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Abstract

This thesis aims at expanding the understanding of the thermoacoustic behavior of gas turbines.
In particular, emphasis is given to the peculiar phenomenon of mode clustering in the spectra
of annular and can-annular combustors, i.e. the appearance of sets of closely spaced eigenmo-
des. This thesis focuses on low-order network models, which represent complex systems as an
ensemble of interconnected acoustic elements, to capture the essential underlying physics and
provide valuable insight.

Thermoacoustic modes arise from two competing flow-flame-acoustic feedback loops, one in-
volving the acoustics of the system, the other intrinsic to the flame and its immediate surroun-
ding, leading to two types of eigenmodes, namely acoustic and ITA. Finding the later remains
an arduous numerical task, thus motivating the use of TFD’s in-house code taX, which solves
for a linear eigenvalue problem to efficiently compute all eigenmodes. The capabilities of the
toolbox have been enhanced, with, among others, a generalized flame element in state-space
framework to account for arbitrary flame response.

If guaranteeing the completeness of the spectrum is of primary relevance, unambiguously iden-
tifying the nature of eigenmodes is equally crucial: acoustic and ITA modes exhibit different
behaviors, in particular with respect to parameter change, which has direct consequences on
mitigation strategies of unstable modes. A simple categorization criterion, based on the phase
difference between the acoustic velocity states upstream and downstream the flame, is propo-
sed. The novelty of this approach lies in the fact that the nature of a mode can be determined
without requiring a tedious parameter sweep.

The discrete rotational symmetry of (can-)annular combustors allows to invoke Bloch theory
to reduce the study to a single unit-cell, while preserving the dynamics of the complete system
using quasi-periodic Bloch boundary conditions. If annular chambers can be modeled as ducts
interconnected to a T-junction, leading to a thin annulus representation where plane waves pro-
pagate, can-annular combustors, in contrast, require to take into account the inertia of volume
of fluid in the cross-talk area by means of a characteristic length. Both models can be derived
analytically and the effects of the annular chamber or the acoustic cross-talk between cans are
lumped into an effective outlet reflection coefficient that depends on the azimuthal order.

For low frequencies, and neglecting mean flow effects, this purely reactive acoustic coupling
is approximated by an equivalent duct terminated by an open end, effectively simplifying the
complex system into an elementary Rijke tube configuration. The resulting model allows to
explain numerous observations. The equivalent downstream length changing with Bloch-wave
number gives rise to clusters of both ITA and acoustic modes of various azimuthal order. Com-
bined with phasor analysis, it also explains the structure of the spectra, where, in general, modes
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Abstract

of higher azimuthal order are closest within a cluster and ITA modes are more damped. Addi-
tionally, acoustic and ITA eigenmodes are shown to follow specific trajectories in the complex
plane, which are strongly influenced by the presence of exceptional points, highlighting that
their interaction with the latter is essential to predict stability.
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Kurzfassung

Ziel dieser Arbeit ist es, das Verständnis für das thermoakustische Verhalten von Gasturbinen
zu erweitern. Der Schwerpunkt liegt dabei auf dem besonderen Phänomen des Mode Clustering
in den Spektren von Ring- und Rohr-Ringbrennkammern, d. h. dem Auftreten von Gruppen eng
beieinander liegender Eigenmoden. Diese Arbeit konzentriert sich auf Netzwerkmodelle nied-
riger Ordnung, die komplexe Systeme als ein Ensemble miteinander verbundener akustischer
Elemente darstellen, um die wesentlichen zugrunde liegenden physikalischen Zusammenhänge
zu erfassen und wertvolle Erkenntnisse zu gewinnen.

Thermoakustische Moden ergeben sich aus zwei konkurrierenden Rückkopplungsschleifen zwi-
schen Strömung, Flamme und Akustik, von denen die eine die Akustik des Systems und die
andere die Flamme und ihre unmittelbare Umgebung einbezieht, was zu zwei Arten von Eigen-
moden führt, nämlich akustische und ITA. Letztere zu finden, ist nach wie vor eine mühsame
numerische Aufgabe, was den Einsatz des TFD-eigenen Codes taX motiviert, der ein linea-
res Eigenwertproblem löst, um alle Eigenmoden effizient zu berechnen. Die Möglichkeiten der
Toolbox wurden erweitert, u.a. durch ein verallgemeinertes Flammenelement im Zustandsraum,
um beliebige Antworten der Flamme zu berücksichtigen.

Wenn die Gewährleistung der Vollständigkeit des Spektrums von primärer Bedeutung ist, ist
die eindeutige Identifizierung der Art der Eigenmoden ebenso entscheidend: Akustische und
ITA-Moden zeigen ein unterschiedliches Verhalten, insbesondere in Bezug auf Parameterände-
rungen, was direkte Auswirkungen auf die Strategien zur Eindämmung instabiler Moden hat.
Es wird ein einfaches Kriterium zur Kategorisierung vorgeschlagen, das auf der Phasendiffe-
renz zwischen den akustischen Geschwindigkeitszuständen stromaufwärts und stromabwärts
der Flamme basiert. Die Innovation dieses Ansatzes liegt darin, dass die Art einer Mode be-
stimmt werden kann, ohne dass ein langwieriger Parameterstudie erforderlich ist.

Die diskrete Rotationssymmetrie von (Rohr-)Ringbrennkammern erlaubt es, die Bloch-Theorie
heranzuziehen, um die Untersuchung auf eine einzige Einheitszelle zu reduzieren, wobei die
Dynamik des Gesamtsystems durch quasi-periodische Bloch-Randbedingungen erhalten bleibt.
Während Ringkammern als Kanäle modelliert werden können, die mit einer T-Verzweigung
verbunden sind, was zu einer dünnen Ringdarstellung führt, in der sich ebene Wellen ausbrei-
ten, muss bei Rohr-Ringbrennern die Trägheit des Fluidvolumens im Überschneidungsbereich
durch eine charakteristische Länge berücksichtigt werden. Beide Modelle können analytisch
hergeleitet werden und die Auswirkungen der Ringkammer bzw. der akustischen Wechselwir-
kung zwischen den Rohren werden in einem effektiven Auslassreflexionskoeffizienten zusam-
mengefasst, der von der azimutalen Ordnung abhängt.

Für niedrige Frequenzen und unter Vernachlässigung der Effekte der mittleren Strömung wird
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diese rein reaktive akustische Kopplung durch einen äquivalenten Kanal mit offenem Ende
approximiert, wodurch das komplexe System zu einer elementaren Rijke-Rohrkonfiguration
vereinfacht wird. Mit dem daraus resultierenden Modell lassen sich zahlreiche Beobachtungen
erklären. Die äquivalente stromabwärts gerichtete Länge, die sich mit der Bloch-Wellenzahl än-
dert, führt zu Clustern sowohl von ITA- als auch von akustischen Moden verschiedener azimu-
taler Ordnung. In Verbindung mit der Phasor-Analyse erklärt es auch die Struktur der Spektren,
bei denen im Allgemeinen die Moden höherer azimutaler Ordnung innerhalb eines Clusters am
nächsten liegen und die ITA-Moden stärker gedämpft sind. Darüber hinaus wird gezeigt, dass
akustische und ITA-Eigenmoden bestimmten Bahnen in der komplexen Ebene folgen, die stark
durch das Vorhandensein von Exceptional Points beeinflusst werden, was unterstreicht, dass
ihre Interaktion mit letzteren für die Vorhersage der Stabilität wesentlich ist.
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This is, by far, the part of a thesis I have always preferred to read because it perfectly emphasizes
that a doctoral project is not “just” the achievement of an individual, but first and foremost a
team effort involving many players, examplifying the verse “in the multitude of counsellors
there is safety” (Proverbs 11:14).

During three and half years in the Space Division of Safran Aircraft Engines (which later be-
came ArianeGroup), I discovered the world of rocket engine development. I have been fortu-
nate to learn a lot from brilliant colleagues. Among others, many thanks to Martin Seive, David
Testa, Fabien Juillet, Loic Penin, Sebastien Boufflert for the exciting discussions and your pas-
sion. David Tonon, with whom I shared an office, impressed me with his scientific rigor and was
a source of inspiration. In the pursuit of scientific excellent, convinced that the latter is key for
designing complex technological products, I decided to dedicate time and energy for a doctoral
project. Many thanks to my car-sharing buddies, Julien Bruet, Guillaume Redoules, Aurélien
Souto-Lebel, Arnaud Fontaine and Eric Véron, who supported me with this crazy career choice
of going back to school.

And this is how, on a cold day of October 2018, I arrived in Munich to join TFD’s group at
TUM. Wolfgang, I have learnt so much from you, but, for the sake of brevity, I can only write a
short summary here. Thank you for trusting me with this project, for giving me a lot of freedom
to explore my own ideas, while having always your door open for discussion. You pushed me
to always do better. The high standards you set for yourself are a source of inspiration for the
whole group. Many times, with well-chosen questions, you helped me clarify my own thoughts
(“what’s the tweet of your paper?”) and your firm stance on the “assertion-evidence” format
leads to high-quality presentations; this is one of my favourite things I learnt from you. A
good summary was written by former colleague Shuai Guo: “you taught me how to go from a
dependent idea implementer to an independent idea generator.”

This work would not have been possible without the tremendous help of Camilo F. Silva, who
always showed great interest in my research. Your understanding of physics and your intuition
have been an invaluable guidance to move forward and pinpoint the region of interest in my
work, which translates in the many papers we wrote together. Max Meindl, with whom I shared
my office, has been a great mentor and friend. Thank you for the countless hours spent answer-
ing my dumb and hopefully not too dumb questions, sharing your tips and tricks (I have become
a great advocate of TikZ figures), cheering me up when I was lost. I could not have made it with-
out you! Matthias Haeringer taught me everything about Bloch theory and azimuthal modes
during whiteboard sessions in his office. I am forever grateful for your help. Thank you, Felici-
tas Schaefer Engelhardt, for your help finding the treacherous Exceptional Points, as well as for
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the nine-months Elternzeit you took that allowed me to have a contract extension. Many thanks
to Felix Schily for your help mastering taX, but also all the non work-related stuff (phone calls
auf Deutsch on my behalf, explanations of the intricacies of the German administration with
Winterreifen, Zulassungsstelle, etc.).

Of course, a department cannot run smoothly without a high-quality “Sekretariat”. Many thanks
to Helga Bassett for day-to-day handling, for your patience for explaining again and again how
yellow vacations cards work or reminding me the correct address where to send my Kostenrück-
erstattung, which, despite 4 years at the chair, I couldn’t remember. Sigrid Schulz-Reichwald
was of great help to manage the finances of the project.

I will keep great memories of the TD/TFD chair and all those whose paths I’ve crossed. Thank
you for making these years unforgettable. Special mentions to my french speaking group (Anh
Khoa Doan, Abdulla Ghani and Grégoire Varillon), my ITN fellows with whom I had great fun
to travel all accross Europe before COVID struck (Sagar Kulkarni, Naman Purwar and Alireza
Javareshkian), my TurboExpo 2022 travel buddies for an unforgettable week in Rotterdam (Ger-
rit Heilmann, Jonathan McClure, Jan-Andre Rosenkranz, Moritz Merk), and those I was happy
to see again at TurboExpo 2023 in Boston (Jan Kaufmann, Manuel Vogel, Thomas Steinbacher,
Martin March, Saskia Flebbe), Julian Renner, who, after four years, still cannot say my first
name properly, Simon Tartsch and his daily joyful mood and energy to make the chair a better
place, Shuai Guo and his strange fascination for corgi dogs, Thomas Hofmeister, the paper-
writting machine, Christophe Wieland, Michael McCartney, Edoardo Scoletta, Marcin Rywik,
Simon van Buren, ein WTP-Affe, and the new guys, whom I haven’t had time to get to know
very well but who are really nice, Marcel Desor, Axel Zimmermann, Marian Hiestermann and
Philipp Brokof. Philip Bonnaire, I was very happy to share my office with you for the last part
of my time at the chair. I did my best to mentor you and give you as much as I had received from
Max. I enjoyed every day with you, our discussion about any topics, and your kindness (I do
not forget your help emptying the flat when we moved back to France!). My desk is now in the
good hands of Alex Eder, and I trust he will put it to good use. Many thanks to Jens Hümmer
and his help to organize memorable Einstandsfeier (and hopefully my Doktorsfeier soon) and
Thomas Schleussner for repairing all my broken stuff, his good advices, and his constant effort
for having me speak German to improve my deutsche Sprachkenntnisse.

Being part of a European project allowed me to regularly meet my fellow ESRs; special men-
tion to Thomas Indlekofer, Yi Hao Kwah, Roberto Ciardiello, Francesco Gant, Karl Töpper-
wien, Abel Faure-Beaulieu, Ermanno Lo Schiavo, Preethi Rajendram Soundararajan and Syl-
vain Humbert. Many thanks to James Dawson for running flawlessly this project. I was de-
lighted to meet and get to know incredible researchers from all over Europe who also showed
interest in my research: Thierry Poinsot, Laurent Gicquel, Ronan Vicquelin, Matthew Juniper,
Oliver Paschereit, Jonas Moeck, Alessandro Orchini, Stéphane Richard, Nicolas Noiray, Bruno
Schuermans, Marco Zedda. I want to also thank Aimee Morgans and Tim Lieuwen for giving
incredible lectures on thermoacoustic during the Cambridge Summer School in 2018.

ITN also rhyms with secondment. The two weeks I spent in Baden, hosted by Ansaldo En-
ergia, were amazing. Thank you, Mirko Bothien, for making it possible and allowing me to
explore ideas that were not planned in the original proposal. Despite COVID, which forced us
to move towards a virtual format, this collaboration was very fruitful. Many thanks to the Ther-
moacoustics team for the warm welcome. In particular, I want to acknowledge the supervision
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and mentoring of Giulio Ghirardo who is a talented and inspiring researcher. Your advices and
guidance helped me turn my vague initial ideas into a concrete journal paper.
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tively. Thank you, Wolfgang, for trusting me with that mission and for allowing me to prepare
and conduct tutorial sessions on your behalf. It truly was an enlightening experience. Another
memorable milestone the organization of SoTiC 2021, the most important conference exclu-
sively dedicated to thermoacoustics and combustion dynamics. If COVID forced us to change
the in-person venue for a virtual format instead, the event was nevertheless a great success, with
170 participants from 12 countries. Thomas Sattelmayer, it was really great to work with you!

Moving abroad is also the opportunity to forge new friendships. We were very happy to meet
the Pündterplatz 6 (now Unterschleißheim) Geschwister and tie bonds over the years. In partic-
ular, we are forever in debt to Christian and Manuela Kuhn, who opened their house and had
me stay for two months before I could overcome the nightmare of finding a flat in the region
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1 Introduction

“We choose to go to the moon in this decade and do the other things, not because they are easy,
but because they are hard, because that goal will serve to organize and measure the best of
our energies and skills, because that challenge is one that we are willing to accept, one we are
unwilling to postpone, and one which we intend to win.” [5].

When Kennedy gave, at Rice University, the famous speech that launched the race to the moon,
little did he knew that this sentence would perfectly summarize the chaotic developement of
liquid rocket engines, in particular the F-1 engine powering Saturn V. Crippled by combustion
instabilities, the latter required years of effort and approximately two thousand full-scale tests
to reach stability, for an estimated cost over a billion dollars [6]. While this remains probably
the best-known example, thermoacoustics is encountered in other applications, for instance in
ramjets and afterburners [7] or in gas turbines, in particular when operated in lean-premixed
conditions [8, 9]. This type of self-excited instabilities result from the coupling between the heat
release fluctuations of the flame and the acoustics of the system, which may result in a positive
feedback loop inducing growing pressure oscillations. They must be avoided at all cost; not
only do they degrade the operability, performance and emissions, but the repeated exposure to
high pressure levels over time promote mechanical fatigue and may lead to catastrophic failure
of the combustor [2].

(a) (b)

Figure 1.1: (a) Engine failure in the Rocket Engine Test Facility test stand. Photo reproduced
from [1]. (b) Gas turbine combustor damaged by combustion instabilities. Courtesy of Prof.
Tim Lieuwen [2].
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(a) Silo combustor (b) Annular combustor (c) Can-annular combustor

Figure 1.2: Evolution of gas turbines architectures. Courtesy of Dr. Abel Faure-Beaulieu [3].

To meet the need of improved performances, gas turbines architectures have greatly evolved
over the last decades. Older machines often made use of silo combustors because of their sim-
ple design and construction, which allowed for easy accessibility. These were the times of long
diffusion flames, thus explaining the significant dimensions of the combustor. Unfortunately,
the price to pay was an increased number of large surfaces to cool, which proved to be both
difficult and expensive. The complex air path from the compressor, flowing up along the silo to
until the U-turn at the combustor entrance, also caused important pressure losses, i.e. a reduced
efficiency. Despite a massive transition piece, a uniform distribution of the hot gases around the
circumference was hardly possible resulting in problematic turbine inlet temperature profiles,
only partially reduced by twin-silos configurations [10]. Their excessive weight restricted their
use exclusively to land-based applications. In comparison, annular combustors are extremely
compact by design and exhibit exceptional power density, making them perfect candidates for
aero-engines. The lesser cooling surfaces, the better turbine-stage feeding and the overall effi-
ciency were sufficient advantages to also motivate their use in land-based gas turbines [11, 12].
However, the recent years have seen this industry transition towards a new type of architecture,
which consist of an ensemble of identical cans placed in an annular arrangement, hence the
name can-annular combustors. The latter can be found in the H-class gas turbines of the major
players, e.g. Ansaldo GT36 [13], Siemens SGT6 [14] or GE 9HA [15]. Besides the eased inte-
gration and sealing constraints, the improved accessibility and more practical maintenance, an
important advantage of cans is the rig-to-engine transfer; although not perfectly reliable, infer-
ring the behavior of the full engine from high-pressure single can testing will always be better
than annular designs. A drawback of this architecture is, however, the need of either cross-fire
tubes or one ignitor and flame supervision per can.

One of the challenges of the coming decades will be to meet the ever growing demand for en-
ergy while reducing the environmental impact of combustion systems [16]. For the aeronautical
industry, the need to further reduce fuel consumption and NOx emissions may require to move
away from RQL (Rich-Quench-Lean) systems and consider other injection technologies such
as Lean Direct Injection (LDI) or Lean Premixed Prevaporized (LPP) [17]. In the energy sector,
gas turbines are foreseen to play a major role in stabilizing the electrical grid by counterbalacing
the unsteadiness in supply of renewable sources or by storing the excess with “power-to-gas”
solutions [18]. With the rise of new architectures as well as alternative fuels (hydrogen, SAF,
etc.), thermoacoustic combustion instabilities are expected to remain a “hot topic” in the years
to come. Despite being known since the 19th century [19], they continue to be an industrial
headache. The approach of NASA for Apollo, with enormous outlay of energy and resources,
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being no longer feasible for modern programs, a variety of numerical tools and methods have
emerged to better understand, predict and mitigate instabilities [20]. If Large-Eddy Simulations
have long been restricted to simple academic cases, the increased computational power allows
nowadays to investigate complex industrial configurations [21, 22]. This high-fidelity approach,
by solving the full set of nonlinear governing equations, requires the least modeling assumption,
and thus provides the most accurate results and inherently captures nonlinear flame-flow inter-
action and nonlinear saturation of the flame response, i.e. naturally account for the formation
of limit cycle oscillations. However, the costs remain excessive for such tool to be employed
in design phases, which limits its use rather to a posteriori verifications of experimental obser-
vations. Consequently, as stated by Magri et al. [23], “linear stability has remained a powerful
mathematical tool to gain understanding of fluid behavior by tracking infinitesimal perturba-
tions or observing responses to forcing”. Linearization of the Navier-Stokes equations, species
transport equations and reaction mechanism for the source terms yields the Linearized Reactive
Flow (LRF) approach [4, 24]. This monolithic formulation predicts thermoacoustic eigenmodes
with increased accuracy compared to hybrid modeling strategies that employ stronger simpli-
fications, e.g. Linearized Navier-Stokes Equations [25, 26], Linearized Euler Equations [27]
(omitting viscous effects) or Helmholtz Equation [28] (neglecting mean flow). Finally, low-
order network models represent complex systems as an ensemble of interconnected elementary
acoustic elements. While simplistic in appearance, this approach, pioneered by Merk [29], is
crucial to improve the fundamental understanding [8, 30–36].

The recent years have shown that many observations are still not perfectly understood. Among
others, the spectra of annular and can-annular combustors have been shown to exhibit clusters
of modes of various nature, i.e. sets of closely spaced eigenfrequencies [37, 38]. The focus
of the work summarized in this publication-based thesis is to provide insight on the origin of
these phenomena, employing low-order modeling techniques to explain the underlying physics.
In particular, it is highlighted that acoustic models of annular chambers and cross-talk area of
can-annular combustors can be derived analytically and used to enforce effective boundary con-
ditions, allowing for convenient analogy with simple Rijke tube thermoacoustic models. This
publication-based manuscript, whose purpose is to provide the context around and connections
between the papers of this thesis, is organized as follows: in Chapter 2, a brief overview of
low-order modeling is recalled. Eigenmodes of various nature can be categorized with a simple
criterion, as discussed in Chapter 3. Then, analytical derivations of acoustic models for annular
and can-annular configurations are summarized in Chapter 4, and used in Chapter 5 to explain
clusters as well as the peculiar behavior of eigenmodes in the spectra. Finally, in Chapter 6, a
detailed discussion put the papers that constitute this thesis into perspective with the existing
literature. The reader’s attention is drawn to the fact that Chapters 2-5 not only present the state
of the art, but also contain concise descriptions of the original contributions of this thesis.

3



Introduction

LRF

LNSE/LEE

Helmholtz

Network

increase in modelling
assumptions

increase in
cost and accuracy

LES

Figure 1.3: A variety of methods are available to investigate thermoacoustic combustion insta-
bilities. Computational cost is reduced with increasing number of modeling assumption, at the
expense of accuracy. Pictures are courtesy of Dr. Max Meindl [4] and Alexander J. Eder.
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2 Fundamentals of Network Modeling

Network modeling relies on a divide et impera approach that enables to represent a complete
thermoacoustic system as an ensemble of elementary interconnected acoustic elements. The
modeling assumptions allow to reduce the complexity of the problem while preserving the
essential physics. This chapter introduces the governing equations and gives an overview of
commonly used acoustic elements.

2.1 Governing Equations

The motion of viscous Newtonian fluids is described with a set of three conservation equations.
A detailed derivation can be found in the literature [39–41].

The continuity equation states the conservation of mass:

Dρ

Dt
+ρ∇·u = 0 (2.1)

where D
Dt =

∂

∂t
+u ·∇ denotes the material derivative, ρ the density, t the time and u the velocity.

The Navier-Stokes equation arise from Newton’s second law which states the principle of mo-
mentum conservation. Assuming absence of body forces and neglecting viscosity yields the
Euler equation:

ρ
Du

Dt
+∇p = 0 (2.2)

The energy equation can be written in terms of internal energy or total enthalpy. In the absence
of body forces, and neglecting viscous effects and heat conduction, it reduces to an isentropic
condition:

Ds
Dt

= 0 (2.3)

Closure is provided with the assumption of ideal gas behavior. The equation of state relates
pressure, density and temperature:

p = ρr T (2.4)

In acoustics, disturbances of the flow variables are small compared to their mean value, which
allows for linearization of the governing equations. Using Reynolds decomposition, the quan-
tities of interest consist of a steady-state mean value, denoted by a □, and a superimposed
fluctuation, denoted by a □′.

p(x , t ) = p(x)+p ′(x , t ); u(x , t ) = u(x)+u′(x , t ); ρ(x , t ) = ρ(x)+ρ′(x , t ) (2.5)
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2.2 Duct Acoustics

Considering only the fluctuating parts of the mass conservation equation Eq. (2.1) and Euler
equation Eq. (2.2), assuming zero mean flow, and neglecting higher order terms yields:

∂ρ′

∂t
+ρ∇·u′ = 0 (2.6)

ρ
∂u′

∂t
+∇p ′ = 0 (2.7)

From the state equation for an ideal gas in homentropic flow (i.e. constant and uniform entropy),
it follows that pressure is a function of density only. A first order approximation is:

p ′ = c2ρ′ (2.8)

where c =
√
γr T is the speed of sound and γ the ratio of specific heat capacities.

Inserting Eq. (2.8) into Eq. (2.6), taking the time derivative and subtracting the divergence of
Eq. (2.7) yields the wave equation for pressure disturbances:

∂2p ′

∂t 2
− c2∇2p ′ = 0 (2.9)

Assuming that only one-dimensional plane acoustic waves propagate, Eq. (2.9) can be factor-
ized: (

∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
p ′ = 0 (2.10)

The resulting formulation reveals two independent propagation equations. Consequently, the
general solution of the wave equation is a superposition of two waves, traveling in the upstream
and downstream direction respectively. The corresponding characteristic wave amplitudes are
defined as follows:

f ≡ 1

2

(
p ′

ρc
+u′

)
, g ≡ 1

2

(
p ′

ρc
−u′

)
(2.11)

Assuming harmonic time dependence, the acoustic scattering matrix of a simple duct of length
L reads: [

fd

gu

]
=

[
e−sτ 0

0 e−sτ

][
fu

gd

]
(2.12)

The term e−sτ represents the phase change resulting from the acoustic propagation of the waves,
τ= L/c being the time it takes to travel along the length L of the duct at speed c. The Laplace
variable is defined as s =σ+ iω, with σ the growth rate and ω= 2πν the angular frequency.

Equation (2.12) is non-linear in frequency s. Padé approximation allows to transform the expo-
nential term in a rational polynomial in s, but suffers from several limitations [42]. Alternatively,
a spatial discretization with finite difference leads to a set of linear time-invariant (LTI) ordinary
differential equations (ODE) that can be written in state-space formalism:

dx(t )

dt
= Ax(t )+B

[
fu

gd

]
[

fd

gu

]
= Cx(t )

(2.13)
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2.3 Acoustically Compact Elements

where x is state vector, the matrix A describes the dynamics of the system, B relates the time
derivative of state to the input, C maps the state on the outputs and D, the feedthrough matrix,
is null in this case. These matrices have constant coefficients that are independent of frequency
s.

Such state-space formalism allows for an elegant and simple, yet accurate, representation of the
considered system. For simplicity, mean flow effects are not considered in this thesis but can
easily be accounted for [42]. Similarly, the presented framework holds for ducts with tempera-
ture gradients and varying cross-sectional area [43, 44].

2.3 Acoustically Compact Elements

Several elements may have an axial spatial extension much shorter than the wavelengths of
interest, and, as such, can be considered acoustically compact. Nonetheless, the jump conditions
may have a non-negligible impact on the overall system, thus the physics must properly be
captured. Considering an element with a varying cross-sectional area, e.g. a contraction, an
abrupt area expansion, coupling relations between the upstream and downstream locations are
derived using the unsteady Bernoulli equation:

0 = ∂

∂x

(
∂ϕ

∂t
+ u2

2
+ γ

γ−1

p

ρ

)
(2.14)

where ϕ is the velocity potential.

Integrated along a streamline of meanflow between the upstream xu and downstream xd coor-
dinates, the first term Eq. (2.14) writes:∫ xd

xu

∂

∂x

(
∂ϕ

∂t

)
d x =

∫ xd

xu

∂

∂t

(
∂ϕ

∂x

)
d x = ∂

∂t

∫ xd

xu

u(x)d x ≈ ∂

∂t
uu

∫ xd

xu

Au

A (x)
d x (2.15)

where the approximation A (x)u (x) ≈Auuu results from the acoustically compact assumption,
as the flow through the element is effectively incompressible. Defining the characteristic length

Lchar =
∫ xd

xu

Au

A (x)
d x (2.16)

and assuming harmonic time dependence, Eq. (2.15) reduces to:∫ xd

xu

∂

∂x

(
∂ϕ

∂t

)
d x = sLchar uu (2.17)

Physically, the characteristic length accounts for the inertia of the volume of fluid between the
two reference positions u and d , i.e. a change in pressure difference p ′

d − p ′
u will lead to a

gradual change in velocity u′
u leading to phase difference between the two terms.

The integral in space of the remaining two terms of Eq. (2.14) is simply evaluated at location xu

and xd . Linearization with Reynolds decomposition, assuming zero mean flow and neglecting
higher order terms yields:

sLchar u′
u +

p ′
d −p ′

u

ρ̄c
= 0 (2.18)
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Similarly, by neglecting mean flow effects, mass conservation integrated over the control vol-
ume reduces to conservation of volumetric flow rate:

u′
d = Au

Ad
u′

u (2.19)

Writing Eq. (2.18) and Eq. (2.19) in terms of characteristic wave amplitudes f and g leads to:

[
fd

gu

]
=


2Au/Ad

1+Au/Ad + sLchar
1− 2Au/Ad

1+Au/Ad + sLchar

1− 2

1+Au/Ad + sLchar

2

1+Au/Ad + sLchar


[

fu

gd

]
(2.20)

Equation 2.20 is simply the state-space representation of the considered element, where the
state equation is null and the system is feedthrough-only, i.e. the outputs are directly related to
the inputs. Derivation to account for mean flow effects and acoustic losses can be found in the
literature [45].

2.4 Flame and Unsteady Heat-Release Modeling

2.4.1 Rankine-Hugoniot Equations

In the typical frequency range of interest, the length of a flame is much smaller than the relevant
acoustic wavelengths. As a result, similarly to Sec. 2.3, the flame can reasonably be assumed
acoustically compact. The conservation equations for mass, momentum and energy are lin-
earized to relate fluctuations of heat release q̇ ′, acoustic velocities u′ and pressures p ′ upstream
and downstream the flame. Introducing two dimensionless parameters, ξ= ρucu/ρd cd the ratio
of specific impedances and Θ= (Td −Tu)/Tu the normalized temperature ratio, and neglecting
the higher order Mach number terms for simplicity, the derivation yields the acoustic Rankine-
Hugoniot jump conditions [46–48]: 

p ′
d

ρd cd
= ξ p ′

u

ρucu

u′
d = u′

u +Θuu
q̇ ′

q̇

(2.21)

The first equation simply states that pressure is continuous through the flame. On the contrary,
its gradient, i.e. acoustic velocity, is not: the flame acts as a source of volume and creates a
discontinuity in acoustic velocity, as shown by the source term q̇ ′ in the second equation. The
latter is unknown and must be modeled to provide closure for the equation.

2.4.2 Flame Transfer Function

To account for the flow-flame coupling, the unsteady heat release q̇ ′ is governed by an ex-
ternal model, like a flame transfer function (FTF). The latter can be obtained from experi-
ments [49, 50], semi-analytical models [51, 52] or LES simulations with either monofrequency

8



2.4 Flame and Unsteady Heat-Release Modeling

0 0.25 0.5 0.75 1

−0.1

0

0.1

0.2

0.3

t/tmax

h
k

(a)

0

1

2

|F
|

0 0.25 0.5 0.75 1

−4π

−2π

0

ν/νmax

∠F
(b)

Figure 2.1: (a) Unit impulse response (UIR) of a flame obtained with LES. Such time domain
representation is completely equivalent to the FTF F (s) in the frequency domain. (b) Bode
diagram of the flame frequency response (FFR) F (i.e. absolute value and phase of the FTF
F (s) evaluated for zero growth rate) as a function of dimensionless frequency. The proposed
continuous state-space representation shows excellent agreement with the discrete data obtained
from LES.

excitation [53–55] or broadband forcing and system identification [56, 57]. The FTF F (s) is
a linear model relating unsteady heat release fluctuations to acoustic velocity fluctuations at a
reference position, e.g. just upstream the flame. The relation is normalized by the mean values
and writes:

q̇ ′

q̇
=F (s)

u′
u

uu
(2.22)

A first approach was proposed by Crocco with the well-known n −τ model [58]:

F (s) = ne−sτF (2.23)

Although simple, such model captures the essential aspects of a generic flame. The latter re-
sponds to perturbations with a certain strength n. However, the response is not instantaneous
but rather takes place with a time delay τF , expressed by the exponential term. This model con-
tinues to be widely used in the context of low-order networks because it often enables to derive
analytical solutions and gain better insight.

To overcome the limitations of the n −τ model and obtain a quantitatively accurate descrip-
tion of a flame response, a natural generalization is to model the latter as distributed time de-
lays (DTD) [59], as exemplified in Fig. 2.1. The unit impulse response (UIR), obtained either
through LES or experiments, fully characterizes a LTI system. This time-domain point of view
is completely equivalent to the FTF representation in the frequency domain:

F (s) =
N∑

k=0
hk e−s∆tk (2.24)

Such discrete FTF can be transformed into a continuous state-space representation with
constant-coefficient matrices. It is well-known from control theory that a time delay can be
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expressed using an advection equation [60]. Since a DTD model is nothing but a collection of
individual time delays, in a similar manner as the approach introduced in Sec. 2.2, a pseudo-
space is discretized using finite difference to solve for an advection equation, which leads to the
state-space representation: 

dx

dt
= Ax+B

u′
u

uu

q̇ ′

q̇
=

[
h1 . . .hN

]
x+h0

u′
u

uu

(2.25)

The C and D matrices of the output equation directly contain the coefficients hk of the UIR.
As highlighted in Fig. 2.1, such continuous model shows excellent agreement with the discrete
reference, both in terms of gain and phase of the flame frequency response and exhibit the
features typically observed in premixed swirling flames, i.e. low-pass behavior with excess gain
in the low frequencies. Detailed derivation and analysis can be found in PAPER-FTF [61].

2.5 Boundary Conditions

Boundary conditions are essential to provide closure for the problem as they describe the acous-
tic behavior at the limit of the considered system. They usually constitutes a special case of the
acoustically compact elements. They can be expressed in terms of impedance, relating u′ and
p ′, or in terms of reflection coefficients, relating the CWA f and g . The second approach often
proves to be more convenient for network models as it allows to better understand the causality.
The boundary conditions, written in terms of reflection coefficients, are{

fi = Ri gi

go = Ro fo
(2.26)

for an inlet and an outlet respectively. Equation (2.26) can directly be interpreted as the state-
space representation of a boundary. The reflected wave is entirely driven by the incoming wave
through the feedthrough matrix. In the absence of mean flow, the boundaries can be fully reflec-
tive (e.g. an open end R =−1, a closed end R = 1), exhibit some losses (R ̸= ±1) or be more so-
phisticated with a frequency-dependent response. When accounting for mean flow, boundaries
must be treated with care and specific coupling relations must be derived to avoid introducing
non-physical spurious acoustic energy that would invalidate any stability analysis [62].

2.6 A Fundamental Example: The Rijke Tube

Because of its simplicity, the Rijke tube [63] is a fundamental example as it encompasses the
essential feature of a thermoacoustic system, namely a coupling between the acoustics and the
delayed response of an unsteady heat source.

The system, shown in Fig. 2.2, consists of tube that contains either an electric heater or flame.
Upstream and downstream of the heat source, only plane waves propagate and their motion
is described by Eq. (2.12). The change in temperature across the unsteady heat source leads
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Ro

i u d o

Ri

Lu Ld

Figure 2.2: Schematic of a generic Rijke tube of length Lu upstream the flame, Ld downstream
the flame. The acoustic boundaries are defined by the reflection coefficients Ri and Ro at the
inlet and outlet respectively.

to different propagation velocities in the cold and hot regions. The jump conditions are given
by the Rankine-Hugoniot equations Eq. (2.21) and the delayed response of the heat source
to perturbations is described with a transfer function Eq. (2.22). The problem is closed with
boundary conditions, such as Eq. (2.26), which describe the acoustic behavior at both ends of
the tube.

Combined, the governing equations can be cast in the matrix form:

−1 Ri 0 0 0 0 0 0

e−sτu 0 −1 0 0 0 0 0

0 1 0 −e−sτu 0 0 0 0

0 0 −1−ΘF (s)−ξ 1+ΘF (s)−ξ 2 0 0 0

0 0 1+ΘF (s)−ξ −1−ΘF (s)−ξ 0 2 0 0

0 0 0 0 e−sτd 0 −1 0

0 0 0 0 0 −1 0 e−sτd

0 0 0 0 0 0 −Ro 1





fi

gi

fu

gu

fd

gd

fo

go


=



0

0

0

0

0

0

0

0


(2.27)

Mathematically, this system of eight equations with eight unknowns admits non trivial solutions
if the determinant of the matrix is null. Solving for the determinant leads to the dispersion
relation:

D(s) = (ξ+1+ΘF (s))
(
1−Ri Roe−2s(τu+τd ))+ (ξ−1−ΘF (s))

(
Ri e−2sτu −Roe−2sτd

)= 0 (2.28)

Equation (2.28) is non-linear in frequency s because of both the exponential terms due to acous-
tic propagation and the flame response F (s). It generally cannot be solved analytically, and
solving numerically remains challenging. Instead, the state-space framework, presented along
the previous sections, allows to transform Eq. (2.28) into a linear eigenvalue problem (LEVP),
which facilitates the use of direct solvers. Such approach is adopted in the open-source MATLAB

package taX1, developed by TFD Group, to build and solve low-order thermoacoustic network
models. Part of this doctoral project was dedicated to improving this toolbox. Among others,
new features have been implemented and validated, the library has been enriched with new

1https://gitlab.lrz.de/tfd/tax
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elements, the graphical user interface was reworked from scratch for a more user-friendly ex-
perience, etc. Furthermore, a significant effort has been devoted to documenting, disseminating
and training users. A series of eight videos, totaling two hours of content, has been recorded and
is available on TFD’s YouTube channel. A broad range of topics is covered (e.g. installation,
debugging and good practices, set-up of models, data analysis, parameter studies, development
of new elements) in order to guide new users.

The solutions of the dispersion relation Eq. (2.28) are the eigenvalues. Associated with their cor-
responding eigenvectors, they constitutes the thermoacoustic modes of the system. The imagi-
nary part of an eigenvalue is the frequency of oscillation of the mode, whereas the real part is
its growth rate and reflects the fact that a mode can be stable (negative growth rate), marginally
stable (σ = 0) or unstable (positive growth rate). For an aeronautical or land-based gas turbine
to operate safely, it is critical to ensure the combustor stability. A profound understanding of
the spectrum and of the eigenmodes nature is necessary. This is developed in the following
chapters.
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3 Categorization of Thermoacoustic
Modes

This chapter gives an overview of two types of thermoacoustic instabilities that can be encoun-
tered. While both may lead to self-excited pressure oscillations, the underlying physics funda-
mentally differs. The two mechanisms are presented and a categorization criterion is given. The
latter enables to understand the nature of an eigenmode, and, consequently, choose an appropri-
ate risk mitigation strategy.

3.1 The Classical Understanding

Whether the interaction between combustion and the acoustics of a combustor gives rise to an
instability depends in an essential manner on the relative phases, in particular on the phase
between fluctuations of pressure and unsteady heat release at the flame. This has been known
since Lord Rayleigh [19], who has proposed a criterion: “For an instability to occur, heat must
be added at the moment of greatest compression.” Mathematically, the Rayleigh criterion may
be formulated as follows: ∫

V

∫
T

p ′(x , t )q̇ ′(x , t )d tdV > 0 (3.1)

If the pressure and heat release fluctuations are in phase, the integral over a period of oscillation
is positive and the net energy of the acoustic field is increased [64, 65]. While true, this criterion
is only a necessary but not sufficient condition, as it only considers the driving of the system.
However, for an instability to develop, the driving component must overcome the losses and
damping mechanisms, which exist in every combustor. Zinn and Lieuwen [66] summarized this
statement as: ∫

V

∫
T

p ′(x , t )q̇ ′(x , t )d tdV︸ ︷︷ ︸
Driving

>
∫

V

∫
T

∑
Li (x , t )d tdV︸ ︷︷ ︸

Damping

(3.2)

Many sources of damping are present in gas turbine engines, e.g. losses at the inlets and outlets
of the combustor [67], losses due to bias flow liners [68, 69], perforated plates and Helmholtz
resonators [70, 71], among others. If large enough, the combustor remains stable, regardless of
the Rayleigh criterion.

The frequencies of thermoacoustic instabilities are often close to the natural eigenfrequencies
of the combustor, i.e. the acoustic eigenfrequencies without unsteady heat release. Such obser-
vation can be explained with the following derivation. Similarly to Sec. 2.2, linearization and
combination of the mass and momentum conservation equations with a volumetric heat source
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term yields the inhomogeneous wave equation [72]:

1

c2

∂2p ′

∂t 2
−ρ∇·

(∇p ′

ρ

)
= γ−1

c2

∂q̇ ′

∂t
(3.3)

A common strategy to solve Eq. (3.3) is through a Galerkin series expansion of the pressure and
velocity fields [73–75]: 

p ′(x , t ) =
∞∑

i=0
η̇i (t )ψi (x)

u′(x , t ) =−
∞∑

i=0
ηi (t )

∇ψi (x)

ρ

(3.4)

where the functions ηi (t ) are unknown time-dependent coordinates and
{
ψi (x)

}∞
i=0 is an

arbitrarily-chosen set of admissible space functions that satisfies the spatial boundary condi-
tions, commonly the eigenmodes of the homogeneous problem. Inserting Eq. (3.4) into Eq. (3.3)
and making use of the orthogonality of the functions ψi (x) leads to the second order stochastic
nonlinear differential equation:

η̈i (t )+ω2
i ηi (t ) =Q[ηi , η̇i ]−αη̇i (t )+ςζ(t ) (3.5)

which describes the temporal evolution of the considered eigenmode. In the absence of sources
and sinks, the mode is marginally stable and the oscillations occur at the natural frequency ωi .
The presence of the flame introduces two forcing terms. The deterministic nonlinear opera-
tor Q[η, η̇] models the flame response to acoustic pressure and velocity perturbations [76, 77].
Combustion background noise, which results from non-coherent heat release fluctuations [78]
(e.g. turbulence, indirect noise from entropy waves [79], etc.), can be approximated by a white
Gaussian noise ςζ. Acoustic sinks appear in the form of a damping term −αη̇. In summary,
thermoacoustic modes can simply be interpreted as natural acoustic eigenmodes perturbed by
the combustion [75], hence the similarity in the oscillation frequencies [40, 80]. The stability
depends on an acoustic energy balance between the driving of the flame and the losses of the
system.

3.2 The ITA Feedback Loop, a New Paradigm

Despite its solid theoretical foundation [72–75, 81] and the vast amount of experimental val-
idations [82–86], the framework introduced in the previous section fails to explain numerous
observations. For instance, Dowling and Stow [87] derived, in the frequency domain, a model
based on the one-dimensional linearized Euler equations in order to assess the stability of lean
premixed prevaporized gas turbine combustors. The authors reported a “new set of modes as-
sociated with flame model” but could not further elaborate. Similarly, the anomalous peaks in
the acoustic flame response [88] and the so-called instability potentiality [89], which, unlike
the Rayleigh criterion, is independent of the acoustic characteristics of the system, were, at that
time, unexplained.

Eckstein et al. [90] experimentally investigated a spray combustor mounted with a swirl airblast
atomizer, typical of aero-engines, and reported an instability at 120 Hz, far from any natural
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Figure 3.1: Schematic of the ITA feedback loop. At the flame, due to the temperature discon-
tinuity, the incoming waves fu and gd are partially transmitted and reflected. The flame, which
contributes to the overall acoustics as a monopole source of sound, is driven by the upstream
velocity, thus closing a feedback loop (highlighted in red) intrinsic the flame and its immediate
surroundings.

acoustic frequency of the system. The low frequency indicating a possible entropic mode, the
downstream nozzle was removed to avoid any indirect noise perturbations. Surprisingly, not
only had the instability not disappeared, but the amplitude of oscillation was larger. The insta-
bility was interpreted as a “bulk mode” [91]. Similarly, the model of Weyermann [92] could
only retrieve the acoustic mode at 400 Hz but not the strong peak at 100 Hz observed in the
corresponding experiment of a confined swirl-stabilized burner, without extensively tuning the
time-delay between the reference location and the flame. Tay-Wo-Chong et al. [56] identified
the flame transfer function of a resembling configuration using a Large Eddy Simulation and
performed linear stability analysis with a network approach. Of the three identified eigenmodes,
only two could be associated to the acoustics of the system, namely the Helmholtz mode of the
plenum and the quarter-wave mode of the chamber, the remaining one being “produced by flame
dynamics”, without further elaboration.

The established understanding of thermoacoustics was significantly challenged with the an-
alytical and experimental work of Hoeijmakers et al. [93, 94], where instabilities of a laminar
Bunsen-type flame placed in an anechoic environment were observed. This situation is paradox-
ical: acoustic waves can only leave the system without being reflected, the feedback loop being
cut, no acoustic resonance can be triggered, and yet, an instability manifests itself. Bomberg et
al. [48] formally identified the so-called intrinsic thermoacoustic (ITA) feedback loop, which
does not involve any reflection of acoustic waves at the boundaries, as depicted in Fig. 3.1.
The ITA feedback mechanism may be briefly summarized as follows: the flame responds to
upstream velocity perturbations with fluctuations of heat release. The latter act as a monopole
source of sound [95], and, consequently, generate acoustic waves traveling in both upstream
and downstream direction. In turn, the waves traveling in the upstream direction perturb the
acoustic velocity at the reference position, before even reaching the boundaries of the system,
thus closing the feedback loop. In a sense, this flow-flame-acoustic interaction is intrinsic to the
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Figure 3.2: Contour map of the Φ criterion around the first two passive acoustic modes of an
exemplary axial combustor. Close the passive acoustic modes, the thermoacoustic modes are
rather classified as of acoustic nature. Conversely, away from the passive solutions, i.e. in the
extremely damped and extremely unstable regions, thermoacoustic modes should be regarded
as ITA.

flame and its immediate surroundings, hence the name.

The ITA feedback loop shed a new light on the hitherto unexplained phenomena described pre-
viously and provided a physical explanation [35] to the observations of Hoeijmakers [96], which
were later confirmed by several high-fidelity compressible CFD simulations [97, 98]. Emmert
et al. [36] demonstrated that the ITA feedback gives rise to a new set of eigenmodes also for
reflecting boundaries, and identified such an “ITA mode” as the dominant unstable eigenmode
in a premixed swirl-stabilized combustion test-rig. This new paradigm completely changed the
understanding of thermoacoustic instabilities and, in the last decade, led to numerous studies,
recently summarized by Silva [99].

3.3 A Categorization Criterion

Beyond curiosity and interest for the scientific community, the understanding of both mech-
anisms, and, consequently, of the nature of an eigenmode, is of great practical engineering
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relevance. For instance, Emmert et al. [36] highlighted that increasing the losses at the bound-
aries can further destabilize such an ITA mode. This counter-intuitive result demonstrates that
the classical methods used to stabilize a combustor (e.g. increasing losses, using Helmholtz
dampers, acoustic liners [100], etc.) may not necessarily produce the expected outcome.

Assuming harmonic time dependence, any variable of interest may be conveniently represented
in terms of a phasor, i.e. a complex-valued vector. This concept allows for graphical represen-
tation in terms of an Argand diagram, where a phasor is simply an arrow in the complex plane
whose length and orientation reflect the amplitude and phase of oscillation respectively. De-
pending on their nature, eigenmodes exhibit very different phasor diagrams. For instance, for a
pure ITA mode (i.e. an ITA mode in a fully anechoic environment), the velocity phasors u′

u and
u′

d , immediately upstream and downstream the flame respectively, are almost perfectly out of
phase. Surprisingly, in a combustor with fully reflective boundaries, thermoacoustic modes that
are highly damped or highly unstable share similar features: the velocity phasors at the flame
exhibit a phase difference of π, and the heat release and pressure phasors are either almost per-
fectly aligned (maximum acoustic energy generation) or anti-aligned (maximum acoustic en-
ergy annihilation) for a unstable and stable mode respectively. As a result, such modes should
be regarded as of ITA type. On the other hand, thermoacoustic modes that exhibit pressure and
heat release phasors in quadrature and velocity phasors in phase are very similar to the passive
acoustic eigenmodes of the system and, as such, should be classified as acoustic.

Except for the limit cases described above, in general, the velocity phasors of a given thermoa-
coustic mode are only partially (anti-)aligned. Consequently, a categorization criterion Φ, based
on the normalized scalar product of the velocity phasors, is proposed:

Φ= u′
u

|u′
u |

·
u′

d

|u′
d |

(3.6)

By construction, Φ is bounded, Φ ∈ [−1,1]. An eigenmode can be considered more of acoustic
typeΦ> 0 or of ITA typeΦ< 0. Not only does this simple criterion allow to determine the nature
of any thermoacoustic mode, but it also enables to identify regions in the complex planes were
acoustic and ITA modes can exist, as depicted by Fig. 3.2. The latter is not universal, as the size
and position of the contours change with the flame location, but general trends can be infered.
Modes of acoustic nature can only exist “relatively” close to the stability margin and the passive
solution. On the other hand, modes highly damped or unstable are of ITA type. Depending on
the flame location in the system of interest, ITA modes can also be found close to the neutral
line. Further examples and discussions are given in PAPER-CATEGORIZATION [101].

Physically, the proposed criterion relates to the motion of the medium. In absence of a flame, the
medium between two velocity nodes in a standing wave oscillates back and forth, i.e. swings.
Conversely, for a pure ITA mode in an anechoic environment, the velocity phasors are anti-
aligned, which describes an inwards-outwards oscillation, breathing. Consequently, for a given
eigenmode, the oscillations of the medium in the vicinity of the flame is a superposition of a
swinging and breathing motion. For a mode categorized acoustic, the swinging motion domi-
nates, and vice versa for an ITA mode.
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4 Acoustic Modeling of Annular and
Can-Annular Combustors

Complex three-dimensional geometries, such as annular and can-annular combustors, can be
modeled with low-order networks using one-dimensional elements. With Bloch theory, this
1,5D formulation can be simplified into an equivalent longitudinal burner with a complex-
valued boundary condition that preserves the azimuthal dynamics of the complete system. Al-
though the two combustor architectures share similarities, they require distinct modeling.

4.1 Bloch Theory for Discrete Rotational Symmetries

Typical modern combustors feature a discrete rotational symmetry. They consist of an ensemble
of N identical sectors (denoted unit-cell) placed equidistantly in an annular arrangement. For an
annular combustor, the unit-cell is composed typically of one burner and the respective sectors
of the upstream plenum and combustion chamber. For a can-annular combustor, the unit-cell
comprises one can and the respective sector of the plenum and annular gap in front of the high-
pressure turbine inlet.

In general, the eigenvalues of problems with discrete spatial symmetries can be represented in
the form of Bloch waves. This mathematical representation arises from quantum mechanics,
following the work of Floquet [102] and Bloch [103], who investigated the resolution of the
Schrödinger equation for crystal lattice exhibiting translational symmetry. The thermoacoustic
eigenvalue problem shares similarities and the framework can easily be transposed [104], the
only difference lies in the rotational symmetry, which will change the set of admissible Bloch
wave numbers (denoted m in the following). Thus, the pressure eigenmode in the frequency
domain may be written as

p̂m (x) =Ψm (x)e i mθ, m =


−N

2
+1, . . . ,−1,0,1, . . . ,

N

2
for N even

−N −1

2
, . . . ,−1,0,1, . . . ,

N −1

2
for N odd

(4.1)

where x = (r,θ, x) is the position vector in cylindrical coordinates. Ψm is a function that is
identical in all unit-cell and periodic in θ with a period 2π/N . It is not limited to a specific
functional form but can be any function that satisfies the decomposition. m is the Bloch wave
number and its absolute value |m| represents the azimuthal order of the considered eigenmode.

Depending on the value m takes, the modes can be classified into three groups. For m = 0, the
pressure is identical in every unit-cell, with no phase difference in the azimuthal direction θ and
the eigenmodes are regarded as axial, sometimes also referred as push-push. When m = N /2,
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Figure 4.1: (a) Annular Combustion Chamber MICCA, Laboratoire EM2C, CNRS/Centrale-
Supélec, Université Paris-Saclay. Courtesy of Dr. Daniel Durox. The MICCA combustor is a
typical lab-scale annular chamber with a discrete rotational symmetry N = 16. (b) Exemplary
network model of one unit-cell of a generic annular chamber.

the pressure field exhibit a pattern adjacent unit-cells with alternating sign, hence the name
push-pull mode. For all other values of m, the modes are azimuthal. Additionally, if the unit-
cell exhibit reflectionnal symmetry along a plane at constant θ, i.e. absence of mean flow in
the azimuthal direction, the latter share the same frequency and differ only by their spinning
direction, thus forming a degenerate pair of eigenmodes.

Because of Bloch-periodicity, a solution obtained on the unit-cell can be extrapolated to the
entire domain to obtain the eigenmode of the full configuration. By imposing pseudo-periodic
Bloch boundaries, and considering all positive Bloch-wave numbers m, the study of a single
unit-cell becomes sufficient as the dynamics of the full system is preserved. This framework
allows not only to drastically reduce the computational effort, but also to simplify the modeling
approach in an elegant and efficient manner, as discussed in the following sections.

4.2 Annular Combustion Chambers

Figure 4.1 shows a network model of a generic annular combustor. As highlighted in the pre-
vious section, it is sufficient to consider a single unit-cell, in this case a burner tube and the
corresponding sector of the annular chamber. For the sake of brevity, the plenum is considered
decoupled [105, 106], but the model can be extended in a straight-forward manner to account
for the upstream acoustics.

The network comprises of an ensemble of elementary elements, as described in Chapter 2. The
chamber is modeled as a thin annulus using ducts. The latter are interconnected with the burner
tube with a T-junction element. Assuming acoustically compact elements, the flame is placed at
the outlet of the burner, just upstream the area change induced by the junction.

At the T-junction, momentum conservation leads to acoustic pressure continuity, while mass
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conservation equation implies the conservation of volumetric flow rate:∑
i
Ai u′

i = 0 (4.2)

In the ducts, plane waves propagate, as described by Eq. 2.12. Finally, both sides of the unit-cell
are mutually connected with pseudo-periodic Bloch boundaries, which can be written in terms
of CWA as: [

fR

gR

]
=

[
e i 2πm

N 0

0 e i 2πm
N

][
fL

gL

]
(4.3)

Combining these equations allows to lump all the effects of the annular chamber and the T-
junction (identified by the red rectangle in Fig. 4.1) into an equivalent reflection coefficient
“seen” by the burner tube. Thus, the initial unit-cell system is transformed into a completely
equivalent longitudinal system where the outlet reflection coefficient Rm embeds the dynamics
of the chamber and writes:

Rm = 1−
4cos(He)−4cos

(
2πm

N

)
2cos(He)−2cos

(
2πm

N

)
+ i

Ab

Ac
sin(He)

(4.4)

with the Helmholtz number He defined with the length L of the angular sector between two
burners He= kL. The detailed derivation is found in PAPER-ITA [107].

This equivalent reflection coefficient Rm is complex-valued, with an explicit dependence on
frequency He, on the azimuthal order m and on the area ratio between the burner tube and the
section of the chamber in the azimuthal direction. Figure 4.2 shows the evolution of the phase
of Rm as a function of frequency for an exemplary generic annular chamber with ten burners. In
the zero frequency limit, the chamber behaves as an open end for all eigenmodes except the axial
mode, for which the chamber acts as hard wall. This observation is explained mathematically
by the fact that the Galerkin series of an axial mode exhibits a Helmholtz mode at frequency
He= 0. The phase of the other modes is close to either π or −π, but changes abruptly from one
value to the other with a periodic pattern, crossing the abscissa exactly at the frequencies of
the passive acoustic modes of the annulus. This further illustrates that the dynamics of the full
chamber is indeed well captured by the equivalent reflection coefficient Rm .

4.3 Acoustic Coupling Between Cans

At first glance, a can-annular combustor could be interpreted as a special case of an annular
combustor, where a can is simply a burner tube of large dimension and the gap in front of the
turbine a thin annulus. However, Helmholtz simulations [38, 108] show that the plane wave
assumption is not valid in the gap where strong 2D effects are present. Consequently, the model
derived in the previous section does not apply and specific acoustic modeling of can-annular
combustors is required.

While the conservation of mass described by Eq. 4.2 holds, the width of the can, and the re-
sulting 2D effects, invalidate the assumption of acoustic pressure continuity in the T-junction.
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Figure 4.2: (a) Evolution of the phase of the equivalent reflection coefficient Rm as a function
of frequency for an annular configuration. Colors indicate the azimuthal order and circles the
passive acoustic modes of the chamber. (b) Same results for the can-annular architecture.

Instead, each half of the can is treated as an acoustically compact converging nozzle. Similarly
to Sec. 2.3, using unsteady Bernoulli equation, the pressure gradient is related to the acoustic
velocity through a characteristic length Lchar, m . The latter accounts for the inertia of the vol-
ume of fluid, which cannot be neglected in this configuration. Once again, the problem is closed
using Bloch boundaries and relating both sides of the cross-talk area with Eq. 4.3. Combining
the equations, the cross-talk area downstream of the can is replaced by an effective reflection
coefficient Rm that writes:

Rm = 1−
4sin2

(
πm
N

)
iHe

L∗
char, m

L∗L∗
g

+2sin2
(πm

N

) (4.5)

where the Helmholtz number He = kL is defined with the length of the can L, L∗ = L/H is the
ratio between the length and the width of the can, i.e. the aspect ratio, L∗

g = Lg /H the ratio
between the size of the gap and the width of the can, which can be seen as the coupling strength
between neighboring cans. L∗

char, m = Lchar, m/H is the normalized characteristic length. The
latter is an integral of the cross-section of the acoustic flow along the stream-path (and not of
the geometric cross-section), thus the explicit dependence on the azimuthal mode order m.

Figure 4.2 show the phase response of the equivalent reflection coefficient Rm as a function
of frequency, for all azimuthal orders m of a generic can-annular combustor of discrete rota-
tional symmetrey N = 10. Besides the trivial behavior of the axial mode, for which the acoustic
coupling has no effect, all azimuthal modes have the same low-frequency limit, an open end.
The phase diminished with increasing frequencies and converges towards a limit ∠Rm = 0. The
slope is governed by the coupling strength L∗

g , whose effect is the same way for all the azimuthal
orders, but also by the characteristic length L∗

char, m , which impact the eigenmodes differently,
thus explaining why low azimuthal orders go faster towards zero. A more detailed derivation
and discussion is found in PAPER-CAN [108].
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In summary, both annular and can-annular configurations can be modeled with a network ap-
proach. The complexity of the full network can be reduced by utilizing Bloch boundaries, which
enables to limit the study to a single unit-cell. Finally, the coupling effects (with the chamber
and with the neighboring cans respectively) can be lumped into a reflection coefficient Rm ,
effectively transforming the problem into a simpler yet completely equivalent longitudinal con-
figuration.
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5 Clusters of Thermoacoustic Modes

This chapter builds upon the acoustic models introduced in the previous chapter to provide
insight on the origin of clusters of ITA and acoustic modes encountered in (can-)annular con-
figurations. The ITA clusters are mainly driven by pure flame dynamics, whereas cavity clusters
are primarily related to the geometry of the system. Both co-exist in can-annular combustors
and the spectrum structure is influenced by the presence of exceptional points.

5.1 Origin of Clusters of ITA and Acoustic Modes

The term cluster refers to a large number of closely spaced eigenmodes. This phenomenom is a
typical “signature” of ring-like weakly coupled oscillators [109]. In can-annular combustors,
combustion and flame dynamics are not necessary for clusters to appear. The latter can be
found in the simplest configuration, an ensemble of identical cans (the components) weakly
coupled with a cross-talk area, as depicted in Fig. 5.1. Close to resonance, the dynamics of
one component system can be modeled as an oscillator, as shown in Eq. 3.5. In the absence
of source and loss terms, the resonance frequency is simply the natural frequency of the can.
Clusters emerge from the eigenvalues of the uncoupled component systems (i.e. the isolated
cans) when coupling is introduced as a perturbation. Invoking Bloch-wave mode structure due to
symmetry, clusters containing exactly N eigenvalues1 are present around the natural frequencies
(fundamental mode and harmonics) of the cans.

The acoustic modeling approach developed in the previous chapter provides additional insight
to this qualitative description of the origin of clusters. As shown in Fig. 4.2, for low frequen-
cies, the phase of the reflection coefficient Rm scales linearly with respect to frequency, which
indicates a constant time delay2. Consequently, Rm can be replaced by a duct of effective length
Lm terminated by an open end Ro =−1. The length Lm can be derived analytically and writes:

Lm = Lchar, m

2L∗
g sin2

(πm

N

) (5.1)

It exhibits an explicit dependence on the azimuthal order m (both through the Lchar, m and
sine-squared terms) and the coupling strength L∗

g . The resulting low-order model is simply a
longitudinal configuration of a resonating duct of total length L +Lm , as depicted in Fig. 5.1.
The higher the azimuthal order m, the shorter the equivalent duct Lm , because both the terms
Lchar, m and 1/sin2

(
πm
N

)
decrease with increasing values of m. As an example, Fig. 5.2 shows

the first cluster of an ensemble of ten weakly coupled cans. The axial eigenmode remains unaf-
fected by the coupling condition and correspond to the half-wave mode He = 0+ jπ, j ∈N, i.e.

1counting multiplicity
2for all azimuthal order except the axial mode m = 0
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Figure 5.1: (a) Unit-cell of an ensemble of closed cans, acoustically coupled exclusively
through the small gaps of size Lg . (b) Low-order model of the system. The effects of the cou-
pling are lumped into the equivalent length Lm .
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Figure 5.2: (a) Spectrum of a system of ten passive cans acoustically coupled through a small
gap. The marginally stable eigenmodes form a cluster near the quarter-wave solution. Modes of
higher azimuthal order m are closest within the cluster. (b) Spectrum of an annular combustor.
Besides the first azimuthal acoustic mode, the system exhibit several clusters of ITA modes
which align around the pure ITA frequencies. Modes with higher azimuthal order are more
damped. Clusters are equidistant with a frequency spacing ∆ν= 1/τF .

the eigenfrequency of the uncoupled component system. For all other azimuthal orders, the ef-
fective length Lm terminated by an open end makes the eigenmodes deviate from the uncoupled
subsystem’s solution. The low azimuthal modes exhibit the lowest frequencies. For increasing
azimuthal order m, the equivalent duct becomes shorter, resulting in higher eigenfrequencies.
In the limit case where Lm becomes almost negligible, the modes of the cluster converge to-
wards the same solution, the quarter-wave mode He = π/2 in this example. This is physically
explained by the fact that the phase shift induced by the gap becomes negligible compared to
the overall phase shift due to the propagation in the can itself, hence the outlet boundary condi-
tion becomes independent of the azimuthal order and all the eigenmodes converge to the same
degenerate solution. Similarly, because Lm is non-linear in m and decreases faster for higher
values of m, eigenmodes with higher azimuthal order are also closest within a cluster. This
simple modeling approach not only explains the origin of acoustic cluster, but also sheds a new
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5.2 Interplay of Clusters and Exceptional Points

light by explaining the structure of the spectrum.

By many aspects, ITA clusters in annular combustors share similarities with the previous exam-
ple. However, as ITA modes are mainly driven by flame dynamics, ITA clusters cannot exist in
a passive system. As highlighted in Fig. 4.2, the phase of the reflection coefficient Rm modeling
an annular chamber also scales linearly with frequency. In a comparable approach, Rm can, in
turn, be modeled as a duct of length Lm terminated by an open end, effectively transforming the
unit-cell of an annular system into a simple Rijke tube, such as depicted in Fig. 2.2. This simple
Rijke tube modeling approach allows to transpose results from longitudinal burners to annular
geometries. Figure 5.2 gives an example of a spectrum of a typical lab-scale annular combustor
with ten injectors. For simplicity but without loss of generality, the flame response is described
with a simple n−τF model. While the clusters of can-annular combustors spread across a wide
frequency range, the ITA modes in annular geometries show instead extremely similar frequen-
cies and differ mainly by their growth/damping rate. The eigenmodes align along the pure ITA
frequency, which is the frequency an eigenmode would exhibit if the flame was placed in an
anechoic environment. This peculiar behavior is explained by previous research on Rijke con-
figurations. Numerous studies [110–113] showed that, even in the context of fully reflecting
boundaries, for a given flame response, if the passive acoustic mode is sufficiently far away and
does not interplay [114], the thermoacoustic ITA mode remains close to its pure ITA frequency.
In the complex plane, the ITA trajectory when varying the flame strength is a straight line, i.e.
the growth rate is changing but the frequency remains approximately constant. Since an annular
combustor is nothing but a collection of small Rijke tubes, for all azimuthal order m, ITA modes
remain centered along the pure ITA frequency, thus explaining the observed clusters. This result
is, however, only valid for low frequencies. For higher frequencies, the Rijke tube hypothesis
is invalidated, the interplay with the modes of acoustic origin becomes non negligible, both ef-
fects leading to a change in the ITA frequency. The higher the azimuthal order, the longer the
Rijke tube approach holds, which explains why ITA modes of low azimuthal order m are first
to drift away from their respective clusters of harmonics, as exemplified in Fig 5.2. Similarly,
the constant frequency spacing ∆ν = 1/τF between clusters is explained by the analytical ex-
pression derived by Emmert et al. [35] for longitudinal burners. Finally, ITA modes of higher
azimuthal order are in general more damped, which can be explained with phasors analysis. A
more detailed discussion can be found in PAPER-ITA [107].

In conclusion, in spite of its simplicity, a low-order analytical approach captures the essential
physics and, thus, proves to be sufficient to explain both the origin of clusters and the structure
of the spectrum in annular and can-annular configurations.

5.2 Interplay of Clusters and Exceptional Points

While annular configurations can only contain ITA clusters, can-annular combustors, on the
other hand, exhibit clusters of both ITA and acoustic nature. Furthermore, the substantial di-
mensions of such gas turbines leads to low frequency acoustic modes, whose time scales are of
the same order of magnitude as combustion dynamics, i.e. ITA and acoustic modes are located
within the same frequency range. This remarkable feature results in specific behaviors.

Figure 5.3 shows the spectra of two identical can-annular configurations that differ only by
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Figure 5.3: Spectrum of a generic can-annular combustor. The configurations (a) and (b) differ
only by the flame location inside the combustor. Eigenmodes follow specific trajectories im-
posed by the upstream condition. In the first configuration, the ITA and acoustic clusters are
well separated. In the second case, the clusters are entangled and the trajectories are impacted
by the presence of an exceptional point. Thermoacoustic modes can switch nature.

the flame location inside the cans. Using the low-order model approach described in the pre-
vious sections, the full system is approximated by a Rijke tube with an effective downstream
length Lm changing with the azimuthal order. For a Rijke tube, when varying the length down-
stream of the flame, the eigenmodes follow specific trajectories in the complex plane that are
imposed by the upstream parameters. Consequently, for a given can-annular combustor, be-
cause the upstream conditions and the flame response remain constant for all azimuthal orders3,
the eigenmodes necessarily lie on these trajectories. Their exact position is governed by the
downstream parameters, namely the can length and the cross-talk region, the latter directly
affecting the effective length Lm . In the first example, the acoustic and ITA modes do not inter-
play, i.e. the acoustic and ITA clusters are well separated and easily identifiable. On the other
hand, for a slightly different flame location, the spectrum widely changes and the clusters are
entangled. Furthermore, the trajectories show a strong veering, indicating the presence of an
exceptional point in the vicinity of the parameter space. Exceptional points (XPs), which are
found in various disciplines, appear when at least two eigenvalues and their respective eigen-
functions coalesce. At these branch-point singularities, the eigenvalue sensitivity with respect
to changes in parameters becomes infinite. In thermoacoustics, XPs are primarily attributed to
the interplay between modes of ITA and acoustic nature [111, 115]. Mode veering is a mani-
festation of avoided crossing of eigenvalues [111, 112, 114, 116], resulting in the characteristic
trajectories observed in Fig. 5.3. Additionally, a trajectory cannot be attributed to a specific type
of thermoacoustic mode or dominant feedback loop, because eigenmodes switch nature when
traveling along it.

This understanding of the structure of the spectrum and of eigenvalue sensitivity to parameter

3except the special case of the axial mode m = 0 which behaves differently
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change is of practical interest when designing stable combustors. The design of injectors is usu-
ally achieved at an early program stage and focused on meeting performance criteria such as
fuel consumption and pollutant emissions. As a result, the flame response becomes a known
but fixed input for thermoacoustic stability analysis. However, other design parameters can be
used as degree of freedom to shape the spectrum in order to guarantee stability. The upstream
conditions, such as the flame position, impose the trajectories in the complex plane on which
the eigenvalues necessarily lie, while the downstream parameters govern the exact location of
the eigenmodes on these trajectories. However, it is highlighted that the downstream parameters
affect the eigenvalues in different ways. For instance, a change in can length results in a change
in acoustic characteristic time identical for all azimuthal orders, i.e. the entire cluster is equally
translated along the trajectory. Conversely, the geometry of the cross-talk area induces a differ-
ent response for each mode due to the explicit dependence of Lm to the azimuthal order m. A
more detailed discussion is presented in PAPER-INTERPLAY [117].
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6 Contextualization and Discussion of
Publications

This chapter puts the papers that comprise this thesis into perspective with the existing literature.

6.1 The Challenges Associated to ITA Modes

6.1.1 Towards a Complete Spectrum

The presence of ITA modes in the spectrum has several implications. The first consequence
is the need of appropriate methods to ensure finding all the eigenmodes in a frequency range
of interest. Indeed, if finding classical acoustic modes is already difficult, the task proves to
be even more arduous for ITA modes [118, 119], which partly explains why the latter were
overlooked for a long time and discovered only in the last decade.

As shown in Chapter 2, even the simplest thermoacoustic system requires to solve for a non-
linear eigenvalue problem (NLEVP). The non-linearity in the eigenvalue s comes from the
delayed response of the flame but also appears when the boundaries of the system (combus-
tor liner, turbine stage, etc.) exhibit frequency-dependent impedances. The NLEVP does not
specifically arise with a network modeling approach, but is also encountered when solving
for the Helmholtz equation [28], LEE (Linearized Euler Equations) [27], LNSE (Linearized
Navier-Stokes Equations) [25, 26] or LRF (Linearized Reactive Flow) equations [24]. NLEVP
are extremely difficult to solve [120–122] and three main strategies have been used in the ther-
moacoustic community.

Iterative methods have first been introduced by Nicoud et al. [28] with a fixed-point algorithm.
The flame operator, quadratic in frequency s except for the contribution of the flame, is seen
as a perturbation of the homogeneous acoustic problem, which motivates the use of the pas-
sive acoustic solutions as starting point for this iterative strategy. However, Nicoud’s algorithm
suffers from several shortcomings. When the user-defined initial guess is too distant1 from the
targeted mode, the algorithm may either never converge or find another eigenvalue. Because of
the lack of general methodology to determine the most appropriate starting points, because of
the a priori unknown number of eigenvalues, and because ITA modes are associated with ex-
tremely small basin of attraction [118], the latter are usually not found with Nicoud’s approach
and the spectrum obtained is incomplete. Mensah et al. [119] investigated Picard iteration [123],
another kind of fixed-point method, and demonstrated that ITA modes can be repellors, which

1not necessarily in terms of frequency but, rather, whether the initial guess lies within the basin of attraction of
the mode or not
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implies that some eigenmodes can never be identified by fixed-point methods, regardless of
the initial guess. Conversely, Newton-like methods are always guaranteed to converge to all
eigenvalues. Among iterative algorithms, the adjoint-based Householder’s method [124] should
be preferred because of the reasonable computational cost and the increased size of basins of
attraction of ITA modes [119].

The contour integration method, which relies on Beyn’s algorithm [125], constitutes an alterna-
tive approach to solve the NLEVP. The method has proven to be capable of finding ITA modes
in the spectrum [118], even when they come in significant number in a small region, e.g. the
ITA clusters of the MICCA combustor [37]. While it removes the convergence issues of the
iterative approach, the contour integration method comes with other drawbacks [126]. In partic-
ular, several additional user-defined parameters are required (i.e. a contour has to be prescribed,
a number of sampling points has to be specified and a singular value decomposition tolerance
needs to be defined) and are shown to affect the solution. Furthermore, the completeness of the
spectrum and the precision of the eigenvalues are affected by the presence of other eigenvalues
outside, but in the vicinity of the contour.

The last strategy is to transform the NLEVP into a linear eigenvalue problem (LEVP), signif-
icantly easier to solve, and for which efficient and robust methods are available [127, 128].
Merk et al. [126] demonstrated that the NLEVP can first be approximated by a REVP (Ra-
tional Eigenvalue Problem), still non-linear in s, but with the favorable property that it can
be recast into a LEVP of higher dimension. While this last step is unnecessary for the LEE,
LNSE and LRF, the reformulation can become expensive for the Helmholtz problem as it re-
sults in a doubling of the degrees of freedom (DoF). Thermoacoustic state-space models, such
as taX [42, 129] introduced in Chapter 2, are commonly employed [26, 130, 131] and rely on
this LEVP approach. Regardless of the problem and the modeling strategy, the flame response
must be approximated by a linear model. While the flame dynamics obtained from experiments
or LES is discrete2, a time-continuous model is advantageous, allowing, for example, for ef-
ficient implementation of time-domain impedance boundary conditions when coupled with a
variable time-step CFD simulation [132, 133]. To obtain such continuous flame models, com-
mon strategies are (i) Tustin or Padé approximation of the exponential terms [130, 131] or (ii)
rational function fitting [24, 26, 126, 134]. The Tustin transform, which is the first-order Padé
approximation, is based on the Taylor series expansion of the exponential term. Hence accuracy
can only be expected for low frequencies, given that the sampling time of the discrete model
is small. Higher-order Padé approximation, employed in [130, 131], improves the accuracy, but
the resulting transfer function tends to become unstable with increased Padé orders [42], which
effectively limits the application to low frequencies [135]. The second strategy is rational fitting
of the discrete FFR, commonly achieved with the Vector Fitting algorithm [136]. The obtained
reduced model generally provides satisfying results over the frequency range of interest with
a limited number of DoF, as well as a limited number of spurious modes [126]. However, the
algorithm requires a user-defined maximum allowable number of poles (i.e. the order of the
function transfer), which influences the outcome of the fitting procedure: with too few poles,
the key features of the FFR are not captured, while too many leads to overfitting, typically
resulting in high peaks [134]. An a posteriori verification is thus necessary. PAPER-FTF [61]
provides a third alternative, where the UIR is treated as a collection of individual time delays

2the FFR from experiments or monofrequency excited LES occur only at a few discrecte forcing frequencies,
the UIR from system identification consist of a truncated series of discrete impulses.
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that are approximated by discretizing an advection propagation equation in pseudo-space. As
such, it is a generalization of the method of Emmert [42] for a single n−τmodel. The number of
DoF of the reduced model tends to be larger by one order of magnitude than the rational fitting
approach, but remains reasonable for modern computing. The strength of the method lies in its
stability, which is guaranteed by the use of a third-order upwind finite difference scheme, i.e.
the spurious modes introduced by the approximation are always on the stable left half-plane, far
away from the stability margin, and do not affect the predictions of a linear stability analysis.
Consequently, this approach is beneficial for parametric studies that requires repeated evaluation
of continuous models of flame dynamics or “on-the-fly” flame model identification.

6.1.2 Who’s Who: How to Categorize Eigenmodes?

If finding the entirety of the spectrum is crucial, understanding the nature of the eigenmodes
proves to be equally important. The most striking illustration of this necessity is the counter-
intuitive behavior of mode destabilization with increased damping at the boundaries [36, 137].
Xu et al. [100] provided further experimental evidence, with an acoustic liner promoting insta-
bilities associated to an ITA mode.

Two limiting cases suffer no ambiguity:

• In absence of a flame3, the eigenmodes of the system can only be of acoustic nature.

• When a flame is placed in an anechoic environment, the acoustic feedback loop is cut and
only the ITA feedback loop remains. The eigenmodes of the system are necessarily of
ITA nature, and are commonly referred to as “pure ITA modes” in the literature [36, 110].
Their respective eigenfrequencies can be determined analytically [35].

Outside of these trivial limiting cases, both the ITA and acoustic feedback loops coexist and give
rise to thermoacoustic modes whose nature is not trivially identifiable. A variety of categoriza-
tion methods have been proposed over the years. By rearranging the equations in a collection of
block matrices, Emmert et al. [36] interpreted the thermoacoustic system as two subsystems (the
ITA and acoustic matrices on the diagonal) coupled by a parameter µ encountered on the off-
diagonal blocks. This artificial parameter is used to modulate the coupling between the acoustic
and ITA feedback loops. When set to µ = 0, the feedback loops are fully decoupled and the
eigenmodes separate into two distinct set of modes, pure ITA modes and pure acoustic modes.
Therefore, Emmert suggested to label thermoacoustic modes as ITA or acoustic based on the
“pure” eigenvalues they would converge to when gradually reducing the coupling µ from 1 to 0.
The drawback of this approach is its sensitivity to the acoustic state of the system. For instance,
in the vicinity of an exceptional point, a small variation in the acoustic state induces sudden
change in the convergence limit [138], which highlights that this criterion lacks robustness.

Because the µ criterion does not offer physical interpretation, Hoesseini et al. [110] proposed to
classify eigenmodes by varying physical parameters, namely the inlet and outlet reflection coef-
ficients. They proposed an alternative criterion based on asymptotic behavior when reducing the
reflection coefficients at boundaries. In the limit of zero reflection, a thermoacoustic mode can

3or if the flame is inactive and only acts as a temperature discontinuity
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either become pure ITA or disappear, as the acoustic loop is cut. Consequently, thermoacoustic
modes are labeled as ITA or acoustic based on their asymptotic limit when gradually reducing
reflection at the boundaries. Similarly, Mukherjee and Shrira [113] demonstrated that, in the
limit of small interaction index of the flame n −→ 0 (i.e. the flame becomes inactive and only
induces a temperature discontinuity in the system), two sets of modes are present in the spec-
trum, the classical acoustic modes and a set of highly damped modes with frequencies close the
pure ITA modes. Consequently, they suggested to label eigenmodes based on their respective
convergence limit when reducing n. This categorization criterion was used by Buschmann et
al. [37] when explaining the spectrum of the MICCA combustor. However, if the use with an
n−τ model is straight forward, the application to a more general DTD flame model [59] can be
more challenging, unlike for the µ and reflection criteria.

The major drawback of all these methods is the need of a parameter sweep, which can be
difficult to execute or even impractical due to excessive numerical or experimental costs. Fur-
thermore, Orchini et al. [114] highlighted inconsistencies between the methods, where a ther-
moacoustic mode was labeled as ITA with the reflection criterion of [110] and as of acoustic
nature with the n criterion of [37, 113]. Alternatively, categorization was achieved by assess-
ing the proximity of pure ITA or pure acoustic modes [107, 116, 137]. Other studies made use
of key characteristics of pure ITA modes, e.g. independence of the eigenfrequency from com-
bustor length [100, 139], “convective scaling” of the eigenfrequency [140], etc. However, such
approaches also suffer from limitations. For instance, for moderately large gains, the modes
categorized as ITA and acoustic become indistinguishable, and the acoustic mode approaching
the ITA “stops behaving like an acoustic mode anymore” [141]. Orchini et al. [114] gave further
proof that, at an exceptional point, acoustic and ITA modes coalesce and share the same mode
shape.

On the other hand, PAPER-CATEGORIZATION [101], which generalizes the approach of Yong
et al. [142], proposed a categorization method that does not rely on a parameter sweep but
exclusively on acoustic velocity phasors across the flame. More specifically, the Φ criterion,
which indicates the phase relation between the acoustic velocities upstream and downstream
the flame by means of a dot product, indicates which feedback loop is more “dominant”. The
strength of the method lies in the fact that the simple knowledge of two acoustic phasors is
sufficient to determine the nature of any eigenmode. Additionally, it allows to build contour
maps and exhibit regions where ITA and acoustic mode can be found. The criterion is not
disconnected from physical interpretation, as it directly represent the oscillation of the medium,
as discussed in Chapter 3. While not yet applied on experimental results, it is believed to be a
more robust approach than the (extended) π-criterion [97, 99, 140], still widely used [143] but
valid only for anechoic configurations or at the stability margin.

6.2 ITA Clusters in Annular Geometries

The interest on combustion instabilities in annular combustors rose when Siemens started re-
porting on their experiences [144, 145]. The early work was primarily focused on methods to
mitigate the undesired instabilities. In particular, emphasis was put on active control [146, 147],
which comprises an external subsystem that continuously “on-the-fly” perturbs the system to
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suppress oscillations. This method is nowadays often disregarded due to its complexity, cost and
risk of failure4, and a more pragmatic approach is adapted, where instabilities, rather than being
directly controlled, are designed out (whenever possible), or dampened with passive Helmholtz
resonators [148].

A remarkable feature of annular combustors is the unsteady nature of azimuthal instabilities. In
contrast to longitudinal combustors, the annulus gives rise to azimuthal waves that can travel
around in the clockwise or counter-clockwise directions, leading to do spinning modes, stand-
ing modes or a combination of both, i.e. mixed modes. These modes were found to transition
spontaneously or periodically between different states, even for constant operating conditions,
hence the naming modal dynamics. The behavior, observed in industrial gas turbines [145], was
confirmed with LES [22]. To facilitate the study of this phenomena, and to overcome the limited
industrial experimental data, several downscaled academic combustors were built, for instance
in Cambridge [149, 150], and later operated at elevated pressure at NTNU [151], at the EM2C
laboratory of CentraleSupélec with the MICCA combustor and its variety of injectors [152–
154], at IIT Madras [155], or TU Berlin with a rig without combustion but electroacoustic
feedback [156, 157], to name a few. Azimuthal acoustic modes are influenced by the back-
ground noise which leads to statistically preferred states [150], pushing the modes away from
the spinning states [3, 81, 158]. Furthermore, they are strongly influenced by symmetry break-
ing, either with the use of different burners [159, 160], fuel staging [130, 161], or the presence
of mean flow in the azimuthal direction [34, 157, 162–164]. These azimuthal acoustic eigen-
modes usually correspond to the lowest eigenfrequencies and are the most prone to instability
due to (i) lower losses in this frequency range and (ii) because the flame is acoustically compact
and provide more efficiently acoustic energy to the cavity [3]. On the other hand, longitudinal
modes occur at higher frequencies, commonly above the 3rd or 4th azimuthal modes. When the
axial length of the chamber is sufficient, such a mode can, however, be excited simultaneously
with an azimuthal mode of the same frequency leading to the so-called slanted state [165, 166].
While transverse excitation may lead to non-negligible effects [149, 150, 167], the review of
O’Connor et al. [168] concludes that, in most cases, the dominant heat release oscillations are
caused by indirect axial flow disturbances5, thus justifying the common assumption to disregard
the effects of transverse velocity on the heat release rate in the linear regime [33, 169–173].

Several modeling approaches have been used to study annular combustor. The simplest low-
order models assume that only plane waves propagate in the azimuthal direction and all other
types of waves are disregarded [87, 160, 173–176]. PAPER-ITA [107] introduces a model re-
sembling the ATACAMAC approach of Parmentier et al. [160] and Bauerheim et al. [175],
where the flame is placed inside the burner tube and the annulus is modeled with simple ducts.
However, the tedious matrix operations to close and solve the problem are avoided by using
Bloch boundaries, allowing for a simpler and easier-to-interpret model. However, all these
models suffer from the same limitation: a choked outlet is assumed, i.e. combustors open to
the atmosphere, such as MICCA, cannot be modeled in this manner. Indeed, because of the
pressure node condition, purely azimuthal modes cannot exist and the combustor necessarily
exhibit mixed modes6. A more elaborated quasi-2D model, based on ideas of Jakob J. Keller,

4in particular in the aero-engines industry with stringent certification procedures
5fluctuations of axial velocity through the burners, which are induced by the pressure field associated with

transverse acoustic mode
6not in the sense of a superposition of a spinning and a standing modes, but rather in the sense that the eigen-
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was introduced by Polifke et al. [33] and takes into account an axial and azimuthal wave num-
ber, as well as entropy effects, allowing to study the interference between acoustic and entropy
waves. The model was used in subsequent studies, for instance, by Evesque and Polifke [169]
to investigate the effect of broken symmetry, or by Kopitz et al. [170] for stability analysis
of an annular chamber with validation against experiments. Recently, Yang et al. [177] revis-
ited the model and demonstrated that experimental observations, such as the slanted modes
of MICCA [165], can be captured. However, these models cannot be cast in a state-space ap-
proach, thus a non-linear eigenvalue problem must be solved with its associated challenges, as
already discussed in the previous sections. Furthermore, with the increasing computing power,
this 2D approach has become less attractive compared to directly solve for the Helmholtz equa-
tion [28, 37, 104, 118, 126], which does not require assumption on the modal shape, but relies on
a discretization of the actual geometry, thus providing more accurate results. CFD simulations
by means of LES [22] have also been employed. They require the least modeling assumptions,
thus providing the most accurate results. However, because this is a time-domain approach, only
the most unstable mode can be captured and not a complete spectrum. Nonetheless, such tool is
extremely valuable, for instance to extract an FTF, a crucial input of any of the hybrid/reduced-
order simulations mentioned previously. With the ever increasing computing capabilities, there
is no doubt that LES will continue to play a major role in the years to come.

Compared to acoustic modes, ITA modes in annular combustors have received little attention,
which is most likely explained by their late discovery. They were first identified by Buschmann
et al. [118] who leveraged contour integration to obtain a more complete picture of the spec-
trum of the MICCA combustor. Solving for the Helmholtz equation, they demonstrated that
ITA modes form clusters, i.e. groups of eigenmodes close in frequency. In a subsequent study,
Buschmann et al. [37] highlighted that a 2D annulus model is sufficient to observe clusters of
eigenmodes. This strongly suggests that ITA modes were present in the studies of Evesque [169]
and Yang [177] but not captured because of the numerical challenge of finding these modes, as
discussed in the previous sections. Additionally, Buschmann [37] provided more insight on the
spectrum of MICCA obtained with 3D Helmholtz computations. In particular, the clusters align
around the pure ITA frequencies. An interpretation was given with the fact that the modes are
evanescent in the axial direction. In consequence, the flames do not “see” the outlet boundary
and are placed in an effective anechoic environment, thus explaining the observed pure ITA
frequencies. Modes of high azimuthal order are strongly cut-off, while low azimuthal modes
are weakly cut-off and are first to deviate from the clusters. While this argument may be valid
for the MICCA combustor, whose chamber exhibits a significant axial extent, it may not solely
explain the presence of ITA clusters around the pure ITA frequency. Indeed, Orchini et al. [114]
investigated the ATACAMAC configuration of [175] with the same 3D Helmholtz solver as
in [37, 118], namely the Julia package WavesAndEigenvalues. Although the chamber is short in
the axial direction, the three eigenmodes constituting the cluster were found extremely close to
the analytical pure ITA frequency. Similarly, the low-order model of PAPER-ITA [107], which
does not taken into account the axial extent and the evanescent nature of cut-off modes but solely
azimuthal modes, captured the ITA clusters. The equivalent Rijke tube modeling, discussed in
Chapter 5, was sufficient to explain clusters, and a phasor analysis provided additional insight,
explaining why modes of high azimuthal order are usually more damped and low azimuthal
order modes are first to deviate from the cluster. While not mentioned in the spectrum of ATA-

mode has both a longitudinal and azimuthal component
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CAMAC by Bauerheim [175], ITA modes were most likely present but overlooked. Indeed, the
strongly coupled and weakly coupled trajectories observed in [175] have been later confirmed
by Orchini [114] and explained by the presence of two exceptional points, one where the two
acoustic plenum and chamber modes coalesce, and the other due to the interaction between
the first azimuthal chamber mode and first azimuthal ITA mode. To this day, ITA modes were
never observed and formally identified as such in an annular combustor experiment. Literature
suggests that they tend to usually be damped. However, even when stable, they should not be
ignored: their presence alone, and the associated exceptional points, is sufficient to strongly
influence the acoustic modes and the overall spectrum structure.

6.3 Clusters of Modes in Can-Annular Configurations

In contrast to annular chambers, which have been extensively investigated over the last decades,
can-annular combustors have received less attention. They were first studied numerically by
Bethke et al. [178] and Kaufmann et al. [179] by means of a finite-element analysis of the 3D
Linearized Euler Equations. In particular, they showed that the full system exhibits eigenmodes
that were not present in the isolated single can subsystem, because the mode shapes involve mul-
tiple cans. Their origin was associated to the cross-talk area in front of the turbine stage. These
observations were later confirmed by the experimental results and modal analysis of Panek et
al. [180]. In a following numerical study, Farisco et al. [181] performed LES of a simplified 2D
configuration, for various gap geometries, and concluded that the can-to-can communication
cannot be neglected. Ghirardo et al. [38] gave experimental and numerical (2D Helmholtz sim-
ulations) evidence that the weak coupling between cans gives rise to modes of various azimuthal
orders and were first to report clusters of eigenmodes in can-annular configurations.

Consequently, many studies tackled the problem at a more fundamental level to provide valuable
insight. Von Saldern et al. [182] proposed a low-order model, where only plane waves would
propagate inside the cans, but with a coupling boundary conditions derived from mass conserva-
tion and Rayleigh conductivity KR [183]. For simplicity, they chose a constant, geometrically-
based Rayleigh conductivity, related to the diameter of the cans, which allows for an exact
analytical derivation. The effects of the gap were lumped into an effective outlet reflection co-
efficient. The generic can-annular combustor considered in their study revealed the presence of
numerous clusters. The impact of the acoustic coupling strength on the stability of modes in
a cluster revealed a non-monotonic behavior, with either a stabilizing or destabilizing effect.
The same model, later used for time domain simulations, revealed a strong interaction between
modes, which can cause long transition times and allows modes that are not the most unstable in
the linear regime to become dominant when considering nonlinear effects [184]. In parallel, the
model proposed in PAPER-ITA for annular combustor was suggested to be a plausible approach
for can-annular configurations. In PAPER-TUNING, it was employed to mimic the full-engine
thermoacoustic behavior in single-can test-rigs by tuning the outlet acoustic properties. The pro-
posed strategy was numerically applied to a full-scale Siemens gas turbine test-rig. As a result, a
detailed comparison of both models from [182] and PAPER-ITA was proposed in PAPER-CAN,
with, for the first time, validation against numerical simulations using a Helmholtz solver. While
equivalent in the low frequency limit (the Rayleigh model being retrieved as a Taylor expansion
of the model of PAPER-ITA), only the Rayleigh approach could properly capture the physics
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and provide qualitatively accurate results over a wide frequency range. However, because of the
azimuthal-order-independent Rayleigh conductivity, quantitatively accurate results, compared
to Helmholtz, could not be achieved: the eigenfrequencies were always underestimated. Conse-
quently, an extension was proposed based on a characteristic length. The latter was derived to
show an explicit dependence on azimuthal order, an essential feature to lump the 2D effects of
the gap into a single parameter in an accurate manner. Using dimensionless numbers, scaling
laws were given to generalize the results to configurations of arbitrary dimensions. Yoon [185]
adopted an approach similar to the models of PAPER-ITA and ATACAMAC, modeling the gap
as a thin annulus, however accounting for mean flow effects in the cans. The eigenfrequencies
were always under-predicted, and, within a cluster, the higher the azimuthal order, the larger the
error. This confirmed the findings of PAPER-CAN, which concluded that a model based purely
on geometrical parameters could not be sufficient. The inclusion of mean-flow effects on the
acoustic wave propagation did not drastically change the results.

The model of PAPER-CAN was later applied in PAPER-INTERPLAY to investigate the behav-
ior of ITA and acoustic clusters in can-annular combustors, as recalled in Chapter 5. One finding
of the study was the peculiar behavior of modes following specific trajectories in the complex
plane imposed by the upstream conditions. However, von Saldern et al. [186] showed that this
result breaks down when accounting for mean flow. They proposed a non-compact impedance
model that includes density fluctuations, mean flow and dissipative effects in the cross-talk area.
In contrast to the purely reactance coupling of PAPER-CAN and PAPER-INTERPLAY, their
impedance exhibit a resistive contribution that is proportional to the grazing flow Mach num-
ber. The latter is Bloch number dependant, which implies that modes of various azimuthal or-
der experience different damping levels. Exploiting this model, von Saldern et al. demonstrated
that eigenmodes can be attenuated in an efficient manner using liners at the interface between
adjacent cans for a well-chosen porosity. Pedergnana and Noiray [187] derived a coupled oscil-
lator model where mean flow effects on the internal acoustics of the cans are disregarded but
taken into account for the aeroacoustic coupling between cans. The unimodal projection of the
Helmholtz equation in frequency domain was combined with Howe’s derivation of the Rayleigh
conductivity of uniform, two-sided grazing turbulent flow over a rectangular aperture of finite
thickness [188]. The centerpiece of the model is the turbulent wake forming between neigh-
bouring cans which is bounded by two vortex sheets. The displacement of the latter is induced
by the oscillating pressure load across the aperture. Using a Bloch wave ansatz, the set of ODE
was reduced to a single dispersion relation, which allowed for simple linear stability analysis
and parameter study. The authors gave evidence of scenarii where the aeroacoustic coupling is
dissipative, stabilizing a nominally unstable system, but also where the amplifying coupling is
a able to destabilize a nominally stable system. Modes of higher Bloch number exhibit larger
phase difference between neighbouring cans, leading to stronger apparent acoustic pressure
gradients, thus a stronger response of the acoustic-hydrodynamic interaction. Orchini [189] ex-
tended the approach of [186] and proposed a general effective impedance model that embeds
(i) the effects of the finite extension of the aperture on the acoustics, (ii) arbirtrary outlet acous-
tic properties expressed in terms of a prescribed impedance and (iii) the dynamics of the shear
layer expressed in terms of a Rayleigh conductivity. The general expression was considered in
a few limit cases of interest, such as an acoustically closed end, a compact aperture or an iso-
lated duct, and results proved to be consistent with previous studies [182, 186]. In a follow-up
study [190], the model was employed to numerically investigated the lab-scale setup of NTNU
of eight interconnected cans [191]. A Rayleigh conductivity of an aperture with bias flow was
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chosen [188]. The dynamics of the V-shaped flame was modeled via a kinematic G-equation.
In the frequency range considered, six clusters were present, two of thermoacoustic origin7 and
four resulting from the aeroacoustic coupling. The latter are easily identifiable because they do
not exihibit axial modes m = 0. Indeed, no dynamic of the shear layer in the aperture occur if
the cans oscillate in phase. The sensitivity of the clusters to parameter change was investigated.
When gradually decreasing the flame response, the ITA cluster moves towards highly damped
regions, whereas the acoustic cluster converges towards the passive acoustic solutions, both ob-
servations being in line with the existing litterature, as mentioned in the previous sections. The
other clusters, which are dominated by shear layer dynamics, are, in general, almost indepen-
dent of flame response. However, it was demonstrated that, when close to the passive acoustic
solution, a cluster of aeroacoustic origin can exhibit a strong sensitivity to the flame strength,
with mode veering. While not formally identified, the trajectories suggested the presence of an
acoustic-aeroacoustic exceptional point. Conversely, acoustic clusters were shown to be insen-
sitive to the aeroacoustic coupling, while the response of the ITA cluster is non trivial. Finally,
by changing the outlet boundary, they highlighted that a cluster of aeroacoustic origin can be-
come the most unstable, thus justifying that the effect of shear layer dynamics should not be
neglected. Recently, Humbert and Orchini [192] were the first to propose an experimental setup
dedicated to the systematic characterization of the acoustic response of a can-annular configura-
tion as a function of the size of the annulus connecting the cans. The experimental results were
compared to Helmholtz computations and a low-order model. The novelty of the latter lies in
the fact that the acoustic field inside the cans is not described exclusively with plane waves, but
also includes the first transverse (T1) mode, which influences the can-annulus coupling condi-
tion. The resulting dispersion relation exhibits, among others, Bessel functions of the first kind
that show an explicit dependence on the azimuthal order and the discrete rotational symme-
try. This LOM shows excellent agreement, compared to both Helmholtz and experimental data,
over a wide range of annular gap-to-can volume ratios. Interestingly, when the T1 contribution
is omitted, which is a reasonable approximation for low frequencies, it is retrieved that a model
based purely on geometrical parameters tends to underpredict the eigenfrequencies. Finally,
Brind [193] investigated in more details the effect of the downstream turbine stages. The model
of Orchini [189] was combined with time-marching CFD to predict transfer functions between
incident and reflected waves in a can-annular combustor terminated by a four-stage turbine.
The study highlighted that resistive effects must be incorporated in the low-order model to ac-
curately recover CFD results. The exploration of the coupled combustor-turbine design space
showed that an optimal gap size can be determined to minimize the reflected energy. This ap-
proach is, however, limited by the necessity to calibrate resistive effects in the LOM using CFD
simulations.

7one ITA cluster and one acoustic cluster
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7 Outlook

The presence of clusters of eigenvalues in the spectrum of annular and can-annular combustors
described in this thesis has profound consequences. A foundation is set for future research to
build on.

From a practical engineering perspective, the challenge of designing stable combustion systems
remains. In contrast to longitudinal combustors, where only a handful of eigenmodes may be
unstable, (can-)annular architectures potentially exhibit numerous problematic modes if one or
many clusters are found close to the stability margin. Several strategies can be considered.

• The geometry of the plenum and/or the combustor can be optimized in order to stabilize
all eigenmodes. However, if done by trial and error, this iterative process can quickly
become tedious and expensive. To ease the operation, Aguilar and Juniper [194] pro-
posed an adjoint-augmented optimization routine, which proved to be capable of stabiliz-
ing all thermoacoustic modes of an annular combustor with minimum geometric change.
Similarly, Falco and Juniper [195] applied an adjoint-based shape optimization to a 2D
Helmholtz solver to accurately, albeit at low computational cost, determine the shape that
most stabilizes a turbulent swirl combustor. While this approach has been applied only
to longitudinal combustors so far, an extension to a can-annular combustor unit-cell with
Bloch boundaries is appealing and should be investigated in the future.

• If the previous method assumes a given flame response and relies on the tuning of the
acoustics to stabilize the system, an opposite approach can be considered. Indeed, if inte-
gration constraints are such that the geometry of plenum and chamber cannot be changed,
a second course of action is to modify the injector design to obtain the desired flame re-
sponse. In this spirit, the DeTAS procedure of Bade et al. [196] aimed at selecting the
most stable burner geometry for a given combustor by relating geometrical parameters to
combustion dynamics features. The ability to relate the shape of the FTF to geometrical
parameters (such as swirl number, lengths, etc.) and operating conditions would open the
door to innovative design perspectives for combustion systems. Although still a dream to-
day, the recent progress in data assimilation, for instance combining experimental results
with reduced-order model using Bayesian inference to accurately learn the parameters of
the model to make the latter predictive [197, 198], are very encouraging.

• Recently, Casel and Ghani [199] proposed a novel approach where not only the acoustic
and ITA modes were accounted for in the design process, but also the exceptional points
(XPs). In particular, the locations of XPs in the spectra are explicitely computed and
the impact of parameter change on their position was assessed. They highlighted that the
strategy of choosing parameters such that the XP is highly damped led to a fully stabilized
spectrum. In the context of can-annular combustors, where, as shown in this thesis, the
presence of XPs influences the trajectories in the complex plane on which the eigenmodes
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lie, an XPs placement strategy constitutes an interesting approach that should be further
investigated.

In the future, all these aforementioned methods could be used in a robust design approach as
in [200], where risk analysis is used in tandem with global optimization algorithms to find de-
sign parameters that are robust against various sources of uncertainty, leading to an efficient risk
mitigation. However, the method should be adapted in a way that, instead of considering only
one or two modes as done by Guo et al. [200], the entirety of the cluster of fundamentals modes,
and eventually clusters of harmonics, are taken into account. For the stubborn eigenmodes that
could not be stabilized by design, the use of dampers becomes necessary. Adjoint methods can
be employed, for instance, to determine optimal Helmholtz resonator placement, even with a
low-order network approach [201]. If liners and Helmholtz dampers have proven to be effective
against acoustic modes, future studies should focus on determining optimal damping strategies
for modes of ITA and aeroacoustic origin.

From a phenomenological perspective, the appearance of clusters is only one of the many fas-
cinating manifestations of ring-like coupled oscillators. Indeed, such clustered eigenstructure
makes the system highly sensitive to small perturbations [202], which has implications for both
the linear and non-linear dynamics. The effects of symmetry breaking have been fairly well
investigated for acoustic modes in annular combustors [34, 130, 157, 159–164]. Asymmetry
causes a degenerate pair of eigenvalues to split into two distinct eigenmodes. The same phe-
nomenon is to be expected from ITA and acoustic clusters, which comprise many degenerate
eigenmodes. However, an additional remarkable linear phenomenon of weakly coupled oscilla-
tors is mode localization [109]. If asymmetry does not drastically change the eigenfrequency,
the modeshape is significantly modified: in contrast to the purely symmetric case, where the
modeshape spans across multiple cans, the mode is localized, i.e. only a few cans show activity,
while the majority of cans remain quiet. This phenomenon, observed in experiments [203, 204]
and briefly covered in the numerical study [38], has major engineering implications and re-
quires to rethink the distribution of pressure sensors across cans, as well as the interpretation of
online monitoring data, to efficiently define safety triggers and avoid catastrophic failures. Fur-
ther efforts should be made to study mode localization at a fundamental level. In the non-linear
regime, the presence of closely spaced eigenfrequencies may give rise to synchronization [205],
i.e. finite amplitude oscillations that are a mixture of linear modes with different eigenfrequen-
cies. Mutual synchronization has been famously examplified by Huygens’ clocks [206], but also
studied in the context of thermoacoustics, with laminar [207, 208] or turbulent [209, 210] cou-
pled combustors. Depending on the coupling and the system parameters, a variety of complex
dynamics may emerge [211, 212], such as quasiperiodicity, chaos, frequency/phase locking or
chimeras, a hybrid pattern named from the Greek mythology by Abrams and Strogatz [213]
to emphasize the simultaneous coexistence of regions of synchrony and asynchrony. Modeling
and analysis methods could be further developed and applied to (can-)annular combustors.
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8 Summary of Papers

This chapter summarizes the core findings of individual publications. The latter are not sorted
stricly chronologically, but rather in a way that highlights the progress made on the topic of
clusters of thermoacoustic modes. Additionally, for each paper, the respective contribution of
the authors is stated.
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8.1 Linear time-continuous state-space realization of flame
transfer functions by means of a propagation equation

Label: PAPER-FTF [61]

Original Abstract: Low-order network models, commonly used to assess the thermo-acoustic
stability of combustors, can be cast in a linear, time-continuous state-space representation. A
standard linear eigenvalue problem for the system modes results, which can be solved in a ro-
bust and efficient manner. To represent the linear dynamics of any time-invariant flame in the
state-space framework, this study presents an approximation of the distributed-time-delayed
flame response to acoustic velocity perturbations based on a spatially discretized propagation
equation (PE). We derive the rational flame transfer function of a first-order-upwind-PE state-
space model and discuss its relation to the Tustin approximation of transfer functions. For an ex-
emplary discrete finite impulse response of a flame, a third-order-upwind-PE state-space model
is shown to match the discrete flame frequency response with an accuracy comparable to that
of a rational approximation found by non-linear optimization. The numerical dissipation intro-
duced by discretization of the PE ensures negligible gain above the Nyquist frequency of the
underlying discrete flame impulse response. Finally, we apply the PE state-space flame model
to a generic Rijke tube and show that the predicted thermoacoustic modes agree well with re-
sults obtained from a classical non-linearly optimized rational approximation of the frequency
response function of the flame.

Relevance for the thesis: This paper introduces a method to represent any flame model in a
continuous state-space framework, enabling to solve for a linear eigenvalue problem, and thus
guaranteeing the completeness of the spectrum.

CRediT author statement: P. Brokof: Conceptualization, Methodology, Software, Validation,
Formal analysis, Data curation, Writing - original draft, Writing - review & editing, Visualiza-
tion. G. J. J. Fournier: Conceptualization, Methodology, Software, Validation, Formal analy-
sis, Data curation, Writing - review & editing. W. Polifke: Conceptualization, Writing - review
& editing, Supervision, Funding acquisition.

Status: Published in INTERNOISE and NOISE-CON Congress and Conference Proceedings.

Review process: Scopus listed.

Reference: P. Brokof, G. J. J. Fournier, and W. Polifke. “Linear time-continuous state-space
realization of flame transfer functions by means of a propagation equation”. In INTERNOISE
and NOISE-CON Congress and Conference Proceedings, pages 3490–3501, Glasgow, Scot-
land, 2023. Institute of Noise Control Engineering. DOI: 10.3397/IN_2022_0496. Reproduced
on p.75ff.
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8.2 Categorization of thermoacoustic modes in an ideal resonator with phasor diagrams

8.2 Categorization of thermoacoustic modes in an ideal res-
onator with phasor diagrams

Label: PAPER-CATEGORIZATION [101]

Original Abstract: A recent study (Yong, Silva, and Polifke, Combust. Flame 228 (2021)) pro-
posed the use of phasor diagrams to categorize marginally stable modes in an ideal resonator
with a compact, velocity-sensitive flame. Modes with velocity phasors that reverse direction
across the flame were categorized as ITA modes. The present study extends this concept to
growing and decaying modes. In other words, with the method proposed, it is possible to distin-
guish whether a given thermoacoustic mode – regardless of its stability – should be categorized
as acoustic or ITA. The method proposed does not rely on any parametric sweep, but on the an-
gle relating the velocity phasors across the flame. This method of categorization reveals distinct
regions in the complex plane where acoustic and ITA eigenfrequencies are localized. Addition-
ally, we analyze the medium oscillation at the flame location to construct a physically intuitive
understanding of the proposed categorization method.

Relevance for the thesis: This paper provides a simple and elegant criterion to identify the
nature of a thermoacoustic eigenmode.

CRediT author statement: K. J. Yong: Conceptualization, Methodology, Software, Vali-
dation, Formal analysis, Data curation, Writing - original draft, Writing - review & edit-
ing, Visualization. C. F. Silva: Conceptualization, Writing - review & editing, Supervision.
G. J. J. Fournier: Conceptualization, Writing - review & editing. W. Polifke: Conceptualiza-
tion, Writing - review & editing, Supervision, Funding acquisition.

Status: Published in Combustion and Flame.

Review process: Peer-reviewed, Scopus listed.

Reference: K. J. Yong, C. F. Silva, G. J. J. Fournier, and W. Polifke. “Categorization of
thermoacoustic modes in an ideal resonator with phasor diagrams”. Combustion and Flame,
249:112605, March 2023. ISSN 00102180. DOI: 10.1016/j.combustflame.2022.112605. Re-
produced on p.87ff.
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8.3 Low-Order Modeling to Investigate Clusters of Intrinsic
Thermoacoustic Modes in Annular Combustors

Label: PAPER-ITA [107]

Original Abstract: The intrinsic thermoacoustic (ITA) feedbackloop constitutes a coupling be-
tween flow, flame and acoustics that does not involve the natural acoustic modes of the system.
One recent study showed that ITA modes in annular combustors come in significant number and
with the peculiar behavior of clusters, i.e. several modes with close frequencies. In the present
work an analytical model of a typical annular combustor is derived via Riemann invariants
and Bloch theory. The resulting formulation describes the full annular system as a longitudi-
nal combustor with an outlet reflection coefficient that depends on frequency and the azimuthal
mode order. The model explains the underlying mechanism of the clustering phenomena and the
structure of the clusters associated with ITA modes of different azimuthal orders. In addition,
a phasor analysis is proposed, which enclose the conditions for which the 1D model remains
valid when describing the thermoacoustic behavior of an annular combustor.

Relevance for the thesis: This paper provides an analytical model that allows to explain the
origin of ITA clusters in annular combustors, as well as the spectrum structure.

CRediT author statement: G. J. J. Fournier: Conceptualization, Methodology, Software,
Validation, Formal analysis, Data curation, Writing - original draft, Writing - review & editing,
Visualization. M. Haeringer: Methodology, Writing - review & editing. C. F. Silva: Concep-
tualization, Writing - review & editing, Supervision. W. Polifke: Conceptualization, Writing -
review & editing, Supervision, Funding acquisition.

Status: Published in Journal of Engineering for Gas Turbines and Power.

Review process: Peer-reviewed, Scopus listed.

Reference: G. J. J. Fournier, M. Haeringer, C. F. Silva, and W. Polifke. “Low-Order Modeling
to Investigate Clusters of Intrinsic Thermoacoustic Modes in Annular Combustors”. Journal of
Engineering for Gas Turbines and Power, 143(4):041025, April 2021. ISSN 0742-4795,1528-
8919. DOI: 10.1115/1.4049356. Reproduced on p.100ff.

Comment: A first version of this publication was presented and published in the proceedings
of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition [214].
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8.4 A Strategy to Tune Acoustic Terminations of Single-Can Test-Rigs to Mimic Thermoa-
coustic Behavior of a Full Engine

8.4 A Strategy to Tune Acoustic Terminations of Single-Can
Test-Rigs to Mimic Thermoacoustic Behavior of a Full
Engine

Label: PAPER-TUNING [215]

Original Abstract: Thermoacoustic properties of can-annular combustors are commonly inves-
tigated by means of single-can test-rigs. To obtain representative results, it is crucial to mimic
can-can coupling present in the full engine. However, current approaches either lack a solid the-
oretical foundation or are not practicable for high-pressure rigs. In the present study we employ
Bloch-wave theory to derive reflection coefficients that correctly represent can-can coupling.
We propose a strategy to impose such reflection coefficients at the acoustic terminations of a
single-can test-rig by installing passive acoustic elements, namely straight ducts or Helmholtz
resonators. In an iterative process, these elements are adapted to match the reflection coefficients
for the dominant frequencies of the full engine. The strategy is demonstrated with a network
model of a generic can-annular combustor and a 3D model of a realistic can-annular combus-
tor configuration. For the latter we show that can-can coupling via the compressor exit plenum
is negligible for frequencies sufficiently far away from plenum eigenfrequencies. Without uti-
lizing previous knowledge of relevant frequencies or flame dynamics, the test-rig models are
adapted within a few iterations and match the full engine with good accuracy. Using Helmholtz
resonators for test-rig adaption turns out to be more viable than using straight ducts.

Relevance for the thesis: This paper utilizes the model introduced in PAPER-ITA to describe
the can-can acoustic coupling. The latter reveals to be imperfectly suited for this type applica-
tion.

CRediT author statement: M. Haeringer: Conceptualization, Methodology, Software, Val-
idation, Formal analysis, Data curation, Writing - original draft, Writing - review & editing,
Visualization. G. J. J. Fournier: Methodology, Writing - review & editing. M. Meindl: Soft-
ware, Writing - review & editing. W. Polifke: Conceptualization, Formal analysis, Writing -
original draft, Writing - review & editing, Supervision, Funding acquisition.

Status: Published in Journal of Engineering for Gas Turbines and Power.

Review process: Peer-reviewed, Scopus listed.

Reference: M. Haeringer, G. J. J. Fournier, M. Meindl, and W. Polifke. “A Strategy to Tune
Acoustic Terminations of Single-Can Test-Rigs to Mimic Thermoacoustic Behavior of a Full
Engine”. Journal of Engineering for Gas Turbines and Power, 143(7):710029, July 2021. ISSN
0742-4795, 1528-8919. DOI: 10.1115/1.4048642. Reproduced on p.110ff.

Comment: A first version of this publication was presented and published in the proceedings
of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition [216].
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8.5 Low-Order Modeling of Can-Annular Combustors

Label: PAPER-CAN [108]

Original Abstract: Heavy-duty land-based gas turbines are often designed with can-annular
combustors, which consist of a set of identical cans, acoustically connected on the upstream
side via the compressor plenum, and, downstream, with a small annular gap located at the
transition with the first turbine stage. The modeling of this cross-talk area is crucial to predict
the thermo-acoustic modes of the system. Thanks to the discrete rotational symmetry, Bloch
wave theory can be exploited to reduce the system to a longitudinal combustor with a complex-
valued equivalent outlet reflection coefficient, which models the annular gap. The present study
reviews existing low-order models based purely on geometrical parameters and compares them
to 2D Helmholtz simulations. We demonstrate that the modeling of the gap as a thin annulus
is not suited for can-annular combustors and that the Rayleigh conductivity model only gives
qualitative agreement. We then propose an extension for the equivalent reflection coefficient that
accounts not only for geometrical but also flow parameters, by means of a characteristic length.
The proposed model is in excellent agreement with 2D simulations and is able to correctly
capture the eigenfrequencies of the system. We then perform a Design of Experiments study
that allows us to explore various configurations and build correlations for the characteristic
length. Finally, we discuss the validity limits of the proposed low-order modeling approach.

Relevance for the thesis: This paper compares the models of PAPER-ITA and the literature to
FEM computations of a can-annular combustor. A new model that better describes the acoustic
coupling between cans is proposed.

CRediT author statement: G. J. J. Fournier: Conceptualization, Methodology, Software,
Validation, Formal analysis, Data curation, Writing - original draft, Writing - review & editing,
Visualization. M. Meindl: Software, Writing - review & editing. C. F. Silva: Conceptualiza-
tion, Writing - review & editing, Supervision. G. Ghirardo: Conceptualization, Writing - re-
view & editing, Supervision. M. R. Bothien: Conceptualization, Writing - review & editing,
Supervision, Funding acquisition. W. Polifke: Conceptualization, Writing - review & editing,
Supervision, Funding acquisition.

Status: Published in Journal of Engineering for Gas Turbines and Power.

Review process: Peer-reviewed, Scopus listed.

Reference: G. J. J. Fournier, M. Meindl, C. F. Silva, G. Ghirardo, M. R. Bothien, and W. Po-
lifke. “Low-Order Modeling of Can-Annular Combustors”. Journal of Engineering for Gas
Turbines and Power, 143(12):121004, December 2021. ISSN 0742-4795, 1528-8919. DOI:
10.1115/1.4051954. Reproduced on p.121ff.

Comment: A first version of this publication was presented and published in the proceedings
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Combustors

8.6 Interplay of Clusters of Acoustic and Intrinsic Thermoa-
coustic Modes in Can-Annular Combustors

Label: PAPER-INTERPLAY [117]

Original Abstract: Thermoacoustic systems can exhibit self-excited instabilities of two nature,
namely cavity modes or intrinsic thermoacoustic (ITA) modes. In heavy-duty land-based gas
turbines with can-annular combustors, the cross-talk between cans causes the cavity modes
of various azimuthal order to create clusters, i.e. ensembles of modes with close frequencies.
Similarly, in systems exhibiting rotational symmetry, ITA modes also have the peculiar behavior
of forming clusters. In the present study, we investigate how such clusters interplay when they
are located in the same frequency range. We first consider a simple Rijke tube configuration
and derive a general analytical low-order network model using only dimensionless numbers.
We investigate the trajectories of the eigenmodes when changing the downstream length and
the flame position. In particular, we show that ITA and acoustic modes can switch nature and
their trajectories are strongly influenced by the presence of exceptional points. We then study
a generic can-annular combustor. We show that such configuration can be approximated by an
equivalent Rijke tube. We demonstrate that, in the absence of mean flow, the eigenvalues of the
system necessarily lie on specific trajectories imposed by the upstream conditions.

Relevance for the thesis: This paper makes use of the model of PAPER-CAN to investigate
the behavior of ITA and acoustic clusters in a can-annular combustor. It is highlighted how
eigenmodes follow specific trajectories, can switch nature and are influenced by the presence of
exceptional points.

CRediT author statement: G. J. J. Fournier: Conceptualization, Methodology, Software,
Validation, Formal analysis, Data curation, Writing - original draft, Writing - review & editing,
Visualization. F. Schaefer: Software, Writing - review & editing. M. Haeringer: Conceptu-
alization, Methodology, Writing - review & editing. C. F. Silva: Conceptualization, Writing
- review & editing, Supervision. W. Polifke: Conceptualization, Writing - review & editing,
Supervision, Funding acquisition.
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ABSTRACT
Low-order network models, commonly used to assess the thermo-acoustic stability of combustors,
can be cast in a linear, time-continuous state-space representation. A standard linear eigenvalue
problem for the system modes results, which can be solved in a robust and efficient manner. To
represent the linear dynamics of any time-invariant flame in the state-space framework, this study
presents an approximation of the distributed-time-delayed flame response to acoustic velocity
perturbations based on a spatially discretized propagation equation (PE). We derive the rational
flame transfer function of a first-order-upwind-PE state-space model and discuss its relation to the
Tustin approximation of transfer functions. For an exemplary discrete finite impulse response of a
flame, a third-order-upwind-PE state-space model is shown to match the discrete flame frequency
response with an accuracy comparable to that of a rational approximation found by non-linear
optimization. The numerical dissipation introduced by discretization of the PE ensures negligible
gain above the Nyquist frequency of the underlying discrete flame impulse response. Finally, we
apply the PE state-space flame model to a generic Rijke tube and show that the predicted thermo-
acoustic modes agree well with results obtained from a classical non-linearly optimized rational
approximation of the frequency response function of the flame.

1. INTRODUCTION

Thermo-acoustic instability problems involve length scales ranging from acoustic wave lengths in
the order of the dimensions of the combustion device to flame thicknesses of a few millimeters [1].
To predict the stability of a combustor with reasonable computational effort, a common strategy is
to divide the problem into sub-models with tailored complexity. Flame transfer functions (FTF)
stemming from high-fidelity simulations can be incorporated into low-order acoustic networks [2].
Similarly, acoustic network models can be applied as boundary conditions in high-fidelity simulations
to reduce the size of the computational domain [3].

1philipp.brokof@tum.de
2guillaume.fournier@tum.de
3polifke@tum.de

A.1 PAPER-FTF

75



Thermo-acoustic low-order networks usually lead to a non-linear eigenvalue problem for the
system dynamics, i.e. system modes and their corresponding frequencies and growth rates. This
non-linear eigenvalue problem is mainly a result of the phase shift experienced by acoustic waves
traveling through the geometry and the distributed-time-delayed reactions [4] of flames to acoustic
velocity perturbations, both leading to terms where the (complex-valued) frequency occurs in the
exponent of the exponential function. Furthermore, non-linearities can be introduced by non-trivial
boundary conditions, represented by complex-valued reflection coefficients, and acoustic inertia
in models of acoustically compact elements, e.g. for long holes in [5]. Solving this non-linear
eigenvalue problem by iterative root-finding [6] is computationally expensive. More crucial, the
choice of the initial conditions for the search algorithm [7] determines which modes are found, and
there is no guarantee that one finds all roots of the system. Contour integral methods, which ensure
that all eigenmodes within a contour in the complex-plane are found, offer a remedy [7]. However,
these methods remain computationally expensive [8].

Schuermans et al. [9] introduced the state-space approach to acoustic modeling, based on a modal
expansion technique and sub-model interconnection by the Redheffer Star Product. Emmert at al.
[10], on the other hand, connect sub-models with a feed-through equation. State-space formulations
for network elements are deduced from rational polynomials that represent the respective transfer
functions or from a spatial discretization of a propagation equation. If the state-space models of all
individual elements are linear, the resulting state-space model of the overall acoustic network is also
linear and a linear eigenvalue problem results, which can be solved in a robust and efficient manner.
This is an important advantage of state-space models over the standard formulation of network models
[8, 11].

The crucial point is the formulation of linear state-space models for network elements with
time-delays/phase shifts. For example, for a duct element, the characteristic amplitudes of acoustic
waves entering and leaving the duct can be set as the inputs and outputs of the state-space model,
respectively. Since the acoustic waves simply propagate through the duct, leading to a phase shift,
a linearized description of the system dynamics can be obtained by discretizing the propagation
equation (PE) in space [10].

The n-τ flame model shows great similarity to the aforementioned duct element if the time-delay is
interpreted as the time that the input to the model (acoustic velocity perturbation) needs to propagate
through a pseudo space until it affects the output of the model (heat release perturbation). The length
of the pseudo space and the propagation speed of the perturbation are matched to the desired time-
delay of the flame. In literature, states stemming from the discretization of the pseudo space are
referred to as "lagged states" [12] or "history states" [13]. The PE was used to realize the n-τ model
into state-space by Meindl et al. [11], and Mangesius and Polifke [13]. However, Schmid et al. [14]
point out that the n-τ model should only be used if the absolute time lag of the flame is known and
Subramanian et al. [12] advocate for distributed time-delay response functions to capture the rich
complexity of flame dynamics.

More sophisticated descriptions of flame dynamics can be obtained by (1) harmonic forcing
of the flame to identify the frequency response function (FRF) or (2) broad-band excitation
and a correlation analysis to identify the impulse response of the flame. However, an analytic
time-continuous description of frequency response function (FRF) or impulse response cannot be
obtained from these system identification (SI) techniques. The FRF will only be available at discrete
frequencies and the impulse response will consist of a truncated series of discrete impulses, also
known as finite impulse response (FIR). However, we require a time-continuous state-space (CSS)
model for stability analysis. The advantage of such a time-continuous model is the possibility of
coupling with a variable time step computational fluid dynamics (CFD) simulation, allowing an
efficient implementation of time domain impedance boundary conditions [3, 15]. Common strategies
to obtain CSS models from discrete FRF data are (1) fitting a rational function [12, 16–18], or (2)
first-order bilinear/Tustin and higher-order Padé approximation [9, 19] of exponential terms. For
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either method, the obtained rational function is subsequently transformed into a CSS model, e.g. in
Jordan canonical form [20].

The contribution of the present study is to formulate a PE based CSS model for arbitrary FIRs.
Furthermore, an analytic analysis of the model is given and its performance is compared to the
rational-fitting strategy for an example FIR of a laminar premixed flame [21] obtained by SI [2].
In this study, the FIR is taken as input and details on its computation are out of the scope of the
presentation.

This paper is organized as follows: Section 2 reviews common low-order representations of flames,
i.e. FIR and FTF. Subsequently, Section 3 introduces the PE based CSS realization of flame transfer
functions. In Section 4, the performance of the presented PE CSS model is compared with a CSS
based on rational-fitting. Both CSS models are compared regarding the recovery of the discrete
frequency response of the flame, and the influence of the CSS realization strategy on the eigenvalues
of a generic Rijke tube is assessed. Finally, Section 5 concludes this study with a summary of the
findings.

2. LOW-ORDER FLAME MODELS IN THERMO-ACOUSTICS

This section reviews the concepts of flame impulse response and flame transfer function. We point out
the interrelation between frequency and time domain in both, the time-discrete and time-continuous
case. A graphical overview of the different domains can be found in [4], Figure 2.

The discrete response series rl of a causal linear system to any discrete signal series sl can be
obtained by convolution of the signal with the system’s FIR h = (h0, h1, ..., hN) of length N. For a
velocity sensitive flame, the input signal consists of the normalized velocity perturbation u′/ū at a
reference point and the response of interest is the normalized fluctuating heat release Q̇′/Q̇ of the
flame. For harmonic input signals sl = û/ūes∆tl, the discrete FTF Fd(s) that corresponds to the FIR h
becomes

rl =

N∑
k=0

hk
û
ū

es∆t(l−k) =
û
ū

es∆tl
N∑

k=0

hke−s∆tk ⇒ Fd(s) =
ˆ̇Q/Q̇
û/ū

=

N∑
k=0

hke−s∆tk, (1)

where s = σ + iω is the Laplace variable and ˆ(·) denotes the complex amplitude. From Eq. (1), it is
evident that the FTF can be interpreted as the sum of the distributed-time-delayed responses of the
flame to impulse forcing and is non-linear in s.

The discrete equivalent to the Laplace transform is the z-transform. By substituting z = es∆t in
Eq. (1), we find that the z-transform of the FIR equals the FTF. A rational approximation of F (s) can
be found by setting

z =
es ∆t

2

e−s ∆t
2

≈
1 + ∆t

2 s

1 − ∆t
2 s
, (2)

which is known as bilinear transform or Tustin transform [22]. The Tustin transform keeps the
mapping properties of the exponential function between Laplace and z-space and, therefore, conserves
stability properties of the time-discrete model when used to find a time-continuous description and
vice versa. Equation (2) shows that the Tustin transform, which is the first-order Padé approximation
[23], is based on the first-order Taylor series expansion ex ≈ 1 + x. Hence, accuracy can only be
expected for sufficiently small frequencies or small time increments ∆t. Rational approximations of
the time-delay term for higher frequencies were achieved in [9, 19] using Padé approximations of
higher orders.

A.1 PAPER-FTF
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3. CONTINUOUS STATE-SPACE REALIZATION BY PROPAGATION EQUATION

This sections presents a CSS realization based on a PE. We start with a minimal example and realize a
FIR consisting of three impulses in a first-order-upwind-PE CSS model. Subsequently, the equivalent
continuous flame transfer function is generalized for arbitrary FIRs. From this generalization, the
stability and mapping properties from z-space to Laplace space of the first-order-upwind-PE CSS
model are assessed.

3.1. Minimal Example
Let us assume a FIR consisting of three impulses, h = (h0, h1, h2), as shown in Figure 1. The FIR is
sampled with a constant time increment ∆t. Let the pseudo space in Θ be discretized with ∆Θ = ∆t/2.
The flame responds instantaneously with h0 to the velocity perturbation signal u′/ū, but the signal
has to travel the distance 2∆Θ = ∆t with unity propagation speed through the pseudo space until the
time-delay corresponding to h1 has passed. Similarly, the signal has to travel twice the distance until
the time-delay of h2 has passed. Introducing history states x = (x1, ..., x4)T , which store the signal
at different positions in pseudo space, the evolution of the state variables x is completely described
by a PE. Rearranging the PE for the time derivative of x and discretizing the spatial derivative with a
first-order upwind finite difference stencil yields

∂x
∂t

= −
∂x
∂θ
≈ −

[ xi − xi−1

∆θ

]
. (3)

Application of Eq. (3) to all states x gives
ẋ1

ẋ2

ẋ3

ẋ4

 =


− 1

∆Θ
0 0 0

1
∆Θ

−1
∆Θ

0 0

0 1
∆Θ

−1
∆Θ

0

0 0 1
∆Θ

−1
∆Θ

︸                     ︷︷                     ︸
A


x1

x2

x3

x4

 +


1

∆Θ

0

0

0

︸ ︷︷ ︸
B

u′

ū
, (4)

where A is the system matrix and B is the input matrix. We can formulate the output equation for
fluctuating heat release as

ˆ̇Q

Q̇
=

(
0 h1 0 h2

)︸            ︷︷            ︸
C


x1

x2

x3

x4

 + h0︸︷︷︸
D

û
ū
, (5)

h0

h1

h2

t
∆t x0 = u′/ū x1 x2 x3 x4

Θ

∆Θ

Pseudo space:

Figure 1: Minimal example: FIR consisting of three discrete impulses. Pseudo space is resolved with
∆θ = ∆t/2.
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where C and D are the output and feed-through matrix, respectively. Equations (4) and (5) form a
continuous state-space model (A,B,C,D) with scalar input û/ū and scalar output ˆ̇Q/Q̇.

3.2. Analysis of the Resulting Flame Transfer Function
The system matrix A resulting from the first-order upwind discretization is triangular, allowing
straightforward determination of its eigenvalues that characterize the dynamics of the CSS model.
Note that the system matrix depends only on the discretization scheme and pseudo space resolution,
and not on the impulse response h. Furthermore, the coefficients of the system matrix are constant
and frequency independent.

Equations (4) and (5) can be Laplace transformed and rearranged to find the corresponding
continuous flame transfer function

F (s)∆Θ= ∆t
m

=
ˆ̇Q/Q̇
û/ū

= C(sI − A)−1B + D =

N∑
k=0

hk[
s∆t

m + 1
]km , (6)

where the parameter m controls the resolution of the pseudo space and N is the length of the FIR.
Equation (6) shows that the corresponding FTF is a rational function with only stable poles of
multiplicity mk at s = −m/∆t. Furthermore, for higher resolution of the pseudo space, the poles
move to a strongly damped region that is not of concern for the stability analysis of thermo-acoustic
systems.

Comparison with Eq. (1) shows that Eq. (6) is obtained from the exact FTF by substituting

z = es∆t = es ∆t
m m = (es ∆t

m )m ≈

[
s
∆t
m

+ 1
]m

⇒ z(iω) =

1 +

(
ω∆t
m

)2m/2

eiatan(ω∆t
m )m. (7)

Thus, the first-order-upwind-PE CSS model is, as the Tustin transform, based on a first-order Taylor
series expansion of the exponential function. However, compared to the Tustin transform, the
exponent is scaled by 1/m resulting in better performance at higher frequencies. For a fine resolution
of the pseudo space, Eq. (7) recovers the mapping properties of the z-transform. This is evident from
the complex pointer representation of the mapping. For high values of m, |z(iω)| → 1, so that the
imaginary axis is mapped on the unit circle.

4. COMPARISON OF PE AND DATA-FITTING BASED CSS MODELS

In this section, the performance of the PE CSS model is compared with a rational fit based CSS, where
the sixth-order rational fit was obtained with the MATLAB [24] tfest function, requiring a quality of
99 % and constraining the poles to be stable. For further information about the rational fit CSS model,
the reader is referred to [12, 16–18]. We assess (1) the mean square error (MSE) of the continuous
frequency response function to the original discrete model and (2) the influence of the CSS realization
strategy on the eigenvalues of a generic Rijke tube. The FIR for flame modeling consists of N = 44
discrete impulses and was obtained by SI from the simulation of a Kornilov flame [21]. It is indicated
in Figure 3 with blue dots.

4.1. Recovery of Discrete Flame Transfer Function
The difference between the FRF Fc of the CSS models and the original discrete FRF Fd is measured
by the mean square error (MSE) in the complex plane over all Nd frequencies of the discrete model,
i.e.

MSE =
1

Nd

Nd∑
k=1

∣∣∣Fd,k − Fc,k

∣∣∣2 . (8)
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Figure 2: Left: Comparison between loci of discrete frequency response and continuous frequency
responses from different CSS realizations. Right: Loci of frequency responses of PE CSS models
based on resampled FIR.

The loci of the compared FRFs are shown in the left part of Figure 2. Note that the discrete model
is only plotted up to its Nyquist frequency f = 1/(2∆t) = 1250Hz. The performance of the Tustin
CSS model is good at low frequencies but severe deviations to the discrete model can be observed in
phase for higher frequencies (the locations of markers on the parametric curve do not coincide with
those of the discrete model). However, at high frequencies the gain of the FRF is low so that even big
discrepancies in phase become unimportant. This is reflected by the low error of MSE = 7.16e−4. Per
construction, the number of states of the Tustin model equals the number of time-delayed impulses
in the FIR. The rational fit CSS model, with only six states, shows a small error of MSE = 1.34e−5,
justifying its frequent use in literature. To achieve an error MSE = 1.09e−4, hence of the same order
as for the Tustin CSS model, with the first-order-upwind-PE CSS model introduced in Section 3, the
number of states increases drastically to 860. Remedy can be found by increasing the order of the
upwind stencil for the PE discretization from first-order to third-order. The third-order-upwind-PE
CSS model with 215 states shows an error of MSE = 1.51e−7, and a more accurate fit of the phase
than the first-order-upwind-PE model. However, the system matrix of the third-order-upwind-PE CSS
model is not triangular anymore, leading to a complex pole pattern of the corresponding rational FTF
(in contrast to Eq. (6)).

Inspection of Figure 2 (left) reveals that the PE CSS models show spurious gain above the Nyquist
frequency of the underlying discrete model. This is more significant for the third-order scheme and
becomes even more significant if the number of states of the third-order model is increased from
n = 215 to n = 430. In a frequency domain analysis, this spurious gain can be ignored since it
occurs above the frequency range of interest, i.e. above the Nyquist frequency. However, in a time
domain analysis that couples the CSS model to unsteady CFD [3, 15], this nonphysical behavior at
higher frequencies would be present. The discrete model is only valid up to its Nyquist frequency
of f ≈ 1250 Hz. For higher frequencies, the z-transformed FRF is symmetric in magnitude and anti-
symmetric in phase around this Nyquist frequency [4]. Hence, a continuous extrapolation based on
the discrete model is expected to show symmetric high frequency peaks in gain. The spurious gain is
damped only as a beneficial side effect of the numerical dissipation of the discretization scheme used
in the PE CSS model.

To overcome this problem, we resample the FIR at every history state to increase the Nyquist
frequency and push the (symmetric) spurious peak to higher frequencies where the numerical damping
is stronger. In Figure 3 (left), additional sampling points are inserted and the FIR is step-wise rescaled
to ensure a constant total impulse of the response. In Figure 3 (right), the original FIR was converted
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Figure 3: Comparison of different refinement strategies of the FIR: Scaling of the FIR (left) and
scaling with spline interpolation (right).
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Figure 4: MSE to discrete model for increasing number of state variables n for resampled and original
PE CSS models.

to a time series with a hold function, spline interpolated, and converted back to an impulse series
under consideration of the finer sampling time.

Figure 2 (right) shows that for both resampling strategies the spurious gain observed before
between 1250 Hz and 2500 Hz is suppressed. Inspection at frequencies up to twice of the new
Nyquist limit showed no further peak in gain. The mere scaling strategy recovers the phase of
the discrete model only at low frequencies. Figure 3 (left) shows that the scaling operation delays
the overall impulse response. Since the phase of the FRF is closely related to the time-delay of
the FIR, this effect becomes visible in the unmatched phase. In contrast, the phase accuracy of
the spline-interpolated third-order-upwind-PE CSS is excellent. Figure 4 compares the MSEs of
the resampled PE CSS models with the original PE CSS model, where the output matrix C was
zero patterned, see Eq. (5). For the same number of states n, the error for the spline interpolation
strategy is one order of magnitude higher than for the original zero patterning strategy in case of the
third-order-upwind-PE CSS model. The phase accuracy of the merely scaled CSS model is poor and
it is not guaranteed that the model’s accuracy improves with increased number of states.

4.2. Influence of the CSS Realization on the Eigenvalues of a Rijke Tube
So far, the PE CSS model was only assessed for zero growth rate by limiting the analysis to the
FRF. However, as pointed out by Schmid et al. [14], for linear stability analysis we have to solve
the eigenvalue problem in the complex plane. The PE CSS model is a linear approximation of the
time-delayed dynamics of the flame. Thus, the linear eigenvalue problem can only be expected to
give similar eigenvalues as the original non-linear problem if this approximation is sufficiently good
in the complex plane [8, 14].

Figure 5 shows magnitude and phase of the flame transfer functions F of the original distributed
time-delay model according to Eq. (1), the third-order-upwind-PE CSS model with spline-interpolated
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(a) (b) (c)

(d) (e) (f)

Figure 5: Magnitude and phase of the flame transfer functions F of the original distributed time-delay
model according to Eq. (1) (a, d), 3rd-order-upwind-PE CSS model with spline-interpolated FIR (b,
e) and 6th-order rational fit CSS model (c, f). The frequency response function (FRF) at zero growth
rate is indicated by a white line.

FIR and the sixth-order rational fit CSS model. Although the fit of the FRF by the rational fit model
was excellent, the FTF in the complex plane varies qualitatively from the FTF of the distributed
time-delay model for normalized growth rates σ/(2π) < −50 1/s. On the other hand, the FTF of the
third-order-upwind-PE CSS is qualitatively more similar to the FTF of the distributed time-delay
model.

To assess the linear approximation of the FTF obtained with the third-order-upwind-PE CSS
model, we compute the eigenvalues of a one-dimensional Rijke tube with quiescent flow as shown
in Figure 6 and compare them with the eigenvalues computed based on the rational fit CSS. Only
planar one-dimensional acoustic waves are non-evanescent and the waves travelling between network
elements are indicated with curved arrows in Figure 6. Both ends of the Rijke tube are open and
modeled with reflection coefficients Ru = Rd = −1. The flame is placed between an upstream duct
of length Lu = 0.25 m and a downstream duct of length Ld that is varied from 0.75 m to 2.0 m in a
parameter study. The speed of sound in the upstream duct is c = 341 m/s. The flame dynamics are
modeled by the FIR shown in Figure 3 and standard acoustic Rankine-Hugoniot jump conditions [25,
26] with a temperature jump Td/Tu = 4.96 and constant isentropic exponent γ = 1.4. The complete
CSS model of the Rijke tube was obtained with the open source software taX4 [10].

Figure 7 (left) shows the pole map of the Rijke tube obtained with the third-order-upwind-PE CSS
model with spline interpolated FIR. The length of the downstream duct varies from 0.75 m (black

4https://gitlab.lrz.de/tfd/tax
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LuRu = −1 Ld Rd = −1

u′

F (s)

Q̇′

Figure 6: Low-order acoustic network model of a Rijke tube.

markers) to 2 m (gray markers). Also indicated are the poles and zeros of the flame model in red.
The blue squares indicate the eigenvalues of the original non-linear problem with Ld = 0.75 m, i.e.
exponential expressions for the phase shifts due to acoustic wave propagation in the ducts and the
time-delayed behavior of the flame, as obtained with an iterative solver assuming the CSS eigenvalue
spectra as initial condition. Figure 7 (right) shows the same information for a Rijke tube, where the
flame was modeled with the rational fit CSS. In contrast to the rational fit based CSS model of the
flame, the PE-based CSS model of the flame has no pole in the investigated region of the complex
plane since upwind discretization of the PE guaranties stability and highly damped poles.

For normalized growth rates σ/(2π) > −50 1/s, the predicted trajectories of the poles of
the Rijke tube for both models agree well. According to Figure 5, this is the region of
the complex plane where the FTFs of the third-oder-upwind-PE CSS and rational fit CSS
agree well with the FTF of the original time-delayed flame model. In contrast, in the region
−80 1/s < σ/(2π) < −50 1/s, 0 Hz < ω/(2π) < 500 Hz, where the FTFs of the third-order-upwind-
PE CSS and rational fit CSS differ significantly, the PE-based Rijke tube model predicts three
additional poles. These additional poles are located close to zeros of the FTF and two of them
depend only weakly on the length of the downstream duct. Since these poles do not converge
towards a solution of the non-linear Rijke tube model, they are most likely a consequence of the PE
discretization and of spurious nature.

Looking at the modes close to the stability borderσ = 0, it seems possible that a less accurate flame
model can lead to wrongly predicted instability. It is emphasized that the CSS model must capture

(a) Third-oder-upwind-PE CSS flame model. (b) Sixth-order rational fit CSS flame model.

Figure 7: Poles of the Rijke tube are shown for a variation of the downstream duct length from
Ld = 0.75 (black) to Ld = 2.0 (gray). Also shown in red are the poles and zeros of the applied
flame model. Blue squares indicate poles confirmed by iterative solution of the non-linear model for
Ld = 0.75.
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the phase of the flame response sufficiently well, since thermo-acoustic instabilities are sensitive to
the timing between acoustic pressure and heat release fluctuations (Rayleigh criterion) [27]. This
underlines that a third-order discretization of the PE is preferable despite its more complicated pole
pattern than a first-order PE CSS model.

5. SUMMARY, CONCLUSION AND OUTLOOK

A continuous state-space (CSS) realization of discrete flame impulse responses allows to formulate
thermoacoustic stability analysis as a linear eigenvalue problem. The present paper closes the gap
between state-space realizations of the simplistic n-τ flame model based on a propagation equation
(PE) [11, 13] and more realistic flame models based on rational-fitting [12, 16–18].

The distributed-time-delayed response of flames to velocity perturbations was linearly
approximated by discretizing a propagation equation (PE) in pseudo space. We showed that
PE-based CSS models lead to rational flame transfer functions, too, and presented an explicit
analytical expression for the flame transfer function of the first-order-upwind-PE CSS. Comparison
of numerical results demonstrated very good performance of the rational-fitting approach, as it leads
to state-spaces models that are two orders of magnitude smaller than PE-based realizations with
comparable accuracy. On the downside, the rational fits must be constrained to poles in the negative
real half-plane for stability reasons and an increase in the degrees of freedom of the rational function
does not guarantee a better fit but can lead to over-fitting of the data. Hence, for parametric studies
that require repeated evaluation of CSS models of flame dynamics, the upwind-PE approach is
preferable, since it guarantees stability of the state-space model of the flame. Furthermore, the quality
of the model is guaranteed to increase with state-space size. It is preferable to discretize the PE with
a third-order upwind stencil in order to achieve an accuracy that is comparable to rational-fitting
based CSS. For a generic Rijke tube, spurious modes where found close to the zeros of the PE CSS
model of the flame. This phenomenon should be kept in mind when analyzing eigenvalue spectra
obtained by PE-based CSS models and needs further investigation.

In addition to the PE and rational-fitting strategy, control theory knows many techniques to realize
a state-space model from the discrete impulse response (Markov parameters) of a system. The central
tool in these strategies is a singular value decomposition of the Hankel matrix [22]. In the present
study, these techniques were not further investigated since they lead to a time-discrete state-space
model. However, for acoustic networks based on time-discrete state-space models, these methods can
prove useful and should be considered. For an application in the context of acoustics see Pelling and
Sarradj [28]. A direct comparison with the PE CSS model presented here can be the scope of further
work.
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a b s t r a c t 

A recent study ( Yong, Silva, and Polifke, Combust. Flame 228 (2021) ) proposed the use of phasor diagrams to 

categorize marginally stable modes in an ideal resonator with a compact, velocity-sensitive flame. Modes 

with velocity phasors that reverse direction across the flame were categorized as ITA modes. The present 

study extends this concept to growing and decaying modes. In other words, with the method proposed, 

it is possible to distinguish whether a given thermoacoustic mode – regardless of its stability – should be 

categorized as acoustic or ITA. The method proposed does not rely on any parametric sweep, but on the 

angle relating the velocity phasors across the flame. This method of categorization reveals distinct regions 

in the complex plane where acoustic and ITA eigenfrequencies are localized. Additionally, we analyze the 

medium oscillation at the flame location to construct a physically intuitive understanding of the proposed 

categorization method. 

© 2023 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Thermoacoustic combustion instabilities (TCI) have been the 

subject of investigation over the past several decades due to their 

detrimental effects on combustion systems. Recently, the increased 

demand for cleaner, more efficient and more flexible combustion 

technologies has driven the need for lean premixed combustors, 

which are deemed more susceptible to TCI [1–3] . The onset of TCI 

is attributed to a positive feedback coupling between a fluctuat- 

ing flame and acoustic perturbations [1,4–6] . Acoustic waves are 

generated by the unsteady volumetric expansion in the reactive 

region. According to the established understanding, these acous- 

tic waves propagate upstream or downstream until reaching the 

acoustic boundaries, where they are reflected back towards the 

flame. At the flame, the reflected waves may perturb the flow vari- 

ables associated with the flame such as the equivalence ratio, the 

swirl number, and especially the velocity of the incoming premix- 

ture, which in turn perturb the heat release rate, thus closing the 

feedback loop. If the heat release rate fluctuations are in-phase 

with the pressure fluctuations (fully or partially), i.e., if heat is 

given to the medium at the moment of greatest condensation, en- 

ergy is transferred from the flame to the acoustic field [7] . Pro- 

vided that acoustic dissipation is low, self-excited oscillations may 

ensue. However, in the feedback loop mechanism described above, 

∗ Corresponding author. 

E-mail address: yong@tfd.mw.tum.de (K.J. Yong) . 

the flame may be insensitive to acoustic fluctuations, i.e., a pas- 

sive flame that only induces a temperature discontinuity. In this 

case, the reflected acoustic waves result in a standing wave mode 

– ‘ pure acoustic mode’. Such mode is either marginally stable or 

damped, if dissipation and losses are taken into account. 

This description of flame-acoustic feedback was shown to be in- 

complete, as the ‘intrinsic thermoacoustic (ITA) feedback loop’ was 

discovered [8,9] . This ITA loop may be visualized in a signal flow 

chart as in Fig. 1 (red-dashed pathway). This feedback loop de- 

scribes a more immediate route for the flame-acoustic perturba- 

tion to occur without involving the boundary reflections: the up- 

stream velocity perturbation u ′ u triggers a flame response ˙ Q 

′ , which 

in turn generates an acoustic wave g u that travels upstream to per- 

turb the upstream velocity, thereby closing the loop [8,9] . Ther- 

moacoustic modes generated solely through this feedback loop are 

known as ‘ pure ITA modes’. We may deduce from Fig. 1 that all 

modes observed in a system with non-vanishing boundary reflec- 

tions and a fluctuating flame are the result of the interplay be- 

tween both the acoustic and ITA feedback loops. Indeed, Emmert 

et al. [10] introduced the notion that a thermoacoustic mode in 

an echoic chamber can be predominantly associated either with 

the ITA loop – ‘ITA modes’ – or with the acoustic loop – ‘acoustic 

modes’, after demonstrating that the number of modes in a closed- 

open combustor exceeds the number of acoustic modes. The re- 

sults of other numerical studies, which examined the changes in 

frequency and growth rate as the boundary reflection coefficients 

gradually increased from zero [8,11] , are consistent with this asser- 

tion. 

https://doi.org/10.1016/j.combustflame.2022.112605 
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Fig. 1. The signal flow chart visualizes the scattering pathways of the characteris- 

tic wave amplitudes f [ ] , g [ ] at the discontinuity due to the presence of a velocity 

sensitive flame. The indexes [ ] u and [ ] d indicate the location at the immediate 

u pstream and d ownstream of the flame. r uu , t ud , t du , r dd are scattering matrix ele- 

ments that describes the acoustic wave scattering due to the an impedance change 

across the flame interface (see Emmert et al. [9] for the exact definitions). c 1 , c 2 
are the gain factors that correspond to the production of acoustic waves traveling 

upstream and downstream g u , f d due to the fluctuating heat release rate ˙ Q ′ . The 

red-dashed lines highlight the ITA feedback mechanism: the upstream velocity per- 

turbation u ′ u triggers a flame response ˙ Q ′ described by the flame transfer function 

F(ω) . The flame response facilitates the production of an acoustic wave travelling 

upstream g u , which in turn mediates u ′ u , closing the feedback loop. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

The ability to distinguish ITA modes from acoustic modes be- 

comes important, when one tries to understand if certain behav- 

ior observed either in simulations or in experiments are inherent 

to ITA modes. One of the most discussed behaviors, which was 

attributed to ITA modes in the studies [10,12] , is mode destabi- 

lization upon boundary damping. This phenomenon was also con- 

firmed in an experiment [13] , where an acoustic liner at the end 

of the combustor suppressed instabilities associated with acoustic 

modes, but promoted those associated with ITA modes. Further- 

more, eigenfrequencies of ITA modes are thought to be less sensi- 

tive to changes in combustor length than acoustic modes [12,14] . 

This conclusion was supported by the fact that the intrinsic feed- 

back loop of the flame does not require acoustic waves traveling 

through the entire combustor (see above). 

A variety of ad hoc methods were proposed to achieve the 

goal of mode categorization. Emmert et al. [10] introduced a cou- 

pling parameter μ to modulate the coupling between the acoustic 

and ITA feedback loops in a thermoacoustic system, i.e., the cou- 

pling between the fluctuating heat release rate ˙ Q 

′ and the char- 

acteristic wave amplitudes f, g. As μ was gradually reduced from 

unity to 0, the existing eigenmodes either tracked to a ‘pure ITA 

mode’– modes found exclusively in an anechoic environment –

or to a ‘pure acoustic mode’ – modes found in a system with a 

passive flame (flame that is insensitive to acoustic fluctuations). 

These modes were thus categorized as ITA and acoustic modes, re- 

spectively. In the same vein, other authors [15–18] performed the 

sweep of parameters such as the flame gain or the reflection co- 

efficients. Alternatively, proximity to a pure ITA or pure acoustic 

mode is used to identify an ITA or acoustic mode [11,19–21] . Other 

studies, including [13,22] , simply made use of the established char- 

acteristics of pure ITA modes, say, independence of eigenfrequency 

from combustor length or eigenfrequency correspondence with a 

characteristic time delay of the flame response, to identify ITA 

modes. 

Aside from being impractical in situations where parametric 

variation is difficult or expensive, these methods suffer from mul- 

tiple limitations. For instance, methods that rely on the closeness 

of a mode eigenfrequency to the corresponding frequency of pure 

acoustic or ITA modes, are only applicable to a limited number of 

modes. A parameter sweep often entails a stark variation of system 

parameters, which modifies the nature of the modes of interest. 

Indeed, Mukherjee et al. [23] observed that the pressure profile of 

the ITA modes and the acoustic modes categorized by the tracking 

of the flame gain become indistinguishable from each other for a 

moderately large gain. As an acoustic mode ‘approaches a nearby 

ITA mode, it stops behaving like an acoustic mode’. The concept 

of modes switching identities under parametric variation was as- 

serted by Hosseini et al. [18] , as a complex interplay between ITA 

and acoustic modes was demonstrated under variation of parame- 

ters such as time delay, reflection coefficients, or temperature ratio 

across the flame. This assertion was reinforced by the results in 

Silva et al. [16] , Sogaro et al. [19] . The lack of a physically based 

categorization method has led to the claim that mode identities 

do not correlate with specific mode behaviors. As such, Mukher- 

jee et al. [23] speak of ‘born acoustic’ or ‘born ITA’ modes, which 

are modes that tracked to pure acoustic or pure ITA modes at the 

limit of small gain and have no correlation to the established char- 

acteristics typical for a pure acoustic or pure ITA mode. Similarly, 

Orchini et al. [17] classified the eigenmodes into modes of ‘acoustic 

origin’ and ‘ITA origin’, while highlighting the shared mode shape 

features between them in the proximity of an exceptional point. 

Yong et al. [24] proposed a method that does not involve a pa- 

rameter sweep to categorize marginally stable modes in an ideal 

cavity. Phasors and phasor diagrams were used to represent the 

acoustic variables, i.e., the characteristic wave amplitudes and the 

fluctuations in pressure, velocity and heat release rate. The phasor 

diagram in an anechoic environment reveals that pure ITA modes 

exhibit velocity phasors that are perfectly out of phase across the 

flame, which implies a change in sign of the pressure gradient 

across the flame. Interestingly, the same phasor characteristic is 

applicable to marginally stable modes in an ideal resonator, provid- 

ing that the respective flame is sufficiently strong in gain and acts 

in the opposite direction of the upstream velocity. Due to the anal- 

ogous phasor characteristic to pure ITA modes, these marginally 

stable modes are subsequently categorized as ITA modes. This 

method of ITA mode categorization is coherent with the previous 

works that investigated pure ITA modes [8,9,15] , which concluded 

that ITA modes may arise when the FTF phase is equal to an odd 

multiple of π – the ‘ π-criterion’. 

Unlike the previously proposed methods, the phasor based cat- 

egorization proposed by Yong et al. is physically motivated, not 

limited to a specific flame model such as the n − τ model, ap- 

plicable in a variety of combustor setups, and also readily imple- 

mentable in experimental settings. However, that proposed crite- 

rion has its limitation as Yong et al. [24] only investigated the 

marginally stable modes in an ideal resonator. In this work, we ex- 

tend the scope of the phasor analysis to growing or decaying ther- 

moacoustic modes, which allows the generalization of the phasor 

criterion. 

This paper is structured as follows: The next section introduces 

phasor diagrams for wave propagation and thermoacoustic cou- 

pling across a compact heat source for non-zero growth rates. The 

differences to the phasor diagram of a marginally stable mode are 

highlighted. In the process, the influence of the non-zero growth 

rates on the flame transfer function (FTF) in terms of magnitude 

and phase are discussed. The second section serves as a prepara- 

tory stage for the core findings in the following sections. Here, the 

categorization of marginally stable thermoacoustic modes that re- 

lies on the direction reversal of the velocity phasors across the 

flame is recapitulated. Then, two limiting cases – highly decay- 

ing and highly unstable modes – are analyzed using the previ- 

ous criterion. The third section inspects the phasor diagrams of a 

large variety of moderately unstable and decaying modes. Based on 

their distribution in a stability map, modes with partially aligned 

or partially anti-aligned velocity phasors across the flame are cat- 
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egorized as acoustic or ITA, respectively. It is demonstrated that a 

continuous increase or decrease in growth rates necessarily leads 

to a continuous transition of marginally stable acoustic modes into 

ITA modes at infinite growth and decay rates. In the subsequent 

section, the relative orientation of the velocity phasors is quanti- 

fied in terms of the scalar product and visualized in contour maps 

that reveal the regions of acoustic and ITA modes. In the contour 

maps, an alternating pattern of decreasing and increasing size of 

the acoustic regions along the real axis is observed. This pattern 

is shown to directly correspond to the flame position. To complete 

the section, the transitional magnitude and phase of the FTF are 

derived. Finally, a physical interpretation is given to the catego- 

rization criterion, where the velocity phasors at the flame are in- 

terpreted as the physical motion of the flame medium. Acoustic 

modes and ITA modes are described as modes that predominantly 

exhibit a back-and-forth versus an inwards-and-outwards oscilla- 

tion at the flame, respectively. The paper ends with summary, con- 

clusions and outlook. 

Note that this work is a follow-up study of Yong et al. [24] . 

Thus, we highly recommend the readers to read the previous pa- 

per, to gain a better understanding on the construction of phasors 

and phasor diagrams, as well as the notations and keywords used. 

2. Phasor diagrams of characteristic wave amplitudes for 

non-zero growth rates 

In this section, we explore the spatial dependency of the char- 

acteristic wave amplitudes of modes with non-zero growth, and 

produce the corresponding phasor diagrams. The propagation of 

1D plane waves may be expressed in terms of characteristic waves 

f and g

f (x, t) = 

ˆ f (x ) e iωt = 

ˆ f (x ref ) e 
iωt−ikx , 

g(x, t) = ˆ g (x ) e iωt = ˆ g (x ref ) e 
iωt+ ikx (1) 

where 

ˆ f (x ) = 

ˆ f (x ref ) e 
−ikx , ˆ g (x ) = ˆ g (x ref ) e 

ikx (2) 

describes the characteristic wave amplitudes (CWA), which prop- 

agate at the mean speed of sound c in ±x direction, respec- 

tively; k = ω/ c is the wave number for a medium at rest; ω is 

the eigenfrequency; x ref indicates a reference location. As shown 

in Yong et al. [24] , for real-valued frequencies ω ∈ R , the CWAs in 

Eq. (2) describe a respective f and g phasors rotation in the clock- 

wise and counterclockwise direction as x increases, with an angle 

of rotation ϕ = kx . Figure 2 illustrates the 2D phasor diagram at an 

arbitrary location x in a cavity with the reflection coefficient at x ref 

being 

R ref = 

ˆ f (x ref ) 

ˆ g (x ref ) 
= 1 . (3) 

The phasors of the primitive acoustic variables, i.e., fluctuations of 

normalized pressure p ′∗ = p ′ / ( ρc ) and velocity u ′ are obtained by 

adding and subtracting f, g phasors, according to the relation 

p ∗′ = 

p ′ 
ρc 

= 

ˆ f + ˆ g ; u 

′ = 

ˆ f − ˆ g , (4) 

where ρ and ρc represent mean density and specific impedance, 

respectively. For brevity, the apostrophe [ ] ′ , which indicates a fluc- 

tuation, and the hat [ ̂ ] , which indicates a Fourier transformed vari- 

able, are omitted in all following figures as well as texts and equa- 

tions. The overline [ ] remains to indicate a mean value. A series 

of 2D phasor diagrams at different locations may be combined to 

generate a 3D phasor plot to depict the complete phasor evolution 

along the length of the cavity x ∈ [0 , L ] , as shown in Fig. 3 in Yong 

et al. [24] . The readers are invited to verify that the constraints of 

Fig. 2. A 2D phasor diagram depicting the evolution of the phasors of the CWAs 
ˆ f , ̂  g in the + x direction. The phase advance of the ˆ f , ̂  g relative to the reference po- 

sition x = 0 is given by ϕ = kx in the clockwise- and counterclockwise directions, 

respectively, according to the factor e ∓ikx given in Eq. (2) . It is important to note 

that the time harmonic factor e iωt is factored out in a phasors representation. The 

phasor of the primitive variables p ∗′ , u ′ are obtained through addition and subtrac- 

tion between the ˆ f , ̂  g phasors, according to Eq. (4) . 

Fig. 3. Schematic representation of a simple quasi-1D cavity with a velocity- 

sensitive flame located at x f . The locations of inlet, outlet, flame upstream and 

flame downstream are indicated by ‘in’, ‘out’, ‘ u ’, and ‘ d’ respectively. These labels 

are used as indices for the variables throughout this paper to point to the given spe- 

cific locations. The inlet at x = 0 and the outlet at x = L are ideally closed ( u in = 0 ) 

and open ( p out = 0 ), respectively. The ‘cold’ and ‘hot’ sections are colored white and 

orange, with constant mean temperatures T u and T d , respectively. 

ideal boundaries and real-valued ω always result in a mirror sym- 

metrical rotation of f, g. As a consequence, p ∗ and u are always in 

quadrature throughout the resonator. 

In the case of net generation or loss of acoustic energy at the 

compact elements (flame, area change, damper, ...) or at the system 

terminations, ω may be complex valued, 

ω = ω r + iω i = ω r − iσ, (5) 

where ω r is the angular frequency and σ is the growth rate, with 

σ > 0 describing a growth of acoustic variables f, g as well as p, u 

in time. Recalling (2) and the dependence of wave number on 

frequency k = ω/ c , it is evident that the f phasor amplitude de- 

creases, while the g phasor amplitude increases with x , in the case 

of σ > 0 . It appears counter-intuitive, but a growth in the time do- 

main corresponds to a decay in space. This characteristic is visual- 

ized in Fig. 4 . From the flame location x f , f and g waves propagate 

upstream and downstream at constant amplitude, respectively. As 

time progresses, stronger characteristic waves are being produced 

at x f due to the positive growth. As a result, the wave profiles ap- 

pear to be decaying in the direction of wave propagation. 

2.1. Flame-acoustic coupling 

Growing or decaying thermoacoustic modes are the result of 

imbalanced acoustic gain and loss. In this work, we consider an ac- 

tive flame, i.e., a flame with unsteady heat release, the sole mecha- 

nism for the gain or loss of acoustic energy in an ideal closed-open 

resonator as depicted in Fig. 3 . At low Mach numbers, a compact 

premixed flame introduces a discontinuity in the acoustic field in 

two ways: first, the increase in mean temperature across the flame 
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Fig. 4. The amplitude of the characteristic waves | f | (red) and | g| (green) as a func- 

tion of x at different time delay �t for a growing thermoacoustic mode σ > 0 . 

Without essential loss of generality, the flame position is chosen to be the refer- 

ence position, x ref = x f . The dashed and solid lines indicate the profiles at initial 

time and delayed time respectively. The arrows show the direction of wave propa- 

gation. In general, f and g grow with time due to energy production at the flame. As 

time progresses, they propagate without loss or growth across the ideal resonator, 

resulting in the decaying profile in the direction of propagation. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

changes the specific impedance, thus also the partial transmission 

and reflection of acoustic waves; second, the unsteady heat release 

rate modifies the relation of velocity perturbation (magnitude and 

phase) between locations just up- and downstream of the flame. 

These effects are summarized in the coupling relations for acous- 

tic variables across the flame – the linearized ‘Rankine-Hugoniot’ 

(RH) relations [25–28] . For low Mach number flow ( u u � c u ), the 

RH relations reduce to 

p ∗d = ξ p ∗u , u d = u u + θu u 

˙ Q 

˙ Q ︸ ︷︷ ︸ 
u q 

, (6) 

where the indices [ ] u and [ ] d indicate the flame upstream and 

downstream positions, ξ = ( ρu c u ) / ( ρd c d ) is the ratio of specific 

impedance, θ = T d / T u − 1 is the relative temperature increment, 

and u q is the displacement rate contribution due to heat re- 

lease rate fluctuation 

˙ Q . 1 As summarized in the Rayleigh index (RI) 

[4,6,7] , acoustic energy will be produced by the flame, if the heat 

release rate fluctuations are (fully or partially) in-phase with the 

pressure perturbations, 

RI ≡
∮ 

p ˙ Q d t > 0 . (7) 

In an ideal resonator, where acoustic energy is not lost through the 

boundaries or flow entropies, a positive Rayleigh index at the flame 

corresponds directly to the onset of instabilities, which is repre- 

sented by a positive growth rate σ > 0 . 

The heat release rate of a compact premixed flame is velocity 

sensitive [6,11,29,30] . As such, the dependency of the heat release 

rate fluctuation 

˙ Q on the velocity perturbation on the flame up- 

stream u u may be characterized by a frequency dependent flame 

transfer function (FTF) F(ω) as given in Eq. (8) . 

˙ Q (ω) 

˙ Q 

= F(ω) 
u u (ω) 

u u 
(8) 

In general, the FTF may be written as 

F(ω) = |F(ω) | e iφ f (ω) . (9) 

where |F(ω) | is the magnitude, and φ f (ω) is the phase of the FTF 

relative to the upstream velocity perturbation. For stability anal- 

ysis, the FTF needs to be evaluated over all complex frequencies 

1 Without essential loss of generality, u q is used interchangeably to represent ˙ Q 

in this work. These quantities are proportional and in-phase. 

Table 1 

Impulse response coefficients h k for DTD model. 

k 2 3 4 5 6 7 8 9 

h k 0.1 0.3 0.6 0.3 0.1 −0 . 1 −0 . 2 −0 . 1 

ω ∈ C . It should be distinguished from the flame frequency response 

(FFR) F (ω r ) , which describes the flame response at real valued fre- 

quencies 2 

F = F(ω r ) . (10) 

This distinction is important, as for a given frequency ω r and 

growth rate σ � = 0 , the magnitude of the FTF, does not equal the 

gain of the FFR. To illustrate the dependency of the FTF on σ , we 

consider, by way of example, the simple n − τ model [31] 

F(ω) = ne −iωτ = ne −στ e −iω r τ . (11) 

Comparing Eqs. (9) and (11) gives the FTF magnitude and phase 

|F(ω) | = ne −στ , φ f (ω) = −ω r τ, (12) 

where n represents the gain of the corresponding FFR. In this 

model, σ contributes purely to the FTF magnitude, while the os- 

cillation frequency ω r contributes to the phase. In a more realis- 

tic flame model that exhibits excess gain and a low-pass behavior, 

such as the distributed time delay (DTD) model [32] 

F(ω) = 

+ ∞ ∑ 

k =0 

h k e 
−iωk �t = 

+ ∞ ∑ 

k =0 

h k e 
−σ k �t e −iω r k �t , (13) 

with the impulse response coefficients h k , and the sampling time 

step �t , both the FTF magnitude and phase are influenced by the 

growth rate and frequency. However, due to the exponential scal- 

ing of e −σ k �t , one might expect that non-zero growth rates have 

a greater impact on the FTF magnitude than on the phase. From 

Eq. (13) , it is not difficult to see that σ 
 0 will result in a reduc- 

tion of the corresponding weights of the impulse response h k , i.e., 

e −σ k �t � 1 , and thus an overall reduction of the FTF magnitude. 

As an example, the FTF magnitude and phase of a DTD modeled 

flame with eight coefficients h k (c.f., Table 1 ) are depicted in Fig. 5 . 

Essentially, we observe that an increase in growth rate generally 

results in the reduction of |F(ω) | for a given flame, but has rela- 

tively small impact on φ f (ω) . 

In an experiment where only the FFR is available, the corre- 

sponding FTF could be generated from the FFR by extrusion, Taylor 

expansion, or filtering [32–36] . 

2.2. Dispersion relation of the thermoacoustic system 

The interaction between flame and acoustics in a resonator may 

be summarized by the corresponding dispersion relation. For the 

setup illustrated in Fig. 3 , the dispersion relation is given by 

ξ
cos ϕ u (ω) 

sin ϕ u (ω) ︸ ︷︷ ︸ 
−iZ u (ω) 

−(1 + θF(ω )) 
sin ϕ d (ω ) 

cos ϕ d (ω ) ︸ ︷︷ ︸ 
−iZ d (ω) 

= 0 (14) 

with ϕ u (ω) = ωx f /L , ϕ d (ω) = ω(1 − x f /L ) , and Z [ u,d] (ω) = 

p ∗
[ u,d] 

/u [ u,d] being the frequency dependent acoustic impedance of 

the flame upstream and downstream (see Yong et al. [24] for de- 

tailed derivations). On the one hand, this dispersion relation could 

be solved for the eigenfrequencies ω and thus the eigenmodes, if 

2 Note that in the literature there is often no strict distinction between the FTF 

and the FFR. We find it helpful to distinguish between them here, as the FTF mag- 

nitude incorporates a non-zero growth rate (see above), which goes against the in- 

tuitive understanding of flame strength, i.e., FFR gain. 
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Fig. 5. Surface plot of the (a) FTF magnitude |F(ω) | and (b) phase φ f (ω) of a DTD model with h k given in Table 1 , ˜ τ = 10�t , with respect to the oscillation frequency ω r 

and growth rate σ . The inscribed red curves along the real frequency axis mark the FFR. An increase in σ reduces the magnitude of the FTF, but has a minimal impact on 

its phase. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. 2D phasor diagram depicting the phasors of an unstable mode ( σ > 0 ) at the 

upstream [ ] u and the downstream [ ] d of the flame at x = x f = 0 . 4 L , with the FTF 

gain and phase being |F| = 0 . 2 and φ f = 0 . 6 π , respectively. The concentric circles 

act as a guide to highlight the difference in magnitude between the f and g. The 

non-symmetrical f, g phasors result in a phase difference between u u and u d , ϕ ud ∈ 
(0 , π) . 

the FTF is known. On the other hand, it could also be solved for 

the FTF, if the mode eigenfrequency ω is given, 

F(ω) = 

1 

θ

(
ξ

Z u (ω) 

Z d (ω) 
− 1 

)
. (15) 

The phasor diagram in Fig. 6 depicts, by way of example, the 

phasors of acoustic variables immediately upstream and down- 

stream of the flame for a growing mode σ > 0 ( RI > 0 ) in the ideal 

closed-open resonator depicted in Fig. 3 . In contrast to marginally 

stable modes analyzed in Yong et al. [24] , the relative phase be- 

tween the velocity phasors u u , u d is not restricted to ϕ ud = 0 or 

ϕ ud = π , but may have intermediate values ϕ ud ∈ [ −π, π ] deter- 

mined by the growth rates. The phasor plot also highlights the 

asymmetrical f, g phasors (w.r.t. the real axis) and correspond- 

ingly the non-perpendicular p, u phasors (compare these features 

against the phasors arrangement for a case σ = 0 as in Yong 

et al. [24] ). For illustrative purpose, the 3D phasor plot is given in 

Fig. 7 . 

3. Thermoacoustic modes with infinite growth or decay rates 

in an ideal resonator 

In this section, we briefly recapitulate the ITA categorization of 

marginally stable modes as proposed in Yong et al. [24] . Subse- 

quently, we investigate the phasors characteristics of extreme cases 

in the same ideal closed-open cavity, i.e., modes with extreme 

growth/decay rates σ → ±∞ . We will show that such modes may 

be categorized as ITA or acoustic modes using the existing crite- 

rion. These observations will set the basis for the general case in 

the next section. 

3.1. Marginally stable modes 

In our previous work [24] , the marginally stable modes in an 

ideal resonator, i.e., modes with real-valued frequencies ω ∈ R , 

were analyzed in terms of the velocity phasors. It was demon- 

strated that due to the symmetric rotation of the f, g phasors 

(as discussed), the velocity phasors before and after the flame 

u u , u d must be either perfectly aligned or anti-aligned. The modes 

with perfectly aligned u u , u d are categorized as acoustic modes. In 

contrast, the modes with perfectly anti-aligned u u , u d are catego- 

rized as ITA modes due to their resemblance to pure ITA modes, 

i.e., thermoacoustic modes in an anechoic environment. On the 

frequency axis, acoustic modes continuously transition into ITA 

modes and vice versa under a continuous variation of the FTF mag- 

nitude (or FFR gain, see discussions above), c.f., in Yong et al. [24] . 

3.2. Extremely growing modes 

At positive growth rates σ > 0 , the amplitudes of the outgoing 

acoustic waves generated at the flame f d , g u are larger than the 

incoming waves g d , f u . Recall from the previous section that the 

resonator and the boundaries are regarded as ideal, which allows 

the acoustic waves generated by the flame to propagate without 

dissipation to and from the boundaries. Thus, the incoming waves, 

say, g d in the downstream cavity, may be regarded as outgoing 

waves f d generated at earlier times, which were reflected back at 

the downstream termination x = L , c.f., Fig. 4 . Thus, we may for- 

mulate 

g d (t) = − f d ( t − 2 τd ) ⇒ | g d | = | f d | e −2 στd < | f d | (16) 

where τd = (L − x f ) / c d . Correspondingly, in the upstream cavity 

f u (t) = g u ( t − 2 τu ) ⇒ | f u | = | g u | e −2 στu < | g u | (17) 

5 

A.2 PAPER-CATEGORIZATION

91



K.J. Yong, C.F. Silva, G.J.J. Fournier et al. Combustion and Flame 249 (2023) 112605 

Fig. 7. 3D phasor diagram of (a) f, g and (b) p ∗, u for an unstable thermoacoustic mode σ > 0 , with FTF gain |F| = 0 . 13 and phase φ f = 0 . 6 π , and x f = 0 . 4 L . Within the 

system boundaries, the f, g phasors are non-symmetric, due to an amplitude decay of f , while simultaneously an amplitude growth of g in the + x direction. As a result, the 

p ∗, u phasors are not in quadrature to each other. 

Fig. 8. 3D Phasor diagrams of an ITA mode with σ = 10 3 and x f = 0 . 4 L , depicting the evolution of (a) f, g phasors and (b) p ∗, u phasors in the + x direction in an ideal 

closed-open cavity. The dominant outgoing CWAs f d , g u and negligible incoming CWAs f u , g d are visualized in (a). As evident in (b), the velocity phasor at the immediate 

flame downstream u d is almost at π-radians phase difference with respect to the upstream velocity u u . At the same time, the heat release phasors u q is almost aligned with 

the pressure fluctuation p ∗ to generate a maximum acoustic energy. Note that the phasor diagrams of the pure ITA mode at the same frequency are completely identical. 

The animation showing the medium oscillation for this mode is provided as supplementary material 6 following the discussions in Section 5.2 . 

where τu = x f / c u . In the limit of σ → + ∞ , the incoming waves 

f u , g d vanish, as would be the case in an anechoic environment. Re- 

calling Eq. (4) , the acoustic variables p ∗, u immediately upstream 

and downstream of the flame must satisfy 

p ∗
d 

= f d + g d = f d , u d = f d − g d = f d 
p ∗u = f u + g u = g u , u u = f u − g u = −g u 

⇔ 

p ∗
d 

= u d 

p ∗u = −u u 

(18) 

Inserting Eq. (18) into the pressure coupling relation given in 

Eq. (6) , we obtain 

u d = −ξu u . (19) 

As shown above, the infinite growth rate implies a flipping of ve- 

locity phasor across the flame. Generalizing the categorization es- 

tablished in our previous study, we conclude that extremely grow- 

ing thermoacoustic modes should be regarded as ITA modes. 

Substituting Eq. (19) into Eq. (6) , we derive the FTF magnitude 

|F(ω) | at the limit of σ → + ∞ . 

lim 

σ→ + ∞ 

F(ω) = −ξ + 1 

θ
∈ R 

−, ω ∈ C (20) 

⇒ |F(ω) | = 

ξ + 1 

θ
, φ f (ω) = (2 m + 1) π (21) 

With this FTF, we can show that the unsteady heat release rate ˙ Q , 

which is represented by u q 

u q = u u θF(ω) = −(1 + ξ ) u u (22) 

is perfectly in-phase with the pressure fluctuation (c.f., Fig. 8 ), thus 

satisfying the Rayleigh criterion for a thermoacoustic instability 

RI ≡ p ∗u · u q 

= (−u u ) · (−(1 + ξ ) u u ) 

= (1 + ξ ) | u u | 2 > 0 . (23) 

To achieve the high growth rates, the strength of the flame re- 

sponse, which is represented by the FFR gain must be infinitely 

large. Take the n − τ model for example, where the FFR gain is di- 

rectly proportional to the growth factor e στ . 

|F(ω) | = ne −στ = 

ξ + 1 

θ
⇔ n = 

ξ + 1 

θ
e στ (24) 

Evidently, the growth of acoustic waves is not directly associated 

with the FTF magnitude, but with the gain of the FFR. If a flame 

with an extremely high gain responds in the opposite phase with 

respect to the upstream velocity perturbation, instability with ex- 

tremely high growth rate will ensue (as expected). 

3.3. Extremely decaying modes 

Another limiting case is that of extremely decaying modes σ → 

−∞ . In this case, we find a complete annihilation of acoustic en- 

ergy at the flame, such that no acoustic waves are transmitted or 

produced. The amplitude of the outgoing acoustic waves becomes 

negligibly small f d , g u → 0 . In analogy to the previous subsection, 

one derives from (16) , (17) 

p ∗d = −u d , p ∗u = u u ; (25) 

and the coupling relation 

u d = −ξu u , (26) 

which is identical to that given in Eq. (19) . A change in sign of the 

velocity fluctuations across the flame is expected, thus strongly de- 

caying modes are as well ITA modes. We obtain the FTF magnitude 

and phase |F(ω) | = (ξ + 1) /θ, φ f = (2 m + 1) π , which is identical 

to Eq. (21) . Although the FTF is identical to that in the extremely 

unstable case, we are not dealing with the same flame as dis- 

cussed. In fact, the FFR gain approaches 0 here, which is however 

scaled up by the high decay rate σ → −∞ (see (24) ). Physically, 

this case describes an annihilation of the pressure buildup at the 

flame by the reduction in heat release rate fluctuation due to the 

diminishing flame gain. 
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Fig. 9. 3D Phasor diagrams of an ITA mode with large decay rate σ = −10 3 and x f = 0 . 4 L , depicting the evolution of (a) f, g phasors and (b) p ∗, u phasors in the + x 

direction in an ideally closed-open cavity. (a) visualizes the dominant incoming CWAs f u , g d and negligible outgoing CWAs f d , g u . As evident in (b), the velocity phasor at the 

immediate flame downstream u d is almost at π-radians phase difference with respect to the upstream velocity u u . At the same time, the heat release phasors u q is almost 

fully anti-aligned with the pressure fluctuation p ∗ to cause maximum annihilation of acoustic energy. Note that u u is hidden by p ∗u in (b). 

Table 2 

Setup parameters for the computation of thermoacoustic 

modes. 

Parameter Value 

x f /L 0.4 

L 0.9 m 

T u 300 K 

T d 1500 K 

θ 4 

ξ 2.24 

In Fig. 9 , the 3D phasor plot for an extremely decaying mode is 

visualized. The localized amplitudes of the incoming waves f u , g d is 

immediately visible in the f, g plot. Beside that, the u q phasor that 

is almost fully out-of-phase with p ∗ indicates that acoustic energy 

is annihilated by the thermoacoustic interactions at the flame 

RI ≡ p ∗u · u q 

= (u u ) · (−(1 + ξ ) u u ) 

= −(1 + ξ ) | u u | 2 < 0 . (27) 

The conclusion that extremely decaying thermoacoustic modes 

are generally ITA is coherent with the findings in several studies, in 

particular [15,17] . It was shown that the characteristic equation in 

(14) may be simplified to that of a pure ITA mode [9] , as the ratio 

of acoustic impedances Z u (ω ) /Z d (ω ) approaches −1 at σ → −∞ 

1 + ξ + θF(ω) = 0 . (28) 

4. Transition between acoustic and ITA modes with non-zero 

growth rates 

In the previous section, we have seen that modes in the ex- 

treme case of σ → ±∞ are generally ITA. Conversely, modes on the 

real frequency axis consist of alternating acoustic and ITA modes 

[24] . This leads to the obvious questions: what happens for in- 

termediate values of growth rates and where are transitions from 

acoustic to ITA modes away from the real axis? More importantly, 

how to define ITA modes that are not marginally stable? The latter 

question is warranted, as the u u and u d phasors are not perfectly 

aligned or anti-aligned (see above). In that case, such modes are 

not readily categorizable with the criterion outlined in our previ- 

ous work [24] . 

To identify, in a heuristic manner, a meaningful phasor char- 

acteristic for the purpose of mode categorization, a large variety of 

thermoacoustic modes are computed with random combinations of 

FTF magnitude |F(ω) | and phase φ f (ω) . The dispersion relation in 

(14) is solved for the corresponding complex eigenfrequencies. The 

relevant setup parameters are given in Table 2 . 

With the frequencies and FTFs known, the velocity phasors 

u u , u d are generated and the frequencies are plotted in a stability 

map, c.f., Fig. 10 . Note that only a handful of these phasor plots are 

depicted in the figure (labeled with numbers) to limit clutter. The 

stability map reveals: 

(i) groups of modes in the vicinity of pure acoustic modes ω p,i 

– modes for the passive flame case – on the neutral curve 

with partially aligned velocity phasors u u , u d (represented by 

the blue triangles) ; 

(ii) modes outside of the groups in (i), with partial anti- 

alignment of u u , u d (represented by the red circles). 

Generalizing this observation, we categorize the former as 

acoustic modes and the latter as ITA modes. At the transition re- 

gion between acoustic and ITA modes, u u and u d phasors are per- 

pendicular to each other. For illustrative purpose, the full 2D pha- 

sor diagrams of an acoustic mode (“1” in Fig. 10 ) and an ITA mode 

(“6” in Fig. 10 ) are visualized in Fig. 11 . 

In an effort to closer investigate the mode transition from 

acoustic to ITA, we take an acoustic mode on the real axis and ju- 

diciously modify the FTF such that the growth rate decreases. This 

yields a set of thermoacoustic modes with the same oscillation fre- 

quency ω r but different growth rates σ ∈ (−∞ , 0] . The correspond- 

ing FTFs (magnitude and phase) are computed using Eq. (15) . The 

resulting phasor diagrams are displayed in Fig. 12 . The locations in 

a stability map of each mode in Fig. 12 (a)–(e) are labeled corre- 

spondingly in Fig. 10 along the dotted vertical line. As the growth 

rate decreases, u q phasor rotates clockwise, such that the phase 

difference between itself and the pressure fluctuation p [ u,d] grows 

– a direct consequence of a reduction of Rayleigh Index (as dis- 

cussed). Consequently, u d rotates in the same direction, which in- 

creases its phase deviation to u u , ϕ ud > 0 . Figure 12 (c) marks the 

transition of acoustic to ITA mode, where u u , u d – which are 90 de- 

grees apart – switch from being partially aligned to partially anti- 

aligned. The rotation continues allowing u u , u d to reach full anti- 

alignment at high decay rates, at which the rotation stalls. This ob- 

servation elucidates that the transition of the u u , u d phasors from 

aligned to anti-aligned is continuous in the complex plane. An 

analogous trend may be observed, if the growth rate is increased 

from 0 to + ∞ (not shown). In this case, instead of a clockwise 

rotation, u q rotates counterclockwise to increase instability, which 

causes a similar change observed in Fig. 12 . Note that the direction 

of rotation of u q depends on the phase lag between the pressure 

and velocity phasors of the marginally acoustic mode. In this ex- 

ample given in Fig. 12 (a), u lags p ∗. Hence, a clockwise rotating u q 
increases stability and vice versa. 

5. Criterion for ITA modes with non-zero growth rates 

In consideration of the above findings, we define a general cri- 

terion – � criterion – based on the scalar product between the 
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Fig. 10. (a) A stability map depicting the distribution of modes with partially aligned u u , u d phasors (blue triangles) and those with partially anti-aligned u u , u d phasors (red 

circles). The black squares mark the pure acoustic modes ω p,i (”0”). The red highlighted regions at σ → ±∞ mark the known ITA modes in previous section, while the blue 

and red highlighted regions at σ = 0 are known respective acoustic and ITA modes in Yong et al. [24] . The phasor diagrams of modes at locations labeled (a)–(e) along the 

vertical dotted arrow are detailed in Fig. 12 . The oval patches trace the approximate areas that separate the red circles from the blue triangles. (b) Five examples of velocity 

phasor plots among the blue triangles (“1–5”) and the red circles (“6–10”) are shown. For comparison purpose, the velocity phasor plot of the pure acoustic modes (“0”), 

and the ITA modes at σ → ±∞ (“11”) are included. The grey arrow represents u u and the black arrow u d . (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 11. 2D Phasor diagrams depicting phasors at the immediate flame upstream [ ] u and downstream [ ] d . (a) and (b) show the case where the velocity phasors u u , u d 
are partially aligned and partially anti-aligned, respectively (c.f., Fig. 10 : “1” and “6”). The animations showing the medium oscillation for these modes are provided as 

supplementary materials 78 following the discussions in Section 5.2 . 

Fig. 12. The phasor diagrams for thermoacoustic modes with ω r /ω p, 1 = 0 . 85 and σ/ω p, 1 ∈ [ −2 , 0] . The FTF is computed using the dispersion relation in (15) , which along 

with the complex frequency fully defines a mode. Besides (a), the phasor diagrams do not include the f, g phasors to reduce cluttering. (a) shows the full phasor diagram of 

a marginally stable acoustic mode ( u u , u d in-phase, p ⊥ u ). (b) shows a decaying acoustic mode ( ϕ ud < π/ 2 ). (c) shows a transitional mode ( ϕ ud = π/ 2 ). (d) shows a decaying 

ITA mode ( ϕ ud > π/ 2 ). (e) shows a highly decaying ITA mode, c.f., Section 3.3 . 
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Fig. 13. Contour map of � within the range of ω r /ω p, 1 ∈ (0 , 3 . 1] and σ/ω p, 1 ∈ 
[ −1 . 2 , 1 . 2] for x f = 0 . 4 L . The blue regions indicate acoustic modes ( � > 0 ) while 

the red region indicates ITA modes ( � < 0 ). The black squared markers on the neu- 

tral curve indicate the pure acoustic modes ω p,i . The black thickened lines tracing 

a semi circular path around ω p,i indicate the transition of acoustic modes into ITA, 

and vice versa ( � = 0 ). The region with checkered background is where the disper- 

sion relation could not be easily solved due to ω r → 0 . (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

velocity phasors u u and u d 

� ≡ u u 

| u u | ·
u d 

| u d | = ˜ u u · ˜ u d . (29) 

0 < � < 1 and −1 < � < 0 indicate acoustic modes and ITA 

modes, respectively. � is a continuous (differentiable) function in 

the complex plane, c.f., Appendix B. Thus, any continuous variation 

in system parameters will result in a continuous change in eigen- 

values of the system, and subsequently a mode transition from 

acoustic to ITA or vice versa. This property of � is inline with the 

observations made by previous authors [18,19,23] , where a para- 

metric sweep may entail a mode switching, say, from acoustic to 

ITA and vice versa. 3 

Using the same computation method as that in Fig. 12 , all 

thermoacoustic modes in the stability map within the range of 

ω r /ω p, 1 ∈ (0 , 3 . 1] and σ/ω p, 1 ∈ [ −1 . 2 , 1 . 2] are evaluated. The �

values are visualized in the contour map shown in Fig. 13 . The 

blue regions encapsulated by the oval curves ( � = 0 ) represent the 

regions of acoustic modes, while the red region contains the ITA 

modes. 

Note that the ‘islands’ of acoustic modes have different sizes 

around the various pure acoustic modes ω p,i . To get an insight on 

how the size of the islands changes as the frequency grows, the 

contour map is extended to include higher values of ω r , c.f., Fig. 14 . 

The size of the acoustic island decreases initially but grows again. 

In this setup, we observe that the shrinking and growing of the 

acoustic islands repeats after ω r /ω p, 1 ≈ 8 . 15 , which creates an al- 

ternating pattern in the complex plane. ITA modes are most preva- 

lent at around ω r /ω p, 1 ≈ 4 (there is a very small acoustic region, 

3 In the phasor representation, the complex variables u u and u d are represented 

as ordinary vectors in a 2D space, allowing the scalar product operation. Mathemat- 

ically, the scalar product of two phasors equals the real value of the inner product 

between the complex variables in the complex vector space 

� = Re < ˜ u u | ̃ u d > = Re ( ̃ u † u ̃  u d ) (30) 

where † indicates a complex conjugation. 

Fig. 14. Contour map of � for larger range of ω r compared to Fig. 13 . The black 

squares on the neutral curve indicate the pure acoustic modes ω p,i . The yellow cir- 

cles indicate the acoustic-ITA transition of the marginally stable mode at which 

F(ω) = −1 /θ and the green pentagons are poles of the dispersion relation given 

in Eq. (15) (c.f., Yong et al. [24] ). Other features in this map are identical to Fig. 13 . 

In this setup, ITA modes are most prevalent around ω r /ω p, 1 = 4 (there is a small 

acoustic region, which is not noticeable at this scale). Note that the size and shape 

of the sixth acoustic region in the frequency range ω r /ω p, 1 ≈ [8 . 15 , 9 . 7] are compa- 

rable to that of the first, indicating a repetition of the previous pattern. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

which is not noticeable at this scale). The size of each island is 

determined by the distance between the acoustic-ITA transitional 

point of marginally stable modes (yellow dots) and the pole of the 

dispersion relation (green pentagon) given in Eq. (15) , i.e when 

F(ω) → ∞ (refer to Yong et al. [24] for detailed discussions). The 

FTF at the transitional point on the real axis is given by F = −1 /θ
and the dispersion relation may be simplified to 

cos (ω r τu ) cos (ω r τd ) = 0 (31) 

which yields the transition frequencies 

ω r, tran = 

2 m + 1 

2 

π

τu/d 

. (32) 

At the poles, the dispersion relation is given by 

sin (ω r τu ) sin (ω r τd ) = 0 (33) 

which yields the pole frequencies 

ω r, pol = 

mπ

τu/d 

. (34) 

The prevalence of acoustic modes in the vicinity of the real axis, 

which is determined by 

�ω r = | ω r, pol − ω r, tran | , (35) 

is thus a function of τu and τd , or rather the flame position x f . This 

conclusion sheds a new light into the observation in Fournier et al. 

[37] , where it was shown that the flame position inside a simple 

Rijke tube or a can-annular combustor could strongly influence the 

nature of the observed eigenmodes, and modes could easily switch 

nature between acoustic and ITA as the flame position varies. 

The acoustic regions are at maximum size with τu = τd , result- 

ing in every ω r, tran being exactly the average of two consecutive 

ω r, pol . In this case, an ITA mode does not exist on the real axis, 

c.f., Fig. 15 . Of course, the derivations that lead to this conclusion 

revolves around the dispersion relation given in Eq. (14) , which 
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Fig. 15. Contour map of � for x f = 0 . 313 L , i.e., τu = τd . Other features in this map 

is identical to Fig. 13 . In this case, ITA mode does not exist on the real axis. 

Fig. 16. Orientation of the velocity phasors across the flame of a mode at the 

acoustic-ITA transition. u q must be out-of-phase with u u , while the |F(ω) | must 

so large, so that u d ⊥ u u . 

is unique to an ideally closed-open resonator. More general con- 

clusions on resonators with different boundary conditions are not 

developed in this study. 

5.1. Transitional FTF magnitude and phase 

At the transition, the velocity phasors u u , u d are perpendicular 

to each other (with the exception of the marginally stable transi- 

tional mode, where u d = 0 ), which results in � = 0 . Substituting 

the Eq. (6) into Eq. (29) , yields 

u u · u d = | u u | 2 
(
1 + θ |F(ω) | cos (φ f ) 

)
= 0 (36) 

The equation is satisfied only for cos (φ f ) < 0 , which yields the 

necessary transitional FTF magnitude |F T | and phase φ f 

|F T (ω) | = − 1 

θ cos (φ f ) 
, with 

∣∣φ f 

∣∣ ∈ 

(
π

2 

, 
3 π

2 

)
. (37) 

In order for an acoustic mode to transition to ITA, the volumet- 

ric oscillation caused by the active flame must be strong enough to 

act against the upstream displacement rate, with the flame being 

out-of-phase with the upstream velocity. With an FTF magnitude 

larger than the transitional value 

|F(ω) | > |F T (ω) | (38) 

we have an ITA mode at hand. Figure 16 shows schematically var- 

ious combination of FTF gain and phase at the transition. In the 

limit case where φ f → π/ 2 or φ f → 3 π/ 2 , the F T must be in- 

finitely large (at the poles). A mode with φ f < π/ 2 or φ f > 3 π/ 2 

is always an acoustic mode. 

Note that the transitional FTF magnitude and phase given in 

Eq. (37) are generally applicable, i.e., independent of the FTF mod- 

els. For instance, we computed the FTFs (magnitude and phase) 

from Eq. (15) for the modes discussed in Fig. 13 , without con- 

sidering a specific FTF model, as shown in Fig. 17 . Using the FTF 

phase φ f (ω) in Fig. 17 (b), one may compute the transitional val- 

ues |F T (ω) | and compare them against the |F(ω) | in Fig. 17 (a) to 

define the acoustic and ITA regions. Naturally, the results match 

those identified previously. 

In practice, where a flame is described by a specific FTF model, 

the eigenmodes are only sparsely populated on the complex plane 

and therefore are a subset of the solutions presented here. As an 

example, the mode categorization in a test case with a flame de- 

scribed by a DTD model is demonstrated in Appendix A. 

5.2. Velocity phasors as vectors of medium displacement rates 

The change in sign of the pressure gradient was featured in 

Yong et al. [24] as a readily discernible characteristic of the pro- 

posed categorization method. In this work, we will instead use the 

velocities of the medium (gas) to develop an intuitive understand- 

ing to the question ‘what does it mean for a mode to be acoustic 

or ITA?’. 

The real part of a velocity phasor represents the displacement 

rate of the medium 

˙ x j (x, t) = Re 
(
u j (x, t) 

)
= | u j | e σ t cos (ω r t + α j ) , j = u, d (39) 

where α j = arg (u j ) is the relative phase between u j phasor and 

the real axis. ˙ x j > 0 signifies a displacement in the + x direction. 

Without an active flame, the medium between two velocity 

nodes in a standing wave oscillates back and forth - swings – at a 

given resonant frequency. This is coherent with the aligned u u , u d 
phasors observed in pure acoustic modes. 4 In contrast, an active 

flame acts as a monopole source of volume. Thus, in an anechoic 

environment, u u , u d phasors are anti-aligned, which describes an 

inwards-outwards oscillation – pulsation – at the flame. However, 

as shown, u u , u d are in general partially aligned or anti-aligned, i.e., 

the medium at the vicinity of the flame oscillates in a superposed 

swinging and pulsating motion. For an acoustic mode, the swing- 

ing oscillation dominates, and vice versa for an ITA mode. 

Exemplary animations visualizing the oscillation of a pure 

acoustic 5 and a pure ITA mode 6 (corresp. Fig. 8 ), as well as an 

acoustic 7 (corresp. Fig. 11 (a)) and an ITA mode 8 (corresp. Fig. 11 (b)) 

are uploaded as supplementary materials. The mathematical de- 

scription of the medium oscillations, which could lead to the 

derivation of the � criterion (29) is detailed in Appendix D. 

6. Summary, conclusion and outlook 

In extension to the work of Yong et al. [24] , this study used 

phasor diagrams to visualize the propagation of characteristic wave 

amplitudes of growing as well as decaying thermoacoustic modes 

in an ideal closed-open resonator, which contains a compact, ve- 

locity sensitive flame. The inspection of the phasor diagrams sug- 

gests that the velocity phasor may shift by an intermediate phase 

between −π and π across the flame, as a result of the non-zero 

growth rate. At extremely high growth and decay rates, the veloc- 

ity phasor changes direction across the flame, implying ITA modes 

4 The special case, in which the flame, i.e., the region of interest, is located ex- 

actly at the velocity node is not analyzed, as they are not meaningful for the dis- 

cussions in this work. For pedagogical purposes, it is discussed in detail in Yong 

et al. [24] in the Appendix chapters. 
5 PureAcoustic.mp4. 
6 PureITA_Fig8.mp4. 
7 Acoustic_Fig11(a).mp4. 
8 ITA_Fig11(b).mp4. 
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Fig. 17. Contour maps of F(ω) for x f = 0 . 4 L . The red line in (a) marks the value of |F(ω) | that extends to σ → ±∞ , i.e., |F(ω) | = 

ξ+1 
θ

, while in (b) marks the φ f (ω) value 

for marginally stable modes that also extends to ±∞ , i.e., φ f (ω) = (2 m + 1) π . The black thickened lines indicating the transition of acoustic modes into ITA and the black 

squared markers indicating the pure acoustic modes ω p,i are included as references to Fig. 13 . The region with checkered background is where the dispersion relation could 

not be easily solved due to ω r → 0 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

according to the established criterion in Yong et al. [24] . The pha- 

sor diagrams of a variety of randomly selected modes were con- 

structed and their corresponding locations in a stability map were 

determined. A clear pattern emerged: groups of modes around the 

pure acoustic modes have partially aligned flame upstream and 

downstream velocity phasors, while modes beyond these groups 

have partially anti-aligned velocity phasors. The first group of 

modes was subsequently categorized as acoustic modes, while the 

latter as ITA modes. It was demonstrated that the mode transition 

from acoustic to ITA and vice versa is a continuous process. 

Representing the acoustic variables as phasors in the ordinary 

vector space allow the formulation of a generalized categorization 

criterion – � criterion – based on the dot product between the 

upstream and downstream velocity phasors, given in Eq. (29) . A 

contour map depicting the distribution of acoustic and ITA modes 

was generated. Interestingly, the size of the acoustic region varies 

as the frequency increases, signifying that the prevalence of ITA 

modes, and correspondingly acoustic modes, in the proximity of 

the real frequency axis may vary for different combustor setups. 

Indeed, the size of the acoustic region is a function of flame po- 

sition, as well as of reflective boundary conditions. As an exten- 

sion to the � criterion, the transitional FTF magnitude was derived 

to enable a more practical mode categorization, where the corre- 

sponding FTF is compared against the transitional value. 

Physically, the real value of a velocity phasor represents the dis- 

placement rate of the medium in a resonator. The perfectly anti- 

aligned velocity phasors across the flame, as typically seen in a 

pure ITA mode, indicate an unsteady volumetric oscillation – ‘pul- 

sating’ – in the reactive region of the flame. A pair of perfectly 

aligned velocity phasors, on the other hand, represents the ordi- 

nary back and forth motion – ‘swinging’ – observed in a stand- 

ing wave. In an echoic resonator with an active flame, the acoustic 

feedback is coupled with the ITA feedback mechanism. Thus, a su- 

perposition of both oscillation motions is expected. Note that the 

swinging and pulsating characteristics are equivalent to the tran- 

sitional FTF magnitude, both of which can be derived from the �

criterion. Thus, a mode may be categorized by analyzing either the 

FTF data or the velocity measurements on the flame upstream and 

downstream, depending on the circumstances and available diag- 

nostic tools in an experiment. 

In this work, we demonstrated that growing as well as decaying 

ITA modes could be reasonably categorized by means of phasors 

analysis. In addition to the known benefits of the phasor based cat- 

egorization, such as straightforward implementation, physical rel- 

evance and low computational cost, the categorization of modes 

with partially aligned and anti-aligned velocity phasors across the 

flame widens its application. 

In future works, more complex systems with non-ideal bound- 

aries, internal losses or area changes, as well as can-annular ge- 

ometries, shall be analyzed. In essence, we expect the � criterion 

to be valid in these cases. Besides, the unique characteristics of ITA 

modes categorized this way shall be explored. It is interesting to 

investigate, if the peculiar characteristics observed in Silva et al. 

[11 , 12 ], Xu et al. [13] , Mukherjee and Shrira [15] could be explained 

with the phasor characteristics of ITA modes. 
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Appendix A. Test case with a DTD flame model 

In this section, we will demonstrate the implementation of the 

proposed categorization criterion in a test case with an FTF mod- 

eled by the DTD model given in Eq. (13) . The corresponding im- 

pulse response coefficients h k are tabulated in Table A.3 . 

Table A.3 

The impulse response coefficients h k of the DTD model at the corresponding ele- 

ment k . The discrete time step in this model is �t = 2 × 10 −4 s . 

k 2 3 4 5 6 7 8 9 

h k 0.1 0.3 0.8 0.3 0.1 −0.2 −0.4 −0.2 
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Fig. A.18. The surface plots of (a) FTF magnitude and (b) phase of a DTD flame model with excess gain and exhibit a low pass behaviour. The red curve depicts the FFR. The 

black curves on the surface in (a) mark the solutions that satisfy Eq. (A.1) . The solutions for the phase are not shown in (b) to reduce clutter. The blue filled circle is the 

mode of interest with ω r /ω p, 1 = 2 . 8 and σ/ω p, 1 = 0 . 2 . 

The resultant FTF of the DTD model in terms of magnitude and 

phase are visualized in Fig. A.18 . This FTF must simultaneously sat- 

isfy the dispersion relation given in Eq. (15) , such that 

|F (ω) | DTD = |F (ω) | sys (A.1) 

φ f (ω) 
∣∣

DTD 
= φ f (ω) 

∣∣
sys 

(A.2) 

where the index [ ] DTD indicates the FTF of the flame model, and 

[ ] sys indicates the FTF computed with the dispersion relation (15) , 

the results of which are visualized in Fig. 17 . The solutions that 

satisfy Eq. (A.1) are indicated by the black line in Fig. A.18 (a). The 

solutions for Eq. (A.2) are not shown to reduce cluttering. 

The solutions satisfying both the Eqs. (A .1) - (A .2) are the eigen- 

values of the thermoacoustic system at hand, as visualized in 

Fig. A.19 (blue circles). 

We investigate one of the unstable mode with ω r /ω p, 1 = 2 . 8 

and σ/ω p, 1 = 0 . 2 (blue filled circle). Owing to the fact that the 

case at hand (ideal closed-open boundaries, x f = 0 . 4 L ) is thus far 

discussed in detail, we could readily determine that this mode 

Fig. A.19. The thickened and thin curves satisfy Eq. (A.1) and (A.2) respectively. 

The intersection between them are all the eigenvalues to the thermoacoustic system 

(blue circles). The filled circle indicates the mode of interest with ω r /ω p, 1 = 2 . 8 and 

σ/ω p, 1 = 0 . 2 . 

Fig. A.20. 2D phasor diagram of the mode with ω r /ω p, 1 = 2 . 8 and σ/ω p, 1 = 0 . 2 . 

The partially out-of-phase u u and u d indicate an ITA mode. 

is indeed an ITA mode using Fig. 17 or rather Fig. 13 . Neverthe- 

less, it is crucial to realize that the proposed criterion that re- 

lates the angle of the velocity phasors across the flame should be 

valid for other general cases, where the flame position differs or 

the boundary conditions are non-ideal, say. In such cases, the con- 

voluted process of solving the dispersion relation and producing 

the contour maps may be omitted. Instead, one could determine 

the ‘ITA-ness’ of the given mode by comparing the correspond- 

ing FTF magnitude to the transitional value ( Eq. (37) ). To demon- 

strate this using the example at hand, we read off Fig. A.18 to 

obtain |F(ω) | = 1 . 8 and φ f (ω) = −0 . 83 π . The FTF phase satisfies 

π/ 2 < | φ f (ω) | < 3 π/ 2 and yields a transitional FTF magnitude of 

|F T (ω) | = 0 . 29 . With |F(ω) | > |F T (ω) | , we come to the same con- 

clusion that the mode at hand is an ITA mode. The phasor diagram 

in Fig. A.20 also confirms this conclusion. 
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Low-Order Modeling to
Investigate Clusters of Intrinsic
Thermoacoustic Modes in
Annular Combustors
The intrinsic thermoacoustic (ITA) feedbackloop constitutes a coupling between flow,
flame and acoustics that does not involve the natural acoustic modes of the system. One
recent study showed that ITA modes in annular combustors come in significant number
and with the peculiar behavior of clusters, i.e. several modes with close frequencies. In
the present work, an analytical model of a typical annular combustor is derived via Rie-
mann invariants and Bloch theory. The resulting formulation describes the full annular
system as a longitudinal combustor with an outlet reflection coefficient that depends on
frequency and the azimuthal mode order. The model explains the underlying mechanism
of the clustering phenomena and the structure of the clusters associated with ITA modes
of different azimuthal orders. In addition, a phasor analysis is proposed, which encloses
the conditions for which the 1D model remains valid when describing the thermoacoustic
behavior of an annular combustor. [DOI: 10.1115/1.4049356]

Introduction

To tackle environmental issues and reduce emissions, in partic-
ular NOx pollutants, lean premixed combustion systems have
been developed. However this combustion technology is more
prone to thermoacoustic combustion instabilities [1,2]. This type
of self-excited instability results from coupling between the
unsteady heat release of the flame and acoustic waves, which may
result in a positive feedback loop, thus inducing growing pressure
fluctuations. Repeated exposure to high pressure levels over time
will promote mechanical fatigue and may lead to catastrophic fail-
ure of the combustor [3]. From a safety perspective, it is crucial to
identify the important flow-flame-acoustic interaction and feed-
back mechanisms in order to prevent this type of instability.

Bomberg et al. [4] identified the so-called intrinsic thermoa-
coustic (ITA) feedback loop, which does not involve reflection of
acoustic waves at the combustor inlet or exit. Instead, the ITA
feedback mechanism may be described as follows: velocity sensi-
tive flames respond to a perturbation of upstream velocity with a
change in the heat release rate, which in turn generates acoustic
waves that travel in both up- and downstream directions. The
wave traveling in the upstream direction will directly perturb
the acoustic velocity, before even reaching the boundaries of the
acoustic system. This mechanism of flow-flame-acoustic interac-
tion is, in a sense, intrinsic to the flame and its immediate sur-
rounding, hence its name.

Anomalous peaks in the acoustic flame response, i.e. the magni-
tude of coefficients of the flame scattering matrix [5], and in the
so-called instability potentiality [6] were explained as resonances
of the ITA feedback loop [4,7]. Furthermore, ITA feedback pro-
vided an explanation [7] of the physical nature of thermoacoustic
instabilities of a flame in an anechoic environment, which were
reported and analyzed by Hoeijmakers et al. [8,9] and subse-
quently confirmed by high-fidelity computational fluid dynamics
simulations with nonreflecting boundary conditions [10,11].
Emmert et al. [12] then argued that ITA feedback gives rise to
additional thermoacoustic modes that are not related to acoustic

eigenmodes of the combustor and identified such an “ITA mode”
as the dominant unstable eigenmode in a premix swirl combustion
test rig. This constitutes a significant deviation from the established
interpretation of thermoacoustic instabilities as acoustic eigenmo-
des of the combustor driven by unsteady heat release [13].

The concept of ITA feedback can explain in hindsight a number
of hitherto inexplicable phenomena described in earlier studies.
For example, the “new set of modes associated with flame model”
described by Dowling and Stow [14] quite obviously should be con-
sidered as “modes of ITA origin” [15]. Similarly, there is strong evi-
dence that the low frequency “bulk mode” discussed by Eckstein and
Sattelmayer [16] results from ITA feedback [17]. Finally,
“convective scaling” of thermoacoustic eigenfrequencies—i.e. the
dependence of eigenmode frequency on the bulk flow velocity inside
the burner, but not on the speed of sound in plenum or combustor—
may be regarded as a consequence of ITA feedback [18].

Hosseini et al. [19] investigated the interplay between thermoa-
coustic modes of ITA and acoustic origin and showed that when
the passive acoustic mode is far away from the ITA, the two do
not interplay with each other. More recently, Sogaro et al. [20]
investigated a pairwise interplay between acoustic and ITA modes
and showed that modal sensitivities increase as the two modes
approach each other. Silva et al. [21] and Orchini et al. [22] fur-
ther investigated ITA and acoustic modes and their interplay with
exceptional points. They demonstrated that away from the excep-
tional point and the acoustic mode, the ITA trajectories when
varying the gain and time delay of the flame are straight lines, i.e.
their growth rate changes but the frequency remains approxi-
mately constant.

Previous studies [7,9,15] showed analytically that eigenfre-
quencies of ITA modes in a one-dimensional Rijke tubes with
anechoic boundary conditions have solution in the form

x ¼ p 2jþ 1ð Þ
s

� i

s
ln

nh
1þ n

� �
; j 2N (1)

where n ¼ qucu=qdcd is the ratio of specific impedances upstream
and downstream the flame, n and s the gain and time delay associ-
ated with the flame response respectively and h ¼ ðTd � TuÞ=Tu

the normalized temperature ratio. In the rest of this paper, we will
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refer to Eq. (1), the frequency of the ITA mode in an anechoic
environment, as the pure ITA frequency. Mukherjee and Shrira
[15] showed that, for a Rijke tube with fully reflecting boundaries,
in the limit of small n, the ITA mode is highly damped but its fre-
quency remains close to a corresponding “pure ITA frequency”.

Buschmann et al. [23,24] and Orchini et al. [22] observed the
existence of ITA modes in annular combustors. These modes
come in significant number and have the peculiar behavior of
appearing in clusters, i.e. several modes with different growth
rate, but very close frequencies. So far, little has been done to
explain their origin. Recall at this point Emmert et al. [12] who
demonstrated that, in longitudinal combustors with partially
reflecting boundaries, ITA modes should not be ignored and indeed
can be the most unstable modes. Furthermore, the analysis sug-
gested that established methods for passive control (dampers, etc.)
have little influence on ITA modes, or worse, can lead to the oppo-
site effect and trigger an instability. Therefore, it is crucial to under-
stand the underlying physics behind ITA modes. The goal of the
present study is to investigate ITA modes in annular chambers.

Various tools are available to study thermoacoustic instabilities:
high-fidelity large eddy simulations [25,26], linearized reactive
flow [27], linearized Navier–Stokes equations [28,29] give excel-
lent results, but at considerable computational cost. Helmholtz
solvers [30] are more affordable and able to accurately model
complex 3D geometries, but computational cost remains non-
negligible. On the other hand, low-order network models [31–35]
applied for annular geometries have proven to give satisfactory
agreement at extremely low computational cost. Bloch theory
[36], which exploits the rotational symmetry of a system, has
recently been applied in the thermoacoustic community
[22,37–39]. This approach reduces a system with rotational sym-
metries to a single unit cell and facilitates its computation without
loss in accuracy.

In the present study, we propose a low-order network model
formulated with Bloch boundary conditions to investigate ITA
modes in an annular combustor. The paper is structured as fol-
lows: we first describe the network model with Bloch boundary
conditions that represents the combustor. We then derive an ana-
lytical expression of the equivalent reflection coefficient that mod-
els the chamber behavior and demonstrate that the system can be
reduced to a simple longitudinal setup. This reduced model is
applied to a typical lab-scale combustor to explain the origin of
ITA clusters. It also enables us to explain the spectrum of the
combustor and the damping of modes with higher azimuthal
order. We then give explanations on the shift of certain modes and
the offset from their respective clusters.

Network Model of an Annular Geometry With Bloch

Boundary Conditions

Case and Flow Description. The combustor consists of N per-
fectly premixed burners connected to an annular combustion
chamber. For the sake of simplicity, the plenum is not taken into
account, because it can often be decoupled [40,41]. The area ratio
between plenum and burners is assumed large enough such that
the burners can be modeled by ducts terminating in a large vessel.
For low Mach numbers, this leads to a reflection coefficient at the
inlet of the burners of Rin ¼ �1. At the exit of a gas turbine com-
bustion chamber, a high pressure turbine stage is placed in order
to extract energy from the fluid and transform it into mechanical
work. Marble and Candel [42] showed that the acoustic response
of the turbine inlet can be modeled with a fixed gain lower than 1
and a zero phase response. To simplify the study, we choose here
a reflection of Rout ¼ 1, and we expect little quantitative change
when accounting for the losses [43]. In this study, we also neglect
entropy waves, assuming they play a negligible role [44].

The model is based on a network approach. The burners and the
combustion chamber are modeled by ducts where only 1D planar
acoustic waves propagate. In the chamber, only purely azimuthal

modes are considered. The axial length of the chamber is assumed
to be small compared to the azimuthal length Pc; mixed modes
will occur at higher frequencies and are not considered here.
Transverse modes are also out of the scope of this study. The
chamber is decomposed into N ducts of length L, where L is the
distance between two burners. Similarly to Parmentier et al. [33],
burners and chamber are connected with T-junctions, and the
flames are placed inside the burners, just before the area change
with the chamber. The flames and the T-junctions are assumed to
be acoustically compact.

Flame and Unsteady Heat Release Model. The acoustic flame
model is based on linearized Rankine Hugoniot jump equations
across a compact heat source [7,45] with heat release fluctuations

p0d
�qdcd

¼ n
p0u

�qucu

u0d ¼ u0u þ h _q0

8><
>: (2)

where n ¼ �qucu=�qdcd is the ratio of specific impedances, h ¼
ðTd � TuÞ=Tu the normalized temperature ratio, and _q0 ¼ _Q

0
�uu=

�_Q
the normalized global heat release fluctuations of the flame.

The model is closed by a flame transfer function (FTF) which
relates upstream velocity fluctuations at the reference position
with the normalized global heat release fluctuations of the flame.
Crocco [46] introduced a simple model with only two parameters,
a gain n and a time delay s, which represent the delay between the
acoustic perturbation and the actual response of the flame

_q 0

u0u
¼F xð Þ ¼ ne�ixs (3)

This model is simplistic but captures essential aspects of a generic
flame response and is convenient to use in the context of analyti-
cal models. Especially, the pure ITA frequency can be analytically
expressed as recalled in Eq. (1).

Bloch-Wave Theory. Bauerheim et al. [47] showed analyti-
cally that azimuthal modes are strongly influenced by symmetry
breaking. Both geometrical or flow symmetry breaking cause the
degenerate pairs of azimuthal modes to split into two distinct
modes. In this study, the influence of symmetry breaking is not
taken into account: the burners are identical, and the chamber
does not exhibit any mean flow in the azimuthal direction.
Because of the discrete rotational symmetry, according to Bloch
theory [36,37], the acoustic pressure in the frequency domain can
be written in the form

p̂ xð Þ ¼ w xð Þeimh; m ¼
�N

2
þ 1;…;

N

2
N even

�N � 1

2
;…;

N � 1

2
N odd

8>><
>>: (4)

where h is the azimuthal coordinate around the axis of discrete
rotational symmetry, wðxÞ is a function identical in all unit cell
and periodic in h with a period 2p=N and m is the Bloch wave
number. In this application, the absolute value of the Bloch wave
number jmj is identical to the azimuthal mode order because, in
time domain, the solution pðx; tÞ ¼ p̂ðxÞeixt ¼ wðxÞeiðxtþmhÞ is a
traveling wave in the azimuthal coordinate h [38].

Depending on the values of m, the modes can be classified into
three categories: axial, spinning and “push-pull” modes. For
m¼ 0, Eq. (4) shows that the pressure is identical in every unit
cell with no phase difference in the azimuthal direction, i.e. an
axial mode. Mode order m ¼ N=2 only exists when the number of
discrete rotational symmetry is even. In this case, the acoustic
field of one burner is in antiphase with respect to the acoustic field
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of its two neighbors and, for this reason, is called “push-pull”.
Spinning modes in the (anti-)clockwise direction appear for Bloch
wave numbers of m ¼ 61;…;6ðN=2� 1Þ. Because the system
exhibit reflectional symmetry (negligible mean flow in azimuthal
direction), these modes are degenerate pairs that share the same
eigenfrequency and differ only by their spinning direction.

From the study of one unit cell only, and for all possible values
of m, one can assess the response of the complete system account-
ing for all azimuthal modes [37–39]. The complete system
burners-chamber can be reduced to the study of only one unit cell
as depicted in Fig. 1. The model is very similar to the one intro-
duced by Parmentier et al. [33], but Bloch theory, by introducing
a quasi-periodic boundary condition mutually connecting the left
and right boundaries of the unit cell, allows to avoid tedious
matrix products to find the dispersion relation.

Equivalent Longitudinal Burner

In order to better understand the underlying physics and further
simplify the system, we derive a model, and the combustion
chamber (identified by the box in Fig. 1) is replaced by its equiva-
lent reflection coefficient. We show that, with Bloch theory, we
can reduce a complex annular geometry to an equivalent longitu-
dinal burner.

Modeling of the T-Junction and the Chamber. The T-
junction is considered acoustically compact and its volume is null.
The chamber does not exhibit any mean flow in the azimuthal
direction; therefore, the mass conservation equation integrated
over the control volume reduces to conservation of volumetric
flow rate:

Scu0C ¼ Scu0B þ Sbu0A (5)

The momentum conservation equation applied to an inviscid 1D
flow leads to pressure continuity in the junction:

p0C ¼ p0B ¼ p0A (6)

To investigate ITA modes, it is often more convenient to use Rie-
mann invariants. In this context, we recall the definition of charac-
teristic waves amplitudes

f � 1

2

p0

�qc
þ u0

� �
; g � 1

2

p0

�qc
� u0

� �
(7)

Using Riemann invariants definition from Eq. (7), Eqs. (5) and (6)
become

fC þ gC ¼ fB þ gB ¼ fA þ gA ð8aÞ
fC � gC ¼ fB � gB þ aðfA � gAÞ ð8bÞ

(

where a ¼ Sb=Sc is the area ratio between burner and chamber.
The objective is to replace the system T-junction and chamber

by the equivalent reflection coefficient seen by the burner, i.e. to
express gA, the wave coming back from the chamber and traveling
in the upstream direction, as a function of the incoming wave fA.
We define the reflection coefficient Rm as:

gA ¼ RmfA (9)

From the T-junction, plane waves propagate in the chamber to the
locations L and R (left and right boundaries of the unit cell respec-
tively, as shown in Fig. 1)

fR

gR

" #
¼

e�ikL
2 0

0 eikL
2

" #
fC

gC

" #
;

fB

gB

" #
¼

e�ikL
2 0

0 eikL
2

" #
fL

gL

" #
(10)

Locations L and R are mutually connected with Bloch boundaries
as in Haeringer and Polifke [39].

fR

gR

" #
¼

ei2pm
N 0

0 ei2pm
N

" #
fL

gL

" #
(11)

Combining Eqs. (9)–(11) leads to the homogeneous linear system
of equations defined through the matrix

1� ei 2pm
N þkLð Þ 1� ei 2pm

N �kLð Þ

ei 2pm
N þkLð Þ � a

1�Rm

1þRm
� 1 1� ei 2pm

N �kLð Þ � a
1�Rm

1þRm

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M x;mð Þ

(12)

The linear system of equations for fB and gB reads

Mðx;mÞ
fB

gB

" #
¼

0

0

" #
(13)

The detailed derivation can be found in Appendix A. The system
shows nontrivial solution if the determinant of Mðx;mÞ is null,
which gives a condition for the reflection coefficient:

Rm xð Þ ¼
�2 cos

2pm

N

� �
þ 2 cos Heð Þ � ia sin Heð Þ

2 cos
2pm

N

� �
� 2 cos Heð Þ � ia sin Heð Þ

(14)

with the Helmholtz number being defined as He ¼ xL=c. Note
that RmðxÞ depends on the frequency and the mode order.

Interpretation of the Reflection Coefficient. The equivalent
reflection coefficient RmðxÞ depends not only on the frequency
x, as it is often the case for boundary conditions, but also on the
azimuthal mode order m. Depending on the order of the mode

Fig. 1 Network model of one unit cell of an annular chamber
exhibiting rotational and reflectional symmetry
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present in the chamber, the burner tube is exposed to a different
outlet acoustic boundary condition.

At zero growth rate, Eq. (14) shows that the gain of the reflec-
tion coefficient is trivially unity at all frequencies and for all mode
orders. This result was to be expected because no loss mechanism
was taken into account and no energy is added to the system. On
the other hand, the phase is different for all the modes and
changes with the frequency. Figure 2 presents the evolution of the
phase as a function of the dimensionless frequency He for an
annular combustor of 12 burners and with an area ratio of
a ¼ 1=15. We observe that, in the zero frequency limit, the cham-
ber behaves as a hard wall (R0 ¼ 1) for the axial mode whereas it
behaves as an open end (Rm ¼ �1) for all other azimuthal mode
orders. Corresponding observations for a can-annular combustor
were made by Ghirardo et al. [38] and were explained mathemati-
cally by the fact that the Galerkin series of an axial mode has a
Helmholtz mode at frequency x¼ 0. We can also interpret it
physically. The mode is of axial type, the acoustic field is uniform
in the azimuthal direction, the T-junction is compact, so the
boundary condition seen by the burner is exactly the same as the
one at the inlet of the turbine (Rout ¼ 1 in this case), thus explain-
ing the phase going to 0 in the low frequency limit.

For the other modes, the phase is rather close to either p or �p
but changes abruptly from one to the other with a periodic pattern.
Indeed, for each mode, at a given frequency, the reflection coeffi-
cient becomes Rm ¼ 1. From Eq. (14), we can show analytically
that

Rm xð Þ ¼ 1() cos Heð Þ ¼ cos
2pm

N

� �
() He ¼ kL ¼ 2ph6

2pm

N
; h 2N

() kPc

2
¼ Nh6mð Þp; h 2N

(15)

where Pc¼NL is the total perimeter of the chamber. Rm ¼ 1 is
the special case where the burner tube has a velocity node at its
outlet, and therefore, the flame is not influencing at all the cham-
ber. In that sense, the burner tube is decoupled, and the chamber
is a simple annular duct whose eigenfrequency (or resonance fre-
quency) is defined by Eq. (15). These frequencies correspond to
the passive acoustic modes of the chamber. For a pure chamber
mode, the burner outlet is equivalent to a hard wall.

The area jump between burners and chamber will also strongly
influence the equivalent reflection coefficient. Figure 3 shows the
evolution of the phase for the modes m¼ 1 and m ¼ N=2 with a

varying from 0.05 to 20. When a is large, the phase tends to be 0
for all frequencies, which means Rm ¼ 1. This is the limit case of
a can-annular configuration: the burner tube is similar to a can
exposed to a choked exit. In contrast, when a is small, Rm tends
to be equal to �1, the burner tube ends in a large vessel (combus-
tion chamber), which is a representation of an annular configura-
tion. Ghirardo et al. [38] introduced the notion of equivalent
reflection coefficient for a 2D can-annular configuration. In the
present study, we derived a general 1D expression for the equiva-
lent reflection coefficient seen by a duct terminating in an annular
chamber. Although in this paper an annular combustor is consid-
ered, the model could easily be applied to a can-annular configura-
tion. This 1D model is simple but gives good qualitative
agreement compared to 2D and 3D computations [38,48]. Note
that the derivation also holds for the plenum side; the impact of
the plenum could be investigated in future work with the same
model.

Reduction of the System to a Longitudinal Burner. In the
Interpretation of the Reflection Coefficient section, we showed
that the entire chamber can be modeled with an equivalent reflec-
tion coefficient RmðxÞ that depends on frequency x and azi-
muthal order m. The unit cell considered in Fig. 1 can therefore be
further reduced into N=2 simpler subsystems, which consist only
of longitudinal burners as depicted in Fig. 4. It is remarkable that
a complex annular system can be analytically reduced to such a
simple longitudinal configuration. Such burners have been already
studied in the context of ITA modes.

Following the approach proposed by Silva et al. [10], the equa-
tions for such a configuration are written as:

�1 Rin 0 0

T11 T12 �1 0

T21 T22 0 �1

0 0 RmðxÞ �1

2
666664

3
777775

fin

gin

fd

gd

2
666664

3
777775 ¼

0

0

0

0

2
666664

3
777775 (16)

where Tij are the coefficients of the overall acoustic transfer
matrix formed by the propagation of the waves inside the burner
tubes and the flame

T¼ 1

2

nþ1þhF xð Þ n�1�hF xð Þ

n�1�hF xð Þ nþ1þhF xð Þ

2
4

3
5 e�ixLb=cc 0

0 eixLb=cc

2
4

3
5

(17)

Fig. 2 Phase of the equivalent reflection coefficient Rm for an
annular combustor with 12 burners for the azimuthal modes
m 5 0 [ ], m 5 1 [ ], m 5 2 [ ], m 5 3 [ ], m 5 4 [ ],
m 5 5 [ ], and m 5 6 [ ]. Circles: passive acoustic modes
of the combustion chamber.

Fig. 3 Phase of the equivalent reflection coefficient for an
annular combustor with 12 burners with area ratio between
burner and chamber a 5 Sb /Sc 5 1/20 [ ], a 5 1/5 [ ],
a 5 1/2 [ ], a 5 1 [ ], a 5 2 [ ], a 5 5 [ ], a 5 20 [ ].
Full lines: azimuthal mode m 5 1. Dashed lines: azimuthal mode
m 5 6.
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The determinant of the system matrix from Eq. (16) leads to the
corresponding dispersion relation

T22 �RmðxÞT12 � T21 þRmðxÞT11 ¼ 0 (18)

Equation (18) is highly nonlinear and can generally not be solved
analytically. To overcome the problem, the system is computed
with taX. taX is an open-source MATLAB package developed by the
Thermo-Fluid Dynamics group to build and solve low-order ther-
moacoustic network models [49,50]. With the use of finite differ-
ences in a state-space framework, taX reduces Eq. (18) to a
generalized linear eigenvalue problem, which facilitates the use of
direct solvers to compute the complete spectrum of eigenvalues
and eigenmodes. This key feature proves to be crucial to find ITA
modes in a simple manner. Mensah [51] and Buschmann et al.
[23] have shown that if, instead, the nonlinear eigenvalue problem
is solved by iterative methods, finding ITA modes remains diffi-
cult as they are associated with small basin of attraction.

On the Origin of Intrinsic Thermoacoustic Clusters

In this section, we apply our model to a lab-scale combustor,
which has chamber cavity modes far away from the pure ITA fun-
damental frequency, and explain the origin of ITA clusters. We
also explain why the damping of ITA modes increases with the
azimuthal order.

Equivalent Rijke Tube. We apply our model to a realistic lab-
scale combustor. Geometrical and thermodynamics parameters
are given in Table 1. The time delay of the flame model is
s ¼ 2ms, so the pure ITA fundamental frequency is evaluated at
fITA ¼ 250Hz. The length between two burners L is rather small,
the total length of the chamber is 0.6 m, which guarantees cham-
ber cavity modes at much higher frequencies than the pure ITA
frequency. Indeed the first azimuthal passive chamber mode is
evaluated at f ¼ cd=Pc ¼ 1090Hz. The combustor has 12 burners
therefore ITA modes up to order 6 will arise.

Figure 5 presents the equivalent reflection coefficient in the fre-
quency range of interest [0–400 Hz]. In Fig. 2, it corresponds to a
Helmholtz number He between 0 and 0.25. In that frequency
range, for mode order m between 1 and N=2, starting from p at
zero frequency, the phase of each mode depends linearly on the

frequency He. Therefore, for each m, the phase is modeled by the
simple equation /Rm ¼ p� amHe, where the slope of the line is
the positive coefficient am. Because the gain of Rm is unity, the
equivalent reflection coefficient writes:

Rm xð Þ ¼ �e�iamHe ¼ �e�i2kLm ; Lm ¼
amL

2cd
(19)

From Eq. (19), we can directly see that the reflection coefficient
Rm is equivalent to a duct of length Lm terminated by an open
end. Therefore, the longitudinal burner introduced in Fig. 4 can be
transformed into the completely equivalent, yet simpler, Rijke
tube depicted in Fig. 6. The boundary conditions are fully reflect-
ing and are independent of the frequency. The length of the equiv-
alent duct Lm varies with the mode order m: the lower the
azimuthal order, the longer the equivalent duct (the line is steeper
for low azimuthal order in Fig. 5). Following the exact same rea-
soning for the axial mode, the system can also be reduced to a
Rijke tube but with a closed end as outlet boundary condition.
Indeed, in Fig. 2, we can see that the phase of the axial mode is
zero in the low frequency limit.

Thermoacoustic modes of acoustic or ITA origin have already
been studied for the Rijke configuration. Hosseini et al. [19]
showed that, for fully reflecting boundary conditions, when the
pure ITA mode is far away from the passive acoustic modes, the
two do not interplay and the frequency associated with the ther-
moacoustic mode of ITA origin stays close to the pure ITA fre-
quency. The same result can also be observed in the star shape
introduced by Silva et al. [21] or in other recent studies by Orchini
et al. [22] and Mukherjee and Shrira [15]. For a pure ITA fre-
quency away enough from the passive acoustic mode, the trajec-
tory in the complex plane of the thermoacoustic mode of ITA
origin will be a straight line when varying n (Fig. 6 from Ref.
[22]): the growth rate of the mode is changing with the interaction
index, but the frequency remains approximately constant.

The annular geometry has been reduced to a simple Rijke tube
configuration. For this reduced system, we need to compare the

Fig. 4 Annular geometry reduced to a single longitudinal
burner. The outlet reflection coefficient Rm(x) depends on fre-
quency and mode order and models the behavior of the com-
bustion chamber.

Table 1 Numerical parameters of the lab-scale combustor

N 12
a 1/15
Lb [m] 1.5� 10�2

L [m] 5� 10�2

cu [ms�1] 341
Td=Tu [–] 4
n 1
s [s] 2� 10�3

Fig. 5 Phase of the equivalent reflection coefficient Rm in the
case where the chamber mode is far away from the ITA mode.
Colors indicate the azimuthal order as defined in Fig. 2.

Fig. 6 Equivalent Rijke tube with fully reflecting boundary con-
ditions. The equivalent length Lm varies with the azimuthal
order and models the behavior of the chamber.
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pure ITA frequency fITA ¼ 1
2s to the passive acoustic mode of the

Rijke tube of total length Ltot ¼ Lb þLm. For lab-scale combus-
tors, the burners are rather short, of the order of magnitude of a
centimeter (1.5 cm in our application case). Following Eq. (19),
because the speed of sound is usually high in the chamber, it is
straight forward to prove analytically that, for all azimuthal order
m, Lm is always at least one order of magnitude lower than L, the
distance between two burners. For such combustors, the effective
length Lm is small, of the order of magnitude of a centimeter for
low azimuthal mode order, and much smaller for higher mode
order. Therefore, the total length of the equivalent Rijke tube is of
the order of magnitude of 1–10 cm, which leads to passive acous-
tic modes at high frequencies (above 1000 Hz). On the other hand,
because the time delay of the flame response is usually between 1
and 2 ms, the pure ITA fundamental frequency fITA ¼ 1

2s will be
below 500 Hz. The passive acoustic mode is far away from the
pure ITA fundamental frequency. Therefore, for all azimuthal
mode order m, thermoacoustic modes of acoustic and ITA origin
do not interplay: ITA modes of various azimuthal order will
remain close to the pure ITA frequency, and thus creating clusters
of ITA modes. Note that this result may not directly apply for
industrial configurations where the dimensions are much more
significant and could lead to ITA-acoustic interplay. Similarly,
this hypothesis is also not valid for clusters of ITA harmonics
which are located at higher frequencies. In both cases, clusters are
still present but may not contain all azimuthal mode order: some
modes may shift and be offset from their respective clusters. This
will be developed in the Intrinsic Thermoacoustic Modes Drifting
Away From Their Cluster section.

Figure 7 presents the spectrum of our application case. The
equivalent Rijke tube reduced model (squares) shows excellent
agreement with the full system predictions (crosses) computed by
taX. Some discrepancy is observed for the axial mode and is dis-
cussed in the Intrinsic Thermoacoustic Modes Drifting Away
From Their Cluster section. Thermoacoustic modes of acoustic
origin are completely out of the frequency range of interest and do
not interplay with thermoacoustic modes of ITA origin. The latter,
as expected, lie around the pure ITA frequency, at 250 Hz. Their
growth rate changes with the mode order: modes with higher azi-
muthal order are more damped, as it was also observed by Busch-
mann et al. [23,24]. We explain this phenomena in the On the
Damping of Intrinsic Thermoacoustic Modes section.

On the Damping of Intrinsic Thermoacoustic Modes. In this
section, we want to investigate how the damping of an ITA mode
is affected by the azimuthal order. As a first case, we consider a
Rijke tube, as depicted in Fig. 6, where the effective length Lm is

about the same length as the burner Lb. The flame is located
approximately in the middle of the Rijke tube, away from the
boundaries. This first case models a low azimuthal order ITA
mode. This one-dimensional thermoacoustic system is studied
here by means of a phasor analysis. The spatial evolution of Rie-
mann invariants f and g along the system is modeled with phasors
rotating in the complex plane. Such analysis was previously
applied in the context of ITA modes [17,18] and has proven to be
convenient to study linear stability.

For simplicity, we consider a mode at the stability limit (zero
growth rate) in order to impose a fixed length to each phasor. A
phasor diagram associated with the acoustic waves f and g is dis-
played in Fig. 8. For convenience, it is assumed that the phasor fin
is aligned with the real axis of the complex plane. The reflecting
condition at the inlet implies that gin ¼ �fin. The acoustic wave f
will travel from the inlet to the flame along the duct of length Lb.
The wave at the location u, upstream of the flame, is related to the
inlet by fu ¼ fine�ixLb=cu . On the phasors plot, this leads to a rota-
tion of an angle uu ¼ xLb=cu. Conversely, the g phasor will rotate
with the same angle uu but in the opposite direction. Sum and
subtraction of the phasors yield the acoustic phasors p0 and u0

respectively.
The same analysis is performed from the downstream bound-

ary. The top of Fig. 9 presents the phasors plot rotating from the
outlet to the location just downstream the flame. For the sake of
simplicity in the diagrams, we assume that �qucu ¼ �qdcd ¼ 1.
Such a simplification allows to define p0 ¼ f þ g and u0 ¼ f � g.
Note that taking into account the temperature jump across the
flame would lead to the same conclusion. The direction of fout and
gout are known because the outlet boundary condition needs to be
satisfied, but their length is not known a priori. From the outlet, f
and g rotate by an angle ud ¼ xLm=cd. Note that their sense of
rotation is opposed with respect to the ones of fu and gu because
waves propagate now from the downstream side. The direction of
the phasors fd and gd downstream the flame is therefore known.
Jump conditions across the flame need to be fulfilled. Knowing
the direction and the magnitude of p0u, and knowing the directions
of fd and gd, it is possible to geometrically construct the lengths of
the latter. Using Eqs. (7) and (2), determining the heat release _q0

is straight forward.
We now consider a second case where the upstream part of

the flame is identical, but the effective length Lm downstream the
flame is shorter, about half of the length of the first case. The
flame is now located closer to the outlet boundary. This second
case is representative of a higher azimuthal order ITA mode.
Because the upstream part is unchanged, the upstream phasor plot
is identical to Fig. 8. On the other hand, the downstream phasor
plot differs. Because Lm is smaller, the phasors will rotate from
the outlet with a smaller angle ud, as shown in the bottom of
Fig. 9. Because the pressure continuity at the flame still needs to
be fulfilled, the length of fd and gd should be adapted accordingly.
As a result, the phasors fd and gd are longer than in the first case,
which leads to a longer phasor of velocity u0d . The latter implies
that Eq. (2) is satisfied for larger values of _q0.

Summarizing, we have shown that _q0 for the second case is
larger than _q0 for the first case in the region of marginal stability.

Fig. 7 Thermoacoustic spectrum where ITA modes show vari-
ous azimuthal order. Crosses: full system. Squares: equivalent
Rijke tube model. Colors indicate the azimuthal order as
defined in Fig. 2.

Fig. 8 Phasors diagram of acoustic waves f and g at the inlet
and at the location u, just upstream of the flame. Sum and sub-
traction of these phasors yield the acoustic phasors p0 and u0.
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Accordingly, we conclude that the second system requires more
energy than the first one to remain neutrally stable, and, therefore,
its critical interaction index nc is higher. Said differently, if we
inject the same amount of energy _q0 in both systems (i.e. if both
systems have the same interaction index n), the second one will
exhibit higher damping. The proposed phasor analysis sheds a
light on the spectrum shown in Fig. 7: the effective length Lm

decreases with the mode order m, therefore higher azimuthal order
ITA modes are more damped.

Intrinsic Thermoacoustic Modes Drifting Away

From Their Cluster

In Fig. 7, we observed that the axial mode is slightly offset
from the cluster: its frequency is around 222.7 Hz, compared to
the 250 Hz of the pure ITA frequency. The reduced Rijke tube
model is not able to capture this drift. In this section, we investi-
gate the cause of ITA modes shifting away from their cluster. We
will demonstrate that this phenomena takes place when the p-
criterion [8] is broken. Two causes are identified.

The first cause is the gain or losses introduced by acoustic
boundaries. The gain of the equivalent reflection coefficient as
defined in Eq. (14) is not always unity for complex-valued fre-
quencies. Figure 10 shows the evolution of the gain of R0 with
respect to frequency and growth rate around the pure ITA fre-
quency. The gain drifts from unity by up to 20%. Hence, away

from zero growth rate, the boundary is not anymore fully reflect-
ing but introduces some losses/amplification. For azimuthal order,
as shown in Fig. 11 for m¼ 1, the gain of Rm is unity and uniform
away from the passive acoustic chamber mode f ¼ mcd

Pc
. But, in the

region close to the passive chamber mode, at nonzero growth rate,
the gain of Rm exhibits important variations, also transforming
the fully reflecting boundaries into boundaries with losses/gain.

The second cause is the range of validity of the model where
the phase Rm is considered linear with respect to frequency.
Indeed, this model is valid for low frequencies and up to a certain
extent. For higher frequencies, the phase of the equivalent reflec-
tion coefficient Rm stops evolving linearly with He, and is rather
similar to Fig. 2. The approximation of the system by a Rijke tube
is not valid anymore. Nevertheless, the system can still be mod-
eled by a longitudinal combustor with an outlet boundary that
depends on the frequency as in Fig. 4.

The two aforementioned effects lead to ITA modes drifting
away from their pure ITA frequency. When the boundaries are
fully reflecting, p0 and u0d are orthogonal, as illustrated on the left
side of Fig. 12. The velocities u0u and u0d are aligned with the real
axis but have opposite directions. The phase difference between
u0u and u0d is u ¼ p. It is possible to estimate the frequency of the
ITA mode f ¼ u=2ps ¼ 1=2s. We here retrieve the classic p-
criterion to identify ITA modes [8]. However, when the outlet
boundary is not fully reflecting, p0 and u0d are not orthogonal. The
phase between the velocities u0u and u0d changes and therefore, the
p-criterion is broken, as depicted on the right side of Fig. 12. The
frequency of the ITA mode is different from the pure ITA fre-
quency, i.e. the mode is offset from its cluster.

It is interesting to notice from Fig. 2 that the phase of Rm is lin-
early dependent on frequency over a wider frequency range for
modes with a higher azimuthal order. The higher the mode order,
the larger the region of validity of the Rijke tube model with fully
reflecting boundaries. This means that, for ITA harmonics, modes
with low azimuthal order are the first to deviate from the cluster.
Figure 13 presents the spectrum of an annular chamber with ITA
fundamental modes and first harmonics. Note that, because the
full system can be reduced to a longitudinal burner, the analytical
expression of the frequency spacing between ITA modes Df ¼
1=s derived by Emmert et al. [7] applies here. Therefore, this
explains the constant frequency spacing between clusters. In the
first cluster, all the modes are around the pure ITA frequency,
besides the axial mode, as explained earlier. In the second cluster,
the first azimuthal mode is also offset from its cluster. Indeed, at

Fig. 9 Phasors diagram of acoustic waves f and g at the outlet
and at the location d, just downstream of the flame. Top: ITA
mode with a low azimuthal order. Bottom: ITA mode with a
higher azimuthal order.

Fig. 10 Gain of the equivalent reflection coefficient R0 as a
function of frequency and growth rate. Red line: pure ITA fre-
quency. Black lines: isolines varying from 0.85 to 1.2 with an
increment of 0.05. Away from the real axis, the gain differs from
unity; the boundary is not fully reflecting but introduces
damping/amplification.

Fig. 11 Gain of the equivalent reflection coefficient R1 as a
function of frequency and growth rate. Diamond: passive
acoustic mode of the chamber. Black lines: isolines varying
from 0.85 to 1.2 with an increment of 0.05. In the region of the
passive acoustic chamber mode, the gain differs from unity;
the boundary is not fully reflecting but introduces damping/
amplification. Results are similar for other mode orders. Note
that the frequency range of interest is different from Fig. 10.
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such frequency, the Rijke tube approximation is not valid, the out-
let boundary of the equivalent longitudinal burner is not fully
reflecting and the p-criterion is not fulfilled: the ITA mode cannot
be around the pure ITA frequency of the first harmonic. The same
observations can be made by considering higher harmonics: the
second azimuthal order mode will deviate, then the third and so
on.

Conclusion

In this paper, we proposed a new approach that combines net-
work models and Bloch theory to describe ITA modes in an annu-
lar chamber. Bloch boundary conditions are convenient to use
because they enable us to limit the study to a single unit cell and
reconstruct the results for the full system without loss of accuracy.
We analytically derived a reflection coefficient that models the
chamber and how the latter affects the acoustic in the burner.
With the use of Bloch theory and Riemann invariants, an annular
configuration, where axial and radial dimensions are negligible
compared to the azimuthal direction, can be reduced to a simple
equivalent longitudinal combustor. The equivalent reflection coef-
ficient depends on the frequency and the azimuthal order of the
mode present in the chamber. The area ratio between burners and
chamber also widely influences the coupling between the latter
and consequently the acoustic response of the burners. The model
was derived without loss of generality and is suitable to describe
various cases, from annular geometries to can-annular configura-
tions where the burners dimensions are much more significant and
the chamber consists only of a small cross-talk area.

The suggested model was applied to a lab-scale combustor. For
such configurations, when the acoustic mode of the chamber is far
away from the pure ITA frequency, we showed that the longitudi-
nal burner can be reduced to an even simpler model, a Rijke tube
with fully reflecting boundaries. The length of the Rijke tube and
the flame position in it depends on the azimuthal mode consid-
ered. But, because the acoustic mode of the Rijke tube and the
ITA frequency are away from each other, thermoacoustic modes
of acoustic and ITA origin do not interplay with each other.
Therefore, for every azimuthal order, each ITA mode has a fre-
quency close to the pure ITA frequency: this explains the origin
of ITA clusters.

The reduced Rijke tube model also allowed us to explain the
structure of the spectrum. The flame position in the Rijke tube
varies with the azimuthal order, the higher the order, the closer
the flame is to the outlet boundary. With the use of a phasors anal-
ysis for ITA modes, we showed that, for a flame close to the out-
let, the system requires more energy to stay at the stability limit
than for a case where the flame is far from the outlet. Said differ-
ently, for a given heat release rate, the closer the flame to the out-
let, the more damped the mode. This result explains the spectrum
structure where ITA modes of higher order are always more
damped.

Finally, we investigated the phenomenon of ITA modes drifting
away from their clusters. When the outlet boundary is not fully
reflecting, pressure and velocity are not orthogonal and the p-
criterion is broken. The frequency of the ITA mode is different
from its pure ITA frequency, i.e. the mode is offset from its clus-
ter. We demonstrated that low azimuthal order modes deviates
first. The impact of the plenum and a possible interplay between
thermoacoustic modes of ITA and acoustic origin can be investi-
gated in future work.
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Nomenclature

a ¼ cross section ratio between burner tube and chamber
cd ¼ speed of sound downstream the flame
cu ¼ speed of sound upstream the flame

f ; g ¼ Riemann invariants
FTF ¼ flame transfer function

He ¼ Helmholtz number
L ¼ length between two burners

Lm ¼ effective length
Lb ¼ length of the burner tubes
m ¼ Bloch wave number
n ¼ interaction index of the FTF
N ¼ number of burners
p0 ¼ acoustic pressure
Pc ¼ total length of the combustion chamber
_q0 ¼ normalized global heat release fluctuations

Fig. 12 Phasors diagram in the case of fully reflecting bounda-
ries (left) and non-fully reflecting boundaries (right). For the
second case, the p-criterion for ITA modes is not fulfilled. The
mode will shift away from the pure ITA frequency.

Fig. 13 Thermoacoustic spectrum of an annular chamber. In
the first cluster, only the axial mode is offset. In the second
one, both axial and first azimuthal order are offset from their
cluster. Crosses: first ITA cluster. Diamonds: second ITA clus-
ter. Colors indicate the azimuthal order as defined in Fig. 2.
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Rm ¼ equivalent reflection coefficient
Sb ¼ cross section area of the burner tube
Sc ¼ cross section area of the combustion chamber
u0 ¼ acoustic velocity
h ¼ normalized temperature ratio
n ¼ ratio of specific impedances
s ¼ time delay of the FTF
x ¼ complex frequency

Appendix A: Derivation of T-Junction Model

The derivation does not show any major difficulties but requires
some mathematical precautions. Equation (8) has six unknowns
for only three equations. The unknown gA can be easily eliminated
by inserting Eq. (9) in Eq. (8)

fC þ gC ¼ fB þ gB ðA1Þ
fC � gC ¼ fB � gB þ afAð1�RmÞ ðA2Þ

(

Combining Eqs. (10) and (11) allows us to directly connect loca-
tions B and C of the T-junction

fC

gC

" #
¼ ei 2pm

N þkLð Þ 0

0 ei 2pm
N �kLð Þ

2
4

3
5 fB

gB

" #
(A3)

With Eq. (A3), Eqs. (A1) and (A2) simply become

ei 2pm
N þkLð ÞfB þ ei 2pm

N �kLð ÞgB ¼ fB þ gB ðA4Þ

ei 2pm
N þkLð ÞfB � ei 2pm

N �kLð ÞgB ¼ fB � gB þ afA 1�Rmð Þ ðA5Þ

8<
:
which is a system of two equations for three unknowns. But the
unknown fA can be expressed as a function of fB and gB using
Eq. (8a)

fA ¼
fB þ gB

1þRm
(A6)

This requires the reflection not to be Rm ¼ �1, but this is a mean-
ingful hypothesis for this configuration. Indeed if the reflection
coefficient is Rm ¼ �1, Eq. (8a) leads to

fB ¼ �gB ðA7Þ
fC ¼ �gC ðA8Þ

(

Inserting Eqs. (A3) and (A8) into Eq. (A7) writes

fCei2pm
N eikL � e�ikLð Þ ¼ 0 (A9)

Equation (A9) is satisfied for one of the following conditions:

� fC¼ 0. This implies that fA ¼ gA ¼ fB ¼ gB ¼ gC ¼ fC ¼ 0,
which is the trivial case where no acoustics is present in the
system.

� ðeikL � e�ikLÞ ¼ 0. The frequency is then imposed by the
condition

kL ¼ He ¼ hp; h 2N (A10)

The equivalent reflection coefficient Rm can be equal to –1 only if
Eq. (A10) is satisfied. Because of the periodicity of the complex
exponential, we can limit the study to only 2 cases: He ¼ 0 and
He ¼ p.

We consider the first case where He ¼ 0. Equation (A4) simply
becomes

ei2pm
N � 1

� �
fB þ gBð Þ ¼ 0 (A11)

Equation (A11) is satisfied for the following conditions:

� m¼ 0. Inserting this condition into Eq. (A5) leads to the only
non trivial solution R0ðHe ¼ 0Þ ¼ 1.

� if m 6¼ 0, we have the condition fB þ gB ¼ 0 ¼ fA þ gA

which directly reads to RmðHe ¼ 0Þ ¼ �1.

We now consider the second case where He ¼ p. Equation
(A4) becomes

ei2pm
N þ 1

� �
fB þ gBð Þ ¼ 0 (A12)

Equation (A12) is satisfied for the following conditions:

� m ¼ N=2. Inserting this condition into Eq. (A5) leads to the
only non trivial solution RN=2ðHe ¼ pÞ ¼ 1:

� if m 6¼ N=2, we have the condition fB þ gB ¼ 0 ¼ fA þ gA

which directly reads to RmðHe ¼ pÞ ¼ �1:

The equivalent reflection coefficient Rm takes the value –1 only
at frequency He ¼ 0 for all azimuthal orders, except the axial
mode, and at frequency He ¼ p for all azimuthal orders, except
the push-pull mode. Otherwise, for every other frequency,
Rm 6¼ �1. Inserting Eq. (A6) in Eq. (A5) allows us to eliminate
the unknown fA and have a final system of two equations with two
unknowns whose final form is Eq. (13).
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A Strategy to Tune Acoustic
Terminations of Single-Can
Test-Rigs to Mimic
Thermoacoustic Behavior
of a Full Engine
Thermoacoustic properties of can-annular combustors are commonly investigated by
means of single-can test-rigs. To obtain representative results, it is crucial to mimic
can–can coupling present in the full engine. However, current approaches either lack a
solid theoretical foundation or are not practicable for high-pressure rigs. In this study,
we employ Bloch-wave theory to derive reflection coefficients that correctly represent
can–can coupling. We propose a strategy to impose such reflection coefficients at the
acoustic terminations of a single-can test-rig by installing passive acoustic elements,
namely straight ducts or Helmholtz resonators. In an iterative process, these elements
are adapted to match the reflection coefficients for the dominant frequencies of the full
engine. The strategy is demonstrated with a network model of a generic can-annular
combustor and a three-dimensional (3D) model of a realistic can-annular combustor con-
figuration. For the latter, we show that can–can coupling via the compressor exit plenum
is negligible for frequencies sufficiently far away from plenum eigenfrequencies. Without
utilizing previous knowledge of relevant frequencies or flame dynamics, the test-rig mod-
els are adapted within a few iterations and match the full engine with good accuracy.
Using Helmholtz resonators for test-rig adaption turns out to be more viable than using
straight ducts. [DOI: 10.1115/1.4048642]

Introduction

Thermoacoustic combustion instabilities are a major concern in
the development of new low emission gas turbine combustors.
Arising from constructive feedback between unsteady heat release
and acoustics, these instabilities may result in large-amplitude
oscillations of acoustic quantities, which can cause increased
emission levels or even structural damage [1].

Latest generation land-based gas turbines are often equipped
with a can-annular combustion system. In this combustor type, a
number of cans are arranged equidistantly around the circumfer-
ence of the engine. The individual cans are coupled acoustically
by a large upstream plenum that is fed by the gas turbine compres-
sor and thus called compressor exit plenum. On the downstream
side, the cans are coupled via a small annular gap in front of the
first turbine stator [2].

From a thermoacoustic point of view, this coupling is of partic-
ular interest although it is weak. It gives rise to azimuthal modes,
which involve multiple cans and extend over the entire circumfer-
ence of the engine. Several studies have characterized this cou-
pling [2–4] and its importance regarding thermoacoustics of the
entire engine [5–9]. Generally, due to the coupling of the individ-
ual cans, the thermoacoustic properties of an entire can-annular
combustor cannot be directly represented by a single-can system.

However, full-scale numerical or experimental investigations of
the thermoacoustic properties of an entire can-annular combustion
system are extremely expensive and thus not feasible in the design
phase of a new combustor. Typically in the late design phase, the
thermoacoustic properties of the full engine are explored by
means of single-can or single-sector test-rigs [5,6,10]. A variety

of approaches are used to mimic can–can coupling in such single-
can test-rigs. A commonly applied method is to extend the up-
and downstream termination of the test-rig by straight ducts
[6,10,11]. This, however, should be seen as an ad hoc approach
without solid theoretical foundation. Another possibility to at least
account for some modes resulting from can–can coupling is to
employ two-can test-rigs [12], which obviously implies high
effort.

More elaborate numerical approaches take into account the
equivalent reflection coefficients that a single can is exposed to in
the full can-annular system [13]. If these reflection coefficients
can be imposed at the up- and downstream end of a single-can
test-rig, it mimics the thermoacoustics of the entire engine. In
numerical simulations, this has already been exploited to simulate
an entire can-annular combustor by resolving only one single can
[14].

In experimental test-rigs, active control methods could in prin-
ciple be used to impose the appropriate reflection coefficients
[15–17]. However, in high-pressure single-can test-rigs of applied
can-annular combustors this approach seems difficult to imple-
ment, because of generally limited access and the hot gas
environment.

This study instead focuses on test-rig adaption by passive
acoustic elements. We critically assess the common practice of
accounting for can–can coupling by extending the up- and down-
stream termination of test-rigs by straight ducts. In order to refine
the current approach we propose and scrutinize an iterative adap-
tion strategy to match the theoretically derived equivalent reflec-
tion coefficients with passive acoustic elements. We finally
discuss two acoustic element types—straight ducts and Helmholtz
resonators—that might be employed within the proposed strategy
and apply them to adapt thermoacoustic models of single-can test-
rigs. This study reveals that test-rig adaption using duct extensions
is not practical.
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The paper is structured as follows: In the section Equivalent
Reflection Coefficients Computed From Bloch-Wave Theory, we
recall the application of Bloch-wave theory in the context of ther-
moacoustics. We employ it to derive the equivalent reflection
coefficients for a single can at a given azimuthal mode order. In
the section Passive Acoustic Elements to Approximate Equivalent
Reflection Coefficient, we discuss appropriate passive acoustic
elements to mimic the equivalent reflection coefficients and pro-
pose an iterative adaption strategy. In the sections Application to
Network Model of a Generic Can-Annular Combustor and Valida-
tion With a Configuration of Applied Relevance, the proposed
strategy is applied to a network model of a generic can-annular
combustor adapted using straight ducts and a three-dimensional
(3D) model of a realistic can-annular combustor adapted using
Helmholtz resonators. After a discussion of the expected impor-
tance of effects that are neglected in the present thermoacoustic
models, a conclusion is drawn in the section Conclusion.

Equivalent Reflection Coefficients Computed From

Bloch-Wave Theory

Within this section, we present the reflection coefficients up-
and downstream of a single can in a can-annular combustor for a
given azimuthal mode order m. These reflection coefficients lump
the acoustic response of all remaining cans of the engine. The sit-
uation is sketched in Fig. 1 for a generic multican combustor. The
considered single can is marked by the inner (red) dashed box, the
equivalent reflection coefficients Rm;u and Rm;d are defined at its
up- and downstream termination. Provided plane acoustic waves,
the reflection coefficients are defined as the ratio of the down- and
upstream traveling acoustic Riemann invariants f ¼ p̂=qcþ û and
g ¼ p̂=qc� û and are related to the acoustic impedance Z at the
respective positions by

Rm;u ¼
fu

gu

¼ Zu þ 1

Zu � 1
; Rm;d ¼

gd

fd

¼ Zd � 1

Zd þ 1
(1)

In general, Rm;x (with x̂u=d) in Fig. 1 depend on the thermoacous-
tic properties of the remaining cans. Therefore, in the most gen-
eral case, the acoustic properties and especially flame dynamics of
all individual cans have to be known in order to compute Rm;x.

However, typical can-annular combustors feature a discrete
rotational symmetry, where the whole combustor consists of a
number of N identical sectors arranged equidistantly around the

circumference of the engine. These sectors—marked with the
black dashed box in Fig. 1 and in the following denoted as “unit
cells”—comprise one single can and the corresponding sector of
the compressor exit plenum and the annular gap in front of the
first turbine stage. For such a rotationally symmetric configura-
tion, the equivalent reflection coefficients for a given azimuthal
mode order m can be computed by utilizing Bloch-wave theory
[18,19]. As shown in the following, in this case Rm;x are only
dependent on the elements coupling the individual cans and the
degree of symmetry N and are independent of the thermoacoustics
of the individual cans.

Mensah et al. [19] showed that the (thermo-)acoustic eigenmo-
des of discrete rotationally symmetric systems can be computed
efficiently by utilizing Bloch-wave theory [18]. The eigenmodes p̂
of a can-annular combustor can thus be written as

p̂ðxÞ ¼ WðxÞeim/; with

m ¼ �ðN=2� 1Þ;…;�1; 0; 1;…;N=2� 1;N=2 (2)

Here, x ¼ ðr;/; zÞ is the position vector comprised of the radial,
circumferential, and axial coordinate, W is a function that—for a
given eigenmode—is identical in all N unit cells, and m is called
the Bloch-wave number. For low frequencies relevant in the pres-
ent context, the absolute value jmj of the Bloch-wave number is
equivalent to the azimuthal mode order [19] and both terms are
used synonymously in the following.

The (thermo-)acoustic eigenmodes expressed by Eq. (2) can be
classified into three types: azimuthally spinning modes with
Bloch-wave numbers of m ¼ 61;…;6ðN=2� 1Þ, purely axial
modes with m¼ 0, and so-called “push–pull” modes with
m ¼ N=2. The latter only exist for combustors with an even num-
ber of cans and are characterized by an acoustic pressure and
velocity field of alternating signs in adjacent cans [13,14]. Except
for axial modes with m¼ 0, which feature identical pressure fields
in all sectors, all other mode types result from coupling of the
individual unit cells. Thus, a single-can test-rig, where this cou-
pling is not accounted for will only show modes of azimuthal
order m¼ 0.

For applied can-annular combustors, the mean flow in azi-
muthal direction is negligible. Provided discrete rotational sym-
metry, such a system features also reflection symmetry. In this
case, the azimuthally spinning modes appear as degenerate pairs,
where modes with Bloch-wave numbers of opposite sign merely
differ by their direction of rotation. For the following derivations,
we can therefore limit our considerations to non-negative m
[14,19].

Without loss of generality, we consider a unit cell centered at
/ ¼ 0 and extended over an azimuthal angle / ¼ ½�p=N;p=N�.
By definition, WðxÞ is identical in each unit cell. As the pressure
is continuous across the interfaces connecting two unit cells
(marked blue in Fig. 1), WðxÞ at the left and right boundary of the
unit cell has to be equal [13]

W r;/ ¼ � p
N
; z

� �
¼ W r;/ ¼ p

N
; z

� �
(3)

Combining Eq. (3) with Eq. (2) leads to a quasi-periodic boundary
condition—called Bloch boundary condition (BBC)—for the
acoustic pressure [19]

p̂ r;/ ¼ p
N
; z

� �
¼ p̂ r;/ ¼ � p

N
; z

� �
eim2p

N (4)

Assuming that discrete rotational symmetry holds, a given azi-
muthal mode order m of the full can-annular combustor is com-
pletely represented by a single unit cell with BBC at the coupling
interfaces, as sketched in Fig. 2. The equivalent reflection coeffi-
cients Rm;x defined at the in-/outlet of a single can are in this case
independent of the remaining cans. They only depend on the

Fig. 1 Generic can-annular combustor. Cans are coupled at
up- and downstream side via compressor exit plenum and
annular gap. Rturb and Rcomp denote reflection coefficients of
turbine inlet and compressor exit.
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acoustics of the coupling parts, i.e., the annular gap and the com-
pressor exit plenum, the acoustic termination toward turbine Rturb

and compressor Rcomp, and the azimuthal mode order m and the
number of cans N. Rm;x can thus be computed from an acoustic
model that comprises these coupling parts and BBC. This strategy
has already been applied by Ghirardo et al. [13] to compute the
equivalent reflection coefficient of a generic can outlet section.

The equivalent reflection coefficients defined in this way are
valid for a given mode order m. They may be interpreted as the
cumulative acoustic response of all remaining cans for a given
azimuthal mode order, i.e., they represent the response of a certain
synchronization pattern across all cans.

Equivalent Reflection Coefficients of a Generic Can-
Annular Combustor. In order to discuss the general features of
the equivalent reflection coefficients, Fig. 3 shows Rm;x of a
generic can-annular system with N¼ 16 cans for all azimuthal
mode orders m. The shown Rm;x was computed using an acoustic
network model similar as shown in Fig. 4. For simplicity, the
acoustic termination toward turbine and compressor is assumed to
be ideal sound hard walls with Rturb ¼ Rcomp ¼ 1. Rm;x crucially
depend on the area ratio A of annular gap and can (A ¼ Sa=Sc) or
plenum and can (A ¼ Sp=Sc), respectively. Figure 3 shows the
phase of the reflection coefficients for A¼ 20 (top) and A¼ 0.06
(bottom). The former is representative of the plenum/can transi-
tion (corresponds to Rm;u), and the latter is typical for the transi-
tion can/annular gap (corresponds to Rm;d). Due to rotational and
reflectional symmetry, no acoustic energy is exchanged between
individual cans. Thus, the gain of Rm;x only depends on the gain
of Rturb and Rcomp. In the present case, the gain jRm;xj is thus uni-
formly unity for all mode orders and therefore not shown.

The phase of Rm of all azimuthal mode orders m is plotted ver-
sus the Helmholtz number He ¼ xd=c, where x is the angular fre-
quency, c is the speed of sound, and d is the azimuthal distance of

the individual cans. In the zero-frequency limit, the equivalent
reflection coefficient behaves like a wall Rm¼0 ¼ 1 for m¼ 0 and
like an ideal open end Rm 6¼0 ¼ �1 for all other mode orders [13].
For He ¼ 2p m

N, which correspond to purely azimuthal modes of
order m that are only active in the plenum or the annular gap, the
corresponding equivalent reflection coefficient equals Rm ¼ 1.
For He ¼ p, at which the distance d of two cans equals half a
wavelength, Bloch-symmetry necessitates pressure nodes at the
can centers for m 6¼ N=2, corresponding to an equivalent reflec-
tion coefficient Rm 6¼N=2 ¼ �1 [20]. In typical can-annular sys-
tems, He ¼ p is the cut-on frequency of transversal modes inside
the cans. The validity of the 1D model employed here is thus
questionable for He > p. However, the frequency range of interest
in the present context is He < p=4.

For large area ratios A (top plot of Fig. 3), typical for the transi-
tion compressor-plenum/can, the equivalent reflection coefficient
essentially represents an ideal open end with Rm � �1 for a wide
frequency range. Only in the vicinity of pure plenum modes of the
respective azimuthal order Rm deviates from the ideal open end.
This indicates that for typical area ratios and for frequencies suffi-
ciently far away from pure plenum modes, the compressor exit
plenum is essentially decoupled from the individual cans. Rm of
higher azimuthal mode orders may thus be approximated with
Rm¼0.

For small area ratios A (bottom plot of Fig. 3), typical for the
transition can/annular gap, the general behavior of the equivalent
reflection coefficients is similar. However, especially for frequen-
cies He < p=4, the individual Rm are more distinct from each
other, compared to Rm for large A. This indicates that for this fre-
quency range, the coupling of individual cans via the annular gap
with small A is more important than the coupling via the compres-
sor exit plenum with large A. This preliminary result will be con-
firmed later by considering a realistic 3D configuration.

Overall, the phase of the equivalent reflection coefficients of
individual mode orders m is closely spaced for both large and
small A. This is a consequence of the weak coupling of individual
cans for extreme values of A characteristic of can-annular com-
bustors. It leads to clustering of eigenmodes with different m,
because the reflection coefficient at the can entry and exit are sim-
ilar for all m [8,13]. For intermediate values of A � 1; /Rm of
individual mode orders would be more distinct, resulting from
stronger coupling.

The objective of this work is to provide a strategy to investigate
the thermoacoustics of a can-annular combustor by means of a
single-can test-rig. If the equivalent reflection coefficients Rm;x

can be imposed at the up- and downstream termination of the
single-can test-rig, it will represent a given mode order m of the
full engine and will have identical thermoacoustic properties. In
the Passive Acoustic Elements to Approximate Equivalent Reflec-
tion Coefficient section, we discuss two types of passive acoustic
elements that might be used to approximateRm;x.

Fig. 2 Definition of Rm;x at the in-/outlet of a single can. Rm;x

are dependent on the azimuthal distance d of two cans and the
cross sections of can Sc, annular gap Sa and compressor exit
plenum Sp.

Fig. 3 /Rm of generic 16-can combustor with two different
area ratios A 5 20 (top) and A 5 0.06 (bottom) plotted versus
Helmholtz-number He

Fig. 4 Network model of considered generic can-annular
combustor
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Passive Acoustic Elements to Approximate Equivalent

Reflection Coefficient

As shown in Fig. 3, the ensemble of cans reflects acoustic
waves with a certain phase shift, which depends on frequency x
and azimuthal mode order m. The general idea of this work is to
approximate this phase shift for a given azimuthal mode order m
with passive acoustic elements. A common practice to account for
can–can coupling in single-can test-rigs is to extend the (up- and)
downstream termination of the test-rig by straight ducts. In order
to critically assess—and improve—this current practice, we inves-
tigate how a straight duct extension can be used to approximate
the equivalent reflection coefficients. The second element we con-
sider is a Helmholtz-type resonator.

Figure 5 shows schematically how the two considered elements
should be installed in a test-rig. The passive acoustic elements
have to be adapted such that the phase of test-rig and equivalent
reflection coefficient

/Rx;rigðxdÞ¼! /Rm;xðxdÞ (5)

match for the design frequency xd. As mentioned in the Equiva-
lent Reflection Coefficients of a Generic Can-Annular Combustor
section, the gain jRm;xj depends on the gain jRcomp=turbj and is
identical for all mode orders m. It is thus crucial that the consid-
ered elements do not affect the gain of the test-rig reflection coef-
ficient Rx;rig. As the gain of Rturb is determined by the mean flow
through the first turbine stator vanes [21], the duct extension used
to shift the outlet termination Rcomp;turb must have a constant cross
section. The Helmholtz resonator in turn must be designed for a
minimum damping rate, i.e., it should be operated sufficiently far
away from its eigenfrequency [22].

The only design parameter of the straight duct extensions with
constant cross section is their length Lx. Neglecting the effect of
mean flow,2 the phase shift induced by shifting the in-/outlet ter-
mination by the distance Lx depends linearly on the frequency x

/Rx;rig ¼ �
2xLx

c
(6)

In order to shape the frequency response of the Helmholtz resona-
tor, four main design parameters are available: lengths l1 and l2
and cross sections S1 and S2 of the resonator neck and volume,
respectively. Additional design parameters that are not considered
here could be the purge mass flow rate and temperature.

Computing the exact frequency response of Helmholtz resona-
tors depending on the mentioned design parameters requires
sophisticated numerical or experimental methods [22]. However,
in practice the same type of acoustic model will be used to obtain
/Rx;rig and /Rm;x. In case the employed acoustic model does not
include certain effects that might be relevant in practice, they are

neglected in both computed /Rx;rig and /Rm;x. Thus, for the
present purpose, comparably crude modeling approaches such as
the Helmholtz equation employed in this study might be sufficient
to compute Rm;x and to design the passive acoustic elements. In
the section Influence of Effects Neglected in Combustor Model,
we discuss how effects neglected in the employed acoustic models
may compromise the proposed strategy.

Figure 6 exemplarily shows /Rd;rig adapted by duct extension
(blue line) and Helmholtz resonator (red line) to match /Rm¼1;d

taken from Fig. 7 at a design frequency of �d ¼ xd=2p ¼ 100 Hz.
From Fig. 6, it becomes apparent that the Helmholtz resonator is
more appropriate to match the equivalent reflection coefficient
shown. Due to its four degrees-of–freedom, it can be designed to
well approximate Rm in a quite large frequency range around �d.
In contrast, the straight duct extension matches Rm only directly
at �d.

In order to use a single-can test-rig to study the thermoacoustic
stability properties and possibly the limit cycle (LC) of mode
order m of a full can-annular combustor, Rx;rig has to be designed
to match Rm;x at the dominant (respectively, most unstable) fre-
quencies of the full engine. However, these design frequencies are
normally not known a priori. Even if the pure acoustic eigenfre-
quencies might be known from an acoustic model, the (generally
unknown) flame dynamics may alter these frequencies. Further-
more, intrinsic thermoacoustic (ITA) modes may play an impor-
tant role [23–25]. Their frequencies are not predictable without
knowledge of the flame dynamics. Therefore, the passive acoustic
elements in general have to be adapted in an iterative procedure,
which ensures that the dominant frequency observed in the single-
can test-rig converges to the dominant frequency of the full engine
of a given azimuthal mode order m. A strategy is presented in the
Iterative Adaption of Passive Elements section.

If the initial design of the Helmholtz resonator is good enough
to approximate the relevant frequency range sufficiently well, as
shown in Fig. 6, iterative adaption may not be necessary. How-
ever, the large number of degrees-of-freedom complicates the
search for an optimal design, while this is straightforward for the
duct extension. In the present case, the parameters of the resonator
were chosen such that the design frequency is well above the
Helmholtz mode and below the first axial mode, which coincide
with the abrupt phase transitions at 40 Hz and 355 Hz, respec-
tively. Sufficiently far away from the resonator eigenfrequencies,
its damping rates are expected to be comparably small [22]. While
the design works properly for the present case, a general design
guideline is not immediately obvious and the set of parameters
has to be optimized from case to case. In the following, we there-
fore investigate the capabilities of both element types based on
numerical models of single-can test-rig and full can-annular
combustor.

Iterative Adaption of Passive Elements. As discussed previ-
ously, the frequency �d for which the Helmholtz resonator or the
straight duct extension is initially designed to fulfill Eq. (5) does
in general not coincide with the dominant frequencies of the full

Fig. 5 Matching Rm;x of the full engine by extending the
single-can test-rig with straight ducts (top) and by installing
Helmholtz-resonators at the in-/outlet (bottom)

Fig. 6 /Rm 5 1;d from Fig. 7 (dashed black) compared to /Rd ;rig

adapted by straight duct extension (red) and Helmholtz resona-
tor (blue). Both elements are designed for md 5 100 Hz.

2Axial mean flow can be accounted for by changing the propagation speed of f to
�u þ c and g to �u � c.
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engine. We therefore propose a fixed point iteration strategy with
the objective that the dominant frequency observed in the single-
can test-rig approaches the dominant frequency of the full engine
for a given mode order m.

At this point, the terminology dominant frequency has to be
defined more clearly. In case of an unstable system, the dominant
frequency is clearly visible as a narrow peak in the measured pres-
sure spectrum (corresponds to LC frequency). For a stable system,
the peaks in the pressure spectrum are broadened. However, the
eigenmodes of the stable system still show up as maxima in the
measured pressure spectrum. The peaks result from resonances of
broad-band combustion noise emitted by the turbulent flame with
stable eigenmodes of the system [26]. Thus, we define dominant
frequency generally as the position of maxima in the sound pres-
sure spectrum, no matter whether they appear as narrow or broad
peaks.

Step zero of the proposed strategy is to compute the equivalent
reflection coefficients Rm;x of the full can-annular combustor as
defined in the Equivalent Reflection Coefficients of a Generic
Can-Annular Combustor section. If Helmholtz resonators are
employed for the test-rig adaption, the initial parameters for a
given m are selected to optimally approximateRm;x in the relevant
frequency range. The passive acoustic elements installed at the
test-rig are designed to fulfill Eq. (5) at an initial guess �0 of the
dominant frequency of the full engine. For both computing Rm;x

and designing the elements, an acoustic solver based on the Helm-
holtz equation is employed.

The following steps of the proposed approach are:

(1) Run the adapted test-rig and measure the dominant fre-
quency �n.

(2) Adapt the installed passive acoustic elements to fulfill
Eq. (5) at the measured frequency �n.

(3) Iterate until the dominant frequency �n measured in the
test-rig stays constant. Repeat with different m.

Unconditional convergence of the proposed iterative algorithm
cannot be proven, as in practice a comprehensive mathematical
description of all subsystems is not available. However, for all set-
ups investigated in this study, the algorithm converged even for
initial frequencies �0 far away from the final value. This suggests
that the algorithm will converge for practically relevant cases.

In order to minimize the number of iterations necessary to adapt
the passive elements, the initial frequency guess �0 should be as
close to the dominant frequency for mode order m of the full sys-
tem as possible. Due to the clustering of eigenmodes in typical
can-annular combustors (see Fig. 8), the dominant frequencies of
the individual azimuthal mode orders are generally close to each
other [13]. Thus, the dominant frequency obtained for a certain m
may serve as �0 for the next higher m. In case the single-can test-

rig comprises an entire sector of the considered can-annular com-
bustor (including the corresponding part of the compressor ple-
num and the annular gap), it represents mode order m¼ 0 of the
full engine and can be used to obtain the dominant frequency for
m¼ 0. Alternatively, if known from an acoustic model, the pure
acoustic eigenfrequency of the considered m can be used as initial
guess �0. In many cases, flame dynamics do not affect the acoustic
eigenmode drastically and it can thus be considered as good
approximation of the thermoacoustic eigenmode. This however is
not the case if the dominant mode is of ITA origin [24].

The relative change of dominant frequency D�n between itera-
tion n� 1 and n may be used to define a convergence criterion

D�n ¼ j�
n � �n�1j
�n

< � (7)

If D�n is smaller than a predefined threshold �, the iterations are
stopped. An additional criterion based on the relative change of
design parameters of the adapted elements may be used to distin-
guish slow progress from actual convergence of the algorithm.
Although we cannot strictly prove that meeting these criteria is
always sufficient for convergence of the algorithm, in all cases
investigated in this study criterion (7) correctly indicated
convergence.

If the test-rig is adapted by means of straight duct extensions,
only the lengths Lx are available to fulfill Eq. (5) at the observed
dominant frequency. If Helmholtz resonators are used, at least the
four geometrical parameters illustrated in Fig. 4 are available for
the adaption process. In this work, we only modify one single
parameter during the iteration process. In general, more sophisti-
cated adaption strategies that modify multiple parameters at once
in order to optimally approximate /Rm;x around �n are conceiva-
ble. Deriving such strategies could be part of a follow-up study.

Application to Network Model of a Generic

Can-Annular Combustor

Within this section, we demonstrate test-rig adaption for a
generic can-annular combustor using straight duct extensions.
Both full configuration and adapted test-rig are modeled by a
quasi-1D thermo-acoustic network model. The results of the full
configuration serve as a benchmark for the adapted test-rig. For
the adaption using Helmholtz resonators, 3D effects might play a
role. Consequently, this strategy is discussed in the section Vali-
dation With a Configuration of Applied Relevance, where a full
3D configuration is considered.

Setup. Figure 4 shows the network model of one unit cell of
the generic can-annular combustor considered in the present sec-
tion. The network model contains only 1D elements. The

Fig. 7 Equivalent reflection coefficient of 3D configuration.
/Rm;u for m 5 0; 1; 2;8 (top) and /Rm;d (bottom) versus
Helmholtz-number He.

Fig. 8 Eigenfrequencies for all azimuthal mode orders m of full
can-annular combustor at aLC. The corresponding amplitude
levels are in the range aLC 5 0:5920:65.
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extension of the combustor in azimuthal direction is taken into
account by a T-junction at the outlet. For simplicity we focus on
matching only the downstream reflection coefficient Rm;d, but the
approach could equally be applied to adapt both up- and down-
stream termination simultaneously. The upstream reflection coef-
ficient of the individual cans is set to Ru ¼ �0:8 in order to take
into account acoustic losses present in realistic systems. The
dimensions and physical conditions of the system (cf. Fig. 4) are
set in accordance with typical can-annular combustors. Fluid
properties of air are used. The transition toward the turbine, which
is often a choked nozzle in actuality, is represented by Rturb ¼ 1
[21].

Flame dynamics are modeled by a flame transfer function
(FTF) of a swirl burner test-rig taken from [27]. The dimensions
of the flame and the mean flow speed in this test-rig are compara-
ble to realistic can-annular combustors, although the employed
FTF was measured at atmospheric conditions. Full engine and
adapted test-rig model are compared based on their LC frequency
and amplitude, because these are the most relevant quantities in
practice. The iterative algorithm to adapt the test-rig model is also
based on LC frequencies, as these correspond to the dominant fre-
quencies measured experimentally. In order to capture the forma-
tion of LC oscillations, we introduce a generic saturation factor s
that models the amplitude dependence of the flame response F
[28]

F x; að Þ ¼
_̂Q x; að Þ

û
¼ s að ÞFTF xð Þ; s að Þ ¼ 1

1þ e16 a�0:5ð Þ (8)

Here, _̂Q and û denote the Fourier transform of the heat release
rate and acoustic velocity at the reference position of the FTF and
a is a measure of the amplitude level. The network models of the
full can-annular combustor and the adapted single-can system are
built and solved using the tool taX3 [29]. The LC amplitude level
aLC, which corresponds to a growth rate r¼ 0 of the most unsta-
ble system eigenmode, is calculated using a gradient-based root
search algorithm. The corresponding LC frequency is obtained by
computing the eigenfrequencies of the network model with a satu-
ration factor of sðaLCÞ.

Results of the Full Configuration. Figure 8 shows the eigen-
frequencies of the full can-annular combustor with saturation fac-
tor sðaLCÞ for all azimuthal mode orders m. The clustering of
eigenmodes of different m is clearly visible [13]. Among the clus-
ters shown, one can identify an axial quarter-wave, three-quarter-
wave, and five-quarter-wave mode. All modes in the quarter-wave
cluster are unstable. The LC amplitude level aLC and frequency is
determined separately for each mode order m.

As aLC is calculated separately for each m, any nonlinear inter-
action of individual mode orders m is neglected. Furthermore, the
proposed approach of identifying equivalent reflection coefficients
for the individual azimuthal mode orders assumes that those can
be studied separately. In reality, at finite amplitude levels different
azimuthal mode orders can interact, which may result in one dom-
inant mode with LC frequency and amplitude level different from
the values computed here. Additionally, the computed aLC relies
on Bloch-symmetry, which assumes that discrete rotational sym-
metry is retained even for finite amplitude levels [28]. This is not
necessarily the case in practice. However, for the proposed
approach, it is not crucial to exactly predict the LC amplitude and
frequency that results from the interaction of multiple unstable
modes and that is potentially influenced by a symmetry break. In
case the proposed approach indicates a thermoacoustic instability
at only one single azimuthal mode order, the combustor has to be
redesigned anyway. Thus, it is not necessary to correctly represent
the case of multiple unstable mode orders and accurately predict
the exact amplitude level aLC.

The equivalent reflection coefficient Rm;d of the considered
can-annular combustor is defined at the location indicated in
Fig. 4 and shown in the bottom plot of Fig. 3.

Iterative Adaption of the Test-Rig Model. In the following,
we illustrate the adaption procedure for the “push–pull” mode
m¼ 8. For all other mode orders, the procedure is exactly equiva-
lent and we just show the final results. We use the LC frequency

�0
1 ¼ 66 Hz of m¼ 0 as initial frequency guess. This is the domi-

nant frequency that would be measured in the single-can test-rig
without any extensions. In order to demonstrate the robustness of
the proposed approach, we repeat the procedure with an initial fre-

quency of �0
2 ¼ 300 Hz which is quite far away from the dominant

frequency for m¼ 8. According to Eq. (6), the corresponding ini-

tial extension lengths are L0
d;1 ¼ 4:33 m for �0

1 and L0
d;2 ¼ 1:26 m

for �0
2 .

Figure 9 shows /Rm;d for the considered azimuthal mode order
m¼ 8 together with the phase of the outlet reflection coefficient of
the test-rig /Rd;rig for the individual iterations. Starting the itera-

tions at �0
1 ¼ 66 Hz, the process takes five steps until a prescribed

D� < 0:5 % is reached. This is a very strict criterion that could
probably be weakened in practice. However, here we want to
demonstrate the accuracy that can be achieved by the proposed
approach.

Figure 10 shows the corresponding LC frequencies �n observed
in the test-rig model for the individual iterations. Within five itera-
tions, the LC frequency �5 ¼ 103:0 Hz matches the LC frequency
of m¼ 8 of the full engine with a relative error below 0.2%. The
obtained LC amplitude level after convergence is aLC¼ 0.594,
which is the same value as for the full can-annular combustor.
The final extension length is L5

d ¼ 3:06 m.

Fig. 9 /Rm 5 8;d (black curve) together with /Rd;rig for the indi-
vidual iterations. Phase for initial lengths shown in black, solid
lines indicate iterations for m0 5 66 Hz dashed lines for
m0 5 300 Hz.

Fig. 10 LC frequencies of the test-rig for individual iterations
with m0 5 66 Hz (colored crosses), LC frequency for initial exten-
sion length marked with black crosses. Black square indicates
LC frequency of the full engine for m 5 8.3Code available at https://gitlab.lrz.de/tfd/tax
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Note that if the criterion in Eq. (7) is weakened to D� < 5 %,
which is more a realistic value due to limited measurement accu-
racy, the approach converges already after two iterations. In this
case, the relative error of the test-rig LC frequency is below 3%,
while the relative error in LC amplitude level is approx. 2%.

If �0
2 ¼ 300 Hz, which is far away from the actual LC frequency

of the full engine, is used as initial frequency guess, the process
converges after six iterations for D� < 0:5 % and after three itera-
tions for D� < 5 %, while the achieved accuracy is comparable to
that of �0

1 .
Figure 11 compares the mode shapes in one can predicted by

the respective network model of the full engine and the adapted
test-rig. Inside the can, the acoustic pressure and velocity of the
full engine and the single-can test-rig agree well.

The procedure illustrated for m¼ 8 is completely analogous for
all other azimuthal mode orders. The dominant frequency � ¼
66 Hz of m¼ 0 is used as an initial guess for all mode orders. For
each m, the approach converges within a maximum of five itera-
tions, while the relative errors in LC frequency and amplitude lev-
els are below 1%. If a weakened convergence criterion D� < 5 %
is used, the approach converges within two iterations for each
mode order m. Table 1 shows the resulting extension lengths for
each mode order m.

Stability Properties of the Adapted Test-Rig. In the section
Iterative Adaption of the Test-Rig Model, we pointed out that a
single-can test-rig model can be adapted iteratively to show the
same LC as the full configuration at a given azimuthal mode
order.4 So far, we have not discussed the stability properties of the
adapted test-rig model. A LC is characterized by r¼ 0, while the
(linear) stability of the system is determined by the sign of r in
the zero-amplitude limit a¼ 0. The passive acoustic elements are
designed such that Eq. (5) holds for purely real-valued design fre-
quencies xd (r¼ 0). For r 6¼ 0, Eq. (5) does not hold in general.
Thus, even if the LC frequencies of test-rig and full engine match,
the eigenfrequencies in the zero-amplitude limit are generally not
identical.

We can however argue that for a unique, stable LC to develop,
the modal growth rate must be r > 0 in the zero-amplitude limit.
Provided that both systems develop an identical LC, both systems
must be linearly unstable with r > 0 in the zero-amplitude limit.
To conclude, both adapted test-rig and full engine will have the
same stability properties, although their eigenmodes do not neces-
sarily have the same frequency and growth rate in the zero-
amplitude limit.

Critical Assessment of the Adaption Strategy. The con-
verged extension lengths for the individual mode orders shown in
Table 1 are quite large compared to the length of the can. This
will cause problems for the practical implementation of this strat-
egy if the evaluated extension length cannot be realized in the
high-pressure test-bench.

Figure 11 illustrates exemplarily for m¼ 8, why the extension
has to be that long. Rm¼8;d could be approximated by an acousti-
cally soft termination at axial position z ¼ 3:2 m in Fig. 11 (pres-
sure node). In this case, the mode in the full engine would be
approximated by a half-wave mode in the test-rig. However, as
Rturb ¼ 1 at the end of the extension is fixed, the full engine mode
has to be approximated by a three-quarter-wave mode, which
results in large Ld. It is apparent that in this case there exists also
a lower frequency quarter-wave mode in the test-rig. This mode is
observed in Fig. 10 at frequency � ¼ 34 Hz. It has no counterpart
in the full engine and can be seen as an artifact of the proposed
method (in the following also called “spurious mode”).

This mode may become dominant in the test-rig, which causes
ambiguity on which measured frequency the iterations should be
based on. However, a general criterion can be formulated. We
define the phase being wrapped in the interval ½�p;p�: If
/Rm;d > 0, the full engine mode is approximated by a three-
quarter-wave mode, i.e., the iterations must be based on the sec-
ond mode of the test-rig. If /Rm;d � 0, the full engine mode is
approximated by a quarter-wave mode and the iterations must be
based on the first mode of the test-rig. However, if for /Rm;d > 0
the spurious mode is unstable in the test-rig, it will be difficult or
even impossible to identify the frequency of the second mode on
which the iterations have to be based on. Additionally, if the spu-
rious mode is unstable and dominates for the final extension
length, the stability of the full engine mode cannot be assessed
with the adapted test-rig.

The final extension lengths in Table 1 are not directly related to
any characteristic length of the combustor. Thus, they cannot be
deduced from geometrical consideration, as it is current practice.
Instead, iterative adjustment according to the proposed strategy is
necessary. This, however, would be very costly in high-pressure
test-rigs. The high-pressure cell has to be opened for each iteration
step and for each mode order. If instead of a single operating con-
dition with a fixed dominant frequency, an entire operating win-
dow with variable dominant frequencies is investigated, the effort
of implementing such an iterative strategy will be prohibitive.

In summary, the iterative test-rig adaption demonstrated within
this section is most likely impractical, but when using straight
duct extensions there is no obvious alternative to the proposed
iterative strategy.

Validation With a Configuration of Applied Relevance

Within this section, we demonstrate test-rig adaption using
Helmholtz resonators for a can-annular combustor with 16 cans
modeled by the 3D inhomogeneous Helmholtz equation. The
objective is to demonstrate the proposed test-rig adaption for a
configuration that could similarly be found in practice (e.g., see
Ref. [6]). Again, results from the adapted single-can system are
compared to the full can-annular combustor model.

Setup. Figure 12 shows a slice through one sector of the con-
sidered setup along the axial direction. Flame dynamics are

Table 1 Extension lengths for individual azimuthal mode
orders m

m 1 2 3 4 5 6 7 8

Ld (m) 6.12 5.31 4.51 3.89 3.49 3.24 3.10 3.06

Fig. 11 Normalized absolute value and phase of acoustic pres-
sure and axial velocity in test-rig can with extension (dashed
black) and in can of full engine (solid blue) for m 5 8 plotted
over the axial coordinate z

4Provided that Bloch-symmetry holds and nonlinear interaction of individual
mode orders is negligible.

Journal of Engineering for Gas Turbines and Power JULY 2021, Vol. 143 / 071029-7

116



represented by the flame model shown in Eq. (8) [27]. They are
coupled to the acoustics by a source term that is active in the
flame region indicated in Fig. 12. The flame divides the domain
into a cold (Tc ¼ 780 K) and hot (Th ¼ 1800 K) region. Fluid
properties of air are used. BBCs are imposed at the cutting inter-
face of plenum and annular gap. The acoustic terminations toward
compressor and turbine are set to Rcomp ¼ Rturb ¼ 1. To account
for acoustic damping, which is not included in the Helmholtz
equation, we assume that a LC is established at a positive modal
growth rate of r ¼ 2 s�1 [30]. The model is built and solved using
the finite element software COMSOL MULTIPHYSICS [31].

Equivalent Reflection Coefficient. Due to nonplanar acoustic
waves in the vicinity of the annular gap and the plenum-can tran-
sition, the equivalent reflection coefficients Rm;x are defined in
some axial distance to the azimuthal coupling interfaces (see
Fig. 12). They are obtained by computing the forced response of
the plenum and annular gap section at discrete frequencies for
individual m.

Figure 7 shows /Rm;u of the plenum (top) and /Rm;d of the
annular gap (bottom) versus He ¼ xd=c. For better visibility,
only m ¼ 0; 1; 2; 8 of /Rm;u is shown. The characteristic length d
is set to the can–can distance at the annular gap, i.e., 1/16th of the
total annular gap perimeter. The relevant frequencies of the first
axial mode order are in the range He � p=14…p=6.

The equivalent reflection coefficient of the annular gap Rm;d is
in good agreement with that obtained from the network model
shown in Fig. 3. Compared to the network model case, the indi-
vidual values of /Rm;d are more distinct from each other (due to
a larger A in the present configuration), which indicates that the
cluster of first axial mode order is not as closely spaced as in
Fig. 8. The overall linear decrease of /Rm;d with frequency
reflects the axial distance ofRm;d to the annular gap.

At first glance, /Rm;u looks notably different from that in
Fig. 3 and its behavior seems quite chaotic. The abrupt phase
changes observed in Fig. 7 are related to eigenfrequencies of the
plenum. As explained for Fig. 3, at these eigenfrequencies, the
equivalent reflection coefficient equals Rm;u ¼ 1. In case of the
quasi-1D network model, the plenum eigenfrequencies are regu-
larly spaced, resulting in a regular behavior of /Rm;u as shown in
Fig. 3. In the present configuration, the plenum is a large volume
of complex shape, which features irregularly spaced eigenfrequen-
cies with complex 3D mode shapes. In particular for higher fre-
quencies (He > 3p=8) the eigenfrequencies are closely spaced.
However, except for the immediate vicinity of these plenum
eigenfrequencies, /Rm;u for all m closely follow a common trend,
which linearly decreases from p. This linear decrease results from
the axial distance of Rm;u to the can-plenum transition. Thus,
except for very low frequencies He < p=16 and the immediate
vicinity of plenum eigenfrequencies, all mode orders impose an
almost ideal open end at the can inlet.

Importance of Upstream Coupling. Except for the immediate
vicinity of plenum eigenfrequencies, the individual /Rm;u are
closely spaced in the frequency range He � p=16…3p=8 that is
relevant to the first axial mode order. In particular, /Rm;u are
much closer together than the individual /Rm;d in the same fre-
quency range. The phase /Rm¼0;u of the uncoupled m¼ 0 config-
uration is thus a good approximation for all other azimuthal mode
orders, except near plenum eigenfrequencies. This indicates that
for most of the relevant frequency range, the coupling via the
annular gap is much more important than the coupling via the
plenum.

To substantiate this argumentation, we compare LC amplitude
levels and frequencies of the full system and a system coupled at
the downstream side only (m¼ 0 set at the plenum interfaces) in
Table 2. All frequencies are normalized by the LC frequency of
the m¼ 0 system. The azimuthal mode order m¼ 5 is stable, thus
aLC is undefined there. As observed in Table 2, the relative differ-
ence of the two configurations in terms of LC amplitude level and
frequency is below 5% for all mode orders, except for � of m¼ 2
and aLC of m¼ 6. The LC frequency of azimuthal mode order
m¼ 2 is close to a plenum eigenfrequency visible in Fig. 7 at
He � p=10. This explains the differences between fully coupled
and downstream-only coupled systems for this mode order m. To
conclude, for the present configuration can–can coupling via the
plenum is negligible for frequencies that are not in the immediate
vicinity of plenum eigenfrequencies. In the following, we will
therefore only consider adaption of the downstream termination.
The error of representing the upstream termination by the
uncoupled plenum (m¼ 0) is considered to be small compared to
other possible error sources.

However, this finding cannot be generalized for all practical rel-
evant systems. The investigated setup does not have cross-fire
tubes, which would directly connect the cans upstream of the
flame. These could drastically increase the upstream coupling of
the individual cans, which would have to be accounted for in the
same manner as shown for the downstream termination.

Matching Downstream Termination. The initial design of the
Helmholtz resonator with the considered four degrees-of-freedom
(cf. Fig. 5) is nontrivial. However, the four parameters allow
approximating /Rm;d well for a wide frequency range. Due to the
high computational effort when searching a four-dimensional
parameter space for an optimal design, we only consider m¼ 1
and m¼ 8. However, the strategy can be applied accordingly to all
other mode orders.

As indicated in Fig. 6 and discussed below, for a good match
with /Rm;d the Helmholtz mode of the resonator should be well
below the relevant frequency range, while the first axial mode
should be well above. To shift the Helmholtz mode to low fre-
quencies, the resonator volume should be as large as the limita-
tions of the high-pressure cell allow. However, the length of the
volume l2 is bounded by the lower frequency limit of the axial
mode. The above guidelines are common for all mode orders m.
The two remaining design parameters l1 and S1 are used to opti-
mally approximate /Rm;d for the given m.

Figure 13 shows /Rrig;d adapted with Helmholtz resonators
designed for m¼ 8 (top) and m¼ 1 (bottom) compared to /Rm;d

of the respective mode orders. The resonators are mounted at the

Fig. 12 3D model of realistic can-annular combustor. Individ-
ual cans are coupled via plenum and annular gap. Colors show
normalized jp̂ j for the dominant mode of azimuthal order m 5 1.

Table 2 Normalized LC frequencies m and amplitudes aLC of
individual m for fully coupled “u/d” and downstream-only
coupled “d” configuration

m 1 2 3 4 5 6 7 8

�, u/d 1.14 1.17 1.40 1.49 1.74 1.81 1.85 1.86
�, d 1.09 1.28 1.44 1.49 1.76 1.82 1.85 1.86
aLC, u/d 0.66 0.63 0.56 0.42 — 0.47 0.50 0.51
aLC, d 0.68 0.64 0.56 0.44 — 0.36 0.49 0.50
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azimuthal interfaces of the annular gap. The parameters chosen
for m¼ 1 and m¼ 8 are summarized in Table 3. The parameters l1
and A1 (respectively, for m¼ 8 and m¼ 1), for which a range is
specified, are employed for the iterative adaption. For m¼ 1
/Rm;d can be approximated very well for a wide frequency range.
To achieve comparable accuracy for m¼ 8, the necessary resona-
tor volume would have to be even larger than the present one,
which is not considered to be realistic. In general, the achievable
accuracy crucially depends on the set of parameters that is realiz-
able in the available test-bench.

The resonators are initially designed to exactly represent
/Rm;d at the LC frequency of the respective lower mode order.
This results in initial parameters A1 ¼ 0:04 for m¼ 1 and l1 ¼
0:03 m for m¼ 8. With a convergence criterion D� < 0:5 % the
adaption algorithm immediately converges with the initial resona-
tor design for m¼ 8. For m¼ 1 convergence is reached after the
first iteration with an updated A1 ¼ 0:045. The normalized LC fre-
quencies and amplitude levels obtained with the adapted test-rig
models are � ¼ 1:09 and aLC¼ 0.67 for m¼ 1 and � ¼ 1:86 and
aLC¼ 0.48 for m¼ 8. Thus, the relative error compared to the
downstream only coupled system is below 1% regarding LC fre-
quency and below 5% regarding amplitude level. The relative
error in LC frequency compared to the fully coupled configuration
is below 5% (cf. Table 2). The normalized LC jp̂j obtained from
the test-rig model adapted for m¼ 1 is shown in Fig. 14 and
agrees well with jp̂j of m¼ 1 of the full configuration shown in
Fig. 12. The outline of the adapted resonator is also visible in Fig.
14.

Critical Assessment of Adaption Strategy. Test-rig adaption
by means of Helmholtz resonators seems much more practicable
than using duct extensions. Due to the good initial agreement of
/Rrig;d and /Rm;d over a wide frequency range, the number of
iterations necessary to adapt the resonator is very small, iterations
might even be avoided altogether. At the same time, it is possible
to investigate entire operating windows with variable dominant
frequencies without having to redesign the up-/downstream termi-
nations for each operating condition.

The design parameters of the considered resonator appear to be
much easier accessible than the length of duct extensions. It

should be possible to change the neck length and cross section
remotely, without opening the high-pressure cell. Other design
parameters not considered here, like the purge flow temperature,
should be easily accessible, too.

The Helmholtz resonators will also introduce “spurious” modes
that are not present in the full combustor. However, as their eigen-
frequencies are related to the Helmholtz-mode of the resonator,
they will be strongly damped and are expected to play a minor
role.

A main drawback of this element type is that there is no gener-
alized design guideline yet. The initial design and the iteration
strategy have to be adjusted from case to case. Part of future work
might be to develop an optimal iteration strategy that changes
multiple parameters at once. Another drawback is the large size of
the adapted resonators. In case the optimized initial resonator
design does not fit in the high-pressure cell, the test-rig adaption
will again rely more on the iterative algorithm. Furthermore, it is
not yet clear how strong the damping of the resonator (which is
designed to be small in the relevant frequency range) will affect
the thermoacoustic properties of the test-rig.

Influence of Effects Neglected in Combustor Model

The strategy proposed in this work is only demonstrated with
thermoacoustic models. The models used do not account for nona-
coustic effects like heat transfer, entropy waves, and mean flow
(in the Helmholtz solver). Furthermore, acoustic damping is only
modeled in a simplistic way, i.e., by means of nonideal boundary
conditions in the network model and by assuming uniformly dis-
tributed damping in the 3D configuration (which is equivalent to
setting the LC growth-rate to r > 0 [30]). Acoustic boundary con-
ditions toward turbine and compressor are idealized.

These effects neglected in the present models will generally
affect the thermoacoustic properties of the considered systems.
However, it is important to note that in this study these effects are
neglected in both the test-rig model and the model of the full con-
figuration. In reality, those effects will in turn be present in both
configurations. We do not aim to accurately model a real combus-
tor configuration. Instead, we demonstrate the correspondence
between adapted test-rig and full configuration.

To assess the importance of effects neglected in the thermoa-
coustic models of this study, we thus have to focus on the parts
where test-rig and full configuration differ, i.e., the up-/down-
stream terminations of the can. In particular at the downstream
termination, neglected effects related to entropy fluctuations,
mean flow, and localized acoustic damping might have different
influences on the thermoacoustic properties of test-rig and full
engine.

In case duct extensions are used for test-rig adaption, the con-
vective time delay relevant to entropy waves is drastically
increased. Also, the Helmholtz resonator might be affected by
entropy waves. However, due to the generally large convective

Fig. 13 /Rrig;d adapted with Helmholtz resonator for m 5 8
(top) and m 5 1 (bottom) together with /Rm;d of respective m
(black dashed)

Table 3 Parameters of Helmholtz resonators fitted for m 5 1
and m 5 8

S2=S1 l2 (m) A1 ¼ S1=Sc l1 (m)

m¼ 1 20 1.2 0:04� 0:05 0.43
m¼ 8 20 1 0.4 0:02� 0:04

Fig. 14 Normalized jp̂ j of dominant mode in single-can test-rig
model adapted with Helmholtz resonator for m 5 1
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time delays in realistic combustor configurations, effects caused
by entropy waves typically occur at very low frequencies and are
thus well separable from purely acoustic effects considered in this
study.

The elements installed upstream the first turbine stator vanes
may change the nonacoustic flow properties, which in turn affects
Rturb. For example, the cooling of the duct extension or the purge
flow through the Helmholtz resonator may change mean flow tem-
perature and velocity. However, the expected changes of the mean
flow are very small and so is the influence on Rturb.

Acoustic damping localized at the annular gap in the full engine
and at the Helmholtz resonator in the adapted test-rig is only taken
into account in the simplistic way mentioned above. With the
methods employed in this study, we cannot quantify the influence
of this localized acoustic damping on the thermoacoustics of test-
rig and full engine. This has to be addressed by more sophisticated
numerical models and/or by experimental validation of the pro-
posed strategy.

Conclusion

This study discusses the strategies to adapt single-can combus-
tion test-rigs to reproduce the thermoacoustic properties of a full
can-annular combustor. The coupling of the individual cans inside
the can-annular combustor can be lumped into equivalent reflec-
tion coefficients Rm;x (with x̂u=d) up- and downstream of a single
can. If correct values of Rm;x can be imposed at the up-/down-
stream terminations of a single-can test-rig, the rig mimics the
thermoacoustic properties of the full engine.

We exploit the discrete rotational symmetry of typical can-
annular combustors and employ Bloch-wave theory to obtain
Rm;x. These reflection coefficients induce a frequency dependent
phase shift, which generally depends on the coupling interfaces,
the azimuthal mode order m and the number of cans, but not on
the thermoacoustic properties of the individual cans.

Two types of passive acoustic elements, namely duct extensions
of constant cross section and Helmholtz resonators, are employed
to match the phase shift induced by Rm;x for given design fre-
quencies. For both computing Rm;x and designing the passive ele-
ments, an acoustic solver based on the Helmholtz equation is
employed. We propose an iterative strategy, which ensures that
the design frequency converges to the dominant frequency of the
given mode order of the full system. Following that approach, the
single-can test-rig can be used to investigate each azimuthal mode
order m of the full can-annular combustor in terms of stability,
limit cycle frequencies, and amplitude levels without a priori
knowledge of relevant frequencies of the full engine.

The proposed strategy is applied to a network model of a
generic can-annular combustor and to a 3D applied configuration
modeled by the Helmholtz equation. For the latter, we show that
the coupling via the compressor exit plenum is negligible for fre-
quencies that are not in the immediate vicinity of plenum eigen-
frequencies. The test-rig models adapted following the proposed
strategy mimic the full engine with comparably good accuracy for
both considered element types. However, using Helmholtz resona-
tors seems much more practical. Their design parameters are eas-
ier to access remotely and the geometrical dimensions of the
adapted resonators are more reasonable than those of the duct
extension. Most importantly, the up-/downstream reflection coeffi-
cient tuned by a Helmholtz resonator matches Rm;x for a wide fre-
quency range. Thus, fewer or no iterations are necessary to adapt
the resonator and one single resonator design may be employed to
investigate an entire operating window.

The proposed strategy has been demonstrated only with numer-
ical models and has yet to be validated experimentally.
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Nomenclature

a ¼ amplitude level
A ¼ cross section area ratio

BBC ¼ Bloch boundary condition
c ¼ speed of sound
d ¼ characteristic length

f, g ¼ acoustic Riemann invariants
F ¼ flame response

FTF ¼ flame transfer function
He ¼ Helmholtz number

ITA ¼ intrinsic thermoacoustic
l ¼ length
L ¼ extension length

LC ¼ limit cycle
m ¼ Bloch-wave number/azimuthal mode order
n ¼ iteration number
N ¼ number of cans
p ¼ acoustic pressure
_Q ¼ heat release rate

r;/; z ¼ radial, azimuthal, and axial coordinate
R ¼ reflection coefficient
R ¼ equivalent reflection coefficient
s ¼ saturation factor
S ¼ cross section area
u ¼ acoustic velocity
x ¼ position vector
Z ¼ acoustic impedance
D ¼ relative difference
� ¼ frequency
q ¼ density
r ¼ modal growth rate
X ¼ angular frequency
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Low-Order Modeling of
Can-Annular Combustors
Heavy-duty land-based gas turbines are often designed with can-annular combustors,
which consist of a set of identical cans, acoustically connected on the upstream side via
the compressor plenum, and, downstream, with a small annular gap located at the transi-
tion with the first turbine stage. The modeling of this cross-talk area is crucial to predict
the thermo-acoustic modes of the system. Thanks to the discrete rotational symmetry,
Bloch wave theory can be exploited to reduce the system to a longitudinal combustor
with a complex-valued equivalent outlet reflection coefficient, which models the annular
gap. The present study reviews existing low-order models based purely on geometrical
parameters and compares them to two-dimensional Helmholtz simulations. We demon-
strate that the modeling of the gap as a thin annulus is not suited for can-annular com-
bustors and that the Rayleigh conductivity model only gives qualitative agreement. We
then propose an extension for the equivalent reflection coefficient that accounts not only
for geometrical but also flow parameters, by means of a characteristic length. The pro-
posed model is in excellent agreement with two-dimensional simulations and is able to
correctly capture the eigenfrequencies of the system. We then perform a Design of
Experiments study that allows us to explore various configurations and build correlations
for the characteristic length. Finally, we discuss the validity limits of the proposed low-
order modeling approach. [DOI: 10.1115/1.4051954]

1 Introduction

Can-annular combustors are commonly found in heavy-duty
land-based gas turbines. In this application, N identical combustor
cans are aligned along an annulus, hence the name. On the
upstream side, the cans are acoustically connected to the compres-
sor plenum. Downstream, a transition duct, as the name indicates,
allows the cross-sectional area of the can to transform from a cir-
cular to an annular shape, in order to properly feed the turbine.
Single can burners have often been considered to be a good
approximation of the full system, since the combustion takes place
in individual cans. However, a small annular gap is present just in
front of the turbine inlet guide vanes, and this cross-talk area
allows acoustic communication between neighboring cans. Recent
studies showed that the can-to-can communication cannot be
neglected when investigating thermoacoustic stability.

While annular combustors have been extensively studied in the
last decades, can-annular configurations have received less atten-
tion. Bethke et al. [1] and Kaufmann et al. [2] were the first to
numerically study can-annular configurations. They showed that
accounting for the cross-talk area in a full system gives rise to
new eigenmodes that were not observed in single can configura-
tions. Panek et al. [3], based on experimental evidence and by
means of a modal analysis, arrived at the same conclusion. Modes
with mode shapes that involve multiple cans were observed for

the full configuration but could not exist in a single can approxi-
mation. Farisco et al. [4] numerically investigated the effect of the
geometry of the gap on the acoustic interaction between neighbor-
ing cans and showed that the cross-talk effect cannot be neglected.
Ghirardo et al. [5] demonstrated numerically, by means of two-
dimensional (2D) Helmholtz simulations, and gave experimental
evidence that modes of various azimuthal order arise due to the
weak coupling between cans. It was shown that these modes come
in “clusters”, i.e. collections of several distinct modes with very
close frequencies, but different growth rates.

Jegal et al. [6] and Moon et al. [7] experimentally investigated
two adjacent burners connected with a cross-talk duct normal to
the flow direction. They showed that the coupled system can
exhibit strong oscillations, even if each single burner is stable
when isolated. The oscillation patterns (axial and push-pull mode)
have been observed to be strongly dependent on the equivalence
ratio and on the geometrical location of the coupling duct. The
work was extended to a configuration with four cans [8]. Because
eigenmodes are closely-spaced and form clusters, the system can
feature a mixed state with several distinct types of interaction pat-
terns. The same test rig was used in Ref. [9] to analyze the effect
of broken symmetry. It was shown that rotational asymmetry can
lead to a variety of dynamic states (spinning azimuthal instabil-
ities, mode localization, etc.) that are absent for the perfectly sym-
metric case, as discussed also by Ref. [5].

Recent studies tackled the problem at a more fundamental level
by means of low-order network models. Using Bloch theory [10],
the study of a can-annular system reduces to a single unit-cell.
The behavior of the full system is preserved by accounting for all
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possible azimuthal orders. Von Saldern et al. [11] modeled the
cross-talk communication between cans with the Rayleigh con-
ductivity KR. Using a simple constant KR [12], they obtained an
analytical model with only geometrical parameters, which was
then used in a one-dimensional (1D) network configuration to
investigate the influence of the coupling strength on the clusters of
thermoacoustic modes. In parallel, Fournier et al. [13] suggested
that the modeling of annular combustors could be applied to can-
annular configurations, where the gap is described by a thin annu-
lus. The model was applied by Haeringer et al. [14] to propose a
strategy to tune experimental single-can test-rigs to mimic the
thermoacoustic behavior of a full engine. Yoon [15] extended the
model to account for mean flow and proposed a unified framework
for both annular and can-annular combustors using a multi-input
multi-output transfer function matrix.

In the present study, we want to investigate the validity of 1D
models for can-annular combustors at a quantitative level by com-
parison of predictions with those of higher order models. We con-
sider a 2D can-annular combustor, reduced to a single unit-cell
with Bloch theory. We focus on the acoustic modeling of the
cross-talk area. The paper is structured as follows: we first
describe the dimensionless equivalent longitudinal network
model. Then both the Rayleigh conductivity (RC) and the thin
annulus (TA) models, which are based only on geometrical
parameters, are compared to 2D Helmholtz reference simulations.
We then propose an extension that accounts also for flow parame-
ters, with a characteristic length, and demonstrate that such model
can properly capture the eigenfrequencies. Finally, we perform a
Design of Experiments study and propose correlations for the
characteristic length. The limits of validity of the low-order model
are discussed.

2 Network Model of a Can-Annular Geometry With

Bloch Boundary Conditions

2.1 Case and Flow Description. A generic can-annular com-
bustor consists of N identical cans, placed in an annular arrange-
ment. Ghirardo et al. showed that a complex three-dimensional
geometry such as Fig. 1 in Ref. [5] can be well approximated by a
2D model. Following this approach, we consider here 2D cans of
length L and of width H, as depicted in Fig. 1. Upstream, we
neglect any possible influence of the plenum: the cans are
decoupled and the reflection coefficient Rin is set to unity, follow-
ing prior studies [5,11]. On the downstream side, a high pressure
turbine stage is placed to extract energy from the fluid. The acous-
tic response of such a turbine stage can be modeled by a reflection
coefficient with a fixed gain lower than unity and a zero phase
response [16]. In this study, we do not consider any loss mecha-
nism and the outlet reflection coefficient is set to Rout¼ 1. Little
quantitative change is expected when accounting for the losses
[17]. The individual cans are acoustically coupled to each other
through a small annular gap, of size Lg, located just upstream of
the turbine.

In this study, we focus on the modeling of the acoustics of the
set of transition pieces, where the Mach number is low, typically
below 0.2 [3,5]. Consequently, and similarly to axial combustors,
the low Mach number assumption can be invoked by assuming
zero mean flow when modeling the thermoacoustic behavior of
cans, in particular wave propagation along the cans. Combustion
is not taken into account because it occurs upstream of the consid-
ered domain. Accounting for it would lead to sections, inside the
cans, with different temperatures and therefore different speed of
sound, not to mention the influence of flame dynamics on the ther-
moacoustic modes. Since the combustion takes place significantly
upstream of the turbine, the mean temperature can be assumed to
be uniform in the region of the gap and the modeling approach
remains valid. Therefore, the model proposed here can be used in
future studies to investigate a more complete configuration. We
also assume that mean quantities are constant and uniform over
the entire domain. Finally, entropy waves are assumed to have a
negligible effect and are not taken into account [5,18].

2.2 Bloch-Wave Theory. The cans are geometrically identi-
cal, thus the system exhibits rotational symmetry. Bloch theory
[10], which has been introduced in thermoacoustics by Mensah
et al. [19] and is now well established [5,13,14,20,21], can then be
applied. In the frequency domain, the acoustic pressure field can
be written in the form:

p̂ xð Þ ¼ w xð Þeimh; m ¼
�N

2
þ 1;…;

N

2
N even

�N � 1

2
;…;

N � 1

2
N odd

8>><
>>: (1)

where h is the azimuthal coordinate around the axis of discrete
rotational symmetry, wðxÞ is a function identical in all unit-cell
and periodic in h with a period 2p=N, m is the Bloch wave number
and we neglect to express the explicit dependence of p̂ on fre-
quency. Note that wðxÞ is not limited to a specific functional form,
but can be any function that satisfies the aforementioned decom-
position. The absolute value of m is identical to the azimuthal
mode order [5].

The eigenmodes can be classified in three groups: axial (m¼ 0),
push-pull (m ¼ N=2), and degenerate pairs of spinning modes (all
other values of m), which differ only by their spinning direction.
From the study of a single unit-cell, the behavior of the full sys-
tem can be assessed by considering all azimuthal mode orders m.
In other words, we reduce our complete can-annular system to a
single can where we apply Bloch boundaries in the region of the
cross-talk, as depicted in Fig. 1.

2.3 Equivalent Longitudinal Network Model and Eigen-
value Problem. Low-order network models are well established
for single can combustors [22–25] where, below the cut-on fre-
quency of transverse modes, only acoustic plane waves propagate.
The spatial extension of the gap is considered negligible com-
pared to the wavelengths of interest meaning that the annular gap
is acoustically compact. Therefore, the unit-cell can be modeled
by an acoustic network as shown in Fig. 2. The can is replaced by
a simple duct of length L, closed at the upstream side Rin¼ 1. On
the downstream end, the behavior of the can-to-can communica-
tion through the annular gap is modeled by the equivalent reflec-
tion coefficientRmðxÞ, which is, in general, frequency dependent.
This longitudinal network model is equivalent to the full system
as we can recover all the eigenmodes by varying the azimuthal
mode order m hidden in the outlet boundary condition.

The governing equations describing this longitudinal network
model involve the following parameters: the frequency x, the
speed of sound c, the length of the can L, the width of the can H,
the length of the cross-talk area Lg. These five parameters admit a
basis of two fundamental dimensions, time and distance. Follow-
ing the Buckingham P theorem [26], the system is fully described

Fig. 1 Unit-cell of a generic can-annular combustor. The three-
dimensional geometry, as shown in Fig. 1 in Ref. [5], is approxi-
mated by a 2D can, of length L and width H, closed at the inlet
and the outlet. Acoustic communication with the neighboring
cans is possible through the cross-talk area of length Lg.
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by only three dimensionless parameters. For consistency with
prior studies, we choose the same as those introduced by Ghirardo
et al. [5]. The first dimensionless parameter is the Helmholtz num-
ber He ¼ kL, where k ¼ x=c is the wave number, which repre-
sents a dimensionless frequency. Small values of He correspond
to acoustic waves whose wavelength is acoustically compact com-
pared to the can length L. The second is the coupling strength
L�g ¼ Lg=H. The third number L� ¼ L=H is interpreted as the
aspect ratio of the can.

In the context of network modeling, it is convenient to use Rie-
mann invariants. We recall the definition of characteristic waves
amplitudes

f � 1

2

p0

�qc
þ u0

� �
; g � 1

2

p0

�qc
� u0

� �
(2)

In the duct, only plane waves propagate. The f and g waves at the
cross-section “in” and “out” of Fig. 2 are related as follows:

fout

gout

" #
¼

e�ixs 0

0 eixs

" #
fin

gin

" #
(3)

The term e�ixs models the acoustic propagation of a plane wave,
where s ¼ L=c is the time that takes an acoustic wave to cover the
length L. The boundary conditions are given by

gout ¼ RmðxÞfout

fin ¼ gin

(
(4)

Inserting Eq. (4) into Eq. (3) and rewriting in terms of dimension-
less parameters leads to the eigenvalue problem

RmðHeÞe�2iHe ¼ 1 (5)

Equation (5) is complex-valued and thus gives conditions on the
absolute value and the phase of the equivalent reflection coeffi-
cient Rm. The first consequence is that jRmðHeÞj ¼ 1. We consid-
ered a system with neither acoustic losses nor sources. It is
therefore crucial to verify that the modeling approach does not
introduce artificial losses or sources in the equivalent reflection
coefficient RmðHeÞ, i.e. its gain must be unity. The other conse-
quence is that the eigenvalue problem reduces to a condition on
the phase

2He�/RmðHeÞ � 0 mod 2p (6)

where /RmðHeÞ denotes the argument of the equivalent reflection
coefficient RmðHeÞ. Note that, in general, Eq. (6) is nonlinear in
the Helmholtz number He and cannot be solved analytically.

3 Two-Dimensional Reference Case

In this section, we present the 2D Helmholtz case that serves as
a reference for comparison with 1D low-order models. We choose
the same parameters as in Ref. [5]: N¼ 12, L� ¼ 2, L�g ¼ 0:2.

3.1 Numerical Setup. The reference simulations for obtain-
ing the reflection coefficient from the 2D Helmholtz equation are
carried out with the commercial finite element solver COMSOL MUL-

TIPHYSICS. The parametrical setup of the geometry shown in Fig. 1
employs quadratic basis functions on a triangular mesh with cell
sizes smaller than 10 mm to ensure grid independence. Boundary
conditions for the sound hard walls, the non-reflecting inlet, as
well as the superposed acoustic forcing at the inlet are imposed
weakly via the flux. The Bloch boundaries are enforced via
Lagrange multiplier constraints. The Helmholtz equation for this
case is then solved in the frequency domain in 10 Hz steps, up to
the maximum frequency corresponding to He ¼ p.

Figure 3 presents the forced response of the can at the fre-
quency He ¼ p=2, for the azimuthal order m¼ 1. From the inlet,
only plane waves propagate but, as they approach the gap region,
distortion is observed. In the cross-talk area, the waves are not
plane anymore and strong 2D effects are observed. These effects
are not strictly confined in the vicinity of the gap but can also
extend upstream, especially for higher azimuthal order. The
results, in particular the reflection coefficients, are validated
against those of Ghirardo et al. [5], which were obtained with an
expansion on Chebyshev series of the 2D equations.

3.2 Two-Dimensional Equivalent Reflection Coefficients.
The reflection coefficients Rm; 2DðHeÞ for an equivalent 1D geom-
etry are obtained from 2D numerical simulations by computing
the forced response of the set of cans at discrete frequencies and
for each azimuthal order m. However, as seen in Sec. 3.1, strong
2D effects are present in the region of the gap, making any 1D
post-processing at this location difficult. To overcome this limita-
tion and to ensure reliable results, numerical measurements are
performed at the inlet, upstream of the can, where the acoustics is
closest to plane waves. In practice, for each azimuthal order m
and for several discrete frequencies, we force the inlet with a
wave fin and measure the reflected wave gin. From a 1D perspec-
tive, the measured ratio gin=fin is modeled as:

gin

fin
¼ e�2iHeRm; 2D Heð Þ (7)

The first term, e�2iHe, represents the wave propagation in the duct
from the inlet to the gap, and then again from the gap to the inlet,
hence the factor of 2. Rm; 2DðHeÞ models the contribution of the
annular gap.

From the 2D simulations, we computed the absolute value
jgin=finj and verified that it is indeed unity. This result is expected:
the waves can neither be amplified nor damped since no acoustic
losses are taken into account and no energy is added to the system.
On the other hand, the phase response is not trivial, and will

Fig. 2 Equivalent longitudinal network model of the unit-cell.
The annular gap is modeled by the complex-valued reflection
coefficient Rm(x), which depends on the frequency x and the
azimuthal order m.

Fig. 3 Forced response of the system for the azimuthal order
m 5 1. The can is forced from the inlet with a wave fin at the fre-
quency He 5 p/2. Color indicates the normalized absolute pres-
sure and black lines indicate isolines of pressure. Upstream of
the can, plane waves propagate. Downstream, the gap introdu-
ces strong 2D effects that are not confined in the vicinity of the
gap region but also extend upstream.
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especially depend on the azimuthal order of the mode, as reported
in Ref. [5]. Although the equivalent reflection coefficient
Rm; 2DðHeÞ cannot be directly assessed in the gap region, Eq. (7)
can be rewritten:

/Rm; 2D Heð Þ ¼ /
gin

fin

� �
þ 2He (8)

This post-processing is useful because it allows us to keep only
the behavior of the gap and remove the overemphasis of the con-
tribution of the can (the phase shift due to the propagation in the
can is much larger than the phase shift due to the gap, see Fig. 5
in Ref. [5]). Figure 4 shows the phase response of the equivalent
reflection coefficient modeling the gap Rm; 2DðHeÞ as a function
of the dimensionless frequency He, for all azimuthal mode orders
m. For the axial mode m¼ 0, the phase is constant and equal to
zero, meaning that R0;2D ¼ 1. The gap has no influence on the
axial mode and the can is simply exposed to the acoustic boundary
induced by the turbine. For all other azimuthal order, the charac-
teristics of the phase are not trivial and depend on the frequency.
Starting from p in the low-frequency limit, it converges toward
zero but the slope depends on the azimuthal order (low azimuthal
orders go faster toward zero).

Another interesting feature of this representation is the possibil-
ity to directly read off the eigenvalues of the full system. Equation
(6) can be rewritten:

/RmðHeÞ � 2He mod 2p (9)

Equation (9) indicates that the first set of eigenfrequencies is
located at the intersection between the phase response and the
straight line of equation 2He (black dotted line on Fig. 4). The
second cluster, which consists of the harmonics of the modes of
the first cluster, is located at the intersection with the line of equa-
tion 2He� 2p (outside of the frequency range of Fig. 4) and so on
for clusters of higher harmonics. Figure 4 shows that the eigenfre-
quencies of modes m¼ 4, m¼ 5, and m¼ 6 are really close, hence
the denomination “cluster”.

4 Low-Order Models of the Annular Gap Based on

Geometrical Parameters

In this section, we review the existing models proposed by von
Saldern et al. [11] and Fournier et al. [13]. Both models are based

on purely geometrical parameters and will be compared to the 2D
Helmholtz simulations introduced in Sec. 3.

4.1 Rayleigh Conductivity Model. The Rayleigh conductiv-
ity KR of an aperture, defined as KR ¼ ixqQ=Dp, relates the vol-
ume flux Q through the aperture to the pressure difference Dp
between the two sides [12]. It is the analogue of Ohm’s law for
1D lumped acoustic systems. Von Saldern et al. [11] derived a 1D
model of the gap where the Rayleigh conductivity KR is used to
relate the acoustic velocities inside the gap to the pressure gradi-
ent between cans, because Q ¼ Agapu0. The can was assumed to
be circular, of radius rcan. In order to obtain a simple analytical
expression, the gap was treated as a circular aperture. With this
hypothesis, the Rayleigh conductivity is constant and relates to
the gap radius as KR ¼ 2rgap. Writing Eq. (10) from Ref. [11] with
dimensionless parameters leads to

Rm;RC Heð Þ ¼ 1�
16 sin2 pm

N

� �
iHe

p
2L�

ffiffiffiffiffi
L�g

p þ 8 sin2 pm

N

� � (10)

In the rest of the paper we refer to it as the RC model, where RC
stands for Rayleigh conductivity.

4.2 Thin Annulus Model. Fournier et al. [13] proposed an
alternative modeling strategy, where can-annular combustors are
seen as limit cases of annular geometries: the cans are burner
tubes of significant dimensions and the annular gap is an annular
chamber where the axial spatial extension is negligible and the
total azimuthal length corresponds to N times the width of a can.
The annular gap is modeled as a thin annulus, i.e. a compact T-
junction and ducts of lengths H=2 representing the width of the
can. Following the results of Fournier et al., Eq. (14) in Ref. [13]
can be written with dimensionless parameters:

Rm; TA Heð Þ ¼ 1�
4 cos

He

L�

� �
� 4 cos

2pm

N

� �
i

L�g
sin

He

L�

� �
þ 2 cos

He

L�

� �
� 2 cos

2pm

N

� �
(11)

In the following, we refer to it as the TA model, where TA stands
for thin annulus.

4.3 Analysis of the Low-Order Models. For a real-valued
Helmholtz number He (marginally stable mode), it is straightfor-
ward to mathematically prove that jRm;RCðHeÞj¼jRm;TA ðHeÞj¼1.
It follows that both models are satisfactory in the sense that they
do not introduce spurious damping or amplification.

As reported in Refs. [5], [11], and [13] and seen in Sec. 3.2, the
phase response is nontrivial. Figure 5 shows the phase response
for both 1D models compared to the 2D Helmholtz reference
case. For the sake of clarity, only the axial mode and modes of
azimuthal order m ¼ 1; 2; 5; 6 are represented. The first observa-
tion is that both models do not accurately reproduce the results of
the 2D reference case: they do not provide quantitatively accurate
results. For example, the TA model underpredicts the eigenfre-
quency of the first azimuthal order, whereas the RC model over-
predicts it. The errors on the eigenfrequency are 29.3% and
20.7%, respectively. Similar behaviors are observed for the other
azimuthal orders, and the error on the eigenvalue prediction varies
from 11% to 35%. Akin results were observed by Yoon where the
theoretical model, which can be seen as an extension of the TA
model, always underpredicts the eigenfrequencies compared to
FEM (Fig. 9 in Ref. [15]). Both RC and TA model underpredict

Fig. 4 Phase of the reflection coefficient Rm;2D(He) of a set of
N 5 12 cans as a function of the dimensionless frequency He
and the azimuthal order m of the forcing pattern. Circles,
located at the intersection between the phase response and the
line of equation 2He (black dashed line), indicate the eigenfre-
quencies of the whole set of cans. Eigenmodes of azimuthal
orders m 5 4, m 5 5 and m 5 6 have close frequencies, hence
the denomination cluster.
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the frequency at which the modes tend to cluster by 12.3% and
32.1%, respectively.

Although being quantitatively inaccurate, the RC model exhib-
its a satisfactory qualitative behavior for the entire frequency
range investigated. Starting from p, the phase decreases and con-
verges asymptotically toward the horizontal zero line without
crossing it. The axial mode is also well captured: the phase is con-
stant and trivially zero. In contrast, the thin annulus (TA) model is
not entirely satisfactory. For low frequencies, the TA model
exhibits the correct qualitative behavior. This is explained by the
fact that a Taylor expansion of Eq. (11) gives

Rm; TA Heð Þ � 1�
8 sin2 pm

N

� �
iHe

1

L�L�g
þ 4 sin2 pm

N

� � (12)

which is essentially the same structure as of the RC model (see
Eq. (10)). However, as the frequency increases, for each mode
order, the phase does not converge asymptotically toward the zero
line but does cross it. These intersection points are located at the
frequencies He ¼ 2L�mp=N and correspond to the passive acous-
tic mode of the thin annulus [13]. Therefore, for higher frequen-
cies He � 2L�mp=N, the qualitative behavior is not satisfactory.
We conclude that the cross-talk area of can-annular combustors
should not be modeled as a thin annulus when considering higher
frequencies. For the axial mode, the two ducts of the thin annulus
that model the width of the can inherently add a non-negligible
length to the total length of the can, hence the phase shift observed
in Fig. 5. Note that this effect could be compensated but would
require an individual tuning of the model for the axial mode.

In conclusion, the thin annulus assumption to model the gap in
can-annular configurations is qualitatively valid only for low fre-
quencies (He � 2L�mp=N). Conversely, the Rayleigh conductiv-
ity model gives the correct qualitative behavior over a wide
frequency range. Nevertheless, because based purely on geometri-
cal parameters, both models do not capture the correct phase
response of the annular gap (see the error with the 2D reference
on Fig. 5), and, for all azimuthal orders, do not predict accurately
the eigenfrequencies. These shortcomings motivate the need of an
extension of the RC model to obtain quantitatively accurate
results.

4.4 A Few Considerations on the Spectrum Structure and
Clusters. Although not suited for quantitative prediction, these
simple models give good insight into the underlying physics. We
consider two interesting limit cases.

� Case 1: Lg is zero. The gap is completely closed, i.e. the cou-
pling strength is L�g ¼ 0. The equivalent reflection coefficient
becomes trivially Rm;RCðHeÞ ¼ Rm; TAðHeÞ ¼ 1: it is inde-
pendent of the mode order and of the frequency. The gap
closes and the annular configuration reduces to a purely lon-
gitudinal configuration where the outlet boundary condition
is the choked exit. The eigenvalue problem becomes:

e�2iHe ¼ 1 ) He ¼ pp; p 2N (13)

which is the half-wave mode and its harmonics. In the limit
case where the gap closes, all the modes of the first cluster
collapse into one degenerate mode, the half-wave mode.
� Case 2: large aspect ratio. In the limit case where the length

becomes much more significant than the width, i.e.
1=L� ! 0, the equivalent reflection coefficient is

Rm;RCðHeÞ � Rm; TAðHeÞ � 1; m ¼ 0

�1; m 6¼ 0

�
(14)

The axial mode is unaffected by the annular gap and remains
exposed to the choked outlet. The eigenmode associated is
the half-wave mode He ¼ 0 and harmonics. On the other
hand, all other azimuthal modes are now exposed to an open
end (R¼ –1). The solutions of the eigenvalue problem are

e�2iHe ¼ �1 ) He ¼ p
2
þ pp; p 2N (15)

All the modes converge to the quarter-wave mode and its har-
monics. This is physically explained by the fact that, in this
limit case of a long can, any phase shift introduced by the
gap becomes negligible compared to the phase shift due to
the propagation in the can itself. The effect of the azimuthal
order on the outlet boundary becomes negligible, hence the
outlet boundary is independent of the mode order and all
modes converge to the same solution.

The phase of the equivalent reflection coefficient can be ana-
lytically determined

/Rm;RC Heð Þ ¼ p� 2arctan
pHe

16L�
ffiffiffiffiffi
L�g

p
sin2 pm

N

� �0
B@

1
CA (16)

This equation can be used to understand the spectrum structure.
Recall that the eigenfrequency is located at the intersection with
the straight line of equation 2He (Eq. (9)). When L� increases,
Eq. (16) shows that the phase response is less and less steep, the
eigenfrequency is “pushed” to the right to higher frequencies,
with the limit He ¼ p=2. Figure 6 presents the influence of the
aspect ratio on the first two eigenfrequencies for all azimuthal
orders. For a given azimuthal order m, when L� increases, the
eigenfrequency increases and converges toward the quarter-wave
mode. Therefore, can-annular combustors with large aspect ratio
L� tend to have a more pronounced clustering effect. Similarly,
for a given geometry (L� and L�g fixed), when m increases, the
phase response is less and less steep, the eigenmode is located at a
higher frequency. That explains the spectrum structure: the higher
the azimuthal order, the higher the eigenfrequency. Modes with
higher azimuthal order will be the closest within a cluster. This
sheds a new light when designing can-annular combustors: modes
always come in clusters, outcome of a system that behaves as a
collection of oscillators (cans) weakly coupled (gap). The spread
of the modes within a cluster depends on the system geometry

Fig. 5 Phase response of the annular gap as predicted by the
Rayleigh conductivity model (dashed–dotted line) and thin
annulus model (dotted line) compared to the 2D Helmholtz ref-
erence (full line). Colors indicate the azimuthal order as defined
in Fig. 4. For each azimuthal order, the intersection of the phase
response with the black dashed line gives the eigenfrequency.
Both models are qualitatively correct in the low frequency
limit. Nevertheless, they do not predict accurately the
eigenfrequencies.
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(length of the can, gap design, etc.). This needs to be taken into
account at the design stage as clusters of modes cannot be
avoided. A related question arises: how should the combustor be
designed to guarantee that all thermoacoustic modes are stable?
This crucial and interesting question is beyond the scope of this
study and will be left for future research.

5 Low-Order Model Based on Characteristic Length

In this section, we derive an extension for the reflection coeffi-
cient model that accounts not only for geometrical but also flow
parameters. The gap is assumed to be acoustically compact. The
mass conservation equation integrated over the control volume
depicted in Fig. 1 reduces to conservation of volumetric flow
rate:

Hu01 � Lgu02 � Lgu03 ¼ 0 (17)

Equation (17) is rewritten with dimensionless parameters and Rie-
mann invariants, which are more convenient to define a reflection
coefficient.

1

L�g
f1 � g1ð Þ � f2 � g2ð Þ � f3 � g3ð Þ ¼ 0 (18)

Because of the rotational symmetry, we invoke Bloch theory to
mutually connect location 2 and 3 with periodic Bloch boundaries
[21].

f3 ¼ g2ei2pm
N

g3 ¼ f2ei2pm
N

(
(19)

We define the equivalent reflection coefficient as g1 ¼ Rmf1.
Using this definition and inserting Eq. (19) into Eq. (18) leads to

1

L�g
1�Rmð Þf1 þ ei2pm

N � 1
� �

f2 þ 1� ei2pm
N

� �
g2 ¼ 0 (20)

Equation (20) has three unknowns, thus two more independent
equations are required to close the problem. Note that for the axial
mode m¼ 0, the equation directly reduces to R0ðHeÞ ¼ 1: the
equivalent reflection coefficient is constant and is not affected by
the cross-talk area.

We use the unsteady Bernoulli equation for irrotational home-
ntropic flow [27].

0 ¼ @

@x

@u
@t
þ u2

2
þ c

c� 1

p

q

 !
(21)

where u is the velocity potential and c is the ratio of specific heat
capacities (ideal gas behavior is implied). The equation is inte-
grated along two streamlines of the mean flow, from location 1 to
location 2 and from location 1 to location 3, respectively. It is pos-
sible to find a standing wave with a nodal line that coincides with
the symmetry axis of the can in the considered unit-cell. This
symmetry allows us to treat locations 2 and 3 similarly. We con-
sider the integral in space of the first term of Eq. (21), the velocity
potential.ð2

1

@

@x
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@t

� �
dx ¼
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dx ¼ @

@t

ð2

1

u xð Þdx (22)

As depicted in Fig. 7, from a 1D perspective, we consider the flow
through the compact annular gap to be similar to the flow in a con-
verging compact nozzle, which is a well-established problem. Fol-
lowing prior studies for a compact element with a varying cross-
section [27–31], we define the characteristic length Lchar;m

Lchar;m ¼
ð2

1

u xð Þ
u2

dx �
ð2

1

Lg

h xð Þ
dx (23)

where h(x) is the cross-section of the flow along the stream-path
of the acoustic flow, and not the geometric cross-section across
the element. For that reason, the characteristic length depends on
the azimuthal order m. Physically, the characteristic length
accounts for the inertia of the volume of fluid between the two ref-
erence positions. Assuming harmonic time-dependence, Eq. (22)
reduces to ð2

1

@

@xi

@u
@t

� �
dxi ¼ ixLchar;mu2 (24)

The integral in space of the remaining two terms of Eq. (21) is
simply evaluated at location 1 and 2. Linearization with Reynolds
decomposition, assuming zero mean flow and neglecting higher
order terms yields

ikLchar;mu02 þ
p02 � p01

�qc
¼ 0 (25)

where k ¼ x=c is the wavenumber. The integration from location
1 to 3 is done similarly. Switching to Riemann invariants, the
problem can be cast into the homogeneous linear system of
equations

Fig. 6 Sensitivity of the first two eigenfrequencies as a func-
tion of the aspect ratio L�. Small values of L� correspond to a
set of cans that are short compared to the circumference of the
annular gap, that measures NH. Colors indicate the azimuthal
order as defined in Fig. 4. When the length of the can becomes
much larger than the other dimensions, the eigenmodes con-
verge to the same solution, the quarter-wave mode and its har-
monics. Modes with high azimuthal order converge faster and
are closest within a cluster.

Fig. 7 Each half of the gap is treated as a 1D converging noz-
zle. h(x) is the cross-section of the flow along the stream-path
of the acoustic flow. The inertia of the volume of fluid is
expressed in terms of a characteristic length Lchar;m.
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MðHe;mÞ
f1

f2

g2

2
664

3
775 ¼

0

0

0

2
664
3
775 (26)

with the matrix MðHe;mÞ as

1�Rm

L�g
ei2pm

N � 1 1� ei2pm
N

�1�Rm 1þ ikLchar;m 1� ikLchar;m

�1�Rm ei2pm
N 1� ikLchar;mð Þ ei2pm

N 1þ ikLchar;mð Þ

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M He;mð Þ

(27)

The system shows nontrivial solution if the determinant of
MðHe;mÞ is null, which gives a condition for the reflection
coefficient:

Rm;CL Heð Þ ¼ 1�
4 sin2 pm

N

� �
iHe

L�char;m

L�L�g
þ 2 sin2 pm

N

� � (28)

where L�char;m ¼ Lchar;m=H is the dimensionless characteristic
length.

As shown by Schuermans et al. [32], the concept of effective
length is interchangeable to the Rayleigh conductivity. Equation
(28) is similar to Eq. (10) and can be seen as an extension of the
RC model. However, the proposed model accounts not only for
geometrical parameters but also for flow parameters with the iner-
tial length Lchar;m. In particular, the dependence of Lchar;m on the
azimuthal order m reflects the fact that the acoustic flow is influ-
enced by the azimuthal mode, hence the denomination flow
parameter. Note that this is a purely acoustic perspective and it is
not connected to mean flow, turbulence or similar features. The
use of a characteristic length is well established and applicable to
all sorts of elements, e.g., a premixed burner [28], a sudden
change in cross-sectional area [30], an orifice [31], a nozzle [29],
a Helmholtz resonator [33], among others. Note that we did not
take into account the losses due to the abrupt changes in geome-
try. This consideration of losses is a natural extension of the pres-
ent model and will be covered in future work.

The characteristic length Lchar;m can be determined from the 2D
simulations using Eqs. (22) or (23). However this post-processing
can be tedious: it is not straight forward to determine an appropri-
ate control volume, to extract a “characteristic” streamline repre-
senting the ensemble, to average the 2D quantities to compare
with 1D, etc. Flohr et al. [31] proposed an alternative method to
measure based on an analogy with the heat conduction equation
but with a detrimental loss of accuracy. For the present case, we
make use of the fact the reflection coefficient Rm numerically
measured from the 2D simulations contains all the relevant infor-
mation. In particular, Lchar;m is embedded in this measurement as
it directly shapes the phase response of Rm. As a result, Lchar;m

becomes a physics-based parameter giving an additional degree of
freedom. Lchar;m is assessed via an optimization problem by mini-
mizing the normalized root-mean-squared error between the low-
order model (LOM) and the numerical simulations, defined as

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

j¼1

yj � ŷj

� �2

s
r

(29)

where yj is the phase response of the gap, obtained from numerical
simulations, at the discrete frequency j, ŷj the predicted value
from the 1D model, n the number of frequency samples, and r the
standard deviation. Note that Lchar;m only depends on the

azimuthal order m and is independent of frequency. Figure 8
presents the phase response of the annular gap as predicted by the
characteristic length model compared to 2D Helmholtz simula-
tions. For every azimuthal order, the low-order model shows
excellent agreement with the 2D reference. The normalized root-
mean-square error (NRMSE) between the LOM and the reference
remains lower than 2.2%.

Since the phase response is properly modeled over the entire
frequency range, it implies a correct eigenfrequency prediction.
Table 1 shows, for every azimuthal mode, the eigenfrequency pre-
dicted by the characteristic length model and the relative error
with the 2D reference. The maximal error observed is 2%, which
is considered acceptable regarding all the assumptions and simpli-
fications of the low-order model.

A simple 1D model, based on geometrical and flow parameters,
is able to accurately model the cross-talk area of a can-annular
combustor, despite the strong 2D effects observed at this location.
These 2D effects are lumped into the equivalent length correction,
as it is common in the acoustics literature. It is highlighted that,
although changing with the mode order, the characteristic length
Lchar;m does not depend on frequency. For each mode order, it is
obtained from numerical simulations and valid for that case only.
However, such low-order method is computationally inexpensive
and may prove to be useful in concept and pre-design studies,
where geometrical parameters are rapidly changing. In order to
use it for new designs and ensure reliable results, one needs to
determine how Lchar;m can be generalized.

Fig. 8 Phase response of the annular gap as predicted by the
characteristic length model (crosses) compared to the 2D Helm-
holtz reference (full line). Colors indicate the azimuthal order as
defined in Fig. 4. For each azimuthal order, the intersection of
the phase response with the black dashed line gives the eigen-
frequency. The low-order model shows excellent agreement
over the entire frequency range of interest compared to the 2D
reference.

Table 1 Eigenfrequency prediction of the characteristic length
model compared to the 2D Helmholtz reference for all azimuthal
order

f2D (Hz) fCL (Hz) Error (%)

m¼ 1 58.98 58.73 0.4
m¼ 2 109.80 108.24 1.42
m¼ 3 157.35 154.14 2.03
m¼ 4 185.31 182.70 1.41
m¼ 5 196.12 194.63 0.76
m¼ 6 199.80 198.48 0.65
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6 Generalization of the Model to Configuration With

Different Geometrical Parameters

In this section, we investigate how the characteristic length
Lchar;m can be generalized to other configurations. In particular,
we analyze the influence of geometrical parameters.

6.1 Design of Experiments Study. We perform a design of
experiments (DoE) study [34] where the two dimensionless input
parameters L� and L�g vary in the range ½1� 5	 and ½0:1� 0:3	,
respectively. These values correspond to realistic parameters for a
gas turbine combustor. Following Loeppky et al. [35], who sug-
gest that the sample size should be at least ten times the number
of input parameters, the parameter space is filled by 40 points fol-
lowing a Latin Hypercube method, as shown in Fig. 9. For each
set of parameters, a 2D Helmholtz simulation is performed and
post-processed following the method described for the reference
case.

6.2 Correlations for Lchar;m. For each case, and for every
azimuthal order, the characteristic length Lchar;m is determined.
We excluded four data points that exhibited NRMSEs between
2D and LOM greater than 5%, which was not considered accepta-
ble. These larger errors, explained by the limits of validity of the
LOM, are discussed later.

From a low-order network perspective, if we disregard the
upstream can and consider only the gap itself, according to the
Buckingham P theorem [26], the latter can be modeled with only
two parameters: a dimensionless frequency and the coupling
strength L�g. But, as shown in Sec. 5, the characteristic length
Lchar;m is independent of frequency. Therefore, from a 1D perspec-
tive, Lchar;m depends only on the coupling strength L�g ¼ Lg=H.
Figure 10 presents the normalized characteristic length L�char;m ¼
Lchar;m=H as a function of the coupling strength L�g. For the sake
of clarity, only mode order m¼ 1, m¼ 3, and m¼ 6 are shown.
The color of the data points indicates the aspect ratio L�. We can
see that, for a coupling strength L�g from 10% to 30%, the normal-
ized characteristic length L�char;m scales linearly in the explored
range. The coefficients of determination R2 of the proposed linear
regressions are 0.86, 0.77 and 0.93, respectively.

From the numerical simulations, for a given azimuthal order m,
we observe that, for large values of L�, the characteristic length
can be considered independent of the aspect ratio L� and is deter-
mined only by the coupling strength L�g. Indeed, from Fig. 10, we

see that data points associated with configurations with similar
coupling strength L�g but different aspect ratio L� tend to be close
to each other and the proposed correlations. On the other hand,
the scatter is more pronounced for configuration with small aspect
ratios: these points have the largest errors with the proposed linear
regressions. Note also that, for these configurations, the error
between 2D simulations and LOM when determining the charac-
teristic length Lchar;m also tend to increase (recall Fig. 9). This is
due to the limits of validity of the LOM approach, discussed in
Sec. 6.3. Considering the satisfactory linear regressions, it is rea-
sonable to disregard the influence of the aspect ratio L� and to
consider the characteristic length Lchar;m primarily as a function of
the azimuthal order m and the coupling strength L�g ¼ Lg=H. In
particular, for each mode order m, the linear regression gives:

L�char;m ¼ a1;mL�g þ a0;m ) Lchar;m ¼ a1;mLg þ a0;mH (30)

It is highlighted that, as a first approximation, the characteristic
length Lchar;m scales linearly with the gap size Lg and the width of
the can H.

Depending on the coupling strength L�g and the azimuthal order
m considered, the characteristic length can vary significantly.
Physically, this is explained by the fact that an inertial length is
strongly influenced by the contraction experienced by the flow.
For example, it is common to observe a characteristic length
much larger than the geometrical quantities of interest [27,33].
For a given geometry, the characteristic length decreases with the
azimuthal mode order, which is consistent with the fact that
modes with higher azimuthal order exhibit a higher eigenfre-
quency, as explained previously. Finally, when the coupling
strength increases, the relative importance of L�char;m compared to
L�g decreases toward zero, leading, for high values, to Rm � �1.
Indeed, if the coupling strength is large, i.e. if the gap size Lg is
significant, the system can be seen as a can terminating in a large
vessel, i.e. the can is exposed to an open end.

6.3 Limits of Validity of the LOM Approach. In Secs. 5
and 6.2, we demonstrated that a low-order model based on a char-
acteristic length can retrieve 2D results with a satisfying accuracy.
In particular, the eigenfrequencies of the system are accurately
predicted. However, such modeling approach has two limiting
factors.

Fig. 9 Parameter space of the DoE filled by 40 points with a
Latin Hypercube method. The color indicates the normalized
root-mean-square error of the phase response between the low-
order model and the 2D reference. For small aspect ratio L� or
for large coupling strength L�g , the error tends to increase.

Fig. 10 Sensitivity of the normalized characteristic length
L�char;m as a function of the coupling strength L�g for azimuthal
mode orders m 5 1, m 5 3 and m 5 6. The color of the points
indicates the aspect ratio of the can L�, showing that the
dependence of L�char;m on L� is weak in the studied range. In the
explored range, L�char;m scales linearly with the coupling
strength L�g .
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The first limitation comes from the assumption that, in the cans,
only plane waves propagate and all other modes are said “cut-
off.” But as the frequency increases and reaches the cut-off fre-
quency of a non-plane mode, that mode is no longer evanescent
and can propagate: it is said cut-on. For example, for a circular
can of radius H=2, the plane wave approximation remains valid
up to the maximum frequency He < 2L�a11, where a11 � 1:84 is
the first zero of the Bessel function J01ðxÞ [36]. The maximum fre-
quency is directly influenced by the aspect ratio of the can: for
small aspect ratio L�, the LOM will be able to accurately predict
only the first cluster, whereas for large L�, clusters at higher fre-
quencies, which consist of the harmonics of the mode of the first
cluster, will also be correctly captured.

The second limitation comes from the hypothesis of an acousti-
cally compact gap kLg 
 1, i.e. He
 L�=L�g with dimensionless
parameters. Figure 11 shows the phase response of the characteris-
tic length model compared to 2D simulations for L� ¼ 2:05 and
L�g ¼ 0:27. In the low frequency region, the LOM has a perfect
agreement with numerical simulations. The first cluster (intersec-
tion with the first black dashed line) is captured accurately for
every azimuthal order. However, as the frequency increases, the
gap becomes non-compact. The LOM deviates from the 2D refer-
ence and the second cluster is not captured at the correct frequen-
cies. The error on the eigenfrequency prediction is around 6% for
the second cluster, to put in perspective with an error of 1% or
less for the first cluster. Although it might be considered still
acceptable for the second cluster, note that it will be amplified for
clusters at higher frequencies. It is therefore crucial, when consid-
ering clusters of higher harmonics, to verify that we remain within
the domain of validity of our model.

7 Summary and Conclusion

In this paper, we investigated a generic can-annular combustor
and focused on the acoustic modeling of the cross-talk area in
front of the turbine that allows for can-to-can acoustic communi-
cation. We exploited the discrete rotational symmetry by using
Bloch boundaries to reduce the combustor to a single unit-cell,
while preserving the dynamics of the full system. We demon-
strated that only three dimensionless parameters are required to
model such configuration with a low-order network. The annular
gap is replaced by a complex-valued equivalent reflection coeffi-
cient, which accounts for the azimuthal order of the mode.

We then reviewed two existing 1D models, based only on geo-
metrical parameters, and compared them to a 2D Helmholtz refer-
ence. The first model describes the gap as a thin annulus.
Although intuitive at first glance, this modeling approach is valid
only in the low frequency limit and mainly suited for cans with
large aspect ratios. The second model describes can-to-can com-
munication with the Rayleigh conductivity. The qualitative behav-
ior is satisfactory and valid for a wider frequency range. Both
models can be used to understand the structure of the acoustic
spectrum. However, they are based only on geometrical parame-
ters and cannot predict, at a quantitative level, the correct eigen-
frequencies of the system.

We then derived an extension that accounts not only for geo-
metrical parameters but also flow parameters in terms of an iner-
tial characteristic length Lchar;m. This additional parameter models
how the acoustic flow in the gap is influenced by the azimuthal
order of the mode. We demonstrated that such a 1D model can
accurately capture the physics and shows excellent agreement
with the reference, despite the strong 2D effects observed in the
region of the gap.

We performed a Design of Experiments study to apply this
model to other geometrical configurations and built correlations
for Lchar;m. We demonstrated that the characteristic length depends
primarily on the azimuthal order m and the coupling strength L�g
and linear regressions were proposed with satisfactory results.
Finally, we discussed the limits of validity of the model.

In this study, we considered a pure acoustic model. The impact
of losses and mean flow on the characteristic length can be inves-
tigated in future work.
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Nomenclature

c ¼ speed of sound (m s–1)
DoE ¼ design of experiments

f, g ¼ characteristic wave amplitudes (m s–1)
H ¼ width of the can (m)

He ¼ Helmholtz number, kL
k ¼ wave number (rad m–1)

KR ¼ Rayleigh conductivity (m)
L ¼ length of the can (m)

L� ¼ aspect ratio of the can, L/H
Lchar;m ¼ characteristic length (m)

Lg ¼ width of the annular gap (m)
L�char;m ¼ dimensionless characteristic length, Lchar;m=H

L�g ¼ coupling strength, Lg=H

LOM ¼ low-order model
m ¼ Bloch wave number
N ¼ number of cans

NRMSE ¼ normalized root-mean-square error
p0 ¼ acoustic pressure (Pa)
Rm ¼ equivalent reflection coefficient

u0 ¼ acoustic velocity (m s–1)
c ¼ heat capacity ratio

Fig. 11 Phase response of the gap as predicted by the charac-
teristic length model (crosses) compared to the 2D Helmholtz
reference (full line). Colors indicate the azimuthal order as
defined in Fig. 4. Intersections with the black dashed lines give
the eigenfrequencies. As the frequency increases, the gap
becomes acoustically non-compact, the 1D modeling approach
reaches its limits of validity and the model deviates from the ref-
erence case.
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q ¼ density (kg m–3)
u ¼ velocity potential (m2 s–1)
x ¼ complex frequency (rad s–1)
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Rhode-St-Genèse, Belgium, Paper No. VKI LS 2004–05.

[28] Paschereit, C. O., and Polifke, W., 1998, “Investigation of the Thermo-Acoustic
Characteristics of a Lean Premixed Gas Turbine Burner,” ASME Paper No. 98-
GT-582.

[29] Stow, S., Dowling, A., and Hynes, T., 2002, “Reflection of Circumferential
Modes in a Choked Nozzle,” J. Fluid Mech., 467, pp. 215–239.

[30] Gentemann, A., Fischer, A., Evesque, S., and Polifke, W., 2003, “Acoustic
Transfer Matrix Reconstruction and Analysis for Ducts With Sudden Change of
Area,” AIAA Paper No. 2003-3142.

[31] Flohr, P., Paschereit, C. O., and Bellucci, V., 2003, “Steady CFD Analysis for
Gas Turbine Burner Transfer Functions,” AIAA Paper No. 2003-1346.

[32] Schuermans, B., Bellucci, V., Guethe, F., Meili, F., Flohr, P., and Paschereit,
O., 2004, “A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a
Turbulent Premixed Flame,” ASME GT2004-53831.

[33] Bothien, M. R., and Wassmer, D., 2015, “Impact of Density Discontinuities on
the Resonance Frequency of Helmholtz Resonators,” AIAA J., 53(4), pp.
877–887.

[34] McClarren, R., 2018, Uncertainty Quantification and Predictive Computational
Science: A Foundation for Physical Scientists and Engineers, Springer Interna-
tional Publishing, New York.

[35] Loeppky, J. L., Sacks, J., and Welch, W. J., 2009, “Choosing the Sample Size
of a Computer Experiment: A Practical Guide,” Technometrics, 51(4), pp.
366–376.

[36] Munjal, M. L., 2014, Acoustics of Ducts and Mufflers, 2nd ed., Wiley,
Chichester, West Sussex, UK.

121004-10 / Vol. 143, DECEMBER 2021 Transactions of the ASME

130



Guillaume J. J. Fournier1

TUM School of Engineering and Design,

Department of Engineering Physics and

Computation,

Technical University of Munich,

Boltzmannstr. 15,

Garching 85748, Germany

e-mail: fournier@tfd.mw.tum.de

Felicitas Schaefer
TUM School of Engineering and Design,

Department of Engineering Physics and

Computation,

Technical University of Munich,

Boltzmannstr. 15,

Garching 85748, Germany

e-mail: schaefer@tfd.mw.tum.de

Matthias Haeringer
TUM School of Engineering and Design,

Department of Engineering Physics and

Computation,

Technical University of Munich,

Boltzmannstr. 15,

Garching 85748, Germany

e-mail: haeringer@tfd.mw.tum.de

Camilo F. Silva
TUM School of Engineering and Design,

Department of Engineering Physics and

Computation,

Technical University of Munich,

Boltzmannstr. 15,

Garching 85748, Germany

e-mail: silva@tfd.mw.tum.de

Wolfgang Polifke
TUM School of Engineering and Design,

Department of Engineering Physics and

Computation,

Technical University of Munich,

Boltzmannstr. 15,

Garching 85748, Germany

e-mail: polifke@tum.de

Interplay of Clusters of Acoustic
and Intrinsic Thermoacoustic
Modes in Can-Annular
Combustors
Thermoacoustic systems can exhibit self-excited instabilities of two nature, namely cavity
modes or intrinsic thermoacoustic (ITA) modes. In heavy-duty land-based gas turbines
with can-annular combustors, the cross-talk between cans causes the cavity modes of var-
ious azimuthal order to create clusters, i.e., ensembles of modes with close frequencies.
Similarly, in systems exhibiting rotational symmetry, ITA modes also have the peculiar
behavior of forming clusters. In the present study, we investigate how such clusters inter-
play when they are located in the same frequency range. We first consider a simple Rijke
tube configuration and derive a general analytical low-order network model using only
dimensionless numbers. We investigate the trajectories of the eigenmodes when changing
the downstream length and the flame position. In particular, we show that ITA and acous-
tic modes can switch nature and their trajectories are strongly influenced by the presence
of exceptional points. We then study a generic can-annular combustor. We show that
such configuration can be approximated by an equivalent Rijke tube. We demonstrate
that, in the absence of mean flow, the eigenvalues of the system necessarily lie on specific
trajectories imposed by the upstream conditions. [DOI: 10.1115/1.4055381]

1 Introduction and Motivation

Lean premixed combustion systems have been developed in
order to reduce emissions and address environmental issues.
Unfortunately, such technology is also more prone to combustion
instabilities [1,2]. The coupling between the unsteady heat release
of the flame and the acoustics of the system may result in a posi-
tive feedback loop leading to self-excited instabilities with grow-
ing pressure fluctuations. It is crucial to understand and mitigate
such phenomenon as repeated exposure to high level of pressure
can lead to catastrophic engine failure [3].

Since the Apollo program and the development of modern
rocket engines, thermoacoustic instabilities have been interpreted
as acoustic eigenmodes of the system driven by unsteady heat
release [4,5]. However, Hoeijmakers et al. [6,7], experimentally
and with a simple analytical model, showed evidence of thermoa-
coustic instabilities in an anechoic environment. This situation

was paradoxical and constituted a significant deviation from the
established interpretation. These observations were later con-
firmed with high-fidelity numerical simulations [8,9]. Bomberg
et al. [10] formally identified the so-called intrinsic thermoacous-
tic (ITA) feedback loop, a flame-flow-acoustic interaction intrinsic
to the flame and its immediate surrounding and not involving the
acoustics of the system, which allowed Emmert et al. [11] to jus-
tify the physical nature of the previous observations. Emmert
et al. [12] then demonstrated that the ITA feedback loop gives rise
to a new set of thermoacoustic modes of different nature also for
reflecting boundaries and identified such an ITA mode as the most
unstable mode in a longitudinal test-rig. Yong et al. [13] showed
that for a marginally stable ITA mode, the velocity fluctuations
and the gradient of pressure fluctuations change sign across the
flame, thus providing a simple identification criterion.

This new paradigm fundamentally changed the understanding
of thermoacoustic instabilities and shed a new light on inexplica-
ble phenomena reported in earlier studies, such as “the new set of
modes” described by Dowling and Stow [14], the “bulk mode”
highlighted by Eckstein and Sattelmayer [15,16], or the
“convective scaling” of thermoacoustic eigenfrequencies [17].
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Numerous studies then investigated the role of both types of ther-
moacoustic instabilities. Hosseini et al. investigated the interplay
between modes of ITA and acoustic origin and showed that, when
they are far away from one another, they do not influence each
other [18]. Mensah et al. [19] highlighted the presence of excep-
tional points in the spectrum due to the coalescence of modes of
ITA and acoustic origin. Silva et al. [20] and Orchini et al. [21]
further investigated the role of exceptional points in the interplay
between ITA and acoustic modes and highlighted characteristic
trajectories. Buschmann et al. [22,23] observed the existence of
ITA modes in an annular combustor and showed that they appear
in clusters, i.e., a collection of eigenmodes with close oscillation
frequencies but different growth rates. Fournier et al. [24] used a
low-order model to explain why the ITA clusters align around a
“pure ITA frequency,” i.e., the frequency of an ITA mode in an
anechoic environment.

Annular and can-annular combustors exhibit discrete rotational
symmetry and the azimuthal dimension leads to interesting new
properties. Numerical simulations [25,26] and experiments [27]
revealed that the full can-annular configuration gives rise to new
eigenmodes, with mode shapes involving multiple cans, that do
not exist in a single can approximation. Farisco et al. [28] numeri-
cally investigated the effect of the gap, demonstrated that the
cross-talk between cans cannot be ignored and estimated a trans-
mission coefficient. Ghirardo et al. [29] gave further proof using
two-dimensional Helmholtz simulations and experimental results.
They highlighted that modes of various azimuthal orders emerge
due to the weak coupling between cans and form clusters of
acoustic modes. Jegal et al. [30] and Moon et al. [31,32] used a
test-rig with two and four cans, respectively, to explore the effect
of can coupling on the stability of the burners. Because the
eigenmodes are closely spaced in clusters, mixed states, with sev-
eral distinct types of interaction patterns, were observed.

Recent studies tackled the problem at a more fundamental level
using low-order network models. Fournier et al. [24] proposed the
modeling of the gap as a thin annulus and the method was applied
by Haeringer et al. [33] in a strategy to tune single-can test-rigs to
mimic full engines. Von Saldern et al. [34] proposed to model the
cross-talk between cans with the Rayleigh conductivity, which
relates the acoustic flux through the aperture to the pressure gradi-
ent between cans. Both modeling approaches were compared by
Fournier et al. [35] and an extension was given, using a flow
parameter in terms of a characteristic length, giving quantitatively
accurate results. Von Saldern et al. [36] derived an effective
impedance model for non-compact connections and analyzed the
role of liners in damping azimuthal thermoacoustic modes.
Orchini [37] and Pedergnana and Noiray [38] explored the effect
of mean flow and derived effective impedance models that show
explicit dependence on the grazing flow Mach number. Orchini
et al. [39] then showed that such an effect gives rise to new sets of
clusters of modes of aeroacoustic origin due to the coupling with
the response of the shear layer in the apertures.

Both phenomena of ITA clusters in annular configuration and
acoustic clusters in can-annular configurations are fairly well
understood taken individually. In the present study, we want to
investigate the interplay between clusters of acoustic and ITA
modes in a can-annular combustor when they are located in the
same frequency range. The motivation of our study is illustrated
by Fig. 1, which shows the spectrum of two generic can-annular
combustors obtained with FEM Helmholtz computations using
COMSOL MULTIPHYSICS. The geometrical and thermodynamic param-
eters are given in Table 1 and both configurations are investigated
more in-depth in Sec. 4. For Configuration A, the ITA and acous-
tic clusters are distinct and identifiable. In Configuration B, the
flame position differs by only 15% but the total length of the com-
bustor is kept constant. In this scenario, the clusters cannot be dis-
tinguished from one another and seem to be entangled. The paper
aims at explaining such drastic change in the spectrum and giving
more insight on the ITA and acoustic trajectories in can-annular
combustors.

Fournier et al. [24] and Haeringer et al. [33] showed that, under
some assumptions discussed later in the paper, a can-annular com-
bustor can be fairly well represented by an equivalent Rijke tube.
The latter is one of the simplest thermoacoustic system and has
been extensively studied for decades. This allows us to gain
insight at a more fundamental level. Therefore, the paper struc-
tures as follows: in Sec. 2, we first consider a simple Rijke tube
and analytically derive the dispersion relation. The problem
remains generally applicable to configurations of arbitrary geo-
metrical and thermodynamic parameters thanks to the use of
Buckingham P theorem and dimensionless numbers. In Sec. 3,
we then investigate the influence of the length of the Rijke tube
and the flame position inside it on both ITA and acoustic modes.
In Sec. 4, the results are transposed to two generic can-annular
combustors and allow us to explain the spectrum observed in
Fig. 1. Finally, the modeling assumptions and the limits of validity
are discussed.

2 Network Model of a Generic Rijke Tube

Configuration

2.1 Case and Flow Description. The system considered is a
generic Rijke tube, as depicted in Fig. 2. Ducts of length Lu and
Ld are placed upstream and downstream of the flame, respectively.
The acoustic boundaries are defined by the reflection coefficients
Ri and Ro at the inlet and outlet, respectively. We assume zero

Fig. 1 Spectrum of two generic can-annular combustors
obtained with FEM computations. Parameters are given in
Table 1. For Configuration A (blue circles), the ITA and acoustic
clusters are distinct and identifiable. Two modes are offset from
their respective clusters, which is explained later in the paper.
In Configuration B (orange diamonds), the flame position inside
the combustor is changed but the total length is kept constant.
The clusters become entangled and cannot be distinguished
from one another.

Table 1 Geometrical and thermodynamic parameters of a
generic can-annular combustor such as presented in Ref. [33].
The FTF parameters are adapted from Ref. [40].

Configuration A Configuration B

N 10 10
H (m) 0.15 0.15
L�g 0.25 0.25
n 1.2 1.2
sF (s) 3:5� 10�3 3:5� 10�3

Lu (m) 0.5 0.8
Ld (m) 1.5 1.2

121015-2 / Vol. 144, DECEMBER 2022 Transactions of the ASME

132



mean flow when modeling the thermoacoustic behavior of the sys-
tem, in particular wave propagation in the ducts. The model is
based on a network approach. Recall the definition of the charac-
teristic wave amplitudes

f � 1

2

p0

�qc
þ u0

� �
; g � 1

2

p0

�qc
� u0

� �
(1)

In the ducts, we assume that only one-dimensional (1D) planar
acoustic waves propagate. The f and g waves in the system relate
as follows:

fu

gu

� �
¼ e�ssu 0

0 essu

� �
fi

gi

� �
;

fo
go

� �
¼ e�ssd 0

0 essd

� �
fd

gd

� �
(2)

The term e6ss represents the phase change resulting from the acous-
tic propagation of the wave and s is the time it takes to travel. su ¼
Lu=cu and sd ¼ Ld=cd are the propagation times upstream and
downstream the flame respectively, cu and cd are the speed of sound
in the respective regions, and s ¼ rþ ix is the Laplace variable,
with r the growth rate and x the angular frequency.

The acoustic boundary conditions of the system are defined
using reflection coefficients. The latter write as follows:

Ri ¼
fi

gi
; Ro ¼

go

fo
(3)

2.2 Flame and Unsteady Heat Release Model. The acoustic
flame model is derived using the linearized Rankine Hugoniot
jump equations for a compact heat source at rest with unsteady
heat release fluctuations [11,41]

p0d
�qdcd

¼ n
p0u

�qucu

u0d ¼ u0u þ h _q0

8><
>: (4)

where n ¼ �qucu=�qdcd is the ratio of specific impedances, h ¼
Td � Tuð Þ=Tu the normalized temperature ratio and _q0 ¼ _Q

0
�uu=

�_Q
the normalized global heat release fluctuations of the flame.

A flame transfer function (FTF) is used to relate the unsteady
heat release fluctuations _q0 to the acoustic velocity fluctuations
upstream the flame u0u. For this study, the famous n� s model
from Crocco is used [42]

_q0

u0u
¼ F sð Þ ¼ ne�ssF (5)

with n and sF the gain and time delay of the flame respectively.
Such a simple model captures the essential aspects of a generic
flame and is convenient to use in the context of low-order models
as it allows to derive analytical solutions.

Writing Eq. (4) with the characteristic wave amplitudes f and g
and inserting Eq. (5) leads to the flame transfer matrix:

fd
gd

� �
¼ T a sð Þ T b sð Þ
T b sð Þ T a sð Þ

� �
fu
gu

� �
(6)

The matrix is symmetric, with T a sð Þ ¼ 1
2

nþ 1þ nhe�ssFð Þ and
T b sð Þ ¼ 1

2
n� 1� nhe�ssFð Þ.

2.3 Dimensionless Nonlinear Eigenvalue Problem. Com-
bining Eqs. (2), (3), and (6), the governing equations of the system
can be cast in the matrix form:

1 �Ri 0 0

0 0 �Ro 1

T a sð Þe�s suþsdð Þ T b sð Þes su�sdð Þ �1 0

T b sð Þe�s su�sdð Þ T a sð Þes suþsdð Þ 0 �1

2
666664

3
777775

fi

gi

fo

go

2
666664

3
777775
¼

0

0

0

0

2
666664

3
777775
(7)

The four governing equations describing the system involve the
following parameters: the Laplace variable s, the propagation
times su and sd, the ratio of specific impedances n, the temperature
ratio h, the reflection coefficients Ri and Ro, the time delay of the
flame sF and its gain n. Among these nine parameters, five are
already dimensionless: n, n, h, Ri and Ro. The remaining four
parameters admit a basis of one fundamental dimension, time.
Applying Buckingham P theorem [43,44], we define the follow-
ing dimensionless numbers:

s� ¼ ssF; s�u ¼
su

sF
; s�d ¼

sd

sF
(8)

The system is therefore fully described using eight independent
dimensionless numbers. The nondimensionalization of the prob-
lem allows us to generalize the results to configurations of arbi-
trary geometrical and thermodynamic parameters, and therefore
allows us to draw general conclusions. This approach has success-
fully been applied in thermoacoustics [29,35,44].

Mathematically, Eq. (7) has nontrivial solutions if the determi-
nant of the matrix is null. Solving for the determinant and using
the dimensionless numbers defined in Eq. (8) leads to the disper-
sion relation:

D s�ð Þ ¼ nþ 1þ nhe�s�
� �

1� RiRoe�2s� s�uþs�dð Þ
� 	

þ n� 1� nhe�s�
� �

Rie
�2s�s�u � Roe�2s�s�d

� �
¼ 0 (9)

Equation (9) is nonlinear in s� and can generally not be solved
analytically. Instead, we solve it numerically using taX,2 the
open-source MATLAB package developed by the TFD group to
build and solve low-order thermoacoustic network models [45].
taX transforms Eq. (9) into a linear eigenvalue problem, thus
facilitating the use of direct solvers to easily find all eigenmodes,
in particular ITA modes, which remain difficult to find with itera-
tive methods due to their small basin of attraction [22,46].

2.4 Interesting Special Cases. Although Eq. (9) is nonlinear
in s�, in some cases, it can be solved analytically. We discuss here
three interesting limit cases. In the following, we assume the
reflection coefficients Ri and Ro to be real-valued and independent
of frequency.

� For the case of a very weak flame (i.e., n � 0), the dispersion
relation reduces to 1� RiRoe�2s� s�uþs�dð Þ ¼ 0 and we recover
the classical solution for an acoustic mode in a duct [7,47]:

Fig. 2 Schematic of a generic Rijke tube of length Lu upstream
the flame, Ld downstream the flame. The acoustic boundaries
are defined by the reflection coefficients Ri and Ro at the inlet
and outlet respectively. 2https://gitlab.lrz.de/tfd/tax
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St ¼ �sF ¼
j

4 s�u þ s�dð Þ
rsF ¼

1

2 s�u þ s�dð Þ
ln RiRo �1ð Þj
� 	 ; j 2N

8>>><
>>>:

(10)

where the Strouhal number St is the dimensionless frequency.
� In the case of anechoic boundaries Ri ¼ Ro ¼ 0, Eq. (9)

becomes nþ 1þ nhe�s� ¼ 0. The acoustic modes disappear
and only the pure ITA modes remain, i.e., ITA modes in an
anechoic environment. This was extensively discussed in
previous studies [7,11] and the eigenfrequencies are given
by:

St ¼ �sF ¼
2jþ 1ð Þ

2

rsF ¼ ln
nh

1þ n

� � ; j 2N

8>><
>>:

(11)

� A third remarkable case arises when the boundaries are iden-
tical Ri¼Ro, and when the flame is placed in the Rijke tube
specifically such as the propagation times in the upstream
and downstream ducts are identical s�u ¼ s�d . In this configu-
ration, the dispersion relation becomes:

nþ 1þ nhe�s�
� �

1� RiRoe�2s� s�uþs�dð Þ
� 	

¼ 0 (12)

The dispersion relation is factored in two terms. The first term
corresponds to the dispersion relation in an anechoic environ-
ment, leading to pure ITA modes, and the second term is the
dispersion relation for a pure acoustic system. Although a
flame is present and the acoustic boundaries are not anechoic,
the eigenvalues of the thermoacoustic system correspond
exactly to the pure ITA and acoustic modes defined by Eqs.
(10) and (11). Such a result can be explained using phasor
analysis, which has already been used in thermoacoustics
[13,16,17,24,48–50]. For example, if we consider the case of
fully reflecting boundaries Ri ¼ Ro ¼ 61, the acoustic mode
is marginally stable, thus simplifying the phasor analysis with
arrows of fixed length. At the inlet and the outlet, to satisfy the
boundary conditions, the phasor f and g have opposite direc-
tions (case Open–Open) or the same direction (case Closed
–Closed) respectively. Traveling from the boundaries to the
flame, from both upstream and downstream sides, the phasors
rotate by an identical angle xsu ¼ xsd ¼ p=2. The flame is
located at a velocity node or a pressure node, respectively.
The eigenmodes are simply the half-wave modes for a simple
acoustic system with a temperature jump.

3 Interplay of Intrinsic Thermoacoustic and Acoustic

Eigenmodes

In this section, we investigate the impact on the eigenmodes of
the length of the Rijke tube and the position of the flame inside it.
We consider here only the case Open–Open Ri ¼ Ro ¼ �1. The
FTF parameters n and sF are kept constant, as well as the flame
thermodynamic parameters h, n.

3.1 Short Upstream Length. In this case, we consider a short
upstream length, the dimensionless upstream propagation time is
small s�u¼ 0.1. We change the downstream length, i.e., we vary
the downstream dimensionless propagation time s�d from 0 to 2,
all other parameters being held constant. We consider only the
fundamental acoustic and ITA thermoacoustic modes and disre-
gard all the higher-order modes.

Figure 3 depicts the trajectories in the complex plane of both
eigenmodes. When increasing the downstream length, the fre-
quency of the acoustic mode decreases, as expected. For the ITA

mode, when s�d is small, the acoustic mode is far away and the two
modes do not interplay. Therefore, its growth rate changes but the
frequency remains constant and equal to the pure ITA frequency
St ¼ �sF ¼ 1=2 [20,21,51]. When increasing s�d , the ITA mode
eventually converges to a special point, indicated by the cross in
Fig. 3. The point can clearly be identified: the system behaves
exactly as if, just after the flame, the duct Ld and the outlet bound-
ary are replaced by a non-reflecting boundary, i.e., R¼ 0, while
the upstream condition remains unchanged (Ri ¼ �1). The flame
is placed in an effective semi-anechoic environment. This can be
explained by the fact that Rd ¼ gd=fd ¼ Roe�2s�s�d , and for positive
growth rate, when s�d increases, limsd!1 jRdj ¼ jRoje�rsd � 0. In
other words, the longer the downstream duct, the weaker the
effective reflection coefficient for an unstable mode. The system
downstream of the flame is equivalent to a non-reflecting
boundary.

The red circles mark the setup where s�d ¼ s�u. For this specific
scenario, the two modes are decoupled as shown by Eq. (12).
Here, the acoustic mode is outside of the frequency range of inter-
est and therefore not shown in Fig. 3. However, the ITA mode is
indeed present and verifies the analytical expression Eq. (11).

Figure 4 shows similar results for a different upstream configu-
ration. In this case, the upstream length is such that s�u ¼ 0:2, and
all other parameters are kept constant and identical to the previous
case. We vary the downstream length, i.e., s�d increases from 0 to
2. Similarly to the previous case, when s�d remains small, the ITA
and acoustic modes are far away from each other and do not inter-
play: the ITA mode has a constant pure ITA frequency St¼ 1/2,
and its growth rate changes. However, for larger downstream
lengths, the ITA mode does not converge to the semi-anechoic
mode, but passes around it and keeps decreasing in frequency: it
turns into the acoustic mode. Conversely, the mode initially clas-
sified as acoustic, when s�d is small, first decreases in frequency
but then converges to the semi-anechoic eigenmode. It is high-
lighted that the two modes can switch nature, as previously
reported [18,34,47]. However, we will not discuss how the
eigenmodes can be classified as ITA and acoustic and when pre-
cisely the modes switch nature as this question is out of the scope
of this study and already discussed by Yong et al. [50].

Fig. 3 Trajectories of the eigenmodes in the complex plane for
a short upstream, s�u 5 0:1 fixed. When increasing s�d , i.e.,
increasing the downstream length, as expected, the frequency
of the acoustic mode decreases. On the other hand, the ITA is
around its pure ITA frequency St 5 1/2 but its growth rate
changes. Eventually, the ITA mode converges to the semi-
anechoic configuration identified by the cross. The circle indi-
cates when s�d 5 s�u , i.e., when the modes are fully decoupled
according to Eq. (12). However, note that the acoustic mode is
outside of the frequency range of interest and therefore not
visible.
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3.2 Long Upstream Length: The Impact of an Exceptional
Point on the Acoustic and Intrinsic Thermoacoustic Trajecto-
ries. We now investigate the trajectories when the dimensionless
upstream propagation time is large s�u ¼ 0:45. All other parame-
ters are kept constant and equal to the case described in Sec. 3.1.
The downstream length is again varied such that s�d increases from
0 to 2. Figure 5 shows the trajectories of the eigenmodes in the
complex plane. When increasing s�d, the two eigenmodes first con-
verge toward each other before changing directions, which sug-
gests the presence of an exceptional point (XP) in the vicinity of
the parameter space. The circles indicate when the propagation
times are identical s�d ¼ s�u: the eigenmodes satisfy the pure ITA
and acoustic modes defined by Eqs. (10) and (11).

Exceptional points are found in various disciplines, including
thermoacoustics [19,20]. At an exceptional point, at least two
eigenvalues and their respective eigenfunctions coalesce, and the
eigenvalue sensitivity with respect to changes in parameters
becomes infinite. Recall that the eigenvalues are the solution of
the dispersion relation:

D s�; s�d; n
� �

¼ 0 (13)

Eigenvalues can be classified according to their algebraic and geo-
metric multiplicity, am and gm respectively. The algebraic multi-
plicity quantifies the multiplicity of the eigenvalue as a root of the
dispersion relation Eq. (13). The geometric multiplicity is the
dimension of the associated eigenspace, i.e., the number of line-
arly independent eigenvectors. Eigenvalues can be simple
(am ¼ gm ¼ 1), semi-simple (am ¼ gm > 1) or defective
(am> gm). Defective eigenvalues that are branch-point singular-
ities are called exceptional points (XPs). In the context of ther-
moacoustics, XPs are primarily attributed to the interplay between
intrinsic thermoacoustic modes (ITA) and acoustic modes, i.e.,
thermoacoustic modes of different natures [19]. Previous studies
have investigated XPs associated with the parameters (n; sF)
[19,44], or (sc; Ro), where sc is the time-delay of a realistic flame
impulse response [52]. Indeed, for the modes to coalesce, they
need to have the same frequency, mainly driven by sF or sc for an

ITA mode, and the same growth rate, mainly driven by the gain
(strength of the flame n) or losses (Ro 6¼ 61).

In the present study, the approach is different because the time-
delay of the flame sF is fixed, which in turn settles the value of the
pure ITA frequency (solution of Eq. (11)). By changing s�d , we
allow the acoustic mode to move in the complex plane and be in
the same frequency range as the ITA mode. For the modes to coa-
lesce, their growth rates must also be equal, which is obtained by
changing the strength of the flame n. According to Mensah et al.
[19], for an ITA and acoustic mode to coalesce, the following
relations need to be satisfied:

@D s�; s�d; nð Þ
@s�

¼ 0 ð14Þ

@2D s�; s�d; nð Þ
@s�2

6¼ 0 ð15Þ

8>>><
>>>:

The solution of the complex-valued Eqs. (13) and (14) is the set
of parameters (s�d;XP, nXP) and the defective eigenvalue s�XP. We
highlight here one special configuration where an easy analytical
solution is found. For the special case where s�d ¼ s�u ¼ 1=2, fol-
lowing Eqs. (10) and (11), the ITA and the acoustic mode share
the same frequency St¼ 1/2. For the modes to coalesce, they need
also to have the same growth rate. The acoustic mode is margin-
ally stable. For the ITA mode to also be marginally stable, the
gain of the flame response must be nXP ¼ 1þ nð Þ=h. It is straight
forward to demonstrate that the eigenvalue s�XP ¼ ip and the set of
parameters (s�d;XP ¼ 1=2, nXP) satisfy Eqs. (13) and (14).

However, in general, the XP cannot be found analytically, and
even finding it numerically remains challenging. For the configu-
ration s�u ¼ 0:45 depicted in Fig. 5, the method introduced by
Schaefer et al. [52] is applied to identify the exceptional point.
Results are shown in Fig. 6. Colors indicate isolines of flame
strength n, along which the downstream propagation time s�d
varies. We observe strong mode veering, a manifestation of
avoided crossing of two eigenvalues [20,21,44,53]. The presence
of the XP induces the eigenvalues to strongly veer, resulting in the
characteristic trajectories observed in Fig. 5. This also explains
why modes can switch nature, i.e., the mode of acoustic nature
when s�d is small becomes ITA for large values of s�d , and vice
versa.

Fig. 4 Trajectories of the eigenmodes in the complex plane for
a longer upstream length s�u 5 0:2 fixed. For small values of s�d ,
the ITA mode has once more its frequency near the pure ITA fre-
quency St 5 1/2, and its growth rate increases with s�d . However,
the ITA mode does not converge to the semi-anechoic point,
identified by the cross, but passes around it while its frequency
keeps decreasing. Conversely, the acoustic mode first
decreases in frequency but then converges to the semi-
anechoic eigenmode. The two eigenmodes switch nature. The
circle indicates when s�d 5 s�u and the ITA mode is a solution of
Eq. (11).

Fig. 5 Trajectories of the eigenmodes for the upstream config-
uration s�u 5 0:45. When increasing s�d , the modes first converge
toward each other before changing direction, suggesting the
presence of an exceptional point. The circles indicate when
s�d 5 s�u , the acoustic and ITA modes are effectively decoupled
and are solutions of Eqs. (10) and (11). Similarly to the results
shown in Fig. 4, the eigenmodes also switch nature.
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4 Application to Can-Annular Combustors

In this section, we want to extend the model to can-annular con-
figurations. We first describe a typical can-annular combustor. We
then show how such a system can be reduced to a simple Rijke
tube, thus allowing us to transpose the methods and results of
Secs. 2 and 3. Finally, we discuss the assumptions and limitations
of our modeling approach.

4.1 Case Description and Low-Order Modeling. The
generic combustor consists of N identical cans placed in an annu-
lar arrangement. Upstream the cans, we neglect the impact of the
plenum, as it often shows little influence [33]. The cans are acous-
tically decoupled and the inlet reflection coefficient is set to
Ri ¼ �1. At the outlet of the cans, a turbine is placed to extract
energy from the fluid. The acoustic response of the turbine stage
is modeled by a reflection coefficient with a fixed gain and a zero
phase response [54], we choose Ro¼ 1 as losses have little quanti-
tative impact [55]. The Mach number is low, typically below 0.2
[27,29]. Consequently, we assume zero mean flow when modeling
the thermoacoustic behavior of the cans. Finally, entropy waves
are assumed to have a negligible effect and are not taken into
account [29,56].

Figure 7 depicts a unit-cell of the investigated can-annular com-
bustor. Following previous studies [29,35], we consider cans of
width H and a gap of size Lg, leading to the coupling strength
between cans L�g ¼ Lg=H. The flame is placed inside the can at a
distance Lu and Ld from the inlet and outlet, respectively. Two
cases are investigated: Configuration A has a shorter upstream

duct than Configuration B, however, the total length of the com-
bustor Lu þ Ld is kept constant. The modeling of the flame is iden-
tical to Sec. 2.2. For the sake of simplicity, we consider a simple
n� s model adapted from Ref. [40], but results could be easily
extended to realistic flames, since distributed time delay models
are nothing more but a collection of individual n� s models [48].
The geometrical and thermodynamic parameters, inspired from a
realistic combustor such as presented in Ref. [33], are given in
Table 1.

4.2 Bloch Theory. As the cans are geometrically identical,
the system exhibits discrete rotational symmetry. Applying Bloch
theory [57], which is now well established in thermoacoustics
[24,29,33–35,58,59], the acoustic pressure in the frequency
domain can be written as

p̂ xð Þ ¼ w xð Þeimu; m ¼
�N

2
þ 1;…;

N

2
N even

�N � 1

2
;…;

N � 1

2
N odd

8><
>: (16)

where u is the azimuthal coordinate around the axis of rotational
symmetry, m is the Bloch wave number, identical to the azimuthal
order [29] and w xð Þ a function identical in all unit-cells and 2p=N
periodic in u.

The eigenmodes are classified into three groups: axial or push-
push (m¼ 0), push-pull (m ¼ N=2), and azimuthal modes (all
other values of m). We additionally assume reflection symmetry
along the planes u ¼ const: that pass through the center of the
cell (no mean flow in the azimuthal direction): the azimuthal
modes come in degenerate pairs which differ only by their spin-
ning direction. From the study of a single unit-cell, the behavior
of the full system is preserved by considering all azimuthal mode
orders m. We reduce the can-annular system to a single unit-cell
and apply Bloch boundaries in the gap region.

4.3 Equivalent Rijke Tube Model. Previous studies
[24,33–35] showed the possibility of transforming a can-annular
configuration into an equivalent longitudinal combustor, where all
the two-dimensional effects of can-to-can communication in the
cross-talk area are lumped into an equivalent outlet reflection
coefficient Rm. Using the characteristic length model introduced
by Fournier et al. [35], the equivalent reflection coefficient writes

Rm ¼ 1�
2 sin2 pm

N

� �

iSt
pL�char;ms�c

L�g
þ sin2 pm

N

� � (17)

with L�g ¼ Lg=H the coupling strength between the cans due to the
size of the gap, L�char;m ¼ Lchar;m=H the dimensionless characteris-
tic length that models the inertia of the volume of fluid, and s�c ¼
H= cdsFð Þ the dimensionless propagation time in the azimuthal
direction. The axial mode is a special case because the equivalent
reflection coefficient is simply Rm¼0 ¼ 1: the push-push mode is
not affected by the acoustic communication with neighboring
cans, i.e., the eigenmode is exactly the same as in the single can
system. For all the other azimuthal mode orders, the gain of the
equivalent reflection coefficient Rm is unity, however, its phase
response is not trivial, as shown in Fig. 8. Starting from p, the
phase monotonically decreases and converges toward zero as the
frequency increases. The characteristic length model shows per-
fect agreement with the FEM Helmholtz reference obtained with
COMSOL MULTIPHYSICS. For low frequencies St< 1, the phase
response of the gap can be approximated by the tangent at the ori-
gin, indicated by the dashed lines in Fig. 8. Since the phase
depends linearly on the frequency St, following the approach of
Fournier et al. [24], the equivalent reflection coefficient Rm can
therefore be replaced by a duct of length Lm terminated by a fully

Fig. 6 Identification of an exceptional point for the upstream
case s�u 5 0:45. Colors indicate isolines of flame strength n.
When varying the dimensionless downstream propagation time
s�d from 0.42 to 0.48, the XP causes the eigenmodes to strongly
veer, leading to the characteristic trajectories observed in
Fig. 5.

Fig. 7 Unit-cell of a generic can-annular combustor. The flame
is placed at a distance Lu and Ld from the inlet and the outlet,
respectively. The can is decoupled from the plenum at the inlet
and closed at the outlet. However, acoustic communication
with the neighboring cans is possible through the gap Lg.
Parameters are given in Table 1.
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reflecting open end as shown in Fig. 9. This equivalent duct of
length Lm induces an additional propagation time s�m ¼
Lm= cdsFð Þ downstream of the cans that writes:

Lm ¼
L�char;mH

2L�g sin2 pm

N

� � ; s�m ¼
L�char;ms�c

2L�g sin2 pm

N

� � (18)

For a given geometry, the higher the azimuthal order, the shorter
the equivalent duct. The full configuration is, therefore, reduced
to a simple Rijke tube, whose downstream length varies with the
azimuthal order m, representing the fact that the acoustic response
of the gap is mode order dependent. In consequence, the method-
ology and analysis introduced in Secs. 2 and 3 can be used to
understand the spectrum of the can-annular configurations. Note
however that this does not apply to the axial mode, which is sim-
ply obtained by solving the single can combustor.

4.4 Clusters of Eigenmodes and Their Trajectories. Fig-
ures 10 and 11 show the spectrum of the can-annular combustor
of Configurations A and B, respectively. Following the methodol-
ogy introduced in Sec. 3, since the upstream condition is, in both
cases, fixed, the trajectories when varying the downstream length
are obtained. The circles indicate the eigenvalues computed with
the reference FEM Helmholtz simulations, while the crosses are
the results from the equivalent Rijke tube model described in Sec.

4.3. The latter shows excellent agreement with the reference. A
small discrepancy is observed for the first azimuthal order m¼ 1.
This is explained by the fact that the approximation of a linear
phase response of the gap is valid only for low frequencies, as
shown in Fig. 8, and the low azimuthal orders are the first to devi-
ate from this approximation.

For Configuration A, s�u ¼ 0:251 and the trajectories obtained
resemble those shown in Fig. 4. For Configuration B, s�u ¼ 0:402
and the trajectories are similar to Fig. 5. In particular, an

Fig. 8 For the considered generic can-annular configuration,
the phase response of the gap obtained with FEM Helmholtz
computations (full lines) is shown as a function of the dimen-
sionless frequency St. The 1D model based on a characteristic
length (crosses) shows perfect agreement with the reference.
The phase response of the gap for the axial mode is trivially
null. For all other azimuthal orders, starting from p, the phase
monotonically decreases toward zero. For low frequencies
St < 1, the phase response of the gap can be approximated by
the tangent at the origin (dashed line). The higher the azimuthal
order m, the wider the frequency range over which this approxi-
mation holds.

Fig. 9 Equivalent Rijke tube with fully reflecting boundaries.
The equivalent length Lm varies with the azimuthal order of the
mode considered and models the behavior of the acoustic com-
munication through the gap. The larger the azimuthal order, the
shorter Lm.

Fig. 10 Eigenvalues of the can-annular Configuration A as pre-
dicted by FEM Helmholtz simulations (circles) compared to the
equivalent Rijke tube model (crosses). The latter shows excel-
lent agreement with the reference. Colors indicate the azimuthal
order as defined in Fig. 8. Except for the axial mode, all the
eigenvalues are located on the trajectories obtained when vary-
ing s�d . Their position on the trajectory depends on the mode
order through the additional equivalent length Lm. Note that
modes m 5 4 and m 5 5 almost coincide. The ITA and acoustic
clusters are distinct.

Fig. 11 Eigenvalues of the can-annular Configuration B as pre-
dicted by FEM Helmholtz simulations (circles) compared to the
equivalent Rijke tube model (crosses). The latter shows excel-
lent agreement with the reference. Colors indicate the azimuthal
order as defined in Fig. 8. All azimuthal eigenmodes are located
on the trajectories obtained when varying s�d and their exact
position on it depends on the mode order through the addi-
tional equivalent length Lm. Note that modes m 5 4 and m 5 5
almost coincide. For this configuration, the presence of an XP
makes the eigenmodes strongly veer.
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exceptional point forces the trajectories to veer in order to avoid
crossing. It is highlighted that, for both configurations, all the
other eigenvalues are located on the trajectories (except for the
special case of the axial mode m¼ 0, which behaves differently
from the rest of the cluster due to its different boundary condi-
tions). Indeed, for all the azimuthal orders, the Rijke tube models
are identical, in particular, they share the same flame response and
upstream conditions. However, they differ by their total down-
stream propagation times, which is s�t ¼ s�d þ s�m, where s�d is here
a constant fixed by the can length Ld, whereas s�m, due to the effec-
tive length Lm added to model the behavior of the gap, shows an
explicit dependence on the azimuthal mode order. This fully
explains the presence of all the eigenmodes on these trajectories.
Their exact position is, however, determined by the total down-
stream propagation time s�t . Following Eq. (18), low azimuthal
order modes are associated to large values of s�m, leading to a
larger total downstream propagation time s�t as observed in Figs.
10 and 11. In summary, the upstream conditions impose the
eigenmodes to follow specific trajectories, while their exact posi-
tion is fixed by the downstream conditions. This helps us to better
understand the spectrum observed initially in Fig. 1. For Configu-
ration A, the clusters are well separated, they do not interplay and
can easily be identified. For Configuration B, the presence of an
exceptional point plays a decisive role in shaping the trajectories
(with a characteristic veer where the modes seem to repel each
other), and, consequently, the spectrum of the considered system.
Although the clusters seem entangled, we can now easily under-
stand the trajectories the eigenmodes will follow when changing
parameters.

This new insight could be exploited for early stage designs of
new can-annular engines. Assuming that the design of the burners
is fixed and that the flame response is known for a given amount
of operating conditions, it may be possible to investigate the role
of the upstream and downstream geometry on the thermoacoustic
spectrum. The choice of the upstream can length Lu will impose
the trajectories in the complex plane on which the eigenmodes are
necessarily located. Finally, choosing the downstream length and
the gap parameters will then govern their exact position on these
trajectories. Note that changing the downstream parameters
affects the system and the modes location in different ways. For
example, changing the downstream length Ld induces a change in
the total downstream length that is identical for all mode orders:
all the modes are translated along the trajectories. Conversely, the
impact of a modification in the geometry of the cross-talk area
(width of the can or coupling strength) is different for each azi-
muthal order, since s�m shows an explicit dependence to the mode
order as shown in Eq. (18). Note also that changing the size of the
gap or the width of the can have antagonist effects. Indeed, the
larger the gap, ceteris paribus, the smaller the equivalent length,
and the closer the eigenvalues along the trajectories. Modes of
higher azimuthal order are closest within a cluster. Conversely,
increasing the width of the can increases the effective length Lm,
leading to a wider spread of the clusters.

This could be used to develop strategies to stabilize an engine.
Note that when we refer here to variations of Lu and Ld, we do not
necessarily mean a drastic change of geometry, which is out of the
question for later stages in the design. Instead, we refer to Lu and
Ld as parameters indicating the effect of acoustic transport times
upstream and downstream of the flame, which may be emulated
by tuning the flow circuits belonging to the combustion chamber.
For example, in the Configuration A shown in Fig. 10, the modes
of azimuthal order m ¼ 1; 2; 3; 4; and 5 on the lower branch are
unstable. Changing the cross-talk area, by either changing the can
width or gap size, will have a marginal effect on stabilizing the
cluster: Lm is already very short for the highest azimuthal order
and, no matter the cross-talk design, s�t cannot be smaller than
s�t ¼ s�d ¼ 0:49, which would still be unstable. However, reducing
the downstream length of the can Ld would translate all eigenmo-
des along the trajectory (in the direction of smaller s�t ) and have a
stabilizing effect on the entire cluster. Note, however, that a

change in Ld will also have an impact on the axial modes m¼ 0
and their trajectories should also be considered for a robust
design. Similarly, for Configuration B, as shown in Fig. 11, the
eigenmodes associated to the azimuthal order m¼ 1 on the lower
branch and m¼ 4 and m¼ 5 on the upper branch are unstable.
Increasing the can length Ld would translate all the eigenvalues
along the trajectories in the direction of higher s�t , thus stabiliz-
ing the two unstable modes of the upper branch. However, it
will further destabilize the azimuthal mode m¼ 1 and will
impact the stability of the axial modes m¼ 0 as well. Conversely,
reducing the coupling strength of the gap L�g would tend to
increase s�m, which would also have a stabilizing effect on the
two unstable modes of the upper branch (s�m small for high azi-
muthal order). Note, however, the axial modes m¼ 0 would
remain unaffected since the cross-talk area with the neighboring
cans has no impact on them. The above analysis is an example of
what the present work offers, which could be of help to develop
new strategies for designing stable can-annular combustors dur-
ing early stage studies. For a complete robust design, clusters of
harmonics should also be considered as they may be the most
unstable modes.

4.5 Modeling Assumptions and Limits of Validity. In this
section, we want to put our results in perspective and briefly dis-
cuss the main modeling assumptions and the limits of validity of
our models. In Sec. 4.3, we showed the possibility to replace the
complex-valued reflection coefficient Rm by an effective duct
length Lm. The main advantage of this approach is to model a
complex system—a cross-talk area in can-annular combustor—
with a very simple element, i.e., a duct, which gives good insight
and helps the fundamental understanding of the underlying
physics. As shown in Fig. 8, for higher azimuthal order m, this
modeling assumption is valid over a large frequency range, even
for frequencies St > 3. On the other hand, for lower azimuthal
order, in particular for m¼ 1, the range of validity is much nar-
rower, up to St< 1 in our case. However, since we assumed a
purely reactive coupling, the error made only affects the phase
response of the gap. Consequently, as shown in Figs. 10 and 11,
the eigenmodes obtained with the equivalent Rijke tube models
are indeed located on the trajectories, but their exact positions are
mispredicted. In conclusion, for understanding or when consider-
ing only the clusters associated with the fundamental modes, the
equivalent Rijke tube model can be used. However, when consid-
ering clusters of harmonics or to ensure quantitatively accurate
results, the characteristic length model of Fournier et al. [35]
should be preferred.

In Sec. 4.4, we showed that all the eigenmodes (except the spe-
cial case m¼ 0) necessarily lie on the same trajectory. This result
comes from two main assumptions. First of all, the plenum was
considered perfectly decoupled. However, if the plenum is taken
into account and modeled as a thin annulus [24,60], it will also
introduce an equivalent length Lm at the inlet that changes with
the azimuthal order. Consequently, for each azimuthal order, the
upstream condition will be different and each eigenmode will fol-
low its own trajectory. The second reason is the fact that the
cross-talk area, modeled with a characteristic length model, is
purely reactive. For each azimuthal order, the gap introduces a
different phase shift, but there is no amplification or damping.
However, recent studies by Pedergnana and Noiray [38] and
Orchini et al. [39] showed that, when accounting for mean flow
effects, the effective coupling impedance exhibit resistive effects.
In particular, as shown in Fig. 5 in [39], the magnitude of the
equivalent reflection coefficient is mode order dependent, i.e.,
depending on the azimuthal order considered, the gap will intro-
duce different amplification or damping. This effect causes the
mode to follow distinct trajectories. Finally, and more generally,
the 1D low-order modeling approach is inherently limited by two
factors: the gap needs to be acoustically compact (or its finite
extension modeled as in Ref. [36]) and only plane waves propa-
gate in the cans, all other modes being cut-off. These two factors
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were already discussed by Fournier et al. [35] and will also limit
the number of clusters that can be properly captured with a 1D
approach.

5 Summary and Conclusion

Starting from the observation that two similar can-annular con-
figurations can lead to drastically different spectra, we investi-
gated the interplay of acoustic and ITA clusters when they are in
the same frequency range. To simplify the problem, we first con-
sidered a Rijke tube, which is one of the simplest thermoacoustic
system and a fair approximation of can-annular combustors
[24,33], and we derived an analytical low-order network model.
Buckingham P theorem allowed us to define dimensionless num-
bers so that the problem remains generally applicable to configu-
ration of arbitrary parameters. We then investigated the interplay
between the acoustic and ITA modes. In particular, for a given
flame response, the impact on the eigenmodes of the downstream
duct length and the flame position inside the system was analyzed.

For short upstream configurations, when increasing the down-
stream length, the frequency of the acoustic mode decreases
whereas the ITA mode converges to a point identified as the
eigenvalue of the semi-anechoic system. Conversely, for longer
upstream configurations, the eigenmodes follow more peculiar tra-
jectories and can, for example, switch nature, which confirmed
previous observations [18,34,47]. In particular, the role of excep-
tional points in the complex plane was highlighted since it causes
the eigenvalues to strongly veer, leading to characteristic
trajectories.

We then considered two generic can-annular configurations.
Using Bloch theory, we exploited the discrete rotational symmetry
to reduce the study to a single unit-cell while preserving the
dynamics of the full system. We confirmed the possibility to
approximate the systems by a simple Rijke tube where the behavior
of the gap was simply lumped into an additional effective length.
Such modeling allowed us to explain the spectra of both systems.
In particular, we showed that, in the absence of mean flow, the
eigenmodes necessarily follow specific trajectories, imposed by the
upstream conditions, and their exact position along the latter is
determined by the gap and downstream parameters. We highlighted
that, when ITA and acoustic clusters do not interplay, they are well
distinct and identifiable, as exemplified in Configuration A (see
Fig. 10). However, the presence of an exceptional point in the com-
plex plane strongly influences the trajectories, as already reported
by Silva et al. [44] and Mensah et al. [19]. ITA and acoustic clus-
ters can also be entangled, as illustrated in Fig. 11 with Configura-
tion B. New insight is gained when considering the trajectories the
modes follow. In that sense, we confirmed the conclusion of
Orchini et al. [21] who showed that the interaction between acous-
tic modes, ITA modes and exceptional points is essential to predict
the stability in (can-)annular combustors.

The proposed framework may be of great utility for the design
of can-annular combustors. This is exemplified by the two cases
under investigation at the end of Sec. 4.4. The assumptions made
by the proposed modeling strategy, as well as the limits of valid-
ity, are explicitly discussed in Sec. 4.5.

In this study, we considered a perfectly symmetric can-annular
configuration. Symmetry breaking, due to, for example, geometri-
cal imperfections, flow asymmetry, or nonlinear response of the
flames, plays a major role in annular cavities because the degener-
ate pairs of azimuthal eigenmodes split into two distinct modes
[61]. In can-annular configurations, it would double the number of
modes in the acoustic and ITA clusters and could potentially
affect their trajectories or lead to peculiar behaviors such as mode
localization. This effect should be investigated in future studies.
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Nomenclature

Roman

cu; cd ¼ speed of sound upstream/downstream (m s–1)
F ¼ flame transfer function

f ; g ¼ characteristic wave amplitudes (m s–1)
H ¼ width of a can (m)
Lg ¼ size of the gap (m)
Lm ¼ equivalent length (m)

Lu; Ld ¼ length of the upstream/downstream duct (m)
L�g ¼ coupling strength, L�g ¼ Lg=H
m ¼ Bloch wave number
n ¼ interaction index of the flame
N ¼ number of cans
p0 ¼ acoustic pressure (Pa)
_q0 ¼ normalized heat release fluctuations

Ri; Ro ¼ reflection coefficient at the inlet/outlet
Rm ¼ equivalent reflection coefficient

s ¼ Laplace variable, s ¼ rþ ix (rad s1)
s� ¼ dimensionless Laplace variable, s� ¼ ssF

St ¼ Strouhal number, St ¼ �sF

Tu; Td ¼ upstream/downstream temperature (K)
u0 ¼ acoustic velocity (m s–1)

Greek Symbols

h ¼ normalized temperature ratio, h ¼ Td=Tu � 1
� ¼ frequency (Hz)
n ¼ ratio of specific impedances, n ¼ �qucu=�qdcd

�qu; �qd ¼ upstream/downstream mean density (kg m–3)
r ¼ growth rate (s–1)

sF ¼ time delay of the flame (s)
su; sd ¼ upstream/downstream propagation time, si ¼ Li=ci (s)

s�m ¼ dimensionless equivalent propagation time
s�t ¼ total dimensionless propagation time, s�t ¼ s�d þ s�m

s�u; s�d ¼ dimensionless upstream/downstream propagation time,
s�i ¼ si=sF

x ¼ angular frequency, x ¼ 2p� (rad s–1)

Abbreviations

FTF ¼ flame transfer function
XP ¼ exceptional point
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