced to threshold

partition size .
(2) The itemsets of all tiles within one partition are exchanged.

Itemsets with a frequency of more than threshold ∗ tile size survive.
(3) Every tuple in the partition is matched to the frequent item-

set that describes it best. The algorithm picks the largest itemset
that has the most items in common with the tuple. As the itemset
mining needs to be limited (see Section 3.3), ties need to be resolved
such that every tuple that encounters this tie will match the same
itemset. For example, our JSON tiles implementation resolves ties
by minimizing the sum of item ids for equal matches.

(4) While matching the tuples, a hash table aggregates the count
of the itemsets for both the individual tiles and the partition. As
each tuple is only matched to one itemset, the tuples are simply put
into individual tiles such that the original extraction threshold is
reached (if possible). This mapping is computed in a greedy fashion.

(5) With the current count of tuples matching the itemsets in
the tile as well as those required to satisfy the mapping, the swap
positions between tiles are computed. The algorithm iterates over
all tuples. If the tuple is needed in the current tile, no swapping
is performed. Otherwise, the tuple is swapped with another tuple
that matches the need for this tile. For example, a tuple is of itemset
type green and in tile 1. Further, tile 1 needs to be filled with type
purple and tile 2 with type green. First, tile 2 will be searched for a
matching tuple of type purple as this would benefit both tiles. If tile
2 does not have any tuple of type purple, which is directly visible
from the aggregate map, the remaining tiles are searched.

(6) The last step simply computes the itemsets with the original
threshold of the reordered tiles to find the final extraction columns.
Even if tuples belong to different itemsets, they can share key paths.

As is indicated by Figure 4, the tile partitioning parallelizes well
on larger data sets. Each thread is dedicated to a disjoint subset of
the data (partition). No interaction is needed as the information is
disjoint between different threads. During tile creation, no issues
for concurrent scans arise, as the tile is visible to scanners only
once it is fully created. Only if tuples are currently being swapped,
concurrent readers need to block until the swapping is finished.

3.3 Frequent Itemset Mining
JSON tiles uses frequent structures to materialize columns and
redistribute tuples between them. These structures are found by
gathering information on all available key paths. The frequent
itemset miner determines which items are common and therefore
materialized. The knowledge of itemsets helps to find the best
frequent representation so that similar tuples can be redistributed.
Furthermore, reordering within a tile improves compression in
systems that support run-length encoding.

{  }{  }{  }read #1 read #2 read #3

Before 
reordering

Aer
reordering

Tile ID 1 2 3 4 6 7 8 9 10 11 12

{ Partition 1 Partition 2 Partition 3{ { 
5

Figure 4: Reordering with partition size 4. Each tile has 5
tuples (vertical) and the extraction threshold is 60%.

To compute frequent itemsets, we rely on an efficient implemen-
tation of the FPGrowth algorithm [29]. In comparison to the classic
Apriori [1] variant, FPGrowth does not need to generate candidate
sets. FPGrowth creates a tree of frequent items and recursively iter-
ates over the tree to generate output sets. We collect all keys from
the documents and store them dictionary encoded. Dictionaries are
created for every JSON tile and are used as the database to mine.

Unfortunately, the complexity of the result is a major problem
of itemset mining. Since in the worst case the number of frequent
itemsets is equal to the cardinality of the powerset of frequent items,
we need to restrict the number of computed itemsets. Otherwise,
itemset mining would be prohibitively expensive for tile creation.

As we only want to gracefully decrease precision, the algorithm
computes itemsets until a budget is reached. Smaller itemsets are
computed first as these are needed for larger ones. All frequent items
are used to find potential itemsets that can be used for extraction.
However, the number of elements (𝑘) in the potential sets needs to
be restricted. We denote a budget 𝑢 as the upper bound of itemsets.

𝑘∑︁
𝑖=1

(
𝑛

𝑖

)
≤ 𝑢 ′ ≤ 2𝑛 − 1, with 𝑢 ′ ≤ 𝑢 (1)

We choose all 1 to 𝑘 subsets of an 𝑛-ary set, resulting in the
summation of the binomials. We compute 𝑘 such that the number
of generated subsets is limited to𝑢 ′, which is always smaller than 2𝑛
and 𝑢. Because 𝑘 is dependent on the depth of the recursive mining
of conditional pattern trees generated by FPGrowth, we bound the
operations. As the recursion depth is restricted, the system is not
overloaded during JSON tile materialization.

3.4 Value Types and Key Paths
In JSON, multiple values for the same key do not necessarily have
the same primitive JSON type, e.g., some values are integer and
some are float. If we decide to extract that key, we have to decide
which data type to assign to the extracted column. At the same
time, it must be ensured that the original type information is not
lost and that JSON semantics is maintained.

To solve this problem, the tile extraction algorithm combines the
key path with the primitive JSON type, i.e., each itemset entry is
actually a pair and two key paths only match if their value types
match as well. This way, if several options are available, extraction
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will chose the most common type. Assume, for example, that the
same key path contains integers as well as floats, and that the inte-
gers are extracted. This means that the float values cannot be stored
in an extracted form and have to be stored in the binary JSON rep-
resentation (cf. Section 5). On access, for example when summing
up all values, we therefore traverse the binary representation when
the extracted column value is null. This approach maintains JSON
semantics for outliers, while providing fast scan performance for
the majority of values.

3.5 Nested Objects and Arrays in JSON Tiles
A major feature of JSON is its capability to nest objects arbitrarily.
Our extraction algorithm handles nesting by encoding it into the
key path. During extraction, JSON tiles thereby do not have to
distinguish between nested and non-nested objects. During the
key path retrieval, the nesting level is computed as well as the
followed keys. In the Twitter example (Figure 2), the nested key lat
is extracted and encoded with its nested path (geo→lat).

Accessing nested column extracts require some care. For ex-
ample, the access to ’key’→’nestedKey’ could first extract the
object key and then use a regular JSON lookup or access nestedKey
directly if available. Usually, a direct access to nestedKey is pre-
ferred. However, the database needs to know whether an access to
key is needed as other expressions could use key as well.

To overcome this issue, JSON tiles recognizes during the scan
operation whether the other levels of the key path are needed. We
count how often each key is used as multiple expressions are able to
share the same paths. If the path is used exclusively by one expres-
sion and the nestedKey is materialized, the intermediate access is
removed. The final lookup is a simple access of this extracted key.

Another interesting challenge arises from heavily nested arrays.
If the number of elements in an array is similar in all documents of a
tile, JSON tiles is able to materialize all frequent elements. However,
if the number varies, JSON tiles materializes only the leading ele-
ments that are frequent across all documents. For example, if every
document contains an array with 𝑥 elements but some documents
have 𝑥 + 𝑐 array elements, only the first 𝑥 elements are extracted.

This issue can be addressed by combining our approach with
prior work. Deutsch et al. [19] distinguish between high-cardinality
arrays and small-set arrays. The issue described only arises with
high-cardinality arrays that contain many nested objects and differ
significantly in the element count. Related work suggests extracting
high-cardinality arrays into separate tables. The details on the or-
thogonal problem of detecting high-cardinality arrays are discussed
in [19, 54]. After these arrays are determined, our JSON tiles extrac-
tion algorithm is used to automatically materialize additional tables
from the detected arrays. In Section 6.3, we evaluate a combined
approach in the presence of high-cardinality arrays.

4 INTEGRATION
JSON tiles touches many components of the DBMS. This section
explains the adaptions that are necessary for a seamless integration.

4.1 Accessing JSON Attributes
In relational database systems, JSON data is usually stored in a
single column of a table. Each value of this kind of JSON column

ORDERS o

LINEITEM l

CUSTOMER c

{ l.data->>'l_orderkey'::BigInt  

           = o.data->>'o_orderkey'::BigInt }

{ o.data->>'o_custkey'::BigInt

          = c.data->>'c_custkey'::BigInt }

{ c.data->>'c_custkey'::BigInt,

         SUM(l.data->>'l_extendedprice'::Decimal

              * (1 - l.data->>'l_discount'::Decimal)) }

Γ

⨝

⨝

Figure 5: Join tree of simplified TPC-H query 10 before ac-
cess expression push down.

holds a full JSON document. They are stored as JSON strings, which
is a verified human-readable textual representation. JSON columns
do not have any additional information on the structure of the
contained documents. Some systems use a per-document optimized
binary JSON format. This improves access performance by storing
data in a binary representation that has minimal parsing overhead.

The most basic operation on JSON data is attribute access. In the
examples throughout this paper, we use PostgreSQL-style access
operators: the access as JSON type (->) and the access as Text
(->>) expressions evaluate JSON queries [51]. These expressions
are needed since the information is stored in nested objects and
arrays. They return the value to the key (object) or slot (array).

For example, {"id":0, "name":"JSON"} is a JSON object that
holds two keyswith one integer and one string value. Assuming that
the user wants to access the id field, it can be requested as a value of
type JSONwith object->’id’ resulting in {0}. Note that the result
type is not the integer itself. The access as JSON object function is
necessary to access nested objects since access expressions can only
be evaluated on JSON documents. The other option is to access the
element as text with object->>’id’, which returns the Text "0".
Because the user usually intends to access the pure integer value,
a cast from the string representation is needed. The expression is
therefore rewritten to object->>’id’::Int, which finally outputs
the Integer 0. Umbra follows the PostgreSQL semantics of returning
null if the requested key or any parent key is not present.

4.2 Push Down of Access Expressions
To utilize the scan performance of JSON tiles, changes to the query
plan are necessary. The scan operator needs information on the
keys that are accessed to decide whether extracts of tiles can be
used. Previous work showed that the push down of accesses into
the scan operator is crucial to heterogeneous data formats [33]. In
the following, we describe the push down of JSON accesses and
explain the steps to integrate JSON tiles into the query plan.

Figure 5 shows the query plan of a simplified version of TPC-H
query 10 that uses JSON. In this example, the data is stored in a
single JSON column (data). Each row is transformed into a JSON
document such that every column name works as the key in the
JSON objects. Because the operators above the scan need the JSON
string for expression evaluation, each table scan operator has to
produce the whole JSON string. Using the whole string when only
parts are needed is inefficient.

As JSON tiles relies on the usage of extracted columns, the table
scan operator needs to know which parts of the JSON data are
accessed. If access expressions are evaluated further up the query
plan, the table scan needs to provide the raw JSON data and cannot
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utilize the materialized columns of JSON tiles. Thus, the access
expression evaluation has to be pushed down into the scan operator.

We use placeholders for expressions and hand the computation of
the access expressions over to the table scan operator. The result of
an expression is then available at this location and directly usable by
a parent operator. If a column extract of an expression is available,
the data is read from the extract and the placeholder simply points
to the materialized data. Otherwise, the raw JSON value is accessed.

4.3 Cast Rewriting
Because the return type of JSON accesses is Text, it is important
to also push down the cast type information to the scan operator.
Otherwise, the materialized types need to be transformed to Text
first and later have to be transformed back to the cast requested
type. This introduces a large query runtime overhead.

During the optimization phase of the RDBMS, cast rewriting
reduces this overhead. The RDBMS checks whether the input ex-
pression of the cast is an access as Text lookup. If so, the cast result
type determines which specialized access expression is used.

The RDBMS implements optimized access expressions for every
data type that is defined for JSON documents (Section 5.1). Since
these types are also used for the JSON tiles extraction, it is beneficial
to rewrite these expensive casts. If the original typematches the cast
result, we simply delete the cast operator and return the evaluated
access expression directly. Otherwise, we reduce cast overhead as
a better cast option is chosen. For example, a BigInt stored element
key with the lookup x->>’key’::Float is rewritten to a BigInt
lookup followed by a cheap cast to Float.

4.4 Storing the JSON Tiles Header
Because JSON tiles detects frequent document structures from the
input seen locally, the extracted columns vary between different
tiles. Thus, each tile needs its own header describing its seen and
materialized data. For accessing materialized data, JSON tiles needs
to store the extracted key paths and the corresponding value types.
Since tiles vary in data and size, they are not directly stored in the
fixed-sized part of the relation but in the variable-sized data. Only
the pointer to the header is stored in the relation to map from tuples
to the corresponding tile. Offsets into the variable-size data remain
static as we either append the memory region or fill empty spaces.

In addition to the key path information and the type, the original
JSON column is needed as the relation could contain multiple JSON
columns. Moreover, JSON tiles stores the information on whether
the key path is used with another type and whether null values
are possible. The type information is necessary for correctness
since the same key can have different values across the database.
This is particularly interesting for JSON tiles, as null entries are
often avoided due to a fine-grained JSON tiles size. For further
optimizations, shown in Sections 4.6 and 4.8, the key paths that are
not extracted are stored as well. Because the number of keys may
be large, we store the key paths in a bloom filter [35].

4.5 Access Expression Evaluation
Information about the availability of an extracted column is only
known during the table scan of each JSON tile. Because JSON tiles
only materializes the frequent structures, not all keys are stored

as columns. Therefore, the access on the raw JSON data must be
performed if no extract is found.

Accesses on JSON tiles use the information stored in the header
of each tile to find the correct position of the requested data. The
key path is stored as a string with information on the nesting depth
(the number of nested levels) and the size of the string. We compute
the matching of key paths in linear time, as the number of different
key paths is limited within a single tile. Since it is expensive to
calculate the availability of materialized columns per tuple, the
calculations is performed once per tile. It is cached and reused for
all the following tuples of the same tile.

If a materialized column is available, the header of JSON tiles is
used to compute the access information. The matching column start
position is computed by the position of the tile data and the offset
into the matching column. The type information of the column
is used to load the data and determine the best cast options. In
Section 4.3, we show the rewriting of the cast expression that is
used by both JSON tiles and our binary representation (Section 5.4).

To find the correct materialized column, our algorithm uses the
key path and the requested types as inputs. If the types do not
match, we test whether the types are both numerical values or
the request type is a cast to Text. The former type suggests that it
is easy to cast between the extracted and desired value. The only
exceptions are values of type Date or Time. These are not allowed
to be transformed to a textual representation. This restriction is
explained further in Section 4.9.

4.6 Optimizer Integration
The query optimizer relies on cardinalities and selectivities to find a
suitable query plan. In particular, join ordering relies on statistics to
minimize intermediate join results. Without any tile statistics, the
content of the JSON column is completely opaque to the database.
Consequently, the optimizer has no information on how often a
key path exists in a document and on the possible values. This
can result in poor query plans and slow queries – in particular for
complex, multi-table queries.

When constructing JSON tiles, we gather additional information
for each tile. However, for join ordering the information needs to
be available for the complete table. Thus, the information of the
individual tiles is aggregated to leverage the data insights during
query optimization. The additional tile information is used for
optimizations as discussed in Section 4.8.

In the following, we describe the steps necessary to provide
per-column statistics and estimators for JSON tiles. We use a fixed
number of frequency counters and HyperLogLog [25] sketches for
the extracted paths. The frequency counters are used to argue about
the cardinality of the keys in the data. If, for example, a query re-
quests replies is not null from the tweet data of Figure 2, only
5 out of 8 tuples match. Our JSON tiles implementation collects
HyperLogLog sketches as these are the primary source of domain
statistics in Umbra. The collection of regular histograms would
work analogously. We suggest 64 sketches and 256 frequency coun-
ters as an upper bound on the statistics to restrict the maximum
amount of memory used for query optimization.

During frequent itemset mining (Section 3.3), the frequency of all
key paths within a tile is computed. The frequency of the key paths
is used as the starting point for itemset mining. Each entry of the
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database consists of the key and the number of occurrences in the
tile. As described in Section 4.4, this database is also stored in the
tile header. We update the relation-wide frequency counters (256
slots) if the key exists or replace empty slots as long as available. If
all slots are utilized, we start replacing slots according to the most
recent tile number that last updated that slot and the frequency
count of the keys. Hence, new values can overwrite existing ones,
however, the most frequent ones are always stored in the statistics.

To retrieve the cardinality of the keys, we simply use the fre-
quency counters. If the key is not present in the frequency counters,
we leverage the smallest available counter for this access. We argue
that the missing counter will behave most similarly to the key with
the minimal frequency of all retrieved counters. Although the small-
est retrieved frequency is still an approximation, the results are
significantly more accurate than using the global count of tuples.

Similar to the frequency counters, we collect statistics about the
domain of the associated value of key paths with HyperLogLog
sketches. When a tile is created, the inserted values are directly
sampled. Hence, JSON tiles creates sketches without noticeable
overhead. To aggregate the sketches at the relation level, we use the
same replacement strategy as described with frequency counters.
Note that HyperLogLog sketches are easy to combine.

During query optimization, the filter predicates on materialized
JSON tiles leverage the distinct counts of the HyperLogLog sketches.
With this information, better join orders are possible as the result-
ing join cardinality estimation is improved. Furthermore, different
documents are sampled statically at query plan generation to find
more accurate estimations. This improves the sketch estimates and
creates new estimates if no HyperLogLog sketch is available.

4.7 Updates
As JSON tiles creates columnar chunks, we can simply update the
values of the keys that were changed. As variable-length data is
tracked in a separate memory region with offsets, value updates
can be computed in place. If the new document does not contain
some of the extracted keys, null values in the respective columns
indicate the absence of these keys. Note that the tile header needs
to add all new access paths to the bloom filter. Otherwise, queries
that scan the data could incorrectly skip the changed tiles.

Tiles need to be recomputed only if many outlier documents
are introduced. An outlier document is defined as one that does
not overlap with the existing extracted keys. As the recomputation
of the materialized JSON tiles are costly, the computation should
only be triggered after the majority of the tuples do not match the
current extracted JSON tiles schema.

4.8 Skip Tiles Without Matches
Because JSON tiles collects tuples locally, some tiles do not contain
certain key paths. If an expression is searching for such a path,
skipping these tiles seems valuable.

The simple skipping of tiles that do not provide a key path,
similar to the previous work on efficient column stores [36, 53],
leads to incorrect results. Accessing a value from a key that was not
found returns a null value. Skipping null values results in incorrect
results, for example, some aggregates count null values.

To overcome this issue, our system tracks the optimization path
of skipping null values and whether null is evaluated as false. These

two properties can change at an operator and expression level.
For example, an inner-join on top of the access expression has
the property that null values are skipped as the join condition is
evaluated as false. Another example for skipping null values are
comparisons, e.g., the expression where x->>’key’::Float > 1.

Thus, if the expression is not found and null values are skipped or
evaluated as false, the whole JSON tile has no valuable information.
These tiles are then skipped to improve performance.

4.9 Date and Time Extraction
Because the exact representation of values need to be restored
during accesses, the extraction of Dates and Times from strings is
complex. As many different formats exist, it is hard to guarantee
the recreation of the original string. We use a hybrid method to
store Dates and Times in which the access type is leveraged. If
the database user casts the value into Date or Time, JSON tiles
does not need to recreate the exact string representation. As a
result, any correct internal representation can be used to satisfy
the request. Therefore, JSON tiles extracts possible Date and Time
values because these are probably accessed as such.

To find columns that store Dates and Times, we first sample on
the potential column. If the string-encoded values match a Date
or Time type, we extract these values encoded as SQL Timestamp.
When the user casts the access to any Date- or Time-like type,
the extracted Timestamp value is used to cast to the defined type.
Otherwise, the string representation of the binary JSON is returned
retaining the input format.

5 BINARY JSON FORMAT
JSON tiles extracts the frequent key paths of documents; however,
some data sets contain outliers and infrequent keys that are not
materialized. This section presents a new optimized binary format
that allows fast access to individual keys of such infrequent objects.
An optimized format is necessary as JSON is a human-readable
data format. Each access results in an expensive parsing of the raw
string. The goals for the binary format are fast lookups in objects
and arrays, typed values, and few cache misses. The format must
further conform to RFC 8259 [13], which defines the general JSON
representation and needed value types.

Several binary JSON formats were developed to efficiently trans-
fer data [26, 32, 49]. These formats, however, are not optimized for
fast accesses and focus on (de-) serialization support. DBMS that use
custom binary formats include PostgreSQL and MongoDB [45, 52].
Although the latter formats are better suited for query process-
ing than exchange formats, they do not combine a logarithmic
worst-case runtime for lookups with continuous memory accesses.

Our JSONB format is optimized to provide O(𝑙𝑜𝑔(𝑛)) accesses
to the correct key in objects and O(1) accesses to array elements.
Moreover, objects and arrays are forward iterateable such that all
key-value pairs – even nested objects – can be accessed continu-
ously without memory address jumps. This results in fewer cache
misses for nested accesses. The physical types used in our binary
JSON representation match the RFC requirement and are also used
by JSON tiles as mentioned in Section 3.3. Hence, the cast rewriting
presented in Section 4.3 is a universal access optimization.
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Due to restructuring, some of the unimportant properties of the
original document get lost, such as whitespace information or the
order of keys in the input. We argue, aligned with the guidelines
of using binary JSON in PostgreSQL, that the gains in query per-
formance outweigh the ability to recreate the exact syntax of the
input [52]. Apart from the syntactic restriction, our JSONB docu-
ment is round-trip safe. Thus, all other properties and the exact
value representation can be reconstructed.

5.1 JSONB Storage Format
To provide interoperability and correctness, our binary JSON format
conforms to RFC 8259 [13]. It defines objects, arrays, numbers,
strings, and three literals. Our binary format uses the following
data types to represent the type definitions. Each type has an 8-bit
header with the type identifier and additional information.

Numeric Integers use the SQL type BigInt. We store small
values (< 23) in the integer header, otherwise, we calculate the
number of bytes needed to represent the integer and store the
amount in the header. The size-optimal integer follows the header.

Numeric Floats store the remaining numeric values, using the
SQL Float datatype represented with IEEE 754 double precision.
RFC 8259 relies on double-precision floats for the remaining nu-
merics as they are “generally available", “widely used", and “good
interoperability can be achieved" [13]. We further optimize for
smaller precision levels (half-floats, and single-precision floats) if
the conversion from double-precision floats is lossless.

Literals use a special header representing the value.
Objects contain all key-value pairs including nested objects

and arrays. Objects need an object header, followed by an integer
representing the number of elements in that object. The integer
uses the minimum number of bytes as defined for Numeric Integers.
This is followed by an offset into the object for every element. Each
offset points to the end of the corresponding element. The offset
key follows the payload in every element slot. Note that nested
objects and arrays are also stored in the payload such that we
can iterate over the object without memory address jumps. Keys
are further sorted to accelerate lookups and guarantee O(𝑙𝑜𝑔(𝑛))
accesses since we can use binary search to find the correct entry.
The representation is illustrated in Figure 6.

Arrays are stored similar to objects but do not use keys.
Strings are stored with the possibility to use unicode characters.

The exact representation matches the RFC 8259 definition.

5.2 Detection of Numerics in Strings
As RFC 8259 does not specify any precision for JSON numbers,
strings are usually used to preserve the exact representation. For
example, monetary values should not be represented as floating-
point values. As a result, a decimal-valued price is usually stored as
string. We auto-detect numeric values hidden in strings and extend
our binary JSON format with an additional numeric string type.

During the transformation, we check whether the complete
string, except the start and end quotes, can be represented as an SQL
Numeric. We first test whether the input string is a valid numerical
value (digits, point, etc.). If so, round-trip safety is guaranteed since
the exact representation can always be reconstructed with the help
of scale and precision. Because the original input must be a string,

key 1

object number of elements offset 1

offset 2 offset n

element / payload 1

key 2

element / payload n key n

...

element / payload 2

Figure 6: JSONB representation of an object.

the start and end quotes are simply added to the Numeric output.
The key motivation is that strings that are representable as Numeric
will probably be used as numeric values. Query execution benefits
by performing a smaller number of expensive casts from strings.

5.3 Two-Pass Transformation Algorithm
Our JSONB format stores nested objects within the parent ob-
ject. This allows for continuous accesses without memory address
jumps. Continuously stored data increases locality and reduces
cache misses. However, this makes object creation harder as the
object size depends on the size of its nested objects and arrays. For
example, the object with a nesting level of 0 only knows its size after
the sizes of the inner objects have been computed. The simple ap-
proach of on-the-fly resizing is not feasible as resizing is expensive
and needs to be performed for every inner object. Our compressed
storage algorithm for floats and integers even aggravates this issue.

To overcome the problem of resizing, we propose a two-pass
algorithm. In the first iteration, we check for validation errors and
calculate the required memory for every JSONB type. This is possi-
ble because we remember the computed nesting level and perform a
depth-first calculation. Note that depth-first is the order as defined
in the input of JSON documents. Nested objects are textually rep-
resented within the parent object. Hence, we can simply forward
iterate over the input. In the second iteration, we use the informa-
tion of the first pass to allocate the right amount of memory and
transform the data without further checks. In total, we iterate twice
over the input data. However, this is usually not a performance
issue because most JSON objects fit into the CPU cache.

5.4 Accessing Elements
Since JSON documents consist of objects and arrays that contain
the information, the user typically looks up only specific parts of
them. Umbra uses the access as JSONB -> and the access as Text
->> expressions to lookup the values of objects and arrays.

The access expression is implemented in two phases. First, a
lookup into the object or array is executed. Object keys can be ac-
cessed in O(𝑙𝑜𝑔(𝑛)) since keys are sorted and binary search is used
to perform the positioning. Because arrays are stored sequentially,
we can access the element in O(1). The second phase extracts the
found value. The default extracted SQL types are JSONB (->) and
Text (->>). As a result, the storage of the right type would reduce
the performance if the access needs to cast to Text.

The database user usually casts the access result to the desired
type, e.g., x->>’key’::Integer. Our system analyzes the cast and,
if possible, directly returns the correct result type instead of the
string representation. Otherwise, it parses the value as Text and
performs the cast afterwards.
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Figure 7: External competitors with all 32 threads.

Table 1: Execution times for all TPC-H queries in seconds.
PG. Spark Hyper Umbra

Mongo Parquet JSON JSONB Sinew Tiles

1 5.276 14.297 1.939 1.950 1.725 0.178 0.122 0.030
2 > 100 23.383 2.735 1.370 1.608 0.584 0.637 0.035
3 17.905 15.892 1.288 0.560 0.675 0.280 0.259 0.030
4 3.013 10.439 1.755 0.539 0.692 0.227 0.228 0.026
5 87.468 22.659 2.072 > 100 1.340 0.372 0.326 0.045
6 1.259 14.896 0.690 0.244 0.254 0.119 0.085 0.010
7 > 100 21.035 2.554 3.111 1.177 0.429 0.351 0.103
8 > 100 26.608 1.814 1.156 1.469 0.474 0.416 0.062
9 > 100 23.688 3.939 1.728 2.576 0.395 0.370 0.153
10 > 100 21.967 2.003 0.984 1.362 0.388 0.294 0.067
11 > 100 23.444 0.809 0.829 1.070 0.344 0.353 0.068
12 1.493 18.783 1.316 0.419 0.450 0.286 0.289 0.061
13 5.570 10.597 2.146 0.683 0.665 0.149 0.291 0.044
14 1.502 9.552 0.734 0.343 0.392 0.171 0.142 0.017
15 9.105 19.024 1.306 0.339 0.399 0.211 0.185 0.018
16 4.220 15.119 2.693 0.898 0.629 0.201 0.273 0.048
17 > 100 16.379 1.381 0.605 0.567 0.173 0.091 0.026
18 86.167 14.861 1.849 1.388 0.949 0.260 0.179 0.050
19 1.290 33.885 0.970 0.363 1.834 0.213 0.170 0.057
20 > 100 20.234 1.613 0.787 0.974 0.355 0.348 0.042
21 12.372 39.236 3.517 1.415 1.787 0.615 0.479 0.103
22 2.060 11.306 3.135 0.529 0.566 0.172 0.180 0.016

6 EXPERIMENTAL EVALUATION
We integrated JSON tiles into our high-performance relational data-
base system Umbra that supports SQL, columnar storage, and effi-
cient memory management [23, 47]. We compare it with the follow-
ing industrial-strength database systems: PostgreSQL (12.4) with its
binary JSONB format, Tableau Hyper (0.11556) with its JSON format
(no binary JSON available), Apache Spark (3.0) with Apache Parquet
(Dremel), and Apache Spark with MongoDB (3.6). Because MongoDB
does not support joins, Spark is used to schedule the queries. The
mandatory sampling of the MongoDB data is not accounted.

Besides this system-wide comparison, we also integrated a num-
ber of prior JSON handling proposals into our system (sharing
the optimizer and query engine): human-readable JSON format,
our binary JSONB representation as described in Section 5, Sinew,
which extracts the whole table with the original proposed 60% table-
frequency using our JSONB format, and JSON tiles with JSONB.
Unless otherwise noted, we use the tile size 210, partition size 8,
and extraction threshold 60%.

All experiments were performed on an AMDRyzen Threadripper
1950X (16 cores, 32 threads) with 64GB ofmainmemory. The system
runs Ubuntu 20.04 and uses a Samsung 850 Pro SSD (2TB).
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Figure 8: Scalability of internal competitors.

6.1 Combined TPC-H JSON
Our initial experiments are based on TPC-H. As this benchmark is
based on a relational schema, we first explain the steps necessary
to convert the data to JSON. Queries are modified similarly to the
example query shown in Section 4.2. We modify TPC-H such that
every row of each table is represented as a JSON object with the
column names as the keys of the object. Thus, each JSON document
contains the schema of the table and the values of one row. To simu-
late a combined log data workload with different JSON documents,
we combine the different structures of these multiple relations into
a single one. Although the documents are adapted in JSONized
TPC-H, the queries return the same result as queries executed on
the original TPC-H relations. Data loading is performed in parallel
and uses all cores which leads to an imperfect insertion order.

In the following, we focus on chokepoints for TPC-H, which
have been elaborated by previous work [11, 21]. Therefore, the
results of the queries Q1 (expression calculation & aggregation),
Q3 (join & aggregation), and Q18 (join) are shown in detail. The
execution times of all TPC-H queries are shown in Table 1.

Query 1 only accesses items of the original lineitem table and
performs low-cardinality aggregations with expensive expression
calculations. As visually illustrated in Figure 7, our approach is
an order of magnitude faster than Spark with Parquet and Hyper,
which are both able to leverage a large fraction of the available
cores. In comparison to other approaches within Umbra, visualized
in Figure 8, we are able to speed up the computation by a factor
of 3. As Query 1 relies on date expressions, our date and time
optimization helps to significantly outperform Sinew. Umbra scales
with a rising number of cores despite executing a single pipeline.

On the other hand, Query 18 joins multiple original tables with
groups, and is therefore a chokepoint for join and high-cardinality
aggregation performance. PostgreSQL uses a sub-optimal join or-
der which results in very low performance. Although the lineitem
columns accessed by the query are extracted with Sinew, the query
performance is 4× slower than JSON tiles. This is a result of the
missing information on cardinalities and the non-materialized tu-
ples of customer and order data. Query 3 contains an expensive
aggregation and performs joins. Our approach dominates all others
since the optimal join order is computed and all lineitem fields are
materialized.

6.2 Combined Yelp
To confirm the findings of the TPC-H benchmark, we test additional
queries on the real-world Yelp data set (∼9 GB) [64]. We define five
queries on top of the data to gather interesting business insights [22].
Table 2 shows the results for all Yelp queries. For example, Yelp
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Table 2: Execution times for all Yelp queries in seconds.
PG. Spark Hyper Umbra

Mongo Parquet JSON JSONB Sinew Tiles

1 15.883 9.211 1.114 1.892 6.068 0.487 0.366 0.293
2 5.121 8.582 1.868 0.454 0.813 0.191 0.163 0.044
3 > 100 > 100 > 100 > 100 3.262 0.444 0.302 0.145
4 10.961 4.774 0.188 0.296 0.843 0.105 0.013 0.013
5 49.033 8.521 1.499 1.095 2.698 0.273 0.160 0.088

Table 3: Execution times for all Twitter queries in seconds.
Spark Hyper Umbra

Mongo Parquet JSON JSONB Sinew Tiles Tiles-*

1 17.226 3.246 65.381 8.319 0.419 0.255 0.116 0.116
2 5.517 1.100 1.262 4.510 0.181 0.191 0.091 0.091
3 1.881 1.336 > 100 > 100 0.191 0.204 0.215 0.017
4 28.860 4.139 1.401 23.749 0.229 0.212 0.206 0.022
5 17.095 2.542 1.603 2.802 0.164 0.049 0.057 0.058

Query 4 counts the number of reviews in groups of stars. Because
the number of reviews is large, Sinew also materializes all fields
needed for this query. The performance of our approach and Sinew
is very similar in this example, which results from the extraction
of the star rating. Although this is one of the best cases for Sinew,
our approach is able to slightly increase the performance, which
highlights the small static overhead per JSON tile. JSON tiles has a
higher throughput due to the skipping defined in Section 4.8.

6.3 Twitter
As we use Twitter as our running example, we benchmark multiple
queries on an excerpt of tweets from June 1, 2020 (∼31 GB) [22,
58]. Tiles-* combines JSON tiles with extracting high-cardinality
arrays as discussed in Section 3.5.We extract high-cardinality arrays
(hashtags, mentions) and store them in an additional JSON tiles
relation. Queries join these relations with the original Twitter table.

Query 1 selects the tweets of the most influential users of the
day. Although the user object is mandatory in tweets and extracted
by both Tiles and Sinew, we are able to outperform the competitors.
The deleted tweets of each user are aggregated with query 2. Dele-
tions use a different JSON structure that is not frequent globally.
This structure is reordered and can be materialized in some tiles.

Query 3 selects tweets that mention @ladygaga (user_mentions
array), and query 4 selects tweets that include the hashtag #COVID
(hashtags array). As both rely on the extraction of high-cardinality
arrays, only a subset of the items is materialized within JSON tiles.
JSON Tiles-* outperforms all competitors by joining the matching
high-cardinality arrays with the base Twitter data.

Table 4: Geo-mean of Twitter.

JSON JSONB Sinew Tiles Tiles-*

Twitter 11.803 0.258 0.239 0.122 0.054
Changing 11.683 0.236 0.182 0.115 0.054

Table 4 shows
the geo-mean run-
time on a data set
that changes its
tweet structure as
described in Sec-

tion 2.2 [22, 61]. As the changes in the JSON structure reduce the
number of matches, most systems have an improved geometric
mean. JSON tiles can easily adopt to unseen access keys and does
not introduce null values if an access path is absent.

Partition size 1 84 16

0.10

0.14

0.18

28 210 212 214 216 218

Tile size [log]

G
eo

-m
ea

n 
qu

er
y

Figure 10: Geometric Mean
of shuffled TPC-H.
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Figure 12: Yelp Geo-mean.
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Figure 13: Tweet Geo-mean.

6.4 Shuffled TPC-H
To demonstrate the robustness of our novel partitioning algo-
rithm, we manually shuffled the TPC-H table before loading.
Thus, during the insertion no local tuple patterns are retained.
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Figure 9: Shuffled
TPC-H Geo-mean.

JSON tiles with a partitioning of 8
and a tile size of 210 is able to reduce
the query runtime significantly. Fig-
ure 9 shows the geometric mean of the
shuffled TPC-H benchmark. The JSON
string representation has poor perfor-
mance due to the parsing needed for
every document. Although JSONB and
Sinew are able to significantly increase
performance, JSON tiles can further im-
prove on these results by a factor of 4x.

6.5 Tile and Partition Size
The choice of the tile and partition size has impact on the insertion
time and materialization quality. The following experiments show
how to find robust values for these settings.

Figures 10, 12, and 13 show the different choices and the resulting
geometric mean for the respective workloads. The more partitions
are enabled, the better the reordering. Even in naturally ordered
data sets (e.g., Yelp and sequential TPC-H), the parallel insertion into
our database (32 threads) creates outliers and imperfect data. Hence,
the reordering is also beneficial there. Considering the insertion
performance, Figure 11 highlights that a tile size of less than 214
and a partition size of less than or equal to 8 do not introduce any
overhead. Thus, we recommend tile size 210 and partition size 8.

6.6 Optimizations for JSON Tiles
For the TPC-H and Yelp workloads, Figure 14 shows the impact of
the optimizations discussed in Section 4.8 and 4.9. The skipping of
tiles without matches is an optimization that helps to speed compu-
tations if the number of different JSON document types is higher.
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Figure 14: Geometric means of
different optimization levels.

Because many real-
world workloads use
queries that are con-
strained by date ranges,
the extraction of date
and time is beneficial.
As Figure 14 shows,
the optimizations im-
prove the performance
considerably.

6.7 Micro Benchmark
The following micro benchmark demonstrates that our approach
has only minimal static overhead for each JSON tile while gaining
robustness. JSON tiles is able to achieve an order of magnitude
improvements in comparison to only using binary JSON documents.

To explain the overhead behavior, we choose a query that is
executed optimally by both the regular relational system and Sinew.
The query simply sums up the linenumber field. Sinew extracts the
column perfectly just like JSON tiles. The performance is shown in
Figure 15, the corresponding low-level CPU performance counters
are shown in Table 5. The benchmarks labeled with “Comb." use the
combined TPC-H, whereas the others use the original lineitem table.
Note that the relational approach cannot use combined TPC-H.

First, the materialization of JSON tiles leads to significant im-
provements over using the raw or binary optimized JSON formats.
The performance of both extraction algorithms is similar to a pure
relational TPC-Hworkload if the original lineitem table is used. The
imperfect combined data consists of outliers and different structures
because of the parallel data loading. The performance is reduced for
the extraction algorithms, however, it is still an order of magnitude
faster than when only JSONB is used. The relational table needs
32 instructions per tuple, Sinew 65, and JSON tiles 70. As this is
the perfect extraction workload for Sinew, it is expected that the
increased robustness requires some additional computations.
Table 5: Low-level performance counters for the summation
query on lineitem; normalized per tuple computed.

System Cycles Instr. Branch- L1-Miss Sec/All

Relational 17.01 31.58 0.00 0.02 0.001613
Tiles 39.33 69.82 0.02 0.18 0.002494

Sinew 32.12 65.08 0.01 0.10 0.002050
Sinew Comb. 39.07 71.73 0.03 0.10 0.003450
Tiles Comb. 50.15 74.20 0.04 0.14 0.004462

6.8 Data Loading and Storage Consumption
As our approach preprocesses the data during insertion, wemeasure
the time needed to load the data sets. Figure 17 shows the loading
times of all systems. The fastest system for TPC-H and Yelp is
Hyper, which just stores the raw JSON string in the database and
uses almost-instant data file loading [46].

Focusing on the overhead of JSON tiles, only a small reduc-
tion compared to the raw JSON and binary JSON insertion times
are noticeable. The performance drop by Sinew results from the
single-threaded frequency algorithm and the materialization of the
detected columns. For a fair comparison, Sinew eagerly extracts
the data after the insertion.
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Figure 16 breaks down the time needed for the different steps
to create JSON tiles. Most of the insertion time is spent for stor-
ing the binary JSON data. Note that the expensive creation of the
binary JSON is not measured as these steps are further up the
pipeline. Although the JSON tiles operations require computation
time, the overall loading times indicate that these computations
do not change the insertion speed significantly. For example, the
shuffled TPC-H spends a crucial amount of time on reordering,
however, Figure 11 shows that this does not result in slower overall
insertion times. Also, the insertion times do not change between
partition sizes for small tile sizes.

Table 6: Size in MB (% of JSONB).

JSON JSONB +Tiles +LZ4-Tiles

TPC-H 3092 2766 665 (24%) 317 (11%)
Yelp 8657 7809 718 (9%) 237 (3%)

Twitter 31271 24106 706 (3%) 247 (1%)

We measured the
size needed to store
JSON tiles in Table 6
to analyze the stor-
age requirements.
In our current
implementation,

JSON tiles are materialized in addition to the original JSONB data.
All benefits of JSON tiles come with only a moderate size overhead.
As TPC-H consists of few strings and many extractable columns,
the overhead is the highest there. Only 3% overhead results in
significantly improved performance for Twitter. Because the data
of JSON tiles are stored in columnar format, we can achieve strong
compression ratios. For example, LZ4 compression on JSON tiles
can further reduce storage consumption by a factor of 2-3x.

6.9 JSON Binary Formats with Nesting
As some documents cannot be extracted, we rely on a high-
performance binary JSON representation. We compare our binary
format, referred to as JSONB below, to the BSON implementation
from MongoDB’s open source C++ driver [45], and the JsonCons
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C++ CBOR implementation [49]. To demonstrate a wide variety of
complex and nested JSON documents, we use standardized JSON
files from the SIMD-JSON repository [37].

First, we analyze the serialization and deserialization perfor-
mance of the different JSON formats. Figure 18 shows the slowdown
of the other two approaches compared to our JSONB implementa-
tion. JSONB is the fastest format in all serialization workloads and
only three deserialization workloads are beneficial for CBOR.

The normalized costs for storing the JSON documents in a binary
format are shown in Figure 19. CBOR’s space requirements are the
lowest as this is used mostly to exchange messages. In comparison
to MongoDB’s BSON, our representation uses less disk space.

Our binary representation has the best lookup performance,
which is shown in Figure 20. Accessing keys within a document
requires the object to be extracted in CBOR. This reduces the access
performance significantly. Our O(𝑙𝑜𝑔(𝑛)) object key lookup is su-
perior to the linear-time algorithm of BSON. Thus, JSONB achieves
large performance gains for random accesses.

7 RELATEDWORK
Due to the increasing importance of semi-structured data, many
systems have been developed to handle different data documents.
In the following, we differentiate between database systems and
raw data processing systems.

Database Systems with JSON Support: With the rising us-
age of JSON, relational database systems integrate storage solu-
tions for these data formats. One common idea is to store and
index the data such that consequent accesses can be evaluated effi-
ciently [3, 15, 18, 33, 40, 41, 56, 62]. Sinew [57] extends PostgreSQL
with the approach of extracting data from the whole table, which
incurs robustness problems for changing or combined data. This
reduces query performance as only a certain number of keys are
extracted [51, 57]. Our system focuses on the efficient and robust
storage of JSON data to satisfy multiple user queries thereafter.

Proteus [33] builds indexes on top of JSON data to speed up
accesses. Recache accelerates processing of heterogeneous formats
by caching accesses of the data according to the query workload [8].
Other systems, such as Apache Spark [7] or Hive [59], use different
storage plugins for heterogeneous data. Apache Parquet [6] and
Avro [5] are common formats for storing JSON data. Although these
plugins are quite robust, e.g., record shredding of Dremel [42], the
performance of Spark on combined data is severely reduced.

NoSQL systems such asMongoDB [44], Couchbase [17], and Doc-
umentDB [4] store semi-structured documents directly. However,

their feature set for querying is limited and analytical (columnar)
accesses are slow as these systems are optimized for point accesses.

Raw Data Processing: Another approach of accessing JSON
files is to query raw files without explicitly loading them. After
defining the queries and providing the raw files, the system should
return the results without any loading delay [30]. Modern database
systems try to saturate the wire speed to keep the loading gap small.
Raw systems have reduced performance on multiple queries as the
data is not stored as efficiently as possible [46].

Other approaches, e.g., NoDB [2], use in-situ raw accesses [10,
16, 50] to query the raw files directly. This requires the data to
be parsed quickly. For both structured and semi-structured data,
parsers such as FAD.js, Mison or SIMD-JSON use modern CPU
properties for fast reads [12, 27, 37, 39]. Raw filters are used to
speed up the parsing and reduce the amount of data ingested into
the database [48, 63].

JSON Schema Retrieval: Inspired by the usage of JSON
Schema [31], which is a work-in-progress description language
for JSON, recent theoretical work [9, 20] has studied schema infer-
ence for JSON data. Although these approaches can describe the
inherent JSON schema accurately, the computation of the schema
file is expensive as all optional and required schema fields have
to be enumerated. Different JSON documents in large-scale data
sets can further decrease the performance, as the existence of many
optional fields makes it harder to choose the right fields to extract.

8 CONCLUSION
We presented JSON tiles, a collection of algorithms and techniques
for deeply integrating high-performance JSON support into re-
lational database systems. High scan performance is achieved by
extracting the frequent parts of the data into chunks of materialized
JSON data. During the materialization we collect statistics about the
data so that the query optimizer of the RDBMS is able to find good
query plans. The materialized chunks are robust to heterogeneous
data as we find globally and locally frequent structures. We further
infer data types from the textual representation. If attributes cannot
be extracted, we use an optimized binary format for JSON so that
object lookups are in logarithmic time of the keys within an object.
The experimental evaluation shows that our approach is an order
of magnitude faster on imperfect and combined workloads, without
adding any significant overhead to perfectly-structured data.

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286).
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PAPER P4
Experimental Study of Memory Allocation
for High-Performance Query Processing

Synopsis. Modern database engines can improve query processing by an order
of magnitude compared to traditional database systems. Components that were
not of concern in legacy systems are becoming performance bottlenecks, such as
memory allocation. Because modern systems rely on temporary data structures,
such as hash tables, a considerable number of short-living memory of varying
sizes is allocated. The large number of memory operations affect performance
and are visible in performance profiling. Since modern servers have hundreds
of general-purpose cores, simultaneously handling multiple memory operations
is crucial.

Memory allocators sit in between the operating system and the database system.
They use different strategies for allocating and deallocating; for example, de-
layed return of memory to the operating system for higher subsequent accesses.
Naturally, the choice of the memory allocator strategy influences query process-
ing. The paper classifies allocators based on their performance overhead, the
scalability on large systems, the memory fairness to other processes, and the
overall memory usage.

This paper performs the first comprehensive analysis of the impact of memory
allocation on high-performance query processing. It examines five different
memory allocators within the modern database system Umbra on analytical
workloads, such as TPC-DS and TPC-H. After discussing the observed alloca-
tion patterns of the workload, different experiments analyze the four allocator
characteristics. Uniform and exponentially distributed workloads simulate re-
alistic workloads on three different servers (up to 4 NUMA nodes). Somewhat
surprisingly, the results show that the choice of memory allocator significantly
impacts performance characteristics. The paper recommends using jemalloc as
the default memory allocator because it is the most versatile allocator in terms
of performance, scalability, memory fairness, and memory efficiency.

Contributions. Dominik Durner contributed substantially to the content of
the paper, in particular concerning the development of the proposed ideas, the
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implementation of the system, the evaluation, and authoring substantial parts
of the paper.
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ABSTRACT
Somewhat surprisingly, the behavior of analytical query en-
gines is crucially affected by the dynamic memory alloca-
tor used. Memory allocators highly influence performance,
scalability, memory efficiency and memory fairness to other
processes. In this work, we provide the first comprehensive
experimental study that analyzes and explains the impact of
memory allocation for high-performance query engines. We
test five state-of-the-art dynamic memory allocators and dis-
cuss their strengths and weaknesses within our DBMS. The
right allocator can increase the performance of TPC-DS (SF
100) by 2.7x on a 4-socket Intel Xeon server.

1. INTRODUCTION
Modern high-performance query engines are orders of mag-

nitude faster than traditional database systems. As a result,
components that hitherto were not crucial for performance
may become a performance bottleneck. One such compo-
nent is memory allocation. Most modern query engines are
highly parallel and heavily rely on temporary hash-tables for
query processing which results in a large number of short liv-
ing memory allocations of varying size. Memory allocators
therefore need to be scalable and be able to handle myri-
ads of small and medium sized allocations as well as several
huge allocations simultaneously. As we show in this paper,
memory allocation has become a large factor in overall query
processing performance.

New hardware trends exacerbate the allocation issues. The
development of multi- and many-core server architectures
with up to hundred general purpose cores is a distinct chal-
lenge for memory allocation strategies. Due to the increased
number of pure computation power, more active queries are
possible. Furthermore, multi-threaded data structure imple-
mentations lead to dense and simultaneous access patterns.
Because most multi-node machines rely on a non-uniform
memory access (NUMA) model, requesting memory from a
remote node is particularly expensive.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and ADMS 2019.
10th International Workshop on Accelerating Analytics and Data Manage-
ment Systems (ADMS’19), August 26, 2019, Los Angeles, California, CA,
USA.
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Figure 1: Execution of a given query set on TPC-DS (SF
100) with different allocators.

Therefore, the following goals should be accomplished by
a dynamic memory allocator:

Performance: Minimize the overhead for malloc and free.
Scalability : Reduce overhead for multi-threaded allocs.
Memory Fairness: Give freed memory back to the OS.
Memory Efficiency : Reduce memory consumption.

In this paper, we perform the first comprehensive analysis
that highlights and explains the impact of memory alloca-
tion in modern database systems. We evaluate different ap-
proaches to the aforementioned dynamic memory allocator
requirements. Although memory allocation is on the critical
path of query processing, no empirical study on different dy-
namic memory allocators for in-memory database systems
has been conducted [1].

Figure 1 shows the effects of different allocation strate-
gies on TPC-DS with scale factor 100. We measure memory
consumption and execution time with our multi-threaded
database system on a 4-socket Intel Xeon server. In this ex-
periment, our DBMS executes the query set sequentially us-
ing all available cores. Even this relatively simple workload
already results in significant performance and memory usage
differences. Our database linked with jemalloc can reduce
the execution time to 1

2
in comparison to linking it with the

standard malloc of glibc 2.23. Moreover, the used average
and peak memory consumption of the allocators vary highly.
Although the resident memory consumption seems high for
TCMalloc, it already gives back the memory to the operating

1



system lazily. Consequently, the allocation strategy is cru-
cial to the performance and memory consumption behavior
of in-memory database systems.

The remainder of this paper is structured as follows: Af-
ter discussing related work in Section 2, we describe the
used allocators and their most important design details in
Section 3. Section 4 highlights important properties of our
research DBMS “umbra” and analyzes the executed work-
load according to its allocation pattern. Our comprehensive
experimental study is evaluated in Section 5. Section 6 sum-
marizes our findings.

2. RELATED WORK
Ferreira et al. [9] analyzed dynamic memory allocators for

a variety of multi-threaded workloads. However, the study
considers only up to 4 cores. Therefore, it is hard to predict
the scalability for today’s many-core systems.

In-memory DBMS and analytical query engines, such as
HyPer [15], SAP HANA [20], and Quickstep [23] are built to
utilize as many cores as possible to speed up query process-
ing. Because these system rely on allocation-heavy opera-
tors (e.g., hash joins, aggregations), a revised experimental
analysis on the scalability of the state-of-the-art allocators
is needed. In-memory hash joins and aggregations can be
implemented in many different ways which can influence the
allocation pattern heavily [2, 3, 26, 17].

Some online transaction processing (OLTP) systems try
to reduce the allocation overhead by managing their allo-
cated memory in chunks to increase performance for small
transactional queries [25, 24, 5]. However, many database
systems process both transactional and analytical queries.
Therefore, the wide variety of memory allocation patterns
for analytical queries needs to be considered as well. Cus-
tom chunk memory managers help to reduce memory calls
for small allocations but larger chunk sizes trade memory
efficiency in favor of performance. Thus, our database sys-
tem uses transaction-local chunks to speed up small allo-
cations. Despite these optimizations, allocations are still a
performance issue. Hence, the allocator choice is crucial to
maximize throughput.

Preliminary results showed that memory allocation indeed
has impact on the performance of query engines [4]. In this
study, we analyze and explain the effects of different allo-
cation strategies in order to understand all strengths and
weaknesses of current allocators on modern hardware.

With the development of non-volatile memory (NVM),
new allocation requirements were introduced. Foremost,
the defragmentation and safe release of unused memory is
important since all changes are persistent. New dynamic
memory allocators for these novel persistent memory sys-
tems have been developed and experimentally studied [22].
However, regular allocators outperform these NVM alloca-
tors in most workloads due to fewer memory constraints.

3. MEMORY ALLOCATORS
In this section, we discuss the five different allocation

strategies used for our experimental study. We explain the
basic properties of these algorithms according to memory
allocation and freeing. The tested state-of-the-art alloca-
tors are available as Ubuntu 18.10 packages. Only the glibc
malloc 2.23 implementation is part of a previous Ubuntu

package. Nevertheless, this version is still used in many cur-
rent distributions such as the stable Debian release.

Memory allocation is strongly connected with the oper-
ating system (OS). The mapping between physical and vir-
tual memory is handled by the kernel. Allocators need to
request virtual memory from the OS. Traditionally, the user
program asks for memory by calling the malloc method of
the allocator. The allocator either has memory available
that is unused and suitable or needs to request new memory
from the OS. For example, the Linux kernel has multiple
APIs for requesting and freeing memory. brk calls can in-
crease and decrease the amount of memory allocated to the
data segment by changing the program break. mmap maps
files into memory and implements demand paging such that
physical pages are only allocated if used. With anonymous
mappings, virtual memory that is not backed by a real file
can be allocated within main memory as well. The memory
allocation process is visualized below.

DBMS Allocator OS
malloc
free

 mmap/brk
munmap/brk

Besides freeing memory directly with the aforementioned
calls, the memory allocator can opt to release memory with
MADV FREE (since Linux Kernel 4.5). MADV FREE indicates
that the kernel is allowed to reuse this memory region. How-
ever, the allocator can still access the virtual memory ad-
dress and either receives the previous physical pages or the
kernel provides new zeroed pages. Only if the kernel reas-
signs the physical pages, new ones need to be zeroed. Hence,
MADV FREE reduces the number of pages that require zeroing
compared to regular freeing since the old pages might be
reused by the same process.

3.1 malloc 2.23
The standard glibc malloc implementation is derived from

ptmalloc2 which originated from dlmalloc [19]. It uses
chunks of various sizes that exist within a larger memory
region known as the heap. malloc uses multiple heaps that
grow within their address space.

For handling multi-threaded applications, malloc uses are-
nas that consist of multiple heaps to speed up simultaneous
accesses. At program start the main arena is created and
additional arenas are chained with previous arena pointers.
The arena management is stored within the main heap of
that arena. Additional arenas are created with mmap and
are limited to eight times the number of CPU cores. For
every allocation, an arena-wide mutex needs to be acquired.
Within arenas free chunks are tracked with free-lists. Only if
the top chunk (adjacent unmapped memory) is large enough,
memory will be returned to the OS.

arena_ptr arena_ptr
previous_ptr previous_ptr

sizesize
arena

management

chunks

chunks

top chunk

main heap heap #2

malloc is aware of multiple threads but no further multi-
threaded optimizations, such as thread locality or NUMA
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awareness, is integrated. It assumes that the kernel handles
these issues.

3.2 malloc 2.28
A thread-local cache (tcache) was introduced with glibc

v2.26 [18]. This cache requires no locks and is therefore a
fast path to allocate and free memory. If there is a suitable
chunk in the tcache for allocation, it is directly returned
to the caller bypassing the rest of the malloc routine. The
deletion of a chunk works similarly. If the tcache has a free
slot, the chunk is stored within it instead of immediately
freeing it.

3.3 jemalloc 5.1
jemalloc was originally developed as scalable and low

fragmentation standard allocator for FreeBSD. Today, it is
used as the default allocator for a variety of applications
such as Facebook, Cassandra and Android. It differenti-
ates between three size categories - small (< 16KB), large
(< 4MB) and huge. These categories are further split into
different size classes. It uses arenas that act as completely
independent allocators. Arenas consist of chunks that allo-
cate multiples of 1024 pages (4MB). jemalloc implements
low address reusage for large allocations to reduce fragmen-
tation. Low address reusage, which basically scans for the
first large enough free memory region, has similar theoreti-
cal properties as more expensive strategies such as best-fit.
jemalloc tries to reduce zeroing of pages by deallocating
pages with MADV FREE instead of unmapping them. Most
importantly, jemalloc purges dirty pages decay-based with
a wall-clock (since v4.1) which leads to a high reusage of
recently used dirty pages. The decay-based reclaiming frees
pages that were not accessed for a certain time which is
illustrated in the figure below. Consequently, the unused
memory will be purged if not requested anymore to achieve
memory fairness [6, 7].

time
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em
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y

real

decay-based

3.4 TBBmalloc 2017 U7
Intel’s Threading Building Blocks (TBB) allocator is based

on the scalable memory allocator McRT [12]. It differentiates
between small, quite large, and huge objects. Huge objects
(≥ 4MB) are directly allocated and freed from the OS. Small
and large objects are organized in thread-local heaps with
chunks stored in memory blocks.

Memory blocks are memory mapped regions that are mul-
tiples of the requested object size class and inserted into the
global heap of free blocks. Freed memory blocks are stored
within a global heap of abandoned blocks. If a thread-local
heap needs additional memory blocks, it requests the mem-
ory from one of the global heaps. Memory regions are un-
mapped during coalescing of freed memory allocations if no
block of the region is used anymore [16, 14].
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Figure 2: Allocations in TPC-DS (SF 100, serial execution).

3.5 TCMalloc 2.5
TCMalloc is part of Google’s gperftools. Each thread has

a local cache that is used to satisfy small (≤ 256KB) allo-
cations. Large objects are allocated in a central heap using
8KB pages.
TCMalloc uses different allocatable size classes for the

small objects and stores the thread cache as a singly linked
list for each of the size classes. Medium sized allocations
(≤ 1MB) use multiple pages and are handled by the central
heap. If no space is available, the medium sized allocation
is treated as a large allocation. For large allocations, spans
of free memory pages are tracked within a red-black tree. A
new allocation just searches the tree for the smallest fitting
span. If no span is found, the memory is allocated from the
kernel [10].

Unused memory is freed with the help of MADV FREE calls.
Small allocations are garbage collected if the thread-local
cache exceeds a maximum size. Freed spans are immedi-
ately released since the “aggressive decommit” option was
enabled (starting with version 2.3) to reduce memory frag-
mentation [11].

4. DBMS AND WORKLOAD ANALYSIS
Decision support systems rely on analytical queries that

gather information from a huge dataset by joining different
relations for example. In in-memory query engines joins
are often scheduled physically as hash joins resulting in a
large number of smaller allocations. In the following, we
use a database system that uses pre-aggregation hash tables
to perform multi-threaded group bys and joins [17]. Our
DBMS has a custom transaction-local chunk allocator to
speed up small allocations of less than 32KB. We store small
allocations in chunks of medium sized memory blocks. Since
only small allocations are stored within chunks, the memory
efficiency footprint of these small object chunks is marginal.
Additionally, the memory needed for tuple materialization
is acquired in chunks. These chunks grow as more tuples
are materialized. Thus, we already reduce the stress on the
allocator significantly while preserving memory efficiency.

The TPC-H and TPC-DS benchmarks were developed to
standardize common decision support workloads [21]. Be-
cause TPC-DS contains a larger workload of more complex
queries than TPC-H, we focus on TPC-DS in the following.
As a result, we expect to see a more diverse and challeng-
ing allocation pattern. TPC-DS describes a retail product
supplier with different sales channels such as stores and web
sales.

In the following, we statistically analyze the allocation
pattern for TPC-DS executing all queries without rollup and
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Figure 3: Memory consumption over time (4-socket Xeon,
λ=1.25 q/s, SF 100).

window functions. Note that the specific allocation pattern
depends on the discussed implementation choices of the join
and group by operators.

Figure 2 shows the distribution of allocations in our sys-
tem for TPC-DS with scale factor 100. The most frequent
allocations are in the range of 32KB to 512KB. Larger mem-
ory regions are needed to create the bucket arrays of the
chaining hash tables. The huge amount of medium sized al-
locations are requested to materialize tuples using the afore-
mentioned chunks.

Additionally, we measure which operators require the most
allocations. The two main consumer are group by and join
operators. The percentage of allocations per operator for
a sequential execution of queries on TPC-DS (SF 100) is
shown in the table below:

Group By Join Set Temp Other

By Size 61.2% 25.7% 4.3% 8.4% 0.4%
By Count 77.9% 11.7% 8.5% 1.8% 0.1%

To simulate a realistic workload, we use an exponentially
distributed workload to determine query arrival times. We
sample from the exponential distribution to calculate the
time between two events. An independent constant average
rate λ defines the waiting time of the distribution. In com-
parison to a uniformly distributed allocation pattern, the
number of concurrently active transactions varies. Thus, a
more diverse and complex allocation pattern is created. The
events happen within an expected time interval value of 1/λ
and variance of 1/λ2. The executed queries of TPC-DS are
uniformly distributed among the start events. Due to the
usage of the same query-set and query arrival rates, we are
able to test all allocators on the same real-world alike work-
loads.

Our main-memory query engine allows up to 10 transac-
tions to be active simultaneously. If more than 10 transac-
tions are queried, the transaction is delayed by the scheduler
of our DBMS until the active transaction count is decreased.
Due to intra-query parallelization, all cores of the system are
utilized even with a reduced number of concurrent transac-
tions.
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Figure 4: Total query latency and wait time (4-socket Xeon,
λ=1.25 q/s, SF 100).

5. EVALUATION
In this section, we evaluate the five allocators on three

hardware architectures with different workloads. We show
that the approaches have significant performance and scala-
bility differences. Additionally, we compare the allocator
implementations according to their memory consumption
and release strategies which shows memory efficiency and
memory fairness to other processes.

We test the allocators on a 4-socket Intel Xeon E7-4870
server (60 cores) with 1 TB of main memory, an AMD
Threadripper 1950X (16 cores) with 64 GB main memory
(32 GB connected to each die region), and a single-die Intel
Core i9-7900X (10 cores) server with 128 GB main mem-
ory. All three systems support 2-way hyperthreading. These
three different architectures are used to analyze the behav-
ior in terms of the allocators’ ability to scale on complex
multi-socket NUMA systems. To avoid effects of loading
the database into main memory, we use the second run of
each workload to generate the execution graphs.

This section begins with a detailed analysis of a realistic
workload on the 4-socket server. We continue our evaluation
by scheduling a reduced and increased number of transac-
tions to test the allocators’ performance in varying stress
scenarios. An experimental analysis on the different archi-
tectures gives insights on the scalability of the five malloc
implementations. An evaluation of the memory consump-
tion and the memory fairness to other processes concludes
this section.

5.1 Memory Consumption and Query Latency
The first experiment measures an exponentially distributed

workload to simulate a realistic query arrival pattern on the
4-socket Intel Xeon server. Figure 3 shows the memory con-
sumption over time for TPC-DS (SF 100) and a constant
query arrival rate of λ = 1.25 q/s. Although the same
workload is executed, very different memory consumption
patterns are measured. TBBmalloc and jemalloc release
most of their memory after query execution. Both malloc

implementations hold a minimum level of memory which in-
creases over time. TCMalloc releases its memory accurately
with MADV FREE which is not visible by tracking the system
provided resident memory of the database process. Due to
huge performance degradations for tracking the lazy free-
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Allocator Local Remote Total Page Fault

malloc 2.28 63B 172B 236B 41M
100% 100% 100% 100%

jemalloc 120% 97% 103% 400%
TBBmalloc 121% 97% 103% 516%
TCMalloc 106% 105% 104% 153%
malloc 2.23 103% 100% 101% 139%

Table 1: NUMA-local and NUMA-remote DRAM accesses
and OS page faults (4-socket Xeon, λ=1.25 q/s, SF 100).

ing of memory, we show the described release behavior of
TCMalloc in Section 5.4 separately. However, the overall
performance is reduced due to an increased number of ker-
nel calls.

For an in-depth performance analysis, the query and wait
latencies of the individual queries are visualized in Figure 4.
Although the overall runtime is similar between different
allocators, the individual query statistics show that only
jemalloc has minor wait latencies. TBBmalloc and jemalloc

are mostly bound by the actual execution of the query.
On the contrary, both glibc malloc implementations and
TCMalloc are dominated by the wait latencies. Thus, our
database linked with the later allocators cannot process the
queries fast enough to prevent query congestion. Query con-
gestion results from the bound number (10) of concurrently
scheduled transactions that our scheduler allows to be exe-
cuted simultaneously.

Because of these huge performance differences, we mea-
sure NUMA relevant properties to highlight advantages and
disadvantages of the algorithms. Table 1 shows page faults,
local and remote DRAM accesses. All measurements are
normalized to the current standard glibc malloc 2.28 im-
plementation for an easier comparison. The two fastest al-
locators have more local DRAM accesses and significantly
more page faults, but have a reduced number of remote ac-
cesses. Note that the system requires more remote DRAM
accesses due to NUMA-interleaved memory allocations of
the TPC-DS base relations. Thus, the highly increased
number of local accesses change the overall number of ac-
cesses only slightly. Minor page faults are not crucially
critical since both jemalloc and TBBmalloc release and ac-
quire their pages frequently. These minor page faults can
be handled without disk I/O such as a request for a zeroed
page [8]. Consequently, remote accesses for query process-
ing are the major performance indicator. Because TCMalloc

reuses MADV FREE pages and therefore avoids unnecessary ze-
roing of pages, the number of minor page faults remains
small.

5.2 Performance with Varying Stress Levels
In the previous workload, only two allocators were able to

efficiently handle the incoming queries. This section evalu-
ates the effects for a varying constant rate λ. We analyze
two additional workloads that use the rates λ = 0.63 and
λ = 2.5 queries per second. Thus, we respectively increase
and decrease the average waiting time before a new query is
scheduled by a factor of 2.

Figure 5 shows the query latencies of the three work-
loads. The results for the reduced and increased waiting
times confirm the previous observations. The allocators
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Figure 5: Query latency distributions for different query
rates (4-socket Xeon, SF 100).

have the same respective latency order in all three exper-
iments. jemalloc performs best again for all workloads,
followed by TBBmalloc.

All query latencies are dominated by the wait latencies in
the λ = 2.5 workload due to frequent congestions. With an
increased waiting time (λ = 0.63) between queries, the glibc
malloc 2.28 implementation is able to reduce the median
latency to a similar level as TBBmalloc. However, the query
latencies within the third quantile vary vastly. TCMalloc

and malloc 2.23 are still not able to process the queries
without introducing long waiting periods.

5.3 Scalability
After analyzing the allocators’ perfromance on the 4-socket

Intel Xeon architecture, this section focuses on the scalabil-
ity of the five dynamic memory allocators. We execute an
exponentially distributed workload with TPC-DS (SF 10)
on the NUMA-scale 60 core Intel Xeon server, the 16 core
AMD Threadripper (two die regions), and the single-socket
10 core Intel Skylake X.

Figure 6 shows the memory consumption during the work-
load execution. Since the AMD Threadripper has a very
similar memory consumption pattern to the Intel Skylake
X, we only show the 4-socket Intel Xeon and the single-
socket Intel Skylake. Most notable are the differences of
both glibc malloc implementations. These two allocators
have a very long initialization phase on the 4-socket system,
but are able to allocate their initial memory as fast as the
other ones on the single-socket system. Due to more cores
and the resulting different access pattern, the decay-based
deallocation pattern of jemalloc differs slightly in the be-
ginning. However, jemalloc’s decay-based purging reduces
the memory consumption on both architectures consider-
ably. TCMalloc cannot process all queries in the same time
frame as the other allocators on the 4-socket system whereas
it finishes at the same time on Skylake.

Especially the query latencies differ vastly between the
architectures. In Figure 7, we show the latencies for the
λ = 6 q/s workload. The more cores are utilized, the larger
are the latency differences between the allocators. On the
single-socket Skylake X, all the allocators have very similar
performance. Besides having more cores, AMD’s Thread-
ripper uses two memory regions which requires a more ad-
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Figure 6: Memory consumption over time (λ=6 q/s, SF 10).
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Figure 7: Query latencies (λ=6 q/s, SF 10).

vanced placement strategy to obtain fast accesses. In par-
ticular, TCMalloc and malloc 2.23 without a thread-local
cache have a reduced performance. The latency variances
are reduced on the Threadripper but the overall latencies
are worse in comparison to the Skylake architecture.

Yet, the most interesting behavior is introduced by the
multi-socket Intel Xeon. It has both the best and worst
overall query performance. jemalloc and TBBmalloc exe-
cute the queries with the overall lowest latencies and small-
est variance. On the other hand, TCMalloc is worse by more
than 10x in comparison to any other allocator. Both glibc
implementations have a similar median performance but in-
cur high variance such that a reliable query time prediction
is impossible.

To substantiate our findings that remote accesses and
large amount of cores are the major drivers, we evaluate the
queries on a single-socket of the Intel Xeon server. We use
numactl to bind the memory to the same region as the 30
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Figure 8: Query latencies (λ=6 q/s, SF 10).

peak total average total
Allocator request measured1 request measured

TCMalloc 55.7 GB 58.1 GB 17.8 GB 53.7 GB
malloc 2.23 61.4 GB 61.0 GB 26.2 GB 41.3 GB
malloc 2.28 61.5 GB 62.6 GB 20.2 GB 42.5 GB
TBBmalloc 55.7 GB 55.7 GB 15.9 GB 27.9 GB
jemalloc 58.6 GB 59.4 GB 11.1 GB 24.7 GB

Table 2: Memory usage (4-socket Xeon, λ=1.25 q/s, SF100).

threads used for execution. Figure 8 shows that the single-
socket execution on our large system behaves similarly to
the single-socket Skylake X.

The experiments show that both jemalloc and TBBmalloc

are able to scale to large systems with many cores. TCMalloc,
on the other hand, has significant performance loss on larger
servers.

To validate our findings, we evaluate a subset of the queries
on MonetDB 11.31.13 [13]. We observe a performance boost
by using jemalloc on MonetDB; however, the differences
are smaller because our DBMS parallelizes better and thus
utilizes more cores.

5.4 Memory Fairness
Because DBMS often run alongside other processes on a

single server, it is necessary that the query engines are fair
to other processes. In particular, the memory consumption
and the memory release pattern are good indicators of the
allocators’ memory fairness.

Our DBMS is able to track the allocated memory regions
with almost no overhead. Hence, we can compare the mea-
sured process memory consumption with the requested one.
The used memory differs between the allocators due to the
performance and scalability properties although we execute
the same set of queries. Table 2 shows the peak and av-
erage memory consumption for the λ = 1.25 q/s workload
(SF 100) on the 4-socket Intel Xeon. We use the requested
peak and average total memory consumption as the mem-
ory efficiency indicator of the allocators. The peak memory

1Due to chunk-wise allocation with unfaulted pages and
measurement delays the measured amount of memory can
be slightly smaller than the requested one.
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Figure 9: Memory consumption over time with subtracted
MADV FREE pages (λ=6 q/s, SF 10).
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Figure 10: Memory consumption (λ=12 q/s, TPC-H SF 10).

consumption is similar for all tested allocators. On the con-
trary, the average consumption is highly dependant on the
used allocator. Both glibc malloc implementations demand
a large amount of average memory. jemalloc requires less
average memory than TBBmalloc. However, the DBMS re-
quested average memory is also higher for the allocators with
increased memory usage. The higher average consumption
results from an overall shorter execution time. Although the
consumption of TCMalloc seems to be higher, it actually uses
less memory than the other allocators. This results from
the direct memory release with MADV FREE. The tracking of
MADV FREE calls on the 4-socket Intel Xeon is very expensive
and would introduce many anomalies for both performance
and memory consumption. Therefore, we analyze the mad-
vise behavior on the single-socket Skylake X that is only
affected slightly by the MADV FREE tracking. The memory
consumption with the λ = 6 q/s workload (SF 10) is shown
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Figure 11: Query latencies (λ=12 q/s, TPC-H SF 10).

in Figure 9. The only two allocators that use MADV FREE to
release memory are jemalloc and TCMalloc. The measured
average memory curve of TCMalloc follows the DBMS re-
quired curve almost perfectly. jemalloc has a 15% reduced
consumption if the MADV FREE pages are subtracted from the
used memory.

5.5 Scalability with TPC-H
To validate our scalability results on analytical queries,

we further analyze the TPC-H benchmark. We execute an
exponentially distributed TPC-H (SF 10) workload on the
NUMA-scale Intel Xeon server, the AMD Threadripper, and
the Intel Skylake X.

Figure 10 shows the memory consumption over time ex-
ecuting the TPC-H workload. Due to an increased query
rate, the allocation pattern is less smooth with TPC-H than
with TPC-DS. jemalloc purges pages according to its de-
cay strategy and the malloc implementations need an initial
start-up phase. Thus, the allocation pattern of TPC-H is
similar to the pattern of TPC-DS.

The query latencies for TPC-H are shown in Figure 11.
Similar to our previous findings, jemalloc and TBBmalloc

scale best. The allocators show only on the large Intel Xeon
system huge performance differences.

5.6 Raw Allocation
Because our DBMS uses a custom chunkwise allocator

with free-lists to speed up small allocations, we also evalu-
ate the experiments without this 2-layered allocation setup.
Every allocation request gets directly forwarded to the allo-
cator instead of using the DBMS small allocation logic.

Figure 12 shows the query latencies of the three workloads
for TPC-DS (SF 100) with direct allocator usage. jemalloc

outperforms the other allocators. In comparison to the 2-
layered allocation process, TBBmalloc cannot efficiently pro-
cess the medium sized workload anymore. The other allo-
cators behave similar, however the query latencies are in-
creased. Overall, the usage of an additional small allocation
is beneficial to reduce query processing time.

The memory consumption over time on the Intel Xeon
and the Intel Skylake is shown in Figure 13. Interestingly,
the release strategy of TBBmalloc is very different to the
experiments with our additional small allocation logic. Re-
gardless of the used system, the memory is only returned to
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the operating system at the end of the execution. TBBmalloc
stores small allocations in thread-local heaps which are held
during the execution of the query set. The other allocators
show a similar allocation pattern.

6. CONCLUSIONS
In this work, we provided a thorough experimental analy-

sis and discussion on the impact of dynamic memory alloca-
tors for high-performance query processing. We highlighted
the strength and weaknesses of the different state-of-the-art
allocators according to scalability, performance, memory ef-
ficiency, and fairness to other processes. For our allocation
pattern, which is probably not unlike to that of most high-
performance query engines, we can summarize our findings
as follows:

scalable fast mem. fair mem. efficient

TCMalloc −− ∼ ++ +
malloc 2.23 − ∼ + ∼
malloc 2.28 ∼ + − ∼
TBBmalloc + + + +
jemalloc ++ + + +

As a result of this work, we choose jemalloc as the stan-
dard allocator for our DBMS.
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Main-memory hash joins on multi-core cpus: Tuning
to the underlying hardware. In ICDE, pages 362–373,
2013.

[3] S. Blanas, Y. Li, and J. M. Patel. Design and
evaluation of main memory hash join algorithms for
multi-core CPUs. In SIGMOD, pages 37–48, 2011.

[4] D. Durner, V. Leis, and T. Neumann. On the impact
of memory allocation on high-performance query
processing. In DaMoN, pages 21:1–21:3, 2019.

[5] D. Durner and T. Neumann. No false negatives:
Accepting all useful schedules in a fast serializable
many-core system. In ICDE, 2019.

[6] J. Evans. Tick tock, malloc needs a clock [talk]. In
ACM Applicative, 2015.

[7] J. Evans. jemalloc changelog. https://github.com/
jemalloc/jemalloc/blob/dev/ChangeLog, 2018.

[8] P. Ezolt. A study in malloc: A case of excessive minor
faults. In Linux Showcase & Conference, 2001.

[9] T. B. Ferreira, R. Matias, A. Macedo, and L. B.
Araujo. An experimental study on memory allocators
in multicore and multithreaded applications. In 2011
12th International Conference on Parallel and
Distributed Computing, Applications and Technologies,
pages 92–98. IEEE, 2011.

[10] Google. Tcmalloc documentation. https://
gperftools.github.io/gperftools/tcmalloc.html,
2007.

[11] Google. gperftools repository. https://github.com/

8



gperftools/gperftools/tree/gperftools-2.5.93,
2017.

[12] R. L. Hudson, B. Saha, A. Adl-Tabatabai, and
B. Hertzberg. Mcrt-malloc: a scalable transactional
memory allocator. In ISMM, pages 74–83, 2006.

[13] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. Monetdb: Two decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull., 35(1):40–45, 2012.

[14] Intel. Threading building blocks repository.
https://github.com/01org/tbb/tree/tbb_2017,
2017.

[15] A. Kemper and T. Neumann. Hyper: A hybrid
oltp&olap main memory database system based on
virtual memory snapshots. In ICDE, pages 195–206,
2011.

[16] A. Kukanov and M. J. Voss. The foundations for
scalable multi-core software in intel threading building
blocks. Intel Technology Journal, 11(4), 2007.

[17] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: a numa-aware query
evaluation framework for the many-core age. In
SIGMOD, pages 743–754, 2014.

[18] G. C. Library. The gnu c library version 2.26 is now
available. https://sourceware.org/ml/libc-alpha/
2017-08/msg00010.html, 2017.

[19] G. C. Library. Malloc internals: Overview of malloc.

https:

//sourceware.org/glibc/wiki/MallocInternals,
2018.
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