
Technical University of Munich
TUM School of Computation, Information and Technology

Toward Automated Verification of

Dynamical Systems Using Forward and

Backward Reachability Analysis

Mark Peter Christoph Wetzlinger

Complete reprint of the dissertation approved by the TUM School of Computation,

Information and Technology of the Technical University of Munich for the award of the

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

Chair:

Prof. Dr. Francisco Javier Esparza Estaun

Examiners:

1. Prof. Dr.-Ing. Matthias Althoff

2. Prof. Dr. Goran Frehse

3. Prof. Dr. Sylvie Putot

The dissertation was submitted to the Technical University of Munich on 08.11.2023 and

accepted by the TUM School of Computation, Information and Technology on

25.04.2024.





Acknowledgments

First and foremost, I would like to thank my supervisor, Matthias Althoff, for his example,

guidance, and support over the past four years. It has been a pleasure to work with you.

Furthermore, I am grateful to the Technical University of Munich, our administrative staff Ute,

Amy, Katja, and Elisabeth, my mentor Alexander Lenz, my advised students, my colleagues,

in particular Tobias, Victor, Felix, Lukas, Hanna, Philipp, Jakob, Eivind, Alex, Hussein, and

Paul, my collaborators Alexis, Adrian, Niklas, and renowned researchers Stanley Bak and

Murat Arcak. In your individual ways, you have all helped me become a more diligent and

prudent researcher, a more concise author and teacher, and a more considerate and caring

colleague. On a personal note, I want to thank Stefan, Patrick, Johannes, Leo, Olivier, Sophie,

and Theresa; and of course, my ever-supporting family.

I gratefully acknowledge the financial support from my research projects ConVeY (DFG

GRK 2428) and justITSELF (ERC grant agreement ID: 817629); in particular, for enabling my

participation in many workshops, retreats, and conferences and for facilitating my research stay

at the University of California at Berkeley for six months, which has contributed significantly

to my professional and personal growth.

Finally, I am honored to have Goran Frehse and Sylvie Putot on my examination committee,

as your work has influenced and inspired me since the very beginning.

Munich, November 2023 Mark Wetzlinger

iii





Abstract

Life nowadays has become increasingly interwoven with cyber-physical systems, which consist

of physical components that perceive their environment and act upon it based on internal

algorithms. Examples of cyber-physical systems include autonomous driving, control of power

grids, and robotic surgery. These use cases are safety-critical, as failures can cause ecological

and economic damage or harm humans.

In this thesis, we focus on the physical behavior of cyber-physical systems, which can be

described by linear and nonlinear dynamical systems. We reason about these models using

reachability analysis, a formal method that computes all potential system behaviors under

the influence of uncertainties; we call this result the reachable set. Reachability analysis can

verify safety by showing that no unsafe behavior is reachable or falsify safety by showing that

distinct system behavior is unsafe. However, one cannot compute the exact reachable set in

general but only approximations, whose accuracy strongly depends on the parametrization of

the reachability algorithm, which ultimately decides whether safety can be determined.

Forward reachability analysis determines all future states that the system can reach. For

linear time-invariant systems, we devise a reachability algorithm that computes an arbitrarily

accurate enclosure of the reachable set, as well as a verification algorithm that automatically

verifies or falsifies a given safety specification. For nonlinear systems, we adaptively tune all

algorithm parameters to tightly enclose the reachable set, which can be used for verification in

a subsequent step. Backward reachability analysis is used to determine whether a system can

avoid an unsafe set or reach a goal set. We propose novel backward reachability algorithms for

linear time-invariant systems, which are the first to scale polynomially in the state dimension.

Our numerical evaluation shows that we can verify and falsify safety for linear systems fully

automatically up to orders of magnitude faster than comparable state-of-the-art approaches.

Furthermore, our reachability algorithm for nonlinear systems solves benchmarks without re-

quiring any manual algorithm parameter tuning as fast as other expert-tuned reachability algo-

rithms. Moreover, our backward reachability algorithms enables the analysis of linear systems

with over a thousand states for the first time. In conclusion, these contributions significantly

enhance the capabilities of reachability analysis for the purpose of safety verification.

v





Zusammenfassung

Das Leben ist heutzutage immer enger mit cyber-physischen Systemen verflochten, die mittels

physischer Komponenten die Umgebung wahrnehmen und basierend auf internen Algorithmen

handeln. Beispiele für cyber-physische Systeme umfassen autonomes Fahren, die Regelung von

Stromnetzen und chirurgische Eingriffe durch Roboter. Diese Anwendungsfälle sind allesamt

sicherheitskritisch, da Fehlverhalten ökologische und ökonomische Schäden verursachen sowie

Menschen verletzen kann.

In dieser Dissertation wird das physikalische Verhalten cyber-physischer Systeme untersucht,

das durch lineare und nichtlineare dynamische Systeme beschrieben werden kann. Hierzu wer-

den Methoden aus dem Gebiet der Erreichbarkeitsanalyse verwendet, einer formalen Methode

zur Berechnung der erreichbaren Menge, die alle möglichen Systemverhalten unter dem Einfluss

von Unsicherheiten darstellt. Mittels Erreichbarkeitsanalyse kann Sicherheit nachgewiesen wer-

den, indem gezeigt wird, dass kein unsicheres Verhalten erreichbar ist. Zudem kann Sicherheit

widerlegt werden, indem ein einzelnes Systemverhalten als unsicher identifiziert wird. Im All-

gemeinen kann die erreichbare Menge aber nicht exakt, sondern nur näherungsweise berechnet

werden. Die Genauigkeit hängt dabei stark von der Parametrisierung des Erreichbarkeitsalgo-

rithmus ab, die schlussendlich darüber entscheidet, ob Sicherheit festgestellt werden kann.

Vorwärtserreichbarkeitsanalyse bestimmt alle erreichbaren zukünftigen Zustände. Für linea-

re zeit-invariante Systeme wird in dieser Arbeit ein Erreichbarkeitsalgorithmus entworfen, der

einen beliebig genauen Einschluss der erreichbaren Menge berechnet, sowie ein Verifikations-

algorithmus, der automatisch Sicherheit nachweist bzw. widerlegt. Für nichtlineare Systeme

werden alle algorithmischen Parameter automatisch eingestellt, was zu einem engen Einschluss

der erreichbaren Menge führt, der danach zur Verifikation verwendet werden kann. Durch

Rückwärtserreichbarkeitsanalyse kann gezeigt werden, ob ein System unsicheres Verhalten ver-

meiden oder einen Zielzustand erreichen kann. In dieser Arbeit werden die ersten Rückwärts-

erreichbarkeitsalgorithmen für lineare zeit-invariante Systeme vorgestellt, die polynomiell mit

der Zustandsdimension skalieren.

Die Ergebnisse zeigen, dass Sicherheit für lineare Systeme nun vollautomatisch und um

Größenordnungen schneller als mittels vergleichbarer Ansätze vom Stand der Technik nach-

gewiesen bzw. widerlegt werden kann. Zudem löst der vorgestellte Erreichbarkeitsalgorithmus

für nichtlineare Systeme Testbeispiele ohne manuelle Einstellung algorithmischer Parameter in

vergleichbarer Zeit wie andere von Experten eingestellte Erreichbarkeitsalgorithmen. Der neue

Algorithmus für Rückwärtserreichbarkeit ermöglicht erstmals die Analyse linearer Systeme mit

über tausend Zuständen. Zusammenfassend trägt die vorliegende Arbeit deutlich zur Erweite-

rung der Fähigkeiten von Erreichbarkeitsanalyse zum Zwecke der Sicherheitsverifikation bei.

vii





Résumé

La vie quotidienne repose de plus en plus sur des systèmes cyberphysiques, c’est-à-dire des com-

posants physiques capables de percevoir leur environnement et d’y réagir de manière dictée

par des algorithmes internes. On peut citer comme exemples de systèmes cyberphysiques les

véhicules autonomes, le contrôle des réseaux électriques et les opérations chirurgicales effectuées

par des robots. Tous ces cas d’utilisation sont critiques en termes de sûreté : des dysfonctionne-

ments peuvent causer des dommages écologiques ou économiques, ou bien blesser des personnes.

Dans cette thèse, nous nous concentrons sur le comportement physique des systèmes cyber-

physiques, lequel peut être décrit par des systèmes dynamiques linéaires ou non linéaires. Nous

raisonnons sur ces modèles en utilisant l’analyse d’atteignabilité, une méthode formelle permet-

tant de calculer tous les comportements potentiels du système en présence d’incertitudes ; ce

résultat étant appelé l’ensemble atteignable. L’analyse d’atteignabilité permet de vérifier la

sûreté en montrant qu’aucun comportement non sûr n’est atteignable, ou de la falsifier en mon-

trant qu’un comportement particulier du système n’est pas sûr. En général, on ne peut calculer

que des approximations de l’ensemble atteignable, dont la précision dépend fortement du para-

métrage de l’algorithme d’atteignabilité, laquelle décide donc de la capacité à déterminer la

sûreté.

L’analyse vers l’avant détermine les états futurs atteignables par le système. Pour les systèmes

linéaires invariants en temps, nous concevons un algorithme d’atteignabilité qui calcule une en-

veloppe arbitrairement précise de l’ensemble atteignable, ainsi qu’un algorithme de vérification

qui vérifie ou falsifie automatiquement une spécification de sûreté donnée. Pour les systèmes

non linéaires, nous ajustons de façon adaptative tous les paramètres de l’algorithme pour

calculer une enveloppe précise de l’ensemble atteignable ; ces résultats peuvent ensuite être

utilisé à des fins de vérification. L’atteignabilité en arrière peut être utilisée pour déterminer

si un système peut éviter un ensemble non sûr ou atteindre un ensemble-but. Nous proposons

de nouveaux algorithmes d’atteignabilité en arrière pour les systèmes linéaires invariants en

temps, qui sont les premiers à avoir une complexité polynomiale en fonction des états.

Nos évaluations numériques montrent qu’ils permettent de vérifier et de falsifier la sûreté

pour des systèmes linéaires de façon totalement automatique, jusqu’à plusieurs ordres de gran-

deur plus rapidement que les approches comparables de l’état de l’art. De plus, notre al-

gorithme d’atteignabilité pour les systèmes non linéaires résout nos problèmes de test sans

nécessiter d’ajustement manuel des paramètres, et ce, aussi rapidement que des algorithmes

d’atteignabilité préalablement paramétrés par des experts. Enfin, nos algorithmes d’atteigna-

bilité en arrière permettent, de façon inédite, l’analyse de systèmes linéaires comportant plus

d’un millier d’états. En conclusion, ces contributions améliorent de façon significative les pos-

sibilités d’analyse d’atteignabilité pour la vérification de sûreté.

ix





Contents

Abstract v

Zusammenfassung vii

Résumé ix

1 Introduction 1

1.1 Safety Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Automated Verification Using Reachability Analysis 21

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Solution Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Discussion and Conclusion 29

3.1 Verification of Linear Systems Using Forward Reachability . . . . . . . . . . . . 29

3.2 Verification of Linear Systems Using Backward Reachability . . . . . . . . . . . 31

3.3 Verification of Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 33

List of Figures 35

Bibliography 37

A Reproduction of Publications 53

A.1 Adaptive Parameter Tuning for Reachability Analysis of Linear Systems . . . . 53

A.2 Fully Automated Verification of Linear Systems Using Inner- and Outer-Approxi-

mations of Reachable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.3 Fully-Automated Verification of Linear Systems Using Reachability Analysis

with Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.4 Backward Reachability Analysis of Perturbed Continuous-Time Linear Systems

Using Set Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.5 Adaptive Parameter Tuning for Reachability Analysis of Nonlinear Systems . . 109

A.6 Adaptive Reachability Algorithms for Nonlinear Systems Using Abstraction Er-

ror Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B Licenses 151

xi





1 Introduction

Today’s society witnesses pervasive changes in all aspects of our lives through the rise of cyber-

physical systems—physical devices enhanced by computational capabilities that act upon their

environment. Over the last decades, more potent hardware and versatile software packages have

allowed computer programs to reach previously unimaginable levels of complexity. Notable

domains that rely on these computational capabilities include computer vision, which interprets

the information obtained by camera images or videos, or trajectory planning, which determines

a path to reach a particular goal while avoiding obstacles. Integrating such algorithms into

physical devices like robots, vehicles, or drones gives rise to systems that can autonomously

operate within their environment. They determine their next action by executing an internal

algorithm that optimally decides how to fulfill their given task under the current circumstances,

known through measurements of their surroundings.

A popular example of a cyber-physical system is autonomous driving: The cyber component

is the trajectory planning algorithm that aims to steer the vehicle through traffic to a desired

destination while respecting traffic regulations, and the physical component is composed of the

sensors and actuators of the vehicle. Expected benefits of autonomous driving are the reduction

of traffic accidents and traffic jams as well as increased vehicle sharing, leading to a reduction

in harmful emissions. Another example of cyber-physical systems is a power grid, where the

principal physical components are the power plants and consumers, and the cyber components

aim to optimally adjust energy generation to the demand of the consumers while respecting

the physical limits of the power grid. Ideally, this balances the generated and consumed energy

and prevents excessive loads by self-regulating mechanisms that can quickly react to faults in

the grid. There are many more examples of cyber-physical systems, such as medical robots,

uncrewed space exploration, and human-robot collaboration.

The above examples represent safety-critical use cases, as failures may cause economic dam-

ages, ecological catastrophes, or the loss of human life. Consequently, cyber-physical systems

must operate safely to prevent harmful outcomes of their actions. For instance, faults in

autonomous vehicles or power grids may cause traffic accidents or blackouts, respectively.

A complete proof of safety encompasses several different perspectives: First, both the phys-

ical perception of the environment and the execution of all algorithms need to run reliably.

Second, the implementation of the algorithms needs to be correct. Third, the algorithms must

return provably correct strategies for solving the given task. Separate research domains are

dedicated to the respective levels of safety. In this thesis, we will only consider the third

safety level, which assumes reliable hardware and a correct implementation of the algorithms.

1



1 Introduction

1.1 Safety Analysis

The design of a concrete algorithm for determining safety depends on three main factors: The

model describing the behavior of the cyber-physical system, the model parameters represent-

ing the circumstances under which the system operates, and the specification defining safe

behaviors.

Models of cyber-physical systems are designed in discrete and continuous spaces, whose

respective states arise naturally from the composition of the cyber-physical system: Discrete

states represent distinct modes of operation, such as gears in a gearbox or high-level actions

like “turn left/right” or “go straight” in path planning. In contrast, continuous states model

the operating domain of the system, e.g., a two-dimensional plane representing the road on

which an autonomous vehicle drives. The behavior of discrete states can be modeled using

various formalisms, such as finite state automata, Petri nets, and statecharts, whereas the

behavior of continuous states can be described using differential equations. Commonly, the

behavior of discrete states is modeled in discrete time, whereas the behavior of continuous

states is analyzed in both discrete and continuous time. Combining discrete and continuous

states yields hybrid systems, e.g., timed automata, hybrid automata, and hybrid statecharts.

Each modeling formalism can be divided into different system classes whose members share

a set of properties that are exploited to develop well-performing algorithms. System classes

can be ordered hierarchically to show which ones generalize or specialize others. The work

in this thesis is restricted to systems with purely continuous dynamics described by linear

and nonlinear ordinary differential equations. These system classes can describe many real-

world phenomena, including the dynamics of vehicles, vessels, spacecraft, thermal conduction,

chemical reactions, analog circuits, power grids, population growth, and others.

In addition to the model, we must also define the model parameters describing the operating

conditions for the system. Examples include the state of the system at the start of the analysis

or the time horizon over which the analysis is conducted. Real-world systems are fundamen-

tally uncertain so that each model parameter is usually bounded by a set of possible values.

These uncertainties originate from two main sources: First, mathematical models cannot fully

accurately capture the actual behavior of a real-world system. Second, measurements are only

accurate up to a finite precision, which induces further uncertainty when the system interacts

with the environment. In this thesis, we consider uncertainties in the initial state of the sys-

tem as well as external disturbances that uncontrollably influence the state. Furthermore, the

control inputs to the system are chosen from a bounded input set.

Lastly, we formalize the expected system behavior in a specification. A common type of

specification is liveness, where the system must reach a certain behavior at some future point

in time. Fulfilling a fairness specification entails that a certain behavior is reachable repeatedly.

The predominant type of specification is safety, which requires certain behaviors to be avoided

at all times. Specifications are often encoded with temporal logics, which are modeling lan-

guages to formalize the system behavior over time. This thesis focuses on safety specifications,

defined using unsafe sets of states that occupy a subspace of the operating domain.

Due to the presence of uncertainties, infinitely many different system behaviors can poten-

tially occur, each of which emanates from a set of deterministic model parameters. Formal

2



1.2 Literature Review

methods rigorously reason about all possible system behaviors, allowing us to correctly as-

sess whether a safety specification for a given model and model parameters is fulfilled. Two

complementary notions are used to answer this question:

1. Verification: Show that no system behavior is unsafe.

2. Falsification: Show that a specific system behavior is unsafe.

Crucially, formal verification methods must ensure no potential system behavior is missed. In

contrast, falsification methods search for a specific system behavior that is unsafe. Since formal

falsification requires rigorous proof that there are no deterministic model parameters within

their respective uncertain sets that could lead to a safety violation, semi-formal falsification is

much more common: Here, one usually employs search techniques to find suitable deterministic

model parameters yielding a safety violation. If this search is successful, safety is provably

violated; otherwise, the result is inconclusive. There also exist non-rigorous methods that only

approximate the system behavior using less computationally demanding algorithms. They are

mainly used to gain information and intuition about the system if formal methods fail to return

results within a reasonable time.

Verification of dynamical systems is a difficult problem because we generally cannot exactly

compute all possible system behaviors [1], also known as the exact reachable set of states.

Therefore, one has to overestimate or underestimate the potential behaviors to maintain guar-

antees regarding safety: If a superset of the reachable states does not violate safety, this also

holds for the exact reachable set. Conversely, any subset of the reachable states can immedi-

ately falsify safety since we only need a single instance of safety-violating behavior. Crucially,

too much overestimation or underestimation of the potential behaviors may prevent safety ver-

ification or falsification, respectively, although a conclusive result on safety could be returned

if the exact reachable set were available.

1.2 Literature Review

In this section, we review several approaches for the verification and falsification of dynamical

systems. To this end, we introduce their main ideas and critically assess their advantages

and drawbacks in three main categories: First, the generality of the system class to which

the approach can be applied. Second, the scalability of the approach measured by its runtime

complexity in the state dimension. Third, the quality of the results, that is, how accurately

the approach approximates the exact reachable set.

Many of the methods reviewed below have been implemented in standalone tools1, and we

will explicitly mention them in the discussion of the corresponding approach. Some participate

in the annual ARCH (Applied Verification for Continuous and Hybrid Systems) competition2.

Here, verification tools compete with one another to correctly and efficiently solve challenging

benchmarks, allowing for a fair comparison of the respective approaches.

1See https://ieeecss.org/tc/hybrid-systems/tools for a comprehensive list of tools for hybrid systems
doing modeling/identification, verification, and controller synthesis.

2See https://cps-vo.org/group/ARCH.

3

https://ieeecss.org/tc/hybrid-systems/tools
https://cps-vo.org/group/ARCH


1 Introduction

Let us preface the following review by briefly listing groups of approaches related to our topic

but outside of the scope of this thesis: A single trajectory can be enclosed using validated inte-

gration [2, 3]. Approaches for invariant generation [4–8] can also be used for verification since

an invariant set represents the reachable set over an infinite time horizon for all initial states

contained in that invariant set. Furthermore, we exclude data-driven approaches [9, 10], learn-

ing approaches [11], methods based on constraint propagation [12, 13], methods for stochastic

systems [14–16] as implemented in SReachTools [17], and theorem-proving approaches [18, 19]

as implemented in Isabelle/HOL [20], dReach [21], and Keymaera/Keymaera X [22, 23].

We first review methods using set-based integration as they are closest to the work in this

thesis. Then, we discuss simulation-based approaches followed by methods based on abstraction

refinement. Finally, we also review range-bounding methods and various approaches based on

reformulations of reachability or verification as optimization problems.

Set-Based Integration Numeric integration methods for ordinary differential equations

date back several centuries. To incorporate uncertainties, one needs to lift these pointwise

methods [24, 25] to set-based methods [26] following the same idea: Integration of the right-

hand side of the differential equation—but now over sets instead of single points—to obtain

an explicit representation for the reachable set. Figure 1.1 illustrates the iterative propagation

of time-point reachable sets and time-interval reachable sets that cover the time between two

successive time points. By checking for an intersection between the reachable set and an unsafe

set, safety can be verified or falsified.

In principle, there are two important design choices for the reachability algorithm: First, the

approximation model, that is, how to simplify the dynamics to enable an integration over sets.

Second, a set representation that is expressive enough to accurately represent the reachable

set while efficiently evaluating set operations: Examples include polytopes [27], intervals [28],

ellipsoids [29], support functions [30], zonotopes [31], constrained zonotopes [32], polynomial

zonotopes [33], and Taylor models [34]. Tools for set-based computing include CORA [35],

written in MATLAB, and HyPro [36], written in C++. A comprehensive discussion of set-

based arithmetic for various set representations is provided in [37]. We divide the following

overview into approaches for linear, nonlinear, and hybrid systems.

A) Linear Systems

Let us first consider the computation of forward reachable sets: An early approach for au-

tonomous systems grids the state space and pushes an approximation computed using polytopes

in vertex representation outward or inward to obtain outer or inner approximations, respec-

tively [38, 39]. Exponential runtime complexity in the state dimension follows from gridding

the state space. An alternative idea uses families of ellipsoids to approximate the reachable

set of controllable systems with varying coefficients [40]: For an outer approximation, an in-

tersection of ellipsoids, each of which touches the reachable set at its boundary in a certain

direction, encloses the reachable set. In contrast, a union of ellipsoids touching the reachable

set from the inside yields an inner approximation. The work in [41] uses polytopes in halfs-

pace representation and restricts the input to a single trajectory—a necessary simplification

4



1.2 Literature Review

x1

x2

Exact reachable set

Outer approximations of
time-interval reachable sets

Outer approximations of
time-point reachable sets

Initial set

Figure 1.1: Reachability analysis using set propagation: Starting from the initial set, iterative prop-
agation yields a sequence of time-point and time-interval reachable sets, whose union
represents an outer (here) or inner approximation of the exact reachable set.

for the Minkowski sum of the homogeneous and particular solutions, which is known to scale

exponentially in the set dimension for two polytopes in halfspace representation [42].

A major breakthrough was the introduction of zonotopes to reachability analysis [31, 43], as

they allow for an efficient evaluation of the three main set operations—linear map, Minkowski

sum, and convex hull—resulting in a reachability algorithm for linear systems with uncertain

inputs that has only polynomial runtime complexity in the state dimension. One disadvantage

of using zonotopes is the growth of the set representation size over subsequent time steps, which

is mitigated by order reduction methods [44, 45]. The zonotope-based approach has also been

extended to compute reachable sets for linear systems with parametric uncertainties [46, 47]

and linear time-varying systems [47, 48]. A similarly efficient algorithm uses support function

evaluations [30, 49], which implicitly describe reachable sets by bounds in pre-defined directions

and can thus be used to construct polytopic outer approximations [50]. An extension is flowpipe

sampling, where a set of interval-valued functions obtained from support functions capture the

non-convexity of reachable sets covering time intervals and thereby drastically reduce the total

number of sets [51]. Moreover, combinations of support functions and zonotopes have been

explored in [52], where an analysis of the computational complexity suggests the use of support

functions for the homogeneous solution and zonotopes for the particular solution.

The work in [49] proposes a wrapping-free approximation model, which avoids the amplifica-

tion of approximation errors between time steps. A survey of different approximation models

discussing the trade-off between computational efficiency and tightness is presented in [53].

Recently, polynomial zonotopes have been used to represent reachable sets of different sub-

classes of linear systems [54], allowing for a tight enclosure of large time intervals with just a

single non-convex set. Zonotope-based methods are implemented in the MATLAB tool CORA,

while approaches using support functions are implemented in the tools SpaceEx [55], written in

C++, JuliaReach [56], written in Julia, and XSpeed [57, 58], written in C++, which exploits

parallelization over the directions and partitioning of the time horizon.

As the state dimension grows, the computation of the matrix exponential for the propagation

matrix becomes a limiting factor. One method to reduce the complexity is to approximate the

5



1 Introduction

matrix exponential in the Krylov subspace [59], allowing the computation of reachable sets

for linear systems with up to a billion states [60]. Alternatively, one can also decompose the

computation of the matrix exponential into smaller blocks [61], thereby exploiting the sparsity

property exhibited by many high-dimensional systems. The decomposition method has also

been extended to hybrid systems [62].

In comparison to forward reachability, the literature on backward reachability is so far lim-

ited to discrete-time systems: Inner and outer approximations of the minimal and maximal

backward reachable sets are represented using ellipsoids in [63], along with controller synthesis

techniques. Recent work proposes a more scalable approach to computing inner approxima-

tions of the maximal backward reachable set by using zonotopes through novel methods for

inner approximating the Minkowski difference between two zonotopes [64].

B) Nonlinear Systems

For nonlinear systems, the right-hand side of the differential equation has to be simplified

to a linear or polynomial difference equation to enable an integration over sets. Hybridization

approaches partition the state space into different regions with simpler dynamics that are sound

abstractions of the local nonlinear behavior in that region [65]. Early approaches abstracted

the dynamics to constant differential inclusions, as implemented in the tools HyTech [66],

written in Mathematica/C++, and PHAVer [67], written in C++. Using linear differential

inclusions instead significantly reduces the induced approximation errors [68]. The originally

static partitioning of the state space has been replaced by a dynamic abstraction [69, 70],

and improvements to error bounds are presented in [71]. Recent work proposes a method to

scale the dynamics in the vicinity of a transition from one region into another to mitigate the

induced approximation error by the transition [72].

In contrast, on-the-fly abstraction methods approximate the local dynamics of the current

time step by a low-order polynomial and overestimate the influence of the higher-order dy-

namics with a Lagrange remainder [73]. This concept has also been applied to nonlinear

differential-algebraic systems [74, 75], which extend standard nonlinear dynamics by a con-

straint equation with additional algebraic variables. Furthermore, one can decompose the

Lagrange remainder into smaller, weakly coupled blocks to accelerate the analysis without

compromising the tightness of the resulting reachable sets [76]. The influence of higher-order

polynomial abstractions can be accurately captured using polynomial zonotopes as they can

represent non-convex sets [77]. By exploiting the dependency preservation of polynomial zono-

topes, one can swiftly extract subsets of reachable sets without re-computing the reachable

set [78]. These approaches are implemented in the MATLAB tool CORA.

While the above approaches compute outer approximations, methods for obtaining inner

approximations are more scarce: The work in [79] represents the reachable set as a union of

boxes utilizing a sufficient condition to decide whether a box is contained in the image of a

nonlinear map [80, 81]. This approach requires an outer approximation of the reachable set,

which is computed using Taylor models [34], and its Jacobian, computed using a generalization

of affine arithmetic [82]. A similar method, also based on enclosing the state and its derivative,

yields inner approximations of projections, which was introduced for autonomous systems [83]

6



1.2 Literature Review

x1

x2

Initial set

Guard setOuter approximation
of the guard intersection

Outer approximations
of the reachable set

Reachable set
after reset

Exact reachable set

Figure 1.2: Reachability analysis for hybrid systems using set propagation: Since the reachable set
within discrete states can be computed using approaches for linear and nonlinear systems,
approaches for hybrid systems mainly focus on computing tight approximations of the
intersection between the computed reachable set and the guard set.

and later extended to systems with competing inputs and disturbances [84]. For the case of

piecewise constant inputs, the limitation to projections has meanwhile been overcome [85].

Inner approximations of the reachable set for autonomous systems can also be obtained by

computing outer approximations for the boundary of the initial set; the contained set then

represents the inner approximation [86]. After partitioning the boundary into intervals and

computing an enclosure of their propagation, contraction via linear programming yields a

polytopic inner approximation [87]. An improved variant of the same idea uses sum-of-squares

programming to obtain semi-algebraic sets as inner approximations [88]. Both versions suffer

from poor scalability due to partitioning the boundary of the initial set. Another approach [89]

uses polynomial zonotopes to compute two outer approximations of the reachable set, one using

the initial set and another one using only the boundary. The first outer approximation is then

shrunk—exploiting that polynomial zonotopes preserve dependencies [78]—until it does not

intersect the second outer approximation. This approach has later been extended to deal with

inputs [37]. A zonotope-based method for backward reachability of discrete-time systems has

been proposed in [90], which focuses on tight inner approximations of the Minkowski difference

between a constrained zonotope and a zonotope, as this operation dominates the approximation

error of the resulting backward reachable set.

C) Hybrid Systems

Many approaches for linear and nonlinear systems can be used for reachability analysis within

the discrete states of hybrid systems. Thus, the main focus lies in evaluating the transition

between two discrete states, where the reachable set intersects a guard set and a reset function

maps the resulting intersection. As indicated in Figure 1.2, the intersection of the computed

reachable set with the guard set generally induces large approximation errors. Consequently,

much effort has been dedicated to obtaining tight approximations of the guard intersection.

7



1 Introduction

Predominantly, intersections with guard sets modeled as hyperplanes have been considered:

This includes approaches that use template polytopes to enclose the intersection with a zono-

topic reachable set [91], directly map the reachable set onto the guard [92], apply domain

contraction and range bounding [93], or use convex optimization to compute the intersection,

followed by computing the union of reachable sets after the transition to maintain computa-

tional efficiency [94]. Another approach scales the dynamics of the flow equation so that only

one reachable set intersects the guard set [95], omitting the need for unification later on. Using

a combination of contractors and polynomial zonotopes allows for an evaluation of transitions

with nonlinear guard sets that has polynomial runtime complexity in the state dimension [96].

Another way to refine the reachable set is to remove spurious transitions resulting from the

intersection of states that are part of the outer approximation but not the exact reachable

set [97]. To our best knowledge, there exists no guard intersection method that computes an

inner approximation of the exact reachable set after the transition, as required for falsification.

Many of the tools for linear and nonlinear systems also implement extensions of their respective

approaches to hybrid systems using some of the presented guard intersection techniques.

Simulations Single trajectories of the dynamical system can be used as a basis for both

verification and falsification: Since the uncertainties in the model parameters vary continuously,

verifying safety would require an infinite number of simulations. Thus, many verification

approaches expand a finite number of simulated trajectories to sets that cover all possible

behaviors. In contrast, a single simulation suffices to falsify safety if the trajectory reaches the

unsafe set.

A) Approaches for Verification

Coverage metrics aim to bridge the gap between single simulations and verification by

smartly covering the initial set [98, 99]: The notion of star discrepancy describes the degree to

which the sampled initial states are equally distributed over the initial set. This metric guides

simulations from rapidly exploring random trees toward the unsafe set. While this results in a

balanced state exploration, verification requires a quantitative bound on the missing coverage.

Different metrics have been used to obtain sound outer approximations using a finite number

of simulations. For linear discrete-time systems with outputs, the work in [100] solves linear

matrix inequalities to obtain a bisimulation metric, which is further used in a complete verifica-

tion algorithm with an upper bound on the number of required simulations. Another approach

uses expansion functions that measure how small changes in the initial state affect the resulting

trajectory [101]. For linear autonomous systems, sensitivity analysis can be used to expand

the trajectories, resulting in a sound outer approximation of the reachable set, as illustrated

on the left-hand side of Figure 1.3. Increasing the number of simulations then yields a smaller

expansion for each trajectory, which gives rise to an automated verification algorithm based

on iterative refinement. This sensitivity-based approach was later extended to inputs [102].

The notion of sensitivity is generalized in [103] to nonlinear dynamics by applying discrepancy

functions, such as Lipschitz measures or contraction metrics. These need to be provided by the

user for each system to obtain sound outer approximations. The C++/Python tool C2E2 [104]

implements this approach.

8



1.2 Literature Review

x1

x2

x1

x2

Exact reachable set

Initial set

Trajectories

Expanded trajectories

Initial set

Exact reachable set

Trajectories

Outer approxi-
mation of final
reachable set

Figure 1.3: Reachability analysis using simulations (inspired by [48, Fig. 1.2] and [105, Fig. 2]): Enlarg-
ing a finite number of trajectories by an expansion function yields an outer approximation
of the exact reachable set (left); for linear systems, one can exploit the superposition prin-
ciple to drastically reduce the number of required simulations (right).

The above approaches based on sensitivity analysis suffer from the curse of dimensionality,

as an exponential number of initial states is required for an adequate coverage of the initial set.

However, one can obtain a polynomial runtime complexity in the state dimension for linear

systems by exploiting the superposition principle [105, 106]: For instance, an n-dimensional

system with a box as an initial set now only requires n + 1 simulations. These are then used

to construct inner and outer approximations represented by star sets, as illustrated on the

right-hand side of Figure 1.3. This flexible set representation seamlessly deals with non-convex

and unbounded initial sets [105]. The approach is implemented in the Python tool HyLAA [107].

Individual simulation runs are particularly powerful in the reachability analysis of monotone

systems [108]. Here, the derivative of the dynamic function is monotone with a specific ordering.

Consequently, the reachable set can be constructed using an interval enclosure of the simulated

trajectories emanating from the two initial states, which are minimal and maximal in that

ordering [109]. This idea has been extended to mixed-monotone systems, where the system

dynamics are decomposed into increasing and decreasing components [110, 111]. It has been

shown in [112] that many functions are mixed-monotone, although it is non-trivial to find a

decomposition function that rewrites a system as a mixed-monotone system. In general, the

enclosure of only two trajetories by an interval yields a coarse outer approximation, although

the sets are tight for special cases [111]. The MATLAB tool TIRA [113] implements interval-

based reachability analysis for various subclasses of monotone systems.

B) Approaches for Falsification

The main idea in safety falsification using simulations is to sample deterministic model pa-

rameters to eventually obtain a trajectory that falsifies a given specification. For linear systems,

one can exploit the superposition principle to maximize the trajectory in a given direction using

support function evaluations [114]. For more general system classes, the notion of robustness of

trajectories is used to recast the sampling problem as an optimization problem [115, 116]. Fig-

ure 1.4 illustrates the main idea: The robustness is a scalar value associated with a trajectory,

which describes how close it is to violating a given specification. Consequently, minimizing

9



1 Introduction

x1

x2

Robustness

Exact reachable set

Initial set

Unsafe set

Initial
states

Trajectories

Safety violation

Figure 1.4: Simulation-based falsification based on robustness minimization: The robustness decreases
from the uppermost to the lowest trajectory, leading to a safety violation.

the robustness value corresponds to sampling model parameters that yield increasingly critical

trajectories.

The main workflow for robustness-based falsification consists of three steps: Sampling of

deterministic model parameters, simulation of the trajectory over the entire time horizon,

and robustness computation. Since the robustness minimization problem is non-convex [117],

stochastic global optimization techniques are applied: The biologically inspired ant colony op-

timization was extended by Hermite functions and cubic splines for the parametrization of the

input space [117]. Monte-Carlo sampling has also been applied [118, 119], as well as simu-

lated annealing, which has been proven to converge to a global minimum [120]. Furthermore,

the cross-entropy method samples the initial states and inputs according to a robustness dis-

tribution that is iteratively updated using the robustness value of the next simulation [121].

An improvement to the robustness computation for hybrid systems is proposed in [122], ad-

dressing the issue that a continuous state has different robustness values depending on the

discrete state of the system. Multiple objective functions can help to avoid converging to local

minima and reduce the number of simulations until finding a falsifying trajectory [123]. For

falsifying several specifications at once, the structure of their composition can be exploited

using Bayesian optimization [124]. Many of these approaches have contributed to the growth

of the MATLAB tool S-TaLiRo [125]. Recently, robustness-guided falsification has been recast

as a reinforcement learning problem, exploiting that neural networks can approximate any

nonlinear function, in this case, the robustness [126].

Abstraction Refinement Complex systems are often time-consuming to analyze, even

though a conservative abstraction might suffice to quickly verify safety. Abstraction refine-

ment methods gradually increase the computational effort by iteratively refining coarse models

or representations. The well-known concept of counterexample-guided abstraction refinement

(CEGAR) uses counterexamples generated from an abstracted system to propose directions in

which to refine the abstraction: Safety is verified by proving no unsafe behavior for the ab-

straction and falsified by concretizing an abstract counterexample to a safety-violating system

trajectory.

10



1.2 Literature Review

Refinement Concretization

x1

x2

x1

x2

x1

x2

Initial set

Unsafe set

Abstracted
state space

Sampled
trajectories

Initial set

Unsafe set

Refined abstraction

New samples

Initial set

Unsafe set

Concrete
trajectory

Safety
violation

Figure 1.5: Falsification using abstraction refinement (inspired by [130, Fig. 1]): Individual partial
trajectories link cells to one another until an abstract path from the initial set to the
unsafe set is found. Refinement of the partial trajectories eventually leads to a concrete
safety-violating trajectory.

An early application of this concept abstracted hybrid automata to finite state automata

and proposed various validation methods for the generated counterexample [127]. Another

abstraction method grids the state space and uses transitions between cells for forward and

backward reachability to verify cyclic invariants for oscillating dynamics [128]. An abstraction-

based approach for falsification is illustrated in Figure 1.5: To this end, the state space is

abstracted to cells and an abstract counterexample—a trajectory that reaches the unsafe set

by transitioning from cell to cell—is iteratively refined until it can be concretized to a safety-

violating trajectory [129, 130]. Commonly, methods that abstract the state space to cells suffer

from poor scalability due to the curse of dimensionality.

Instead of abstracting and refining the system itself, one can also refine the algorithm param-

eters that strongly influence the outcome of the reachability analysis. The work in [131] refines

the directions of the support function evaluation used in the reachability algorithm based on

a cost function similar to the robustness mentioned above. This idea has been extended by

automatically generating template directions from spurious counterexamples [132]. Another

method incorporates real-time constraints by allowing a switch to a less conservative controller

if it can be verified online by a tight enough reachable set computed within the available

computation time [133]. The tool Hypy [134] presents a high-level framework, which proposes

refined algorithm parameters given the reachable sets obtained from different toolboxes. A

similar general framework for algorithm parameter refinement is proposed in [135] to reduce

the approximation errors.

Range Bounding Range-bounding methods compute outer or inner approximations of the

image of a function over a domain of values. Common techniques include interval arithmetic

[28], affine arithmetic [82], or Taylor models [34], which represent non-convex sets by a vector-

11



1 Introduction

x

f(x)

x

f(x)

x

f(x)

Nonlinear function

Interval enclosure

Nonlinear function

Affine enclosure

Linear
approximation

Nonlinear function

Enclosure by
Taylor model

Polynomial
approximation

Figure 1.6: Range bounding of a scalar nonlinear function using interval arithmetic (left), affine arith-
metic (middle), and Taylor models (right).

valued polynomial function enlarged by an interval [34]. Figure 1.6 illustrates the enclosure of

a nonlinear function with several range-bounding methods.

For discrete-time systems, one bound the nonlinear function over the range of the current

reachable set to compute the successor reachable set. A popular method to obtain tight

enclosures is the Bernstein expansion of nonlinear functions since the approximation error with

respect to the exact solution is known. For a multivariate polynomial function, the coefficients

of the corresponding Bernstein expanded polynomial has exponential runtime complexity in

the state dimension [136].

The image of polynomial maps was first bounded using Bézier simplices and polynomial op-

timization [137]. Using the Bernstein expansion of polynomials, one can enclose the successor

reachable set using linear programming instead of polynomial programming; additionally, tem-

plate polytopes replaced the previous triangulation method [138]. This method restricts the

preimage of the nonlinear map to boxes, which was later extended to arbitrary polytopes [139,

140]. Improvements to the tightness of the enclosure include using piecewise affine functions

for bounding the image and dynamic selection of template directions for the polytopes rep-

resenting the reachable set [139]. Template polytopes were later replaced by parallelotope

bundles [141, 142], which are the intersection of a set of parallelotopes. The tool Sapo [143],

written in C++, implements this version of the approach. The automated selection of the

normal vectors that compose the individual parallelotopes is addressed in [144]. This approach

was implemented in the Python tool Kaa [145].

Reachable set computations using Bernstein polynomials have also been applied to au-

tonomous linear systems in continuous time [146]: In this case, the dynamics can be integrated

analytically, and the resulting function is enclosed over a time interval using Bernstein poly-

nomials. The reachable set is obtained via the convex hull of all propagated vertices, which is

subsequently enlarged by the approximation error of the Bernstein polynomial with respect to

the exact integration. Notably, this approach adaptively tunes the time step size by enforcing

a bound on the approximation error. However, the runtime complexity is exponential in the

state dimension due to using the vertices of the initial set, which suffers from the curse of

dimensionality.

12



1.2 Literature Review

x1

x2 Initial set

V (x) ≤ 0: Outer approximation
of the reachable set (no supply)

Sample trajectory
(no supply)

Exact reachable set
(no supply)

Exact reachable set
(with supply)

Sample trajectory
(with supply)

V (x) ≤ d: Outer approximation
of the reachable set (with supply)

Figure 1.7: Reachability analysis of dissipative systems (inspired by [150, Fig. 1.3]): Outer approx-
imations of the exact reachable set are represented using sublevel sets of the storage
function V (x), whose elevation depends on the norm of the supply rate d to the system.

For nonlinear systems in continuous time, one can combine the Picard iteration with range

bounding using Taylor models: A polynomial solution trajectory of fixed degree can be ap-

proximated using the Picard iteration or a truncated series of Lie derivatives [93]. This ap-

proximative polynomial solution needs to be enlarged by an interval remainder term, which

has to be large enough to contract if inserted into the Picard iteration, to obtain a sound outer

approximation. Automated tuning methods for the time step size and the degree of the ap-

proximating polynomial have been proposed [147]. Furthermore, decomposition methods have

been leveraged to improve the scalability of the approach [148]. An inner approximation can

be obtained by computing outer approximations using the boundary as the initial set and then

identifying the contained set [86]: We first compute a Taylor model enclosing the reachable

set for each constraint of a semi-algebraic initial set. Then, the interval remainder terms are

adapted to push the reachable sets inward until their intersection is contained in the exact

reachable set, which is validated via interval constraint propagation. The tools Flow* [149],

written in C++, and JuliaReach, written in Julia, implement approaches using the Picard

iteration and Taylor models.

Dissipativity Another group of approaches is based on the notion of dissipativity [150].

This property holds for systems for which there exists a storage function V : Rn 7→ R fulfilling

the following conditions: The value must be 0 at the origin and nonnegative everywhere else;

additionally, the difference between two subsequent states along a trajectory is bounded via

a supply rate, which models, e.g., disturbances. These conditions allow for reformulating

reachability to an optimization problem with dissipation inequalities [151] whose solution is the

storage function that represents the reachable set. Ellipsoidal storage functions are illustrated

in Figure 1.7 for a system with and without supply. As an ansatz for the storage function, one

often uses a parametrized semi-algebraic set, which is restricted to sum-of-squares polynomials.

Consequently, we obtain an optimization problem that can be relaxed to a sum-of-squares

decomposition, which can be modeled as a semi-definite program yielding the coefficients for

the polynomial storage function that encodes the reachable set. The resulting framework can

13



1 Introduction

x1

x2

x1

x2

Initial set Exact reachable set

Grid points outside
the reachable set

Grid points inside
the reachable set

Initial set Exact reachable set

Grid points outside
the reachable set

Grid points inside
the reachable set

Figure 1.8: Reachability analysis by evaluating a reformulation to the Hamilton-Jacobi-Isaacs partial
differential equation over a gridded state space. A coarse grid (left) is computationally
less demanding, while a refined grid (right) better captures the shape of the reachable set.

be applied to linear and nonlinear dynamics and incorporate multiple sources of uncertainty,

e.g., time-varying parameters. However, the number of variables of the semi-definite program

scales polynomially in the state dimension but exponentially in the degree of the polynomial

representing the storage function [152]. Another disadvantage is the dependence on a manually

defined ansatz function.

This dissipativity-based approach has been applied to compute outer approximations of

forward reachable sets [151] and inner approximations of backward reachable sets [153–155],

which are predominantly used for controller synthesis. The integration of integral-quadratic

constraints into the framework [151, 154] widened the applicability to more general systems,

as these constraints can also account for system behavior induced by unmodeled dynamics.

Hamilton-Jacobi-Isaacs Equation The reachable set of a dynamical system has proven

to be equivalent to the zero sublevel set of the solution to a particular Hamilton-Jacobi-Isaacs

partial differential equation [156]. Thus, one can reformulate the reachable set computation

as an optimization problem, commonly known as Hamilton-Jacobi reachability analysis [157–

159]. The optimization problem is then solved over a gridded state space, see Figure 1.8: Grid

points with a negative value are part of the reachable set, while grid points with a positive

value are outside of the reachable set. Due to the curse of dimensionality induced by gridding

the state space, the analysis scales exponentially in the state dimension [158]. Nevertheless,

the framework is very flexible as it allows for computing forward and backward reachable sets

for linear and nonlinear dynamics while also respecting state constraints [160].

Significant focus has been dedicated to alleviating the computational burden of Hamilton-

Jacobi reachability: To this end, techniques to decompose unperturbed dynamics and subse-

quently reconstruct the solution were explored in [161, 162], with an extension to mutually

dependent inputs between subsystems in [163]. Furthermore, decoupling approaches for per-

turbed dynamics were investigated [159, 164]. Another way to reduce the computational effort

14



1.2 Literature Review

x1

x2

Exact reachable set
Initial set: B(x) ≤ 0Unsafe set: B(x) > 0

Barrier certificate: B(x) = 0

Figure 1.9: Verification using barrier certificates (inspired by [172, Fig. 1]): The zero level set of the
barrier certificate B(x) separates the reachable set from the unsafe set.

is by computing outer and inner approximations instead of using the exact reformulation [165].

Approximations of polynomial solutions to the reformulated Hamilton-Jacobi equation for

autonomous systems can be computed by sum-of-squares programming, resulting in semi-

algebraic reachable sets [166]. This approach has later been extended to deal with inputs as

well [167]. The reachable set computation was originally implemented in the MATLAB tool

helperOC3 using level set arithmetic from the MATLAB tool toolboxls [168] or the C++ im-

plementation in beacls4 and recently refurbished as the Python package hj-reachability5.

Recent work also integrates machine learning techniques to estimate the value function, which

improves the scalability but relinquishes all formal guarantees [169, 170]. The Python tool

DeepReach [171] implements these learning-based approaches.

Barrier Certificates The concept of barrier certificates is to prove safety by finding a

level set separating the reachable set and the unsafe set, as illustrated in Figure 1.9. A

barrier certificate B : Rn 7→ R must fulfill three conditions [172]: The value at every initial

state must be nonpositive, the value at every unsafe state must be positive, and the Lie

derivative of the dynamic function is nonpositive on the level set B(x) = 0. These conditions

accommodate many different system classes—including nonlinear and hybrid dynamics—and

can also incorporate constraints. For polynomial dynamics and semi-algebraic initial and

unsafe sets, the conditions can be encoded in an optimization problem. We obtain a semi-

definite program via sum-of-squares decomposition, which suffers from the same scalability

issues mentioned for dissipativity-based approaches above.

Main issues include the conservativeness of the approach as well as the complexity of the

optimization problem: To improve the scalability, the structure of interconnected subsystems

can be exploited by composing the conditions for each system individually and accounting

for their interdependency via additional constraints [173]. More expressive barrier certificates

can be synthesized by altering the condition on the Lie derivative [174]. One can also exploit

3Available at https://github.com/HJReachability/helperOC.
4Available at https://github.com/HJReachability/beacls.
5Available at https://pypi.org/project/hj-reachability.

15

https://github.com/HJReachability/helperOC
https://github.com/HJReachability/beacls
https://pypi.org/project/hj-reachability


1 Introduction

the structure of the semi-definite program and combine two candidate functions into a barrier

certificate [175]. Recently, neural networks have been used to synthesize barrier certificates for

autonomous systems [176, 177]: Given training data sampled from the initial set, the unsafe

set, and the considered domain, a neural network with rectified linear units as activation

functions is trained using the three conditions from above in the loss function. The trained

network is, however, only a candidate barrier certificate, as one has to validate that the three

conditions hold for all states within the respective sets. The validation can be cast as an

optimization problem and solved using interval constraint propagation [176] or mixed-integer

linearly/quadratically constrained programming [177]. Finally, different types of specifications

other than safety have been addressed in [178]. A popular extension called control barrier

functions combines barrier certificates with control Lyapunov functions to synthesize safety-

preserving controllers [179, 180].

Current Challenges Despite their shared goal of proving safety, the verification and falsifi-

cation approaches reviewed in this section differ strongly from one another. Let us now analyze

the challenges faced by current approaches using forward and backward reachability analysis.

A) Verification using Forward Reachability

Safety verification of linear systems is mainly addressed by simulation-based approaches or

set-based integration techniques due to their low polynomial runtime complexity. Still, these

methods often require manual tuning of algorithm parameters—mainly the time step size—

until the reachable set is tight enough to verify or falsify safety. Furthermore, the overwhelming

majority of reachability algorithms do not provide quantitative information on the tightness

of the reachable set. This complicates the manual tuning as one can never be sure whether

different values for the algorithm parameters could return a conclusive result on safety. Also,

inner and outer approximations are usually not computed jointly, so one would have to run to

different algorithms in parallel.

Nonlinear systems are notoriously difficult to analyze, which aggravates the issue of manual

parameter tuning that all approaches require, as detailed in the annual ARCH reports [W9,

W11, W13]. Simulation-based reachability algorithms require additional information about the

system, such as contraction metrics, to compute sound outer approximations. They generally

scale unfavorably to higher-dimensional systems due to an exponential number of sampled

initial states. The sum-of-squares framework used for dissipativity-based methods requires

a user-defined degree for the polynomial as well as a manually parametrized ansatz for the

storage function describing the reachable set. Approaches evaluating the Picard iteration using

Taylor models have been extended by automated parameter tuning based on manually defined

threshold values on the size of the interval remainder as well as upper and lower bounds for

the time step size[147]. Nevertheless, the evaluation of ARCH benchmarks reveals that many

algorithm parameters, including the degree of the approximating polynomial, are still fixed

for each system [W11]. The computation of barrier certificates also depends on the suitable

parametrization for the sum-of-squares program synthesizing the certificate.

In summary, the main drawback of current approaches using forward reachability for safety

verification of dynamical systems is their dependence on the algorithm parameters. Conse-

16



1.3 Contributions

quently, practitioners require expert knowledge for the tuning of the respective algorithms in

order to obtain tight outer or inner approximations of the exact reachable set that suffice to

verify or falsify safety. Ideally, an algorithm could automatically adapt the algorithm param-

eters to the dynamics and the model parameters, such that the reachable set approximations

are tight enough for the given safety specification.

B) Verification using Backward Reachability

For systems with competing control inputs and disturbances, mainly dissipativity-based

approaches and Hamilton-Jacobi reachability are used to compute backward reachable sets.

While both frameworks can handle very general cases, encompassing linear and nonlinear

dynamics and time-varying parameters, their scalability is limited: The optimization prob-

lem constructed by dissipation inequalities is solved via sum-of-squares programming, whose

runtime complexity is exponential in the degree of the polynomial [152]. The reformulated

Hamilton-Jacobi-Issacs equation is evaluated over a gridded state space, leading to an expo-

nential runtime complexity in the state dimension [158]. Furthermore, the approximation error

of the reachable sets computed using Hamilton-Jacobi reachability depends on the grid res-

olution and the discretization error in the solution of the partial differential equation. Both

approaches, however, often utilize the computation of backward reachable sets as an intermedi-

ate step toward synthesizing safety-preserving controllers [155, 181]. An alternative approach

computes backward reachable sets using set propagation for discrete-time systems [64, 90],

which cannot be used for safety verification of a continuous bounded time horizon.

Compared to forward reachability, safety verification using backward reachability has yet

to be thoroughly studied. In particular, there are no backward reachability algorithms using

set propagation for continuous-time systems to date, and current approaches suffer from poor

scalability in the state dimension.

1.3 Contributions

In this thesis, we focus on verify and falsifying safety specifications for dynamical systems

modeled by linear and nonlinear ordinary differential equations. We use set-based integra-

tion methods, which represent a set-based analog to classical solvers for ordinary differential

equations, to compute tight reachable sets sufficiently fast and embed the computation in a

subsequent verification algorithm. In detail, we contribute the following:

Appendices A.1 and A.2 For a state-of-the-art reachability algorithm for linear systems

using zonotopes, we rigorously derive bounds for all induced approximation errors. Further-

more, we determine how different algorithm parameters, such as the time step size, affect these

errors and analyze the convergence behavior in the limiting values of said algorithm parameters.

Consequently, the tightness of the outer approximation with respect to the exact reachable set

is now known, enabling us to extract an inner approximation with the same bound on its ap-

proximation error. By combining these error bounds with automated tuning methods for the

individual algorithm parameters, we can compute outer and inner approximations that respect

any given admissible error bound larger than zero. Next, we iteratively refine this error bound

17



1 Introduction

using a set-based distance between the unsafe sets and the current reachable set approximation

to devise an automated verification algorithm. This allows us to verify or falsify safety for any

safety specification that does not require the exact reachable set since we can fulfill all error

bounds apart from zero.

Appendix A.3 Some safety specifications do not require explicit sets but can be verified

or falsified using support function evaluations only. Thus, we extend a reachability algo-

rithm using support functions by automated parameter tuning methods, which exploit the

convergence behavior to the exact reachable set for a decreasing time step size, resulting in

automated verification algorithms for unsafe sets represented by halfspaces or arbitrary convex

sets. Since we only require support function evaluations of the homogeneous and particular

solutions composing the reachable set, these algorithms work for many different set representa-

tions. Additionally, we show a significant acceleration of the propagation if the homogeneous

and particular solutions can be pre-computed using an explicit set representation, such as

zonotopes. Furthermore, we can extract a disturbance trajectory that yields a safety-violating

counterexample. The developed verification algorithms are capable of verifying and falsifying

safety for linear systems whose state dimensions are too large for state-of-the-art approaches.

Appendix A.4 We propose the first backward reachability algorithms for perturbed continuous-

time linear systems using set propagation by combining polytopes, zonotopes, and constrained

zonotopes. The soundness of the outer and inner approximations is proven so that they are

amenable to solving verification tasks. Moreover, we analyze the approximation errors and

discuss refinement methods to obtain tighter reachable sets. The low polynomial runtime

complexity in the state dimension is a significant improvement over state-of-the-art methods,

allowing for the analysis of linear systems with over a thousand states.

Appendices A.5 and A.6 For nonlinear systems, we thoroughly analyze the abstraction

error for a set-based reachability algorithm based on on-the-fly abstraction. The critical de-

pendence of the abstraction error on the time step size is formalized by our novel concept called

gain order, which measures the ratio of the abstraction error for two different time step sizes.

Analyzing the limit behavior reveals a linear gain for many nonlinear dynamics, which entails

a lower bound on the time step size, as other approximation errors incurred by the set-based

computation outweigh the additional gain achieved by reducing the time step size. In other

words, we show that continuously reducing the time step size does not yield a monotonic im-

provement in the tightness of the reachable set approximation. Using our insights about the

behavior of the abstraction error and the effects of other algorithm parameters, we formulate

a local optimization problem to determine the time step size. Other algorithm parameters are

tuned using threshold criteria and comparing various abstraction orders for the nonlinear dy-

namics to swiftly adapt to stronger or milder nonlinearities in the state space. We utilize these

tuning methods to develop the first reachability algorithm based on set propagation that runs

fully automatically and verifies safety specifications for nonlinear systems without requiring

expert knowledge about the reachability algorithm.

18



1.3 Contributions

Below is the list of publications reprinted in Appendices A.1 to A.6:

[W1] M. Wetzlinger, N. Kochdumper, and M. Althoff. “Adaptive parameter tuning for

reachability analysis of linear systems”. In: Proc. of the 59th Conference on Decision

and Control. IEEE, 2020, pp. 5145–5152. doi: 10.1109/CDC42340.2020.9304431.

[W2] M. Wetzlinger, N. Kochdumper, S. Bak, and M. Althoff. “Fully automated verifi-

cation of linear systems using inner and outer approximations of reachable sets”. In:

IEEE Transactions on Automatic Control 68.12 (2023), pp. 7771–7786. doi: 10.1109/

TAC.2023.3292008.

[W3] M. Wetzlinger, N. Kochdumper, S. Bak, and M. Althoff. “Fully-automated verifi-

cation of linear systems using reachability analysis with support functions”. In: Proc.

of the 26th International Conference on Hybrid Systems: Computation and Control.

ACM, 2023. doi: 10.1145/3575870.3587121.

[W4] M. Wetzlinger and M. Althoff. “Backward reachability analysis of perturbed conti-

nuous-time linear systems using set propagation”. In: arXiv preprint arXiv:2310.19083

(2023). doi: 10.48550/arXiv.2310.19083.

[W5] M. Wetzlinger, A. Kulmburg, and M. Althoff. “Adaptive parameter tuning for reach-

ability analysis of nonlinear systems”. In: Proc. of the 24th International Conference

on Hybrid Systems: Computation and Control. ACM, 2021. doi: 10.1145/3447928.

3456643.

[W6] M. Wetzlinger, A. Kulmburg, A. Le Penven, and M. Althoff. “Adaptive reachabil-

ity algorithms for nonlinear systems using abstraction error analysis”. In: Nonlinear

Analysis: Hybrid Systems 46 (2022), p. 101252. issn: 1751-570X. doi: 10.1016/j.

nahs.2022.101252.

The following publications are reports of the ARCH competition from 2020 to 2023, in which

the author has participated using the tool CORA. Some of the novel algorithms introduced in

the publications reprinted in Appendix A have been successfully applied to the state-of-the-art

benchmarks of the ARCH competition, as discussed in the corresponding numerical evaluation

sections.

[W7] M. Althoff, S. Bak, Z. Bao, M. Forets, G. Frehse, D. Freire, N. Kochdumper, Y. Li,

S. Mitra, R. Ray, C. Schilling, S. Schupp, and M. Wetzlinger. “ARCH-COMP20

category report: Continuous and hybrid systems with linear continuous dynamics”.

In: Proc. of the 7th International Workshop on Applied Verification of Continuous

and Hybrid Systems. EasyChair. 2020, pp. 16–48. doi: 10.29007/7dt2.

[W8] M. Althoff, E. Ábrahám, M. Forets, G. Frehse, D. Freire, C. Schilling, S. Schupp, and

M. Wetzlinger. “ARCH-COMP21 category report: Continuous and hybrid systems

with linear continuous dynamics”. In: Proc. of the 8th International Workshop on

Applied Verification of Continuous and Hybrid Systems. EasyChair. 2021, pp. 1–31.

doi: 10.29007/lhbw.

19

https://doi.org/10.1109/CDC42340.2020.9304431
https://doi.org/10.1109/TAC.2023.3292008
https://doi.org/10.1109/TAC.2023.3292008
https://doi.org/10.1145/3575870.3587121
https://doi.org/10.48550/arXiv.2310.19083
https://doi.org/10.1145/3447928.3456643
https://doi.org/10.1145/3447928.3456643
https://doi.org/10.1016/j.nahs.2022.101252
https://doi.org/10.1016/j.nahs.2022.101252
https://doi.org/10.29007/7dt2
https://doi.org/10.29007/lhbw


1 Introduction

[W9] L. Geretti, J. Alexandre Dit Sandretto, M. Althoff, L. Benet, A. Chapoutot, P. Collins,

P. S. Duggirala, M. Forets, E. Kim, U. Linares, D. P. Sanders, C. Schilling, and

M. Wetzlinger. “ARCH-COMP21 category report: Continuous and hybrid systems

with nonlinear dynamics”. In: Proc. of the 8th International Workshop on Applied

Verification of Continuous and Hybrid Systems. EasyChair, 2021, pp. 32–54. doi:

10.29007/2jw8.

[W10] M. Althoff, M. Forets, C. Schilling, and M. Wetzlinger. “ARCH-COMP22 category

report: Continuous and hybrid systems with linear continuous dynamics”. In: Proc.

of the 9th International Workshop on Applied Verification of Continuous and Hybrid

Systems. EasyChair. 2022, pp. 58–85. doi: 10.29007/mmzc.

[W11] L. Geretti, J. Alexandre Dit Sandretto, M. Althoff, L. Benet, A. Chapoutot, P. Collins,

P. S. Duggirala, M. Forets, E. Kim, S. Mitsch, C. Schilling, and M. Wetzlinger.

“ARCH-COMP22 category report: Continuous and hybrid systems with nonlinear

dynamics”. In: Proc. of the 9th International Workshop on Applied Verification of

Continuous and Hybrid Systems. EasyChair, 2022, pp. 86–112. doi: 10.29007/fnzc.

[W12] M. Althoff, M. Forets, Y. Li, C. Schilling, M. Wetzlinger, and D. Zhuang. “ARCH-

COMP23 category report: Continuous and hybrid systems with linear continuous dy-

namics”. In: Proc. of the 10th International Workshop on Applied Verification of Con-

tinuous and Hybrid Systems. EasyChair. 2023, pp. 34–60. doi: 10.29007/nl86.

[W13] L. Geretti, J. Alexandre Dit Sandretto, M. Althoff, L. Benet, P. Collins, M. Forets, E.

Ivanova, Y. Li, S. Mitra, S. Mitsch, C. Schilling, M. Wetzlinger, and D. Zhuang.

“ARCH-COMP23 category report: Continuous and hybrid systems with nonlinear

dynamics”. In: Proc. of the 10th International Workshop on Applied Verification of

Continuous and Hybrid Systems. EasyChair, 2023, pp. 61–88. doi: 10.29007/93f2.

The remainder of this work is structured as follows: In Chapter 2, we will first formally

introduce the problem statement for the verification tasks. Then, we will outline our solution

concept for the automated safety verification of dynamical systems using reachability analysis.

Appendix A contains the reproduction of the six included publications [W1–W6], which rep-

resent the main body of this thesis. Finally, we will summarize and critically discuss the work

in Chapter 3 and briefly describe potential directions for future work.

20

https://doi.org/10.29007/2jw8
https://doi.org/10.29007/mmzc
https://doi.org/10.29007/fnzc
https://doi.org/10.29007/nl86
https://doi.org/10.29007/93f2


2 Automated Verification Using

Reachability Analysis

In this chapter, we formally define the considered system classes, the computed reachable

sets, and the verification tasks. Finally, we concisely outline our solution concept for safety

verification, which underlies all published work reprinted in Appendix A.

Let us briefly introduce some basic notation: Scalars, vectors, and functions are denoted

by lowercase letters, matrices by Latin uppercase letters, discrete sets by Greek uppercase

letters, and continuous sets by calligraphic uppercase letters. The Minkowski sum of two sets

S1,S2 ⊂ Rn is defined as S1 ⊕ S2 := {s1 + s2 | s1 ∈ S1, s2 ∈ S2}. Furthermore, we use [a, b]

to represent real-valued scalar intervals with a ≤ b. All other notation is specified at the first

usage.

2.1 Problem Statement

Verification algorithms are often finely tailored to specific system classes in order to exploit

their properties. We first define linear continuous-time time-invariant systems.

Definition 1 (Linear Time-Invariant System). We consider perturbed linear time-invariant

(LTI) systems of the form

ẋ(t) = Ax(t) +Bu(t) + Ew(t), (2.1)

where x(t) ∈ Rn is the state vector, A ∈ Rn×n is the state matrix, B ∈ Rn×m is the input

matrix, u(t) ∈ Rm is the input vector, E ∈ Rn×r is the disturbance matrix, and w(t) ∈ Rr is

the disturbance vector. We also work with the simplified dynamics

ẋ(t) = Ax(t) + Ew(t) (2.2)

that we obtain in two ways: either by insertion of a control law, such as u(t) = Kx(t) with

K ∈ Rm×n, or by integrating the term Bu(t) into the term Ew(t), e.g., if we have a piecewise

constant input trajectory u(t). □

Next, we introduce nonlinear continuous-time systems.

Definition 2 (Nonlinear System). We consider perturbed nonlinear systems of the form

ẋ(t) = f(x(t), w(t)), (2.3)

21



2 Automated Verification Using Reachability Analysis

where x(t) ∈ Rn is the state vector, w(t) ∈ Rr is the disturbance vector, and the function

f : Rn × Rr → Rn is sufficiently smooth. □

In this case, we assume a synthesized controller has already been inserted into the differential

equation. Let us now symbolically introduce the solution to the ODEs in Definitions 1 and 2,

which we later use to define reachable sets.

Definition 3 (State Trajectory). Given an initial state x0 ∈ Rn at time t0 ∈ R, an input

trajectory u : R → Rm, and a disturbance trajectory w : R → Rr, we denote the solution at

time t ≥ t0 of an ODE of the form (2.1) by ξ(t;x0, u(·), w(·)). For systems of the forms in

(2.2)-(2.3), we omit the dependence on the input trajectory u(·) accordingly. □

Reachability analysis extends well-known analytical and numerical methods for solving ODEs

by considering uncertainties in the initial state, the control input, and the disturbance. These

are part of the model parameters representing the circumstances under which we analyze safety.

Definition 4 (Model Parameters). We consider bounded time horizons t ∈ τ = [t0, tend] with

tend > t0. The initial state x0 ∈ Rn at time t0 ∈ R is uncertain within the bounded initial set

X0 ⊂ Rn. Similarly, we define the bounded target set Xend ⊂ Rn for states at the end of the time

horizon tend ∈ R, which either represents an unsafe set or a goal set. Let us denote a single

input trajectory by u(·), for which ∀t ∈ τ : u(t) ∈ U ⊂ Rm holds, where U ⊂ Rm is the bounded

input set. We use U : R → Rm to represent the set of all input trajectories. Analogously,

we denote a single disturbance trajectory by w(·), which fulfills ∀t ∈ τ : w(t) ∈ W ⊂ Rr with

W ⊂ Rr being the bounded set of disturbances. The set of all disturbance trajectories is written

as W : R → Rr. We use Ω to denote the problem-specific set of model parameters, defined

individually for each verification problem. □

In general, reachable sets contain all states a dynamical system can reach under a particular

interplay of states, inputs, and disturbances. Let us now define different notions of reachable

sets, starting with the maximal forward reachable set: For a given initial set, it contains all

successor states that are reachable through the dynamics of the differential equation.

Definition 5 (Maximal Forward Reachable Set). For a system (2.1) and the model parameters

Ω = {τ,X0,U,W}, the maximal forward reachable set is defined as

R∃∃(τ ;X0,U,W) :=
{
ξ(t;x0, u(·), w(·))

∣∣ ∃t ∈ τ ∃x0 ∈ X0 ∃u(·) ∈ U ∃w(·) ∈W
}
, (2.4)

which contains all reachable states for any combination of initial state x0 ∈ X0, input trajectory

u(·) ∈ U, and disturbance trajectory w(·) ∈W over the time interval τ ∈ [t0, tend]. For systems

of the form (2.2)-(2.3), the dependence on the set of input trajectories U is omitted accordingly.

□

The most common verification task is to show that no unsafe behavior can be reached for

any initial state despite worst-case disturbances. The maximal forward reachable set plays an

integral part in solving this so-called reach-avoid problem.

22



2.1 Problem Statement

Problem 1 (Forward Reach-Avoid Problem). Given a system (2.2)-(2.3), the model param-

eters Ω = {τ,X0,W}, and a number ℓ ∈ N of unsafe sets ∀j ∈ {1, ..., ℓ} : Fj ⊂ Rn, decide

whether (
R∃∃(τ ;X0,W) ∩

⋃

j∈{1,...,ℓ}
Fj

)
= ∅, (2.5)

that is, whether there exists any disturbance trajectory w(·) ∈ W causing the state to reach

some unsafe set. □

While forward reachability reasons about the future behavior, backward reachability com-

putes past states: Backward reachable sets contain all initial states emanating a trajectory

that can reach a given target set Xend ⊂ Rn under certain conditions.

Definition 6 (Minimal and Maximal Backward Reachable Set). For a system (2.1) with the

model parameters Ω = {τ,Xend,U,W}, the minimal backward reachable set over a time interval

τ ∈ [t0, tend] with t0 ∈ R≥0 is defined as

R∀∃(−τ ;Xend,U,W) :=
{
x0 ∈ Rn

∣∣ ∀u(·) ∈ U ∃w(·) ∈W ∃t ∈ τ : ξ(t;x0, u(·), w(·)) ∈ Xend

}

(2.6)

and contains all initial states x0 ∈ Rn, where for every input trajectory u(·) ∈ U, there ex-

ists a corresponding disturbance trajectory w(·) ∈ W such that the resulting state trajectory

ξ(t;x0, u(·), w(·)) enters the target set at time t ∈ τ . Moreover, the maximal backward reach-

able set over a time interval τ ∈ [t0, tend] with t0 ∈ R≥0 is defined as

R∃∀(−τ ;Xend,U,W) :=
{
x0 ∈ Rn

∣∣ ∃u(·) ∈ U ∀w(·) ∈W ∃t ∈ τ : ξ(t;x0, u(·), w(·)) ∈ Xend

}

(2.7)

and contains all initial states x0 ∈ Rn, where there exists an input trajectory u(·) ∈ U such that

the resulting state trajectory ξ(t;x0, u(·), w(·)) enters the target set for all potential disturbance

trajectories w(·) ∈W at some time t ∈ τ . □

A notable difference from forward reachability, see Definition 5, is the competing influence

of inputs and disturbances, also known as a two-player game [156]: In the definition (2.6) for

the minimal backward reachable set, the disturbance wants to steer the state toward the target

set, while the input wants to steer the state away from the target set. These roles are inverted

in the definition (2.4) for the maximal backward reachable set.

Each backward reachable set has its respective use in verification: If the target set represents

an unsafe set, we must also avoid entering the minimal backward reachable set, as it contains

all states that cannot avoid entering the unsafe set under worst-case disturbances. Instead, if

the target set is a goal set, the maximal backward reachable set contains all initial states for

which a controller exists to reach that goal set despite worst-case disturbances. Problems 2

and 3 formulate these perspectives as verification tasks.

Problem 2 (Robust Collision Avoidance). Given a system (2.1) with the model parameters

Ω = {τ,Xend,U,W}, decide for an initial state x0 ∈ Rn whether

∃u(·) ∈ U : R∃∃(τ ;x0, u(·),W) ∩ Xend = ∅, (2.8)

23



2 Automated Verification Using Reachability Analysis

that is, whether there exists an input trajectory u(·) ∈ U such that all trajectories emanating

from the initial state x0 avoid the unsafe target set Xend regardless of the disturbance trajectory

w(·) ∈W. □

Problem 3 (Reaching a Target Set). Given a system (2.1) with the model parameters Ω =

{τ,Xend,U,W}, decide for an initial state x0 ∈ Rn whether

∃u(·) ∈ U ∃t ∈ τ : R∃∃(t;x0, u(·),W) ∈ Xend, (2.9)

that is, whether there exists an input trajectory u(·) ∈ U such that all trajectories emanating

from the initial state x0 can be steered into the target set Xend at some time t ∈ τ regardless

of the disturbance trajectory w(·) ∈W. □

In the next section, we outline our approach to solving the above-defined verification tasks.

2.2 Solution Concept

This section outlines our solution concept for solving Problem 1 using the forward reachable

set defined in Definition 5. Please note that Problems 2 and 3 can be addressed analogously

with the help of the backward reachable sets from Definition 6.

We verify safety by checking for an intersection between the unsafe set and the reachable

set, which we compute using difference inclusions and set propagation. Hence, let us briefly

summarize the computation of outer approximations of reachable sets for linear systems of the

form (2.2) and nonlinear systems of the form (2.3): The time horizon τ is partitioned into ω

time steps, i.e.,

τ =
ω−1⋃

k=0

τk, ∀k ∈ {0, ..., ω − 1} : τk = [tk, tk+1],∆tk = tk+1 − tk. (2.10)

For linear systems, we can exploit the superposition principle to separately propagate outer

approximations of the homogeneous solution Ĥ(t) and the particular solution P̂(t) due to the

disturbance set W. We compute an enclosure of the time-interval reachable set R̂(τk) using

the Minkowski sum of the homogeneous and particular solutions over the time interval τk:

∀k ∈ {0, ..., ω − 1} : R̂lin(τk) = Ĥ(τk)⊕ P̂(τk). (2.11)

Analogously, one can enclose the time-point reachable set R̂lin(tk+1) by using time-point ho-

mogeneous and particular solutions.

For nonlinear systems, we Taylor expand the nonlinear dynamics (2.3) around the lineariza-

tion points for the state x∗ and the disturbance w∗, yielding the difference inclusion

ẋ(t) ∈ ∂f(x,w)

∂x

∣∣∣∣
x∗
(x(t)− x∗) +

∂f(x,w)

∂w

∣∣∣∣
w∗

(w(t)− w∗)⊕ L(t). (2.12)

24



2.2 Solution Concept

The Lagrange remainder L(t) overestimates the influence of the higher-order dynamics and is

defined by

L(t) :=
{
1

2
(z − z∗)⊤

∂2fi(ζ)

∂z2
(z − z∗)

∣∣∣∣ ζ = z∗ + λ(z(t)− z∗), λ ∈ [0, 1]

}
, (2.13)

using the stacked vector z(t) = [x(t)⊤ u(t)⊤]⊤ and the stacked linearization point z∗ =

[x∗⊤w∗⊤]⊤. This set is evaluated using range-bounding methods, such as interval arith-

metic [28]. By interpreting the Lagrange remainder as an additive disturbance, we can apply

the superposition principle for linear systems to compute the reachable set due to the linearized

dynamics and the Lagrange remainder separately. For the first time interval τ0 = [0,∆t0], we

enclose the reachable set by

R̂nonlin(τ0) = R̂lin(τ0)⊕ R̂abs(τ0), (2.14)

where R̂lin(τ0) is computed as in (2.11) using the linearized dynamics around the first lineariza-

tion point, and R̂abs(τ0) represents the integrated Lagrange remainder L(τ0). However, the set
L(τ0) depends on the reachable set R̂nonlin(τ0), which determines the range of z(t) in (2.13)

over the time interval τ0. This mutual dependency between the Lagrange remainder and the

reachable set can be resolved using the iterative scheme proposed in [73, Section III], allowing

us to treat the Lagrange remainder L(t) as an additive disturbance. An outer approximation

of the time-point reachable set R̂nonlin(t1) can be obtained by replacing the time-interval so-

lution R̂lin(τ0) in (2.14) with its time-point analog R̂lin(t1). For all subsequent time steps, the

time-point solution of the previous time step is used as the initial set to evaluate (2.14) using

the current abstracted dynamics. This process is illustrated in Figure 1.1 in Section 1.2.

For the remainder of this overview, we abbreviate the reachable set computation using the

operator Reach(Ω,Φ), which takes two input arguments: the model parameters Ω, e.g., the

time horizon, and the algorithm parameters Φ, e.g., the time step size. Since we use set

propagation methods, its output is a sequence of ω time-interval reachable sets

{
R̂(τ0), R̂(τ1), ..., R̂(τω−1)

}
← Reach(Ω,Φ), (2.15)

which compose the reachable set over the entire time horizon τ :

R̂(τ) =
ω−1⋃

k=0

R̂(τk). (2.16)

While the reachability algorithm Reach(Ω,Φ) is guaranteed to return a sound outer approx-

imation, the tightness of the computed sets with respect to the exact reachable set strongly

depends on the tuning of the algorithm parameters Φ. Among these, the time step size and

the complexity of the set representation have the most significant effect on the result. Let us

briefly showcase how these algorithm parameters affect the reachable set computations intro-

duced above: Since the exact homogeneous time-interval solution is, in general, a non-convex

set, smaller time step sizes yield smaller approximation errors when the set representation is

25



2 Automated Verification Using Reachability Analysis

x1

x2

x1

x2

Initial set

Exact reachable set

Outer approximation of
the exact reachable set

Initial set

Exact reachable set

Outer approximation of
the exact reachable set

Figure 2.1: Influence of the algorithm parameters on the approximation error: Different time step sizes
partitioning the time horizon (left: ω = 2 time steps, right: ω = 6 time steps) and different
complexities for representing the computed outer approximation of the exact reachable set
(left: six vertices per set, right: four vertices per set).

restricted to convex sets. In contrast, the computation of the particular solution benefits from

larger time step sizes since its propagation over subsequent time steps corresponds to a se-

quence of Minkowski sums, each of which increases the complexity of the resulting shape and,

thus, the required representation size for an accurate representation. Figure 2.1 illustrates how

a suitable choice of algorithm parameters can influence the resulting reachable set size: On the

left-hand side, the time horizon is partitioned using larger time step sizes and the reachable sets

are represented using more vertices as opposed to smaller time step sizes and fewer vertices on

the left-hand side. We prefer to obtain the result on the right-hand side from the reachability

algorithm Reach(Ω,Φ).

Let us now show how the tightness of the computed outer (or inner) approximation affects

the verification task. To this end, consider Figure 2.2, where we are given an initial set X0

and compute an outer approximation R̂(τ) ⊇ R(τ) and an inner approximation

̂
R(τ) ⊆ R(τ)

of the exact reachable set R(τ) over a bounded time horizon τ . We now examine whether we

can verify safety regarding a set of safety specifications, which are defined via the unsafe sets

F1, . . . ,F4: There is no intersection between the outer approximation R̂(τ) and the leftmost

unsafe set F1 so that the corresponding specification is verified. In contrast, the rightmost

unsafe set F4 intersects the inner approximation

̂
R(τ), resulting in a safety violation since

there is definitely some system behavior that reaches this unsafe set. The other two unsafe

sets intersect the outer approximation but not the inner approximation, from which safety can

neither be verified nor falsified. With the help of the exact reachable setR(τ)—which we cannot

compute—safety could be determined: The second-to-left unsafe set F2 does not intersect the

exact reachable set so that the corresponding specification is verified, whereas there is indeed

an intersection between the second-to-right unsafe set F3 and the exact reachable set, thereby

falsifying safety with regard to that specification.

This abstract illustration underlines the criticality of the tightness of the reachable set ap-

proximations. We can only verify or falsify safety for a given specification if the computed

outer and inner approximations are tight enough. To quantitatively measure the tightness of

26



2.2 Solution Concept

x1

x2

✓
(✓) (✗)

✗

Initial set X0

Inner approximation

̂
R(τ)

Exact reachable set R(τ) Outer approximation R̂(τ)

Unsafe sets F1, ...,F4

Figure 2.2: Safety verification using inner and outer approximations of the exact reachable set: Safety
can be verified if an unsafe set and the outer approximation do not intersect (case ✓). In
contrast, if an unsafe set intersects the inner approximation, safety is provably violated
(case ✗). If the inner and outer approximation are not tight enough to determine safety,
we do not obtain any conclusive result (cases (✓) and (✗)).

an outer or inner approximation of the reachable set with respect to its exact counterpart, we

use the Hausdorff distance between sets.

Definition 7 (Hausdorff Distance). The Hausdorff distance between two compact sets S1,S2 ⊂
Rn is defined as

dH(S1,S2) := max
{
max
s1∈S1

(
min
s2∈S2

∥s1 − s2∥2
)
, max
s2∈S2

(
min
s1∈S1

∥s1 − s2∥2
)}

(2.17)

with respect to the Euclidean norm. □

Informally, the Hausdorff distance is the longest shortest distance between any two points

within their respective sets, as shown on the left-hand side of Figure 2.3. In this thesis, we

use the Hausdorff distance, as illustrated on the right-hand side of Figure 2.3, to measure the

approximation error

ε(Φ) = dH

(
R(τ ; Ω), R̂(τ ; Ω,Φ)

)
(2.18)

between the exact reachable set R(τ ; Ω) and an outer approximation R̂(τ ; Ω,Φ) returned by a

reachability algorithm Reach(Ω,Φ). To highlight the crucial dependence of the approximation

error on the algorithm parameters Φ, we include Φ as an argument in R̂(τ ; Ω,Φ) in addition

to the user-provided model parameters Ω. Please note that we can define the error (2.18)

analogously with respect to an inner approximation

̂
R(τ ; Ω,Φ).

Let us now outline our solution concept for the verification tasks introduced in the previous

section. For all three tasks, we need a reachability algorithm computing the required reachable

sets. To this end, we either re-use well-known state-of-the-art algorithms or introduce novel

ones. The automated verification consists of three main parts, namely,

27



2 Automated Verification Using Reachability Analysis

x1

x2

x1

x2

dH

Set S1 Set S2

dH

Initial set

Exact reachable set

Outer approximation
of the reachable set

Figure 2.3: The Hausdorff distance dH measures the distance between sets (left). We interpret the
Hausdorff distance between the outer approximation and the exact reachable set as the
approximation error (right).

1. the derivation or estimation of bounds on the approximation error (2.18),

2. devising strategies for the automated tuning of algorithm parameters Φ, and

3. iterative refinement of the reachable set approximations R̂(τ) and

̂
R(τ) based on the

tuning methods from step 2.

Knowing how each algorithm parameter affects the approximation error facilitates the devel-

opment of tuning strategies for the reachability algorithm. We then compute a tightening

sequence of approximations by iteratively refining the algorithm parameters for the reacha-

bility algorithm to eventually verify or falsify safety. This concept automates the verification

process so that the user only has to provide the dynamics (2.1)-(2.3), the model parameters Ω,

and the safety specification to obtain a provably correct result on the safety of the system.

28



3 Discussion and Conclusion

In this chapter, we summarize and critically assess the work presented in this thesis, in addi-

tion to giving potential directions for work. We address our contributions to the automated

verification of linear systems using forward reachability in Section 3.1 and using backward

reachability in Section 3.2. In Section 3.3, we recap our automated reachability algorithm of

nonlinear systems and identify the missing components toward automated verification.

3.1 Verification of Linear Systems Using Forward Reachability

Our works [W1–W3] reprinted in Appendices A.1 to A.3 are dedicated to solving the verification

task in Problem 1 for linear systems of the form (2.2). We have devised two automated

verification algorithms that tune the algorithm parameters based on knowledge about the

induced approximation errors. Hence, we can verify any safety specification that does not

require the exact reachable set.

Summary The first algorithm (Appendices A.1 and A.2) computes explicit outer and inner

approximations of the exact reachable set represented by zonotopes and constrained zonotopes,

respectively. A subsequent intersection check with the unsafe sets either verifies safety or falsi-

fies safety or demands refined algorithm parameters for a tighter approximation. The runtime

complexity for computing an outer approximation respecting a bound on the admissible error

is O(n3), equal to the base algorithm [31, 48]. Halving the admissible error bound at most

doubles the number of time steps required for the reachable set computation. The inner ap-

proximation is computed by the Minkowski difference between a zonotope and an error ball

representing the approximation error. Our evaluation of this operation yields a constrained

zonotope with a significantly larger representation size. The subsequent intersection check be-

tween the inner approximation and the unsafe set has complexity O(n7), which thus becomes

the bottleneck of the verification algorithm. However, one can also circumvent the computa-

tion of the Minkowski difference altogether, as shown in Figure 3.1: On the left-hand side, we

falsify safety by determining that the unsafe set intersects the inner approximation, which is

computed by the Minkowski difference between the outer approximation and the error ball.

Instead, one can tighten the unsafe set by Minkowski difference with that same error ball, as

shown on the right-hand side. Safety is then falsified by showing that the outer approximation

intersects the tightened unsafe set. At the cost of computing an explicit inner approxima-

tion, this would improve the runtime complexity of the verification algorithm to about O(n4),

depending on the linear programs used for the intersection checks.

29



3 Discussion and Conclusion

x1

x2

x1

x2

Initial set

Exact reachable set
Unsafe set

Inner approximation
of the reachable set

Error ball
Initial set Exact reachable set

Unsafe set

Tightened
unsafe set

Outer approximation
of the reachable set

Error ball

Figure 3.1: Alternative approach for the falsification of linear systems: Instead of computing an ex-
plicit inner approximation and checking for an intersection with the unsafe set (left), one
can also check for an intersection between the computed outer approximation and a tight-
ened unsafe set (right).

The second algorithm (Appendix A.3) uses support function evaluations to compute outer

and inner approximations of the exact reachable set. For specific set representations describ-

ing the initial set and the disturbance set, it is possible to pre-compute the homogeneous

and particular solutions, which significantly decreases the computation time since the run-

time complexity of the propagation reduces to O(n2). Although the algorithm is primarily

designed to solve the verification task, one can also extract explicit reachable sets represented

as polytopes—except for the inner approximation of the time-interval reachable set—but with-

out knowledge about their approximation error with respect to the exact reachable set. For

safety specifications formulated using halfspaces as unsafe sets, this algorithm provides a faster

verification result than our first algorithm. In the case of more complex representations of the

unsafe sets, it is unclear whether the intersection check is faster using an a priori unknown

number of support function evaluations as in this algorithm or a single linear program for

explicitly computed reachable sets as in the first algorithm.

In summary, both our verification algorithms iteratively and automatically refine the al-

gorithm parameters until safety can be verified or falsified. Consequently, only the model,

the model parameters, and the safety specifications have to be defined to obtain a conclusive

result on safety. Our numerical evaluation has shown comparative or faster performance on

benchmarks of the ARCH competition, which assesses the current capabilities of academic

verification tools. Hence, we claim that the verification task formulated in Problem 1 has been

successfully solved by the work in this thesis.

Future Work One can extend our solution concept to reachability algorithms using dimen-

sionality reduction to improve the analysis of high-dimensional linear systems [59–62]. Similar

to our rigorous approximation error analysis, the errors induced by the dimensionality reduc-

tion have to be bounded, and their dependence on the algorithm parameters, most notably the

time step size, has to be determined. For a Krylov subspace algorithm [59, 60], the dimension

of the Krylov subspace becomes another tunable algorithm parameter; for a decomposition

algorithm [61, 62], the block partitioning of the state matrix has to be tuned. These new algo-

30



3.2 Verification of Linear Systems Using Backward Reachability

rithm parameters are responsible for the degree of abstraction that is imposed on the dynamics

before starting the reachable set computation. This introduces a level of abstraction refinement

to the resulting verification algorithm, where the outer layer refines the abstraction and the

inner layer refines the approximation errors of the reachable set computed for that abstraction.

Other than for decoupled systems, such abstractions are not loss-free and the refinement will

converge to the original full-state dynamics as the admissible error bound decreases.

Another direction for future work is the verification of more complex specifications, such as

temporal logic specifications [182, 183], which cannot be solved by simple intersection checks

due to the time dependency of the specifications. One method introduces reachset temporal

logic, which rewrites signal temporal logic formulae into conjunctions and disjunctions of reach-

avoid problems [183]. Our approach might thus be extensible to this more general class of

specifications by tailoring the refinement process to many concurrent individual reach-avoid

problems.

3.2 Verification of Linear Systems Using Backward

Reachability

Our work [W4] reprinted in Appendix A.4 addresses the verification tasks formulated in Prob-

lems 2 and 3 for linear systems of the form (2.1). We have developed novel backward reach-

ability algorithms for time-point and time-interval minimal and maximal backward reachable

sets whose runtime complexity is polynomial in the state dimension.

Summary Under mild assumption for the model parameters, our backward reachability al-

gorithms exploit the benefits of three different set representations—polytopes, zonotopes, and

constrained zonotopes—and conversions between them, such that all set operations have poly-

nomial runtime complexity in the state dimension. The combination of different set represen-

tations becomes necessary due to the presence of competing control inputs and disturbances,

which results in a set-based algorithm with a Minkowski sum and a Minkowski difference: The

Minkowski difference is essentially a containment problem, which can be solved efficiently using

support function evaluations if the outer body is a polytope in halfspace representation. If,

instead, the outer body is a zonotope in generator representation, the runtime complexity is ex-

ponential in the state dimension [184]. The Minkowski sum can be very efficiently evaluated for

zonotopes and constrained zonotopes, but only in exponential runtime with respect to the state

dimension for two polytopes [42]. Our algorithms successfully avoid evaluating both set oper-

ations in exponential runtime. Regarding the approximation error, the computed time-point

solutions converge to the respective exact backward reachable sets in the limit for a time step

size going to zero and by evaluating an infinite number of support functions for the Minkowski

sum of a polytope and a zonotope. Still, an exact bound for the approximation error is yet to

be derived. Moreover, our computation of time-interval solutions is based on approximations

whose induced errors are unknown. A comparison to the state of the art, namely Hamilton-

Jacobi reachability and dissipativity-based approaches, greatly favors our proposed algorithms

due to their polynomial runtime complexity in the state dimension. While those approaches

31



3 Discussion and Conclusion

x1

x2

x1

x2

Initial set

Inner approximation of the
one-step maximal backward
reachable set without disturbance

Maximal backward
reachable set

Initial set
Inner approximation of the
one-step maximal backward
reachable set without disturbance

Inner approximation
of the one-step
maximal backward
reachable set
with disturbance

Maximal
backward
reachable set

Figure 3.2: Maximal backward reachability analysis using feedforward (left) or feedback (right) con-
trol. The final maximal backward reachable set is larger for feedback control because the
control input can iteratively react to the disturbance.

can deal with more general dynamics, including time-varying parameters and state constraints,

we still claim that our novel backward reachability algorithms significantly outperform them,

restricted to the computation of backward reachable sets for linear systems.

Future Work Since our work on backward reachability is the first of its kind, there are

multiple directions for future investigations: A rigorous derivation of the approximation errors

would provide a quantitative assessment of the tightness of the computed inner and outer

approximations. In contrast to our approximation error analysis for the forward reachable set

computation in [W2], this is a more challenging endeavor for backward reachability: Some

errors originate from approximations with unknown exact solutions, which impedes any at-

tempt to bound the approximation error. Another idea is to compute both inner and outer

approximations and bound the approximation error using the Hausdorff distance between the

two. However, it is non-trivial to obtain the complementary inner or outer approximation for

the computation of the approximation error, and even then, the Hausdorff distance is generally

hard to compute unless similarities in the structure of the two sets can be exploited.

A second extension is to incorporate automated tuning of algorithm parameters to refine

the tightness of the computed backward reachable sets. By applying our solution concept, one

could then fully automatically solve the verification tasks in Problems 2 and 3. Note that an

explicit bound on the approximation error is not strictly necessary as long as the parameter

tuning can be proven to tighten the reachable sets, e.g., by analyzing the behavior in the limit

of a time step size going to zero. However, this requires all approximation errors to be known,

which is currently not the case, as mentioned above.

Another idea is to consider feedback control instead of feedforward control. Figure 3.2

shows the differences between the resulting maximal backward reachable sets: Our set-based

computation corresponds to feedforward control due to the superposition of the two particu-

lar solutions for the influences of control inputs and disturbances. Since the superposition is

maintained for the entire time under consideration, the control input cannot react to the distur-

32



3.3 Verification of Nonlinear Systems

bance (left-hand side of Figure 3.2). Feedback control corresponds to an iterative computation

of the reachable set (right-hand side of Figure 3.2), where both particular solutions affect the

computation of the reachable set within each time step. The main challenge for the result-

ing backward reachability algorithm is the evaluation of the Minkowski sum and Minkowski

difference in each time step. A source of inspiration might be the reachable set computation

using set propagation for linear discrete-time systems [64], where iterative evaluation of both

set operations is unavoidable.

Finally, to date, there exist no backward reachability algorithms using set propagation for

nonlinear continuous-time systems. A promising starting point is on-the-fly linearization [73],

which abstracts the nonlinear dynamics to linear difference inclusions while rigorously ac-

counting for the abstraction error due to the truncated higher-order dynamics. This results

in a sequence of one-step backward reachable set computations for iteratively changing linear

dynamics, which is reminiscent of the feedback control illustrated in Figure 3.2.

3.3 Verification of Nonlinear Systems

Our works [W5, W6] reprinted in Appendices A.5 and A.6 are dedicated to solving the verifica-

tion task in Problem 1 for nonlinear systems of the form (2.3). We have extended a reachability

algorithm based on set propagation and on-the-fly linearization by automated parameter tun-

ing methods to obtain tight reachable sets, which can be used for verification in a subsequent

step.

Summary The main challenge for automated parameter tuning is the unavoidable wrapping

effect of the set propagation. In contrast to our proposed parameter tuning methods for linear

systems, we cannot fulfill an admissible error bound for the reachable set since we do not

have bounds on the errors induced in future time steps—these depend on the future size

of the reachable set and the future abstracted dynamics. Therefore, our parameter tuning

methods for nonlinear systems focus on analyzing the local behavior of the abstraction error:

After simplifying the set propagation over a sequence of time steps until reaching a finite time

horizon, we obtain a scalar function estimating the radius of the reachable set at the end of

that finite time horizon. Crucially, the influence of the time step size on the abstraction error

is measured using the novel concept of a gain order, which describes the relative change in the

abstraction error for different time step sizes. While previous approaches were restricted to

fixed values, automatically tuned time step sizes allow the reachability analysis to adapt to the

current dynamics: A smaller time step size is used in regions with stronger nonlinearities to

limit the induced abstraction errors, while a larger time step size reduces the number of time

steps in regions with milder nonlinearities.

Future Work Finally, let us outline how to build upon our work [W5, W6] to devise an

automated verification algorithm. For the type of reachability algorithm that we used, it has

been shown that spatial refinement—often called splitting—is required for convergence to the

exact reachable set [185]. This convergence to the exact solution is a critical condition for

33



3 Discussion and Conclusion

x1

x2

Unsafe set

x1

x2

Initial set

Exact reachable set

Outer approximations
of time-interval reach-
able sets (no splitting)

Outer approximations
of time-point reachable
sets (no splitting)

Initial sets

Exact reachable set

Unsafe set

Outer approximations
of time-interval reachable
sets (with splitting)

Outer approximations
of time-point reachable
sets (with splitting)

Figure 3.3: Reachability analysis of nonlinear systems: Large initial sets result in large approximation
errors, impeding verification (left). However, splitting the initial set into smaller sets
reduces the approximation error, leading to a successful verification (right).

a complete verification algorithm, especially for nonlinear systems, where reachability anal-

ysis often aborts due to an uncontrollable growth of the abstraction error, as illustrated in

Figure 3.3: On the left-hand side, the reachable set is computed without splitting, resulting

in an outer approximation with a large approximation error that impedes safety verification.

In contrast, the reachable set on the right-hand side is computed for a split initial set, and

since neither of the reachable sets intersects the unsafe set, safety is verified. Therefore, the

effects of splitting have to be analyzed with similar rigor as demonstrated for the dependence

of the abstraction error on the time step size in [W6]. One idea is to define a spatial gain

order describing how the abstraction error changes when the set is split in twain, analogously

to the temporal gain order we have introduced. This quantitative information can then be

used to decide when to split, ultimately yielding an algorithm that refines time and space

and, thus, converges to the exact solution [185]. Nevertheless, the approximation error of the

computed outer approximation would still be unknown, so that we cannot falsify safety unless

we incorporate falsification techniques.

In summary, we have made important steps toward automated verification of uncertain

dynamical systems. Nevertheless, there are still many ways to improve reachability analysis, as

foreshadowed above. Our overarching goal is to design algorithms for safety verification based

on automatically refining the tightness of the computed reachable sets. Further improvements

to our work will steadily advance automated safety verification until future approaches can

eventually be used in industrial practice in order to guarantee the safe operation of cyber-

physical systems.

Finis.

34



List of Figures

1.1 Reachability analysis using set propagation . . . . . . . . . . . . . . . . . . . . 5

1.2 Reachability analysis for hybrid systems using set propagation . . . . . . . . . 7

1.3 Reachability analysis using simulations . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Falsification using simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Falsification using abstraction refinement . . . . . . . . . . . . . . . . . . . . . 11

1.6 Range-bounding methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Reachability analysis of dissipative systems . . . . . . . . . . . . . . . . . . . . 13

1.8 Hamilton-Jacobi reachability analysis . . . . . . . . . . . . . . . . . . . . . . . . 14

1.9 Verification using barrier certificates . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Influence of the algorithm parameters on the approximation error . . . . . . . . 26

2.2 Verification using inner and outer approximations of the exact reachable set . . 27

2.3 Hausdorff distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Alternative approach for the falsification of linear systems. . . . . . . . . . . . . 30

3.2 Maximal backward reachability analysis using feedforward/feedback control . . 32

3.3 Reachability analysis of nonlinear systems using splitting . . . . . . . . . . . . 34

35





Bibliography

[1] T. Gan, M. Chen, Y. Li, B. Xia, and N. Zhan. “Reachability analysis for solvable dy-

namical systems”. In: IEEE Transactions on Automatic Control 63.7 (2018), pp. 2003–

2018. doi: 10.1109/TAC.2017.2763785.

[2] N. S. Nedialkov. “Computing rigorous bounds on the solution of an initial value prob-

lem for an ordinary differential equation.” Dissertation. University of Toronto, 2000.

[3] K. Makino and M. Berz. “Rigorous integration of flows and ODEs using Taylor mod-

els”. In: Proc. of Symbolic-Numeric Computation. ACM. 2009, pp. 79–84. doi: 10.

1145/1577190.1577206.

[4] J. Liu, N. Zhan, and H. Zhao. “Computing semi-algebraic invariants for polynomial

dynamical systems”. In: Proc. of the 9th International Conference on Embedded Soft-

ware. ACM, 2011, pp. 97–106. doi: 10.1145/2038642.2038659.

[5] M. A. Ben Sassi and A. Girard. “Computation of polytopic invariants for polynomial

dynamical systems using linear programming”. In: Automatica 48.12 (2012), pp. 3114–

3121. doi: 10.1016/j.automatica.2012.08.014.

[6] M. A. Ben Sassi, A. Girard, and S. Sankaranarayanan. “Iterative computation of poly-

hedral invariants sets for polynomial dynamical systems”. In: Proc. of the 53rd Confer-

ence on Decision and Control. IEEE. 2014, pp. 6348–6353. doi: 10.1109/CDC.2014.

7040384.

[7] K. Ghorbal and A. Platzer. “Characterizing algebraic invariants by differential radical

invariants”. In: Proc. of the 20th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems. Springer, 2014, pp. 279–294. doi: 10.

1007/978-3-642-54862-8_19.

[8] M. Boreale. “Complete algorithms for algebraic strongest postconditions and weakest

preconditions in polynomial ODEs”. In: Science of Computer Programming 193 (2020).

doi: 10.1016/j.scico.2020.102441.

[9] A. Devonport and M. Arcak. “Estimating reachable sets with scenario optimization”.

In: Proc. of the 2nd Conference on Learning for Dynamics and Control. PMLR. 2020,

pp. 75–84.

[10] A. Devonport, F. Yang, L. El Ghaoui, and M. Arcak. “Data-driven reachability analysis

with Christoffel functions”. In: Proc. of the 60th Conference on Decision and Control.

IEEE, 2021, pp. 5067–5072. doi: 10.1109/CDC45484.2021.9682860.

37

https://doi.org/10.1109/TAC.2017.2763785
https://doi.org/10.1145/1577190.1577206
https://doi.org/10.1145/1577190.1577206
https://doi.org/10.1145/2038642.2038659
https://doi.org/10.1016/j.automatica.2012.08.014
https://doi.org/10.1109/CDC.2014.7040384
https://doi.org/10.1109/CDC.2014.7040384
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1007/978-3-642-54862-8_19
https://doi.org/10.1016/j.scico.2020.102441
https://doi.org/10.1109/CDC45484.2021.9682860


Bibliography

[11] A. J. Thorpe, K. R. Ortiz, and M. M. K. Oishi. “Learning approximate forward reach-

able sets using separating kernels”. In: Proc. of the 3rd Conference on Learning for

Dynamics and Control. 2021, pp. 201–212.

[12] S. Ratschan and Z. She. “Safety verification of hybrid systems by constraint propagation-

based abstraction refinement”. In: Transactions on Embedded Computing Systems 6.1

(2007), pp. 8–31. doi: 10.1145/1210268.1210276.

[13] N. Ramdani and N. S. Nedialkov. “Computing reachable sets for uncertain nonlinear

hybrid systems using interval constraint-propagation techniques”. In: Nonlinear Anal-

ysis: Hybrid Systems 5.2 (2011), pp. 149–162. doi: 10.1016/j.nahs.2010.05.010.

[14] B. HomChaudhuri, A. P. Vinod, and M. M. K. Oishi. “Computation of forward stochas-

tic reach sets: Application to stochastic, dynamic obstacle avoidance”. In: Proc. of the

American Control Conference. IEEE. 2017, pp. 4404–4411. doi: 10.23919/ACC.2017.

7963633.

[15] A. P. Vinod, B. HomChaudhuri, and M. M. K. Oishi. “Forward stochastic reachability

analysis for uncontrolled linear systems using Fourier transforms”. In: Proc. of the

20th International Conference on Hybrid Systems: Computation and Control. ACM.

2017, pp. 35–44. doi: 10.1145/3049797.3049818.

[16] A. P. Vinod and M. M. K. Oishi. “Stochastic reachability of a target tube: Theory and

computation”. In: Automatica 125 (2021), p. 109458. doi: 10.1016/j.automatica.

2020.109458.

[17] A. P. Vinod, J. P. Gleason, and M. M. K. Oishi. “SReachTools: A MATLAB stochas-

tic reachability toolbox”. In: Proc. of the 22nd International Conference on Hybrid

Systems: Computation and Control. ACM. 2019, pp. 33–38. doi: 10.1145/3302504.

3311809.

[18] A. Taly and A. Tiwari. “Deductive verification of continuous dynamical systems”. In:

IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2009.

[19] A. Platzer. Logical analysis of hybrid systems: Proving theorems for complex dynamics.

Springer, 2010. isbn: 978-3-642-14508-7. doi: 10.1007/978-3-642-14509-4.

[20] F. Immler. “Tool presentation: Isabelle/HOL for reachability analysis of continuous

systems”. In: Proc. of the 2nd International Workshop on Applied Verification for

Continuous and Hybrid Systems. 2015, pp. 180–187. doi: 10.29007/b3wr.

[21] S. Kong, S. Gao, W. Chen, and E. Clarke. “dReach: δ-reachability analysis for hybrid

systems”. In: Proc. of the Conference on Tools and Algorithms for the Construction

and Analysis of Systems. Springer, 2015. doi: 10.1007/978-3-662-46681-0_15.

[22] A. Platzer and J.-D. Quesel. “KeYmaera: A hybrid theorem prover for hybrid systems

(system description)”. In: International Joint Conference on Automated Reasoning.

Springer. 2008, pp. 171–178. doi: 10.1007/978-3-540-71070-7_15.

38

https://doi.org/10.1145/1210268.1210276
https://doi.org/10.1016/j.nahs.2010.05.010
https://doi.org/10.23919/ACC.2017.7963633
https://doi.org/10.23919/ACC.2017.7963633
https://doi.org/10.1145/3049797.3049818
https://doi.org/10.1016/j.automatica.2020.109458
https://doi.org/10.1016/j.automatica.2020.109458
https://doi.org/10.1145/3302504.3311809
https://doi.org/10.1145/3302504.3311809
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.29007/b3wr
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-540-71070-7_15


Bibliography

[23] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer. “KeYmaera X: An ax-

iomatic tactical theorem prover for hybrid systems”. In: Proc. of the 25th International

Conference on Automated Deduction. Springer. 2015, pp. 527–538. doi: 10.1007/978-

3-319-21401-6_36.

[24] J. C. Butcher. Numerical methods for ordinary differential equations. John Wiley &

Sons, 2016. isbn: 9781119121503. doi: 10.1002/9781119121534.

[25] D. F. Griffiths and D. J. Higham. Numerical methods for ordinary differential equa-

tions: Initial value problems. Springer, 2010. isbn: 978-0-85729-148-6. doi: 10.1016/

C2013-0-10643-5.

[26] M. Althoff, G. Frehse, and A. Girard. “Set propagation techniques for reachability anal-

ysis”. In: Annual Review of Control, Robotics, and Autonomous Systems 4.1 (2021),

pp. 369–395. doi: 10.1146/annurev-control-071420-081941.

[27] G. M. Ziegler. Lectures on polytopes. Springer Science & Business Media, 2012.

[28] G. Alefeld and G. Mayer. “Interval analysis: Theory and applications”. In: Computa-

tional and Applied Mathematics 121.1-2 (2000), pp. 421–464. doi: 10.1016/S0377-

0427(00)00342-3.

[29] A. A. Kurzhanskiy and P. Varaiya. “Ellipsoidal toolbox (ET)”. In: Proc. of the 45th

Conference on Decision and Control. IEEE. 2006, pp. 1498–1503. doi: 10.1109/CDC.

2006.377036.

[30] A. Girard and C. Le Guernic. “Efficient reachability analysis for linear systems us-

ing support functions”. In: IFAC Proceedings Volumes 41.2 (2008). doi: 10.3182/

20080706-5-KR-1001.01514.

[31] A. Girard. “Reachability of uncertain linear systems using zonotopes”. In: Proc. of the

8th International Workshop on Hybrid Systems: Computation and Control. Springer,

2005, pp. 291–305. doi: 10.1007/978-3-540-31954-2_19.

[32] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz. “Constrained zono-

topes: A new tool for set-based estimation and fault detection”. In: Automatica 69

(2016), pp. 126–136. doi: 10.1016/j.automatica.2016.02.036.

[33] N. Kochdumper and M. Althoff. “Sparse polynomial zonotopes: A novel set represen-

tation for reachability analysis”. In: IEEE Transactions on Automatic Control 66.2

(2021), pp. 4043–4058. doi: 10.1109/TAC.2020.3024348.

[34] M. Berz and G. Hoffstätter. “Computation and application of Taylor polynomials

with interval remainder bounds”. In: Reliable Computing 4 (1998), pp. 83–97. doi:

10.1023/A:1009958918582.

[35] M. Althoff. “An introduction to CORA 2015”. In: Proc. of the Workshop on Applied

Verification for Continuous and Hybrid Systems. 2015, pp. 120–151. doi: 10.29007/

zbkv.

39

https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1002/9781119121534
https://doi.org/10.1016/C2013-0-10643-5
https://doi.org/10.1016/C2013-0-10643-5
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1016/S0377-0427(00)00342-3
https://doi.org/10.1016/S0377-0427(00)00342-3
https://doi.org/10.1109/CDC.2006.377036
https://doi.org/10.1109/CDC.2006.377036
https://doi.org/10.3182/20080706-5-KR-1001.01514
https://doi.org/10.3182/20080706-5-KR-1001.01514
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1016/j.automatica.2016.02.036
https://doi.org/10.1109/TAC.2020.3024348
https://doi.org/10.1023/A:1009958918582
https://doi.org/10.29007/zbkv
https://doi.org/10.29007/zbkv


Bibliography

[36] S. Schupp, E. Ábrahám, I. Ben Makhlouf, and S. Kowalewski. “HyPro: A C++ library

of state set representations for hybrid systems reachability analysis”. In: Proc. of the

9th NASA Formal Methods Symposium. 2017, pp. 288–294. doi: 10.1007/978-3-

319-57288-8_20.

[37] N. Kochdumper. “Extensions of polynomial zonotopes and their application to ver-

ification of cyber-physical systems”. Dissertation. Technische Universität München,

2022.

[38] E. Asarin, O. Bournez, T. Dang, and O. Maler. “Approximate reachability analysis of

piecewise-linear dynamical systems”. In: Proc. of the 3rd International Workshop on

Hybrid Systems: Computation and Control. Springer. 2000, pp. 20–31. doi: 10.1007/

3-540-46430-1_6.

[39] T. Dang. “Verification and synthesis of hybrid systems”. Dissertation. Institut National

Polytechnique de Grenoble, 2000.

[40] A. A. Kurzhanskiy and P. Varaiya. “Ellipsoidal techniques for reachability analy-

sis”. In: 3rd International Workshop on Hybrid Systems: Computation and Control.

Springer. 2000, pp. 202–214. doi: 10.1007/3-540-46430-1_19.

[41] A. Chutinan and B. H. Krogh. “Computational techniques for hybrid system verifi-

cation”. In: IEEE Transactions on Automatic Control 48.1 (2003), pp. 64–75. doi:

10.1109/TAC.2002.806655.

[42] H. R. Tiwary. “On the hardness of computing intersection, union and Minkowski sum

of polytopes”. In: Discrete & Computational Geometry 40.3 (2008), pp. 469–479. doi:

10.1007/s00454-008-9097-3.

[43] A. Girard, C. Le Guernic, and O. Maler. “Efficient computation of reachable sets of

linear time-invariant systems with inputs”. In: Proc. of the 9th International Workshop

on Hybrid Systems: Computation and Control. Springer. 2006, pp. 257–271. doi: 10.

1007/11730637_21.

[44] X. Yang and J. K. Scott. “A comparison of zonotope order reduction techniques”. In:

Automatica 95 (2016), pp. 378–384. doi: 10.1016/j.automatica.2018.06.006.

[45] A.-K. Kopetzki, B. Schürmann, and M. Althoff. “Methods for order reduction of

zonotopes”. In: Proc. of the 56th Conference on Decision and Control. IEEE. 2017,

pp. 5626–5633. doi: 10.1109/CDC.2017.8264508.

[46] M. Althoff, O. Stursberg, and M. Buss. “Reachability analysis of linear systems with

uncertain parameters and inputs”. In: Proc. of the 46th Conference on Decision and

Control. IEEE. 2007, pp. 726–732. doi: 10.1109/CDC.2007.4434084.

[47] M. Althoff, C. Le Guernic, and B. H. Krogh. “Reachable set computation for uncertain

time-varying linear systems”. In: Proc. of the 14th International Conference on Hybrid

Systems: Computation and Control. ACM, 2011, pp. 93–102. doi: 10.1145/1967701.

1967717.

[48] M. Althoff. “Reachability analysis and its application to the safety assessment of au-

tonomous cars”. Dissertation. Technische Universität München, 2010.

40

https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/3-540-46430-1_6
https://doi.org/10.1007/3-540-46430-1_6
https://doi.org/10.1007/3-540-46430-1_19
https://doi.org/10.1109/TAC.2002.806655
https://doi.org/10.1007/s00454-008-9097-3
https://doi.org/10.1007/11730637_21
https://doi.org/10.1007/11730637_21
https://doi.org/10.1016/j.automatica.2018.06.006
https://doi.org/10.1109/CDC.2017.8264508
https://doi.org/10.1109/CDC.2007.4434084
https://doi.org/10.1145/1967701.1967717
https://doi.org/10.1145/1967701.1967717


Bibliography

[49] C. Le Guernic. “Reachability analysis of hybrid systems with linear continuous dy-

namics”. Dissertation. Université Joseph-Fourier – Grenoble I, 2009.

[50] C. Le Guernic and A. Girard. “Reachability analysis of linear systems using support

functions”. In: Nonlinear Analysis: Hybrid Systems 4.2 (2010), pp. 250–262. doi: 10.

1016/j.nahs.2009.03.002.

[51] G. Frehse, R. Kateja, and C. Le Guernic. “Flowpipe approximation and clustering

in space-time”. In: Proc. of the 16th International Conference on Hybrid Systems:

Computation and Control. ACM, 2013, pp. 203–212. doi: 10.1145/2461328.2461361.

[52] M. Althoff and G. Frehse. “Combining zonotopes and support functions for efficient

reachability analysis of linear systems”. In: Proc. of the 55th Conference on Decision

and Control. IEEE. 2016, pp. 7439–7446. doi: 10.1109/CDC.2016.7799418.

[53] M. Forets and C. Schilling. “Conservative time discretization: A comparative study”.

In: Proc. of the International Conference on Integrated Formal Methods. Springer.

2022, pp. 149–167. doi: 10.1007/978-3-031-07727-2_9.

[54] E. Luo, N. Kochdumper, and S. Bak. “Reachability analysis for linear systems with

uncertain parameters using polynomial zonotopes”. In: Proc. of the 26th International

Conference on Hybrid Systems: Computation and Control. ACM, 2023. doi: 10.1145/

3575870.3587130.

[55] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A.

Girard, T. Dang, and O. Maler. “SpaceEx: Scalable verification of hybrid systems”.

In: Proc. of the 23rd International Conference on Computer Aided Verification. LNCS

6806. Springer, 2011, pp. 379–395. doi: 10.1007/978-3-642-22110-1_30.

[56] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. “JuliaReach: A

toolbox for set-based reachability”. In: Proc. of the 22nd International Conference on

Hybrid Systems: Computation and Control. ACM, 2019, pp. 39–44. doi: 10.1145/

3302504.3311804.

[57] R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, and R. Grosu. “XSpeed: Ac-

celerating reachability analysis on multi-core processors”. In: Haifa Verification Con-

ference. Springer. 2015, pp. 3–18. doi: 10.1007/978-3-319-26287-1_1.

[58] A. Gurung, R. Ray, E. Bartocci, S. Bogomolov, and R. Grosu. “Parallel reachability

analysis of hybrid systems in XSpeed”. In: International Journal on Software Tools for

Technology Transfer 21.4 (2019), pp. 401–423. doi: 10.1007/s10009-018-0485-6.

[59] M. Althoff. “Reachability analysis of large linear systems with uncertain inputs in the

Krylov subspace”. In: IEEE Transactions on Automatic Control 65.2 (2020), pp. 477–

492. doi: 10.1109/TAC.2019.2906432.

[60] S. Bak, H.-D. Tran, and T. T. Johnson. “Numerical verification of affine systems with

up to a billion dimensions”. In: Proc. of the 22nd International Conference on Hybrid

Systems: Computation and Control. ACM, 2019, pp. 23–32. doi: 10.1145/3302504.

3311792.

41

https://doi.org/10.1016/j.nahs.2009.03.002
https://doi.org/10.1016/j.nahs.2009.03.002
https://doi.org/10.1145/2461328.2461361
https://doi.org/10.1109/CDC.2016.7799418
https://doi.org/10.1007/978-3-031-07727-2_9
https://doi.org/10.1145/3575870.3587130
https://doi.org/10.1145/3575870.3587130
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.1007/s10009-018-0485-6
https://doi.org/10.1109/TAC.2019.2906432
https://doi.org/10.1145/3302504.3311792
https://doi.org/10.1145/3302504.3311792


Bibliography

[61] S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. “Reach set

approximation through decomposition with low-dimensional sets and high-dimensional

matrices”. In: Proc. of the 21st International Conference on Hybrid Systems: Compu-

tation and Control. ACM, 2018, pp. 41–50. doi: 10.1145/3178126.3178128.

[62] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. “Reachability

analysis of linear hybrid systems via block decomposition”. In: IEEE Transactions on

Computer-aided Design of Integrated Circuits and Systems 39.11 (2020), pp. 4018–

4029. doi: 10.1109/TCAD.2020.3012859.

[63] A. A. Kurzhanskiy and P. Varaiya. “Reach set computation and control synthesis

for discrete-time dynamical systems with disturbances”. In: Automatica 47.7 (2011),

pp. 1414–1426. doi: 10.1016/j.automatica.2011.02.009.

[64] L. Yang and N. Ozay. “Scalable zonotopic under-approximation of backward reach-

able sets for uncertain linear systems”. In: IEEE Control Systems Letters 6 (2022),

pp. 1555–1560. doi: 10.1109/LCSYS.2021.3123228.

[65] E. Asarin, T. Dang, and A. Girard. “Hybridization methods for the analysis of non-

linear systems”. In: Acta Informatica 43 (2007), pp. 451–476. doi: 10.1007/s00236-

006-0035-7.

[66] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. “HyTech: A model checker for hybrid sys-

tems”. In: Proc. of the 9th International Conference on Computer Aided Verification.

Springer. 1997, pp. 460–463. doi: 10.1007/3-540-63166-6_48.

[67] G. Frehse. “PHAVer: Algorithmic verification of hybrid systems past HyTech”. In:

Proc. of the 8th International workshop on Hybrid Systems: Computation and Control.

Springer. 2005, pp. 258–273. doi: 10.1007/978-3-540-31954-2_17.

[68] E. Asarin, T. Dang, and A. Girard. “Reachability analysis of nonlinear systems us-

ing conservative approximation”. In: 6th International Workshop on Hybrid Systems:

Computation and Control. Springer. 2003, pp. 20–35. doi: 10.1007/3-540-36580-

X_5.

[69] T. Dang, C. Le Guernic, and O. Maler. “Computing reachable states for nonlinear bi-

ological models”. In: Proc. of the International Conference on Computational Methods

in Systems Biology. Springer. 2009, pp. 126–141. doi: 10.1007/978-3-642-03845-

7_9.

[70] T. Dang, C. Le Guernic, and O. Maler. “Computing reachable states for nonlinear

biological models”. In: Theoretical Computer Science 412.21 (2011), pp. 2095–2107.

doi: 10.1016/j.tcs.2011.01.014.

[71] T. Dang, O. Maler, and R. Testylier. “Accurate hybridization of nonlinear systems”.

In: Proc. of the 13th International Conference on Hybrid Systems: Computation and

Control. ACM, 2010, pp. 11–19. doi: 10.1145/1755952.1755956.

42

https://doi.org/10.1145/3178126.3178128
https://doi.org/10.1109/TCAD.2020.3012859
https://doi.org/10.1016/j.automatica.2011.02.009
https://doi.org/10.1109/LCSYS.2021.3123228
https://doi.org/10.1007/s00236-006-0035-7
https://doi.org/10.1007/s00236-006-0035-7
https://doi.org/10.1007/3-540-63166-6_48
https://doi.org/10.1007/978-3-540-31954-2_17
https://doi.org/10.1007/3-540-36580-X_5
https://doi.org/10.1007/3-540-36580-X_5
https://doi.org/10.1007/978-3-642-03845-7_9
https://doi.org/10.1007/978-3-642-03845-7_9
https://doi.org/10.1016/j.tcs.2011.01.014
https://doi.org/10.1145/1755952.1755956


Bibliography

[72] D. Li, S. Bak, and S. Bogomolov. “Reachability analysis of nonlinear systems using

hybridization and dynamics scaling”. In: Proc. of the International Conference on

Formal Modeling and Analysis of Timed Systems. Springer. 2020, pp. 265–282. doi:

10.1007/978-3-030-57628-8_16.

[73] M. Althoff, O. Stursberg, and M. Buss. “Reachability analysis of nonlinear systems

with uncertain parameters using conservative linearization”. In: Proc. of the 47th Con-

ference on Decision and Control. IEEE. 2008, pp. 4042–4048. doi: 10.1109/CDC.2008.

4738704.

[74] M. Althoff and B. H. Krogh. “Reachability analysis of nonlinear differential-algebraic

systems”. In: IEEE Transactions on Automatic Control 59.2 (2014), pp. 371–383. doi:

10.1109/TAC.2013.2285751.

[75] A. El-Guindy. “Control and stability of power systems using reachability analysis”.

Dissertation. Technische Universität München, 2017.

[76] M. Althoff. “Formal and compositional analysis of power systems using reachable sets”.

In: IEEE Transactions on Power Systems 29.5 (2014), pp. 2270–2280. doi: 10.1109/

TPWRS.2014.2306731.

[77] M. Althoff. “Reachability analysis of nonlinear systems using conservative polynomial-

ization and non-convex sets”. In: Proc. of the 16th International Conference on Hybrid

Systems: Computation and Control. ACM, 2013, pp. 173–182. doi: 10.1145/2461328.

2461358.

[78] N. Kochdumper, B. Schürmann, and M. Althoff. “Utilizing dependencies to obtain

subsets of reachable sets”. In: Proc. of the 23rd International Conference on Hybrid

Systems: Computation and Control. ACM, 2020. doi: 10.1145/3365365.3382192.

[79] E. Goubault, O. Mullier, S. Putot, and M. Kieffer. “Inner approximated reachability

analysis”. In: Proc. of the 17th International Conference on Hybrid Systems: Compu-

tation and Control. ACM, 2014, pp. 163–172. doi: 10.1145/2562059.2562113.

[80] A. Goldsztejn and L. Jaulin. “Inner approximation of the range of vector-valued func-

tions”. In: Reliable Computing 14 (2010), pp. 1–23.

[81] O. Mullier, E. Goubault, M. Kieffer, and S. Putot. “General inner approximation of

vector-valued functions”. In: Reliable Computing 18 (2013), pp. 117–143.

[82] L. H. de Figueiredo and J. Stolfi. “Affine arithmetic: Concepts and applications”. In:

Numerical Algorithms 37 (2004), pp. 147–158. doi: 10.1023/B:NUMA.0000049462.

70970.b6.

[83] E. Goubault and S. Putot. “Forward inner-approximated reachability of non-linear

continuous systems”. In: Proc. of the 20th International Conference on Hybrid Systems:

Computation and Control. ACM, 2017, pp. 1–10. doi: 10.1145/3049797.3049811.

[84] E. Goubault and S. Putot. “Inner and outer reachability for the verification of control

systems”. In: Proc. of the 22nd International Conference on Hybrid Systems: Compu-

tation and Control. ACM, 2019, pp. 11–22. doi: 10.1145/3302504.3311794.

43

https://doi.org/10.1007/978-3-030-57628-8_16
https://doi.org/10.1109/CDC.2008.4738704
https://doi.org/10.1109/CDC.2008.4738704
https://doi.org/10.1109/TAC.2013.2285751
https://doi.org/10.1109/TPWRS.2014.2306731
https://doi.org/10.1109/TPWRS.2014.2306731
https://doi.org/10.1145/2461328.2461358
https://doi.org/10.1145/2461328.2461358
https://doi.org/10.1145/3365365.3382192
https://doi.org/10.1145/2562059.2562113
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.1145/3049797.3049811
https://doi.org/10.1145/3302504.3311794


Bibliography

[85] E. Goubault and S. Putot. “Robust under-approximations and application to reach-

ability of non-linear control systems with disturbances”. In: IEEE Control Systems

Letters 4.4 (2020), pp. 928–933. doi: 10.1109/LCSYS.2020.2997261.

[86] X. Chen, S. Sankaranarayanan, and E. Ábrahám. “Under-approximate flowpipes for

non-linear continuous systems”. In: Formal Methods in Computer-Aided Design. IEEE.

2014, pp. 59–66. doi: 10.1109/FMCAD.2014.6987596.

[87] B. Xue, Z. She, and A. Easwaran. “Under-approximating backward reachable sets by

polytopes”. In: International Conference on Computer Aided Verification. Springer.

2016, pp. 457–476. doi: 10.1007/978-3-319-41528-4_25.

[88] B. Xue, Z. She, and A. Easwaran. “Underapproximating backward reachable sets

by semialgebraic sets”. In: IEEE Transactions on Automatic Control 62.10 (2017),

pp. 5185–5197. doi: 10.1109/TAC.2017.2694351.

[89] N. Kochdumper and M. Althoff. “Computing non-convex inner-approximations of

reachable sets for nonlinear continuous systems”. In: Proc. of the 59th Conference

on Decision and Control. IEEE. 2020, pp. 2130–2137. doi: 10.1109/CDC42340.2020.

9304022.

[90] L. Yang, H. Zhang, J.-B. Jeannin, and N. Ozay. “Efficient backward reachability us-

ing the minkowski difference of constrained zonotopes”. In: IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 41.11 (2022), pp. 3969–

3980. doi: 10.1109/TCAD.2022.3197971.

[91] A. Girard and C. Le Guernic. “Zonotope/hyperplane intersection for hybrid systems

reachability analysis”. In: Proc. of the 11th International Workshop on Hybrid Systems:

Computation and Control. Springer, 2008, pp. 215–228. doi: 10.1007/978-3-540-

78929-1_16.

[92] M. Althoff and B. H. Krogh. “Avoiding geometric intersection operations in reacha-

bility analysis of hybrid systems”. In: Proc. of the 15th International Conference on

Hybrid Systems: Computation and Control. ACM, 2012, pp. 45–54. doi: 10.1145/

2185632.2185643.

[93] X. Chen, E. Ábrahám, and S. Sankaranarayanan. “Taylor model flowpipe construction

for non-linear hybrid systems”. In: Proc. of the 33rd Real-Time Systems Symposium.

IEEE. 2012, pp. 183–192. doi: 10.1109/RTSS.2012.70.

[94] G. Frehse and R. Ray. “Flowpipe-guard intersection for reachability computations

with support functions”. In: IFAC Proceedings Volumes 45.9 (2012), pp. 94–101. doi:

10.3182/20120606-3-NL-3011.00053.

[95] S. Bak, S. Bogomolov, and M. Althoff. “Time-triggered conversion of guards for reach-

ability analysis of hybrid automata”. In: Proc. of the 15th International Conference on

Formal Modeling and Analysis of Timed Systems. Springer. 2017, pp. 133–150. doi:

10.1007/978-3-319-65765-3_8.

44

https://doi.org/10.1109/LCSYS.2020.2997261
https://doi.org/10.1109/FMCAD.2014.6987596
https://doi.org/10.1007/978-3-319-41528-4_25
https://doi.org/10.1109/TAC.2017.2694351
https://doi.org/10.1109/CDC42340.2020.9304022
https://doi.org/10.1109/CDC42340.2020.9304022
https://doi.org/10.1109/TCAD.2022.3197971
https://doi.org/10.1007/978-3-540-78929-1_16
https://doi.org/10.1007/978-3-540-78929-1_16
https://doi.org/10.1145/2185632.2185643
https://doi.org/10.1145/2185632.2185643
https://doi.org/10.1109/RTSS.2012.70
https://doi.org/10.3182/20120606-3-NL-3011.00053
https://doi.org/10.1007/978-3-319-65765-3_8


Bibliography

[96] N. Kochdumper and M. Althoff. “Reachability analysis for hybrid systems with non-

linear guard sets”. In: Proc. of the 23rd International Conference on Hybrid Systems:

Computation and Control. ACM, 2020. doi: 10.1145/3365365.3382194.

[97] G. Frehse, S. Bogomolov, M. Greitschus, T. Strump, and A. Podelski. “Eliminating

spurious transitions in reachability with support functions”. In: Proc. of the 18th In-

ternational Conference on Hybrid Systems: Computation and Control. ACM, 2015,

pp. 149–158. doi: 10.1145/2728606.2728622.

[98] T. Nahhal and T. Dang. “Guided randomized simulation”. In: Proc. of the 10th In-

ternational Workshop on Hybrid Systems: Computation and Control. Springer, 2007,

pp. 731–735. doi: 10.1007/978-3-540-71493-4_72.

[99] T. Nahhal and T. Dang. “Test coverage for continuous and hybrid systems”. In: Proc.

of the 19th International Conference on Computer Aided Verification. Springer, 2007,

pp. 219–232. doi: 10.1007/978-3-540-73368-3_47.

[100] A. Girard and G. J. Pappas. “Verification using simulation”. In: Proc. of the 9th

International Workshop on Hybrid Systems: Computation and Control. Springer, 2006,

pp. 272–286. doi: 10.1007/11730637_22.

[101] A. Donzé and O. Maler. “Systematic simulation using sensitivity analysis”. In: Proc.

of the 10th International Workshop on Hybrid Systems: Computation and Control.

Springer. 2007, pp. 174–189. doi: 10.1007/978-3-540-71493-4_16.

[102] T. Dang, A. Donzé, O. Maler, and N. Shalev. “Sensitive state-space exploration”. In:

Proc. of the 47th Conference on Decision and Control. IEEE. 2008, pp. 4049–4054.

doi: 10.1109/CDC.2008.4739371.

[103] P. S. Duggirala, S. Mitra, and M. Viswanathan. “Verification of annotated models from

executions”. In: Proc. of the International Conference on Embedded Software. IEEE,

2013. doi: 10.1109/EMSOFT.2013.6658604.

[104] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. “C2E2: A verification tool

for stateflow models”. In: Proc. of the 21st International Conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer. 2015, pp. 68–82.

doi: 10.1007/978-3-662-46681-0_5.

[105] P. S. Duggirala and M. Viswanathan. “Parsimonious, simulation based verification of

linear systems”. In: Proc. of the 28th International Conference on Computer Aided

Verification. Springer, 2016, pp. 477–494. doi: 10.1007/978-3-319-41528-4_26.

[106] S. Bak and P. S. Duggirala. “Simulation-equivalent reachability of large linear systems

with inputs”. In: Proc. of International Conference on Computer Aided Verification.

2017, pp. 401–420. doi: 10.1007/978-3-319-63387-9_20.

[107] S. Bak and P. S. Duggirala. “HyLAA: A tool for computing simulation-equivalent

reachability for linear systems”. In: Proc. of the 20th International Conference on

Hybrid Systems: Computation and Control. ACM. 2017, pp. 173–178. doi: 10.1145/

3049797.3049808.

45

https://doi.org/10.1145/3365365.3382194
https://doi.org/10.1145/2728606.2728622
https://doi.org/10.1007/978-3-540-71493-4_72
https://doi.org/10.1007/978-3-540-73368-3_47
https://doi.org/10.1007/11730637_22
https://doi.org/10.1007/978-3-540-71493-4_16
https://doi.org/10.1109/CDC.2008.4739371
https://doi.org/10.1109/EMSOFT.2013.6658604
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-319-41528-4_26
https://doi.org/10.1007/978-3-319-63387-9_20
https://doi.org/10.1145/3049797.3049808
https://doi.org/10.1145/3049797.3049808


Bibliography

[108] D. Angeli and E. D. Sontag. “Monotone control systems”. In: IEEE Transactions on

Automatic Control 48.10 (2003), pp. 1684–1698. doi: 10.1109/TAC.2003.817920.

[109] S. Coogan. “Mixed monotonicity for reachability and safety in dynamical systems”.

In: Proc. of the 59th Conference on Decision and Control. IEEE, 2020, pp. 5074–5085.

doi: 10.1109/CDC42340.2020.9304391.

[110] S. Coogan and M. Arcak. “Efficient finite abstraction of mixed monotone systems”.

In: Proc. of the 18th International Conference on Hybrid Systems: Computation and

Control. ACM, 2015, pp. 58–67. doi: 10.1145/2728606.2728607.

[111] S. Coogan and M. Arcak. “Finite abstraction of mixed monotone systems with discrete

and continuous inputs”. In: Nonlinear Analysis: Hybrid Systems 23 (2017), pp. 254–

271. doi: 10.1016/j.nahs.2016.04.005.

[112] L. Yang, O. Mickelin, and N. Ozay. “On sufficient conditions for mixed monotonicity”.

In: IEEE Transactions on Automatic Control 64.12 (2019), pp. 5080–5085. doi: 10.

1109/TAC.2019.2909815.

[113] P.-J. Meyer, A. Devonport, and M. Arcak. “TIRA: Toolbox for interval reachability

analysis”. In: Proc. of the 22nd International Conference on Hybrid Systems: Compu-

tation and Control. ACM, 2019, pp. 224–229. doi: 10.1145/3302504.3311808.

[114] G. Frehse. “Computing maximizer trajectories of affine dynamics for reachability”.

In: Proc. of the 54th Conference on Decision and Control. 2015, pp. 7454–7461. doi:

10.1109/CDC.2015.7403397.

[115] G. E. Fainekos and G. J. Pappas. “Robustness of temporal logic specifications for

continuous-time signals”. In: Theoretical Computer Science 410.42 (2009), pp. 4262–

4291. doi: https://doi.org/10.1016/j.tcs.2009.06.021.

[116] A. Donzé and O. Maler. “Robust satisfaction of temporal logic over real-valued sig-

nals”. In: Proc. of the 8th Conference on Formal Modeling and Analysis of Timed

Systems. Springer, 2010, pp. 92–106. doi: 10.1007/978-3-642-15297-9_9.

[117] Y. W. R. Annapureddy and G. E. Fainekos. “Ant colonies for temporal logic falsi-

fication of hybrid systems”. In: Proc. of the 36th Annual Conference on Industrial

Electronics Society. IEEE, 2010, pp. 91–96. doi: 10.1109/IECON.2010.5675195.

[118] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancić, A. Gupta, and G. J.

Pappas. “Monte-carlo techniques for falsification of temporal properties of non-linear

hybrid systems”. In: Proc. of the 13th International Conference on Hybrid Systems:

Computation and Control. ACM, 2010, pp. 211–220. doi: 10.1145/1755952.1755983.

[119] H. Abbas, G. E. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta. “Prob-

abilistic temporal logic falsification of cyber-physical systems”. In: Transactions on

Embedded Computing Systems 12.2s (2013). doi: 10.1145/2465787.2465797.

[120] H. Abbas and G. E. Fainekos. “Convergence proofs for simulated annealing falsifica-

tion of safety properties”. In: 50th Annual Allerton Conference on Communication,

Control, and Computing. IEEE. 2012, pp. 1594–1601. doi: 10.1109/Allerton.2012.

6483411.

46

https://doi.org/10.1109/TAC.2003.817920
https://doi.org/10.1109/CDC42340.2020.9304391
https://doi.org/10.1145/2728606.2728607
https://doi.org/10.1016/j.nahs.2016.04.005
https://doi.org/10.1109/TAC.2019.2909815
https://doi.org/10.1109/TAC.2019.2909815
https://doi.org/10.1145/3302504.3311808
https://doi.org/10.1109/CDC.2015.7403397
https://doi.org/https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1109/IECON.2010.5675195
https://doi.org/10.1145/1755952.1755983
https://doi.org/10.1145/2465787.2465797
https://doi.org/10.1109/Allerton.2012.6483411
https://doi.org/10.1109/Allerton.2012.6483411


Bibliography

[121] S. Sankaranarayanan and G. E. Fainekos. “Falsification of temporal properties of hy-

brid systems using the cross-entropy method”. In: Proc. of the 15th International

Conference on Hybrid Systems: Computation and Control. ACM, 2012, pp. 125–134.

doi: 10.1145/2185632.2185653.

[122] A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan, and G. E. Fainekos.

“Requirements driven falsification with coverage metrics”. In: Proc. of the Interna-

tional Conference on Embedded Software. 2015, pp. 31–40. doi: 10.1109/EMSOFT.

2015.7318257.

[123] Z. Ramezani, J. L. Eddeland, K. Claessen, M. Fabian, and K. Åkesson. “Multiple

objective functions for falsification of cyber-physical systems”. In: IFAC-PapersOnLine

53.4 (2020), pp. 417–422. doi: 10.1016/j.ifacol.2021.04.040.

[124] L. Mathesen, G. Pedrielli, and G. E. Fainekos. “Efficient optimization-based falsifica-

tion of cyber-physical systems with multiple conjunctive requirements”. In: Proc. of

the International Conference on Automation Science and Engineering. 2021, pp. 732–

737. doi: 10.1109/CASE49439.2021.9551474.

[125] Y. W. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. “S-TaLiRo:

A tool for temporal logic falsification for hybrid systems”. In: Proc. of the International

Conference on Tools and Algorithms for the Construction and Analysis of Systems.

Springer, 2011, pp. 254–257. doi: 10.1007/978-3-642-19835-9_21.

[126] Y. Yamagata, S. Liu, T. Akazaki, Y. Duan, and J. Hao. “Falsification of cyber-physical

systems using deep reinforcement learning”. In: IEEE Transactions on Software En-

gineering 47.12 (2021), pp. 2823–2840. doi: 10.1109/TSE.2020.2969178.

[127] O. Stursberg, A. Fehnker, Z. Han, and B. H. Krogh. “Verification of a cruise control

system using counterexample-guided search”. In: Control Engineering Practice 12.10

(2004), pp. 1269–1278. doi: 10.1016/j.conengprac.2004.04.002.

[128] G. Frehse, B. H. Krogh, and R. A. Rutenbar. “Verifying analog oscillator circuits using

forward/backward abstraction refinement”. In: Proc. of the Design Automation & Test

in Europe Conference. IEEE, 2006, pp. 257–262. doi: 10.1109/DATE.2006.244113.

[129] A. Zutshi, S. Sankaranarayanan, J. V. Deshmukh, and J. Kapinski. “A trajectory

splicing approach to concretizing counterexamples for hybrid systems”. In: Proc. of

the 52nd Conference on Decision and Control. IEEE, 2013, pp. 3918–3925. doi: 10.

1109/CDC.2013.6760488.

[130] A. Zutshi, J. V. Deshmukh, S. Sankaranarayanan, and J. Kapinski. “Multiple shooting,

CEGAR-based falsification for hybrid systems”. In: Proc. of the 14th International

Conference on Embedded Software. ACM, 2014. doi: 10.1145/2656045.2656061.

[131] S. Bogomolov, A. Donzé, G. Frehse, R. Grosu, T. T. Johnson, H. Ladan, A. Podelski,

and M. Wehrle. “Guided search for hybrid systems based on coarse-grained space

abstractions”. In: International Journal on Software Tools for Technology Transfer 18

(2016), pp. 449–467. doi: 10.1007/s10009-015-0393-y.

47

https://doi.org/10.1145/2185632.2185653
https://doi.org/10.1109/EMSOFT.2015.7318257
https://doi.org/10.1109/EMSOFT.2015.7318257
https://doi.org/10.1016/j.ifacol.2021.04.040
https://doi.org/10.1109/CASE49439.2021.9551474
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1109/TSE.2020.2969178
https://doi.org/10.1016/j.conengprac.2004.04.002
https://doi.org/10.1109/DATE.2006.244113
https://doi.org/10.1109/CDC.2013.6760488
https://doi.org/10.1109/CDC.2013.6760488
https://doi.org/10.1145/2656045.2656061
https://doi.org/10.1007/s10009-015-0393-y


Bibliography

[132] S. Bogomolov, G. Frehse, M. Giacobbe, and T. A. Henzinger. “Counterexample-guided

refinement of template polyhedra”. In: 23rd International Conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer. 2017, pp. 589–

606. doi: 10.1007/978-3-662-54577-5_34.

[133] T. T. Johnson, S. Bak, M. Caccamo, and L. Sha. “Real-time reachability for verified

simplex design”. In: Transactions on Embedded Computing Systems 15.2 (2016). doi:

10.1145/2723871.

[134] S. Bak, S. Bogomolov, and C. Schilling. “High-level hybrid systems analysis with

Hypy”. In: Proc. of the 3rd International Workshop on Applied Verification of Con-

tinuous and Hybrid Systems. 2016, pp. 80–90. doi: 10.29007/4f3d.

[135] S. Schupp and E. Ábrahám. “Efficient dynamic error reduction for hybrid systems

reachability analysis”. In: International Conference on Tools and Algorithms for the

Construction and Analysis of Systems. Springer. 2018, pp. 287–302. doi: 10.1007/

978-3-319-89963-3_17.

[136] S. Ray and P. S. V. Nataraj. “A matrix method for efficient computation of Bernstein

coefficients.” In: Reliable Computing 17.1 (2012), pp. 40–71.

[137] T. Dang. “Approximate reachability computation for polynomial systems”. In: Proc.

of the 9th International Workshop on Hybrid Systems: Computation and Control.

Springer, 2006, pp. 138–152. doi: 10.1007/11730637_13.

[138] T. Dang and D. Salinas. “Image computation for polynomial dynamical systems using

the Bernstein expansion”. In: Proc. of the 21st International Conference on Computer

Aided Verification. Springer, 2009, pp. 219–232. doi: 10.1007/978-3-642-02658-

4_19.

[139] M. A. Ben Sassi, R. Testylier, T. Dang, and A. Girard. “Reachability analysis of poly-

nomial systems using linear programming relaxations”. In: Proc. of the 10th Interna-

tional Symposium on Automated Technology for Verification and Analysis. Springer,

2012, pp. 137–151. doi: 10.1007/978-3-642-33386-6_12.

[140] T. Dang and R. Testylier. “Reachability analysis for polynomial dynamical systems

using the Bernstein expansion”. In: Reliable Computing 17.2 (2012), pp. 128–152.

[141] T. Dreossi, T. Dang, and C. Piazza. “Parallelotope bundles for polynomial reachabil-

ity”. In: Proc. of the 19th International Workshop on Hybrid Systems: Computation

and Control. ACM, 2016, pp. 297–306. doi: 10.1145/2883817.2883838.

[142] T. Dreossi, T. Dang, and C. Piazza. “Reachability computation for polynomial dy-

namical systems”. In: Formal Methods in System Design 50.1 (2017), pp. 1–38. doi:

10.1007/s10703-016-0266-3.

[143] T. Dreossi. “Sapo: Reachability computation and parameter synthesis of polynomial

dynamical systems”. In: Proc. of the 20th International Conference on Hybrid Systems:

Computation and Control. ACM, 2017, pp. 29–34. doi: 10.1145/3049797.3049824.

48

https://doi.org/10.1007/978-3-662-54577-5_34
https://doi.org/10.1145/2723871
https://doi.org/10.29007/4f3d
https://doi.org/10.1007/978-3-319-89963-3_17
https://doi.org/10.1007/978-3-319-89963-3_17
https://doi.org/10.1007/11730637_13
https://doi.org/10.1007/978-3-642-02658-4_19
https://doi.org/10.1007/978-3-642-02658-4_19
https://doi.org/10.1007/978-3-642-33386-6_12
https://doi.org/10.1145/2883817.2883838
https://doi.org/10.1007/s10703-016-0266-3
https://doi.org/10.1145/3049797.3049824


Bibliography

[144] E. Kim, S. Bak, and P. S. Duggirala. “Automatic dynamic parallelotope bundles for

reachability analysis of nonlinear systems”. In: Formal Modeling and Analysis of Timed

Systems. Springer, 2021, pp. 50–66. doi: 10.1007/978-3-030-85037-1_4.

[145] E. Kim and P. S. Duggirala. “Kaa: A Python implementation of reachable set com-

putation using Bernstein polynomials”. In: Proc. of the 7th International Workshop

on Applied Verification of Continuous and Hybrid Systems. 2020, pp. 184–196. doi:

10.29007/rs5n.

[146] P. Prabhakar and M. Viswanathan. “A dynamic algorithm for approximate flow com-

putations”. In: Proc. of the 14th International Conference on Hybrid Systems: Com-

putation and Control. ACM, 2011, pp. 133–142. doi: 10.1145/1967701.1967722.

[147] X. Chen. “Reachability analysis of non-linear hybrid systems using Taylor models”.

Dissertation. RWTH Aachen University, 2015.

[148] X. Chen and S. Sankaranarayanan. “Decomposed reachability analysis for nonlinear

systems”. In: Proc. of the 37th Real-Time Systems Symposium. IEEE. 2016, pp. 13–24.

doi: 10.1109/RTSS.2016.011.

[149] X. Chen, E. Ábrahám, and S. Sankaranarayanan. “Flow*: An analyzer for non-linear

hybrid systems”. In: Proc. of the 25th International Conference on Computer-Aided

Verification. LNCS 8044. Springer, 2013, pp. 258–263. doi: 10.1007/978-3-642-

39799-8_18.

[150] M. Arcak, C. Meissen, and A. Packard. Networks of dissipative systems: Compositional

certification of stability, performance, and safety. Springer, 2016. doi: 10.1007/978-

3-319-29928-0.

[151] H. Yin, A. Packard, M. Arcak, and P. Seiler. “Reachability analysis using dissipation

inequalities for uncertain nonlinear systems”. In: Systems and Control Letters 142

(2020), p. 104736. doi: 10.1016/j.sysconle.2020.104736.

[152] A. A. Ahmadi, G. Hall, A. Papachristodoulou, J. Saunderson, and Y. Zheng. “Im-

proving efficiency and scalability of sum of squares optimization: Recent advances and

limitations”. In: Proc. of the 56th Conference on Decision and Control. 2017, pp. 453–

462. doi: 10.1109/CDC.2017.8263706.

[153] H. Yin, A. Packard, M. Arcak, and P. Seiler. “Finite horizon backward reachability

analysis and control synthesis for uncertain nonlinear systems”. In: American Control

Conference. 2019, pp. 5020–5026. doi: 10.23919/ACC.2019.8814444.

[154] H. Yin, P. Seiler, and M. Arcak. “Backward reachability using integral quadratic

constraints for uncertain nonlinear systems”. In: Control Systems Letters 5.2 (2021),

pp. 707–712. doi: 10.1109/LCSYS.2020.3005315.

[155] H. Yin, M. Arcak, A. Packard, and P. Seiler. “Backward reachability for polyno-

mial systems on a finite horizon”. In: IEEE Transactions on Automatic Control 66.12

(2021), pp. 6025–6032. doi: 10.1109/TAC.2021.3056611.

49

https://doi.org/10.1007/978-3-030-85037-1_4
https://doi.org/10.29007/rs5n
https://doi.org/10.1145/1967701.1967722
https://doi.org/10.1109/RTSS.2016.011
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-29928-0
https://doi.org/10.1007/978-3-319-29928-0
https://doi.org/10.1016/j.sysconle.2020.104736
https://doi.org/10.1109/CDC.2017.8263706
https://doi.org/10.23919/ACC.2019.8814444
https://doi.org/10.1109/LCSYS.2020.3005315
https://doi.org/10.1109/TAC.2021.3056611


Bibliography

[156] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. “A time-dependent Hamilton-Jacobi

formulation of reachable sets for continuous dynamic games”. In: IEEE Transactions

on Automatic Control 50.7 (2005), pp. 947–957. doi: 10.1109/TAC.2005.851439.

[157] K. Margellos and J. Lygeros. “Hamilton-Jacobi formulation for reach–avoid differential

games”. In: IEEE Transactions on Automatic Control 56.8 (2011), pp. 1849–1861. doi:

10.1109/TAC.2011.2105730.

[158] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. “Hamilton-Jacobi reachability: A

brief overview and recent advances”. In: Proc. of the 56th Conference on Decision and

Control. IEEE. 2017, pp. 2242–2253. doi: 10.1109/CDC.2017.8263977.

[159] M. Chen and C. J. Tomlin. “Hamilton-Jacobi reachability: Some recent theoretical

advances and applications in unmanned airspace management”. In: Annual Review of

Control, Robotics, and Autonomous Systems 1 (2018), pp. 333–358. doi: 10.1146/

annurev-control-060117-104941.

[160] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry. “Reach-avoid problems with

time-varying dynamics, targets and constraints”. In: Proc. of the 18th International

Conference on Hybrid Systems: Computation and Control. ACM, 2015, pp. 11–20. doi:

10.1145/2728606.2728612.

[161] M. Chen, S. Herbert, and C. J. Tomlin. “Exact and efficient Hamilton-Jacobi guaran-

teed safety analysis via system decomposition”. In: Proc. of the International Confer-

ence on Robotics and Automation. IEEE. 2017, pp. 87–92. doi: 10.1109/ICRA.2017.

7989015.

[162] M. Chen, S. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin. “Decomposition

of reachable sets and tubes for a class of nonlinear systems”. In: IEEE Transactions on

Automatic Control 63.11 (2018), pp. 3675–3688. doi: 10.1109/TAC.2018.2797194.

[163] D. Lee, M. Chen, and C. J. Tomlin. “Removing leaking corners to reduce dimension-

ality in Hamilton-Jacobi reachability”. In: Proc. of the International Conference on

Robotics and Automation. IEEE. 2019, pp. 9320–9326. doi: 10.1109/ICRA.2019.

8793890.

[164] M. Chen and C. J. Tomlin. “Exact and efficient Hamilton-Jacobi reachability for de-

coupled systems”. In: Proc. of the 54th Conference on Decision and Control. IEEE.

2015, pp. 1297–1303. doi: 10.1109/CDC.2015.7402390.

[165] M. Jones and M. M. Peet. “Relaxing the Hamilton Jacobi Bellman equation to con-

struct inner and outer bounds on reachable sets”. In: Proc. of the 58th Conference on

Decision and Control. IEEE. 2019, pp. 2397–2404. doi: 10.1109/CDC40024.2019.

9029193.

[166] B. Xue, M. Fränzle, and N. Zhan. “Under-approximating reach sets for polynomial

continuous systems”. In: Proc. of the 21st International Conference on Hybrid Systems:

Computation and Control. ACM, 2018, pp. 51–60. doi: 10.1145/3178126.3178133.

50

https://doi.org/10.1109/TAC.2005.851439
https://doi.org/10.1109/TAC.2011.2105730
https://doi.org/10.1109/CDC.2017.8263977
https://doi.org/10.1146/annurev-control-060117-104941
https://doi.org/10.1146/annurev-control-060117-104941
https://doi.org/10.1145/2728606.2728612
https://doi.org/10.1109/ICRA.2017.7989015
https://doi.org/10.1109/ICRA.2017.7989015
https://doi.org/10.1109/TAC.2018.2797194
https://doi.org/10.1109/ICRA.2019.8793890
https://doi.org/10.1109/ICRA.2019.8793890
https://doi.org/10.1109/CDC.2015.7402390
https://doi.org/10.1109/CDC40024.2019.9029193
https://doi.org/10.1109/CDC40024.2019.9029193
https://doi.org/10.1145/3178126.3178133


Bibliography

[167] B. Xue, M. Fränzle, and N. Zhan. “Inner-approximating reachable sets for polyno-

mial systems with time-varying uncertainties”. In: IEEE Transactions on Automatic

Control 65.4 (2020), pp. 1468–1483. doi: 10.1109/TAC.2019.2923049.

[168] I. M. Mitchell. “The flexible, extensible and efficient toolbox of level set methods”. In:

Journal of Scientific Computing 35 (2008), pp. 300–329. doi: 10.1007/s10915-007-

9174-4.

[169] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin. “Bridging

Hamilton-Jacobi safety analysis and reinforcement learning”. In: Proc. of the Inter-

national Conference on Robotics and Automation. IEEE. 2019, pp. 8550–8556. doi:

10.1109/ICRA.2019.8794107.

[170] S. Herbert, J. J. Choi, S. Sanjeev, M. Gibson, K. Sreenath, and C. J. Tomlin. “Scalable

learning of safety guarantees for autonomous systems using Hamilton-Jacobi reacha-

bility”. In: Proc. of the International Conference on Robotics and Automation. IEEE.

2021, pp. 5914–5920. doi: 10.1109/ICRA48506.2021.9561561.

[171] S. Bansal and C. J. Tomlin. “DeepReach: A deep learning approach to high-dimensional

reachability”. In: Proc. of the International Conference on Robotics and Automation.

IEEE. 2021, pp. 1817–1824. doi: 10.1109/ICRA48506.2021.9561949.

[172] S. Prajna and A. Jadbabaie. “Safety verification of hybrid systems using barrier certifi-

cates”. In: Proc. of the 7th International Workshop on Hybrid Systems: Computation

and Control. Springer. 2004, pp. 477–492. doi: 10.1007/978-3-540-24743-2_32.

[173] C. Sloth, G. J. Pappas, and R. Wisniewski. “Compositional safety analysis using bar-

rier certificates”. In: Proc. of the 15th International Conference on Hybrid Systems:

Computation and Control. ACM, 2012, pp. 15–24. doi: 10.1145/2185632.2185639.

[174] H. Kong, X. Song, D. Han, M. Gu, and J. Sun. “A new barrier certificate for safety

verification of hybrid systems”. In: The Computer Journal 57.7 (2014), pp. 1033–1045.

doi: 10.1093/comjnl/bxt059.

[175] L. Dai, T. Gan, B. Xia, and N. Zhan. “Barrier certificates revisited”. In: Journal of

Symbolic Computation 80 (2017), pp. 62–86. doi: 10.1016/j.jsc.2016.07.010.

[176] H. Zhao, X. Zeng, T. Chen, and Z. Liu. “Synthesizing barrier certificates using neural

networks”. In: Proc. of the 23rd International Conference on Hybrid Systems: Com-

putation and Control. ACM. 2020. doi: 10.1145/3365365.3382222.

[177] Q. Zhao, X. Chen, Y. Zhang, M. Sha, Z. Yang, W. Lin, E. Tang, Q. Chen, and X. Li.

“Synthesizing ReLU neural networks with two hidden layers as barrier certificates for

hybrid systems”. In: Proc. of the 24th International Conference on Hybrid Systems:

Computation and Control. ACM, 2021. doi: 10.1145/3447928.3456638.

[178] S. Prajna and A. Rantzer. “Convex programs for temporal verification of nonlinear

dynamical systems”. In: SIAM Journal on Control and Optimization 46.3 (2007),

pp. 999–1021. doi: 10.1137/050645178.

51

https://doi.org/10.1109/TAC.2019.2923049
https://doi.org/10.1007/s10915-007-9174-4
https://doi.org/10.1007/s10915-007-9174-4
https://doi.org/10.1109/ICRA.2019.8794107
https://doi.org/10.1109/ICRA48506.2021.9561561
https://doi.org/10.1109/ICRA48506.2021.9561949
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1145/2185632.2185639
https://doi.org/10.1093/comjnl/bxt059
https://doi.org/10.1016/j.jsc.2016.07.010
https://doi.org/10.1145/3365365.3382222
https://doi.org/10.1145/3447928.3456638
https://doi.org/10.1137/050645178


Bibliography

[179] P. Wieland and F. Allgöwer. “Constructive safety using control barrier functions”. In:

IFAC Proceedings Volumes 40.12 (2007), pp. 462–467. doi: 10.3182/20070822-3-

ZA-2920.00076.

[180] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. “Control barrier function based

quadratic programs for safety critical systems”. In: IEEE Transactions on Automatic

Control 62.8 (2017), pp. 3861–3876. doi: 10.1109/TAC.2016.2638961.

[181] M. Chen, J. C. Shih, and C. J. Tomlin. “Multi-vehicle collision avoidance via Hamilton-

Jacobi reachability and mixed integer programming”. In: Proc. of the 55th Conference

on Decision and Control. IEEE. 2016, pp. 1695–1700. doi: 10.1109/CDC.2016.

7798509.

[182] T. Ferrère, O. Maler, D. Ničković, and A. Pnueli. “From real-time logic to timed

automata”. In: Journal of the ACM 66.3 (2019). doi: 10.1145/3286976.

[183] H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff. “Reachset conformance testing

of hybrid automata”. In: Proc. of the 19th International Conference on Hybrid Systems:

Computation and Control. ACM, 2016, pp. 277–286. doi: 10.1145/2883817.2883828.

[184] A. Kulmburg and M. Althoff. “On the co-NP-completeness of the zonotope contain-

ment problem”. In: European Journal of Control 62 (2021), pp. 84–91. doi: 10.1016/

j.ejcon.2021.06.028.

[185] M. Rungger and M. Zamani. “Accurate reachability analysis of uncertain nonlinear

systems”. In: Proc. of the 21st International Conference on Hybrid Systems: Compu-

tation and Control. ACM, 2018, pp. 61–70. doi: 10.1145/3178126.3178127.

52

https://doi.org/10.3182/20070822-3-ZA-2920.00076
https://doi.org/10.3182/20070822-3-ZA-2920.00076
https://doi.org/10.1109/TAC.2016.2638961
https://doi.org/10.1109/CDC.2016.7798509
https://doi.org/10.1109/CDC.2016.7798509
https://doi.org/10.1145/3286976
https://doi.org/10.1145/2883817.2883828
https://doi.org/10.1016/j.ejcon.2021.06.028
https://doi.org/10.1016/j.ejcon.2021.06.028
https://doi.org/10.1145/3178126.3178127


A Reproduction of Publications

A.1 Adaptive Parameter Tuning for Reachability Analysis of

Linear Systems

Summary Reachability algorithms require manual tuning of algorithm parameters, such as

the time step size, in order to tightly enclose the reachable set. In general, the tightness of the

computed approximation with respect to the exact reachable set is unknown, so one can never

rule out spurious counterexamples.

In this work, we introduce a framework for tuning algorithm parameters based on the induced

approximation errors in the reachable set computation. We apply the proposed parameter tun-

ing methods to a reachability algorithm for linear systems of the form (2.2), for which we derive

approximation errors in terms of the Hausdorff distance between exact partial solutions and

the corresponding computed outer approximations. Furthermore, we prove that all algorithm

parameters can be adapted without backtracking to fulfill any non-zero admissible error bound

over the whole time horizon. To solve the verification task in Problem 1, it suffices to tune

this scalar error bound.

We implement the automated reachability algorithm using zonotopes as a set represen-

tation. Our numerical evaluation shows that the novel algorithm verifies safety for several

high-dimensional benchmarks at least as fast as its manually tuned counterpart.

Author contributions M.W. developed the idea of tuning algorithm parameters by bound-

ing approximation errors, implemented the algorithm, conducted the numerical evaluation, and

wrote most of the manuscript. N.K. significantly improved the technical presentation of the

work and helped with the numerical evaluation. M.A. initiated the idea of automated pa-

rameter tuning, laid out the structure of the paper, and provided feedback for improving the

manuscript.

Copyright notice ©2020 IEEE. Reprinted authors’ accepted version, with permission, from

Mark Wetzlinger, Niklas Kochdumper, and Matthias Althoff, Adaptive Parameter Tuning for

Reachability Analysis of Linear Systems, Proc. of the 59th IEEE Conference on Decision

and Control, pp. 5145–5152, doi:10.1109/CDC42340.2020.9304431, 2020. Explicit license

printed in Appendix B.

TUM Graduate School This publication has been declared a core publication in accor-

dance with Article 7, section 3 TUM Doctoral Regulations (PromO).

53

https://www.doi.org/10.1109/CDC42340.2020.9304431


Adaptive Parameter Tuning for Reachability Analysis of Linear Systems

Mark Wetzlinger, Niklas Kochdumper, and Matthias Althoff

Abstract— Despite the possibility to quickly compute reach-
able sets of large-scale linear systems, current methods are
not yet widely applied by practitioners. The main reason for
this is probably that current approaches are not push-button-
capable and still require to manually set crucial parameters,
such as time step sizes and the accuracy of the used set
representation—these settings require expert knowledge. We
present a generic framework to automatically find near-optimal
parameters for reachability analysis of linear systems given a
user-defined accuracy. To limit the computational overhead as
much as possible, our methods tune all relevant parameters
during runtime. We evaluate our approach on benchmarks
from the ARCH competition as well as on random examples.
The results show that our new framework verifies the selected
benchmarks faster than manually-tuned parameters and is an
order of magnitude faster compared to genetic algorithms.

I. INTRODUCTION

Reachability analysis is one of the main techniques to
formally verify the correctness of mixed discrete/continuous
systems: It computes the set of reachable states of a system
for a set of uncertain initial states as well as uncertain inputs.
If the reachable set does not intersect the unsafe regions
defined by a given safety property, that property is satisfied.

Exact reachable sets can only be computed for a limited
class of systems [1]. In the remaining cases, one calculates
over-approximations whose tightness is strongly influenced
by algorithm parameters; unlike model parameters, these
parameters have no relation to the considered model.

Due to large over-approximations resulting from poor
algorithm parameters, reachability analysis may fail to prove
a safety property even though the property is satisfied by the
exact reachable set. We address this problem by proposing a
novel generic framework to automatically tune all algorithm
parameters for reachability analysis of linear continuous
time-invariant systems during runtime respecting a user-
defined error bound. Our framework can be used for different
reachability algorithms and for different set representations.

a) State of the Art: Reachability algorithms for linear
continuous systems are mainly based on the propagation of
reachable sets for multiple time steps until reaching a fixed
point or a user-defined time horizon. Propagation-based tech-
niques have been extensively investigated [2]–[7] using tools
such as CORA [8], Flow* [9], XSpeed [10], SpaceEx [7], and
JuliaReach [11]. A further method is to compute reachable
sets using simulations [12], [13], which is implemented in

M. Wetzlinger, N. Kochdumper, and M. Althoff are with the Faculty of
Computer Science, Technical University of Munich, Garching, Germany
{m.wetzlinger@tum.de, niklas.kochdumper@tum.de,
althoff@tum.de}. The authors gratefully acknowledge partial finan-
cial supports from the research training group CONVEY funded by the
German Research Foundation under grant GRK 2428.

the tool HyLAA [14]. The used set representation is another
distinctive feature besides the method to compute reachable
sets. Many different set representations have been researched,
including polytopes [7], zonotopes [5], ellipsoids [15], griddy
polyhedra [16], star sets [12], support functions [17], and
constrained zonotopes [18].

Previous approaches for automated parameter tuning
mainly focused on the time step size: Numerical ODE solvers
often compute different solutions in parallel and decrease the
time step size if the difference between solutions exceeds a
certain threshold [19], [20]. Furthermore, several automated
time step adaptation strategies have been developed for
guaranteed integration methods that enclose only a single
trajectory rather than a set of trajectories [21]–[23]. For
reachability analysis, only a few methods automatically set
the time step size. The approach in [7] chooses the time
step size automatically in order to keep the error in a user-
defined direction below a user-defined bound. Furthermore,
the approach in [24] automatically chooses suitable time
step sizes for affine systems so that the Hausdorff distance
between the reachable set obtained by the exact flow and the
approximated flow stays below a certain threshold. So far,
there is no approach that considers all algorithm parameters.

b) Contributions: We introduce a novel generic frame-
work that automatically tunes all algorithm parameters of a
reachability algorithm so that the over-approximation error
stays below a user-defined threshold. This generalized frame-
work can be applied to many different reachability algorithms
and we show that our self-parametrization approach always
converges if the reachability algorithm satisfies certain re-
quirements.

After introducing some preliminaries in Sec. II, we present
our generic framework in Sec. III. In Sec. IV, we demonstrate
the implementation of our framework for a specific reachabil-
ity algorithm. Finally, the evaluation of our implementation
on several numerical examples in Sec. V demonstrates the
fully automated computation of tight over-approximations of
reachable sets with only little computational overhead.

II. PRELIMINARIES

To concisely explain the novelties of our paper, we first
introduce some preliminaries.

A. Notation

Vectors are denoted by lower-case letters and matrices by
upper-case letters. Square matrices of zeros are denoted by
0n ∈ Rn×n and the identity matrix by In ∈ Rn×n. Given a
vector a ∈ Rn, ai refers to the i-th entry. An n-dimensional
interval is denoted by I = [

¯
l, l̄] ⊂ Rn, where

¯
li ≤ l̄i, ∀i ∈



{1, ..., n}. The operators inf(I) =
¯
l ∈ Rn and sup(I) =

l̄ ∈ Rn return the infimum and the supremum of an interval
I = [

¯
l, l̄]. Interval matrices are denoted in boldface: I =

[
¯
I, Ī] ∈ Rm×n, where inf(I) =

¯
I ∈ Rm×n and sup(I) =

Ī ∈ Rm×n. The linear map is written without any operator
between the operands, the Minkowski sum is denoted by ⊕,
and the convex hull operator by conv

(
·
)
.

B. Reachability Analysis of Linear Systems

The presented technique for adaptive self-parametrization
is applied to linear time-invariant (LTI) systems with initial
states bounded by X 0 ⊂ Rn and inputs bounded by U ⊂ Rn:

ẋ(t) = Ax(t) + u(t) ,

with x(0) ∈ X 0 ⊂ Rn, ∀t : u(t) ∈ U ⊂ Rn ,
(1)

where A ∈ Rn×n is the system matrix, x(t) ∈ Rn is the
state vector, and u(t) ∈ Rn is the input vector.

The above system also encompasses systems ẋ(t) =
Ax(t) + Bũ(t), where B ∈ Rm×n is the input matrix, as
we can set U = {Bũ | ũ ∈ D ⊂ Rm}. Let us introduce
ξ
(
t;x0, u(·)

)
as the solution of (1) to define the exact

reachable set Rex
(
[0, tf ]

)
of (1) over the time horizon t ∈

[0, tf ]:

Rex
(
[0, tf ]

)
=
{
ξ
(
t;x0, u(·)

) ∣∣∣x0 ∈ X 0,

∀τ ∈ [0, t] : u(τ) ∈ U , t ∈ [0, tf ]
}
.

Due to the superposition principle, Rex
(
[0, tf ]

)
is the sum

of the homogeneous solution HRex

(
[0, tf ]

)
and the inhomo-

geneous solution PRex

(
[0, tf ]

)
[25, (3.6)]:

Rex
(
[0, tf ]

)
= HRex

(
[0, tf ]

)
⊕ PRex

(
[0, tf ]

)
,

where

HRex

(
[0, tf ]

)
=
{
eAtx0

∣∣∣x0 ∈ X 0, t ∈ [0, tf ]
}
,

PRex

(
tf
)

=

{∫ tf

0

eA(tf−τ)u(τ) dτ

∣∣∣∣u(τ) ∈ U
}
.

If 0 ∈ U , PRex

(
[0, tf ]

)
= PRex

(
tf
)

and the extension for 0 /∈ U
is shown in [25, Sec. 3.2.2]. To limit the over-approximation,
the time horizon [0, tf ] is discretized by K time steps ∆ti =

ti+1 − ti > 0, i ∈ {0, ...,K − 1}, where tf =
∑K−1
i=0 ∆ti

so that
⋃K−1
i=0 R

(
[ti, ti+1]

)
. We compute the reachable sets

from the first time interval [26, Chap. 4]:

HR
(
[ti, ti+1]

)
= eAtiHR

(
[0,∆ti]

)
,

PR
(
[0, ti+1]

)
= PR

(
[0, ti]

)
⊕ eAtiPR

(
[0,∆ti]

)
︸ ︷︷ ︸

=:PR([ti,ti+1])

. (2)

This method adapts seamlessly to varying time step sizes,
making it the preferred choice for adaptive parameter tuning
compared to methods propagating the reachable set from the
previous time step.

III. SELF-PARAMETRIZATION

In this section, we introduce our novel algorithm for
adaptive parameter tuning.

A. Overview of Algorithm Parameters

The reachability algorithm from Sec. II-B depends on
different algorithm parameters, which we divide into:
• Time Step Size: The propagation in (2) can be applied

to any series of ∆ti adding up to tf . Large ∆t speed up
the computation, while small ∆t increase the precision.

• Propagation Parameters: The tightness of the com-
puted reachable sets also depends on parameters ap-
proximating the dynamics Φprop, e.g., determining the
precision of computing eAt. We introduce the operator
incr(Φprop) which increments the parameters Φprop
towards values which result in a tighter reachable set, as
well as the operator reset(Φprop) which resets Φprop
to the coarsest setting.

• Set Representation: We denote the number of scalar
values needed to describe a set by Φset. Let us introduce
the operator decr(Φset) which decreases Φset. If Φset
has reached its minimum, it returns decr(Φset) =
Φset. We denote the over-approximation of a set S by
reducing its number of parameters to a desired value
Φset by the operator red

(
S,Φset

)
.

B. Error measures

As we can only compute over-approximations, we are
interested in measuring the over-approximation error. Let
the reachable set HR consist of summands, e.g., HR =
HR(1) ⊕ ... ⊕ HR(ν), as shown for a concrete implemen-
tation in Sec. IV-A. This assumption is valid for almost all
approaches, see e.g. [6], [7], [17], [25], [27]. We sum over
all indices E representing exactly-computed terms to obtain
HR= =

⊕ν
i∈E HR(i) and the remaining terms are summed to

HR+ =
⊕ν

i/∈E HR(i). The same is done for PR, so that we
obtain

HR
(
[0,∆t]

)
= HR=

(
[0,∆t]

)
⊕HR+

(
[0,∆t]

)
, (3)

PR
(
[0,∆t]

)
= PR=

(
[0,∆t]

)
⊕ PR+

(
[0,∆t]

)
. (4)

We use this separation to realize a computationally efficient
over-approximation of the Hausdorff distance

dH(S1,S2) = max
{

sup
x1∈S1

(
inf

x2∈S2

‖x1 − x2‖2
)
,

sup
x2∈S2

(
inf

x1∈S1

‖x1 − x2‖2
)}

.

Proposition 1: Let S= ⊂ Rn and S+ ⊂ Rn with 0 ∈ S+

be non-empty compact, convex sets. The Hausdorff distance
between S= and Stot := S=⊕S+ can be over-approximated
by

dH(S=,Stot) ≤ err
(
S+

)
:= r

(
box

(
S+

))
, (5)

where box
(
S+

)
is the box enclosure of S+ and r(·) returns

the radius of the smallest hypersphere centered at the origin
enclosing its argument.

Proof. Since Stot encloses S=, we have

dH(S=,Stot) = sup
y∈Stot

(
inf
x∈S=

‖x− y‖2
)
. (6)



We also know that the difference between Stot and S= is
given by S+, so that (6) can be equivalently written as

sup
y∈Stot

(
inf
x∈S=

‖x− y‖2
) 0∈S+

= sup
x∈S+

‖x‖2 = r(S+) .

Obviously, r(S+) ≤ r
(
box

(
S+

))
and therefore

dH(S=,Stot) ≤ err
(
S+

)
.

Let us introduce user-defined upper bounds for errors:
εH,max for the error of the homogeneous solution HR and
εP,max for the error of the inhomogeneous solution PR. Our
approach ensures that these errors are not exceeded.

We now compute the errors of the i-th time step. For the
error εH

(
[ti, ti+1]

)
and εP

(
[ti, ti+1]

)
we use the split in (3)

and apply the error measure from Prop. 1:

εH
(
[ti, ti+1]

)
:= err

(
HR+

(
[ti, ti+1]

))
(7)

≥ dH
(
HR=

(
[ti, ti+1]

)
,HR

(
[ti, ti+1]

))
,

εP
(
[ti, ti+1]

)
:= err

(
PR+
(
[ti, ti+1]

))
(8)

≥ dH
(
PR=
(
[ti, ti+1]

)
,PR

(
[ti, ti+1]

))
.

From (2), we see that the computation of εH does not depend
on previous time intervals. Contrary, the inhomogeneous
solution PR

(
[0, ti]

)
accumulates over time, see (2), and with

it the error εP :

εP
(
[0, ti+1]

)
= εP

(
[0, ti]

)
+ εP

(
[ti, ti+1]

)
, (9)

where εP
(
[0, 0]

)
= 0. Let us introduce a mild assumption for

the errors εH and εP , which will be justified in Sec. IV-B.

Assumption 1: (Convergence of εH and εP ) We neglect
floating-point errors so that εH

(
[ti, ti+1]

)
→ 0 and

εP
(
[ti, ti+1]

)
→ 0 for ∆ti → 0. �

Assumption 1 is mild, since it practically holds for all
other current approaches, see e.g. [7], [8], [11]. For further
derivations we need the following definition.

Definition 1: (Superlinear decrease) The set-based evalua-
tion f(S(t)) = {f(x) |x ∈ S(t)} of a continuous function
f : Rn → R decreases superlinearly if

∀ϕ ∈ (0, 1) : f
(
S
(
[t, t+ϕ∆t]

))
⊆ ϕf

(
S
(
[t, t+∆t]

))
. �

The following proposition addresses satisfying εP,max.

Proposition 2: Let the error εP
(
[ti, ti+1]

)
decrease super-

linearly according to Def. 1. For any given εP,max > 0, there
exists a sequence of time intervals [ti, ti+1] so that

∑

i

εP
(
[ti, ti+1]

)
≤ εP,max .

Proof. We define an admissible error εP,max,i for each step:

εP
(
[ti, ti+1]

)
≤ εP,max,i :=

εP,max − εP
(
[0, ti]

)

tf − ti
∆ti. (10)

For ∆ti → 0, εP,max,i converges to 0, as does εP
(
[ti, ti+1]

)

by Assumption 1. Moreover, εP,max,i decreases linearly
in ∆ti, whereas εP

(
[ti, ti+1]

)
decreases superlinearly by

assumption. Hence, we can always obtain a ∆ti so that the
inequality in (10) holds. We sum each side in (10) to

εP
(
[0, ti]

)
≤

i−1∑

j=0

εP,max,j (11)

which is subsequently used to bound εP,max,i and εP,max:

εP,max,i
(10)
=
(
εP,max − εP

(
[0, ti]

)) ∆ti
tf − ti

(11)
≤
(
εP,max −

i−1∑

j=0

εP,max,j
) ∆ti
tf − ti

⇒ εP,max ≥
i−1∑

j=0

εP,max,j +
tf − ti

∆ti︸ ︷︷ ︸
≥1

εP,max,i

≥
i∑

j=0

εP,max,j ≥
∑

i

εP
(
[ti, ti+1]

)
. �

The Minkowski sum in (2) typically increases the repre-
sentation size of the resulting set. To counteract this growth,
we enclose PR in (2) by a set specified by less parameters
which over-approximates the original set by the error εS
accumulating as the error εP of PR:

εS
(
[0, ti+1]

)
= εS

(
[0, ti]

)
+ εS

(
[ti, ti+1]

)
, (12)

with εS
(
[0, 0]

)
= 0 .

Similarly to Prop. 2, we define an admissible error εS,max,i:

εS
(
[ti, ti+1]

)
≤ εS,max,i :=

εS,max − εS
(
[0, ti]

)

tf − ti
∆ti . (13)

If we do not over-approximate the set representation in the
i-th time step, we have εS

(
[ti, ti+1]

)
= 0.

C. Adaptive Parameter Tuning

We now present our generic framework for adaptive
parameter tuning in Alg. 1. The two subroutines, Alg. 2
and Alg. 3, will be presented thereafter. First, we initialize
∆t and the scaling factor µ (line 2), as well as the accu-
mulating errors εP and εS (line 3) for the first iteration
of the main loop (lines 4-11). In every iteration, we first
obtain the parameters ∆ti and Φprop,i (line 5) from Alg. 2.
Then, we calculate the reachable sets HR

(
[0,∆ti]

)
and

PR
(
[0,∆ti]

)
(line 6), which are subsequently used to obtain

HR
(
[ti, ti+1]

)
and PR

(
[0, ti+1]

)
(line 7). In Alg. 3, we

obtain the parameters Φset,i, which are used to recalculate
PR
(
[0, ti+1]

)
(line 8). At the end of each step, we add

the homogeneous and inhomogeneous solution to obtain the
reachable set R

(
[ti, ti+1]

)
(line 9). Finally, after the calcula-

tion of the reachable set for each time interval, the reachable
set of the whole time horizon R

(
[0, tf ]

)
is obtained by

unifying partial sets (line 12).

Theorem 1: Alg. 1 terminates and the overall error stays
below a user-defined error bound εmax ∈ R+, assuming the
reduction of the set representation in each step is optional.



Algorithm 1 Fully automated parameter tuning
Input: εH,max, εP,max, εS,max, tf
Output: R

(
[0, tf ]

)

1: t← 0, i← 0
2: µ← 0.9,∆t−1 ← tf µ
3: εP

(
[0, 0]

)
← 0, εS

(
[0, 0]

)
← 0

4: while t < T do
5: ∆ti,Φprop,i, εP

(
[0, ti+1]

)
← Alg. 2

6: calc. HR
(
[0,∆ti]

)
,PR

(
[0,∆ti]

)
using ∆ti, Φprop,i

7: calc. HR
(
[ti, ti+1]

)
,PR

(
[0, ti+1]

)
acc. to (2)

8: PR
(
[0, ti+1]

)
, εS
(
[0, ti+1]

)
← Alg. 3

9: R
(
[ti, ti+1]

)
= HR

(
[ti, ti+1]

)
⊕ PR

(
[0, ti+1]

)

10: t← t+ ∆ti, i← i+ 1
11: end while
12: R

(
[0, tf ]

)
← ⋃i−1

j=0R
(
[tj , tj+1]

)

Proof. We first show that the algorithm terminates. The
while-loop in Alg. 2 always terminates if

∀i : εP
(
[ti, ti+1]

)
≤ εP,max,i , εH

(
[ti, ti+1]

)
≤ εH,max .

The first inequality can be satisfied as shown in the proof of
Prop. 2. From line 6 in Alg. 2 and under Assumption 1, we
have ∀i : ∆ti → 0⇒ εH

(
[ti, ti+1]

)
→ 0. Thus, every bound

εH,max is satisfiable. The while-loop in Alg. 3 terminates as
we will either exceed the admissible error bound εS,max,i
during the continuous reduction or exit the loop if the set
parameters Φset have been reduced as much as possible.
Finally, the main loop (lines 4-11) terminates as the time t
monotonically increases (line 10), eventually reaching tf .

To prove that the error stays below a user-defined bound,
we split the error εmax in εmax = εH,max + εP,max + εS,max.
All individual bounds are satisfiable: We have already shown
the satisfiability of any εH,max in the beginning of this proof.
Prop. 2 shows that any limit εP,max is satisfiable. Lastly, any
bound εS,max can be satisfied since we can choose to not
over-approximate the set representation.

We now present two algorithms performing the adaptive pa-
rameter tuning: As an overview, Alg. 2 adapts the parameters
∆ti and Φprop,i, while Alg. 3 adapts the parameters Φset,i
concurrently to the propagation of PR.

We first present Alg. 2: As the main idea, every Φprop
is checked for an iteratively decreasing ∆ti until the error
bounds εH,max and εP,max,i are satisfied. Initially, we increase
the time step size by division with the factor µ (line 1).
Furthermore, we reset Φprop,i to its coarsest setting (line 1)
and calculate the admissible error εP,max,i (line 2). In the
loop (lines 3-12), we increment Φprop,i (line 4) and calculate
the errors εH

(
[ti, ti+1]

)
and εP

(
[ti, ti+1]

)
based on the error

sets HR+
(
[ti, ti+1]

)
and PR+

(
[ti, ti+1]

)
(lines 10-11). These

errors are then compared to their respective error bounds
(line 12). If Φprop,i reaches Φprop,max (line 5), we decrease
∆ti, reset Φprop,i (line 6), and recalculate the admissible
bound εP,max,i (line 7) before restarting the loop (line 8).
After the loop is finished, the accumulated error εP

(
[0, ti+1]

)

is computed (line 13).

Algorithm 2 Adapt values for ∆t,Φprop

Input: εH,max, εP,max, εP
(
[0, ti]

)
,∆ti−1, µ, tf

Output: ∆ti,Φprop,i, εP
(
[0, ti+1]

)

1: ∆ti ← ∆ti−1

µ , reset(Φprop,i)
2: calc. εP,max,i acc. to (10)
3: do
4: incr(Φprop,i)
5: if Φprop ≥ Φprop,max
6: ∆ti ← ∆tiµ, reset(Φprop,i)
7: calc. εP,max,i acc. to (10)
8: continue
9: end if

10: calc. HR+
(
[ti, ti+1]

)
, εH

(
[ti, ti+1]

)

11: calc. PR+
(
[ti, ti+1]

)
, εP

(
[ti, ti+1]

)

12: while εH
(
[ti, ti+1]

)
> εH,max∧εP

(
[ti, ti+1]

)
> εP,max,i

13: calc. εP
(
[0, ti+1]

)
acc. to (9)

The adaptation of Φset is shown in Alg. 3: In order to
decrease the computation time, the number of parameters
describing PR is iteratively reduced from a high-precision
representation towards lower precision. First, we calculate
the admissible error εS,max,i (line 1) for the given ∆ti.
The operator param

(
Φset
)

extracts the number of stored
parameters Φset,i from PR

(
[0, ti+1]

)
(line 2). Inside the loop

(lines 3-7), we iteratively decrease Φset,i (line 4) and over-
approximate PR

(
[0, ti+1]

)
by reducing the number of stored

parameters to Φset,i (line 5). From the difference between
the original set and the set over-approximated by reduction,
we calculate the induced error εS

(
[ti, ti+1]

)
(line 6) and

compare it to the admissible error (line 7). After the loop,
the accumulated error for the set representation εS

(
[0, ti+1]

)

is computed (line 8).

Algorithm 3 Adapt values for Φset

Input: εS,max, εS
(
[0, ti]

)
,PR

(
[0, ti+1]

)
,∆ti, tf

Output: PR
(
[0, ti+1]

)
, εS
(
[0, ti+1]

)

1: calc. εS,max,i acc. to (13)
2: Φset,i ← param

(
PR
(
[0, ti+1]

))

3: do
4: decr(Φset,i)
5: red

(
PR
(
[0, ti+1]

)
,Φset,i

)

6: calc. εS
(
[ti, ti+1]

)

7: while εS
(
[ti, ti+1]

)
< εS,max,i ∨ decr(Φset) = Φset

8: calc. εS
(
[0, ti+1]

)
acc. to (12)

The presented framework for adaptive parameter tuning
can be applied to any reachability algorithm. In the next
section, we will provide an example implementation and
prove the assumptions underlying Theorem 1.

IV. IMPLEMENTATION

In this section, we present an implementation of our
framework and validate our assumptions using a concrete
reachability algorithm and a concrete set representation.



A. Computation of Reachable Sets

We over-approximate the exponential matrix eAt by a
finite number of Taylor terms η ∈ N+ and an interval
matrix E enclosing the remainder [28, Prop. 2].

eA∆t ∈
η∑

k=0

(A∆t)k

k!
⊕E(∆t, η) , (14)

E(∆t, η) = [−Eabs(∆t, η), Eabs(∆t, η)] (15)

with Eabs(∆t, η) =
∣∣∣
∞∑

k=η+1

1

k!

(
|A|∆t

)k∣∣∣ . (16)

To cover all trajectories in a time interval spanned by ∆t, we
introduce the terms Fx [28, Sec. 4] and Fu [25, Sec. 3.2.2]:

Fx(∆t, η) =

η⊕

k=2

[(k
−k
k−1 − k −1

k−1 )∆tk, 0]
Ak

k!
⊕E(∆t, η) ,

(17)

Fu(∆t, η) =

η+1⊕

k=2

[(k
−k
k−1 − k −1

k−1 )∆tk, 0]
Ak−1

k!

⊕E(∆t, η) ∆t .

(18)

The reachable sets for the homogeneous and inhomoge-
neous solution, generally defined in (3) and (4), are computed
by [25, Sect. 3.2.1-3.2.2]

HR
(
[0,∆t]

)
= conv

(
X 0, eA∆tX 0

)
︸ ︷︷ ︸

=HR= ([0,∆t])

⊕ Fx(∆t, η)X 0 ⊕ Fu(∆t, η) cu︸ ︷︷ ︸
=HR+ ([0,∆t])

, (19)

PR
(
[0,∆t]

)
=

η∑

k=0

(Ak∆tk+1

(k + 1)!

)
U

︸ ︷︷ ︸
=PR= ([0,∆t])

⊕E(∆t, η) ∆tU︸ ︷︷ ︸
=PR+ ([0,∆t])

, (20)

with cu being the center of the input set U . We include
the term Fu(∆t, η) cu in the homogeneous solution as it
only covers the current time interval and therefore does not
accumulate over time. In the next section, we will verify the
applicability of (19) and (20) for our adaptive framework.

B. Verification of Assumptions

We now want to verify Assumption 1 and Prop. 2. To
obtain the error εH

(
[ti, ti+1]

)
of the homogeneous solution

HR
(
[ti, ti+1]

)
, we multiply (19) by eAti as required in (2)

and insert the result in (7), which yields

εH
(
[ti, ti+1]

)
= err

(
eAti Fx(∆ti, ηi)X 0

⊕ eAti Fu(∆ti, ηi) cu
)
.

(21)

Proposition 3: The error εH
(
[ti, ti+1]

)
in (21) converges to

0 for ∆ti → 0 and therefore satisfies Assumption 1.

Proof. Since the operation err
(
S
)

returns the enclosing ra-
dius of the interval over-approximation of a set S, it suffices
to show that the volume of S converges to 0 for ∆ti → 0.

This is the case if the interval matrices Fx and Fu converge
to [0n, 0n]: Using (18), we yield lim∆t→0 Fu(∆t, η) =

[0n, 0n]. For Fx, we have that lim∆t→0 E(∆t, η)
(15)
= [0n, 0n]

since lim∆t→0Eabs(0, η)
(16)
= 0n. By plugging this in (17), we

immediately see that Fx(∆t, η) = [0n, 0n] for ∆t→ 0.

To obtain the error εP
(
[ti, ti+1]

)
of the inhomogeneous

solution PR
(
[ti, ti+1]

)
, we multiply (20) by eAti as required

in (2) and insert the result in (8), which gives us

εP
(
[ti, ti+1]

)
= err

(
eAti E(∆ti, ηi) ∆ti U

)
. (22)

Proposition 4: The error εP
(
[ti, ti+1]

)
in (22) converges to

0 for ∆ti → 0 and therefore satisfies Assumption 1.

Proof. Equivalently to the proof of Prop. 3, we show that
the volume of the resulting set converges to 0 for ∆ti → 0.
Since ∆ti appears as a multiplicative factor, it holds that
lim∆ti→0 e

Ati E(∆ti, ηi) ∆ti U = [0n, 0n].

We introduce the following lemma for the subsequent
derivations:

Lemma 1: The size of E(∆t, η) decreases superlinearly with
respect to ∆t:

∀ϕ ∈ (0, 1) : E(ϕ∆t, η) ⊆ ϕE(∆t, η) .

Proof. Using E(∆t, η)
(15)
= [−Eabs(∆t, η), Eabs(∆t, η)], it is

sufficient to show that each entry of Eabs(∆t, η) decreases
superlinearly with respect to ∆t:

∀ϕ ∈ (0, 1) : Eabs(ϕ∆t, η)
(16)
=
∣∣∣
∞∑

k=η+1

1

k!

(
|A|ϕ∆t

)k∣∣∣

≤ ϕ
∣∣∣
∞∑

k=η+1

1

k!

(
|A|∆t

)k∣∣∣ = ϕEabs(∆t, η) . �

Theorem 2: The error εP
(
[ti, ti+1]

)
in (22) decreases su-

perlinearly according to Def. 1:

∀ϕ ∈ (0, 1) : εP
(
[ti, ti + ϕ∆ti]

)
≤ ϕεP

(
[ti, ti + ∆ti]

)
.

Proof: Since err
(
·
)

is defined by the enclosing radius r
according to Prop. 1, it suffices to show that the enclosing
radius decreases superlinearly with respect to ∆ti:

∀ϕ ∈ (0, 1): r(PR+
(
[ti, ti+ϕ∆ti]

)
) ≤ ϕ r(PR+

(
[ti, ti+∆ti]

)
).

This condition is satisfied if

∀ϕ ∈ (0, 1) : PR+
(
[ti, ti + ϕ∆ti]

)
⊆ ϕPR+

(
[ti, ti + ∆ti]

)
.

Using the definition of PR+
(
[0,∆t]

)
in (20) and Lemma 1 it

holds that

PR+
(
[ti, ti + ϕ∆ti]

) (20)
= (ϕ∆ti) e

Ati E(ϕ∆ti, ηi)︸ ︷︷ ︸
Lemma 1
⊆ ϕE(∆ti,ηi)

U ⊆

ϕ
(
ϕ∆ti e

Ati E(∆ti, ηi)U︸ ︷︷ ︸
(20)
= ϕPR+

(
[ti,ti+∆ti]

)

) ϕ∈(0,1)

⊆ ϕPR+
(
[ti, ti + ∆ti]

)
. �



The cut-off value ηmax can be automatically obtained
according to [29] to truncate the power series in (14). If
ηmax does not satisfy the current error bounds, we proceed
to smaller values for ∆t which are guaranteed to eventually
satisfy the error by Theorem 1.

Following the above derivations, the presented implemen-
tation satisfies Theorem 1. Hence, it can be used to perform
reachability analysis for LTI systems while remaining below
a user-defined error bound.

C. Set Representation

It remains to choose a set representation. The work in [30]
shows that zonotopes are optimal and that one should add
support functions if the initial set is not a zonotope. Since
we only use zonotopes as initial sets, we only use them:

Definition 2: (Zonotopes) Given a center c ∈ Rn
and an arbitrary number γ ∈ N of generator vectors
g(1), ..., g(γ) ∈ Rn, a zonotope is defined as [27, Def. 1]

Z =
{
x ∈ Rn

∣∣∣x = c+

γ∑

i=1

βi · g(i), −1 ≤ βi ≤ 1
}
.

The order of a zonotope is ρ = γ
n . �

Following Def. 2, we have that Φset = ρ. We iteratively
decrease the zonotope order by decrementing the total num-
ber of generators describing PR

(
[0, ti+1]

)
as shown in [31],

which also provides us with εS
(
[ti, ti+1]

)
. Therefore, we

define the operator decr(Φset) : nγ ← n(γ−1). In the next
section, we apply the presented implementation.

V. NUMERICAL EXAMPLES

We have implemented our approach in MATLAB. To exten-
sively test our approach, we perform several investigations:
First, we measure the computational overhead caused by
our parameter tuning. Next, Alg. 1 is evaluated on bench-
mark systems and compared to manually-tuned algorithm
parameters. Finally, we compare Alg. 1 with a genetic
algorithm searching for algorithm parameters. Since the
genetic algorithm requires a lot of memory, we used an Intel
Xeon Gold 6136 3.00GHz processor and 768GB of DDR4
2666/3273MHz memory, all other computations have been
performed using an Intel i3 processor with 8GB memory.
For the genetic algorithm and the overhead measurement,
we used the subsequently introduced randomly-generated
systems because the results might vary depending on the
investigated system.

a) Random Generation of Systems: We randomly
picked complex conjugate pairs of eigenvalues from a uni-
form distribution over the range of [−1, 1] for the real part
and [−i, i] for the imaginary part without loss of generality,
since the characteristics of the solution only depends on
the ratio of real and imaginary values. The state-space form
for these eigenvalues is computed and subsequently rotated
by a random orthogonal matrix of increasing sparsity for
higher dimensions. Furthermore, the initial set X 0 and the
input set U are given by hypercubes centered at (10, ..., 10)T

with edge length 0.5, and (1, ..., 1)T with edge length 0.1,
respectively. Lastly, we set εmax = 0.05 and tf = 3s.

10 20 30 40 50 60 70 80
Dimension

0.5

0.6

0.7

0.8

F
ra

ct
io

n 
of

 to
ta

l t
im

e

Fig. 1: Time consumption by parameter tuning in relation to
total execution time using 50 randomly-generated systems per
dimension.

b) Computational Overhead: First, we investigate the
computational overhead caused by the continuous adaptation
of all algorithm parameters. For this purpose, we measured
the time Alg. 1 spends on the adaptation and the set prop-
agation over 50 randomly-generated systems of dimensions
5 to 75. Fig. 1 shows the fraction of the total time spent
on the parameter tuning: The overhead remains manageable
even for high-dimensional systems, settling at about the same
time as used for the set propagation. This is achieved by
the computational efficiency of Prop. 1. The overhead is
more than compensated by the adaptive adjustment of the
algorithm parameters as discussed at the end of this section.
Also, the common practice of trial and error requires tuning
times that exceed computation times by several factors.

c) ARCH benchmarks: Next, we have applied our algo-
rithm to the 48-dimensional Building (BLD) benchmark and
the 273-dimensional International Space Station (ISS) bench-
mark, both from the ARCH competition [32]. These systems
are manually tuned for the competition by executing many
runs to optimize the algorithm parameters with respect to
the computation time while still satisfying all specifications.
For a fair comparison, we set εmax to the highest possible
value that still verifies the given specification. We compare
our results to the tool CORA [8] since it is also implemented
in MATLAB.

Table I shows a comparison between Alg. 1 and CORA
in terms of the computation time, the number of steps, and
the minimum and maximum values for ∆t. Alg. 1 adapts
the values of the algorithm parameters depending on the
current system behavior by enlarging the time step size
in regions where this only moderately increases the over-
approximation. The resulting range can be observed by the
large differences between ∆tmin and ∆tmax. Consequently,
the total number of steps decreases making less computations
necessary than in the case of fixed algorithm parameters as
used by CORA and shown in Table I. The range for ∆t
in both building benchmarks by CORA is explained by the
switching between two manually-tuned time steps.

Fig. 2 shows the reachable sets for the benchmark ISSF01
using different values of εmax: The smaller the defined error
bound, the tighter are the reachable sets. We also recognize
the linear increase of the admissible error bound over time
as the computed sets differ more towards the end of the
time horizon. Fig. 3 shows the evolution of all algorithm



TABLE I: Results of ARCH benchmarks for Alg. 1 and CORA.

Benchmark Alg. 1 CORA

εmax Time Steps [∆tmin,∆tmax] Time Steps [∆tmin,∆tmax]

BLDC01 2 · 10−3 4.0s 839 [0.0081, 0.0448] 5.5s 2400 [0.0020, 0.0100]
BLDF01 6 · 10−3 5.6s 818 [0.0081, 0.0597] 6.0s 2400 [0.0020, 0.0100]
ISSC01 5.6 21.7s 189 [0.0704, 0.1371] 22.8s 1000 [0.0200, 0.0200]
ISSF01 2 · 10−3 295s 1216 [0.0059, 0.0395] 849s 2000 [0.0100, 0.0100]

Fig. 2: Benchmark ISSF01 with the specifications ISS01, ISU01,
and the reachable sets R

(
[0, T ]

)
in dark gray (εmax = 20 · 10−3),

light gray (εmax = 10 · 10−3), and ivory (εmax = 2 · 10−3).

parameters corresponding to the different values of εmax:
A higher value for εmax yields a larger initial ∆t and
a smaller total number of steps. Note that the switching
between previously-computed values of ∆t does not add
any computations since the sets are read from memory once
they are computed. The number of Taylor terms η is chosen
jointly with ∆t and increases towards the end of the time
horizon to facilitate larger time step sizes. We also observe
that the zonotope order ρ reaches a higher maximum for
smaller values of εmax since in that case we cannot reduce
as much as for larger εmax.

d) Genetic Algorithm Comparison: Finally, we want
to compare our approach to a genetic algorithm searching
for ∆t, η, and ρ. To this end, we use the MATLAB built-in
genetic algorithm function. While the parameters η and ρ
are fixed, we model the time step size by a polynomial up to
order 2: ∆t(t) = a+bt+ct2. We restrict these parameters by
the ranges η ∈ [1, 10], ρ ∈ [2, 1000], a ∈ [0.0003, 0.3], b ∈
[−0.1, 0.1], c ∈ [−0.033, 0.033]. The chosen bounds for a, b,
and c prevent ∆t from too drastic growth or shrinkage,
thereby focussing on suitable curves of ∆t. Higher orders
did not provide any benefits.

In order to establish a level playing field, we terminate
once the obtained reachable set is within the box enclosure of
the reachable set of the adaptive algorithm enlarged by 10%.
For computational efficiency interval over-approximations
were used for this comparison. The cost function is chosen
as the maximum distance to the enlarged adaptive reachable
set over all dimensions.

The parameters specific to the genetic algorithm have been
set as follows: We enable an infinite number of generations
with a maximum of 3 stall generations. We aim to speed up
the convergence by setting only 10 members per generation
as the evaluation of a single member is costly in higher

dimensions. For the members of the next generation, we use
a standard crossover fraction of 0.75 and set the elite count
to 1, carrying the best solution over to the next generation.

We applied Alg. 1 and the genetic algorithm on 50
randomly-generated systems per dimension. Table II com-
pares the average computation time over varying dimensions
of Alg. 1 to the time the genetic algorithms takes until
convergence. The results show that Alg. 1 outspeeds all
genetic algorithms. Since Alg. 1 tunes the algorithm pa-
rameters during runtime, we only need a single iteration for
the computation of the reachable set. Contrary, the genetic
algorithms run over many generations repeatedly computing
the reachable set while iteratively improving the solution
by means of the cost function. This process is far more
time-consuming than the overhead caused by the adaptive
parameter tuning. The genetic algorithm using the constant
polynomial for ∆t is faster than the higher-order polynomials
as they re-compute auxiliary reachable sets due to the non-
constant time step size.

TABLE II: Computation time for Alg. 1 and the genetic algorithm
(GA) averaged over 50 randomly-generated systems per dimension.

Dimension
5 10 15 20 25 30 40

Alg. 1 0.14s 0.22s 0.40s 0.58s 1.0s 1.9s 6.7s
GA (order: 0) 1.6s 3.4s 7.0s 10s 20s 30s 50s
GA (order: 1) 4.1s 9.4s 13s 21s 28s 40s 70s
GA (order: 2) 5.1s 10s 14s 21s 42s 58s 97s

e) Discussion: Our framework can also be applied to
other computations of reachable sets and other set represen-
tations. In order to guarantee convergence and termination
for all εmax ∈ R, Theorem 1 has to hold for the applied
error terms, similarly as shown in Sec. IV-B for the presented
implementation: A tool developer has to modify Φprop,max and
Φset which are, e.g., the number of template directions when
using template polyhedra. A corresponding error term for the
set representation has to be defined.

The choice of err
(
·
)

in (5) does not add much over-
approximation as can be observed from comparing the ranges
for the time step size [∆tmin,∆tmax] to the manually-tuned
∆t by CORA in Table I, where we see that Alg. 1 chooses
a similar time step size, yielding comparable results both in
terms of the tightness and the computational efficiency.

The only remaining parameter for the practitioner to set
is the error εmax. As shown in Fig. 2, increasing the value
of εmax results in a more over-approximative reachable set
and vice versa. Thus, the setting of εmax is intuitive and can
easily be adjusted for any system.



0 500 1000 1500
Step

0

0.02

0.04

0.06

0.08

T
im

e 
S

te
p 

S
iz

e

0 500 1000 1500
Step

0

5

10

T
ay

lo
r 

T
er

m
s

0 500 1000 1500
Step

0

20

40

60

Z
on

ot
op

e 
O

rd
er

Fig. 3: Benchmark ISSF01: ∆t, η, ρ for different εmax: black (εmax = 20 · 10−3), gray (εmax = 10 · 10−3), and blue (εmax = 2 · 10−3).

VI. CONCLUSION

In this paper, we presented a novel generic framework
to automatically tune all algorithm parameters which is
a major problem of present reachability algorithms. The
presented algorithm enables a fully-automated computation
of the reachable set whose error is below a user-defined error.
Previous work only considered the tuning of time parame-
ters. An example implementation has shown to outperform
manually-tuned algorithm parameters on benchmarks and
provides better results than genetic algorithms searching
for algorithm parameters on randomly-generated systems of
varying dimensions. The extension of the presented frame-
work to nonlinear systems will be considered in the future.

REFERENCES

[1] G. Lafferriere and et al., “Symbolic reachability computation for
families of linear vector fields,” Journal of Symbolic Computation,
vol. 32, no. 3, pp. 231–253, 2001.

[2] M. Althoff and et al., “Reachability analysis of linear systems with
uncertain parameters and inputs,” in Proc. of the 46th IEEE Conference
on Decision and Control, pp. 726–732, 2007.

[3] X. Chen, Reachability Analysis of Non-Linear Hybrid Systems using
Taylor Models. PhD thesis, Fachgruppe Informatik, RWTH Aachen
University, 2015.

[4] A. Gurung and et al., “Parallel reachability analysis of hybrid systems
in XSpeed,” International Journal on Software Tools for Technology
Transfer, vol. 21, no. 4, pp. 401–423, 2019.

[5] A. Girard and et al., “Efficient computation of reachable sets of linear
time-invariant systems with inputs,” in Hybrid Systems: Computation
and Control, LNCS 3927, pp. 257–271, Springer, 2006.

[6] S. Bogomolov and et al., “Reach set approximation through decom-
position with low-dimensional sets and high-dimensional matrices,”
in Proc. of the 21st International Conference on Hybrid Systems:
Computation and Control, pp. 41–50, 2018.

[7] G. Frehse and et al., “SpaceEx: Scalable verification of hybrid sys-
tems,” in Proc. of the 23rd International Conference on Computer
Aided Verification, LNCS 6806, pp. 379–395, Springer, 2011.

[8] M. Althoff, “An introduction to CORA 2015,” in Proc. of the Workshop
on Applied Verification for Continuous and Hybrid Systems, pp. 120–
151, 2015.

[9] X. Chen and et al., “Flow*: An analyzer for non-linear hybrid
systems,” in International Conference on Computer Aided Verification,
pp. 258–263, Springer, 2013.

[10] R. Ray and et al., “XSpeed: Accelerating reachability analysis on
multi-core processors,” in Haifa Verification Conference, pp. 3–18,
Springer, 2015.

[11] S. Bogomolov and et al., “JuliaReach: a toolbox for set-based reach-
ability,” in Proc. of the 22nd International Conference on Hybrid
Systems: Computation and Control, pp. 39–44, ACM, 2019.

[12] S. Bak and P. S. Duggirala, “Simulation-equivalent reachability of
large linear systems with inputs,” in Proc. of 29th International
Conference on Computer Aided Verification, pp. 401–420, 2017.

[13] P. S. Duggirala and M. Viswanathan, “Parsimonious, simulation based
verification of linear systems,” in Proc. of 28th International Confer-
ence on Computer Aided Verification, pp. 477–494, 2016.

[14] S. Bak and P. S. Duggirala, “HyLAA: A tool for computing simulation-
equivalent reachability for linear systems,” in Proc. of the 20th Inter-
national Conference on Hybrid Systems: Computation and Control,
pp. 173–178, 2017.

[15] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reacha-
bility analysis,” in Hybrid Systems: Computation and Control, LNCS
1790, pp. 202–214, Springer, 2000.

[16] E. Asarin and et al., “Approximate reachability analysis of piecewise-
linear dynamical systems,” in Hybrid Systems: Computation and
Control, pp. 20–31, Springer, 2000.

[17] A. Girard and C. Le Guernic, “Efficient reachability analysis for linear
systems using support functions,” in Proc. of the 17th IFAC World
Congress, pp. 8966–8971, 2008.

[18] J. K. Scott and et al., “Constrained zonotopes: A new tool for set-
based estimation and fault detection,” Automatica, vol. 69, pp. 126–
136, 2016.

[19] L. Lapidus and J. H. Seinfeld, Numerical solution of ordinary differ-
ential equations. Academic press, 1971.

[20] U. M. Ascher and et al., Numerical solution of boundary value
problems for ordinary differential equations. SIAM, 1994.

[21] M. Kerbl, “Stepsize strategies for inclusion algorithms for ODE’s,”
Computer Arithmetic, Scientific Computation, and Mathematical Mod-
elling, IMACS Annals on Computing and Appl. Math, vol. 12, pp. 437–
452, 1991.

[22] W. Rufeger and E. Adams, “A step size control for Lohner’s enclosure
algorithm for ordinary differential equations with initial conditions,”
in Mathematics in Science and Engineering, vol. 189, pp. 283–299,
Elsevier, 1993.

[23] N. S. Nedialkov, Computing rigorous bounds on the solution of an ini-
tial value problem for an ordinary differential equation. Dissertation,
University of Toronto, 2000.

[24] P. Prabhakar and M. Viswanathan, “A dynamic algorithm for approxi-
mate flow computations,” in Proc. of the 14th International Conference
on Hybrid Systems: Computation and Control, pp. 133–142, ACM,
2011.

[25] M. Althoff, Reachability Analysis and its Application to the Safety
Assessment of Autonomous Cars. Dissertation, Technische Universität
München, 2010.

[26] C. Le Guernic, Reachability analysis of hybrid systems with linear
continuous dynamics. PhD thesis, Université Grenoble 1 - Joseph
Fourier, 2009.

[27] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in Hybrid Systems: Computation and Control, LNCS 3414, pp. 291–
305, Springer, 2005.

[28] M. Althoff and et al., “Reachable set computation for uncertain time-
varying linear systems,” in Hybrid Systems: Computation and Control,
pp. 93–102, 2011.

[29] T. A. Bickart, “Matrix exponential: Approximation by truncated power
series,” Proceedings of the IEEE, vol. 56, no. 5, pp. 872–873, 1968.

[30] M. Althoff and G. Frehse, “Combining zonotopes and support func-
tions for efficient reachability analysis of linear systems,” in Proc. of
the 55th IEEE Conference on Decision and Control, pp. 7439–7446,
2016.

[31] A.-K. Kopetzki and et al., “Methods for order reduction of zonotopes,”
in Proc. of the 56th IEEE Conference on Decision and Control,
pp. 5626–5633, 2017.

[32] M. Althoff and et al., “ARCH-COMP19 category report: Continuous
and hybrid systems with linear continuous dynamics,” in Proc. of the
6th International Workshop on Applied Verification of Continuous and
Hybrid Systems, pp. 14–40, 2019.



A Reproduction of Publications

A.2 Fully Automated Verification of Linear Systems Using

Inner- and Outer-Approximations of Reachable Sets

Summary The work in Appendix A.1 suffers from two major shortcomings: First, the com-

puted approximation error is non-exhaustive, and second, the admissible error bound still has

to be manually tuned for successful verification.

In this work, we address these issues as follows: We rigorously derive all induced approxima-

tion errors in the reachability algorithm for linear systems of the form (2.2). Consequently, we

obtain a bound on the Hausdorff distance between the exact reachable set and the computed

outer approximation for any algorithm parameter setting. Next, we prove that the algorithm

parameters can be adapted such that any non-zero admissible error bound is fulfilled over the

whole time horizon. The outer approximation and the error bound are then used to compute

an inner approximation of the exact reachable set. By automatically refining the admissible

error bound, we devise a fully automated verification algorithm that is capable of verifying or

falsifying any safety specification that does not require the exact reachable set, thereby solving

the verification task in Problem 1.

A comparison on challenging benchmarks shows that the proposed verification algorithm

can verify or falsify safety similarly fast as state-of-the-art approaches that still rely on man-

ual tuning of algorithm parameters. However, our verification algorithm only requires the

model and the model parameters to return a conclusive result on safety within a single run.

This automated procedure represents a substantial improvement in the verification of safety

specifications for linear systems and constitutes a leap toward industrial application.

Author contributions M.W. derived the approximation errors, integrated the adaptive

parameter tuning into the reachability algorithm, implemented the reachability algorithm,

conducted parts of the numerical evaluation, and wrote most of the manuscript. N.K. described

and implemented the verification algorithm and conducted parts of the numerical evaluation.

S.B. and M.A. provided feedback for improving the manuscript.

Copyright notice ©2023 IEEE. Reprinted authors’ accepted version, with permission, from

Mark Wetzlinger, Niklas Kochdumper, Stanley Bak, and Matthias Althoff, Fully Automated

Verification of Linear Systems Using Inner- and Outer-Approximations of Reachable Sets, IEEE

Transactions on Automatic Control, Early Access Article, doi:10.1109/TAC.2023.3292008,

2023. Explicit license printed in Appendix B.

TUM Graduate School This publication has been declared a core publication in accor-

dance with Article 7, section 3 TUM Doctoral Regulations (PromO).

62

https://www.doi.org/10.1109/TAC.2023.3292008


1

Fully Automated Verification of Linear Systems
Using Inner- and Outer-Approximations of

Reachable Sets
Mark Wetzlinger, Niklas Kochdumper, Stanley Bak, and Matthias Althoff

Abstract— Reachability analysis is a formal method to
guarantee safety of dynamical systems under the influence
of uncertainties. A substantial bottleneck of all reachability
algorithms is the necessity to adequately tune specific
algorithm parameters, such as the time step size, which
requires expert knowledge. In this work, we solve this issue
with a fully automated reachability algorithm that tunes
all algorithm parameters internally such that the reachable
set enclosure respects a user-defined approximation error
bound in terms of the Hausdorff distance to the exact
reachable set. Moreover, this bound can be used to extract
an inner-approximation of the reachable set from the outer-
approximation using the Minkowski difference. Finally, we
propose a novel verification algorithm that automatically
refines the accuracy of the outer-approximation and inner-
approximation until specifications given by time-varying
safe and unsafe sets can be verified or falsified. The numer-
ical evaluation demonstrates that our verification algorithm
successfully verifies or falsifies benchmarks from different
domains without requiring manual tuning.

Index Terms— Formal verification, reachability analysis,
linear systems, set-based computing.

I. INTRODUCTION

DEPLOYING cyber-physical systems in safety-critical en-
vironments requires formal verification techniques to

ensure correctness with respect to the desired functionality,
as failures can lead to severe economic or ecological conse-
quences and loss of human life. One of the main techniques
to provide safety guarantees is reachability analysis, which
predicts all possible future system behaviors under uncertainty
in the initial state and input. Reachability analysis has already
been successfully applied in a wide variety of applications,
such as analog/mixed-signal circuits [1], power systems [2],
robotics [3], system biology [4], aerospace applications [5],
and autonomous driving [6]. The most common verification

This paragraph of the first footnote will contain the date on which
you submitted your paper for review. This work was supported by
the European Research Council (ERC) project justITSELF under grant
agreement No 817629, by the German Research Foundation (DFG)
project ConVeY under grant number GRK 2428, and by the Air Force
Office of Scientific Research and the Office of Naval Research under
award number FA9550-19-1-0288, FA9550-21-1-0121, FA9550-22-1-
0450 and N00014-22-1-2156.

Mark Wetzlinger and Matthias Althoff are with the Department of
Computer Science, Technical University of Munich, 85748 Garching,
Germany (e-mail: {m.wetzlinger, althoff}@tum.de). Niklas Kochdumper
and Stanley Bak are with the Department of Computer Science,
Stony Brook University, Stony Brook, NY 11794, USA (e-mail:
{niklas.kochdumper, stanley.bak}@stonybrook.edu.

tasks for these applications are reach-avoid problems, where
one aims to prove that the system reaches a goal set while
avoiding unsafe sets. A substantial bottleneck of all verifi-
cation algorithms is the manual tuning of certain algorithm
parameters, which requires expert knowledge. To overcome
this limitation, we present the first fully automated verification
algorithm for linear time-invariant systems.

A. State of the Art

The exact reachable set can only be computed in rare
special cases [7]. Therefore, one usually computes tight outer-
approximations or inner-approximations of the reachable set
instead, which can be used to either prove or disprove safety,
respectively. While there exist many different approaches, e.g.,
stochastic techniques [8] or data-driven/learning methods [9],
[10], the following review focuses on model-based reachability
analysis of linear systems.

Most work is concerned with computing outer-
approximations, where the most prominent approaches
for linear systems are based on set propagation [11]–[13].
These methods evaluate the analytical solution for linear
systems in a set-based manner and iteratively propagate the
resulting reachable sets forward in time. One can propagate
the sets from the previous step or the initial set. The latter
method avoids the so-called wrapping effect [14], i.e., the
amplification of outer-approximation errors over subsequent
steps, but deals less efficiently with time-varying inputs. An
alternative to set propagation is to compute the reachable
set using widened trajectories from simulation runs [15],
[16]. Moreover, special techniques have been developed
recently to facilitate the analysis of high-dimensional
systems. One strategy is to decompose the system into
several decoupled/weakly-coupled blocks to reduce the
computational effort [17], [18], while another group computes
the reachable set in a lower-dimensional Krylov subspace that
captures the dominant dynamical behavior [19], [20]. Inner-
approximation algorithms have been researched for systems
with piecewise-constant inputs based on set propagation [21],
piecewise-affine systems based on linear matrix inequalities
[22], and time-varying linear systems based on ellipsoidal
inner-approximations to parametric integrals [23]. Other
approaches compute inner-approximations by extraction
from outer-approximations [24] or for projected dimensions
[25]—despite being designed for nonlinear dynamics, these

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



2

works can still compete with the aforementioned specialized
approaches for linear systems due to their recency.

Concerning the set representations for reachability analysis,
early approaches used polyhedra or template polyhedra [26],
which are limited to low-dimensional systems due to the
exponential increase in the representation size; ellipsoids [23]
were also used but result in a conservative approximation
as they are not closed under Minkowski sum. More recent
approaches use support functions [14], zonotopes [11], or their
combination [27], for which all relevant set operations can be
computed accurately and efficiently. A related representation
is star sets [28], where constraints are imposed on a linear
combination of base vectors.

Some approaches explicitly address the requirement of
tightening the computed outer-approximation for successful
verification. Many of them are based on counterexample-
guided abstraction refinement (CEGAR), where either the
model [1], [29] or the set representation [30], [31] is refined.
A more recent approach [32] utilizes the relation between all
algorithm parameters and the tightness of the reachable sets,
proposing individual parameter refinement in fixed discrete
steps to yield tighter results. Another method [33] refines the
tightness of the reachable set enclosure as much as the real-
time constraints allow for re-computation in order to choose
between a verified but conservative controller and an unverified
counterpart with better performance.

Common reachability tools for linear systems are CORA
[34], Flow* [35], HyDRA [36], HyLAA [37], JuliaReach [38],
SpaceEx [13], and XSpeed [39]. These tools still require
manual tuning of algorithm parameters to obtain tight ap-
proximations. Since this requires expert knowledge about the
underlying algorithms, the usage of reachability analysis is
currently mainly limited to academia. Another issue is that the
unknown distance between the computed outer-approximation
and the exact reachable set, which may result in so-called
spurious counterexamples. Recently, first steps towards auto-
mated parameter tuning have been taken: A rather brute-force
method [40] proposes to recompute the reachable set from
scratch, where the parameter values are refined using fixed
scaling factors after each run. However, recomputation is a
computationally demanding procedure and does not exploit
information about the specific system dynamics. Another work
[41] tunes the time step size by approximating the flow below
a user-defined error bound but is limited to affine systems.
The most sophisticated approach [13], [42] tunes the time step
size by iterative refinement to eventually satisfy a user-defined
error bound between the exact reachable set and the computed
outer-approximation. Since this error bound is limited to
manually selected directions, the obtained information may
differ significantly depending on their choice. In conclusion,
there does not yet exist a fully automated parameter tuning
algorithm for linear systems that satisfies an error bound in
terms of the Haussdorf distance to the exact reachable set.

B. Overview
This work is structured as follows: After introducing some

preliminaries in Sec. II, we provide a mathematical formu-
lation of the problem statement in Sec. III. The main body

IV

V

VI

Prop. 1-4, 9-11
(individual errors)

Alg. 1
(base algorithm)

Lemmata 1-4
(error behavior)

Prop. 5
(output equation)

Alg. 2
(outer-approximation)

Theorem 1
(convergence)

Prop. 6
(inner-approximation)

Alg. 3
(verification)

Prop. 7-8
(containment/intersection)

Fig. 1. Overview of theoretical contributions in Secs. IV-VI.

(Secs. IV-VI) builds upon our previous results [43], where we
tuned the algorithm parameters based on non-rigorous approx-
imation error bounds using a naive tuning strategy. Neither
inner-approximations nor automated verification/falsification
were considered in [43]. In detail, this article contributes the
following novelties:

• We derive a rigorous approximation error for the reach-
able set, based on which we provide an automated
reachability algorithm (Alg. 2) that adaptively tunes all
algorithm parameters so that any desired error bound
in terms of the Hausdorff distance between the exact
reachable set and the computed outer-approximation is
respected at all times (see Sec. IV).

• We show how to efficiently extract an inner-
approximation from the previously computed outer-
approximation (see Sec. V).

• We introduce an automated verifier (Alg. 3), which
iteratively refines the accuracy of the outer- and inner-
approximations until the specifications given by time-
varying safe/unsafe sets can be either proven or disproven
(see Sec. VI).

Fig. 1 depicts the relation of individual contributions in
Secs. IV-VI. Finally, we demonstrate the performance of the
proposed algorithms on a variety of numerical examples in
Sec. VII and discuss directions for future work in Sec. VIII.

II. PRELIMINARIES

A. Notation
Scalars and vectors are denoted by lowercase letters, matri-

ces are denoted by uppercase letters. Given a vector v ∈ Rn,
v(i) represents the i-th entry and

∥∥v∥∥
p

its p-norm. Similarly,
for a matrix M ∈ Rm×n, M(i,·) refers to the i-th row and
M(·,j) to the j-th column. The identity matrix of dimension n
is denoted by In, the concatenation of two matrices M1,M2

by [M1 M2], and we use 0 and 1 to represent vectors and
matrices of proper dimension containing only zeros or ones,
respectively. The operation diag(v) returns a square matrix
with the vector v on its diagonal. Exact sets are denoted by
standard calligraphic letters S, outer-approximations by Ŝ , and
inner-approximations by qS. The empty set is represented by
∅. Moreover, we write v for the set {v} consisting only of
the point v. We refer to the radius of the smallest hypersphere
centered at the origin and enclosing a set S by rad(S). The op-
eration box(S) denotes the tightest axis-aligned interval outer-
approximation of S. Interval matrices are denoted by bold
calligraphic letters: M = [M,M ] = {M ∈ Rm×n | M ≤

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



3

M ≤ M}, where the inequality is evaluated element-wise.
Intervals are a special case of interval matrices, where the
lower and upper bounds are vectors. Additionally, we define an
n-dimensional hyperball centered at the origin by Bε =

{
x ∈

Rn
∣∣ ∥∥x∥∥

2
≤ ε

}
⊂ Rn with respect to the Euclidean norm.

The floor operation ⌊x⌋ returns the next smaller integer for
a scalar x. For clarify, arguments of functions are sometimes
omitted. Finally, we use f(t) ∼ O(ta) to represent that the
function f(t) approaches its limit value (0 or infinity in this
work) as fast or faster than ta.

B. Definitions
All sets are assumed to be compact, convex, and bounded.

In this work, we represent outer-approximations of reachable
sets with zonotopes [11, Def. 1]:

Definition 1 (Zonotope): Given a center vector c ∈ Rn and
a generator matrix G ∈ Rn×γ , a zonotope Z ⊂ Rn is

Z :=

{
c+

γ∑
i=1

G(·,i) αi

∣∣∣∣ αi ∈ [−1, 1]
}
.

The zonotope order is defined as ρ := γ
n and we use the

shorthand Z = ⟨c,G⟩Z .

Moreover, we represent inner-approximations of reachable sets
with constrained zonotopes [44, Def. 3]:

Definition 2 (Constrained zonotope): Given a vector c ∈
Rn, a generator matrix G ∈ Rn×γ , a constraint matrix A ∈
Rh×γ , and a constraint offset b ∈ Rh, a constrained zonotope
CZ ⊂ Rn is

CZ :=

{
c+

γ∑
i=1

G(·,i) αi

∣∣∣∣ γ∑
i=1

A(·,i)αi = b, αi ∈ [−1, 1]
}
.

We use the shorthand CZ = ⟨c,G,A, b⟩CZ .

Finally, unsafe sets and safe sets are represented by polytopes
[45, Sec. 1.1]:

Definition 3 (Polytope): Given a constraint matrix C ∈ Ra×n

and a constraint offset d ∈ Ra, the halfspace representation
of a polytope P ⊂ Rn is

P :=
{
x ∈ Rn

∣∣ Cx ≤ d
}
.

Equivalently, one can use the vertex representation

P :=

{ s∑
i=1

βi vi

∣∣∣∣ s∑
i=1

βi = 1, βi ≥ 0

}
,

where {v1, . . . , vs} ∈ Rn are the polytope vertices. We use
the shorthands P = ⟨C, d⟩H and P = ⟨[v1 . . . vs]⟩V .

Given the sets S1,S2 ⊂ Rn,S3 ⊂ Rm and a matrix
M ∈ Rw×n, we require the set operations linear map MS1,
Cartesian product S1×S3, Minkowski sum S1⊕S2, Minkowski
difference S1 ⊖ S2, and linear combination comb

(
S1,S2

)
,

which are defined as

MS1 = {Ms | s ∈ S1}, (1)

S1 × S3 = {[s⊤1 s⊤3 ]
⊤ | s1 ∈ S1, s3 ∈ S3}, (2)

S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2}, (3)

S1 ⊖ S2 = {s | s⊕ S2 ⊆ S1}, (4)

comb
(
S1,S2

)
=
{
λs1 + (1− λ)s2 |
s1 ∈ S1, s2 ∈ S2, λ ∈ [0, 1]

}
.

(5)

For zonotopes Z1 = ⟨c1, G1⟩Z ,Z2 = ⟨c2, G2⟩Z ⊂ Rn, linear
map and Minkowski sum can be computed as [12, Eq. (2.1)]

MZ1 = ⟨Mc1,MG1⟩Z , (6)
Z1 ⊕Z2 = ⟨c1 + c2, [G1 G2]⟩Z . (7)

Since the convex hull represents an enclosure of the linear
combination, we furthermore obtain [12, Eq. (2.2)]

comb
(
Z1,Z2

)
⊆
〈
0.5(c1 + c2),

[
0.5(c1 − c2)

0.5(G1 +G
(1)
2 ) 0.5(G1 −G

(1)
2 ) G

(2)
2

]〉
Z

(8)

with

G
(1)
2 = [G2(·,1) . . . G2(·,γ1)], G

(2)
2 = [G2(·,γ1+1) . . . G2(·,γ2)],

where we assume without loss of generality that Z2 has more
generators than Z1 so that we can write the formula in a
compact form. Later on in Sec. V, we show that the Minkowski
difference of two zonotopes can be represented as a con-
strained zonotope. The multiplication I Z of an interval matrix
I with a zonotope Z can be outer-approximated as specified
in [46, Thm. 4], and the operation box(Z) returns the axis-
aligned box outer-approximation according to [12, Prop. 2.2].
The representation size of a zonotope can be decreased with
zonotope order reduction. While our reachability algorithm is
compatible with all common reduction techniques [47], we
focus on Girard’s method [11, Sec. 3.4] for simplicity:

Definition 4 (Zonotope order reduction): Given a zonotope
Z = ⟨c,G⟩Z ⊂ Rn and a desired zonotope order ρd ≥ 1, the
operation reduce

(
Z, ρd

)
⊇ Z returns an enclosing zonotope

with order smaller or equal to ρd:

reduce
(
Z, ρd

)
= ⟨c, [Gkeep Gred]⟩Z ,

with

Gkeep = [G(·,πχ+1) . . . G(·,πγ)], Gred = diag

( χ∑
i=1

∣∣G(·,πi)

∣∣),
where π1, . . . , πγ are the indices of the sorted generators

∥G(·,π1)∥1 − ∥G(·,π1)∥∞ ≤ ... ≤ ∥G(·,πγ)∥1 − ∥G(·,πγ)∥∞,

and χ = γ−⌊(ρd−1)n⌋ is the number of reduced generators.

For distances between sets, we use the Hausdorff distance:

Definition 5 (Hausdorff distance): For two compact sets
S1,S2 ⊆ Rn, the Hausdorff distance with respect to the
Euclidean norm is defined as

dH(S1,S2) = max
{
max
s1∈S1

(
min
s2∈S2

∥∥s1 − s2
∥∥
2

)
,

max
s2∈S2

(
min
s1∈S1

∥∥s1 − s2
∥∥
2

)}
.

(9)

Using a hyperball Bε of radius ε, an alternative definition is

dH(S1,S2) = ε ⇔ S2 ⊆ S1 ⊕ Bε ∧ S1 ⊆ S2 ⊕ Bε. (10)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



4

Moreover, we will frequently use the operator

err(S) := rad(box(S)). (11)

As an immediate consequence of (11), we obtain

dH
(
0,S

) 0∈S
≤ err(S) , (12)

which states that the Hausdorff distance between a set and the
origin can be bounded by the radius of an enclosing hyperball.

III. PROBLEM FORMULATION

We consider linear time-invariant systems of the form

ẋ(t) = Ax(t) +Bu(t) + p, (13)
y(t) = Cx(t) +Wv(t) + q, (14)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rℓ×n, W ∈ Rℓ×o, where
x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, y(t) ∈ Rℓ

is the output, v(t) ∈ Ro is a measurement error, p ∈ Rn

is a constant input, and q ∈ Rℓ is a constant offset on the
output. The initial state x(t0) is uncertain within the initial
set X 0 ⊂ Rn, the input u(t) is uncertain within the input set
U ⊂ Rm, and v(t) is uncertain within the set of measurement
errors V ⊂ Ro. In this work, we assume that X 0, U , and V are
represented by zonotopes. Using U = ⟨cu, Gu⟩Z , we define the
vector ũ = Bcu + p ∈ Rn and the set U0 = ⟨0, BGu⟩Z ⊂ Rn

for later derivations. Please note that we assume a constant
vector ũ to keep the presentation simple, but the extension
to time-varying inputs ũ(t) is straightforward. Without loss
of generality, we set the initial time to t0 = 0 and the time
horizon to [0, tend]. The reachable set is defined as follows:

Definition 6 (Reachable set): Let us denote the solution to
(13) for the initial state x(0) and the input signal u(·) by
ξ(t;x(0), u(·)). Given an initial set X 0 and an input set U ,
the reachable set at time t ≥ 0 is

R(t) :=
{
ξ(t;x(0), u(·))

∣∣ x(0) ∈ X 0, ∀θ ∈ [0, t] : u(θ) ∈ U
}
.

We denote the time-point reachable set at time t = tk by
R(tk) and the time-interval reachable set over τk ∈ [tk, tk+1]
by R(τk) :=

⋃
t∈[tk,tk+1]

R(t).

Since the exact reachable set as defined in Def. 6 can-
not be computed for general linear systems [7], we aim to
compute tight outer-approximations R̂(t) ⊇ R(t) and inner-
approximations qR(t) ⊆ R(t) instead.

X 0

eA∆tX 0

comb(·) comb(·)⊕ C

1) 2) 3)

Fig. 2. Visualization of the three steps required to compute the homo-
geneous solution of the first time interval, adapted from [12, Fig. 3.1].

Algorithm 1 Reachability algorithm (manual tuning)
Require: Linear system ẋ = Ax + Bu + p, initial set X 0 =
⟨cx, Gx⟩Z , input set U = ⟨cu, Gu⟩Z , time horizon tend, time
step size ∆t dividing the time horizon into an integer number
of steps, truncation order η, zonotope order ρ
Ensure: Outer-approximation of the reachable set R̂([0, tend])

1: t0 ← 0, ũ← Bcu + p, U0 ← ⟨0, BGu⟩Z
2: H(t0)← X 0,Pu(t0)← 0, P̂U (t0)← 0

3: Pu(∆t)← Eq. (19), P̂U (∆t)← Eq. (20)
4: for k ← 0 to tend

∆t − 1 do
5: tk+1 ← tk +∆t, τk+1 ← [tk, tk+1]

6: Pu(tk+1)← Pu(tk)⊕ eAtkPu(∆t)

7: H(tk+1)← eAtk+1X 0 + Pu(tk+1)

8: C ← F(∆t, η)H(tk)⊕ G(∆t, η)ũ ▷ see (15)-(16)
9: Ĥ(τk)← comb

(
H(tk),H(tk+1)

)
⊕ C

10: P̂U (tk+1)← reduce
(
P̂U (tk)⊕ eAtk P̂U (∆t), ρ

)
11: R̂(τk)← Ĥ(τk)⊕ P̂U (tk+1)

12: end for
13: R̂([0, tend])←

⋃ tend
∆t −1

k=0 R̂(τk)

Our automated tuning approach is based on Alg. 1, which
is a slight modification of the wrapping-free propagation-
based reachability algorithm [14]. Fundamentally, one exploits
the superposition principle of linear systems by separately
computing the homogeneous and particular solutions, which
are then combined in Line 11 to yield the overall reachable
set for each time interval. The homogeneous solution can be
enclosed using the following three steps visualized in Fig. 2:

1) Compute the time-point solution by propagating the ini-
tial set with the exponential matrix eA∆t.

2) Approximate the time-interval solution with the linear
combination (8), which would only enclose straight-line
trajectories.

3) Account for the curvature of the trajectories by enlarging
the linear combination with the set C.

The curvature enclosure C is computed in Line 8 of Alg. 1
using the interval matrices [12, Sec. 3.2]

F(∆t, η) =

η⊕
i=2

Ii(∆t)
Ai

i!
⊕ E(∆t, η) (15)

G(∆t, η) =

η+1⊕
i=2

Ii(∆t)
Ai−1

i!
⊕ E(∆t, η)∆t (16)

with Ii(∆t) =
[(
i

−i
i−1 − i

−1
i−1
)
∆ti, 0

]
, (17)

where the interval matrix E(∆tk, ηk) represents the remainder
of the exponential matrix [12, Eq. (3.2)]:

E(∆t, η) = [−E(∆t, η), E(∆t, η)],

E(∆t, η) = e|A|∆t −
η∑

i=0

(
|A|∆t

)i
i!

.
(18)

To increase the tightness, the particular solution Pu(∆t) due

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



5

to the constant input ũ [12, Eq. (3.7)],

Pu(∆t) = A−1(eA∆t − In) ũ, (19)

is added to the homogeneous solution in Line 7. If the matrix
A is not invertible, we can integrate A−1 in the power series
of the exponential matrix to compute Pu(∆t). The particular
solution due to the time-varying input within the set U0 can
be enclosed by [12, Eq. (3.7)]

P̂U (∆t) =

η⊕
i=0

Ai∆ti+1

(i+ 1)!
U0 ⊕ E(∆t, η)∆tU0. (20)

Finally, the reachable set R̂([0, tend]) for the entire time
horizon is given by the union of the sets for individual time-
interval reachable sets according to Line 13.

As for all other state-of-the-art reachability algorithms [11]–
[14], [21], [43], the main disadvantage of Alg. 1 is that the
tightness of the computed reachable set R̂(t) is unknown and
heavily depends on the chosen time step size ∆t, truncation
order η, and zonotope order ρ. In this work, we solve both
issues by automatically tuning these algorithm parameters such
that the Hausdorff distance between the computed enclosure
R̂(t) and the exact reachable set R(t) remains below a desired
threshold εmax at all times:

Tune ∆t, η, ρ s.t. ∀t ∈ [0, tend] : dH
(
R(t), R̂(t)

)
≤ εmax.

We will further utilize this result to efficiently extract an inner-
approximation of the reachable set (Sec. V) and construct a
fully automated verification algorithm (Sec. VI).

IV. AUTOMATED PARAMETER TUNING

Let us now present our approach for the automated tuning
of algorithm parameters. While Alg. 1 uses fixed values for
∆t, η, and ρ, we tune different values ∆tk, ηk, and ρk in each
step k based on the induced outer-approximation error in order
to satisfy the error bound at all times. To achieve this, we first
derive closed-form expressions describing how the individual
errors depend on the values of each parameter in Sec. IV-A.
Next, we present our automated parameter tuning algorithm in
Sec. IV-B and prove its convergence in Sec. IV-C. Finally, we
discuss further improvements to the algorithm in Sec. IV-D
and describe the extension to output sets in Sec. IV-E.

A. Error Measures
Several sources of outer-approximation errors exist in Alg. 1:

1) Affine dynamics (Line 9): The time-interval solution
Ĥ(τk) of the affine dynamics contains errors originating
from enclosing the linear combination by zonotopes and
the set C accounting for the curvature of trajectories.

2) Particular solution (Lines 10-11): Using the outer-
approximation P̂U (tk) based on (20) for the particular
solution due to the input set U0 induces another error.
Moreover, the Minkowski addition of P̂U (tk+1) to Ĥ(τk)
is outer-approximative as it ignores dependencies in time.

3) Zonotope order reduction (Line 10): The representation
size of the particular solution P̂U (tk) has to be reduced,
which induces another error.

In this subsection, we derive upper bounds for all these errors
in terms of the Hausdorff distance between an exact set S and
the computed outer-approximation Ŝ. We will use two differ-
ent albeit related error notations: New errors induced in step k
are denoted by ∆ε∗k(∆tk, ηk) and ∆ε∗k(ρk) to emphasize the
dependence on the respective algorithm parameters (using ∗ as
a placeholder for various superscripts). Some errors for single
time steps add up over time. We accumulate all previous errors
ε∗k(·) until time tk by

ε∗k+1 = ε∗k +∆ε∗k(·), ε∗0 := 0. (21)

Let us now derive closed-form expressions for all errors.
1) Affine Dynamics: We start by determining the error con-

tained in the computed outer-approximation Ĥ(τk) of the time-
interval solution for the affine dynamics ẋ(t) = Ax(t) + ũ:

Proposition 1 (Affine dynamics error): Given the set
H(tk) = ⟨ch, Gh⟩Z with Gh ∈ Rn×γh , the Hausdorff distance
between the exact time-interval solution of the affine dynamics

H(τk) =
{
eAtx(tk) +A−1(eA(t−tk) − In)ũ

∣∣
t ∈ τk, x(tk) ∈ H(tk)

}
and the corresponding outer-approximation

Ĥ(τk) = comb
(
H(tk),H(tk+1)

)
⊕ C (22)

in Line 9 of Alg. 1 is bounded by

dH
(
H(τk), Ĥ(τk)

)
≤ ∆εh

k(∆tk, ηk) := 2 err(C) +√γh

∥∥G(−)
h

∥∥
2
, (23)

where G
(−)
h = (eA∆tk − In)Gh.

Proof. An inner-approximation of H(τk) is given by

qH(τk) = comb
(
H(tk),H(tk+1)

)
⊖ Bµ ⊖ C ⊆ H(τk),

where we additionally have to subtract a hyperball of ra-
dius µ =

√
γh

∥∥G(−)
h

∥∥
2

bounding the Hausdorff distance
between the exact linear combination (5) and the zonotope
enclosure (8) according to Prop. 9 in Appendix A. The error
∆εh

k(∆tk, ηk) bounds the distance between qH(τk) and the
outer-approximation Ĥ(τk) in (22).

2) Particular Solution: We first account for the error induced
by enclosing the exact time-point solution PU (tk+1) with the
outer-approximation P̂U (tk+1):

Proposition 2 (Time-point error in particular solution):
The Hausdorff distance between the exact particular solution

PU (tk+1) =

{∫ tk+1

0

eA(tk+1−θ)u(θ) dθ

∣∣∣∣ u(θ) ∈ U0}
and the recursively computed outer-approximation

P̂U (tk+1) = P̂U (tk)⊕ eAtk P̂U (∆tk)

with P̂U (∆tk) computed according to (20) is bounded by

εUk+1 = εUk +∆εUk (∆tk, ηk), (24)

where the error ∆εUk (∆tk, ηk) for one time step is bounded

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



6

by

∆εUk (∆tk, ηk)

:= err

(
eAtk

(( ηk∑
i=1

Ãi

)
U0 ⊕ E(∆tk, ηk)∆tk U0

))

+ err

(
eAtk

( ηk⊕
i=1

Ãi U0 ⊕ E(∆tk, ηk)∆tk U0
)) (25)

with Ãi =
Ai∆ti+1

k

(i+1)! and E(∆tk, ηk) from (18).

Proof. The error ∆εUk (∆tk, ηk) for one time step is given
by the Hausdorff distance between the computed outer-
approximation and an inner-approximation obtained by con-
sidering constant inputs according to Prop. 11 in Appendix A.
The overall error εUk+1 follows by error propagation as in
(21).

Since 0 ∈ U0, the added set due to uncertain inputs eAtk P̂U (θ)
is equal to 0 at the beginning of each time step (θ = 0) and
monotonically grows towards the set eAtk P̂U (∆tk) at the end
of the time step (θ = ∆tk) as shown in Fig. 3 on the left. The
Minkowski sum in Line 9 of Alg. 1 ignores this dependency
on time, inducing another outer-approximation error:

Proposition 3 (Time-interval error in particular solution):
The maximum Hausdorff distance at any time t ∈ τk =
[tk, tk+1] between the exact time-interval particular solution

PU (t) =

{∫ t

0

eA(t−θ)u(θ)dθ

∣∣∣∣ u(θ) ∈ U0}
and the outer-approximation ∀t ∈ τk : PU (t) ⊆ P̂U (tk+1) is
bounded by

max
t∈[tk,tk+1]

dH
(
PU (t), P̂U (tk+1)

)
≤ εUk +∆εU,τ

k (∆tk, ηk)

with εUk from Prop. 2 and the additional error

∆εU,τ
k (∆tk, ηk) := err

(
eAtk P̂U (∆tk)

)
. (26)

Proof. Since eAtk P̂U (θ) grows monotonically with θ, the
maximum deviation over the time interval τk occurs at t =
tk, where the actual additional set would be 0, but instead
eAtk P̂U (∆tk) is used. Therefore, the error is

dH
(
0, eAtk P̂U (∆tk)

) (12)
≤ err

(
eAtk P̂U (∆tk)

)
,

which corresponds to the size of the additional set.
3) Zonotope Order Reduction: The zonotope order reduction

of the particular solution P̂U (tk+1) in Line 10 of Alg. 1
induces another error. To determine this reduction error, we
first split the particular solution eAtk P̂U (∆tk) into two parts

eAtk P̂U (∆tk)
(20)
= eAtk

( η⊕
i=0

Ãi U0 ⊕ E(∆tk, ηk)∆tk U0
)

= eAtk ∆tk U0︸ ︷︷ ︸
=: P̂U

0 (∆tk)

⊕ eAtk

( η⊕
i=1

Ãi U0 ⊕ E(∆tk, ηk)∆tU0
)

︸ ︷︷ ︸
=: P̂U

∞(∆tk)

(27)

Ĥ(τk)

H(tk)

H(tk+1)

Fig. 3. Reachable set computation using the correct particu-
lar time-interval solution P̂U(τk) (left) and an outer-approximation
P̂U(tk+1) ⊇ P̂U(τk) (right).

with Ãi defined as in Prop. 2. We exploit that the error
∆εUk (∆tk, ηk) in (25) is unaffected by using the box outer-
approximation box(eAtk P̂U

∞(∆tk)) instead of eAtk P̂U
∞(∆tk)

since the box outer-approximation is also used in the com-
putation of ∆εUk (∆tk, ηk). Therefore, we can always reduce
P̂U
∞(tk+1) to a box (which has zonotope order 1) as that reduc-

tion error is already contained in ∆εUk (∆tk, ηk). Consequently,
we only have to determine the reduction error of P̂U

0 (tk+1):

Proposition 4 (Zonotope order reduction error): The Haus-
dorff distance between the particular solution P̂U

0 (tk+1) com-
puted without any reduction and its iteratively reduced coun-
terpart reduce

(
P̂U
0 (tk+1), ρk

)
is bounded by

εr
k+1 = εr

k +∆εr
k(ρk), (28)

where the error ∆εr
k(ρk) for one time step is bounded by

dH
(
P̂U
0 (tk+1), reduce

(
P̂U
0 (tk+1), ρk

))
≤ ∆εr

k(ρk) := err(⟨0, Gred⟩Z) ,
(29)

where Gred defined as in Def. 4 contains the generators
selected for reduction.

Proof. The error ∆εr
k(ρk) for one time step is given by the box

enclosure of the zonotope formed by the generators selected
for reduction. Using the error propagation formula (21), we
then obtain the overall error εr

k+1 in (28).

4) Summary: The derived error terms allow us to compute
an upper bound for the outer-approximation error contained in
the time-point solution and time-interval solution:

dH
(
R(tk), R̂(tk)

)
≤ εUk + εr

k, (30)

dH
(
R(τk), R̂(τk)

)
≤ εxk

:= ∆εh
k(∆tk, ηk) + εUk +∆εU,τ

k (∆tk, ηk) + εr
k+1,

(31)

where we use εUk instead of εUk+1 in (31), since the differ-

ence εUk+1 − εUk
(24)
= ∆εUk (∆tk, ηk) is already included in

∆εU,τ
k (∆tk, ηk). As usually only time-interval reachable sets

are required for formal verification, we will only use the time-
interval error εxk in our automated parameter tuning algorithm.

B. Automated Tuning Algorithm
Using the error terms derived in the previous subsection,

we now present an algorithm that tunes ∆tk, ηk, and ρk
automatically such that the Hausdorff distance between the

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



7

0 t

0

ε

tk tk +∆tk tend

εmax

εr(t)

εr
k

εr,τ
k εr(tend)

εa(t)
εa
k

εa,τ
k

εa(tend)εn,τ
k

Fig. 4. The errors εa
k and εr

k until tk and the bounds εa(t) and εr(t)

yield the individual error bounds ε
n,τ
k , ε

a,τ
k , ε

r,τ
k for the current step k.

exact reachable set R([0, tend]) and the computed enclosure
R̂([0, tend]) is below the error bound εmax. As different types
of errors require different strategies for parameter tuning, we
divide the derived errors into three categories:

1) Non-accumulating error ∆εn
k(∆tk, ηk): Since the errors

∆εh
k(∆tk, ηk) and ∆εU,τ

k (∆tk, ηk) only affect the current
step, we define the non-accumulating error by

∆εn
k(∆tk, ηk) := ∆εh

k(∆tk, ηk) + ∆εU,τ
k (∆tk, ηk).

(32)
2) Accumulating error εa

k: The particular solution P̂U (tk)
accumulates over time, yielding

εa
k := εUk , ∆εa

k(∆tk, ηk) := ∆εUk (∆tk, ηk), (33)

for the overall accumulating error and the accumulating
error for one time step.

3) Reduction error εr
k: The representation size of the par-

ticular solution P̂U (tk) is iteratively reduced (Line 10),
which induces an accumulating error (28). Despite its
accumulation, we do not add this error to εa

k since it
does not directly depend on the time step size ∆tk.

We have to manage these errors over time so that the
resulting set R̂(t) respects the error bound εmax at all times.
Therefore, we partition εmax into individual admissible errors
εn,τ
k , εa,τ

k , and εr,τ
k for each step, which is visualized in Fig. 4:

1) Reduction error bound εr,τ
k : We limit the reduction error

by a linearly increasing bound

εr(t) =
t

tend
ζεmax, ζ ∈ [0, 1). (34)

Thus, the additional error ∆εr
k(ρk) in step k is bounded

by
εr,τ
k = εr(tk +∆tk)− εr

k, (35)

i.e., the difference between the bound at time tk + ∆tk
and the accumulated error until tk. While our algorithm
works for arbitrary values ζ, we present a heuristic for
choosing ζ later in Sec. IV-D.

2) Accumulating error bound εa,τ
k : Similarly, we limit the

accumulating error by another linearly increasing bound

εa(t) =
t

tend
(1− ζ)εmax, (36)

so that we have εr(tend) + εa(tend) = εmax. Analogously
to (35), the bound for the additional error ∆εUk (∆tk, ηk)
is

εa,τ
k = εa(tk +∆tk)− εa

k. (37)

3) Non-accumulating error bound εn,τ
k : Finally, we obtain

the bound for the non-accumulating error ∆εn
k(∆tk, ηk)

by subtracting the other two bounds from εmax:

εn,τ
k = εmax − εr(tk +∆tk)− εa

k. (38)

Note that we only subtract εa
k instead of εa(tk + ∆tk)

for the accumulating error since the accumulating error
∆εa

k(∆tk, ηk) = ∆εUk (∆tk, ηk) for the current step is
already accounted for by the error ∆εU,τ

k (∆tk, ηk), which
is according to (32) part of the non-accumulating error.
This also guarantees us a non-zero bound for εn,τ

k in the
last step even though εa(tend) + εr(tend) = εmax.

The tuning strategies for the parameters are as follows:
• Time step size ∆tk: We initialize ∆tk by its previous

value ∆tk−1, or by tend as an initial guess for the first
step. To keep the presentation simple, we iteratively halve
this value until the error bounds are satisfied; a more
sophisticated tuning method is described in Sec. IV-D.

• Truncation order ηk: We tune ηk simultaneously with
the computation of F(∆tk, ηk) and G(∆tk, ηk), for
which the idea proposed in [48, Sec. 3.1] is reused: The
partial sums

T (j) =

j⊕
i=1

Ii
Ai

i!
(39)

in the computation of F(∆tk, ηk) in (15) are successively
compared until the relative change in the Frobenius
norm of T (j) computed according to [49, Thm. 10] is
smaller than 10−10. As this bound is relative, we can
ensure convergence independently of the scale of the
system, since the size of the additional terms decreases
exponentially for i→∞.

• Zonotope order ρk: We iteratively increase the order ρk
until the error ∆εr

k(ρk) is smaller than the error bound
εr,τ
k . A more efficient method compared to this naive

implementation is to directly integrate the search for a
suitable order into the zonotope order reduction.

The resulting automated tuning algorithm is shown in
Alg. 2: In the repeat-until loop (Lines 6-15), we first decrease
the time step size ∆tk (Line 7) and tune the truncation order
ηk (Lines 9-12) until the respective error bounds εa,τ

k and εn,τ
k

for the accumulating and non-accumulating errors are safisfied.
After this loop, we compute the particular solution due to the
input set U0 and tune the zonotope order ρk (Lines 20-22)
yielding the reduction error ∆εr

k(ρk). Afterwards, we compute
the solution to the affine dynamics (Lines 25-28) and finally
obtain the reachable set of the current time interval (Line 30).

The runtime complexity of Alg. 2 is O
(
n3
)

as for the base
algorithm, Alg. 1. For an initial set X 0 with zonotope order ρX
and an input set with zonotope order ρU , the space complexity
for the k-th set R̂(τk) is bounded by O

(
n2(ρX + kρU )

)
and

the space complexity for Alg. 2 then follows by summing over
all individual steps.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



8

Algorithm 2 Reachability algorithm (automated tuning)
Require: Linear system ẋ = Ax + Bu + p, initial set X 0 =
⟨cx, Gx⟩Z , input set U = ⟨cu, Gu⟩Z , time horizon tend, error
bound εmax
Ensure: Outer-approximation of the reachable set R̂([0, tend])

1: k ← 0, t0 ← 0,∆t−1 ← tend,H(t0)← X 0

2: Pu(t0)←⟨0, [ ]⟩Z , P̂U
0 (t0)←⟨0, [ ]⟩Z , P̂U

∞(t0)←⟨0, [ ]⟩Z
3: ũ← Bcu + p, U0 ← ⟨0, BGu⟩Z
4: while tk < tend do
5: ∆tk ← 2∆tk−1

6: repeat
7: ∆tk ← 1

2∆tk, tk+1 ← tk +∆tk

8: ηk ← 0,T (ηk) = 0

9: repeat
10: ηk ← ηk + 1

11: T (ηk) ← T (ηk−1) ⊕ Iηk

Aηk

ηk!
▷ see (17), (39)

12: until 1−
∥∥T (ηk−1)

∥∥
F
/
∥∥T (ηk)

∥∥
F
≤ 10−10

13: ∆εn
k(∆tk, ηk),∆εa

k(∆tk, ηk)← (32), (33)
14: εa,τ

k , εn,τ
k ← (37), (38)

15: until ∆εa
k(∆tk, ηk) ≤ εa,τ

k ∧∆εn
k(∆tk, ηk) ≤ εn,τ

k

16: P̂U
0 (∆tk), P̂U

∞(∆tk)← (27)
17: P̂U

∞(tk+1)← P̂U
∞(tk)⊕ box

(
eAtk P̂U

∞(∆tk)
)

18: P̂U
0 (tk+1)← P̂U

0 (tk)⊕ eAtk P̂U
0 (∆tk)

19: εr,τ
k ← (35), ρk ← 0

20: repeat
21: ρk ← ρk + 1, ∆εr

k(ρk)← Prop. 4
22: until ∆εr

k(ρk) ≤ εr,τ
k

23: P̂U (tk+1)← reduce
(
P̂U
0 (tk+1), ρk

)
⊕ P̂U

∞(tk+1)

24: Pu(∆tk)← (19)
25: Pu(tk+1)← Pu(tk)⊕ eAtkPu(∆tk)

26: H(tk+1)← eAtk+1X 0 + Pu(tk+1)

27: C←F(∆tk, ηk)Ĥ(tk)⊕G(∆tk, ηk)ũ ▷ see (15), (16)
28: Ĥ(τk)← comb

(
H(tk),H(tk+1)

)
⊕ C

29: εa
k+1, ε

r
k+1 ← (33), (28)

30: R̂(τk)← Ĥ(τk)⊕ P̂U (tk+1)

31: k ← k + 1

32: end while
33: return R̂([0, tend])←

⋃k−1
j=0 R̂(τj)

C. Proof of Convergence

While Alg. 2 guarantees to return a reachable set R̂([0, tend])
satisfying the error bound εmax by construction, it remains to
show that the algorithm terminates in finite time. To respect
the linearly increasing bound for the accumulating error, we
have to show that this error decreases faster than linearly with
the time step size ∆tk; thus, by successively halving the time
step size, we will always find a time step size so that the error
bound is satisfied. Using Lemmas 1-4 from Appendix B, we
now formulate our main theorem:

Theorem 1 (Convergence): Alg. 2 terminates in finite time
for arbitrary error bounds εmax > 0.

Proof. By Lemma 2, the additional accumulating error
∆εa

k(∆tk, ηk) decreases quadratically with ∆tk. Thus, we are
guaranteed to find a time step size that satisfies the linearly
decreasing bound εa,τ

k by successively halving ∆tk. The non-
accumulating error ∆εn

k(∆tk, ηk) decreases at least linearly
with ∆tk according to Lemmas 3-4. Since the error bound
εn,τ
k approaches a constant value greater than 0 for ∆tk → 0,

we are therefore always able to safisfy εn,τ
k by reducing the

time step size. The additional reduction error ∆εr
k(ρk) can

be set to 0 by simply omitting the reduction, which trivially
satisfies any bound εr,τ

k .

Our adaptive algorithm Alg. 2 must be based on a wrapping-
free reachability algorithm to guarantee convergence as suc-
cessive propagation with eA∆tk would eliminate the required
faster-than-linear decrease of the accumulating error.

D. Improved Tuning Methods

While Alg. 2 is guaranteed to converge, there is still room
for improvement regarding the computation time. Hence, we
present enhanced methods for adapting the time step size ∆t
and the choice of ζ in (34) determining the amount of error
that is allocated for reduction.

1) Time Step Size: Ideally, the chosen time step size ∆tk
fulfills the resulting error bounds as tightly as possible. To
this end, we replace the naive adaptation of ∆tk in Line 7
of Alg. 2 by regression: We use the previously obtained error
values as data points to define linear and quadratic approxi-
mation functions modeling the behavior of the error over ∆tk,
depending on the asymptotic behavior of the respective errors
according to Lemmas 1-4 from Appendix B. We then compute
an estimate of the time step size required to satisfy the error
bounds based on the approximation functions. This estimate
is then refined until the error bounds are satisfied.

2) Reduction Error Allocation: The second major improve-
ment is to pre-compute a near-optimal value for the parameter
ζ in (34) using a heuristic that aims to minimize the zonotope
order of the resulting reachable sets. Our heuristic is based on
the following observation: For increasing values of ζ, more
margin is allocated to the reduction error and less margin to
the accumulating and non-accumulating errors. Thus, the total
number of steps increases because the algorithm has to select
smaller time step sizes, yielding a higher zonotope order. At
the same time, the zonotope order can be lowered more due to
the larger reduction error margin. We now want to determine
the optimal value of ζ balancing these two effects.

We first estimate the zonotope order of P̂U (tend) using the
number of time steps if reduction is completely omitted. Let us
denote the total number of steps for Alg. 2 without reduction
(ζ = 0) by k′0, and the zonotope order of the input set U0
by ρU . In each step, the set eAtk P̂U

0 (∆tk) = eAtk∆tk U0 is
added to P̂U (tk), which iteratively increases the zonotope of
P̂U (tk) by ρU . Due to the linear decrease of the total error (see
Lemmas 2-4 in Appendix B), using the value ζ = 0.5 at most
doubles the number of steps compared to ζ = 0. Therefore,

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



9

the zonotope order of P̂U (tend) = P̂U
0 (tend)⊕P̂U

∞(tend) can be
estimated as

ρ+(ζ) =
1

1− ζ
k′0ρU + 1, (40)

if no order reduction takes place, where the summands repre-
sent the orders of P̂U

0 (tend) and P̂U
∞(tend), respectively.

Next, we estimate the zonotope order of P̂U (tend) for a non-
zero value ζ > 0 yielding a non-zero error margin εr(t) > 0
that is used to reduce the order of P̂U (tend). Using a fixed
time step size ∆t yielding an integer number k′ = tend

∆t of time
steps, we compute the sequence

∀j ∈ {1, ..., k′ + 1} : ε̃r
j = err

(
eA(j−1)∆t∆tU0

)
,

which estimates the maximum reduction error in each time
step. Let us introduce the ordering π which permutes
{1, ..., k′ + 1} such that ε̃r

π1
< ... < ε̃r

πk′+1
. To mimic

the accumulation of the reduction error, we introduce the
cumulative sum over all ε̃r

j ordered by π:

∀j ∈ {1, ..., k′ + 1} : σj =

j+1∑
i=1

ε̃r
πi
.

The maximum reducible order ρ−(ζ) exploits the reduction
error bound εr(tend) = ζεmax as much as possible:

ρ−(ζ) = j∗ρU ,

where j∗ = argmax
j∈{1,...,k′+1}

σj ≤ ζεmax. (41)

Finally, we combine the two parts (40) and (41) describing
the counteracting influences to obtain the following heuristic:

ζ = argmin
ζ∈[0,1)

ρ+(ζ)− ρ−(ζ). (42)

Since this is a scalar optimization problem, we use a fine grid
of different values for ζ ∈ [0, 1) to estimate the optimal value.

E. Extension to Output Sets

We now show how to extend the proposed algorithm to out-
puts y(t). The output set Y(t) can be computed by evaluating
the output equation (14) in a set-based manner:

Y(t) = CR(t)⊕WV + q. (43)

For the outer-approximation error of the output set, we have
to account for the linear transformation with the matrix C:

Proposition 5: Consider a linear system of the form (13)-
(14). Given the error εxk (31) of the reachable set R̂(τk), the
corresponding output set Ŷ(τk) has an error of

dH
(
Y(τk), Ŷ(τk)

)
≤ εyk := εxk

∥∥C∥∥
2
. (44)

Proof. For the error in the state x(t), we have

dH
(
R(τk), R̂(τk)

)
≤ εxk

(10)⇒ R̂(τk) ⊆ R(τk)⊕ Bε,

where the hyperball Bε has radius ε = εxk . Applying the output
equation (14) to the right-hand side yields

CR̂(τk)⊕WV + q ⊆ CR(τk)⊕ CBε ⊕WV + q
(43)⇔ Ŷ(τk) ⊆ Y(τk)⊕ CBε.

The error in Ŷ(τk) is therefore given by the radius of the
smallest sphere enclosing the set CBε, i.e.,

rad(CBε) = rad
({

Cz
∣∣ z⊤z ≤ ε

})
= max

∥z∥2≤ε

∥∥Cz
∥∥
2
= ε max

∥z∥2≤1

∥∥Cz
∥∥
2
= ε
∥∥C∥∥

2
,

where
∥∥C∥∥

2
is the largest singular value of C.

V. INNER-APPROXIMATIONS

As shown in Sec. IV, the outer-approximation R̂(t) com-
puted by Alg. 2 has a Hausdorff distance of at most εmax
to the exact reachable set R(t). Consequently, an inner-
approximation qR(t) ⊆ R(t) can be computed by the
Minkowski difference qR(t) = R̂(t) ⊖ Bε of the outer-
approximation and the hyperball Bε with radius ε = εmax.
Note that one can also replace εmax by the computed error from
Alg. 2 to obtain a tighter inner-approximation. Unfortunately,
there exists no closed formula for the Minkowski difference
of a zonotope and a hyperball. Therefore, we first enclose Bε
with a polytope P ⊇ Bε since the Minkowski difference of
a zonotope and a polytope can be computed efficiently if the
resulting set is represented by a constrained zonotope:

Proposition 6 (Minkowski difference): Given a zonotope
Z = ⟨c,G⟩Z ⊂ Rn and a polytope P = ⟨[v1 . . . vs]⟩V ⊂
Rn, their Minkowski difference can be represented by the
constrained zonotope

Z ⊖ P = ⟨c− v1, [G 0], A, b⟩CZ ,

where

A =

G −G . . . 0
...

...
. . .

...
G 0 . . . −G

 , b =

v1 − v2
...

v1 − vs

 .

Proof. According to [50, Lemma 1], the Minkowski difference
with a polytope as minuend can be computed as

Z ⊖ P =
⋂

i∈{1,...,s}

(Z − vi) = (Z − v1) ∩ . . . ∩ (Z − vs).

Using the equation for the intersection of constrained zono-
topes in [44, Eq. (13)], we obtain for the first intersection

(Z − v1) ∩ (Z − v2)

= ⟨c− v1, G, [ ], [ ]⟩CZ ∩ ⟨c− v2, G, [ ], [ ]⟩CZ

[44, Eq. (13)]
= ⟨c− v1, G, [G −G], v1 − v2⟩CZ .

Repeated application of [44, Eq. (13)] yields the claim.

For general polytopes the number of vertices increases
exponentially with the system dimension. To keep the com-
putational complexity small, we enclose the hyperball Bε
by a cross-polytope ⟨ε

√
n [−In In]⟩V ⊇ Bε, which is a

special type of polytope with only 2n vertices. Since the
Hausdorff distance between the hyperball and the enclosing
cross-polytope is (

√
n − 1)ε, we scale the error bound εmax

by the factor 1/
√
n before executing Alg. 2 in order to obtain

an inner-approximation with a maximum Hausdorff distance
of εmax to the exact reachable set.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



10

VI. AUTOMATED VERIFICATION

One core application of reachability analysis is the ver-
ification of safety specifications. Based on our automated
parameter tuning approach, we introduce a fully automated
verification algorithm for linear systems, which iteratively
refines the tightness of the reachable set inner-approximation
and outer-approximation until a given specification can be
verified or falsified. We consider specifications of the form

∀t ∈ [0, tend] :

( r∧
i=1

R(t) ⊆ Gi
)
∧
( w∧

i=1

R(t) ∩ Fi = ∅
)

defined by a list of safe sets {G1, . . . ,Gr} ⊂ Rn and a list of
unsafe sets {F1, . . . ,Fw} ⊂ Rn, both specified as polytopes
in halfspace representation. While we omit the dependence on
time here for simplicity, the extension to time-varying safe sets
and unsafe sets is straightforward. To check if the reachable set
satisfies the specification, we need to perform containment and
intersection checks on zonotopes and constrained zonotopes:

Proposition 7 (Containment check): Given a polytope
P = ⟨C, d⟩H ⊂ Rn and a constrained zonotope CZ =
⟨c,G,A, b⟩CZ ⊂ Rn, we have

CZ ⊆ P ⇔ max
(
ν1, . . . , νa

)︸ ︷︷ ︸
ν

≤ 0, (45)

where each linear program

∀i ∈ {1, . . . , a} : νi = max
α∈Rγ

C(i,·)c+ C(i,·)Gα− d(i)

s.t. α ∈ [−1,1], Aα = b.

computes the distance to a single polytope halfspace.

Proof. In general, a set S ⊂ Rn is contained in a polytope if
it is contained in all polytope halfspaces. The linear program
above evaluates the support function (see [14, Def. 1]) of
S along the normal vector of each halfspace, which has
to be smaller or equal to the corresponding offset to prove
containment [51, Corollary 13.1.1].

For a zonotopic in-body Z = ⟨c,G⟩Z ⊂ Rn, there is a closed-
form solution ( [51, Corollary 13.1.1] with [14, Prop. 1]):

Z ⊆ P ⇔ max

(
Cc− d+

γ∑
i=1

|CG(·,i)|
)

︸ ︷︷ ︸
ν

≤ 0. (46)

Next, we consider intersection checks:

Proposition 8 (Intersection check): A polytope P =
⟨C, d⟩H ⊂ Rn and a constrained zonotope CZ =
⟨c,G,A, b⟩CZ ⊂ Rn intersect if ν ≤ 0 computed by the linear
program

ν = min
x∈Rn, α∈Rγ , δ∈R

δ

s.t. ∀i ∈ {1, ..., a} : C(i,·)x− d(i) ≤ δ,

x = c+Gα, Aα = b, α ∈ [−1,1].

Proof. If ∀i ∈ {1, ..., a} : C(i,·)x − d(i) ≤ δ ≤ 0, then there
exists a point x ∈ CZ that is also contained in P.

Algorithm 3 Automated verification
Require: Linear system ẋ = Ax + Bu + p, initial set X 0 =
⟨cx, Gx⟩Z , input set U = ⟨cu, Gu⟩Z , time horizon tend,
specification defined by a list of safe sets G1, . . . ,Gr and a
list of unsafe sets F1, . . . ,Fw

Ensure: Specification satisfied (true) or violated (false)

1: εmax ← estimated from simulations
2: repeat
3: R̂(t)← comp. with Alg. 2 using error bound εmax

4: qR(t)← R̂(t)⊖ Bε ▷ see Sec. V
5: ν̂G, qνG ← −∞, ν̂F , qνF ←∞
6: for j ← 1 to r do
7: ν ← distance from R̂(t) ⊆ Gj ▷ see (46)
8: ν̂G ← max(ν̂G, ν)

9: ν ← distance from qR(t) ⊆ Gj ▷ see (45)
10: qνG ← max(qνG, ν)

11: end for
12: for j ← 1 to w do
13: ν ← distance from R̂(t) ∩ Fj = ∅ ▷ see Prop. 8
14: ν̂F ← min(ν̂F , ν)

15: ν ← distance from qR(t) ∩ Fj = ∅ ▷ see Prop. 8
16: qνF ← min(qνF , ν)

17: end for
18: ν ← min(−qνG, qνF )
19: if ν̂G ≥ 0 then
20: ν ← min(ν, ν̂G)

21: end if
22: if ν̂F ≤ 0 then
23: ν ← min(ν,−ν̂F )
24: end if
25: εmax ← max

(
0.1 εmax,min(ν, 0.9 εmax)

)
26: until

(
(ν̂G ≤ 0) ∧ (ν̂F > 0)

)
∨ (qνG > 0) ∨ (qνF ≤ 0)

27: return (ν̂G ≤ 0) ∧ (ν̂F > 0)

Since a zonotope is just a special case of a constrained
zonotope, Prop. 8 can also be used to check if a zonotope
intersects a polytope. For both Prop. 7 and Prop. 8, ν is a
good estimate for the Hausdorff distance between the sets
if polytopes with normalized halfspace normal vectors are
used. We utilize this in our automated verification algorithm
to estimate the accuracy that is required to verify or falsify
the specification.

The overall verification algorithm is summarized in Alg. 3:
We first obtain an initial guess for the error bound εmax in
Line 1 by simulating trajectories for a finite set of points from
X 0. The repeat-until loop (Lines 2-26) then refines the inner-
and outer-approximations of the reachable set by iteratively
decreasing the error bound εmax until the specifications can
be verified or falsified. In particular, we first compute the
outer- and inner-approximation (Lines 3-4). Next, we perform
the containment and intersection checks with the safe and
unsafe sets (Lines 6-17) and store the corresponding dis-
tances ν̂G, qνG, ν̂F , qνF . Using these distances, we determine
the minimum distance (Lines 18-24), which is then used to

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



11

update the error bound εmax (Line 25). Since ν is only an
estimate, we also restrict the updated error bound to the
interval [0.1 εmax, 0.9 εmax] to guarantee convergence and avoid
values that are too small. Finally, the specifications are satisfied
if the outer-approximation of the reachable set is contained in
all safe sets (ν̂G ≤ 0) and does not intersect any unsafe sets
(ν̂F > 0). On the other hand, the specifications are falsified if
the inner-approximation of the reachable set is not contained
in all safe sets (qνG > 0) or intersects an unsafe set (qνF ≤ 0).
Improvements for Alg. 3 which we omitted here for simplicity
include using the computed error from Alg. 2 instead of
the error bound εmax, omitting re-computation as well as
containment and intersection checks for time intervals that are
already verified, and only computing inner-approximations if
the corresponding outer-approximation is not yet verified.

The space complexity of Alg. 3 is dominated by the inner-
approximation qR(τk), which is O

(
n4
)

following Prop. 6. As-
suming a conservative bound of O

(
p3.5

)
for a linear program

with p variables according to [52], the runtime complexity of
Alg. 3 is O

(
n7
)

since we evaluate linear programs in Props. 7-
8 with O

(
n2
)

variables, respectively.

VII. NUMERICAL EXAMPLES

Let us now demonstrate the performance of our adaptive
tuning approach and our verification algorithm. We integrated
both algorithms into the MATLAB toolbox CORA [34], and
they will be made publicly available with the 2023 release1.
All computations are carried out on a 2.59GHz quad-core i7
processor with 32GB memory.

A. Electrical Circuit
To showcase the general concept of our approach, we first

consider the deliberately simple example of an electric circuit
consisting of a resistance R = 2Ω, a capacitor with capacity
C = 1.5mF, and a coil with inductance L = 2.5mH:[

u̇C(t)

i̇L(t)

]
=

[
− 1

RC
1
C

− 1
L 0

] [
uC(t)
iL(t)

]
+

[
0
1
L

]
uI(t),

where the state is defined by the voltage at the capacitor
uC(t) and the current at the coil iL(t). The initial set is
X 0 = [1, 3]V × [3, 5]A, the input voltage to the circuit uI(t)
is uncertain within the set U = [−0.1, 0.1]V, and the time
horizon is tend = 2s. As shown in Fig. 5, the inner- and outer-
approximations computed using Alg. 2 and Sec. V converge
to the exact reachable set with decreasing error bounds. The
computation times are 0.26s for εmax = 0.04, 0.41s for
εmax = 0.02, and 0.55s for εmax = 0.01.

B. ARCH Benchmarks
Next, we evaluate our verification algorithm on bench-

marks from the 2021 ARCH competition [53], where state-
of-the-art reachability tools compete with one another to
solve challenging verification tasks. We consider all linear
continuous-time systems, which are the building benchmark
(BLD) describing the movement of an eight-story hospital

1available at https://cora.in.tum.de

Fig. 5. Inner- and outer-approximations of the final reachable set
R(tend) for the electric circuit using different error bounds εmax, with
the exact reachable set is shown in black.

building, the International Space Station (ISS) benchmark
modeling a service module of the ISS, the Heat 3D benchmark
(HEAT) representing a spatially discretized version of the heat
equation, and the clamped beam benchmark (CB) monitoring
oscillations of a beam. The results in Tab. I demonstrate that
our fully automated verification algorithm correctly verifies
all safe benchmarks without being significantly slower than
state-of-the-art tools that require extensive parameter tuning
by experts. Please note that we compare only to the com-
putation time of other tools achieved by the optimal run with
expert-tuned algorithm parameters, disregarding the significant
amount of time required for tuning. Moreover, our algorithm
also successfully falsifies the two unsafe benchmarks, where
our computation time is slightly worse because the other tools
do not explicitly falsify these benchmarks but only test if they
cannot be verified, which is considerably easier.

C. Autonomous Car

Finally, we show that our verification algorithm can handle
complex verification tasks featuring time-varying specifica-
tions. To this end, we consider the benchmark proposed in
[54], where the task is to verify that a planned reference tra-
jectory xref(t) tracked by a feedback controller is robustly safe
despite disturbances and measurement errors. The nonlinear
vehicle model in [54, Eq. (3)] is replaced by a linear point
mass model, which yields the closed-loop system[

ẋ(t)
ẋref(t)

]
=

[
A+BK −BK

0 A

] [
x(t)
xref(t)

]
+

[
B B BK
B 0 0

]
u(t)

with A = [0 [I2 0]⊤], B = [0 I2]
⊤, and feedback matrix

K ∈ R2×4. The initial set is X 0 = (x0 + V) × x0 and
the set of uncertain inputs is U = uref(t) × W × V , where
W ⊂ R2 and V ⊂ R4 are the sets of disturbances and
measurement errors taken from [54, Sec. 3], and the initial
state x0 ∈ R4 and control inputs for the reference trajectory
uref(t) ∈ R2 are specific to the considered traffic scenario. To
compute occupied space of the car, we apply affine arithmetic
[55] to evaluate the nonlinear map in [54, Eq. (4)], where we
determine the orientation of the car from the direction of the
velocity vector.

For verification, we consider the traffic scenario BEL Putte-

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



12

TABLE I
COMPARISON OF COMPUTATION TIMES ON THE ARCH BENCHMARKS, WHERE n IS THE SYSTEM DIMENSION, m IS THE NUMBER OF INPUTS, AND ℓ

IS THE OUTPUT DIMENSION. FOR OUR APPROACH WE ADDITIONALLY SPECIFY THE NUMBER OF REFINEMENT ITERATIONS OF ALG. 3. THE

COMPUTATION TIMES OF THE OTHER TOOLS ARE TAKEN FROM [53].

Benchmark Our approach Time comparison
Identifier n m ℓ Safe? Time Iterations CORA HyDRA JuliaReach SpaceEx

HEAT01 125 0 1 ✓ 2.2s 2 2.2s 13.2s 0.13s 4.2s
HEAT02 1000 0 1 ✓ 59s 1 9.3s 160s 32s —

CBC01 201 0 1 ✓ 28s 1 7.1s — 1.4s 312.78s
CBF01 200 1 1 ✓ 144s 2 30s — 12s 318.88s

BLDC01-BDS01 49 0 1 ✓ 1.7s 1 2.9s 0.426s 0.0096s 1.6s
BLDF01-BDS01 48 1 1 ✓ 2.1s 1 3.3s — 0.012s 1.8s

ISSC01-ISS02 273 0 3 ✓ 4.3s 1 1.3s — 1.4s 29s
ISSC01-ISU02 273 0 3 ✗ 10s 4 0.072s — 1.4s 29s
ISSF01-ISS01 270 3 3 ✓ 75s 2 59s — 10s 49s
ISSF01-ISU01 270 3 3 ✗ 191s 3 38s — 10s 48s

Fig. 6. Traffic scenario at times 0s, 1s, 2s, and 3s, where the reachable
set for the whole time horizon, the reachable set for the current time
point, and the other traffic participants are shown.

4 2 T-1 from the CommonRoad database2. The unsafe sets Fi

for the verification task are given by the road boundary and the
occupancy space of other traffic participants. Since the road
boundary is non-convex, we use triangulation to represent it as
the union of 460 convex polytopes. The occupancy spaces of
other traffic participants over time intervals of length 0.1s are
represented by polytopes, which results in 170 time-varying
unsafe sets for the six vehicles in the scenario. The safe set
Gi is given by the constraint that the absolute acceleration
should stay below 11.5m s−2, which we inner-approximate
by a polytope with 20 halfspaces. Even for this complex
verification task, Alg. 3 only requires 64s and two refinements
of the error bound εmax to prove that the reference trajectory
is robustly safe (see Fig. 6).

VIII. DISCUSSION

Despite the convincing results of our automated verification
algorithm in Sec. VII, there is still potential for improvement:
According to Tab. I, other reachability tools solve high-
dimensional benchmarks often faster than our approach since
they apply tailored algorithms, such as block-decomposition

2available at https://commonroad.in.tum.de/scenarios

[18] and Krylov subspace methods [19], [20]. Therefore, a
natural next step is to extend our concept of automated param-
eter tuning via error analysis to these specialized algorithms
to accelerate the verification of high-dimensional systems.
In addition, since many reachability algorithms for nonlinear
systems [56], [57] are based on reachability analysis for linear
systems, another intriguing research direction is the extension
to nonlinear systems. Verification algorithms based on implicit
set representations, such as support functions [58], also present
an interesting comparison to our proposed method, which
computes explicit sets.

Moreover, for systems where some states have no initial
uncertainty and are not influenced by uncertain inputs, our pro-
posed algorithm cannot falsify the system since the computed
inner-approximation of the reachable set will always be empty.
An example is the autonomous car in Sec. VII-C, where the
states corresponding to the reference trajectory are not subject
to any uncertainty. Fortunately, these cases are easy to detect
and one can use classical safety falsification techniques, such
as Monte Carlo methods [59], Bayesian optimization [60], or
cross-entropy techniques [61] instead. In general, combining
safety falsification methods with our algorithm may accelerate
the falsification process and provide the user with a concrete
counterexample in the form of a falsifying trajectory.

Finally, while our algorithm already supports the general
case of specifications defined by time-varying safe sets and
unsafe sets, future work could include an extension to temporal
logic specifications. This may be realized by a conversion to
reachset temporal logic [62], a particular type of temporal
logic that can be evaluated on reachable sets directly. Another
possibility is to convert temporal logic specifications to an
acceptance automaton [63], which can then be combined with
the linear system via parallel composition [64].

IX. CONCLUSION

In this work, we propose a paradigm shift for reachability
analysis of linear systems: Instead of requiring the user to
manually tune algorithm parameters such as the time step size,
our approach automatically adapts all parameters internally

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



13

such that the computed outer-approximation respects a desired
maximum distance to the exact reachable set. Building on this
result, we then extract an inner-approximation of the reachable
set directly from the outer-approximation using the Minkowski
difference, which finally enables us to design a sound verifica-
tion algorithm that automatically refines the inner- and outer-
approximations until specifications given by time-varying safe
and unsafe sets can either be verified or falsified. An evaluation
on benchmarks representing the current limits for state-of-
the-art reachability tools demonstrates that our approach is
competitive regarding the computation time, even for high-
dimensional systems. Overall, the autonomy of our approach
enables non-experts to verify or falsify safety specifications
for linear systems in reasonable time.

APPENDIX A: ADDITIONAL PROPOSITIONS

For the proof of Prop. 1 we require the error induced by
outer-approximating the linear combination for zonotopes:

Proposition 9: Given the homogeneous solution H(tk) =
⟨ch, Gh⟩Z with Gh ∈ Rn×γh and the particular solution
Pu(∆tk) = cp, the Hausdorff distance between the exact
linear combination

S = comb
(
H(tk),H(tk+1)

)
with H(tk+1) = eA∆tkH(tk)+Pu(∆tk) and the correspond-
ing zonotope outer-approximation Ŝ computed using (8) is
bounded by

dH
(
S, Ŝ

)
≤ √γh

∥∥G(−)
h

∥∥
2
,

where G
(−)
h = (eA∆tk − In)Gh.

Proof. We insert the homogeneous and particular solutions
into (5) and shift the interval of λ from [0, 1] to [−1, 1], which
yields

S =

{
λ

(
ch +

γh∑
i=1

Gh(·,i)αi

)
+ (1− λ)

(
eA∆tk

(
ch +

γh∑
i=1

Gh(·,i)αi

)
+ cp

) ∣∣∣∣ αi ∈ [−1, 1], λ ∈ [0, 1]

}
,

=

{
0.5
((

In + eA∆tk
)
ch + cp

)
+ 0.5λ

((
eA∆tk − In

)
ch + cp

)
+ 0.5

γh∑
i=1

G
(+)
h(·,i)αi

+ 0.5

γh∑
i=1

G
(−)
h(·,i)αiλ

∣∣∣∣ αi, λ ∈ [−1, 1]
}
,

with G
(+)
h = (eA∆tk + In)Gh and G

(−)
h = (eA∆tk − In)Gh.

In order to represent this exact linear combination S as a
zonotope, we have to substitute the bilinear factors αiλ in
the last term by additional linear factors ωi ∈ [−1, 1]. By
neglecting the dependency between α and λ, we obtain the
outer-approximation Ŝ of the exact linear combination S.
Due to the obvious containment S ⊆ Ŝ, the formula for the
Hausdorff distance in (9) simplifies to

dH
(
S, Ŝ

)
= max

ŝ∈Ŝ
min
s∈S

∥∥ŝ− s
∥∥
2
.

Exploiting the identical factors before and after conversion, all
terms but one cancel out and we obtain

max
ŝ∈Ŝ

min
s∈S

∥∥ŝ− s
∥∥
2
≤ max

ωi∈[−1,1]
αi∈[−1,1]
λ∈[−1,1]

0.5
∥∥ γh∑

i=1

G
(−)
h(·,i)(ωi − αiλ)

∥∥
2

≤ 0.5
∥∥G(−)

h

∥∥
2

max
φ∈[−1,1]

∥∥(ω − αλ)
∥∥
2

(47)

with α = [α1 . . . αγh
]⊤, ω = [ω1 . . . ωγh

]⊤, and φ =
[ω α λ]⊤. According to the Bauer Maximum Principle, we
may assume that the maximum is attained at a point which
satisfies the constraints

∀i ∈ {1, ..., γh} : ω2
i = 1, α2

i = 1, and λ2 = 1

for the maximization term in (47). Consequently, we obtain

max
φ∈[−1,1]

∥∥ω − αλ
∥∥2
2
= max

φ∈[−1,1]
ω⊤ω + α⊤αλ2 − 2λω⊤α

≤ max
φ∈[−1,1]

ω⊤ω + max
φ∈[−1,1]

α⊤αλ2 + max
φ∈[−1,1]

−2λω⊤α

= γh + γh + 2γh = 4γh,

which implies maxφ∈[−1,1]

∥∥ω − αλ
∥∥
2
≤ 2
√
γh. We insert

this result into (47) to obtain the error

dH
(
S, Ŝ

)
≤ 0.5

∥∥G(−)
h

∥∥
2
2
√
γh =

√
γh

∥∥G(−)
h

∥∥
2
,

which concludes the proof.

To derive the error ∆εUk (∆tk, ηk) for one time step con-
tained in the particular solution eAtk P̂U (∆tk) as used in
Prop. 2, we require the following proposition:

Proposition 10: For a compact set S ⊂ Rn and two matrices
M1,M2 ∈ Rm×n, we have

dH
(
(M1 +M2)S,M1S

)
≤ dH

(
0,M2S

)
.

Proof. For the left-hand side, we choose s1 = s2 for both
min-operations in the definition (9) of the Hausdorff distance:

dH
(
(M1 +M2)S,M1S

)
(9)
= max

{
max
s1∈S

(
min
s2∈S

∥∥(M1 +M2)s1 −M1s2
∥∥
2

)
,

max
s2∈S

(
min
s1∈S

∥∥(M1 +M2)s1 −M1s2
∥∥
2

)}
≤ max

{
max
s1∈S

∥∥(M1 +M2)s1 −M1s1
∥∥
2
,

max
s2∈S

∥∥(M1 +M2)s2 −M1s2
∥∥
2

}
= max

s∈S

∥∥M2s
∥∥
2
.

The right-hand side evaluates trivially to

dH
(
0,M2S

)
= max

s∈S

∥∥M2s
∥∥
2
,

which combined with the result above yields the claim.

Using Prop. 10, we obtain the following error bound:

Proposition 11: The Hausdorff distance between the propa-

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



14

gated exact particular solution

eAtkPU (∆tk) =

{
eAtk

∫ ∆tk

0

eA(∆tk−θ)u(θ) dθ

∣∣∣∣ u(θ) ∈ U0}
and the outer-approximation eAtk P̂U (∆tk) with P̂U (∆tk)
from (20) is bounded by (25).

Proof. We obtain a tight bound for the error by computing
the distance between an inner-approximation qPU (∆tk) and
the outer-approximation P̂U (∆tk) in (20). By considering un-
certain but constant inputs we compute an inner-approximation
qPU (∆tk) ⊆ PU (∆tk) as

qPU (∆tk) =

∫ ∆tk

0

eA(∆tk−θ)dθ U0

=

( ∞∑
i=0

Ai∆ti+1
k

(i+ 1)!

)
U0 =

(
∆tk In +

∞∑
i=1

Ãi

)
U0

where Ãi =
Ai∆ti+1

k

(i+1)! . Applying Prop. 10 with M1 = ∆tkIn

and M2 =
∑∞

i=1 Ãi, we have

dH
(
qPU (∆tk),∆tk U0

)
≤ dH

(
0,

( ∞∑
i=1

Ãi

)
U0
)

(12)
≤ err

(( ∞∑
i=1

Ãi

)
U0

)
(18)
≤ err

(( η∑
i=1

Ãi

)
U0 ⊕ E(∆tk, ηk)∆tk U0

)
.

From (20), we have the trivial containment ∆tk U0 ⊂
P̂U (∆tk) and thus

dH
(
∆tk U , P̂U (∆tk)

)
≤ err

(
η⊕

i=1

(
Ãi U0

)
⊕ E(∆tk, ηk)∆tk U0

)
.

We use the triangle inequality to combine the last two results:

dH
(
PU (∆tk), P̂U (∆tk)

)
≤ dH

(
qPU (∆tk), P̂U (∆tk)

)
≤ dH

(
qPU (∆tk),∆tk U0

)
+ dH

(
∆tk U0, P̂U (∆tk)

)
≤ err

(( η∑
i=1

Ãi

)
U0 ⊕ E(∆tk, ηk)∆tk U0

)

+ err

(
η⊕

i=1

(
Ãi U0

)
⊕ E(∆tk, ηk)∆tk U0

)
.

Including the mapping by eAtk then yields the final result.

APPENDIX B: ADDITIONAL LEMMATA

For the proof of Theorem 1, we require results about the
limit behavior of the error terms, which we derive here. First,
we examine the remainder of the exponential matrix:

Lemma 1: The remainder of the exponential matrix
E(∆tk, ηk) in (18) satisfies

lim
∆tk→0

E(∆tk, ηk) = 0 and E(∆tk, ηk) ∼ O
(
∆tηk+1

k

)
.

Proof. For the limit value we obtain from (18)

lim
∆tk→0

E(∆tk, ηk) = e|A|0 −
ηk∑
i=0

1

i!

(
|A|0

)i
= 0,

lim
∆tk→0

E(∆tk, ηk) = lim
∆tk→0

[−E(∆tk, ηk), E(∆tk, ηk)] = 0,

and the asymptotic behavior follows from

E(∆tk, ηk) = e|A|∆tk −
ηk∑
i=0

(
|A|∆tk

)i
i!

=

∞∑
i=ηk+1

(
|A|∆tk

)i
i!

,

which yields E(∆tk, ηk) ∼ O
(
∆tηk+1

k

)
.

Next, we consider the error of the particular solution:

Lemma 2: The error ∆εUk (∆tk, ηk) in (25) satisfies

lim
∆tk→0

∆εUk (∆tk, ηk) = 0 and ∆εUk (∆tk, ηk) ∼ O
(
∆t2k

)
.

Proof. Using the definition of the error ∆εUk (∆tk, ηk) accord-
ing to (25) with Ãi =

Ai∆ti+1
k

(i+1)! and Lemma 1, we have

lim
∆tk→0

Ãi = 0, Ãi ∼ O
(
∆t2k

)
,

lim
∆tk→0

E(∆tk, ηk)∆tk = 0, E(∆tk, ηk)∆tk ∼ O
(
∆tηk+2

k

)
,

where we exploit that the minimal index is i = 1. It is then
straightforward to obtain the limit and asymptotic behavior for
∆εUk (∆tk, ηk).

While we require a faster than linear decrease in ∆tk for
the accumulating error, a linear decrease is sufficient for the
non-accumulating error as it only affects a single time step:

Lemma 3: The error ∆εh
k(∆tk, ηk) in (23) satisfies

lim
∆tk→0

∆εh
k(∆tk, ηk) = 0 and ∆εh

k(∆tk, ηk) ∼ O(∆tk) .

Proof. We examine the two individual terms of
∆εh

k(∆tk, ηk) = 2 err(C) +√γh

∥∥G(−)
h

∥∥
2

separately:

lim
∆tk→0

√
γh

∥∥G(−)
h

∥∥
2
= lim

∆tk→0

√
γh

∥∥(eA∆tk − In)Gh

∥∥
2

=
√
γh

∥∥(e0 − In)Gh

∥∥
2
=
√
γh

∥∥0∥∥
2
= 0.

To analyze the asymptotic behavior, it suffices to look at
(eA∆tk − In)Gh as the matrix Gh and the factor γh do not
depend on the time step size: Since (eA∆tk − In) ∼ O(∆tk),
we consequently obtain

√
γh

∥∥G(−)
h

∥∥
2
∼ O(∆tk) .

For the limit behavior of the term 2 err(C), we have

lim
∆tk→0

Ii(∆tk)
(17)
= Ii(0) =

[(
i

−i
i−1 − i

−1
i−1
)
0i, 0

]
= 0,

lim
∆tk→0

F(∆tk, ηk)
(15)
=

ηk⊕
i=2

Ii(0)
Ai

i!
⊕ E(0, ηk) = 0,

lim
∆tk→0

G(∆tk, ηk)
(16)
=

ηk+1⊕
i=2

Ii(0)
Ai

i!
⊕ E(0, ηk)0 = 0,

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



15

which entails

lim
∆tk→0

2 (err(F(0, η)H(tk)) + err(G(0, η)ũ))︸ ︷︷ ︸
err(C)

= 0.

Moreover, we have Ii(∆tk) ∼ O
(
∆t2k

)
as the minimal index

is i = 2, so that we obtain in combination with Lemma 1

2(err(F(0, η)H(tk)) + err(G(0, η)ũ)) ∼ O
(
∆t2k

)
.

It is then straightforward to obtain the limit and asymptotic
behavior for ∆εh

k(∆tk, ηk).

Lemma 4: The error ∆εU,τ
k (∆tk, ηk) in (26) satisfies

lim
∆tk→0

∆εU,τ
k (∆tk, ηk) = 0 and ∆εU,τ

k (∆tk, ηk) ∼ O(∆tk) .

Proof. For the limit, we insert ∆tk = 0 into (20) to obtain

lim
∆tk→0

∆εU,τ
k (∆tk, ηk) = err

(
eAtk P̂U (0)

)
= err

(
eAtk

( ηk⊕
i=0

Ai0i+1

(i+ 1)!
U0 ⊕ E(0, ηk)0U0

))
= 0.

According to Lemma 1, we have E(∆tk, ηk) ∼ O(∆tk),
and with the first term of the sum above, we obtain
∆εU,τ

k (∆tk, ηk) ∼ O(∆tk).

REFERENCES

[1] G. Frehse, B. H. Krogh, and R. A. Rutenbar, “Verifying analog oscillator
circuits using forward/backward abstraction refinement,” in Proc. of the
Design Automation & Test in Europe Conference. IEEE, 2006, pp.
257–262.

[2] H. N. V. Pico and D. C. Aliprantis, “Voltage ride-through capability ver-
ification of wind turbines with fully-rated converters using reachability
analysis,” IEEE Transactions on Energy Conversion, vol. 29, no. 2, pp.
392–405, 2014.

[3] S. Lengagne, N. Ramdani, and P. Fraisse, “Planning and fast replanning
safe motions for humanoid robots,” IEEE Transactions on Robotics,
vol. 27, no. 6, pp. 1095–1106, 2011.

[4] S. Kaynama et al., “Computing the viability kernel using maximal
reachable sets,” in Proc. of the 15th International Conference on Hybrid
Systems: Computation and Control. ACM, 2012, pp. 55–64.

[5] K. Hobbs et al., “Space debris collision detection using reachability,”
in Proc. of the 5th International Workshop on Applied Verification of
Continuous and Hybrid Systems, 2018, pp. 218–228.

[6] S. Vaskov et al., “Guaranteed safe reachability-based trajectory design
for a high-fidelity model of an autonomous passenger vehicle,” in Proc.
of the American Control Conference, 2019, pp. 705–710.

[7] T. Gan, M. Chen, Y. Li, B. Xia, and N. Zhan, “Reachability analysis for
solvable dynamical systems,” IEEE Transactions on Automatic Control,
vol. 63, no. 7, pp. 2003–2018, 2018.

[8] A. Vinod, B. HomChaudhuri, and M. Oishi, “Forward stochastic reacha-
bility analysis for uncontrolled linear systems using Fourier transforms,”
in Proc. of the 20th International Conference on Hybrid Systems:
Computation and Control. ACM, 2017, pp. 35–44.

[9] A. Devonport, F. Yang, L. El Ghaoui, and M. Arcak, “Data-driven
reachability analysis with christoffel functions,” in Proc. of the 60th
Conference on Decision and Control, 2021, pp. 5067–5072.

[10] A. Thorpe, K. Ortiz, and M. Oishi, “Learning approximate forward
reachable sets using separating kernels,” in Learning for Dynamics and
Control, 2021, pp. 201–212.

[11] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in 8th International Workshop on Hybrid Systems: Computation and
Control. Springer, 2005, pp. 291–305.

[12] M. Althoff, “Reachability analysis and its application to the safety
assessment of autonomous cars,” Dissertation, Technische Universität
München, 2010.

[13] G. Frehse et al., “SpaceEx: Scalable verification of hybrid systems,”
in Proc. of the 23rd International Conference on Computer Aided
Verification. Springer, 2011, pp. 379–395.

[14] C. Le Guernic and A. Girard, “Reachability analysis of linear systems
using support functions,” Nonlinear Analysis: Hybrid Systems, vol. 4,
no. 2, pp. 250–262, 2010.

[15] A. Donzé and O. Maler, “Systematic simulation using sensitivity anal-
ysis,” in 10th International Workshop on Hybrid Systems: Computation
and Control. Springer, 2007, pp. 174–189.

[16] T. Dang et al., “Sensitive state-space exploration,” in Proc. of the 47th
Conference on Decision and Control. IEEE, 2008, pp. 4049–4054.

[17] S. Kaynama and M. Oishi, “Complexity reduction through a schur-based
decomposition for reachability analysis of linear time-invariant systems,”
International Journal of Control, vol. 84, no. 1, pp. 165–179, 2011.

[18] S. Bogomolov et al., “Reach set approximation through decomposition
with low-dimensional sets and high-dimensional matrices,” in Proc. of
the 21st International Conference on Hybrid Systems: Computation and
Control. ACM, 2018, pp. 41–50.

[19] M. Althoff, “Reachability analysis of large linear systems with uncer-
tain inputs in the Krylov subspace,” IEEE Transactions on Automatic
Control, vol. 65, no. 2, pp. 477–492, 2020.

[20] S. Bak, H.-D. Tran, and T. T. Johnson, “Numerical verification of
affine systems with up to a billion dimensions,” in Proc. of the 22nd
International Conference on Hybrid Systems: Computation and Control.
ACM, 2019, pp. 23–32.

[21] A. Girard, C. Le Guernic, and O. Maler, “Efficient computation of
reachable sets of linear time-invariant systems with inputs,” in 9th
International Workshop on Hybrid Systems: Computation and Control.
Springer, 2006, pp. 257–271.

[22] A. Hamadeh and J. Goncalves, “Reachability analysis of continuous-
time piecewise affine systems,” Automatica, vol. 44, no. 12, pp. 3189–
3194, 2008.

[23] A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal techniques for reach-
ability analysis,” in 3rd International Workshop on Hybrid Systems:
Computation and Control. Springer, 2000, pp. 202–214.

[24] N. Kochdumper and M. Althoff, “Computing non-convex inner-
approximations of reachable sets for nonlinear continuous systems,” in
Proc. of the 59th Conference on Decision and Control. IEEE, 2020,
pp. 2130–2137.

[25] E. Goubault and S. Putot, “Inner and outer reachability for the verifica-
tion of control systems,” in Proc. of the 22nd International Conference
on Hybrid Systems: Computation and Control. ACM, 2019, pp. 11–22.

[26] E. Asarin et al., “Approximate reachability analysis of piecewise-linear
dynamical systems,” in 3rd International Workshop on Hybrid Systems:
Computation and Control. Springer, 2000, pp. 20–31.

[27] M. Althoff and G. Frehse, “Combining zonotopes and support functions
for efficient reachability analysis of linear systems,” in Proc. of the 55th
Conference on Decision and Control. IEEE, 2016, pp. 7439–7446.

[28] P. S. Duggirala and M. Viswanathan, “Parsimonious, simulation based
verification of linear systems,” in Proc. of the 28th International Con-
ference on Computer Aided Verification. Springer, 2016, pp. 477–494.

[29] O. Stursberg, A. Fehnker, Z. Han, and B. H. Krogh, “Verification of
a cruise control system using counterexample-guided search,” Control
Engineering Practice, vol. 12, no. 10, pp. 1269–1278, 2004.

[30] S. Bogomolov et al., “Guided search for hybrid systems based on coarse-
grained space abstractions,” International Journal on Software Tools for
Technology Transfer, vol. 18, pp. 449–467, 2016.

[31] ——, “Counterexample-guided refinement of template polyhedra,” in
23rd International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 2017, pp. 589–606.

[32] S. Schupp and E. Ábrahám, “Efficient dynamic error reduction for hybrid
systems reachability analysis,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2018, pp. 287–302.

[33] T. T. Johnson, S. Bak, M. Caccamo, and L. Sha, “Real-time reachability
for verified simplex design,” ACM Transactions on Embedded Comput-
ing Systems, vol. 15, no. 2, 2016.

[34] M. Althoff, “An introduction to CORA 2015,” in Proc. of the Workshop
on Applied Verification for Continuous and Hybrid Systems, 2015, pp.
120–151.

[35] X. Chen et al., “Flow*: An analyzer for non-linear hybrid systems,” in
Proc. of the 25th International Conference Computer-Aided Verification.
Springer, 2013, pp. 258–263.

[36] S. Schupp et al., “HyPRO: A C++ library of state set representations
for hybrid systems reachability analysis,” in NASA Formal Methods
Symposium. Springer, 2017, pp. 288–294.

[37] S. Bak and P. S. Duggirala, “HyLAA: A tool for computing simulation-
equivalent reachability for linear systems,” in Proc. of the 20th Interna-
tional Conference on Hybrid Systems: Computation and Control. ACM,
2017, pp. 173–178.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



16

[38] S. Bogomolov et al., “JuliaReach: a toolbox for set-based reachability,”
in Proc. of the 22nd International Conference on Hybrid Systems:
Computation and Control. ACM, 2019, pp. 39–44.

[39] R. Ray et al., “XSpeed: Accelerating reachability analysis on multi-core
processors,” in Haifa Verification Conference. Springer, 2015, pp. 3–18.

[40] S. Bak, S. Bogomolov, and C. Schilling, “High-level hybrid systems
analysis with Hypy,” in Proc. of the Workshop on Applied Verification
of Continuous and Hybrid Systems, 2016, pp. 80–90.

[41] P. Prabhakar and M. Viswanathan, “A dynamic algorithm for approxi-
mate flow computations,” in Proc. of the 14th International Conference
on Hybrid Systems: Computation and Control. ACM, 2011, pp. 133–
142.

[42] G. Frehse, R. Kateja, and C. Le Guernic, “Flowpipe approximation and
clustering in space-time,” in Proc. of the 16th International Conference
on Hybrid Systems: Computation and Control. ACM, 2013, pp. 203–
212.

[43] M. Wetzlinger, N. Kochdumper, and M. Althoff, “Adaptive parameter
tuning for reachability analysis of linear systems,” in Proc. of the 59th
Conference on Decision and Control. IEEE, 2020, pp. 5145–5152.

[44] J. K. Scott et al., “Constrained zonotopes: A new tool for set-based
estimation and fault detection,” Automatica, vol. 69, pp. 126–136, 2016.

[45] G. M. Ziegler, Lectures on polytopes. Springer Science & Business
Media, 2012.

[46] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of linear
systems with uncertain parameters and inputs,” in Proc. of the 46th
Conference on Decision and Control. IEEE, 2007, pp. 726–732.

[47] X. Yang and J. K. Scott, “A comparison of zonotope order reduction
techniques,” Automatica, vol. 95, pp. 378–384, 2016.

[48] M. Wetzlinger, A. Kulmburg, and M. Althoff, “Adaptive parameter
tuning for reachability analysis of nonlinear systems,” in Proc. of the
24th International Conference on Hybrid Systems: Computation and
Control. ACM, 2021.

[49] R. Farhadsefat, J. Rohn, and T. Lotfi, “Norms of interval matrices,”
Academy of Sciences of the Czech Republic, Institute of Computer
Science, Tech. Rep., 2011.

[50] M. Althoff, “On computing the Minkowski difference of zonotopes,”
arXiv preprint arXiv:1512:02794v3, 2022.

[51] R. Rockafellar, Convex analysis. Princeton university press, 1972,
vol. 2.

[52] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proc. of the 16th annual ACM symposium on Theory of
computing, 1984, pp. 302–311.

[53] M. Althoff et al., “ARCH-COMP21 category report: continuous and
hybrid systems with linear continuous dynamics,” in Proc. of the 8th
International Workshop on Applied Verification of Continuous and
Hybrid Systems, 2021, pp. 1–31.

[54] N. Kochdumper, P. Gassert, and M. Althoff, “Verification of collision
avoidance for CommonRoad traffic scenarios,” in Proc. of the 8th
International Workshop on Applied Verification of Continuous and
Hybrid Systems, 2021, pp. 184–194.

[55] L. H. de Figueiredo and J. Stolfi, “Affine arithmetic: Concepts and
applications,” Numerical Algorithms, vol. 37, pp. 147–158, 2004.

[56] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of nonlin-
ear systems with uncertain parameters using conservative linearization,”
in Proc. of the 47th Conference on Decision and Control. IEEE, 2008,
pp. 4042–4048.

[57] D. Li, S. Bak, and S. Bogomolov, “Reachability analysis of nonlinear
systems using hybridization and dynamics scaling,” in International
Conference on Formal Modeling and Analysis of Timed Systems.
Springer, 2020, pp. 265–282.

[58] M. Wetzlinger, N. Kochdumper, S. Bak, and M. Althoff, “Fully-
automated verification of linear systems using reachability analysis with
support functions,” in Proc. of the 26th International Conference on
Hybrid Systems: Computation and Control. ACM, 2023.

[59] H. Abbas et al., “Probabilistic temporal logic falsification of cyber-
physical systems,” Transactions on Embedded Computing Systems,
vol. 12, no. 2s, 2013.

[60] L. Mathesen, G. Pedrielli, and G. Fainekos, “Efficient optimization-
based falsification of cyber-physical systems with multiple conjunctive
requirements,” in Proc. of the International Conference on Automation
Science and Engineering, 2021, pp. 732–737.

[61] S. Sankaranarayanan and G. Fainekos, “Falsification of temporal prop-
erties of hybrid systems using the cross-entropy method,” in Proc. of
the 15th International Conference on Hybrid Systems: Computation and
Control. ACM, 2012, pp. 125–134.

[62] H. Roehm et al., “STL model checking of continuous and hybrid sys-
tems,” in Proc. of the International Symposium on Automated Technology
for Verification and Analysis, 2016, pp. 412–427.

[63] O. Maler, D. Nickovic, and A. Pnueli, “From MITL to timed automata,”
in Proc. of the International Conference on Formal Modeling and
Analysis of Timed Systems, 2006, pp. 274–289.

[64] G. Frehse et al., “A toolchain for verifying safety properties of hybrid
automata via pattern templates,” in Proc. of the American Control
Conference, 2018, pp. 2384–2391.

Mark Wetzlinger received the B.S. degree in
Engineering Sciences in 2017 jointly from Uni-
versität Salzburg, Austria and Technische Uni-
versität München, Germany, and the M.S. de-
gree in Robotics, Cognition and Intelligence
in 2019 from Technische Universität München,
Germany. He is currently pursuing the Ph.D. de-
gree in computer science at Technische Univer-
sität München, Germany. His research interests
include formal verification of linear and nonlinear
continuous systems, reachability analysis, adap-

tive parameter tuning, and model order reduction.

Niklas Kochdumper received the B.S. degree
in Mechanical Engineering in 2015, the M.S.
degree in Robotics, Cognition and Intelligence
in 2017, and the Ph.D. degree in computer sci-
ence in 2022, all from Technische Universität
München, Germany. He is currently a postdoc-
toral researcher at Stony Brook University, USA.
His research interests include formal verification
of continuous and hybrid systems, reachabil-
ity analysis, computational geometry, controller
synthesis, and neural network verification.

Stanley Bak is an assistant professor in com-
puter science at Stony Brook University in Stony
Brook, NY, USA. He received the B.S. degree in
computer science from Rensselaer Polytechnic
Institute in 2007, and the M.S. degree and Ph.D.
degree both in computer science from the Uni-
versity of Illinois at Urbana-Champaign in 2009
and 2013. His research interests include veri-
fication and testing methods for cyber-physical
systems and neural networks.

Matthias Althoff is an associate professor
in computer science at Technische Universität
München, Germany. He received his diploma
engineering degree in Mechanical Engineering
in 2005, and his Ph.D. degree in Electrical En-
gineering in 2010, both from Technische Uni-
versität München, Germany. From 2010 to 2012
he was a postdoctoral researcher at Carnegie
Mellon University, Pittsburgh, USA, and from
2012 to 2013 an assistant professor at Technis-
che Universität Ilmenau, Germany. His research

interests include formal verification of continuous and hybrid systems,
reachability analysis, planning algorithms, nonlinear control, automated
vehicles, and power systems.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3292008

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



A.3 Fully-Automated Verification of Linear Systems Using Reachability Analysis with Support Functions

A.3 Fully-Automated Verification of Linear Systems Using

Reachability Analysis with Support Functions

Summary For verification, one has to prove that there is no intersection between the reach-

able set and the unsafe set, which does not necessarily require an explicit representation of the

reachable set. In this work, we significantly accelerate the solution to the verification task in

Problem 1 for linear systems of the form (2.2) by reducing the reachable set computation to

its relevant parts for the intersection check with the unsafe set.

Our main idea is to only examine the extent of the reachable set toward directions of interest,

which are determined by the safety specifications. To this end, we combine the computational

efficiency of support function evaluations for reachability analysis with automated methods

for algorithm parameter tuning. For specifications represented by halfspaces, this allows us to

quickly determine whether or not the reachable set intersects the unsafe set. In specific cases

where the homogeneous and particular solutions can be pre-computed, the runtime complexity

of the propagation is quadratic in the state dimension. Furthermore, we verify safety specifica-

tions represented by arbitrary convex unsafe sets via the Gilbert-Johnson-Keerthi algorithm,

which is also based on efficient support function evaluations.

Our numerical evaluation demonstrates the immense impact of using support function reach-

ability for verification: The proposed verification algorithm automatically verifies and falsifies

benchmarks orders of magnitude faster than state-of-the-art approaches and even scales to

large system dimensions that could not be analyzed before. Similarly to the verification algo-

rithm in Appendix A.2, no manual parameter tuning is required to obtain a conclusive result

on safety.

Author contributions M.W. initiated the idea of using adaptive parameter tuning with

support function-based reachability for accelerated verification, implemented the algorithm,

conducted parts of the numerical evaluation, and wrote most of the manuscript. N.K. extended

the approach to verifying arbitrary convex sets, implemented the algorithm, and conducted

parts of the numerical evaluation. S.B. suggested using the Gilbert-Johnson-Keerthi algorithm

and provided feedback for improving the manuscript together with M.A.

Copyright notice ©2023 Copyright held by the authors. Publication rights licensed to

ACM. Version of record available at doi:10.1145/3575870.3587121. Explicit license printed

in Appendix B.

TUM Graduate School This publication has been declared a core publication in accor-

dance with Article 7, section 3 TUM Doctoral Regulations (PromO).

79

https://doi.org/10.1145/3575870.3587121


Fully-Automated Verification of Linear Systems
Using Reachability Analysis with Support Functions

Mark Wetzlinger
Technische Universität München, Germany

m.wetzlinger@tum.de

Niklas Kochdumper
Stony Brook University, NY, USA

niklas.kochdumper@stonybrook.edu

Stanley Bak
Stony Brook University, NY, USA
stanley.bak@stonybrook.edu

Matthias Althoff
Technische Universität München, Germany

althoff@tum.de

ABSTRACT
While reachability analysis is one of themajor techniques for formal
verification of dynamical systems, the requirement to adequately
tune algorithm parameters often prevents its widespread use in prac-
tical applications. In this work, we fully automate the verification
process for linear time-invariant systems: Based on the computa-
tion of tight upper and lower bounds for the support function of the
reachable set along a given direction, we present a fully-automated
verification algorithm, which is based on iterative refinement of
the upper and lower bounds and thus always returns the correct
result in decidable cases. While this verification algorithm is partic-
ularly well suited for cases where the specifications are represented
by halfspace constraints, we extend it to arbitrary convex unsafe
sets using the Gilbert-Johnson-Keerthi algorithm. In summary, our
automated verifier is applicable to arbitrary convex initial sets, in-
put sets, as well as unsafe sets, can handle time-varying inputs,
automatically returns a counterexample in case of a safety viola-
tion, and scales to previously unanalyzable high-dimensional state
spaces. Our evaluation on several challenging benchmarks shows
significant improvements in computational efficiency compared to
verification using other state-of-the-art reachability tools.

KEYWORDS
Formal verification, set-based computing, high-dimensional sys-
tems, iterative refinement, automated parameter tuning, counterex-
ample.

ACM Reference Format:
Mark Wetzlinger, Niklas Kochdumper, Stanley Bak, and Matthias Althoff.
2023. Fully-Automated Verification of Linear Systems Using Reachability
Analysis with Support Functions. In Proceedings of the 26th ACM Interna-
tional Conference on Hybrid Systems: Computation and Control (HSCC ’23),
May 09–12, 2023, San Antonio, TX, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3575870.3587121

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HSCC ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0033-0/23/05. . . $15.00
https://doi.org/10.1145/3575870.3587121

1 INTRODUCTION
Formal verification of dynamical systems aims to show that unde-
sired system behavior is avoided in the presence of uncertainty. A
popular technique is reachability analysis, where one checks if the
reachable set intersects unsafe sets defined by safety specifications.
This principle has been applied in numerous use cases, such as
aerospace/automotive applications, circuits, power systems, robot-
ics, and biology [5, Tab. 2]. Since exact reachable sets cannot be
computed except for a few special system classes [28], reachability
algorithms either compute outer- or inner-approximations. Outer-
approximations prove safety by showing that no unsafe state is
reachable, whereas inner-approximations disprove safety by show-
ing that at least one unsafe state is definitely reachable. The practical
success of the verification process heavily depends on the tightness
of the outer- and inner-approximation, which in turn depends on
the tuning of algorithm parameters, such as the time step size. Due
to the difficulty of manual algorithm parameter tuning, we believe
that automation is a crucial step to facilitate the broader use of
reachability analysis for formal verification. We aim to achieve this
with the fully-automated verifier presented in this work.

1.1 Related work
There exist several groups of approaches for formal verification of
dynamical systems: Barrier certificates [46] are level sets separating
the unsafe region from the reachable states, thereby omitting an
explicit computation of the reachable set. They are primarily studied
in the context of stochastic systems [34, 47], where it is checked
whether the probability of entering an unsafe region can be bounded
by a given threshold. Another approach is theorem proving using
differential dynamic logic [43, 44]. This is a special type of first-
order logic for deductively proving properties of hybrid programs,
which encode safety specifications for hybrid systems. A third group
of approaches is based reformulating the reachability problem a
constraint satisfaction problem [48]. For linear time-invariant (LTI)
systems the predominant approach is to explicitly compute the
reachable set and check for intersection with unsafe sets to prove
or disprove safety [5]. As our approach utilizes reachability analysis,
we restrict the remainder of our literature review to this group and
focus on reviewing methods for LTI systems.

Since the reachable set is a zero sublevel set solution of a
Hamilton-Jacobi-Isaacs partial differential equation [41], it can be
approximated by solving the equation on a gridded state space.
This is well-known to scale exponentially with the system dimen-
sion, which restricts the applicability to low-dimensional systems.



HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Mark Wetzlinger, Niklas Kochdumper, Stanley Bak, and Matthias Althoff

Although the issue can be alleviated using decoupling [15] or de-
composition techniques [14], these methods are essentially not used
for reachability analysis of linear systems.

Simulations from a sample of initial states within the initial
set can be used to construct reachable sets [19]; this technique
also extends to uncertain inputs [18]. Outer-approximations are
obtained by enlarging the simulations based on sensitivity analysis,
whereas inner-approximations can be constructed from the convex
hull of the simulated states at each point in time [23]. Moreover,
one can also construct an explicit representation of the reachable
set using star sets in polynomial runtime [10, 20].

Another group of methods is based on set propagation [5]. These
methods either outer- or inner-approximate the homogeneous and
particular solution of an LTI system using set-based computing.
Initially, griddy polyhedra [8, 16] and ellipsoids [37] were used as
a set representation for computing outer-approximations, while
current state-of-the-art techniques mainly use zonotopes [30, 32],
support functions [39, 40], or a combination of both [4] as a set rep-
resentation. In addition to the set representation, another difference
between the various set propagation methods is the choice of the
approximation model, which defines how to outer-approximate the
homogeneous and particular solutions composing the reachable
set. A recent survey [22] compares a wide variety of approximation
models, which heavily differ in tightness and runtime: First-order
methods [30, Sec. 3], [40, Eq. (2)] bloat the convex hull of the initial
set and its linear transformation by a ball whose radius is computed
using norms of the state matrix and the initial set. These methods
are fast but the least accurate due to the first-order Taylor series
expansion of the propagation matrix. The correction hull method [1,
Sec. 3.2] computes a curvature enclosure by multiplication of an
interval matrix representing the influence of higher-order terms
of the propagation matrix with the initial set. It yields a tighter
enclosure at the cost of a slightly increased computation time. The
most accurate method is the forward-backward method for sup-
port functions [27, Sec. 3.1], [25, Sec. 2.4]. However, it requires
the evaluation of 𝑛 quadratic optimization problems in each step,
with 𝑛 being the state dimension, resulting in a significantly slower
computation. Overall, one has to balance the trade-off between
tightness and computation time when choosing the approximation
model, which also has to fit the used set representation.

In contrast to the above algorithms for outer-approximations,
approaches for inner-approximations using set-based computing
are more scarce: By subtracting an error from the computed outer-
approximation, inner-approximations can be represented by griddy
polyhedra [17]. Another method is to use a union of ellipsoids, each
of which touches the exact reachable set at exactly one point from
the inside [37]. Linear matrix inequalities [33] have also been ap-
plied to compute ellipsoidal inner-approximations of the reachable
set. Moreover, polytopic inner-approximations can be constructed
by sampling vertices from zonotopes [32]. A simulation-based ap-
proach [23] aims to steer the trajectory toward edge cases by opti-
mizing for a piecewise constant input trajectory.

For successful verification, the computed outer-approximation
of the reachable set has to be tight enough. Since poor algorithm
parameter tuning is one of the main sources for spurious counterex-
amples, a natural extension is to tune the parameters automatically:

By using piecewise polynomial approximations in adaptively se-
lected time intervals, the reachable set of an autonomous system can
be approximated within a user-defined error bound by iteratively
reducing the time step size [45]. Another method [25, 27] tunes the
time step size to satisfy a user-defined error bound on the tightness
along the given directions for the support function evaluation of the
reachable set, but cannot rule out backtracking. A similar approach
adaptively tunes all algorithm parameters without backtracking
while respecting an error bound related to the Hausdorff distance
between the exact reachable set and the computed enclosure [54].
While the desired error bound still has to be manually specified for
the aforementioned approaches, automated verification algorithms
automatically refine this error bound until the specification can be
either proven or disproven: Brute-force approaches [9, 50] simply
re-compute the reachable set with improved algorithm parameter
values. The framework of counterexample-guided abstraction re-
finement (CEGAR) automatically refines the model [26, 53] or the
set representation [12, 13]. In a real-time setting, the work in [35]
refines the tightness constrained by the available computation time
to choose between different controllers.

1.2 Contributions
Wefirst introduce the general notation as well as set representations
and operations in Sec. 2 and formally define the problem statement
in Sec. 3. Afterward, we provide a comprehensive summary of the
reachability algorithm in [4] for computing outer-approximations
in Sec. 4.1. Our contributions are as follows:
• First, we present a novel reachability algorithm using support
functions to compute inner-approximations (Sec. 4.2).
• Next, we design a fully-automated verification algorithm for
the special case of unsafe sets given as halfspaces (Sec. 5.1).
• Moreover, we propose a fully-automated verification algorithm
for arbitrary convex unsafe sets (Sec. 5.2).
• In case of a safety violation, our verification algorithms return
a counterexample, which provides valuable insights to system
engineers (Sec. 5.1-5.2).

Overall, our paper provides a complete description of support func-
tion reachability, combining outer- and inner-approximation with
automated verification in a self-contained presentation. In contrast
to previous work on reachability analysis using support functions,
we provide the first approach that automatically verifies a given
problem in decidable cases. Finally, the practical benefits of our
novel algorithms are demonstrated on several challenging bench-
mark problems in Sec. 6.

2 PRELIMINARIES
We first define the notation and introduce all required set represen-
tations and operations.

2.1 Notation
We denote scalars and vectors by lowercase letters and matrices by
uppercase letters. Given a vector 𝑠 ∈ R𝑛 , 𝑠 (𝑖 ) represents the 𝑖-th en-
try; given amatrix𝑀 ∈ R𝑚×𝑛 ,𝑀(𝑖,· ) and𝑀( ·, 𝑗 ) refer to the 𝑖-th row
and the 𝑗-th column, respectively.We use 0 and 1 for vectors andma-
trices of proper dimension containing only zeros or ones, as well as
𝐼𝑛 to denote the identity matrix of dimension 𝑛. The concatenation
of two matrices𝑀1, 𝑀2 is written as [𝑀1 𝑀2] and diag(𝑠) returns a



Fully-Automated Verification of Linear Systems Using Reachability Analysis with Support Functions HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

square matrix with the vector 𝑠 on its main diagonal and zeros other-
wise. Exact sets are denoted by standard calligraphic lettersS, outer-
approximations by Ŝ, and inner-approximations by Š. Moreover,
we overload the vector notation 𝑠 to also denote the set {𝑠} consist-
ing only of the point 𝑠 and we abbreviate −𝐼𝑛 S to −S. Intervals are
represented by [𝑎, 𝑏], 𝑎, 𝑏 ∈ R𝑛 , where 𝑎 ≤ 𝑏 holds element-wise.
Interval matrices extend intervals by using matrices for the lower
and upper bounds: M = [𝑀,𝑀] = {𝑀 ∈ R𝑚×𝑛 | 𝑀 ≤ 𝑀 ≤ 𝑀},
where the inequality is again evaluated element-wise. The opera-
tions center

(S) and box
(S) return the volumetric center and the

tightest enclosing interval of S, respectively. The sign function
sgn(𝑥) returns −1, 0, and 1 for the input ranges 𝑥 < 0, 𝑥 = 0, and
𝑥 > 0, respectively. We use O(·) to denote the big O notation.

2.2 Set representations and operations
Our reachability algorithms are based on support functions [31,
Sec. 2], which can represent any convex set:

Definition 1. (Support function) Given a compact convex set S ⊂
R𝑛 and a direction ℓ ∈ R𝑛 , the support function 𝜌 (S, ℓ) : R𝑛 → R
and the support vector 𝜈 (S, ℓ) ∈ R𝑛 are defined as

𝜌 (S, ℓ) := max
𝑥∈S

ℓ⊤𝑥, 𝜈 (S, ℓ) := arg max
𝑥∈S

ℓ⊤𝑥 .

Note that the support vector is not necessarily unique. □

Our reachability and verification algorithms support arbitrary
convex sets, where we only require that the support function can be
evaluated. While the set S can also be defined by a symbolic equa-
tion returning its support function, the uncertain sets in verification
tasks are often defined using common convex set representations
such as intervals, zonotopes, polytopes, zonotope bundles [6], con-
strained zonotopes [52], ellipsoids, ellipsotopes [36], or capsules
[49]. Hence, we now provide the support functions and support
vectors for some of these set representations, where we focus on the
most commonly-used ones. We begin with zonotopes [30, Def. 1]:

Definition 2. (Zonotope) Given a center 𝑐 ∈ R𝑛 and a generator
matrix 𝐺 ∈ R𝑛×𝛾 , a zonotopeZ ⊂ R𝑛 is

Z :=
{
𝑐 +

𝛾∑︁
𝑖=1

𝐺 ( ·,𝑖 ) 𝛼𝑖
���� 𝛼𝑖 ∈ [−1, 1]

}
.

For the support function and support vector, we have [31, Sec. 2]

𝜌 (Z, ℓ) = ℓ⊤𝑐 +
𝛾∑︁
𝑖=1
|ℓ⊤𝐺 ( ·,𝑖 ) |,

𝜈 (Z, ℓ) = 𝑐 +
𝛾∑︁
𝑖=1

sgn(ℓ⊤𝐺 ( ·,𝑖 ) )𝐺 ( ·,𝑖 ) .

We use the shorthandZ = ⟨𝑐,𝐺⟩𝑍 . □

Polytopes can be represented in halfspace or vertex representation:

Definition 3. (Polytope) The halfspace representation of a poly-
tope P ⊂ R𝑛 is given by the intersection of 𝑤 halfspaces, which
corresponds to a set of inequality constraints defined by the matrix
𝐻 ∈ R𝑤×𝑛 and the offset vector 𝑓 ∈ R𝑤 :

P :=
{
𝑥 ∈ R𝑛

�� 𝐻𝑥 ≤ 𝑓 }.

The vertex representation is given by the convex hull of the polytope
vertices 𝑣1, . . . , 𝑣𝑠 ∈ R𝑛 :

P :=
{ 𝑠∑︁
𝑖=1

𝛽𝑖 𝑣𝑖

����
𝑠∑︁
𝑖=1

𝛽𝑖 = 1, 𝛽𝑖 ≥ 0
}
.

For the vertex representation, the support function is given as
max𝑖∈{1,...,𝑠 } ℓ⊤𝑣𝑖 and the support vector is the corresponding max-
imizing vertex. For the halfspace representation, the support func-
tion and the support vector can be obtained by linear programming.
We use the shorthands P = ⟨𝐻, 𝑓 ⟩𝐻 and P = ⟨[𝑣1 . . . 𝑣𝑠 ]⟩𝑉 . □

Another common convex set representation are ellipsoids:

Definition 4. (Ellipsoid) Given a center 𝑐 ∈ R𝑛 and a positive
semi-definite shape matrix 𝑄 ∈ R𝑛×𝑛 , an ellipsoid E ⊂ R𝑛 is

E :=
{
𝑥
�� (𝑥 − 𝑐)⊤𝑄−1 (𝑥 − 𝑐) ≤ 1

}
.

The support function and the support vector are computed as [38]

𝜌 (E, ℓ) = ℓ⊤𝑐 +
√︁
ℓ⊤𝑄ℓ, 𝜈 (E, ℓ) = 𝑐 + 𝑄 ℓ√︁

ℓ⊤𝑄ℓ
.

We use the shorthand E = ⟨𝑐,𝑄⟩𝐸 . □

Given the sets S1,S2 ⊂ R𝑛 and a matrix𝑀 ∈ R𝑚×𝑛 , we require
the set operations linear map𝑀 S1, Minkowski sum S1 ⊕ S2, and
convex hull conv

(S1,S2
)
, which are defined as

𝑀 S1 := {𝑀𝑠1 | 𝑠1 ∈ S1},
S1 ⊕ S2 := {𝑠1 + 𝑠2 | 𝑠1 ∈ S1, 𝑠2 ∈ S2},

conv
(S1,S2

)
:=

{
𝜆𝑠1 + (1 − 𝜆)𝑠2 | 𝑠1 ∈ S1, 𝑠2 ∈ S2, 𝜆 ∈ [0, 1]

}
.

For support functions, these operations are evaluated by [40,
Prop. 2]

𝜌 (𝑀 S1, ℓ) = 𝜌 (S1, 𝑀
⊤ℓ), (1)

𝜌 (S1 ⊕ S2, ℓ) = 𝜌 (S1, ℓ) + 𝜌 (S2, ℓ), (2)
𝜌 (conv

(S1,S2
)
, ℓ) = max{𝜌 (S1, ℓ), 𝜌 (S2, ℓ)}. (3)

For zonotopes Z1 = ⟨𝑐1,𝐺1⟩𝑍 ,Z2 = ⟨𝑐2,𝐺2⟩𝑍 ⊂ R𝑛 , linear map
and Minkowski sum are computed by [1, Eq. (2.1)]

𝑀Z1 = ⟨𝑀𝑐1, 𝑀𝐺1⟩𝑍 ,
Z1 ⊕ Z2 = ⟨𝑐1 + 𝑐2, [𝐺1 𝐺2]⟩𝑍 ,

and the linear map MZ1 with an interval matrix M = [𝑀,𝑀]
can be tightly enclosed according to [7, Thm. 4]:

MZ1 ⊆
〈
𝑀𝑐𝑐1,

[
𝑀𝑐𝐺1 diag

(
𝑀𝑟 ( |𝑐1 | + ∑𝛾

𝑖=1 |𝐺1( ·,𝑖 ) |)
) ] 〉

𝑍 , (4)

where𝑀𝑐 = 0.5(𝑀 +𝑀) and𝑀𝑟 = 0.5(𝑀 −𝑀).

3 PROBLEM STATEMENT
We consider linear time-invariant systems of the form

¤𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑝, (5a)
𝑦 (𝑡) = 𝐶𝑥 (𝑡) +𝑊𝑣 (𝑡) + 𝑞, (5b)

where 𝑥 (𝑡) ∈ R𝑛 is the state, 𝑦 (𝑡) ∈ R𝑟 is the output, 𝑢 (𝑡) ∈ R𝑚
is the input, and 𝑣 (𝑡) ∈ R𝑜 represents additional uncertainty on
the output. Moreover, we have 𝐴 ∈ R𝑛×𝑛 , 𝐵 ∈ R𝑛×𝑚 , 𝑝 ∈ R𝑛 ,
𝐶 ∈ R𝑟×𝑛 ,𝑊 ∈ R𝑟×𝑜 , and 𝑞 ∈ R𝑟 . The initial state 𝑥 (𝑡0), the input
𝑢 (𝑡), and 𝑣 (𝑡) are uncertain within the initial setX0 ⊂ R𝑛 , the input
setU ⊂ R𝑚 , and the output uncertainty setV ⊂ R𝑜 , respectively.



HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Mark Wetzlinger, Niklas Kochdumper, Stanley Bak, and Matthias Althoff

Using the geometric center 𝑐𝑢 of the input setU, let us define the
vector 𝑢̃ = 𝐵𝑐𝑢 +𝑝 ∈ R𝑛 and the setU0 = 𝐵(U −𝑐𝑢 ) ⊂ R𝑛 for later
derivations. Note that if the geometric center of the set cannot be
computed, one can use the center of the enclosing interval instead,
which can be calculated using support function evaluations only.
For a concise presentation, we will generally assume a constant
vector 𝑢̃ and address the extension to time-varying inputs 𝑢̃ (𝑡)
where appropriate. Without loss of generality, we set the initial
time to 𝑡0 = 0 and define the time horizon as [0, 𝑡end], which is
divided into an integer number of time intervals 𝜏𝑘 = [𝑡𝑘 , 𝑡𝑘+1]
using the time step size Δ𝑡 . The reachable set is defined as follows:

Definition 5. (Reachable set) For a given initial state 𝑥 (0) and an
input trajectory 𝑢 (·), let us denote the solution to (5a) at time 𝑡 by
𝜉 (𝑡, 𝑥 (0), 𝑢 (·)). The reachable set at time 𝑡 ≥ 0 for all initial states
𝑥 (0) ∈ X0 and all input trajectories 𝑢 (·) ∈ U is
R(𝑡) :=

{
𝜉 (𝑡, 𝑥 (0), 𝑢 (·))

�� 𝑥 (0) ∈ X0, ∀𝜃 ∈ [0, 𝑡] : 𝑢 (𝜃 ) ∈ U}
.

We write R(𝑡𝑘 ) for the time-point reachable set at time 𝑡 = 𝑡𝑘 and
R(𝜏𝑘 ) for the time-interval reachable set over 𝑡 ∈ 𝜏𝑘 . □

As mentioned in the introduction, the exact reachable set as
defined above cannot be computed for general linear systems [28].
Hence, we aim to compute tight outer-approximations R̂ (𝑡) ⊇ R(𝑡)
and inner-approximations qR(𝑡) ⊆ R(𝑡) instead, which extends to
the output sets qY(𝑡) ⊆ Y(𝑡) ⊆ Ŷ(𝑡) obtained from a set-based
evaluation of (5b).

Our goal in this work is to automatically prove or disprove safety
of LTI systems using reachability analysis. We distinguish between
two types of safety specifications:

(1) First, we examine the common case with a polytope
K = ⟨𝐻, 𝑓 ⟩𝐻 as a safe set, which is equivalent to multiple
halfspaces as unsafe sets.

(2) More generally, we consider an arbitrary number of convex
unsafe sets L1, ...,L𝑏 .

Obviously, cases where both types of specifications occur are ana-
lyzed by combining the corresponding verification algorithms. The
overall verification task is formally defined as follows:

Problem 1. (Verification) Given an LTI system (5) with initial set
X0 ⊂ R𝑛 , input set U ⊂ R𝑚 , and output uncertainty set V ⊂ R𝑜 ,
as well as a safe set K = ⟨𝐻, 𝑓 ⟩𝐻 and/or a number of convex unsafe
sets L1, ...,L𝑏 , decide whether

∀𝑡 ∈ [0, 𝑡end] : Y(𝑡) ⊆ K ∧ Y(𝑡) ∩
𝑏⋃
𝑖=1
L𝑖 = ∅,

that is, whether the output set Y(𝑡) stays within the safe set K and
avoids the unsafe sets L1, ...,L𝑏 at all times 𝑡 ∈ [0, 𝑡end]. □

Please note that this problem formulation can be easily adapted
to time-varying safe and/or unsafe sets that are only active for a
fraction of the time horizon. Also, we do not explicitly consider
floating-point errors for simplicity, but restrict our attention to
approximation errors only.

4 REACHABILITY ANALYSIS
In this section, we present a self-contained overview of reachability
analysis using support functions: In Sec. 4.1, we recall the compu-
tation of outer-approximations of reachable sets, which is similar

to [4] but explicitly tailored towards computing upper bounds for
the support function rather than an explicit representation of the
reachable set in form of a template polyhedron. Next in Sec. 4.2,
we derive a novel approach for computing lower bounds for the
support function of the reachable set using a similar propagation
scheme as for the upper bounds. This allows us to unify both com-
putations into a single algorithm for computing upper and lower
bounds for the support function of the reachable set in Sec. 4.3. For
ease of presentation, we will focus on time-interval solutions as
they are required for verification purposes; time-point solutions
only serve as intermediate results.

4.1 Outer-approximations of reachable sets
The analytical solution for the linear differential equation (5a) is
given as

𝑥 (𝑡𝑘 ) = 𝑒𝐴𝑡𝑘𝑥 (0)︸    ︷︷    ︸
∈H(𝑡𝑘 )

+
∫ 𝑡𝑘

0
𝑒𝐴(𝑡𝑘−𝜃 ) (𝐵𝑢 (𝜃 ) + 𝑝) d𝜃

︸                                 ︷︷                                 ︸
∈P(𝑡𝑘 )

,

which consists of the homogeneous solutionH(𝑡𝑘 ) resulting from
the propagation of the initial state and the particular solution P(𝑡𝑘 )
due to inputs, whose Minkowski addition yields the reachable set
R(𝑡𝑘 ) = H(𝑡𝑘 ) ⊕ P(𝑡𝑘 ). We use the following wrapping-free prop-
agation formula [27, Eq. (6)]:

P(𝑡𝑘+1) = P(𝑡𝑘 ) ⊕ 𝑒𝐴𝑡𝑘P(Δ𝑡), (6)

R(𝜏𝑘 ) = 𝑒𝐴𝑡𝑘 H(𝜏0) ⊕ P(𝑡𝑘+1) . (7)
For each time interval 𝜏𝑘 , we compute the homogeneous time-
interval solution H(𝜏𝑘 ) = 𝑒𝐴𝑡𝑘H(𝜏0) and the particular time-
interval solution P(𝜏𝑘 ), where we exploit that P(𝜏𝑘 ) ⊆ P(𝑡𝑘+1)
holds if 0 ∈ U [1, Prop. 3.3]. To guarantee that the origin is con-
tained in the input set, we first split the input set into two parts
U = 𝑢̃ ⊕ U0, such that 0 ∈ U0, where the solution due to 𝑢̃ is
integrated into the homogeneous solutionH(𝜏0) and the solution
due toU0 constitutes the particular solution P(𝜏𝑘 ). The evaluation
of (6)-(7) using support functions follows directly from (1)-(2):

𝜌 (P(𝑡𝑘+1), ℓ) = 𝜌 (P(𝑡𝑘 ), ℓ) + 𝜌 (P(Δ𝑡), (𝑒𝐴𝑡𝑘 )⊤ℓ), (8)

𝜌 (R(𝜏𝑘 ), ℓ) = 𝜌 (H (𝜏0), (𝑒𝐴𝑡𝑘 )⊤ℓ) + 𝜌 (P(𝑡𝑘+1), ℓ) . (9)

The back-propagated direction (𝑒𝐴𝑡𝑘 )⊤ℓ can be computed using a
sequence of matrix-vector multiplications as 𝑒𝐴𝑡𝑘 = 𝑒𝐴Δ𝑡 · . . . ·𝑒𝐴Δ𝑡 .

In some cases, the auxiliary sets H(𝜏0) and P(Δ𝑡) can be pre-
computed, e.g., when X0 andU are zonotopes. This accelerates the
computation immensely as one only has to evaluate the support
function of the pre-computed setsH(𝜏0) and P(Δ𝑡𝑘 ) in the direc-
tion (𝑒𝐴𝑡𝑘 )⊤ℓ and add the resulting scalar values to compute (8)-(9).
For zonotopes, this reduces the computational complexity from
O(𝑛3) for propagating entire zonotopes down to O(𝑛2) [4]. If the
pre-computation is undesirable because either the set representa-
tion forX0 and/orU is not closed under the required set operations
or these operations are not defined for that set representation, one
has to evaluate the support functions forH(𝜏0) and P(Δ𝑡) based
on the support functions for X0 andU in each step.

Let us now introduce the approximation models for computing
outer-approximations ofH(𝜏0) and P(Δ𝑡) in order to evaluate (8)-
(9). We use the correction hull approximation model [1, Sec. 3.2],



Fully-Automated Verification of Linear Systems Using Reachability Analysis with Support Functions HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

which represents a good trade-off between fast but inaccurate first-
order models [30, Sec. 3], [40, Eq. (2)] and the accurate but slow
forward-backward method [27, Sec. 3.1], [25, Sec. 2.4]. The affine
time-interval solution is computed according to [1, Eq. (3.10)] by

H(𝜏0) ⊆ conv
(X0, 𝑒𝐴Δ𝑡X0 ⊕ P𝑢 (Δ𝑡)) ⊕ C, (10)

which translates to the support function evaluation

𝜌 (H (𝜏0), ℓ) ≤ max{𝜌 (X0, ℓ), 𝜌 (X0, (𝑒𝐴Δ𝑡 )⊤ℓ)
+ 𝜌 (P𝑢 (Δ𝑡), ℓ)} + 𝜌 (C, ℓ). (11)

The outer-approximation in (10) is computed using the convex
hull of the initial set X0 and its propagation 𝑒𝐴Δ𝑡X0, which is first
shifted by the particular solution P𝑢 (Δ𝑡) due to the constant input
𝑢̃ given as [1, Eq. (3.7)]

P𝑢 (Δ𝑡) = 𝑇𝑢̃, (12)

where 𝑇 = 𝐴−1 (𝑒𝐴Δ𝑡 − 𝐼𝑛) (13)
is the propagation matrix for constant inputs. Alternatively, the
term𝐴−1 can be integrated into the power series of the exponential
matrix 𝑒𝐴Δ𝑡 in case 𝐴 is singular. Finally, we enlarge the resulting
set by the curvature enclosure

C = FX0 ⊕ G 𝑢̃
using the interval matrices [1, Sec. 3.2]

F =
𝜂⊕
𝑖=2

[ (
𝑖
−𝑖
𝑖−1 − 𝑖 −1

𝑖−1
)
Δ𝑡𝑖 , 0

] 𝐴𝑖
𝑖! ⊕ E, (14)

G =
𝜂+1⊕
𝑖=2

[ (
𝑖
−𝑖
𝑖−1 − 𝑖 −1

𝑖−1
)
Δ𝑡𝑖 , 0

] 𝐴𝑖−1

𝑖! ⊕ E Δ𝑡, (15)

where the interval matrix E represents the remainder of the expo-
nential matrix [1, Eq. (3.2)]:

E = [−𝐸, 𝐸], 𝐸 = 𝑒 |𝐴 |Δ𝑡 −
𝜂∑︁
𝑖=0

( |𝐴|Δ𝑡 )𝑖
𝑖! .

While for zonotopes themultiplication of the interval matrix F with
X0 can be computed according to (4), it is unclear how to implement
this set operation for general set convex set representations. In this
case, we enclose X0 by an interval and represent it as a zonotope
to compute its product with the interval matrix F, leading to the
support function evaluation

𝜌 (C, ℓ) = 𝜌 (F box
(X0), ℓ) + 𝜌 (G 𝑢̃, ℓ).

Since the interval matrix F is small for large enough values for 𝜂 ,
the over-approximation induced by the enclosure box

(X0) ⊇ X0

does not notably impact the tightness of the overall reachable set.
The particular solution due to the time-varying inputs within

the setU0 can be enclosed by [1, Eq. (3.7)]

P̂U (Δ𝑡) =
𝜂⊕
𝑖=0

𝐴𝑖Δ𝑡𝑖+1

(𝑖 + 1)! U0 ⊕ E Δ𝑡U0 . (16)

Again, in case (16) cannot be computed directly for the given set
representation, we enclose the setU0 by a zonotope representing
the box enclosure to evaluate the product with the interval matrix E.
From (1)-(2), we obtain the support function evaluation

𝜌 (P̂U (Δ𝑡), ℓ) =
𝜂∑︁
𝑖=0

𝜌

(
U0,

(𝐴𝑖Δ𝑡𝑖+1
(𝑖 + 1)!

)⊤
ℓ

)
+ 𝜌 (E Δ𝑡 box

(U0
)
, ℓ).

An explicit outer-approximation of the reachable set in form of
a template polyhedron can be constructed by choosing a set of
template directions ℓ1 . . . ℓ𝑤 :
R̂ (𝜏𝑘 ) = ⟨𝐻, 𝑓 ⟩𝐻
with 𝐻 = [ℓ1 . . . ℓ𝑤]⊤, 𝑓 = [𝜌 (R̂ (𝜏𝑘 ), ℓ1) . . . 𝜌 (R̂ (𝜏𝑘 ), ℓ𝑤)]⊤ .

The overall computation of upper bounds 𝜌 (R̂ (𝑡), ℓ) is summarized
in Alg. 1 in combination with the computation of lower bounds
presented subsequently.

4.2 Inner-approximations of reachable sets
We now present a novel approach for computing an explicit inner-
approximation qR(𝑡𝑘 ) for the time-point reachable set and lower
bounds 𝜌 ( qR(𝜏𝑘 ), ℓ) for the support function of the time-interval
reachable set. To this end, we replace the outer-approximations for
the homogeneous solution Ĥ (𝜏0) (10) and the particular solution
P̂U (Δ𝑡) (16) by inner-approximations. For the homogeneous so-
lution, we can exploit that the time-point solutions are enclosed
by the time-interval solution to omit the curvature enclose, which
yields the lower bound
𝜌 (H (𝜏0), ℓ) ≥ max{𝜌 (X0, ℓ), 𝜌 (X0, (𝑒𝐴Δ𝑡 )⊤ℓ) + 𝜌 (P𝑢 (Δ𝑡), ℓ)}.

Since constant inputs over time are a subset of time-varying inputs,
the particular solution due to constant inputs represents an inner-
approximation of the particular solution due to time-varying inputs.
Moreover, we can use (13) to compute the analytical solution

qPU (Δ𝑡) = 𝑇 U0 (17)
for the particular solution due to constant inputs with 𝑇 as in (13).
For the computation of a lower bound for the support function of the
time-interval reachable set 𝜌 ( qR(𝜏𝑘 ), ℓ), we use the particular solu-
tion qPU (𝑡𝑘 ) ⊆ PU (𝜏𝑘 ), which represents an inner-approximation
of the particular solution for the whole time interval.

An explicit inner-approximation of the time-point reachable set
qR(𝑡𝑘 ) can be obtained from the support vectors 𝜈 ( qR(𝑡𝑘 ), ℓ) [23],
which can be exactly computed via simulation since we have piece-
wise constant inputs. To this end, we first convert the continuous-
time system to the equivalent discrete-time system

𝑥 (𝑘 + 1) = 𝑒𝐴Δ𝑡𝑥 (𝑘) +𝑇𝑢 (𝑘) . (18)
The initial state 𝑥 (0) is given by the support vector of the back-
propagated initial set

𝑥 (0) = 𝜈 (X0, (𝑒𝐴𝑡𝑘 )⊤ℓ) (19)
Moreover, the input trajectory consisting of a sequence of piece-
wise constant inputs is given by the support vectors of the back-
propagated input sets:

∀𝑗 ∈ {0, ..., 𝑘} : 𝑢 ( 𝑗) = 𝜈 (U0, (𝑒𝐴𝑡 𝑗 )⊤ℓ) + 𝑢̃ . (20)
For each template direction ℓ1, . . . , ℓ𝑤 , we compute the initial state
by (19), the input trajectory by (20), and evaluate the system (18)
to obtain the set of points

∀𝑗 ∈ {1, . . . ,𝑤} : 𝑥 𝑗 (𝑘) = 𝜈 ( qR(𝑡𝑘 ), ℓ𝑗 ),
which represent the support vectors of the inner-approximation of
the reachable set. Since the time-point solution qR(𝑡𝑘 ) is convex, the
convex hull of the support vectors yields an inner-approximation:

⟨[𝜈 ( qR(𝑡𝑘 ), ℓ1), . . . , 𝜈 ( qR(𝑡𝑘 ), ℓ𝑤)]⟩𝑉 ⊆ R(𝑡𝑘 ) .



HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Mark Wetzlinger, Niklas Kochdumper, Stanley Bak, and Matthias Althoff

Figure 1: The halfspace polytope ⟨𝐻, 𝑓 ⟩𝐻 (in red) with 𝐻 =
[ℓ1 . . . ℓ𝑤]⊤, 𝑓 = [𝜌 ( qR(𝑡), ℓ1) . . . 𝜌 ( qR(𝑡), ℓ𝑤)]⊤ constructed from
lower bounds of the support function is in general not an
inner-approximation of the exact reachable set R(𝑡).

In contrast, the time-interval solution R(𝜏𝑘 ) is in general non-
convex, so that we cannot obtain an explicit inner-approximation
analogously to the time-point solution. Moreover, note that a half-
space polytope constructed from the inner-approximations of the
support function is in general not an inner-approximation of the
reachable set, as illustrated in Fig. 1. The support vectors for the
outer-approximation of the reachable set can be computed in the
same way as above.

4.3 Reachability algorithm
The overall reachability algorithm computing upper and lower
bounds as presented in Sec. 4.1 and Sec. 4.2, respectively, is summa-
rized in Alg. 1: After some instantiations before the main loop, both
algorithms share the back-propagation of the direction (Line 8) and
the propagations of P𝑢 (𝑡𝑘+1) (Line 9) and H(𝑡𝑘+1) (Line 10). In
the same loop, we compute upper bounds 𝜌 (R̂ (𝑡), ℓ) (Lines 11-13)
and lower bounds 𝜌 ( qR(𝑡), ℓ) (Lines 14-16) of the time-point and
time-interval reachable sets in a user-defined direction ℓ. We reit-
erate that the propagation scales with O(𝑛2) if the setsH(𝜏0) and
P(Δ𝑡𝑘 ) can be pre-computed, e.g. when using zonotopes, follow-
ing (1)-(3). Note that one can easily parallelize Alg. 1 for multiple
directions of interest ℓ1, . . . , ℓ𝑤 . For an extension to a time-varying
input vector 𝑢̃ (𝑡), one simply has to re-compute the particular so-
lution P𝑢 (Δ𝑡) (Line 9) and the term G𝑢̃ to update the curvature
enclosure C in Line 13 in each step. If an output equation (5b) is
given, we compute the support function of the output set as

𝜌 (Y(𝑡), ℓ) = 𝜌 (R(𝑡),𝐶⊤ℓ) + 𝜌 (V,𝑊 ⊤ℓ) + ℓ⊤𝑞, (21)
which induces no additional approximation error. To increase ef-
ficiency, one can also pre-process any direction by ℓ → 𝐶⊤ℓ and
pre-compute the second and third term in (21) unless 𝑣 (𝑡) varies
over time. The computed upper and lower bounds become arbitrar-
ily tight for Δ𝑡 → 0 [40, Sec. 3], which we exploit in our automated
verification algorithms presented in the next section.

5 VERIFICATION
In this section, we introduce our fully-automated verification algo-
rithms. The first algorithm is tailored to the common case where
the unsafe sets are given as halfspaces; the second algorithm is
capable of verifying arbitrary convex unsafe sets. Both algorithms
also check for falsification and return a counterexample in case of
a safety violation. For ease of presentation, we implicitly assume
the specifications to be defined in the state space as the algorithms
can readily be extended to specifications defined on the outputs.

Algorithm 1 Reachability analysis using support functions

Require: Linear system ¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑝 , initial set X0, input set
U, direction ℓ, time horizon 𝑡end, time step size Δ𝑡 , truncation
order 𝜂
Ensure: Sequence of upper and lower bounds for the time-point
solutions 𝜌 (R̂ (𝑡𝑘 ), ℓ), 𝜌 ( qR(𝑡𝑘 ), ℓ) and time-interval solutions
𝜌 (R̂ (𝜏𝑘 ), ℓ), 𝜌 ( qR(𝜏𝑘 ), ℓ) in direction ℓ
1: 𝑡0 ← 0, 𝑑0 ← ℓ, 𝜌 (H (𝑡0), ℓ) ← 𝜌 (X0, ℓ)
2: 𝑢̃ ← 𝐵 center

(U) + 𝑝, U0 ← 𝐵(U − center
(U))

3: 𝜌 (P𝑢 (𝑡0), ℓ) ← 0, 𝜌 (P̂U (𝑡0), ℓ) ← 0, 𝜌 ( qPU (𝑡0), ℓ) ← 0
4: P𝑢 (Δ𝑡) ← Eq. (12), P̂U (Δ𝑡) ← Eq. (16), qPU (Δ𝑡) ← Eq. (17)
5: C ← FX0 ⊕ G𝑢̃ ⊲ see Eq. (14)-(15)
6: for 𝑘 ← 0 to 𝑡end

Δ𝑡 − 1 do
7: 𝑡𝑘+1 ← 𝑡𝑘 + Δ𝑡, 𝜏𝑘 ← [𝑡𝑘 , 𝑡𝑘+1]
8: 𝑑𝑘+1 ← (𝑒𝐴Δ𝑡 )⊤𝑑𝑘
9: P𝑢 (𝑡𝑘+1) ← 𝑒𝐴Δ𝑡P𝑢 (𝑡𝑘 ) + P𝑢 (Δ𝑡)
10: 𝜌 (H (𝑡𝑘+1), ℓ) ← 𝜌 (X0, 𝑑𝑘+1) + 𝜌 (P𝑢 (𝑡𝑘+1), ℓ)

Upper bounds:
11: 𝜌 (P̂U (𝑡𝑘+1), ℓ) ← 𝜌 (P̂U (𝑡𝑘 ), ℓ) + 𝜌 (P̂U (Δ𝑡), 𝑑𝑘 )
12: 𝜌 (R̂ (𝑡𝑘+1), ℓ) ← 𝜌 (H (𝑡𝑘+1), ℓ) + 𝜌 (P̂U (𝑡𝑘+1), ℓ)
13: 𝜌 (R̂ (𝜏𝑘 ), ℓ) ← max{𝜌 (H (𝑡𝑘 ), ℓ), 𝜌 (H (𝑡𝑘+1), ℓ)}

+𝜌 (C, 𝑑𝑘 ) + 𝜌 (P̂U (𝑡𝑘+1), ℓ)
Lower bounds:

14: 𝜌 ( qPU (𝑡𝑘+1), ℓ) ← 𝜌 ( qPU (𝑡𝑘 ), ℓ) + 𝜌 ( qPU (Δ𝑡), 𝑑𝑘 )
15: 𝜌 ( qR(𝑡𝑘+1), ℓ) ← 𝜌 (H (𝑡𝑘+1), ℓ) + 𝜌 ( qPU (𝑡𝑘+1), ℓ)
16: 𝜌 ( qR(𝜏𝑘 ), ℓ) ← max{𝜌 (H (𝑡𝑘 ), ℓ), 𝜌 (H (𝑡𝑘+1), ℓ)},

+𝜌 ( qPU (𝑡𝑘 ), ℓ)
17: end for

5.1 Verifying halfspace specifications
It is well known that safety specifications given as halfspaces and
reachability analysis using support functions ideally complement
each other: By choosing the directions for the support function eval-
uation as the normal vectors of the halfspaces, one can efficiently
decide whether a given specification is violated. We propose an au-
tomated verification algorithm, which refines the upper and lower
bounds computed by Alg. 1 automatically by adequately tuning
the corresponding algorithm parameters until either the resulting
outer-approximation is fully located outside of the unsafe region
or the inner-approximation intersects that unsafe region. The ac-
curacy of the reachability algorithm in Sec. 4.3 depends on two
parameters, the truncation order 𝜂 and the time step size Δ𝑡 . Since
it holds that for arbitrary values 𝜂 > 1 the computed upper and
lower bounds converge to the exact value for Δ𝑡 → 0 [40, Sec. 3],
we first determine a suitable value for 𝜂 before tuning the time step
size. Hence, the truncation order 𝜂 is tuned as in [55, Sec. 5.1] by
using the partial sums

T ( 𝑗 ) =
𝑗⊕
𝑖=2

[ (
𝑖
−𝑖
𝑖−1 − 𝑖 −1

𝑖−1
)
Δ𝑡𝑖 , 0

]𝐴𝑖
𝑖!

from the computation of F in (14). We increase 𝜂 until the relative
change between T ( 𝑗 ) and T ( 𝑗+1) in the Frobenius norm computed



Fully-Automated Verification of Linear Systems Using Reachability Analysis with Support Functions HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

Algorithm 2 Verification algorithm (halfspace specifications)

Require: Linear system ¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑝 , initial set X0, input set
U, time horizon 𝑡end, safe set K = ⟨𝐻, 𝑓 ⟩𝐻
Ensure: Safe (∀𝑡 ∈ [0, 𝑡end] : R(𝑡) ⊆ K) or unsafe
(∃𝑡 ∈ [0, 𝑡end] : R(𝑡) ⊈ K)
1: for 𝑖 ← 1 to𝑤 do
2: ℓ𝑖 ← 𝐻⊤(𝑖,· ) ,Δ𝑡 ← 𝑡end
3: repeat
4: verified← true

5: for 𝑘 ← 0 to 𝑡end
Δ𝑡 − 1 do

6: 𝜌 (R̂ (𝜏𝑘 ), ℓ𝑖 ), 𝜌 ( qR(𝜏𝑘 ), ℓ𝑖 ) ← Alg. 1 with Δ𝑡

7: if 𝜌 (R̂ (𝜏𝑘 ), ℓ𝑖 ) > 𝑓(𝑖 ) then
8: verified← false

9: else if 𝜌 ( qR(𝜏𝑘 ), ℓ𝑖 ) > 𝑓(𝑖 ) then
10: return unsafe
11: end if
12: end for
13: Δ𝑡 ← 0.5Δ𝑡
14: until verified = true

15: end for
16: return safe

according to [21, Thm. 10] is smaller than 10−10. Since the size of
additional terms T ( 𝑗 ) goes to 0 for𝜂 →∞ and our bound is relative,
we will always find a value for 𝜂 . The time step size is tuned by
halving the last value. This simple tuning strategy is justified by
the fact that the reachability algorithm in Sec. 4.3 is so efficient that
the computation time of a more sophisticated tuning method for
Δ𝑡 may exceed the computation time for reachability analysis.

Alg. 2 summarizes our verification procedure for a specification
represented by the safe set K = ⟨𝐻, 𝑓 ⟩𝐻 , which is equivalent to
multiple unsafe sets represented as halfspaces: For each direction
ℓ𝑖 = 𝐻⊤(𝑖,· ) ,∀𝑖 ∈ {1, . . . ,𝑤}, we compute upper bounds for the
support function of the reachable set (Line 6) and check whether the
corresponding outer-approximation remains within K at all times
(Line 7). At the same time, we compute lower bounds (Line 6) and
check whether the corresponding inner-approximation leavesK in
any step (Line 9), which would immediately falsify the specification.
If the specification can neither be proven nor disproven by the
current results, we re-compute the upper and lower bounds using
a smaller time step size (Line 13). As both bounds converge to the
support function for the exact reachable set, Alg. 2 is always able
to verify or falsify decidable safety specifications in finite time.

In case of a safety violation (Line 10), we return a counterexample:
The support vector 𝜈 ( qR(𝑡𝑘 ), ℓ𝑖 ) for the inner-approximation qR(𝑡𝑘 )
that violates the safety specification is located inside an unsafe
set, and thus corresponds to a falsifying trajectory. Hence, we use
(19)-(20) to obtain the initial state 𝑥 (0) and a piecewise constant
input trajectory𝑢 (𝑡), and then evaluate (18) to compute the support
vector 𝜈 ( qR(𝑡𝑘 ), ℓ𝑖 ), which represents the counterexample.

Substantial runtime improvements can be achieved as follows:
Instead of computing the upper and lower bounds for the entire
entire time horizon beforehand and checking for safety violation
afterward, we already perform the checks during the computation

of the reachable set. Moreover, previously verified time intervals
do not have to be checked in future iterations. Due to the fixed
time step size Δ𝑡 in each iteration of the main loop, one can pre-
compute all directions𝑑𝑘 (Line 8 of Alg. 1). In some cases, this allows
one to reformulate the iterative vector-matrix multiplications in
the support function evaluation of the sets P(Δ𝑡) (Line 11 of Alg.
1) and C (Line 13 of Alg. 1) into a more efficient matrix-matrix
multiplication. Lastly, the main loop (Lines 1-15) can be parallelized.
For our evaluation in Sec. 6, we initialize the time step size by a
hundreth of the time horizon and quarter the time step size in
Line 13, which is a heuristic that we observed to work well in
practice.

5.2 Verifying arbitrary convex unsafe sets
The Gilbert-Johnson-Keerthi (GJK) algorithm [29] offers an elegant
way to check if two convex sets intersect using only their support
function evaluation. Consequently, we can utilize this algorithm
to extend the verification algorithm from Sec. 5.1 to arbitrary con-
vex unsafe sets. A similar idea was previously presented in [24],
where the GJK algorithm is used in combination with support func-
tion reachable set computation to eliminate spurious transitions in
hybrid system reachability.

Let us briefly recall the GJK algorithm: It is based on the fact that
checking if two convex sets S1,S2 ⊂ R𝑛 intersect is equivalent to
checking if the origin is contained within the set S = S1 ⊕ (−S2):(S1 ∩ S2 ≠ ∅) ⇔ (

0 ∈ S1 ⊕ (−S2)
)
.

If there exists any direction ℓ for which 𝜌 (S, ℓ) < 0, the set S does
not contain the origin, and thus the two sets S1 and S2 do not inter-
sect. In contrast, if the polytope P = ⟨[𝜈 (S, ℓ1) . . . 𝜈 (S, ℓ𝑖 )]⟩𝑉 ⊆ S
constructed from the support vectors along multiple directions does
contain the origin, the sets S1 and S2 intersect. We can replace an
explicit computation of S by computing its support function and
corresponding support vectors using (2):

𝜌 (S, ℓ) = 𝜌 (S1, ℓ) + 𝜌 (S2,−ℓ), 𝜈 (S, ℓ) = 𝜈 (S1, ℓ) + 𝜈 (S2,−ℓ).
The GJK algorithm selects new directions ℓ𝑖 until either 𝜌 (S, ℓ𝑖 ) < 0
or 0 ∈ P holds, where the next direction is the normal vector of the
polytope facet from P that is closest to the origin. Determining this
facet is in general computationally demanding, since the number
of polytope facets can be exponential in the number of polytope
vertices. To avoid this issue, the GJK algorithm uses simplices, which
are polytopes with exactly 𝑛 + 1 vertices and consequently also
only 𝑛 + 1 facets. Thus, the algorithm constructs in each iteration
a new simplex from the polytope facet closest to the origin and
the support vector in the chosen new direction, and disregards all
remaining polytope vertices. This procedure is visualized in Fig. 2.

In the verification setting, the setS1 is the reachable setR(𝑡) and
the set S2 is a convex unsafe set L , so that S = R(𝑡) ⊕ (−L). Our
verification algorithm is summarized in Alg. 3: In each iteration we
first compute upper and lower bounds of the support function in the
current direction ℓ𝑖 (Line 3), based on which we try to disprove that
the sets intersect by checking if 𝜌 (S, ℓ𝑖 ) ≤ 𝜌 (R̂ (𝑡), ℓ𝑖 )+𝜌 (L,−ℓ𝑖 ) <
0 holds (Line 4). If true, we found a separating hyperplane between
R(𝑡) andL , which proves that the system is safe. Otherwise, we use
the corresponding support vector of the lower bound to check if we
can prove that the sets intersect (Line 12). In case safety can neither



HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Mark Wetzlinger, Niklas Kochdumper, Stanley Bak, and Matthias Althoff

1 2

3 4

Figure 2: Schematic visualization of the iterations of the GJK
algorithm for a set S = S1 ⊕ (−S2).

be proven nor disproven based on the current direction ℓ𝑖 , we choose
a new direction ℓ𝑖+1 = ℎ. If the polytope qP constructed from the
support vectors is already non-degenerate (𝑖 > 𝑛 + 1, Line 18), the
new direction is chosen as the normal vector of the polytope facet
that is closest to the origin (Line 19), which can be determined by
solving the quadratic program min

𝑥∈ qP ∥𝑥 ∥22 to obtain the point
in qP closest to the origin. Otherwise, we apply Gram-Schmidt
orthogonalization to construct a direction orthogonal to the space
spanned by the support vectors and pointing towards the origin
(Line 23).

A major challenge is that we cannot compute the exact value of
the support function for the reachable set, but only tight upper and
lower bounds. Hence, we have to decide when to stop generating
new directions ℓ𝑖 and instead refine the tightness of the approxima-
tions. If 𝜌 ( qR(𝑡), ℓ𝑖 ) + 𝜌 (L,−ℓ𝑖 ) < 0 holds for any direction ℓ𝑖 , we
cannot prove that an intersection occurs using the current accuracy
of the lower bound (Line 7), but we may still be able to prove that no
intersection occurs using the upper bound. Only if the polytope P̂
constructed from the support vectors of the upper bound contains
the origin, we definitely cannot disprove the intersection using
the current accuracy, and thus reduce the time step size (Line 15).
The truncation order 𝜂 is tuned as described in Sec. 5.1. Finally,
since the computed upper and lower bounds converge to the exact
value for Δ𝑡 → 0 and an increasing number of directions ℓ𝑖 , it is
guaranteed that Alg. 3 is always able to either prove or disprove
safety in decidable cases.

For simplicity, Alg. 3 only considers the intersection between
the reachable set R(𝑡) at a specific point in time and a single unsafe
set L . To extend this to checking multiple unsafe sets L1, ...,L𝑏 for
all times 𝑡 ∈ [0, 𝑡end] as required by Problem 1, we can simply run
Alg. 3 for all possible pairs of time-interval reachable sets R(𝜏𝑘 )
and unsafe sets L 𝑗 , where we omit certain pairs if the unsafe sets
are time-varying. Note that we still use the time-point reachable
set qR(𝑡𝑘 ) ⊆ qR(𝜏𝑘 ) ⊆ R(𝜏𝑘 ) for the inner-approximation since we
require that all sets are convex, which is not the case for qR(𝜏𝑘 ).

Improvements to accelerate the verification include parallelizing
the computations for the different (R(𝜏𝑘 ),L 𝑗 )-pairs, re-using the
support functions computed for the current pair to disprove inter-
sections for other pairs, initializing the first search direction based
on the distance between the unsafe set and a simulated trajectory,
and selecting the new search direction based on the polytope P̂

Algorithm 3 Verification algorithm (arbitrary convex unsafe sets)

Require: Linear system ¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑝 , initial set X0, input set
U, time 𝑡 , unsafe set L
Ensure: Safe (R(𝑡) ∩ L = ∅) or unsafe (R(𝑡) ∩ L ≠ ∅)
1: 𝑖 ← 1, ℓ1 ← 𝐼𝑛 ( ·,1) , Δ𝑡 ← 𝑡 , P̂, qP ← ∅, falsifiable← true

2: repeat
3: 𝜌 (R̂ (𝑡), ℓ𝑖 ), 𝜌 ( qR(𝑡), ℓ𝑖 ) ← Alg. 1 with Δ𝑡

4: if 𝜌 (R̂ (𝑡), ℓ𝑖 ) + 𝜌 (L,−ℓ𝑖 ) < 0 then
5: return safe
6: end if
7: if 𝜌 ( qR(𝑡), ℓ𝑖 ) + 𝜌 (L,−ℓ𝑖 ) < 0 then
8: falsifiable← false

9: end if
10: 𝑣̂𝑖 ← 𝜈 (R̂ (𝑡), ℓ𝑖 ) − 𝜈 (L,−ℓ𝑖 ), q𝑣𝑖 ← 𝜈 ( qR(𝑡), ℓ𝑖 ) − 𝜈 (L,−ℓ𝑖 )
11: P̂ ← conv(P̂, 𝑣̂𝑖 ), qP ← conv( qP, q𝑣𝑖 )
12: if 0 ∈ qP then
13: return unsafe
14: else if falsifiable = false ∧ 0 ∈ P̂ then
15: Δ𝑡 ← 0.5Δ𝑡 , 𝑖 ← 1, P̂, qP ← ∅, falsifiable← true

16: continue
17: end if
18: if 𝑖 > 𝑛 + 1 then
19: H = ⟨ℎ, 𝑓 ⟩𝐻 ← halfspace for facet of qP closest to 0
20: 𝑜1, . . . , 𝑜𝑛 ← indices of the vertices that lie on facetH
21: P̂ ← ⟨[𝑣̂𝑜1 . . . 𝑣̂𝑜𝑛 ]⟩𝑉 , qP ← ⟨[q𝑣𝑜1 . . . q𝑣𝑜𝑛 ]⟩𝑉
22: else
23: ℎ← vector orthogonal to q𝑣1, . . . ,q𝑣𝑖 using Gram-Schmidt

24: end if
25: ℓ𝑖+1 ← ℎ, 𝑖 ← 𝑖 + 1

instead of qP once we know that the inner-approximation cannot
be used to disprove safety (falsifiable = false in Alg. 3).

Finally, we show how to construct a counterexample: If the
system is unsafe, the simplex qP = ⟨[𝑣1 . . . 𝑣𝑛+1]⟩𝑉 in Alg. 3 contains
the origin. For each vertex of qP, we determine the weighting factor
𝜆 𝑗 from the linear equation system

∑𝑛+1
𝑗=1 𝜆 𝑗𝑣 𝑗 = 0,

∑𝑛+1
𝑗=1 𝜆 𝑗 = 1,

and use them to obtain the initial state 𝑥 (0) and input trajectory
𝑢 (𝑘) by interpolation, i.e.,

𝑥 (0) =
𝑛+1∑︁
𝑗=1

𝜆 𝑗𝑥 𝑗 (0), 𝑢 (𝑘) =
𝑛+1∑︁
𝑗=1

𝜆 𝑗𝑢 𝑗 (𝑘),

between the values 𝑥 𝑗 (0) and 𝑢 𝑗 (𝑘) for the trajectories resulting in
the vertices of qP.
6 NUMERICAL EXAMPLES
We now demonstrate the performance of our verification algo-
rithms on several challenging benchmarks. Our algorithms are
implemented in the MATLAB toolbox CORA [2] and a repeatability
package is publicly available1. All computations are performed on
a 2.59GHz quad-core i7 processor with 32GB memory.

1https://codeocean.com/capsule/1155014/tree/v2



Fully-Automated Verification of Linear Systems Using Reachability Analysis with Support Functions HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

Table 1: Comparison of computation times for the ARCH benchmarks, where 𝑛 is the system dimension,𝑚 is the number of
inputs, 𝑟 is the output dimension, and𝑤 is the number of halfspace specifications. For our approach we additionally specify the
number of refinement iterations of Alg. 2. The computation times of the other tools are taken from [3].

Benchmark Our approach Time comparison
Identifier 𝑛 𝑚 𝑟 𝑤 Safe? Time Refinements CORA [2] HyDRA [51] JuliaReach [11] SpaceEx [27]
HEAT01 125 0 1 1 ✓ 0.17s 2 2.2s 13.2s 0.13s 4.2s
HEAT02 1000 0 1 1 ✓ 2.2s 2 9.3s 160s 32s —
CBC01 201 0 1 1 ✓ 0.11s 2 7.1s — 1.4s 312.78s
CBC02 1001 0 1 1 ✓ 2.2s 2 — — — —
CBC03 2001 0 1 1 ✓ 28s 3 — — — —
CBF01 200 1 1 1 ✓ 0.27s 2 30s — 12s 318.88s
CBF02 1000 1 1 1 ✓ 3.7s 2 — — — —
CBF03 2000 1 1 1 ✓ 49s 3 — — — —
BLDC01-BDS01 49 0 1 2 ✓ 0.07s 2 2.9s 0.426s 0.0096s 1.6s
BLDF01-BDS01 48 1 1 2 ✓ 0.09s 2 3.3s — 0.012s 1.8s
ISSC01-ISS02 273 0 3 1 ✓ 0.11s 1 1.3s — 1.4s 29s
ISSC01-ISU02 273 0 3 1 ✗ 0.16s 2 0.072s — 1.4s 29s
ISSF01-ISS01 270 3 3 1 ✓ 0.49s 2 59s — 10s 49s
ISSF01-ISU01 270 3 3 1 ✗ 0.16s 1 38s — 10s 48s

6.1 ARCH benchmarks
In the annual ARCH competition, state-of-the-art reachability tools
compete to efficiently verify a set of benchmarks. We applied our
verification algorithm to all LTI systems from the 2021 edition [3]:
The HEAT benchmarks spatially discretize the partial differential
heat equation with varying mesh size, the CB benchmarks monitor
oscillations along a clamped beam, the BLD benchmarks describe
spatial and rotational movement of individual stories of a hospital
building, and the ISS benchmarks represent structural models of a
service module of the International Space Station.

Since the specifications of all benchmarks are defined by half-
spaces, we used the verification algorithm from Sec. 5.1. Table 1
shows that all specifications are correctly verified or falsified using
at most three time step size refinements. The computation time is
fastest in most cases and often even orders of magnitude faster than
for other tools, even though their results are expert-tuned and our
algorithm works fully automatically. Additionally, we were able to
solve higher-dimensional variations of the CB benchmark where
other tools failed, and our algorithms provide a falsifying trajec-
tory as shown in Fig. 3. Part of the reason is that the propagation
scales with O(𝑛2) as discussed in Sec. 4.3. In summary, this shows
a clear superiority of Alg. 2 over state-of-the-art reachability tools.
Moreover, even non-experts are able to efficiently solve challenging
verification tasks since our algorithm is fully automated.

6.2 Frequency and voltage control
To demonstrate the benefit of our verification algorithms for real-
world applications, we consider the highly relevant use case of
power system frequency and voltage control. In particular, we ex-
amine the verification task described in [42], where the goal is
to show that a given PI controller keeps the grid frequency and
voltage of a power systems stable within a certain margin. Here,
we analyze various IEEE busses, namely the 9-bus, 14-bus, and
33-bus systems with state dimensions 𝑛 = 28, 𝑛 = 46, and 𝑛 = 133,

0 2 4 6 8 10 12 14
−5

0

5
·10−4

𝑦
3

0 2 4 6 8 10 12 14
0

0.5

1

Time

𝑢
𝑖(𝑡
)

𝑢1 𝑢2 𝑢3

Figure 3: Specifications for ISSF01-ISU01 in red (dashed) and
falsifying trajectory in blue (top); input trajectory 𝑢 (𝑡) ∈ R3

generating the falsifying trajectory (bottom).

0 5 10 15 20
49.95

50

50.05

Fr
eq
ue
nc
y

0 5 10 15 20
0.95

1

1.05

Time

Vo
lta

ge
(n
od

e
7)

Figure 4: Reachable set for the 9-bus, where the bounds de-
fined by the specification are depicted by the dashed red lines.



HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Mark Wetzlinger, Niklas Kochdumper, Stanley Bak, and Matthias Althoff

respectively, for the closed-loop dynamics. Additionally, the load
change is represented by a time-varying constant input vector 𝑢̃ (𝑡).
For all systems, the frequency has to remain within 50 ± 0.05Hz. In
addition, for the 9-bus the voltage drops of four generators have to
stay within a margin of ±0.05V of the individual reference values.

In [42], the authors computed explicit reachable sets using the
approach from [1, Alg. 3], which requires 15.1s, 15.5s, and 27.9s for
the different bus systems (on our machine). Our approach yields
significant speed-ups, since Alg. 2 successfully verifies all specifi-
cations in 0.49s, 0.14s, and 1.3s, respectively. Fig. 4 visualizes the
resulting reachable set enclosure for the 9-bus. In summary, our
verification improves the previous results by an order of magnitude,
which enables real-time execution of verification during runtime.

6.3 Quadcopter example
Finally, we demonstrate that our approach can efficiently verify lin-
ear systems even in the presence of complex time-varying obstacles.
To this end, we consider a quadcopter, where the task is to verify
that a planned reference trajectory 𝑥ref (𝑡) tracked by a feedback
controller is robustly safe despite disturbances and measurement
errors. We describe the dynamics of the quadcopter with a linear
point-mass model, which yields the closed-loop system[ ¤𝑥 (𝑡)
¤𝑥ref (𝑡)

]
=

[
𝐴 + 𝐵𝐾 −𝐵𝐾

0 𝐴

] [
𝑥 (𝑡)
𝑥ref (𝑡)

]
+
[
𝐵 𝐵 𝐵𝐾
𝐵 0 0

]
𝑢 (𝑡) +

[
𝑝
𝑝

]

𝑦 (𝑡) = [
𝐶 0

] [ 𝑥 (𝑡)
𝑥ref (𝑡)

]
+ 𝑣 (𝑡)

with 𝐴 = [0 [𝐼3 0]⊤], 𝐵 = [0 𝐼3]⊤, 𝐶 = [𝐼3 0], 𝑝 = −9.81 · 1 ∈
R6. The feedback matrix 𝐾 ∈ R3×6 is determined by applying an
LQR control approach with state weighting matrix 𝑄 = 𝐼6 and
input weighting matrix 𝑅 = 0.1 · 𝐼3 to the open-loop system. Given
an initial state 𝑥 (0) ∈ R6, a piecewise constant reference input
𝑢ref (𝑡), the set of process noiseW = 0.1 · [−1, 1] ⊆ R3, and the
set of measurement errors D = 0.01 · [−1, 1] ⊆ R6, the initial
set is X0 = (𝑥 (0) ⊕ D) × 𝑥 (0) and the set of uncertain inputs is
U = 𝑢ref (𝑡) ×W × D. The output 𝑦 (𝑡) ∈ R3 represents the space
occupied by the quadcopter, where the set V = ⟨0, 0.072 · 𝐼3⟩𝐸
accounts for the spatial dimension of the quadcopter.

As a first verification task, we consider that the quadcopter has
to reach the goal set at the end of a 15m long tunnel filled with
static obstacles. For this scenario the initial state is 𝑥 (0) = 0 ∈ R6,
the reference input 𝑢ref (𝑡) consists of 100 constant pieces, and the
final time is 𝑡end = 10s. For the setup described above, our approach
successfully verifies the given trajectory in only 0.51s. Next, we
increase the process noise toW = 0.2 · [−1, 1] ⊆ R3 to obtain an
unsafe scenario. Here, our automated verifier disproves safety in
only 2.9s and returns the falsifying trajectory visualized in Fig. 5a.

For the second verification task, the quadcopter has to avoid colli-
sions with a human, whose occupancy space is predicted by the tool
SaRA [49]. The resulting time-varying obstacles are represented
as capsules, the initial state is 𝑥 (0) = 0 ∈ R6, the reference input
𝑢ref (𝑡) consists of 30 constant pieces, and the final time is 𝑡end = 3s.
For the setup with process noiseW = 0.1 · [−1, 1] ⊆ R3 the refer-
ence trajectory is safe, which our algorithm sucessfully verifies in
0.94s. By increasing the process noise toW = 0.2 · [−1, 1] ⊆ R3 we
obtain an unsafe scenario, for which our verifier disproves safety in
0.64s and returns the falsifying trajectory depicted in Fig. 5b. This

0
5

10
15

(a) Static obstacles (red), goal set (green), and falsifying trajectory
(blue).

(b) Time-varying obstacles (red) and falsifying trajectory (blue) at
𝒕 = {0, 1, 2.3}s.

Figure 5: Quadcoptor verification task.

demonstrates that our automated verifier can solve highly complex
verification tasks with arbitrary convex time-varying obstacles very
efficiently, even though both considered tasks represent edge cases
with a narrow margin between safe and unsafe.

7 CONCLUSION
We address the verification of safety specifications for linear time-
invariant systems. Our proposed algorithm based on reachability
analysis with support functions operates fully automatically and
refines the tightness of the upper and lower bounds until safety can
either be proven or disproven; in the latter case, we additionally
return an initial state and an input trajectory yielding a counterex-
ample. For the common case with unsafe sets defined as halfspaces,
reducing the complexity of the propagation to quadratic with re-
spect to the state dimension results in significant runtime improve-
ments compared to state-of-the-art reachability tools, which enables
us to verify previously unanalyzable high-dimensional benchmarks.
Furthermore, an extension to verify arbitrary convex unsafe sets
without major computational overhead has been demonstrated on
a complex safety-critical scenario, where a quadrotor aims to avoid
a human moving in close proximity. The low computation time
highlights the real-time capability of our approach.

ACKNOWLEDGMENTS
The authors gratefully acknowledge partial financial supports from
the research training group ConVeY funded by the German Re-
search Foundation under grant GRK 2428 and the project justIT-
SELF funded by the European Research Council (ERC) under grant
agreement No 817629. This material is based upon work supported
by the Air Force Office of Scientific Research and the Office of
Naval Research under award numbers FA9550-19-1-0288, FA9550-
21-1-0121, FA9550-23-1-0066 and N00014-22-1-2156. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the United States Air Force or the United States Navy.



Fully-Automated Verification of Linear Systems Using Reachability Analysis with Support Functions HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

REFERENCES
[1] M. Althoff. 2010. Reachability analysis and its application to the safety assessment

of autonomous cars. Dissertation. Technische Universität München.
[2] M. Althoff. 2015. An introduction to CORA 2015. In Proc. of the Workshop

on Applied Verification for Continuous and Hybrid Systems. 120–151. https:
//doi.org/10.29007/zbkv

[3] M. Althoff, E. Ábrahám, M. Forets, G. Frehse, D. Freire, C. Schilling, S. Schupp,
and M. Wetzlinger. 2021. ARCH-COMP21 category report: continuous and
hybrid systems with linear continuous dynamics. In Proc. of the 8th International
Workshop on Applied Verification of Continuous and Hybrid Systems. 1–31. https:
//doi.org/10.29007/lhbw

[4] M. Althoff and G. Frehse. 2016. Combining zonotopes and support functions for
efficient reachability analysis of linear systems. In Proc. of the 55th IEEE Conference
on Decision and Control. 7439–7446. https://doi.org/10.1109/CDC.2016.7799418

[5] M. Althoff, G. Frehse, and A. Girard. 2021. Set propagation techniques for
reachability analysis. Annual Review of Control, Robotics, and Autonomous Systems
4, 1 (2021), 369–395. https://doi.org/10.1146/annurev-control-071420-081941

[6] M. Althoff and B. H. Krogh. 2011. Zonotope bundles for the efficient computation
of reachable sets. In Proc. of the 50th IEEE Conference on Decision and Control.
6814–6821. https://doi.org/10.1109/CDC.2011.6160872

[7] M. Althoff, O. Stursberg, andM. Buss. 2007. Reachability analysis of linear systems
with uncertain parameters and inputs. In Proc. of the 46th IEEE Conference on
Decision and Control. 726–732. https://doi.org/10.1109/CDC.2007.4434084

[8] E. Asarin, O. Bournez, T. Dang, and O. Maler. 2000. Approximate reachability
analysis of piecewise-linear dynamical systems. In 3rd International Workshop on
Hybrid Systems: Computation and Control. Springer, 20–31. https://doi.org/10.
1007/3-540-46430-1_6

[9] S. Bak, S. Bogomolov, and C. Schilling. 2016. High-level hybrid systems analysis
with Hypy. In Proc. of the Workshop on Applied Verification of Continuous and
Hybrid Systems. 80–90. https://doi.org/10.29007/4f3d

[10] S. Bak and P. S. Duggirala. 2017. Simulation-equivalent reachability of large
linear systems with inputs. In Proc. of International Conference on Computer Aided
Verification. 401–420. https://doi.org/10.1007/978-3-319-63387-9_20

[11] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. 2019. Ju-
liaReach: a toolbox for set-based reachability. In Proc. of the 22nd ACM In-
ternational Conference on Hybrid Systems: Computation and Control. 39–44.
https://doi.org/10.1145/3302504.3311804

[12] S. Bogomolov, G. Frehse,M. Giacobbe, and T. A. Henzinger. 2017. Counterexample-
guided refinement of template polyhedra. In 23rd International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 589–606.
https://doi.org/10.1007/978-3-662-54577-5_34

[13] S. Bogomolov and et al. 2016. Guided search for hybrid systems based on coarse-
grained space abstractions. International Journal on Software Tools for Technology
Transfer 18 (2016), 449–467. https://doi.org/10.1007/s10009-015-0393-y

[14] M. Chen, S. Herbert, and C. J. Tomlin. 2017. Exact and efficient Hamilton-Jacobi
guaranteed safety analysis via system decomposition. In Proc. of the International
Conference on Robotics and Automation. IEEE, 87–92. https://doi.org/10.1109/
ICRA.2017.7989015

[15] M. Chen and C. J. Tomlin. 2015. Exact and efficient Hamilton-Jacobi reachability
for decoupled systems. In Proc. of the 54th International Conference on Decision
and Control. IEEE, 1297–1303. https://doi.org/10.1109/CDC.2015.7402390

[16] A. Chutinan and B. H. Krogh. 2003. Computational techniques for hybrid system
verification. IEEE Trans. Automat. Control 48, 1 (2003), 64–75. https://doi.org/10.
1109/TAC.2002.806655

[17] T. Dang. 2000. Verification and synthesis of hybrid systems. Dissertation. Institut
National Polytechnique de Grenoble - INPG.

[18] T. Dang, A. Donzé, O. Maler, and N. Shalev. 2008. Sensitive state-space exploration.
In Proc. of the 47th IEEE Conference on Decision and Control. 4049–4054. https:
//doi.org/10.1109/CDC.2008.4739371

[19] A. Donzé and O. Maler. 2007. Systematic simulation using sensitivity analysis.
In 10th International Workshop on Hybrid Systems: Computation and Control.
Springer, 174–189. https://doi.org/10.1007/978-3-540-71493-4_16

[20] P. S. Duggirala and M. Viswanathan. 2016. Parsimonious, simulation based
verification of linear systems. In Proc. of the 28th International Conference on
Computer Aided Verification. Springer, 477–494. https://doi.org/10.1007/978-3-
319-41528-4_26

[21] R. Farhadsefat, J. Rohn, and T. Lotfi. 2011. Norms of interval matrices. Techni-
cal Report. Academy of Sciences of the Czech Republic, Institute of Computer
Science.

[22] M. Forets and C. Schilling. 2022. Conservative time discretization: a comparative
study. In International Conference on Integrated Formal Methods. Springer, 149–
167.

[23] G. Frehse. 2015. Computing maximizer trajectories of affine dynamics for
reachability. In Proc. of the 54th Conference on Decision and Control. 7454–7461.
https://doi.org/10.1109/CDC.2015.7403397

[24] G. Frehse, S. Bogomolov, M. Greitschus, T. Strump, and A. Podelski. 2015. Elimi-
nating spurious transitions in reachability with support functions. In Proc. of the
18th International Conference on Hybrid Systems: Computation and Control. ACM,

New York, NY, USA, 149–158. https://doi.org/10.1145/2728606.2728622
[25] G. Frehse, R. Kateja, and C. Le Guernic. 2013. Flowpipe approximation and

clustering in space-time. In Proc. of the 16th ACM International Conference on
Hybrid Systems: Computation and Control. 203–212. https://doi.org/10.1145/
2461328.2461361

[26] G. Frehse, B. H. Krogh, and R. A. Rutenbar. 2006. Verifying analog oscillator
circuits using forward/backward abstraction refinement. In Proc. of the Design
Automation & Test in Europe Conference. IEEE, 257–262. https://doi.org/10.1109/
DATE.2006.244113

[27] G. Frehse and et al. 2011. SpaceEx: Scalable verification of hybrid systems. In
Proc. of the 23rd International Conference on Computer Aided Verification (LNCS
6806). Springer, 379–395. https://doi.org/10.1007/978-3-642-22110-1_30

[28] T. Gan, M. Chen, Y. Li, B. Xia, and N. Zhan. 2018. Reachability analysis for
solvable dynamical systems. IEEE Trans. Automat. Control 63, 7 (2018), 2003–2018.
https://doi.org/10.1109/TAC.2017.2763785

[29] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. 1988. A fast procedure for com-
puting the distance between complex objects in three-dimensional space. IEEE
Journal on Robotics and Automation 4, 2 (1988), 193–203.

[30] A. Girard. 2005. Reachability of uncertain linear systems using zonotopes. In 8th
International Workshop on Hybrid Systems: Computation and Control. Springer,
291–305. https://doi.org/10.1007/978-3-540-31954-2_19

[31] A. Girard and C. Le Guernic. 2008. Efficient reachability analysis for linear
systems using support functions. IFAC Proceedings Volumes 41, 2 (2008). https:
//doi.org/10.3182/20080706-5-KR-1001.01514

[32] A. Girard, C. Le Guernic, and O. Maler. 2006. Efficient computation of reachable
sets of linear time-invariant systems with inputs. In 9th International Workshop
on Hybrid Systems: Computation and Control. Springer, 257–271. https://doi.org/
10.1007/11730637_21

[33] A. Hamadeh and J. Goncalves. 2008. Reachability analysis of continuous-time
piecewise affine systems. Automatica 44, 12 (2008), 3189–3194. https://doi.org/
10.1016/j.automatica.2008.05.023

[34] C. Huang, X. Chen,W. Lin, Z. Yang, andX. Li. 2017. Probabilistic safety verification
of stochastic hybrid systems using barrier certificates. ACM Transactions on
Embedded Computing Systems 16, 5s, Article 186 (2017). https://doi.org/10.1145/
3126508

[35] T. T. Johnson, S. Bak, M. Caccamo, and L. Sha. 2016. Real-time reachability for
verified simplex design. ACM Transactions on Embedded Computing Systems 15,
2 (2016). https://doi.org/10.1145/2723871

[36] S. Kousik, A. Dai, and G. X. Gao. 2022. Ellipsotopes: Uniting ellipsoids and
zonotopes for reachability analysis and fault detection. IEEE Trans. Automat.
Control Early Access (2022), 1–13. https://doi.org/10.1109/TAC.2022.3191750

[37] A. A. Kurzhanskiy and P. Varaiya. 2000. Ellipsoidal techniques for reachability
analysis. In 3rd International Workshop on Hybrid Systems: Computation and
Control. Springer, 202–214. https://doi.org/10.1007/3-540-46430-1_19

[38] A. A. Kurzhanskiy and P. Varaiya. 2006. Ellipsoidal Toolbox (ET). In Proceedings
of the 45th IEEE Conference on Decision and Control. 1498–1503. https://doi.org/
10.1109/CDC.2006.377036

[39] C. Le Guernic. 2009. Reachability analysis of hybrid systems with linear continuous
dynamics. Dissertation. Université Joseph-Fourier - Grenoble I.

[40] C. Le Guernic and A. Girard. 2010. Reachability analysis of linear systems
using support functions. Nonlinear Analysis: Hybrid Systems 4, 2 (2010), 250–262.
https://doi.org/10.1016/j.nahs.2009.03.002

[41] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. 2005. A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans.
Automat. Control 50, 7 (2005), 947–957. https://doi.org/10.1109/TAC.2005.851439

[42] A. Mohapatra, V. S. Perić, and T. Hamacher. 2021. Formal verification of grid
frequency controllers. In 2021 IEEE PES Innovative Smart Grid Technologies Europe.
1–6. https://doi.org/10.1109/ISGTEurope52324.2021.9640096

[43] A. Platzer. 2008. Differential dynamic logic for hybrid systems. Journal of
Automated Reasoning 41 (2008), 143–189. https://doi.org/10.1007/s10817-008-
9103-8

[44] A. Platzer. 2010. Logical analysis of hybrid systems: Proving theorems for complex
dynamics. Springer. https://doi.org/10.1007/978-3-642-14509-4

[45] P. Prabhakar and M. Viswanathan. 2011. A dynamic algorithm for approximate
flow computations. In Proc. of the 14th ACM International Conference on Hybrid
Systems: Computation and Control. 133–142. https://doi.org/10.1145/1967701.
1967722

[46] S. Prajna and A. Jadbabaie. 2004. Safety verification of hybrid systems using
barrier certificates. In International Workshop on Hybrid Systems: Computation
and Control. Springer, 477–492. https://doi.org/10.1007/978-3-540-24743-2_32

[47] S. Prajna, A. Jadbabaie, and G. J. Pappas. 2007. A framework for worst-case
and stochastic safety verification using barrier certificates. IEEE Trans. Automat.
Control 52, 8 (2007), 1415–1428. https://doi.org/10.1109/TAC.2007.902736

[48] S. Ratschan and Z. She. 2007. Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. Transactions on Embedded Computing
Systems 6, 1 (2007), 8–31. https://doi.org/10.1145/1210268.1210276

[49] S. R. Schepp, J. Thumm, S. B. Liu, and M. Althoff. 2022. SaRA: A tool for safe
human-robot coexistence and collaboration through reachability analysis. In



HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Mark Wetzlinger, Niklas Kochdumper, Stanley Bak, and Matthias Althoff

Proc. of the International Conference on Robotics and Automation. 4312–4317.
[50] S. Schupp and E. Ábrahám. 2018. Efficient dynamic error reduction for hybrid

systems reachability analysis. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 287–302. https://doi.org/
10.1007/978-3-319-89963-3_17

[51] S. Schupp and E. Ábrahám. 2018. The HyDRA tool–a playground for the de-
velopment of hybrid systems reachability analysis methods. In Proc. of the PhD
Symposium at iFM18. 22–23.

[52] J. K. Scott, D. Raimondo, G. R. Marseglia, and R. D. Braatz. 2016. Constrained
zonotopes: A new tool for set-based estimation and fault detection. Automatica
69 (2016), 126–136. https://doi.org/10.1016/j.automatica.2016.02.036

[53] O. Stursberg, A. Fehnker, Z. Han, and B. H. Krogh. 2004. Verification of a cruise
control system using counterexample-guided search. Control Engineering Practice
12, 10 (2004), 1269–1278. https://doi.org/10.1016/j.conengprac.2004.04.002

[54] M. Wetzlinger, N. Kochdumper, and M. Althoff. 2020. Adaptive parameter tuning
for reachability analysis of linear systems. In Proc. of the 59th IEEE Conference on
Decision and Control. 5145–5152. https://doi.org/10.1109/CDC42340.2020.9304431

[55] M. Wetzlinger, A. Kulmburg, A. Le Penven, and M. Althoff. 2022. Adaptive
reachability algorithms for nonlinear systems using abstraction error analysis.
Nonlinear Analysis: Hybrid Systems 46 (2022), 101252. https://doi.org/10.1016/j.
nahs.2022.101252



A Reproduction of Publications

A.4 Backward Reachability Analysis of Perturbed

Continuous-Time Linear Systems Using Set Propagation

Summary The verification tasks formulated in Problems 2 and 3 can be solved using minimal

and maximal backward reachable sets as defined in Definition 6, respectively. Here, we must

prove the existence of a control input trajectory for linear systems of the form (2.1) to steer

the trajectory away or toward a target set.

This work proposes four novel algorithms for the computation of minimal and maximal time-

point and time-interval backward reachable sets. We compute inner and outer approximations

by combining various set representations—polytopes, zonotopes, and constrained zonotopes.

Exploiting their respective advantages results in a polynomial runtime complexity in the state

dimension for all proposed backward reachability algorithms. In some cases, the approximation

error with respect to the exact backward reachable set can be reduced to zero along all or

specific directions.

Our numerical evaluation shows similar tightness of our computed inner and outer approxi-

mations compared to the sets obtained using Hamilton-Jacobi reachability. Then, we compute

the minimal and maximal backward reachable set for a 6D ground collision avoidance scenario

and a 12D quadrotor system within seconds, thereby outspeeding Hamilton-Jacobi reachabil-

ity by orders of magnitude. Finally, we demonstrate the scalability of our novel algorithms by

analyzing a benchmark of over a thousand states for the first time.

Author contributions M.W. initiated the idea of using set propagation methods to com-

pute backward reachable sets, designed all backward reachability algorithms, proved their

soundness, implemented the code, and conducted the experiments. M.A. contributed ideas to

the design of the backward reachability algorithms and provided feedback for improving the

manuscript.

Copyright notice All rights retained by the authors. Preprint published on arXiv with

doi:10.48550/arXiv.2310.19083. Explicit license printed in Appendix B.

TUM Graduate School This publication is not a core publication, cf. Article 7, section 3

TUM Doctoral Regulations (PromO).

92

https://arxiv.org/abs/2310.19083


1

Backward Reachability Analysis of
Perturbed Continuous-Time Linear Systems

Using Set Propagation
Mark Wetzlinger and Matthias Althoff

Abstract— Backward reachability analysis computes the
set of states that reach a target set under the competing
influence of control input and disturbances. Depending on
their interplay, the backward reachable set either represents
all states that can be steered into the target set or all states
that cannot avoid entering it—the corresponding solutions
can be used for controller synthesis and safety verification,
respectively. A popular technique for backward reachable
set computation solves Hamilton-Jacobi-Isaacs equations,
which scales exponentially with the state dimension due to
gridding the state space. In this work, we instead use set
propagation techniques to design backward reachability
algorithms for linear time-invariant systems. Crucially, the
proposed algorithms scale only polynomially with the state
dimension. Our numerical examples demonstrate the tight-
ness of the obtained backward reachable sets and show
an overwhelming improvement of our proposed algorithms
over state-of-the-art methods regarding scalability, as sys-
tems with well over a hundred states can now be analyzed.

Index Terms— Formal verification, reachability analysis,
linear systems, set-based computing.

I. INTRODUCTION

The use of autonomous systems in safety-critical scenarios
requires formal verification techniques to rigorously prove
safe operation at all times in the presence of uncertainties.
One popular method is backward reachability analysis, which
computes the set of states that reach a given target set under a
certain interplay between control input and disturbance. This
so-called two-player game can be set up in two different ways,
depending on the meaning of the target set.

If the target set represents an unsafe set, one utilizes the
notion of minimal reachability [1, Sec. 4.2]: The minimal
backward reachable set contains all states that cannot avoid
entering the target set regardless of the chosen control input.
Consequently, all states within the backward reachable set are
deemed unsafe and thus should also be avoided. In case an
exact solution cannot be obtained, we resort to computing
outer approximations to maintain safety. A common example

This paragraph of the first footnote will contain the date on which
you submitted your paper for review. This work was supported by
the European Research Council (ERC) project justITSELF under grant
agreement No 817629 and by the German Research Foundation (DFG)
project ConVeY under grant number GRK 2428.

Mark Wetzlinger and Matthias Althoff are with the Department of
Computer Science, Technical University of Munich, 85748 Garching,
Germany (e-mail: {m.wetzlinger, althoff}@tum.de).

is obstacle avoidance: The target set represents the obstacle
and the minimal backward reachable set contains all states
from which one cannot avoid hitting the obstacle.

If the target set represents a goal set, the concept of
maximal reachability [1, Sec. 4.1] is applicable: The maximal
backward reachable set contains all states from which we
can steer into the target set despite worst-case disturbances.
Note that any initial state only requires to reach the target
set by a single control input trajectory to become part of the
backward reachable set. To ensure that all contained initial
states can definitely be steered into the target set, we require an
inner approximation if the exact solution cannot be computed.
Maximal backward reachability is closely related to controller
synthesis: The backward reachable set contains all states for
which a controller exists such that the target set is reachable.

In this article, we compute minimal and maximal backward
reachable sets for continuous-time linear time-invariant (LTI)
systems. As there are many similar definitions of backward
reachable sets as well as related concepts, we postpone the
literature review to Section IV. This allows us to use the
preliminary information from Sections II and III for a more
concise overview. Our contributions are as follows:

• An inner and outer approximation for the time-point
minimal backward reachable set (Section V-A).

• An outer approximation of the time-interval minimal
backward reachable set (Section V-B).

• An inner and outer approximation for the time-point
maximal backward reachable set (Section VI-A).

• An inner approximation for the time-interval maximal
backward reachable set (Section VI-B).

Crucially, all proposed algorithms scale only polynomially
with respect to the state dimension. Additionally, we discuss
the approximation errors of each computed set. Our evaluation
in Section VII is followed by closing remarks in Section VIII.

II. PRELIMINARIES

We introduce some general notation, basics of set-based
arithmetic, and fundamentals on forward reachability analysis
required for the main body of this article.

A. Notation
The set of real numbers is denoted by R, the set of

natural numbers without zero is denoted by N, and the subset
{a, a+ 1, ..., b} ⊂ N for 0 < a < b, is denoted by N[a,b]. We

ar
X

iv
:2

31
0.

19
08

3v
1 

 [
m

at
h.

N
A

] 
 2

9 
O

ct
 2

02
3



2

denote scalars and vectors by lowercase letters and matrices
by uppercase letters. For a vector s ∈ Rn, ∥s∥p returns
its p-norm and s(i) represents its ith entry; for a matrix
M ∈ Rm×n, M(i,·) refers to the ith row and M(·,j) to the jth
column. The operation diag(s) returns a square matrix with the
vector s on its main diagonal. Horizontal concatenation of two
properly-sized matrices M1 and M2 is denoted by [M1 M2]
and the identity matrix of dimension n by In. Furthermore,
we use 0 and 1 to represent vectors and matrices of proper
dimension containing only zeros or ones. We denote exact
sets by standard calligraphic letters S, inner approximations
by

̂
S, and outer approximations by Ŝ. We write the set

{−s|s ∈ S} as −S and represent the empty set by ∅. An
interval is defined by I = [a, b] = {x ∈ Rn | a ≤ x ≤
b}, where the inequality is evaluated element-wise. Interval
matrices extend intervals by using matrices as lower and upper
limits and are denoted in bold calligraphic letters, e.g. I . The
operations cen(S) and box(S) compute the volumetric center
and tightest axis-aligned interval outer approximation of the
set S, respectively. Additionally, we introduce the hyperball
Bε = {x ∈ Rn | ∥x∥2 ≤ ε}. Finally, we use f(x) ∈ O(g(x))
to denote the big O notation.

B. Set-Based Arithmetic

Let us introduce the convex sets S1,S2 ⊂ Rn as well
as the matrix M ∈ Rm×n to formally define a linear map,
Minkowski sum, Minkowski difference, intersection, and con-
vex hull:

MS1 := {Ms1 | s1 ∈ S1}, (1)
S1 ⊕ S2 := {s1 + s2 | s1 ∈ S1, s2 ∈ S2}, (2)
S1 ⊖ S2 := {s | {s} ⊕ S2 ⊆ S1}, (3)
S1 ∩ S2 := {s | s ∈ S1 ∧ s ∈ S2}, (4)
conv(S1,S2) := {λs1 + (1− λ)s2 |

s1 ∈ S1, s2 ∈ S2, λ ∈ [0, 1]}. (5)

Convex sets can be implicitly described by their support
function:

Definition 1 (Support function [2, Sec. 2]). For a compact set
S ⊂ Rn and a vector ℓ ∈ Rn, the support function ρ : Rn →
R is

ρ(S, ℓ) := max
s∈S

ℓ⊤s. □

For support functions, we require the identities [3, Eq. (3)]

ρ(MS, ℓ) = ρ
(
S,M⊤ℓ

)
, (6)

ρ(S1 ⊕ S2, ℓ) = ρ(S1, ℓ) + ρ(S2, ℓ) , (7)
ρ(S1 ⊖ S2, ℓ) = ρ(S1, ℓ)− ρ(S2, ℓ) . (8)

Next, we will introduce the three set representations re-
quired for our backward reachability algorithms. The runtime
complexity of each operation is summarized in Table I, where
we assume a runtime complexity of O(q3) for the evaluation
of a linear program with q variables according to [4]. We start
with polytopes.

Definition 2 (Polytope [5, Sec. 1.1]). A polytope P ⊂ Rn

in halfspace representation is described using h ∈ N linear
inequalities defined by the matrix H ∈ Rh×n and the vector
d ∈ Rh :

P :=
{
s ∈ Rn

∣∣ Hs ≤ d
}
.

We use the shorthand P = ⟨H, d⟩H . □

A set S ⊂ Rn can be enclosed with a polytope composed by
a finite number h ∈ N of support function evaluations

S ⊆ ⟨H, d⟩H ,

where ∀j ∈ N[1,h] : d(j) = ρ
(
S, H⊤

(j,·)

) (9)

and set equality holds if and only if the normal vectors of
all faces of S are the row vectors of H ∈ Rh×n. Polytopes
are closed under all aforementioned set operations (1)-(5)
[6, Tab. 1]. We will, however, only make use of the linear
map with an invertible matrix M ∈ Rn×n and Minkowski
difference [7, Thm. 2.2]:

MP = ⟨HM−1, d⟩H , (10)

P ⊖ S = ⟨H, d̃⟩H , (11)

where ∀j ∈ N[1,h] : d̃(j) = d(j) − ρ
(
S, H⊤

(j,·)

)
.

An enclosing interval box(P) can be computed by evaluating
2n support functions (linear programs) for all positive and neg-
ative axis-aligned directions. Next, we introduce zonotopes.

Definition 3 (Zonotope [8, Def. 1]). Given a center c ∈ Rn

and γ ∈ N generators stored as columns in the matrix G ∈
Rn×γ , a zonotope Z ⊂ Rn is

Z :=
{
c+

γ∑

i=1

G(·,i) αi

∣∣∣ αi ∈ [−1, 1]
}
.

We use the shorthand Z = ⟨c,G⟩Z . □

For zonotopes, we require the linear map with a matrix M ∈
Rm×n and Minkowski sum computed as [9, Eq. (2.1)]

MZ = ⟨Mc,MG⟩Z , (12)
Z1 ⊕Z2 = ⟨c1 + c2, [G1 G2]⟩Z , (13)

and the support function in a direction ℓ ∈ Rn [10, Prop. 1]:

ρ(Z, ℓ) = ℓ⊤c+
γ∑

i=1

|ℓ⊤G(·,i)|. (14)

The multiplication of an interval matrix M = [L,U ] with a
zonotope Z can be tightly enclosed by [11, Thm. 4]

MZ ⊆
〈
Mcc,

[
McG diag

(
Mrν

)]〉
Z
, (15)

Mc =
1
2 (L+ U),Mr = 1

2 (U − L), ν = |c|+
γ∑

i=1

|G(·,i)|.

Constrained zonotopes extend zonotopes by introducing equal-
ity constraints on the factors.

Definition 4 (Constrained zonotope [12, Def. 3]). Given a
vector c ∈ Rn, a generator matrix G ∈ Rn×γ , a constraint
matrix K ∈ Rh×γ , and a constraint offset l ∈ Rh , a



3

TABLE I
RUNTIME COMPLEXITY OF SET OPERATIONS FOR n-DIMENSIONAL SETS, WHERE

THE POLYTOPE P HAS h ∈ N CONSTRAINTS, THE CONSTRAINED ZONOTOPE CZ
AND THE ZONOTOPE Z HAVE γ ∈ N GENERATORS, AND ℓ ∈ Rn IS A VECTOR.

Operation Complexity Operation Complexity

MP O(hn2) Z1 ⊕Z2 O(n)

MZ O(n2γ) CZ1⊕ CZ2 O(n)

MCZ O(n2γ) P ⊖ S O(hρ(S, ℓ))
MZ O(n2γ) S ⊆ P O(hρ(S, ℓ))
MCZ O(n2γ) CZ ∩ P O(hn3)

ρ(P, ℓ) O(n3) conv(CZ1, CZ2) O(n)

ρ(Z, ℓ) O(nγ) box(P) O(n4)

ρ(CZ, ℓ) O(γ3) CZ(P) O(n4 + hn3)

constrained zonotope CZ ⊂ Rn is

CZ :=
{
c+

γ∑

i=1

G(·,i) αi

∣∣∣
γ∑

i=1

K(·,i)αi = l, αi ∈ [−1, 1]
}
.

We use the shorthand CZ = ⟨c,G,K, l⟩CZ . □
For constrained zonotopes, we require the linear map with a
matrix M ∈ Rm×n and Minkowski sum [12, Prop. 1]:

MCZ = ⟨Mc,MG,K, l⟩CZ ,

CZ1 ⊕ CZ2 =

〈
c1 + c2, [G1 G2],

[
K1 0
0 K2

]
,

[
l1 0
0 l2

]〉

CZ

.

The intersection of a constrained zonotope with a polytope
P = ⟨H, d⟩H can be computed via sequential intersection
with each halfspace ⟨H(j,·), d(j)⟩H , j ∈ N[1,h] [13, Thm. 1]

CZ ∩ ⟨H(j,·), d(j)⟩H =

〈
c, [G 0],

[
K 0

H(j,·)G
1
2 (d(j) − o)

]
,

[
l

1
2 (d + o)−H(j,·)c

]〉

CZ

, (16)

where o = −ρ
(
CZ,−H⊤

(j,·)

)

evaluates the support function of the constrained zonotope
using linear programming. The exact conversion of a polytope
P = ⟨H, d⟩H to a constrained zonotope [12, Thm. 1] is
computed by

⟨c,G,K, l⟩CZ = CZ(P),
where ⟨c,G⟩Z ⊇ P and K, l from ⟨c,G⟩Z ∩ P,

(17)

that is, we first enclose the polytope P by a zonotope ⟨c,G⟩Z ,
e.g., box(P), and then intersect this zonotope with each
halfspace of P as in (16) to obtain the constraint matrix K and
constraint offset l. The convex hull can be computed according
to [13, Thm. 5] and the multiplication with an interval matrix
MCZ follows from (15). All introduced set operations scale
polynomially in the set dimension, which will enable our
backward reachability algorithms to run in polynomial time.

C. Forward Reachable Set Computation

Our backward reachability algorithms are partly based on
established knowledge from forward reachability analysis:

Definition 5 (Forward reachable set). For an LTI system of
the form ẋ(t) = Ax(t) + u(t), let the solution trajectory at
time t ∈ R for an initial state x0 ∈ Rn and an input trajectory
u(·) : R → Rn be denoted by ξ(t;x0, u(·)). Given an initial
set X0 ⊂ Rn and an input set U ⊂ Rn, the forward reachable
set at time t ≥ 0 is

R(t) := {ξ(t;x0, u(·)) |x0 ∈ X0,∀θ ∈ [0, t]: u(θ) ∈ U}. □

Next, we briefly recall the computation of the homogeneous
time-interval solution and the particular solution, which can
be computed separately due to the well-known superposition
principle of linear systems.

1) Homogeneous time-interval solution: Given two succes-
sive homogeneous time-point solutions H(tk),H(tk+1) ⊂ Rn,
we enclose all trajectories over the interval τk = [tk, tk+1] of
length ∆t = tk+1 − tk ≥ 0 by [9, Sec. 3.2]

H(τk) ⊆ conv(H(tk),H(tk+1))⊕FH(tk), (18)

where the interval matrix F is [9, Prop. 3.1]

F =

η⊕

i=2

[(
i

−i
i−1 − i

−1
i−1

)
∆ti, 0

] Ai

i!
⊕ E, (19)

where A ∈ Rn×n is the system matrix in Definition 5 and the
interval matrix E is the remainder of the exponential matrix
[9, Eq. (3.2)]:

E = [−E(∆t, η), E(∆t, η)],

E(∆t, η) = e|A|∆t −
η∑

i=0

(
|A|∆t

)i

i!
.

(20)

An inner approximation of the homogeneous time-interval
solution can be computed by [14, Prop. 1]

H(τk) ⊇ conv(H(tk),H(tk+1))⊖FH(tk)⊖ Bµ, (21)

whereµ =
√
γ ∥(eA∆t − In)G∥2 (22)

uses the generator matrix G ∈ Rn×γ of H(tk) = ⟨c,G⟩Z .
2) Particular solution: Let the particular solution for time-

varying inputs within a set S be denoted by ZS ⊂ Rn. We
compute an outer approximation ẐS and an inner approxima-
tion

̂
ZS as [9, Eq. (3.7)]

ZS ⊆ ẐS(∆t) :=

η⊕

i=1

Ai∆ti+1

(i+ 1)!
S ⊕ E∆tS, (23)

ZS ⊇
̂
ZS(∆t) := A−1(eA∆t − In)S. (24)

The value for η ∈ N in (20) and (23) can be automatically
determined as shown in [14]. For (24), we can integrate the
term A−1 in the power series of the exponential matrix eA∆t

if the matrix A is not invertible. The particular solution can
be propagated by [15, Eq. (6)]

ZS(tk+1) = ZS(tk)⊕ eAtkZS(∆t), (25)

which avoids the wrapping effect [16]. The proposition below
examines the approximation error of the particular solutions:

Proposition 1 (Convergence of particular solution [14]). The
outer approximation ẐS(t) and inner approximation

̂
ZS(t)



4

of the particular solution propagated by (25) converge to the
exact particular solution

ZS(t) :=

{∫ t

0

eA(t−θ)s(θ) dθ

∣∣∣∣ s(θ) ∈ S
}

in the limit ∆t→ 0 used in (23) and (24), respectively.

Proof. See Appendix.

For a piecewise constant trajectory s ∈ R1×ω over ω ∈ N
steps

s =
[
s(t0) s(t1) . . . s(tω−1)

]
,

the particular solution Zs(τk) ⊂ Rn over a time interval τk
can be outer approximated by [9, Prop. 3.2]

Ẑs(τk) =
k−1⊕

j=0

eAtk−1−j
(
A−1(eA∆t − In) s(tj)

)
⊕ G{s(tk)},

(26)
where the interval matrix G is [9, Eq. (3.9)]

G =

η+1⊕

i=2

[(
i

−i
i−1 − i

−1
i−1

)
∆ti, 0

] Ai−1

i!
⊕ E∆t

with E as in (20). To enclose the particular solution ZS(τk) ⊂
Rn over a time interval τk, we first split the set S into two
parts [9, Sec. 3.2.2]: S = S0 ⊕ {s} with s = cen(S). Since
{0} ∈ S0, we have ẐS0

(τk) ⊆ ẐS0
(tk+1) and thus

ZS(τk) ⊆ ẐS(τk) = ẐS0
(tk+1)⊕ Ẑs(τk), (27)

where the set ẐS0
(tk+1) is propagated using (25), and the set

Ẑs(τk) is computed using (26).

III. PROBLEM STATEMENT

We consider LTI systems of the form

ẋ(t) = Ax(t) +Bu(t) + Ew(t), (28)

where x(t) ∈ Rn is the state vector, A ∈ Rn×n is the state
matrix, B ∈ Rn×m is the input matrix, and E ∈ Rn×r is
the disturbance matrix. The control input u(t) ∈ Rm and the
disturbance w(t) ∈ Rr are bounded by the sets U ⊂ Rm and
W ⊂ Rr, respectively, which we assume to be zonotopes. We
use U to denote the set of all input trajectories u(·) for which
∀t ∈ [0, tend] : u(t) ∈ U holds and analogously W for the
set of all disturbances trajectories w(·). A solution to (28) at
time t starting from the initial state x0 ∈ Rn using an input
trajectory u(·) ∈ U and a disturbance trajectory w(·) ∈ W
is written as ξ(t;x0, u(·), w(·)). We will denote the particular
solutions (23)-(25) due to the sets BU and EW at time t by
ZU (t) and ZW(t), respectively.

In general, backward reachability analysis aims to compute
the set of states that reach a target set Xend ⊂ Rn after a
certain elapsed time t (time-point backward reachable set) or
at any time within the interval τ = [t0, tend] (time-interval
backward reachable set). We assume the target set Xend ⊂ Rn

to be represented as a polytope. Let us first define the minimal
backward reachable set, where the target set is composed of
unsafe states:

➀ Xend

R∀∃(−t)

x
(1)
0

R
(
t;x

(1)
0 , u(1)(·), ·

)

x
(2)
0

R
(
t;x

(2)
0 , u(2)(·), ·

)

➁ Xend

R∃∀(−t)

x
(1)
0

R
(
t;x

(1)
0 , u(1)(·), ·

)

x
(2)
0

R
(
t;x

(2)
0 , u(2)(·), ·

)

Fig. 1. Target set Xend with ➀ minimal backward reachable set
R∀∃(−t) and ➁ maximal backward reachable set R∃∀(−t) as well
as initial states x0 with corresponding forward reachable sets R(t) for
different input signals u(·) and disturbance signals w(·).

Definition 6 (Minimal backward reachable set). The time-
point minimal backward reachable set [17, Def. 2]

R∀∃(−t) :=
{
x0 ∈ Rn

∣∣∀u(·) ∈ U ∃w(·) ∈W :

ξ(t;x0, u(·), w(·)) ∈ Xend
} (29)

contains all states, where for all input trajectories u(·) ∈ U
there is at least one disturbance trajectory w(·) ∈W so that
the state trajectory will end up in the target set Xend after
time t. The time-interval minimal backward reachable set [17,
Def. 4]

R∀∃(−τ) :=
{
x0 ∈ Rn

∣∣∀u(·) ∈ U ∃w(·) ∈W ∃t ∈ τ :

ξ(t;x0, u(·), w(·)) ∈ Xend
}

(30)

requires the state to pass through Xend anytime in the time
interval τ . □

Case ➀ in Figure 1 illustrates the time-point set (29): For
all states within the minimal backward reachable set R∀∃(−t),
such as x(1)

0 , the target set Xend is unavoidable regardless of the
input signal u(1)(·). For any initial state outside R∀∃(−t) like
x
(2)
0 , there is at least one input signal u(2)(·), for which there

is no disturbance signal such that the corresponding forward
reachable set intersects Xend.

In the following definition of the maximal backward reach-
able set, the target set represents a goal set into which we want
to steer the state despite worst-case disturbances.

Definition 7 (Maximal backward reachable set). The time-
point maximal backward reachable set [17, Def. 1]

R∃∀(−t) :=
{
x0 ∈ Rn

∣∣∃u(·) ∈ U ∀w(·) ∈W :

ξ(t;x0, u(·), w(·)) ∈ Xend
} (31)

contains all states, where one input trajectory u(·) can steer
the state trajectory into the target set Xend for all potential



5

disturbances w(·). The time-interval maximal backward reach-
able set [17, Def. 3]

R∃∀(−τ) :=
{
x0 ∈ Rn

∣∣∃u(·) ∈ U ∀w(·) ∈W ∃t ∈ τ :

ξ(t;x0, u(·), w(·)) ∈ Xend
}

(32)

requires the state to pass through Xend anytime in the time
interval τ . □

Case ➁ in Figure 1 illustrates the time-point set (31): For all
states within the maximal backward reachable set R∃∀(−t),
such as x

(1)
0 , there exists an input signal u(1)(·) reaching the

target set regardless of the disturbance. In contrast, the forward
reachable set of an initial state outside of R∃∀(−t) like x

(2)
0

is not fully contained in the target set for any input signal
u(2)(·).

Let us briefly highlight an important consequence of the
two-player game notion in backward reachability analysis:

Proposition 2 (Union [1, Prop. 2]). The union of time-
point solutions is a subset of the corresponding time-interval
solution, i.e.,

⋃

t∈τ

R∀∃(−t) ⊆ R∀∃(−τ),
⋃

t∈τ

R∃∀(−t) ⊆ R∃∀(−τ).

Proof. The reason is the order of quantifiers [1, Prop. 2].

For the runtime complexity analysis of our proposed algo-
rithms in Sections V and VI, we assume the following:

Assumption 1 (Fixed parameters). The truncation order η in
(23), the number of propagation steps ω, and the number of
halfspaces h constraining the target set Xend are fixed. □

In the next section, we review the state of the art in
backward reachability analysis.

IV. RELATED WORK

There exists a wide range of different yet similar defini-
tions labeled backward reachable set. The following literature
review discusses the various types in order of increasing com-
plexity. We will include approaches in discrete and continuous
time as well as for linear and nonlinear dynamics, where
uniqueness of solution trajectories and sufficient differentia-
bility are assumed.

A. Autonomous Systems
Let us briefly consider autonomous systems ẋ = f(x),

where the backward reachable set is equal to the forward
reachable set for the time-inverted dynamics ẋ = −f(x)
using the target set Xend as the initial set. If the target set
represents an unsafe set, one can use established forward
reachability algorithms for computing outer approximations
of linear systems [10], [18] and nonlinear systems [19], [20].
If on the other hand, the target set is a goal set, we require
to compute an inner approximation, for which there also exist
many methods for linear systems [3], [18] as well as nonlinear
systems [21]–[25]. Since this very special case is not the focus
of our work, we do not discuss the different approaches here
and instead refer the interested reader to the overviews in the
cited literature.

B. Hamilton-Jacobi Reachability

A well-established framework for computing minimal and
maximal reachable sets is commonly referred to as Hamilton-
Jacobi (HJ) reachability: It is based on the proof that the
reachable set of a continuous-time dynamical system is the
zero sublevel set of the Hamilton-Jacobi-Isaacs partial dif-
ferential equation (PDE) [26, Thm. 2]. The value function
of the sublevel set is evaluated over a gridded state space,
thus the computation scales exponentially with the system
dimension [27]. Still, the framework is very versatile, covering
the general case of nonlinear dynamics with all variations
of competing inputs and disturbances as presented in our
subsequent overview of minimal and maximal reachability.

C. Minimal Reachability

1) Unperturbed Case: The unperturbed minimal backward
reachable set is defined by

R∀(−τ) :=
{
x0 ∈ Rn

∣∣∀u(·) ∈ U ∃t ∈ τ :

ξ(t;x0, u(·), 0) ∈ Xend
}
.

(33)

The scalability issue of HJ reachability has first been tackled
for time-point solutions by decomposing the dynamics into
subsystems and reconstructing the full solution thereafter [28],
which was later generalized to time-interval solutions [29].
However, these approaches did not provide rigorous results
for cases with conflicting controls between subspaces, which
was later addressed [30].

2) Perturbed Case: An approach for decoupled dynamics
has been presented in [31]. In the context of systems coupled
by multi-agent interaction, the decoupled computation has
been augmented by a higher-level control using mixed integer
programming [32]. Moreover, a deep neural network has been
trained to output the value function describing the reachable
set, which improves the scalability but invalidates all safety
guarantees [33]. Other ideas to improve performance include
warm-starting and adaptive grid sampling [34].

D. Maximal Reachability

1) Unperturbed Case: The unperturbed maximal backward
reachable set is defined by

R∃(−τ) :=
{
x0 ∈ Rn

∣∣∃u(·) ∈ U ∃t ∈ τ :

ξ(t;x0, u(·), 0) ∈ Xend
}
.

(34)

This is equivalent to the forward reachable set for the time-
inverted dynamics ẋ = −f(x) using the target set as the
start set [35, Lemma 2]. As a consequence, all algorithms
computing inner approximations for dynamical systems with
inputs are applicable, including [23] and [36, Sec. 4.3.3]
reviewed in Section IV-A. Another approach rescales an initial
guess until the forward reachable set is contained in the
target set [37]. For polynomial systems, sum-of-squares (SOS)
optimization can be used to compute polynomial lower (and
upper) bounds on the reachable set [35].

2) Perturbed Case: Algorithms using set propagation exist
for both linear and nonlinear discrete-time systems, with
ellipsoids [38] or zonotopes [39], [40] as a set representation.



6

The original HJ reachability was introduced in [26] for the
set R∃∀(−t), with extensions such as decoupling approaches
[17] attempting to alleviate the computational burden. For
dissipative control-affine nonlinear systems, one can compute
the backward reachable sets via SOS programming [41],
followed by synthesizing a controller to steer the states into the
target set. This algorithm has been improved by merging both
steps into one, including accommodation of control saturation
[42]. An extension covers a more general class of perturbations
represented by integral quadratic constraints [43].

An extended definition requires the trajectories to remain
within a state constraint set X̄ ⊂ Rn at all times:

R∃∀,X̄ (−τ) :=
{
x0 ∈ Rn

∣∣∃u(·) ∈ U ∀w(·) ∈W
∃t ∈ τ : ξ(t;x0, u(·), w(·)) ∈ Xend,

∀t′ ∈ [0, tend] : ξ(t
′;x0, u(·), w(·)) ∈ X̄

}
,

where tend is the upper bound of the time interval τ . HJ
reachability supports this definition [44]—including a time-
varying state constraint set [45]—as do SOS approaches by
solving a single semi-definite program [46].

E. Related Concepts
A related concept is the viability or discriminating kernel:

Definition 8 (Viability/Discriminating kernel [47, Def. 6], [48,
Def. 2]). The discriminating kernel of a set K ⊂ Rn is

D(τ,K) :=
{
x0 ∈ K

∣∣ ∀w(·) ∈W ∃u(·) ∈ U ∀t ∈ τ :

ξ(t;x0, u(·), w(·)) ∈ K
}
.

It contains all initial states in K, where for all potential
disturbances w(·) there exists an input trajectory u(·) to
keep the state in K over the time interval τ . Omitting the
disturbance w(·) yields the viability kernel V(K). □

Inner approximations of the viability kernel for linear sys-
tems can be computed using ellipsoids [47], [49] or polytopes
[50] as a set representation. The ellipsoidal methods have later
been extended to computing the discriminating kernel in [48].

Another perspective is the computation of forward mini-
mal/maximal reachable sets, where the quantifiers are equal
to Definitions 6 and 7, but the start set is given instead
of the target set. To this end, Kaucher arithmetic has been
applied [51] as well as contraction of an outer approximation
computed using Taylor models [23].

Our overview of the related literature shows that Defini-
tions 6 and 7 represent general cases for minimal and maximal
backward reachable sets. In the next sections, we present the
first propagation-based approach to compute inner and outer
approximations of these sets for systems of the form in (28).

V. MINIMAL BACKWARD REACHABILITY ANALYSIS

In this section, we compute inner and outer approximations
of the time-point minimal backward reachable set R∀∃(−t)
(29) in Section V-A as well as an outer approximation of
the time-interval minimal backward reachable set R∀∃(−τ)
(30) in Section V-B. We will also show that the runtime
complexity of the presented algorithms is polynomial in the

state dimension n and discuss the approximation errors of the
computed sets. Finally, we briefly highlight simplifications for
the unperturbed cases R∀(−t) and R∀(−τ) defined in (33).

A. Time-Point Solution

We base our computations of the time-point solution
R∀∃(−t) on the following proposition:

Proposition 3 (Minimal time-point backward reachable set).
The backward reachable set R∀∃(−t) defined in (29) can be
computed by

R∀∃(−t) = e−At
(
(Xend ⊕−ZW(t))⊖ZU (t)

)
. (35)

Proof. This is a continuization of the discrete-time case proven
in [38, Thm. 2.4].

Note that the above proposition holds independently of the
chosen set representations. Next, we show how to compute
approximations in polynomial time under the assumption that
the target set Xend is given as a polytope, while the particular
solutions ZW(t) and ZU (t) are represented by zonotopes.

1) Outer Approximation: The main difficulty in evaluating
(35) is the Minkowski sum of a polytope in halfspace rep-
resentation and a zonotope, for which there exists no known
polynomial-time algorithm1. We overestimate the influence of
the disturbance by ẐW(t) ⊇ ZW(t) using (23) and underes-
timate the influence of the control input by

̂
ZU (t) ⊆ ZU (t)

using (24). The following proposition provides a scalable yet
outer approximative evaluation for the Minkowski sum of a
polytope in halfspace representation and a zonotope:

Proposition 4. (Outer approximation of Minkowski sum)
Given a polytope P = ⟨H, d⟩H ⊂ Rn with h constraints and
a zonotope Z ⊂ Rn, their Minkowski sum can be enclosed by

P ⊕ Z ⊆ P ⊕̂Z := ⟨H, d + d̃⟩H ,

∀j ∈ N[1,h] : d̃(j) = ρ
(
Z, H⊤

(j,·)

)
,

(36)

where we introduce the operator ⊕̂ to distinguish this oper-
ation from the exact Minkowski sum. The runtime complexity
is O(hnγ).
Proof. See Appendix.

The resulting set in (36) can be further tightened by addi-
tional support function evaluations2. Using Proposition 4, we
obtain an outer approximation of (35) by

R∀∃(−t) (35)
= e−At

(
(Xend ⊕−ZW(t))⊖ZU (t)

)

(23), (24)
⊆ e−At

(
(Xend ⊕−ẐW(t))⊖

̂
ZU (t)

)

Proposition 4
⊆ e−At

(
(Xend ⊕̂−ẐW(t))⊖

̂
ZU (t)

)
=: R̂∀∃(−t),

(37)

1Other polytope representations, e.g., the Z-representation [36, Sec. 3.3],
allow for computing the Minkowski sum with a zonotope in polynomial time,
but we require the halfspace representation for the subsequent computation
of the Minkowski difference.

2In fact, incorporating all infinite directions ℓ ∈ Rn with ∥ℓ∥2 = 1 would
return the exact result P ⊕ Z since any compact convex set is uniquely
determined by the intersection of the support functions in all directions [2].



7

resulting in a polytope representing R̂∀∃(−t).
2) Inner Approximation: We now underestimate the influ-

ence of the disturbance by

̂
ZW(t) ⊆ ZW(t) and overestimate

the influence of the control input by ẐU (t) ⊇ ZU (t). Using
the following re-ordering relation for the compact, convex,
nonempty sets S1,S2,S3 ⊂ Rn [39, Lemma 1(i)]

(S1 ⊕ S2)⊖ S3 ⊇ (S1 ⊖ S3)⊕ S2, (38)

we can inner approximate (35) by

R∀∃(−t) (35)
= e−At

(
(Xend ⊕−ZW(t))⊖ZU (t)

)

(23), (24)
⊇ e−At

(
(Xend ⊕−

̂
ZW(t))⊖ ẐU (t)

)

(38)
⊇ e−At

(
CZ(Xend ⊖ ẐU (t))⊕−

̂
ZW(t)

)
=:

̂
R∀∃(−t),

(39)

where we evaluate the Minkowski difference Xend ⊖ ẐU (t)
by (11) and convert the resulting polytope to a constrained
zonotope using (17) to efficiently evaluate the Minkowski sum
with −

̂
ZW(t).

3) Runtime Complexity: Under Assumption 1 and follow-
ing Table I, the outer approximative Minkowski sum from
Proposition 4, the Minkowski difference, and the linear map
in the computation of the outer approximation R̂∀∃(−t) are
all O(n3), while the computation of the inner approximation̂
R∀∃(−t) is dominated by the conversion to a constrained
zonotope, which is O(n4).

4) Approximation Error: Both approximations have a non-
zero approximation error even in the limit ∆t → 0 due to
using Proposition 4 and the re-ordering in (38), respectively.
For the more important outer approximation R̂∀∃(−t), the
approximation error can be made arbitrarily small in all
directions selected for the evaluation of Proposition 4 as the
particular solutions converge to their exact counterparts in the
limit ∆t→ 0 by Proposition 1.

5) Unperturbed Case: Let us briefly discuss the unperturbed
case where W = {0}. Here, we compute the backward
reachable set defined in (33) with τ = t, for which (37) and
(39) simplify accordingly. We can compute inner and outer
approximations in O(n3), whose approximation error depends
on the approximation of the particular solution, which can be
made arbitrarily small according to Proposition 1.

B. Time-Interval Solution
For the time-interval solution R∀∃(−τ) as defined in (30),

we compute an outer approximation enclosing all states that
cannot avoid entering the unsafe target set Xend. We reformu-
late the definition in (30) to obtain

R∀∃(−τ) =
⋂

u∗(·)∈U
R∃(−τ ;u∗(·)), (40)

where

R∃(−τ ;u∗(·)) :=
{
x0 ∈ Rn

∣∣∃w(·) ∈W ∃t ∈ τ :

ξ(t;x0, u
∗(·), w(·)) ∈ Xend

}

(41)

is the forward reachable set for the time-inverted dynamics
using a single input trajectory u∗(·) ∈ U, which is equivalent

R̂∀∃(−τ)

R̂∀∃(−τ ;u0(·))

R̂∀∃(−τ ;u1(·))

ℓ1 ρ
(
R̂∀∃(−τ ;u1(·)), ℓ1

)

Xend

Fig. 2. Computation of an outer approximation of the minimal back-
ward reachable set R̂∀∃(−τ) by intersection of multiple backward
reachable sets for specific input trajectories (shown for two trajec-
tories u0(·), u1(·)): The set R̂∀∃(−τ ;u0(·)) is intersected with
the halfspace constructed by the support function of the other set
R̂∀∃(−τ ;u1(·)) in the direction ℓ1, while the input aims to maximize
the extent of the set in the direction −ℓ1.

to (34) by replacing u by w. Consequently, the set R∀∃(−τ)
is the intersection of the sets R∃(−τ ;u(·)) for all potential
input trajectories u(·) ∈ U. Next, we show how to compute
an outer approximation of (40).

1) Outer Approximation: The reachable set R∃(−τ ;u∗(·))
in (41) can be enclosed using standard methods [9, Sec. 3.2]:

R̂∃(−τ ;u∗(·)) =
⋃

k∈{0,...,ω−1}
R̂∃(−τk;u∗(·)) (42)

R̂∃(−τk;u∗(·)) = conv(e−Atk+1CZ(Xend), e
−AtkCZ(Xend))

⊕Fe−Atk+1CZ(Xend)⊕−ẐW(−τk)
⊕−Ẑu(−τk),

(43)

where ω is the number of time intervals in τ = τ0∪ ...∪τω−1.
Our main idea is to compute an outer approximation of

the reachable set for a single input trajectory and enclose the
reachable sets for a finite number of other input trajectories
by a polytope before evaluating the intersection in (40).
Figure 2 illustrates this process: First, we compute an outer
approximation of R∃(−τ ;u0(·)) by (43) for the center input
trajectory ∀t ∈ τ : u(t) = cen(U) denoted by u0(·). Next,
we intersect this solution with a polytope P = ⟨N, p⟩H
constructed via support function evaluations of reachable sets
R∃(−τ ;uj(·)) computed using a finite number of other input
trajectories uj(·) ∈ U, j ∈ N[1,q] in a set of directions
{ℓ1, . . . , ℓq}. These input trajectories are chosen such that the
extent of the reachable set R∃(−τ ;uj(·)) is maximized in the
opposite direction −ℓ. We evaluate the support function of
the corresponding additional reachable set in each direction
ℓj , j ∈ N[1,q], i.e.,

ρ
(
R̂∃(−τk;uj(·)), ℓj

)

= max
{
ρ
(
Xend, (e

−Atk)⊤ℓ
)
, ρ
(
Xend, (e

−Atk+1)⊤ℓ
) }

+ ρ
(
ẐW(−τk), ℓ

)
− ρ

( ̂
ZU (−tk),−ℓ

)
,

(44)

and take the maximum value over all ω steps to construct
the polytope P for intersection with R̂∃(−τ ;u0(·)). Next, we
prove that the outlined procedure indeed computes an outer
approximation:



8

Theorem 1 (Time-interval minimal backward reachable set).
Let the subset

̂
U ⊂ U be composed of q ∈ N input trajectories.

The time-interval minimal backward reachable set (30) can be
outer approximated by

R̂∀∃(−τ) =
⋃

k∈{0,...,ω−1}

(
R̂∃(−τk;u0(·)) ∩ ⟨N, p⟩H

)
(45)

where R̂∃(−τ ;u0(·)) is computed by (42) using the center
trajectory u0(·), for which ∀t ∈ τ : u(t) = cen(U) holds,
and

∀j ∈ N[1,q] : N(j,·) = ℓ⊤j ,

∀j ∈ N[1,q] : p(j) = min
i∈{1,...,q}

ρ
( ̂
R∃(−τ ;ui(·)), ℓj

) (46)

constructs a polytope via support function evaluations of the
outer approximation R̂∃(−τ ;ui(·)) of the backward reachable
set (41) using each of the q input trajectories in

̂
U.

Proof. See Appendix.

Algorithm 1 implements Theorem 1: In the main loop,
we iteratively compute an explicit outer approximation
R̂∃(−τ ;u∗(·)) of time-inverted dynamics ˙̃x(t) = −Ax̃(t) −
Bcen(U) − Ew(t), where we account for the center input
trajectory ∀t ∈ τ : u∗(t) = cen(U). Furthermore, we choose
the maximizing directions for the other input trajectories
u(·) ∈

̂
U in positive and negative axis directions and propagate

the corresponding support functions of an outer approximation
for the time-inverted dynamics (lines 12-14). Ultimately, the
intersection of the constructed polytope with the outer approx-
imation R̂∃(−τ) (line 16) yields the outer approximation of
the time-interval minimal backward reachable set R̂∀∃(−τ).

2) Runtime Complexity: Under Assumption 1, the domi-
nating operations are the conversion of the target set Xend
to a constrained zonotope in line 3 and the intersection in
line 16, which are both O(n4) according to Table I. All other
operations are O(n3).

3) Approximation Error: The approximation error of the
intermediate result R̂∃(−τ ;u∗(·)) in (42) converges to 0 for
∆t → 0, since the particular solution ẐW(t) converges to
the exact solution ZW(t) by Proposition 1, the error term
Fe−Atk+1CZ(Xend) converges to {0} as lim∆t→0 F = [0, 0]
[14, Lemma 3], and all sets are closed under the applied
set operations. For a zero approximation error everywhere,
one would have to consider all combinations of directions
of the support function of the particular solution ZU (t) and
directions, in which to compute the intersection with R̂∃(−τ).

4) Unperturbed Case: Setting W = {0} removes every
occurrence of the particular solution ẐW(t) in Algorithm 2.
This leaves the runtime complexity and approximation error
unchanged.

VI. MAXIMAL BACKWARD REACHABILITY ANALYSIS

In this section, we compute an inner and an outer approx-
imation of the time-point maximal backward reachable set
R∃∀(−t) (31) in Section VI-A as well as an inner approx-
imation of the time-interval maximal backward reachable set
R∃∀(−τ) (32) in Section VI-B. For all computed sets, we

Algorithm 1 Minimal time-interval backward reachable set
Require: Linear system ẋ = Ax+Bu+Ew, target set Xend =
⟨H, d⟩H , input set U = ⟨cu, Gu⟩Z , disturbance set W =
⟨cw, Gw⟩Z , time interval τ = [t0, tend], steps ω ∈ N
Ensure: Outer approximation of the time-interval backward
reachable set R̂∀∃(−τ)

1: ∆t← (tend − t0)/ω, w ← cen(W) + cen(U)
2: W0 ← ⟨0, Gw⟩Z , U0 ← ⟨0, Gu⟩Z
3: F ← Eq. (19), CZ ← CZ(Xend) ▷ see (17)
4: N ← [In −In]⊤, q ← 2n, ∀j ∈ N[1,q]: p(j) ←∞
5: pre-compute ẐW0

(−∆t) and ẐW0
(−t0) ▷ see (23), (25)

6: ∀j ∈ N[1,q]: pre-compute ρ
(
ẐW0

(−t0), N⊤
(j,·)

)
and

ρ
( ̂
ZU0

(−t0),−N⊤
(j,·)

)
▷ see (6), (7), (25)

7: for k ← 0 to ω − 1 do
8: tk+1← tk+∆t, τk ← [tk, tk+1], Ẑw(−τk)← Eq. (26)
9: ẐW0(−tk+1)← ẐW0(−tk)⊕ e−AtkẐW0(−∆t)

10: ẐW(−τk)← ẐW0(−tk+1)⊕ Ẑw(−τk)
11: R̂∃(−τk)← conv(e−Atk+1CZ, e−AtkCZ)

⊕Fe−Atk+1CZ ⊕ −ẐW(−τk)
12: ∀j ∈ N[1,q]: propagate ρ

(
ẐW(−τk), N⊤

(j,·)

)
and

ρ
( ̂
ZU0

(−tk+1),−N⊤
(j,·)

)
▷ see (6), (7)

13: ∀j ∈ N[1,q]: ρ
( ̂
R∃(−τk), N⊤

(j,·)

)
← Eq. (44)

14: ∀j ∈ N[1,q]: p(j)←min
{
p(j), ρ

( ̂
R∃(−τk), N⊤

(j,·)

)}

15: end for
16: R̂∀∃(−τ) =

⋃ω−1
k=0 R̂∃(−τk) ∩ ⟨N, p⟩H ▷ see (16)

show that the runtime complexity is polynomial in the state
dimension n and discuss the approximation errors. Finally,
we also compute the unperturbed cases R∃(−t) and R∃(−τ)
defined by (34).

A. Time-Point Solution
We base the computation of the backward reachable set

R∃∀(−t) on the following proposition:

Proposition 5 (Maximal time-point backward reachable set).
The backward reachable set R∃∀(−t) defined in (31) can be
computed by

R∃∀(−t) = e−At
(
(Xend ⊖ZW(t))⊕−ZU (t)

)
. (47)

Proof. This is a continuization of the discrete-time case proven
in [38, Thm. 2.4].

The formula above holds independently of the chosen set
representations. Next, we compute approximations of (47) in
polynomial time assuming a polytopic target set Xend and
zonotopic particular solutions ZW(t) and ZU (t).

1) Outer and Inner Approximation: While the Minkowski
difference Xend ⊖ ZW(t) in (47) can be evaluated efficiently
using (11), the following Minkowski sum of the resulting
polytope with the zonotope −ZU (t) is prohibitively slow. We
overcome this issue by converting the polytope Xend⊖ZW(t)



9

to a constrained zonotope using (17). For an outer approxi-
mation, we underestimate the influence of the disturbance bŷ
ZW(t) ⊆ ZW(t) and overestimate the influence of the control
input by ẐU (t) ⊇ ZU (t):

R∃∀(−t) = e−At
(
(Xend ⊖ZW(t))⊕−ZU (t)

)

(23), (24)
⊆ e−At

(
CZ(Xend ⊖

̂
ZW(t))⊕−ẐU (t)

)
=: R̂∃∀(−t)

(48)

and vice versa to compute an inner approximation:

R∃∀(−t) = e−At
(
(Xend ⊖ZW(t))⊕−ZU (t)

)

(23), (24)
⊇ e−At

(
CZ(Xend ⊖ ẐW(t))⊕−

̂
ZU (t)

)
=:

̂
R∃∀(−t).

(49)

2) Runtime Complexity: Under Assumption 1, the dominat-
ing operation in (48) and (49) is the conversion to a constrained
zonotope, which isO(n4), as the Minkowski sums, Minkowski
differences, and linear maps are at most O(n3).

3) Approximation Error: Since the respective sets are closed
under the applied operations, the entire approximation error is
incurred by the outer and inner approximation of the particular
solutions. Since these approximations converge to their exact
counterparts in the limit ∆t → 0 by Proposition 1, the
approximation errors of R̂∃∀(−t) in (48) and

̂
R∃∀(−t) in (49)

also converge to 0 as ∆t→ 0.
4) Unperturbed Case: For the unperturbed case with W =

{0}, the formulae (48) and (49) for outer and inner approxima-
tion simplify accordingly to compute R∃(−t), see (34) with
τ = t. This yields the same runtime complexity and behavior
of the approximation error in the limit ∆t→ 0 as above.

B. Time-Interval Solution

For the time-interval solution R∃∀(−τ) as defined in (32),
we want to compute an inner approximation so that all states
are guaranteed to reach the target set Xend. Our main idea
is to inner approximate the union of time-point solutions⋃

t∈τ R∃∀(−t), which by Proposition 2 is an inner approx-
imation of the time-interval solution R∃∀(−τ). We now show
how to compute this inner approximation in polynomial time.

1) Inner Approximation: We require the following lemma:

Lemma 1 (Distributivity of Minkowski difference over con-
vex hull). For three compact, convex, and nonempty sets
S1,S2,S3 ⊂ Rn, we have

conv(S1 ⊖ S3,S2 ⊖ S3) ⊆ conv(S1,S2)⊖ S3.

Proof. See Appendix.

Next, we exploit the superposition principle to inner approx-
imate the union of time-point solutions over a time interval τ :

Theorem 2 (Maximal time-interval backward reachable set).
The union of maximal time-point backward reachable sets
⋃

t∈τk

R∃∀(−t) =
{
e−At

(
(Xend ⊖ZW(t))⊕−ZU (t)

) ∣∣ t ∈ τk
}

(50)

Algorithm 2 Maximal time-interval backward reachable set
Require: Linear system ẋ = Ax+Bu+Ew, target set Xend =
⟨H, d⟩H , input set U = ⟨cu, Gu⟩Z , disturbance set W =
⟨cw, Gw⟩Z , time interval τ = [t0, tend], steps ω ∈ N
Ensure: Inner approximation of the time-interval backward
reachable set

̂
R∃∀(−τ)

1: ∆t← (tend − t0)/ω, w ← cen(W), W0 ← ⟨0, Gw⟩Z
2: pre-compute

̂
ZU (t0) and ẐW0(t0) ▷ see (23), (24), (25)

3: µ← √γ ∥(eA∆t − In)G∥2 ▷ G and γ from box(Xend)

4: P1 ← Xend ⊖F box(Xend)⊖ Bµ ▷ see (19), (21)
5: P2 ← eA∆tXend ⊖F box(Xend)⊖ Bµ ▷ see (19), (21)
6: for k ← 0 to ω − 1 do
7: tk+1 ← tk +∆t, τk ← [tk, tk+1]

8:

̂
ZU (tk+1)←

̂
ZU (tk)⊕ eAtk

̂
ZU (∆t)

9: ẐW0(tk+1)← ẐW0(tk)⊕ eAtkẐW0(∆t)

10: Ẑw(τk)← Eq. (26), ẐW(τk)← ẐW0
(tk+1)⊕Ẑw(τk)

11: CZ ← conv(
(
CZ(P1⊖ẐW(τk)),CZ(P2⊖ẐW(τk)))

12:

̂
R∃∀(−τk)← e−Atk+1(CZ ⊕ −

̂
ZU (tk))

13: end for
14:

̂
R∃∀(−τ) =

⋃ω−1
k=0

̂
R∃∀(−τk)

over τk = [tk, tk+1] can be inner approximated bŷ
R∃∀(−τk) = e−Atk+1

(
−

̂
ZU (tk)⊕

conv
(
CZ(Xend ⊖F box(Xend)⊖ Bµ ⊖ ẐW(τk)),

CZ(eA∆tXend ⊖F box(Xend)⊖ Bµ ⊖ ẐW(τk))
))
,

(51)

where all variables are computed as introduced in Section II-
C. The union over all ω steps, that is,̂

R∃∀(−τ) =
⋃

k∈{0,...,ω−1}

̂
R∃∀(−τk),

is an inner approximation of the time-interval backward reach-
able set R∃∀(−τ) in (32) over the time interval τ = [t0, tend].

Proof. See Appendix.

Algorithm 2 implements Theorem 2, where we explicitly
consider the more general case of a time interval τ = [t0, tend]
with t0 > 0: We pre-compute the particular solutions

̂
ZU (t)

and ẐW(t) until time t0 in line 2 and pre-compute the
polytopes P1,P2 (lines 4-5) that are used for inner approx-
imating the time-interval homogeneous solution, see (21).
The main loop computes all individual backward reachable
sets

̂
R∃∀(−τk) following Theorem 2, whose union (line 14)

yields the inner approximation of the time-interval maximal
backward reachable set

̂
R∃∀(−τ).

2) Runtime Complexity: Under Assumption 1 and following
Table I, only the operation box(Xend) is O(n4), as the two
following insights allow us to remove all other linear programs
from Algorithm 2, which occur in line 11:

1) According to [12, Thm. 3], the exact conversion oper-
ation CZ(P) in (17) works with any enclosure of P.
Hence, we can use the pre-computed set box(Xend) in



10

all steps as

∀t ∈ τ,∀i ∈ {1, 2} : Pi ⊖ ẐW(t) ⊆ box(Xend).

2) The conversion CZ(P) only requires the support func-
tion evaluation of P for the intersection (16). Hence, we
apply the identity (8) to obtain for i ∈ {1, 2} :

ρ
(
Pi ⊖ ẐW(t),−ℓ

)
= ρ(Pi,−ℓ)− ρ

(
ẐW(t),−ℓ

)
.

As P1 and P2 are constant, this simplifies to the efficient
evaluation of the support function of ẐW(tk+1).

As a consequence, increasing the number of steps ω and
thereby improving the tightness is only O(n3).

3) Approximation Error: By Proposition 1, the particular
solutions ẐW(tk+1) and

̂
ZU (tk) converge to their exact coun-

terparts at time tk in the limit ∆t → 0. Moreover, the sets
P1 and P2 converge to Xend as lim∆t→0 F = [0, 0] by [14,
Lemma 1] and lim∆t→0 µ

(22)
= 0. Consequently, the computed

individual time-interval solutions

̂
R∃∀(−τk) converge to the

exact time-point solution R∃∀(−tk) in the limit ∆t → 0.
However, a non-zero approximation error remains even in
the limit as the union of time-point solutions is an inner-
approximation of the time-interval solution by Proposition 2.

4) Unperturbed Case: As mentioned in Section IV-D, the
unperturbed case is equivalent to computing the forward
reachable set as defined in Definition 5 for the time-inverted
dynamics ẋ(t) = −Ax(t)−Bu(t). ForW = {0}, Algorithm 2
simplifies to computing an inner approximation of this forward
reachable set inO(n4). In contrast to above, the approximation
error of the unperturbed case does indeed converge to 0 in the
limit ∆t→ 0 [14, Thm. 1].

VII. NUMERICAL EXAMPLES

We implemented our algorithms using the MATLAB tool-
box CORA [52] for set-based computing and MOSEK3 for
solving linear programs. All computations are carried out on
a 2.60GHz six-core i7 processor with 32GB RAM.

A. Pursuit-Evasion Game
First, we compare the results with the Python implemen-

tation4 of the state-of-the-art Hamilton-Jacobi reachability
analysis on a 4D pursuit-evasion game defined by the double
integrator dynamics with [31, Eq. (24)]

A =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , B =




0 0
1 0
0 0
0 1


 , E =




0 0
−1 0
0 0
0 −1


 .

The state is comprised of the relative positions and velocities
in the horizontal and vertical plane, while the control inputs
and disturbances represent the corresponding accelerations of
Player 1 and Player 2, respectively. We examine both minimal
and maximal reachability: In the minimal case, we look for all
initial states from which Player 1 cannot avoid collision with
Player 2, whereas the maximal case finds all states enabling

3Available at https://www.mosek.com.
4Available at https://github.com/StanfordASL/hj reachability.

−1 0 1

−1

0

1

x1

x
2

−1 0 1

−1

0

1

x3

x
4

Xend R̂∀∃(−τ): Algorithm 1

R̂∀∃(−τ): HJ (ngrid = 15) R̂∀∃(−τ): HJ (ngrid = 35)

Fig. 3. Projections of the time-interval minimal backward reachable set
for the pursuit-evasion game in Section VII-A using Umax and Wmax.

−1 0 1

−1

0

1

x1

x
2

−1 0 1

−1

0

1

x3

x
4

Xend

̂
R∃∀(−τ): Algorithm 2̂

R∃∀(−τ): HJ (ngrid = 15)

̂
R∃∀(−τ): HJ (ngrid = 35)

Fig. 4. Projections of the time-interval maximal backward reachable set
for the pursuit-evasion game in Section VII-A using Umax and Wmax.

Player 1 to catch Player 2. The target set Xend = ⟨0, I4⟩Z
defines a collision between the players and we consider a time
horizon of τ = [0, 1]. For the computation of the minimal
time-interval backward reachable set, we use

Umin =

〈[
0
1
8

]
,

[
1
4 0
0 1

8

]〉

Z

, Wmin =

〈[
1
4
0

]
,

[
1
4 0
0 1

2

]〉

Z

while the maximal backward reachable set is computed for

Umax =

〈[
0
1
4

]
,

[
1
5 0
0 1

2

]〉

Z

, Wmax =

〈[
1
10
0

]
,

[
1
10 0
0 1

10

]〉

Z

giving different steering capacities to each player.
A total number of ω = 100 steps is used for the evaluation

of both Algorithm 1 and Algorithm 2. The grid for the HJ
reachability covers the plotted domain of [−1.5, 1.5] along
all four dimensions and consists of ngrid grid points in each
dimension. Recall that we want an inner approximation of the
maximal backward reachable set

̂
R∃∀(−τ) and an outer ap-

proximation of the minimal backward reachable set R̂∀∃(−τ):
Hence, we plot only the grid points with a negative value
function to represent

̂
R∃∀(−τ); for R̂∀∃(−τ), we plot all grid

points with a negative value function evaluation as well as their
neighbors in all directions (also diagonally) with nonnegative
values.

Figure 3 and Figure 4 show projections of the minimal and
maximal backward reachable set, respectively, computed by
Algorithm 1 and Algorithm 2, as well as via HJ reachability
using ngrid ∈ {15, 35} grid points per dimension. The plotted



11

grid points indicate that the outer approximation R̂∀∃(−τ)
tightens with finer sampling, while the inner approximation̂
R∃∀(−τ) widens. The computation of R̂∀∃(−τ) using Algo-
rithm 1 takes 0.27s and the computation of

̂
R∃∀(−τ) using

Algorithm 2 takes 2.2s. For the minimal and maximal HJ
reachability, the time required to evaluate all grid points is
similar: 1.6s for ngrid = 15 and 58s for ngrid = 35. A finer
sampling of ngrid = 55 grid points per dimension results in
computation times of over ten minutes due to the exponential
increase in the total number of grid points.

The pursuit-evasion game shows similarly tight results ob-
tained by our proposed algorithms compared to HJ reacha-
bility. While the runtime complexity of our proposed algo-
rithms only scales linearly with the number of time steps,
the computation time of HJ reachability strongly depends on
the partitioning on the grid, as it suffers from the curse of
dimensionality. Furthermore, the grid has to cover the domain
of the backward reachable set, which ultimately requires
knowledge about the solution before computing it. This is not
the case for our proposed backward reachability algorithms.

B. Ground Collision Avoidance
Next, we examine the computation of the minimal backward

reachable set by analyzing the effects of altering the input
or disturbance capacities. To this end, we use a linearized
longitudinal model of a quadrotor [53, Eq. (42)]

A =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 g 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −d0 −d1



, B =




0 0
0 0
0 0
K 0
0 0
0 n0



, E =




0 0
0 0
1 0
0 1
0 0
0 0




with g = 9.81, d0 = 70, d1 = 17,K = 0.89/1.4, and n0 = 55.
In order, the states represent the horizontal position, vertical
position, horizontal velocity, vertical velocity, roll, and roll
velocity. For our ground collision avoidance scenario, we want
to avoid any state x2 ≤ 0.1 with a negative velocity x4 ≤ 0.
Since the target set Xend has to be bounded, we constrain the
other states inspired by [53, Sec. 6.1]:

Xend =
〈[
0 1

20 0 − 1
2 0 0

]⊤
,diag

[
1
2

1
20 1 1

2
π
15

π
2

]〉
Z
.

The control inputs are the total normalized thrust and the de-
sired roll angle, while the disturbances represent linearization
errors. Inspired by [53, Eq. (45)], we bound these values by

U =
〈[

g
K 0

]⊤
,diag

[
ζ 3
2

π
6

]〉
Z

W =
〈[
0 0

]⊤
,diag

[
0.2760φ 0.3668

]〉
Z

where the scaling factors ζ ∈ R and φ ∈ R allow us to design
cases with different input and disturbance capacities.

Figure 5 shows the time-interval minimal backward reach-
able sets for τ = [0, 0.5] computed using Algorithm 1 with
ω = 200 steps for three different pairs of ζ and φ:

• R̂(1)
∀∃ (−τ): ζ(1) = 1, φ(1) = 10

• R̂(2)
∀∃ (−τ): ζ(2) = 1, φ(2) = 1

• R̂(3)
∀∃ (−τ): ζ(3) = 2, φ(3) = 1

The computations times are 3.8s, 3.4s, and 1.9s for the three
cases. As expected, the projections show that R̂(1)

∀∃ (−τ) ⊃
R̂(2)

∀∃ (−τ) ⊃ R̂
(3)
∀∃ (−τ) since the input capacity increases via

ζ(1) ≤ ζ(2) ≤ ζ(3) and the size of the disturbance set W
decreases as φ(1) ≥ φ(2) ≥ φ(3). In the leftmost projection, we
see that R̂(1)

∀∃ (−τ) extends furthest in ±x1 and ±x3 because
the disturbance w1 is larger than in the other cases and forces
more states to enter the target set. As indicated by the middle
and rightmost plots, an increase of the input capacity of u1

for R̂(3)
∀∃ (−τ) allows more states to avoid the target set Xend

in comparison to R̂(2)
∀∃ (−τ), which is affected by the same

disturbance set. Also note that the leftmost projections of
R̂(2)

∀∃ (−τ) and R̂(3)
∀∃ (−τ) are identical because the input u1

neither directly nor indirectly influences these dimensions.
Moreover, the middle plot shows that no state with positive
vertical velocity x4 that is unable to avoid the target set. In
summary, the chosen example nicely demonstrates the effect
of different input capacities and disturbances on the size of
the minimal backward reachable set.

C. Terminal Set Reachability
In this subsection, we analyze the computation of the

maximal backward reachable set. To this end, we use a
12-dimensional quadrotor system linearized about the hover
condition [54, Sec. 2]. The state matrix A ∈ R12×12 and
the input matrix B ∈ R12×4 are given in [54, Appendix A],
while the disturbance matrix E ∈ R12×3 is all-zero except
for E(4,1) = E(5,2) = E(6,3) = 1 as in [55, Sec. V-D]. To
highlight the relation of maximal reachability with controller
synthesis, we choose a so-called safe terminal set [56, Sec. IV-
A] as our target set: For each state in the safe terminal set,
there exists a stabilizing controller such that the state remains
in the safe terminal set at the next time step and, by induction,
for all times. Our maximal backward reachable set contains
all states that can be steered into the safe terminal set despite
worst-case disturbances.

Using the approach in [56] implemented in the MATLAB
toolbox AROC [57], we obtain the safe terminal set ⟨0, G⟩Z
whose generator matrix G (tabulated in the Appendix in
Figure 7) is square and full-rank. Hence, the set ⟨0, G⟩Z is
a parallelotope and can be easily converted into the polytope
Xend as required by Algorithm 2. We define the input set and
disturbance set as [55, Sec. V-D]

U =
〈[
−3.715 0 0 0

]⊤
,diag

[
6.095 ζ(1) ζ(2) ζ(3)

]〉
Z

W =
〈
0,diag

[
φ(1) φ(2) φ(3)

]〉
Z

where the scaling factors ζ ∈ R3 and φ ∈ R3 allow us to
compare the backward reachable sets obtained for different
input capacities and disturbances.

We compute the time-interval maximal backward reachable
set for a time horizon τ = [0, 1] using ω = 500 steps. Figure 6
shows various projections for different values of ζ and φ:

•

̂
R(1)

∃∀ (−τ): ζ(1) =
[
0.5 0.5 0.5

]⊤
, φ(1) =

[
0 0 0

]⊤

•

̂
R(2)

∃∀ (−τ): ζ(2) =
[
1 0.75 0.25

]⊤
, φ(2) =

[
0 0 0

]⊤

•

̂
R(3)

∃∀ (−τ): ζ(3) =
[
1 1 1

]⊤
, φ(3) =

[
0.05 0.025 0.01

]⊤



12

−2 0 2

−20

−10

0

10

20

x1

x
3

0 1 2
−6

−4

−2

0

x2

x
4

−2 0 2

0

0.5

1

1.5

2

x1

x
2

Xend R̂(1)
∀∃ (−τ) R̂(2)

∀∃ (−τ) R̂(3)
∀∃ (−τ)

Fig. 5. Projections of the time-interval minimal backward reachable set for the ground collision avoidance scenario in Section VII-B.

−0.5 0 0.5

−2

0

2

x1

x
4

−0.5 0 0.5

−2

0

2

x2

x
5

−6 −4 −2 0 2
−5

0

5

10

x3

x
6

−0.4 −0.2 0 0.2 0.4

−0.5

0

0.5

x9

x
1
2

Xend

̂
R(1)

∃∀ (−τ)

̂
R(2)

∃∀ (−τ)

̂
R(3)

∃∀ (−τ)

Fig. 6. Projections of the time-interval maximal backward reachable set for the quadrotor system in Section VII-C.

The computation time is 4.1s in all three cases. First of all,
we notice that the backward reachable sets are symmetric with
respect to the origin along some dimensions, which is caused
by the symmetry of the input set and the disturbance set—
except for u(1) ∈ [−9.81, 2.38], which becomes apparent in

the projection onto the x3-x6 axes. The sets

̂
R(1)

∃∀ (−τ) and̂
R(2)

∃∀ (−τ) are computed without any disturbance. Hence, the
backward reachable set

̂
R(2)

∃∀ (−τ) encloses

̂
R(1)

∃∀ (−τ) in the
first two projections from the left since the contributing part
of the input set U is larger: i ∈ {1, 2} : ζ

(1)
(i) > ζ

(2)
(i) . In

constrast, the opposite containment holds true for the rightmost
projection as ζ(1)(3) > ζ

(2)
(3) . This follows our expectation because

more input capacity can steer additional states into the target
set, thereby enlarging the maximal backward reachable set.

The computation of

̂
R(3)

∃∀ (−τ) takes a non-zero disturbance
into account, but also increases the input capacity compared
to

̂
R(2)

∃∀ (−τ): The first three projections show a much smaller
backward reachable set as the additional input capacity is
outweighed by the disturbance. In contrast, the relatively small
disturbance φ

(3)
(3) does not affect the reachable set size in the

rightmost projection too much but results in a slightly rotated
set in comparison with

̂
R(1)

∃∀ (−τ) in combination with the in-
creased input capacity. In summary, this example demostrates
well how different input capacities and disturbances affect the
size of the maximal reachable set.

D. Scalability Analysis

Finally, we analyze the scalability of our backward
reachability algorithms. To this end, we choose the scal-
able platoon benchmark [58], whose dynamics are given
in [58, Eq. (9)], where we choose γ = 2 as in [58,
Sec. 2.4]. For a number of trucks θ, the state vector is
x(t) =

[
x(1)(t)⊤ . . . x(v)(t)⊤

]⊤ ∈ R3θ with x(j) =[
e(j)(t) ė(j)(t) a(j)(t)

]⊤
, where e(j)(t) is the relative po-

sition between truck j − 1 and j shifted by a safe distance,
ė(j)(t) is the relative velocity between truck j − 1 and j, and
a(j)(t) is the acceleration of the jth truck. The input u(t) ∈ Rθ

concatenates the individual input accelerations u(j) for all θ
trucks. The disturbance w(t) ∈ R is the acceleration of the
leading truck.

We use t = 2 and τ = [0, 2] for the time-point and time-
interval backward reachable sets, respectively, and ω = 100
as the total number of steps. The target set is composed of the
Cartesian product of the individual target sets for each truck,
which are Xend = [−20, 0]m × [3, 10]m s−1 × [1, 5]m s−2 in
the minimal case and Xend = [0, 20]m × [−1.5, 1.5]m s−1 ×
[−1, 1]m s−2 in the maximal case. In both cases, the input
acceleration of each truck is bounded by [−5, 1]m s−2 and the
acceleration of the leading truck by [−0.5, 0.5]m s−2.

In Table II, we show the computation time for evaluating all
four time-point and time-interval backward reachable sets for
an increasing number of trucks θ. Unsurprisingly, the computa-



13

TABLE II
COMPUTATION TIMES FOR PLATOON BENCHMARK FOR INCREASING

STATE DIMENSION n AND INPUT DIMENSION m.

n m R̂∀∃(−t) R̂∀∃(−τ)
̂
R∃∀(−t)

̂
R∃∀(−τ)

15 5 0.02s 0.27s 0.13s 0.24s
30 10 0.02s 0.35s 0.18s 0.36s
51 17 0.03s 0.66s 0.27s 0.71s
99 33 0.05s 2.0s 0.52s 2.4s
150 50 0.11s 4.1s 0.98s 4.4s
300 100 0.42s 15s 3.4s 20s
600 200 2.3s 76s 19s 92s
999 333 8.8s — 70s —

2001 667 76s — — —

tion of R̂∀∃(−t) is always fastest since it is the only algorithm
that scales with O(n3). Second is the other time-point solution
R̂∃∀(−t) due to only one operation being O(n4). Compared
to the time-point solutions, the computation of both time-
interval solutions is more time-consuming, largely due to
the numerous linear programs and concatenation of large
zonotope generator matrices. In summary, this evaluation of
the scalable platoon benchmark demonstrates the polynomial
runtime complexity in the state dimension of all our backward
reachability algorithms, enabling the analysis of very high-
dimensional linear systems.

E. Discussion
Let us now address some critical aspects regarding our pro-

posed backward reachability algorithms: First of all, the target
set Xend has to be represented as a polytope. While the manual
design of polytopes is quite intuitive, the target set may come
from another algorithm and thus be represented by a different
set representation, which needs to be converted to a polytope.
For minimal reachability, one wants an outer approximation
of the original set, whereas maximal reachability requires the
converted polytope to be contained in the original set—both
cases can be handled via optimization, e.g., using support
function evaluations (9) to obtain an enclosing polytope.

As discussed in the respective subsections, the approxima-
tion errors of all backward reachable sets except the time-point
maximal backward set are non-zero even in the limit ∆t→ 0.
Still, one can tighten the time-point and time-interval minimal
backward reachable sets in arbitrary directions by additional
support function evaluations. These directions will be cho-
sen according to the demands of the considered application
scenario. For the time-interval maximal backward reachable
set, the approximation error entirely depends on the tightness
of the containment in Proposition 2. For large disturbances,
the forward reachable set of a given initial state may not be
contained within the target set at any specific point in time, but
still pass through the target set over a time interval. This would
make that initial state part of the time-interval solution, while
excluding it from the time-point solution. Further investigation
into this issue is required to formally capture the notion of
one set passing through another, which is different from both
containment and intersection.

Since we know that there exists a control input to steer each
state of the maximal backward reachable set into the target
set, a natural next step is the extraction of such a controller
as in [39, Sec. IV-B.2)]. The sets in our work are limited to
feed-forward controllers because we consider the effects of the
control input and disturbance separately. Instead, one can also
skip backward reachability and directly synthesize a controller,
which is a well-researched topic for linear continuous-time
systems offering a wide range of different approaches.

VIII. CONCLUSION

This article presents the first backward reachability al-
gorithms using set propagation techniques for perturbed
continuous-time linear systems. The proposed algorithms
cover minimal and maximal reachability and compute both
time-point and time-interval solutions. The runtime complexity
of all algorithms is polynomial in the state dimension. Our
evaluation shows tight results and how changes in the input
and disturbance set affect the size of the resulting backward
rechable set. Furthermore, we examined the scalability of our
algorithms by analyzing systems with well over a hundred
states within seconds, which significantly improves the state
of the art in backward reachability analysis.

APPENDIX

Proof of Proposition 1:
The approximation error in ẐS(t) as propagated by (25) is
given by the sum of the approximation errors induced by
the additional terms eAtkẐS(∆t) [14, Proposition 2]. Each
of these additionally induced approximation errors converges
to 0 for ∆t→ 0 [14, Lemma 2]. Thus, the total approximation
error in ẐS(t) also converges to 0 in the limit ∆t → 0. The
same reasoning holds also for the inner approximation

̂
ZS(t)

as the approximation errors in [14, Proposition 2] are measured
in terms of the Hausdorff distance between the outer and inner
approximation [14, Proposition 11]. □
Proof of Proposition 4:
We insert P ⊕ Z into (9) to obtain

P ⊕ Z ⊆ ⟨H, d̃⟩H ,

∀j ∈ N[1,h] : d̃(j) = ρ
(
P ⊕ Z, H⊤

(j,·)

)

= ρ
(
P, H⊤

(j,·)

)
+ ρ

(
Z, H⊤

(j,·)

)

= d(j) + ρ
(
Z, H⊤

(j,·)

)
.

The runtime complexity follows from the h support function
evaluations of Z (14). □
Proof of Theorem 1:
By considering only a finite subset of input signals

̂
U ⊂ U,

we obtain an outer approximation:

R∀∃(−τ) (30)
=

{
x0 ∈ Rn

∣∣ ∀u(·) ∈ U ∃w(·) ∈W ∃t ∈ τ :

x(t;x0, u(·), w(·)) ∈ Xend
}

⊆
{
x0 ∈ Rn

∣∣∀u(·) ∈
̂
U ∃w(·) ∈W ∃t ∈ τ :

x(t;x0, u(·), w(·)) ∈ Xend
}

=
⋂

u∗∈
̂
U

R∃(−τ ;u∗(·)) =: S1. (52)



14

Let us denote the input trajectory ∀t ∈ τ : u(t) = cen(U)
by u0 and the other q input trajectories in

̂
U by u1, ..., uq . To

evaluate S1 in (52), we compute an outer approximation of
R∃(−τ ;u0) that also encloses R∀∃(−τ) since

R∀∃(−τ)
(52)
⊆ R∃(−τ ;u0)

(42)
⊆ R̂∃(−τ ;u0).

Second, we incorporate all other input trajectories in

̂
U:

S1 =
⋂

j∈{0,...,q}
R∃(−τ ;uj)

(43)
⊆

(
R̂∃(−τ0;u0) ∪ ... ∪ R̂∃(−τω−1;u0)

)

∩R∃(−τ ;u1) ∩ ... ∩R∃(−τ ;uq)
(42)
⊆

(
R̂∃(−τ0;u0) ∪ ... ∪ R̂∃(−τω−1;u0)

)

∩ R̂∃(−τ ;u1) ∩ ... ∩ R̂∃(−τ ;uq) =: S2.
(53)

We enclose each additional set by the polytope constructed
using support function evaluations in the directions ℓ1, ..., ℓq:

∀j ∈ N[1,q] : R̂∃(−τ ;uj)
(9)
⊆ ⟨N, p(j)⟩H

with N = [ℓ1...ℓq]
⊤,∀i ∈ N[1,q] : p

(j)
(i) = ρ

(
R̂∃(−τ ;uj), ℓj

)
.

(54)

We insert this in (53) to obtain

S2
(54)
⊆

(
R̂∃(−τ0;u0) ∪ ... ∪ R̂∃(−τω−1;u0)

)

∩ ⟨N, p(1)⟩H ∩ ... ∩ ⟨N, p(q)⟩H
=

(
R̂∃(−τ0;u0) ∪ ... ∪ R̂∃(−τω−1;u0)

)
∩ ⟨N, p⟩H ,

where p is the minimum value as in (46). Finally, distributing
the intersection over the union yields R̂∀∃(−τ) in (45). □
Proof of Lemma 1:
We plug into the definitions of the Minkowski difference (3)
and convex hull (5):

conv(S1 ⊖ S3,S2 ⊖ S3)⊕ S3
= {λa+ (1− λ)b+ c |λ ∈ [0, 1], a⊕ S3 ⊆ S1,

b⊕ S3 ⊆ S2, c ∈ S3}
= {λ(a+ c) + (1− λ)(b+ c) |λ ∈ [0, 1], a⊕ S3 ⊆ S1,

b⊕ S3 ⊆ S2, c ∈ S3}
⊆ {λs1 ⊕ (1− λ)s2 |λ ∈ [0, 1], s1 ∈ a⊕ S3 ⊆ S1,

s2 ∈ b⊕ S3 ⊆ S2}
⊆ conv(S1,S2),

from which it follows that

conv(S1 ⊖ S3,S2 ⊖ S3) ⊆ conv(S1,S2)⊖ S3,
since S ⊕ S3 ⊖ S3 = S holds [39, Lemma 1(iii)]. □
Proof of Theorem 2:
A single time-interval solution R∃∀(−τk) over τk = [tk, tk+1]
covering part of the union in (50) can be expressed by

S1 := e−Atk+1
(
(H(τ0)⊖ZW(τk))⊕−ZU (τk)

)
.

For the particular solutions over τk = [tk, tk+1], we havê
ZU (tk) ⊆ ZU (τk), ZW(τk) ⊆ ẐW(τk),

which are computed using (24)-(27). Consequently, we obtain

S1 ⊇ e−Atk+1
(
(H(τ0)⊖ ẐW(τk))⊕−

̂
ZU (tk)

)
=: S2.

Let us now plug in the inner approximation of the homoge-
neous time-interval solution (21):

S2 ⊇ e−Atk+1
(
conv(Xend, e

A∆tXend)⊖F box(Xend)

⊖ Bµ ⊖ ẐW(τk)⊕−
̂
ZU (tk)

)
=: S3.

Note that we enclose Xend by box(Xend) to evaluate the
multiplication with the interval matrix F using (15) and
compute µ as in (22) using the generator matrix of box(Xend).
We now apply Lemma 1 and convert the two polytopes of
the convex hull operation to constrained zonotopes by (17)
to efficiently evaluate the following Minkowski sum with
−
̂
ZU (tk), resulting in

S3 ⊇ e−Atk+1
(
−

̂
ZU (tk)⊕

conv
(
CZ(Xend ⊖F box(Xend)⊖ Bµ ⊖ ẐW(τk)),

CZ(eA∆tXend ⊖F box(Xend)⊖ Bµ ⊖ ẐW(τk))
))

=:

̂
R∃∀(−τk).

Thus, each set

̂
R∃∀(−τk) is an inner approximation of the

union of time-point solutions over τk, which in turn is an
inner approximation of the time-interval solution R∃∀(−τk)
by Proposition 2:

̂
R∃∀(−τk) ⊆

⋃

t∈τk

R∃∀(−t)
Proposition 2
⊆ R∃∀(−τk).

Extending this reasoning to all ω consecutive time intervals
yields the claim. □

ACKNOWLEDGMENT

Many thanks to my colleagues Adrian Kulmburg, Tobias
Ladner, Lukas Schäfer, and Victor Gaßmann for their help in
the formalization of some proofs, the installation of the HJ
reachability toolbox, the design of the numerical examples,
and the discussion of the algorithms.

REFERENCES

[1] I. M. Mitchell, “Comparing forward and backward reachabil-
ity as tools for safety analysis,” in Proc. of the International
Workshop on Hybrid Systems: Computation and Control,
Springer, 2007, pp. 428–443.

[2] A. Girard and C. Le Guernic, “Efficient reachability analysis
for linear systems using support functions,” IFAC Proceedings
Volumes, vol. 41, no. 2, 2008.

[3] G. Frehse, “Computing maximizer trajectories of affine dy-
namics for reachability,” in Proc. of the 54th Conference on
Decision and Control, 2015, pp. 7454–7461.

[4] P. M. Vaidya, “An algorithm for linear programming which
requires O(((M + n)N2 + (M + n)1.5n)L) arithmetic
operations,” in Proc. of the 19th Annual Symposium on Theory
of Computing, ACM, 1987, pp. 29–38.

[5] G. M. Ziegler, Lectures on polytopes. Springer Science &
Business Media, 2012.

[6] M. Althoff, G. Frehse, and A. Girard, “Set propagation tech-
niques for reachability analysis,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 4, no. 1, pp. 369–395,
2021.



15

G =




−0.0042 0.0455 0.0064 −0.0694 0 0 0.0001 −0.0004 0 0 −0.0002 −0.0004
0.0455 0.0042 0.0694 0.0064 0 0 0.0004 0.0001 0 0 −0.0004 0.0002

0 0 0 0 −0.0370 0.0377 0 0 0 0 0 0
0.0086 −0.0924 0.0031 −0.0331 0 0 0.0008 −0.0022 0 0 −0.0003 −0.0006
−0.0924 −0.0086 0.0331 0.0031 0 0 0.0022 0.0008 0 0 −0.0006 0.0003

0 0 0 0 0.0491 0.0284 0 0 0 0 0 0
−0.0044 −0.0004 0.0083 0.0008 0 0 0.0088 0.0032 0 0 0.0046 −0.0023
0.0004 −0.0044 0.0008 −0.0083 0 0 0.0032 −0.0088 0 0 0.0023 0.0046

0 0 0 0 0 0 0 0 0.0045 −0.0005 0 0
−0.0091 −0.0008 0.0071 0.0007 0 0 −0.0244 −0.0088 0 0 0.0016 −0.0008
0.0008 −0.0091 0.0007 −0.0071 0 0 −0.0088 0.0244 0 0 0.0008 0.0016

0 0 0 0 0 0 0 0 −0.0019 −0.0011 0 0




Fig. 7. Generator matrix G of the safe terminal set ⟨0, G⟩Z for the quadrotor system in Section VII-C computed using the approach in [56].

[7] I. Kolmanovsky and E. G. Gilbert, “Theory and computation
of disturbance invariant sets for discrete-time linear systems,”
Mathematical Problems in Engineering, vol. 4, 1998.

[8] A. Girard, “Reachability of uncertain linear systems using
zonotopes,” in Proc. of the 8th International Workshop on
Hybrid Systems: Computation and Control, Springer, 2005,
pp. 291–305.

[9] M. Althoff, “Reachability analysis and its application to the
safety assessment of autonomous cars,” Dissertation, Technis-
che Universität München, 2010.

[10] C. Le Guernic and A. Girard, “Reachability analysis of linear
systems using support functions,” Nonlinear Analysis: Hybrid
Systems, vol. 4, no. 2, pp. 250–262, 2010.

[11] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis
of linear systems with uncertain parameters and inputs,” in
Proc. of the 46th Conference on Decision and Control, IEEE,
2007, pp. 726–732.

[12] J. K. Scott, D. M. Raimondo, G. R. Marseglia, et al., “Con-
strained zonotopes: A new tool for set-based estimation and
fault detection,” Automatica, vol. 69, pp. 126–136, 2016.

[13] V. Raghuraman and J. P. Koeln, “Set operations and order
reductions for constrained zonotopes,” Automatica, vol. 139,
p. 110 204, 2022.

[14] M. Wetzlinger, N. Kochdumper, S. Bak, et al., “Fully au-
tomated verification of linear systems using inner and outer
approximations of reachable sets,” IEEE Transactions on
Automatic Control, vol. Early Access, pp. 1–16, 2023.

[15] G. Frehse, C. Le Guernic, A. Donzé, et al., “SpaceEx:
Scalable verification of hybrid systems,” in Proc. of the 23rd
International Conference on Computer Aided Verification,
ser. LNCS 6806, Springer, 2011, pp. 379–395.

[16] C. Le Guernic, “Reachability analysis of hybrid systems with
linear continuous dynamics,” Dissertation, Université Joseph-
Fourier - Grenoble I, 2009.

[17] M. Chen and C. J. Tomlin, “Hamilton-Jacobi reachability:
Some recent theoretical advances and applications in un-
manned airspace management,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 1, pp. 333–358, 2018.

[18] A. Girard, C. Le Guernic, and O. Maler, “Efficient com-
putation of reachable sets of linear time-invariant systems
with inputs,” in Proc. of the 9th International Workshop on
Hybrid Systems: Computation and Control, Springer, 2006,
pp. 257–271.

[19] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis
of nonlinear systems with uncertain parameters using con-
servative linearization,” in Proc. of the 47th Conference on
Decision and Control, IEEE, 2008, pp. 4042–4048.

[20] X. Chen, “Reachability analysis of non-linear hybrid systems
using Taylor models,” Dissertation, RWTH Aachen Univer-
sity, 2015.

[21] B. Xue, Z. She, and A. Easwaran, “Underapproximating back-
ward reachable sets by semialgebraic sets,” IEEE Transactions
on Automatic Control, vol. 62, no. 10, pp. 5185–5197, 2017.

[22] E. Goubault and S. Putot, “Forward inner-approximated reach-
ability of non-linear continuous systems,” in Proc. of the 20th

International Conference on Hybrid Systems: Computation
and Control, ACM, 2017, pp. 1–10.

[23] E. Goubault and S. Putot, “Robust under-approximations and
application to reachability of non-linear control systems with
disturbances,” IEEE Control Systems Letters, vol. 4, no. 4,
pp. 928–933, 2020.

[24] X. Chen, S. Sankaranarayanan, and E. Ábrahám, “Under-
approximate flowpipes for non-linear continuous systems,”
in Formal Methods in Computer-Aided Design, IEEE, 2014,
pp. 59–66.

[25] N. Kochdumper and M. Althoff, “Computing non-convex
inner-approximations of reachable sets for nonlinear contin-
uous systems,” in Proc. of the 59th Conference on Decision
and Control, IEEE, 2020, pp. 2130–2137.

[26] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-
dependent Hamilton-Jacobi formulation of reachable sets for
continuous dynamic games,” IEEE Transactions on Automatic
Control, vol. 50, no. 7, pp. 947–957, 2005.

[27] S. Bansal, M. Chen, S. Herbert, et al., “Hamilton-Jacobi
reachability: A brief overview and recent advances,” in Proc.
of the 56th Conference on Decision and Control, IEEE, 2017,
pp. 2242–2253.

[28] M. Chen, S. Herbert, and C. J. Tomlin, “Exact and efficient
Hamilton-Jacobi guaranteed safety analysis via system de-
composition,” in Proc. of the International Conference on
Robotics and Automation, IEEE, 2017, pp. 87–92.

[29] M. Chen, S. Herbert, M. S. Vashishtha, et al., “Decomposition
of reachable sets and tubes for a class of nonlinear systems,”
IEEE Transactions on Automatic Control, vol. 63, no. 11,
pp. 3675–3688, 2018.

[30] D. Lee, M. Chen, and C. J. Tomlin, “Removing leaking
corners to reduce dimensionality in Hamilton-Jacobi reach-
ability,” in Proc. of the International Conference on Robotics
and Automation, IEEE, 2019, pp. 9320–9326.

[31] M. Chen and C. J. Tomlin, “Exact and efficient Hamilton-
Jacobi reachability for decoupled systems,” in Proc. of the
54th Conference on Decision and Control, IEEE, 2015,
pp. 1297–1303.

[32] M. Chen, J. C. Shih, and C. J. Tomlin, “Multi-vehicle collision
avoidance via Hamilton-Jacobi reachability and mixed integer
programming,” in Proc. of the 55th Conference on Decision
and Control, IEEE, 2016, pp. 1695–1700.

[33] S. Bansal and C. J. Tomlin, “DeepReach: A deep learning
approach to high-dimensional reachability,” in Proc. of the
International Conference on Robotics and Automation, IEEE,
2021, pp. 1817–1824.

[34] S. Herbert, J. J. Choi, S. Sanjeev, et al., “Scalable learning
of safety guarantees for autonomous systems using Hamilton-
Jacobi reachability,” in Proc. of the International Conference
on Robotics and Automation, IEEE, 2021, pp. 5914–5920.

[35] M. Jones and M. M. Peet, “Relaxing the Hamilton Jacobi
Bellman equation to construct inner and outer bounds on
reachable sets,” in Proc. of the 58th Conference on Decision
and Control, IEEE, 2019, pp. 2397–2404.



16

[36] N. Kochdumper, “Extensions of polynomial zonotopes and
their application to verification of cyber-physical systems,”
Dissertation, Technische Universität München, 2022.

[37] B. Schürmann, M. Klischat, N. Kochdumper, et al., “Formal
safety net control using backward reachability analysis,” IEEE
Transactions on Automatic Control, vol. 67, no. 11, pp. 5698–
5713, 2021.

[38] A. A. Kurzhanskiy and P. Varaiya, “Reach set computation
and control synthesis for discrete-time dynamical systems
with disturbances,” Automatica, vol. 47, no. 7, pp. 1414–1426,
2011.

[39] L. Yang and N. Ozay, “Scalable zonotopic under-
approximation of backward reachable sets for uncertain linear
systems,” IEEE Control Systems Letters, vol. 6, pp. 1555–
1560, 2022.

[40] L. Yang, H. Zhang, J.-B. Jeannin, et al., “Efficient backward
reachability using the minkowski difference of constrained
zonotopes,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 11, pp. 3969–
3980, 2022.

[41] H. Yin, A. Packard, M. Arcak, et al., “Finite horizon back-
ward reachability analysis and control synthesis for uncertain
nonlinear systems,” in American Control Conference, 2019,
pp. 5020–5026.

[42] H. Yin, M. Arcak, A. Packard, et al., “Backward reachability
for polynomial systems on a finite horizon,” IEEE Transac-
tions on Automatic Control, vol. 66, no. 12, pp. 6025–6032,
2021.

[43] H. Yin, P. Seiler, and M. Arcak, “Backward reachability using
integral quadratic constraints for uncertain nonlinear systems,”
Control Systems Letters, vol. 5, no. 2, pp. 707–712, 2021.

[44] K. Margellos and J. Lygeros, “Hamilton-Jacobi reachability:
Some recent theoretical advances and applications in un-
manned airspace management,” IEEE Transactions on Auto-
matic Control, vol. 56, no. 8, pp. 1849–1861, 2011.

[45] J. F. Fisac, M. Chen, C. J. Tomlin, et al., “Reach-avoid prob-
lems with time-varying dynamics, targets and constraints,” in
Proc. of the 18th International Conference on Hybrid Systems:
Computation and Control, ACM, 2015, pp. 11–20.

[46] B. Xue, M. Fränzle, and N. Zhan, “Inner-approximating
reachable sets for polynomial systems with time-varying un-
certainties,” IEEE Transactions on Automatic Control, vol. 65,
no. 4, pp. 1468–1483, 2020.

[47] S. Kaynama, M. Oishi, I. M. Mitchell, et al., “The continual
reachability set and its computation using maximal reachabil-
ity techniques,” in Proc. of the 50th Conference on Decision
and Control and European Control Conference, IEEE, 2011,
pp. 6110–6115.

[48] S. Kaynama, I. M. Mitchell, M. Oishi, et al., “Scalable safety-
preserving robust control synthesis for continuous-time linear
systems,” IEEE Transactions on Automatic Control, vol. 60,
no. 11, pp. 3065–3070, 2015.

[49] S. Kaynama, J. Maidens, M. Oishi, et al., “Computing the
viability kernel using maximal reachable sets,” in Proc. of the
15th international conference on Hybrid Systems: Computa-
tion and Control, ACM, 2012, pp. 55–64.

[50] J. N. Maidens, S. Kaynama, I. M. Mitchell, et al., “Lagrangian
methods for approximating the viability kernel in high-
dimensional systems,” Automatica, vol. 49, no. 7, pp. 2017–
2029, 2013.

[51] E. Goubault and S. Putot, “Inner and outer reachability for
the verification of control systems,” in Proc. of the 22nd
International Conference on Hybrid Systems: Computation
and Control, ACM, 2019, pp. 11–22.

[52] M. Althoff, “An introduction to CORA 2015,” in Proc. of the
Workshop on Applied Verification for Continuous and Hybrid
Systems, 2015, pp. 120–151.

[53] I. M. Mitchell, J. Budzis, and A. Bolyachevets, “Invariant,
viability and discriminating kernel under-approximation via
zonotope scaling,” arXiv preprint arXiv:1901.01006, 2019.

[54] S. Kaynama and C. J. Tomlin, “Benchmark: Flight envelope
protection in autonomous quadrotors,” in Workshop on Ap-
plied Verification of Continuous and Hybrid Systems, 2014.

[55] F. Gruber and M. Althoff, “Scalable robust safety filter with
unknown disturbance bounds,” IEEE Transactions on Auto-
matic Control, pp. 1–15, 2023.

[56] F. Gruber and M. Althoff, “Computing safe sets of linear
sampled-data systems,” IEEE Control Systems Letters, vol. 5,
no. 2, pp. 385–390, 2021.

[57] N. Kochdumper, F. Gruber, B. Schürmann, et al., “AROC: A
toolbox for automated reachset optimal controller synthesis,”
in Proc. of the 24th International Conference on Hybrid
Systems: Computation and Control, ACM, 2021.

[58] I. Ben Makhlouf and S. Kowalewski, “Optimizing safe con-
trol of a network platoon of trucks using reachability,” in
ARCH14-15. 1st and 2nd International Workshop on Applied
Verification for Continuous and Hybrid Systems, EasyChair,
2015, pp. 169–179.

MARK WETZLINGER received the B.S. degree
in Engineering Sciences in 2017 jointly from
Universität Salzburg, Austria and Technische
Universität München, Germany, and the M.S.
degree in Robotics, Cognition and Intelligence
in 2019 from Technische Universität München,
Germany. He is currently pursuing the Ph.D. de-
gree in computer science at Technische Univer-
sität München, Germany. His research interests
include formal verification of linear and nonlinear
continuous systems, reachability analysis, adap-

tive parameter tuning, and model order reduction.

MATTHIAS ALTHOFF is an associate pro-
fessor in computer science at Technische Uni-
versität München, Germany. He received his
diploma engineering degree in Mechanical En-
gineering in 2005, and his Ph.D. degree in Elec-
trical Engineering in 2010, both from Technis-
che Universität München, Germany. From 2010
to 2012 he was a postdoctoral researcher at
Carnegie Mellon University, Pittsburgh, USA,
and from 2012 to 2013 an assistant professor
at Technische Universität Ilmenau, Germany. His

research interests include formal verification of continuous and hybrid
systems, reachability analysis, planning algorithms, nonlinear control,
automated vehicles, and power systems.



A.5 Adaptive Parameter Tuning for Reachability Analysis of Nonlinear Systems

A.5 Adaptive Parameter Tuning for Reachability Analysis of

Nonlinear Systems

Summary Using reachable sets to solve the verification task in Problem 1 is difficult since the

approximation error may grow uncontrollably, resulting in an excessively large outer approxi-

mation. This issue is caused by the wrapping effect—the amplification of approximation errors

over time—which is unavoidable for all current propagation-based reachability algorithms for

nonlinear systems. Only well-tuned algorithm parameters can mitigate the wrapping effect so

that the computed reachable sets are tight enough for verification.

In this work, we automate the tuning of algorithm parameters for a reachability algorithm

based on on-the-fly abstraction. Following an analysis of the influence of the time step size on

the abstraction error, we design an estimation function for the reachable set size after a finite

time horizon. Scalar optimization over the estimated reachable set size yields the optimal time

step size for the current time step. Another critical parameter is the abstraction order up to

which we Taylor expand the right-hand side of the differential equation: In each time step,

we check whether the abstraction error changes more than a fixed threshold compared to the

previous time step. If this is the case, we compare the abstraction errors for both abstraction

orders and switch to the other order if the difference exceeds a fixed threshold.

The proposed automated reachability algorithm successfully analyzes a wide variety of bench-

mark systems. We obtain similar performance in a single run compared to manually tuned

state-of-the-art tools for reachability and verification of nonlinear systems. If we also consider

the many runs of trial and error necessary for manual parameter tuning, the comparison would

greatly favor our novel approach.

Author contributions M.W. developed the idea of parameter tuning using a local analysis

of the abstraction errors, implemented the algorithm, conducted the numerical evaluation, and

wrote most of the manuscript. A.K. proved Lemma 3.1 and Theorem 3.2 and contributed

to improving the rigor of the presentation. M.A. suggested ideas for parameter tuning and

provided feedback for improving the manuscript.

Copyright notice ©2021 Copyright held by the authors. Publication rights licensed to

ACM. Version of record available at doi:10.1145/3447928.3456643. Explicit license printed

in Appendix B.

TUM Graduate School This publication has been declared a core publication in accor-

dance with Article 7, section 3 TUM Doctoral Regulations (PromO).

109

https://doi.org/10.1145/3447928.3456643


Adaptive Parameter Tuning for Reachability Analysis of
Nonlinear Systems

Mark Wetzlinger
Technische Universität München
85748 Garching bei München

Germany
m.wetzlinger@tum.de

Adrian Kulmburg
Technische Universität München
85748 Garching bei München

Germany
adrian.kulmburg@tum.de

Matthias Althoff
Technische Universität München
85748 Garching bei München

Germany
althoff@tum.de

ABSTRACT
Reachability analysis fails to produce tight reachable sets if certain
algorithm parameters are poorly tuned, such as the time step size or
the accuracy of the set representation. The tuning is especially diffi-
cult in the context of nonlinear systems where over-approximation
errors accumulate over time due to the so-called wrapping effect,
often requiring expert knowledge. In order to widen the applicabil-
ity of reachability analysis for practitioners, we propose the first
adaptive parameter tuning approach for reachability analysis of
nonlinear continuous systems tuning all algorithm parameters. Our
modular approach can be applied to different reachability algo-
rithms as well as various set representations. Finally, an evaluation
on numerous benchmark systems shows that the adaptive parame-
ter tuning approach efficiently computes very tight enclosures of
reachable sets.

CCS CONCEPTS
• General and reference → Verification; • Mathematics of
computing→ Ordinary differential equations.

KEYWORDS
Reachability analysis, nonlinear systems, parameter tuning.
ACM Reference Format:
Mark Wetzlinger, Adrian Kulmburg, and Matthias Althoff. 2021. Adaptive
Parameter Tuning for Reachability Analysis of Nonlinear Systems. In 24th
ACM International Conference on Hybrid Systems: Computation and Control
(HSCC ’21), May 19–21, 2021, Nashville, TN, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3447928.3456643

1 INTRODUCTION
Reachability analysis provably guarantees avoiding unsafe states
of mixed discrete/continuous systems for a set of uncertain initial
states and uncertain inputs. Since exact reachable sets can only be
computed for a limited number of system classes [36], reachability
algorithms compute over-approximations to establish soundness.
The performance of these algorithms heavily relies on the cor-
rect setting of algorithm parameters—a safety property may not
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HSCC ’21, May 19–21, 2021, Nashville, TN, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8339-4/21/05. . . $15.00
https://doi.org/10.1145/3447928.3456643

be verified although it is satisfied by the exact reachable set. We
consider the automated tuning of algorithm parameters to be a
crucial next step in the development of reachability analysis. A
full automation would enable non-experts and practitioners to use
reachability analysis supporting the development of safer products.
This paper advances in this direction by automatically tuning all al-
gorithm parameters for state-space abstracted reachability analysis
of nonlinear systems.

Related Work. The computation of reachable sets for nonlinear
systems can be divided into four groups: First, there are approaches
for invariant generation; any invariant set containing the initial set
is also a reachable set [34, 40, 43]. Second, there exist optimization-
based approaches which treat reachability analysis by solving an
optimization problem [19, 44]. Third, other approaches abstract the
solution space: The work in [24] uses validated simulations for the
construction of bounded flowpipes. Taylor models computed by
using the Picard iteration were initially proposed in [29, 42] and
later extended to include uncertain inputs [15]. Finally, there are
approaches abstracting the state space by differential inclusions,
such as the abstraction of nonlinear systems by a hybrid automaton
with linear dynamics [7, 8, 28, 39]. Other methods linearize the
nonlinear dynamics on-the-fly [6, 20, 21]—a concept that has been
extended to polynomial abstractions of nonlinear dynamics [3]
resulting in a tighter enclosure of the exact reachable set. In this
paper, we present an automatic parameter tuning approach for state-
space abstracted reachability algorithms. Many aforementioned
methods have been realized by tools: For nonlinear systems, there
is Ariadne [11], C2E2 [23], CORA [4], DynIBEX [22], Flow* [16],
Isabelle/HOL [30], and JuliaReach [13].

While there is almost no work on finding a suitable time step size
for reachability analysis of nonlinear systems, this problem is well
studied for numerical integration of ordinary differential equations
(ODEs): A common method applied in numerical ODE solvers is
to compute solutions with different precision in parallel and adapt
the time step size according to the difference between the solutions
[9, 37]. In order to enclose a single trajectory, guaranteed integration
methods provide several automated time step size control strategies
[31, 45, 48]. Since reachability analysis considers a set of uncertain
initial states as well as uncertain inputs, automatic parameter tuning
is much more difficult than for classical and validated integration.

Concerning reachability analysis, there are approaches automat-
ically tuning algorithm parameters for linear systems: In [25], the
time step size is adapted in each step in order to satisfy a linearly
increasing user-defined error bound. The approach in [46] adap-
tively determines the time step size by approximating the actual



HSCC ’21, May 19–21, 2021, Nashville, TN, USA Mark Wetzlinger, Adrian Kulmburg, and Matthias Althoff

flow within a user-defined error bound. Recently, an approach to
adapt all algorithm parameters in reachability analysis of linear
systems has been developped [51], using over-approximation mea-
sures related to the Hausdorff distance to enable users to tune the
desired accuracy. For nonlinear systems, the work in [14] adaptively
tunes the time step size within a user-defined range, according to
a numeric threshold condition, which in turn has to be defined by
the user for each system analysis.

Contributions. We introduce the first approach that automati-
cally tunes all algorithm parameters for reachability analysis of
nonlinear systems. After introducing some preliminaries in Sec. 2,
we present our novel automated parameter tuning approach in
Sec. 3. Each parameter is tuned individually due to the modular
structure of our method, thus providing a very flexible integration
in the reachability algorithm. Furthermore, our proposed tuning
during runtime without backtracking improves the computational
efficiency. Finally, the evaluation on numerical examples in Sec. 4
demonstrates the practical usability of our tuning methods, fol-
lowed by concluding remarks in Sec. 5.

2 PRELIMINARIES
In this section, we give an overview of reachability analysis for
nonlinear systems based on state-space abstraction. This will serve
as a basis for our adaptive tuning methods.

2.1 Notation
Vectors are denoted by lower-case letters, matrices by upper-case
letters, and sets by upper-case calligraphic letters. An all-zero vec-
tor of proper dimension is denoted by 0. Given a vector 𝑣 ∈ R𝑛 ,
𝑣𝑖 refers to the 𝑖-th entry and the absolute value |𝑣 | ∈ R𝑛 is com-
puted element-wise. For a matrix 𝑀 ∈ R𝑛×𝑝 , 𝑚𝑖 𝑗 refers to the
entry in the 𝑖-th row and 𝑗-th column. The concatenation of two
matrices is denoted by [𝑀1 𝑀2]. An 𝑛-dimensional axis-aligned
box is denoted by B = [𝑎, 𝑏] ⊂ R𝑛 , where 𝑎𝑖 ≤ 𝑏𝑖 , ∀𝑖 ∈ {1, ..., 𝑛}.
The diameter and the absolute value of a box are respectively de-
fined by 𝑑

(B) := 𝑏 − 𝑎 ∈ R𝑛 and abs
(B) := [−𝑐, 𝑐] ⊂ R𝑛 , where

𝑐 = max{|𝑎 |, |𝑏 |} is evaluated element-wise [1, eq. (10)]. As an ab-
breviation, we denote the Cartesian product of identical lower and
upper limits for 𝑛 dimensions by [𝑎, 𝑏]𝑛 . Interval matrices are de-
noted by upper-case boldface letters: I = [𝑃,𝑄] ∈ R𝑚×𝑛 , where
𝑝𝑖 𝑗 ≤ 𝑞𝑖 𝑗 ,∀𝑖 ∈ {1, ...,𝑚},∀𝑗 ∈ {1, ..., 𝑛}. The Minkowski addition
is denoted by ⊕. The operations center(S) , box(S) , and vol

(S)
return the geometric center, the smallest box over-approximation,
and the volume of a set S ⊂ R𝑛 , respectively. Furthermore, the
projection onto the 𝑖-th axis is denoted by S𝑖 = 𝑒⊤𝑖 S, where 𝑒𝑖 is
the 𝑖-th basis vector, and the convex hull of two sets S1,S2 ⊂ R𝑛 is
written as conv

(S1,S2) . The floor operator ⌊𝑘⌋ rounds 𝑘 down to
the next smaller integer number, sgn(·) denotes the sign function,
and ∥·∥𝐹 the Frobenius norm.

2.2 Reachability Analysis of Nonlinear Systems
The presented techniques for automated parameter adaptation are
applied to nonlinear systems

¤𝑥 (𝑡) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡)) , 𝑥 (𝑡) ∈ R𝑛, 𝑢 (𝑡) ∈ R𝑚 , (1)

where 𝑓 : R𝑛 → R𝑛 is a sufficiently smooth nonlinear function,
𝑥 (𝑡) ∈ R𝑛 is the state vector, and 𝑢 (𝑡) ∈ R𝑚 is the input vector.
Let us introduce 𝜉 (𝑡 ;𝑥0, 𝑢 (·)) as the solution of (1) at time 𝑡 for the
initial point 𝑥0 = 𝑥 (0). Then, the exact reachable set Rex

([0, 𝑡𝐾 ])
of (1) over the time horizon 𝑡 ∈ [0, 𝑡𝐾 ] is defined as

Rex
([0, 𝑡𝐾 ]) = {

𝜉 (𝑡 ;𝑥0, 𝑢 (·))
���𝑥0 ∈ X0, 𝑡 ∈ [0, 𝑡𝐾 ],

∀𝜏 ∈ [0, 𝑡] : 𝑢 (𝜏) ∈ U
}
,

with the initial setX0 ⊂ R𝑛 and the input setU ⊂ R𝑚 . In this work,
we use state-space abstraction, where the nonlinear dynamics in (1)
are abstracted by a Taylor series of order 𝜅 at an expansion point
𝑧∗ [3, eq. (2)] so that

¤𝑥𝑖 ∈
𝜅∑︁
𝜈=0

((𝑧 (𝑡) − 𝑧∗)𝑇∇)𝜈 𝑓𝑖 (𝑧)
𝜈!

����
𝑧=𝑧∗
⊕ L𝑖 (𝑡) , (2)

using the extended vector 𝑧 = [𝑥𝑇𝑢𝑇 ]𝑇 ∈ R𝑛+𝑚 and the Nabla
operator ∇ =

∑𝑛+𝑚
𝑖=1 𝑒𝑖

𝜕
𝜕𝑧𝑖

, where 𝑒𝑖 are orthogonal unit vectors.
The Lagrange remainder L𝑖 is defined by [3, eq. (2)]

L𝑖 =
{ ((𝑧 (𝑡) − 𝑧∗)𝑇∇)𝜅+1 𝑓𝑖 (𝑧)

(𝜅 + 1)!

����
𝑧 = 𝑧∗ + 𝛼 (𝑧 (𝑡) − 𝑧∗), 𝛼 ∈ [0, 1]

}
,

(3)

which is evaluated using range-bounding techniques such as in-
terval arithmetic [12]. The time horizon [0, 𝑡𝐾 ] is divided into 𝐾
time intervals 𝜏𝑠 = [𝑡𝑠 , 𝑡𝑠+1], with the individual time step sizes
Δ𝑡𝑠 = 𝑡𝑠+1 − 𝑡𝑠 > 0 summing up to 𝑡𝐾 . The complete reachable set
is obtained by the union R([0, 𝑡𝐾 ]) =

⋃𝐾−1
𝑠=0 R(𝜏𝑠 ). For notational

simplicity, we introduce an equivalent notation for the first terms
in (2),

𝑤𝑖 = 𝑓𝑖 (𝑧∗), 𝐶𝑖 𝑗 = 𝜕𝑓𝑖 (𝑧)
𝜕𝑧 𝑗

����
𝑧=𝑧∗

, 𝐷𝑖 𝑗𝑘 =
𝜕2 𝑓𝑖 (𝑧)
𝜕𝑧 𝑗 𝜕𝑧𝑘

����
𝑧=𝑧∗

, ... (4)

where we split the first-order approximation 𝐶 = [𝐴 𝐵] into a state
matrix𝐴 ∈ R𝑛×𝑛 and an input matrix 𝐵 ∈ R𝑛×𝑚 for subsequent use.
Let us summarize the reachability analysis in Alg. 1 encompassing
the core reachable set computation featured in hybridization and
on-the-fly methods, such as the ones in [3, 6, 8, 20, 39].

At the start of each step 𝑠 (Line 4), the operation taylor evaluates
the Taylor terms of the nonlinear dynamics (4) at the linearization
point 𝑧∗. Next, we abstract the nonlinear system by a differential
inclusion

¤𝑥 (𝑡) ∈ 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) +𝑤︸                 ︷︷                 ︸
𝑓lin (𝑡 )

⊕ Ψ , (5)

using the linearized vector field 𝑓lin and an uncertainty set Ψ enclos-
ing all higher-order terms including the Lagrange remainder. This
allows us to apply the superposition principle for linear systems
and separate the computation of the next reachable set R(𝑡𝑠+1) into
two parts: First, the reachable set Rlin of the linearized dynamics
(Lines 4-5). Second, the set of abstraction errors Rabs based on the
abstraction error Ψ (Lines 6-11).



Adaptive Parameter Tuning for Reachability Analysis of Nonlinear Systems HSCC ’21, May 19–21, 2021, Nashville, TN, USA

Algorithm 1 Reachability analysis of nonlinear systems using
state-space abstraction.

Input: nonlinear function 𝑓 (𝑧), initial set R(𝑡0) = X0,
input setU, time horizon 𝑡𝐾

Output: R([0, 𝑡𝐾 ])
1: 𝑠 = 0, 𝑡𝑠 = 0
2: while 𝑡𝑠 < 𝑡𝐾 do
3: 𝑧∗ (𝑡𝑠 ) ← center

(R(𝑡𝑠 ))
4: 𝑤,𝐴, 𝐵, 𝐷, ...← taylor

(
𝑓 (𝑧), 𝑧∗ (𝑡𝑠 )

)
5: Rlin (𝑡𝑠+1),Rlin (𝜏𝑠+1) ← linReach(R(𝑡𝑠 ),𝑤,𝐴, 𝐵)
6: Ψ = 0
7: do
8: Ψ← enlarge(Ψ)
9: Ψ← abstrErr(Rlin (𝜏𝑠+1),Ψ)
10: while Ψ ⊈ Ψ
11: Rabs ← abstrSol(Ψ)
12: R(𝑡𝑠+1) = Rlin (𝑡𝑠+1) ⊞ Rabs
13: R(𝜏𝑠+1) = Rlin (𝜏𝑠+1) ⊞ Rabs
14: R(𝑡𝑠+1) ← red

(R(𝑡𝑠+1)),R(𝜏𝑠+1) ← red
(R(𝜏𝑠+1))

15: 𝑡𝑠+1 := 𝑡𝑠 + Δ𝑡𝑠 , 𝑠 := 𝑠 + 1
16: end while
17: R([0, 𝑡𝐾 ]) =

⋃𝐾−1
𝑗=0 R(𝜏 𝑗 )

The reachable set Rlin based on the linearized dynamics 𝐴𝑥 (𝑡) +
𝐵𝑢 (𝑡) +𝑤 is computed by the operation linReach (Line 5) using
a reachability algorithm for linear systems, e.g., [2, Sec. 3.2]. For
the computation of the abstraction error Ψ, we first resolve the
mutual dependency between Ψ and Rlin by an initial estimation Ψ
of Ψ (Line 6). We now require Ψ ⊆ Ψ (Line 7) which is attained by
iteratively enlarging Ψ by a constant factor greater than 1 using the
operation enlarge (Line 8) and computing Ψ using the operation
abstrErr (Line 9). For a linearization approach (see, e.g., [6]), the
entire setΨ is the abstraction error uncorrelatedwith the state 𝑥 . For
a polynomialization approach (see, e.g., [3]), all time-constant terms
at 𝑡𝑠 within Ψ represent a higher-order evaluation of the nonlinear
dynamics that is correlated with the state 𝑥 . After containment is
ensured, we evaluate the effect of Ψ by the operation abstrSol
(Line 11), yielding the set of abstraction errors [6, Sec. VI.]

Rabs =
𝜂abs⊕
𝑘=0

Δ𝑡𝑘+1

(𝑘 + 1)!𝐴
𝑘Ψ ⊕ E(Δ𝑡, 𝜂abs) Δ𝑡 Ψ , (6)

where E = O(Δ𝑡𝜂abs+1) tends to 0 as Δ𝑡 → 0, see [5, Prop. 2].
Due to the aforementioned superposition, we yield the next

reachable set R(𝑡𝑠+1) by the addition of Rlin and Rabs (Lines 12-13).
Before the next step, the operator red(·) reduces the set representa-
tion size (Line 14), which is necessary for reasons of computational
efficiency. This provides us with the next time-point solution

R(𝑡𝑠+1) = red
(
𝑒𝐴Δ𝑡𝑠R(𝑡𝑠 ) ⊕ P(𝜏𝑠 )︸                   ︷︷                   ︸

Rlin (𝑡𝑠+1)

⊞Rabs (𝜏𝑠 )
)
, (7)

where Rlin (𝑡𝑠+1) is obtained by linReach with 𝑒𝐴Δ𝑡𝑠R(𝑡𝑠 ) as the
homogeneous solution and P(𝜏𝑠 ) as the particular solution. The
operator ⊞ corresponds to the Minkowski sum for a linearization
approach and to the exact addition as defined in [33, Prop. 10] for a

polynomialization approach. The time-interval solution is

R(𝜏𝑠+1) = conv
(R(𝑡𝑠 ), 𝑒𝐴Δ𝑡𝑠R(𝑡𝑠 ) ⊕ P(𝜏𝑠 )) ⊕ F𝑥R(𝑡𝑠 )︸                                                      ︷︷                                                      ︸

Rlin (𝜏𝑠+1)

⊞Rabs (𝜏𝑠 ) ,

(8)
assuming 0 ∈ U, with an extension to arbitrary inputs in [2,
Sec. 3.2.2]. The time-interval solution of the linearized dynamics
Rlin (𝜏𝑠 ) is composed of the convex hull of the reachable sets at the
beginning and end of the time interval, which is then enlarged by
an error F𝑥R(𝑡𝑠 ). Please note that this solution is not re-used in
the next step as shown in Alg. 1.

Alg. 1 has two sources for the wrapping effect: the set Rabs,
which decreases in size as the time step size decreases, and the
effect of the reduction operation, which is diminished when used
less often due to larger time step sizes. We will refer to these sources
as the abstraction-induced and reduction-induced wrapping effects,
respectively. Only time-point solutions are reused in subsequent
steps, therefore (7) constitutes the main formula for which both
effects need to be balanced. We attempt to find an optimal compro-
mise as shown in Fig. 1 by tuning the algorithm parameters using
the methods introduced in the next section.

Excessive
abstraction-induced
wrapping effect

Excessive reduction-induced
wrapping effect

Δ𝑡

vol
(R([0, 𝑡𝐾 ]))

Figure 1: If the time step size Δ𝑡 is too large or too small, the
abstraction-induced or reduction-induced wrapping effect,
respectively, are dominating.

3 SELF-PARAMETRIZATION
In this section, we introduce methods to adaptively tune the algo-
rithm parameters used in Alg. 1 as indicated in Fig. 2. Since the
described tuning methods are modular, the effect of adapting cer-
tain algorithm parameters is encapsulated within the respective
modules. Hence, the presented adaptation approach constitutes a
general framework, as each tuningmodule can simply be exchanged,
e.g., if different reachable set computations or set representations
are chosen. An additional advantage of the modular structure is that
we do not have to consider the interplay between certain algorithm
parameters, which prevents unforeseen behavior.

Within the tuning modules, a fixed set of parameters 𝜁 is used
allowing the automated tuning methods to adapt to each system.
This set 𝜁 will be discussed at the end of this section after all tuning
methods have been introduced. Furthermore, we will omit the in-
dex 𝑠 for the current step, as all algorithm parameters are adapted
each step.

3.1 Propagation Parameters
First, we consider the tuning of the order 𝜂 of the finite Taylor
series of the exponential matrix, affecting the computation of the



HSCC ’21, May 19–21, 2021, Nashville, TN, USA Mark Wetzlinger, Adrian Kulmburg, and Matthias Althoff

(Linearized system) (Abstraction error)

R(𝑡𝑠 )

Rlin (𝑡𝑠+1)
Rlin (𝜏𝑠 ) Ψ

Rabs

Δ𝑡

𝜂lin 𝜅

𝜌Ψ

𝜌abs

𝜂abs
𝜌(Next step)

Figure 2: Main workflow for one time step in Alg. 1 and the
influence of algorithm parameters (red) on different sets:
The time step size Δ𝑡 affects both the linearized system and
the abstraction error, while the abstraction order 𝜅 only in-
fluences the abstraction error. The propagation parameters
𝜂 affect the precision of the exponential matrix and the set
representation parameters 𝜌 represent the reduction opera-
tion, which is applied to various sets within one step.

sets Rabs in (6) and Rlin in (7)-(8) as shown graphically in Fig. 2.
Since the effect of higher-order terms eventually vanishes, we con-
servatively determine the specific orders 𝜂lin and 𝜂abs by truncating
the respective sums once the change is negligibly small.

Since the error in Rlin (𝜏𝑠 ) is dominated by the term F𝑥R(𝑡𝑠 ),
which can be computed according to [2, Prop. 3.1] as

F𝑥 =
𝜂lin⊕
ℓ=1

[(ℓ −ℓℓ−1 − ℓ −1ℓ−1 )Δ𝑡 ℓ , 0]𝐴ℓ
ℓ!︸                         ︷︷                         ︸

:=𝑇 (ℓ )

⊕ E , (9)

with E as referenced above, we obtain 𝜂lin by setting a threshold
0 < 𝜁𝑇,lin ≪ 1 for the change over successive terms 𝑇 (ℓ) :

𝜂lin = min ℓ such that 1 − ∥𝑇
(ℓ−1) ∥𝐹
∥𝑇 (ℓ) ∥𝐹

≤ 𝜁𝑇,lin . (10)

Similarly, we obtain 𝜂abs by truncating the sum in (6) once the
relative change in size between two successive truncated sums is
sufficiently small. This is achieved by the following criterion, where
0 < 𝜁𝑇,abs ≪ 1:

𝜂abs = min ℓ such that max
𝑖∈{1,...,𝑛}

𝑑𝑖
(
box

(R (ℓ+1)abs
) )

𝑑𝑖
(
box

(R (ℓ)abs
) ) ≤ 𝜁𝑇,abs ,

(11)
where R (𝑘)abs denotes the sum in (6) truncated at order 𝑘 . The split
into two different 𝜂 for Rlin and Rabs is justified by the different
values towhich𝜂lin and𝜂abs are tuned, as discussed in the numerical
examples in Sec. 4. Furthermore, the evaluation of both criteria (10)
and (11) can be seamlessly integrated into the computation of the
respective terms yielding negligible computational overhead.

3.2 Set Representation
In this work, we restrict the error due to reducing the set represen-
tation. For a linearization approach, it suffices to use convex set
representations, such as support functions, polytopes, or zonotopes.
In this work, we will use zonotopes as they have proven to be a
good choice for the linearization approach due to the efficient and

exact computation of the two mainly used operations—linear map
and Minkowski sum.

Definition 1. (Zonotopes) [27, Def. 1] Given a center 𝑐 ∈ R𝑛 and
𝛾 ∈ N generator vectors 𝐺 = [𝑔 (1) , ..., 𝑔 (𝛾 ) ], we define a zonotope

Z :=
{
𝑥 ∈ R𝑛

��� 𝑥 = 𝑐 +
𝛾∑︁
𝑖=1

𝛼𝑖 𝑔
(𝑖) ,−1 ≤ 𝛼𝑖 ≤ 1

}
(12)

as well as its order 𝜌 := 𝛾
𝑛 and the shorthand ⟨𝑐,𝐺⟩𝑍 . □

We now measure the enlargement caused by the reduction of
the representation size. Let us first consider the following lemma:

Lemma 3.1. Let 𝑓 : C1 × C2 → I, 𝑔 : C1 → I be continuous
functions, where C1, C2 ⊂ R𝑛 are two compact sets and I ⊂ R𝑛 is a
compact interval. If for each 𝑥 ∈ C1, it holds that min𝑦∈C2 𝑓 (𝑥,𝑦) ≤
𝑔(𝑥), then

max
𝑥 ∈C1

min
𝑦∈C2

𝑓 (𝑥,𝑦) ≤ max
𝑥 ∈C1

𝑔(𝑥) .

Proof. Let 𝑥∗ be a point in C1 for which the maximum of
min𝑦∈C2 𝑓 (𝑥,𝑦) is attained. By assumption, it follows that
min𝑦∈C2 𝑓 (𝑥∗, 𝑦) ≤ 𝑔(𝑥∗) and thus

max
𝑥 ∈C1

min
𝑦∈C2

𝑓 (𝑥,𝑦) = min
𝑦∈C2

𝑓 (𝑥∗, 𝑦) ≤ 𝑔(𝑥∗) ≤ max
𝑥 ∈C1

𝑔(𝑥) . □

The following theorem over-approximates the Hausdorff distance
𝑑𝐻 between the original and reduced zonotope based on the com-
monly used box over-approximation of generators:

Theorem 3.2. Let Z = ⟨𝑐,𝐺⟩𝑍 ⊂ R𝑛 be a zonotope and
Z𝐵 := box

(Z)
= ⟨𝑐,𝐺𝐵⟩𝑍 ⊇ Z its box over-approximation. Due to

the containmentZ ⊆ Z𝐵 , the Hausdorff distance 𝑑𝐻 is given by

𝑑𝐻 (Z,Z𝐵) = max
𝑥𝐵 ∈Z𝐵

min
𝑥 ∈Z
∥𝑥𝐵 − 𝑥 ∥2 . (13)

This distance is over-approximated by

𝑑𝐻 (Z,Z𝐵) ≤ 𝜔 (Z) := 2



 𝛾∑︁
𝑘=1

𝑔 (𝑘)




2

(14)

with 𝑔
(𝑘)
𝑖 =

{
|𝑔 (𝑘)𝑖 |, if 𝑘 ≠ 𝑖∗

0, otherwise,
(15)

where 𝑖∗ is the (first) index for which 𝑔 (𝑘)𝑖∗ =



𝑔 (𝑘)


∞.

Proof. Let us express each point 𝑥𝐵 ∈ Z𝐵 as

𝑥𝐵 = 𝑀1 |𝑔 (1) | + ... +𝑀𝛾 |𝑔 (𝛾 ) | ,
where each𝑀 is a diagonal matrix with entries𝑚𝑖𝑖 ∈ [−1, 1]. We
can write the difference between any 𝑥𝐵 ∈ Z𝐵 and 𝑥 ∈ Z as

𝑥𝐵 − 𝑥 =
(
𝑀1 |𝑔 (1) | − 𝛼1𝑔 (1)

) + ... + (𝑀𝛾 |𝑔 (𝛾 ) | − 𝛼𝛾𝑔 (𝛾 ) )
with 𝛼𝑘 ∈ [−1, 1]. We now obtain a bound on 𝑥𝐵 − 𝑥 by choosing a
specific 𝛼𝑘 for each 𝑔 (𝑘) , namely,

𝛼𝑘 =𝑚𝑖∗𝑖∗ sgn
(
𝑔
(𝑘)
𝑖∗

)
(16)

with an individual 𝑖∗ as in Theorem 3.2 for each 𝑘 . This choice
of 𝛼𝑘 allows us to eliminate the largest possible entry in 𝑣 (𝑘) =
𝑀𝑘 |𝑔 (𝑘) | − 𝛼𝑘𝑔 (𝑘) , for which we obtain the bound

𝑣
(𝑘)
𝑖 ∈

{[ − 2|𝑔 (𝑘)𝑖 |, 2|𝑔 (𝑘)𝑖 |], if 𝑖 ≠ 𝑖∗

0, otherwise,



Adaptive Parameter Tuning for Reachability Analysis of Nonlinear Systems HSCC ’21, May 19–21, 2021, Nashville, TN, USA

which we can rewrite using (15) to 𝑣 (𝑘)𝑖 ∈ [−2𝑔 (𝑘)𝑖 , 2𝑔 (𝑘)𝑖 ]. Applying
(16) to each generator, we obtain the bound

𝑥𝐵 − 𝑥 = 𝑣 (1) + ... + 𝑣 (𝛾 ) ∈ [−2𝑧̂, 2𝑧̂] ,
where 𝑧̂ := 𝑔 (1) + ... + 𝑔 (𝛾 ) and consequently,

∥𝑥𝐵 − 𝑥 ∥2 ≤ ∥2𝑧̂∥2 = 2∥𝑧̂∥2 .
The above bound holds for any 𝑥𝐵 ∈ Z𝐵 and therefore, the assump-
tion of Lemma 3.1 is fulfilled. Thus, we obtain (14). □

Using this over-approximation, we now deduce a heuristic which
attempts to reduce as many generators as possible while respecting
a given threshold for the Hausdorff distance between the origi-
nal and reduced set: Given a zonotope Z = ⟨𝑐,𝐺⟩𝑍 , we sort the
generators in 𝐺 ∈ R𝑛×𝛾 by the metrics

∥𝑔 (1) ∥1 − ∥𝑔 (1) ∥∞ ≤ ... ≤ ∥𝑔 (𝛾 ) ∥1 − ∥𝑔 (𝛾 ) ∥∞ (17)

originally proposed in [27]. Following this ordering, we pick the
first 𝑁 ≤ 𝛾 generators in (14) until we reach the upper bound

𝜔max (Z) = 𝜁𝑍


𝑑 (box(Z) )



2 (18)

where we use a fixed fraction 0 < 𝜁𝑍 ≪ 1 of the diagonal of
the box over-approximation of Z. The exact Hausdorff distance
between the original and the reduced set is smaller than 𝜔max (Z)
by Theorem 3.2.

For a polynomialization approach, a non-convex set representa-
tion is required since convex sets would almost nullify the benefits
of the polynomial abstraction. To obtain tighter results, non-convex
set representations also have to be closed under higher-order maps
as is the case for Taylor models [15, Sec. II.] or polynomial zono-
topes [33, Def. 1]. We choose the latter to exploit their similarities
with zonotopes. For polynomial zonotopes we apply the reduction
method in [33, Prop. 10], which is based on order reduction for
zonotopes so that the bound in (18) can be enforced.

3.3 Abstraction Order
The abstraction order 𝜅 in (2) only influences the size of the ab-
straction error Ψ according to Fig. 2. A larger 𝜅 is computationally
more demanding as we require to evaluate higher-order maps, but
also yields a smaller abstraction error Ψ. This does not necessarily
hold for convex set representations since they are not closed under
higher-order maps.

Since the linearization approach uses convex set representations,
we restrict the admissible values of the abstraction order to 𝜅 =
{1, 2} because the highly over-approximative evaluation of cubic
or higher-order maps does not justify the additionally required
computational effort. The abstraction error is evaluated on the
time-interval solution Rlin (𝜏𝑠 ), see line 9 in Alg. 1. In each step,
the abstraction error Ψ for both 𝜅 = {1, 2} is computed for the
time-interval solution Rlin (𝜏𝑠 ) using the optimal time step size
Δ𝑡∗, which will be introduced in Sec. 3.4. The following selection
criterion is applied in each step to compute the abstraction order 𝜅
for the next step:

𝜅 ←
{
1, if ∀𝑖 ∈ {1, ..., 𝑛}withΨ𝑖 > 0 : 𝑑 (box(Ψ𝑖 (𝜅=2)))𝑑 (box(Ψ𝑖 (𝜅=1))) ≥ 𝜁𝐾 ∈ (0, 1)
2, otherwise,

(19)

so that we use the more efficient approach for 𝜅 = 1 whenever
the loss in accuracy is manageable. The closer 𝜁𝐾 is to 1, the more
conservative the selection becomes, i.e., the more often 𝜅 = 2
will be chosen resulting in both a tighter result as well as longer
computation times. For the first step, we use the initial set R(𝑡0) =
X0 to compute Ψ and immediately evaluate (19) to compute the
first abstraction order 𝜅.

In the polynomialization approach, the non-convex set represen-
tation is closed under all higher-order maps [33]. Capturing these
nonlinear mappings results in a strong increase in the set represen-
tation size. Hence, we restrict the abstraction order in this case to
its lowest setting 𝜅 = 2 as higher orders require more reduction
increasing the size of the reachable set.

3.4 Time Step Size
The tuning of the time step size Δ𝑡 is the crucial factor for the
success of reachability analysis since it dominates the computation
of the two main sets Rlin and Rabs as indicated in Fig. 2. In order
to obtain a tight reachable set, we require to tune Δ𝑡 so that the
trade-off between the abstraction-induced and reduction-induced
wrapping effects is resolved in a near-optimal way, see Fig. 1. An
important prerequisite for tuning Δ𝑡 is the estimation of the influ-
ence of the reduction-induced wrapping by an upper bound in each
step as established in Sec. 3.2.

The main idea is to tune the time step size Δ𝑡 by solving a
convex optimization problem which models both wrapping effects.
Since the influence of both effects always increases the size of
the reachable set, we estimate this size at the end of a finite time
horizon Δ computed by different Δ𝑡𝑘 = Δ

𝑘 , 𝑘 ≥ 1 and choose the
optimal Δ𝑡∗ which yields the minimal size.

The reachable set after time Δ is computed by repeatedly apply-
ing (7), where we only take the terms contributing to the wrapping
effects into account. Furthermore, we explicitly consider 𝑘 ∈ R,
which requires to consider a last incomplete step of length 𝑞Δ𝑡𝑘 =
(𝑘 − ⌊𝑘⌋)Δ𝑡𝑘 . Correspondingly, 𝑒𝐴Δ𝑡𝑘 and Rabs are scaled to 𝑒𝐴𝑞Δ𝑡𝑘
and 𝑞Rabs. This yields
R̃ (𝑡 + Δ) = red

(
𝑒𝐴𝑞Δ𝑡𝑘 red

(
𝑒𝐴Δ𝑡𝑘 ...

red
(
𝑒𝐴Δ𝑡𝑘R(𝑡) ⊕ Rabs

)
... ⊕ Rabs

) ⊕ 𝑞Rabs) . (20)

Estimating R̃ (𝑡 + Δ). In order to estimate the size of R̃ (𝑡 + Δ)
efficiently, we introduce the following simplifications which allow
us to derive a scalar optimization function for Δ𝑡∗:

(1) The size of a set S is measured by its radius

𝑟
(S) = 1

2 ∥𝑑
(
box

(S) ) ∥2 .
This allows us to replace the respective sets by the scalar
variables 𝑟0 = 𝑟

(R(𝑡)) and 𝑟abs,𝑘 = 𝑟
(Rabs (Δ𝑡𝑘 )) .

(2) The effect of the exponential matrix is captured by its de-
terminant. The scaling over the entire finite horizon can be
estimated by det(𝑒𝐴Δ) = 𝑒tr(𝐴Δ) assuming that the matrix
𝐴 does not change over time. The average scaling factor for
each step of length Δ𝑡𝑘 is

𝜁
1
𝑘
𝑃 =

(
𝑒tr(𝐴Δ)

) 1
𝑘 (21)



HSCC ’21, May 19–21, 2021, Nashville, TN, USA Mark Wetzlinger, Adrian Kulmburg, and Matthias Althoff

and consequently, the scaling of the last incomplete step
is 𝜁

𝑞
𝑘
𝑃 .

(3) The enlargement caused by the reduction is measured by
multiplying the radius by (1+2𝜁𝑍 ) following (18). The factor
for the last step of length 𝑞Δ𝑡𝑘 is scaled to (1 + 2𝜁𝑍 )𝑞 .

Using these simplifications, we can rewrite (20) in a recursive
formula to estimate the set size of R̃ (𝑡 + 𝑗Δ𝑡𝑘 ), 1 ≤ 𝑗 ≤ ⌊𝑘⌋ starting
with the set size estimate 𝑟R (𝑡) = 𝑟0 at time 𝑡 :

𝑟R (𝑡 + 𝑗Δ𝑡𝑘 ) = (1 + 2𝜁𝑍 )
(
𝜁

1
𝑘
𝑃 𝑟R (𝑡 + ( 𝑗 − 1)Δ𝑡𝑘 ) + 𝑟abs,𝑘

)
. (22)

Applying this recursion ⌊𝑘⌋ times and including the last step of
length 𝑞Δ𝑡𝑘 , we obtain an estimate 𝑟R (𝑡 + Δ) for the size of the
reachable set after time Δ:

𝑟R (𝑡 + Δ) = (1 + 2𝜁𝑍 )𝑞 ·(
𝜁

𝑞
𝑘
𝑃 (1 + 2𝜁𝑍 )

[
𝜁

1
𝑘
𝑃 ...(1 + 2𝜁𝑍 ) (𝜁

1
𝑘
𝑃 𝑟0 + 𝑟abs,𝑘 ) ... + 𝑟abs,𝑘

]
︸                                                              ︷︷                                                              ︸

(22)
= 𝑟R (𝑡+⌊𝑘 ⌋Δ𝑡𝑘 )

+𝑞 𝑟abs,𝑘
)
.

We first simplify the first ⌊𝑘⌋ steps to

𝑟R (𝑡 + Δ) = (1 + 2𝜁𝑍 )𝑞
(
𝜁

𝑞
𝑘
𝑃

[
𝑟0 (1 + 2𝜁𝑍 ) ⌊𝑘 ⌋𝜁

⌊𝑘⌋
𝑘
𝑃

+ 𝑟abs,𝑘
⌊𝑘 ⌋∑︁
𝑖=1
(1 + 2𝜁𝑍 )𝑖𝜁

𝑖−1
𝑘
𝑃

] + 𝑞 𝑟abs,𝑘 ) ,
leaving only the last step of length 𝑞Δ𝑡𝑘 , which we now include
and rearrange to

𝑟R (𝑡 + Δ) = 𝑟0 (1 + 2𝜁𝑍 )𝑘𝜁𝑃 + 𝑟abs,𝑘 𝜁P,Z (𝑘) (23)

with 𝜁P,Z (𝑘) =
⌊𝑘 ⌋∑︁
𝑖=1
(1 + 2𝜁𝑍 )𝑞+𝑖 𝜁

𝑞+𝑖−1
𝑘

𝑃 + 𝑞 (1 + 2𝜁𝑍 )𝑞

containing all factors affecting 𝑟abs,𝑘 .

Estimating 𝑟abs,𝑘 . The evaluation of (23) would require us to
compute 𝑟abs,𝑘 for each 𝑘 . To save computational costs, we approxi-
mate 𝑟abs,𝑘 by multiplying 𝑟abs,1 obtained by Δ𝑡 = Δ with a scaling
factor which models the behavior of Rabs over Δ𝑡 .

Proposition 1. Scaling Δ𝑡 by a factor 𝜁𝛿 ∈ (0, 1) shrinks the 𝑖-th
entry of the diameter of Rabs, i.e., 𝑑𝑖

(
box

(Rabs) ) , by 𝜁𝜆𝑖𝛿 with 𝜆𝑖 ∈ N
when Δ𝑡 goes to 0:

∀𝑖 ∈ {1, ..., 𝑛} : lim
Δ𝑡→0

𝑑𝑖
(
box

(Rabs (𝜁𝛿Δ𝑡)) )
𝑑𝑖
(
box

(Rabs (Δ𝑡)) ) = 𝜁𝜆𝑖
𝛿
. (24)

Proof. We insert (6) for the computation of Rabs in (24) and
remove 𝑑 (·) and box(·) since these are linear operators up to a
constant factor, which cancels out. We factor out Δ𝑡 to obtain

lim
Δ𝑡→0

Δ𝑡
(⊕𝜂abs

𝑘=0
𝜁𝑘+1𝛿 Δ𝑡𝑘

(𝑘+1)! 𝐴
𝑘Ψ ⊕ E(𝜁𝛿Δ𝑡, 𝜂abs) 𝜁𝛿 Ψ

)
𝑖

Δ𝑡
(⊕𝜂abs

𝑘=0
Δ𝑡𝑘
(𝑘+1)!𝐴

𝑘Ψ ⊕ E(Δ𝑡, 𝜂abs) Ψ
)
𝑖

=
𝜁𝜆𝑖
𝛿
Ψ𝑖

Ψ𝑖

where 𝜆𝑖 = 𝑗 + 1, with 𝑗 being the first non-negative integer such
that (𝐴 𝑗Ψ)𝑖 ≠ {0}. □

Two properties follow immediately from (24): First, the maxi-
mum possible scaling factor over Δ𝑡 is given by 𝜁𝛿 due to the lower
bound 𝜆𝑖 = 1 attained for Δ𝑡 → 0. Second, the factors 𝜁𝑘

𝛿
in the sum

and the remainder term yield a superlinear decrease of the ratio in
(24) over Δ𝑡 , i.e., 𝑑𝑖

(
box

(Rabs (𝜁𝛿Δ)) ) < 𝜁𝛿 𝑑𝑖
(
box

(Rabs (Δ)) ) . For
later derivations, we define the gain

𝜑 (Δ𝑡) = max
𝑖∈{1,...,𝑛}

𝑑𝑖
(
box

(Rabs (𝜁𝛿Δ𝑡)) )
𝑑𝑖
(
box

(Rabs (Δ𝑡)) ) . (25)

Let us discuss the values of 𝜑 (Δ𝑡) for limΔ𝑡→0 𝜑 (Δ𝑡):
• Linearization approach: For the limit gain, we have limΔ𝑡→0
𝜑 (Δ𝑡) = 𝜁𝛿 . This follows from the proof of Prop. 1, where we
have 𝜆𝑖 = 1 for all nonlinear equations ¤𝑥𝑖 (𝑡) since (𝐴0Ψ)𝑖 =
Ψ𝑖 ≠ {0}.
• Polynomialization approach: The limit gain limΔ𝑡→0 𝜑 (Δ𝑡)
depends on the specifics of 𝐴 and Ψ, however, it is bounded
by limΔ𝑡→0 𝜑 (Δ𝑡) ≥ 𝜁𝜅

𝛿
, as all terms higher than the ab-

straction order 𝜅 are considered as an error and thus the
minimum decrease is given by 𝜁𝜅

𝛿
.

Since the superlinearity of (24) extends to (25), the worst-case ap-
proximation of the gain 𝜑 over Δ𝑡 is given by linearly interpolating
between 𝜑 (Δ𝑡 = Δ) = 𝜑1 and limΔ𝑡→0 𝜑 (Δ𝑡) = 𝜁𝛿 :

𝜑 (Δ𝑡) ≈ 𝜁𝛿 +
𝜑1 − 𝜁𝛿

Δ
Δ𝑡 , (26)

which will be justified in Sec. 4, see Fig. 3. This linear interpolation
for 𝜑 constitutes the worst-case gain causing us to never underesti-
mate the optimal value of Δ𝑡 . As a consequence of the interpolation,
we only need to compute 𝜑1 to estimate any 𝑟abs,𝑘 based on 𝑟abs,1
and the dependence on 𝜑 given by (26). We define 𝑘 ′ ∈ N as the
number of times Δ has been scaled by a fixed 𝜁𝛿 ∈ (0, 1). Hence,
𝑘 = 𝜁−𝑘′

𝛿
∈ R is the number of times Δ𝑡𝑘 divides into Δ and using

𝜑 𝑗 = 𝜑 (𝜁 𝑗−1𝛿
Δ) = 𝜁𝛿 + (𝜑1 − 𝜁𝛿 )𝜁 𝑗−1𝛿

(27)
we obtain an estimate for 𝑟abs,𝑘 :

𝑘 𝑟abs,𝑘 = 𝜑1 · ... · 𝜑𝑘′ 𝑟abs,1 =⇒ 𝑟abs,𝑘 :=
𝑟abs,1
𝑘

𝑘′∏
𝑗=1

𝜑 𝑗 . (28)

In the tuning algorithm for Δ𝑡 , we compute 𝜑1 given 𝑟abs,1 and
𝑟abs,𝑘 by solving the following implicit equation for 𝜑1:

𝜑1 ·
(
𝜁𝛿 + (𝜑1 − 𝜁𝛿 )𝜁𝛿

) · ... (𝜁𝛿 + (𝜑1 − 𝜁𝛿 )𝜁𝑘′−1𝛿

)
= 𝑘

𝑟abs,𝑘
𝑟abs,1

. (29)

Optimization function. Inserting (28) in (23) yields

𝑟R (𝑡 + Δ) = 𝑟0 (1 + 2𝜁𝑍 )𝑘𝜁𝑃 +
𝑟abs,1
𝑘

𝜁P,Z (𝑘)
𝑘′∏
𝑗=1

𝜑 𝑗 , (30)

which we minimize to obtain the optimal time step size

Δ𝑡∗ = Δ 𝜁
𝑘′∗
𝛿

(31)
where 𝑘 ′∗ = argmin

𝑘′∈N
𝑟R (𝑡 + Δ) .

Since we know that this function has one optimum by construction,
we simply increase 𝑘 ′ until that optimum is surpassed as the compu-
tation time to evaluate (30) is so low that sophisticated algorithms
are not required. The obtained value for Δ𝑡 constitutes an upper
bound as it is assumed that the entire margin for the reduction is



Adaptive Parameter Tuning for Reachability Analysis of Nonlinear Systems HSCC ’21, May 19–21, 2021, Nashville, TN, USA

used each step which is an over-approximation of its true influence.
We will show an example evaluation of (30) in Sec. 4.

Finite optimization horizon. Lastly, we require to set the finite
horizon Δ over which we evaluate the cost function (30). Since
the behavior of 𝑟abs,𝑘 over shrinking Δ𝑡 constitutes a key part in
the computation of Δ𝑡∗, we want it to be captured as precisely as
possible. Naturally, the proposed linear interpolation reflects the
true behavior more closely if the computed gain 𝜑1 is sufficiently
close to the limit gain at Δ𝑡 → 0. Therefore, we determine Δ by

Δ = min𝜏 such that 𝜑1 (𝜏) ≥ 𝜁Δ . (32)

Tuning algorithm for Δ𝑡 . The tuning of the time step size is
summarized in Alg. 2. In the initial step 𝑠 = 1, we first decrease
an arbitrarily initialized Δ𝑡 (Line 2) until the condition in (32) is
met, yielding Δ with the associated error Rabs (Δ) and its scalar
correspondence 𝑟abs,1 as well as 𝜑1 in the process (Lines 3-7). This
allows us to compute the optimal time step size Δ𝑡∗ for the first
step (Line 8).

From the second step onward, the computation of Δ𝑡∗ is simpli-
fied in order to minimize the computational effort: First, we update
the finite time horizon Δ (Line 10) to approximate the value in (32).
Next, the set Rabs (Δ) as well as its scalar correspondence 𝑟abs,1 are
computed (Line 11), which are then used to compute the optimal
time step size Δ𝑡∗ (Line 12). At the end, we update the value of 𝜑1
for the next step (Line 13). Note that within the propagation using
Δ𝑡∗, the prediction of the abstraction order 𝜅 for the next step as
explained in Sec. 3.3, is also made.

Algorithm 2 Tuning of the time step size Δ𝑡 .
Input: 𝜑1 and Δ of previous step (only if 𝑠 > 1), 𝑟0, 𝜁𝑍 , 𝜁𝑃 , 𝜁𝛿 , 𝑠
Output: Optimal time step size Δ𝑡∗, 𝜑1
1: if 𝑠 = 1 then
2: Initialize Δ𝑡 ⊲ Arbitrary initialization
3: while 𝜑1 < 𝜁Δ do
4: Δ← 𝜁𝛿Δ ⊲ Decrease Δ𝑡
5: Compute Rabs (Δ),Rabs (𝜁𝛿Δ) ⊲ Note: Rabs reusable
6: Compute 𝜑1 by (25) ⊲ Behavior of Rabs over Δ𝑡
7: end while
8: Compute Δ𝑡∗ by (31) ⊲ Optimal time step size
9: else
10: Δ← Δ

𝜁𝛿−𝜁Δ
𝜁𝛿−𝜑1

⊲ Approximation of (32)
11: Compute Rabs (Δ) and 𝑟abs,1 ⊲ Error using finite horizon
12: Compute Δ𝑡∗ by (31) ⊲ Optimal time step size
13: Compute 𝜑1 by (29) ⊲ Update for next step
14: end if

Fixing the global parameters 𝜁 . The global parameters 𝜁 used
in the adaptation of all algorithm parameters have been fixed to
suitable values in Table 1, thereby allowing the respective tuning
methods to adapt the algorithm parameters according to the de-
mands of the current system behavior. These fixed values for each
𝜁 are well-suited to produce tight results for a wide variety of differ-
ent nonlinear systems as shown in the next section. Thus, there is
no more manual tuning effort required for all considered problems.
With the further development of the tuning methods, the value of
a specific 𝜁 might change, but the general applicability remains.

Table 1: Setting of the parameters 𝜁 .

Approach 𝜁𝑇,lin 𝜁𝑇,abs 𝜁𝑍 𝜁𝐾 𝜁Δ 𝜁𝛿

Linearization 0.0005 0.005 0.0005 0.90 0.85 0.90
Polynomialization 0.0005 0.005 0.0002 — 0.80 0.90

4 NUMERICAL EXAMPLES
In this section, we apply the adaptive parameter tuning presented
in the previous section to numerous benchmark examples taken
from various sources [6, 14, 17, 26]. The adaptation of the algorithm
parameters over time is shown and discussed for selected bench-
mark systems. All computations have been performed in MATLAB
on an Intel® Core™ i7-9850 CPU @2.59GHz with 32GB memory.

4.1 Evaluation of the Optimization Function
We first want to offer additional insights concerning the optimiza-
tion function (30), which balances the wrapping effects introduced
in Sec. 2.2. An important part is the approximation of the abstraction-
induced wrapping, represented by the variable 𝜑 , see (27). In Fig. 3,
the values of 𝜑 of all systems in this section have been computed
over decreasing Δ𝑡 starting at Δ for the first step at 𝑡 = 0. The
generality of the worst-case assumption made in Sec. 3.4 is justified
by the dashed lines representing the linear interpolation expressed
in (26). All systems converge towards 𝜑 = 𝜁𝛿 using the linearization
approach, whereas for the polynomialization approach, all systems
are still bounded by the worst-case assumption given by the linear
interpolation between 𝜑 (Δ) ≈ 𝜁Δ and limΔ𝑡→0 𝜑 (Δ𝑡) = 𝜁𝛿 , despite
their individually distinct behaviors over Δ𝑡 . This follows the an-
alytical derivations made in the introduction of 𝜑 in the previous
section.

Figure 3: Computation of 𝜑 by (25) for all systems in Sec. 4
and both approaches (linearization in blue and polynomial-
ization in gray) over 0 < Δ𝑡 < Δ (normalized to [0, 1]), with Δ
computed by (32).

Next, wewant to show an example evaluation of the optimization
function. Therefore, consider the following example:

Example 4.1. Jet Engine [10, (19)]

¤𝑥 =

(−𝑥2 − 1.5𝑥21 − 0.5𝑥31 − 0.5
3𝑥1 − 𝑥2

)
, X0 =

([0.90, 1.10]
[0.90, 1.10]

)
with the time horizon 𝑡𝐾 = 8𝑠 . □



HSCC ’21, May 19–21, 2021, Nashville, TN, USA Mark Wetzlinger, Adrian Kulmburg, and Matthias Althoff

Fig. 4 shows the optimization function 𝑟R (𝑡 +Δ) and its minimum
at Δ𝑡∗ evaluated at the first step of example 4.1. For the finite hori-
zon, the heuristics in (32) yield Δ = 0.0226. We clearly recognize
the two wrapping effects as Fig. 4 exhibits a qualitatively similar
behavior compared to Fig. 1, which serves as the basis for the adap-
tation of Δ𝑡 . Our approach returns an optimal value of Δ𝑡∗ = 0.0071
for the first step.

Figure 4: Evaluation of the cost function 𝑟R (𝑡 + Δ) (30) over
different values for Δ𝑡 at 𝑡 = 0 for example 4.1.

4.2 ARCH Benchmarks
We analyzed the production-destruction benchmark (PRDE20) and
the Laub-Loomis benchmark (LALO20) from the ARCH competition
[26]. This allows us to compare our results with other reachability
tools using algorithm parameters tuned by experts.We first consider
the PRDE20 benchmark.

Example 4.2. (PRDE20) This benchmark models a biogeochem-
ical reaction, describing an algal bloom transforming nutrients
(𝑥1) into detritus (𝑥3) using phytoplankton (𝑥2) [35, Sec. 3]. The
dynamics are presented in [26, Sec. 3.1.1], the initial set is X0 =
( [9.50, 10.00], 0.01, 0.01)𝑇 , and the time horizon is 𝑡𝐾 = 100𝑠 . □

Fig. 5 shows the reachable sets computed using the linearization
approach. We observe two fairly linear regions interrupted by a
sharp turn. Thus, we expect the automated parameter tuning to
adapt each algorithm parameter to the demands of the current
dynamics.

Figure 5: Reachable set R([0, 𝑡𝐾 ]) of example 4.2 in gray, ini-
tial set X0 in red, simulations in blue.

The algorithm parameters over time are shown in Fig. 6: In the
region of the sharp turn (10.6s < 𝑡 < 11.6s), the time step size
Δ𝑡 (Fig. 6a) becomes very small since the optimization function
estimates a smaller total error by reducing Δ𝑡 as the decrease in
the abstraction error outweighs the increase in the reduction error.

After the sharp turn, Δ𝑡 greatly increases as the abstraction error
becomes small. Each of the truncation orders 𝜂lin and 𝜂abs (Fig. 6b)
reaches their maximum at the sharp turn as the dynamics there
require more terms within the Taylor series of the exponential
matrix to provide satisfactory accuracy.

The zonotope order 𝜌 (Fig. 6c) increases at the turn because
we cannot reduce many generators without inducing large over-
approximations. Afterwards, it reaches its minimum where it stays
until the end of the time horizon since the set is accurately de-
scribed using a small number of generators. Over the whole time
horizon, the zonotope order does not exceed 20, enabling a very
efficient evaluation of the set operations contained within each
step. Concerning the abstraction order 𝜅, the adaptive tuning in
(19) resulted in 𝜅 = 2 for 𝑡 ∈ [0, 13.45] and 𝜅 = 1 for 𝑡 ∈ [13.45, 100],
which confirms the rather linear system behavior after the sharp
turn.

Table 2: Comparing our approach with different reachabil-
ity tools on ARCH benchmarks using the tightness mea-
surements 𝜇1 = vol

(
box

(R(𝑡𝐾 )) ) and 𝜇2 = 𝑙4, where 𝑙 =
𝑑
(
box

(R(𝑡𝐾 )) ) as in [26].

Tool (Language) PRDE20 LALO20

Time 𝜇1 Time 𝜇2

Lin. Approach (Matlab) 7.0s 8.0e−21 8.9s 0.045
Poly. Approach (Matlab) 6.5s 1.0e−19 19s 0.025
Ariadne (C++) 8.6s 1.7e−13 664s 0.058
CORA (Matlab) 16s 1.2e−21 7.6s 0.04
DynIbex (C++) 12s 3.9e−17 27s 0.40
Flow* (C++) 4.1s 8.0e−21 2.3s 0.06
Isabelle/HOL (SML) 11s 3.3e−20 13s 0.48
JuliaReach (Julia) 1.5s 3.3e−20 1.5s 0.017

Table 2 shows the computation time and the tightness measure-
ment by volume of the final set for both approaches using adaptive
parameter tuning and other reachability tools. Due to the large
ratio of the largest to the smallest time step size and consequently
the saving of many time steps, both approaches yield similar com-
putation times compared to the expert-tuned tools, many of which
are written in languages such as C++ or Julia, which are faster
than MATLAB. The tightness of the reachable sets computed for
each approach using adaptive parameter tuning is among the top
results obtained by expert tuning, thereby demonstrating the high
accuracy of the presented tuning methods. Next, we consider the
LALO20 benchmark.

Example 4.3. (LALO20) This benchmark system models changes
in enzymatic activities [38, (1-7)], whose dynamics are given in [26,
Sec. 3.3.1]. For the initial set, we enlarge the point 𝑥 (0) = (1.2, 1.05,
1.5, 2.4, 1, 0.1, 0.45)𝑇 by the uncertainty𝑊 = 0.05 to obtain X0 =
[𝑥 (0) −𝑊,𝑥 (0) +𝑊 ]. The time horizon is 𝑡𝐾 = 20𝑠 . □

Using the polynomialization approach for the analysis, the time
step size Δ𝑡 and the polynomial zonotope order 𝜌 are plotted over
time in Fig. 7: Due to the size of the first few reachable sets, Δ𝑡
is smallest in the beginning and then gradually increases. The



Adaptive Parameter Tuning for Reachability Analysis of Nonlinear Systems HSCC ’21, May 19–21, 2021, Nashville, TN, USA

(a) Time step size Δ𝑡 . (b) Truncation orders 𝜂lin, 𝜂abs. (c) Zonotope order 𝜌 .

Figure 6: Algorithm parameters of example 4.2 over time.

Figure 7: Time step size Δ𝑡 and polynomial zonotope order 𝜌
of example 4.3 over time.
sudden drops in 𝜌 occur due to the restructuring of all independent
generators into the dependent generatormatrix [33, Prop. 17]. Other
than that, the order 𝜌 remains below 40 at all times, keeping the
set operations efficient without compromising the tightness of the
reachable sets. The orders 𝜂 do not change a lot over the whole
time horizon, with 𝜂lin = {4, 5} and 𝜂abs = 2 remaining constant
throughout. The abstraction order is fixed at 𝜅 = 2 as stated in
Sec. 3.3.

Comparing the results obtained by our adaptive parameter tun-
ing with other reachability tools, we see an average performance
in terms of the computation time. This is due to the high system
dimension for which the evaluation of the abstraction error Ψ and
the reduction of the set representation size are computationally de-
manding. However, both approaches return tighter results, except
for JuliaReach.

4.3 Quantitative Performance Analysis
While we discussed some benchmarks in detail in the previous
section, we now analyze the performance of our tuning approach
on many different benchmarks. For all systems, we provide the
longest edge of the box over-approximation of the final set, that is,

𝑙max = max
𝑖∈{1,...,𝑛}

𝑑𝑖
(
box

(R(𝑡𝐾 )) ) (33)

as well as a tightness measure proposed in [18, Sec. VI.]

𝛾min = min
𝑖∈{1,...,𝑛}

𝑑𝑖
(
box

(Rsim (𝑡𝐾 )) )
𝑑𝑖
(
box

(R(𝑡𝐾 )) ) , (34)

where Rsim (𝑡𝐾 ) denotes the set of states at 𝑡𝐾 of 1000 simulation
runs. The closer 𝛾min is to 1, the tighter is the reachable set.

Table 3 shows the results for all investigated systems ordered
by dimension and analyzed by both approaches using adaptively
tuned algorithm parameters. Due to space constraints, we cannot
go into details. Therefore, we want to discuss general tendencies
and explain unexpected results.

By construction, the linearization approach is limited to systems
with onlymild nonlinearties. Hence, it failed to produce tight results
for the van der Pol oscillator and the Roessler attractor as indicated
by the small values for 𝛾min. The insufficiency of the linearization
approach in the case of the van der Pol oscillator has already been
discussed in [33, Sec. 4]. Comparing the tightness across the two
approaches, either of the two measures 𝑙max and 𝛾min reveals that
the polynomialization approach generally yields tighter enclosures.
However, the tightness of the reachable sets computed with the
linearization approach is probably already satisfactory in cases
where 𝛾min > 0.7. Concerning the scalability of the tuning methods,
the tightness of the resulting reachable sets shows by high values
for 𝛾min and the similar computation times compared to those of
lower-dimensional systems.

On average, the ratio between the largest and smallest time step
is about 1-2 orders of magnitude. By exploiting this potential, we
drastically reduce the number of steps in the analysis and increase
the tightness of the resulting reachable sets. This is especially valu-
able for the polynomialization approach where the reduction is a
lot more over-approximative due to using non-convex sets.

With respect to the set representation, we see that the zonotope
order 𝜌 is smaller using the linearization approach as Theorem 3.2
exploits the potential of reducing many generators. The polynomial-
ization approach uses higher polynomial zonotope orders since the
generators cannot be substantially reduced without inducing large
over-approximations. It should also be noted that the values given
for 𝜌max represent the highest orders attained during the analysis
which may only last for a few steps as discussed earlier and shown
in Fig. 6c. This also explains the fairly small computation times for
the corresponding systems.



HSCC ’21, May 19–21, 2021, Nashville, TN, USA Mark Wetzlinger, Adrian Kulmburg, and Matthias Althoff

Table 3: Evaluation of nonlinear benchmark systems: 𝑛: system dimension, 𝑡𝐾 : time horizon,X0: initial set, [Δ𝑡min,Δ𝑡max]: range
of time step sizes, 𝜌max: max. zonotope order, 𝑙max and 𝛾min: measurements by (33) and (34).

Benchmark 𝑛 𝑡𝐾 X0 Linearization Approach Polynomialization Approach

Time [Δ𝑡min,Δ𝑡max] 𝜌max 𝑙max 𝛾min Time [Δ𝑡min,Δ𝑡max] 𝜌max 𝑙max 𝛾min

Jet Engine [10, (19)] 2 8 [0.90, 1.10]𝑛 1.4s [0.007, 0.124] 16 0.062 0.5094 6.5s [0.003, 0.062] 25.5 0.0441 0.7125

van der Pol [6, Sec. VII] 2 6.74 [1.30, 1.50]
[2.35, 2.45] 3.7s [0.004, 0.034] 16 1.87 0.1915 14.1s [0.002, 0.017] 60 0.6070 0.5705

Brusselator [14, Ex. 3.4.1] 2 5 [0.90, 1.00]
[0.00, 0.10] 1.3s [0.019, 0.056] 43 0.082 0.7367 4.8s [0.005, 0.029] 121.5 0.066 0.9343

Roessler [47, (2)] 3 6
[−0.20, 0.20]
[−8.60,−8.20]
[−0.20, 0.20]

1.6s [0.006, 0.058] 10.33 4.28 0.1745 6.7s [0.0007, 0.0469] 20.33 2.65 0.5591

Lorenz [41, (25-27)] 3 2
[14.90, 15.10]
[14.90, 15.10]
[34.90, 35.10]

2.1s [0.0004, 0.004] 9 0.275 0.8095 5.9s [0.0005, 0.0079] 36.67 0.243 0.9279

Spring-Pendulum
[14, Ex. 3.3.12] 4 1

[1.1, 1.3]
[0.4, 0.6]
[0.0, 0.1]
[0.0, 0.1]

2.3s [0.006, 0.024] 12.5 0.518 0.6543 5.9s [0.003, 0.012] 25.75 0.432 0.7759

Lotka-Volterra [49, (1)] 5 5 [0.90, 1.00]𝑛 0.6s [0.010, 0.117] 10.4 0.082 0.8809 2.5s [0.005, 0.097] 106.6 0.074 0.9756
Biological Model [32] 7 2 [0.99, 1.01]𝑛 1.9s [0.004, 0.019] 45.43 0.117 0.7099 7.7s [0.002, 0.011] 182.29 0.096 0.9240
Genetic Model [50, (1)] 9 0.1 see [17, Sec. V.] 0.5s [0.0007, 0.0024] 5.78 5.55 0.7996 1.5s [0.0005, 0.0014] 28 5.32 0.9302

4.4 Discussion
The presented methods for adaptive parameter tuning allow us
to fully automatically obtain reachable sets without tuning any
algorithm parameters. The computation of the reachable sets is
executed in a single run. Thus, the computation times in Table 2
and Table 3 are truly the time required to analyze the system as
opposed to manual tuning typically requiring many runs.

For systems with only mild nonlinearities, the linearization ap-
proach quickly produces good results while for severe nonlineari-
ties, the reduction of the set representation within the polynomi-
alization approach is the limiting factor. Our adaptive parameter
tuning would greatly benefit from improvements in order reduc-
tion techniques, which can simply replace exisiting ones due to
the modularity of our framework. The optimization function used
to determine a near-optimal time step size balances the two main
causes for unsatisfactory results by minimizing their joint influence.
Thus, in case the reachability analysis fails to produce usable re-
sults, we can estimate that the cause for this is not the tuning of the
parameters, but rather the insufficiency of either the reachability
algorithm itself, or the handling of the set representation size.

5 CONCLUSION
In this paper, we presented the first adaptive tuning algorithm
for all algorithm parameters of state-space abstracted reachability
analysis of nonlinear systems. Themodular construction treats each
parameter separately and therefore maximizes the transparency
and robustness of the adaptation as well as enables the applicability
to other similar reachability algorithms or set representations. The
numerical examples show the fast and reliable computation of
tight reachable sets without the need to set any of the internally
required algorithm parameters. This greatly facilitates the usage of
reachability analysis for practitioners.

ACKNOWLEDGMENTS
The authors gratefully acknowledge partial financial supports from
the research training group CONVEY funded by the German Re-
search Foundation under grant GRK 2428 and the project justIT-
SELF funded by the European Research Council (ERC) under grant
agreement No 817629.

REFERENCES
[1] G. Alefeld and G. Mayer. 2000. Interval Analysis: Theory and Applications.

Computational and Applied Mathematics 121 (2000), 421–464.
[2] M. Althoff. 2010. Reachability Analysis and its Application to the Safety Assessment

of Autonomous Cars. Dissertation. Technische Universität München.
[3] M. Althoff. 2013. Reachability Analysis of Nonlinear Systems using Conserva-

tive Polynomialization and Non-Convex Sets. In Proc. of the 16th International
Conference on Hybrid Systems: Computation and Control. ACM, 173–182.

[4] M. Althoff. 2015. An Introduction to CORA 2015. In Proc. of the Workshop on
Applied Verification for Continuous and Hybrid Systems. 120–151.

[5] M. Althoff, C. Le Guernic, and B. H. Krogh. 2011. Reachable Set Computation
for Uncertain Time-Varying Linear Systems. In Proc. of the 14th International
Conference on Hybrid Systems: Computation and Control. ACM, 93–102.

[6] M. Althoff, O. Stursberg, and M. Buss. 2008. Reachability Analysis of Nonlinear
Systems with Uncertain Parameters using Conservative Linearization. In Proc. of
the 47th IEEE Conference on Decision and Control. 4042–4048.

[7] E. Asarin, T. Dang, and A. Girard. 2003. Reachability analysis of nonlinear systems
using conservative approximation. In Hybrid Systems: Computation and Control,
6th International Workshop. Springer, 20–35.

[8] E. Asarin and et al. 2007. Hybridization Methods for the Analysis of Nonlinear
Systems. Acta Informatica 43 (2007), 451–476.

[9] U. M. Ascher and et al. 1994. Numerical solution of boundary value problems for
ordinary differential equations. SIAM.

[10] E. Aylward, P. Parrilo, and J-J. Slotine. 2008. Stability and robustness analysis of
nonlinear systems via contraction metrics and SOS programming. Automatica
44, 8 (2008), 2163–2170.

[11] L. Benvenuti and et al. 2014. Assume-guarantee verification of nonlinear hybrid
systems with ARIADNE. International Journal of Robust and Nonlinear Control
24 (2014), 699–724.

[12] M. Berz and G. Hoffstätter. 1998. Computation and Application of Taylor Poly-
nomials with Interval Remainder Bounds. Reliable Computing 4 (1998), 83–97.

[13] S. Bogomolov and et al. 2019. JuliaReach: a toolbox for set-based reachability. In
Proc. of the 22nd International Conference on Hybrid Systems: Computation and
Control. ACM, 39–44.



Adaptive Parameter Tuning for Reachability Analysis of Nonlinear Systems HSCC ’21, May 19–21, 2021, Nashville, TN, USA

[14] X. Chen. 2015. Reachability Analysis of Non-Linear Hybrid Systems Using Taylor
Models. Dissertation. RWTH Aachen University.

[15] X. Chen and et al. 2012. Taylor Model Flowpipe Construction for Non-linear
Hybrid Systems. In Proc. of the 33rd Real-Time Systems Symposium. IEEE.

[16] X. Chen and et al. 2013. Flow*: An Analyzer for Non-Linear Hybrid Systems. In
Proc. of Computer-Aided Verification (LNCS 8044). Springer, 258–263.

[17] X. Chen and S. Sankaranarayanan. 2016. Decomposed reachability analysis
for nonlinear systems. In Proc. of the 37th Real-Time Systems Symposium. IEEE,
13–24.

[18] X. Chen, S. Sankaranarayanan, and E. Ábrahám. 2014. Under-approximate flow-
pipes for non-linear continuous systems. In Formal Methods in Computer-Aided
Design (FMCAD). IEEE, 59–66.

[19] A. Chutinan and B. H. Krogh. 2003. Computational Techniques for Hybrid System
Verification. IEEE Trans. Automat. Control 48, 1 (2003), 64–75.

[20] T. Dang and et al. 2010. Accurate Hybridization of Nonlinear Systems. In Proc. of
the 13th International Conference on Hybrid Systems: Computation and Control.
ACM, 11–19.

[21] T. Dang, C. Le Guernic, and O. Maler. 2009. Computing reachable states for non-
linear biological models. In International Conference on Computational Methods
in Systems Biology. Springer, 126–141.

[22] J. Alexandre dit Sandretto and A. Chapoutot. 2016. DynBEX: a Differential
Constraint Library for Studying Dynamical Systems. hal.archives-ouvertes.fr:
hal-01297273.

[23] P.S. Duggirala and et al. 2015. C2E2: A verification tool for stateflow models. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 68–82.

[24] P.S. Duggirala and M. Viswanathan. 2016. Parsimonious, Simulation Based
Verification of Linear Systems. In Proc. of the 28th International Conference on
Computer Aided Verification. Springer, 477–494.

[25] G. Frehse and et al. 2011. SpaceEx: Scalable Verification of Hybrid Systems. In
Proc. of the 23rd International Conference on Computer Aided Verification (LNCS
6806). Springer, 379–395.

[26] L. Geretti and et al. 2020. ARCH-COMP20 Category Report: Continuous and
Hybrid SystemswithNonlinear Dynamics. InARCH20. 7th InternationalWorkshop
on Applied Verification of Continuous and Hybrid Systems. 49–75.

[27] A. Girard. 2005. Reachability of uncertain linear systems using zonotopes. In
Hybrid Systems: Computation and Control, 8th International Workshop (LNCS 3414).
Springer, 291–305.

[28] Z. Han and B.H. Krogh. 2006. Reachability analysis of nonlinear systems using
trajectory piecewise linearizedmodels. In Proc. of the American Control Conference.
IEEE, 1505–1510.

[29] J. Hoefkens and et al. 2001. Scientific Computing, Validated Numerics, Interval
Methods. Springer, Chapter Verified High-Order Integration of DAEs and Higher-
Order ODEs, 281–292.

[30] F. Immler. 2015. Tool Presentation: Isabelle/HOL for Reachability Analysis of
Continuous Systems. In Proc. of the 2nd Workshop on Applied Verification for
Continuous and Hybrid Systems. 180–187.

[31] M. Kerbl. 1991. Stepsize strategies for inclusion algorithms for ODE’s. Computer
Arithmetic, Scientific Computation, and Mathematical Modelling, IMACS Annals
on Computing and Appl. Math 12 (1991), 437–452.

[32] E. Klipp and et al. 2005. Systems biology in practice: concepts, implementation and
application. John Wiley & Sons.

[33] N. Kochdumper and M. Althoff. 2020. Sparse Polynomial Zonotopes: A Novel
Set Representation for Reachability Analysis. IEEE Early Access, Transactions of
Automatic Control (2020).

[34] H. Kong and et al. 2017. Safety verification of nonlinear hybrid systems based on
invariant clusters. In Proc. of the 20th International Conference on Hybrid Systems:
Computation and Control. ACM, 163–172.

[35] S. Kopecz and A. Meister. 2018. On order conditions for modified Patankar–
Runge–Kutta schemes. Applied Numerical Mathematics 123 (2018), 159–179.

[36] G. Lafferriere and et al. 2001. Symbolic Reachability Computation for Families of
Linear Vector Fields. Symbolic Computation 32 (2001), 231–253.

[37] L. Lapidus and J. H. Seinfeld. 1971. Numerical solution of ordinary differential
equations. Academic press.

[38] M. Laub and W. Loomis. 1998. A molecular network that produces spontaneous
oscillations in excitable cells of Dictyostelium. Molecular biology of the cell 9, 12
(1998), 3521–3532.

[39] D. Li, S. Bak, and S. Bogomolov. 2020. Reachability Analysis of Nonlinear Systems
Using Hybridization and Dynamics Scaling. In International Conference on Formal
Modeling and Analysis of Timed Systems. Springer, 265–282.

[40] J. Liu and et al. 2011. Computing semi-algebraic invariants for polynomial
dynamical systems. In Proc. of the 9th International Conference on Embedded
Software. ACM, 97–106.

[41] E. Lorenz. 1963. Deterministic nonperiodic flow. Journal of the atmospheric
sciences 20, 2 (1963), 130–141.

[42] K. Makino and M. Berz. 2009. Rigorous Integration of Flows and ODEs using
Taylor Models. In Proc. of Symbolic-Numeric Computation. 79–84.

[43] N. Matringe and et al. 2010. Generating invariants for non-linear hybrid systems
by linear algebraic methods. In International Static Analysis Symposium. Springer,
373–389.

[44] I.M. Mitchell and et al. 2005. A Time-Dependent Hamilton–Jacobi Formulation
of Reachable Sets for Continuous Dynamic Games. IEEE Trans. Automat. Control
50 (2005), 947–957.

[45] N.S. Nedialkov. 2000. Computing rigorous bounds on the solution of an initial value
problem for an ordinary differential equation. Dissertation. University of Toronto.

[46] P. Prabhakar and M. Viswanathan. 2011. A Dynamic Algorithm for Approxi-
mate Flow Computations. In Proc. of the 14th International Conference on Hybrid
Systems: Computation and Control. ACM, 133–142.

[47] O. Rössler. 1976. An equation for continuous chaos. Physics Letters A 57, 5 (1976),
397–398.

[48] W. Rufeger and E. Adams. 1993. A step size control for Lohner’s enclosure algo-
rithm for ordinary differential equations with initial conditions. In Mathematics
in Science and Engineering. Vol. 189. Elsevier, 283–299.

[49] J. Vano and et al. 2006. Chaos in low-dimensional Lotka–Volterra models of
competition. Nonlinearity 19, 10 (2006), 2391.

[50] J.M.G. Vilar and et al. 2002. Mechanisms of noise-resistance in genetic oscillators.
Proc. of the National Academy of Sciences 99, 9 (2002), 5988–5992.

[51] M. Wetzlinger, N. Kochdumper, and M. Althoff. 2020. Adaptive Parameter Tuning
for Reachability Analysis of Linear Systems. In Proc. of the 59th Conference on
Decision and Control. IEEE, 5145–5152.



A.6 Adaptive Reachability Algorithms for Nonlinear Systems Using Abstraction Error Analysis

A.6 Adaptive Reachability Algorithms for Nonlinear Systems

Using Abstraction Error Analysis

Summary An essential step toward the automated verification of the task in Problem 1 for

nonlinear systems is the analysis of the approximation error. This information is critical for

refining the tightness of the computed reachable sets and, thus, for successful verification.

In this work, we thoroughly analyze the influence of the time step size on the local abstraction

error for a reachability algorithm based on on-the-fly abstraction, as used in Appendix A.5.

To this end, we introduce the gain order, which compares abstraction errors for different time

step sizes. We show how to compute this gain order and that for most nonlinear systems,

the gain in the abstraction error is linear in the limit for a time step size converging to zero.

Consequently, the chosen reachability algorithm cannot avoid an explosion of the reachable set

size for general nonlinear systems if the uncertainties in the model parameters and the time

horizon are large enough.

Apart from the main contribution, we propose several bounds on the Hausdorff distance

between a zonotope and its order-reduced counterpart, contributing to the automated tuning

of the zonotope order. Furthermore, we extend our automated reachability algorithm from Ap-

pendix A.5 to other system classes. The numerical evaluation indicates the broad applicability

of the proposed adaptive tuning methods as tight results can also be obtained for nonlinear

discrete-time systems and nonlinear differential-algebraic systems.

Author contributions M.W. laid out how to investigate the abstraction error, implemented

the extended code for other system classes, conducted the numerical evaluation, and wrote most

of the manuscript. A.K. investigated the dependency of the set of abstraction errors on the

time step size and its relation to the global and local abstraction errors. A.LeP. conducted in-

vestigations relevant to the zonotope order reduction. M.A. provided substantial improvements

for presenting the main contribution among general feedback for improving the manuscript.

Copyright notice This article was published in Nonlinear Analysis: Hybrid Systems, 46,

Mark Wetzlinger, Adrian Kulmburg, Alexis Le Penven, Matthias Althoff, Adaptive Reachabil-

ity Algorithms for Nonlinear Systems Using Abstraction Error Analysis, p. 101252,© Elsevier

(2022). Explicit license printed in Appendix B.

TUM Graduate School This publication has been declared a core publication in accor-

dance with Article 7, section 3 TUM Doctoral Regulations (PromO).

121



Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Contents lists available at ScienceDirect

Nonlinear Analysis: Hybrid Systems

journal homepage: www.elsevier.com/locate/nahs

Adaptive reachability algorithms for nonlinear systems using
abstraction error analysis
Mark Wetzlinger ∗, Adrian Kulmburg, Alexis Le Penven, Matthias Althoff
Department of Informatics, Technical University of Munich, Boltzmannstr. 3,
85748 Garching b. München, Germany

a r t i c l e i n f o

Article history:
Received 6 October 2021
Received in revised form 17 May 2022
Accepted 22 July 2022
Available online xxxx

Keywords:
Convergence order
Gain order
Parameter tuning
Zonotope order reduction
Hausdorff distance
reachability analysis
Nonlinear systems
Differential-algebraic equations

a b s t r a c t

In many reachability algorithms for nonlinear ordinary differential equations (ODEs), the
tightness of the computed reachable sets mainly depends on abstraction errors and the
choice of the set representation. One has to mitigate the resulting wrapping effects by
suitable tuning of internally-used algorithm parameters since there exists no wrapping-
free algorithm to date. In this work, we investigate the fundamentals governing the
abstraction error in reachability algorithms – which we also refer to as set-based solvers
– and its dependence on the time step size, leading to the introduction of a gain
order. This order is related to measures for local and global abstraction errors and thus
relates the well-known concept of convergence order from classical ODE solvers to set-
based solvers. Furthermore, the simplification of the set representation is tackled by
limiting the Hausdorff distance between the original and reduced sets; we demonstrate
this for zonotopes. Both these theoretical advancements are incorporated in a modular
adaptive parameter tuning algorithm suited for multiple classes of nonlinear ODEs whose
efficiency is demonstrated on a wide range of benchmarks.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Reachability analysis is a formal verification method for mixed discrete/continuous systems under the influence of
uncertainty in the initial states, inputs, and parameters, offering provable guarantees with respect to unsafe states. The
computation of exact reachable sets is only possible for a limited number of system classes [1], thus most algorithms
compute over-approximative reachable sets in order to retain formal correctness. Despite the design of algorithms for
a multitude of system classes and the exploitation of block structures or subspace behavior—all of which enhance the
applicability of reachability analysis—the performance of these algorithms still depends heavily on the correct tuning
of algorithm parameters. Poor tuning may result in large over-approximations and can ultimately lead to spurious
counterexamples, where a given safety property cannot be verified even though a tighter over-approximation would be
able to do so. Therefore, the automated tuning of algorithm parameters constitutes a crucial next step in the advancement
of reachability algorithms, enabling non-experts and practitioners to apply reachability analysis in their respective fields.
In this article, we address this demand by proposing an automated parameter tuning approach for state-space-abstracted
reachability analysis of nonlinear ordinary differential equations and nonlinear differential-algebraic equations. An integral
part is the tuning of the time step size, for which we thoroughly investigate its effect on the error caused by abstracting
the system dynamics within the reachability analysis—an error that is well-studied for classical ODE solvers but has not
yet been examined in detail for reachability analysis.

∗ Corresponding author.
E-mail addresses: m.wetzlinger@tum.de (M. Wetzlinger), adrian.kulmburg@tum.de (A. Kulmburg), alexis.le-penven@polytechnique.edu

(A. Le Penven), althoff@tum.de (M. Althoff).

https://doi.org/10.1016/j.nahs.2022.101252
1751-570X/© 2022 Elsevier Ltd. All rights reserved.



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Related work. There exist several approaches to compute reachable sets of nonlinear systems: By definition, any invariant
set containing the initial set is also a reachable set, thus approaches for invariant generation [2–4] can be used for
reachability analysis although the result may be unnecessarily conservative. One can also obtain reachable sets by solving
a reformulation of the original problem to a Hamilton–Jacobi equation [5,6], whose solution scales exponentially with the
system dimension. Another option is to obtain reachable sets from validated simulations with the help of annotations, i.e.,
additional information about the analyzed system [7], which also scales exponentially as one has to cover the initial set
by enough initial states. Current state-of-the-art approaches for reachability analysis either abstract the solution space or
the state space: For solution space abstraction, the Picard iteration is lifted to set-based analysis by representing reachable
sets using Taylor models [8–10]. In state space abstraction, the system dynamics are abstracted by a Taylor series and
its corresponding Lagrange remainder to obtain a differential inclusion, ranging from hybridization approaches [11–14]
to on-the-fly linearizations [15–17] or polynomial abstractions [18]. The algorithmic differences between this group and
approaches based on solution space abstraction are extensive and impede a joint parameter tuning framework for both
groups. Hence, we will restrict ourselves to approaches based on state space abstraction in this work. Nonetheless, some of
the presented ideas may be beneficial in the pursuit of similar automated tuning methods for any of the abovementioned
methods. Many of the presented approaches are implemented in specialized reachability tools, namely Ariadne [19],
C2E2 [20], CORA [21], DynIBEX [22], Flow* [23], Isabelle/HOL [24], and JuliaReach [25].

Reachability algorithms require a suitable set representation balancing an accurate representation of the reachable sets
with computational efficiency of the set operations. The main trade-off occurs between the closedness of operations and
the growth of the set representation size: As an example, the set representation size of ellipsoids is fixed, but they are
not closed under the Minkowski sum, whereas for zonotopes an exact result can be obtained at the cost of increasing the
representation size. This creates the need for so-called order reduction methods [26, Sec. 3.4] [27, Sec. 3.2]; comparisons
of these methods are presented in [28,29]. Essentially, two types of approaches exist: The majority of methods computes
an over-approximation that is as tight as possible for a desired (lower) user-specified order. The alternative approach in
[30, Thm. 3.2] reduces the order as much as possible for a given bound of the induced over-approximation.

Many reachability algorithms depend on algorithm parameters that can be tuned to achieve tighter approximations,
at the cost of a longer runtime. Some algorithms return tighter results than others for the same runtime, which offers
one way of comparison and allows for a categorization of classical ODE solvers using the concept of consistency order
[31,32]. For set-based reachability analysis, an estimation for the accuracy and convergence of certain algorithms has been
performed in [33].

An open research question is how to automatically tune algorithm parameters for reachability analysis. This problem
has been extensively studied for classical ODE solvers, which led to a wide variety of different methods and thorough
investigations of stability and convergence [34]. Great effort has also been devoted to the automated tuning of the time
step size [35,36], resulting in powerful solvers, which are ubiquitously applied in research and industry alike. As these
solvers only compute approximations to the exact solution, a next step was to enclose a single trajectory, for which
guaranteed integration methods provide several automated time step size control strategies [37,38].

In reachability analysis, automated techniques are scarce due to the presence of uncertainty in the initial state, input,
and model parameters. This severely complicates matters as the tuning of algorithm parameters does not only comprise
the time step size, but also effects related to a number of other algorithm parameters, such as the set representation as well
as any emerging interdependency. For linear systems, there are approaches approximating the actual flow within a user-
defined error bound [39], or adapting the time step size in each step in order to satisfy a linearly increasing, user-defined
error bound [40]. More comprehensive approaches [41,42] adapt all algorithm parameters using over-approximation
measures related to the Hausdorff distance to enable users to tune the desired accuracy. For nonlinear systems, adaptive
methods have been explored in [43], where the time step size is tuned within a user-defined range. Another method [44]
proposes iterative recomputations of the reachable set from scratch, while refining the parameter values in discrete steps
in between runs. The work in [30] presents the first fully automatic reachability algorithm for nonlinear systems, which
not only optimizes the time step size, but also other algorithm parameters such as the representation size.

Contributions. Our work is based on the adaptive parameter tuning approach in [30], which is significantly enhanced in
the following three ways:

1. We extend the zonotope order reduction method introduced in [30] by two additional bounds for the Hausdorff
distance between a zonotope and its box over-approximation.

2. While the analysis of the abstraction error in [30] was restricted to parameter tuning, we now dive a lot deeper
into this topic: In order to lift for the first time convergence orders of classical solvers to reachability algorithms,
we rigorously introduce a novel concept called gain order, which offers a similar yet more accurate description of
the influence of the time step size on local and global abstraction errors.

3. Our tuning methods are no longer restricted to only nonlinear continuous-time systems as in [30], but can now
also be applied to systems with algebraic constraints, parametric uncertainties, and in discrete time.

This article is structured as follows: A summary of reachability analysis for multiple nonlinear system classes is
presented in Section 2. In Section 3, several bounds on the Hausdorff distance between a zonotope and its reduced
counterpart are proven. Next in Section 4, we thoroughly analyze the abstraction error of the reachability algorithm

2



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

leading to the introduction of the gain order, which translates the concept of convergence order known from numerical
ODE theory to set-based solvers. Based on these theoretic novelties, the tuning modules that constitute our adaptive
parameter tuning approach are described in Section 5. Finally, the evaluation of numerical examples in Section 6
demonstrates the practical usability of our tuning methods for a variety of nonlinear system classes, followed by
concluding remarks in Section 7.

2. Preliminaries

In this section, we recall reachability analysis for nonlinear systems based on abstractions in the state space. This
outline is particularly important for the investigation of the abstraction error in Section 4 as well as for the adaptive
parameter tuning in Section 5.

2.1. Notation

We denote vectors by lower-case letters and matrices by upper-case letters. An all-zero vector or matrix of proper
dimension is represented by 0. For a vector v ∈ Rn, |v| ∈ Rn is the element-wise computed absolute value and vi
returns the ith entry of v. Analogously, mij refers to the entry in the ith row and jth column of a matrix M ∈ Rn×p.
We denote the concatenation of two matrices M1 and M2 by [M1 M2]. The operation diag(v) returns a matrix with
v on its diagonal and otherwise zeros. The identity matrix of proper dimension is denoted by I . Moreover, ∥M∥∞
refers to the matrix norm of M induced by the infinity norm. Calligraphic upper-case letters represent sets: We write
B = [a, b] ⊂ Rn, where ∀i ∈ {1, . . . , n} : ai ≤ bi, to denote an n-dimensional axis-aligned box. Its diameter is defined
by d

(
B
)
:= b − a ∈ Rn and the absolute value by abs(B) := [−c, c] ⊂ Rn, where c = max{|a|, |b|} is evaluated

element-wise [45, eq. (10)]. Furthermore, we abbreviate the Cartesian product of identical lower and upper limits for n
consecutive dimensions by [a, b]n. We use upper-case boldface letters to represent interval matrices I = [P,Q ] ∈ Rm×n,
where ∀i ∈ {1, . . . ,m},∀j ∈ {1, . . . , n} : pij ≤ qij. For operations on sets, we use ⊕ for the Minkowski sum, ⊖ for the
Minkowski difference with S1 ⊖ S2 := {s|s+ S2 ⊆ S1}, and introduce the operator ⊞ representing either the Minkowski
sum or the exact addition as defined in [46, Prop. 10]; additionally, we define the operators center(S), box(S), and
vol(S), which respectively return the geometric center, the tightest axis-aligned box over-approximation, and the volume
of a set S ⊂ Rn. The radius of a set is defined as rad(S) := 0.5

d(box(S))2. Additionally, Si = e⊤i S , with ei being the
ith basis vector, denotes the projection of S onto the ith axis. We also write conv(S1, S2) for the convex hull of two sets
S1, S2 ⊂ Rn. The floor operator ⌊k⌋ returns the next smaller integer number k, the sign function is denoted by sgn(·), and
the Frobenius norm by ∥·∥F . The set N0 denotes the natural numbers including 0.

2.2. Reachability analysis of nonlinear systems using abstractions in the state space

The presented techniques for automated parameter tuning are applied to several classes of nonlinear systems, the most
general of which are semi-explicit index-1 differential–algebraic (DA) equations [47], which can be formulated as

ẋ(t) = f (x(t), y(t), u(t))
0 = g(x(t), y(t), u(t)) ,

(1)

where f : Rn
→ Rn is a sufficiently smooth nonlinear function, x(t) ∈ Rn is the state vector, y(t) ∈ Rna is the vector

of algebraic variables, and u(t) ∈ Rm is the input vector. Omitting the algebraic equation and algebraic variables yields
a standard nonlinear ordinary differential equation. Note that these also encompass parametric systems: Each constant
parameter can be defined as an additional state with the dynamics ẋi(t) = 0 and each time-varying parameter as an
additional uncertain input. Moreover, we will consider discrete-time systems xk+1 = f (xk, uk).

Let us introduce ξex(t; x(0), y(0), u(·)) as the solution of (1) at time t for the initial values x(0) and y(0). Then, the exact
reachable set Rex

(
[0, tend]

)
of (1) over the time horizon t ∈ [0, tend] is given by

Rex
(
[0, tend]

)
=

{
ξex(t; x(0), y(0), u(·))

⏐⏐⏐ x(0) ∈ X 0, y(0) ∈ Y0, t ∈ [0, tend],∀θ ∈ [0, t] : u(θ ) ∈ U
}

, (2)

with the initial sets X 0
⊂ Rn,Y0

⊂ Rna and the input set U ⊂ Rm. In this work we use abstractions in the state space,
where both f (·) and g(·) are abstracted by a Taylor series of order κ at an expansion point z∗ [18, eq. (2)] [47, eq. (8)], so
that

ẋi(t) ∈
κ∑

ν=0

(
(z(t)− z∗)⊤∇

)ν fi(ẑ)
ν!

⏐⏐⏐⏐
ẑ=z∗
⊕ L(x)

i (t) ,

0 ∈
κ∑

ν=0

(
(z(t)− z∗)⊤∇

)νgi(ẑ)
ν!

⏐⏐⏐⏐
ẑ=z∗
⊕ L(y)

i (t) ,

(3)

3



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

using the extended vector z = [x⊤y⊤u⊤]⊤ ∈ Rn+na+m and the Nabla operator ∇ =
∑n+na+m

i=1 ei ∂
∂zi

. The Lagrange remainders
L(x)

i and L(y)
i are defined by [18, eq. (2)] [47, eq. (8)]

L(x)
i (t) :=

{(
(z(t)− z∗)⊤∇

)κ+1fi(ẑ)
(κ + 1)!

⏐⏐⏐⏐ ẑ = z∗ + α(z(t)− z∗), α ∈ [0, 1]
}

,

L(y)
i (t) :=

{(
(z(t)− z∗)⊤∇

)κ+1gi(ẑ)
(κ + 1)!

⏐⏐⏐⏐ ẑ = z∗ + α(z(t)− z∗), α ∈ [0, 1]
}

,

(4)

and evaluated using range-bounding techniques such as interval arithmetic [48].
The time horizon [0, tend] is divided into time intervals τk = [tk, tk+1] with the individual time step sizes ∆tk =

tk+1 − tk > 0 summing up to tend. The reachable set for the entire time horizon is obtained by unifying the sequence of
time-interval reachable sets R(τk). For notational simplicity, we introduce an equivalent notation for the first terms in
(3),

w
(x)
i = fi(z∗), C (x)

ij =
∂ fi(ẑ)
∂ ẑj

⏐⏐⏐⏐
ẑ=z∗

, D(x)
ijk =

∂2fi(ẑ)
∂ ẑj∂ ẑk

⏐⏐⏐⏐
ẑ=z∗

, . . .

w
(y)
i = gi(z∗), C (y)

ij =
∂gi(ẑ)
∂ ẑj

⏐⏐⏐⏐
ẑ=z∗

, D(y)
ijk =

∂2gi(ẑ)
∂ ẑj∂ ẑk

⏐⏐⏐⏐
ẑ=z∗

, . . . .

(5)

Alg. 1 summarizes the reachability algorithm for nonlinear DA systems featured in on-the-fly methods, such as the ones
in [17,18], which extends to hybridization approaches [12,14,16] with minor adaptations. After its presentation, we will
discuss the simplifications that can be made for the other system classes mentioned at the beginning of this overview.

Algorithm 1 Reachability analysis of continuous-time nonlinear systems using abstractions in the state space.

Input: nonlinear function f (z), time horizon tend, initial set R(t0) = X 0, input set U; only DA: algebraic equation g(z),
initial algebraic set Ry(t0) = Y0

Output: reachable set R([0, tend])

1: k← 0, tk ← 0
2: while tk < tend do
3: z∗(tk)← linPoint(R(tk), f ,Ry(tk), g)
4: w(x), w(y), C (x), C (y), ...← taylor

(
f (z), z∗(tk)

)
5: w, A, B← linSys(w(x), w(y), C (x), C (y))
6: Rlin(tk+1),Rlin(τk+1)← linReach(R(tk), w, A, B)
7: Ψ ← 0
8: do
9: Ψ ← enlarge(Ψ )

10: Ψ ,Ry(tk+1)← abstrErr(Rlin(τk+1), Ψ , κ)
11: while Ψ ̸⊆ Ψ

12: Rabs ← abstrSol(Ψ )
13: R(tk+1)← Rlin(tk+1) ⊞ Rabs
14: R(τk+1)← Rlin(τk+1) ⊞ Rabs
15: R(tk+1)← red(R(tk+1)),R(τk+1)← red(R(τk+1))
16: tk+1 ← tk +∆tk, k← k+ 1
17: end while
18: R([0, tend])←

⋃k−1
j=0 R(τj)

At the start of each step k, the operation taylor evaluates both Taylor series at the linearization point z∗ (Line 4)
returned by the operation linPoint (Line 3):

x∗ = center(R(tk))+
1
2

∆tk f
(
center(R(tk))

)
, u∗ = center(U), and y∗ ← 0 = g(x∗, y∗, u∗), (6)

where y∗ ∈ Ry(tk) is obtained by solving the algebraic equation using a Newton–Raphson algorithm [47, Sec. IV-A]. Next,
we abstract the nonlinear system by a differential inclusion

ẋ(t) ∈ Ax(t)+ Bu(t)+ w  
flin(t)

⊞Ψ , (7)

4



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

using the linearized vector field flin and an uncertainty set Ψ enclosing all higher-order terms including the Lagrange
remainder. The constant offset w, the state matrix A ∈ Rn×n, and the input matrix B ∈ Rn×m are returned by the operation
linSys [47, Sec. IV]:

w = w(x)
− Ỹ Z̃−1w(y), A = Ã− Ỹ Z̃−1Ṽ , B = B̃− Ỹ Z̃−1W̃ ,

using C (x)
= [Ã Ỹ B̃], C (y)

= [Ṽ Z̃ W̃ ],

where Ã ∈ Rn×n, Ỹ ∈ Rn×na , B̃ ∈ Rn×m, Ṽ ∈ Rna×n, Z̃ ∈ Rna×na , W̃ ∈ Rna×m. The reformulation in (7) allows us to apply the
superposition principle for linear systems and separate the computation of the next reachable set R(tk+1) into two parts:
First, the reachable set Rlin of the linearized dynamics (Lines 4–6); second, the set of abstraction errors Rabs based on
the abstraction error Ψ [47, eq. (15)] (Lines 7–12). Let us briefly highlight an important difference between two groups
of algorithms: Linearization algorithms [17] may also use polynomial abstractions (κ ≥ 2) in (3), but the evaluation of all
higher-order terms until the Lagrange remainder loses the state correlation with respect to the linear dynamics, which
results in an essentially linear approximation of f (x) despite the polynomial abstraction. In contrast, polynomialization
algorithms [18] retain the state correlation in the evaluation of all time-constant, higher-order (κ ≥ 2) terms in (3)
allowing for a truly polynomial abstraction. For simplicity, we will restrict the remainder of this overview to linearization
algorithms; the extension to polynomialization algorithms can be found in [18].

The operation linReach (Line 6) returns the reachable set Rlin using a reachability algorithm for the linearized
dynamics Ax(t)+ Bu(t)+w, e.g., [49, Sec. 3.2]. The computation of the abstraction error Ψ requires to resolve the mutual
dependency between Ψ and Rlin. To this end, we initially estimate Ψ to be Ψ (Line 7) and use the operation enlarge
to enlarge this set by a constant factor greater than 1 (Line 9) until the containment Ψ ⊆ Ψ (Line 8) is ensured. Within
this loop, the set Ψ is iteratively computed using the operation abstrErr (Line 10), which depends on the correlation
of the state x with the abstraction error [17, Prop. 1] [18, Sec. 4.1]. The algebraic reachable set Ry(tk+1) is obtained as a
byproduct [47, Prop. 2]. Next, the operation abstrSol (Line 12) computes the set of abstraction errors based on Ψ by [17,
Sec. VI.]

Rabs =

ηabs⨁
p=0

∆tp+1

(p+ 1)!
ApΨ ⊕ E(∆t, ηabs)∆t Ψ , (8)

with the remainder of the exponential matrix [50, Prop. 2]

E(∆t, η) = [−E(∆t, η), E(∆t, η)], E(∆t, η) = e|A|∆t
−

η∑
i=0

(
|A|∆t

)i
i!

, (9)

where E = O(∆tη+1) for ∆t → 0.
By exploiting the superposition principle in (7), the next reachable set R(tk+1) is obtained by the addition of Rlin and

Rabs (Lines 13–14). For reasons of computational efficiency, we require to reduce the set representation size using the
operation red(·) at the end of each step (Line 15). Then, we obtain the next time-point solution as

R(tk+1) = red(eA∆tkR(tk)⊕ P(τk)  
=:Rlin(tk+1)

⊞Rabs). (10)

For later use, we expand the setRlin obtained from the operation linReach into its homogeneous and particular solutions,
eA∆tkR(tk) and P(τk), respectively. For the time-interval solution, we compute the reachable set of the linearized dynamics
Rlin(τk) using the convex hull of sets at the beginning and end of the time interval and enlarge the result by an error set
FxR(tk) with [49, Prop. 3.1]

Fx =
ηlin⨁
p=2

[
(p
−p
p−1 − p

−1
p−1 )∆tp, 0

]Ap

p!  
:= T(p)

⊕ E(∆t, ηlin), (11)

which ultimately yields [17, Sec. IV.-A]

R(τk+1) = conv(R(tk), eA∆tkR(tk)⊕ P(τk))⊕ FxR(tk)  
=:Rlin(τk)

⊞Rabs(τk), (12)

assuming 0 ∈ U , with an extension to arbitrary inputs in [49, Sec. 3.2.2].
Finally, let us briefly highlight the algorithmic simplifications for the other aforementioned system classes: The changes

required to accommodate standard ordinary differential equations follow directly by omitting each occurrence of the
algebraic equation. For discrete-time systems, we replace (7) by the following difference inclusion

xk+1 ∈ Axk + Buk + w  
flin(xk,uk)

⊞Ψ . (13)

5



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

The operation linReach (Line 6) therefore becomes the straightforward evaluation of flin(xk, uk). Next, the process of
estimation and containment check (Lines 7–11) is shortened to a single evaluation of the operation abstrErr on the
start set R(tk). The next time-point solution (Line 13) is computed by the addition of Rlin and Ψ following directly from
(13). Naturally, there is neither a computation of Rabs (Line 12) nor of a time-interval solution (Line 14).

3. Hausdorff reduction

Reachable sets are often represented by zonotopes because they are closed under linear maps and Minkowski sums, and
these operations can be computed efficiently. Over subsequent steps of Alg. 1, the representation size of zonotopes grows,
necessitating order reduction. In this section, we will provide several bounds so that the representation size of a zonotope
can be reduced while satisfying any desired over-approximation error. In comparison with our previous work [30], we
derive two more error bounds and also a novel generator selection criterion for the order reduction. Additionally, we
provide insights into the performance of each bound for different classes of zonotopes.

Let us first define zonotopes and the order reduction operation:

Definition 1 (Zonotopes [26] Def. 1). Given a center c ∈ Rn and γ ∈ N generator vectors G = [g (1) . . . g (γ )
], a zonotope is

defined as

Z :=
{
x ∈ Rn

⏐⏐⏐ x = c +
γ∑
i=1

αi g (i) ,−1 ≤ αi ≤ 1
}
.

We also define its order by ρ :=
γ

n and the shorthand ⟨c,G⟩Z . □

For later use, let us also introduce the operations center(Z) = c and box(Z) = ⟨c, diag(
∑γ

i=1 |g
(i)
|)⟩Z returning a box

over-approximation of Z . For order reduction, we select the method introduced in [26, Sec. 3.4], which is comprised of
the following steps:

1. Split the given zonotope Zfull into two parts Zfull = Z ′ ⊕ Z .
2. Enclose Z by a tight box Zbox = box(Z) ⊇ Z .
3. Compose the reduced zonotope as Zred = Z ′ ⊕ Zbox ⊇ Zfull.

To quantitatively measure the error induced by the order reduction, we use the Hausdorff distance:

Definition 2 (Hausdorff Distance). For two compact sets V,W ⊂ Rn, the Hausdorff distance is defined as

dH (V,W) := max
{
d(1)H (V,W), d(2)H (V,W)

}
,

where

d(1)H (V,W) := max
v∈V

min
w∈W
∥v − w∥2 and d(2)H (V,W) := max

w∈W
min
v∈V
∥w − v∥2. □

For subsequent derivations, let us introduce a short lemma:

Lemma 1. For the compact sets S,V,W ⊂ Rn, the following inequality holds:

dH (S ⊕ V, S ⊕W) ≤ dH (V,W).

Proof. We only prove the inequality for d(1)H :

d(1)H (S ⊕ V, S ⊕W) = max
v∈V

s(1)∈S

min
w∈W
s(2)∈S

∥v + s(1) − w − s(2)∥2

≤ max
v∈V

s(1)∈S

min
w∈W
∥v + s(1) − w − s(1)∥2

= max
v∈V

min
w∈W
∥v − w∥2

= dH (V,W).

The reasoning is analogous for d(2)H . □

In the context of zonotope order reduction, Lemma 1 implies

dH (Zfull,Zred) = dH (Z ′ ⊕ Z,Z ′ ⊕ Zbox) ≤ dH (Z,Zbox),

which lets us restrict our attention to the computation of the Hausdorff distance between the partial zonotope Z and its
box over-approximation Zbox without loss of generality. Computing the exact Hausdorff distance between two zonotopes
is NP-hard in general, since the Hausdorff distance between a point (represented by a zonotope without generators) and

6



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

an arbitrary zonotope can be reformulated as a longest vector sum problem [51] (this equivalence is easier to see using
the arguments from [52, p. 268]); in fact, the work in [51] even shows that this problem is APX-hard. Hence, in practice,
we are limited to finding bounds on the Hausdorff distance:

Theorem 1. Let Z = ⟨c,G⟩Z ⊂ Rn be a zonotope and Zbox := box(Z) = ⟨c,Gbox⟩Z ⊇ Z its box over-approximation. Due to
the containment Z ⊆ Zbox, the Hausdorff distance dH is given by

dH (Z,Zbox) = max
xbox∈Zbox

min
x∈Z
∥xbox − x∥2 . (14)

This distance is over-approximated by the following three bounds:

ωmax(Z) := 2


γ∑

p=1

ĝ (p)


2

, (15)

ωrad(Z) :=
γ∑

p=1

g (p)

2 , (16)

ωcut(Z) :=
√
2

γ∑
p=1

g (p)

2

√1−

∑n
i=1

(
g (p)
i

)4

g (p)
4
2

, (17)

with

ĝ (p)
i =

{⏐⏐g (p)
i

⏐⏐, if i ̸= i∗,
0, otherwise,

(18)

where i∗ is the (first) index for which g (p)
i∗ =

g (p)

∞
.

Proof. The proof can be found in Appendix A. □
The accuracy of the bounds ωmax, ωrad, and ωcut depends on the reduced zonotopes: While ωrad performs better on

average for random zonotopes, in practice ωmax performs better for reachability analysis. This originates from a bias of
zonotopes in the reachability algorithm towards axis-aligned generators g (p) resulting in orthogonal ĝ (p). This bias can
be explained by the fact that on several occasions in the reachability algorithm, interval boxes are added to the current
solution. Reducing the order of zonotopes by using box over-approximations further adds to this bias. The bound ωcut
performs slightly worse than ωmax in those biased cases. This can be seen by analyzing the effect of adding another
generator g∗ to the zonotope. Two effects can influence the performance of either bound: On the one hand, if g∗ is
diagonal (i.e., if the components of g∗ have the same length, as opposed to g∗ having only one non-zero component),
ωmax will grow larger than ωcut and thus perform worse. On the other hand, if ĝ∗ is orthogonal to the other vectors ĝ (p)

then ωmax performs better than ωcut.
In other words, ωmax performs better if generators are added that are axis-aligned and orthogonal up to one component,

which is the case for the generators of an interval box. Nevertheless, the overall performance of ωcut is similar to ωmax
in low dimensions and significantly better in higher dimensions. Since the computation (17) of ωcut contains the formula
(16) for ωrad, we combine both bounds to

ωrad,cut(Z) :=
γ∑

p=1

g (p)

2 min

⎧⎪⎪⎨⎪⎪⎩1,
√
2

√1−

∑n
i=1

(
g (p)
i

)4

g (p)
4
2

⎫⎪⎪⎬⎪⎪⎭ . (19)

In Fig. 1, we see that this new bound generally yields better results than ωmax as it combines the advantages of ωcut
and ωrad. Note that the joint bound ωrad,cut performs better than either of the bounds ωrad and ωcut as the minimum in
(19) is taken generator-wise. A potential combination of all three bounds is dismissed due to the resulting computational
overhead.

Let us now provide a heuristic for generator selection, where we aim to reduce as many generators as possible
while respecting a given threshold for the Hausdorff distance between the original and reduced set: Given a zonotope
Z = ⟨c,G⟩Z , we sort the generators in G ∈ Rn×γ using a cost function ϱ(g). For ωmax, this cost function is

ϱmax(g) := ∥g∥1 − ∥g∥∞ , (20)

originally proposed in [26]. For ωrad,cut, we exploit that the contribution of each generator to ωrad,cut can be separated,
yielding the cost function

ϱrad,cut(g) := ∥g∥2 min

{
1,
√
2

√
1−

∑n
i=1 (gi)4

∥g∥42

}
. (21)

7



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Fig. 1. Comparison of ωrad , ωcut , and ωrad,cut to ωmax (i.e., ωmax coincides with the x-axis), by computing each bound for 1000 zonotopes centered
at the origin with generator matrices that have random entries between −1 and +1, and taking the mean. Negative values of ω− ωmax mean that
the bound performs better than ωmax . One can see that for low dimensions, the combination of ωrad and ωcut can lead to better results, which are
comparable to those of ωmax . For high dimensions, ωrad is typically much more precise than ωcut or ωmax .

Note that the cost function ϱrad = ∥ · ∥2 is exactly the cost function described in [27,53] to sort generators. However,
since this is already computed when evaluating (21), the analysis of the computational complexity and the accuracy of
ϱrad is similar to that of ϱrad,cut. We will utilize the presented novel bounds for zonotope order reduction in our adaptive
parameter tuning approach in Section 5.3.

4. Gain order of set-based ODE solvers

We first recall some basics about the numerical approximation of ODE solutions using classical solvers and discuss
why an immediate transferability of these concepts to reachability algorithms is inadequate. Afterwards, we will outline
our solution, which will be presented in the remainder of this section.

In classical ODE theory [31,34], the quality of a numerical approximation of an ODE

ẋ = f (x, t) (22)

is typically measured by the concept of convergence order:

Definition 3 (Convergence Order of Classical ODE Solvers). Let ξex(∆t; t0, x0) be the exact solution of (22) at time t0 +∆t ,
with initial condition x(t0) = x0, and let ξ̂ (∆t; t0, x0) be an approximation of the exact solution at time t0 + ∆t . The
convergence order (in short: order) of the solver is the number q ∈ N0, for which the following inequality holds:

ε∆t,loc := |ξex(∆t; t0, x0)− ξ̂ (∆t; t0, x0)| ≤ c∆tq+1, ∀t0, x0, (23)

where c is a constant that neither depends on t0, x0, nor ∆t , and ε∆t,loc is called the local truncation error. □

The error (23) is a local measure as it only measures the error committed in a single time step. To estimate the
accumulated error over the entire time interval [0, tend], let us denote by ξ̂N the approximation after N steps using the
time step size ∆t = tend/N . Then, the global error εN between the exact point ξex(tend; t0, x0) and the approximation ξ̂N
is bounded by [32, p. 318, Theorem 12.2]

εN := |ξex(tend; t0, x0)− ξ̂N | ≤ ĉ∆tq, (24)

where ĉ is a constant that depends on tend, but not on ∆t . Thus, the order q provides an estimate on how small the time
step size has to be in order to achieve good approximations—low-order methods, such as the explicit Euler method [31,
Chapter 2] with order q = 1, will typically need much smaller time step sizes than high-order methods like the third-order
variant of Heun’s method [31, Chapter 9.5] with order q = 3.

For set-based methods used in reachability analysis, this error estimation cannot be generalized directly for several
reasons:

8



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

• Difference between sets: Expressions such as |ξex(∆t; t0, x0)− ξ̂ (∆t; t0, x0)| in (23) are difficult to evaluate if
ξex(∆t; t0, x0) and ξ̂ (∆t; t0, x0) are replaced by their set-based analogues, i.e., the reachable set and some approxi-
mation that outputs a set.
• Wrapping effects: The magnitude of some approximation errors, primarily due to wrapping effects, such as the

iterative order reduction operations discussed in Section 3, is independent of the time step size and thus cannot be
reduced by choosing a smaller time step size. Even worse, reducing the time step size leads to a higher number of
iterations and might result in an overall larger error, which does not happen for classical ODEs.

To address these problems, we propose a novel concept for the convergence order of set-based solvers. Instead of focusing
on a local truncation error ε∆t,loc, we will define a gain function ϕ(t; δ) that measures the overall error for varying time
step sizes, and for which holds that

εN ≤ c∆t−1ϕ(tend;
1
N
), (25)

where εN is an appropriate measure for the global error of a set-based solver and c is a constant that neither depends on
∆t nor N .

For conciseness, our subsequent analysis will only be applied to systems of ordinary differential equations (22), where
we will assume a smooth right-hand side. Under certain simple assumptions, we will show that ϕ(tend; 1

N ) ≤ 1/Nq+1 for
some q ∈ N0 that may depend on the right hand side f of (22), leading to the result

εN ≤ ĉ∆tq, (26)

where ĉ is a constant that depends on tend, but not on ∆t nor N . As a consequence, the gain function ϕ(t; δ) allows us to
mimic the result from (24) that one can get via classical ODE theory, without having to analyze the precise behavior of
the local truncation error for each point in the initial set.

The next subsection Section 4.1 defines local and global abstraction errors of set-based solvers, followed by an
investigation of the local error over varying time step sizes ∆t using a formal definition of the aforementioned gain
function in Section 4.2. Finally, we extend the obtained results from local to global errors in Section 4.3. Most of the
proofs are to be found in Appendix B to enhance the fluidity of our presentation.

4.1. Errors of set-based ODE solvers

In order to define the notion of order for a given set-based solver, we need an estimation of the local error that such
a solver produces (similarly to Definition 3). We focus our attention on the set of abstraction errors Rabs (8), which by
definition collects the approximation errors induced by Rlin in (10). This is comparable to the work in [33]. More generally,
we propose the following measure for the local and global error:

Definition 4 (Errors of Set-based Solvers). Let R(∆t; t0,X 0) be a set-based approximation for (22), with initial value
x(t0) ∈ X 0 and time step size ∆t . Using the abstraction error as defined in (8), we have that

R(∆t; t0,X 0) = R̂(∆t; t0,X 0)⊕Rabs(∆t; t0,X 0), (27)

where R̂(∆t; t0,X 0) is the approximation of the solution to the ODE (22). Let R(tk) be the output after k ∈ {0, 1, . . . ,N}
iterations of R and let R̂(tk) be the output after iteratively using R̂ instead of R. Then, the local abstraction error at time
tk is defined as

εk,loc :=

d(box(R(∆t; tk,R(tk))⊖ R̂(∆t; tk,R(tk)))
)
∞

=

d(box(Rabs(∆t; tk,R(tk)))
)
∞

, (28)

whereas

εN :=

d(box(R(tend)⊖ R̂(tend))
)
∞

. (29)

is the global accumulated abstraction error over N steps. □

Similarly to classical ODE theory, the global error can be linked to the local error in the following manner:

Lemma 2 (Local and Global Abstraction Error). For solvers of the form described in (10), the global abstraction error after N
steps can be bounded by the maximal local abstraction error as

εN ≤
c

∆t
max
1≤ℓ≤N

εℓ,loc (30)

for some constant c that may depend on tend, but not on ∆t nor N.

Proof. The proof can be found in Appendix B. □

9



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Fig. 2. Schematic evaluation of the global abstraction error εN as a function of space (set size d(X 0)) and time (time step size ∆t); two projections
for d(X 0) = 0 (classical solvers) and d(X 0) = d∗ > 0 (set-based solvers), resulting in the black and red curve, respectively, show a different limit
value in the limit ∆t → 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

4.2. The gain function

Now that we know how to quantify the error of a set-based solver, we investigate the behavior of the error for varying
time step sizes ∆t . For simplicity, we will drop the arguments k, tk, t0, and X 0 for the rest of this section to focus on the
effect of ∆t on the local abstraction error. Moreover, for the sake of simplicity, instead of working with the local abstraction
error as defined in (28), we will use the more accurate formulation

εloc =

d(box(R∞abs(∆t))
)
∞

, (31)

where R∞abs(∆t) is the non-truncated set of abstraction errors replacing (8), i.e.,

R∞abs(∆t) =
∞⨁
p=0

∆tp+1

(p+ 1)!
Ap(∆t)Ψ (∆t). (32)

While the local error (31) explicitly depends on the time step size ∆t , Ψ also depends on the initial set X 0. The Taylor
expansion of (31) entails that there exist some non-negative integers qs and qt such that

εloc = ∆t
[
O(∆tqt )+ O(d(X 0)qs )

]
(33)

for small enough ∆t and d(X 0), where d(X 0) is the diameter of X 0. This is similar to classical ODE theory [31, Chapter
9]. The error εloc can thus be decreased either by reducing the time step size, or by splitting the initial set as in [33]. As
Lemma 2 shows, the global error εN is bounded by a term proportional to εloc. Its dependency on the set size and the
time step size is illustrated in Fig. 2: For classical solvers, we have d(X 0) = 0 yielding the black curve which converges to
εN = 0 for ∆t → 0. In contrast, for set-based solvers we obtain a behavior like the red curve as we evaluate εN (d(X 0), ∆t)
on a projection (indicated by the gray plane) at d(X 0) = d∗ > 0. Crucially, this results in a value εN > 0 for ∆t → 0. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The estimate (33) can be made independent of the right hand side f of the ODE, up to a multiplicative constant
depending on the smoothness of f (see for example [31, Chapter 9.4]). Thus, it would allow one to separately define
a time order qt and a space order qs. However, these concepts of order are difficult to measure locally as one would need
to measure the combined error as a function of several variables. In contrast, classical ODE theory only considers the local
error with respect to time.

Therefore, a different approach is more enticing: Instead of analyzing the precise behavior of εloc as a function of time
and space (as in [33]), we consider its overall expansion over time by defining the following gain function:

10



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Definition 5 (Gain Function). The gain ϕ(h; δ) over the time span h with relative increments δ ∈ [0, 1] is the function

ϕ(h; δ) = max
i∈{1,...,n}

ϕi(h; δ) with ϕi(h; δ) =
di

(
box(R∞abs(δh))

)
di

(
box(R∞abs(h))

) , (34)

where R∞abs(h) is computed by (32). □

If Ψ (h) in (32) is represented by a zonotope, the gain ϕ can be simplified using the following Proposition:

Proposition 1 (Diameter of Set of Abstraction Errors). Suppose Ψ (h) is given as the zonotope ⟨c(h),G(h)⟩Z . Then we obtain

di
(
box(R∞abs(h))

)
= 2

∞∑
p=0

hp+1

(p+ 1)!

Ap(h)G(h)

1,i , (35)

where for a matrix M, ∥M∥1,i denotes the 1-norm of the ith row of M.

Proof. The proof can be found in Appendix B. □

Following the result of Proposition 1, we can analyze the behavior of ϕ by examining the behavior of the coefficients
∥Ap(h)G(h)∥1,i, for which we now present a more concrete characterization:

Lemma 3 (Expansion of Coefficients). Assume that the right-hand side f of (22) is smooth. Then, A(h) and G(h) are smooth,
and for all p ∈ N0 and i = {1, . . . , n}, the coefficient ∥Ap(h)G(h)∥1,i may either be written as

∥Ap(h)G(h)∥1,i = hq(p)i ∥a(p)i + b(p)i (h)∥1, (36)

for some q(p)i ∈ N0, a
(p)
i ∈ R\{0}, b(p)i (h) = O(h), or as

∥Ap(h)G(h)∥1,i ≡ 0, (37)

in which case we use the convention that q(p)i = ∞, as well as a(p)i = 0 and b(p)i (h) = 0. Furthermore, for all p ∈ N0 and
i = {1, . . . , n}, the function

Q (p)
i (h) = ∥a(p)i + b(p)i (h)∥1 (38)

is non-negative and piecewise smooth.

Proof. The proof can be found in Appendix B. □

We can now use this knowledge about the numerator and denominator defining ϕ(h; δ) in order to investigate its
behavior for h→ 0, through which a certain notion of order will arise naturally:

Theorem 2 (Limit Gain). Suppose the right hand side f of (22) is smooth, and for each p ∈ N0 and i = {1, . . . , n} let a(p)i and
q(p)i be defined as in Lemma 3. Then for the gain in the ith dimension ϕi(h; δ) there holds

lim
h→0

ϕi(h; δ) = δqi+1, (39)

where

qi = max
{
j ∈ N0

⏐⏐⏐⏐ ∑
p+q(p)i =j

∥a(p)i ∥1 ̸= 0
}
. (40)

Note that the condition on j in (40) is met for a given j if and only if either there does not exist a tuple (p, q(p)i ) such that
p+ q(p)i = j, or if for any such tuple there holds a(p)i = 0, i.e., [Ap(h)G(h)]i ≡ 0, according to the convention in Lemma 3.

Proof. Using (35), we deduce by (36) that

di
(
box(R∞abs(h))

)
= 2

∞∑
p=0

hp+1

(p+ 1)!
hq(p)i ∥a(p)i + b(p)i (h)∥1 = 2

∞∑
j=0

hj+1
∑

p+q(p)i =j

∥a(p)i + b(p)i (h)∥1
(p+ 1)!

.

Inserting this into (34) yields

ϕi(h; δ) =

∑
∞

j=0 h
j+1δj+1

∑
p+q(p)i =j

∥a(p)i +b
(p)
i (hδ)∥1

(p+1)!∑
∞

j=0 hj+1
∑

p+q(p)i =j
∥a(p)i +b

(p)
i (h)∥1

(p+1)!

−→
h→0

δqi+1,

11



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

where while passing to the limit we used the fact that b(p)i = O(h) together with the assumption that∑
p+q(p)i =qi

∥a(p)i ∥1

(p+ 1)!
̸= 0,

which is equivalent to (40). □

The quantities qi have the unique property that they can describe the overall behavior of the error for different time
step sizes. Consequently, they constitute the basis of our concept of order:

Definition 6 (Gain Order of Set-based Solvers). Let R be an approximation of (22), and let qi be defined as in (40). Then
q := mini qi is called the gain order of the method, and qi is called the gain order of the ith dimension. Note that R yields
zero abstraction error if and only if q = ∞. This is because from (35) it follows that the abstraction error is zero if and
only if ∥Ap(h)G(h)∥1,i ≡ 0 for all p and i, which is equivalent to q = ∞. □

We aim to show that, under certain simple assumptions, ϕ is monotonically decreasing in h. This will be crucial in
practice because it shows that even if the global abstraction error does not decrease by O(∆tp) for some p ≥ 1 (where
∆t is the time step size), it does indeed decrease notably for smaller time step sizes.

Proposition 2 (Derivative of Gain). Let q(p)i and Q (p)
i be defined as in Lemma 3, and let qi be defined as in (40). Assume that

all Q (p)
i are differentiable at t = 0. Then, for δ ∈ [0, 1], there holds

lim
h→0

dϕi(h; δ)
dh

≤ 0. (41)

Furthermore, for fixed h, if ∀i ∈ {1, ..., n} and p ∈ N0 the value of Q (p)
i (t) is constant over t ∈ [0, h], then

ϕi(t; δ) ≤ δqi+1, ∀t ∈ [0, h], i ∈ {1, ..., n}. (42)

Proof. The proof can be found in Appendix B. □

As we have seen, the gain function provides an alternative way of estimating the dependency of the local abstraction
error with respect to the time step size, and this estimation can describe non-integer orders by means of the function ϕ.

4.3. Global abstraction error via gain order

After estimating the local error using the gain function, we now want to extend these results to an estimation of the
global abstraction error. To do so, we select h to be a fixed finite time horizon that we will use as a unit of measurement,
and through which we will comparatively observe the effect of reducing the time step size ∆t < h. For some fixed
δ ∈ [0, 1], by (41) we can choose h to be small enough such that ϕ(t; δ) is decreasing on t ∈ [0, 2h]. By (39), the limit of
ϕ(t; δ) for t → 0 is δq+1, therefore on [0, 2h] there must hold that ϕ(t; δ) ≤ δq+1. For t = h, this yields the relation

ϕ(h; δ) ≤ δq+1. (43)

The latter inequality holds even for relatively large h in practice, as we shall discuss later on.
Since the gain ϕ provides an estimate for the variation of the local abstraction error, ϕ depends on the step k just like

εk,loc (28) does. Let ϕk denote the gain function corresponding to step k. From (30) it follows that the global error εN after
N steps can be estimated by

εN
(30)
≤ c∆t−1 max

1≤k≤N
max

i
di

(
box(R∞abs(∆t; tk,R(tk)))

)
Definition 5
≤ c∆t−1 max

1≤k≤N
ϕk(h;

1
N
)max

i
di

(
box(R∞abs(h; tk,R(tk)))

)
≤ c∆t−1 max

1≤k≤N
ϕk(h;

1
N
) max
1≤k≤N

max
i

di
(
box(R∞abs(h; tk,R(tk)))

)
(43)
≤ c∆t−1

1
Nq+1 max

1≤k≤N
max

i
di

(
box(R∞abs(h; tk,R(tk)))

)
.

From [18, (11)] it obviously follows that R∞abs(h+ tk; 0,X 0) ⊆ R∞abs(2h; 0,X 0), since tk ≤ h. Therefore, we can write

εN ≤ c∆t−1
1

Nq+1R
∞

abs(2h; 0,X
0),

12



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

which eventually yields a bound

εN ≤ c ′∆t−1
1

Nq+1 .

Since N = h/∆t , we conclude that

εN ≤ ĉ(h)∆tq,

where ĉ(h) is a constant that depends on h, but not on ∆t nor N . Consequently, our definition of the order of a solver
yields similar results to classical ODE theory, except that ϕ(h; 1

N ) can give even more precise information, e.g., non-integer
orders, about the local improvement one would get by decreasing the time step size.

In practice, we will primarily use ϕ(h; δ) to determine an approximation of εk,loc for small variations of ∆t . As we
saw earlier, (41) implies that ϕ(h; δ) ≤ δq+1 if h is small enough, a restriction that can be loosened for larger h using
Proposition 2 under the assumption that Ak(h)G(h) in Proposition 1 does not vary much with respect to h, as this would
imply that the Q (p)

i are constant. This assumption holds as long as Ψ (h) does not vary much, which is true in practice as
long as the computation of Ψ (h) converges.

In the next section, we will make use of the gain function ϕ (see Definition 5), its limit value (see Theorem 2), and
its derivative (see Proposition 2 and the discussion above) in order to construct an optimization function for the crucial
tuning of the time step size.

5. Adaptive parameter tuning methods

In this section, we propose individual tuning methods to adaptively tune each algorithm parameter used in Alg. 1.
Fig. 3 provides an overview of the reachable set computation within one time step, where arrows indicate the effect of
algorithm parameters on sets. All described tuning methods are modular, that is, the algorithm parameters are adapted
independently of one another. The final composition of all tuning modules in an adaptive tuning algorithm yields a general
framework for state-space-abstracted reachability algorithms such as Alg. 1. Each tuning module can simply be exchanged
for a different one, e.g., if different reachable set computations or set representations are chosen.

We will generally omit the index k for the current step as all algorithm parameters are adapted in each step. The
remainder of this section describes the individual tuning methods for the propagation parameters η (Section 5.1), the
abstraction order κ (Section 5.2), the set representation size ρ (Section 5.3) – all of which are tuned by threshold conditions
determining sufficient accuracy – and the time step size ∆t (Section 5.4) obtained by solving an optimization problem that
minimizes the unavoidable over-approximation over a finite time horizon. Finally, we introduce the automated tuning
algorithm as an enhancement to Alg. 1 in Section 5.5.

5.1. Propagation parameters

As schematically indicated in Fig. 3, the computation of the sets Rabs in (8) and Rlin in (10) and (12) requires us to tune
the order η of the finite Taylor series of the exponential matrix. The main idea is to exploit that the contribution of higher-
order terms eventually vanishes. As a consequence, we truncate the respective Minkowski sums once the contribution of
the additional term has become small enough to determine the orders ηlin and ηabs.

The over-approximation error in Rlin(τk) is dominated by the error term FxR(tk) [42, eq. (21)]. Thus, we tune ηlin using
a fixed threshold 0 < ζT ,lin ≪ 1 related to the influence of additional terms T(p) in (11):

ηlin = min
p∈N
p≥2

p such that 1−

T(p−1)

FT(p)


F

≤ ζT ,lin. (44)

Using the same idea of comparing successive orders, we determine the order ηabs by truncating the sum in (8) according
to the criterion

ηabs = min
p∈N0

p such that max
i∈{1,...,n}

di
(
box(R(p+1)

abs )
)

di
(
box(R(p)

abs)
) ≤ ζT ,abs, (45)

with R(p)
abs denoting the sum in (8) truncated at order p and 0 < ζT ,abs ≪ 1.

As both criteria (44) and (45) can be evaluated during the iterative computation of the respective sets, the tuning itself
yields negligible computational overhead. Note that there are no propagation parameters in the reachable set computation
of discrete-time systems.

13



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Fig. 3. Main workflow for one time step in Alg. 1 and the influence of algorithm parameters on different sets (an arrow A → B means that A is
used to compute B): The propagation parameters η affect the precision of the exponential matrix and the set representation parameters ρ represent
the reduction operation, which is applied to various sets within one step.

5.2. Abstraction order

According to Fig. 3, the abstraction order κ in (3) directly influences the abstraction error Ψ and subsequently the set
of abstraction errors Rabs. In general, larger values of κ are computationally more demanding due to the evaluation of
higher-order maps, but also decrease the size of the set of abstraction errors Rabs.

For a linearization approach, we restrict the admissible values of the abstraction order to κ = {1, 2}, as the evaluation
of cubic or higher-order maps is highly over-approximative using zonotopes. In constrast, non-convex set representations
are closed under higher-order maps but significantly increase the set representation size which cannot be handled by
current reduction methods. Hence, the abstraction order for the polynomialization approach is fixed to κ = 2.

We propose a two-step selection criterion to limit the computational overhead:

1. The set of abstraction errorsRabs of the current step k is compared to the last comparison, denoted by k′. To establish
a level playing field, we estimate the size of Rabs(∆tk) for the time step size ∆tk′ using the gain ϕ∗ based on (34).
The condition⏐⏐⏐⏐ϕ∗ rad(Rabs(∆tk))

rad(Rabs(∆tk′ ))

⏐⏐⏐⏐ > 1− ζK , ζK ∈ (0, 1), (46)

decides whether we progress to the second step below. Informally, we compare the sizes of the set of abstraction
errors and only if the size difference is large enough, the value for κ is re-tuned.

2. If the condition (46) is fulfilled, we also compute Rabs(∆tk) for the other value of κ and decide the value of κ for
the next step according to the following condition:

κ ←

{
1, if ∀i ∈ {1, . . . , n}with di(Rabs) > 0 : di(box(Rabs(κ=2)))

di(box(Rabs(κ=1)))
≥ ζK

2, otherwise.
(47)

The closer ζK is to 1, the more conservative the selection becomes, i.e., the more often κ = 2 will be chosen resulting
in both a tighter result as well as longer computation times. For the first step, we use the initial set R(t0) = X 0 to
compute Ψ and immediately evaluate (47) to compute the first abstraction order κ . For discrete-time systems, we exploit
two properties to greatly simplify the computation: First, the abstraction error Ψ is used directly in the reachable set
computation replacing Rabs as seen in (13). Second, we do not need to compensate for different time step sizes in
subsequent steps so that we always have ϕ∗ = 1 in (46).

5.3. Set representation

A reduction of the representation size can only avoid large over-approximations if the reduction error is restricted by
an upper bound. We utilize the two bounds ωmax (15) and ωrad,cut (19) for the Hausdorff distance between the original
zonotope and its reduced counterpart from Section 3. For either bound, we sort the generators of Z in ascending order
with respect to its respective cost function ϱmax (20) or ϱrad,cut (21). Then, we select the first γ ∗ ≤ γ generators, until we
reach the upper bound

γ ∗∑
p=1

ϱ
(
g (p))
≤ ζZ

d(box(Z)
)

2 , (48)

14



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Fig. 4. The optimal value ∆t∗ (gray sets) for the set propagation over a time horizon [t, t + h] is obtained by balancing the wrapping effects: If ∆t
is too large (red sets), the set of abstraction errors Rabs is too large; if ∆t is too small (blue sets), the reduction operation excessively increases the
set size. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where we use a fixed fraction 0 < ζZ ≪ 1 of the diagonal of the box over-approximation of the original zonotope Z . The
exact Hausdorff distance between the original and the reduced set is smaller than the left-hand side in (48) by Theorem 1.

Our polynomialization approach is best used with a non-convex set representation, where we choose polynomial
zonotopes allowing us to exploit their similarities to zonotopes which we extensively covered in Section 3. The reduction
method for polynomial zonotopes described in [46, Prop. 10] is based on zonotope order reduction, so that we can reuse
the bound (48) to decrease the representation size.

5.4. Time step size

Alg. 1 contains two main sources for over-approximation, both of which are related to the time step size ∆t: First,
we have the set of abstraction errors Rabs whose behavior over ∆t has been thoroughly investigated in Section 4. By
decreasing the time step size, we reduce the size of Rabs and thus alleviate the wrapping effect originating from the
iterative addition of Rabs. Second, the reduction operation induces another wrapping effect whose effect is diminished by
increasing time step sizes. Section 5.3 describes the error induced by a single reduction operation, which we now have to
consider over multiple steps.

In order to obtain a tight reachable set, we require to tune ∆t so that the trade-off between both wrapping effects is
optimized as shown in Fig. 4: The start set is propagated over a finite time horizon h using different candidate time step
sizes ∆t (λ) = h

λ
, λ ≥ 1. The optimal time step size ∆t∗ (using 3 steps) balances both wrapping effects so that neither

the set of abstraction errors Rabs is too large (using 2 steps) nor is the reduction operation applied too often (using 5
steps)—both of which yield a larger set at time t + h.

In order to efficiently solve the optimization problem in each step, we make some design choices without which the
comparison of different time step sizes ∆t (λ) would become infeasible in practice:

(a) We assume the system matrix A, i.e., the Jacobian matrix of f (x), to be constant over [t, t + h] and use A = A(t).
(b) We will neglect the particular solution P(τk) in the propagation formula for the reachable set (10).
(c) For each ∆t (λ), we assume the set of abstraction errors Rabs(∆t (λ)) to be constant over [t, t + h] and use Rabs =

Rabs(∆t (λ)) obtained at time t .
(d) We linearly interpolate the gain ϕ (34) between ϕ(∆t = h) = ϕ(1) and the limit gain computed in Theorem 2

lim∆t→0 ϕ(∆t) = δq+1 to obtain

ϕ(∆t) ≈ ζδ +
ϕ(1)
− ζδ

h
∆t, (49)

where we replace δ by the fixed value ζδ ∈ (0, 1), potentially underestimating the actual gain in order to prevent
the time step size from decreasing too much. We will use this interpolation for all ∆t (λ).

Note that we will explicitly consider λ ∈ R to facilitate any candidate time step size ∆t (λ) ∈ (0, h], which requires to
take a last incomplete step of length b∆t (λ) = (λ − ⌊λ⌋)∆t (λ) into account in order to compare the resulting sets at the
same point in time as shown in Fig. 4. In addition to the design choices (a)–(d), we simplify the set-based evaluation to
scalar values in three ways:

1. The sizes of the start set R(t) and the set of abstraction errors Rabs(∆t (λ)) are approximated by their respective
radii r0 = rad(R(t)) and r (λ)abs = rad(Rabs(∆t (λ))).

15



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

2. The effect of the exponential matrix is captured by its determinant, which over the entire finite time horizon can
be estimated by det(eAh) = etr(Ah), leading to a scaling factor of

ζ
1
λ
A =

(
etr(Ah)

) 1
λ

(50)

for each partial step of length ∆t (λ). For the scaling of the last incomplete step, we have ζ
b
λ
A .

3. The enlargement caused by the zonotope order reduction is measured by multiplying the radius with (1 + 2ζZ )
following (48). The factor for the last incompete step is (1+ 2ζZ )b.

As only time-point solutions are reused in subsequent steps, we repeatedly apply (10) to compute the reachable set
after time h, omitting the particular solution as stated in design choice (b):

R̃(t + h) = red(eAb∆t(λ)red(eA∆t(λ) ...red(eA∆t(λ)R(t) ⊞ Rabs)... ⊞ Rabs) ⊞ bRabs), (51)

where eA∆t(λ) and Rabs are scaled to eAb∆t(λ) and bRabs in the last incomplete step. Based on the aforementioned
simplifications, we now rewrite the set-based formula (51) to a scalar estimate for the set size of the reachable set using
the recursive formula

rR(t + j∆t (λ)) = (1+ 2ζZ )
(
ζ

1
λ
A rR(t + (j− 1)∆t (λ))+ r (λ)abs

)
, (52)

which starts with the set size estimate at time t given by rR(t) := r0. To obtain an estimate after time h, we apply the
recursion ⌊λ⌋ times and then include the last incomplete step:

rR(t + h) = (1+ 2ζZ )b
(
ζ

b
λ
A (1+ 2ζZ )

(
ζ

1
λ
A ...(1+ 2ζZ )(ζ

1
λ
A r0 + r (λ)abs)...+ r (λ)abs

)  
(52)
= rR(t+⌊λ⌋∆t(λ))

+ b r (λ)abs

)
.

Summarizing the first ⌊λ⌋ steps yields

rR(t + h) = (1+ 2ζZ )b
(
ζ

b
λ
A

(
r0(1+ 2ζZ )⌊λ⌋ζ

⌊λ⌋
λ

A + r (λ)abs

⌊λ⌋∑
j=1

(1+ 2ζZ )jζ
j−1
λ

A

)
+ b r (λ)abs

)
,

after which we include the last incomplete step and rearrange to

rR(t + h) = r0(1+ 2ζZ )λζA + r (λ)abs ζA,Z (λ), ζA,Z (λ) =
⌊λ⌋∑
j=1

(1+ 2ζZ )b+j ζ
b+j−1

λ
A + b(1+ 2ζZ )b. (53)

Since the evaluation of (53) would require us to compute r (λ)abs for each λ (which is obviously undesirable in practice
due to the large computational overhead), we approximate r (λ)abs utilizing design choice (d). Let us first define λ′ ∈ N as
the number of times h has been scaled by a fixed ζδ . Hence, λ = ζ−λ′

δ ∈ R is the number of times ∆t (λ) divides into h and
using

ϕ(j)
= ϕ(ζ j−1

δ h) = ζδ + (ϕ(1)
− ζδ)ζ

j−1
δ , (54)

we obtain an estimate for r (λ)abs based only on r (1)abs and ϕ(1):

λ r (λ)abs = ϕ(1)
· ... · ϕ(λ′) r (1)abs ⇒ r (λ)abs =

r (1)abs

λ

λ′∏
j=1

ϕ(j). (55)

One can also compute ϕ(1) given r (1)abs and r (λ)abs by solving the following implicit equation for ϕ(1) based on combining
(54)–(55), which will be used later on in the tuning algorithm for ∆t:

ϕ(1)
·
(
ζδ + (ϕ(1)

− ζδ)ζδ

)
· ... ·

(
ζδ + (ϕ(1)

− ζδ)ζ λ′−1
δ

)
= λ

r (λ)abs

r (1)abs

. (56)

Inserting (55) in (53) yields the cost function

rR(t + h) = r0(1+ 2ζZ )λζA +
r (1)abs

λ
ζA,Z (λ)

λ′∏
j=1

ϕ(j), (57)

which we minimize to obtain the optimal time step size

∆t∗ = h ζ
λ′∗
δ where λ′

∗
= argmin

λ′∈N
rR(t + h). (58)

16



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Algorithm 2 Adaptively-tuned reachable set computation for one step k > 1

Input: nonlinear function f (z), algebraic equation g(z), start set R(tk), algebraic start set Ry(tk), input set U , abstraction
order κk, gain of last step ϕ

(1)
k−1, finite time horizon of last step hk−1, r

(λ∗)
abs,k′ of step k′ (last evaluation of (47)), set of global

parameters ζ

Output: R(tk+1),R(τk+1),Ry(tk+1), κk+1, hk, ϕ
(1)
k

1: hk ← hk−1
ζδ−ζh

ζδ−ϕ
(1)
k−1

, ∆tk ← hk

2: for a = 1 : 2 do
3: z∗(tk)← linPoint(R(tk), f ,Ry(tk), g)
4: w(x), w(y), C (x), C (y)

← taylor
(
f (z), z∗(tk), κk

)
5: w, A, B← linSys(w(x), w(y), C (x), C (y))
6: Rlin(tk+1),Rlin(τk+1)← linReachAdaptive(R(tk), w, A, B)
7: Ψ ,Ry(tk+1)← abstrErrLoop(Rlin(τk+1), Ψ , κk)
8: if a = 1 then
9: Rabs(h), r

(1)
abs,k ← abstrSolAdaptive(Ψ )

10: ∆t∗ ← optDeltat(hk, ϕ
(1)
k , r (1)abs,k), ∆tk ← ∆t∗

11: else
12: Rabs(∆t∗), r

(λ∗)
abs,k ← abstrSolAdaptive(Ψ )

13: κk+1 ← tuneAbstrOrder(r (λ∗)abs,k, r
(λ∗)
abs,k′ )

14: end if
15: end for
16: ϕ

(1)
k ← estimateGain(r (1)abs,k, r

(λ∗)
abs,k)

17: R(tk+1) = Rlin(tk+1) ⊞ Rabs(∆t∗), R(τk+1) = Rlin(τk+1) ⊞ Rabs(∆t∗)
18: R(tk+1)← redAdaptive(R(tk+1)),R(τk+1)← redAdaptive(R(τk+1))

For the evaluation, we simply increase λ′ until the objective value rR(t+h) increases again as such a simple scalar formula
does not require more sophisticated algorithms.

As a final step, we have to determine the finite time horizon h for the evaluation of the cost function (57). The key
element in the derivation of the optimization problem is the approximative evaluation (55) of r (p)abs based on the gain ϕ in
(34). The proposed linear interpolation (49) reflects the actual progression of ϕ over ∆t more accurately the closer the
used gain ϕ(1) is to the limit gain lim∆t→0 ϕ(∆t) = ζ

q+1
δ , see Theorem 2, which depends on the order q. Using a threshold

value ζh(q), we determine h by

h = min τ such that ϕ(1)(τ ) ≥ ζh(q). (59)

Additionally, we restrict ζh(q) to be smaller than ζ
q+1
δ since this value is reached from below for small values of ∆t as

discussed in Section 4.3.

5.5. Automated parameter tuning algorithm

Let us now present Alg. 2, which enhances the reachable set computation shown in Alg. 1 by the adaptive parameter
tuning methods introduced in this section. In order to reduce the computational effort, we utilize available information
from previous steps for the adaptation of the time step size ∆t and the abstraction order κ .

First, we update the finite time horizon h (Line 1) by the value in (59). Using the finite time horizon as the time step
size ∆tk, we follow the procedure for the computation of the sets Rlin and Rabs known from Alg. 1, where the operations
linReachAdaptive and abstrSolAdaptive contain the automated tuning of the propagation parameters ηlin and ηabs
as described in Section 5.1. For conciseness, we comprise lines 7–11 from Alg. 1 by the operation abstrErrLoop. At the
end of this computation, the operation optDeltat computes the optimal time step size ∆t∗, using the just computed
value r (1)abs = rad(Rabs(h)) and the gain ϕ1 from the last step (Line 10). In the second iteration, we compute the sets Rlin
and Rabs using ∆tk = ∆t∗ and tune the abstraction order κ (Line 13) by the operation tuneAbstrOrder, comprising
the method from Section 5.2. Additionally, we approximate the gain ϕ1 (Line 16) by implicitly solving (56), denoted by
the operator estimateGain, taking the estimates r (1)abs and r (λ∗)abs for the finite time horizon and the optimal time step
size, respectively, as input arguments. At the end of the step, the reachable sets R(tk+1) and R(τk+1) are computed and
subsequently reduced by the operation redAdaptive, according to the method described in Section 5.3.

For the time step size, we first decrease an arbitrarily initialized ∆t until the condition in (59) is met, yielding hwith the
associated error Rabs(h) and its scalar correspondence r (1)abs as well as ϕ(1) in the process. Then, the operation optDeltat
returns the optimal time step size ∆t∗, after which the remainder of the step is executed as shown in Alg. 2.

17



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Table 1
Setting of the global parameters ζ .
Approach ζT ,lin ζT ,abs ζZ ζK ζh(q = 0) ζh(q = 1) ζδ

Linearization 0.0005 0.005 0.0005 0.90 0.85 0.76 0.90
Polynomialization 0.0005 0.005 0.0001 – 0.80 0.80 0.90

Finally, let us briefly discuss the set of global parameters ζ introduced in the respective tuning methods of the algorithm
parameters in this section: Table 1 shows the values to which all global parameters ζ have been fixed. The first three
ζT ,lin, ζT ,abs, and ζZ constitute threshold values representing sufficient accuracy of the tuned set operation. The value of ζK
is a similarity measure for the comparison of two different abstraction orders. The final two values ζh (depending on the
order q) and ζδ allow us to determine the finite time horizon and candidate time step sizes for the optimization function
tuning the time step size. Further development of the proposed tuning methods may change the value of a specific ζ ,
however, the current setting is justified by the tight reachable sets obtained for a wide variety of different nonlinear
systems as shown in the next section.

6. Numerical examples

In this section, we evaluate the adaptive parameter tuning approach presented in the previous section on all system
classes introduced in Section 2. We first analyze two selected benchmark systems from the ARCH competition [54,55]
allowing us to compare our approach to expert-tuned state-of-the-art reachability tools. Then, a wide variety of different
benchmark systems taken from various sources [17,43,56,57] is used to provide a general overview of the performance.
The adaptive parameter tuning approach was implemented in MATLAB R2022a and evaluated on an Intel

®
Core™ i7-9850

CPU @2.59 GHz with 32 GB memory. The following evaluation is based on [30], but considers more configurations of the
ARCH benchmarks and extends the additional benchmark systems by including differential–algebraic and discrete-time
systems.

6.1. ARCH benchmarks

In the ARCH competition, reachability tools compete with one another in solving benchmark systems, where the
computation time and an accuracy measure are used for evaluation. Due to the lack of automated parameter tuning,
each tool has to be tuned manually for each system. We select two benchmarks, namely the production-destruction
benchmark (PRDE20) and the Laub–Loomis benchmark (LALO20), to assess the quality of our results in comparison with
state-of-the-art tools. Let us first introduce the PRDE20 benchmark.

Example 1 (PRDE20). This benchmark models a bio-geochemical reaction, describing an algal bloom transforming
nutrients (x1) into detritus (x3) using phytoplankton (x2) [58, Sec. 3]. The dynamics presented in [54, Sec. 3.1.1] also
contain parametric uncertainty. Based on the initial state x(0) = (9.98, 0.01, 0.01)⊤ and the parameter a = 0.3, there are
three configurations of this benchmark:

1. (Case I) Only uncertainty in the first initial state: x1(0) ∈ [9.50, 10.00].
2. (Case P) Only the parameter is uncertain: a ∈ [0.296, 0.304].
3. (Case I&P) Uncertainty in the first initial state and the parameter: x1(0) ∈ [9.80, 10.00], a ∈ [0.298, 0.302].

The time horizon is tend = 100s. □

Due to the small size of the initial set X 0, a linearization approach already yields tight reachable sets in all three
cases. Fig. 5 shows the reachable sets for case I, which serves as an illustrative example for the tuning of the algorithm
parameters. The projections show a sharp turn (in the time interval t ∈ [10.6, 11.6]) imposing strongly nonlinear behavior
which is both preceded and succeeded by rather calm dynamics.

Fig. 6 shows how the adaptive parameter tuning reacts to the change in the degree of nonlinearity: The left graph
plots the time step size ∆t over time, which reaches its minimum value ∆t ≈ 0.012 during the sharp turn. There,
the optimization function reduces ∆t , thus decreases the abstraction error in order to optimize the estimated over-
approximation error at that time. Afterwards, the value gradually increases towards its maximum value ∆t ≈ 0.4, which
exploits that the dynamics are better approximated in rather linear regions, yielding small abstraction errors even for
relatively large time step sizes. The right graph plots the zonotope order ρ over time whose behavior can be explained in
a similar way: At the sharp turn, more generators have to be kept in order to avoid inducing large over-approximations,
yielding a maximum zonotope order of ρ = 20. As a consequence of the calmer dynamics after the sharp turn, the
complexity of the shape decreases as we observe in Fig. 5: The sets after the turn are much more straightened compared
to the ‘‘bent" sets at the time of the turn. This reduces the number of generators required for an accurate representation
of the set and thus lowers the zonotope order.

18



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Fig. 5. Projections of the reachable set R([0, tend]) of Example 1, case I. Initial set in red, reachable sets in blue, single simulation runs in yellow.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Time step size ∆t and zonotope order ρ of Example 1, case I, over time.

Table 2
ARCH benchmark PRDE20: Comparison of our approach with state-of-the-art reachability tools
in terms of computation time and the tightness measurement µ = vol

(
box

(
R

(
tend

)))
as in

[54].

Tool (Language) Case I Case P Case I&P

Time µ Time µ Time µ

Alg. 2 (Matlab) 10.8s 7.8e−21 12.4s 3.5e−24 18.6s 8.6e−24
Ariadne (C++) 8.6s 1.7e−13 79s 2.3e−17 39s 1.0e−13
CORA (Matlab) 16s 1.2e−21 28s 2.2e−23 28s 2.0e−23
DynIbex (C++) 12s 3.9e−17 13s 4.8e−17 26s 1.2e−17
Flow* (C++) 4.1s 8.0e−21 9s 1.4e−22 5.2s 4.8e−21
Isabelle/HOL (SML) 11s 3.3e−20 12s 7.3e−21 26s 2.6e−20
JuliaReach (Julia) 1.5s 3.3e−20 3.9s 6.5e−21 3.0s 1.0e−20

The propagation parameters ηlin and ηabs do not change much over time as we have ηlin ∈ {4, 5, 6} and ηabs ∈ {2, 3},
where the respective maxima are reached at the sharp turn. The tuning of the abstraction order κ results in κ = 2 at the
beginning until t ≈ 17.3 and κ = 1 for the remainder of the time horizon, thereby confirming the rather linear dynamics
after the sharp turn.

Table 2 allows us to compare the results obtained by our adaptive parameter tuning approach with state-of-the-art
reachability tools for all three cases specified in Example 1. The obtained accuracy ranks among the best, even topping
the chart in cases P and I&P. The computation time is average in all cases, partly caused by the speed discrepancy
in programming languages as C++ and Julia are known to operate faster than MATLAB. The comparison with CORA in
particular shows competitiveness since our computation is faster due to the large ratio of the largest to the smallest time
step size saving many time steps. Next, we consider the Laub–Loomis benchmark.

Example 2 (LALO20). The dynamics of this benchmark [55, Sec. 3.3.1] represent changes in enzymatic activities introduced
in [59, (1-7)]. The initial set is given by X 0

= [x(0) − W , x(0) + W ], where x(0) = (1.2, 1.05, 1.5, 2.4, 1, 0.1, 0.45)⊤ is
enlarged by either of the uncertainties W ∈ {0.01, 0.05, 0.1}, representing configurations of increasing difficulty. The time
horizon is tend = 20s. □

While a linearization approach still suffices for small (W = 0.01) and moderate (W = 0.05) sizes of the initial set
X 0, the largest size (W = 0.1) can only be solved using a polynomialization approach. For conciseness, we only plot the

19



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Fig. 7. Time step size ∆t and zonotope order ρ of Example 2 over time: Different cases W = {0.01, 0.05, 0.1} in blue, black, and yellow, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
ARCH benchmark LALO20: Comparison of our approach with state-of-the-art reachability
tools in terms of computation time and the tightness measurement µ = l4 , where l =
d
(
box

(
R

(
tend

)))
as in [55].

Tool (Language) W = 0.01 W = 0.05 W = 0.1

Time µ Time µ Time µ

Alg. 2 (Matlab) 3.9s 0.004 7.8s 0.049 91s 0.068

Ariadne (C++) 5.7s 0.01 11s 0.031 31s 0.071
CORA (Matlab) 1.9s 0.005 8.4s 0.035 38s 0.116
DynIbex (C++) 10s 0.01 27s 0.40 1851s 2.07
JuliaReach (Julia) 1.1s 0.004 1.5s 0.017 1.4s 0.033
Kaa (Python) 238s 22 253s 23 257s 49

time step size ∆t and the zonotope order ρ over time for all three cases (W ∈ {0.01, 0.05, 0.1}) in Fig. 7: All curves
for ∆t increase similarly over time in multiple waves, where the lowermost curve is obtained for W = 0.1, the middle
curve for W = 0.05, and the uppermost curve for W = 0.01, showing that a smaller set size allows larger time step
sizes and vice versa. The curve of the zonotope order ρ for the case W = 0.1 (uppermost curve) differs from the ones for
W = 0.05 (middle curve) and W = 0.1 (lowermost curve) because the polynomialization approach uses non-convex sets.
The vertical drops of ρ are caused by the restructuring operation [46, Prop. 17], where all independent generators are first
reduced and then converted to dependent generators for reasons of computational accuracy in subsequent steps. Using a
linearization approach, the curves for ρ reach their maximum at the end of the time horizon at values of 10 and 20 for
W = 0.01 and W = 0.05, respectively, which keeps the set operations efficient without compromising the tightness of
the reachable sets.

The evaluation of the LALO20 benchmark in both computation time and accuracy is shown in Table 3, offering a similar
picture as for the PRDE20 benchmark: Again, our computation times are only average across all tools, mainly due to the
costly evaluation of the abstraction error Ψ as well as the computationally demanding reduction of the set representation
size for the system dimension n = 7. In contrast, the accuracy is better than most others, being co-leader for the smallest
size W = 0.01 and second for the largest size W = 0.1. This demonstrates the competitiveness of our adaptive parameter
tuning for both linearization and polynomialization approaches.

6.2. Further benchmarks

After the detailed discussion of the ARCH benchmarks, we now analyze the performance on a broader range of
benchmarks, also including differential–algebraic (DA) and discrete-time systems. Table 4 provides some information
about the benchmarks, such as the system dimension n and algebraic dimension na as well as the time horizon tend
and the initial set X 0. The benchmarks range from standard models like the van-der-Pol oscillator over chaotic systems,
such as the Roessler attractor and Lorenz attractor, to higher-dimensional biologically and mechanically inspired models.
Both differential–algebraic models are power systems, namely a 3-bus system and a single machine infinite bus (SMIB)
system, where the algebraic equations originate from the network constraints. The SMIB system has different dynamics
for the standard operation and fault scenario caused by a loss in the network connection occurring at t ∈ [0.01, 0.02].
Finally, we discretized a six-dimensional water tank benchmark whose dynamics are based on Torricelli’s Law using a
time step size of ∆t = 0.05 s.

The tightness of the reachable sets is quantified using two different metrics: First, we provide the longest edge of the
box over-approximation of the final set R(tend), namely,

dmax = max
i∈{1,...,n}

di
(
box(R(tend))

)
. (60)

20



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Table 4
List of considered benchmarks: n: system dimension, na: algebraic dimension, tend: time horizon, X 0: initial set.
Benchmark n na tend X 0

Jet Engine [60, (19)] 2 – 8 [0.9, 1.1]n

van der Pol [17, Sec. VII] 2 – 6.74
(
[1.30, 1.50][2.35, 2.45]

)⊤
Brusselator [43, Ex. 3.4.1] 2 – 5

(
[0.9, 1.0][0.0, 0.1]

)⊤
Roessler [61, (2)] 3 – 6

(
[−0.2, 0.2][−8.6,−8.2][−0.2, 0.2]

)⊤
Lorenz [62, (25-27)] 3 – 2

(
[14.9, 15.1][14.9, 15.1][34.9, 35.1]

)⊤
Spring-Pendulum [43, Ex. 3.3.12] 4 - 1

(
[1.1, 1.3][0.4, 0.6][0.0, 0.1][0.0, 0.1]

)⊤
Lotka–Volterra [63, (1)] 5 – 5 [0.90, 1.00]n
Biological Model [64] 7 – 2 [0.99, 1.01]n
Genetic Model [65, (1)] 9 – 0.1 see [56, Sec. V.]
3-Bus [66, Sec. 4] 2 6 5

(
[379.90, 380.10][0.69, 0.71]

)⊤
SMIB [57, Sec. 2.5.1.2] 2 4 0.23

(
[0.65075, 0.66675][0.008, 0.008]

)⊤
Tank-DT [17, Sec. VII] 6 - 100

(
[1.8, 2.2][3.8, 4.2][3.8, 4.2][1.8, 2.2][9.8, 10.2][3.8, 4.2]

)⊤
Table 5
Evaluation of nonlinear benchmark systems using an adaptively tuned linearization and polynomialization approaches: [∆tmin, ∆tmax]: range of time
step sizes, ρmax: max. zonotope order, dmax and γmin: measurements by (60) and (61).
Benchmark Linearization Approach Polynomialization Approach

Time [∆tmin, ∆tmax] ρmax dmax γmin Time [∆tmin, ∆tmax] ρmax dmax γmin

Jet Engine 2.5s [0.007, 0.117] 13.5 0.0562 0.5594 11.8s [0.002, 0.049] 26 0.0395 0.7955
van der Pol 5.5s [0.002, 0.051] 16.5 1.79 0.2004 26s [0.0005, 0.0127] 47.5 0.5234 0.6621
Brusselator 2.0s [0.011, 0.062] 80.5 0.075 0.7901 9.5s [0.004, 0.021] 219.5 0.065 0.9469
Roessler 2.7s [0.006, 0.047] 10.33 4.34 0.1725 13.7s [0.0022, 0.0328] 20.33 2.47 0.6623
Lorenz 4.1s [0.0004, 0.0098] 10 0.268 0.8337 10.8s [0.0004, 0.0067] 46 0.237 0.9562
Spring-Pendulum 4.5s [0.006, 0.022] 12.75 0.522 0.6484 10.7s [0.002, 0.009] 42.75 0.424 0.7884
Lotka–Volterra 1.0s [0.010, 0.107] 12.2 0.083 0.8722 4.1s [0.003, 0.078] 195.2 0.074 0.9794
Biological Model 1.8s [0.004, 0.019] 44.71 0.117 0.7115 10.7s [0.001, 0.008] 182.14 0.094 0.9163
Genetic Model 0.7s [0.0005, 0.0023] 6 5.55 0.7939 2.7s [0.0002, 0.0010] 37.11 5.30 0.9509
3-Bus 4.3s [0.015, 0.054] 13 2.28 0.6791 – – – – –
SMIB 36s [0.00005, 0.00200] 6.5 0.0004 0.3059 – – – – –
Tank-DT 13s fixed to 0.05 28.67 0.6246 0.7517 47s fixed to 0.05 35.5 0.6044 0.7689

Second, we use the ratio of under-approximation to over-approximation proposed in [67, Sec. VI.]

γmin = min
i∈{1,...,n}

di
(
box(Rsim(tend))

)
di

(
box(R(tend))

) , (61)

where Rsim(tend) denotes the set of states at tend of 1000 simulation runs. The tightness increases for γmin → 1 as the
under-/over-approximation approach one another. Space constraints prevent a detailed discussion of every result, which
is why we will discuss general tendencies as well as unexpected results.

Table 5 shows the results for all systems from Table 4 using a linearization and a polynomialization approach with
adaptively tuned algorithm parameters. The linearization approach is by construction limited to systems with only mild
nonlinearities, leading to low values of γmin for the Roessler attractor and the van-der-Pol oscillator (similar results for
the latter have already been discussed in [46, Sec. 4]). The tightness is still satisfactory in most cases, especially where
γmin > 0.7. Moreover, the computation times and tightness measures are similar over increasing system dimension,
showing the scalability of our proposed tuning methods. In contrast, the polynomialization approach yields both higher
computation times and improved accuracy according to the tightness measures dmax and γmin. Both approaches exploit
the range of different time step sizes of 1–2 orders of magnitude on average. The total number of steps in the analysis is
drastically reduced, thus significantly speeding up the computation compared to fixed time step sizes.

For the linearization approach, the maximum zonotope order ρmax is often rather low (between 10 and 20); for other
cases, it should be noted that the highest order may only last for a few steps as shown in Fig. 6 and therefore does not pose
major problems to the efficiency of the computations. For the polynomialization approach, higher zonotope orders are
reached because the reduction of polynomial zonotopes is too over-approximative to allow for substantial reductions. This
also entails an increase in computation time since the set operations then become more costly for larger set representation
sizes, as well as an increase in accuracy, where we note that five systems reach a value of γmin > 0.9. This leads to the
conclusion that the reduction of the set representation within the polynomialization approach is its limiting factor for the
success of the algorithm. Our adaptive parameter tuning would greatly benefit, especially for polynomial zonotopes, from
improvements in order reduction techniques similar to our considerations presented in Section 3 for (linear) zonotopes,
as updated methods can simply replace existing ones due to the modularity of our tuning framework.

Finally, we discuss the results for the DA systems, for which there does not yet exist a polynomialization algorithm.
The evaluation of both DA systems does not show major differences to standard nonlinear systems, except for the high

21



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Fig. 8. Reachable sets of the SMIB system, see Table 4, over the full time horizon (top), at the start (bottom left), and at the end (bottom right). The
divergence from the initial set (red) is caused by the fault scenario, after the return to the normal operation mode the system behavior stabilizes.
The reachable sets (blue) are largely covered by single simulation runs (yellow). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

computation time and low tightness measure γmin for the SMIB system. Fig. 8 shows the reachable sets, putting the low
value for γmin in perspective, as the enclosure of the simulated trajectories is still tight. In the discrete-time example,
the time step size is fixed by definition, yielding a total number of 2000 steps. The suitability of the remaining tuning
methods is shown by the fairly low value for ρmax and high value for γmin.

In summary, our evaluation shows that the presented methods for adaptive parameter tuning allow us to obtain tight
reachable sets in a broad variety of different systems. Due to the fully automatic tuning, the computation of the reachable
sets is executed in a single run as opposed to the many trial-and-error runs in manual tuning.

7. Conclusion

We presented the first fully-automatic reachability algorithm for nonlinear systems. To this end, the fundamentals of
the two main wrapping effects in reachability analysis of nonlinear systems have been thoroughly investigated: First, we
presented an exhaustive derivation of various bounds for the Hausdorff distance between a zonotope and its box over-
approximation, with associated generator selection strategies for the order reduction of zonotopes. Second, a rigorous
examination of the set of abstraction errors accounting for higher-order nonlinearities led to the introduction of a gain
order, which describes the effect of the time step size on the local and global abstraction error in the analysis. These
theoretical insights were then utilized in our adaptive parameter tuning algorithm, most notably for the derivation
of an optimization function to tune the time step size. The evaluation on multiple nonlinear system classes showed
competitiveness with state-of-the-art reachability tools, as well as an efficient computation of tight reachable sets in
a variety of further benchmark problems. Our approach requires no longer expert knowledge about the reachability
algorithm, which greatly simplifies the usage of reachability analysis in a broad variety of possible applications.

CRediT authorship contribution statement

MarkWetzlinger:Writing – original draft, Writing – review & editing, Software, Validation, Investigation, Visualization,
Conceptualization. Adrian Kulmburg: Writing – original draft, Writing – review & editing, Investigation, Visualization,
Conceptualization. Alexis Le Penven: Investigation, Resources. Matthias Althoff: Supervision, Writing – review & editing,
Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

22



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Acknowledgments

The authors gratefully acknowledge partial financial supports from the research training group ConVeY funded by the
German Research Foundation under grant GRK 2428 and the project justITSELF funded by the European Research Council
(ERC) under grant agreement No. 817629.

Appendix A. Proof of Theorem 1

Let us express each point xbox ∈ Zbox as

xbox = M (1)
|g (1)
| + · · · +M (γ )

|g (γ )
| ,

where each M (p) is a diagonal matrix with diagonal entries µ
(p)
i ∈ [−1, 1] where i ∈ {1, . . . , n}. The function ∥xbox − x∥2

is convex w.r.t. µ(p)
i allowing us to restrict our attention to the cases where µ

(p)
i ∈ {−1, 1}, since by the Bauer maximum

principle (see [68]), the maximum of a convex function over the polytope [−1, 1]γ n is always reached at one of its vertices,
i.e., some element of {−1, 1}γ n. Let us write the difference between any xbox ∈ Zbox and x ∈ Z as

xbox − x =
(
M (1)
|g (1)
| − α1g (1))

+ · · · +
(
M (γ )
|g (γ )
| − αγ g (γ )), (A.1)

where ∀p ∈ {1, . . . , γ } : αp ∈ [−1, 1]. Note that the minimum of ∥xbox−x∥2 w.r.t. αp does not have a closed-form formula
in general [69, Sec. 9]. However, one can obtain a bound on xbox − x by choosing a specific αp for each g (p). The bounds
ωmax(15), ωrad (16), and ωcut (17) are obtained by different choices for αp and subsequently derived in detail:

Bound ωmax: Let us start with the following choice for αp:

αp = µ
(p)
i∗ sgn

(
g (p)
i∗

)
, (A.2)

with an individual i∗ for each p as in Theorem 1. Consequently, we can eliminate the largest possible entry in

v(p)
= M (p)

|g (p)
| − αpg (p), (A.3)

for which we obtain the bound

v
(p)
i ∈

{[
−2|g (p)

i |, 2|g
(p)
i |

]
, if i ̸= i∗

0, otherwise,

which we can rewrite to v
(p)
i ∈ [−2̂g

(p)
i , 2̂g (p)

i ] using (18). Applying (A.2) to each generator, we obtain the bounds

xbox − x = v(1)
+ · · · + v(γ )

∈ [−2̂z, 2̂z] ,

where ẑ = ĝ (1)
+ · · · + ĝ (γ ) and ultimately,

∥xbox − x∥2 ≤ ∥2̂z∥2 = 2 ∥̂z∥2 .

The above bound holds for any xbox ∈ Zbox, which fulfills the assumption of [30, Lemma 3.1] and thus proves that
dH (Z,Zbox) ≤ ωmax.

Bound ωrad: Another way to choose αp is to find an optimal minimum of ∥v(p)
∥2 defined in (A.3) w.r.t. αp and then use

the inequality

∥xbox − x∥2 ≤
γ∑

p=0

v(p)

2 .

Since the exact minimum of ∥v(p)
∥2 equal to the minimum of ∥v(p)

∥
2
2, we insert (A.3) into the squared expression,

differentiate w.r.t αp, and solve for αp, yielding the minimizer

α∗p =

∑n
i=1 µ

(p)
i sgn(g (p)

i )
(
g (p)
i

)2

g (p)
2
2

.

By inserting the expression for α∗p back into Eq. (A.3), one obtains

min
x∈Z

v(p)

2 =

g (p)

2

√1−

⎛⎜⎝
∑n

i=1 µ
(p)
i sgn(g (p)

i )
(
g (p)
i

)2

g (p)
2
2

⎞⎟⎠
2

.

23



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Since we maximize this expression w.r.t. µ
(p)
i ∈ {−1, 1} and v(l) does not depend on any µ

(p)
i if p ̸= l, we can replace

expressions such as µ
(p)
i sgn(g (p)

i ) by µ̂
(p)
i ∈ {−1, 1}, which yields

max
xbox∈Zbox

min
x∈Z
∥xbox − x∥2 ≤ max

µ̂
(l)
i ∈{−1,1}

γ

γ∑
p=0

g (p)

2

√1−

⎛⎜⎝
∑n

i=1 µ̂
(p)
i

(
g (p)
i

)2

g (p)
2
2

⎞⎟⎠
2

.

Each summand depends on exactly one µ
(p)
i , thus the sum and the maximum commute, yielding

max
xbox∈Zbox

min
x∈Z
∥xbox − x∥2 ≤

γ∑
p=0

g (p)

2

√1− min
µ∈{−1,1}n

⎛⎜⎝
∑n

i=1 µi

(
g (p)
i

)2

g (p)
2
2

⎞⎟⎠
2

. (A.4)

To get a new bound on the Hausdorff distance, we can therefore restrict ourselves to finding a lower-approximation of

Cp := min
µ∈{−1,1}n

[
n∑

i=1

µi

(
g (p)
i

)2
]2

= min
µ∈{−1,1}n

n∑
i=1

n∑
j=1

µiµj

(
g (p)
i

)2 (
g (p)
j

)2
. (A.5)

Using the trivial estimate Cp ≥ 0, we can simplify (A.4) to

max
xbox∈Zbox

min
x∈Z
∥xbox − x∥2 ≤

γ∑
p=1

g (p)

2 ,

which proves that ωrad is a valid over-approximation of the Hausdorff distance.
Bound ωcut: For our final bound, we reformulate (A.5) to

Cp = min
µ∈{−1,1}n

n∑
i=1

(
g (p)
i

)4
+

n∑
i=1

n∑
j=1
i̸=j

µiµj

(
g (p)
i

)2 (
g (p)
j

)2
.

Since µi ∈ {−1, 1}, and thus ∀i, j = {1, . . . , n} : µiµj ≥ −1, we deduce that

Cp ≥ 2
n∑

i=1

(
g (p)
i

)4
−

g (p)
4
2 ,

which yields

max
xbox∈Zbox

min
x∈Z
∥xbox − x∥2 ≤

γ∑
p=1

g (p)

2

√2− 2

∑n
i=1

(
g (p)
i

)4

g (p)
4
2

,

proving that ωcut is also an over-approximation of the Hausdorff distance. □

Appendix B. Proofs for Section 4

Proof of Lemma 2. (inspired by [32, p. 318, Theorem 12.2], with a few adaptations due to the set-based nature of the
computations)

For ease of notation, we drop the ∆t-dependency of A(∆t) and write A instead. Furthermore, for simplicity, we will
ignore all order reduction operations. In that case, adding an arbitrary zonotope Z centered at 0 to the initial set X 0 does
not influence the expansion point z∗ (see (6)), thus the set of particular solutions P([t0, t0 +∆t]) is unaffected (see also
[49, (3.5)]). Since Rabs(∆t; tk,R(tk)) is either a zonotope centered at the origin, or can w.l.o.g. be over-approximated by
one, by Definition 4 we can write

∀k ∈ {0, 1, . . . ,N} : R(tk+1) = eA∆tR(tk)⊕ P(τk) ⊞ Rabs(∆t; tk,R(tk)), (B.1)

R̂(tk+1) = eA∆tR̂(tk)⊕ P(τk). (B.2)

Crucially, both (B.1) and (B.2) share the same term P(τk). Therefore, the global abstraction error εk+1 after k + 1 steps
defined in Definition 4 may be written as

24



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

εk+1 =

d(box(R(tk+1)⊖ R̂(tk+1))
)
∞

(B.1)
and (B.2)
=

d(box(eA∆tR(tk)⊕ P(τk) ⊞ Rabs(∆t; tk,R(tk))⊖ eA∆tR̂(tk)⊖ P(τk))
)
∞

P(τk)⊖P(τk)={0}
=

d(box(eA∆t (R(tk)⊖ R̂(tk)) ⊞ Rabs(∆t; tk,R(tk), ∆t))
)
∞

Triangle ineq.
≤

d(box(eA∆t (R(tk)⊖ R̂(tk)))
)
∞

+

d(box(Rabs(∆t; tk,R(tk)))
)
∞

.

With a few simple calculations one can show thatd(box(eA∆t (R(tk)⊖ R̂(tk)))
)
∞

Taylor approx.
of eA∆t

=

d(box((I + ∞∑
i=1

Ai∆t i

i!
)(R(tk)⊖ R̂(tk)))

)
∞

Triangle ineq.
≤

d(box(R(tk)⊖ R̂(tk))
)
∞

+

d(box( ∞∑
i=1

Ai∆t i

i!
(R(tk)⊖ R̂(tk)))

)
∞

Definition 4 and
i→i−1
= εk +∆t

d(box( ∞∑
i=0

Ai+1∆t i

(i+ 1)!
(R(tk)⊖ R̂(tk)))

)
∞

≤ εk +∆t
 ∞∑

i=0

Ai+1∆t i

(i+ 1)!


∞

d(box(R(tk)⊖ R̂(tk))
)
∞

Definition 4
= εk +∆t

 ∞∑
i=0

Ai+1∆t i

(i+ 1)!


∞

εk.

In order to make this bound independent of ∆t , we can use the fact that
∑

∞

i=0
Ai+1∆t i
(i+1)!


∞

is continuous w.r.t. ∆t , and is
thus Lipschitz continuous over the bounded domain ∆t ∈ [0, tend] with a Lipschitz constant L̂ ≥ 0 that may depend on
tend but not ∆t . Combining this again with ∆t ≤ tend, we obtain a bound ∞∑

i=0

Ai+1∆t i

(i+ 1)!


∞

≤ L̂∆t ≤ L̂tend =: L,

where L is now a constant that is independent of ∆t . This implies the following iterative bound on εk+1:

εk+1 ≤ (1+ L∆t)εk + εk,loc.

From this point onwards, we can use the same argument as in [32, p. 318, Theorem 12.2] to show that

εk ≤
max1≤ℓ≤N εℓ,loc

∆t
1
L
(eLtend − 1).

The coefficient 1
L (e

Ltend − 1) may depend on tend, but not N nor ∆t , which yields (30). □

Proof of Proposition 1. Let h be arbitrary, but fixed. Let S ⊂ Rn be some bounded, centrally symmetric set with center
c. Then we have

di
(
box(S)

)
= max

s∈S
si −min

s∈S
si = 2max

s∈S
|si − ci|. (B.3)

After inserting the definition Ψ (h) = ⟨c(h),G(h)⟩Z in (32) and extracting the center ĉ :=
∑
∞

p=0
hp+1
(p+1)!A

p(h)c(h), we can
apply (B.3) to (32) to obtain

di
(
box(R∞abs(h))

)
= 2 max

β(p)∈[−1,1]m
p∈N0

⏐⏐⏐⏐⏐⏐
∞∑
p=0

hp+1

(p+ 1)!
Ap(h)G(h)β (p)

⏐⏐⏐⏐⏐⏐
i

.

Since the maximization term is convex w.r.t. the β (p), we can change the domain of β (p) from [−1, 1]m to {−1, 1}m by the
Bauer maximum principle (see [68]). Each summand depends on exactly one β (p), thus we obtain

di
(
box(R∞abs(h))

)
= 2

∞∑
p=0

max
β∈{−1,1}m

⏐⏐⏐⏐ hp+1

(p+ 1)!
Ap(h)G(h)β

⏐⏐⏐⏐
i
= 2

∞∑
p=0

hp+1

(p+ 1)!
∥Ap(h)G(h)∥1,i,

using the fact that the maximum of |Mβ|i for a matrix M and β ∈ {−1, 1}m can easily be seen to be ∥M∥1,i. □

25



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

Proof of Lemma 3. The fact that A(h) and G(h) are both smooth follows for example from [18, p. 4] since f is smooth.
From this, it follows from the Taylor expansion of [A(h)G(h)]i that for any arbitrarily large N , there exists an expansion of
the form

[Ap(h)G(h)]i =
N∑
j=0

cjhj
+ ϵ(h), (B.4)

where cj ∈ R for all j ∈ {1, . . . ,N} and ϵ(h) = O(hN+1). Let j be the smallest index such that cj ̸= 0, and define q(p)i to be
this index. If for all N ∈ N0 such an index does not exist, it trivially follows that [Ap(h)G(h)]i ≡ 0, and in that case we can
set q(p)i = ∞. If q(p)i <∞, we may rewrite (B.4) for all N > q(p)i as

[Ap(h)G(h)]i = cq(p)i
hq(p)i +

N∑
j=q(p)i +1

cjhj
+ ϵ(h).

Clearly, since ϵ(h) = O(hN+1) this function may be written as ϵ(h) = hq(p)i ϵ̂(h) where ϵ̂(h) = O(hN+1−q(p)i ), and more
specifically ϵ̂(h) = O(h). Therefore, by defining a(p)i = cq(p)i

and b(p)i (h) =
∑N

j=q(p)i +1
cjhj−q(p)i + ϵ̂(h), we obtain the form (36).

Finally, the function Q (p)
i (h) is easily seen to be non-negative since ∥ · ∥1 is non-negative, and piecewise smooth since

∥ · ∥1 is smooth almost everywhere, and b(p)i (h) is smooth since A(h) and G(h) are smooth. □

Proof of Proposition 2. We begin by proving (41). Differentiating ϕi in (34) using Lemma 3 yields

dϕi(h; δ)
dh

=
d
dh

di
(
box(R∞abs(δh))

)
di

(
box(R∞abs(h))

) = δ d
dh′

[
di

(
box(R∞abs(h′))

)]⏐⏐
h′=δh − ϕi(h; δ) d

dh′
[
di

(
box(R∞abs(h′))

)]⏐⏐
h′=h

di
(
box(R∞abs(h))

) .

By using the expansion of di
(
box(R∞abs(h))

)
as in the proof of Theorem 2 together with the fact that, by definition of qi,

the coefficients∑
p+q(p)i =j

∥a(p)i + b(p)i (h)∥1
(p+ 1)!

are zero for all j < qi, we conclude that

dϕi(h; δ)
dh

=

∑
∞

j=qi
hj ∑

p+q(p)i =j
1

(p+1)!

[
δj+1 − ϕi(h; δ)

] [
(j+ 1)Q (p)

i (δh)+ hQ̇ (p)
i (δh)

]
∑
∞

j=qi
hj+1

∑
p+q(p)i =j

1
(p+1)!Q

(p)
i (h)

. (B.5)

We then expand the numerator for j = qi, j = qi + 1, and j > qi + 1, and the denominator for j = qi and j > qi:

dϕi(h; δ)
dh

=

hqi
(
δqi+1 − ϕi(h; δ)

)∑
p+q(p)i =qi

(qi+1)Q
(p)
i (δh)+hQ̇ (p)

i (δh)
(p+1)!

hqi+1
∑

p+q(p)i =qi

Q (p)
i (h)

(p+1)! + O(hqi+2)

+

hqi+1
(
δqi+2 − ϕi(h; δ)

)∑
p+q(p)i =qi+1

(qi+2)Q
(p)
i (δh)+hQ̇ (p)

i (δh)
(p+1)!

hqi+1
∑

p+q(p)i =qi

Q (p)
i (h)

(p+1)! + O(hqi+2)

+
O(hqi+3)

hqi+1
∑

p+q(p)i =qi

Q (p)
i (h)

(p+1)! + O(hqi+2)
.

Taking advantage of the fact that ∀i, p : Q (p)
i (0) > 0, passing to the limit h→ 0 yields

lim
h→0

dϕi(h; δ)
dh

= (qi + 1) lim
h→0

δqi+1 − ϕi(h; δ)
h

+ δqi+1(δ − 1)(qi + 2)

∑
p+q(p)i =qi+1

Q (p)
i (0)

(p+1)!∑
p+q(p)i =qi

Q (p)
i (0)

(p+1)!

,

26



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

where we used the fact that ϕi(h; δ)→ δqi+1 for h→ 0, as shown in Theorem 2. Using the same tools as in the proof of
Theorem 2, one can easily show that

lim
h→0

δqi+1 − ϕi(h; δ)
h

= δqi+1(1− δ)

∑
p+q(p)i =qi+1

Q (p)
i (0)

(p+1)!∑
p+q(p)i =qi

Q (p)
i (0)

(p+1)!

,

which implies that

lim
h→0

dϕi(h; δ)
dh

= −(1− δ)δqi+1
∑

p+q(p)i =qi+1
Q (p)
i (0)

(p+1)!∑
p+q(p)i =qi

Q (p)
i (0)

(p+1)!

≤ 0.

This shows (41).
Now, we prove the second statement of Proposition 2, i.e., the inequality (42). This requires an intermediate step: if

the Q (p)
i are constant (i.e., Q̇ (p)

i = 0), the following implication holds

ϕi(h; δ) ≥ δqi+1 ⇒
dϕi(h; δ)

dh
≤ 0. (B.6)

Indeed, if δqi+1 ≤ ϕi(h; δ), it follows that δqi+1+ℓ
≤ ϕi(h; δ) for any ℓ ≥ 0, since δ ≤ 1. Additionally, Q (p)

i ≥ 0 by definition.
Using these facts together with (B.5) and Q̇ (p)

i = 0 yields the implication (B.6). We can now show the inequality (42), by
using a proof by contradiction:

Assume, for the sake of contradiction, that there exists a time t ∈ [0, h] such that ϕ(t; δ) > δq+1, and let T be the set
of all those elements. Let t− := inft∈T t be the highest lower bound of T . Since ϕ is continuous in t , the set T is open,
and we can find some t+ ∈ T such that (t−, t+) ⊆ T . Since ϕ is strictly decreasing for any element of T , it is also strictly
decreasing over the interval (t−, t+). If ϕ(t−, δ) ≤ δq+1, since ϕ is decreasing we conclude that δq+1 ≤ ϕ(t+; δ), which
contradicts our assumption on t+ ∈ T . Therefore, there must hold ϕ(t−, δ) > δq+1. We can thus find an intermediary
value δq+1 < ϕ∗ < ϕ(t−, δ).

On the other hand, as we have seen in Theorem 2, ϕ(t; δ)→ δq+1 and d
dt ϕ(t; δ) ≤ 0 for t → 0, so that there always

exists a small enough t ′ ≥ 0 such that ϕ(t ′; δ) ≤ δq+1 and t ′ ≤ t−. By the intermediary value theorem, there exists t∗ such
that t ′ ≤ t∗ ≤ t− and ϕ∗ = ϕ(t∗, δ). By assumption, ϕ∗ < ϕ(t−, δ), hence t∗ ̸= t−, and since ϕ(t∗, δ) > δq+1 we also have
t∗ ∈ T . However, this contradicts the definition of t−, as it should be a lower bound of T . We thus get a contradiction,
proving that ϕ(t; δ) ≤ δq+1 must hold for all t ∈ [0, h]. □

References

[1] T. Gan, et al., Reachability analysis for solvable dynamical systems, IEEE Trans. Automat. Control 63 (7) (2018) 2003–2018, http://dx.doi.org/
10.1109/TAC.2017.2763785.

[2] J. Liu, et al., Computing semi-algebraic invariants for polynomial dynamical systems, in: Proc. of the 9th ACM International Conference on
Embedded Software, 2011, pp. 97–106, http://dx.doi.org/10.1145/2038642.2038659.

[3] K. Ghorbal, A. Platzer, Characterizing algebraic invariants by differential radical invariants, in: Proc. of the 20th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, Springer, 2014, pp. 279–294, http://dx.doi.org/10.1007/978-3-642-54862-8_19.

[4] M. Boreale, Complete algorithms for algebraic strongest postconditions and weakest preconditions in polynomial ODEs, Sci. Comput. Programm.
193 (2020) http://dx.doi.org/10.1016/j.scico.2020.102441.

[5] I. Mitchell, et al., A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games, IEEE Trans. Automat. Control
50 (7) (2005) 947–957, http://dx.doi.org/10.1109/TAC.2005.851439.

[6] S. Bansal, M. Chen, S. Herbert, C. Tomlin, Hamilton-Jacobi reachability: A brief overview and recent advances, in: Proc. of the 56th Annual
Conference on Decision and Control, IEEE, 2017, pp. 2242–2253, http://dx.doi.org/10.1109/CDC.2017.8263977.

[7] P. Duggirala, S. Mitra, M. Viswanathan, Verification of annotated models from executions, in: Proc. of the International Conference on Embedded
Software, IEEE, 2013, http://dx.doi.org/10.1109/EMSOFT.2013.6658604.

[8] J. Hoefkens, et al., Scientific computing, validated numerics, interval methods, in: W. Krämer, J.W. von Gudenberg (Eds.), Springer, 2001
pp. 281–292, http://dx.doi.org/10.1007/978-1-4757-6484-0_23, Ch. Verified high-order integration of DAEs and higher-order ODEs.

[9] K. Makino, M. Berz, Rigorous integration of flows and ODEs using Taylor models, in: Proc. of Symbolic-Numeric Computation, ACM, 2009
pp. 79–84, http://dx.doi.org/10.1145/1577190.1577206.

[10] X. Chen, et al., Taylor model flowpipe construction for non-linear hybrid systems, in: Proc. of the 33rd Real-Time Systems Symposium, IEEE,
2012, http://dx.doi.org/10.1109/RTSS.2012.70.

[11] E. Asarin, T. Dang, A. Girard, Reachability analysis of nonlinear systems using conservative approximation, in: 6th International Workshop on
Hybrid Systems: Computation and Control, Springer, 2003, pp. 20–35, http://dx.doi.org/10.1007/3-540-36580-X_5.

[12] E. Asarin, et al., Hybridization methods for the analysis of nonlinear systems, Acta Inform. 43 (2007) 451–476, http://dx.doi.org/10.1007/s00236-
006-0035-7.

[13] Z. Han, B. Krogh, Reachability analysis of nonlinear systems using trajectory piecewise linearized models, in: Proc. of the American Control
Conference, IEEE, 2006, pp. 1505–1510, http://dx.doi.org/10.1109/ACC.2006.1656431.

[14] D. Li, S. Bak, S. Bogomolov, Reachability analysis of nonlinear systems using hybridization and dynamics scaling, in: International Conference on
Formal Modeling and Analysis of Timed Systems, in: LNCS 12288, Springer, 2020, pp. 265–282, http://dx.doi.org/10.1007/978-3-030-57628-8_16.

[15] T. Dang, C. Le Guernic, O. Maler, Computing reachable states for nonlinear biological models, in: International Conference on Computational
Methods in Systems Biology, Springer, 2009, pp. 126–141, http://dx.doi.org/10.1007/978-3-642-03845-7_9.

27



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

[16] T. Dang, et al., Accurate hybridization of nonlinear systems, in: Proc. of the 13th ACM International Conference on Hybrid Systems: Computation
and Control, 2010, pp. 11–19, http://dx.doi.org/10.1145/1755952.1755956.

[17] M. Althoff, O. Stursberg, M. Buss, Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization, in:
Proc. of the 47th IEEE Conference on Decision and Control, 2008, pp. 4042–4048, http://dx.doi.org/10.1109/CDC.2008.4738704.

[18] M. Althoff, Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets, in: Proc. of the 16th ACM
International Conference on Hybrid Systems: Computation and Control, 2013, pp. 173–182, http://dx.doi.org/10.1145/2461328.2461358.

[19] L. Benvenuti, et al., Assume-guarantee verification of nonlinear hybrid systems with ARIADNE, Internat. J. Robust Nonlinear Control 24 (4)
(2014) 699–724, http://dx.doi.org/10.1002/rnc.2914.

[20] P. Duggirala, et al., C2E2: A verification tool for stateflow models, in: Proc. of the 21st International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Springer, 2015, pp. 68–82, http://dx.doi.org/10.1007/978-3-662-46681-0_5.

[21] M. Althoff, An introduction to CORA 2015, in: Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems, 2015
pp. 120–151, http://dx.doi.org/10.29007/zbkv.

[22] J. Alexandre dit Sandretto, A. Chapoutot, DynIBEX: a differential constraint library for studying dynamical systems, 2016, Hal.Archives-
Ouvertes.Fr: Hal-01297273.

[23] X. Chen, et al., Flow*: An analyzer for non-linear hybrid systems, in: Proc. of the 25th International Conference Computer-Aided Verification,
in: LNCS 8044, Springer, 2013, pp. 258–263, http://dx.doi.org/10.1007/978-3-642-39799-8_18.

[24] F. Immler, Tool presentation: Isabelle/HOL for reachability analysis of continuous systems, in: Proc. of the 2nd Workshop on Applied Verification
for Continuous and Hybrid Systems, 2015, pp. 180–187, http://dx.doi.org/10.29007/b3wr.

[25] S. Bogomolov, et al., JuliaReach: a toolbox for set-based reachability, in: Proc. of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, 2019, pp. 39–44, http://dx.doi.org/10.1145/3302504.3311804.

[26] A. Girard, Reachability of uncertain linear systems using zonotopes, in: 8th International Workshop on Hybrid Systems: Computation and
Control, Springer, 2005, pp. 291–305, http://dx.doi.org/10.1007/978-3-540-31954-2_19.

[27] C. Combastel, A state bounding observer based on zonotopes, in: European Control Conference, ECC, IEEE, 2003, pp. 2589–2594, http:
//dx.doi.org/10.23919/ECC.2003.7085991.

[28] A.-K. Kopetzki, B. Schürmann, M. Althoff, Methods for order reduction of zonotopes, in: Proc. of the 56th IEEE Conference on Decision and
Control, 2017, pp. 5626–5633, http://dx.doi.org/10.1109/CDC.2017.8264508.

[29] X. Yang, J.K. Scott, A comparison of zonotope order reduction techniques, Automatica 95 (2016) 378–384, http://dx.doi.org/10.1016/j.automatica.
2018.06.006.

[30] M. Wetzlinger, A. Kulmburg, M. Althoff, Adaptive parameter tuning for reachability analysis of nonlinear systems, in: Proc. of the 24th ACM
International Conference on Hybrid Systems: Computation and Control, 2021, http://dx.doi.org/10.1145/3447928.3456643.

[31] D. Griffiths, D. Higham, Numerical Methods for Ordinary Differential Equations: Initial Value Problems, Springer, 2010, http://dx.doi.org/10.
1016/C2013-0-10643-5.

[32] E. Süli, D.F. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, 2003, http://dx.doi.org/10.1017/CBO9780511801181.
[33] M. Rungger, M. Zamani, Accurate reachability analysis of uncertain nonlinear systems, in: Proceedings of the 21st International Conference on

Hybrid Systems: Computation and Control, 2018, http://dx.doi.org/10.1145/3178126.3178127.
[34] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, 2016, http://dx.doi.org/10.1002/9781119121534.
[35] L. Lapidus, J.H. Seinfeld, Numerical Solution of Ordinary Differential Equations, Academic Press, 1971.
[36] U.M. Ascher, et al., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, 1994, http://dx.doi.org/10.1137/

1.9781611971231.
[37] W. Rufeger, E. Adams, A step size control for Lohner’s enclosure algorithm for ordinary differential equations with initial conditions, in:

Mathematics in Science and Engineering, Vol. 189, Elsevier, 1993, pp. 283–299, http://dx.doi.org/10.1016/S0076-5392(08)62849-0.
[38] N. Nedialkov, Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation (Dissertation),

University of Toronto, 2000.
[39] P. Prabhakar, M. Viswanathan, A dynamic algorithm for approximate flow computations, in: Proc. of the 14th ACM International Conference

on Hybrid Systems: Computation and Control, 2011, pp. 133–142, http://dx.doi.org/10.1145/1967701.1967722.
[40] G. Frehse, et al., SpaceEx: scalable verification of hybrid systems, in: Proc. of the 23rd International Conference on Computer Aided Verification,

in: LNCS 6806, Springer, 2011, pp. 379–395, http://dx.doi.org/10.1007/978-3-642-22110-1_30.
[41] G. Frehse, R. Kateja, C. Le Guernic, Flowpipe approximation and clustering in space-time, in: Proc. of the 16th ACM International Conference

on Hybrid Systems: Computation and Control, 2013, pp. 203–212, http://dx.doi.org/10.1145/2461328.2461361.
[42] M. Wetzlinger, N. Kochdumper, M. Althoff, Adaptive parameter tuning for reachability analysis of linear systems, in: Proc. of the 59th IEEE

Conference on Decision and Control, 2020, pp. 5145–5152, http://dx.doi.org/10.1109/CDC42340.2020.9304431.
[43] X. Chen, Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Models (Dissertation), RWTH Aachen University, 2015.
[44] S. Bak, et al., High-level hybrid systems analysis with Hypy, in: Proc. of the Workshop on Applied Verification of Continuous and Hybrid

Systems, 2016, pp. 80–90, http://dx.doi.org/10.29007/4f3d.
[45] G. Alefeld, G. Mayer, Interval analysis: Theory and applications, Comput. Appl. Math. 121 (1–2) (2000) 421–464, http://dx.doi.org/10.1016/S0377-

0427(00)00342-3.
[46] N. Kochdumper, M. Althoff, Sparse polynomial zonotopes: a novel set representation for reachability analysis, IEEE Trans. Automat. Control 66

(2) (2021) 4043–4058, http://dx.doi.org/10.1109/TAC.2020.3024348.
[47] M. Althoff, B.H. Krogh, Reachability analysis of nonlinear differential-algebraic systems, IEEE Trans. Automat. Control 59 (2) (2014) 371–383,

http://dx.doi.org/10.1109/TAC.2013.2285751.
[48] M. Berz, G. Hoffstätter, Computation and application of Taylor polynomials with interval remainder bounds, Reliab. Comput. 4 (1998) 83–97,

http://dx.doi.org/10.1023/A:1009958918582.
[49] M. Althoff, Reachability Analysis and its Application to the Safety Assessment of Autonomous Cars (Dissertation), Technische Universität

München, 2010.
[50] M. Althoff, C. Le Guernic, B.H. Krogh, Reachable set computation for uncertain time-varying linear systems, in: Proc. of the 14th ACM

International Conference on Hybrid Systems: Computation and Control, 2011, pp. 93–102, http://dx.doi.org/10.1145/1967701.1967717.
[51] V.V. Shenmaier, Complexity and approximation of finding the longest vector sum, Comput. Math. Math. Phys. 58 (6) (2018) 850–857,

http://dx.doi.org/10.1134/S0965542518060131.
[52] A.E. Baburin, A.V. Pyatkin, Polynomial algorithms for solving the vector sum problem, J. Appl. Ind. Math. 1 (3) (2007) 268–272, http:

//dx.doi.org/10.1134/S1990478907030027.
[53] T. Alamo, J. Bravo, E. Camacho, Guaranteed state estimation by zonotopes, Automatica 41 (2005) 1035–1043, http://dx.doi.org/10.1016/j.

automatica.2004.12.008.
[54] L. Geretti, et al., ARCH-COMP20 category report: continuous and hybrid systems with nonlinear dynamics, in: ARCH20. 7th International

Workshop on Applied Verification of Continuous and Hybrid Systems, EasyChair, 2020, pp. 49–75, http://dx.doi.org/10.29007/zkf6.

28



M. Wetzlinger, A. Kulmburg, A. Le Penven et al. Nonlinear Analysis: Hybrid Systems 46 (2022) 101252

[55] L. Geretti, et al., ARCH-COMP21 category report: continuous and hybrid systems with nonlinear dynamics, in: G. Frehse, M. Althoff (Eds.), Proc.
of the 8th International Workshop on Applied Verification of Continuous and Hybrid Systems, 2021, pp. 32–54, http://dx.doi.org/10.29007/2jw8.

[56] X. Chen, S. Sankaranarayanan, Decomposed reachability analysis for nonlinear systems, in: Proc. of the 37th Real-Time Systems Symposium,
IEEE, 2016, pp. 13–24, http://dx.doi.org/10.1109/RTSS.2016.011.

[57] A. El-Guindy, Control and Stability of Power Systems using Reachability Analysis (Dissertation), Technische Universität München, 2017.
[58] S. Kopecz, A. Meister, On order conditions for modified Patankar–Runge–Kutta schemes, Appl. Numer. Math. 123 (2018) 159–179, http:

//dx.doi.org/10.1016/j.apnum.2017.09.004.
[59] M. Laub, W. Loomis, A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium, Mol. Biol. Cell 9 (12)

(1998) 3521–3532, http://dx.doi.org/10.1091/mbc.9.12.3521.
[60] E. Aylward, P. Parrilo, J.-J. Slotine, Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming,

Automatica 44 (8) (2008) 2163–2170, http://dx.doi.org/10.1016/j.automatica.2007.12.012.
[61] O. Rössler, An equation for continuous chaos, Phys. Lett. A 57 (5) (1976) 397–398, http://dx.doi.org/10.1016/0375-9601(76)90101-8.
[62] E. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (2) (1963) 130–141, http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.

CO;2.
[63] J. Vano, et al., Chaos in low-dimensional Lotka–Volterra models of competition, Nonlinearity 19 (10) (2006) 2391, http://dx.doi.org/10.1088/0951-

7715/19/10/006.
[64] E. Klipp, et al., Systems Biology in Practice: Concepts, Implementation and Application, John Wiley & Sons, 2005, http://dx.doi.org/10.1002/

3527603603.
[65] J. Vilar, et al., Mechanisms of noise-resistance in genetic oscillators, Proc. Natl. Acad. Sci. 99 (9) (2002) 5988–5992, http://dx.doi.org/10.1073/

pnas.092133899.
[66] Y. Chen, A. Domínguez-García, Assessing the impact of wind variability on power system small-signal reachability, in: Proc. of the 44th Hawaii

International Conference on System Sciences, IEEE, 2011, http://dx.doi.org/10.1109/HICSS.2011.77.
[67] X. Chen, S. Sankaranarayanan, E. Ábrahám, Under-approximate flowpipes for non-linear continuous systems, in: Formal Methods in

Computer-Aided Design, FMCAD, IEEE, 2014, pp. 59–66, http://dx.doi.org/10.1109/FMCAD.2014.6987596.
[68] H. Bauer, Minimalstellen von Funktionen und Extremalpunkte, Archiv der Mathematik 9 (1958) 389–393, http://dx.doi.org/10.1007/BF01898615.
[69] G. Golub, M. Saunders, Linear least squares and quadratic programming, Integer Nonlinear Programm. (1969).

29



B Licenses

This chapter contains all explicit licenses for the publications reprinted in Appendix A, as

required by the TUM Graduate School.

151



B Licenses

License for Appendix A.1

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy
| For California Residents | Terms and Conditions

2020 59th IEEE Conference on Decision and Control (CDC)

Mark Wetzlinger

IEEE

14 December 2020

Copyright © 2020, IEEE

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 von 1 08.01.2024, 16:31

152



License for Appendix A.2

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy
| For California Residents | Terms and Conditions

Mark Wetzlinger

IEEE Transactions on Automatic Control

IEEE

December 2023

Copyright © 2023, IEEE

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 von 1 08.01.2024, 16:30

153



B Licenses

License for Appendix A.3

ACM Publishing License and Audio/Video Release 

Title  of  the Work: Adaptive Parameter Tuning for Reachability Analysis of Nonlinear
Systems
Submiss ion ID:ar t_31 

Author/Presenter(s):   Mark Wetzlinger: Technical University of Munich, Adrian Kulmburg:
Technical University of Munich, Matthias Althoff: Technical University of Munich

Type of  materia l :full  paper 

Publ icat ion  and/or  Conference  Name:     HSCC '21: 24rd ACM International
Conference on Hybrid Systems: Computation and Control Proceedings            

1 .  Glos sary

2 .  Grant  of  Rights

(a) Owner hereby grants to ACM an exclusive, worldwide, royalty-free, perpetual,
irrevocable,  transferable and sublicenseable l icense to publish,  reproduce and
distribute all  or any part of the Work in any and all forms of media, now or hereafter
known, including in the above publication and in the ACM Digital Library, and to
authorize third part ies  to do the same.  

(b) In connection with software and "Artistic Images and "Auxiliary Materials, Owner
grants ACM non-exclusive permission to publish,  reproduce and distribute in any and
all  forms of media, now or hereafter known, including in the above publication and in
the ACM Digital Library.

(c) In connection with any "Minor Revision", that is, a derivative work containing less
than twenty-five percent (25%) of new substantive material,  Owner hereby grants to
ACM all rights in the Minor Revision that Owner grants to ACM with respect to the
Work, and all terms of this Agreement shall apply to the Minor Revision. 
(d) If your paper is withdrawn before it is published in the ACM Digital Library, the
rights revert  back to the author(s).  

A. Grant of Rights.  I  grant the rights and agree to the terms described above.

B. Declaration for Government Work. I am an employee of the national government
of my country/region and my Government claims rights to this work, or i t  is  not
copyrightable (Government work is classified as Public Domain in U.S. only)

Are you a contractor of your National Government? Yes N o

3 .  Reserved  Rights  and  Permit ted  Uses .  

(a) All rights and permissions the author has not granted to ACM in Paragraph 2 are
reserved to the Owner, including without l imitation the ownership of the copyright
of the Work and all  other proprietary rights such as patent or trademark rights.  

154



(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM
in Paragraph 2(a), Owner shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or
edited by the Author,  including books, lectures and presentations in any and all
med ia .

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2)
the Owner's institutional repository, (3) any repository legally mandated by an
agency funding the research on which the Work is based, and (4) any
non-commercial  repository or aggregation that  does not duplicate ACM tables
of contents,  i .e. ,  whose patterns of l inks do not substantially duplicate an
ACM-copyrighted volume or issue.  Non-commercial  repositories are here
understood as  reposi tor ies  owned by non-profi t  organizat ions that  do not
charge a fee for accessing deposited art icles and that do not sell  advertising or
otherwise profit  from serving articles.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record
in the ACM Digital Library on (1) the Author's home page or (2) the Owner's
institutional repository; 

(v) Prior to commencement of the ACM peer review process, post the version of
the Work as submitted to ACM ("Submitted Version" or any earlier versions) to
non-peer  reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to
the Owner's employees, if  applicable;

(vii) Make free distributions of the published Version of Record for Classroom
and Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and 

(ix) Use any Auxiliary Material independent from the Work. 

When preparing your paper for submission using the ACM TeX templates,  the rights
and permissions information and the bibliographic str ip must appear on the lower left
hand port ion of  the f irst  page.

The new ACM Consolidated TeX template Version 1.3 and above automatically creates
and posit ions these text  blocks for  you based on the code snippet  which is
system-generated based on your  r ights  management  choice and this  par t icular
conference.

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing. 

155



B Licenses

Please put the fol lowing LaTeX commands in the preamble of  your document -
i .e. ,  before \begin{document}:

\copyrightyear{2021} 
\acmYear{2021} 
\setcopyright{acmlicensed}\acmConference[HSCC '21]{24th ACM International
Conference on Hybrid Systems: Computation and Control}{May 19--21,
2021}{Nashville, TN, USA}
\acmBooktitle{24th ACM International Conference on Hybrid Systems:
Computation and Control (HSCC '21), May 19--21, 2021, Nashville, TN, USA}
\acmPrice{15.00}
\acmDOI{10.1145/3447928.3456643}
\acmISBN{978-1 -4503-8339-4 /21 /05}

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing.

If you are using the ACM Interim Microsoft Word template, or still using or
older versions of the ACM SIGCHI template, you must copy and paste the
following text  block into your document as per the instructions provided with
the templates you are using:

Permission to make digital or hard copies of all  or part of this work for personal
or classroom use is  granted without fee provided that  copies are not  made or
distributed for profit  or commercial  advantage and that  copies bear this notice
and the full  citation on the first  page. Copyrights for components of this work
owned by others than the author(s)  must be honored.  Abstracting with credit  is
permitted.  To copy otherwise,  or republish,  to post  on servers or to redistribute
to l ists ,  requires prior specific permission and/or a fee.  Request  permissions
from Permissions@acm.org.

HSCC '21, May 19–21, 2021, Nashville, TN, USA
© 2021 Copyright is held by the owner/author(s).  Publication rights l icensed to
ACM.
A C M  9 7 8 - 1 - 4 5 0 3 - 8 3 3 9 - 4 / 2 1 / 0 5 … $ 1 5 . 0 0  
h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 4 4 7 9 2 8 . 3 4 5 6 6 4 3

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library.
Once you have your camera ready copy ready, please send your source files and PDF
to your event contact for processing.

4.  ACM Citation and Digital  Object  Identif ier.  

156



(a) In connection with any use by the Owner of the Definitive Version, Owner shall
include the ACM citation and ACM Digital Object Identifier (DOI).
(b) In connection with any use by the Owner of the Submitted Version (if accepted) or
the Accepted Version or a Minor Revision, Owner shall use best efforts to display the
ACM citation, along with a statement substantially similar to the following: 

"© [Owner] [Year]. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive version was published
in {Source Publication}, https://doi.org/10.1145/{number}." 

5 .  Audio /Video  Record ing

I hereby grant permission for ACM to include my name, l ikeness,  presentation and
comments in any and all  forms, for the Conference and/or Publication. 

I  further grant permission for ACM to record and/or transcribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB
device,  streaming video or any other media format now or hereafter known.

I  understand that  my presentat ion wil l  not  be sold separately as a s tand-alone
product without my direct consent. Accordingly, I give ACM the right to use my
image, voice,  pronouncements,  l ikeness,  and my name, and any biographical  material
submitted by me, in connection with the Conference and/or Publication,  whether
used in excerpts or in full ,  for distribution described above and for any associated
advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes N o

6.  Auxil iary Material 

Do you have any Auxiliary Materials? Yes No 

7. Third Party Materials 
In the event that any materials used in my presentation or Auxiliary Materials contain
the work of third-party individuals or organizations (including copyrighted music or
movie excerpts or anything not owned by me),  I  understand that i t  is  my
responsibil i ty to secure any necessary permissions and/or l icenses for  print  and/or
digital publication, and cite or attach them below. 

We/I have not used third-party material .  
We/I  have used third-party materials  and have necessary permissions.  

8 .  Art i s t i c  Images
If  your paper includes images that  were created for any purpose other than this paper
and to which you or your employer claim copyright,  you must complete Part IV and be
sure to include a notice of copyright with each such image in the paper.  

We/I do not have any artistic images. 
We/I have any artistic images. 

157



B Licenses

9 .  Representat ions ,  Warrant ies  and Covenants 

The undersigned hereby represents,  warrants and covenants as fol lows: 

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is  authorized to enter  into this  Agreement and grant  the
rights included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all
permissions for use of third-party materials  consistent  in scope and duration with
the rights granted to ACM have been obtained,  copies of such permissions have
been provided to ACM, and the Work as submitted to ACM clearly and accurately
indicates the credit  to the proprietors of any such third-party materials (including
any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not  been published except for informal postings on non-peer
reviewed servers, and Owner covenants to use best efforts to place ACM DOI
pointers on any such prior  postings;  

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or
other  sof tware rout ines  or  hardware components  designed to  permit  unauthorized
access or  to disable,  erase or  otherwise harm any computer systems or software;
a n d

(f) The Artistic Images, if any, are clearly and accurately noted as such (including
any applicable copyright notice) in the Submitted Version.

I agree to the Representations,  Warranties and Covenants.  

1 0 .  E n f o r c e m e n t .  

At ACM's expense, ACM shall have the right (but not the obligation) to defend and
enforce the rights granted to ACM hereunder, including in connection with any
instances of plagiarism brought to the attention of ACM. Owner shall notify ACM in
writing as promptly as practicable upon becoming aware that any third party is
infringing upon the rights granted to ACM, and shall reasonably cooperate with ACM
in i ts  defense or enforcement.  

11.  Governing  Law 

This Agreement shall  be governed by, and construed in accordance with,  the laws of
the state of New York applicable to contracts entered into and to be fully performed
therein.  

158



Funding  Agent s

1. Deutsche Forschungsgemeinschaft  award number(s):GRK 2428

2. European Research Council  award number(s):817629

DATE: 0 3 / 1 2 / 2 0 2 1 sent  to m.wetzlinger@tum.de at  0 8 : 0 3 : 3 1 

159



B Licenses

License for Appendix A.4

We gratefully acknowledge support from the Simons Foundation, member
institutions, and all contributors.

Reuse Requests

This FAQ is an attempt to collect answers to your common questions surrounding reusing content from arXiv in your materials.

• Can I reuse �gures from an arXiv paper?

• Do I need arXiv's permission to repost the full text?

• How can I determine what license the version was assigned?

• I want to include a paper of mine from arXiv in my thesis, do I need speci�c permission?

• I want to include a paper of mine from arXiv in an institutional repository, do I need permission?

• Can I harvest the full text of works?

Can I reuse �gures from an arXiv paper?

The short answer is "it depends". More speci�cally: - If the license applied to the work allows for remixing or reuse with citation, then yes. - If not,

then the version is assigned one of the arXiv perpetual non-exclusive licenses, and you will need to contact the submitter or copyright holder (if

published) to determine applicable permissions.

Do I need arXiv's permission to repost the full text?

Note: All e-prints submitted to arXiv are subject to copyright protections. arXiv is not the copyright holder on any of the e-prints in our corpus.

In some cases, submitters have provided permission in advance by submitting their e-print under a permissive Creative Commons license. The

overwhelming majority of e-prints are submitted using the arXiv perpetual non-exclusive license, which does not grant further reuse permissions

directly. In these cases you will need to contact the author directly with your request.

How can I determine what license the version was assigned?

All arXiv abstract pages indicate an assigned license underneath the "Download:" options.

The link may appear as just the text (license) , such as at arXiv:2201.14176. Articles between 1991 and 2003 have an assumed license. These are

functionally equivalent to the arXiv non-exclusive license.

If the license applied by the submitter is one of the Creative Commons licenses, then a "CC" logo will appear, such as at arXiv:2201.04182.

I want to include a paper of mine from arXiv in my thesis, do I need speci�c permission?

If you are the copyright holder of the work, you do not need arXiv's permission to reuse the full text.

I want to include a paper of mine from arXiv in an institutional repository, do I need permission?

You do not need arXiv's permission to deposit arXiv's version of your work into an institutional repository. For all other institutional repository cases,

see our help page on institutional repositories.

Can I harvest the full text of works?

Plase see our bulk data help page, and the API Terms of Use for speci�c options. Note that the license for the full text is not a part of the current

search API schema. The license is, however, provided within arXiv's output from the OAI-PMH in either arXiv  or arXivRaw  formats.

About

Help

Copyright

Privacy Policy

Contact

Subscribe

Report a documentation issue

Web Accessibility Assistance

arXiv Operational Status 

Get status noti�cations via email or slack

Permissions and Reuse - arXiv info https://info.arxiv.org/help/license/reuse.html#i-want-to-include-a-pape...

1 von 1 08.01.2024, 16:34

160



License for Appendix A.5

ACM Publishing License and Audio/Video Release 

Title  of  the Work: Fully-Automated Verification of Linear Systems Using Reachability
Analysis with Support Functions
Submiss ion ID:6 2 7 5 0 5 0  

Author/Presenter(s):   Mark Wetzlinger:Technical University of Munich;Niklas
Kochdumper:Stony Brook University;Stanley Bak:Stony Brook University;Matthias
Althoff:Technical University of Munich

Type of  materia l :full  paper 

Publ icat ion  and/or  Conference  Name:     HSCC '23: 26th ACM International
Conference on Hybrid Systems: Computation and Control Proceedings            

1 .  Glos sary

2 .  Grant  of  Rights

(a) Owner hereby grants to ACM an exclusive, worldwide, royalty-free, perpetual,
irrevocable,  transferable and sublicenseable l icense to publish,  reproduce and
distribute all  or any part of the Work in any and all forms of media, now or hereafter
known, including in the above publication and in the ACM Digital Library, and to
authorize third part ies  to do the same.  

(b) In connection with software and "Artistic Images and "Auxiliary Materials, Owner
grants ACM non-exclusive permission to publish,  reproduce and distribute in any and
all  forms of media, now or hereafter known, including in the above publication and in
the ACM Digital Library.

(c) In connection with any "Minor Revision", that is, a derivative work containing less
than twenty-five percent (25%) of new substantive material,  Owner hereby grants to
ACM all rights in the Minor Revision that Owner grants to ACM with respect to the
Work, and all terms of this Agreement shall apply to the Minor Revision. 
(d) If your paper is withdrawn before it is published in the ACM Digital Library, the
rights revert  back to the author(s).  

A. Grant of Rights.  I  grant the rights and agree to the terms described above.

B. Declaration for Government Work. I am an employee of the national government
of my country/region and my Government claims rights to this work, or i t  is  not
copyrightable (Government work is classified as Public Domain in U.S. only)

Are you a contractor of your National Government? Yes N o

Are any of the co-authors,  employees or contractors of a National Government? 
Yes N o

3 .  Reserved  Rights  and  Permit ted  Uses .  

161



B Licenses

(a) All rights and permissions the author has not granted to ACM in Paragraph 2 are
reserved to the Owner, including without l imitation the ownership of the copyright
of the Work and all  other proprietary rights such as patent or trademark rights.  

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM
in Paragraph 2(a), Owner shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or
edited by the Author,  including books, lectures and presentations in any and all
med ia .

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2)
the Owner's institutional repository, (3) any repository legally mandated by an
agency funding the research on which the Work is based, and (4) any
non-commercial  repository or aggregation that  does not duplicate ACM tables
of contents,  i .e. ,  whose patterns of l inks do not substantially duplicate an
ACM-copyrighted volume or issue.  Non-commercial  repositories are here
understood as  reposi tor ies  owned by non-profi t  organizat ions that  do not
charge a fee for accessing deposited art icles and that do not sell  advertising or
otherwise profit  from serving articles.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record
in the ACM Digital Library on (1) the Author's home page or (2) the Owner's
institutional repository; 

(v) Prior to commencement of the ACM peer review process, post the version of
the Work as submitted to ACM ("Submitted Version" or any earlier versions) to
non-peer  reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to
the Owner's employees, if  applicable;

(vii) Make free distributions of the published Version of Record for Classroom
and Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and 

(ix) Use any Auxiliary Material independent from the Work. 

When preparing your paper for submission using the ACM TeX templates,  the rights
and permissions information and the bibliographic str ip must appear on the lower left
hand port ion of  the f irst  page.

The new ACM Consolidated TeX template Version 1.3 and above automatically creates
and posit ions these text  blocks for  you based on the code snippet  which is
system-generated based on your  r ights  management  choice and this  par t icular
conference.  When creating your document,  please make sure that  you are only using
TAPS accepted packages. (If you would like to use a package not on the list,  please

send sugges t ions  to  acmtexsupport@aptaracorp.com RE: TAPS LaTeX Package

162



evaluation.)

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing. 

Please put the fol lowing LaTeX commands in the preamble of  your document -
i .e. ,  before \begin{document}:

\copyrightyear{2023} 
\acmYear{2023} 
\setcopyright{acmlicensed}\acmConference[HSCC '23]{Proceedings of the 26th
ACM International Conference on Hybrid Systems: Computation and
Control}{May 9--12, 2023}{San Antonio, TX, USA}
\acmBooktitle{Proceedings of the 26th ACM International Conference on Hybrid
Systems: Computation and Control (HSCC '23), May 9--12, 2023, San Antonio,
TX, USA}
\acmPrice{15.00}
\acmDOI{10.1145/3575870.3587121}
\acmISBN{979-8 -4007-0033-0 /23 /05}

NOTE: For authors using the ACM Microsoft Word Master Article Template and
Publication Workflow, The ACM Publishing System (TAPS) will add the rights
statement to your papers for you. Please check with your conference contact for
information regarding submitting your source file(s) for processing.

If you are using the ACM Interim Microsoft Word template, or still using or
older versions of the ACM SIGCHI template, you must copy and paste the
following text  block into your document as per the instructions provided with
the templates you are using:

Permission to make digital or hard copies of all  or part of this work for personal
or classroom use is  granted without fee provided that  copies are not  made or
distributed for profit  or commercial  advantage and that  copies bear this notice
and the full  citation on the first  page. Copyrights for components of this work
owned by others than the author(s)  must be honored.  Abstracting with credit  is
permitted.  To copy otherwise,  or republish,  to post  on servers or to redistribute
to l ists ,  requires prior specific permission and/or a fee.  Request  permissions
from Permissions@acm.org.

HSCC '23, May 9–12, 2023, San Antonio, TX, USA
© 2023 Copyright is held by the owner/author(s).  Publication rights l icensed to
ACM.
A C M  9 7 9 - 8 - 4 0 0 7 - 0 0 3 3 - 0 / 2 3 / 0 5 … $ 1 5 . 0 0  
h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 5 7 5 8 7 0 . 3 5 8 7 1 2 1

163



B Licenses

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library.
Once you have your camera ready copy ready, please send your source files and PDF
to your event contact for processing.

4.  ACM Citation and Digital  Object  Identif ier.  

(a) In connection with any use by the Owner of the Definitive Version, Owner shall
include the ACM citation and ACM Digital Object Identifier (DOI).
(b) In connection with any use by the Owner of the Submitted Version (if accepted) or
the Accepted Version or a Minor Revision, Owner shall use best efforts to display the
ACM citation, along with a statement substantially similar to the following: 

"© [Owner] [Year]. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive version was published
in {Source Publication}, https://doi.org/10.1145/{number}." 

5.  Livestreaming and Dis tr ibut ion

You are giving a presentation at the annual conference. This section of the rights form
gives you the opportunity to grant or deny ACM the ability to make this presentation
more widely seen, through (a) l ivestreaming of the presentation during the
conference and/or (b) distributing the presentation after the conference in the ACM
Digital Library, the "Conference Presentations" USB, and media outlets such as Vimeo
and YouTube. It  also provides you the opportunity to grant or deny our use of the
presentation in promotional  and marketing efforts  after  the conference.

Not all conference presentations are livestreamed; you will be notified in advance of
the possibili ty of your presentation being livestreamed.

The permissions granted and/or  denied here apply to al l  presentat ions of  this
material  at  the conference, including (but not l imited to) the primary presentation and
any program-specific "fast  forward" presentations.

ACM's policy on the use of third-party material applies to your presentation as well as
the documentation of your work; if  you are using others '  material in your
presentation, including audio, you must identify that material on the ACM rights form
and in the presentat ion where i t  is  used,  and secure permission to use the material
where necessary.

Livestreaming.
I grant permission to ACM to livestream my presentation during the conference (a
"livestream" is a synchronous distribution of the presentation to the public,  separate
from the presentat ion distr ibuted to conference registrants) .  

Yes
No 

Post -Conference  Di s tr ibut ion .

164



Post -Conference  Di s tr ibut ion .
I grant permission to ACM to distribute the recording of my presentation after the
conference as l isted above.  

Yes
No 

6.  Auxil iary Material 

Do you have any Auxiliary Materials? Yes No 

7. Third Party Materials 
In the event that any materials used in my presentation or Auxiliary Materials contain
the work of third-party individuals or organizations (including copyrighted music or
movie excerpts or anything not owned by me),  I  understand that i t  is  my
responsibil i ty to secure any necessary permissions and/or l icenses for  print  and/or
digital publication, and cite or attach them below. 

We/I have not used third-party material .  
We/I  have used third-party materials  and have necessary permissions.  

8 .  Art i s t i c  Images
If  your paper includes images that  were created for any purpose other than this paper
and to which you or your employer claim copyright,  you must complete Part IV and be
sure to include a notice of copyright with each such image in the paper.  

We/I do not have any artistic images. 
We/I have any artistic images. 

9 .  Representat ions ,  Warrant ies  and Covenants 

The undersigned hereby represents,  warrants and covenants as fol lows: 

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is  authorized to enter  into this  Agreement and grant  the
rights included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all
permissions for use of third-party materials  consistent  in scope and duration with
the rights granted to ACM have been obtained,  copies of such permissions have
been provided to ACM, and the Work as submitted to ACM clearly and accurately
indicates the credit  to the proprietors of any such third-party materials (including
any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not  been published except for informal postings on non-peer
reviewed servers, and Owner covenants to use best efforts to place ACM DOI
pointers on any such prior  postings;  

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or
other  sof tware rout ines  or  hardware components  designed to  permit  unauthorized

165



B Licenses

access or  to disable,  erase or  otherwise harm any computer systems or software;
a n d

(f) The Artistic Images, if any, are clearly and accurately noted as such (including
any applicable copyright notice) in the Submitted Version.

I agree to the Representations,  Warranties and Covenants.  

1 0 .  E n f o r c e m e n t .  

At ACM's expense, ACM shall have the right (but not the obligation) to defend and
enforce the rights granted to ACM hereunder, including in connection with any
instances of plagiarism brought to the attention of ACM. Owner shall notify ACM in
writing as promptly as practicable upon becoming aware that any third party is
infringing upon the rights granted to ACM, and shall reasonably cooperate with ACM
in i ts  defense or enforcement.  

11.  Governing  Law 

This Agreement shall  be governed by, and construed in accordance with,  the laws of
the state of New York applicable to contracts entered into and to be fully performed
therein.  

Funding  Agent s

1. Deutsche Forschungsgemeinschaft  award number(s):GRK 2428

2. European Research Council  award number(s):817629

3. Air Force Office of Scientific Research award number(s):FA9550-19-1-0288,
F A 9 5 5 0 - 2 1 - 1 - 0 1 2 1 ,  F A 9 5 5 0 - 2 3 - 1 - 0 0 6 6

4.  Office of  Naval  Research award number(s) :N00013-22-1-2156

DATE: 0 3 / 2 0 / 2 0 2 3 sent  to m.wetzlinger@tum.de at  1 0 : 0 3 : 0 7 

166



License for Appendix A.6

Sign in/Register

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy
| For California Residents | Terms and Conditions

Mark Wetzlinger,Adrian Kulmburg,Alexis Le Penven,Matthias Altho�

Nonlinear Analysis: Hybrid Systems

Elsevier

November 2022

© 2022 Elsevier Ltd. All rights reserved.

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or dissertation,
provided it is not published commercially. Permission is not required, but please ensure that you reference the
journal as the original source. For more information on this and on your other retained rights, please
visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-rights

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 von 1 08.01.2024, 16:19

167



.


	Abstract
	Zusammenfassung
	Résumé
	1 Introduction
	1.1 Safety Analysis
	1.2 Literature Review
	1.3 Contributions

	2 Automated Verification Using Reachability Analysis
	2.1 Problem Statement
	2.2 Solution Concept

	3 Discussion and Conclusion
	3.1 Verification of Linear Systems Using Forward Reachability
	3.2 Verification of Linear Systems Using Backward Reachability
	3.3 Verification of Nonlinear Systems

	List of Figures
	Bibliography
	A Reproduction of Publications
	A.1 Adaptive Parameter Tuning for Reachability Analysis of Linear Systems
	A.2 Fully Automated Verification of Linear Systems Using Inner- and Outer-Approximations of Reachable Sets
	A.3 Fully-Automated Verification of Linear Systems Using Reachability Analysis with Support Functions
	A.4 Backward Reachability Analysis of Perturbed Continuous-Time Linear Systems Using Set Propagation
	A.5 Adaptive Parameter Tuning for Reachability Analysis of Nonlinear Systems
	A.6 Adaptive Reachability Algorithms for Nonlinear Systems Using Abstraction Error Analysis

	B Licenses

