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Abstract 

The advent of automated and electric buses, with their unique characteristics (such as human 

driving cost savings, charging needs, and driving range limitations related to energy 

consumption), introduces new aspects to the planning and operation of public transportation 

services. Therefore, this dissertation aims to develop novel mathematical optimization models 

and solution algorithms for the optimal planning of urban bus systems with automated, electric, 

and mixed-sized vehicles. It focuses on the development of (i) automated bus planning models, 

(ii) Electric Bus (EB) planning models equipped with a detailed (microscopic) energy 

estimation framework, (iii) multi-dimensional decision-making models for the selection of 

optimal charging strategies for EB systems, and (iv) mixed-fleet bus planning models. 

In our formulation of automated bus systems, we develop a novel Mixed-Integer Nonlinear 

Programming (MINLP) model to optimize service frequency and bus size, considering 

time-dependent demand, stochastic travel times, and users’ discomfort from crowding for 

sitting and standing passengers. The model is tested on real-world bus routes in Regensburg 

(Germany) and Santiago (Chile). We also formulate an EB planning problem as an Integer 

Nonlinear Programming (INLP) model, integrating a detailed energy consumption model 

(based on longitudinal vehicle dynamics) into the planning process. The model optimizes the 

selection of vehicle types and service frequencies to minimize total costs. The model 

applicability is investigated on a real bus corridor in Santiago, Chile. Besides, we propose a 

Multi-Criteria Decision-Making (MCDM) approach for selecting the best EB charging 

strategy, considering economic, environmental, social, operational, and quality-of-service 

criteria. A Fuzzy Best-Worst Method (FBWM) is developed to determine the weight of criteria, 

and a Fuzzy Ranking of Alternatives through Functional mapping of criterion subintervals into 

a Single Interval (FRAFSI) method is designed to rank available charging options. Finally, to 

address a Mixed-Fleet Bus Scheduling (MFBS) problem, a novel MINLP model is developed 

to optimize vehicle assignment and dispatching plans, considering user and operator costs and 

passenger comfort. To enhance the optimization process, we develop two hybrid 

metaheuristics, Genetic Algorithm combined with Simulated Annealing (GA-SA) and Grey 

Wolf Optimizer combined with Simulated Annealing (GWO-SA), with a Taguchi approach to 

calibrate their parameters. We test the developed model and metaheuristics on a real bus 

corridor in Santiago, Chile. 

This dissertation presents several novel findings. We find that although the operator benefits 

of automation are greater in high-income (developed) countries, the level of public transport 
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demand plays a significant role, as substantial user cost savings from automation are attainable 

in crowded routes, even in lower-income (developing) countries. Additionally, a fixed energy 

rate in EB planning, rather than a detailed model, reduces planning accuracy as demand rises. 

In optimizing mixed-fleet operations, more advanced algorithms enhance service quality and 

fleet size optimization in crowded scenarios, whereas simpler algorithms suffice for  

lower-demand situations. 
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Zusammenfassung 

Das Aufkommen automatisierter und elektrischer Busse mit ihren einzigartigen Merkmalen  

(z. B. Kosteneinsparungen durch menschliches Fahren, Ladebedarf und 

Reichweitenbeschränkungen im Zusammenhang mit dem Energieverbrauch) bringt neue 

Aspekte für die Planung öffentlicher Verkehrsdienste mit sich. Ziel dieser Dissertation ist es 

daher, neuartige mathematische Optimierungsmodelle und Lösungsalgorithmen für die 

optimale Planung von Stadtbussystemen mit automatisierten, elektrischen und gemischten 

Fahrzeugen zu entwickeln. Sie konzentriert sich auf die Entwicklung von (i) Modellen für die 

Planung von automatisierten Bussen, (ii) Modellen für die Planung von Elektrobussen (EB), 

die mit einem detaillierten (mikroskopischen) Rahmen für die Energieschätzung ausgestattet 

sind, (iii) mehrdimensionalen Entscheidungsmodellen für die Auswahl optimaler 

Ladestrategien für EB-Systeme und (iv) Modellen für die Planung von gemischten Busflotten. 

In unserem automatisierten Busplanungsmodell entwickeln wir eine neuartige Formulierung 

der gemischt-ganzzahligen nichtlinearen Programmierung (MINLP) zur Optimierung der 

Bedienungshäufigkeit und der Busgröße unter Berücksichtigung der zeitabhängigen 

Nachfrage, der stochastischen Reisezeiten und des Unbehagens der sitzenden und stehenden 

Fahrgäste durch Überfüllung. Das Modell wird auf realen Buslinien in Regensburg 

(Deutschland) und Santiago (Chile) getestet. Wir formulieren auch ein EB-Planungsproblem 

als ein Modell der ganzzahligen nichtlinearen Programmierung (INLP) und integrieren ein 

detailliertes Energieverbrauchsmodell (basierend auf der Längsdynamik der Fahrzeuge) in den 

Planungsprozess. Das Modell optimiert die Auswahl von Fahrzeugtypen und 

Bedienungshäufigkeiten zur Minimierung der Gesamtkosten. Die Anwendbarkeit des Modells 

wird auf einem realen Buskorridor in Santiago, Chile, untersucht. Außerdem schlagen wir 

einen multikriteriellen Entscheidungsfindungsansatz (MCDM) zur Auswahl der besten EB-

Ladestrategie vor, der ökonomische, ökologische, soziale, betriebliche und 

Servicequalitätskriterien berücksichtigt. Es wird eine Fuzzy Best-Worst-Methode (FBWM) 

entwickelt, um die Gewichtung der Kriterien zu bestimmen, und eine Fuzzy Ranking of 

Alternatives through Functional mapping of criterion subintervals into a Single Interval 

(FRAFSI) Methode wird entwickelt, um eine Rangfolge der verfügbaren Gebührenoptionen zu 

erstellen.  Schließlich wird ein neuartiges MINLP-Modell zur Optimierung der 

Fahrzeugzuweisung und des Fahrplans unter Berücksichtigung der Kosten für Benutzer und 

Betreiber sowie des Fahrgastkomforts entwickelt, um ein Problem der gemischten Busflotte 

(MFBS) zu lösen. Um den Optimierungsprozess zu verbessern, entwickeln wir zwei hybride 
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Metaheuristiken, den Genetischen Algorithmus kombiniert mit Simulated Annealing (GA-SA) 

und den Grey Wolf Optimizer kombiniert mit SA (GWO-SA), mit einem Taguchi-Ansatz zur 

Kalibrierung ihrer Parameter. Wir testen das entwickelte Modell und die Metaheuristik auf 

einem realen Buskorridor in Santiago, Chile. 

Diese Dissertation präsentiert mehrere neue Erkenntnisse. Wir stellen fest, dass der Nutzen der 

Automatisierung für den Betreiber zwar in Ländern mit hohem Einkommen (Industrieländern) 

größer ist, dass aber das Niveau der Nachfrage nach öffentlichen Verkehrsmitteln eine wichtige 

Rolle spielt, da selbst in Ländern mit niedrigem Einkommen (Entwicklungsländern) auf 

überfüllten Strecken beträchtliche Einsparungen bei den Nutzerkosten durch Automatisierung 

erzielt werden können. Außerdem verringert ein fester Energietarif in der EB-Planung anstelle 

eines detaillierten Modells die Planungsgenauigkeit bei steigender Nachfrage. Bei der 

Optimierung des Betriebs mit gemischten Flotten verbessern fortschrittlichere Algorithmen die 

Servicequalität und die Optimierung der Flottengröße in überfüllten Szenarien, während 

einfachere Algorithmen für Situationen mit geringerer Nachfrage ausreichen. 
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1 Introduction 

1.1 Research motivation 

The emergence of automated and electric buses, distinguished by their unique attributes 

(such as human driving cost savings and driving range constraints related to energy 

consumption), presents new dimensions in the planning and operation of public transportation 

services. The design and mathematical modeling of these emerging fleets require a deep 

understanding of the factors that distinguish them from traditional fleets. This dissertation 

attempts to explore the evolving landscape of urban bus systems, with a primary focus on the 

development of state-of-the-art mathematical optimization models and solution algorithms to 

address the challenges and opportunities associated with the planning of automated, electric, 

and mixed-sized bus fleets. 

The rise of automated vehicles, offering automated driving capabilities, holds the 

potential to revolutionize the transportation landscape (Nair and Bhat, 2021). Particularly, 

public transport is considered as one of the most suitable candidates to benefit from automated 

driving capabilities. In urban bus operations, human driving costs (drivers’ salaries) can 

account for a significant share of the total operating costs, e.g., between 30% and 70% of total 

bus operator costs in countries such as Japan, Australia, Chile and Germany  

(Abe, 2019; Tirachini and Antoniou, 2020). The adoption of automated bus operations with 

autonomous driving technologies can significantly reduce human-related driving costs by 

eliminating (at least a part of) drivers’ wages. 

Based on the levels of driving automation defined by the Society of Automotive 

Engineers (SAE), future vehicles can operate with no need for human driving under certain 

conditions at Level 4, and under all conditions at Level 5 (SAE, 2018). Hence, it is expected 

that automation capabilities will significantly impact the public transport industry and services 

in the coming years, at least for operations in segregated environments such as busways. 

Furthermore, as this technology matures, it is predicted that the prices of connected and 

autonomous vehicle technologies will progressively reduce at certain annual rates within lower 

and upper bounds of 5% and 10% (Mosquet et al., 2015; Bansal and Kockelman, 2017), thereby 

providing a greater opportunity for public transportation agencies to accelerate the deployment 

of fully automated transport systems on their routes with lower capital costs in the next decades. 

Concurrently, the transition to Electric Buses (EBs) has gained momentum in urban 

public transport agencies. EBs offer energy-efficient and environmentally friendly alternatives 
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to traditional diesel buses, with benefits such as higher energy efficiency and reduced levels of 

noise, local pollution, and greenhouse gas (GHG) emissions when powered by clean energy 

sources (Adheesh et al., 2016; Logan et al., 2020). However, EBs come with specific 

characteristics, including range limitations and the need for robust charging infrastructure. To 

make informed decisions during the planning phase of electric public transport systems, a 

comprehensive understanding of the factors influencing energy consumption is crucial. This 

understanding ensures that energy demands are neither underestimated nor overestimated, 

which can lead to more reliable choices regarding vehicle types, battery capacities, charging 

strategies, charging point locations, and service frequencies. 

Furthermore, transitioning to EB fleets requires significant investments in charging 

infrastructure, as well as supportive policy and regulatory measures. The choice of the optimal 

charging strategy emerges as a central decision, with options encompassing overnight (slow) 

charging and opportunity (fast) charging systems. As the demand for eco-friendly 

transportation continues to grow and the adoption of EBs in public transport systems rises, this 

decision becomes increasingly pivotal. However, selecting the best strategy is a multifaceted 

challenge, as each option brings its own set of advantages and disadvantages. 

In some urban settings, public transportation agencies are confronted with the need to 

operate mixed fleets encompassing vehicles of various types and capacities. This situation 

arises due to various reasons, such as specific supply-and-demand patterns, transitional phases 

(during which operators need to incorporate different vehicle types or technologies, combining 

traditional vehicles and newly acquired ones), historical considerations (when different sizes 

of buses are purchased at different times through different contracts), and resource limitations. 

The challenge of managing mixed fleets is particularly relevant, given that operating 

heterogeneous fleets is common in public transport systems, especially within large and 

complex cities. For instance, the bus network in Santiago, Chile, is composed of 317 routes, 

out of which 116 routes (37%) are operated with heterogeneous fleets during the morning peak 

period, either combining small (8-meter long) with standard (12-meter long) buses, or standard 

with articulated (18-meter long) buses in one single route (Sadrani et el., 2022a). Hence, 

establishing a methodological foundation to address the planning challenges and solution 

complexities associated with fleet heterogeneity in mixed-fleet bus operations is essential for 

the efficient optimization of dispatching programs, considering the utilization of services with 

different features within a mixed operating environment. 
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1.2 Research objectives and framework 

1.2.1 Automated bus planning 

As for the first objective of this dissertation, we aim to explore and analyze the concurrent 

effects of crowding-related externalities (on-board crowding discomfort and denied boarding 

situations) and travel time stochasticity on the optimal deployment of automated bus fleets, 

when determining the optimal service frequency and vehicle size as tactical planning decisions. 

For this purpose, we develop a novel Mixed-Integer Nonlinear Programming (MINLP) 

optimization model, considering stochastic travel times, time-varying passenger flows, 

crowding discomfort factors for both sitting and standing passengers, and the possibility of 

denied boarding due to capacity constraints. Notably, the model is able to estimate in-vehicle 

crowding discomfort at a microscopic level, bus by bus, depending on the number of sitting 

and standing passengers traveling inside each bus at each route segment. Taking both 

passengers’ and operators’ costs into account, the objective of the model is to find the optimal 

service frequency and vehicle size with minimal total costs of a public transport service. 

To evaluate the applicability of the proposed model, several deployment scenarios are 

simulated through the combination of different cases: (i) vehicle technology (human-driven or 

automated vehicles), (ii) travel time between stops (deterministic or stochastic travel times), 

and (iii) crowding discomfort externalities (considering or ignoring in-vehicle crowding costs). 

Our experiments are executed for two real-world case studies in Regensburg, Germany, and 

Santiago, Chile. 

To further assess the possible effects of automation on the social costs of a public 

transportation service, an extensive range of sensitivity analysis tests are carried out on human 

driving cost savings with different automation levels, travel time uncertainty, dwell time 

regularity, the time lost to open and close doors with automation, crowding multipliers, denied 

boarding saving values, and user- and operator-oriented design solutions. Moreover, to handle 

travel time stochasticity in the solution process, we incorporate a Monte Carlo Simulation 

(MCS) program into the evaluation phase of our solution algorithm, enabling us to conduct 

enough evaluation runs to determine the objective function value of each solution, as opposed 

to a single run that is suitable for deterministic cases. The mathematical model developed in 

this research, along with its results, has been published in Sadrani et al. (2022b), forming part 

of the methodological framework that amalgamates vehicle automation capabilities, crowding 

externalities, and travel time stochasticity within the automated bus planning problem.  
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1.2.2 Electric bus planning 

For the second objective of this dissertation, our focus is directed towards exploring the 

role of integrating a detailed (variable) energy consumption model into the tactical planning of 

EB fleets. This exploration seeks to uncover the impacts of route topography and vehicle 

dynamics (e.g., slope- and load-sensitive effects) on the critical decisions regarding the optimal 

type and number of vehicles to be acquired in the early stages of EB projects. To achieve this 

objective, we propose an EB fleet planning problem in the form of an Integer Nonlinear 

Programming (INLP) model, which integrates a variable energy consumption model (based on 

longitudinal vehicle dynamics) into the planning phase of EB fleets. The proposed model 

considers both passenger and bus operator costs to optimize vehicle type and service frequency 

needed to achieve a proper supply level. 

The model applicability is investigated on a real bus corridor in Santiago de Chile, which 

crosses the city from west to east and is subject to an increasing slope when running east. 

Several scenarios of operations are simulated under different demand levels (low vs. high 

demand levels), energy estimation methods (variable vs. simplified fixed energy demand), and 

route conditions (with vs. without slope). Specifically, by integrating energy-related variables 

into the planning process, we identify several novel findings, making a significant contribution 

to the scientific understanding of this field. The optimization model, solution algorithms, and 

outcomes of this study have been compiled in a manuscript, Sadrani et al. (2023b), which is 

under review. 

Moreover, while our EB planning model encompasses an overnight charging strategy 

within its planning framework, another pivotal issue in the electrification of bus networks 

pertains to selecting the optimal charging strategy from a variety of options, such as overnight 

(slow) charging and opportunity (fast) charging systems. This critical aspect lays the 

groundwork for our third dissertation objective. Hence, we attempt to continue our 

investigations to provide a comprehensive understanding of the factors affecting policymakers’ 

decisions in selecting the best charging strategy for EB systems. Overall, choosing the best 

charging option is a challenging task since each option has advantages and disadvantages. To 

tackle this issue effectively, policymakers need to consider multiple factors (with different 

dimensions) concurrently, calling for the management of a Multi-Criteria Decision-Making 

(MCDM) problem. This dissertation thus aims to address the selection of charging strategies 

for EB systems as a MCDM framework, assisting policymakers in making informed decisions 

using a reliable decision-making tool for the comparison and assessment of possible charging 
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alternatives based on a wide range of criteria that are relevant in practice. The decision-making 

models and findings of this research have been published in Sadrani et al. (2023c). 

It should be noted that, in the above-mentioned models, although we address the selection 

of optimal vehicle size among multiple vehicle sizes (e.g., among 8, 12, 15, and 18-m long 

buses), we focus on the modeling and operation of uniform (homogeneous) fleets, composed 

of vehicles of the same size, e.g., if a vehicle size of 12-m is selected as the optimal size, a fleet 

of 12-m buses is operated at an optimal frequency level obtained in the frequency setting phase. 

 

1.2.3 Mixed-fleet bus planning 

Finally, as the last objectives of this dissertation, we explore the planning aspects and 

solution complexities associated with fleet heterogeneity within mixed operating 

environments, where buses of different types and capacities can be utilized to meet passenger 

flows. For this purpose, we develop two versions of the Mixed-Fleet Bus Scheduling (MFBS) 

problem: an initial simplified version and an advanced model. 

We commence with the simpler version of the MFBS problem, which serves as the 

foundation for comprehending and addressing the modeling and computational complexities 

of mixed-fleet operations. In this context, we formulate a novel MINLP model that optimizes 

dispatching schemes, encompassing dispatching sequence and timing, in scenarios where a 

fixed number of buses with different sizes are available to meet route demand. The primary 

objective is to minimize average passenger waiting times, with stochastic travel times between 

stops and vehicle capacity constraints (i.e., introducing extra waiting time due to denied 

boarding). Given the discrete set of feasible dispatching sequences, this problem presents itself 

as a complex permutation-based combinatorial optimization problem, proved to be strongly 

NP-Hard. To tackle this complexity, we develop an exact decomposition-based method, as well 

as a Simulated Annealing (SA) metaheuristic, coupled with a Monte Carlo Simulation (MCS) 

framework, to solve it. We test the model and solution algorithm through numerous numerical 

experiments, employing real data from an actual bus corridor in Sydney, Australia. 

Furthermore, to highlight the value of having fine-grained demand information (every 15 

minutes instead of every 60 minutes) when designing a dispatching scheme, the experiments 

are also tested with low-resolution demand volumes (one-hour-dependent demand volumes). 

The mathematical model and solution algorithms developed in this version have been published 

in Sadrani et al. (2022a). 
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We then progress to the development of a more comprehensive MFBS model, 

significantly expanding upon the previous MINLP formulation. This advanced version 

contains a broader spectrum of real-world operational constraints (encompassing elements such 

as resource availability constraints, sitting and standing space constraints), and a wider array 

of objective functions (including operator costs (which were not considered in the simpler 

MFBS model) and user costs, taking into account in-vehicle trip times and trip comfort). 

Furthermore, this advanced version introduces new integer decision variables regarding vehicle 

assignment programs. Hence, our advanced problem goes beyond optimizing vehicle 

dispatching plans (dispatching sequence and time), and also addresses the optimization of 

vehicle assignment programs (the optimal determination of the number and type of vehicles 

needed for mixed-fleet deployments). 

The inclusion of these realistic elements increases the complexity of solving the MFBS 

problem significantly. Thus, the development of reliable and advanced solution algorithms to 

effectively address these challenges becomes paramount. We develop two hybrid metaheuristic 

algorithms, Genetic Algorithm combined with Simulated Annealing (GA-SA) and Grey Wolf 

Optimizer combined with Simulated Annealing (GWO-SA), with a Taguchi approach to 

calibrate the metaheuristics’ parameters. 

The performance of the metaheuristics is extensively evaluated on small, medium, and 

large-scale test samples, considering solution quality and CPU time. Results show that the 

GWO-SA outperforms the other metaheuristics. We also compare the metaheuristics’ 

outcomes with the optimal solutions acquired by GAMS software in small and medium-sized 

samples. The developed model and metaheuristics are applied to a real-world bus corridor in 

Santiago, Chile, characterized by high passenger crowding levels during the morning peak 

period. We conduct sensitivity analyses to evaluate the sensitivity of mixed-fleet deployment 

programs to factors such as demand levels, solution techniques, crowding inconvenience 

valuations, and uncertain driving times. The mathematical model and metaheuristics developed 

in this version have been presented in a manuscript, Sadrani et al. (2023a), which is under 

review. 

 

1.2.4 Research questions 

In summary, to achieve the research objectives, the main research questions addressed in 

this dissertation are listed as follows: 
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1. Crowding and stochastic travel times in automated bus systems: 

• How do considerations of crowding-related aspects, specifically crowding 

discomfort, and the uncertainty of travel times impact the planning of automated 

bus systems across various levels of human driving cost savings? 

• Do frequencies and bus sizes increase at comparable rates for both human-driven 

and automated bus fleets when accounting for in-vehicle crowding as a factor of 

travel disutility for passengers? 

• Can the deployment of automated bus systems contribute to mitigating or 

eliminating denied boardings in crowded bus corridors? 

 

2. Detailed energy consumption models in EB fleet planning: 

• How does incorporating a variable (detailed) energy consumption model into the 

tactical planning of EB fleets influence decisions regarding the optimal type and 

number of vehicles to acquire for early-stage EB projects? 

 

3. Multi-criteria decision-making for charging strategies: 

• How can a multi-dimensional decision-making framework be developed to tackle 

the selection of optimal charging strategies for EB systems, thereby aiding 

policymakers in making well-informed decisions regarding the electrification of 

bus networks? 

 

4. Optimizing mixed-fleet bus operations: 

• To what extent can optimizing vehicle assignment and dispatching plans for 

mixed-fleet bus operations, encompassing fleet size, fleet composition, 

dispatching sequences, and dispatching times, lead to reduced total costs (user 

and operator costs)? 
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5. Advanced computational intelligence algorithms in mixed-fleet scheduling: 

• To what extent can the development and implementation of more advanced 

computational intelligence algorithms, such as hybrid metaheuristics, enhance the 

quality of service and operator costs in MFBS problems? 

 

1.3 Contribution statement 

This dissertation endeavors to advance the modeling, planning, and optimization 

capabilities of public transport services with automated, electric, and mixed-sized bus fleets. It 

contributes to the field of public transport planning by introducing novel mathematical 

modeling frameworks and solution algorithms. Furthermore, the research identifies several 

novel findings and insights, significantly enhancing our scientific understanding of the 

differences associated with planning emerging bus fleets compared to traditional ones. The key 

research components of this dissertation are illustrated in Fig. 1-1. 

 

1.3.1 Automated bus planning 

The main contributions in our comprehensive formulation of an automated bus planning 

problem are summarized in three aspects. First, for the first time in the literature, we model the 

effects of in-vehicle crowding discomfort when determining the optimal service frequency and 

vehicle size for automated bus fleets, considering the perceptions of both standing and sitting 

passengers from crowding disutility. Additionally, we conduct a comparative analysis between 

the planning of automated and conventional human-driven bus fleets, in the presence of 

crowding discomfort impacts. This analysis is conducted within different country contexts, 

such as Germany and Chile, representing examples of both developing and developed 

countries. While it is expected that frequencies and bus sizes are going to increase for both 

fleets of human-driven and automated buses if in-vehicle crowding is considered as a source 

of travel disutility for users, the crucial question arising here is whether these items are 

increased at a similar rate for both fleets or not. This issue has implications for the optimal 

design of future public transport systems, for the comfort level that will be delivered to users 

(in terms of occupancy rates inside vehicles), and for the cost-benefit analysis of public 

transport investments in crowding-sensitive frameworks. 
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Second, we investigate if implementing an automated bus system can decrease the 

number of left-behind travelers (denied boarding situations) in busy bus routes, due to 

providing more frequent services at lower operating costs with automation. 

Third, the effects of travel time stochasticity on the optimal deployment of an automated 

bus system vs. a human-driven bus system are closely examined, given that the potential 

provision of more certain travel times is an added benefit of automation in public transport. 
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(a) Automated bus planning. 
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(b) Electric bus planning. 
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(c) Mixed-fleet bus planning. 

Figure 1-1 Overview of research components in the present dissertation. 
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1.3.2 Electric bus planning 

The contributions of this dissertation to the EB literature include (i) the development of 

an EB tactical planning optimization model, by combining contributions from energy 

consumption dynamics, transport economics, passenger flow behavior, and operations research 

to optimize public transport supply with EB fleets, and (ii) the introduction of a  

decision-making framework for selecting EB charging strategies. 

In the context of EB planning, this dissertation develops a novel mathematical 

optimization framework in the form of an INLP model, which integrates a variable (detailed) 

energy consumption model into the tactical planning phase of EB fleets, when determining the 

optimal supply levels for public transport services with EBs, as it can provide valuable insights 

into the sensitivity of vehicle type selection and frequency plans to different assumptions 

regarding energy consumption modeling. Our contributions include optimizing vehicle type 

selection and service frequencies with EBs, developing a comprehensive cost model, 

considering size-varying factors affecting the economic aspects of EB operations,  

time-dependent passenger demand modeling, and formulating the EB planning problem as a 

combinatorial optimization model. From a policy point of view, this model would be helpful, 

especially in the early stages of an EB project, assisting in informed decisions about the type 

and number of vehicles that should be acquired. We apply our model to a bus route in Santiago 

de Chile and conducted several sensitivity tests to analyze the results. 

Secondly, this dissertation addresses a gap in the literature by introducing a novel 

decision-making methodology for selecting charging strategies for urban EB systems. To 

address this issue, we create a MCDM framework that offers a comprehensive,  

multi-dimensional approach for comparing and evaluating potential EB charging strategies 

based on (i) economic, (ii) environmental, (iii) social, (iv) operational, and  

(v) quality-of-service implications. We conduct a systematic effort, involving a comprehensive 

literature review and interviews with EB experts, to identify, refine, and establish a 

comprehensive and evidence-based list of criteria relevant to policymakers when selecting 

charging strategies for EB systems. To determine the weight of the criteria, we develop a Fuzzy 

Best-Worst Method (FBWM). We then introduce a Fuzzy Ranking of Alternatives through 

Functional mapping of criterion subintervals into a Single Interval (FRAFSI) approach for the 

assessment and ranking of available charging strategies for EB systems, including overnight 

(slow) and opportunity (fast) charging strategies. We extend our evaluations by testing 
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alternative ranking methods, including fuzzy TOPSIS and fuzzy EDAS, allowing us to 

compare the outcomes of various methods for addressing our problem. 

 

1.3.3 Mixed-fleet bus planning 

Finally, this dissertation makes substantial contributions to the realm of MFBS problems, 

including the creation of novel optimization models (in two versions, simple and advanced) for 

the MFBS issue and the development of solution algorithms to address the combinatorial 

complexity of such problems. 

First, regarding the formulation, we mathematically model the planning aspects of 

mixed-bus fleets using a novel MINLP model, allowing for the optimization of vehicle 

dispatching solutions (determining the dispatching order and time of vehicles), and vehicle 

assignment solutions (determining the optimal number and type of vehicles assigned for 

operations) in mixed-fleet operations. 

Second, we propose an exact decomposition-based method and a SA algorithm, paired 

with a MCS method, for solving simple versions of the MFBS. In particular, the SA’s search 

operators are exclusively designed to take advantage of producing only feasible neighboring 

solutions. 

Third, we develop two new hybrid metaheuristics, GA-SA and GWO-SA, to efficiently 

address the complexities of the advanced versions of MFBS for large-scale scenarios. We also 

perform a comparative analysis of the metaheuristics’ results against the optimal solutions 

obtained by GAMS solver in small and medium-sized samples. Notably, our real-world 

application shows that the choice of metaheuristic for the MFBS is not innocuous, as the most 

sophisticated algorithms perform better in terms of improving trip comfort precisely when 

crowding levels are high, whereas when the demand density is low, the choice of solution 

algorithm is less relevant. This empirical application provides invaluable managerial insights 

for optimizing the operational planning of mixed bus fleets, thereby enhancing operational 

efficiency and passenger comfort. 
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1.4 Dissertation structure 

The dissertation’s structure, as summarized in Fig. 1-2, outlines the organization of the 

remaining chapters: 

Chapter 2 (Literature Review): This chapter provides a review of existing literature 

related to the planning and operations of automated, electric, and mixed-fleet bus systems. It 

also highlights the research gaps identified in the field. 

Chapter 3 (Model Formulation): This chapter presents the mathematical models 

developed within this dissertation. It encompasses a MINLP model for automated bus planning, 

an INLP model for EB planning, MCDM models for selecting charging strategies, and two 

MINLP models designed to address MFBS problems in simple and advanced versions. 

Chapter 4 (Solution Algorithms): This chapter describes the solution algorithms 

introduced to address the computational complexities of the formulated models, including 

various exact and metaheuristic algorithms. 

Chapter 5 (Results and Discussion): This chapter presents the outcomes derived from 

applying the proposed models and solution algorithms in real-life case studies. It offers an  

in-depth assessment of their practical applicability and discusses the implications of these 

findings. 

Chapter 6 (Sensitivity Analysis): This chapter focuses on sensitivity analysis, exploring 

how variations in model parameters affect the outcomes. It provides insights into the robustness 

and sensitivity of the models to different factors. 

Chapter 7 (Conclusions): This chapter summarizes the primary models and algorithms 

presented in the dissertation. It highlights the key findings and managerial insights derived 

from the research. Additionally, it discusses the limitations of the work and suggests potential 

directions for future research. 
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Figure 1-2 Dissertation structure. 
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2 Literature review 

This chapter reviews the existing literature on the planning and operations of automated, 

electric, and mixed-fleet bus fleets. It also identifies gaps in the literature, setting the stage for 

the contributions presented in this dissertation. 

 

2.1 Planning of automated bus systems 

2.1.1 Vehicle automation 

The deployment of automated public transport systems for improving the level of service 

and reducing the social costs of a public transportation service has emerged as a research topic 

in the past decade. Generally, people appear to be positive about the deployment of (future) 

automated bus systems (Alessandrini et al., 2011; Ceder, 2021; Distler et al., 2018;  

Eden et al., 2017). Thus far, a broad spectrum of connected and autonomous driving 

technologies have been evolved and introduced to automated public transport systems for 

providing more robust autonomous mobility services, such as bus platooning, lane-keeping, 

collision avoidance, bus precision docking (i.e., providing a stable distance between vehicles 

and platforms at stations), automated emergency braking, Cooperative Adaptive Cruise Control 

(CACC), Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications 

(Lazarus et al., 2018; Lutin, 2018). Hence, beyond human driving cost savings with 

automation, it is expected that the deployment of automated vehicles can positively affect 

public transport systems in various aspects via leveraging full automation capabilities 

(Tirachini and Antoniou, 2020). 

 

2.1.2 Related studies on automated bus planning 

In recent years, a growing number of studies have focused on the optimal design and 

deployment of automated bus services to minimize the social costs of public transport services. 

W. Zhang et al. (2019) proposed a total cost minimization model to find the optimal bus 

frequency and size for fleets of conventional, semi-automated, and fully-automated buses on a 

generic hub-and-branch network. Given the reduction or elimination of in-vehicle crew costs 

with automation, results showed that automated vehicle solutions optimally suggest a higher 

service frequency and a smaller vehicle size. This result has been also replicated by,  

Fielbaum (2020) and Tirachini and Antoniou (2020). Overall, despite the increase of capital 



 

37 

 

costs due to the inclusion of automation technologies inside buses, fully-automated buses 

exhibit great potential through the reduction of operating and waiting costs. Fielbaum (2020) 

proposed a feeder–trunk automated vehicle public transport model, taking advantage of vehicle 

automation and mixing on-demand systems for local trips (feeder) with a more traditional 

system for longer trips (trunk). It was found that the technology of automation pushes the 

system toward providing larger fleets of smaller vehicles. Tirachini and Antoniou (2020) 

presented an optimization model to assess the impacts of vehicle automation on optimal vehicle 

size, service frequency, fare, subsidy, and degree of economies of scale. The model was tested 

using data from Chile and Germany, taken as illustrative examples of developing and 

developed countries. Results showed that automated services benefit users, through a reduction 

of waiting times and optimal fares, operators, through a reduction of operating cost, and the 

public sector, through a reduction of the first-best optimal subsidy per bus trip. Moreover, it 

was found that the benefits of automation are more prominent in countries where drivers’ 

wages are higher (such as Germany relative to Chile), due to larger savings of human-related 

driving costs with automation. 

Hatzenbühler et al. (2020) proposed an analytical model to optimize frequency and 

vehicle capacity for human-driven and automated bus fleets, while considering the sum of 

passenger and operator costs on a weighted normalized basis, where weighting factors allow 

for the analysis of passenger- and operator-oriented solutions. The model was applied to a  

real-life case study in Kista (Stockholm, Sweden), and the results showed that automated bus 

services have the potential to attract passengers through improved service provision.  

Badia and Jenelius (2021) assessed the possible effects of vehicle automation and 

electrification on the design and optimization of feeder transit services in suburban areas. For 

this purpose, an analytical model was proposed based on continuum approximations, while 

considering and comparing the applicability of two different operating strategies of feeder 

transit systems: parallel fixed lines and door-to-door trips. The authors modeled user costs and 

operator costs, while considering the economic effects of new vehicle technologies on system 

cost structures. The findings showed that the effect of automation on the applicability between 

the two feeder options is clearly more significant than the effect of electrification. 

To determine the optimal frequencies of autonomous minibuses when serving several 

sublines, Gkiotsalitis et al. (2021) developed a stochastic optimization model as a  

Mixed-Integer Linear Programming (MILP) formulation, while accounting for the stochasticity 

of passenger demand. The problem objective was to minimize the sum of operational and 
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passenger waiting time costs. The model performance was tested under deterministic and 

stochastic demand scenarios, showing 10-40% operational cost savings when assigning 

optimal frequency solutions to sublines. Besides, to improve the level of service and reduce 

running costs at operational planning levels, some scholars have attempted to create new 

mathematical formulations for the optimization of skip-stop tactics and other operational 

strategies (such as holding and speed changing), while accounting for automated driving 

capabilities in public transport services (Cao and Ceder, 2019; Cao et al., 2019). 

As for the operation with mixed fleets, Dai et al. (2020) developed an INLP model to 

optimize vehicle types and dispatch times for a mixed fleet of human-driven and automated 

buses. The authors assumed that the capacity of automated buses can be dynamically changed 

at terminals through assembling/dissembling minibus modules. The model objective was to 

minimize passenger and bus operating costs. Results showed that passenger costs can be 

reduced significantly using dynamic dispatching solutions. Tian et al. (2021) proposed a 

stochastic programming model to optimize the fleet size required for mixed fleet operations 

with conventional and automated vehicles in a bus network, while aiming to minimize 

passenger waiting times and operator costs under stochastic demand conditions. Results 

confirmed the benefits of automated buses that can be allocated to different bus lines in a more 

flexible manner. 

 

2.1.3 Crowding in public transport systems: effects and modeling approaches 

Public transport systems in several cities across the globe are experiencing increasing 

congestion and crowding with the rapid growth of public transportation ridership  

(Jenelius, 2018). Indeed, public transport crowding can negatively affect users’ trip experience 

and service performance (Drabicki et al., 2021). For instance, crowding phenomena  can 

significantly escalate the discomfort of public transport users inside vehicles (i.e., in-vehicle 

crowding discomfort), as well as the possibility of denied boardings (Cats et al., 2016;  

Hörcher and Tirachini, 2021; Tirachini et al., 2013). To simulate realistic operating conditions, 

only  few studies in the literature of automated bus services (Dai et al., 2020;  

Hatzenbühler et al., 2020) have considered the possibility of denied boardings. Nonetheless, to 

the best of our knowledge, an explicit modeling of in-vehicle crowding discomfort (at a 

microscopic resolution for both sitting and standing travelers) has not yet been included in the 

optimal design and deployment of automated bus systems. Besides, covering this issue would 
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be more notable in a state-of-the-art model that also contains other aspects of operations 

explicitly, enabling us to capture crowding discomfort effects together with the concurrent 

effects of travel time stochasticity and driving cost saving levels with automation on the 

planning of automated buses. 

It has been found that on-board comfort has a profound effect on the satisfaction and 

loyalty of public transport users (Soza-Parra et al., 2019; Van Lierop et al., 2018). In-vehicle 

crowding discomfort leads to an increase in the value of in-vehicle time savings  

(Hörcher et al., 2017). Indeed, the effect of in-vehicle crowding on travel time disutility is 

typically expressed using an additional in-vehicle travel time multiplier, called crowding 

multiplier, which increases with the occupancy of vehicles and is larger for standing passengers 

than for sitting passengers (Jenelius, 2020; Tirachini et al., 2013; Tirachini et al., 2017; 

Wardman and Whelan, 2011; Whelan and Crockett, 2009; Yap et al., 2020). 

To optimize public transport frequency and vehicle size in the presence of crowding 

externalities, the crowding phenomenon is usually included in service supply optimization 

models through forming a total cost function, in which the user cost is sensitive to in-vehicle 

crowding levels (An et al., 2020; Jara-Díaz and Gschwender, 2003; Tirachini et al., 2014). For 

instance, for the determination of optimal frequency and vehicle size,  

Jara-Díaz and Gschwender (2003) and Tirachini et al. (2014) have highlighted the importance 

of considering in-vehicle crowding discomfort as a source of disutility for travelers, leading to 

an increase in frequency and vehicle size compared to the cases in which the user cost is 

assumed to be insensitive to in-vehicle crowding levels. Likewise, many other studies have so 

far focused on determining public transport planning decisions while accounting for in-vehicle 

crowding discomfort, e.g., in frequency and vehicle size determination problems  

(Batarce et al., 2016; Cats and Glück, 2019; Hörcher and Graham, 2018;  

Klumpenhouwer and Wirasinghe, 2016; Zhang et al., 2020); frequency determination problems 

(Agrawal et al., 2020; Hörcher et al., 2020; Hörcher et al., 2018; Jiang et al., 2014;  

Pathak et al., 2020; Qin, 2014; Suman and Bolia, 2019); timetabling design methods  

(Shang et al., 2019); seat provision in public transport (De Palma et al., 2015;  

Hamdouch et al., 2011; Hörcher et al., 2018). 

Besides, for further discussion in this regard, the interested readers are referred to the 

review paper of Hörcher and Tirachini (2021) who have identified crowding discomfort as an 

important ingredient in the determination of vehicle size and frequency. An in-depth discussion 

of in-vehicle discomfort matters is also given in the Transit Cooperative Research Program 



 

40 

 

(TCRP)-165 Report (2013), where the quality of service thresholds are also presented and 

categorized from an on-board comfort perspective. Overall, the most common way to deal with 

in-vehicle crowding discomfort is to increase service frequency (Batarce et al., 2016;  

Tirachini et al., 2013; Tirachini et al., 2014; Van Lierop et al., 2018). 

Regarding implications for cost-benefit analysis, Cats et al. (2016) developed a novel 

modeling framework considering the dynamics of public transport congestion in the appraisal 

of large public transport investments. A case study of a metro extension in Stockholm indicated 

that the benefits gained by the inclusion of dynamic congestion and crowding effects into a 

cost-benefit analysis can constitute more than a third of the total passenger benefits, and such 

effects are remarkably underestimated by a static model. Along the same lines,  

Tirachini et al. (2016) estimated that not accounting for standing externalities in Singapore’s 

East-West MRT line underestimates the disutility of travel time by 28% in the morning peak 

period. All these findings clearly point to the relevance of crowding externalities for system 

design and estimation of benefits in public transport project appraisal. Crowding costs are 

considered in the cost-benefit analysis of transport investments in the United Kingdom, France, 

Sweden, Australia, New Zealand, and Japan (ITF/OECD, 2014). 

As for the value of waiting time savings, several studies have revealed that the value of 

waiting time is higher than that of in-vehicle time, as passengers feel more dissatisfied with 

their waiting times at stops (e.g., Wardman, 2004; Xumei et al., 2011; Cats et al., 2016). Hence, 

waiting time is considered as one of the most striking travel time components for evaluating 

the level of service from a passenger’s point of view (Niu et al., 2015). Particularly, in  

high-demand public transport corridors during peak periods, waiting times can be too long for 

passengers who are unable to board a service due to a lack of capacity, thereby reducing the 

attractiveness and reliability of a public transport system substantially. With the rapid growth 

of public transportation ridership, left behind passengers due to overcrowding is becoming a 

main concern for many transit agencies (Sun and Xu, 2012; Zhu et al., 2017). This challenging 

problem is particularly prevalent on some crowded public transport systems across the globe 

(e.g., Beijing, Moscow, Sao Paulo, Santiago, Hong Kong), in which it is not unusual to operate 

vehicles at (or near) crush capacity1 during the peak hours (Tirachini et al., 2014). 

  

 
1 Vehicles are operated with (near) full capacity, e.g., a high density of standees is observed inside vehicles. 
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2.1.4 Stochastic nature of public transport operations: effects of travel time stochasticity 

One of the main sources of instability in urban bus operations is the variations of vehicle 

travel times between stops, caused by a wide range of external factors, such as traffic 

congestion, traffic lights, weather, and human driving behavior (Muñoz et al., 2020). In this 

context, several scholars have employed log-normal distribution to model stochastic running 

times of buses (Cats et al., 2011; Dai et al., 2020; Dai et al., 2019; Delgado et al., 2012; 

Hickman, 2001; Jiamin et al., 2003; Sánchez-Martínez et al., 2016). 

The explicit inclusion of travel time stochasticity into the frequency setting problem of 

automated buses is another incremental contribution to the automated bus literature. As the 

closest relevant study in relation to this subject, accounting for stochastic travel times, we refer 

to Dai et al. (2020). Nonetheless, compared to our research, a different scheduling problem 

with a mixed bus operating environment has been addressed in Dai et al. (2020), focusing on 

real-time dispatching of automated buses with varying capacities among human-driven buses 

to provide a more flexible capacity solution to passenger demand fluctuations. Besides, fleet 

size determination, vehicle capital costs, human driving cost savings with automation, and 

crowding discomfort effects have not been considered in their study. 

Unreliable travel times have a negative impact on passenger waiting time at stops  

(Durán-Hormazábal and Tirachini, 2016). In addition, although waiting time affects overall 

user satisfaction (Dell’Olio et al., 2011; Tyrinopoulos and Antoniou, 2008), waiting time due 

to unreliability (e.g., travel time uncertainty) has deeper negative consequences on users’ 

satisfaction (Rietveld et al., 2001; Van Lierop et al., 2018). Hence, unexpected waiting delays 

associated with unreliable services can substantially degrade the attractiveness of a public 

transport system. On the other hand, the differences in human driving functions, which can 

introduce considerable uncertainty in travel time during real-world operations  

(Wang and Sun, 2020), can be much less pronounced in the operation with automated vehicles 

due to the elimination of distracted driving and bad driving behavior (Azad et al., 2019). 

Moreover, Dai et al. (2020) assume that automated buses can dynamically and accurately adjust 

their running times given the forward and backward headways thanks to automation 

capabilities, thus making automated bus systems more robust to random disruptions. 

Nonetheless, it is worth noting that the public acceptance of driverless bus systems can be 

affected by users’ perceptions about the security and safety of such systems in real-world 

operations. For example, the findings of the current stage of automated bus programs show that 

there is still a propensity for the use of human-driven buses for trips longer than few minutes, 
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as there are still some concerns about the operational safety of automated buses among users, 

especially in mixed traffic environments (Dong et al., 2019; Horschutz Nemoto et al., 2021; 

Salonen, 2018). 

Driving time volatility between stops can also lead to a further growth of irregularity in 

dwell times of vehicles at stops due to poor service reliability, early or late services  

(van Oort, 2014), i.e., travel time variations have adverse effects on dwell time regularity at 

stops. Nonetheless, this aspect has still not been studied in the deployment of a fleet of 

automated vehicles that might be operated with different travel time variation levels. The 

possible influences of automation on travel time volatility, and dwell time regularity are 

extensively examined in this research. 

 

2.1.5 Research gap analysis 

The extant literature on public transport design and optimization with automated vehicles 

still has several relevant research questions open for inquiry. We can first mention the impacts 

of in-vehicle crowding externalities on determining the optimal frequency and vehicle size for 

an automated bus system. Two effects of passenger crowding deserve particular attention in 

the comparison of human-driven vs. automated vehicles: the crowding discomfort as increasing 

the value of travel time savings, and the possibility of passengers not being able to board 

vehicles due to capacity constraints. Second, despite the stochastic nature of public transport 

operations, the possible effects of automation on travel time variability and dwell time 

regularity have not yet been studied in the literature of automated bus operations. 

 

2.2 Planning of electric bus systems 

2.2.1 Electric bus planning 

Global Carbon Dioxide (CO2) emissions have risen by 90% since 1970, with 78% 

attributed to fossil fuel combustion (Boden et al., 2017). With the growth of worldwide 

environmental concerns and climate change crisis, Electric Vehicles (EVs) (including electric 

bicycles, cars, and buses) are being promoted as an alternative to conventional diesel vehicles, 

with many governments offering incentive policies to accelerate their adoption  

(Shen et al., 2019). 
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In recent years, there has been growing interest among urban public transport agencies 

in the adoption of EBs, which offer several benefits over diesel buses, such as higher energy 

efficiency and lower levels of noise, local pollution and GHG emissions when powered with 

clean energy (Adheesh et al., 2016; Logan et al., 2020). However, due to the unique 

characteristics of EBs, such as range anxiety and charging infrastructure constraints, it is crucial 

to have a comprehensive understanding of the factors that influence their energy consumption 

for effective implementation of electric public transport systems. Accurate planning and 

decision-making should take into account real-world driving conditions, fluctuations in 

passenger loads, and route topologies (see Fig. 2-1) to avoid unrealistic energy demand 

estimations, which can undermine the quality and applicability of decisions made by 

policymakers during the planning stage of EB systems, e.g., when selecting vehicle type, 

battery capacities, charging strategies, location of charging points, and service frequency 

(related to the fleet size) (Basma et al., 2020; Hjelkrem et al., 2021). 

 

 

Figure 2-1 An illustrative example of changes in passenger load, vehicle speed, and road 

slope when traveling at different sections. 

 

Numerous studies have explored the key factors that influence the energy demand of EBs 

(Gao et al., 2017; Gallet et al., 2018; Göhlich et al., 2018; Al-Ogaili et al., 2020;  

Hjelkrem et al., 2021; Ma et al., 2021; Abdelaty et al., 2021; Chen et al., 2021;  

Fiori et al., 2021). These studies employ a common longitudinal dynamics model to estimate 

the energy consumed by EBs, which considers various resistance forces that act on the vehicle 

when it is in motion (rolling resistance, aerodynamic drag resistance, grade resistance, and 

inertial force). The impact of factors such as vehicle weight, passenger load, vehicle speed, 

route gradients, and auxiliary devices (e.g., air conditioning, heating, in-vehicle displays, and 

headlights) on the energy consumption of EBs has been widely investigated. 
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One notable factor that has received significant attention is passenger load (vehicle 

occupancy rates), which can fluctuate considerably as passengers board and alight at each stop. 

For example, Gallet et al. (2018) applied a comprehensive energy demand model to the bus 

network in Singapore and found that the energy consumed by EBs increased during morning 

and evening peak periods due to higher passenger loads and reduced vehicle speeds resulting 

from increased traffic congestion. Similarly, Al-Ogaili et al. (2020) used a longitudinal 

dynamics model to examine the energy demand of EBs in Malaysia and identified road slope 

and load as the most influential variables. 

Hjelkrem et al. (2021) estimated EB energy consumption levels using a longitudinal 

vehicle dynamics model validated using real datasets from Norway and China. They found that 

passenger occupancy rates (vehicle load) can significantly influence energy demand 

requirements for EBs. However, the authors considered constant occupancy rates throughout 

the entire operation and acknowledged that a more realistic modeling framework is necessary 

to capture actual occupancy rates under time-dependent demand flows (i.e., stop-level 

interactions between passengers and vehicles should be modeled to estimate alighting and 

boarding numbers at each stop). 

Overall, it is widely acknowledged that passenger load plays a significant role in the 

energy consumption of EBs, as evidenced by numerous studies (Zhou et al., 2016;  

Kivekäs et al., 2018; Basma et al., 2020; Harris et al., 2020; Franca, 2018; Luo et al., 2020; 

Vepsäläinen et al., 2019; Abdelaty and Mohamed, 2022; among others). Specifically, the total 

weight of an EB (which includes both the empty bus weight and the passenger load) directly 

influences rolling resistance (frictional resistance between surfaces and wheels), grade force 

(force required to travel uphill/downhill), and inertia force (changes in the kinetic energy of a 

vehicle when accelerating/decelerating). 

In some studies on Electric Vehicle Routing Problems (EVRPs), researchers have 

assumed the energy demand of a vehicle to be linearly proportional to the trip distance for the 

sake of simplicity (Schneider et al., 2014; Keskin and Çatay, 2016; Hiermann et al., 2016). 

However, to make accurate estimations of energy demand based on the longitudinal dynamics 

of vehicles, several recent studies have attempted to consider more realistic factors such as 

vehicle speed, weight, payload, and route gradients (Goeke and Schneider, 2015;  

Lin et al., 2016; Zhang et al., 2018; Li et al., 2020; Basso et al., 2019; Pelletier et al., 2019a). 
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Weight-related factors are particularly important for heavy-duty vehicles such as trucks 

and buses used in freight and public transport services (Basma et al., 2020). Service providers 

need to estimate the demand carried by vehicles when planning transport activities. For 

instance, an articulated 18-m long bus with a capacity of 140 passengers and an average 

passenger weight of 75 kg can reach a total load of 10,500 kg when running at full capacity, 

which is around 50% of the curb weight of the vehicle (17-22 tons). Operating vehicles with 

near-full capacity is a common issue in crowded bus systems that serve large numbers of 

passengers during peak hours (see Tirachini et al., 2013 and Sadrani et al., 2022a for more 

information on the crowding phenomenon in public transport systems). Thus, neglecting the 

effects of passenger load on energy consumption can result in inaccurate adjustments to supply 

schemes, such as service frequency and vehicle type, in the planning phase of EB systems, 

leading to increased social costs of public transportation services. In this context, increasing 

the service frequency of a bus service can reduce crowding costs, waiting times, and energy 

consumption per vehicle due to a reduction in passenger load. However, this approach requires 

more vehicles for operations. 

 

2.2.2 Charging strategy selection 

One critical consideration in the electrification of bus networks is the choice of the 

optimal charging strategy from a range of options, such as overnight (slow) and opportunity 

(fast) charging systems. In this section, we perform a thorough analysis of the literature to find 

and extract criteria that can affect the charging strategy selection for EB systems. The articles 

that have undergone review can be divided into two categories. The first category includes 

articles on EBs, and their text and tables are carefully reviewed to extract the pertinent criteria. 

The second group includes MCDM papers, giving us a more organized viewpoint for the 

discovery and classification of new criteria based on the opinions of experts. Finally, the 

criteria derived from the literature and experts’ judgments and their descriptions are listed in 

Tables 2-1 and 2-2, respectively. 
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Table 2-1 Related criteria for choosing the best charging method for EBs. 

Category Criteria Sub-criteria Reference 

E
co

n
o

m
ic

 

Battery cost  

Benoliel et al. (2021), Lajunen and Lipman (2016), 

Campos et al. (2021), Mahmoud et al. (2016), Basma 

et al. (2022a), Vilppo and Markkula (2015), Ecer 

(2021), Saadon Al-Ogaili et al. (2020), Gallet et al. 

(2018) 

Infrastructure cost   

 • Charging equipment cost 

Benoliel et al. (2021), Lajunen and Lipman (2016), 

Campos et al. (2021), Mahmoud et al. (2016), Basma 

et al. (2022a), Pelletier et al. (2019b), Vilppo and 

Markkula (2015), Guo and Zhao (2015), Gallet et al. 

(2018) 

 • Land acquisition cost 

Benoliel et al. (2021), Lajunen and Lipman (2016), 

Campos et al. (2021), Mahmoud et al. (2016), Basma 

et al. (2022a), Pelletier et al. (2019b), Vilppo and 

Markkula (2015), Koirala et al. (2022), Guo and Zhao 

(2015) 

Operational cost   

 • Labor cost 
Basma et al. (2022a), Vilppo and Markkula (2015), 

Guo and Zhao (2015) 

 • Electricity tariff 

Benoliel et al. (2021), Rupp et al. (2020), Basma et al. 

(2022a), Vilppo and Markkula (2015), Guo and Zhao 

(2015) 

 • Battery replacement cost 

Lajunen and Lipman (2016), Basma et al. (2022a), 

Vilppo and Markkula (2015), Jaguemont et al. (2016), 

Guo and Zhao (2015) 

 • Maintenance cost 

Mahmoud et al. (2016), Basma et al. (2022a), Pelletier 

et al. (2019b), Vilppo and Markkula (2015), Koirala et 

al. (2022), Guo and Zhao (2015) 

E
n

v
ir

o
n

m
en

ta
l 

GHG emission  
Lajunen and Lipman (2016), Rupp et al. (2020), 

Mahmoud et al. (2016) 

Energy consumption  

Benoliel et al. (2021), Rupp et al. (2020), Mahmoud et 

al. (2016), Basma et al. (2022a), Vilppo and Markkula 

(2015), Loganathan et al. (2021), Ecer (2021), Basma 

et al. (2022a), Saadon Al-Ogaili et al. (2020), Gallet et 

al. (2018) 

Environmental pollution 

after demolition 
 Lai et al. (2022), Guo and Zhao (2015) 

GHG emissions for 

battery production 
 Lai et al. (2022) 

Water consumption in 

battery production 
 Kelly et al. (2021), Wu et al. (2021) 

Ecological environment 

impacts 
 Sang et al. (2022), Guo and Zhao (2015) 

S
o

ci
a

l Job opportunity  Basma et al. (2022a), Sadrani et al. (2023b) 

Fire risk  D. Yu et al. (2019), P. Sun et al. (2020) 
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Category Criteria Sub-criteria Reference 

Charging infrastructures' 

impacts on surrounding 

residential areas 

 Sang et al. (2022), Guo and Zhao (2015) 

City landscape  Experts 

O
p

er
a

ti
o

n
 

Vehicle capacity  Ecer (2021), Basma et al. (2022a) 

Energy monitoring  Li et al. (2013), Loganathan et al. (2021) 

Driving range  
Mahmoud et al. (2016), Basma et al. (2022a), Ecer 

(2021), Saadon Al-Ogaili et al. (2020), Gallet et al. 

(2018) 

Charging duration  
Rupp et al. (2020), Mahmoud et al. (2016), Basma et 

al. (2022a), Jaguemont et al. (2016), Ecer (2021) 

Scheduling complexity  Experts  

Q
u

a
li

ty
 o

f 

se
r
v

ic
e
 

Crowding  Sadrani et al. (2022a), Sadrani et al. (2022b) 

Travel time  
Lajunen and Lipman (2016), Rupp et al. (2020), Longo 

et al. (2021) 

Reliability  Basma et al. (2022a), Sadrani et al. (2022b) 
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Table 2-2 Description of each criterion. 

Row Criteria Short description 

1 Battery cost This relates to the Battery pack price. 

2 Charging equipment cost 
This relates to the costs of purchasing and installing the chargers, 

including charging equipment and charging stations. 

3 Land acquisition cost 
This relates to the cost of purchasing the required land for charging 

stations. 

4 Labor cost 
This relates to the required drivers' and staff's salary who work at the 

charging stations, taking into account the wages on the night shift. 

5 Electricity tariff This relates to electricity tariff costs during the charging process. 

6 Battery replacement cost 

This relates to various aging processes brought on by battery charging 

rates and frequency, and the need to replace batteries after a certain 

number of working hours or lifetime. 

7 Maintenance cost 
This relates to the costs of regular checks, repairing, or replacing 

components for vehicles, and charging equipment. 

8 GHG emission 
This relates to the GHG emissions in two stages: during the production 

and distribution of electricity, and during its usage. 

9 Energy consumption 
This relates to different factors that influence the energy consumption of 

vehicles (factors such as battery weight and passenger load). 

10 
Environmental pollution after 

demolition 

This relates to the amount of pollution emitted to the environment at the 

end of the battery lifecycle for demolition or recycling. 

11 
GHG emissions for battery 

production 
This relates to the pollutants produced in the battery production process. 

12 
Water consumption in battery 

production 
This relates to the amount of water to produce each tone of the battery. 

13 
Ecological environment 

impacts 

This relates to the various effects such as soil erosion, construction waste, 

vegetation destruction, and construction sewage caused by producing 

batteries and building charging stations. 

14 Job opportunity 
This relates to the created job opportunities (part-time and full-time) 

including drivers and charging stations staffs. 

15 Fire risk 
This relates to the possibility and risk of a fire in the batteries and 

depot/charging stations. 

16 

Charging infrastructures' 

impacts on surrounding 

residential areas 

This relates to the impacts of the EB charging process on residents’ living, 

such as noise pollution, wastewater generation, electromagnetic field 

interference, solid waste production, and emission of toxic gases. 

17 City landscape This relates to the charging stations' effects on the perspective of the city. 

18 Vehicle capacity 
This relates to the passenger-carrying capacity which depends on the 

internal design of vehicles. 

19 Energy monitoring 
This relates to the monitoring of energy levels (remaining energy) during 

operations to avoid energy lacking problems. 
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Row Criteria Short description 

20 Driving range 
This relates to the distance that can be traveled with one battery charge 

(km). 

21 Charging duration This relates to the required time for charging batteries. 

22 Scheduling complexity This relates to the computational complexity in planning efforts. 

23 Crowding 
This relates to the level of crowding inside vehicles, affecting users' trip 

comfort. 

24 Travel time 
This relates to the round-trip time considering charging events during 

operations. 

25 Reliability This relates to the service regularity from the users’ point of view. 

 

2.2.2.1 Electric bus studies: criteria analysis and extraction 

As presented in Table 2-1, the implementation of charging strategies for EB systems in 

practice can be impacted by several factors, such as economic, environmental, social, 

operational, and quality-of-service factors, described below. 

 

• Economic 

Due to the considerable financial outlay required to electrify urban bus networks, 

economic aspects, among others, can significantly influence operators’ strategic and tactical 

decisions, e.g., when selecting the best type of charging infrastructure for EBs. Several studies 

in the literature have investigated the economic aspects of EBs. Basma et al. (2022a) developed 

a method that evaluates the technical and financial performance of EB fleets by taking into 

account costs associated with purchasing, operating, maintaining, and building infrastructure. 

The results show that EB fleet ownership costs can be significantly reduced by optimizing the 

charging infrastructure and battery size based on operational limitations.  

Vilppo and Markkula (2015) assessed the economic aspects of EBs in a mid-sized city. After 

a comprehensive background analysis, the difference in the lifetime cost of EBs and diesel 

buses was calculated based on the selected parameters. Two types of Li-ion batteries and 

different opportunity charging strategies were assessed: charging at the depot, charging at the 

end stop(s), and charging at the line stops. Lajunen and Lipman (2016) analyzed the carbon 

dioxide emissions and lifecycle costs of various city bus technologies, including natural gas, 

diesel, hybrid electric, electric transit buses, and fuel cell hybrid. 
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To develop bus replacement plans for electrifying bus systems, an integer linear 

programming that modeled the EB fleet transition problem is presented by  

Pelletier et al. (2019b). The proposed model considers acquisition and operating costs, salvage 

revenues, demand charges, and charging infrastructure investments. Benoliel et al. (2021) 

provided a framework for the optimal deployment of depot and opportunity charging strategies. 

This study shows EB transit network design is susceptible to the energy consumption of buses.  

Overall, Table 2-1 presents the main economic criteria and sub-criteria identified to be relevant 

to the EB charging strategy selection problem, supported by pertinent references. For instance, 

the infrastructure cost includes two basic components, including charging equipment costs and 

land acquisition costs. 

It is worth noting that there are various energy storage systems available for EBs, such 

as battery-powered (e.g., lithium-ion, nickel-manganese-cobalt, and nickel-cadmium 

batteries), super-capacitors, fuel cells, and flywheels (Kraft et al., 2020; J. Manzolli et al., 2022; 

Rahman et al., 2020). However, we focus on lithium-ion batteries as they are currently the most 

popular energy storage system2 for EBs due to their high energy density, long lifespan, 

relatively low cost, and technology maturity (Kraft et al., 2020; Lai et al., 2022;  

Loganathan et al., 2021; J. Manzolli et al., 2022). 

 

• Environmental 

The environmental effects of batteries used in EBs have been investigated from different 

aspects, such as GHG emissions from the power generation, emissions, and water consumption 

in the battery production and recycling phases.  Kelly et al. (2021) analyzed the life cycle of 

battery-grade lithium carbonate and lithium hydroxide monohydrate produced from brine and 

spodumene ores. In a survey Wu et al. (2021), they presented a life cycle assessment framework 

to assess the environmental costs associated with battery packs for EVs. In addition, some 

models are presented to estimate the energy consumption of EBs such as a model that integrates 

 
2 It should be noted that we do not consider battery technology as a separate criterion in our dissertation, where focusing on 

one type of battery (lithium-ion batteries) would make the decision-making process more accurate for experts to evaluate 

alternatives (fast and slow) based on various criteria, without introducing increased complexity and inconsistency to the 

decision-making process and lessening the decision makers’ discriminatory power. Besides, including other battery 

technologies in our problem could have made the comparisons infeasible in some parts, as it introduces a dependency on the 

battery technology in addition to the charging strategy. For instance, experts cannot provide fair judgments in the presence of 

more than one battery technology when evaluating alternatives (slow and fast charging) regarding criteria such as battery cost, 

battery replacement cost, fire risk, GHG emissions in battery production and recycling phases, water consumption in battery 

production, and more. 
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longitudinal dynamics models and digital elevation to plan the installation of EBs  

(Basma et al., 2020; Gallet et al., 2018; Longo et al., 2021; Saadon Al-Ogaili et al., 2020). 

Regarding the environmental emissions of various charging methods, it has been reported 

that overnight charging, which uses renewable energy sources during off-peak hours, can 

decrease emissions and enhance the environmental performance of EB systems  

(X. Chen et al., 2018). Nevertheless, overnight charging can also raise the need for 

infrastructure for power distribution and storage. Besides, fast charging can result in greater 

emissions from power generation owing to the increased demand on the grid. A review of the 

literature also shows that the availability of renewable energy sources plays a critical role in 

the selection of a charging strategy. For example, it has been found that in regions with a high 

penetration of renewable energy sources, overnight charging can be a more sustainable option 

compared to fast charging (Lopez de Briñas et al., 2022). 

 

• Social 

The third category of extracted criteria examines the social aspect of alternatives. The 

literature and our interviews with experts on the selection of charging strategy show that social 

factors, such as fire risk, the impact on the quality of life for residents, and the public 

perception, are important considerations. It has been pointed out that overnight charging can 

reduce noise pollution and improve the quality of life for residents living near bus depots, 

however, fast charging can lead to increased noise pollution and visual impacts due to the 

installation of charging infrastructure in public spaces (Guo and Zhao, 2015; Sang et al., 2022; 

Vilppo and Markkula, 2015). Another factor in this category is fire risk. The increased use of 

EVs has brought attention to safety concerns due to potential fire risks posed by high-energy 

batteries. P. Sun et al. (2020) conducted a review of the recent fire safety concerns regarding 

EVs and the thermal runaway and fire incidents in Li-ion batteries. Moreover, in a survey by 

D. Yu et al. (2019), a fire test model using hard case prismatic LiFePO4 cells is built to 

investigate the fire characteristics and methods for extinguishing fires in the lithium-ion 

batteries utilized in EBs. 

 

• Operation 

Next, we discuss the operational set of criteria. Particularly, due to the unique 

characteristics of EBs (such as range anxiety and battery charging restrictions), a fundamental 
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understanding of the factors influencing EB operations is of practical importance for the 

electrification of public transportation systems. In this regard, Campos et al. (2021) 

investigated how the limited driving range of EBs affects bus operations under a depot charging 

strategy. They created a model that evaluates the performance of the routes according to the 

type of charging strategy and calculates the total costs of bus services while taking range and 

energy limits into account. They found that the charging strategy at the depot even without 

being the most profitable option, is adequate when the design and operation parameters of the 

bus route fall below specific values. Since the driving range and charging duration of EBs are 

influenced by the properties of their on-board battery packs (such as type, capacity, voltage, 

price, and lifespan), the assessment of battery performance for vehicles has been the subject of 

several studies, while offering explicit insights on this problem. Loganathan et al. (2021) 

presented a methodology for selecting the best Li-Ion battery for EVs while using the weighted 

sum model which is a MCDM method. It has been shown that the evaluation of the state of 

charge is one of the most crucial challenges in EV battery management systems. The effects of 

cold weather on Li-ion batteries, which result in capacity/power fading of Li-ion battery 

technology, are discussed by Jaguemont et al. (2016). They also discussed the ideal approach 

for low-temperature operations. Lai et al. (2022) reviewed the life cycle assessment of  

Lithium-ion batteries over their entire life cycle, while describing the framework, types, 

standards, methods, and technological difficulties involved in conducting a life cycle 

evaluation. They also looked at the steps of lithium-ion battery manufacturing, use, 

repurposing, and material recycling. 

Furthermore, Ecer (2021) applied MCDM methods for selecting the best battery type for 

EVs. In this study, ten battery types are chosen as alternatives and different multi-criteria 

techniques such as SECA, MARCOS, MAIRCA, COCOSO, ARAS, and COPRAS are used 

for ranking alternatives. Mahmoud et al. (2016) provided a review of different features of 

hybrid, fuel-cells, and EBs using simulation models, while assessing the operational 

characteristics of each technology. The study by Li et al. (2013) employed three algorithms 

(Luenberger Observer, Extended Kalman Filter (EKF), and Sigma Point Kalman Filter 

(SPKF)) to measure lithium-ion batteries’ state of charge. The results showed that the SPKF 

provided better numerical stability for determining the battery’s state of charge. 

Whilst some factors, such as charging duration and driving range, are more frequently 

observed in the EB literature (supported by several references), the planning complexity of EB 

systems, depending on charging infrastructure types, is a novel criterion brought up in our 
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interview by some experts from academia and industry. The significance of this factor, ranked 

13 out of 25 criteria, will be shown by our findings. 

 

• Quality of service 

The last category of criteria is dedicated to quality-of-service (including crowding, travel 

time, and reliability), measuring the performance of alternatives from users' viewpoints. 

Depending on the type of charging facilities, the amount of time needed for charging events 

influences the travel time and regularity of EB operations. For example, it has been stated that 

overnight charging systems have the potential to lessen the risk of operational delays caused 

by charging idle times (Basma et al., 2022a). Also, Rupp et al. (2020) presented a new 

methodology to balance the economic and ecological aspects of using EBs to achieve both the 

protection of the environment and the economical operation of the buses. They optimized EBs’ 

charging times as a function of CO2 emissions and electricity tariffs considering different 

charging scenarios affecting the time required for EBs' charging during service and thus travel 

time. 

Besides, varying views are found in the literature and among experts regarding the 

reliability of charging strategies. It has been pointed out that overnight charging can also 

increase the reliability of EB systems for riders by reducing the need for backup energy 

generators and increasing the availability of buses during peak hours  

(Glotz-Richter and Koch, 2016). Another study found that fast charging can increase the 

reliability and convenience of EB systems for riders by reducing the need for long layovers and 

increasing the flexibility of bus routes (Nichoals and Hall, 2018). 

Specifically, we consider various criteria related to battery performance and size for both 

fast and slow charging methods, enabling our charging-strategy-selection MCDM problem to 

assess cost- and technical-related aspects of batteries directly or indirectly. Indeed, our problem 

can properly account for size-sensitive technical aspects of batteries when evaluating charging 

alternatives (slow and fast charging) against relevant criteria, such as battery cost (considering 

larger vs. smaller battery packs in slow and fast charging, respectively), battery replacement 

cost (considering battery lifespan and operating conditions such as temperature), maintenance 

cost, charging equipment cost (considering low- and high-powered chargers in slow and fast 

charging), charging duration (considering long vs. short charging times for slow and fast 

charging), energy consumption (considering battery weight and its impacts on energy 
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consumption), energy monitoring, vehicle capacity (considering battery size and its impacts on 

vehicle internal space/layout), driving range, GHG emissions in battery production phase 

(considering battery size), GHG emissions in battery recycling phase, water consumption in 

battery production phase, and fire risk. 

 

2.2.2.2 Multi-criteria decision-making studies 

MCDM methods are the tools used to select the best option from a range of alternatives, 

while evaluating the performance of each alternative concerning a number of different criteria. 

To evaluate and determine the weight of the criteria in this dissertation, we utilize a FBWM, 

which is essentially the fuzzy version of the Best Worst Method (BWM) originally introduced 

by Rezaei (2015), and is now a well-liked MCDM method that has drawn increasing interest 

from researchers in various fields (Behzad et al., 2020; Muhammet Deveci et al., 2021; 

Torkayesh et al., 2021a; Torkayesh et al., 2021b; Torkayesh et al., 2022; S. Zolfani et al., 2019; 

S. H. Zolfani and Chatterjee, 2019). 

Guo and Zhao (2017) expanded the BWM in a fuzzy way for the first time, allowing for 

better management of uncertainties and ambiguities of decision makers’ viewpoints in 

comparisons. Based on this method, fuzzy pairwise comparisons of the criteria are performed 

using decision makers’ linguistic terms, which are then transformed into fuzzy ratings. The 

FBWM has been utilized in several areas, including the assessment of the environmental 

impacts of ship recycling (Soner et al., 2022), the selection of sustainable suppliers  

(Ecer and Pamucar, 2020), the effectiveness of destination management in small islands 

(Yamagishi et al., 2022), detecting obstacles for solar energy development  

(Mostafaeipour et al., 2021), evaluating banking industry performance  

(Seyfi-Shishavan et al., 2021), and determining the ideal mix of alternative power plants 

(Omrani et al., 2018). 

We also use FRAFSI for evaluating and ranking alternative EB charging strategies, 

including overnight and opportunity charging. First introduced by Žižović et al. (2020), the 

RAFSI approach has gained popularity in recent years and has been used to address a diverse 

range of issues, such as floating photovoltaic power plant site selection  

(Muhammet Deveci et al. 2022a), autonomous vehicle selection for implementation in the 

metaverse (Muhammet Deveci et al., 2022b), e-scooter parking location determination 

(Muhammet Deveci et al., 2023), flight base selection for flight academies (x et al., 2021), and 
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incinerator location selection (Boré et al., 2022). Our use of FRAFSI accommodates 

uncertainty and imprecision in decision maker’s opinions, resulting in a more robust and 

accurate ranking of alternatives. 

In addition to the FRAFSI, we also test two other ranking methods, namely fuzzy 

TOPSIS and fuzzy EDAS. C.-T. Chen (2000) extended the TOPSIS method to the fuzzy 

environment, making it suitable for decision-making problems involving uncertainty. Fuzzy 

TOPSIS has been applied in diverse areas, such as robot selection (Chu and Lin, 2003), 

evaluation of shopping websites (C.-C. Sun and Lin, 2009), facility location selection  

(Ertuğrul and Karakaşoğlu, 2008), supplier selection (Junior et al., 2014), project selection for 

oil-fields development (Amiri, 2010), ranking renewable energy supply systems  

(Şengül et al., 2015), and software requirements selection (Nazim et al., 2022). 

The fuzzy EDAS method, introduced by Keshavarz-Ghorabaee et al. (2016), is another 

efficient tool for handling uncertain decision-making problems. Unlike fuzzy TOPSIS (which 

selects the optimal solution based on the maximum distance from the negative solution and the 

minimum distance from the positive ideal solution), fuzzy EDAS chooses the best alternative 

based on its distance from the average solution (Kahraman et al., 2017). Fuzzy EDAS has been 

used extensively in different application fields, such as selecting carpenter manufacturers 

(Stević et al., 2018), solid waste disposal site selection (Kahraman et al., 2017), hospital 

selection (Kutlu Gündoğdu et al., 2018), green supplier selection (S. Zhang et al., 2019), and 

renewable energy selection (Demirtas et al., 2021). 

Next, a number of studies that used MCDM methods in the EB context are discussed. A 

crucial study related to our research is that of M. Deveci and Torkayesh (2021), who addressed 

the problem of selecting an appropriate charging strategy for EBs as a MCDM problem. The 

authors proposed a novel approach based on Interval-Valued Neutrosophic Sets (IVNS) to 

evaluate and rank four charging options, including opportunity charging, depot charging, 

inductive charging, and no shift. They used Shannon’s entropy under the IVNS to determine 

the weight of the criteria and MACONT to rank the charging options. The results from a case 

study in Turkey demonstrated that depot charging is the most appropriate solution for Istanbul’s 

bus systems. Wołek et al. (2021) applied different multi-criteria analysis methods to select bus 

routes for electrification in Gdynia. They consider a variety of criteria, such as economic, 

social, technological, and environmental factors. They highlighted the value of multi-criteria 

analysis methodologies at a crucial yet early stage of the operational level decision-making 

process for electrifying public transportation. 
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Sang et al. (2022) utilized a combined framework of three methods (DEMATEL, 

PROMETHEE, and Prospect Theory) to evaluate EB charging stations. The findings 

demonstrate that EBs require more consideration when deployed due to their higher purchasing 

costs compared to diesel buses. Türk et al. (2021) employed an interval type-2 fuzzy-based 

MCDM technique combined with a SA algorithm to determine the ideal place for EB charging 

stations for the municipal bus company in Istanbul. 

 

2.2.3 Research gap analysis 

To the best of our knowledge, no research has explored the effects of passenger load 

volatility on energy consumption in the tactical planning of EB systems, such as to influence 

frequency (that relates to fleet size) and vehicle size decisions before the actual operation of an 

electric bus line, for instance, when deciding to replace diesel buses by electric buses in an 

existing service. Previous studies on EB scheduling problems have primarily relied on a fixed 

energy demand rate (in kWh/km) across all driving cycles and routes, while neglecting the 

dynamic changes in driving and route conditions (Paul and Yamada, 2014; Xylia et al., 2017; 

Bi et al., 2017; Wang et al., 2017; Ke et al., 2016; Jefferies and Göhlich, 2018;  

Tirachini and Antoniou, 2020; among others). Thus, this approach fails to account for 

differences in energy consumption resulting from changes in traffic congestion and passenger 

load during operations. 

Another research gap in the deployment of EB systems is the need to determine the 

optimal fleet size and vehicle type (e.g., 12-m or 18-m electric bus) while taking into account 

both user and operator costs. The preferences of service providers (on the supply side) can 

differ from those of public transport users (on the demand side), and therefore designers must 

consider the desires and interests of both parties to determine the optimal supply levels for 

public transport services (Ibarra-Rojas et al., 2015; Hörcher and Tirachini, 2021;  

Sadrani et al., 2022b). For instance, while deploying smaller EBs with lower frequency (lower 

fleet size) can save capital and operational costs for bus agencies, it can increase passengers’ 

waiting times and reduce the desirability of bus services, particularly if some passengers are 

confronted with capacity restrictions in boarding the first coming service (fail-to-board 

situations). In this context, Li et al. (2019) developed a novel EB scheduling model that 

integrated bus operating characteristics and passenger flow behavior into one model, aiming to 

minimize total costs (passenger plus operator costs). The optimal fleet size for EB fleets was 
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determined at a level that is satisfactory for both operating costs and user costs (e.g., 

passengers’ waiting time cost). However, existing optimization models for determining the 

optimal vehicle type and fleet size in EB operations, whether utilizing fast-charging or 

overnight charging at depots, have primarily focused on reducing operator costs, while 

neglecting passengers’ perceptions of the quality of service, such as waiting times and 

inconvenience caused by overcrowding (failing to board) (Chao and Xiaohong, 2013;  

Wang et al., 2017; Rogge et al., 2018; He et al., 2019; Yao et al., 2020; Zhou et al., 2022). 

Thus, a more comprehensive framework that considers the costs of both users and transport 

operators is necessary to achieve solutions that balance the profits of both sides. 

Besides, despite the critical nature of charging strategy selection in shaping the 

electrification of bus networks, there is a paucity of research that specifically addresses this 

issue. In this research, we aim to address the gap in the literature on the selection of charging 

strategies for urban EB systems as a MCDM problem. As reviewed earlier, to the best of our 

knowledge, the only previous work that tackled this issue as a MCDM problem was by  

M. Deveci and Torkayesh (2021), where they considered operational, economic, infrastructure, 

and environmental criteria in their evaluation (a total of 14 criteria), while lacking several 

crucial criteria (such as battery cost, travel time, land acquisition cost, charging equipment cost, 

energy consumption, scheduling complexity, energy monitoring, charging infrastructures’ 

impacts on surrounding residential areas, GHG emission and water consumption for battery 

production, vehicle capacity, labor cost, city landscape, and fire risk). However, our work 

extends their study by considering a more comprehensive spectrum of criteria, including 

economic, environmental, social, operational, and quality-of-service criteria (a total of 25 

criteria). This broadening of the criteria provides a more comprehensive understanding of the 

factors affecting policymakers’ decisions in selecting charging strategies for EBs. Additionally, 

M. Deveci and Torkayesh (2021) relied on the perspectives of only 4 experts from the 

transportation sector. However, our dissertation incorporates the perspectives of 11 experts 

from both academia and industry, resulting in a broader and more reliable range of viewpoints 

in our assessments. Besides, while M. Deveci and Torkayesh (2021) do not provide a 

systematic analysis of the criteria affecting charging strategy selection (using relevant sources 

from the extant EB literature), our work provides a thorough and evidence-based set of criteria 

through a comprehensive literature review and expert survey (as presented in Table 2-1). This 

not only adds credibility to our findings, but also offers a valuable reference for policymakers 

and future research in this field. We also provide a more detailed discussion of the results along 
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with an in-depth evaluation of practical implications and trade-offs involved in each option for 

stakeholders. For example, our analysis examines the relative importance of each category and 

each factor within each category, as well as the global weight of factors. 

 

2.3 Mixed-fleet bus scheduling 

2.3.1 Dispatching scheduling of homogeneous bus fleets 

The optimization of dispatching plans for homogeneous fleets has been the subject of 

several studies in the public transport literature (Berrebi et al., 2015; Gkiotsalitis, 2020a;  

Luo et al., 2019; Gkiotsalitis and Alesiani, 2019; Zhang and Liu, 2019;  

Gkiotsalitis and Liu, 2022). The major objective of these efforts is to enhance the quality of 

service offered to passengers by optimizing the dispatching times of vehicles in response to 

temporal fluctuations in passenger demand. For instance, Gkiotsalitis and Alesiani (2019) 

proposed a bus dispatching problem considering uncertain passenger demand and driving 

times, to create an optimal timetable with reliable dispatching times. They developed a Genetic 

Algorithm (GA) to address the problem and achieved a 5% improvement in service regularity 

during operations based on an application to a bus line in Singapore. Similarly, Luo et al. (2019) 

addressed a dynamic bus dispatching problem to minimize users’ waiting times, while 

accounting for dynamic changes in passenger demand and road congestion. In these studies, 

the quality of service is merely evaluated based on users’ travel times (e.g., waiting times), 

while ignoring users’ perceptions (experience) of trip comfort inside services, for instance, 

regarding passenger crowding. Moreover, it is obvious that in the operation with buses of one 

size, the setting of bus dispatching order has no meaning to bus operators. 

To date, there are a large number of published studies in the field of timetabling and 

vehicle scheduling that have endeavored to improve the quality of services provided to users 

by minimizing passenger waiting time at stops (e.g., Newell, 1971; Nachtigall and Voget, 1997; 

Niu and Zhou, 2013; Barrena et al., 2014a,b; Niu et al., 2015; Sánchez-Martínez et al., 2016; 

Hassannayebi and Zegordi, 2017; Luo et al., 2019; Abdolmaleki et al., 2020;  

Altazin et al., 2020; among many others). Passenger waiting time can be strongly influenced 

by bus dispatching headways (Ceder and Marguier, 1985). Up to now, the problem of setting 

dispatching headways has attracted considerable scholarly attention. Szeto and Wu (2011) 

proposed a joint optimization model for the route design and frequency setting problems. The 

main objective of the model was to minimize the number of transfers and the total travel time. 
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An integrated solution method made up of a GA and a neighborhood search heuristic was 

developed to solve the problem. Hadas and Shnaiderman (2012) proposed a new method for 

determining the dispatching headways and vehicle sizes based on the stochastic characteristics 

of Automatic Passenger Counting (APC) and Automatic Vehicle Location (AVL) data within 

a supply chain optimization model. The objective of the model was to minimize the total cost 

due to empty seats and unserved demand. Li et al. (2013) developed a stochastic optimization 

model involving random passenger demand, boarding/alighting times and bus travel times, to 

find the optimal frequency with the aim of minimizing the waiting time for users and 

maximizing the expected bus company profits. The model was compared to the traditional 

frequency setting models of Newell (1971) and Ceder (1984). Martínez et al. (2014) proposed 

a MILP formulation for a transit frequency optimization problem. Since the model was 

intractable for large instances on a real transit network in Uruguay, a Tabu Search approach 

was adopted to solve the problem. 

Berrebi et al. (2015) proposed a real-time bus dispatching policy to minimize passenger 

waiting time on a high-frequency bus route. For a general railway network, Meng et al. (2016) 

developed a cumulative flow variables-based integer programming model for dispatching 

trains under a stochastic environment, including stochastic capacity breakdown durations, 

segment running times and station dwell times. Gkiotsalitis and Cats (2018) developed a 

mathematical model for setting the dispatching headways of bus lines in a city network. The 

model explicitly included bus capacity and fleet size constraints. Moreover, demand, headway 

and travel time variations at different time periods were taken into account. The results showed 

that the dispatching headways are particularly susceptible to changes in some factors, such as 

demand volumes and bus running costs. 

Furthermore, in a more recent strand of literature dealing with bus dispatching problems, 

Zhang and Liu (2019) formulated a time-dependent bus dispatching problem in a multi-modal 

context. In lieu of explicitly optimizing the size of dispatched bus fleet, the authors developed 

an adaptive fleet size adjustment approach with a target level of bus loading factor.  

Gkiotsalitis (2020a) extended a mathematical model for a periodic bus dispatching control of 

high-frequency services. An iterative gradient approximation solution method was also 

designed to reduce the computing burden of the proposed periodic dispatching control. 

Moreover, Gkiotsalitis and Van Berkum (2020a) introduced a novel rolling-horizon 

optimization model for adjusting the dispatching times of buses in rolling horizons. The 

proposed strategy outperforms myopic methods that determine the dispatching time of each 
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bus trip in isolation. In the above-mentioned studies, vehicle dispatching schemes are designed 

for the operation with uniform fleets of buses (uniform-fleet operation), i.e., public transport 

providers do not need to deal with a heterogeneous fleet dispatching problem, in which vehicles 

of different sizes are concurrently used to meet the passenger demand. 

 

2.3.2 Dispatching scheduling of heterogeneous (mixed) bus fleets 

In some cities, urban public transportation agencies have to operate combining vehicles 

of different sizes on their routes, due to specific demand patterns, historical reasons or resource 

limitations, e.g., when different sizes of buses are purchased at different times through different 

contracts. Such a situation takes place for example in peak periods if the total fleet size required 

is larger than the number of articulated buses at disposal; therefore, the agency uses standard 

and articulated buses at the same time. However, compared to research on homogeneous fleets 

(reviewed in the previous section), there is limited literature addressing the planning issue for 

heterogeneous bus fleets (dell’Olio et al., 2012; Ceder et al., 2013; Dai et al., 2020;  

Duran-Micco et al., 2020; Sadrani et al., 2022a). For instance, dell’Olio et al. (2012) 

constructed an optimization model with constraints on bus capacity to optimize bus size and 

headway. A series of numerical experiments were conducted using different fleet 

configurations, including homogenous fleets made up of buses of the same size, and 

heterogeneous fleets composed of different bus sizes. The findings demonstrated that a better 

service can be provided by the use of heterogeneous fleets. In another study which set out to 

create a bus scheduling timetable based on multiple bus sizes, Ceder et al. (2013) formulated a 

bi-objective mathematical model, in which the first objective was to minimize the deviation of 

the headways from a desired even headway, and the second one was to minimize the deviation 

of the observed passenger loads from a desired even-load level of the vehicles at the  

maximum-load point. Duran-Micco et al. (2020) addressed the determination of frequencies 

for mixed fleets in a bus network using a heuristic memetic algorithm based on the NSGA-II 

concept. The results demonstrated that mixed fleet deployments contribute to reduced GHG 

emissions and users’ trip times. Dai et al. (2020) developed a real-time dispatching framework 

using an INLP formulation to assess the benefits of incorporating modular automated vehicle 

pods alongside human-driven buses. They employed a dynamic programming algorithm but 

highlighted the need for more effective solution techniques, particularly in handling 

performance degradation with an increasing rolling horizon. 
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However, these studies did not address the optimization of dispatching patterns in mixed 

fleets, while dispatching solutions for such fleets are influenced not only by dispatching 

intervals but also by the sequence in which vehicles are deployed, considering the utilization 

of services with different capacities within the operating environment (see Fig. 2-2). To 

effectively manage the dynamic changes in passenger flows over time and space, it is crucial 

to tackle the planning challenges associated with fleet heterogeneity and enhance the 

management of vehicle capacity. Furthermore, these studies do not consider users’ discomfort 

from crowding and its implications for the scheduling of heterogeneous bus fleets. 

 

 

Figure 2-2 Optimization concept of vehicle dispatching sequence in mixed-fleet deployments 

(allowing for better management of vehicle capacity in response to dynamic changes in 

passenger demand). 

 

2.3.3 Designing timetables with dynamic passenger demand 

In the literature of public transport services, there has been a growing number of 

publications focusing on the topic of designing timetables with dynamic passenger demand 

(e.g., Canca et al., 2014; Robenek et al., 2018; Zhang et al., 2018; Meng and Zhou, 2019). For 

instance, to achieve an efficient train timetable that can fully utilize the limited infrastructure 

and rolling stock resources, Meng and Zhou (2019) developed an integrated train service plan 

optimization model with variable passenger demand. The authors introduced a team-based 

scheduling approach to coordinate demand assignment, routing, and timetabling tasks. The 
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proposed method could efficiently increase operators’ profits and passenger travel demand 

satisfaction. Nowadays, with the rapid development of monitoring technologies, there are 

several tools to obtain detailed demand information through on-vehicle equipment, such as 

APC and AVL devices and smartcard payment systems. For example,  

Munizaga and Palma (2012) proposed a new method to estimate a public transport  

Origin–Destination matrix at a high level of accuracy from smartcard data in Santiago, Chile. 

In another work undertaken by Aguiléra et al. (2014) in Paris, the authors developed a new 

method to measure passenger flows in an underground transit system using Cell-phone data. 

They showed that the measures are consistent with those inferred from automated fare 

collection data. The knowledge of precise demand information is assumed by Niu et al. (2015) 

to develop a nonlinear integer programming model that finds the optimal skip-stop pattern on 

a rail transit corridor. The objective of the model was to minimize the total passenger waiting 

time under both high and medium-resolution time-varying demand data. 

 

2.3.4 Public transport planning levels: strategic, tactical, and operational decisions 

Public transport planning decisions are typically categorized into three levels, namely 

strategic, tactical, and operational decisions. For example, at the strategic planning level 

(related to long-term decisions), the set of routes and stops are determined. At the tactical 

planning level (related to medium-term decisions), fleet size requirement is determined, 

including the number and type of vehicles purchased to operate. Finally, at the operational 

planning level, short-term decisions (e.g., vehicle scheduling, driver scheduling, and driver 

rostering) are made. We refer the interested readers to Desaulniers and Hickman (2007) and 

Farahani et al. (2013) for a comprehensive review of these aspects. For example, Desaulniers 

and Hickman (2007) stated that the common way is to consider strategic and tactical planning 

decisions as input, and then determine a better way of using the agencies’ resources in order to 

improve the level of service provided to users in operational planning decisions. Moreover, 

public transport operators may be able to perform interlining between different bus routes (i.e., 

the allocation of one vehicle to a different line at the end of one round), and interlining decisions 

could be adopted in real-time cases, for instance, to deal with sudden changes on demand 

conditions. In such a case, even though the total bus fleet is fixed, the fleet per route does not 

need to be fixed. 
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The operational planning stage enables transport operators to improve the level of service 

offered to travelers through more effective resource allocation. These operational planning 

problems, associated with short-term plans, should be solved periodically during operations, 

on a weekly basis, daily basis or multiple times per day at various planning intervals. This 

periodicity ensures that the most up-to-date operating conditions, such as changes in passenger 

flows over time and space and weather conditions, are taken into account. Therefore, in 

addition to planning quality and accuracy, the processing time required to solve these problems 

is of practical significance for policymakers. However, the complexity of operational bus 

scheduling problems, often classified as NP-hard problems (see Gkiotsalitis and Cats, 2021 for 

a comprehensive review), poses challenges for exact solution methods in addressing these 

problems efficiently within reasonable time frames. This underlines a need for the design and 

selection of more efficient solution algorithms for problems of this nature, such as 

metaheuristic algorithms, which offer the advantage of discovering practically good (not 

necessarily exact) solutions within rational computational (CPU) times (Ge et al., 2022;  

Tang et al., 2022). Besides, this computational difficulty will increase even more when planners 

aim to incorporate more practical elements into the operational scheduling of bus services, such 

as mixed fleet configurations, users’ trip comfort, and driving time uncertainty. 

Several studies have employed metaheuristics to address various public transport 

operational planning problems, including vehicle dispatching setting problems  

(Zhang et al., 2018; Sadrani et al., 2022a), delay and disruption management problems  

(Wang et al., 2019; Xu et al., 2018), and stopping pattern determination problems  

(Chen et al., 2015; Mou et al., 2020). However, most existing research focuses on 

homogeneous fleets, in which the operation of vehicles of the same size and type is optimized. 

 

2.3.5 Research gap analysis 

While a considerable amount of literature has been published on the problem of setting 

bus dispatching headways, there have been no attempts to examine how bus dispatching 

policies can affect passenger and operator costs in a mixed-fleet operation (i.e., in the operation 

with buses of different sizes), considering the fact that a mixed fleet of vehicles can provide 

services with different passenger-carrying capacities during real-world operations. Moreover, 

to the best of our knowledge, no prior research has addressed the optimization of vehicle 

assignment programs for mixed-fleet operations, which determine the number and type of 
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vehicles assigned for operations considering real-life resource constraints and vehicle operating 

costs. Additionally, no study in the literature incorporates users’ trip comfort (users’ 

perceptions of crowding inconvenience) in the optimal deployment of mixed fleets. Accounting 

for these realistic elements in a more comprehensive model adds complexity to the solution 

phase of the MFBS problem. Thus, there is also a crucial need for the development of more 

reliable/advanced solution algorithms to effectively address these challenges. 
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3 Model formulation 

This chapter includes the mathematical models developed in this dissertation. It 

encompasses a MINLP model for automated bus planning, an INLP model for EB planning, 

an MCDM model for charging strategy selection, and two MINLP models designed to address 

MFBS problems in simple and advanced versions. Table 3-1 includes the notations employed 

in our problem formulations within this dissertation. 

 

3.1 Model formulation for automated bus planning 

We develop a mathematical modeling framework for solving the problem of setting 

service frequency and vehicle size for fleets of human-driven or automated buses. To this end, 

we formulate a comprehensive objective function, which calculates both user and operator 

costs, to minimize the total costs of a public transport service in the presence of crowding 

externalities, time-dependent demand flows, and stochastic travel times. Besides, several 

constraints are modeled to represent real-world operating conditions, such as vehicle 

movement, passenger flow, and vehicle capacity restrictions in line with the remaining  

on-board capacity of vehicles during operations (see Fig. 3-1). 
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Figure 3-1 Overview of the optimization model framework in the proposed automated bus 

system problem. 

 

Table 3-1 List of notation. 

Symbol Description Unit 

𝑉 Set of buses, V= {1, 2, … , 𝑁𝑣}  

S Set of stops, 𝑆 = {1, 2, … , 𝑁𝑠}  

𝑀 Set of vehicle types, 𝑀 = {1, 2, … ,𝑚}  

𝑖 Index of buses  

𝑚 Index of vehicle types  

𝑗, 𝑘 Index of stops (from origin 𝑗 to destination 𝑘)  

𝑁𝑠  Number of stops on the route  

𝑅 Route length km 

𝜆 𝑗[𝑡] Passenger arrival rate at stop 𝑗 at time 𝑡 pax/min 
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Symbol Description Unit 

𝑈𝑚 Maximum resource availability on vehicles of type 𝑚 veh 

𝑂𝐷𝑗,𝑘[𝑡] 
Destination distribution matrix (the percentage of passengers at stop 𝑗, who aim to travel 

from stop 𝑗 to stop 𝑘, 𝑘 > 𝑗) at time 𝑡 
% 

𝑃 Total demand (the total number of waiting passengers who arrived at stops), which is a 

constant value during the entire study period 

pax 

𝑓min Minimum frequency veh/h 

𝑓max Maximum frequency veh/h 

𝑇 Start of the study period min 

𝛿𝑎 Acceleration time s 

𝛿𝑑 Deceleration time s 

r𝑗 Mean running times between stops 𝑗 − 1 and 𝑗 min 

σ𝑗 Standard deviation of running times between stops 𝑗 − 1 and 𝑗 min 

𝜏 Time required for opening and closing bus doors s 

𝑇𝑐 Cycle time min 

𝛼𝑎 Average alighting time per passenger s/pax 

𝛼𝑏 Average boarding time per passenger s/pax 

𝑃𝑖
𝑎 Proportion of passengers alighting through the busiest door of bus 𝑖 % 

𝑃𝑖
𝑏  Proportion of passengers boarding through the busiest door of bus 𝑖 % 

𝑇1 First dispatching time (beginning of the planning horizon) min 

𝑇2 Last dispatching time (end of the planning horizon) min 

ℎmin Minimum dispatching headway min 

ℎmax Maximum dispatching headway min 

𝐺 Starting point of the planning period  

𝑃𝑎 Proportion of passengers alighting through the busiest door of a bus % 

𝑃𝑏  Proportion of passengers boarding through the busiest door of a bus % 
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Symbol Description Unit 

ℎ Dispatching headway from the first stop min 

𝜑𝑤1 Monetary value of initial waiting time €/h 

𝜑𝑤2 Monetary value of extra waiting time due to denied boarding €/h 

𝜑𝑣 Monetary value of in-vehicle travel time €/h 

𝜑𝑑 Hourly driving cost €/veh-h 

𝜑𝑚
𝑢  Running cost of a vehicle of type 𝑚 €/veh-h 

𝜑run Running cost of a vehicle per kilometer 
€/veh-

km 

𝜑cap Capital cost of a vehicle per hour, i.e., cost of owning or renting a vehicle per hour €/veh-h 

𝜑𝑒 Unit cost of energy €/kWh 

𝜑𝑚
𝑐  Capital cost of a type-𝑚 vehicle per hour €/veh-h 

𝑐𝑚 Passenger-carrying capacity of a vehicle from type-𝑚 pax/veh 

𝑎𝑚 Standing floor area inside a vehicle of type 𝑚 m2 

𝑏𝑚 Fully battery capacity of a vehicle from type-𝑚 kWh 

𝜉 Maximum allowable level of battery capacity usage % 

𝑚pax Average weight of one passenger kg 

𝐶 Vehicle passenger-carrying capacity pax/veh 

𝐵 Vehicle battery capacity kWh 

𝜔 
Driving cost coefficient for reflecting the level of reduction in human driving costs due 

to automation 
 

𝛽 
Capital cost coefficient for reflecting the level of increase in vehicle capital costs due to 

automation 
 

𝜃 
Running cost coefficient for reflecting the level of reduction in vehicle running costs due 

to automation 
 

𝛼sit Seated in-vehicle time multiplier  

𝛼stand Standing in-vehicle time multiplier  

𝐶(𝑣𝑠) Total capacity of a vehicle, which is a function of the vehicle size pax/veh 
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Symbol Description Unit 

𝐺sit(𝑣𝑠) Number of seats inside a vehicle, which is a function of the vehicle size  

𝑁𝑣 Fleet size veh 

𝐶𝑖 Total capacity of bus 𝑖 pax/veh 

Ai
stand Standing floor area inside bus service 𝑖 m2 

𝜑𝑖
𝑢 Running cost of bus service 𝑖 €/veh-h 

𝜋𝑖,𝑗
𝑠𝑖𝑡 Crowding multiplier for sitting passengers inside bus service 𝑖 when traveling between 

station 𝑗 − 1 and station j 

 

𝜋𝑖,𝑗
stand Crowding multiplier for standing passengers inside bus service 𝑖 when traveling between 

station 𝑗 − 1 and station j 

 

𝑇𝑖,𝑗
𝑎  Arrival time of bus 𝑖 at stop 𝑗 min 

𝑇𝑖,𝑗
𝑑  Departure time of bus 𝑖 from stop 𝑗 min 

𝑇𝑖,𝑗
𝑠  Dwell time of bus 𝑖 at stop 𝑗 min 

𝑇𝑖,𝑗
𝑟  Running time of bus 𝑖 between stops 𝑗 − 1 and 𝑗 min 

𝑇𝑖
𝑐 Cycle time of service 𝑖 to complete one round trip min 

𝐻𝑖,𝑗 Headway between buses 𝑖 − 1 and 𝑖 at stop 𝑗 min 

𝑇𝐸𝑖,𝑗 Energy consumed by service 𝑖 to travel between stations 𝑗 − 1 and 𝑗 kWh 

𝑁𝑖,𝑗,𝑘
𝑐  

Number of passengers with trip 𝑗 → 𝑘 arriving at stop 𝑗 during the headway between 

buses 𝑖 − 1 and 𝑖 
pax 

𝑁𝑖,𝑗,𝑘
𝑓

 Number of passengers with trip 𝑗 → 𝑘 failing to board bus 𝑖 at stop 𝑗 pax 

𝑁𝑖,𝑗,𝑘
𝑤  Number of passengers with trip 𝑗 → 𝑘 waiting for bus 𝑖 at stop 𝑗 pax 

𝑁𝑖,𝑗
𝑐  

Total number of passengers arriving at stop 𝑗 during the headway between  

buses 𝑖 − 1 and 𝑖 
pax 

𝑁𝑖,𝑗
𝑓

 Total number of passengers failing to board bus 𝑖 at stop 𝑗 pax 

𝑁𝑖,𝑗
𝑤  Total number of passengers waiting for bus 𝑖 at stop 𝑗 pax 

𝑁𝑖,𝑗
𝑜𝑛 Number of passengers inside bus 𝑖 between stops 𝑗 − 1 and 𝑗 pax 

𝑁𝑖,𝑗
sit Number of seated passengers inside bus 𝑖 between stops 𝑗 − 1 and 𝑗 pax 

𝑁𝑖,𝑗
stand Number of standing passengers inside bus 𝑖 between stops 𝑗 − 1 and 𝑗 pax 
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Symbol Description Unit 

𝑁𝑖,𝑗
v  Remaining active capacity inside bus 𝑖 at station 𝑗 after the alighting phase pax 

𝐷𝑖,𝑗
stand Density of standing passengers inside bus 𝑖 between stops 𝑗 − 1 and 𝑗 pax/m2 

𝐹𝑖,𝑗 Load factor of bus 𝑖 between stops 𝑗 − 1 and 𝑗 pax/seat 

𝑁𝑖,𝑗
𝑏  Number of passengers boarding bus 𝑖 at stop 𝑗 pax 

𝑁𝑖,𝑗
𝑎  Number of passengers alighting bus 𝑖 at stop 𝑗 pax 

𝑁𝑖,𝑗,𝑘
𝑠  Number of passengers with trip 𝑗 → 𝑘, who can successfully board bus 𝑖 at stop 𝑗 pax 

𝐿𝑖,𝑗 Passenger load carried by service 𝑖 between stations 𝑗 − 1 and 𝑗 kg 

𝐸𝑖
𝑐 Energy consumed by service 𝑖 to travel from the depot to the original station kWh 

𝐸𝑖
𝑟 Energy consumed by service 𝑖 to return from the original station to the depot kWh 

𝑓 

Service frequency (Allowed frequency values:  
𝑓 ∈ {𝑓min, 𝑓min + 1,… , 𝑓max − 1, 𝑓max}⏟                    

discrete set with (𝑓max−𝑓min)+1 elements

) veh/h 

𝑥𝑚 Binary variable that is 1 if a fleet of buses of type 𝑚 is operated; otherwise 0  

𝑣𝑠 Vehicle size (four bus sizes used as candidates: 𝑣𝑠 ∈ {8, 12, 15, 18 } meters) m 

𝑥𝑚𝑖  Binary variable which is 1 if a type 𝑚 vehicle is dispatched as 𝑖-th service; otherwise 0  
 

𝐵𝑚 Number of type 𝑚 vehicles assigned for operations 
veh 

𝑇𝑖,1
𝑑  Dispatching time of bus 𝑖 from the first stop min 

 

3.1.1 Model assumptions for automated bus planning 

The main assumptions employed in our problem formulation are listed as follows: 

• We consider high-frequency bus systems, where the arrivals of passengers at stations are 

assumed to be random. 

• We consider 15-minute-dependent demand volumes, remaining fixed during each  

15-minute interval (every 15 minutes). 

• We consider a general bi-directional bus corridor with even dispatching headways from the 

first stop. 
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• We model varying dwell times (flow-dependent dwell times), which can vary for a vehicle 

at each stop as a function of the number of passengers getting off and on at that stop. 

• We assume a log-normal distribution for stochastic running times between stops. 

• We consider vehicle capacity restrictions, and hence: 

✓ (a) boarding numbers will never exceed the residual capacity inside vehicles; 

✓ (b) extra waiting times are considered for denied boarding situations; 

✓ (c) when boarding demand is larger than the residual capacity inside a bus, the chance 

of boarding is assumed to be the same for all the travelers waiting for that bus, 

independent of their trip destinations1. 

• We assume that overtaking is not permitted during bus operations. 

• For user cost calculations, we distinguish between the monetary values of in-vehicle travel 

time, initial waiting time, and extra waiting time due to denied boarding. 

• We estimate passenger occupancy rates, the number of seated and standing passengers 

inside vehicles, and crowding discomfort at a microscopic level, bus by bus. 

• We assume that the user cost is sensitive to on-board crowding levels, i.e., the impacts of 

on-board crowding on the disutility of in-vehicle travel time for both seated and standing 

passengers are modeled. 

• We assume that the technology of automation can: 

✓ (a) increase vehicle capital costs due to including automation technologies inside 

vehicles; 

✓ (b) reduce human driving costs; 

✓ (c) reduce vehicle running costs through a reduction in fuel/energy consumption due 

to providing a more balanced driving style. 

 

3.1.2 Optimization model for automated bus planning 

The proposed automated bus system problem is formulated as follows: 

 
1 This is a common assumption that has been employed by several studies in the literature (e.g., Wang et al., 2015;  

Gao et al., 2016; Sánchez-Martínez et al., 2016; Dai et al., 2020). 
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The objective function (3-1) minimizes the total cost of a public transport service, defined 

as the sum of user and operator costs. User cost (𝑍𝑝) is composed of two components: waiting 

and in-vehicle time costs. Operator cost (𝑍𝑜) is comprised of three components: capital, driver, 

and running costs. A single-objective optimization model allows for establishing a trade-off 

between user and operator costs simultaneously, thus finding the optimal solution that leads to 

the minimum total cost (social cost) of a public transportation service. In this model, we employ 

various monetary valuations2 to translate all travel time/distance elements which are relevant 

to passengers and operators into their equivalent cost values. Further details are provided on 

each monetary term in the following. 

It has been shown that the value of waiting time at stops is larger than the value of  

in-vehicle time (Cats et al., 2016; Lu et al., 2018; Wardman, 2004). Moreover, the value of 

extra waiting time due to denied boarding (for passengers left behind due to capacity 

constraints) is larger than the value of initial waiting time experienced in normal cases  

(Cats and Jenelius, 2018; Cats et al., 2016). For instance, Cats et al. (2016) assumed that one 

minute waiting time after being denied boarding is perceived 3.5 times as onerous as one 

minute initial waiting time. Accordingly, using three different monetary valuations, namely 

𝜑𝑤1, 𝜑𝑤2, and 𝜑𝑣 [€/h], we distinguish between the monetary values of initial waiting time, 

extra waiting time caused by denied boarding, and in-vehicle time. 

For operator cost estimations, vehicle capital costs and driver costs are commonly 

defined on a temporal basis [€/veh-h or €/veh-day], whereas running costs are defined on a 

spatial basis [€/veh-km] (Tirachini and Antoniou, 2020). Hence, in our setting, 

 𝜑𝑑 and 𝜑cap [€/veh-h] are used to convert vehicle operating hours into driver and vehicle 

capital costs respectively, whereas 𝜑run [€/veh-km] is used to translate the distance traveled 

by vehicles into their running costs. 

 
2 𝜑𝑤1 [€/h], 𝜑𝑤2 [€/h], and 𝜑𝑣 [€/h] are used for user cost calculations. Moreover, 𝜑cap [€/veh-h],  

𝜑𝑑 [€/veh-h], and 𝜑run [€/veh-km] are used for operator cost calculations. 
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Considering the objective function (3-1) and the problem constraints, the master problem 

for the joint optimization of service frequency (𝑓) and vehicle size (𝑣𝑠) is presented in  

Eq. (3-2). 

As indicated in expression (3-3), the total waiting time cost accounts for: (i) initial 

waiting time costs for new passengers entering stops during the headway, plus (ii) extra waiting 

time costs due to denied boarding considered for left-behind passengers, who could not board 

the earlier bus due to crowding. 

Buses run frequently enough in high-frequency bus systems, and thus passengers do not 

need to coordinate their arrivals with the arrival times of vehicles, i.e., we assume random 

arrivals at stations. Accordingly, the average waiting time is estimated as half of the headway 

(𝐻𝑖,𝑗 2⁄ ) for travelers in group (i) [see Eq. (3-4)], in line with a common assumption in this 

field (e.g., Furth and Wilson, 1981; Wu et al., 2017; Gkiotsalitis and Cats, 2018;  

Dai et al., 2020; Sadrani et al., 2022a). However, the extra waiting time is the entire headway 

(𝐻𝑖,𝑗) for travelers in group (ii), who must wait for the next vehicle [see Eq. (3-5)]. Given the 

higher value of extra waiting time (𝜑𝑤2) than that of initial waiting time (𝜑𝑤1), denied 

boardings can lead to a remarkable increase in passengers’ waiting time costs. 

The cost of passengers’ in-vehicle time has two components: the cost of riding time 

between stops, i.e., 𝑍v
ride, as well as the cost of dwell time at stops, i.e.,  𝑍v

dwell [see Eq. (3-6)]. 

As presented in expression (3-7), the cost of riding time between stops is obtained 

through multiplying the total number of on-board passengers (including both seated and 

standing passengers) by the total time required for traveling between each two successive stops. 

Besides, the user cost is sensitive to in-vehicle crowding levels in this formulation, which 

enables us to estimate in-vehicle discomfort costs for passengers depending on occupancy 

levels inside each vehicle at each segment of the route. Indeed, in-vehicle crowding has been 

found as a significant source of travel disutility for both seated and standing passengers, thereby 

increasing perceived in-vehicle times for both groups of travelers. Following  

Wardman and Whelan (2011), we draw a distinction between the value of in-vehicle time for 

seated and standing passengers through employing crowding multipliers of 𝛼sit and 𝛼stand 

respectively. As indicated in Table 3-23, crowding multipliers increase with the growth of the 

load factor and are larger for standing passengers than for seated passengers. For instance, to 

estimate the user cost of crowding, when the passenger load factor is 110%, the perceived  

 
3 The values presented in Table 3-2 have been taken from the meta-study of Wardman and Whelan (2011). 
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in-vehicle time is increased to [1.05 × (actual in-vehicle time)] for seated passengers, whereas 

it is increased to [1.62 × (actual in-vehicle time)] for standees. In our numerical experiments, 

we will widely examine the influences of on-board crowding and standing on determining the 

optimal service frequency and vehicle size for a fleet of automated buses vs. human-driven 

buses. 

As can be seen in (3-8), 𝑍v
dwell is related to those passengers, 𝑁𝑖,𝑗

𝑜𝑛 − 𝑁𝑖,𝑗
𝑎 , inside bus 𝑖 

whose destination is not bus stop 𝑗 (i.e., they do not need to alight at stop 𝑗), so they have to 

stay inside bus 𝑖 during alighting and boarding times (dwell time) at that stop. 

 

Table 3-2 Crowding multipliers (Source: Wardman and Whelan, 2011). 

Load factor4 𝑭𝒊,𝒋 (%) 𝛂𝐬𝐢𝐭  𝛂𝐬𝐭𝐚𝐧𝐝 

0–75 0.86 — 

75–100 0.95 — 

100–125 1.05 1.62 

125–150 1.16 1.79 

150–175 1.27 1.99 

175–200 1.40 2.20 

200– 1.55 2.44 

 

Operator cost elements, incorporated into the objective function (3-1), are described here. 

Vehicle automation can potentially affect operator costs in three aspects: a rise in capital cost, 

and reduction in driver and running costs. Following Tirachini and Antoniou (2020), we 

formulate operator costs in a general manner for human-driven bus operations, and the effects 

of vehicle automation on operator costs (including capital, driver, and running costs) are 

separately described by additional factors, namely 𝛽 (𝛽 ≥ 1), 𝜔 (0 ≤ 𝜔 ≤ 1), and  

𝜃 (0 ≤ 𝜃 ≤ 1). Obviously, for human-driven bus operations in our framework, such factors 

would be equivalent to one. 

The total vehicle capital cost (fleet acquisition cost) is estimated by Eq. (3-9).  For 

automated bus fleets, coefficient 𝛽 (𝛽 ≥ 1) represents the level of increase in vehicle capital 

costs due to including automation technologies in vehicles, e.g., 𝛽 = 1.5 indicates an increase 

 
4 Load factor inside a vehicle is defined as the ratio between the actual number of passengers inside the vehicle and the seating 

capacity of the vehicle [see Eq. (3-28)]. 
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of 50% in vehicle capital costs with automation. This parameter value has been estimated by 

Tirachini and Antoniou (2020) for different vehicle sizes. 

The total driving cost is estimated by Eq. (3-10).  It is not expected that the technology of 

automation can totally eliminate human-related driven costs, as some employees are still 

retained to control or monitor the operation of bus routes with automated driving technologies, 

provide information to users, and safeguard the security of operations and passengers, among 

other new needs of personnel that may arise in an automated public transport system (Abe, 

2019; Tirachini and Antoniou, 2020). Hence, for automated fleets, coefficient 𝜔 (0 ≤ 𝜔 ≤ 1) 

reflects the level of current human driving costs being needed after automation. For example, 

𝜔 = 0 shows the case of full driving cost savings with automation, whereas 𝜔 = 0.6 shows 

that 40% of salaries are saved with automation. 

Eq. (3-11) accounts for the total running cost (e.g., energy consumption, tires, 

maintenance) based on the total distance traveled by vehicles. 

Coefficient 𝜃 (0 ≤ 𝜃 ≤ 1) represents the level of reduction in running costs with 

automated vehicles, which can reduce fuel/energy consumption per veh-km due to providing 

more balanced driving functions thanks to, e.g., V2V and V2I communications  

(Wadud, 2017; Bösch et al., 2018; Tirachini and Antoniou, 2020). For example, 𝜃 = 0.9 means 

that 10% of vehicle running costs per kilometer can be saved with automation. 

We model vehicle motion constraints, as well as passenger flow constraints acting in 

accordance with the  available capacity of vehicles during operations (i.e., the possibility of 

denied boarding due to a shortage of capacity). Overall, a bus movement model includes the 

calculations of five key elements: arrival times at stops, departure times from stops, headways 

between consecutive vehicles, dwell times at stops, and running times between successive 

stops. Furthermore, our passenger flow constraints include the calculations of six components: 

the number of passengers waiting at stops, the number of seated/standing passengers inside 

vehicles, the number of passengers who can/cannot successfully board vehicles, and the 

number of passengers alighting at stops. 

The service frequency is regarded as a decision variable, which can be chosen from a 

discrete set of values subject to predefined lower and upper bounds of 𝑓min, and 𝑓max [veh/h] 

[see Eq. (3-12)]. 

In general, 𝑓min is often given by a minimum capacity (or maximum waiting time) that is 

exogenously defined in public transport systems. As mentioned in the model assumptions, we 
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focus on high-frequency bus services, where buses run frequently enough so that passengers 

do not need to coordinate their arrivals with bus arrivals. In this regard, some studies in the 

literature have considered high-frequency service as services operating with a frequency of at 

least 5 [veh/h] or more (e.g., Bartholdi and Eisenstein, 2012;  

Chiraphadhanakul and Barnhart, 2013; Gkiotsalitis and Van Berkum, 2020a). On the other 

hand, 𝑓max is given by the capacity of bus stops (Tirachini, 2014). 

The fleet size requirement is obtained by the expression in Eq. (3-13). 𝑇𝑐 represents the 

total travel time during one cycle or round-trip (Tirachini et al., 2014). 

Headway between vehicles 𝑖 − 1 and 𝑖 at stop 𝑗 is obtained according to Eq. (3-14). 

As can be seen in (3-15), the arrival time of bus 𝑖 at stop 𝑗 is obtained through the sum 

of: (1) the departure time of bus 𝑖 from stop 𝑗 − 1, (2) acceleration time for leaving stop 𝑗 − 1, 

(3) the running time between stops 𝑗 − 1 and 𝑗, and (4) deceleration time for entering stop 𝑗. 

Running times are stochastic, drawn from a log-normal distribution in Eq. (3-16). In our 

numerical experiments, we perform a sensitivity analysis on travel time variability for 

automated vehicle fleet operations with changes in the standard deviation of travel times. 

It is assumed that vehicles are dispatched at even dispatching headways from the first 

stop. As indicated in Eq. (3-17), an even interval of ℎ minutes (ℎ = 60/𝑓) is considered 

between the dispatching of vehicles, e.g., for a frequency of 20 (veh/h), buses are dispatched 

every 3 minutes from the first stop. Besides, we assume that the first bus is dispatched at a 

certain time which is the beginning of the study period (𝑇) (i.e., the departure time of the first 

bus from the first stop is set to the first time point). 

At other bus stops, the departure time of bus 𝑖 at stop 𝑗 is obtained by adding its dwell 

time to its arrival time at stop 𝑗, as presented in Eq. (3-18).  We model flow-dependent dwell 

times. Regarding the alighting and boarding policy, we assume that passengers use the same 

doors for alighting and boarding, and that the boarding process will always begin after finishing 

the alighting process (i.e., sequential alighting and boarding, in which the alighting process has 

priority over the boarding process). Hence, the total dwell time at a stop depends on the sum 

of the passengers’ alighting and boarding times (Tirachini et al., 2014). As presented in  

Eq. (3-19), the dwell time of bus 𝑖 at stop 𝑗 depends on the number of passengers getting off 

and on through the busiest bus door, plus a fixed “dead” time spent opening and closing bus 

doors. 
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Parameters 𝑃𝑎 and 𝑃𝑏 represent respectively the proportions of passengers alighting and 

boarding through the busiest door of a bus, and are dependent on the number of bus doors (note 

that the values of such size-dependent parameters are given in Tables A2 and A3 in  

Appendix A) (Tirachini et al., 2014). Parameters 𝛼𝑎 and 𝛼𝑏 represent the average alighting and 

boarding times per passenger respectively, and depend on fare payment methods, bus floor 

height, platform configuration, and so on. Another relevant aspect to explain here is the effects 

of active vehicle capacity constraints on dwell times. Indeed, since we explicitly account for 

vehicle capacity constraints, the dwell times of vehicles (in terms of boarding time) can depend 

on the remaining capacity of vehicles at each stop (the boarding numbers, 𝑁𝑖,𝑗
𝑏  in Eq. (3-29), 

cannot exceed the remaining capacity). Moreover, in our numerical studies, we carry out a 

sensitivity analysis on the dead time (𝜏) to evaluate the possible effects of vehicle automation 

on the process of opening and closing bus doors. 

Given time-dependent demand volumes, Eq. (3-20) calculates the number of passengers 

arriving at origin stop 𝑗 over the headway, who wait for the arrival of bus 𝑖 to travel from  

stop 𝑗 to stop 𝑘 (trip 𝑗 → 𝑘). 

Following Gao et al. (2016) and Sadrani et al. (2022a), we use 15-minute-dependent 

demand data, remaining fixed during each 15-minute interval. For an in-depth discussion of 

fine-grained demand information and demand aggregation intervals under different degrees of 

demand availability for public transport planning, we refer to Sadrani et al. (2022a). In this 

regard, the authors have examined and compared the effects of demand data resolution on the 

accuracy of waiting time estimations. Hence, 15-minute-dependent demand data are introduced 

as fine-grained demand information that can suitably capture passenger demand variations for 

planning purposes. 

Considering passengers left behind by the earlier bus (i.e., bus 𝑖 − 1) at stop 𝑗, the total 

number of passengers with trip 𝑗 → 𝑘 waiting for bus 𝑖 at stop 𝑗 includes two groups of 

passengers [see Eq. (3-21)]: (i) the new passengers arriving at stops during the headway, 

modeled in Eq. (3-20), and (ii) those passengers previously left behind. 

According to the above-mentioned definitions, it is evident that Eqs. (3-22)-(3-24) will 

always hold. For instance, passengers waiting for bus 𝑖 at stop 𝑗 can have various trip 

destinations. Hence, given the definitions of 𝑁𝑖,𝑗,𝑘
𝑤  and 𝑁𝑖,𝑗

𝑤 , to calculate the total number of 

passengers waiting for bus 𝑖 at stop 𝑗, all the waiting passengers at that stop with any trip 

destinations (trip 𝑗 → 𝑘, 𝑘 > 𝑗) are summed together using Eq. (3-24). 
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As shown in Eq. (3-25), the number of on-board passengers of bus 𝑖 between stops 𝑗 − 1 

and 𝑗, 𝑁𝑖,𝑗
𝑜𝑛, includes those passengers who have remained on bus 𝑖 from the earlier segment 

(𝑗 − 2 → 𝑗 − 1) as they do not need to alight at stop 𝑗 − 1, i.e., (𝑁𝑖,𝑗−1
𝑜𝑛 − 𝑁𝑖,𝑗−1

𝑎 ), plus 

passengers getting on bus 𝑖 at stop 𝑗 − 1, denoted by 𝑁𝑖,𝑗−1
𝑏 . Note that vehicles are empty when 

reaching the first stop (i.e., 𝑁𝑖,1
𝑜𝑛 = 0, ∀𝑖𝜖𝑉). 

The number of seated passengers on bus 𝑖 between stops 𝑗 − 1 and 𝑗 is equal to the 

minimum value between the number of seats and the number of passengers inside bus 𝑖  

[see Eq. (3-26)]. 

The number of standees inside bus 𝑖 between stops 𝑗 − 1 and 𝑗 is obtained through  

(3-27).  Load factor 𝐹𝑖,𝑗, defined as the ratio between the number of on-board passengers and 

the total number of bus seats, reflects the degree of occupancy inside bus 𝑖 when traveling 

between stops 𝑗 − 1 and 𝑗. High load factors are related to crowding externalities inside 

vehicles [see Eq. (3-28)] (Wardman and Whelan, 2011; Tirachini et al., 2013). 

The number of passengers who are able to board bus 𝑖 at stop 𝑗 will never exceed the 

residual capacity of bus 𝑖 at that stop [see Eq. (3-29)].  As can be seen in (3-30), the alighting 

demand for bus 𝑖 at stop 𝑗 will include those passengers boarding bus 𝑖 at the previous stops, 

aiming to reach stop 𝑗. Note that the alighting demand is zero at the first stop (i.e., 

 𝑁𝑖,1
𝑎 = 0, ∀𝑖𝜖𝑉). 

As explained before, when capacity is not sufficient to meet the whole boarding demand, 

we consider the same chance of boarding for all passengers, as modeled in Eq. (3-31).  Finally, 

in Eq. (3-32), we calculate the number of passengers with trip 𝑗 → 𝑘, who are unable to board 

bus 𝑖 at stop 𝑗 due to crowding. 

 

3.2 Model formulation for electric bus planning 

In this section, we develop a novel mathematical optimization framework in the form of 

an INLP model, which integrates a detailed (variable) energy consumption model based on 

longitudinal vehicle dynamics into the planning phase of EB fleets. For this purpose, we 

combine contributions from energy consumption dynamics, transport economics, passenger 

flow behavior, and operations research to optimize public transport supply with EB fleets (see 

Fig. 3-2). Moreover, in our numerical experiments, we test the applicability of our approach by 

applying it to a real bus corridor in Santiago de Chile and simulating several scenarios of 
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operations under different demand levels (low vs. high demand levels), energy estimation 

methods (variable vs. simplified fixed energy demand), and route conditions (with vs. without 

slope). 

 

 

Figure 3-2 An overview of key research components for our proposed EB fleet planning 

model. 

 

3.2.1 Energy estimation modeling 

This section outlines a comprehensive EB energy consumption model, adopted from the 

integration of various research efforts in the existing EB literature. The model accounts for 

microscopic-level tractive mechanical energy, auxiliary energy, and regenerative braking 

system abilities, and is based on a longitudinal vehicle dynamics model. We draw on multiple 

sources (e.g., Shekhar et al., 2016; Gallet et al., 2018; Tang et al., 2019; Göhlich et al., 2018; 

Al-Ogaili et al., 2020; Alwesabi et al., 2020; Ma et al., 2021; Abdelaty et al., 2021;  

Chen et al., 2021; Fiori et al., 2021) to achieve this model. 

Overall, the total amount of energy (𝑇𝐸) required for EB operations is derived from two 

parts [see Eq. (3-33)]: 
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(i) Auxiliary energy needed to run auxiliary facilities, e.g., air conditioners, activating 

bus doors, heating, in-vehicle displays, and so on. 

(ii) Mechanical energy related to the tractive force at the wheels, leading to the movement 

of a vehicle against forces opposed to it. 

= +aux trTE E E  (3-33) 

To determine the auxiliary energy (𝐸𝑎𝑢𝑥), we assume a constant auxiliary power 𝑃𝑎𝑢𝑥 

throughout the entire operating hours (see Eq. (3-34) where 𝑡 is the total trip time, containing 

running and dwell times), which is commonly assumed in previous EB energy consumption 

models (e.g., Gallet et al., 2018; Tang et al., 2019; Al-Ogaili et al., 2020; Ma et al., 2021). 

However, it is worth noting that the occupancy levels inside vehicles can affect the amount of 

energy needed for Heating, Ventilating, and Air Conditioning (HVAC) services, despite our 

assumption of fixed auxiliary energy consumption during operations. 

=aux auxE P t  (3-34) 

The tractive force required for the movement of EBs can vary at different segments of a 

route, due to changes in driving conditions (e.g., driving speed and passenger load) and route 

characteristics (e.g., road slope), resulting in variations in energy consumption. Four different 

resistance forces opposing the movement of a vehicle are included in the tractive force 

equation, as shown in Eq. (3-35) (Gallet et al., 2018; Al-Ogaili et al., 2020): 

= + + +
t d r g a

F F F F F  (3-35) 

• Aerodynamic drag force ( = 20.5d dF pAC v ): This force stems from the resistance 

of air when a vehicle is moving. 𝑝 (kg/m3), 𝐴 (m2), 𝐶𝑑, and 𝑣 (m/s) reflect the air 

density, vehicle frontal area, drag coefficient, and vehicle travel speed respectively. 

• Rolling resistance ( = cos
r r

F M gC ): This force stems from the frictional resistance 

created between road surface and vehicle wheels. 𝑀 (𝑀 = 𝑊 + 𝐿) reflects the total 

vehicle weight (kg) [including the weight of an empty (unloaded) vehicle (𝑊), plus 

passenger load (𝐿)]. Also, parameters 𝑔 (9.81 m/s2), 𝐶𝑟, and 𝜙 (rad) reflect the 

gravitational constant, rolling resistance coefficient, and route slope respectively. 
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• Grade force ( = singF Mg ): This force stems from the road slope (i.e., the force 

needed to go uphill/downhill). 

• Inertia force ( =
a

F M a ): This force stems from the variation of a vehicle's kinetic 

energy, which occurs when the vehicle accelerates or decelerates. 𝑎 = 𝑑𝑣/𝑑𝑡 

represents the acceleration rate (m/s2) (𝑎 is negative in the deceleration phase), and 

𝛿 is the mass factor taking the inertia of rotating parts (such as wheels, motor shaft 

and rotor) into account. 

Let 𝐸𝑡𝑟 denote the energy consumption needed to provide the tractive force of a vehicle 

over a journey between two successive bus stations: 

( )20.5 cos sintr d rE pAC v MgC Mg Ma d   = + + +  (3-36) 

where 𝑑 is the traveled distance, and 𝜂 is an efficiency factor that accounts for energy losses 

occurring in the phase of transferring energy from a battery to wheels. Besides, it is worth 

noting that EBs with regenerative braking technologies can take advantage of recuperating a 

part of kinetic energy when the tractive force is negative, e.g., such a situation occurs when 

driving over downhill road sections (𝑠𝑖𝑛𝜙 <  0) or in the braking phase (𝑎 <  0). 

Accordingly, considering both energy consumption phase (positive tractive force) and energy 

regeneration phase (negative tractive force), two possible cases are presented for the calculation 

of 𝜂 in Eq. (3-37): 

reg

1
for 0

for 0

t

t r m

t r m t

F

r F

  

  




= 
 

 

(3-37) 

where the efficiency of the drivetrain, inverter, as well as the motor are expressed using 𝜂𝑡 , 𝜂𝑟, 

and 𝜂𝑚 respectively. Besides, 𝑟𝑟𝑒𝑔 (regeneration factor) reflects the level of kinetic energy that 

can be recuperated by means of a regenerative braking system, considering the fact that the 

whole energy cannot be ideally recuperated, owing to battery restrictions and energy losses in 

the recharging phase (Gallet et al., 2018). 

Once a desired speed is reached, urban bus services are often steered by a constant speed 

at a given segment (called “cruise speed”), and the needs for acceleration or deceleration 

activities will reappear in two main situations: at intersections and bus stops, resulting in a 
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typical trapezoidal velocity profile. The cruise speed may be conditioned by external issues, 

such as speed limits, traffic condition, weather, road closures and so on. Obviously, on bus 

lanes and dedicated bus corridors (e.g., BRT systems), public transport providers can take 

advantage of running buses at a higher level of speed with more predictable/stable driving 

functions, as shown with real-world data (Durán-Hormazábal and Tirachini, 2016). 

In our setting for urban EB services, the amount of energy consumption is estimated for 

each bus at each segment of the route (i.e., for bus 𝑖 between each two successive stops  

𝑗 − 1 and 𝑗). Passenger load, road slope and vehicle travel speed can vary from one segment to 

another according to realistic conditions. The total mass of bus 𝑖 is updated at a microscopic 

level: 

= +, ,i j i jM W L  (3-38) 

where 𝑊 represents the constant bus curb (unloaded) weight, as well as 𝐿𝑖,𝑗 is the passenger 

load of bus 𝑖 between each pair of adjacent stops (𝑗 − 1 and 𝑗), obtained through multiplying 

the average weight of one passenger (𝑚pax) by the number of passengers being carried by bus 

𝑖 between stations 𝑗 − 1 and 𝑗 (𝑁𝑖,𝑗
on) (i.e., 𝐿𝑖,𝑗 = 𝑁𝑖,𝑗

on ×𝑚pax). 

Beyond vehicle loads, neglecting road gradients could considerably reduce the accuracy 

of energy estimation for EBs (Gallet et al., 2018; Al-Ogaili et al., 2020). According to  

Gallet et al. (2018) in this regard, route gradients are obtained through the calculation of 

elevation change and route length between each two consecutive stations. There exist various 

data sources to extract elevation information, such as Digital Elevation Map (DEM) data for 

roads (Liu et al., 2017). 

Table 3-3 presents typical parameter values employed in the energy estimation model for 

EBs, as suggested in Gallet et al. (2018). It should be noted that our work considers EB 

operations under overnight charging concepts, where the weight of the battery pack can be 

significant and is included in 𝑊. For instance, Al-Ogaili et al. (2020) reported that a standard 

12-meter EB designed for overnight charging requires a large battery size (with "three parallel 

strings of three packs in series") to achieve a storage capacity of 270 kWh, resulting in a battery 

weight of about 3700 kg. 
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Table 3-3 Parameters for EB energy consumption model. 

Parameter Unit Value 

Empty vehicle weight with its battery pack (𝑊) kg 14800 (SB5), 23600 (AB6) 

Auxiliary power (𝑃𝑎𝑢𝑥) kW 10 (SB), 15 (AB) 

Drag coefficient (𝐶𝑑) – 0.6 

Rolling resistance (𝐶𝑟) – 0.01 

Air density (𝜌) kg/m3 1.2 

Vehicle frontal area (𝐴) m2 8.3 

Inertia factor (𝛿) – 1.1 

Drivetrain and gearbox efficiency (𝜂𝑡) – 0.97 

Inverter efficiency (𝜂𝑟) – 0.95 

Motor efficiency (𝜂𝑚) – 0.91 

Regeneration factor (𝑟𝑟𝑒𝑔) – 0.60 

 

Generally, in contrast to fast charging strategies at stops or on routes, EBs are 

characterized by a large enough battery pack under overnight (depot) charging strategies to 

maintain the operations of half or even one full day (Shekhar et al., 2016; Göhlich et al., 2018; 

Teichert et al., 2019; Häll et al., 2019; Rupp et al., 2020; Sadrani et al., 2023c). For instance, 

Häll et al. (2019) estimated that a fully charged battery under an overnight charging strategy 

can enable buses to operate for an entire day, with an energy consumption rate of  

0.9 (kWh/km). Based on real-world operations of EBs in Aachen, Germany, Rupp et al. (2020) 

reported that a 300-kWh battery capacity is sufficient for an articulated bus to operate all day 

with overnight charging. 

Besides, for the current operational programs of EBs engaged only with depot charging 

at night in Singapore, Gallet et al. (2018) found that the driving range of EBs can vary 

depending on local traffic conditions (directly affecting the operating speeds of EBs, and the 

number of acceleration/deceleration activities), with heavy traffic conditions resulting in a 

range of 250 km and light traffic conditions resulting in a range of 350 km. The current EB 

range record (for a 12-m bus) seems to be held by the Iveco e-Way EB7, which operated for 12 

hours at an average velocity of 46 km/h, covering about 530 km on a single charge with a 

battery pack of 350 kWh under an overnight charging strategy. However, this test program was 

conducted without HVAC use in Germany at a temperature of 10-15 °C. Thus, given the cost 

 
5 Standard Bus (SB) with a length of 12 m. 
6 Articulated Bus (AB) with a length of 18 m. 
7 “https://www.sustainable-bus.com/news/527-km-on-one-charge-for-the-iveco-e-way-by-heuliez/.” 

https://www.sustainable-bus.com/news/527-km-on-one-charge-for-the-iveco-e-way-by-heuliez/
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and weight implications of large battery packs for overnight charging, we explicitly consider 

such aspects when assessing vehicle capital costs and load-dependent energy consumption. 

The advantages and disadvantages of various charging programs, such as fast charging 

at stations versus overnight charging at depots during idle times, have been extensively 

researched in multiple studies that primarily focus on optimizing charging strategies, 

infrastructure, charging station locations, and battery sizing (e.g., Kunith et al., 2017;  

He et al., 2019; Rogge et al., 2018; Houbbadi et al., 2019; Teichert et al., 2019; Liu et al., 2021; 

Uslu and Kaya, 2021; Basma et al., 2022a; Sadrani et al., 2023c). Overall, it has been found 

that while a fast-charging system allows operators to deploy EBs with smaller on-board 

batteries and save battery costs, it can result in significantly higher charging infrastructure costs 

for operators due to expensive on-route fast-charging stops. On the other hand, the 

implementation of an overnight charging strategy can allow for the use of cheaper depot 

chargers and off-peak electricity tariffs, but it may lead to increased vehicle battery costs. 

Additionally, overnight charging can mitigate the risk of schedule delays caused by idle 

charging times during operations. Hence, buses with tight schedules tend to prefer overnight 

charging, while buses with low frequencies can benefit from multiple charging events 

throughout the day (Kunith et al., 2017). Overall, in such studies aimed at determining the most 

suitable charging strategy, a trade-off analysis between the costs associated with purchasing 

the vehicle (including its battery) and installing the charging infrastructure is needed. It should 

be noted that the optimization of charging strategy is not the focus of our planning model that 

has been already confined to a typical overnight charging concept. 

 

3.2.2 Model assumptions for electric bus planning 

We make the following assumptions on passenger flows, fleet composition, and cost 

calculations: 

• We examine high-frequency routes, in which the operation of bus services is frequent 

enough that travelers do not have to arrange plan (in advance) for arrivals at stations 

(i.e., the assumption of random arrivals will hold). 

• We simulate a situation for planning a single bus line on a bi-directional route, such as 

BRT systems. 

• We consider a uniform (homogeneous) bus fleet, composed of buses of identical size. 
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• If travelers are confronted with capacity limitations when getting on a vehicle, we 

assume that the boarding opportunity would be analogous for all travelers, with no 

dependency on their trip destinations. This is a common assumption used by several 

studies (Sánchez-Martínez et al., 2016; Dai et al., 2020; Sadrani et al., 2022b). 

• We simulate operations for a certain analysis period. 

• For calculating user costs, we differentiate between the time valuations for in-vehicle 

riding, initial waiting, and additional waiting because of failing to board. 

 

3.2.3 Optimization model for electric bus planning 

We introduce an INLP formulation for the EB fleet scheduling problem. Our model 

optimizes the selection of vehicle types and frequency plans to achieve a desired supply level, 

while minimizing total costs, including user and operator costs, and accounting for  

time-dependent passenger flows and load-dependent energy consumption. Besides, several 

constraints are formulated to consider real-life conditions in urban bus operations  

(see Fig. 3-3). Table 3-1 presents the notation used in our formulation. 
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Figure 3-3 Overview of the optimization model framework in the proposed EB planning 

problem. 

 

The proposed EB fleet scheduling problem is formulated as follows: 
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In Eq. (3-39), the objective function is presented for minimizing the total costs, 

containing both passenger and operator costs. Passenger cost (Zp) has two elements: in-vehicle 

riding and waiting time costs. Operator cost (ZO) has three elements: capital, human driving, 

and energy costs. In the following, each cost element is described in detail. 

In-vehicle riding time cost (Zinv): As presented in Eq. (3-40), the in-vehicle time cost is 

calculated for on-board passengers based on riding times spent traveling between stops. 

Parameter 𝜑𝑣 [€/h] represents the value of in-vehicle time, used to convert passengers’  

in-vehicle times into equivalent cost values. 
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Waiting time cost (Zwait): In Eq. (3-41), we calculate the total waiting time costs 

considering two possible cases that might be perceived by passengers: (a) for new coming 

passengers, 𝑁𝑖,𝑗
𝑐  (experiencing an initial waiting time), and (b) for fail-to-board passengers, 

𝑁𝑖−1,𝑗
𝑓  (experiencing an excess waiting time). 

For case (a): Given that we study high-frequency routes (where the assumption of random 

arrivals of travelers at stations will hold), the waiting time is estimated to be half of the 

headway. 

For case (b): If capacity restrictions prevent travelers from boarding a particular service, 

they are required to wait for the subsequent service, which results in an additional waiting time 

equal to the entire headway (𝐻𝑖,𝑗) [see the second part of Eq. (3-41)]. 

The waiting time value perceived by travelers at stations is greater than the value of travel 

time spent inside public transport vehicles, as the waiting process is more burdensome from 

passengers’ viewpoint (Wardman, 2004; Cats et al., 2016; Lu et al., 2018;  

Sadrani et al., 2022c). Besides, the financial impact of failing to board and experiencing 

prolonged waiting is even more pronounced than the cost of initial waiting time under normal 

circumstances (Cats et al., 2016; Yap and Cats, 2021). For example, as reported by  

Cats et al. (2016), an extra waiting time is 3.5 times more unpleasant than the initial expected 

waiting time, because it is perceived in the form of an unexpected delay that has a more 

negative impact on public transport users. Hence, to provide a comprehensive framework for 

passenger cost computations, we differentiate between the financial valuations of on-board 

riding time (𝜑𝑣), initial waiting time (𝜑𝑤1), as well as the additional waiting time for  

left-behind travelers (𝜑𝑤2). 

Capital cost (Zcap): The acquisition costs of EB fleets for operators depend on the vehicle 

type with its battery pack properties (e.g., the use of either 12-meter buses or 18-meter 

articulated buses) and the total fleet size (the total number of vehicles needed). For example, 

in order to provide a higher level of frequency (more frequent services) by means of a higher 

number of buses, service providers need to acquire more vehicles, increasing the capital costs. 

In operator cost calculations, a temporal basis [€/veh-h] is usually used to represent 

capital costs, i.e., the capital cost in Eq. (3-42) is estimated based on the operating hours of 

available vehicles when serving demand on a route (Zhang et al., 2019;  

Tirachini and Antoniou, 2020; Hatzenbühler et al., 2021). Size-dependent cost parameter  

𝜑c [€/veh-h] is the capital (acquiring) cost of a vehicle per hour, which depends on the size of 
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the EB with its battery pack size and properties (Tirachini and Antoniou, 2020). It is worth 

noting that to estimate vehicle capital cost parameter 𝜑c [€/veh-h], the initial purchase price of 

a vehicle is prorated based on equivalent hours of operation8 during the whole lifetime of a 

typical urban bus while taking various economic factors into account (e.g., asset life, operating 

hours per year, discount rate, etc.) (Tirachini and Antoniou, 2020; Badia and Jenelius, 2021). 

Driver cost (Zdriver): As presented in (3-43), the human driving cost is estimated 

considering the total amount of time spent driving along the route. The cost parameter  

𝜑𝑑 [€/veh-h], named hourly driving cost, reflects the gross salary paid to each driver for  

one-hour driving, and is assumed to be independent of the vehicle type (e.g., 12-m or 18-m 

bus) steered by drivers (Tirachini and Antoniou, 2020). 

Energy cost (Zenergy): As described in Section 3.2.1, we estimate the vehicle energy 

consumption using a detailed model, accounting for the amount of energy consumed by each 

service 𝑖 between each two consecutive stations 𝑗 − 1 and 𝑗 while considering the actual driving 

and route conditions [see Eq. (3-44)]. Besides, the second term accounts for the energy 

consumption of vehicles in the depot trips. 

As shown in Eq. (3-45), the headway is the time duration between the departing of two 

consecutive vehicles from the same station. It should be noted that the headway in Eq. (3-45) 

can vary between different services at different stations, as the departure times of services can 

be affected by alighting and boarding demands (dwelling time) at each station [the dwell time 

modeling is further explained in Eq. (3-49)]. 

According to Eq. (3-46), the arriving time of service 𝑖 at station 𝑗 is derived from the 

summation of its departure time from the former station (station 𝑗 − 1) and its riding time 

between two adjacent stations 𝑗 − 1 and 𝑗. As shown in Eq. (3-47), a regular headway  

(every 60/f min) is considered for dispatching buses from the first station. Besides, this 

formulation reflects that the dispatching time of the first bus will occur at the beginning point 

of the planning period (denoted by G). 

The departure time of service 𝑖 from station 𝑗 is derived from the addition of its dwell 

time to the arrival time of the service at that station [see Eq. (3-48)]. In Eq. (3-49), we model 

 
8 As for the idea behind this strategy (calculating vehicle capital costs based on operating hours), we commonly follow the 

approach of assuming the useful life span of a bus as a function of the total number of kilometers that a bus could run, which 

is then translated into operating hours, while not considering the idle time (e.g., in depots) due to a usual simplification. Under 

this approach, what matters is the total number of hours that a bus can be in operation. Based on empirical data, we assumed 

12 years as the lifetime of buses, and 3700 hours per year to then annualize the capital cost and relate it to hours of operation 

(for more details, we refer to Tirachini and Antoniou, 2020). 
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flow-dependent dwell times. Accordingly, the bus dwell time is calculated based on alighting 

and boarding numbers at each station, and the time associated with opening and closing doors. 

In this formulation, it is assumed that the boarding phase will occur after the alighting phase. 

Hence, the dwell time contains the sum of both getting off and on times (Tirachini et al., 2014; 

Sadrani et al., 2022b). As defined in Eq. (3-50), the cycle time of a bus, which is the time that 

a bus takes to complete one round trip, contains cruising times (between stops) and dwell times 

at bus stops. The cycle time is a variable as vehicles' dwell times will depend on boarding and 

alighting demands, affected by the frequency level obtained for operations. The fleet size 

requirement is obtained through Eq. (3-51), where we use the 90th percentile of cycle time for 

the fleet size calculation, which is a common aspect in the literature  

(Gkiotsalitis and Cats, 2018; Sadrani et al., 2022b). 

Eq. (3-52) indicates that a uniform fleet of vehicles is operated (i.e., the fleet contains 

buses of the same type). As shown in Eqs. (3-53) and (3-54), the passenger-carrying capacity 

and battery capacity of vehicles are dependent on the vehicle type operated. Eq. (3-55) ensures 

that the usable battery capacity would be sufficient to meet the assigned trips to vehicles. 

In the presence of time-dependent passenger arrival flows, Eq. (3-56) calculates 

passenger volumes (aiming to travel from 𝑗 to 𝑘) who reach station 𝑗 over the headway interval 

between services 𝑖 − 1 and 𝑖. Considering travelers left behind by the former service  

(service 𝑖−1) at station 𝑗, the total number of travelers (with journey 𝑗 → 𝑘) waiting for service 

𝑖 at station 𝑗 [see Eq. (3-57)] is obtained from the summation of: (a) new travelers reaching 

stations over the headway interval, modeled in Eq. (3-56), and (b) fail-to-board travelers, if 

any, who were confronted with capacity deficiency in boarding the former service  

(service 𝑖−1), needing to wait for arriving the subsequent service. 

It is clear that Eqs. (3-58)-(3-60) will always hold in view of our modeling definitions. 

For example, travelers waiting for service 𝑖 at station 𝑗 can have various journey destinations. 

Thus, in view of the definitions of 𝑁𝑖,𝑗,𝑘
𝑤  and 𝑁𝑖,𝑗

𝑤 , the summation of those travelers  

(with journey 𝑗 → 𝑘, 𝑘 > 𝑗) leads to the whole population waiting for service 𝑖 at station 𝑗  

[see Eq. (3-60)]. 

As indicated in Eq. (3-61), the number of passengers carried by service 𝑖 between stations 

𝑗 − 1 and 𝑗 (𝑁𝑖,𝑗
𝑜𝑛) will include: (a) those passengers staying inside service 𝑖 from the preceding 

stop-to-stop trip (i.e., from the sector 𝑗 − 2 → 𝑗 − 1) because they did not need to get off at 

station 𝑗 − 1, i.e., (𝑁𝑖,𝑗−1
𝑜𝑛 −𝑁𝑖,𝑗−1

𝑎 ), and (b) passengers who have recently boarded service 𝑖 at 
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station 𝑗 − 1, i.e., 𝑁𝑖,𝑗−1
𝑏 . Subsequently, the total passenger load carried by service 𝑖 between 

stations 𝑗 − 1 and 𝑗 is estimated in Eq. (3-62), where 𝑚pax (kg) represents the average weight 

of one passenger. 

Eq. (3-63) shows that the demand for boarding vehicles cannot be larger than the active 

capacity of vehicles at each station. Eq. (3-64) calculates the alighting demand for service 𝑖 at 

station 𝑗, containing travelers getting on service 𝑖 at the earlier stations, who intend to reach 

destination station 𝑗. According to Eq. (3-65), all the passengers have the chance to board in 

the case of a capacity shortage. In Eq. (3-66), we calculate the number of travelers (aiming to 

travel from 𝑗 to 𝑘) left behind by service 𝑖 at station 𝑗, owing to capacity restrictions. 

Eventually, the domains of decision variables are expressed as constraints (3-67) and (3-68) in 

our combinatorial optimization problem. For instance, the service frequency (𝑓) is an integer 

variable selected from a discrete set: {𝑓min, 𝑓min + 1,… , 𝑓max − 1, 𝑓max}  

(this set contains (𝑓max − 𝑓min) + 1 elements). It is worth noting that 𝑓min and 𝑓max represent the 

minimum and maximum allowable frequencies for operations, respectively, and are 

exogenously determined by policymakers based on route operational conditions. 

 

3.3 Decision making framework for electric bus charging strategy selection 

The adoption of EBs in urban areas is a promising solution to reducing GHG emissions 

in the transportation sector and mitigating the effects of climate change (Logan et al., 2020; 

Perumal et al., 2022). EBs produce zero tailpipe emissions and can be powered by renewable 

energy sources, making them a sustainable and environmentally friendly alternative to 

traditional diesel or gasoline-powered buses. In addition, EBs have lower operating costs, 

improve air quality, and reduce the health risks associated with air pollution  

(J. A. Manzolli et al., 2022). However, transitioning to EB fleets requires significant 

investments in charging infrastructure, as well as supportive policy and regulatory measures. 

One crucial step in the electrification of bus networks is selecting the best type of charging 

strategy from a variety of options, such as overnight (slow) charging and opportunity (fast) 

charging systems. With the increasing demand for environmentally friendly transportation and 

the growing adoption of EBs in public transport systems, this step is becoming increasingly 

important for public transport agencies. However, choosing the best strategy is a challenging 

task since each option has advantages and disadvantages. To tackle this issue effectively, 

policymakers need to consider multiple factors (with different dimensions) concurrently, 
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calling for the management of a MCDM problem. This research thus attempts to address the 

selection of charging strategies for EB systems as a MCDM problem, assisting policymakers 

in making informed decisions using a reliable decision-making tool for the comparison and 

assessment of possible charging options/alternatives based on a wide range of criteria that are 

relevant in practice. 

In urban EB operations, two common charging strategies9 are overnight (slow) charging 

at depots and opportunity (fast) charging at stations (see Fig. 3-4) (Xylia and Silveira, 2018; 

Zaneti et al., 2022): 

1) Overnight (slow) charging: EBs are charged while they are not in service, 

typically during the night, at a depot10. 

2) Opportunity (fast) charging: EBs are charged at various points, such as bus 

stops, throughout their operations whenever an opportunity arises11. 

  

 
9 It is worth noting that, as stated in (Zaneti et al., 2022), various terminology (vocabulary combinations) can be found in the 

literature for naming charging strategies, such as fast (opportunity, on-street, at-station) and slow (overnight, depot) charging 

(other than the names of fast and slow charging). However, beyond the issue of nomenclature, power and time are what 

differentiate them. Following the most common terminology and considering the power, we adopt the terms opportunity (fast) 

charging and overnight (slow) charging strategies, referring to short and long charging periods respectively  

(Xylia and Silveira, 2018; Zaneti et al., 2022). Opportunity charging involves connecting the EB for a few minutes, followed 

by circulating and reconnecting for several repetitions. In contrast, overnight charging requires continuous charging for a long 

duration, such as six hours, with the connector being plugged in. 

10 In overnight charging, low-powered (slow) chargers are used to recharge EBs over a longer period of time. 

11 In opportunity charging, high-powered (fast) chargers are used to recharge EBs quickly. 
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(a) Overnight charging12 

 

(b) Opportunity charging 13 

Figure 3-4 Overnight (depot) charging vs. opportunity (fast) charging. 

 

In the following, we provide a brief comparison of the pros and cons of each option 

(overnight charging vs. opportunity charging) (Basma et al., 2022b; Kunith et al., 2017; 

Perumal et al., 2022; Teichert et al., 2019; Xylia and Silveira, 2018): 

• Battery costs: Opportunity charging systems require smaller on-board batteries, 

reducing battery costs. 

• Planning  efforts: Opportunity charging systems require more intricate planning 

with multiple charging stations along bus routes. 

 
12 Mercedes-Benz eCitaro Plant Gets 1.2 MW Charging Station (insideevs.com). 

13 https://insideevs.com/news/337013/abb-hints-at-big-ev-bus-project-35-vehicles-8-450-kw-chargers/. 

https://insideevs.com/news/364046/mercedes-benz-ecitaro-mw-charging-station/
https://insideevs.com/news/337013/abb-hints-at-big-ev-bus-project-35-vehicles-8-450-kw-chargers/
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• Charging infrastructure costs: Opportunity charging systems require higher 

infrastructure costs, related to the installation of high-powered (fast) chargers and 

the procurement of land in multiple locations throughout the city. 

• Battery weight impacts: Overnight charging systems require heavier battery 

packs, increasing the energy consumption of EBs. 

• Electricity tariff: Overnight charging systems can take advantage of cheaper  

off-peak electricity tariffs at night. 

• Service delays: Overnight charging systems allow EBs to be charged while  

off-duty, reducing the risk of operational delays caused by charging idle times 

during daily operations. 

As the above comparison shows, such advantages and disadvantages put operators in a 

challenging trade-off situation, highlighting the importance of having a robust decision-making 

tool to handle the charging strategy selection for EB systems. 

 

3.3.1 Decision making structure 

In this research, the criteria are assessed and weighted using a FBWM. A FRAFSI 

approach is also used to rank the options. In addition, two further methods, including fuzzy 

TOPSIS (C.-T. Chen, 2000) and fuzzy EDAS (Keshavarz-Ghorabaee et al., 2016), are applied, 

and their results are compared with those of the FRAFSI. As shown in Fig. 3-5, the research 

method used in this dissertation contains four key stages: 
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Figure 3-5 Decision-making structure. 

 

Step 1: The evaluation criteria for choosing the best charging method for EBs are 

identified and extracted in a hybrid effort composed of a literature review and interviews with 

EB experts. The initial list of criteria was also inspected and revised by seven experts to extract 

the most important factors, while taking several aspects into account, such as having the ideal 

number of criteria and sub-criteria (Pfeffer, 2003), optimizing the reliability of comparisons 

between criteria (Rezaei, 2015), and improving the decision makers’ discriminatory power 

(Wanke et al., 2016). The final criteria are classified into five dimensions: economic, 

environmental, social, operation, and quality-of-service (see Fig. 3-6). 
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Figure 3-6 Related criteria for the selection of charging strategies for EBs. 
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Step 2: For collecting the required data, a FBWM questionnaire is designed and provided 

to the experts. We consulted 11 experts from both academia and industry via an online 

questionnaire. The demographics of experts are given in Table 3-4. The criteria’s weights are 

then computed through the FBWM. 

 

Table 3-4 Demographics of experts. 

Expert No. Background Country Education level 

1 
Academia 

(Associate professor) 
Germany PhD 

2 Industry Germany Master 

3 
Academia 

(Associate professor) 
Chile PhD 

4 
Academia 

(Associate professor) 
Austria PhD 

5 
Academia 

(Associate professor) 
Greece PhD 

6 
Academia 

(Assistant professor) 
Netherlands PhD 

7 Industry Germany PhD 

8 
Academia 

(Assistant professor) 
Singapore PhD 

9 Industry Germany PhD 

10 Industry India Master 

11 Industry Germany Master 

 

Step 3: The alternatives are ranked using the FRAFSI technique. 

Step 4: Finally, two further methods including the fuzzy TOPSIS and fuzzy EDAS are 

used for ranking alternatives, and their results are compared with the FRAFSI’s results. 

In the following, the FBWM, FRAFSI, TOPSIS and EDAS methods are described. 

  



 

101 

 

3.3.2 Fuzzy best worst method 

Rezaei (2015) proposed the Best Worst Method (BWM) which is a vector-based  

Multi-Criteria Decision-Making (MCDM) approach to estimate the criteria’s weights 

(𝑤1, 𝑤2. . . , 𝑤𝑛) through pairwise comparisons. BWM has several features that make it 

interesting to use (Rezaei, 2015): 

• It needs fewer pairwise comparisons relative to other MCDM methods which are 

matrix-based. For instance, AHP, which has been extensively used for MCDM 

problems, needs 𝑛(𝑛 − 1)/2 pairwise comparisons, while BWM employs only 

2𝑛 − 3 pairwise comparisons. It can save a significant amount of time for experts. 

• Compared to AHP, it employs more consistent comparisons, which can increase 

the reliability of the results. 

Guo and Zhao (2017) developed the fuzzy version of the BWM (FBWM)to better handle 

ambiguities and uncertainties of decision makers’ opinions in comparisons. With this approach, 

fuzzy pairwise comparisons of the criteria are carried out using the decision makers’ linguistic 

expressions, converted into fuzzy ratings. 

The process of weighing the criteria by the FBWM involves the implementation of seven 

stages as follows (Guo and Zhao, 2017): 

Stage 1: Establish a group of criteria for evaluation, denoted as {𝑐1, 𝑐2, . . . , 𝑐𝑛}. 

Stage 2: Identify the best (most important) and worst (least important) criteria. 

Stage 3: Create the fuzzy best-to-others vector (BO) reflecting the preference of the most 

important (best) criterion against all other criteria. This vector is represented as: 

�̃�𝐵 = (�̃�𝐵1, �̃�𝐵2, … , �̃�𝐵𝑛) (3-69) 

where the value of �̃�𝐵𝑗 reflects the preference of the best criterion against criterion 𝑗, with �̃�𝐵𝐵 

that is equal to (1,1,1). 

According to Table 3-5, the linguistic expressions are converted to fuzzy numbers. 

Stage 4: Create the fuzzy others-to-worst vector (OW) reflecting the preference of all 

criteria against the least important (worst) criterion. This vector is represented: 

�̃�𝑊 = (�̃�1𝑊 , �̃�2𝑊 , … , �̃�𝑛𝑊) (3-70) 
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where the value of �̃�𝑗𝑊 reflects the preference of criterion 𝑗 against the worst criterion, with 

�̃�𝑊𝑊 that is equal to (1,1,1). 

 

Table 3-5 Linguistic phrases and equivalent fuzzy numerical function (Torkayesh et al., 2021b). 

Linguistic terms Membership function 

Equally important (1,1,1) 

Weakly important (2/3,1,3/2) 

Fairly important (3/2,2,5/2) 

Very important (5/2,3,7/2) 

Absolutely important (7/2,4,9/2) 

 

Stage 5: Compute the optimal fuzzy values for the criteria’s weights. Fuzzy weights 

(�̃�1
∗, �̃�2

∗, … , �̃�𝑛
∗) are calculated by solving a non-linear optimization model that consists of a 

min-max objective function, as presented in Eq. (3-71). This objective function aims to 

minimize the maximum absolute difference between fuzzy weights obtained from fully 

consistent comparisons and the weights obtained from the present comparisons for all criteria. 

min 𝑚𝑎𝑥𝑗  {|
�̃�𝐵

�̃�𝑗
− �̃�𝐵𝑗 | , |

�̃�𝑗

�̃�𝑊
− �̃�𝑗𝑊 | }  

𝑠. 𝑡.   

{
 
 

 
 ∑ 𝑅(�̃�𝑗

𝑛

𝑗=1
) = 1

𝑙𝑗
𝑤 ≤ 𝑚𝑗

𝑤 ≤ 𝑢𝑗
𝑤

𝑙𝑗
𝑤 ≥ 0

j =  1, 2, … , n

 

(3-71) 

where �̃�𝐵 = (𝑙𝐵
𝑤, 𝑚𝐵

𝑤, 𝑢𝐵
𝑤), �̃�𝑗 = (𝑙𝑗

𝑤,𝑚𝑗
𝑤, 𝑢𝑗

𝑤), �̃�𝑊 = (𝑙𝑊
𝑤 ,𝑚𝑊

𝑤 , 𝑢𝑊
𝑤 ), �̃�𝐵𝑗 = (𝑙𝐵𝑗, 𝑚𝐵𝑗 , 𝑢𝐵𝑗), 

�̃�𝑗𝑊 = (𝑙𝑗𝑊, 𝑚𝑗𝑊, 𝑢𝑗𝑊). 
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The optimization problem can be expressed as follows: 

min 𝜉 

𝑠. 𝑡.   

{
 
 
 
 
 

 
 
 
 
 |
�̃�𝐵

�̃�𝑗
− �̃�𝐵𝑗 | ≤  𝜉

|
�̃�𝑗

�̃�𝑊
− �̃�𝑗𝑊 | ≤  𝜉

∑ 𝑅(�̃�𝑗
𝑛

𝑗=1
) = 1

 

𝑙𝑗
𝑤 ≤ 𝑚𝑗

𝑤 ≤ 𝑢𝑗
𝑤

𝑙𝑗
𝑤 ≥ 0

j =  1, 2, … , n

 
(3-72) 

where 𝜉 = (𝑙𝜉 , 𝑚𝜉 , 𝑢𝜉). 

Considering 𝑙𝜉  ≤  𝑚𝜉  ≤  𝑢𝜉 , and 𝜉∗ = (𝑘∗, 𝑘∗, 𝑘∗), 𝑘∗  ≤ 𝑙𝜉, Eq. (3-72) is expressed as 

follows: 

min 𝜉∗ 

𝑠. 𝑡.   

{
 
 
 
 
 

 
 
 
 
 |
(𝑙𝐵
𝑤 , 𝑚𝐵

𝑤 , 𝑢𝐵
𝑤)

(𝑙𝑗
𝑤 , 𝑚𝑗

𝑤 , 𝑢𝑗
𝑤)
− (𝑙𝐵𝑗 , 𝑚𝐵𝑗 , 𝑢𝐵𝑗) | ≤  (𝑘

∗, 𝑘∗, 𝑘∗)

|
(𝑙𝑗
𝑤, 𝑚𝑗

𝑤 , 𝑢𝑗
𝑤)

(𝑙𝑊
𝑤 , 𝑚𝑊

𝑤 , 𝑢𝑊
𝑤 )
− (𝑙𝑗𝑊 , 𝑚𝑗𝑊 , 𝑢𝑗𝑊)| ≤  (𝑘

∗, 𝑘∗, 𝑘∗)

∑ 𝑅(�̃�𝑗
𝑛

𝑗=1
) = 1                                                      

 

𝑙𝑗
𝑤 ≤ 𝑚𝑗

𝑤 ≤ 𝑢𝑗
𝑤                                                           

𝑙𝑗
𝑤 ≥ 0                                                                          

j =  1, 2, … , n                                                              

 
(3-73) 

The optimal fuzzy values for the criteria’s weights are obtained by solving  

Eq. (3-73). 

Stage 6: Crisp weights for each criterion are obtained using Eq. (3-74): 

𝑐𝑟𝑖𝑠𝑝 (𝑁) =  
𝑙𝑖 + 4𝑚𝑖 + 𝑢𝑖

6
 (3-74) 

Stage 7: The Consistency Ratio (CR) is used to assess the consistency and accuracy of 

the calculated weights. A fuzzy comparison is considered completely consistent when 

�̃�𝐵𝑗  ×  �̃�𝑗𝑊 = �̃�𝐵𝑊 , where �̃�𝐵𝑊  refers to the preference of the best criterion against the worst 

criterion (Rezaei, 2015). When �̃�𝐵𝑗  ×  �̃�𝑗𝑊 ≠ �̃�𝐵𝑊 , inconsistency rate will increase. The 
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highest inconsistency rate occurs when �̃�𝑗𝑊  and �̃�𝐵𝑗  are both equal to �̃�𝐵𝑊 . Since 

 
�̃�𝐵

�̃�𝑗
× 

�̃�𝑗

�̃�𝑊
= 

�̃�𝐵

�̃�𝑊
, it can be converted to: 

(�̃�𝐵𝑗 − 𝜉) × (�̃�𝑗𝑊 − 𝜉) =  (�̃�𝐵𝑊 + 𝜉) (3-75) 

For the maximum fuzzy inconsistency, Eq. (3-75) is stated as follows: 

(�̃�𝐵𝑊 − 𝜉) × (�̃�𝐵𝑊 − 𝜉) =  (�̃�𝐵𝑊 + 𝜉) (3-76) 

which turns into: 

𝜉2 − (1 + 2�̃�𝐵𝑊 )𝜉 + (�̃�𝐵𝑊 
2 − �̃�𝐵𝑊 ) = 0 (3-77) 

where 𝜉 = (𝑙𝜉 , 𝑚𝜉 , 𝑢𝜉),   �̃�𝐵𝑊 = (𝑙𝐵𝑊, 𝑚𝐵𝑊, 𝑢𝐵𝑊). 

The largest possible fuzzy value for �̃�𝐵𝑊 is (7/2, 4, 9/2) (see Table 3-5), meaning that the 

maximum value of 𝑙𝐵𝑊,  𝑚𝐵𝑊, and 𝑢𝐵𝑊 cannot be greater than 9/2. Eq. (3-77) can be thus 

converted to the following form: 

𝜉2 − (1 + 2𝑢𝐵𝑊)𝜉 + (𝑢𝐵𝑊
2 − 𝑢𝐵𝑊) = 0 (3-78) 

where 𝑢𝐵𝑊 would be 1, 3/2, 5/2, 7/2, and 9/2 successively. The largest possible 𝜉 is obtained 

by solving Eq. (3-78) with various 𝑢𝐵𝑊. Table 3-6 lists the Consistency Index (CI) for FBWM 

with regard to different linguistic terms. 

 

Table 3-6 Consistency index for FBWM (Torkayesh et al., 2021b). 

Linguistic 

terms 

Equally 

important (EI) 

Weakly 

important (WI) 

Fairly 

important (FI) 

Very 

important (VI) 

Absolutely 

important (AI) 

�̃�𝑩𝑾 (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (5/2, 3, 7/2) (7/2, 4, 9/2) 

CI 3.00 3.80 5.29 6.69 8.04 

 

Therefore, CR can be calculated as follows: 

𝐶𝑅 =
𝜉∗

𝐶𝐼
 (3-79) 
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3.3.3 Fuzzy ranking of alternatives through functional mapping of criterion subintervals into a 

single interval method 

Žižović et al. (2020) developed a novel technique for the Ranking of Alternatives through 

Functional mapping of criterion subintervals into a Single Interval (RAFSI). This technique 

has three key benefits: (i) a simple algorithm, (ii) the use of a novel approach to normalize data 

that is appropriate for making reasonable decisions, and (iii) the elimination of the rank reversal 

problem, which is a significant  drawback of available multiple attribute decision-making 

techniques. In this work, we use the fuzzy version of the RAFSI method (FRAFSI), which can 

allow for handling uncertainties and imprecisions in decision maker’s opinions, thus producing 

a more robust and accurate evaluation of alternatives. The process is described as follows: 

Stage 1: Create an aggregated fuzzy decision matrix. Suppose we consulted 𝑘 experts to 

evaluate 𝑚 alternatives {𝐴1, 𝐴2, . . . , 𝐴𝑚} concerning a set of criteria {𝑐1, 𝑐2, . . . , 𝑐𝑛} using a fuzzy 

linguistic scale. The evaluation provided by each expert is represented in the form of a matrix: 

𝑋(𝑒) = 

[
 
 
 
 𝜃11
(𝑒)

𝜃12
(𝑒) ⋯ 𝜃1𝑛

(𝑒)

𝜃21
(𝑒)

𝜃22
(𝑒) ⋯ 𝜃2𝑛

(𝑒)

⋮

𝜃𝑚1
(𝑒)

⋮

𝜃𝑚2
(𝑒)

⋱
…

⋮

𝜃𝑚𝑛
(𝑒)
]
 
 
 
 

 ; 1 ≤ 𝑖 ≤ 𝑚;  1 ≤ 𝑗 ≤ 𝑛;  1 ≤ 𝑒 ≤ 𝑘  (3-80) 

where 𝜃𝑖𝑗
(𝑒)
= (𝜃𝑖𝑗

𝑙(𝑒)
, 𝜃𝑖𝑗
𝑠(𝑒)
, 𝜃𝑖𝑗
𝑢(𝑒)

) indicates the fuzzy value calculated using a fuzzy linguistic 

scale. Eq. (3-81), the fuzzy Heronian operator (Dejian Yu, 2013), is used to aggregate 𝑘 fuzzy 

decision matrices into the matrix 𝑋 = [�̃�𝑖𝑗]𝑚×𝑛: 

�̃�𝑖𝑗 = (�̃�𝑖𝑗
𝑙 , �̃�𝑖𝑗

𝑠 , �̃�𝑖𝑗
𝑢)  =

{
 
 
 
 
 

 
 
 
 
 

�̃�𝑖𝑗
𝑙 = (

2

𝑘(𝑘 + 1)
∑∑�̃�𝑖

𝑙𝑝
�̃�𝑗
𝑙𝑞

𝑛

𝑗=𝑖

𝑛

𝑖=1

)

1
𝑝+𝑞

�̃�𝑖𝑗
𝑠 = (

2

𝑘(𝑘 + 1)
∑∑�̃�𝑖

𝑠𝑝
�̃�𝑗
𝑠𝑞

𝑛

𝑗=𝑖

𝑛

𝑖=1

)

1
𝑝+𝑞

�̃�𝑖𝑗
𝑢 = (

2

𝑘(𝑘 + 1)
∑∑�̃�𝑖

𝑢𝑝
�̃�𝑗
𝑢𝑞

𝑛

𝑗=𝑖

𝑛

𝑖=1

)

1
𝑝+𝑞

  (3-81) 

where �̃�𝑖𝑗 = (�̃�𝑖𝑗
𝑙 , �̃�𝑖𝑗

𝑠 , �̃�𝑖𝑗
𝑢) indicates the averaged fuzzy number, and 𝑝, 𝑞 ≥ 0 represent sets of 

non-negative numbers. 

Stage 2: The elements of the aggregated decision matrix are transformed into criterion 

intervals. The decision maker sets the ideal and anti-ideal values for each criterion, represented 
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by �̃�𝐼𝑗 and �̃�𝑁𝑗. A function is then defined for each alternative, as presented in  

Eq. (3-82), mapping the intervals in the aggregated decision matrix to a new interval  

[𝑛1, 𝑛𝑏]: 

𝑓𝑖  (𝐶𝑗) =  
𝑛𝑏 − 𝑛1

�̃�𝐼𝑗 − �̃�𝑁𝑗
�̃�𝑖𝑗 + 

�̃�𝐼𝑗  . 𝑛1 − �̃�𝑁𝑗  . 𝑛𝑏  

�̃�𝐼𝑗 − �̃�𝑁𝑗
  (3-82) 

where 𝑛𝑏 and 𝑛1 are the ratios of the ideal and anti-ideal values, as well as �̃�𝑖𝑗 represents the 

fuzzy value of the alternative 𝑖 for criterion 𝑗 from the aggregated decision matrix. The result 

is the standard decision matrix, 𝑇 =  [∅̃𝑖𝑗]𝑚×𝑛. It is recommended that the ideal value should 

be significantly better than the anti-ideal value, with a ratio of at least 6:1 (Kaya et al., 2022). 

Stage 3: Normalize the elements in the standard decision matrix (𝑇) using  

Eq. (3-83): 

∅̂𝑖𝑗 = 

∅̃𝑖𝑗

2𝐴
, 𝑓𝑜𝑟max 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝐻

2∅̃𝑖𝑗
, 𝑓𝑜𝑟 min 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

 (3-83) 

where 𝐴 represents the arithmetic mean of  𝑛1 and  𝑛𝑏, and 𝐻 represents their harmonic mean. 

Stage 4: Rank the alternatives by calculating their fuzzy criterion functions. Using  

Eq. (3-84), the fuzzy criterion function is calculated for each alternative. The alternative that 

has the highest value in the fuzzy criterion function is considered the best one. 

�̃�𝑖 = ∑�̃�𝑗∅̂𝑖𝑗

𝑛

𝑗=1

 (3-84) 

 

3.3.4 Fuzzy technique for order preference by similarity to ideal solution 

Stage 1: Calculate the criteria’s weights. 

Stage 2: Create the fuzzy matrix. 

�̃� = [�̃�𝑖𝑗]𝑚×𝑛, 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2, … , 𝑛 

�̃�𝑖𝑗 = 
1

𝑘
 ∑  �̃�𝑖𝑗

𝑝
, 𝑝 = 1, 2, … , 𝑘

𝑘

𝑝=1

 
(3-85) 
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where �̃�𝑖𝑗
𝑝
= (𝑎𝑖𝑗

𝑝
, 𝑏𝑖𝑗
𝑝
, 𝑐𝑖𝑗
𝑝
) represents the evaluation made by expert  𝑝 for alternative 𝐴𝑖 

concerning criterion 𝐶𝑗. 

Stage 3: Normalize the fuzzy decision matrix. 

�̃� = [�̃�𝑖𝑗]𝑚×𝑛 , 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2, … , 𝑛 (3-86) 

where �̃�𝑖𝑗 = (
𝑎𝑖𝑗

𝑐𝑗
+ ,

 𝑏𝑖𝑗

𝑐𝑗
+ ,

𝑐𝑖𝑗

𝑐𝑗
+) , 𝑐𝑗

+ = 𝑚𝑎𝑥𝑖 𝑐𝑖𝑗. 

Stage 4: Construct a weighted normalized fuzzy decision matrix. 

�̃� = [�̃�𝑖𝑗]𝑚×𝑛, 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2, … , 𝑛 (3-87) 

where �̃�𝑖𝑗 = �̃�𝑖𝑗  ⊗ �̃�𝑗, and �̃�𝑗  refers to the weight assigned to criterion 𝑗. 

Stage 5: Calculate fuzzy ideal solutions, including the fuzzy positive-ideal solution 

(FPIS) and fuzzy negative-ideal solution (FNIS). 

The positive triangular fuzzy numbers fall within the range of [0,1]. Hence, the fuzzy 

positive ideal reference point (FPIS, 𝐴+) and the fuzzy negative ideal reference point  

(FNIS, 𝐴−) can be described as: 

𝐴+ = (�̃�1
+, �̃�2

+, … , �̃�𝑛
+) (3-88) 

𝐴− = (�̃�1
−, �̃�2

−, … , �̃�𝑛
−) (3-89) 

where �̃�1
+ = (1, 1, 1) and �̃�1

− = (0, 0, 0), 𝑗 =  1, 2, … , 𝑛. 

Stage 6: Determine the distance between each alternative and the FPIS and FNIS. 

𝑑𝑖
+ = ∑𝑑(

𝑛

𝑗=1

�̃�𝑖𝑗 , �̃�𝑗
+), 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2, … , 𝑛 (3-90) 

𝑑𝑖
− = ∑𝑑(

𝑛

𝑗=1

�̃�𝑖𝑗 , �̃�𝑗
−), 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2, … , 𝑛 (3-91) 

where 𝑑𝑖
+ and 𝑑𝑖

− indicate the distance between alternative 𝑖 and FPIS and FNIS, respectively. 

Stage 7: Obtain the closeness coefficient and sort the order of alternatives. 
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𝐶𝐶𝑖 = 
𝑑𝑖
−

𝑑𝑖
+ + 𝑑𝑖

− , 𝑖 = 1, 2, … ,𝑚 (3-92) 

The alternative with the greatest closeness coefficient is considered the best one. 

 

3.3.5 Fuzzy evaluation based on distance from average solution method 

Stage 1: Calculate the criteria’s weights. 

Stage 2: Create the fuzzy matrix. 

�̃� = [�̃�𝑖𝑗]𝑚×𝑛, 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2, … , 𝑛 

�̃�𝑖𝑗 = 
1

𝑘
 ∑  �̃�𝑖𝑗

𝑝
, 𝑝 = 1, 2, … , 𝑘

𝑘

𝑝=1

 
(3-93) 

 

where �̃�𝑖𝑗
𝑝  represents the evaluation made by expert  𝑝 for alternative 𝐴𝑖 concerning criterion 𝐶𝑗. 

Stage 3: Construct the fuzzy matrix of average solutions. 

𝐴𝑉 = [𝑎�̃�𝑗]1×𝑛, 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2, … , 𝑛 (3-94) 

𝑎�̃�𝑗 = 
1

𝑚
∑�̃�𝑖𝑗

𝑚

𝑖=1

 (3-95) 

Stage 4: 𝐵 and 𝑁 are the sets of beneficial and non-beneficial criteria, respectively. The 

matrices of positive (𝑃𝐷𝐴) and negative (𝑁𝐷𝐴) distances from average solutions are 

computed as follows: 

𝑃𝐷𝐴 =  [𝑝�̃�𝑎𝑖𝑗]𝑚×𝑛 (3-96) 

𝑁𝐷𝐴 =  [𝑛�̃�𝑎𝑖𝑗]𝑚×𝑛 (3-97) 

𝑝�̃�𝑎𝑖𝑗 = 

{
 
 

 
 
𝜓(�̃�𝑖𝑗𝜃𝑎�̃�𝑗)

𝑘(𝑎�̃�𝑗)
     𝑖𝑓     𝑗𝜖𝐵

𝜓(𝑎�̃�𝑗𝜃�̃�𝑖𝑗)

𝑘(𝑎�̃�𝑗)
     𝑖𝑓     𝑗𝜖𝑁

 (3-98) 

𝑛�̃�𝑎𝑖𝑗 = 

{
 
 

 
 
𝜓(𝑎�̃�𝑗𝜃�̃�𝑖𝑗)

𝑘(𝑎�̃�𝑗)
     𝑖𝑓     𝑗𝜖𝐵

𝜓(�̃�𝑖𝑗𝜃𝑎�̃�𝑗)

𝑘(𝑎�̃�𝑗)
     𝑖𝑓     𝑗𝜖𝑁

 (3-99) 
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where 𝑝�̃�𝑎𝑖𝑗 and 𝑛�̃�𝑎𝑖𝑗 indicate the distances between the performance value of alternative 𝑖 

and the average solution, in a positive or negative sense respectively, concerning criterion 𝑗. 

Stage 5: Determine the total of positive and negative weighted distances for each 

alternative. 

𝑠𝑝𝑖 = ∑(�̃�𝑗⊗ 

𝑛

𝑗=1

 𝑝�̃�𝑎𝑖𝑗) (3-100) 

𝑠�̃�𝑖 = ∑(�̃�𝑗⊗ 

𝑛

𝑗=1

 𝑛�̃�𝑎𝑖𝑗) (3-101) 

where �̃�𝑗  refers to the weight assigned to criterion 𝑗. 

Stage 6: Normalize the values of 𝑠𝑝𝑖 and 𝑠�̃�𝑖 for all alternatives. 

𝑛𝑠𝑝𝑖 = 
𝑠𝑝𝑖

𝑚𝑎𝑥𝑖  (𝑘(𝑠𝑝𝑖))
 (3-102) 

𝑛𝑠�̃�𝑖 =  1 − 
𝑠�̃�𝑖

𝑚𝑎𝑥𝑖  (𝑘(𝑠�̃�𝑖))
 (3-103) 

Stage 7: Compute the appraisal score 𝑎�̃�𝑖 for all alternatives and rank them. 

𝑎�̃�𝑖 = 
1

2
 (𝑛𝑠𝑝𝑖  ⊕  𝑛𝑠�̃�𝑖) (3-104) 

The alternative with the greatest appraisal score is considered the best one. 
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3.4 Model formulation for mixed-fleet bus scheduling 

In this section, we focus on the formulation and examination of two versions of the MFBS 

problem: a simpler version for initial analysis and a more advanced model. 

• Simple MFBS version: 

We begin with the formulation of a simpler MFBS problem (see Fig. 3-7), serving as a 

foundation to comprehend and address the inherent complexities of this combinatorial problem, 

even in its basic form—a problem known to be strongly NP-Hard. In this version (which has 

been published in Sadrani et al., 2022a), we formulate a MINLP model to optimize dispatching 

schemes (dispatching orders and times) when a fixed number of buses of different sizes are 

available to serve demand along a route. We focus on minimizing the average passenger 

waiting time, with stochastic travel times between stops and vehicle capacity constraints (i.e., 

introducing extra waiting time due to denied boarding). We also develop an exact 

decomposition-based method and a SA metaheuristic algorithm to solve it. 

• Advanced MFBS version: 

Then, to take a step further to achieve a more comprehensive MFBS model, we consider 

a broader set of real-world operational elements and decision variables in the MFBS 

formulation (including in-vehicle trip times, users’ trip comfort, resource constraints, and 

operator costs). Hence, our advanced version of the MFBS problem goes beyond optimizing 

vehicle dispatching plans and also addresses the optimization of vehicle assignment programs, 

enabling efficient resource utilization (the optimal determination of the number and type of 

vehicles needed for mixed-fleet deployments) (see Figs. 3-7 and 3-8, where the additional 

components introduced in the advanced MFBS model, compared to the simple version, are 

highlighted in red for clarity). 
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Figure 3-7 Overview of the simple optimization model framework in the proposed MFBS 

problem. 

 

 

Figure 3-8 Overview of the advanced optimization model framework in the proposed MFBS 

problem.  
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3.4.1 Model formulation for the simple version of the mixed-fleet bus scheduling problem 

In this section, we formulate a detailed objective function that is accurately able to 

compute passenger waiting times even in the case of failing to board due to a lack of capacity 

(extra waiting time due to denied boarding). Moreover, several different constraints that need 

to be considered in real-world urban bus operations are formulated, such as passenger flow 

constraints, vehicle movement constraints, resource availability constraints, and vehicle 

capacity constraints in the presence of different sizes of buses which can provide services with 

different capacities during a mixed-fleet operation (see Fig. 3-7). The notation used in the 

model formulation is listed in Table 3-1. 

 

3.4.1.1 Model assumptions for the simple version of the mixed-fleet bus scheduling problem 

Before presenting the model, the main assumptions and aspects considered in the 

mathematical formulation of a mixed-fleet operation are summarized as follows: 

• We focus on high-frequency bus services, and thus headways are so short that passengers do 

not need to plan for arriving at stops. 

• There exists a given mixed  fleet composed of three different bus sizes: 12-meter (standard) bus 

with a capacity of 70 passengers and 2 doors, 15-meter (rigid) bus with a capacity of 90 

passengers and 3 doors, and 18-meter (articulated) bus with a capacity of 120 passengers and 

4 doors (see Fig. 3-9). 

• We focus on the operational planning level, and we assume that the fleet size (the number and 

type of vehicles) is already determined at the tactical planning level. 

• The number of buses of each size is given, i.e., for a certain bus size, the number of associated 

available vehicles is already given. As an illustrative example, suppose a given mixed fleet: 

{12, 12, 12, 12, 12, 15, 15, 15, 18, 18}, in which the resource limitations on buses of each size 

are known, which are at 5, 3, and 2 for 12-, 15-, and 18-m long buses respectively. 

• We consider bus operations during a predefined planning horizon on a general bi-directional 

bus corridor. 

• We assume that the first and last buses are dispatched at certain times, which are the beginning 

and end of the planning horizon for the sake of simplicity. 

• We model varying dwell times, which can vary depending on the bus type (i.e., the number of 

bus doors, see Fig. 3-9) and on the number of passengers alighting and boarding at each stop. 
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• We assume that vehicles are not permitted to overtake each other. 

• We assume that travel times of vehicles between stops are stochastic, drawn from a log-normal 

distribution. 

• We explicitly model vehicle capacity constraints, and therefore: 

✓ (a) the number of passengers who can successfully board a vehicle at a stop cannot exceed 

the remaining capacity inside the vehicle at that stop; 

✓ (b) in the case of failing to board due to capacity constraints for any number of times, the 

model is able to continue computing the actual waiting time of passengers (even if some 

passengers are being left behind by two or more successive services due to an 

oversaturated condition) until they successfully board a bus service with enough room, 

i.e., introducing extra waiting times for passengers left behind due to a lack of capacity, 

who have to wait for the next coming vehicle(s); 

✓ (c) if there is not enough capacity inside a bus to carry all the passengers waiting for it at 

a stop, we assume that all the waiting passengers, irrespective of their destinations, have 

the same chance to board. 

 

Type 1: 12-m long\ capacity of 70 pax\ 2 doors

Type 2: 15-m long\ capacity of 90 pax\ 3 doors

Type 3: 18-m long\ capacity of 120 pax\ 4 doors

 

Figure 3-9 Three different available bus types used for mixed-fleet operations in this work. 
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3.4.1.2 Optimization model for the simple version of the mixed-fleet bus scheduling problem 

The mixed-fleet vehicle dispatching problem is formulated as follows: 

 − − −

    

 
 

    +    
 
 

  
,
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(ii)
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As can be seen in expression (3-105), the objective of the problem is to minimize the 

Average Waiting Time (AWT), obtained through dividing the total waiting time by the total 

demand 𝑃 (𝑃 is a fixed value during the entire analysis period). The total waiting time is 

composed of two parts: (i) waiting time for new passengers arriving at stops over the headway, 

and (ii) extra waiting time for passengers who were unable to board the preceding vehicle due 

to a lack of capacity, who have to wait for the next vehicle(s). Indeed, the total waiting time is 

derived from expression (3-115), in which the number of waiting passengers in both groups is 

computed (i.e., (i) the group of new arriving passengers, and (ii) the group of left-behind 

passengers). In high-frequency bus systems, headways are so short that passengers do not need 

to plan their arrival at stops, i.e., they arrive randomly at stops over the headway. Hence, for 

passengers in the group (i), the waiting time is averagely estimated as half of the headway 

(𝐻𝑖,𝑗 2⁄ ), which is a well-known estimation in the literature of high-frequency bus services due 

to the random and unplanned arrival of passengers at stops (e.g., Furth and Wilson, 1981;  

Wu et al., 2017; Gkiotsalitis and Cats, 2018; Dai et al., 2020). On the other hand, for passengers 

in the group (ii) who were unable to board the previous service due to overcrowding, the extra 

waiting time is equal to the whole headway (𝐻𝑖,𝑗) because they have to wait for the next bus 

service. As a result, if a considerable number of passengers are left behind due to capacity 

constraints, passengers’ total waiting time can climb dramatically, thereby declining the 
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attractiveness of a public transport system substantially. Note that the formulation of 𝑁𝑖,𝑗,𝑘
𝑓

 in 

Eq. (3-121) enables us to compute the actual number of passengers being left behind by each 

vehicle. Accordingly, even if some passengers are left behind by two or more consecutive 

services due to an oversaturated condition (denied boarding for several cycles), the model is 

able to count them among the group of left-behind passengers (𝑁𝑖,𝑗,𝑘
𝑓

). Hence, we can still 

correctly calculate their waiting times until they successfully board a service. 

As can be seen in expression (3-105), dispatching headways of vehicles can directly 

affect the waiting times of passengers in both groups (i) and (ii). Moreover, we attempt to 

investigate how a proper decision on vehicle dispatching order with the consideration of  

time-dependent demand volumes can lead to a better utilization of vehicles’ capacity, thereby 

reducing the number of passengers being left behind in group (ii) who need to wait for next 

arriving vehicle(s) (i.e., preventing denied boarding problems from further exacerbation). 

Hence, regarding the decision variables considered in the proposed mixed-fleet dispatching 

problem, we seek to find the optimal dispatching schemes, including the optimal dispatching 

order of vehicles14 (𝑥𝑚𝑖) and also the optimal dispatching times of vehicles from the original 

stop (𝑇𝑖,1
𝑑 ). 

In light of the fact that bus operators can provide services with different capacities during 

a mixed-fleet operation depending on the dispatching order of each vehicle, expression (3-106) 

represents the size of vehicle allocated to 𝑖-th bus service. As can be seen in  

expression (3-107), the passenger-carrying capacity of bus service 𝑖 depends on its size, e.g., 

the maximum number of passengers accommodated by a 12-m long bus is 𝑐1 = 70 (pax). As 

explained in the model assumptions, we assume that there exists a given mixed fleet with buses 

of different sizes and the number of buses of each size is already given. Constraint (3-108) 

expresses resource limitations on the number of buses of each size for the three different bus 

sizes involved in our mixed-fleet operations. This constraint can make the problem more 

complicated, due to the combinatorial nature of the problem in terms of dispatching sequences. 

In essence, given the existence of a discrete set of dispatching sequences, which can be 

practically prescribed for buses in our mixed-fleet operation, constraint (3-108) turns the 

 
14 Three different bus types are available in our mixed-fleet operations (see Fig. 3-9): type 1 is a 12-m long bus; type 2 is a  

15-m long bus, and type 3 is an 18-m long bus, hence: 

Binary variable 𝑥1𝑖  would be 1 if a 12-m vehicle is allocated to 𝑖th bus service, otherwise 0; 

Binary variable 𝑥2𝑖 would be 1 if a 15-m vehicle is allocated to 𝑖th bus service, otherwise 0; 

Binary variable 𝑥3𝑖 would be 1 if an 18-m vehicle is allocated to 𝑖th bus service, otherwise 0. 
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proposed problem into a permutation-based combinatorial optimization problem (permutations 

with repetition due to the presence of several analogous buses in the given fleet). 

Vehicle movement constraints that need to be considered in real-world urban bus 

operations are given in (3-109)-(3-114). Headway between two consecutive buses 𝑖 − 1 and 𝑖 

at stop 𝑗 is calculated by (3-109). As can be seen in expression (3-110), the arrival time of bus 

𝑖 at stop 𝑗 depends on four different time components: (1) the departure time of bus 𝑖 from  

stop 𝑗 − 1, (2) the time required to accelerate from zero to cruise speed when bus 𝑖 leaves  

stop 𝑗 − 1, (3) the running time between two adjacent bus stops 𝑗 − 1 and 𝑗, and (4) the time 

required to decelerate from cruise speed to zero when bus 𝑖 wants to enter stop 𝑗. 

In real-world operations, a broad range of external factors can affect bus running times, 

such as traffic conditions, traffic signals, bus drivers’ behavior, weather, and so on  

(Wang and Haghani, 2020). Hence, buses might experience different running times between 

two adjacent stops 𝑗 − 1 and 𝑗. As can be seen in expression (3-111), to reflect realistic 

operating conditions, we assume that running times between stops are stochastic, drawn from 

a log-normal distribution with mean and standard deviation of r𝑗 and σ𝑗 respectively. As it is 

clear from (3-112), bus 𝑖 leaves stop 𝑗 after the completion of alighting and boarding processes 

(i.e., dwell time) at that stop. 

The departure times of buses from the first stop (𝑇𝑖,1
𝑑 ) are considered as decision variables 

in this dissertation. Indeed, buses can leave the first stop with varying dispatching headways 

during a predefined planning horizon denoted as [𝑇1, 𝑇2]. Nevertheless, the dispatching 

headways are confined to the range of [ℎmin, ℎmax] defined by policies [see constraint (3-113)]. 

Since this research focuses on high-frequency bus services, the upper bound is considered to 

be 12 minutes. The lower bound is also set to be 2 minutes in order to mitigate the bus 

bunching15 phenomenon. Moreover, for the sake of problem simplicity, it is assumed that the 

first and last buses are dispatched at the beginning and end of the planning horizon respectively  

(i.e., 𝑇1,1
𝑑 = 𝑇1 and 𝑇𝑁𝑣,1

𝑑 = 𝑇2). 

As can be seen in expression (3-114), the dwell time of bus 𝑖 at stop 𝑗 depends on the 

number of passengers alighting and boarding at that stop through the busiest bus door, plus the 

fixed time spent opening and closing bus doors. With regard to the boarding and alighting 

policy, we assume that passengers use the same doors for alighting and boarding, however, the 

 
15 Bus bunching phenomenon will happen when two or more buses on the same route arrive simultaneously at the same stop. 
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alighting process has priority over the boarding process (i.e., sequential boarding and alighting, 

in which boarding process is started after finishing the alighting process). Accordingly, the 

total dwell time at a stop will depend on the sum of the passengers’ boarding and alighting 

times (Tirachini et al., 2014). Parameters 𝛼𝑎 and 𝛼𝑏 are the average alighting and boarding 

times per passenger respectively and depend on fare collection technology, bus floor height, 

platform layout, and so on. Moreover, parameters 𝑃𝑖
𝑎 and 𝑃𝑖

𝑏 represent respectively the 

proportions of passengers alighting and boarding through the busiest door of bus 𝑖 and are 

dependent on the number of bus doors. For example, in the case of sequential boarding and 

alighting at all doors, the more doors a bus has the faster boarding and alighting is  

(Tirachini et al., 2014). In this research, we consider a heterogeneous bus fleet composed of 

three different bus sizes: 12-m long bus with 2 doors, 15-m long bus with 3 doors, and 18-m 

long bus with 4 doors (see Fig. 3-9). 

In the following, passenger flow constraints given by (3-115)-(3-121) are described. 

Under time-dependent passenger demand, the actual number of passengers with trip 𝑗 → 𝑘 

waiting for bus 𝑖 at stop 𝑗 (𝑁𝑖,𝑗,𝑘
𝑤 ) is essentially derived from the sum of two different groups of 

passengers (i.e., 𝑁𝑖,𝑗,𝑘
𝑤 = ∫ 𝜆 𝑗[𝑡]. 𝑂𝐷𝑗,𝑘[𝑡]. 𝑑𝑡

𝑇𝑖,𝑗
𝑑

𝑇𝑖−1,𝑗
𝑑

⏟              
(i)

 + 𝑁𝑖−1,𝑗,𝑘
𝑓

⏟    
(ii)

). The first group includes new 

passengers reaching their origin stops during the headway, whereas the second group includes 

those passengers who were unable to board the previous bus due to a dearth of capacity. 

Since we are working with high-frequency bus systems, the headway (the time interval 

between the departures of two successive buses from one station, 𝐻𝑖,𝑗 = 𝑇𝑖,𝑗
𝑑 − 𝑇𝑖−1,𝑗

𝑑 ) is a short 

enough time interval, during which the destination distribution vector and the passenger arrival 

rate 𝜆𝑗[𝑡] do not fluctuate notably (Gao et al., 2016). Accordingly, following Gao et al. 2016, 

we assume that these parameters remain constant during the headway (from the departure time 

of vehicle 𝑖 − 1 to the departure time of vehicle 𝑖), and are equal to 𝑂𝐷𝑗,𝑘[𝑇𝑖−1,𝑗
𝑑 ] and 𝜆𝑗[𝑇𝑖−1,𝑗

𝑑 ]. 

Therefore, the proposed integral form in the case of group (i) can be approximately rewritten, 

as presented in Eq. (3-115). 

According to the definitions of 𝑁𝑖,𝑗,𝑘
𝑤  and 𝑁𝑖,𝑗

𝑤  , expression (3-116) always holds. Indeed, 

the total number of passengers waiting for bus 𝑖 at stop 𝑗 is obtained through summing up 

across all the waiting passengers at origin stop 𝑗 with different destinations (𝑘 > 𝑗). As can be 

seen in expression (3-117), the number of passengers traveling inside bus 𝑖 between  
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stops 𝑗 − 1 and 𝑗, 𝑁𝑖,𝑗
𝑜𝑛, is composed of those passengers remaining on bus 𝑖 from the former 

segment (𝑗 − 2 → 𝑗 − 1) as their destination was not stop 𝑗 − 1, i.e., (𝑁𝑖,𝑗−1
𝑜𝑛 − 𝑁𝑖,𝑗−1

𝑎 ), plus 

passengers boarding bus 𝑖 at stop 𝑗 − 1, i.e., 𝑁𝑖,𝑗−1
𝑏 . Note that buses are empty when they arrive 

at the first stop (i.e., 𝑁𝑖,1
𝑜𝑛 = 0, ∀𝑖𝜖𝑉). Expression (3-118) indicates that the number of 

passengers who can successfully get on bus 𝑖 at stop 𝑗 cannot be larger than the remaining 

capacity inside bus 𝑖 at that stop. 

As indicated in (3-119), the number of passengers who alight bus 𝑖 at stop 𝑗 will include 

the passengers who boarded bus 𝑖 at the prior stops with the intention of traveling to stop 𝑗. 

Note that there is no demand for alighting at the first stop (i.e., 𝑁𝑖,1
𝑎 = 0, ∀𝑖𝜖𝑉). As discussed 

in the model assumptions, if there is not enough room on bus 𝑖 to carry all the passengers 

waiting for it at stop 𝑗, we assume that all the passengers, regardless of their destinations, have 

the same chance to get on [see expression (3-120)]. The number of passengers with trip 𝑗 → 𝑘, 

who are unable to board bus 𝑖 at stop 𝑗 due to a lack of capacity is obtained by (3-121). Indeed, 

Eq. (3-121) can account for the actual number of passengers left behind by each vehicle at any 

stop. Accordingly, even if denied boarding occurs for several cycles for some passengers due 

to an overcrowded situation, the model is able to count them among the left-behind passengers 

and to calculate their extra waiting time until they successfully board an available service. 

Constraints (3-122) and (3-123) define the domain of decision variables. 
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3.4.2 Model formulation for the advanced version of the mixed-fleet bus scheduling problem 

In this section, we design and present an advanced mathematical model for the  

MFBS problem. The simpler model in Sadrani et al. (2022a) has some limitations that need to 

be addressed for a more comprehensive understanding of mixed-fleet bus dispatching. First, 

Sadrani et al. (2022a) focused solely on minimizing passengers’ waiting times, overlooking 

other important factors such as users’ in-vehicle time, trip comfort, and operator costs. Second, 

their model assumed a fixed number of vehicles, disregarding the optimization of resource 

allocation programs that determine the optimal number and type of vehicles required for  

mixed-fleet operations16. This limitation hampers the ability to optimize fleet size and 

composition, limiting the adaptability of the dispatching system to varying resource constraints 

and demand conditions. Third, their study only utilized the SA algorithm as a solution 

approach, without exploring if other advanced algorithms find better dispatching plans in terms 

of quality of service and/or operator costs. Given the combinatorial complexity of the MFBS 

problem, it is crucial to evaluate the performance of various algorithms to ensure robustness 

and effectiveness. Particularly, our research findings highlight the significance of utilizing 

more advanced algorithms to tackle the challenges of vehicle assignment in crowded scenarios 

requiring larger fleet sizes. 

To bridge these gaps, a novel MFBS problem is proposed that considers more realistic 

components, including in-vehicle trip times, users’ trip comfort, resource constraints, and 

operator costs (see Fig. 3-8). This programming model goes beyond optimizing vehicle 

dispatching plans and also addresses the optimization of vehicle assignment programs, 

enabling efficient resource utilization (the optimal determination of the number and type of 

vehicles needed for mixed-fleet deployments). To tackle the complexity of the MFBS problem 

(as a combinatorial optimization problem) and ensure practical viability, we employed two 

well-established metaheuristics: Genetic Algorithm (GA) and Grey Wolf Optimizer (GWO). 

We also developed two hybrid metaheuristic algorithms, GA-SA (a combination of GA and 

SA) and GWO-SA (a combination of GWO and SA), demonstrating promising performance in 

 

16 In essence, the absence of operator cost modeling and resource constraints in the study of Sadrani et al. (2022a) prevented 

the optimization of fleet size, fleet composition, and quantities for efficient operations. Specifically, in a mixed operating 

system, the running costs of vehicles are influenced by their size, with larger buses (e.g., 18-m long) incurring higher costs 

compared to smaller ones (e.g., 12-m long). However, larger buses offer the benefit of reducing passenger inconvenience 

caused by crowding. Thus, achieving the optimal fleet size and composition requires a comprehensive cost analysis 

encompassing both user (demand) and operator (supply) aspects. 
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improving solution quality and optimization capabilities. A Taguchi approach was utilized to 

calibrate the parameters of these metaheuristics, ensuring their robustness in solving the MFBS 

problem. 

 

3.4.2.1 Model assumptions for the advanced version of the mixed-fleet bus scheduling problem 

Here, we outline the main assumptions and modeling attributes used to formulate the 

advanced MFBS problem: 

• The entrance of commuters at stations is assumed as random. 

• There is sufficient capacity available to cover the total passenger demand, which is a 

pervasive assumption in the stage of operational planning (Vuchic, 2017;  

Gkiotsalitis and Alesiani, 2019; Gkiotsalitis, 2020a; Sadrani et al., 2022a). 

• The maximum resource constraints for each vehicle type are specified by service 

providers based on depot inventories. 

• We consider the scheduling of vehicles within a designated planning (simulation) 

period for a two-direction bus line. 

• We distinguish between passengers’ time valuations when waiting at stations and 

when riding inside vehicles. 

• We distinguish between standing and sitting passengers’ perceptions of crowding 

disutility (discomfort). 

 

3.4.2.2 Optimization model for the advanced version of the mixed-fleet bus scheduling problem 

The MFBS problem is formulated as follows: 
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Subject to: 
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Our objective function is defined for the minimization of total costs, consisting of user 

costs and operating costs, as presented in Eq. (3-124). User costs are introduced in the first and 

second terms, which respectively reflect waiting time costs and crowding-sensitive in-vehicle 

time costs (as sensitive to on-board comfort levels for users). Operating costs are introduced in 

the third and fourth terms, which respectively represent human driver costs and size-sensitive 

vehicle running costs. Next, we discuss the functional form of the cost terms and problem 

constraints. 

Commuters’ waiting times are estimated in the first term of (3-124), formulated based on 

the random entering of commuters at stations. In this situation, the average waiting time is 

approximated as half of the headway (Dakic et al., 2021; Gkiotsalitis and Cats, 2018; 

 Sadrani et al., 2022b, 2022a). Besides, parameter 𝜑𝑤1 is the value of waiting time savings, 

used to translate time values into cost values. 

The second term calculates users’ in-vehicle time costs, while accounting for users’ trip 

comfort. It has been revealed that standing travelers are more impacted by the inconvenience 

of crowding than sitting travelers  (Wardman and Whelan, 2011; Tirachini et al., 2017). Thus, 

we discern between standing and sitting passengers’ perceptions of crowding discomfort by 
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means of crowding multipliers defined separately for standing and sitting cases  

(see Table 3-7). As a noteworthy aspect of our model, a microscopic tracking of alighting and 

boarding volumes at each station enables us to update the occupancy level of each service at 

each part of a route. This precise framework allows us to evaluate the impacts of crowding on 

passengers’ comfort during their trips. 

The third term accounts for human driving costs. The number of driving hours determines 

the drivers’ earnings, regardless of the vehicle type being driven. By contrast, the fourth term 

calculates vehicle running costs (e.g., energy and upkeep expenses) depending on the size of 

each service (size-sensitive running costs) as operating larger vehicles (such as 18-m long 

buses) is more expensive than operating smaller ones (12-m long buses). However, larger 

vehicles offer the advantage of reducing passenger inconvenience caused by crowding. This 

aspect becomes crucial in optimizing vehicle assignment plans because, in addition to 

operators’ costs, users’ costs (such as waiting times and crowding costs) have a significant 

impact on supply decisions in public transport services when minimizing a total cost function  

(Mohring, 1972; Jara-Díaz and Gschwender, 2003; Tirachini et al., 2014). The proposed MFBS 

problem, containing a detailed definition of both user and operating costs, enables us to identify 

the most effective vehicle assignment solutions that produce a beneficial equilibrium between 

demand and supply. 

In the following, we explain the model’s constraints, presented in four categories:  

(i) vehicle assignment [Eqs. (3-125) and (3-126)], (ii) vehicle size-dependent characterization 

[Eqs. (3-127)-(3-129)], (iii) vehicle movement planning [Eqs. (3-130)-(3-134)], and (iv) user 

trip flows [Eqs. (3-135)-(3-144)]. 

In Eq. (3-125), we determine the vehicle type assigned to each bus service (i.e., to each 

vehicle dispatching). For example, suppose there are three different vehicle types (A, B, and 

C), if the 5th bus service is carried out by means of a type-A vehicle, then 𝑥𝐴5 equals 1 (in this 

case, Eq. (3-125) will hold as 𝑥𝐴5⏟
1

+ 𝑥𝐵5⏟
0

+ 𝑥𝐶5⏟
0

= 1). Eq. (3-126) indicates the number of 

vehicles of each type assigned for operations. 

Eqs. (3-127)-(3-129) are specifically designed to handle size-sensitive parameters on a 

service-to-service resolution. This is crucial because the MFBS problem involves services with 

varying sizes, where size-sensitive attributes (such as on-board capacity) differ for each service 

based on its size characteristics. For instance, the capacity of service 𝑖 (performed by means of 

a 12-m long vehicle) differs from that of service 𝑖 + 1 (performed by means of an 18-m long 
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vehicle). Given the changing patterns of passenger flows over time and place, such modeling 

components allow for the introduction of best vehicle assignment and dispatching plans in the 

MFBS problem, resulting in a better adjustment of capacity to passenger demand. 

Constraint (3-130) ensures that dispatching headways always remain within the permitted 

range established by policymakers. The dispatching times of services from the first terminal 

are defined as decision variables in our problem, allowing for the optimization of dispatching 

intervals between services according to temporal fluctuations in passenger requests. Besides, 

it is assumed that the dispatching of the first service is performed at the start of the planned 

period. 

As presented in Eq. (3-131), to determine the entry time of a service at a station, the 

leaving time of that service from the earlier station would be added to the time spent riding 

between stations. Eq. (3-132) indicates that a service will leave a station after passengers’ 

unloading and loading events at that station (dwelling time). As shown in Eq. (3-133), the dwell 

time is estimated in view of the time consumed for unloading and loading actions by 

passengers, as well as the time associated with the opening and closing of doors. In  

Eq. (3-134), the inter-departure headway is computed as the elapsed time between the leavings 

of two successive services from a designated station. 

Considering time-varying arrival rates of travelers at stations, Eq. (3-135) computes the 

number of travelers (intending to carry out a journey from 𝑗 to 𝑘 by means of service 𝑖) who 

enter station 𝑗 during the elapsed headway between service 𝑖 − 1 and service 𝑖. Given the 

notions of 𝑁𝑖,𝑗,𝑘
𝑤  and 𝑁𝑖,𝑗

𝑤  , Eq. (3-136) becomes apparent in our model, meaning that the 

aggregate of all travelers waiting at station 𝑗, whose journey destinations can differ from each 

other (journey from 𝑗 to 𝑘, 𝑘 > 𝑗), yields the total traveler volume waiting for service 𝑖 at 

station 𝑗. 

Eq. (3-137) updates the residual capacity inside each service, taking into account the 

passenger unloading process that occurs at each station. Constraint (3-138) ensures that the 

operational plans for service supply (including vehicle assignment and dispatching plans) are 

sufficient to satisfy passenger demands. 

Eq. (3-139) calculates the unloading volume of travelers from service 𝑖 at station 𝑗, 

considering the commuters who boarded service r at former stations in order to carry out a 

journey to station 𝑗. Considering passengers’ unloading and loading events at each station,  

Eq. (3-140) is employed to update the passenger load (occupancy level) of each service in every 
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section of the route. Eqs. (3-141) and (3-142) are respectively used to compute the number of 

travelers sitting and standing inside service 𝑖 during the journey between stations 𝑗 − 1 and 𝑗. 

Eq. (3-143) determines the density of standing passengers inside services, used as a proxy for 

representing the degree of crowding inside services (Tirachini et al., 2017). Accordingly, 

crowding multipliers for standing and sitting situations are determined as a function of the 

standing density, as stated in Eq. (3-144). In our dissertation, crowding multipliers are given in  

Table 3-7, taken from Tirachini et al. (2017). For instance, a multiplier of 1.93 means that, on 

average, travel time savings when standing with a density of 6 standees per square meter are 

valued almost doubled than travel time savings when sitting without any passenger standing. 

Ultimately, constraints (3-145)-(3-147) exhibit the scope of decision variables. 

 

Table 3-7 Crowding multiplier values (source: Tirachini et al., 2017). 

Standing density (pax/m2) Sitting multiplier Standing multiplier 

0 1.00 1.12 

1 1.11 1.25 

2 1.23 1.39 

3 1.34 1.53 

4 1.46 1.66 

5 1.57 1.80 

6 1.69 1.93 
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4 Solution algorithms 

This chapter contains the solution algorithms developed to effectively address the 

computational complexities of the formulated models, encompassing various exact and 

metaheuristic approaches. 

 

4.1 Solution approaches for automated bus planning 

4.1.1 Full enumeration method 

As discussed in the mathematical formulation, variables of service frequency and vehicle 

size, confined to the predetermined discrete sets of {𝑓min, 𝑓min + 1,… , 𝑓max − 1, 𝑓max} [veh/h] 

and {8,12,15,18} [meters] respectively, are considered as the decision variables in our model. 

As for vehicle sizes, our range goes from minibuses and standard 12-m long buses, to 

articulated 18-m long buses. Due to the combinatorial nature of the problem, there is a limited 

number of possible solutions that need to be evaluated in each scenario (with a full enumeration 

(exhaustive search) of the solution space) for exploring the whole solution space and finding 

the global optimal solution leading to the minimum total cost. For instance, for our experiments 

in Regensburg, 𝑓min and 𝑓max are set to be 5 and 40 respectively, i.e., the set of frequencies is 

regarded as {5, 6, 7, …, 38, 39, 40} [veh/h], containing a total of 36 elements. Thus, in the 

presence of 4 different bus sizes used as candidates, there are a total of 36×4=144 possible 

solutions for exploring the entire solution space using a Full Enumeration (FE) method. For 

the given bus route in Santiago, taken as the illustrative example of a corridor with a large 

volume of passengers [5764 pax/h], 𝑓min and 𝑓max are set to be 15 and 120 [veh/h] respectively. 

Hence, the total number of possible solutions that should be assessed would be 106×4=424. 

It is worth noting that the FE method is a widely-used method in the relevant literature 

to solve bus scheduling design problems taking advantage of relatively small-scale instances 

in bus lines (e.g., Fu et al., 2003; Sun and Hickman, 2005; Gkiotsalitis and Cats, 2018; 

Gkiotsalitis, 2020b; Hatzenbühler et al., 2020; Sadrani et al., 2022a). Indeed, this exact method 

is able to return a globally optimal solution (within an acceptable time for relatively small 

instances), compared to metaheuristics that cannot guarantee the optimality of the solutions. In 

essence, the solution quality (e.g., finding the global optimal solution) is more important than 

the saving of computational time when solving such offline design problems (Lotfi et al., 2020; 

Sadrani et al., 2022a), where problems are generally solved once without a hard time pressure 

to prescribe medium or long-term decisions in the context of important financial investments 
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(Talbi, 2009; Sadrani et al., 2022a). That is, computational time saving is not the major issue 

for policymakers and practitioners in such design problems. Hence, if it is possible, the exact 

methods should be preferred rather than meta-heuristic algorithms that are not able to guarantee 

the global optimality. 

To further describe the proposed FE method employed to solve our mathematical 

programming model in Eq. (3-2), the main steps of the FE method are described in  

Algorithm 4-1. 

 

Algorithm 4-1 The main steps of the full enumeration method. 

Step (1): Set the candidate values for vehicle size and frequency (as decision variables), 

which are respectively confined to the given discrete sets of {8,12,15,18} [meters] and 
{𝑓min, 𝑓min + 1,… , 𝑓max − 1, 𝑓max} [veh/h] in the proposed problem. 

 

Step (2): In each deployment scenario, while vehicle size is fixed (for any given size) 

during the simulation time, set parameters & enumerate over all the frequency values to 

evaluate all the possible combinations of vehicle size and frequency (for a better view of 

this step, see Fig. 5-2), i.e., step (2) includes (2.1) & (2.2): 

(2.1). Set input parameters. Note that the size-dependent parameters are set 

based on the vehicle size fixed. 

(2.2). Evaluate the objective function value [in Eq. (3-1)] for each 

combination of vehicle size and frequency using Algorithm 4-2. In essence, 

to handle the uncertainty of stochastic travel times, each possible solution is 

evaluated over several replications through the Monte Carlo Simulation 

(MCS) method (see Algorithm 4-2 for more details). 

 

Step (3): Return the best-found solution (among all the combinations of vehicle size and 

frequency) leading to the minimum total cost value. 

 

4.1.2 Monte Carlo Simulation method 

To manage travel time stochasticity in Stochastic travel times scenarios, we utilize a Monte 

Carlo Simulation (MCS) approach, allowing for the evaluation of each possible solution within 

multiple repetitions (Liu et al., 2013; Wu et al., 2017; Mou et al., 2020; Zhang et al., 2020; 

Gkiotsalitis and Van Berkum, 2020b; Sadrani et al., 2022a). In essence, the MCS is activated 

in the form of a subroutine in the proposed FE algorithm. That is, whenever the FE algorithm 

needs to do an evaluation process, this task is undertaken by the MCS method. In  

Algorithm 4-2, we describe the steps of the MCS method. The number of MCS runs is set to 

be 1000 in our research.  
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Algorithm 4-2 The main steps of the MCS method. 

(i) Set the MCS parameters: Set the counter of simulations 𝑚 and its initial value as 1; 

let �̅�(𝑚) denote the estimated objective function value in Eq. (3-1); set the maximum 

number of simulations as 𝑀𝑚𝑎𝑥 = 1000. 

 

(ii) Perform travel time sampling: The bus travel time between each two consecutive 

stops is a random variable with predetermined mean and standard deviation values. 

For each bus service, sample the travel time between stops 𝑗 − 1 and 𝑗 (i.e., 𝑇𝑖,𝑗
𝑟 ) 

through Eq. (3-16) based on its log-normal distribution, where 𝑖 = 1, 2, … ,𝑁𝑣 and  
𝑗 = 2, 3, … , 𝑁𝑠. 

 

(iii) Compute the variables: Based on the sampled travel time value, update the relevant 

variables in the solution using Eqs. (3-13)–(3-32), including bus motion and passenger 

flow calculations: bus travel time, headways, dwell time, arrival/departure time at each 

stop, the number of passengers waiting, alighting and successfully boarding the 

vehicle, failing to board, sitting and standing inside the vehicle. 

 

(iv) Compute the objective function value: Based on Eq. (3-1), compute and update the 

objective value 𝑍(𝑚), and the final output of objective value is determined through the 

average value of simulation samples: 

�̅�(𝑚) =
𝑍(𝑚) + (𝑚 − 1) .  �̅�(𝑚−1)

𝑚
 (4-1) 

 

(v) Check the stopping condition: Increase the number of simulations by 1,  

i.e., 𝑚 = 𝑚 + 1. If 𝑚 < 𝑀𝑚𝑎𝑥, return to step (ii); otherwise, stop and output the 

estimated objective function value �̅� = �̅�(𝑚). 

 

4.2 Solution approaches for electric bus planning 

4.2.1 Full enumeration method 

As outlined in the model formulation for EB planning (see Section 3.2) , our INLP model 

frames the EB planning problem as a combinatorial optimization problem, which aims to 

optimize vehicle type selection (e.g., choosing between a fleet of 12-m EBs or a fleet of 18-m 

EBs) and service frequencies (e.g., choosing from 56 feasible values, from a discrete set of 

values: {5, 6, 7, … , 59, 60} [veh/h]). Due to the finite number of solutions, a Full Enumeration 

(FE) approach can be used to explore all possible solutions and identify the global optimum 

(see Algorithm 4-3 for the steps involved in the FE approach). In this tactical planning stage, 

where solution quality is paramount and computing time savings are less critical, exact methods 

like FE are preferred, as they can guarantee a globally optimal solution. Moreover, Fig. 4-1 

provides a visual representation of our FE approach for 2 scenarios of vehicle type selection 
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and 56 feasible frequency values, resulting in a total of 112 solutions. This representation 

reflects the real-world conditions of our case study, and the FE method is able to solve our 

problem within 20 minutes, which is an acceptable processing time for this offline design 

problem. 

 

Algorithm 4-3 The main steps of the full enumeration method. 

Step (1): Enumerate binary decision variables (related to the vehicle type selection) by 

enumerating over possible scenarios of vehicle type selection. For example, given two 

common types of EBs (12-m standard and 18-m articulated buses), two possible scenarios1 

will appear: 

(i) First scenario (𝑥1 = 1 and 𝑥2 = 0): Operation with a fleet of 12-m long buses. 

(ii) Second scenario (𝑥1 = 0 and 𝑥2 = 1): Operation with a fleet of 18-m long buses. 

 

Step (2): For each scenario identified in Step (1), enumerate over all possible frequency 

values (i.e., {𝑓min, 𝑓min + 1,… , 𝑓max − 1, 𝑓max}) to find the best frequency. 

 

Step (3): Return the best solution (with the lowest total cost value) among all possible 

solutions. 

 

 

Figure 4-1 A visual representation of the FE approach for solving our real-life problem (with 

2 possible scenarios of vehicle type selection and 56 frequency values). 

  

 
1 In the presence of buses of type 1 (12-m long buses) and type 2 (18-m long buses), binary variables 𝑥𝑚 (for 𝑚 = 1, 2) are 

treated as: 

Binary variable 𝑥1 that equals 1 if a fleet of 12-m long buses is operated, 0 otherwise, 

Binary variable 𝑥2 that equals 1 if a fleet of 18-m long buses is operated, 0 otherwise. 

Also, the expression of 𝑥1 + 𝑥2 = 1 [in Eq. (3-52)] will always hold. 
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4.2.2 Genetic algorithm 

To solve the EB fleet scheduling problem, we also implement a Genetic Algorithm (GA), 

which is a widely-used evolutionary algorithm that has demonstrated outstanding performance 

in solving complex combinatorial optimization problems (Karimi-Mamaghan et al., 2022). The 

GA draws inspiration from natural selection and genetics and operates on a population of 

chromosomes (individuals) to iteratively evolve solutions using the principles of selection, 

crossover, and mutation. 

Solution representation, also known as encoding, is a crucial step in defining solutions 

for metaheuristic algorithms in a comprehensible way. With the GA, each solution is expressed 

in the form of a chromosome, with a set of genes characterizing the decision variables. As 

illustrated in Fig. 4-2, we adopt a two-section structure for the chromosome representation in 

our GA. The first section contains binary variables representing vehicle type selection, while 

the second section contains the frequency value expressed as an integer number. 

 

Binary decision variables
(related to vehicle type selection)  

x1 x2
... fxm

Service 
frequency

 

Figure 4-2 Chromosome encoding in the GA. 
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Initialize population size (𝑁𝑝𝑜𝑝), maximum number of iterations (𝑀𝑎𝑥𝐼𝑡), 

crossover rate (𝑃𝑐), and mutation rate (𝑃𝑚) 

Begin 

Generate the initial population of chromosomes 𝑌𝑖 (𝑖 = 1, 2, … , 𝑁𝑝𝑜𝑝) 

Evaluate the fitness of each chromosome in the population by Eq. (4-2) 

Set iteration counter 𝑡 = 1 

while (𝑡 < 𝑀𝑎𝑥𝐼𝑡) 

Select parents from the population using a selection method, e.g., roulette 

wheel selection 

Perform crossover on the selected parents with a rate of 𝑃𝑐 

Perform mutation on the offspring with a rate of 𝑃𝑚 

Evaluate the fitness of the generated offspring by Eq. (4-2) 

Merge the current population and offspring population (obtained from 

crossover and mutation), and sort the individuals based on their fitness 

Select the best (top) 𝑁𝑝𝑜𝑝 individuals for the next generation 

Increase the current iteration by 1, 𝑡 = 𝑡 + 1. 

end 

Return the chromosome with the best fitness value, bestY , as the best solution 

      end 

 

Figure 4-3 Pseudo code of the GA. 

 

The GA employs three main operators - parent selection, crossover, and mutation - to 

generate new individuals (offspring) and enhance population diversity. The overall process of 

the GA is summarized in Fig. 4-3. In this research, we apply a single-point crossover  

(Fig. 4-4) and two different mutation operators to enhance population diversity. To mutate the 

first section of solutions, which involves binary variables for vehicle type selection, we use a 

swapping mutation operator. Specifically, we randomly select two elements and switch their 

positions (Fig. 4-5). For the second section of solutions, which involves frequency values, we 

apply a random mutation operator, where we replace the current frequency value with another 

feasible value selected at random. 
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0 1 14

1 0 10

0 1 10

1 0 14

x1 x2 f

 

Figure 4-4 An example of single-point crossover. 

 

0 1 14 1 0 14
 

Figure 4-5 An example of swapping mutation. 

 

In the parent selection stage, we adopt a roulette wheel selection method, which favors 

better solutions with higher fitness scores as parents (Katoch et al., 2021; Sadrani et al., 2022c). 

To evaluate the fitness (suitability) of solutions, we employ the fitness function expressed in 

Eq. (4-2): 

−
=

−

max ( )
( )

max min
     

x
x

Z Z
F

Z Z
 (4-2) 

where the scaled fitness score of individual 𝑥 is represented by 𝐹 (𝑥), and 𝑍 (𝑥) is the objective 

function value (OFV) of individual 𝑥. Besides, 𝑍max and 𝑍min represent the OFVs of the worst 

and best solutions in the present population, respectively. As this dissertation deals with a 

minimization problem, a higher fitness score corresponds to a lower cost value, according to 

Eq. (4-2). 

Finally, the current population members and new offspring generated by crossover and 

mutation operators are combined to create the next generation. The individuals in the next 

generation are then sorted based on their fitness ratings, and the top 𝑁𝑝𝑜𝑝 individuals are 

selected for the upcoming generation. 
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4.3 Solution approaches for mixed-fleet bus scheduling 

4.3.1 Solution approaches for the simple version of the mixed-fleet bus scheduling problem 

The proposed heterogeneous fleet vehicle dispatching problem was formulated as a 

MINLP model, in which a number of constraints [e.g., constraints (3-118) and (3-120)] and the 

proposed objective function are nonlinear, thereby combining the difficulty of optimizing over 

integer variables with the handling of nonlinear functions. 

For instance, in nonlinear constraint (3-120), all the terms (e.g., 𝑁𝑖,𝑗
𝑏  and 𝑁𝑖,𝑗,𝑘

𝑤 ) are 

variables due to the presence of binary decision variables 𝑥𝑚𝑖 in the model. In essence, all the 

terms are dependent on the passenger-carrying capacity of bus services provided to users, and 

due to the possibility of dispatching services with varying capacities during a mixed-fleet 

operation [as presented in constraint (3-107)], those terms can change depending on the starting 

order of buses in a mixed-fleet operation. To be more precise, as explained for 𝑁𝑖,𝑗
𝑏  in  

Eq. (3-118), the actual number of passengers who can successfully board vehicle 𝑖 at each stop 

depends on the capacity of vehicle 𝑖. Moreover, for 𝑁𝑖,𝑗,𝑘
𝑤 , as can be seen in Eq. (3-115), some 

of the passengers waiting for vehicle 𝑖 at stop 𝑗 are those passengers who were unsuccessful in 

boarding vehicle 𝑖 − 1 due to a shortage of capacity inside vehicle 𝑖 − 1, who have to wait for 

vehicle 𝑖. This indeed implies that 𝑁𝑖,𝑗,𝑘
𝑤  can be dependent on the capacity of the preceding 

vehicle (vehicle 𝑖 − 1) during operations. In addition, 𝑁𝑖,𝑗,𝑘
𝑤  is also affected by the dispatching 

times of vehicles (continuous decision variables in the model), as the number of new passengers 

arriving at stops is computed based on the headways between each two consecutive vehicles, 

as observed from Eq. (3-115). 

As a further example in the objective function (3-105), according to part (ii) (i.e., the 

nonlinear expression of (𝑁𝑖−1,𝑗,𝑘
𝑓

 . 𝐻𝑖,𝑗), in which all the terms are variables as well), the extra 

waiting times due to denied boarding can depend on both binary and continuous decision 

variables of the model (i.e., dispatching order and times). More precisely, the extra waiting 

time in the case of failing to board, which is equal to the entire headway (i.e., 𝐻𝑖,𝑗), is directly 

influenced by the dispatching times of vehicles (continuous decision variables of the model, 

𝑇𝑖,1
𝑑 ). On the other hand, as discussed earlier, the actual number of passengers being left behind 

[i.e., 𝑁𝑖−1,𝑗,𝑘
𝑓

 obtained through Eq. (3-121)] can be strongly dependent on the capacity of bus 

services provided to travelers during a mixed-fleet operation, which essentially depends on the 

dispatching sequence of vehicles (binary decision variables of the model, 𝑥𝑚𝑖). Such 
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arrangements further point to the difficulty of handling a mixed-fleet dispatching problem as 

long as the relevant binary variables on the dispatching order of vehicles are regarded as 

decision variables in our model. This aspect leads to the dependency of many passenger flow 

variables on the capacity of services, in such a detailed model that explicitly considers binding 

capacity constraints for any given bus size during a mixed-fleet operation. 

Moreover, given the nature of the problem in terms of vehicle dispatching order (𝑥𝑚𝑖), 

constraint (3-108) (resource limitations on the buses of each size) transforms the situation into 

a permutation-based combinatorial optimization problem (permutations with repetition due to 

the existence of several identical buses in the given set of vehicles), and the computational 

complexity of the problem will grow with a factorial rule depending on the fleet size and on 

the number of buses of each size. Given a set of 𝑁𝑣 vehicles, such that there are 𝐴 identical 

buses of type 1, 𝐵 identical buses of type 2, and 𝐶 identical buses of type 3, there are a total of 

𝑁𝑣!

𝐴! × 𝐵! × 𝐶!
 distinct sequences for dispatching buses in our mixed-fleet operations. 

To illustrate the magnitude of the computational requirements, consider a scenario with 

a mixed fleet of 25 buses, including 10 buses of type 𝐴, 8 buses of type 𝐵, and 7 buses of type 

𝐶 for operations. The total number of unique dispatching orders from the first station can be 

calculated as 
25!

10! × 8! × 7!
= 21,034,470,600. It is evident that exhaustively evaluating all 

potential solutions through FE becomes computationally infeasible for large instances. Such 

an approach is inefficient for addressing operational scheduling problems that require timely 

optimization of operational plans. 

Overall, not only do MINLP problems amalgamate the two aspects of MILP and NLP 

problems, but also have some unique features. For example, although a strict convexity 

assumption can ensure the global uniqueness of an NLP solution, the same does not hold for 

MINLP problems (see Bonami et al., 2012 for further details on the scope and complex nature 

of MINLPs). Generally, MINLP problems turn out to be NP-hard by nature  

(Bonami et al., 2012; Burer and Letchford, 2012). Moreover, as it is obvious, typical 

combinatorial optimization problems with sequence-dependent setup are known to be strongly 

NP-hard (Bianco et al., 1987; Osman and Potts, 1989; Ruiz and Stützle, 2007;  

Alkaya and Duman, 2015; Lin et al., 2021). It would be practically challenging to find the best 

dispatching sequence of vehicles from a huge discrete set of possible sequences in real-life 

cases. Meta-heuristic algorithms are known as one of the most efficient and frequently used 

https://en.wikipedia.org/w/index.php?title=Sequence-dependent_setup&action=edit&redlink=1
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search methods for solving such complex optimization problems, as they can find satisfactory 

suboptimal solutions within an acceptable computing time (Talbi, 2009). 

In this research, we develop a SA algorithm with state-of-the-art features, taking the 

advantage of producing feasible neighboring solutions, to solve large real-world mixed-fleet 

vehicle dispatching problems within a reasonable computing time. Moreover, an additional 

complexity in our real-world problems is to deal with travel time stochasticity (due to the 

stochastic nature of the problem in terms of travel time uncertainty), which should be addressed 

when designing the solution algorithm. To tackle this issue, the SA algorithm is coupled with 

a MCS method, which evaluates candidate solutions over several replications. Further details 

on the MCS are provided in the next subsection. 

To obtain certain insights about the quality of solutions suggested by the SA algorithm, 

we offer a full integer space enumeration method (in Section 4.3.1.2), whereby the master 

MINLP problem is decomposed into a particular number of continuous NLP subproblems 

through fixing integer variables, to provide a direction towards the optimal solutions for small 

and medium-sized dispatching problems, measuring later the difference to the best solution 

found by the SA. To efficiently deal with the difficulty of handling binary variables and 

constraint (3-108) in the proposed mixed-fleet dispatching problem, we extensively describe 

these aspects in the design of our solution approaches. For example, we discuss how the 

proposed SA and its operators are properly designed to produce feasible neighborhood 

solutions that can satisfy these constraints, thereby enhancing the capability of the algorithm 

for a better exploitation of the best solutions within the feasible search space. 

 

4.3.1.1 Simulated annealing algorithm 

Simulated Annealing (SA) is a metaheuristic algorithm known for its ability to avoid 

getting trapped into a local optimum by allowing for random neighborhood changes, which can 

be adapted to different optimization problems with discrete or continuous space states  

(Zhang et al., 2015). There has been a large amount of work where SA has been efficiently 

applied to various combinatorial optimization problems (Gomes and Oliveira, 2006;  

Karimi-Mamaghan et al., 2021). In essence, SA is a single-solution based2 algorithm in which 

 
2 Single-solution based algorithms manipulate and improve a single solution during the search process. On the other hand, in 

population-based algorithms (e.g., particle swarm, and evolutionary algorithms), a population of solutions is evolved  

(Talbi, 2009). 
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the cooling process of molten metals is simulated (Askarzadeh et al., 2016). SA starts with a 

feasible initial solution and endeavors to ameliorate the current answer by generating a new 

solution in the vicinity of the current answer. Indeed, if the new solution leads to a lower 

objective function value, the current solution is replaced by the new solution; otherwise, SA 

rules decide whether the current solution is replaced by the new one or not. To be more precise, 

the algorithm starts with an initial positive temperature (𝑇0) and during the search, the 

temperature is steadily reduced. The probability of accepting a worse solution is also decreased 

as the temperature is reduced, i.e., although the algorithm might take a risk in accepting a worse 

solution in high temperatures, this risk-taking propensity will gradually decline with moving 

towards the end of the search process. In general, this strategy can help the algorithm to escape 

from local optimum solutions (Eglese, 1990; Meiri and Zahavi, 2006). 

As discussed before, the proposed dispatching problem is a permutation-based problem 

in terms of vehicle dispatching order, i.e., a permutation of a given set of vehicles leads to a 

new ordering of those vehicles. As an illustrative example of adjusting vehicle dispatching 

order, Fig. 4-7 depicts a mixed-fleet dispatching problem with a given set of 8 vehicles: 

{12,12,12,15,15,15,18,18} that can be dispatched in P(8; 3, 3, 2) =
8!

3!×3!×2!
= 560 different 

arrangements. In our SA algorithm, we employ efficient operators to produce diverse solutions 

in terms of dispatching sequence. In Algorithm 4-4, we describe the steps of the SA adopted to 

solve the proposed mixed-fleet vehicle dispatching problem. 

  

https://brilliant.org/wiki/permutations/
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Algorithm 4-4 The main steps of the proposed SA algorithm. 

Step (1): Set T0 and β. Let t ← 0. 
 
Step (2): Generate a feasible initial solution y & evaluate the answer, i.e., 

(2.1). Generate a feasible initial solution y, in which the decision variables of the 
problem (dispatching orders and dispatching times) are randomly generated (the 
structure of one single solution is illustrated by Fig. 4-6, in which the first part of 
the figure is dedicated to the bus dispatching order and the second part indicates 
the dispatching times of buses from the first stop). 
(2.2). Evaluate the value of the objective function for the initial solution, 𝑓(𝑦), 
through a Monte Carlo Simulation (MCS) method over several simulation-based 
trials to handle the uncertainty of stochastic travel times, drawn from a  
log-normal distribution (see Algorithm 4-2 for further information on the specific 
steps of the MCS method embedded into the SA). Let 𝑦𝑏𝑒𝑠𝑡 ← 𝑦 and Go to  
Step 3. 

 
Step (3): Create a neighboring solution 𝑦′ using various operators & evaluate the answer, 
i.e., 
 

(3.1). Create a neighboring solution 𝑦′, wherein bus dispatching order and bus 
dispatching times are randomly changed into a new arrangement, while taking 
the advantages of producing feasible solutions, i.e., 

Dispatching order schedule: To create a new bus dispatching order, as 
can be seen in Fig. 4-7, the dispatching order of vehicles in the former 
solution is changed into a new dispatching sequence through a random 
displacement by means of swapping or inversion operators. Such a 
permutation-based procedure in producing neighboring answers  can 
ensure the new solutions will be feasible in terms of constraint (3-108), 
as the total fleet size and the number of buses of each size in the new 
solution will remain unchanged compared to the initial feasible solution, 
and merely the dispatching sequences of vehicles are updated in the new 
solutions. 
Dispatching time schedule: To create a new departure time schedule, the 
departure times in the previous solution are changed for some vehicles 
using a normal distribution. First, based on a given rate, a number of 
vehicles in one solution are randomly selected (e.g., vehicles 2, 3, and 7 
in Fig. 4-8). Then, for each vehicle selected in turn, its departure time is 
changed by means of a normal distribution while considering the 
departure times of preceding and subsequent vehicles as certain bounds, 

i.e., 𝑛𝑇𝑖,1
𝑑  ~ 𝑁(𝑇𝑖,1

𝑑 , 𝜎2) ~ 𝑇𝑖,1
𝑑 + 𝜎 𝑁(0,1), where the standard deviation 

𝜎 is defined as 𝜎 = 𝜇 × (𝑇𝑖+1,1
𝑑 − 𝑇𝑖−1,1

𝑑 ). Note that 𝑇𝑖,1
𝑑  is the departure 

time of vehicle 𝑖 in the previous solution and 𝑛𝑇𝑖,1
𝑑  is the new departure 

time generated for vehicle 𝑖. After performing several preliminary tests 
with different values, 𝜇 was set to be 0.1. In the meantime, the feasibility 
of the generated departure times is checked [to meet constraint (3-113)] 
and modified (regenerated), if needed. 

(3.2). Evaluate the value of objective function for the generated neighboring 
solution, 𝑓(𝑦′), through the MCS method in Algorithm 4-2. 

 
Step (4): If 𝑓(𝑦′) ≤ 𝑓(𝑦) or 𝑟 ≤ 𝑃𝑎𝑐 then 𝑦 ← 𝑦′. If 𝑓(𝑦′) ≤ 𝑓(𝑦𝑏𝑒𝑠𝑡) then  
𝑦𝑏𝑒𝑠𝑡 ← 𝑦′. 
 
Step (5): If the stopping criteria (𝐼𝑚𝑎𝑥) is not met then 𝑇𝑡 = 𝛽 × 𝑇𝑡−1, 𝑡 ← 𝑡 + 1 and Go to 
Step 3; otherwise, stop and return 𝑦𝑏𝑒𝑠𝑡. 

https://en.wikipedia.org/wiki/Standard_deviation
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where: 
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 (4-3) 

𝑡    Iteration counter 

𝐼𝑚𝑎𝑥   Maximum number of iterations 

𝑇0   Initial temperature 

𝑇𝑡   Temperature in iteration 𝑡 

𝛽   Cooling factor 

𝑦𝑏𝑒𝑠𝑡    Best found solution 

𝑓(𝑦)   Objective function value for solution 𝑦 

𝑟    A uniform random number in [0, 1] 

𝑃𝑎𝑐(𝑦, 𝑦
′, 𝑇𝑡) Probability function for accepting the non-improving solution 𝑦′ 

 

As can be seen in expression (4-3), the probability of accepting a non-improving solution 

will depend on the difference between the corresponding objective function values, and also 

on the temperature at the relevant iteration. As discussed in Step 3, for the dispatching order of 

vehicles, neighborhood solutions are created through two different operators that are randomly 

used, including swap and inversion operators. In the swapping operator, two vehicles are 

randomly selected to be swapped in the same solution [see Fig. 4-7 (a)]. In the inversion 

operator, a string of vehicles is randomly selected to be reversed in the same solution, as 

illustrated in Fig. 4-7 (b). 

 

 
Figure 4-6 Structure of one initial solution. 
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Figure 4-7 An illustrative example for creating new dispatching sequences using two 

operators: (a) swap operator; and (b) inversion operator. 

 

7:00:00 7:05:00 7:10:00 7:15:00 7:20:00 7:25:00 7:30:00 7:35:00Old solution

7:00:00 7:06:08 7:09:36 7:15:00 7:20:00 7:25:00 7:32:00 7:35:00New solution

 
Figure 4-8 An illustrative example for changing the departure times of the selected buses. 

 

To handle travel time uncertainty, each solution is repeatedly assessed over several 

simulation-based evaluations through a MCS method which is a well-established method 

among researchers to cope with the uncertainty in stochastic programming problems to 

estimate expected values (Marseguerra et al., 2002), particularly among transportation 

researchers to handle the uncertainty of stochastic travel times in urban bus operations (e.g., 

Liu et al., 2013; Chen et al., 2015; Wu et al., 2017; Mou et al., 2020; Zhang et al., 2020; 

Gkiotsalitis and Van Berkum, 2020b). For example, Liu et al. (2013) used a GA, combined 

with a MCS framework, to solve a stop-skipping service problem. In principle, the heuristic 

GA algorithm was employed to find the optimal stopping patterns, and the MCS method was 

employed to deal with travel time uncertainty in the process of solution evaluation. The same 
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procedure is also executed in the studies of Chen et al. (2015) and Mou et al. (2020). Likewise, 

the MCS method is embedded as a subroutine of the SA algorithm in our dissertation. Indeed, 

in Steps 2.2 and 3.2 of the SA algorithm, the evaluation of each solution is carried out by the 

MCS method over several replications due to the presence of stochastic travel times. The 

specific steps of the MCS scheme are summarized in Algorithm 4-2. 

 

4.3.1.2 Decomposition based method 

For the proposed mixed-fleet vehicle dispatching problem, we introduce a strategy to 

decompose the original MINLP problem into a certain series of continuous NLP subproblems 

with fixed binary variables for providing a direction towards the optimal solutions in the case 

of small and medium-sized instances. As discussed before, given the nature of the problem in 

terms of vehicle dispatching order, constraint (3-108) (resource limitations) transforms the 

proposed mixed-fleet dispatching problem into a permutation-based combinatorial 

optimization problem (permutations with repetition due to the existence of several identical 

buses in the given set of vehicles), and the complexity of the problem will grow based on a 

factorial function depending on the fleet size and on the number of buses of each size. In 

principle, there exists a total of 
𝑁𝑣!

𝐴! × 𝐵! × 𝐶!
 possible ways (in terms of dispatching sequence) for 

dispatching vehicles in a mixed-fleet operation. Accordingly, by fixing the dispatching 

sequences in 
𝑁𝑣!

𝐴! × 𝐵! × 𝐶!
 different ways, we decompose the master MINLP problem into a certain 

number (equivalent to 
𝑁𝑣!

𝐴! × 𝐵! × 𝐶!
) of continuous NLP subproblems, in each of which the optimal 

dispatching times of vehicles should be determined. 

Indeed, each possible dispatching sequence is reflected by one of those subproblems. In 

other words, binary variables (𝑥𝑚𝑖) have already been fixed in each NLP subproblem and we 

just need to find the optimal dispatching times of vehicles in each subproblem (note that 

dispatching times are continuous decision variables in our model). Obviously, since the number 

of buses of each size will remain unchanged after carrying out a permutation on a given set of 

buses and merely the dispatching order of those buses are renewed in each subproblem, 

constraint (3-108) has been spontaneously satisfied in all the resulted subproblems. Finally, 

each NLP subproblem (for optimizing vehicles’ dispatching times in that subproblem) is solved 

using the GAMS/CONOPT package that can determine that the solution is globally optimal in 

the NLP case and it will return Modelstat = 1 (Optimal). After solving all the NLP subproblems 

https://brilliant.org/wiki/permutations/
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consecutively one after another, the best-found solution leading to the lowest passenger waiting 

time is identified. The specific steps of the proposed full integer space enumeration method are 

summarized in Algorithm 4-5. Indeed, the main aim of this method is to eliminate the difficulty 

of handling binary variables when solving small and medium dispatching instances. Hence, we 

will employ this procedure for solving a set of small and medium-sized test problems  

(in Section 5.4.1.1), measuring later the difference from the best solution found by the SA to 

obtain certain insights about the quality of the attained solutions by the SA. Note that  

Algorithm 4-5 is not designed to handle travel time uncertainty and our test problems are solved 

with deterministic running times between stops to avoid further complexity and growth of 

computing times. 

In recent years, there has been a considerable progress within the field of MILP and NLP 

(Achterberg and Wunderling, 2013; Bazaraa et al., 2013), which also enriches the field of 

MINLP as decomposition techniques for MINLP problems rely often on solving these types of 

subproblems (Kronqvist et al., 2019). For example, there is a large number of different solvers 

available and the number is growing in the NLP case: solvers like CONOPT, SNOPT, Knitro, 

and Mosek are well-known commercial options, and IPOPT is a well-known opensource solver 

(see Kronqvist et al., 2019 for further details on the above-mentioned NLP solvers). Overall, 

there is a wide variety in the algorithms behind NLP solvers, e.g., CONOPT implements a 

generalized reduced gradient approach, whereas SNOPT employs a sequential quadratic 

programming method, and Knitro, Mosek, and IPOPT use an interior-point approach (see 

Biegler, 2010 for a comprehensive review of NLP). 

 

Algorithm 4-5 The specific steps of the proposed full integer space enumeration method. 

Step (1): Decompose the master MINLP problem into a certain number (
𝑁𝑣!

𝐴! × 𝐵! × 𝐶!
) of 

continuous NLP subproblems by fixing binary variables (vehicle dispatching order) in 
𝑁𝑣!

𝐴! × 𝐵! × 𝐶!
 different ways, i.e., each subproblem is created based on one of those possible 

sequences, which can be prescribed for dispatching vehicles in a given mixed fleet. 

 

Step (2): Solve the obtained NLP subproblems (with continuous decision variables of 

dispatching times) using the GAMS/CONOPT package for finding the optimal dispatching 

times of vehicles in each subproblem. 

 

Step (3): Return the minimum-cost solution among the whole NLPs solved (return the 

obtained dispatching times together with the dispatching order already prescribed for that 

subproblem in Step 1). 
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4.3.2 Solution approaches for the advanced version of the mixed-fleet bus scheduling problem 

As discussed earlier, the simplest forms of the MFBS problems have been demonstrated 

to be NP-hard, due to their combinatorial nature in dispatching sequence (Sadrani et al., 2022a). 

When modeling a more realistic and advanced version of the MFBS problem, which contains 

a comprehensive objective function (taking into account users’ in-vehicle time, trip comfort, 

and operator costs) along with a broader set of real-world operational constraints and decision 

variables (especially integer decision variables related to resource allocation), the 

computational complexity of solving the MFBS problem increases significantly. This 

complexity arises from the inclusion of further recursive relationships, non-linear terms, and 

non-smooth elements in both the constraints and the objective function. Thus, a crucial need 

appears here to develop more advanced and reliable solution algorithms, specifically hybrid 

metaheuristics, to effectively address these challenges. 

To explore efficient solution algorithms for the advance version of the MFBS problem, 

we utilize two established metaheuristics, the GA and the GWO. Additionally, we develop two 

new hybrid metaheuristic algorithms, GA-SA (a combination of GA and SA) and GWO-SA (a 

combination of GWO and SA), aiming to enhance the optimization capabilities and improve 

the quality of solutions for the MFBS problem. 

 

4.3.2.1 Solution representation 

Solution representation, also known as encoding, is a crucial step in the utilization of 

metaheuristics, as it enables the meaningful introduction of solutions into the algorithms. In 

our approach to the MFBS problem, we design a two-section structure for the solution box 

representation. This structure includes an integer-coded section (section a) and a continuous 

(real)-coded section (section b), as illustrated in Fig. 4-9. 

In section a, the first encoding segment, we focus on characterizing vehicle assignment 

plans. This segment comprises two sublayers: a.1 represents the number of vehicles of each 

type assigned for operations, and a.2 denotes the dispatching sequence labels of the vehicles. 

Specifically, in sublayer a.1, non-negative integer values are randomly generated for each 

vehicle type, taking into account the maximum availability of each type. To assign a service 

priority label to each vehicle, a random permutation of integers from 1 to the total number of 

assigned vehicles is created in sublayer a.2. This permutation represents the dispatching 

sequence of the vehicles from the first terminal. Combining sublayers a.1 and a.2 results in 
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layer a.3, which presents the sorted dispatching sequence of the vehicles. In section b, the 

second encoding segment, we present the encoding of dispatching times using real-coded 

values. 

 

 

Figure 4-9 Solution encoding example. 

 

4.3.2.2 Genetic algorithm 

The GA search process was described in Section 4.2.2.  Here, we describe the crossover 

and mutation operators specifically designed in the GA to solve the advanced MFBS problem.  

The crossover application leads to the exchange of genetic material between two parents. As 

shown in Fig. 4-10, we utilize a single-point crossover operator for the integer-coded sections 

of vehicle assignment solutions. However, for the vehicles’ dispatching times in section b  

(Fig. 4-9), we employ an arithmetic crossover operator, which is a popular operator for 

increasing the diversity of real-coded values in the GA (Katoch et al., 2021;  

Mirjalili et al., 2020): 

( )

( )

Child1 Parent1 1 Parent2

Child2 1 Parent1 + Parent2

m m

m m

=  + − 

= −  
 (4-4) 

where 𝑚 is a random weighting vector generated for each crossover operation. 

Notably, our crossover strategy allows for gene exchange between parents of different 

sizes (lengths) (Fig. 4-10), facilitating the exploration of a wider search space. This approach 

enhances the diversity of solutions in terms of both vehicle assignment (resource allocation) 
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and dispatching order in the MFBS problem. The length of a solution depends on the total 

number of vehicles assigned for operations. During the crossover process, the feasibility of the 

resulting offspring is checked regarding resource constraints, ensuring that the number of 

vehicles of each type assigned for operational activities does not exceed the available resources. 

If an offspring is found to be infeasible, a modification process is executed to correct it. In such 

cases, random corrections are made to the older parts of the offspring, while the genetic 

material moved through the crossover remains unchanged. Besides, Fig. 4-11 depicts an 

example of a swapping mutation, which involves randomly selecting two elements and 

interchanging their positions. 

 

 

Figure 4-10 Example of single-point crossover. 

 

 

Figure 4-11 Example of swapping mutation operator. 

 

4.3.2.3 Grey wolf optimizer 

The Grey Wolf Optimizer (GWO), introduced by Mirjalili et al. (2014), is a  

nature-inspired swarm intelligence algorithm that mimics the social hierarchy and hunting 

behavior of grey wolves. It has demonstrated remarkable performance in solving various 

optimization problems, such as path planning, flow shop scheduling, and power dispatch (for 

an in-depth review of GWO applications, see Faris et al., 2018 and Sharma et al., 2022). One 

notable advantage of GWO is its low number of controlling parameters, which reduces the need 

for extensive parameter tuning (Faris et al., 2018; Wang et al., 2022). Despite its wide 

application in engineering optimization, there is a lack of research in the public transport 

literature utilizing GWO for bus/train planning problems (for recent review papers on public 

transport planning, see Liu et al., 2021 and Gkiotsalitis et al., 2022). 
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The search efforts of the GWO are described in the following. Overall, GWO considers 

four kinds of grey wolves for the simulation of leadership hierarchy: alpha, beta, delta, and 

omega. In essence, the alpha wolf (𝛼) refers to the best (most important) individual in a grey 

wolf pack, known as the leader of the group. Besides, the second and third top individuals are 

known as beta (𝛽) and delta wolves (𝛿) respectively. Other individuals are known as omega 

(𝜔) wolves, essentially steered by the 𝛼, 𝛽, and 𝛿 wolves during the search for prey. The 

hunting phase consists of three steps: encircling, hunting, and attacking steps. 

In the encircling phase, the GWO simulates the motions of grey wolves encircling prey 

at the beginning of the hunting process. Mathematically speaking, such motions are modeled 

using the following equations: 

( ) ( ). pD C X t X t
→ → → →

= −  (4-5) 

( ) ( )1 .pX t X t A D
→ → → →

+ = −  (4-6) 

12 .A a r a
→ → → →

= −  (4-7) 

22.C r
→ →

=  (4-8) 

where 𝑡 refers to the current iteration, pX
→

 refers to the location of the prey, and X
→

refers to the 

location of a wolf. A
→

 and C
→

 are coefficient vectors allowing for the movement (relocation) of 

wolves at different positions around the prey. In essence, 𝐷 reflects the distance between a wolf 

and a prey. Elements a
→

 will be reduced linearly from 2 to 0 as iteration progresses. Besides, 

1r
→

 and 2r
→

 refer to random vectors within the range of [0, 1] (Mirjalili et al., 2014). 

In the hunting phase, the locations of omega (𝜔) wolves will be updated based on the 

directions of the 𝛼, 𝛽, and 𝛿 wolves (which are the three best solutions identified so far). In 

essence, this idea stems from the fact that the three best search agents have a better overview 

(knowledge) about the location of the prey, and therefore other search agents (other solutions) 

should update their locations accordingly (see Fig. 4-12 for more details on the pseudo code of 

the GWO). Such a concept is mathematically modeled as follows: 
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1 2 3. , . , .D C X X D C X X D C X X    

→ → → → → → → → → → → →

= − = − = −  (4-9) 

1 1 2 2 3 3. , . , .X X A D X X A D X X A D    

→ → → → → → → → → → → →

= − = − = −  (4-10) 

( )
1 2 3

1
3

X X X
X t

→ → →
→ + +

+ =  (4-11) 

In the stage of attacking a prey, the GWO mimics the motions of grey wolves as they 

attempt to approach prey. This stage aims to create a better balance between the exploration 

and exploitation phases. Accordingly, when 1A  , search agents will diverge from each other 

to discover a better prey, thus enhancing the GWO’s ability for exploration. By contrast, when 

1A  , the grey wolves are directed to the prey, thus improving the GWO’s ability for 

exploitation. It should be noted that A  can vary within the range of [-2, 2], depending on 

parameter a  reduced from 2 to 0. 
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Initialize the grey wolf population 𝑋𝑖(𝑖 = 1, 2, … , 𝑛) 
Initialize 𝑎, 𝐴, and 𝐶 

Evaluate the fitness of each search agent 

  𝑋𝛼 = the best search agent 

  𝑋𝛽 = the second best search agent 

  𝑋𝛿 = the third best search agent 

while (𝑡 < 𝑀𝑎𝑥𝐼𝑡) 
for each search agent 

Update the position of the current search agent by Eq. (4-11) 

end 

Update 𝑎, 𝐴, and 𝐶 

Evaluate the fitness of all search agents 

Update 𝑋𝛼, 𝑋𝛽, and 𝑋𝛿 

                𝑡 = 𝑡 + 1 

end 

Return 𝑋𝛼 

 

Figure 4-12 Pseudo code of the GWO algorithm (Mirjalili et al., 2014). 

 

Given that the GWO is a continuous algorithm, an appropriate encoding procedure is 

required to encode solutions in a manner that adapts this algorithm to the discrete search region 

of the proposed MFBS problem. To address this, we utilize the Random-Key (RK) method as 

the chosen encoding scheme, which is widely recognized for its effectiveness in adapting 

continuous metaheuristics, such as GWO, to discrete search spaces (Mirjalili and Lewis, 2013; 

Beheshti, 2021; Goodarzian et al., 2021b; Nayeri et al., 2022). In particular, the RK method 

has been widely applied in permutation-based optimization problems, such as job shop 

scheduling and traveling salesman problems, demonstrating successful applications in these 

domains (Fathollahi-Fard et al., 2020a, 2020b; Yu et al., 2020; Goodarzian et al., 2021;  

Nayeri et al., 2022). 

Our RK encoding scheme has two stages, as shown in Fig. 4-13. First, a vector with a 

length equal to the number of vehicles assigned for operations is created using a uniform 

distribution U [0, 1], i.e., each element in the vector represents a random number within the 

range [0, 1]. Then, the random numbers in the vector are arranged in ascending order to 

introduce the new sequence in which the vehicles will be dispatched. For instance, the encoded 

solution in Fig. 4-13 produces the dispatching sequence: C, A, A, C, A, B in a sequential 

manner. By utilizing the RK method, we adapt the discrete dispatching sequence into a 
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continuous representation that can be processed by the GWO, enabling the optimization 

process within the MFBS problem. 

 

0.36 0.22 0.72 0.14 0.590.91
Random numbers 

U [0, 1]

A A A C CBVehicle ID

0.14 0.22 0.36 0.72 0.910.59Sorted numbers

C A A A BC
Sorted dispatching 

sequence

 

Figure 4-13 Example of the RK encoding method. 

 

4.3.2.4 Hybrid of genetic algorithm and simulated annealing 

In this section, we develop a hybrid algorithm called GA-SA, which combines the GA 

and SA approaches. The GA-SA algorithm leverages the benefits of both algorithms by 

integrating SA into the GA’s selection process for the next generation of individuals, allowing 

for the acceptance of non-improving solutions based on the SA strategy, rather than relying 

solely on a ranking-based selection of top individuals. Fig. 4-14 provides a visual 

representation of this integration. This hybridization enables an adaptive optimization process 

that balances exploration and exploitation, improving the algorithm’s ability to escape local 

optima. 

Fig. 4-15 illustrates the details of the GA-SA algorithm. The SA strategy adjusts the 

acceptance chance of non-improving solutions based on temperature and solution value 

differences at each iteration. Higher temperatures, occurring during the early search iterations, 

provide a greater chance for accepting non-improving solutions, promoting exploration-based 

search efforts. As the iterations progress, the temperatures decrease, leading to a gradual 

reduction in the acceptance chance of non-improving solutions and emphasizing  

exploitation-based search efforts. 
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Figure 4-14 Selection of individuals for the next generation in the GA vs. GA-SA. 
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Initialize population size (𝑁𝑝𝑜𝑝), maximum number of iterations (𝑀𝑎𝑥𝐼𝑡), maximum 

number of sub-iterations (𝑀𝑎𝑥𝑠𝑢𝑏𝐼𝑡), crossover rate (𝑃𝑐), mutation rate (𝑃𝑚), initial 

temperature (𝑇0), cooling rate (𝛼) 
           

  Generate the initial population of chromosomes 𝑌𝑖 (𝑖 = 1, 2, … , 𝑁𝑝𝑜𝑝)  

Set iteration counter 𝑡 = 1 

Evaluate the fitness value of each chromosome 

while (𝑡 < 𝑀𝑎𝑥𝐼𝑡) 
     while (𝐶𝑜𝑜𝑙_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑀𝑎𝑥𝑆𝑢𝑏𝐼𝑡) 
 

Select parents and apply crossover and mutation phases (in the same 

manner as the GA) 

Merge offspring created from crossover and mutation phases (offspring    

population) 
 

Create the next generation by performing a random pairwise comparison 

between the members in the current population (y) and those in the 

offspring population (y') based on a SA strategy (see Fig. 4-14 for a better 

view of this step): 

   For each pairwise comparison using a SA strategy: 

   Compute ∆= Cost (𝑦′) − Cost (𝑦) 
   If ∆< 0 then 

𝑦 = 𝑦′ 
Else 

Compute 𝑃 = 𝑒
−∆

𝑇   

If  𝑟 = random (0,1) ≤ 𝑃  then 

𝑦 = 𝑦′ 
  end 

end 

Update and store the cost of the best solution 

𝐶𝑜𝑜𝑙_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑜𝑜𝑙_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1  

                           Reduce the temperature 𝑇 = 𝑇 × 𝛼  

            end 

            𝑡 = 𝑡 + 1 

       end 
 

Figure 4-15 Pseudo code of the GA-SA. 

 

4.3.2.5 Hybrid of grey wolf optimizer and simulated annealing 

In this section, we develop a hybrid GWO-SA algorithm that combines the convergence 

capabilities of GWO with the diversity-maintaining capabilities of SA. Specifically, the hybrid 

algorithm uses the acceptance probability function of SA to update the positions of the alpha, 

beta, and delta wolves by comparing them with the best three omega search agents identified 

in each iteration. For example, if an omega wolf exhibits better fitness than the current alpha 
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wolf, it replaces the alpha wolf; otherwise, the SA strategy determines whether the alpha wolf 

is replaced. The proposed GWO-SA algorithm’s steps are illustrated in Fig. 4-16. 

 

Initialize the grey wolf population ( 1,2,..., )iX i n=   

Initialize , , and a A C  

Evaluate the fitness of each search agent 

X = the best search agent 

X = the second best search agent  

X = the third best search agent 

 

while (𝑡 < 𝑀𝑎𝑥𝐼𝑡) 
     while (𝐶𝑜𝑜𝑙_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑀𝑎𝑥𝑆𝑢𝑏𝐼𝑡) 

  Update the position of each omega search agent by Eq. (4-11) 

Update , , and a A C  

Evaluate the fitness of all omega search agents and select the three best 

ones in the omega population 

Update , , and X X X    based on a SA strategy, as described below: 

  Comparing the current main members (alpha, beta, and delta)  

  (denoted by y) with the three best agents identified in the omega population 

  (denoted by y’) based on a SA rule: 

For each random pairwise comparison by means of a SA strategy: 

Compute ∆= Cost (𝑦′) − Cost (𝑦) 
 If ∆< 0 then 

𝑦 = 𝑦′ 
Else 

Compute 𝑃 = 𝑒
−∆

𝑇   

If  𝑟 = random (0,1) ≤ 𝑃 then 

𝑦 = 𝑦′ 
  end 

end 

Update and store the best solution 

𝐶𝑜𝑜𝑙_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑜𝑜𝑙_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1  

                           Reduce the temperature 𝑇 = 𝑇 × 𝛼  

            end 

            𝑡 = 𝑡 + 1 

       end 

 

Figure 4-16 Pseudo code of the GWO-SA. 
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4.4 Taguchi method for parameter tuning of metaheuristics 

Metaheuristics’ performance is known to be highly sensitive to the fine-tuning of their 

control parameters (Siarry, 2016; Mirjalili et al., 2020). To address this crucial aspect, we 

employ the Taguchi experimental design approach, which has been widely used in prior 

research (e.g., Ghannadpour and Zandiyeh, 2020; Goodarzian et al., 2021, 2020;  

Liu et al., 2020; Mokhtarzadeh et al., 2021; Nayeri et al., 2022; Tikani et al., 2021;  

Zandieh and Moradi, 2019). The Taguchi approach offers a systematic and efficient framework 

for the Design Of Experiments (DOE), allowing us to identify the most favorable parameter 

configurations with a reduced number of trials, minimizing the overall experimentation effort. 

The Taguchi technique considers two groups of factors: controllable and noise 

(uncontrollable) factors. It aims to identify the optimal levels of controllable factors while 

minimizing the influence of noise factors, following the principle of robustness. To assess the 

variation in the response variable, Taguchi introduced the Signal-to-Noise (S/N) ratio. In 

essence, signal (S) and noise (N) represent the response variable (desirable value) and standard 

deviation (undesirable value) respectively, and therefore the objective is to maximize the S/N 

ratio (Ghannadpour and Zandiyeh, 2020; Nayeri et al., 2022): 

=

 
= −   

 
 2

1

1
10 log

n

i
i

S
y

N n
 (4-12) 

where 𝑛 and 𝑦𝑖 reflect the number of orthogonal arrays and the response in replication 𝑖 

respectively. 
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5 Results and discussion 

This chapter presents the results obtained from applying the proposed models and 

solution algorithms in real-life case studies. It provides a thorough assessment of their practical 

applicability and discusses the implications of the findings. 

 

5.1 Numerical experiments and application of automated bus planning model 

5.1.1 Scenario setting and input data 

To examine the applicability of the proposed mathematical model, an extensive range of 

scenarios are simulated for two real-world bus corridors in the cities of Regensburg in Germany 

and Santiago in Chile, averagely serving the total hourly demand of 638 [pax/h] and  

5764 [pax/h] respectively during the morning rush hours. Regarding the analysis period, our 

simulations are conducted for a two-hour period extending from 7:00 to 9:00 AM.  

Time-dependent demand data related to the entire simulation period are presented in  

Appendix A (Table A4). The Regensburg case study is Bus Line 1 in the Konradsiedlung in 

Pommernstr, and the Santiago case study is Los Pajaritos corridor with bus passenger demand 

taken from Cortés et al. (2011). Both bus routes are bi-directional, containing a total number 

of 24 bus stops (12 stops in each direction) in Regensburg and 20 bus stops (10 stops in each 

direction) in Santiago. 

Cost parameters for both Germany and Chile are based on EVs for both human-driven 

and automated public transport operations, and were estimated by  

Tirachini and Antoniou (2020) (see Appendix A). Moreover, for stochastic running times, a 

lognormal distribution is considered with the mean of 2.2 and 3.5 min and the standard 

deviations of 0.6 and 0.8 min for Regensburg and Santiago respectively. In the current 

programs of vehicle automation, the vast majority of studies in the literature have pointed out 

that automated buses might be operated at lower speeds than human-driven ones, owing to 

safety-related concerns considered more widely in the current phase of operation with 

automated vehicles in cities (e.g., Ainsalu et al., 2018; Pernestål et al., 2018;  

Kyriakidis et al., 2019; Zhang et al., 2019; Tirachini and Antoniou, 2020; Heikoop et al., 2020). 

Consistent with the available literature on automated buses, we also assume that automated bus 

systems are slower, operating with longer mean travel times by 10 percent. 
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It should be noted that we focus on a homogeneous fleet of buses (the fleet is composed 

of buses of the same size), and therefore size-dependent parameters (listed in  

Tables A2 and A3 for Regensburg and Santiago respectively) are not changed from one service 

to another, depending on the size of each service. In essence, such items are simply initialized 

(in the step of parameters’ initialization) based on the (fixed) vehicle size assigned to our 

homogeneous fleet operation, and remain fixed during the entire simulation time for that fleet 

(note that the parameter initialization step was described further when presenting the main steps 

of the solution approach in subsection 4.1). Hence, we are not confronted with a particular 

difficulty in handling those parameters (e.g., in the objective function) during the simulation 

period. By contrast, this can be indeed a complicated issue in mixed/heterogeneous fleet 

problems (i.e., when buses of different sizes are operated). In this case, additional constraints 

and steps should be designed to handle the error and computational complexity of varying 

parameters, which can continuously vary from one service to another during operations. 

Considering automated and human-driven vehicles, deterministic and stochastic travel 

times, and the presence or absence of in-vehicle crowding effects, a total of 8 different 

combinations of scenarios are simulated, as listed in Table 5-1. The optimal frequency and 

vehicle size are determined for any given scenario in both case studies of Regensburg and 

Santiago. Moreover, to comprehensively evaluate the possible effects of vehicle automation on 

the social costs of public transport services, several tests of sensitivity are performed on human 

driving cost savings with automation, travel time stochasticity, dwell time regularity, the time 

lost to open and close bus doors with automation, crowding multipliers, extra waiting time 

values, and user- and operator-oriented design cases. 
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Table 5-1 List of the simulated scenarios. 

Scenarios 

Vehicle technology Travel time In-vehicle crowding 
disutility effects 

AV HV DT ST WOC WC 

AV, DT, WOC ✓  ✓  ✓  

AV, DT, WC ✓  ✓   ✓ 

AV, ST, WOC ✓   ✓ ✓  

AV, ST, WC ✓   ✓  ✓ 

HV, DT, WOC  ✓ ✓  ✓  

HV, DT, WC  ✓ ✓   ✓ 

HV, ST, WOC  ✓  ✓ ✓  

HV, ST, WC  ✓  ✓  ✓ 

AV: Automated vehicles. 

HV: Human-driven vehicles. 

DT: Deterministic travel times. 

ST: Stochastic travel times. 

WOC: Without in-vehicle crowding effects. 

WC: With in-vehicle crowding effects. 

 

Our model is coded in MATLAB R2019b, and all experiments are executed on a personal 

computer with Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz and 16.0 GB RAM. For Santiago 

encompassing more possible solutions to be evaluated compared to Regensburg, the 

enumeration method can averagely evaluate all the possible solutions within 3.32 minutes for 

scenarios assuming deterministic travel times. This is indeed an acceptable computing time for 

the enumeration of all solutions in an offline design problem. This average amount of time 

increases to 14.24 minutes for scenarios with stochastic travel times, due to the run of a MCS 

scheme for assessing each possible solution over several (1000) replications. 

 

5.1.2 Optimal service frequency and vehicle size in base case scenarios 

In the base case, we assume 50% human driving cost savings due to automation. Results 

on optimal frequencies and vehicle length are shown in Fig. 5-1 for Regensburg (5-1.a) and 

Santiago (5-1.b). Furthermore, Fig. 5-1 gives information on occupancy levels inside vehicles 

in terms of the average and maximum occupancy rates for any given scenario. Overall, we 

obtain that fleets of automated vehicles are dispatched with a higher optimal service frequency 

compared to conventional human-driven services, which is a known result for the case without 

crowding externalities and deterministic travel times (Fielbaum, 2019; Zhang et al., 2019; 

Hatzenbühler et al., 2020; Tirachini and Antoniou, 2020). Vehicles are dispatched at a higher 
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frequency in the case of Santiago, in which the total demand volume (5764 [pax/h]) is far larger 

than Regensburg with a total demand of 638 [pax/h]. 
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Figure 5-1 Optimal service frequency and vehicle size for different scenarios. 

 

To alleviate in-vehicle crowding discomfort imposed on passengers when user cost is 

sensitive to on-board crowding levels, both vehicle size and service frequency are increased 

for both human-driven and automated vehicle fleet operations (see Fig. 5-1), i.e., the 

consideration of crowding discomfort externalities pushes solutions towards having larger and 

more frequent bus services. For instance, the results for Regensburg [see Fig. 5-1 (a)] show 

that vehicle sizes are increased at a similar rate in both human-driven and automated bus 

services, going from 12-m long buses for scenarios in which user cost is insensitive to on-board 

crowding levels to 15-m long buses for those scenarios in which on-board crowding is 

considered as a source of travel disutility when assessing user costs. However, service 

frequency is increased at a higher rate for automated vehicle fleet operations in the presence of 

on-board crowding effects. For example, service frequency increases by roughly 24%, going 

from 17 [veh/h] in the scenario of AV, ST, WOC to 21 [veh/h] in the scenario of AV, ST, WC, 

whereas it increases by 9%, going from 11 [veh/h] in the scenario of HV, ST, WOC to  

12 [veh/h] in the scenario of HV, ST, WC. This result can be attributed to the fact that fleets of 

automated vehicles can reap much broader driving cost savings, thus opening up an opportunity 

https://www.ldoceonline.com/dictionary/broad
https://www.ldoceonline.com/dictionary/saving
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for bus agencies to provide more frequent bus services with lower operating costs in spite of 

the increase of capital costs due to the larger fleet size requirement, i.e., the higher capital costs 

are compensated by a marked reduction in operating costs at higher frequencies and allow the 

deployment of larger fleets (Hatzenbühler et al., 2020; Tirachini and Antoniou, 2020). Hence, 

vehicles can be operated with a higher optimal frequency to mitigate the user costs of crowding 

through the reduction of occupancy levels inside vehicles. As Fig. 5-1 (b) shows, the results 

have also the same pattern in the case of Santiago, however, vehicle sizes are increased from 

12-m to 18-m long buses in the case of considering crowding as a source of dissatisfaction for 

users. This is because the given bus route in Santiago is known as an overcrowded corridor 

(5764 [pax/h]), in which vehicles operate at larger occupancy levels than Regensburg. 

Overall, the deployment of automated bus services can significantly reduce occupancy 

levels inside vehicles, and thus in-vehicle crowding costs for on-board passengers, due to 

offering more frequent bus services with lower operating costs. In the case of Regensburg, 

assuming deterministic travel times, average occupancy goes down from 0.89 to 0.66 due to 

including crowding discomfort in the cost function for the case of human-driven vehicles, while 

the same figures are 0.62 and 0.39 for the case of automated vehicles, respectively. Therefore, 

the inclusion of crowding externalities in the model reduces average occupancy rates by 26% 

in the case of human-driven vehicles and 37% in the case of automated vehicles, a result that 

reinforces the relevance of automated vehicles in providing a higher standard of service for 

users under optimal operation conditions. 

The assumption of stochastic travel times in dispatching scenarios (with the same 

standard deviation for human-driven and automated buses assumed in the base case) increases 

the optimal frequencies for both fleets of human-driven and automated buses, while vehicle 

sizes remain unchanged (e.g., see the scenarios of AV, DT, WOC and AV, ST, WOC in  

Fig. 5-1). Indeed, travel time stochasticity can lead to a further spread of irregularity among 

headways, thereby increasing passenger waiting times and reducing the reliability of a public 

transport system (Osuna and Newell, 1972). Hence, the setting of a higher service frequency 

can cope with the growth of passenger waiting times caused by travel time variability. As can 

be seen in Fig. 5-1 (a), the service frequency is increased at a higher rate for automated vehicle 

fleet operations, hovering around 30%, when travel times are assumed to be stochastic. This is 

because by deploying driverless vehicles, public transport operators can optimally provide 

more frequent services with lower operating costs to compensate for the growth of waiting 

times caused by travel time volatility in the scenarios with stochastic travel times. For example, 
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service frequency is increased from a value of 16 [veh/h] in the scenario of AV, DT, WC to a 

value of 21 [veh/h] in the scenario of AV, ST, WC, whereas it is increased by 20%, going from 

10 [veh/h] in the scenario of HV, DT, WC to 12 [veh/h] in the scenario of HV, ST, WC. 

To better understand the trade-offs established between the user and operator costs during 

the process of finding the optimal solution (optimal service frequency and vehicle size) for 

both fleets of human-driven and automated vehicles, we provide information on the average 

costs at different levels of frequency and bus sizes for any given scenario in the case of 

Regensburg (see Fig. 5-2). Indeed, in all scenarios, optimal and non-optimal deployment 

solutions can be easily compared to each other in terms of user and operator cost components, 

and therefore the total (social) costs. Overall, automated bus deployment scenarios lead to a 

lower social cost while operating at a higher optimal frequency. 
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Figure 5-2 Comparison of cost elements for all scenarios with changes in frequencies and 

vehicle sizes (optimal vs. non-optimal deployment solutions), Regensburg case study. 

 

5.1.3 The effects of automation on denied boarding 

In this part, we examine the effects of automation on eliminating or reducing denied 

boardings. Given the high value of extra waiting time savings (Cats and Jenelius, 2018), the 

social costs of a public transportation service can climb dramatically if this problem is not 

effectively addressed, particularly on crowded bus corridors, such as the illustrative example 

of Santiago in our dissertation. 
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Figure 5-3 Denied boardings in different scenarios, Santiago case study. 

 

For the case of Santiago, Fig. 5-3 shows the shares of passengers being left behind under 

the optimal solutions (optimal frequency and bus size). Buses are dispatched frequently enough 

under the optimal solutions, so that travelers are able to board the first arriving service. 

Nevertheless, the percentage of passengers failing to board is not zero in deployment scenarios 

of HV, DT, WOC (1.6% of denied boardings) and HV, ST, WOC (2.1% of denied boardings), 

both of which belong to human-driven vehicle fleet operations (HV), without consideration of 

crowding as increasing the value of travel time savings (WOC). In essence, in these two 

scenarios, the optimal frequency does not completely eliminate left-behind passengers, 

although the shares of passengers failing to board (1.6% and 2.1%) are relatively low. More 

precisely, in both scenarios, the user cost is insensitive to in-vehicle crowding levels, implying 

that the crowding cost component has no effect on pushing the optimal solution toward higher 

frequency levels in the favor of users. Besides, the human-driving cost plays a role against the 

increase of frequency. Overall, the high value of waiting time savings pushes the optimal 

deployment solutions toward the provision of sufficiently frequent services to properly meet 

passenger demand. 

Enhancing service frequency is the most common way to mitigate rush-hour crowding 

effects (An et al., 2020). As indicated in Fig. 5-3, there are no passengers left behind in the 
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operations of automated bus services, explained by the fact that automated vehicles can be 

optimally operated at higher frequencies with lower operating costs, thereby providing an 

unprecedented opportunity for public transport operators to efficiently counteract   

crowding-related problems in high-demand corridors, in which the multiple manifestations of 

crowding externalities (denied boarding, seat availability, on-board passenger discomfort) are 

more prominent. 

 

5.2 Numerical experiments and application of electric bus planning model 

5.2.1 Case study characteristics 

Our EB modeling framework is tested on a real bus route in Santiago, Chile, on bus route 

506. This is a long bi-directional route that connects the east and west parts of the city (see the 

route map in Fig. 5-4), covering 84 bus stops per direction. This route exhibits a positive slope 

when moving from west to east in the upstream direction (when moving from terminal A to 

B), due to the proximity of the Andes Mountain Range, which is a natural barrier limiting the 

city’s growth, close to terminal B in Fig. 5-4. Conversely, the opposite trend is observed when 

moving from terminal B to A. Besides, the distance between the depot and the original station 

A is short (1.8 km) and has a nearly flat gradient (+0.1%). We simulate several scenarios of 

operations on this route to illustrate the results and provide insights for management. 

 

 
Figure 5-4 Test corridor, bus route 506 in Santiago. 

  

 

A 

B 
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Regarding the passenger demand, a total hourly demand of 3133 (pax/h) for route 506 is 

averagely served during the morning peak on normal weekdays in April 2019. This data is 

taken from smartcard transactions in Santiago’s public transport service, which is accessed 

through the software ADATRAP, developed at Universidad de Chile in collaboration with 

Chile’s Ministry of Transport. The observed frequency of service was 15 bus/h; 8 of these 

vehicles are articulated 18-m long buses and 7 vehicles are standard 12-m long buses. 

In the base scenarios, our experiments are simulated and solved for a 3-h period, from 

7:00 to 10:00 AM during the morning peak hours. Input parameters are given in  

Appendix A (Tables A1 and A3). The cost parameters have been calculated by  

Tirachini and Antoniou (2020) based on EB operations in Santiago. 

 

5.2.2 Solution results 

For the numerical applications of our model in Santiago, two common types of EBs are 

considered as candidates, including 12-m standard (rigid) and 18-m articulated buses, which 

are widely used EBs in real-world applications in large cities such as Santiago. Moreover, 

regarding the allowable frequency range, the lower and upper bounds (𝑓min and 𝑓max) are 

exogenously defined as 5 and 60 (veh/h) respectively (i.e., 𝑓 ∈ {5, 6, 7, … , 59, 60} [veh/h]). 

 

 

Figure 5-5 Results of the full enumeration approach. 
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As shown in Fig. 5-5, the FE approach yields the following results: 

• In the first scenario, the optimal frequency level for a fleet of 12-m EBs is  

38 [veh/h], which leads to the lowest average total cost of 1.44 (€/pax). 

• In the second scenario, the optimal frequency level for a fleet of 18-m EBs is  

27 [veh/h], which leads to the lowest average total cost of 1.69 (€/pax). 

Thus, the global optimum solution is achieved by using a fleet of 12-m long buses with 

a frequency level of 38 (veh/h)1. To further analyze the economic aspects of the proposed 

solution, Section 5.2.3 presents a detailed analysis of the behavior of different cost elements 

and their impact on the overall cost. 

All computations are performed on a PC with a Core i5, 3.20 GHz CPU, and 6 GB of 

RAM. The FE approach requires 9.66 and 9.14 (min) to explore the first and second scenarios, 

respectively, indicating that it can solve the problem in less than 20 minutes. 

In addition, the GA suggests the same optimal solution as the FE approach: operating 

with a fleet of 12-m EBs at a frequency of 38 (veh/h). To assess the GA’s performance, we run 

the GA 10 times, and it consistently identifies the same optimal solution in all 10 runs, 

demonstrating its stability. Additionally, the GA requires an average CPU time of 1.4 min. 

 

5.2.3 Cost analysis 

To gain a deeper understanding of the trade-offs involved in the proposed problem, we 

present the average cost values (per passenger) for different cost elements in Fig. 5-6, for the 

optimal bus size solution (12 meters). As expected, increasing the frequency of bus service 

reduces user costs, due to reductions in waiting times and bus dwell times at bus stops. Besides, 

an adequate level of frequency can reduce or eliminate the problem of being unable to board 

because of capacity limitations. However, as shown in Fig. 5-6, there is a considerable rise in 

user costs at low levels of frequency, primarily due to the extra waiting time experienced by 

passengers who fail to board due to overcrowding. For example, if vehicles are operated at a 

frequency of 10 (veh/h) on such a high-demand bus corridor, about 64% of passengers are 

confronted with capacity limitations in boarding the first coming service and will need to wait 

 
1 It is worth noting that our optimal solutions provide larger frequencies than the observed frequency (15 bus/h) in route 506, 

which is a common result when including user cost (waiting and in-vehicle time) in a total cost frequency setting problem, as 

shown by Jansson (1980) and Jara-Díaz and Gschwender (2003). In other words, the explicit consideration of the time of users 

in the total cost function to be minimized, leads to a more frequent service of smaller vehicles, mainly to reduce waiting times. 
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for the subsequent services. As discussed in Section 3.2.1, the monetary value of additional 

waiting time is more expensive than that of initial waiting time due to its more significant 

negative impact on user satisfaction. Thus, such additional waiting times can significantly 

increase the social costs and reduce the desirability of a public transport system. 

 

 

Figure 5-6 Cost element values at different levels of frequency. 

 

As the frequency increases, the capital and driving costs increase due to the need for a 

larger fleet size with more vehicles and drivers. On the other hand, the energy cost exhibits a 

non-monotonic pattern, with two turning points where the trend changes from increasing to 

decreasing and vice versa. The first turning point is observed at around a frequency of 20, after 

which the average energy cost decreases until the second turning point where it increases again. 

The initial ascending trend in the energy cost graph (before the first turning point) is 

attributed to the high payload carried by the vehicles when operating at full capacity. In such a 

busy bus corridor with a demand of 3133 (passengers/h), vehicles need to operate at maximum 

capacity if an insufficient frequency of 10 (veh/h) is implemented for operations. 

Consequently, vehicles carry the maximum passenger load (about 8 tons), resulting in higher 

energy consumption. Moreover, a significant percentage of passengers (about 60%) are left 

behind at this frequency level. To tackle this issue, increasing the frequency from 10 to  

20 (veh/h) reduces the number of left-behind travelers but does not eliminate the problem 
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entirely, as the supply level (from the operator side) is not still sufficient to cover passenger 

flows. That is, vehicles continue to operate at near-full capacity (without a significant reduction 

in vehicles’ passenger load). In addition, constant energy demand is consumed inside each 

vehicle for auxiliary facilities (such as air conditioners, heating, and in-vehicle displays). 

Hence, the average energy cost still increases until the frequency of 20 (veh/h). 

After the first turning point, the energy cost experiences a decline mainly driven by the 

reduction in passenger load carried by vehicles during operations. Essentially, the  

crowding-related issues (due to full capacity operations) are reduced after that crucial point, 

where the balance of supply to demand is achieved. That is, vehicles do not have to run at crush 

capacity (occupancy rate of 100%) after that point. Thus, we find that such an equilibrium state 

between supply and demand is not only beneficial for users (e.g., by reducing passenger waiting 

times and reducing/eliminating denied boardings) but also for bus agencies due to EB energy 

savings. As shown after that point (in Fig. 5-6), the increase of service frequency will reduce 

user and energy costs, whereas capital and driving costs increase due to deploying a higher 

number of vehicles and drivers. Nonetheless, from a social welfare perspective, there is a 

greater potential for user and energy cost savings up to certain levels, which can counterbalance 

the total costs. Therefore, the minimum total cost is found around the frequency of 38 (veh/h)2. 

Finally, we see that the energy cost increases again after passing the second turning point 

(around the frequency of 43) towards the end of the graph. In other words, after a certain level, 

the addition of further vehicles can again lead to an increase in energy consumption. This can 

be attributed to multiple factors influencing energy consumption. For instance, a lasting part of 

the energy consumption is related to the power required for running auxiliary HVAC facilities 

and for propelling the constant curb weight of vehicles, leading to permanent tractive energy 

consumption during operating hours. Hence, at these non-optimal levels, a large number of 

vehicles are running along the route with occupancies far below capacities, while consuming 

energy for running auxiliary services. This outweighs the reduced crowding effect and 

increases the energy consumption per passenger. 

In Fig. 5-7, we show the average costs for the optimal frequency as a function of demand. 

Previous studies have found the existence of economies of scale (i.e., average costs decreasing 

 
2 It should be noted that 38 (veh/h) is indeed a high level of frequency in reality, where special requirements are usually needed 

to control such crowded bus routes and avoid bus bunching issues. Typically, bus operators need to execute real-time bus 

control (regulation) strategies (such as holding strategies) to maintain and handle such short headways between vehicles, which 

is not the scope of this work (see Tirachini et al., 2022 for more information). 
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as a function of demand) for both operators and users, either with diesel buses  

(e.g., Allport, 1981) or with EBs under the assumption of a fixed energy consumption level per 

veh-km (Tirachini and Antoniou, 2020). Interestingly, we see that in our model average costs 

decrease as a function of demand, indicating the presence of economies of scale in any case, 

even though the energy consumption cost is not monotonic as a function of the service 

frequency (Fig. 5-6). 

 

 
Figure 5-7 Average costs as a function of demand. 

 

5.2.4 Variable vs. fixed energy consumption 

As discussed in the literature review, previous studies on EB scheduling problems have 

mainly relied on a simplified fixed energy consumption rate per distance unit (kWh/km), while 

neglecting actual variations in driving and route conditions (such as variations in passenger 

loads and route gradients). In this dissertation, we compare the solutions obtained from fixed 

energy consumption rates to those obtained from our variable (microscopic) energy assessment 

framework. By doing so, we determine the loss of accuracy that arises from using a rough rate 

instead of a detailed modeling of energy consumption, and how this affects the total costs 

involved. 
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To carry out this comparison, we employ simplified fixed energy consumption rates 

calculated by Tirachini and Antoniou (2020) for different sizes of EBs, including 1.0 and  

1.7 kWh/km for 12-m and 18-m EBs, respectively. As shown in Fig. 5-8, our results show that 

fixed energy consumption rates result in smaller optimal frequencies compared to detailed 

energy demand cases. For instance, for a fleet of 12-m long vehicles, the optimal frequency is 

underestimated by about 13% (33 vs. 38 veh/h) using fixed energy consumption rates. 

 

 
Figure 5-8 Optimal frequencies under the variable vs. fixed estimation of energy 

consumption3. 

 

5.2.5 Variations in energy consumption rates along the route 

To better illustrate the variations in energy demand pattern, we estimate the average 

energy consumed by vehicles per kilometer (kWh/km) using our detailed energy model and 

show the results for different segments in Fig. 5-9. The total average energy demand over the 

entire route is estimated to be 1.34 (kWh/km), which is 34% higher than the simplified fixed 

energy rate of 1.00 (kWh/km) used in Tirachini and Antoniou (2020). We observe a significant 

increase in energy consumption at certain segments of the route, e.g., at segments 48-64 which 

are located near the central part of the city. This increase can be attributed to two main reasons: 

(i) a larger passenger demand is served at bus stops in that area, resulting in a higher passenger 

load carried by the vehicles; (ii) bus speed is reduced due to higher traffic congestion levels at 

those segments. 

 
3 The term ‘Variable’ refers to the scenarios in which our detailed energy consumption model, which considers the actual 

operating and route conditions, is used. The term ‘Fixed’ refers to the scenarios that consider fixed energy consumption rates 

(1.0 or 1.7 kWh/km) without considering the actual changes in operating and route conditions. 
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(a) Energy consumption at different segments of the route. 

 

(b) Histogram of energy consumption range. 

Figure 5-9 Energy consumption pattern. 

 

5.2.6 Planning solutions with high-resolution average energy consumption rate 

We compare planning solutions based on a high-resolution average energy consumption 

rate of 1.34 (kWh/km) with those obtained from our detailed variable energy estimation model, 

which allows for detailed tracking of energy usage. Interestingly, both scenarios yielded the 

same frequency answers, indicating that while precise energy estimations are necessary for 

accurate supply decisions, a high-resolution average energy consumption rate, 1.34 (kWh/km), 

could serve as a suitable alternative for planning purposes, rather than the simplified fixed 

value of 1.00 (kWh/km) used in literature, which lacks local slope and demand information. 

However, further network-level studies are needed to assess the applicability of such an 

approach to a group of routes with varying demand patterns and geometric properties. 
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Clustering routes based on their energy demand patterns could be a useful strategy to streamline 

the planning process and reduce computing efforts. 

 

5.3 Results of decision making framework for electric bus charging strategy selection 

5.3.1 Results of weighting criteria 

Table 5-2 presents fuzzy weights and standard deviations for the five criteria at the main 

level. Besides, the number of times each criterion was chosen by experts as the best and worst 

criterion is indicated. The results indicate a strong consensus among experts about the best and 

worst criterion, with a clear preference for the economic aspect as the best criterion  

(by 8 experts), while the social aspect was selected as the worst criterion (by 10 experts). 

Besides, the consistency ratio of pairwise comparisons is displayed in the 𝐶𝑅 column. 

Based on the experts’ assessments, the economic aspect holds the highest significance, 

followed by the operational and environmental aspects. This can be related to the significant 

investments needed to electrify urban bus networks depending on the type of charging 

strategies deployed. The social criterion is identified as the least important criterion among the 

others. The fuzzy weight of each criterion is depicted in Fig. 5-10. The consistency ratio is very 

close to zero (𝐶𝑅 =  0.036), indicating a very high consistency. 

 

Table 5-2 Weights of the criteria in the first level. 

Criteria Fuzzy weight 
Crisp 

weight 

Standard 

deviation 
Rank 

Times of 

selection as 

the best 

criterion 

Times of 

selection as 

the worst 

criterion 

𝑪𝑹 

Economic (0.272,0.303,0.334) 0.303 0.032 1 8 0 0.036 

Environmental (0.177,0.209,0.249) 0.211 0.061 3 0 0  

Social (0.088,0.093,0.102) 0.094 0.02 5 0 10  

Operation (0.179,0.21,0.246) 0.211 0.062 2 2 0  

Quality of service (0.153,0.181,0.216) 0.182 0.062 4 1 1  
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Figure 5-10 Fuzzy weights of the criteria in the first level. 

 

5.3.2 Economic 

As presented in Fig. 3-6, there are two levels, the second and third levels, for the 

economic sub-criteria. In the following, the weights obtained for the sub-criteria of each level 

are reported. 

 

▪ Second level of economic criteria 

The weights of the economic sub-criteria in the second level are shown in Table 5-3. 

According to the results, the experts consider the infrastructure cost criterion as the most 

significant factor within the economic category at the second level (see Table 5-3). This can be 

attributed to the high costs associated with deploying charging infrastructure and technology 

for EBs, including charging equipment and land acquisition, which can directly impact the 

overall costs and profitability of EB systems. 

 

Table 5-3 Weights of the economic sub-criteria in the second level. 

Criteria Fuzzy weight 
Crisp 

weight 

Standard 

deviation 
Rank 

Times of 

selection as 

the best 

criterion 

Times of 

selection as 

the worst 

criterion 

𝑪𝑹 

Battery cost (0.296,0.333,0.394) 0.337 0.135 2 4 3 0.067 

Infrastructure cost (0.322,0.367,0.438) 0.371 0.105 1 5 0  

Operational cost (0.272,0.29,0.318) 0.292 0.168 3 2 8  
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▪ Third level of economic criteria 

Table 5-4 shows the weights of the economic sub-criteria at the third level in relation to 

the infrastructure and operational components. As can be seen, the land acquisition cost and 

battery replacement cost were identified as the most important sub-criterion for infrastructure 

cost and operational cost, respectively. 

 

Table 5-4 Weights of the economic sub-criteria in the third level. 

Criteria Sub-criteria Fuzzy weight 
Crisp 

weight 

Standard 

deviation 
Rank 

Times of 

selection 

as the 

best 

criterion 

Times of 

selection 

as the 

worst 

criterion 

𝑪𝑹 

Infrastructure 

cost 

Charging 

equipment cost 
(0.377,0.405,0.444) 0.407 0.161 2 2 9 0.022 

 
Land 

acquisition cost 
(0.556,0.589,0.647) 0.593 0.162 1 9 2  

Operational 

cost 
Labor cost (0.19,0.224,0.262) 0.225 0.104 3 1 4 0.054 

 Electricity tariff (0.244,0.283,0.328) 0.284 0.109 2 5 2  

 

Battery 

replacement 

cost 

(0.262,0.297,0.339) 0.299 0.109 1 4 1  

 
Maintenance 

cost 
(0.162,0.191,0.23) 0.192 0.059 4 1 4  

 

5.3.3 Environmental 

The weights of the sub-criteria in the second level of the environmental category are 

shown in Table 5-5. The experts identify the GHG emission as the most significant sub-criteria 

in the environmental category, followed by energy consumption and ecological environment 

impacts (see Table 5-5). 
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Table 5-5 Weights of the environmental sub-criteria in the second level. 

Criteria Fuzzy weight 
Crisp 

weight 

Standard 

deviation 
Rank 

Times of 

selection as 

the best 

criterion 

Times of 

selection as 

the worst 

criterion 

𝑪𝑹 

GHG emission (0.215,0.245,0.277) 0.245 0.061 1 5 0 0.036 

Energy consumption (0.185,0.211,0.239) 0.211 0.048 2 5 0  

Environmental pollution 

after demolition 
(0.114,0.141,0.181) 0.143 0.032 4 0 1  

GHG emissions for 

battery production 
(0.107,0.132,0.168) 0.134 0.033 5 0 0  

Water consumption in 

battery production 
(0.08,0.089,0.105) 0.09 0.025 6 0 9  

Ecological environment 

impacts 
(0.147,0.174,0.216) 0.176 0.066 3 1 1  

 

5.3.4 Social 

The weights of the sub-criteria in the second level of the social category are shown in 

Table 5-6. Charging infrastructures' impacts on surrounding residential areas is selected as the 

most significant factor in this category. In addition, there is a slight difference between the job 

opportunity and the city landscape sub-criteria, recognized as the second and third most 

important sub-criteria. 

 

Table 5-6 Weights of the social sub-criteria in the second level. 

Criteria Fuzzy weight 
Crisp 

weight 

Standard 

deviation 
Rank 

Times of 

selection as 

the best 

criterion 

Times of 

selection as 

the worst 

criterion 

𝑪𝑹 

Job opportunity (0.216,0.256,0.297) 0.256 0.097 2 2 2 0.030 

Fire risk (0.177,0.189,0.208) 0.19 0.142 4 2 7  

Charging infrastructures' 

impacts on surrounding 

residential areas 

(0.257,0.296,0.341) 0.297 0.097 1 5 0  

City landscape (0.217,0.255,0.297) 0.256 0.083 3 2 2  

 

5.3.5 Operation 

Table 5-7 presents the weight values obtained for the sub-criteria in the operation 

category. According to the results, the driving range is identified as the most crucial  

sub-criteria in this category,  followed by charging duration and energy monitoring (see  

Table 5-7).  
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Table 5-7 Weights of the operation sub-criteria in the second level. 

Criteria Fuzzy weight 
Crisp 

weight 

Standard 

deviation 
Rank 

Times of 

selection as 

the best 

criterion 

Times of 

selection as 

the worst 

criterion 

𝑪𝑹 

Vehicle capacity (0.119,0.134,0.157) 0.135 0.058 5 1 6 0.035 

Energy monitoring (0.132,0.157,0.192) 0.158 0.053 3 0 2  

Driving range (0.253,0.287,0.323) 0.288 0.06 1 5 0  

Charging duration (0.239,0.272,0.309) 0.272 0.068 2 4 0  

Scheduling complexity (0.127,0.146,0.168) 0.146 0.055 4 1 3  

 

5.3.6 Quality of service 

The weights of the sub-criteria in the quality-of-service category are presented in  

Table 5-8. Reliability is identified as the most influential sub-criteria in this category. 

 

Table 5-8 Weights of the quality-of-service sub-criteria in the second level. 

Criteria Fuzzy weight 
Crisp 

weight 

Standard 

deviation 
Rank 

Times of 

selection as the 

best criterion 

Times of 

selection as the 

worst criterion 

𝑪𝑹 

Crowding (0.166,0.182,0.215) 0.185 0.06 3 0 8 0.019 

Travel time (0.33,0.37,0.423) 0.372 0.116 2 4 2  

Reliability (0.405,0.441,0.487) 0.443 0.125 1 7 1  

 

5.3.7 Global ranking of criteria 

The extracted criteria were organized into different levels, as shown in Fig. 3-6. The local 

weight for each level was determined through the methods described in previous sections. In 

this part, to compute the global weight of each sub-criterion in the final level of each category, 

its local weight is multiplied by the weight of the category it belongs to. Having determined 

the global weight of the criteria, the overall score of the alternatives can be computed. As 

indicated in Table 5-9, the experts consider battery cost to be the most important factor when 

evaluating charging strategy alternatives, followed by reliability, travel time, land acquisition 

cost, and driving range. Besides, Fig. 5-11 displays a bar chart of the crisp weights of the  

sub-criteria. 
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Figure 5-11 Crisp weights of the sub-criteria. 
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Table 5-9 Global weights of the sub-criteria. 

Row Criteria Weight Rank 

1 Battery cost (0.081,0.102,0.133) 1 

2 Charging equipment cost (0.033,0.046,0.067) 8 

3 Land acquisition cost (0.048,0.064,0.093) 4 

4 Labor cost (0.014,0.02,0.028) 22 

5 Electricity tariff (0.017,0.023,0.032) 21 

6 Battery replacement cost (0.022,0.028,0.037) 17 

7 Maintenance cost (0.012,0.017,0.024) 25 

8 GHG emission (0.039,0.052,0.07) 7 

9 Energy consumption (0.033,0.044,0.06) 9 

10 Environmental pollution after demolition (0.02,0.029,0.045) 15 

11 GHG emissions for battery production (0.018,0.027,0.041) 18 

12 Water consumption in battery production (0.014,0.019,0.027) 23 

13 Ecological environment impacts (0.025,0.036,0.054) 10 

14 Job opportunity (0.019,0.024,0.031) 19 

15 Fire risk (0.015,0.017,0.021) 24 

16 
Charging infrastructures' impacts on 

surrounding residential areas 
(0.023,0.028,0.036) 16 

17 City landscape (0.019,0.023,0.03) 20 

18 Vehicle capacity (0.023,0.029,0.039) 14 

19 Energy monitoring (0.023,0.033,0.047) 12 

20 Driving range (0.047,0.062,0.082) 5 

21 Charging duration (0.04,0.054,0.074) 6 

22 Scheduling complexity (0.022,0.03,0.041) 13 

23 Crowding (0.026,0.034,0.048) 11 

24 Travel time (0.049,0.066,0.09) 3 

25 Reliability (0.062,0.08,0.106) 2 

 

5.3.8 Results of ranking charging alternatives 

5.3.8.1 Results of FRAFSI method 

As mentioned before, the FRAFSI method is used to evaluate and rank alternative EB 

charging strategies for EB systems in Munich based on the defined criteria. The results of the 

expert evaluations indicate a preference for the overnight charging method over the opportunity 

charging method, as illustrated in Fig. 5-12. In addition, Fig. 5-13 highlights the relative 

superiority of each alternative in each criterion. The most prominent differences between the 
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two alternatives can be seen in terms of charging duration, battery cost, and reliability (see 

Table 5-10). However, minor differences can be seen in terms of vehicle capacity and charging 

infrastructures' impacts on surrounding residential areas. 

 

 

Figure 5-12 Fuzzy weights of alternatives. 
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Figure 5-13 Comparing the scores of two alternatives in terms of each criterion. 
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Table 5-10 The scores of two alternatives in terms of each criterion. 

Row Criteria Overnight Charging Opportunity Charging Difference Rank 

1 Battery cost (0.146,0.165,0.192) (0.209,0.285,0.358) 0.118 2 

2 Charging equipment cost (0.182,0.222,0.286) (0.169,0.202,0.25) 0.022 18 

3 Land acquisition cost (0.192,0.227,0.28) (0.152,0.181,0.223) 0.047 9 

4 Labor cost (0.144,0.167,0.198) (0.167,0.203,0.256) 0.037 13 

5 Electricity tariff (0.17,0.203,0.252) (0.124,0.14,0.162) 0.064 6 

6 Battery replacement cost (0.177,0.211,0.262) (0.164,0.195,0.24) 0.017 20 

7 Maintenance cost (0.171,0.203,0.25) (0.161,0.189,0.23) 0.014 22 

8 GHG emission (0.19,0.231,0.292) (0.176,0.212,0.269) 0.018 19 

9 Energy consumption (0.185,0.221,0.248) (0.207,0.263,0.357) 0.05 8 

10 Environmental pollution after demolition (0.169,0.189,0.217) (0.174,0.198,0.248) 0.012 23 

11 GHG emissions for battery production (0.172,0.199,0.222) (0.194,0.227,0.304) 0.036 14 

12 Water consumption in battery production (0.167,0.187,0.215) (0.189,0.229,0.292) 0.044 12 

13 Ecological environment impacts (0.194,0.225,0.27) (0.205,0.254,0.334) 0.032 16 

14 Job opportunity (0.259,0.302,0.344) (0.204,0.248,0.291) 0.054 7 

15 Fire risk (0.203,0.246,0.312) (0.169,0.201,0.25) 0.046 11 

16 
Charging infrastructures' impacts on 

surrounding residential areas 
(0.168,0.2,0.248) (0.16,0.189,0.231) 0.011 24 

17 City landscape (0.164,0.195,0.24) (0.153,0.18,0.219) 0.015 21 

18 Vehicle capacity (0.174,0.218,0.261) (0.186,0.228,0.27) 0.01 25 

19 Energy monitoring (0.187,0.23,0.303) (0.166,0.197,0.242) 0.036 15 

20 Driving range (0.252,0.294,0.335) (0.157,0.2,0.242) 0.094 4 

21 Charging duration (0.134,0.15,0.172) (0.193,0.271,0.354) 0.121 1 

22 Scheduling complexity (0.18,0.218,0.28) (0.162,0.192,0.234) 0.029 17 

23 Crowding (0.152,0.177,0.213) (0.199,0.245,0.317) 0.07 5 

24 Travel time (0.192,0.232,0.297) (0.156,0.187,0.232) 0.047 10 

25 Reliability (0.28,0.323,0.365) (0.181,0.224,0.266) 0.099 3 
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5.3.8.2 Result comparison among different ranking methods 

Table 5-11 compares the results from the FRAFSI method with those from two other 

methods, the fuzzy TOPSIS and fuzzy EDAS. It can be observed that the outcomes of all 

methods are consistent, with the overnight charging strategy receiving the first rank. The table 

also reports the number of times each alternative was selected as the best strategy by the 

experts. 

 

Table 5-11 Comparing the results of different methods when ranking charging strategies. 
 

Fuzzy TOPSIS Fuzzy EDAS FRAFSI 

 

Rank 

Frequency of 

experts selecting a 

strategy as the top-

ranked 

Rank 

Frequency of 

experts selecting a 

strategy as the top-

ranked 

Rank 

Frequency of 

experts selecting a 

strategy as the top-

ranked 

Overnight charging 1 7 1 8 1 7 

Opportunity charging 2 4 2 3 2 4 

 

Fig. 5-14 provides information on the best EB charging strategy identified by each expert 

under different ranking methods. 

 

 

Figure 5-14 Comparing the judgment of experts about the best charging strategy under 

different ranking methods (numbers 1 and 2 indicate overnight and opportunity charging 

strategies, respectively).  
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5.4 Numerical experiments and application of mixed-fleet bus scheduling models 

5.4.1 Numerical experiments and application of the simple version of the mixed-fleet bus 

scheduling model 

5.4.1.1 Small and medium-sized test instances 

To obtain certain insights about the quality of the solutions found by the SA algorithm, 

the performance of the SA is evaluated by comparing its results to the optimal solutions 

obtained through the GAMS software 24.7.1 in solving a set of test problems generated 

randomly. Indeed, 25 small and medium-sized test problems are randomly prepared with 

various sizes and features (see Table 5-12), including different number of vehicles (fleet size), 

buses of each size, and bus stops. The gaps between the best solutions found by the SA 

algorithm and the optimal solutions obtained by GAMS are computed using Eq. (5-1). 

answer answer

answer

 
(SA -GAMS )

GAP= × 100
GAMS

 (5-1) 

All the computational experiments are performed on a personal computer with Intel(R) 

Core(TM) i5-6500 CPU @ 3.20 GHz and 16.0 GB RAM. As can be seen in Table 5-12, the 

SA has found the optimal solutions in most of the test problems. Furthermore, the maximum 

gap (0.83%) is observed in instance #21 and is less than 1 percent. Note that the average 

passenger waiting time (i.e., objective function value) is measured in minutes and the results 

of the SA and GAMS are compared to each other with two decimals (i.e., 0.01 minute which 

is less than one second). Indeed, a neglectable gap of 0.83% (between the average waiting times 

of 1.21 and 1.22 minutes) is even less than one second and passengers do not notice from a 

practical viewpoint; nonetheless, we have merely provided such results with 2 decimals for 

research purposes. The computing time required by the SA is always less than 0.5 minutes even 

for medium test instances. By contrast, the computing times are much more expensive in the 

case of GAMS, where computation times will increase markedly with a growth of the fleet 

size. This is due to the fact that the total number of continuous NLP subproblems that needed 

to be solved using GAMS (in Algorithm 4-5) is increased substantially as a function of 

𝑵𝒗!

𝑨! × 𝑩! × 𝑪!
 that indeed represents the number of possible sequences to dispatch buses in a  

mixed-fleet dispatching problem (e.g., in instance #25, 560 NLP subproblems are solved 

consecutively one after another without interruption, due to the existence of 560 possible 

sequences for dispatching vehicles). This is indeed a great challenge in solving real-life 

instances, in which a tremendous number of dispatching sequences can be prescribed for a 
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mixed-fleet operation, e.g., there exist 400,400 possible arrangements for dispatching buses in 

our real-world example (with 𝑁𝑣 = 16, 𝐴 = 9, 𝐵 = 4, 𝐶 = 3) presented in the next section. 

This challenging issue further highlights the importance and application of heuristic 

optimization algorithms that enable practitioners to discover good suboptimal solutions within 

a rational computing time for such a complex problem, coping with the difficulty of handling 

binary variables in large practical instances. 

It should be noted that, in all the test problems, the dispatching orders found by the SA 

are exactly the same as those obtained in the optimal solutions. Indeed, the only difference that 

leads to such an insignificant gap (0.83% in instance #21) is attributed to a very slight 

difference (about seconds) in some dispatching times suggested by the SA compared to the 

optimal results of GAMS. This shows that the capability of SA’s operators with their special 

neighborhood search mechanisms is quite promising, as the designed swapping and inversion 

operators (in Fig. 4-7) can fruitfully generate a new feasible dispatching order of vehicles 

through a random displacement  of vehicles within the same fleet, thereby enabling the 

algorithm for a better exploitation of the best solutions in the feasible search space. This 

prominent feature would be of paramount importance in finding a suitable dispatching 

arrangement for real-life instances, in which bus operators are practically confronted with 

numerous dispatching arrangements. 
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Table 5-12 Computational results of the SA vs. GAMS in solving small and medium instances. 

Class 
Instance 
number 

Instance features 
  

Objective value  
Comp. time (sec) 

  𝑁𝑠
 𝑁𝑣 𝐴 𝐵 𝐶 NLP*  GAMS SA GAP (%)  GAMS SA 

Small #1 6 3 1 1 1 6  0.24 0.24 0.00  270 7 
 #2 6 4 2 1 1 12  0.32 0.32 0.00  1450 14 
 #3 6 4 1 2 1 12  0.30 0.30 0.00  1461 13 
 #4 6 4 1 1 2 12  0.29 0.29 0.00  1455 14 
 #5 8 5 1 1 3 20  0.36 0.36 0.00  3020 16 
 #6 8 5 2 2 1 30  0.40 0.40 0.00  3002 15 
 #7 8 5 2 1 2 30  0.39 0.39 0.00  3014 15 
 #8 10 6 1 4 1 30  0.55 0.55 0.00  4681 17 
 #9 10 6 1 1 4 30  0.49 0.49 0.00  4570 15 
 #10 10 6 1 3 2 60  0.53 0.53 0.00  9365 17 
 #11 10 6 1 2 3 60  0.51 0.51 0.00  9359 16 
 #12 10 6 2 2 2 90  0.55 0.55 0.00  14256 17 

Medium #13 12 7 5 1 1 42  0.94 0.94 0.00  7560 21 
 #14 12 7 1 1 5 42  0.77 0.77 0.00  7551 19 
 #15 12 7 4 2 1 105  0.92 0.92 0.00  18910 20 
 #16 12 7 4 1 2 105  0.88 0.88 0.00  19215 21 
 #17 12 7 1 3 3 140  0.82 0.82 0.00  25536 22 
 #18 12 7 2 2 3 210  0.85 0.85 0.00  38316 20 
 #19 14 8 6 1 1 56  1.56 1.56 0.00  13448 25 
 #20 14 8 1 1 6 56  1.13 1.13 0.00  13372 22 
 #21 14 8 1 2 5 168  1.21 1.22 0.83  40328 25 
 #22 14 8 2 4 2 420  1.41 1.41 0.00  >86400 26 
 #23 14 8 2 2 4 420  1.29 1.29 0.00  >86400 24 
 #24 14 8 3 3 2 560  1.45 1.46 0.69  >86400 25 
 #25 14 8 2 3 3 560  1.35 1.35 0.00  >86400 24 
 Max. gap %          0.83    

* No. of continuous NLP subproblems (i.e., 
𝑁𝑣!

𝐴! × 𝐵! × 𝐶!
) solved by GAMS. 

 

The performance of the SA can be sensitive to the user-defined parameters, including 

initial temperature 𝑇0, and cooling factor 𝛽. Hence, several preliminary runs are carried out 

with different values of parameters to select the most suitable parameter values from a set of 

candidate values (the range of each parameter is given). Indeed, our initial experiments are 

performed under different combinations of parameters, including changes in 𝑇0 (from 6 to 12 

with a step value of 1) and in 𝛽 (from 0.85 to 0.99 with a step value of 0.01), and the results 

are evaluated for each parameter combination through a maximum number of 100 iterations 

for each run. This is indeed a commonly-used procedure in the literature for tuning the 

parameters of metaheuristics, such as the SA algorithm (e.g., Pishvaee et al., 2010;  

f and Kamalabadi, 2016). Moreover, since the performance of metaheuristics can vary when 

solving instances with different sizes, the SA’s parameters are separately adjusted for small, 

medium, and large-scale problems. Finally, the preferred values were set as 𝑇0 = 9 and  

𝛽 = 0.95 for small instances, 𝑇0 = 9 and 𝛽 = 0.99 for medium ones, as well as 𝑇0 = 10 and 

𝛽 = 0.99 for large real-life instances presented in the next section.  



 

187 

 

5.4.1.2 Application area and real-life case study (large-scale instance) 

To assess the effectiveness and efficiency of the proposed optimization model and the 

solution approach, several numerical experiments are carried out based on data from a  

bi-directional bus route, Military Road in North Sydney, Australia, which consists of a total of 

𝑁𝑠 = 24 stops (12 stops in each direction) (see Tirachini et al. (2014) for more details of the 

bus route). We consider the planning horizon from 7:00 am to 8:30 am. In the base case 

scenario, it is assumed that the bus route is served by a given mixed fleet of 16 buses: 

{12, 12, 12, 12, 12, 12, 12, 12, 12, 15, 15, 15, 15, 18, 18, 18}. For example, under the 

assumption of even dispatching headways of 6 minutes (service frequency of 10 bus/h) and in 

a situation of constant passenger arrival rates at bus stops, regular bus headways and no 

passengers left behind (i.e., if buses never run at full capacity), the average waiting time would 

be 3 minutes. 

The parameters used in this dissertation are taken from Tirachini et al. (2014) and  

Tirachini (2014). For the sake of brevity, detailed information on demand rates is presented in 

Appendix A. In order to determine how the solution is sensitive to different degrees of demand 

availability, we compare the cases of low and high-resolution passenger arrival rates. As can 

be seen in Table A6 and Fig. 5-15, in the high-resolution demand case, the passenger arrival 

rates (𝜆 𝑗[𝑡]) are assumed to be constant during each 15-minute time interval, and they basically 

follow a bell-shaped pattern during the simulation time, peaking roughly at 7:45 am. In the 

low-resolution demand case; however, the passenger arrival rates remain constant during each 

one-hour period (see Table A7), as commonly assumed in several bus supply optimization 

models (e.g., Hadas et al., 2010; Tirachini et al., 2014; Niu et al., 2015). 
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Figure 5-15 The total number of passengers arriving in the bus corridor during each  

15-minute time interval. 

 

Regarding travel times between stops, we assume that they are stochastic and the relevant 

travel time distribution parameters are given here. As introduced in Section 3.4.1, we assume 

a lognormal distribution of bus travel times between stops 𝑗 − 1 and 𝑗 with mean and standard 

deviation of r𝑗 and σ𝑗 respectively. 

 

r2 = 1.36 (min); r3 = 1.35; r4 = 1.37; r5 = 0.95; r6 = 1.25; r7 = 1.59; r8 = 0.79; 

r9 = 0.77; r10 = 0.91; r11 = 1.09; r12 = 1.36; r14 = 1.49; r15 = 1.50; r16 = 1.48;  

r17 = 1.08; r18 = 1.38; r19 = 1.74; r20 = 0.92; r21 = 0.90; r22 = 1.03; r23 = 1.21;  

r24 = 1.49. 

σ2 = 0.11 (min); σ3 = 0.11; σ4 = 0.12; σ5 = 0.06; σ6 = 0.09; σ7 = 0.15; σ8 = 0.05; 

σ9 = 0.04; σ10 = 0.06; σ11 = 0.08; σ12 = 0.11; σ14 = 0.14; σ15 = 0.15; σ16 = 0.14;  

σ17 = 0.08; σ18 = 0.13; σ19 = 0.19; σ20 = 0.06; σ21 = 0.06; σ22 = 0.08; σ23 = 0.10; 

σ24 = 0.14. 
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The proposed SA is coupled with a MCS method to handle travel time uncertainty. 

Accordingly, the number of MCSs is set to be 1000. 

 

5.4.1.3 Optimal dispatching policy under high-resolution demand volumes 

Fig. 5-16 shows the convergence trend of the SA algorithm. As can be seen, the SA 

experiences a sharp decline in average waiting time, from 3.84 to 3.55 (min/pax) in the first 

twenty-four iterations before tailing off, i.e., the SA reached a plateau after 24 iterations within 

5.8 minutes. Note that each candidate solution is being evaluated over several (1000) 

replications, due to the implementation of the MCS method incorporated as a subroutine into 

the SA to accomplish the evaluation process. Obviously, the computing time would be much 

shorter if a bus motion model ignores real-life operating conditions, such as stochastic travel 

times between stops, for the sake of simplicity. 

 

 

Figure 5-16 Convergence trend of the SA algorithm in the large-scale problem. 

 

Fig. 6-13 (a) gives information about the optimal dispatching headways and the optimal 

bus dispatching order found by the SA under the high-resolution demand case  

(15-minute-dependent demand volumes), by showing the bus dispatching order in a time scale. 

Passengers experience an average waiting time of 3.55 (min/pax) under this optimal 

dispatching strategy. In total, 9.9% of passengers are left behind and need to wait for a second 
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bus to board, which explains that the average waiting time is larger than 3 minutes. Importantly, 

with the proposed strategy, buses of one size are not necessarily dispatched consecutively one 

after the other, because not doing so allows us to have a more precise adjustment of supply 

(vehicle capacity) to demand in accordance with time-dependent passenger demand, thereby 

leading to a better utilization of vehicles’ capacity in a given fleet of heterogeneous buses. 

Indeed, due to the provision of services with varying passenger-carrying capacities under a 

mixed-fleet operation, vehicles’ capacity should be supplied to public transport users in line 

with temporal changes in demand. Otherwise, if buses are not dispatched in an optimal 

sequence together with considering the passengers’ demand that may fluctuate within the 

planning horizon (i.e., spatial and temporal demand unbalances), the capacity of vehicles might 

not be used in due course (non-optimal utilization of resources), thus increasing the average 

passenger waiting time due to an increase in the number of passengers left behind owing to 

capacity constraints. For example, 18-m long buses, having more capacity to accommodate 

passenger volumes at the maximum loading sections, are mostly dispatched to cover the 7:45 

am spike in passenger volumes. Moreover, as it is clear from Fig. 6-13 (a), larger buses are 

dispatched with a larger headway between vehicles compared to smaller buses. Indeed, when 

different sizes of buses are dispatched to serve a single route, due to their different capacities, 

the headway between them should be different, otherwise more passengers would be left 

behind by the smaller buses, resulting in greater delays. This aspect is further discussed in the 

next subsection. The values of mean, standard deviation, and coefficient of variation for 

dispatching headway are respectively equal to 5.96 min, 1.85 min, and 0.31 in the optimal 

solution. 

 

5.4.2 Numerical experiments and application of the advanced version of the mixed-fleet bus 

scheduling model 

In this section, we use a Taguchi approach as a means to fine-tune the parameters of the 

metaheuristics. We also conduct a computational experiment using random test instances of 

various sizes (small, medium, and large-scale) to provide a comprehensive assessment of the 

metaheuristics’ capabilities based on two crucial metrics: solution quality and CPU time. 

Additionally, a comparison is made between the metaheuristics’ results and the exact solutions 

derived from GAMS software for small and medium examples. 
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5.4.2.1 Taguchi results in the calibration of metaheuristics’ parameters 

Table 5-13 presents the parameters for each algorithm, with three levels considered for 

each parameter. To analyze the experiments, we utilize Minitab 17 software and adopt a  

three-level Taguchi scheme. For example, for the GA with 4 parameters at 3 levels, the L9 

orthogonal array is utilized to design the experiments, resulting in a total of 9 trials.  

Table 5-14 provides detailed information on the L9 orthogonal array, showcasing the parameter 

combinations in each trial. The findings are depicted in Fig. 5-17, where the highest mean of 

the Signal-to-Noise (S/N) ratio indicates the best level for each parameter. 

 

Table 5-13 Parameter calibration of the proposed algorithms. 

Algorithm Parameter 
Level 

Best level 
1 2 3 

GA 

Maximum iterations (𝑀𝑎𝑥𝐼𝑡) 
Population size (𝑁𝑝𝑜𝑝) 

Crossover rate (𝑃𝑐) 
Mutation rate (𝑃𝑚) 

100 

30 

0.6 

0.1 

150                      

50                        

0.7                        

0.2 

200 

70 

0.8 

0.3 

1 

3 

3 

3 

GWO 
Maximum iterations (𝑀𝑎𝑥𝐼𝑡) 
Grey wolf pack size (𝑁𝑝𝑜𝑝) 

100 

30 

150 

60 

200 

90 

1 

3 

GA-SA 

Maximum iterations (𝑀𝑎𝑥𝐼𝑡) 
Population size (𝑁𝑝𝑜𝑝) 

Crossover rate (𝑃𝑐) 
Mutation rate (𝑃𝑚) 

Cooling rate (𝐴𝑙𝑝ℎ𝑎) 

Initial temperature (𝑇0) 

100 

30 

0.6 

0.1 

0.90 

10 

150 

50 

0.7 

0.2 

0.95 

15 

200 

70 

0.8 

0.3 

0.99 

20 

2 

2 

3 

2 

1 

3 

GWO-SA 

Maximum iterations (𝑀𝑎𝑥𝐼𝑡) 
Grey wolf pack size (𝑁𝑝𝑜𝑝) 

Cooling rate (𝐴𝑙𝑝ℎ𝑎) 

Initial temperature (𝑇0) 

100 

30 

0.90 

10 

150 

60 

0.95 

15 

200 

90 

0.99 

20 

1 

3 

3 

3 

 

Table 5-14 Taguchi orthogonal array L9 (3^4) (4 factors (A, B, C, and D) at 3 levels). 

Trial A B C D 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 
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(a) GA 

 

(b) GWO 

 

(c) GA-SA 
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(d) GWO-SA 

Figure 5-17 Results of the Taguchi method for adjusting metaheuristics’ parameters. 

 

5.4.2.2 Test problems for the assessment of metaheuristics 

This section presents a computational experiment that employs random test instances of 

varying sizes to examine the validity and efficiency of the proposed metaheuristics. To this 

end, 30 randomly-generated test problems are designed, containing small, medium, and  

large-sized samples (the characteristics of the test samples are given in Appendix A). 

For small- and medium-scale instances, which can be solved by GAMS software 

optimally, we compare the results of the four metaheuristics (GA, GWO, GA-SA, and  

GWO-SA) with optimal results achieved by GAMS software using the BARON optimization 

solver. Besides, all computational programs have been conducted on a PC with an Intel(R) 

Core(TM) i5-6500 CPU operating at 3.20 GHz and 16.0 GB of RAM. To assess the solution 

quality of the proposed metaheuristics, we measure the gap as follows: 

100sol sol

sol

GAMSHeur
GAP

GAMS

−
=   (5-2) 

where GAMSsol is the optimal solution achieved by GAMS, and Heursol is the solution found 

by the selected metaheuristic. Each metaheuristic algorithm is executed 10 times to solve each 

test instance. The results, including the average and standard deviation of the objective function 

values (OFVs) across all runs, as well as the average CPU times for each test problem, are 

presented in Table 5-15. Additionally, the gap values are computed based on the average 

results. As depicted in Table 5-15 and Fig. 5-19, the GAMS’s CPU times are notably high 
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(even for small-scale cases), making it inefficient for addressing operational scheduling 

problems, where timely optimization of operational plans is crucial. In contrast, the proposed 

metaheuristics offer the advantage of providing practically good solutions within significantly 

shorter (rational) CPU times. 

Since GAMS software is unable to address large-scale test instances, we only employ the 

proposed metaheuristics to solve those instances (see Table 5-16). In this case, we utilize the 

relative percentage deviation (RPD) metric with the findings of the best-performing 

metaheuristic as our benchmark to compare the effectiveness of the methods: 

100sol sol

sol

MinHeu
R D

in

r
P

M

−
=   (5-3) 

where Heursol is the solution produced by the selected metaheuristic, and Minsol is the best 

solution found among all the metaheuristics. 
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Table 5-15 Small (S) and medium (M) test instance results. 

Instance  

ID 

GAMS GA GWO GA-SA GWO-SA 
GAP (%) 

relative to GAMS 

OFV CPUT* Avg. OFV SD. OFV CPUT Avg. OFV SD. OFV CPUT Avg. OFV SD. OFV CPUT Avg. OFV SD. OFV CPUT GA GWO GA-SA GWO-SA 

S1 270.69 532.06 270.69 0.00 21.24 270.69 0.00 20.63 270.69 0.00 28.87 270.69 0.00 26.48 0.00 0.00 0.00 0.00 

S2 276.52 607.33 276.52 0.00 29.70 276.52 0.00 26.58 276.52 0.00 29.57 276.52 0.00 27.34 0.00 0.00 0.00 0.00 

S3 356.64 1516.65 357.66 0.42 32.31 356.64 0.00 26.64 356.64 0.00 38.75 356.64 0.00 35.78 0.28 0.00 0.00 0.00 

S4 370.90 1676.98 370.90 0.00 33.54 370.90 0.00 30.50 370.90 0.00 42.20 370.9 0.00 39.03 0.00 0.00 0.00 0.00 

S5 405.94 3619.97 414.18 3.25 38.91 410.87 0.91 36.54 409.39 0.47 47.52 405.94 0.00 44.03 2.02 1.21 0.84 0.00 

S6 424.80 4073.96 433.18 3.53 46.05 430.20 0.68 41.82 427.85 0.63 52.10 424.8 0.00 48.09 1.97 1.27 0.71 0.00 

S7 440.27 5159.58 450.43 4.01 54.62 446.56 0.67 42.36 444.20 0.45 61.94 440.27 0.00 56.87 2.30 1.42 0.89 0.00 

S8 468.42 6241.24 479.90 4.14 53.96 475.02 0.72 40.45 473.13 0.54 62.59 468.42 0.00 57.43 2.45 1.40 1.00 0.00 

S9 484.99 7358.86 496.32 3.85 57.68 491.52 0.91 46.33 489.05 0.27 66.96 484.99 0.00 61.16 2.33 1.34 0.83 0.00 

S10 518.98 8006.62 530.62 3.22 66.40 526.38 0.86 46.83 522.13 0.19 77.27 518.98 0.00 70.47 2.24 1.42 0.60 0.00 

M1 539.40 9088.34 550.12 4.06 68.16 539.40 0.00 54.52 539.40 0.00 84.77 539.40 0.00 77.36 1.98 0.00 0.00 0.00 

M2 561.97 10338.05 584.31 4.48 70.46 572.54 3.31 56.05 567.12 3.17 85.43 564.26 0.70 77.97 3.97 1.88 0.91 0.40 

M3 590.05 -** 610.10 3.61 68.54 599.22 2.19 59.13 596.61 2.63 86.14 590.05 0.00 78.65 3.39 1.55 1.11 0.00 

M4 619.57 - 639.24 3.67 73.21 629.19 0.00 60.95 619.57 3.28 88.28 619.57 0.00 80.97 3.17 1.55 0.00 0.00 

M5 621.60 - 640.14 4.00 86.56 632.35 2.45 65.90 628.10 2.50 100.91 623.43 0.45 92.41 2.98 1.72 1.04 0.29 

M6 660.51 - 680.41 3.46 88.41 670.20 2.34 69.75 668.22 2.07 104.09 662.12 0.73 95.26 3.01 1.46 1.16 0.24 

M7 765.85 - 787.11 2.67 92.18 779.41 3.06 67.81 774.14 2.47 104.97 768.20 0.71 96.06 2.77 1.77 1.08 0.30 

M8 755.14 - 774.26 2.81 100.10 763.34 3.14 79.27 763.52 1.87 119.46 758.26 0.87 109.01 2.53 1.08 1.10 0.41 

M9 769.95 - 789.15 3.01 105.13 778.61 2.06 88.91 777.15 1.27 130.89 771.43 0.40 119.51 2.49 1.12 0.93 0.19 

M10 788.07 - 808.30 2.71 118.27 798.10 2.31 89.87 796.56 2.54 137.46 790.37 0.51 125.32 2.56 1.27 1.07 0.29 

* The acronym CPUT corresponds to CPU time, measured in seconds. 

** A hyphen is used to indicate instances where GAMS’s CPU times exceed 3 hours (10800 seconds). 
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Table 5-16 Large (L) test instance results. 

Instance  

ID 

GA GWO GA-SA GWO-SA 
RPD (%) 

relative to the best metaheuristic 

Avg. OFV SD. OFV CPUT Avg. OFV SD. OFV CPUT Avg. OFV SD. OFV CPUT Avg. OFV SD. OFV CPUT GA GWO GA-SA GWO-SA 

L1 917.33 9.34 122.81 907.52 7.42 92.73 902.84 3.67 144.02 879.59 0.00 131.13 4.29 3.17 1.61 0.00 

L2 1016.21 7.62 123.17 997.04 5.69 95.74 994.09 3.44 149.08 972.49 0.00 135.55 4.50 2.44 2.13 0.00 

L3 1203.86 9.18 138.90 1167.15 7.71 109.19 1162.69 4.32 166.19 1145.40 4.11 151.12 5.10 2.02 1.62 0.00 

L4 1372.64 7.83 143.75 1332.11 6.63 113.59 1326.60 3.85 170.83 1311.75 3.74 155.36 4.64 1.86 1.32 0.00 

L5 1908.32 7.58 154.35 1837.92 6.17 124.21 1829.11 4.14 184.02 1773.56 3.23 168.07 7.60 3.49 2.94 0.00 

L6 2182.44 8.69 171.28 2105.04 7.23 132.12 2093.28 4.47 202.87 2038.12 3.84 185.44 7.05 3.24 2.62 0.00 

L7 2815.78 8.26 187.02 2718.95 6.94 147.02 2699.58 3.63 223.05 2651.88 3.11 204.19 6.13 2.44 1.82 0.00 

L8 2605.44 8.15 193.77 2516.83 6.86 150.78 2503.97 3.84 230.92 2463.72 3.76 211.60 5.69 2.13 1.85 0.00 

L9 2840.85 8.74 210.32 2745.61 7.19 167.96 2721.60 5.11 250.07 2658.29 3.96 228.77 6.88 3.11 1.97 0.00 

L10 3127.48 7.91 225.67 3037.18 6.33 178.52 2975.76 4.92 262.14 2903.93 3.87 247.57 7.69 4.59 2.44 0.00 
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To facilitate a comprehensive comparison, we present a boxplot in Fig. 5-18 (a) showing 

the solution gaps of the metaheuristics relative to the GAMS’s solutions in small and  

medium-scale samples. Additionally, Fig. 5-18 (b) displays the RPDs among the metaheuristics 

in large-scale samples. Our analysis demonstrates the GWO-SA algorithm’s ability to provide 

superior solutions. In small and medium-scale test samples, the GWO-SA algorithm 

consistently achieves zero or negligible solution gaps compared to the GAMS’s solutions. This 

trend carries over to large-scale samples, where the GWO-SA algorithm maintains its position 

as the top-performing algorithm. Significantly, no other algorithm outperforms the GWO-SA 

algorithm across large-scale instances, leading to the RPD values of zero. The ranking of the 

other algorithms, in descending order, is as follows: GA-SA, GWO, and GA. We also evaluated 

the stability of the metaheuristics by examining the standard deviation of their answers across 

multiple runs (Tables 5-15 and 5-16). The GWO-SA algorithm demonstrates superior stability 

with fewer variations, ensuring a higher level of confidence in the obtained solutions. 

 

(a) Comparison of solution gaps in small and medium-sized samples: Relative to 

the GAMS’s solutions. 
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(b) Comparison of solution gaps in large-sized samples: Relative to the best-found 

solution among all the metaheuristics. 

Figure 5-18 Comparing the solution gaps of the metaheuristics. 

 

 
Figure 5-19 Comparison of the solution methods in terms of CPU time. 

 

In Fig. 5-19, the CPU times of the algorithms are presented, with the GWO algorithm 

showing the shortest times. However, the difference in CPU times between GWO-SA and 
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GWO, around 1 minute in large-scale problems like L10, is not considered significant in the 

MFBS context, while the GWO-SA algorithm delivers superior solutions. Besides, in  

Fig. 5-20, the convergence behavior of the algorithms for different-sized examples (M1 and 

L10) is depicted. The GWO-SA algorithm witnesses a faster convergence compared to the 

other algorithms, and this trend is consistent across all examples. Overall, our findings affirm 

the superiority of the GWO-SA algorithm and position it as a favorable choice for solving the 

MFBS problem. 

To assess whether there is a significant difference between the solutions generated by the 

metaheuristics, we conduct a nonparametric Wilcoxon signed rank test at a significance level 

of 0.05. The corresponding p-values, obtained from pairwise comparisons of the 

metaheuristics, are presented in Table 5-17, indicating statistically significant differences 

among the solutions (p-value ≤ 0.05). Overall, based on the Wilcoxon test results and the 

reported solution values, it is confirmed that the GWO-SA outperforms the other 

metaheuristics. Furthermore, the superiority of the GA-SA over the GWO and GA, as well as 

the superiority of the GWO over the GA, are validated. 
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Figure 5-20 Convergence curves of the proposed metaheuristics. 

 

Table 5-17 Results of Wilcoxon test on the proposed metaheuristics. 

Algorithms p-values 

GWO-SA vs. GA 0.000 

GWO-SA vs. GWO 0.000 

GWO-SA vs. GA-SA 0.000 

GA-SA vs. GA 0.000 

GA-SA vs. GWO 0.000 

GWO vs. GA 0.000 
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5.4.2.3 Real-world application 

In this section, we examine the practicality of the model through a series of computational 

tests conducted on a real case study, the Los Pajaritos bus corridor in Santiago, Chile. This 

bidirectional corridor consists of 20 stations, with 10 stations in each direction, spanning from 

the south-west of the city towards the center. Our analysis utilizes the demand data sourced 

from Sadrani et al. (2022b). During the morning peak period, the corridor experiences a high 

passenger volume, averaging 4500 passengers per hour, resulting in significant crowding. The 

primary objective for planners is to optimize operational plans to enhance the quality of service 

for travelers, by reducing waiting times and improving trip comfort, while minimizing 

operating expenses. For the simulation of our numerical programs, we take into account the 

crucial morning peak period from 7:00 AM to 10:00 AM, with the demand profile displayed 

in Fig. 5-21. To operate the designated bus corridor, we assume a maximum availability of 25 

type A buses (12-m long), 10 type B buses (15-m long), and 16 type C buses (18-m long). 

Fig. 5-22 illustrates the best vehicle dispatching plans for the first hour of the simulations. 

As can be seen, the algorithms propose different resource allocation solutions. Fig. 5-23 

presents a comparison of the cost and average occupancy levels (measured as the ratio of the 

number of passengers to the capacity of the vehicles) among the solutions obtained by each 

metaheuristic. The GWO-SA algorithm suggests the most cost-effective solution, with a fleet 

configuration of 39 buses, including 19 type-A, 7 type-B, and 13 type-C buses. Besides, the 

GWO-SA’s solution exhibits the lowest occupancy levels, indicating its effectiveness in 

optimizing resource utilization and minimizing crowding. 

 

 

Figure 5-21 Passenger arrival volumes on the route at various periods. 
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Figure 5-22 Best vehicle dispatching solutions suggested by each metaheuristic. 

 

 

Figure 5-23 Comparison of cost and occupancy levels in the best solutions found by each 

metaheuristic. 

 

Furthermore, while both GWO-SA and GA-SA suggest the same fleet composition, they 

offer different dispatching plans regarding sequence and timing, as illustrated in Fig. 5-22. 

Notably, the dispatching plan generated by the GWO-SA demonstrates superior efficiency 

compared to the GA-SA, resulting in a 7.4% decrease in user costs, and consequently, a 2.9% 
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decrease in overall costs. Additionally, the average occupancy level inside buses decreases by 

10.8% (from 0.74 to 0.66). Overall, during periods of high demand, it is common practice to 

deploy larger vehicles and reduce dispatching headways compared to periods of lower demand, 

aligning with the temporal variations in demand illustrated in Fig. 5-21. By implementing these 

optimized programs, users experience improved trip comfort due to reduced vehicle loads, and 

their waiting times are reduced due to shorter dispatching headways during periods of high 

demand. Only a framework that explicitly accounts for crowding externalities is able to 

correctly measure the advantage of using GWO-SA, in terms of increased service quality, in 

this type of busy transport corridor. 

Interestingly, the GA and GWO algorithms propose larger fleet sizes of 41 and 40 buses, 

respectively, compared to the GA-SA and GWO-SA algorithms recommending a fleet size of 

39 buses. However, the optimal dispatching plans derived from the GA-SA and GWO-SA 

algorithms result in lower user costs and vehicle occupancy levels, despite their smaller fleet 

sizes. This emphasizes the crucial role of efficient and precise dispatching plans obtained from 

these advanced algorithms in achieving cost savings and improving the overall performance of 

the transportation system. 
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6 Sensitivity analysis 

This chapter explores sensitivity analysis, examining how variations in model parameters 

impact the outcomes. It provides a deeper understanding of the models’ robustness and 

sensitivity to different factors. 

 

6.1 Sensitivity analysis for automated bus planning model 

6.1.1 Sensitivity to human driving cost savings due to automation 

In the base case scenarios, we assumed 50% savings in human driving costs with 

automated vehicles. Now, we test cases in which human driving costs are fully (100%) saved 

with automation. As Fig. 6-1 shows, if automation capabilities can completely save  

human-related driven costs, automated bus scenarios are optimally pushed toward providing 

services with higher frequencies than the cases of 50% driving cost savings, and hence waiting 

and crowding costs are further reduced for users. Note that optimal vehicle sizes remain 

unchanged, which are similar to those obtained in the base case scenarios. 

It is normally expected that, with full human driving cost savings, frequencies are 

increased at a higher degree for Regensburg than for Santiago, since the level of drivers’ wages 

is larger in Germany than in Chile. Accordingly, when the user cost is insensitive to in-vehicle 

crowding levels, we see that frequencies are increased at a higher rate in the case of Regensburg 

(22%) than Santiago (12%). This is also in line with the findings of  

Tirachini and Antoniou (2020), who did not take crowding effects into account. However, in 

the presence of in-vehicle crowding effects, we interestingly see that there is not a salient 

difference between the increased rates, which are at 34% and 30% in Regensburg and Santiago 

respectively. This is because the crowding phenomenon is far more serious in the case of 

Santiago than Regensburg, which can persuade public transport providers (in light of full 

human driving cost savings) to boost optimal frequencies up to 30% in order to offset crowding 

discomfort costs exerted upon travelers in such a crowded bus corridor. Only a model, in which 

the value of travel time savings is sensitive to in-vehicle crowding levels, would be able to 

catch this effect. This result explicitly accentuates the importance of taking crowding 

discomfort externalities and their implications into account when assessing the actual benefits 

of automated public transport systems, especially for overcrowded bus corridors. 
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Figure 6-1 Sensitivity to human driving cost savings due to automation. 

 

6.1.2 Sensitivity to travel time uncertainty 

In the base case scenarios, we assumed that driving times between consecutive stops are 

stochastic (in ST scenarios), but at the same level of variability for both human-driven and 

automated bus services. In this part, we carry out a series of sensitivity analyses, in which travel 

time uncertainty is improved/degraded with automation through a reduction/rise in the standard 

deviation of travel times (values of σ𝑗 in Eq. (3-16), used to model stochastic running times). 

We numerically investigate  how an automated public transport system can yield larger/smaller 

savings in waiting time costs if the standard deviations of travel times are reduced/increased 

by ±10, ±20, ±30, ±40, and ±50% due to automation (see Fig. 6-2). 
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Figure 6-2 Sensitivity to travel time variability due to automation. 

 

As indicated in Fig. 6-2, our numerical results in Regensburg show that passenger waiting 

time costs could be saved by 12.1% if the technology of automation improved the reliability of 

public transport services through a reduction of travel time volatility by 50%. While waiting 

time is related to overall customer satisfaction (Tyrinopoulos and Antoniou, 2008;  

Dell’Olio et al., 2011), waiting time due to unreliability (e.g., travel time uncertainty) can have 

deeper negative consequences and be burdensome to public transport commuters  

(Rietveld et al., 2001; Van Lierop et al., 2018). The diversity in human  driving habits can 

considerably aggravate travel time stochasticity in reality (Wang and Sun, 2020). Nonetheless, 

such differences in driving functions can be much less pronounced in the case of automated 

driving systems, due to the elimination of human interventions (Azad et al., 2019). Hence, 

public transport providers could potentially improve passengers’ perceptions of reliability 

through the mitigation of unexpected waiting delays associated with unreliable services if 

automated public transport systems can offer a more reliable operation (more stable travel 

times) through leveraging full automation capabilities. 
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6.1.3 Effects of automation and travel time stochasticity on dwell time regularity 

Dwell time variability can negatively affect bus operations and users’ satisfaction, due to 

negative effects on the reliability of systems and predictability of trip times (Sun et al., 2014). 

Given the stochastic nature of public transport operations, the influences of driving time 

variations on the irregularity of dwell times at stations have been already investigated in the 

literature of travel time reliability for human-driven bus services (e.g., van Oort, 2014;  

van Oort, 2016; Schmidt et al., 2016). Overall, driving time volatility between stops can lead 

to a further spread of irregularity among vehicle dwell times due to poor service reliability, 

early or late services (van Oort, 2014). This is because travel time variations have adverse 

effects on load distributions, i.e., with a further growth of uncertainty in driving times between 

stops, passenger loads (the demand for getting on and off) will be irregularly distributed 

between buses on the same line, thus aggravating dwell time variability (Muñoz et al., 2020). 

An extra benefit of more regular operations is having more balanced passenger loads between 

vehicles. 

To account for realistic operating conditions in the formulation of dwell time, we 

modeled flow-dependent dwell times which can vary at each station given alighting and 

boarding demands at that station. For example, a small delay due to driving time fluctuations 

provokes a rise in the number of travelers waiting at the next stop. This in turn leads to a rise 

in the dwell time, and consequently the bus delay and the risk of service unreliability are further 

exacerbated due to a positive feedback loop between the number of travelers waiting at stops, 

dwell times, and travel times between successive bus stops (Moreira-Matias et al., 2016). 

Here, we numerically investigate how the deployment of an automated public transport 

system can lead to more regular/irregular dwell times at stops if the reliability of driving times 

between stops is improved/declined during operations with automation. To evaluate the 

dispersion in vehicles’ dwell times affected by driving time variation levels, we measure the 

standard deviation of dwell times for automated vehicles, while changing the standard 

deviation of driving times between stops by ±10, ±20, ±30, ±40, and ±50%. Results are 

shown in Fig. 6-3 for the case of Regensburg at a given frequency of 20 [veh/h]. Note that the 

average length of dwell time is similarly 0.8 min in each case, as the total number of passengers 

alighting and boarding during the entire simulation time is the same for all the cases. As can 

be seen, the irregularity of dwell times is reduced if automated vehicles can provide a more 

stable operation with lower driving time variations. For instance, if the standard deviation of 



 

208 

 

driving times between stops is reduced by 50% with automation, the standard deviation of 

dwell times at stops is decreased by 34%, dropping from 0.29 min to 0.19 min. 

Besides, using a boxplot in Fig. 6-4, we illustrate the level of disparity in the dwell times 

of vehicles at each stop along the upstream direction. It is clearly observed that the dwell times 

of automated vehicles follow a more regular pattern with a reduction of 50% in travel time 

volatility compared to the base case (with no changes, 0%, in travel time variations). 

 

 

Figure 6-3 Standard deviation of dwell times under different levels of change in travel time 

variability between stops with automation. 

 

 

Figure 6-4 Display of dispersion between dwell times of vehicles at each station.  
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6.1.4 Sensitivity to time spent opening and closing bus doors with automation 

As described in Eq. (3-18), a part of the dwell time is related to the dead time needed for 

opening and closing bus doors, affecting bus stop delays. In the base case scenarios, we 

assumed that this time is the same for both human-driven and automated buses. Although this 

time might be larger or shorter with automation in reality, there appears to be no conclusive 

scientific evidence on this aspect yet. 

On the one hand, this time might be increased with automation due to the inclusion of 

marginal safety factors when opening and closing doors without a human driver directly 

inspecting this procedure. Overall, the current programs of autonomous mobility services 

underline the need for operating automated vehicles with broader safety standards, due to 

security and safety reasons, i.e., given the operational obstacles and unknown aspects that 

might become apparent in practical terms, there is still a propensity toward the run of automated 

bus systems with a higher margin of safety in the current phase of deployment  

(Nemoto et al., 2020). Hence, due to the elimination of human checks formerly carried out by 

drivers inside human-driven buses, this dead time might be considered a bit longer for 

automated vehicles. 

On the other hand, the technology of automation might be able to mitigate bus stop 

delays, associated with drivers’ behavior and reaction times, through the elimination of human 

interventions. Moreover, for larger buses with more doors, drivers may need more time to 

check whether all doors are clear of passengers before activating the process of closing doors 

to leave stops (Tirachini et al., 2014). Automated vehicles, equipped with several advanced 

internal/external sensors and versatile monitoring technologies, can accurately detect the 

moment at which each door is clear of passengers. Hence, a shorter time might be needed for 

closing doors installed at different parts of a bus (e.g., front, middle, and back doors in a bus). 

To assess the possible effects of vehicle automation on the process of opening and closing 

bus doors, we perform a series of sensitivity analysis tests, in which the relevant dead time is 

enlarged and reduced by ±10, ±20, ±30, ±40, and ±50% with automation (see Fig. 6-5). For 

instance, passengers’ in-vehicle time costs are saved by 4.4% if such a time is reduced by 50% 

with automation. 
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Figure 6-5 Sensitivity to the time required for opening and closing doors with automation. 

 

6.1.5 Sensitivity to demand fluctuation 

In this part, we aim to investigate the sensitivity of solutions to the demand fluctuation. 

Our base-case experiments were performed under 15-minute-dependent demand flows 

witnessing fluctuations during the simulation time (see Table A4 in Appendix A and Fig. 6-6). 

Now, we consider another demand case, under which passenger arrival rates remain fixed 

(without fluctuation) during the whole simulation period (7:00-9:00 AM), while the total 

demand is the same for both demand cases (see Table A5). 
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Figure 6-6 Total passenger demand entering the bus route during each interval of 15 minutes, 

as listed in Tables A4 and A5. 

 

The optimal vehicle size and service frequency in the Regensburg case study are 

determined under this new case of passenger arrival rates. We see that the optimal vehicle size 

does not change. Nevertheless, as shown in Fig. 6-7, the optimal service frequency is reduced 

compared to the case of 15-minute-dependent arrival rates, tested in our base-case scenarios. 

For example, the optimal service frequency is reduced by about 8% and 5% in the deployment 

scenarios of HV, ST, WC and AV, ST, WC respectively. This is because although the total 

demand is the same for both actual (with fluctuation) and fixed (without fluctuation) demand 

cases, the passenger flow experiences a larger peak demand (i.e., peak inside the peak) in the 

actual demand case, observed around 7:45-8:00 AM (see Fig. 6-6). Hence, the  

crowding-related problems (e.g., occupancy levels inside vehicles) can be increased at such 

maximum-load points, and therefore a higher level of frequency is optimally suggested to avoid 

the growth of crowding levels. Note that such effects are well captured in our  

crowding-sensitive model. This result accentuates the importance of considering demand 



 

212 

 

volatility in the determination of service supply items, particularly at critical loading points 

(demand spikes) that can further exacerbate crowding-related issues. 
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Figure 6-7 Sensitivity to demand fluctuation. 

 

6.1.6 Sensitivity to crowding multipliers 

We assess the sensitivity of solutions to changes in crowding cost parameters. In 

particular, lower levels of crowding multipliers have been reported in studies using revealed 

preference data in this context (Yap et al., 2020). Thus, we evaluate cases in which crowding 

multipliers (associated with load factors > 100% in Table 3-2) are reduced by 20%, 40%, and 

60%. It should be noted that to avoid reaching multipliers that are smaller than 1, for an old 

multiplier 𝛼,  the reduction is applied on (𝛼-1), then it is summed by 1 to introduce the new 

multiplier. For example, for an old multiplier of 2.10 in the case of 50% reduction, the new 

multiplier would be 1.55. 

In Table 6-1, the results are given for the main scenarios (HV, ST, WC vs. AV, ST, WC) 

in the case of Santiago. Overall, automated bus solutions witness a slower reduction in 

frequencies as crowding multipliers are reduced. For example, with a reduction of 60% in 

crowding multipliers, frequencies reduce by 7% (from 81 to 75[veh/h]) in the AV, ST, WC 

scenario, while they reduce by 13% (from 67 to 58 [veh/h]) in the HV, ST, WC scenario. In 

essence, since operating costs are more noticeable in human-driven bus operations, frequencies 

decline at a faster trend (in the favor of operators) when travelers are less sensitive to the 
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crowding disutility. It should be noted that the optimal vehicle size is obtained as 18-m long 

buses in all cases. 

 

Table 6-1 Sensitivity to crowding multipliers. 

Reduction in 

crowding 

multipliers (%) 

Scenario Frequency (veh/h) 

0 
AV, ST, WC 

HV, ST, WC 

81 

67 

20 
AV, ST, WC 

HV, ST, WC 

79 

64 

40 
AV, ST, WC 

HV, ST, WC 

77 

61 

60 
AV, ST, WC 

HV, ST, WC 

75 

58 

 

6.1.7 Sensitivity to extra waiting time values 

In this part, we investigate the sensitivity of solutions to the value of extra waiting time 

savings caused by denied boarding. Particularly, compared to the value suggested by  

Cats et al. (2016) (as 3.5 times higher than the initial waiting time), lower values have been 

reported by recent studies employing revealed preference data in this context  

(Yap and Cats, 2021). Hence, we consider cases in which the value of extra waiting time 

savings is reduced by 20%, 40%, and 60%. 

As shown in Table 6-2 for the case of Santiago, frequency solutions and the share of  

left-behind travelers are reported for the scenarios of HV, ST, WC and AV, ST, WC. Overall, 

vehicle automation still leads to the elimination of denied boardings. In essence, in such 

scenarios, to compensate for crowding discomfort and initial waiting time that has a high value 

of time savings, operating cost savings allow automated bus scenarios to still suggest high 

levels of frequency in the favor of users, and therefore optimal operations will not even become 

close to the critical denied boarding situations. Therefore, automated bus fleets can avoid 

denied boardings with higher degrees of robustness than human-driven fleets. Besides, our 

results show that the individual consideration of crowding discomfort in the planning of 

automated bus systems can even play a preventive role against denied boardings.  
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Table 6-2 Sensitivity to the extra waiting time value. 

Reduction in 

extra waiting time 

value (%) 

Scenario Frequency (veh/h) 
Left-behind 

travelers (%) 

0 
AV, ST, WC 

HV, ST, WC 

81 

67 

0 

0 

20 
AV, ST, WC 

HV, ST, WC 

81 

67 

0 

0 

40 
AV, ST, WC 

HV, ST, WC 

81 

65 

0 

0.1 

60 
AV, ST, WC 

HV, ST, WC 

81 

61 

0 

2.1 

 

6.1.8 Sensitivity to user- and operator-oriented designs 

In this part, we investigate the sensitivity of results to user- and operator-oriented design 

cases. For this purpose, we define two multipliers, as 𝜂 and ℓ, to increase the value of user and 

operator cost savings respectively (i.e., the total cost in the objective function (3-1) can be 

expressed as 𝑍 = 𝜂𝑍𝑝 + ℓ𝑍𝑜, considering the fact that such multipliers were considered as 1 

in the base-case experiments). For example, 𝜂 = 1.2 and ℓ = 1.0 imply that the current time 

valuations are increased by 20% for users, while the value of operator cost savings will remain 

unchanged the same as base-case valuations. 

We test two scenarios: (i) 𝜂 = 1.2 and ℓ = 1.0, and (ii) 𝜂 = 1.0 and ℓ = 1.2 to represent 

user- and operator-oriented design cases respectively. Obviously, in line with the preference of 

users and operators, service frequency will increase and decrease in user- and operator-oriented 

design solutions respectively. However, cost savings achieved by vehicle automation deserve 

further analysis in such design conditions. Hence, comparing automated and human-driven bus 

scenarios, average cost savings with automation are reported for the case of Regensburg in 

Table 6-3. Overall, the results show that the savings of total costs with automation are roughly 

similar in both design cases, however, the benefits of automation are slightly more pronounced 

in the operator-oriented design case. 
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Table 6-3 Sensitivity to user- and operator-oriented designs. 

Cost multipliers  
UCS with 

automation (%) 

OCS with 

automation (%) 

𝜂 = 1.0, ℓ = 1.0 19.8 15.8 

𝜂 = 1.2, ℓ = 1.0 20.3 15.1 

𝜂 = 1.0, ℓ = 1.2 19.1 16.4 

UCS stands for user cost savings. 

OCS stands for operator cost savings. 

 

6.2 Sensitivity analysis for electric bus planning model 

6.2.1 Sensitivity to demand level 

We define a Demand Multiplier (DM) used to reduce/increase the basic demand level. 

For instance, a DM of 0.75 would reduce the base demand level by 25%. Fig. 6-8 illustrates 

the optimal frequencies obtained at various demand levels under two scenarios: fixed energy 

consumption rate (1.00 kWh/km) and variable energy demand. We find that the accuracy loss 

in supply decisions becomes larger as the DM increases. For instance, when DM is 1.50, the 

optimal frequency using the variable energy consumption model is 59 (veh/h), whereas the 

simplified fixed energy consumption rate yields 49 (veh/h), resulting in a loss of accuracy of 

17%, compared to 13% when DM is 1.00. 

Overall, our analysis indicates that the sensitivity of solutions to the energy estimation 

method is more pronounced at higher demand levels, emphasizing the need for incorporating 

a detailed energy consumption model in the scheduling of EB fleets, particularly for public 

transport operators serving busy bus corridors. Moreover, our variable energy demand model 

estimates the following average energy consumption rates for EBs across five different demand 

levels respectively: 1.12, 1.22, 1.34, 1.44, and 1.56 kWh/km. 
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Figure 6-8 Comparing solutions under different demand levels based on the variable vs. fixed 

energy consumption model. 

 

6.2.2 Sensitivity to route gradients 

Optimal bus frequencies are influenced by changes in route gradients. Fig. 6-9 shows the 

gradient profile for the west-to-east direction of the route, where around 50% of the route is 

relatively flat, while the rest mostly has a positive slope ranging from +2% to +6%. We assume 

a symmetric bi-directional bus route, meaning that uphill sections in one direction are perceived 

as downhill sections in the other direction, although the absolute slope is the same in both 

directions. 

 

 
Figure 6-9 Histogram of route gradients (west-to-east direction).  
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The energy consumed by vehicles to overcome grade resistance is significant on uphill 

sections, and the mass of vehicles affects this resistance. We examine two cases with and 

without considering route gradients under different demand levels, as illustrated in Fig. 6-10. 

The solutions are more sensitive to slope variations at larger demand levels, and ignoring route 

gradients leads to an underestimation of the optimal frequency level by about 7% under 

DM=1.00 and 10% under DM=1.50. This discrepancy is particularly pronounced at higher 

demand levels, where grade resistance is amplified. 

The average energy consumption rate is 1.46 (kWh/km) in the west-to-east direction, 

mostly containing positive gradients, and 1.22 (kWh/km) in the opposite direction, mostly 

containing negative gradients. Besides, since the passenger demand is higher in the  

west-to-east direction, vehicles are operated with an average occupancy rate of 79% in that 

direction, whereas this value is 71% in the east-to-west direction. 

Our results highlight the importance of incorporating route characteristics into energy 

estimation models to capture load- and slope-sensitive effects concurrently. This is particularly 

relevant for public transportation agencies that need to deploy EB fleets on highly crowded and 

inclined bus corridors, such as our case study in Santiago, Chile. 

It should be noted that the user cost element always seeks to improve its equilibrium state 

in favor of users. Therefore, the energy cost element’s efforts to increase frequency (to reduce 

the passenger load per bus) are also supported by the user cost element, which seeks to further 

improve its own situation. Table 6-4 shows that the reduction in energy and user costs is 

stronger than the increase in operator costs caused by the need for more buses. 

 

 
Figure 6-10 Sensitivity of solutions to route slope under different demand levels.  
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Table 6-4 Cost element comparison: Optimal vs. non-optimal frequencies with and without 

slope consideration. 

Demand level       Solution Avg. cost (€/pax) 

 User Capital Driver Energy Total 

0.5 
OP 0.60 0.42 0.38 0.27 1.67 

NOP1 0.61 0.41 0.37 0.29 1.68 

0.75 
OP 0.58 0.38 0.33 0.24 1.53 

NOP 0.60 0.36 0.32 0.27 1.55 

1.00 
OP 0.56 0.35 0.31 0.22 1.44 

NOP 0.60 0.32 0.29 0.26 1.47 

1.25 
OP 0.54 0.32 0.29 0.20 1.35 

NOP 0.58 0.29 0.26 0.24 1.38 

1.50 
OP 0.53 0.31 0.28 0.19 1.31 

NOP 0.59 0.27 0.25 0.24 1.35 

 

6.2.3 Sensitivity energy regeneration capabilities 

We conduct simulations to examine how different levels of the regeneration factor2 can 

affect energy demand and planning decisions, considering both energy consumption and 

regeneration phases. In our case study, uphill energy consumption mainly occurs when 

traveling from west to east, while downhill energy regeneration occurs in the opposite 

direction. 

Table 6-5 provides details on optimal frequency solutions, corresponding total costs, and 

average energy demand observed in different driving cycles under varying regeneration factor 

levels. Our findings demonstrate that regenerative technology can significantly reduce total 

costs and optimal frequencies, with a 100% regeneration factor reducing costs by about 9.5% 

compared to a regeneration factor of 20%. These results demonstrate the potential benefits of 

leveraging maximum regenerative braking capabilities in future EVs. 

  

 
1 In NOP, cost elements are estimated if a non-optimal (NOP) frequency solution, which is obtained without considering slope 

(red answers in Fig. 6-10), is applied for real-life operations while accounting for detailed energy demand requirements with 

slope. Note that, in OP, cost elements are presented in the operation with optimal solutions (green answers in Fig. 6-10). 

2 While several studies have explored the efficiency of regenerative braking systems for electric cars, there is limited evidence 

for heavy-duty vehicles, such as EBs. However, a few studies assume a regeneration factor of 60% for EBs (e.g.,  

Gallet et al., 2018; Ma et al., 2021). 
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Table 6-5 Sensitivity to regenerative braking capability. 

Regeneration 

factor (%) 

Optimal frequency 

(veh/h) 

Avg. energy demand 

(kWh/km) 

Avg. total cost 

(€/pax) 

20 38 1.31 1.47 

30 38 1.28 1.46 

40 37 1.25 1.44 

50 37 1.22 1.43 

60 36 1.19 1.40 

70 36 1.16 1.39 

80 35 1.12 1.36 

90 34 1.09 1.34 

100 34 1.05 1.33 

 

6.2.4 Sensitivity to vehicle energy consumption in depot trips  

We conduct a sensitivity analysis on the distance between the depot and the first station 

of the line to understand how it can affect frequency planning solutions. It should be noted that 

even if we run the base-case trials in our case study without considering the energy 

consumption of vehicles in depot trips, the same frequency planning solutions are obtained as 

in cases where this energy is taken into account. This is because the depot distance is relatively 

short (1.8 km) and the trip is almost flat in our case study3. Besides, vehicles are empty of 

passengers during depot trips (i.e., passenger load is zero), as well as vehicles do not need to 

cover any stations during the depot path, which saves energy consumption required for 

deceleration/acceleration activities when entering and exiting bus stations. Therefore, the 

energy required for depot trips is reasonably less pronounced than en-route energy 

consumption. 

To further explore the impact of depot distance, we study the sensitivity of frequency 

determination by increasing the depot distance by 100%, 150%, and 200% (Table 6-6). Our 

results show that optimal frequencies are slightly reduced as the operator’s energy cost 

increases with the bus depot being further away from the bus line. These findings emphasize 

 
3 It should be noted that in our peak analysis period (7-10 AM), the trips of all vehicles [based on the optimal peak frequency 

of 38 (veh/h)] are considered from the depot to the first station at the beginning of the planning period (7 AM). However, 

regarding the return trips to the depot after 10 AM, we assume some vehicles (34% of the whole fleet), still needed to continue 

the off-peak operations based on the frequency of 13 (veh/h), will remain in the line and other vehicles (66% of the fleet) will 

return to the depot (i.e., we do not consider the scenario of returning all vehicles to the depot). 
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the significance of depot distance in determining frequency plans when the distance traveled 

by vehicles between the depot and the bus line is significant. 

 

Table 6-6 Sensitivity of frequency solutions to the depot distance. 

Increase in the depot 

trip distance (%) 
Frequency (veh/h) 

Frequency 

reduction 

(%) 

0 38 0 

100 37 2.6 

150 36 5.2 

200 35 7.9 

 

6.3 Sensitivity analysis for electric bus charging strategy selection 

In this section, we examine the sensitivity of the charging alternatives' rankings to 

changes in the calculated weights for charging duration and battery cost. Assuming 

 𝑊 = (𝑊𝑙, 𝑊𝑠,𝑊𝑢) as the calculated weight for the relevant criterion, a changing interval is 

established by decreasing and increasing 𝑊 by 50%, i.e., [0.5𝑊, 1.5𝑊]. This interval is then 

divided into 50 equal parts, resulting in the formation of 50 new criterion weight vectors. The 

impact of these weight changes on the alternatives' criterion functions is analyzed in  

Figs. 6-11 and 6-12. The results show that the ranking of the alternatives is impacted by changes 

in the criteria weights. For example, a 13% increase in the weight of the charging duration 

criterion leads to a shift in ranking, as seen in scenario 31. Besides, a 24% increase in the 

battery cost criterion weight leads to a shift in ranking in scenario 37. This highlights the 

sensitivity of the model to changes in the criteria weights, and suggests that variations in the 

weight assignment could result in the selection of the opportunity charging strategy as the 

optimal alternative. 
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Figure 6-11 Sensitivity analysis on charging duration weight. 

 

 

Figure 6-12 Sensitivity analysis on battery cost weight.  
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6.4 Sensitivity analysis for mixed-fleet bus scheduling models 

6.4.1 Sensitivity analysis for the simple version of the mixed-fleet bus scheduling model 

6.4.1.1 Sensitivity to dispatching headways (even and uneven headways) 

We compare the optimal solution from Section 5.4.1.3 to the case in which buses are 

dispatched at a uniform headway of 6 minutes. As has been shown, as long as vehicle capacity 

constraints are not binding and passenger arrival rates at bus stops are uniform, an even 

headway minimizes waiting time (Osuna and Newell, 1972). We develop two even-headway 

dispatching scenarios: 

(i) Same dispatching order as in Fig. 6-13 (a), under the constraint of a fixed 6-minute 

dispatching headway [see Fig. 6-13 (b)]. 

(ii) Optimal dispatching order, under the constraint of a fixed 6-minute dispatching 

headway [see Fig. 6-13 (c)]. 

In case (i), we see that the number of passengers left behind, and consequently the 

average passenger waiting time increase by 55% and 11.5%, going from 309 to 480 (pax) and 

from 3.55 to 3.96 (min/pax) respectively, if buses in the optimal solution are dispatched at an 

even headway of 6 minutes, while maintaining their dispatching order. In case (ii), we assume 

that vehicles are operated with a fixed 6-minute dispatching headway and only the dispatching 

order of each vehicle is optimized in this situation. We see that the percentage of passengers 

left behind is 14% and passenger waiting time increases by 9%, reaching 3.87 (min/pax). This 

shows the benefits of dispatching buses at uneven headways in a situation with different bus 

sizes and binding vehicle capacity constraints. 
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7:00:00 AM 7:06:12 7:10:18

7:00:00 AM 7:06:00 7:12:00 7:18:00 7:24:00 7:30:00 7:36:00 7:42:00 7:48:00 7:54:00 8:00:00 8:06:00 8:12:00 8:18:00 8:24:00 8:30:00 AM

7:00:00 AM 7:06:00 7:12:00 7:18:00 7:24:00 7:30:00 7:36:00 7:42:00 7:48:00 7:54:00 8:00:00 8:06:00 8:12:00 8:18:00 8:24:00 8:30:00 AM

7:15:12 7:22:24 7:30:06 7:34:36 7:39:00 7:44:30 7:53:00 8:01:24 8:08:42 8:13:24 8:17:00 8:21:12 8:30:00 AM

(a)

(b)

(c)

12-m long

15-m long

18-m long

 

Figure 6-13 Dispatching patterns under high-resolution demand data: (a) optimal dispatching 

pattern; (b) same dispatching order in (a) with the constraint of a fixed 6-minute dispatching 

headway; and (c) optimal dispatching order with the constraint of a fixed 6-minute 

dispatching headway. 

 

6.4.1.2 Comparing the optimal dispatching order with other predefined orders 

In this section, we conduct further comparisons between the optimal solution and 

alternative dispatching schemes. Here we test the case of different patterns in which buses of 

the same size are dispatched consecutively. We test six different dispatching scenarios:  

D12-15-18, D12-18-15, D15-12-18, D15-18-12, D18-12-15, D18-15-12, in which buses are dispatched with a 

predetermined order and only the dispatching time of each bus is optimized. For example, in 

scenario D12-15-18, 12 meters long buses are firstly dispatched, then 15 meters long buses, and 

finally 18 meters long buses are dispatched. The results are compared with the optimal scenario 

(see Table 6-7). Overall, the average passenger waiting time increases broadly in line with the 

percentage of passengers left behind. In the optimal scenario, the average passenger waiting 

time is 3.55 (min/pax), followed by a value of 4.04 (min/pax) in scenario D15-12-18. Indeed, by 

comparing these two dispatching scenarios, we see that the optimal scenario leads to a decrease 

of 12.1% in the average passenger waiting, mainly caused by a further reduction in the 

percentage of passengers left behind, declining from 15.9% to 9.9%. Furthermore, using the 

optimal dispatching pattern instead of scenarios D18-12-15, D12-15-18, D15-18-12, D18-15-12, and  

D12-18-15 can produce savings in the average passenger waiting time by 25.7, 20.2, 19.7, 16.8, 

and 14.3 percent, respectively. Therefore, in a mixed-fleet operation, it is relevant that bus 

agencies not only set bus dispatching headways, but also correctly assign vehicles of specific 
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sizes at the right time, in order to minimize the unwanted effects of large peak demands that 

temporally use all the available vehicle capacities. 

 

Table 6-7 Comparing the optimal dispatching order with other predefined orders. 

Scenario 
The average passenger  
waiting time (min/pax) 

Percentage of passengers 
left behind (%) 

SA solution 3.55 9.9 
D12-15-18 4.45 20.6 
D12-18-15 4.14 17.1 
D15-12-18 4.04 15.9 
D15-18-12 4.42 19.9 
D18-12-15 4.78 23.6 
D18-15-12 4.24 18.2 

 

As can be seen in Fig. 6-13 (a), 18-meter long buses are not dispatched early in the 

optimal scenario, showing that if larger buses (which have more room to carry passenger 

volumes at the maximum-load point of a route) are dispatched in an appropriate time to 

improve capacity utilization, they can reduce the number of passengers left behind; otherwise, 

it is probable that bus capacity is not used efficiently due to temporal and spatial differences in 

passenger volumes, thereby increasing passenger waiting times. 

Fig. 6-14 gives information regarding the number of passengers left behind by each bus 

during the simulation time (a) in scenario D15-12-18, and (b) in the optimal scenario. Looking 

firstly at Fig. 6-14 (a), we see that the number of passengers who fail to board increases steadily 

when 12-m long buses are dispatched sequentially. Indeed, these buses have no enough room 

to accommodate passengers who missed the previous buses due to a shortage of capacity, and 

consequently this situation will continue to deteriorate when they are dispatched sequentially. 

As Fig. 6-14 (b) shows, to optimize the capacity utilization of vehicles under the optimal 

scenario, buses of different capacities can be properly dispatched at specific times in 

accordance with demand conditions, and therefore the total number of passengers left behind 

by 12-m long buses reduces dramatically, dropping from 514 to 295 (pax). 
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Figure 6-14 Total number of passengers left behind by each bus during the entire analysis 

period: (a) in scenario D15-12-18; and (b) in the optimal scenario. 

 

6.4.1.3 Sensitivity to demand data resolution 

To understand how having high-resolution demand data instead of low-resolution 

demand information (one-hour-dependent demand volumes) can affect the optimal solution, a 

comparison between these two demand cases is made in this section. The relevance of this 

comparison rests on the fact that demand fixed on an hourly basis is common in most public 

transport frequency or dispatching setting models, e.g., Hadas et al. (2010),  

Tirachini et al. (2014), and Niu et al. (2015). 

If the optimal solution (the optimal dispatching headways and the optimal bus 

dispatching order) found with low-resolution demand (see Fig. 6-15) is applied to  
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high-resolution demand volumes, the average passenger waiting time increases by 15.5%, 

going from 3.55 to 4.10 (min/pax), due to an increase of 80% in the number of passengers left 

behind, going from 309 to 556 (pax). This result explicitly accentuates the advantage of having 

detailed demand information, especially when passenger arrival rates follow a bell-shaped 

pattern as time progresses. The peak inside the peak should be properly accounted for when 

designing dispatching schemes, which points to the relevance on investing to have detailed 

demand information for public transportation agencies, which includes the use of, e.g., 

smartcards and mobile phone data. 

 

7:00:00 AM 7:06:24 7:12:42 7:18:00 7:22:24 7:31:00 7:35:36 7:44:30 7:48:36 7:57:24 8:04:30 8:09:30 8:14:36 8:19:48 8:25:12 8:30:00 AM  

Figure 6-15 Optimal dispatching pattern under low-resolution demand data. 

 

6.4.1.4 Uniform fleet 

Next, we analyze the case in which a fleet with uniform bus sizes is available and only 

the dispatching time of each bus is optimized under high-resolution demand. The optimal 

dispatching solution with uniform fleets is presented in Fig. 10. In uniform fleets with 12, 15, 

and 18-meter long buses, the average passenger waiting time reaches the values of 5.96, 3.21, 

and 2.93 (min/pax) respectively, while the percentage of passengers left behind is equal to 

34.2%, 5.6%, and 0% respectively in these three cases, showing that passengers are not 

confronted with a lack of capacity when an 18-meter fleet is used. 

Regarding the optimal dispatching headways, as it is clear from Fig. 6-16, buses are not 

dispatched at quite even headways in order to deal with passenger demand fluctuation during 

the time operation, if capacity constraints are binding. This is clear for the case of 12-meter 

and 15-meter long buses, in which it is optimal to dispatch vehicles at uneven headways; in 

these cases the coefficient of variation of dispatching headways are 0.14 and 0.13, respectively. 

On the other hand, for 18-meter long buses, the dispatching headways are almost uniform, with 

a coefficient of variation of only 0.03.  In any case, these coefficients of variation are much 

lower than that of the optimal solution with a mixed fleet in the base case (coefficient of 

variation 0.31). Therefore, we can conclude that the optimality of uneven dispatching headways 

stems from two elements: having a mixed fleet and having localized peaks on demand that 

make buses run full.  



 

227 

 

7:00:00 AM 7:06:18 7:12:42

7:00:00 AM 7:06:00 7:12:06 7:18:12 7:24:06 7:29:42 7:35:30 7:41:24 7:47:24 7:53:24 7:59:30 8:05:30 8:11:36 8:17:48 8:23:54 8:30:00 AM

7:18:54 7:24:42 7:30:12 7:35:24 7:40:18 7:44:54 7:50:00 7:55:54 8:02:42 8:09:18 8:16:06 8:23:06 8:30:00 AM

(a)

(b)

(c)

7:00:00 AM 7:06:24 7:12:42 7:18:24 7:23:18 7:28:06 7:32:42 7:37:36 7:43:36 7:50:00 7:56:36 8:03:06 8:09:42 8:16:24 8:23:00 8:30:00 AM

 

Figure 6-16 Optimal dispatching headway for uniform fleets: (a) 12-meter fleet; (b) 15-meter 

fleet; and (c) 18-meter fleet. 

 

6.4.2 Sensitivity analysis for the advanced version of the mixed-fleet bus scheduling model 

6.4.2.1 Sensitivity to demand 

In this section, we analyze the sensitivity of solutions to variations in the demand level. 

To accomplish this, we introduce a Demand Multiplier (DM) to adjust the demand accordingly. 

Given that the base demand level is already high in this busy corridor (4500 pax/h), our analysis 

includes the application of various DMs to simulate decreased demand levels, such as DM=0.8 

representing a 20% reduction from the base case demand. 

For each demand level, Fig. 6-17 displays the fleet configurations recommended by each 

metaheuristic. In addition, Fig. 6-18 provides a comparative analysis of the cost and occupancy 

levels among the different metaheuristics. Based on our findings, utilizing more accurate and 

advanced solution algorithms, such as GWO-SA and GA-SA, proves to be more relevant for 

the optimal scheduling of mixed fleets in highly crowded situations that require a larger fleet 

size. The diversity of potential solutions for assigning different types of vehicles becomes 

increasingly intricate in such scenarios. However, as the demand decreases, the performance 

differences among the algorithms become less significant, and the use of simpler algorithms is 

enough to produce satisfactory results. For example, when comparing the solutions of the GA 

and GWO-SA at DM=0.8 (Fig. 6-18), the GWO-SA’s solution leads to an 8.1% reduction in 

total cost (from 1.48 to 1.36 €/pax) and an 18.2% reduction in occupancy level (from 0.77 to 

0.63). However, at lower demand levels, there are no significant differences in the solutions 

provided by the algorithms. The occupancy levels depicted in Fig. 6-20 highlight the 

superiority of the GWO-SA algorithm in highly crowded situations, whereas the performance 

differences between the algorithms diminish as the demand decreases.  
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Figure 6-17 Fleet composition (vehicle assignment solutions) proposed by each metaheuristic 

for different demand levels (DM stands for demand multiplier, e.g., DM=0.8 represents a 

20% reduction in the base case demand). 

 

 

Figure 6-18 Comparison of cost and occupancy levels obtained by each metaheuristic at 

different demand levels.  
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Fig. 6-19 showcases the dispatching plans for heterogeneous fleet operations at DM=0.8 and 

DM=0.6. Although all three algorithms (GWO, GA-SA, and GWO-SA) propose the same fleet 

composition of 26 vehicles at DM=0.6, the dispatching scheme generated by GWO-SA proves 

to be more effective, resulting in greater reductions in cost and occupancy levels. 

 

 

Figure 6-19 Dispatching schemes offered by each metaheuristic for different demand levels. 

 

As the demand declines in the scheduling of heterogeneous fleets, the overall size of the 

allocated fleet, particularly the proportion of larger vehicles, decreases. For instance, when the 
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demand is reduced using a DM of 0.6 (Fig. 6-17), the fleet size of 39 vehicles (including 19 

type-A, 7 type-B, and 13 type-C buses) decreases to a fleet size of 26 vehicles (including 22 

type-A, 1 type-B, and 3 type-C buses) in the GWO-SA algorithm. This indicates that the 

number of smaller (type A) vehicles increases while the number of larger vehicles decreases, 

resulting in a more cost-effective operation. 

 

 

Figure 6-20 Occupancy levels of vehicles in the best solutions proposed by each 

metaheuristic for different demand levels. 

 

6.4.2.2 Sensitivity to crowding discomfort valuations  

We conduct a sensitivity analysis on the solutions generated by the GWO-SA algorithm 

to assess their sensitivity to variations in user cost savings from crowding. We change the 

crowding multiplier values by ±10%, ±20%, and ±30% to evaluate the algorithm’s response. 

The higher crowding multipliers represent scenarios comparable to the COVID-19 situation, 

where the fear or possibility of infection can increase passenger discomfort inside vehicles, as 

demonstrated by studies such as Basnak et al. (2022) estimating crowding multipliers during 

the COVID-19 pandemic. The results of the sensitivity analysis provide valuable managerial 

insights for fleet operational planning in pandemic-related circumstances, as shown in  

Fig. 6-21. For example, when user dissatisfaction from crowding increases by 30%, we observe 

a corresponding 18% increase in the fleet size. Notably, the number of larger vehicles (type B 
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and type C) shows a higher rate of increase by 42.8% and 15.4%, respectively. In contrast, the 

number of type-A vehicles shows a more modest increase of 10.5%. 

 

 

Figure 6-21 Sensitivity to crowding discomfort. 

 

6.4.2.3 Sensitivity to uncertain driving times 

We investigate the impact of uncertain travel times on vehicle assignment strategies in 

the MFBS problem. External factors such as road congestion, driver performance, and weather 

can introduce variability in the driving times of vehicles (Sadrani et al., 2022b). In this part, 

instead of using deterministic driving times, we incorporate random driving times derived from 

a log-normal distribution4. 

In the stochastic setting, each service may encounter a different driving time for the same 

segment, introducing uncertainty in travel times. To handle this uncertainty, we deploy an 

independent MCS program during the evaluation phase of the metaheuristics, enabling us to 

conduct enough evaluation runs (1000) to determine the OFV of each solution  

(Zhang et al., 2021, Sadrani et al., 2022a), as opposed to a single run that is suitable for 

 
4 Asymmetrical distributions such as the lognormal, loglogistic and gamma are usually found to provide good fits to the 

observed distributions of travel times by cars and buses, given that travel times are skewed with long right tails due to 

congestion (Duran-Hormazábal and Tirachini, 2016), while in some cases normal distributions have also been proposed (for a 

full review of travel time distributions in public transport see Büchel and Corman 2020). 
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deterministic cases. Essentially, the MCS program functions as a subroutine and is triggered 

specifically during the evaluation phase. 

In Table 6-8, we report the sensitivity of the GWO-SA algorithm’s solutions when 

uncertain travel times are incorporated. The results show an increase in the number of 

operational services, specifically a 13.6% rise in the number of type-A vehicles  

(from 19 to 22). This adjustment compensates for unfavorable waiting times experienced by 

users due to the unpredictability of driving times. 

 

Table 6-8 Sensitivity to driving time uncertainty. 

Travel time scenario 
No. of vehicles (veh) 

Type A Type B Type C 

Deterministic 19 7 13 

Uncertain 22 7 13 
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7 Conclusions 

This dissertation explores the evolving landscape of urban bus systems, primarily 

focusing on developing mathematical optimization models and solution algorithms to address 

the aspects and complexities associated with the planning of automated, electric, and  

mixed-sized vehicle fleets. Furthermore, it introduces novel findings and insights, substantially 

enriching our scientific understanding of the optimal design and planning of these emerging 

bus fleets compared to traditional ones. 

First, we develop a mathematical modeling framework to optimize service frequency and 

vehicle size for automated bus services, with stochastic travel times, time-dependent demand 

volumes, crowding externalities for both sitting and standing passengers, and the possibility of 

denied boarding due to capacity constraints. The model is able to estimate in-vehicle crowding 

discomfort at a microscopic level, bus by bus. Considering both passengers’ and operators’ 

costs, the model aims to find the optimal service frequency and vehicle size with minimal total 

costs of a public transport service. Extensive experiments are performed under different 

scenarios to achieve a detailed assessment of the service and cost implications of the 

deployment of automated bus systems. 

To evaluate the applicability of the proposed model, several deployment scenarios are 

simulated through the combination of different cases: (i) vehicle technology (human-driven or 

automated vehicles), (ii) travel time between stops (deterministic or stochastic travel times), 

and (iii) crowding discomfort externalities (considering or ignoring in-vehicle crowding costs). 

Our experiments are executed for two real-world case studies in Regensburg, Germany, and 

Santiago, Chile. Besides, to further assess the possible effects of automation on the social costs 

of a public transportation service, an extensive range of sensitivity analysis tests are carried out 

on human driving cost savings with automation, travel time uncertainty, dwell time regularity, 

the time lost to open and close doors with automation, crowding multipliers, denied boarding 

saving values, and user- and operator-oriented design solutions. 

The main findings are summarized as follows: 

• When considering passenger comfort, both human-driven and automated bus 

fleets increase vehicle size. However, automated fleets increase service frequency 

at a higher rate. 

• The deployment of automated bus services can significantly alleviate  

crowding-related capacity shortages as well, through a reduction or elimination 
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of denied boarding problems. Indeed, the actual benefits of automation might be 

underestimated if crowding effects are not considered in the design of an 

automated bus system. 

• The consideration of stochastic travel times between stops in the deployment 

scenarios results in optimal frequencies that are increased for both fleets of 

human-driven and automated driving buses; however, frequencies are increased 

at a higher rate for automated bus fleets. 

• Automation can have significant impacts on the reliability of public transport 

operations. Improved reliability in automated bus services can reduce passenger 

waiting time costs by enhancing the predictability of travel times. 

• Interestingly, even though the potential of vehicle automation on reducing 

waiting times through increased frequencies is larger in high-income countries 

(Tirachini and Antoniou, 2020), we find that the final outcome is counterbalanced 

by the actual demand level in crowding-sensitive environments. In our case, the 

relative increase in optimal frequency was roughly similar in the Santiago and 

Regensburg case studies with the adoption of automated vehicles, because even 

though there is a greater potential of cost reduction in Regensburg due to larger 

driver cost savings, passenger demand in the Santiago case study was 

significantly larger, and therefore the crowding discomfort effect on pushing 

optimal frequencies up was stronger in Santiago than in Regensburg. Only a 

model, in which the value of travel time savings is sensitive to passenger 

occupancy levels, would be able to catch this effect. 

Second, we propose an Electric Bus (EB) fleet planning problem in the form of an Integer 

Nonlinear Programming (INLP) model, which integrates a variable energy consumption model 

into the planning process. Our contributions include optimizing vehicle type selection and 

service frequencies with EBs, developing a comprehensive cost model, considering  

size-varying factors affecting the economic aspects of EB operations, time-dependent 

passenger demand modeling, and formulation of the EB planning problem as a combinatorial 

optimization model. From a policy point of view, this model would be useful specially in the 

early stages of an electric bus project, when making decisions on the type of bus and the number 

of vehicles to acquire. We apply our model to a bus route in Santiago de Chile and conducted 

several sensitivity tests to analyze the results. Our model yields several relevant findings: 
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• We demonstrate that using a fixed energy rate instead of a variable (detailed) 

energy estimation model can significantly reduce the accuracy of planning 

outcomes in terms of optimal supply levels. 

• We quantify the accuracy loss in supply decisions and find that as the 

demand level rises, the sensitivity of solutions to the energy estimation 

method and to slope variations becomes increasingly important. 

• We find that the energy consumption cost function is not monotonic as a 

function of service frequency. Only an EB planning problem with a variable 

energy consumption model (which measures load- and slope-sensitive 

effects) was able to identify this effect. 

• We find that the average operator costs decrease as a function of demand, 

indicating the existence of economies of scale on a service with electric 

buses, even though the energy consumption cost function is not monotonic. 

• We show that despite the increased capital and labor costs associated with 

higher EB frequency, cost savings from decreased user and energy costs are 

more noticeable up to certain levels, which can balance overall costs. 

• We indicate the importance of depot distance in determining frequency 

plans when the distance traveled by vehicles between the depot and the bus 

line is significant. 

• We explore the potential effects of regenerative braking systems on the EB 

planning and show that frequencies and total costs can be optimally reduced 

due to the role of regenerative technology in electric bus energy savings. 

Third, we also develop a Multi-Criteria Decision-Making (MCDM) approach for 

selecting the best EB charging strategy, considering a comprehensive range of criteria, 

including economic, environmental, social, operational, and quality-of-service criteria. We 

consider two common charging strategies - overnight (slow) charging and opportunity (fast) 

charging - each with its advantages and disadvantages. A thorough literature review and a 

survey of EB experts are conducted to identify key decision-making factors in this area. A 

Fuzzy Best-Worst Method (FBWM) is designed to determine the weight of criteria, and a 

Fuzzy Ranking of Alternatives through Functional mapping of criterion subintervals into a 

Single Interval (FRAFSI) method is designed to rank available charging strategies for EB 
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systems in Munich, Germany. Other alternative-ranking methods are also tested for 

comparison, including fuzzy TOPSIS and fuzzy EDAS methods. 

The research yields insightful findings that can serve as a valuable resource for transport 

agencies, decision makers, and future EB research: 

• The most crucial aspect, affecting policymakers’ decisions in selecting charging 

strategies, is found to be the economic one, followed by the operational and 

environmental aspects. The social aspect is considered the least important 

criterion. 

• The infrastructure cost is identified as the most important factor in the economic 

category, followed by the battery cost and operational cost. 

• In the global ranking of criteria, the battery cost is found to be the most important 

factor, followed by reliability, travel time, land acquisition cost, and driving 

range. 

• The experts’ assessments indicate a preference for overnight charging over 

opportunity charging. Besides, the results of the FRAFSI are in line with other 

methods (fuzzy TOPSIS and fuzzy EDAS). 

• Analyzing the relative superiority of each alternative, the most significant 

differences between the two charging methods are evident in the charging 

duration, battery cost, and reliability. However, minor differences are found in 

terms of vehicle capacity and charging infrastructures’ impacts on surrounding 

residential areas. 

• The ranking of alternatives is shown to be sensitive to changes in the calculated 

weights for charging duration and battery cost. 

Finally, we develop two novel Mixed-Integer Nonlinear Programming (MINLP) models 

to address Mixed-Fleet Bus Scheduling (MFBS) problems in simple and advanced versions, as 

combinational optimization problems. 

In the simpler version of the MFBS problem, we formulate a MINLP model to optimize 

dispatching schemes (dispatching orders and times) when a given set of buses of different sizes 

are available to serve demand along a route. The objective is to minimize the average passenger 

waiting time under time-dependent demand volumes. Stochastic travel times between stops 

and vehicle capacity constraints (denied boarding situations) are explicitly modeled. A 
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Simulated Annealing (SA) algorithm coupled with a Monte Carlo Simulation (MCS) 

framework is developed to solve large real-world instances in the presence of stochastic travel 

times. The SA’s results are also compared with the optimal answers achieved by GAMS in 

small- and medium-sized problems. To highlight the value of having fine-grained demand 

information (every 15 minutes instead of every 60 minutes) when designing a dispatching 

scheme, the experiments are also tested with low-resolution demand volumes  

(one-hour-dependent demand volumes). Overall, results show that: 

• In addition to dispatching headway, bus dispatching sequence can strongly affect 

waiting times under a mixed-fleet operation. 

• With an optimal dispatching sequence, a more accurate adjustment of supply to 

demand is possible in accordance with time-dependent demand conditions, and 

the total savings in waiting time are mainly driven by a further reduction in the 

number of passengers left behind. 

• The optimality of uneven dispatching headways stems from two elements: having 

a mixed fleet and having localized peaks on demand that make buses run full. 

• In heavy-demand bus corridors in which passenger arrival rates follow a  

bell-shaped pattern, not taking the detailed (high-resolution) demand information 

into account can lead to an unrealistic estimation of the passenger waiting time. 

Then, we progress to the development of a more comprehensive MFBS model, expanding 

significantly on the simpler version. This advanced model incorporates a more comprehensive 

set of real-world operational constraints. These constraints include resource availability, sitting 

and standing space limitations, and various objective functions. Unlike the simpler MFBS 

model, this advanced version considers operator costs and user costs, which encompass  

in-vehicle trip times and trip comfort. Additionally, it introduces new integer decision variables 

for optimizing vehicle assignment programs. Consequently, this advanced problem goes 

beyond simply optimizing vehicle dispatching plans, and also determining the optimal number 

and types of vehicles required for mixed-fleet operations. 

To tackle the complexity of this version of the MFBS problem and ensure practical 

viability, we employ two well-established metaheuristics: Genetic Algorithm (GA) and Grey 

Wolf Optimizer (GWO). We also developed two hybrid metaheuristic algorithms, GA-SA (a 

combination of GA and SA) and GWO-SA (a combination of GWO and SA), demonstrating 

promising performance in improving solution quality and optimization capabilities. A Taguchi 
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approach is utilized to calibrate the parameters of these metaheuristics, ensuring their 

robustness in solving the MFBS problem. 

The performance of the proposed metaheuristics is evaluated on various test samples, 

including small, medium, and large-scale samples, considering CPU times and solution quality. 

We also compare the solutions of the metaheuristics with the optimal solutions acquired by 

GAMS software in small and medium-scale samples. By applying our model to a real bus 

corridor in Santiago, Chile, we optimize the operational plans and improve the quality of 

service for travelers. Overall, the main results are listed here: 

• The GWO-SA outperforms the other metaheuristics. It also exhibits superior stability 

with fewer variations across multiple runs. 

• The GA-SA demonstrates superior solution quality compared to both GA and GWO. 

• Although GA and GWO algorithms propose larger fleet sizes, GA-SA and GWO-SA 

algorithms with smaller fleet sizes achieve lower user costs and vehicle occupancy 

levels. This underscores the importance of generating precise dispatching plans through 

advanced algorithms for cost savings and improved performance. 

• Utilizing more advanced algorithms makes a difference in terms of service quality 

and optimal fleet size in crowded scenarios, whereas the choice of solution 

algorithm becomes less significant as demand decreases. 

 

• Work limitations and future research ideas 

This dissertation has some limitations normally. In future investigations regarding the 

design of automated bus systems, it is possible to incorporate additional decision variables into 

our models. For example, one could determine the optimal number of seats for different sizes 

of automated buses, along with the optimal internal layout and space allocated to seating and 

standing areas. Future studies may also explore a network modeling framework for the optimal 

deployment of automated bus services on multiple lines within a bus network, taking into 

account crowding externalities. 

To extend our EB planning models, it could be interesting to incorporate uncertainties in 

energy consumption due to factors such as temperature and travel times. Developing solution 

algorithms that can handle these uncertainties would be a valuable avenue for future research. 

Additionally, considering the effects of in-vehicle occupancy levels on HVAC energy 
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consumption is worth exploring, as increasing passenger occupancy can impact HVAC energy 

consumption. 

Regarding the charging strategy selection research, the number of experts involved in our 

BWM surveys was limited. Future research with a more diverse panel of experts could enhance 

the reliability of our findings. Additionally, it is useful to recognize that the criteria used in our 

work may not account for all relevant factors, and there could be potential biases in human 

judgments. Future studies could also build upon this research by considering the integration of 

renewable energy sources in the charging process and exploring the impact of advancements 

in battery technology on the charging strategy selection process. 

In the realm of mixed-fleet operations, although we considered stochastic riding times in 

our models, another possible extension is considering dwell times at bus stops to be stochastic. 

Future research can expand the models to include other vehicle technologies, such as automated 

buses, and explore the combined case of human-driven and automated vehicles for public 

transport services. These avenues for future research provide opportunities to build upon the 

contributions made in this dissertation. 
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Appendix A. Data description. 

 

Table A1 Parameter values for model applications. 

Parameter Unit Regensburg Santiago 

Total demand pax/h 638 5764 

Route length km 6.3 9 

Acceleration time s 6 6 

Deceleration time s 6 6 

Time for opening and closing bus doors s 6 6 

Average alighting time per passenger s/pax 1.5 1.5 

Average boarding time per passenger s/pax 2.5 2.5 

Monetary value of in-vehicle time* €/h 5.2 2.9 

Monetary value of initial waiting time* €/h 11.4 3.5 

Monetary value of extra waiting time due to denied 

boarding** 
€/h 39.9 12.3 

Driver cost* €/veh-h 15.3 6.2 

Electric energy tariff €/kWh 0.31 0.14 

Average weight of one passenger kg 75 75 

Reduced human driving cost automation (base case 

scenarios) 
% 50 50 

Reduced running cost automation % 10 10 

* Source: Tirachini and Antoniou (2020). 

** The monetary value of extra waiting time due to denied boarding is 3.5 times higher than that of initial 

waiting time (Cats et al., 2016). 

 

Size-dependent parameters are presented in Tables A2 and A3, taken from the work of 

Tirachini and Antoniou (2020) for both Germany and Chile. 
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Table A2 Size-dependent parameters, Regensburg (Source: Tirachini and Antoniou, 2020). 

Parameter Unit Mini bus Standard bus Rigid bus Articulated bus 

Vehicle length m 8 12 15 18 

Vehicle capacity pax/veh 44 70 90 110 

No. of seats - 25 40 50 60 

No. of doors - 1 2 3 4 

PA=PB* % 100 60 43 30 

Vehicle running cost €/veh-km 0.7 1.1 1.3 1.6 

Vehicle capital cost €/veh-h 7.7 11.5 14.7 17.2 

Increased capital cost 

automation 
% 37 25 25 24 

* PA and PB are the proportions of passengers getting off and on through the busiest door respectively. 

 

Table A3 Size-dependent parameters, Santiago (Source: Tirachini and Antoniou, 2020). 

Parameter Unit Mini bus Standard bus Rigid bus Articulated bus 

Vehicle length m 8 12 15 18 

Vehicle capacity1 pax/veh 50 90 115 145 

No. of seats - 25 40 50 60 

No. of doors - 1 2 3 4 

PA=PB* % 100 60 43 30 

Vehicle running cost €/veh-km 0.4 0.7 0.9 1.1 

Vehicle capital cost €/veh-h 5.2 7.7 9.5 11.6 

Increased capital cost 

automation 
% 37 25 25 24 

 

▪ Demand data for the application of automated bus planning model 

In Table A4, time-dependent passenger arrival rates are listed for the bus corridor in 

Regensburg during a planning period extending from 7:00 to 9:00 AM. As can be seen, we 

provide a 15-minute-dependent passenger demand (remaining fixed during each interval of 15 

minutes). Moreover, in Table A5, we provide a fixed demand case used for performing a 

 

1 It should be noted that the bus capacity is commonly assumed to be larger in Santiago, due to a higher density of standees 

normally accepted among public transport users in Santiago compared to Germany (Tirachini and Antoniou, 2020). 
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sensitivity analysis test in Section 6.1.5. The values in Table A5 are derived from averaging 

arrival flow rates within the corresponding 15-minute intervals, given in Table A4. 

 

Table A4 15-minute-dependent passenger arrival rates (unit: pax/min). 

Stop 
7:00- 7:15- 7:30- 7:45- 8:00- 8:15- 8:30- 8:45- 
7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 

1 0.80 0.86 0.95 1.16 1.10 1.00 0.95 0.85 
2 0.25 0.27 0.27 0.33 0.29 0.27 0.25 0.23 
3 0.20 0.21 0.21 0.26 0.25 0.23 0.21 0.20 
4 0.32 0.34 0.34 0.36 0.35 0.30 0.27 0.25 
5 0.26 0.28 0.31 0.38 0.36 0.35 0.29 0.27 
6 0.50 0.52 0.65 0.75 0.60 0.71 0.65 0.61 
7 0.21 0.23 0.24 0.30 0.26 0.25 0.22 0.20 
8 0.86 0.91 0.79 0.93 0.95 0.81 0.77 0.71 
9 0.46 0.49 0.56 0.68 0.65 0.62 0.55 0.51 
10 0.64 0.69 0.7 0.83 0.82 0.78 0.71 0.66 
11 0.23 0.25 0.27 0.30 0.29 0.27 0.23 0.21 
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
13 0.81 0.76 1.00 1.15 1.10 0.95 1.00 0.95 
14 0.33 0.35 0.34 0.28 0.37 0.20 0.19 0.18 
15 0.14 0.14 0.21 0.26 0.22 0.30 0.14 0.13 
16 0.42 0.44 0.39 0.45 0.26 0.28 0.29 0.28 
17 0.31 0.33 0.30 0.44 0.36 0.33 0.38 0.35 
18 0.45 0.47 0.76 0.64 0.63 0.78 0.58 0.54 
19 0.25 0.26 0.24 0.19 0.20 0.21 0.25 0.23 
20 0.91 0.95 0.74 0.88 0.76 0.49 0.53 0.65 
21 0.56 0.59 0.67 0.88 0.59 0.78 0.50 0.46 
22 0.71 0.74 0.83 0.83 0.54 0.50 0.77 0.72 
23 0.27 0.28 0.34 0.18 0.35 0.23 0.18 0.21 
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table A5 Fixed passenger arrival rates (unit: pax/min). 

Stop 7:00-9:00 
1 0.96 
2 0.27 
3 0.22 
4 0.32 
5 0.31 
6 0.62 
7 0.24 
8 0.84 
9 0.57 
10 0.73 
11 0.26 
12 0 
13 0.95 
14 0.28 
15 0.19 
16 0.35 
17 0.35 
18 0.61 
19 0.23 
20 0.74 
21 0.63 
22 0.71 
23 0.26 
24 0 
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▪ Demand data for the application of simple mixed-fleet bus scheduling model 

For the bus corridor in Sydney, Tables A6 and A7 list the time-dependent passenger 

arrival rate (𝜆 𝑗[𝑡]) at each stop during the considered time horizon for every 15 minutes  

(high-resolution demand) vs. every 60 minutes (low-resolution demand).  Indeed, in the  

high-resolution demand case, the passenger arrival rates are assumed to be constant during each  

15-minute time interval; however, in the low-resolution demand case, the passenger arrival 

rates remain constant during each one-hour period. The unit of arrival rate is passengers/min, 

i.e., the number of passengers arriving at a stop per minute. 

 

Table A6 High-resolution passenger arrival rates (unit: pax/min). 

Stop 
7:00-
7:15 

7:15-
7:30 

7:30-
7:45 

7:45-
8:00 

8:00-
8:15 

8:15-
8:30 

1 2.56 3.22 3.94 4.42 4.21 3.81 
2 0.85 0.89 1.01 1.27 1.13 1.06 
3 0.67 0.77 0.82 0.99 0.97 0.89 
4 1.08 0.96 1.31 1.38 1.35 1.15 
5 0.88 1.05 1.21 1.47 1.37 1.33 
6 1.66 2.32 2.32 2.88 2.29 2.72 
7 0.72 0.79 0.93 1.15 1.02 0.96 
8 2.87 2.72 3.02 3.56 3.64 3.11 
9 1.55 1.95 2.15 2.59 2.49 2.39 
10 2.14 2.52 2.66 3.17 3.15 2.98 
11 0.79 0.83 1.06 1.17 1.11 1.04 
12 0 0 0 0 0 0 
13 2.04 3.54 3.96 4.34 4.04 3.62 
14 1.11 0.71 1.31 1.07 1.41 0.79 
15 0.47 0.51 0.82 0.99 0.87 1.16 
16 1.40 1.06 1.51 1.73 1.01 1.09 
17 1.05 1.36 1.15 1.69 1.37 1.26 
18 1.49 2.08 2.90 2.45 2.40 2.99 
19 0.83 0.91 0.93 0.75 0.76 0.81 
20 3.01 1.91 2.11 3.38 2.91 1.87 
21 1.86 1.76 2.58 3.37 2.24 2.98 
22 2.35 2.77 3.19 3.17 2.05 1.93 
23 0.91 0.66 1.32 0.70 1.33 0.88 
24 0 0 0 0 0 0 
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Table A7 Low-resolution passenger arrival rates2 (unit: pax/min). 

Stop 7:00-8:00 8:00-8:30 
1 3.54 4.01 
2 1.01 1.09 
3 0.81 0.93 
4 1.18 1.25 
5 1.15 1.35 
6 2.29 2.51 
7 0.89 0.99 
8 3.04 3.37 
9 2.06 2.44 
10 2.62 3.06 
11 0.96 1.07 
12 0 0 
13 3.47 3.83 
14 1.05 1.10 
15 0.69 1.02 
16 1.43 1.05 
17 1.31 1.32 
18 2.23 2.69 
19 0.86 0.78 
20 2.60 2.39 
21 2.39 2.61 
22 2.87 1.99 
23 0.89 1.11 
24 0 0 

 

▪ Generated data for testing advanced mixed-fleet bus scheduling model 

Table A8 lists the characteristics of fleet composition (resource availability), demand 

level, and bus route for the simulation of test instances, solved to validate the performance of 

the metaheuristics. 

  

 
2 The values in Table A7 are obtained through the average of passenger arrival rates during the relevant 15-minute time 

intervals presented in Table A6. 
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Table A8 Characteristics of test instances. 

Class Instance ID 

Max No. of 

available vehicles 

for operations 

𝑼𝑨 𝑼𝑩 𝑼𝑪 
No. of 

stations 

Demand level 

(pax/h) 

Small S1 4 2 1 1 6 300 

 S2 4 1 1 2 6 310 

 S3 5 2 2 1 6 400 

 S4 5 2 1 2 6 420 

 S5 6 2 2 2 8 450 

 S6 6 1 3 2 8 480 

 S7 6 1 2 3 8 500 

 S8 7 3 3 1 8 520 

 S9 7 2 3 2 8 550 

 S10 7 1 3 3 8 590 

Medium M1 8 4 2 2 10 600 

 M2 8 3 3 2 10 635 

 M3 8 2 3 3 10 670 

 M4 9 4 3 2 12 700 

 M5 9 3 3 3 12 700 

 M6 9 2 3 4 12 750 

 M7 10 4 4 2 14 850 

 M8 10 4 3 3 14 850 

 M9 10 2 4 4 14 870 

 M10 11 3 4 4 14 950 

Large L1 12 5 4 3 16 1000 

 L2 15 7 4 4 16 1100 

 L3 18 9 5 4 16 1300 

 L4 22 12 5 5 16 1500 

 L5 26 13 7 6 18 2000 

 L6 30 15 8 7 18 2300 

 L7 33 16 9 8 18 2800 

 L8 33 12 11 10 18 2800 

 L9 38 22 8 8 20 3000 

 L10 40 20 10 10 20 3300 

𝑈𝐴, 𝑈𝐵, and 𝑈𝐶  stand for the maximum resource availability on type A (12-m long), type B (15-m long), 

and type C (18-m long) vehicles, respectively. 
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