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Abstract

We present the results of a friendly competition for formal verification of continuous
and hybrid systems with nonlinear continuous dynamics. The friendly competition took
place as part of the workshop Applied Verification for Continuous and Hybrid Systems
(ARCH) in 2023. This year, 6 tools participated: Ariadne, CORA, DynIbex, JuliaReach,
KeYmaera X and Verse (in alphabetic order). These tools are applied to solve reachability
analysis problems on six benchmark problems, two of them featuring hybrid dynamics. We
do not rank the tools based on the results, but show the current status and discover the
potential advantages of different tools.

G. Frehse and M. Althoff (eds.), ARCH23 (EPiC Series in Computing, vol. 96), pp. 61–88
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1 Introduction

Disclaimer The presented report of the ARCH-friendly competition for continuous and
hybrid systems with nonlinear dynamics aims at providing a landscape of the current capa-
bilities of verification tools. We would like to stress that each tool has unique strengths—
though not all of their features can be highlighted within a single report. To reach a
consensus in what benchmarks are used, some compromises had to be made so that some
tools may benefit more from the presented choice than others. The obtained results have
been verified by an independent repeatability evaluation. To establish further trustworthi-
ness of the results, the code with which the results have been obtained is publicly available
as Docker [17] containers at gitlab.com/goranf/ARCH-COMP.

In this report, we summarize the results of the seventh ARCH-friendly competition on the
reachability analysis of continuous and hybrid systems with nonlinear dynamics. Given a system
defined by a nonlinear Ordinary differential equation (ODE) ˙⃗x = f(x⃗, t) along with an initial
condition x⃗ ∈ X0, we apply the participating tools to prove properties of the state reachable set
in a bounded time horizon. The techniques for solving such a problem are usually very sensitive
to not only the nonlinearity of the dynamics but also the size of the initial set. This is also one
of the main reasons why most of the tools require quite a lot of computational parameters.

In this report, 6 tools, namely Ariadne, CORA, DynIbex, JuliaReach, KeYmaera X and
Verse participated in solving problems defined on three continuous and two hybrid benchmarks.
The continuous benchmarks are the Traffic scenario, the Robertson chemical reaction system,
the Coupled Van der Pol oscillator and the Laub-Loomis model of enzymatic activities. The
hybrid benchmarks model a Lotka-Volterra predator-prey system with a Tangential Crossing,
and a Space Rendezvous system.

The benchmarks were selected based on discussions between the tool authors, with a pref-
erence on keeping a significant set of the benchmarks from the previous year. It is apparent
that they come from very different domains and aim at identifying issues specific to nonlinear
dynamics, possibly with the addition of hybrid behavior.

2 Participating Tools

Ariadne. (Luca Geretti, Pieter Collins) Ariadne [22, 16] is a library based on Computable
Analysis [44] that uses a rigorous numerical approach to all its algebraic, geometric and logical
operations. In particular, it performs numerical rounding control of all external and internal
operations, in order to enforce conservative interpretation of input specification and guarantee
formal correctness of the computed output. It focuses on nonlinear systems, both continuous
and hybrid, supporting differential and algebraic relations, with a focus on compositionality
[20]. It has been mainly applied to the verification of robotic tasks [28]. The library is written
in modern C++ with an optional Python interface. The official site for Ariadne is https:
//www.ariadne-cps.org.
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CORA. (Matthias Althoff, Mark Wetzlinger) The tool COntinuous Reachability Analyzer
(CORA) [6, 7] realizes techniques for reachability analysis with a special focus on developing
scalable solutions for verifying hybrid systems with nonlinear continuous dynamics and/or non-
linear differential-algebraic equations. A further focus is on considering uncertain parameters
and system inputs. Due to the modular design of CORA, much functionality can be used for
other purposes that require resource-efficient representations of multi-dimensional sets and op-
erations on them. CORA is implemented as an object-oriented MATLAB code. The modular
design of CORA makes it possible to use the capabilities of the various set representations for
other purposes besides reachability analysis. While CORA uses verified algorithms, it does
not consider rounding errors since the main focus of the toolbox is the fast prototyping of
new reachability algorithms and concepts, and for this purpose the effect of rounding errors is
usually negligible. CORA is available at cora.in.tum.de.

DynIbex. (Julien Alexandre dit Sandretto, Elena Ivanova) A library merging interval con-
straint satisfaction problem algorithms and guaranteed numerical integration methods based
on Runge-Kutta numerical schemes implemented with affine arithmetic. This library is able
to solve ordinary differential equations [2] and algebraic differential equations of index 1 [3],
combined with numerical constraints on state variables and reachable tubes. It produces sound
results taking into account round-off errors in floating-point computations and truncation er-
rors generated by numerical integration methods [?]. Moreover, constraint satisfaction problem
algorithms offer a convenient approach to check properties on reachable tubes as explained
in [4]. This library implements in a very generic way validated numerical integration meth-
ods based on Runge-Kutta methods without many optimizations. Indeed, the computation of
the local truncation error, for each method, depends only on the coefficients of Runge-Kutta
methods and their order. DynIbex is freely available at http://perso.ensta-paristech.fr/
˜chapoutot/dynibex/. Figures have been produced with VIBes library [23] which is available
at http://enstabretagnerobotics.github.io/VIBES/. Computations are performed on a
Lenovo laptop with i5 processor, and computation times gather all the process from compila-
tion to figure producing.

JuliaReach. (Luis Benet, Marcelo Forets, Christian Schilling) JuliaReach [18] is an open-
source software suite for reachability computations of dynamical systems, written in the Ju-
lia language and available at http://github.com/JuliaReach. Linear, nonlinear, and hy-
brid problems are modeled and solved using the library ReachabilityAnalysis.jl, which can be
used interactively, for example in Jupyter notebooks. Our implementation of the Taylor-model
based solvers, (TMJets20, TMJets21a, and TMJets21b), which are implemented in TaylorMod-
els.jl [15], integrates the packages TaylorSeries.jl [12, 13] and TaylorIntegration.jl [36], and the
IntervalArithmetic.jl [14] package for interval methods. The algorithms applied in this report
first compute a non-validated integration using a Taylor model of order nT . The coefficients of
that series are polynomials of order nQ in the variables that denote small deviations of the ini-
tial conditions. We obtain a time step from the last two coefficients of this time series. In order
to validate the integration step, we compute a second integration using intervals as coefficients
of the polynomials in time, and we obtain a bound for the integration using a Lagrange-like
remainder. The remainder is used to check the contraction of a Picard iteration. If the combi-
nation of the time step and the remainder do not satisfy the contraction, we iteratively enlarge
the remainder or possibly shrink the time step. Finally, we evaluate the initial Taylor series with
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the valid remainder at the time step for which the contraction has been proved, which is also
evaluated in the initial set to yield an over-approximation. The approach is (numerically) sound
due to rigorous interval bounds in the Taylor approximation. Discrete transitions for hybrid
systems and Taylor-model approximations are handled using the set library LazySets.jl [24].

KeYmaera X. (Stefan Mitsch) KeYmaera X [26] is a theorem prover for the hybrid systems
logic differential dynamic logic (dL). It implements the uniform substitution calculus of dL [37].
A comparison of the internal reasoning principles in the KeYmaera family of provers with a
discussion of their relative benefits and drawbacks is in [35], and model structuring and proof
management on top of uniform substitution is discussed in [33]. KeYmaera X supports sys-
tems with nondeterministic discrete jumps, nonlinear differential equations, nondeterministic
inputs, and allows defining functions implicitly through their characterizing differential equa-
tions [27]. It provides invariant construction and proving techniques for differential equations
[41, 38], and stability verification techniques for switched systems [42]. Unlike numerical hy-
brid systems reachability analysis tools, KeYmaera X also supports unbounded initial sets and
unbounded time analysis. Proofs in KeYmaera X can be conducted interactively [34], steered
with tactics [25], or attempted fully automatic.

Verse. (Yangge Li, Sayan Mitra, Daniel Zhuang) Verse [32] is an open-source Python library
for verifying multi-agent scenarios. It converts the scenario into a hybrid system and uses
reachability analysis to verify the generated hybrid system. Verse can handle systems with black
box dynamics, uncertainty in discrete transitions, and uncertainty in initial states. Discrete
transitions in Verse are written using executable Python code, and the library parses the code
to obtain guards and resets. Under the hood, Verse employs the simulation-driven reachability
analysis algorithm from [?]. It uses a finite number of simulations of trajectories in a given
mode, along with a discrepancy function that bounds the sensitivity of these trajectories, to
over-approximate the reachable states. To compute the discrepancy function, Verse employs
a probabilistic algorithm that learns the parameters of an exponential discrepancy function
from simulation data by solving a linear program. Verse is publicly available on GitHub at
https://github.com/AutoVerse-ai/Verse-library.

64

https://github.com/JuliaReach/LazySets.jl
https://github.com/AutoVerse-ai/Verse-library


ARCH-COMP23 Nonlinear Dynamics Geretti et al.

3 Benchmarks
For the 2023 edition of the competition we essentially kept the original benchmark suite. How-
ever, we modified the van der Pol system to make it more amenable to analysis with respect to
last year.

3.1 Traffic scenario benchmark (TRAF22)
The avoidance of collisions in traffic scenarios is of utmost interest in the development of motion
planners for autonomous driving. Recently [30], a workflow for the automated generation of
verification tasks has been proposed based on an extraction of traffic scenario benchmarks from
the CommonRoad framework [8].

3.1.1 Model

The nonlinear continuous-time dynamics are represented by a kinematic single-track model [30,
Eq. (1)]: 

δ̇ = u1 + w1

ψ̇ = v

lwb
tan δ

v̇ = u2 + w2

ṡx = v cosψ
ṡy = v sinψ,

where the state vector x ∈ R5 consists of the steering angle δ, the vehicle heading ψ, the vehicle
velocity v, and the positions sx, sy of the vehicle along the x-axis and y-axis. The control
inputs u1, u2 represent the steering angle and acceleration, respectively. Additionally, model
uncertainties and disturbances affecting the vehicle are modeled by the disturbances w1, w2. In
order to follow a reference trajectory xref ∈ R5, we apply a feedback controller of the form [30,
Eq. (2)]

ufb(x̂) = uref +K(x̂− xref )

with the time-varying reference input uref ∈ R2, the time-varying feedback matrix K ∈ R2×5,
and the measured state x̂ := x + z defined using the measurement error z ∈ R5. Thus, the
ten-dimensional closed-loop system f(x, u, w) is obtained by inserting the control law into the
five-dimensional model: {

ẋ = f(x, uref +K(x+ z − xref ), w)
ẋref = f(xref , uref , 0)

3.1.2 Analysis

The set for the measurement error Z ⊂ R5, the input set U ⊂ R2, and the set of disturbances
W ⊂ R2 are respectively bounded by

Z =


[−0.0004, 0.0004]
[−0.0004, 0.0004]
[−0.006, 0.006]
[−0.002, 0.002]
[−0.002, 0.002]

 U =
(

[−0.7, 0.7]
[−11, 11]

)
W =

(
[−0.02, 0.02]
[−0.3, 0.3]

)
.
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Table 1: Results of TRAF22 in terms of computation time and verification.
tool computation time in [s] Verified?
Ariadne N/A N/A
CORA 36 Yes
DynIbex 981 No
JuliaReach 57 Yes
KeYmaera X N/A N/A
Verse N/A N/A
1 Computed on local machine

The initial state is uncertain within the set x0 ⊕Z ×x0. The inputs u1, u2 and the disturbances
w1, w2 can change arbitrarily over time within their respective sets.

In this case, we analyze the scenario with the identifier BEL Putte-4 2 T-1 : The time
horizon is determined by the length of the piecewise-constant control values, i.e., the reference
trajectory xref , reference input uref , and feedback matrix K. All of these are provided by a
.csv-file in a format as detailed in [30, Sec. 5].

The following two specifications have to be satisfied:

• Input constraints: The controller input ufb ∈ R2 should be contained within the input
set U at all times. The set of control inputs is computed according to [30, Eq. (5)].

• Collision avoidance: The car should not collide with static or dynamic obstacles as
well as the road boundaries. Therefore, one requires to compute the car’s occupancy set
according to [30, Eq. (4)]. After rewriting the occupancy set as a .csv-file using the format
in [30, Fig. 4], the collision check is performed fully automatically by calling a provided
Python script as detailed in [30, Sec. 5].

3.1.3 Evaluation

There are two metrics to evaluate the performance of each tool. First, we measure the compu-
tation time only comprising the time spent during the reachable set computation, exempt the
time step in the pre- and post-processing steps. Second, we explicitly tabulate the results of
the verification since a collision could occur at any time and therefore might not be captured
in the figures below.

3.1.4 Results

The results from this benchmark are shown in Table 1. Since last year, DynIbex and JuliaReach
that added their support; although, some of the tools still do not support the format required
by the benchmark.

Settings for Ariadne. Ariadne is currently able to express disturbances within purely con-
tinuous dynamics, while the piecewise-constant input requires extension to the hybrid space.
We plan on supporting hybrid systems for the next year.
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(a) DynIbex (b) JuliaReach

Figure 1: Reachable set overapproximations for TRAF22.

Settings for CORA. We used the conservative linearization approach [10] with a time step
size of ∆t = 0.005, resulting in 20 steps per piecewise-constant input. Despite the relatively
high system dimension, a zonotope order of 20 was sufficient for successful verification.

Settings for DynIbex. The Runge-Kutta method selected is Kutta at three order (called
KUTTA3 in DynIbex). The absolute precision is 10−7. The noise number for affine arithmetic
is 200.

Settings for JuliaReach. We use nQ = 1, nT = 5 and an adaptive absolute tolerance 10−11.
JuliaReach does not support time-varying disturbances; the disturbances are instead modeled
as uncertain but constant state variables w(0) ∈ W, ẇ = 0. The reported time consists of
computing the reachable states and checking the input constraints.

Settings for KeYmaera X. KeYmaera X does not currently support reading streams of
recorded control inputs and outputting occupancy sets as required in the collision avoidance
simulation step of this benchmark. In future editions, we plan to formalize streams of control
inputs fully symbolically to characterize the safety-relevant properties of such streams and
conduct proofs for any control input stream satisfying these properties.

Settings for Verse. Verse currently cannot handle the inputs u1, u2 or the disturbances
w1, w2 that can change arbitrarily overtime. We are planning to tackle this problem in future
version of the tool.
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3.2 Robertson chemical reaction benchmark (ROBE21)
3.2.1 Model

As proposed by Robertson [39], this chemical reaction system models the kinetics of an auto-
catalytic reaction. 

ẋ = −αx+ βyz

ẏ = αx− βyz − γy2

ż = γy2

where x, y and z are the (positive) concentrations of the species, with the assumption that
x+y+z = 1. Here α is a small constant, while β and γ take on large values. In this benchmark
we fix α = 0.4 and analyze the system under three different pairs of values for β and γ:

1. β = 102, γ = 103

2. β = 103, γ = 105

3. β = 103, γ = 107

The initial condition is always x(0) = 1, y(0) = 0 and z(0) = 0.

3.2.2 Analysis

We are interested in computing the reachable tube until t = 40, to see how the integration
scheme holds under the stiff behavior. No verification objective is enforced.

3.2.3 Evaluation

For each of the three setups, the following three measures are required:

1. the execution time for evolution;

2. the number of integration steps taken;

3. the width of the sum of the concentrations s = x+ y + z at the final time.

Additionally, a figure with s (in the [0.999, 1.001] range) w.r.t. time overlaid for the three setups
should be shown.

3.2.4 Results

All tools were able to get to completion. However, very different results were obtained. In the
case of Ariadne and JuliaReach, the width started small and increased monotonically, while
for DynIbex and CORA the width started decreasing from a given value. It is also interesting
to analyze the number of integration steps taken, which turned out to be sensibly lower for
JuliaReach and especially CORA. While JuliaReach obtained the best width for the stiffer
cases, this came at the expense of a significantly higher computation time. Perhaps for the
next year some verification constraints should be enforced, in order to provide a better baseline
for comparison between the tools.

Settings for Ariadne. A GradedTaylorSeriesIntegrator is used, with a maximum error per
integration step of 10−9. A maximum step size of 0.004 is imposed in all three setups, though
the actual value dynamically identified along evolution for (2) and (3) is sensibly lower.
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(a) Ariadne (b) CORA

(c) DynIbex (d) JuliaReach

(e) Verse

Figure 2: Reachable set overapproximations of s = x+ y + z vs time for ROBE21 in the three
setups.
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Table 2: Results of ROBE21 in terms of computation time, number of steps and width of
s = x+ y + z.

computation time in [s]

tool (1) (2) (3)
Ariadne 49 253 464
CORA 159 356 856
DynIbex 7441 41151 68611

JuliaReach 77 1110 4413
KeYmaera X2 0.3 0.3 0.3
Verse 7.8 8.6 8.3
1 Computed on local machine
2 Single symbolic proof solves all 3 examples

number of steps

tool (1) (2) (3)
Ariadne 10000 49849 123675
CORA 17941 37437 74785
DynIbex 8694 84460 123248
JuliaReach 3494 30119 71367
KeYmaera X1 326 326 326
Verse 400 400 400
1 Proof steps, symbolic proof solves all 3 examples

width of x+ y + z

tool (1) (2) (3)
Ariadne 1.1e-5 4.3e-5 1.1e-5
CORA 2.2e-5 9.8e-6 1.1e-6
DynIbex 4.2e-7 1.8e-5 1.3e-6
JuliaReach 3.8e-5 8.1e-8 1.2e-9
KeYmaera X1 0 0 0
Verse 1.3e-4 6.4e-4 6.4e-4
1 Exact computation without overapproximation

Settings for CORA. In all cases, we used the approach from [45], which adaptively tunes
all algorithm parameters during runtime.

Settings for DynIbex. The Runge-Kutta method selected is implicit Lobatto at fourth
order (called LC3 in DynIbex) for the three setups. The absolute precision is respectively
10−14, 10−14 and 10−14. The other parameters are set by default.

Settings for JuliaReach. In all cases we use nQ = 1, an initial adaptive absolute tolerance
10−10 and the TMJets21a algorithm, adapting only the nT parameter as follows: (1) nT = 5,
(2) nT = 7 and (3) nT = 10. The maximum number of integration steps is also adjusted,
reflecting the results presented in Table 2. For the results displayed in Fig. 2, we evaluate s
directly on the Taylor models produced by the integration.

Settings for KeYmaera X. The KeYmaera X proof is fully parametric, without approxi-
mation, and shows stability of all possible population sums s for any (even negative) choice of a,
b, and g, which includes the specific parametrizations (i) b = 102, g = 103, (ii) b = 103, g = 105,
and (iii) b = 103, g = 107.

1 Problem
2 x+y+z=s
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3 −>
4 [{ x’ = −a∗x + b∗y∗z,
5 y’ = a∗x − b∗y∗z − g∗yˆ2,
6 z ’ = g∗yˆ2
7 }
8 ](x+y+z=s)
9 End.

10
11 Tactic ”Scripted proof” unfold; dIClose(1) End.
12 Tactic ”Automated proof” autoClose End.

Settings for Verse Verse uses implicit Runge-Kutta method of the Radau IIA family of
order 5 (Radau) to solve the problem. We are using the implementation of the algorithm from
Python scipy package. The absolute tolerance used is 10−12. The integration is evaluated
every 0.1s.

3.3 Coupled van der Pol benchmark (CVDP23)
3.3.1 Model

The original van der Pol oscillator was introduced by the Dutch physicist Balthasar van der
Pol. For this benchmark we consider two coupled oscillators, as described in [11]. The system
can be defined by the following ODE with 5 variables:

ẋ1 = y1

ẏ1 = µ(1 − x2
1)y1 + b(x2 − x1) − x1

ẋ2 = y2

ẏ2 = µ(1 − x2
2)y2 − b(x2 − x1) − x2

ḃ = 0

(1)

with µ = 1. The system has a stable limit cycle that becomes increasingly sharper for higher
values of µ.

3.3.2 Analysis

We set the initial condition x1,2(0) ∈ [1.25, 1.55], y1,2(0) ∈ [2.35, 2.45] and b ∈ [1 , 3]. The unsafe
set is given by y1,2 ≥ 2.75 in a time horizon of [0, 7].

3.3.3 Evaluation

The computation time required to evolve the system and verify safety is provided. If the system
can not be verified successfully, no value is given.

3.3.4 Results

The computation results of the tools are given in Table 3. While KeYmaera X was not able to
participate in this specific benchmark, Ariadne and Cora encountered numerical problems that
prevented completion in a reasonable time. Only JuliaReach was able to address the benchmark
properly. DynIbex used a partial worst case analysis to obtain a result in a reasonable time.

Settings for Ariadne. It was not possible to achieve completion is a reasonable time, due to
the very high number of splittings theoretically required to guarantee numerical convergence.
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(a) CORA

(b) DynIbex (c) JuliaReach

(d) Verse

Figure 3: Reachable set overapproximations for CVDP23.
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Table 3: Results of CVDP23 in terms of computation time.
tool computation time in [s]
Ariadne N/A
CORA 744
DynIbex 10731

JuliaReach 1.6
KeYmaera X N/A
Verse 1.2
1 Computed on local machine

Settings for CORA. Due to the strong nonlinearity induced by the parameter b, it was
necessary to split the initial set into 13 smaller subsets. For each run, we used the polynomial-
ization algorithm in [5] with a time step size of 0.005 and a zonotope order of 100. Additionally,
we manually introduced two artificial guard sets orthogonal to the flow in order to shrink the
reachable set. Otherwise, the abstraction error and thus the computed reachable set would
explode in size.

Settings for DynIbex. Maximum zonotope order is set to 80, reachability analysis is carried
out with an (absolute and relative) error tolerance of 10−6 using an explicit RK4 method of
order 4. A formal B-series, based on recent developments [1], is computed with the help of
Bseries Julia package. A partial worst case analysis is performed by considering initial value
set at extremal value for one dimension w.r.t. others given in intervals. It leads to 5 initial
conditions that must be verified. Moreover, a bissection is performed when safety cannot be
verified (363 simulations are needed).

Settings for JuliaReach. We use nQ = 1, nT = 8, and an adaptive absolute tolerance
10−10.

Settings for Verse We use 16 simulated trajectories to compute the discrepancy function.
The simulation time step for this example is 0.01s.

Settings for KeYmaera X. The Coupled van der Pol benchmark was formalized for KeY-
maera X but not yet proved. Below, we give the formal specification in KeYmaera X format:

1 Definitions Real m, b; End.
2 ProgramVariables Real x1, x2, y1, y2; End.
3 Problem
4 1 <= b & b <= 3 /∗ b in [1,3] ∗/
5 & m = 1
6 & 1.25 <= x1 & x1 <= 1.55 & 1.25 <= x2 & x2 <= 1.55 /∗ x {1,2}(0) in [1.25,1.55] ∗/
7 & 2.35 <= y1 & y1 <= 2.45 & 2.35 <= y2 & y2 <= 2.45 /∗ y {1,2}(0) in [2.35,2.45] ∗/
8 & t = 0
9 −>

10 [{ x1’ = y1,
11 y1’ = m∗(1−x1ˆ2)∗y1 + b∗(x2−x1) − x1,
12 x2’ = y2,
13 y2’ = m∗(1−x2ˆ2)∗y2 − b∗(x2−x1) − x2,
14 t ’ = 1 & t <= 7 /∗ time horizon [0,7] ∗/
15 }
16 ]!( y1>=2.75 & y2>=2.75) /∗ not in unsafe set ∗/
17 End.
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In future editions, we plan to search and prove correct symbolic invariant conditions of the
dynamics.

3.4 Laub-Loomis benchmark (LALO20)
3.4.1 Model

The Laub-Loomis model is presented in [31] for studying a class of enzymatic activities. The
dynamics can be defined by the following ODE with 7 variables.

ẋ1 = 1.4x3 − 0.9x1
ẋ2 = 2.5x5 − 1.5x2
ẋ3 = 0.6x7 − 0.8x2x3
ẋ4 = 2 − 1.3x3x4
ẋ5 = 0.7x1 − x4x5
ẋ6 = 0.3x1 − 3.1x6
ẋ7 = 1.8x6 − 1.5x2x7

The system is asymptotically stable, with the equilibrium point approximately [-0.87, 0.37,
-0.56, -2.75, 0.22, -0.08, -0.27].

3.4.2 Analysis

The specification for the analysis is kept the same as last year, in order to better quantify any
improvements to the participating tools.

The initial sets are defined according to the ones used in [43]. They are boxes centered at
x1(0) = 1.2, x2(0) = 1.05, x3(0) = 1.5, x4(0) = 2.4, x5(0) = 1, x6(0) = 0.1, x7(0) = 0.45. The
range of the box in the ith dimension is defined by the interval [xi(0) − W,xi(0) + W ]. The
width W of the initial set is vital to the difficulty of the reachability analysis job. The larger
the initial set the harder the reachability analysis.

We consider W = 0.01, W = 0.05, and W = 0.1. For W = 0.01 and W = 0.05 we consider
the unsafe region defined by x4 ≥ 4.5, while for W = 0.1, the unsafe set is defined by x4 ≥ 5.
The time horizon for all cases is [0, 20].

3.4.3 Evaluation

The final widths of x4 along with the computation times are provided for all three cases. A
figure is provided in the (t, x4) axes, with t ∈ [0, 20], x4 ∈ [1.5, 5], where the three plots are
overlaid.

3.4.4 Results

The computation results of the tools are given in Table 4. Results are essentially the same as
last year’s.

Settings for Ariadne. The maximum step size used is 0.2, with a TaylorPicardIntegrator
with a maximum spacial error of 10−6 enforced for each step. Compared with last year, the
same settings were used but a regression on quality was experienced.
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Figure 4: Reachable set overapproximations for LALO20 (overlayed plots for W = 0.01, W =
0.05, W = 0.1). t ∈ [0, 20], x4 ∈ [1.5, 5].
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Table 4: Results of LALO20 in terms of computation time and width of final enclosure.
computation time in [s]

tool W = 0.01 W = 0.05 W = 0.1
Ariadne 9.1 39 113
CORA 9.7 14 284
DynIbex 101 271 19091

JuliaReach 3.8 5.7 5.7
KeYmaera X N/A N/A N/A
Verse 1.6 1.5 1.5
1 Computed on local machine

width of x4 in final enclosure

tool W = 0.01 W = 0.05 W = 0.1
Ariadne 0.011 0.045 0.55
CORA 0.004 0.047 0.060
DynIbex 0.01 0.40 2.07
JuliaReach 0.0042 0.017 0.033
KeYmaera X N/A N/A N/A
Verse 0.0024 0.0086 0.016

Settings for CORA. For the smaller initial sets W = 0.01 and W = 0.05, we applied an
adaptively-tuned linearization algorithm [45], whereas the larger initial set W = 0.1 required a
polynomialization algorithm, where we again used the adaptively-tuned version from [45].

Settings for DynIbex. For W = 0.01 the maximum zonotope order is set to 50 and the
reachability analysis is carried out with an (absolute and relative) error tolerance of 10−6 with
an explicit Runge-Kutta method of order 3. For W = 0.05 the maximum zonotope order is set
to 80 and the reachability analysis is carried out with an (absolute and relative) error tolerance
of 10−7 with an explicit Runge-Kutta method of order 3. For W = 0.01 and W = 0.05 no
splitting of the initial conditions is performed. For W = 0.1, the initial set is split 64 times.
With parallelization, computation time is reduced to 249 seconds for this last experiment.

Settings for JuliaReach. We use an absolute tolerance of 10−11 for W = 0.01 and 10−12

for W = 0.05 and W = 0.1. In all cases, nQ = 1 and nT = 7.

Settings for KeYmaera X. The Laub-Loomis benchmark was formalized for KeYmaera X
but not yet proved. Below, we give the formal specification in KeYmaera X format:

1 Definitions
2 Real W = 0.1;
3 Bool box(Real x, Real c, Real w) <−> c−w <= x & x <= c+w;
4 End.
5
6 ProgramVariables
7 Real x1, x2, x3, x4, x5, x6, x7; /∗ state space ∗/
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8 Real t; /∗ time ∗/
9 End.

10
11 Problem
12 box(x1, 1.2, W) /∗ initial sets ∗/
13 & box(x2, 1.05, W)
14 & box(x3, 1.5, W)
15 & box(x4, 2.4, W)
16 & box(x5, 1, W)
17 & box(x6, 0.1, W)
18 & box(x7, 0.45, W)
19 & t=0
20 −>
21 [{ x1’ = 1.4∗x3 − 0.9∗x1,
22 x2’ = 2.5∗x5 − 1.5∗x2,
23 x3’ = 0.6∗x7 − 0.8∗x2∗x3,
24 x4’ = 2 − 1.3∗x3∗x4,
25 x5’ = 0.7∗x1 − x4∗x5,
26 x6’ = 0.3∗x1 − 3.1∗x6,
27 x7’ = 1.8∗x6 − 1.5∗x2∗x7,
28 t ’ = 1 & t<=20 /∗ time horizon [0,20] ∗/
29 }
30 ]!( x4>=5) /∗ not in unsafe set ∗/
31 End.

In future editions, we plan to search and prove correct symbolic invariant conditions of the
dynamics.

Settings for Verse A simulation timestep of 0.02s was used for each case. We use 16
simulated trajectories for computing the discrepancy function.

3.5 Lotka–Volterra with tangential crossings benchmark (LOVO21)
3.5.1 Model

The benchmark described below refers to the Lotka-Volterra equations, or predator-prey equa-
tions, which are well-known in the literature.

The system is defined as follows: {
ẋ = 3x− 3xy
ẏ = xy − y

(2)

which produces cyclic trajectories around the equilibrium point (1, 1) dependent on the initial
state.

We are interested to see how this nonlinear dynamics plays with a nonlinear guard, whose
boundary is: √

(x− 1)2 + (y − 1)2 = 0.161 (3)
which is a circle of radius 0.161 around the equilibrium.

By choosing an initial state I = (1.3, 1.0) the cycle has a period of approximately 3.64 time
units. The trajectory of the Lotka–Volterra system trajectory is close to tangent to the guard
circle in the top half, while it crosses the circle on the bottom half. Hence, enlarging the width
of the initial set would put the trajectory partially within the guard in the top half.

The corresponding hybrid automaton is used to model the system:

• Continuous variables: x, y;

• Locations: outside and inside;
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• Dynamics: those from Eq. 2 for x, y in both locations;

• Guards: {
(x−Qx)2 + (y −Qy)2 ≤ R2 from outside to inside
(x−Qx)2 + (y −Qy)2 ≥ R2 from inside to outside

(4)

• Invariants: the complement of the corresponding guards (i.e., transitions are urgent);

• Resets: none, i.e., the identity for both transitions.

3.5.2 Analysis

We want to start the system from I = (1.3 ± ϵ, 1.0), with ϵ = 0.012, and evolve it for T = 3.64
time units. Since the original system was close to tangency, by enlarging the initial set we
expect to produce different sequences of discrete events due to the distinction between crossing
and not crossing, and possibly by distinguishing the crossing sets based on the different crossing
times. We must remark that, for reachability analysis purposes, it is important to carry the
trace of discrete events along with the current evolution time.

The following three properties must be verified:

• At least one final set must have crossed two guards by entering and exiting the reference
circle once;

• At least one final set must have crossed four guards by entering and exiting the reference
circle twice;

• While a larger even number of crossings is allowed due to Zeno behavior during tangent
crossing, no odd numbers are possible.

3.5.3 Evaluation

In terms of metrics, it is required to supply the following:

1. The execution time for computing the reachable set and checking the properties;

2. The area x× y of the box hull enclosing all the final sets.

In addition, a figure showing the reachable set along with the circular guard shall be provided.
The axes are [0.6, 1.4] × [0.6, 1.4].

3.5.4 Results

All tools were able to handle the benchmark with results equivalent to last year. Table 5 gives
the timing/quality results, while Fig. 5 shows the graphical output.

Settings for Ariadne. A GradedTaylorSeriesIntegrator is used with a maximum spacial
error of 1e − 7. The maximum step size is 0.07. The maximum number of parameters for a
set is 5 times the number of variables, instead of the default of 3 times. Please note that the
settings are the same as last year, though apparently there is a regression both in quality (4
times) and especially in computational time (8 times).
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Figure 5: Reachable set overapproximation for LOVO21, with x, y ∈ [0.6, 1.4], where the circular
guard is shown.
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Table 5: Results of LOVO21 in terms of computation time and area.
tool computation time in [s] area
Ariadne 93 4.6e-4
CORA 26 4.8e-3
DynIbex 751 5.9e-2
JuliaReach 3.6 1.4e-2
KeYmaera X (1.5)1,2 0
Verse 12 5.3e-3
1 Computed on local machine
2 Duration of proving invariance (not checking crossing)

Settings for CORA. We use the approach in [29] to calculate the intersections with the non-
linear guard set. For continuous reachability we apply the conservative linearization approach
[10] with time step size of 0.005 and a zonotope order of 20 for all modes.

Settings for DynIbex. The library DynIbex does not support hybrid systems natively.
However, based on constraint programming, event detection can be implemented and hybrid
systems can be simulated. Reachability analysis is carried out with an error tolerance of 10−14

using an explicit Runge-Kutta method of order 4 (RK4 method). No splitting of the initial
state has been performed.

Settings for Flow*. Since Flow* does not support urgent discrete transitions in hybrid
systems, we skip the test on this benchmark.

Settings for Isabelle/HOL. Isabelle/HOL does not support hybrid systems automatically.

Settings for JuliaReach. We use nT = 7, nQ = 1, an adaptive absolute tolerance 10−10,
and split the initial set into 32 boxes. The crossings to the non-linear guard are handled by
checking the reach sets that do not lie strictly outside the circle.

Settings for KeYmaera X. The KeYmaera X proof focuses on infinite-horizon population
stability for any positive starting choice of populations x > 0 and y > 0, which includes the
specific starting populations x = 1.3 ± ϵ and y = 1. The population orbit is stable around
( α

β ,
γ
δ ) at population e−δx−βyxγyα for α = β = 3 and δ = γ = 1.

1 Definitions Real K(Real x, Real y) = exp(−d∗x−b∗y) ∗ xˆg ∗ yˆa; End.
2 Problem
3 a=3 & b=3 & d=1 & g=1 & x>0 & y>0 & K 0 = K(x,y)
4 −>
5 [{ x’ = a∗x − b∗x∗y,
6 y’ = d∗x∗y − g∗y
7 }
8 ]K(x,y) = K 0
9 End.

10
11 Tactic ”Scripted proof”
12 useSolver(”Mathematica”);
13 unfold;
14 dIRule(1); <(

80



ARCH-COMP23 Nonlinear Dynamics Geretti et al.

15 ”dI Init”: equalCommute(1); id,
16 ”dI Step”:
17 chaseAt(1);
18 QE using ”(exp(−1∗x−3∗y)∗(−1∗(3∗x−3∗x∗y)−3∗(1∗x∗y−1∗y))∗xˆ1+exp(−1∗x−3∗y)∗(1∗xˆ(1−1)∗(3∗x

↪→ −3∗x∗y)))∗yˆ3+exp(−1∗x−3∗y)∗xˆ1∗(3∗yˆ(3−1)∗(1∗x∗y−1∗y))=0”
19 )
20 End.
21 Tactic ”Automated proof” autoClose End.

The formalization in the repeatability package also includes a symbolic characterization
of the existence of crossing in and out of the nonlinear guard: this purely real arithmetic
proof obligation is not yet tractable by the arithmetic backend verification procedures used in
KeYmaera X. In future editions, we plan to additionally characterize the number of transitions
symbolically.

Settings for Verse A simulation timestep of 0.01s was used. Since Verse cannot currently
handle a non-linear guard, the circle was approximated using a octagon in which the guard
circle is inscribed in the octagon. In addition, to avoid zeno behavior, we force the system to
stay in each mode for 0.5s before a transition can happen.

3.6 Space rendezvous benchmark (SPRE22)

3.6.1 Model

Spacecraft rendezvous is a perfect use case for formal verification of hybrid systems with nonlin-
ear dynamics since mission failure can cost lives and is extremely expensive. This benchmark
is taken from [21]. A version of this benchmark with linearized dynamics is verified in the
ARCH-COMP category Continuous and Hybrid Systems with Linear Continuous Dynamics.
The nonlinear dynamic equations describe the two-dimensional, planar motion of the space-
craft on an orbital plane towards a space station:


ẋ = vx

ẏ = vy

v̇x = n2x+ 2nvy + µ
r2 − µ

r3
c
(r + x) + ux

mc

v̇y = n2y − 2nvx − µ
r3

c
y + uy

mc

The model consists of position (relative to the target) x, y [m], time t [min], as well as horizontal
and vertical velocity vx, vy [m / min]. The parameters are µ = 3.986 × 1014 × 602 [m3 / min2],
r = 42164 × 103 [m], mc = 500 [kg], n =

√
µ
r3 and rc =

√
(r + x)2 + y2.

The hybrid nature of this benchmark originates from a switched controller. In particular,
the modes are approaching (x ∈ [−1000,−100] [m]), rendezvous attempt (x ≥ −100 [m]), and
aborting. A transition to mode aborting occurs nondeterministically at t ∈ [120, 150] [min].
The linear feedback controllers for the different modes are defined as ( ux

uy ) = K1x for mode
approaching, and ( ux

uy ) = K2x for mode rendezvous attempt, where x =
(
x y vx vy

)T is
the vector of system states. The feedback matrices Ki were determined with an LQR-approach
applied to the linearized system dynamics, which resulted in the following numerical values:
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K1 =
(

−28.8287 0.1005 −1449.9754 0.0046
−0.087 −33.2562 0.00462 −1451.5013

)

K2 =
(

−288.0288 0.1312 −9614.9898 0
−0.1312 −288 0 −9614.9883

)
In the mode aborting, the system is uncontrolled ( ux

uy ) = ( 0
0 ).

3.6.2 Analysis

The spacecraft starts from the initial set x ∈ [−925,−875] [m], y ∈ [−425,−375] [m], vx ∈ [0, 5]
[m/min] and vy ∈ [0, 5] [m/min]. For the considered time horizon of t ∈ [0, 200] [min], the
following specifications have to be satisfied:

• Line-of-sight: In mode rendezvous attempt, the spacecraft has to stay
inside line-of-sight cone L = {( x

y ) | (x ≥ −100) ∧ (y ≥ x tan(20◦)) ∧ (−y ≥ x tan(20◦))}.

• Collision avoidance: In mode aborting, the spacecraft has to avoid a collision with the
target, which is modeled as a box B with 2m edge length and the center placed at the
origin.

• Velocity constraint: In mode rendezvous attempt, the absolute velocity has to stay
below 3.3 [m/min]:

√
v2

x + v2
y ≤ 3.3 [m/min].

Remark on velocity constraint In the original benchmark [21], the constraint on the
velocity was set to 0.05 m/s, but it can be shown (by a counterexample) that this constraint
cannot be satisfied. We therefore use the relaxed constraint 0.055 [m/s] = 3.3 [m/min].

3.6.3 Evaluation

The computation time for evolution and verification is provided. A figure is shown in the (x, y)
axes, with x ∈ [−1000, 200] and y ∈ [−450, 0].

3.6.4 Results

The results of the reachability computation for the spacecraft rendezvous model are given in
Figure 6 and Table 6, with the tool settings below. The introduction of a permissive guard
prevented completion for Ariadne: too many trajectories were generated and the absence of
a recombination strategy proved an issue. Therefore this benchmark requires proper support
of crossings in the presence of large sets, even if the crossing region is very simple from a
geometrical viewpoint. KeYmaera X formalized but not proved the problem yet.

Settings for Ariadne. Ariadne was not able to complete evolution, due to the extremely
large number of trajectories produced from the nondeterministic guard: this is caused by the
lack of a recombination strategy. The maximum step size used was 1.0, essentially meaning that
we allowed the step size to vary widely along evolution: this choice turned out to be preferable
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Table 6: Results of SPRE21 in terms of computation time.
tool computation time in [s]
Ariadne −
CORA 27
DynIbex 611

JuliaReach 21
KeYmaera X N/A
Verse 277
1 Computed on local machine
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−400

−200
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(c) JuliaReach (d) Verse

Figure 6: Reachable set of the spacecraft position in the x-y-plane for SPRE21.

in terms of execution time. The maximum temporal order was 4 and the maximum spacial
error enforced for each step equal is 10−3. A splitting strategy for the initial set was used; the
strategy compare the radius of the set with a reference value of 12.0, in order to split the first
two dimensions once and yield a total of 4 initial subsets.

83



ARCH-COMP23 Nonlinear Dynamics Geretti et al.

Settings for CORA. CORA was run with a time step size of 0.2 [min] for the modes
approaching and aborting, and with a time step size of 0.05 [min] for mode rendezvous attempt.
The intersections with the guard sets are calculated with constrained zonotopes [40], and the
intersection is then enclosed with a zonotope bundle [9]. In order to find suitable orthogonal
directions for the enclosure principal component analysis is applied.

Settings for DynIbex. The library DynIbex does not support hybrid systems natively.
However, based on constraint programming, event detection can be implemented and hybrid
systems can be simulated. Maximum zonotope order is set to 10, reachability analysis is carried
out with an error tolerance of 10−6 using an explicit Runge-Kutta method of order 3 (Kutta’s
method). No splitting of the initial state has been performed.

Settings for JuliaReach. The transition to the aborting mode is handled by clustering and
Cartesian decomposition [19] with zonotope enclosures in low dimensions, (x, y) and (vx, vy).
The continuous-time algorithms used in the modes approaching, rendez-vous attempt, and
aborting are TMJets20 (first two modes) and TMJets21b (third mode) with nT = 5, 4, 7, nQ =
1, 1, 1 and adaptive absolute tolerance 10−5, 10−7, 10−10, respectively.

Settings for Verse A timestep of .05s was used. We add a reset while switching to mode
Rendezvous to reduce overapproximation caused by mode transition. Verse currently assume
all transitions are urgent. Therefore, for this example we add a special variable total time to
perform the non-deterministic transition to aborting mode. It takes significant longer time to
verify this benchmark due to large amount of computation introduced by this switch. We are
planning to improve the algorithm to have better support for this type of transition in future
version of Verse.

Settings for KeYmaera X. The example was formalized for KeYmaera X but not yet
proved. The full model is included in the repeatability evaluation package.

4 Conclusion and Outlook

This year, the competition confirmed five out of six participants from 2021 and saw Verse as a
new entry.

Speaking about benchmark evaluation, this year we chose to be particularly conservative, in
order to allow all tools to tackle the existing suite. As such, only a modification to the van der
Pol system was introduced, purely in order to make it more amenable to numerical analysis.

The CVDP23 benchmark still proved a bit too difficult for Ariadne and could not be ad-
dressed by KeYmaera X.

The TRAF22 benchmark was addressed by two more participants, which allowed to make
some comparisons. We still expect every tool to support it for future years.

We care to mention that, triggered by the participation in this competition, individual tools
made progress:
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• The algorithms [10] and [5] for nonlinear continuous-time systems used in CORA have
recently been extended by adaptive parameter tuning [45]. This year, the novel fully-
automated algorithm was used for the LALO20 and ROBE21 benchmarks. While the
computation time was longer than in previous editions (since algorithm parameters have
to be tuned on-the-fly), there is no notable loss in accuracy. We hope to further develop
the adaptive algorithm using the challenging benchmarks from this competition.

• JuliaReach was able to analyze the TRAF22 benchmark this year, which mainly required
a parser for the input format.

Summarizing, we believe that a benchmark suite with representative problems is of the
utmost importance, in order to stimulate meaningful progress of all the participating tools. At
the same time, we care about allowing all tools to solve all benchmarks and we will try to
modify the most critical ones in order to achieve that. Consequently, for the next year we aim
at refining the existing suite to advance in these directions, also possibly increasing the number
of benchmarks.
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Gonzalez. A Computable and Compositional Semantics for Hybrid Automata. In Proceedings of
the 23rd International Conference on Hybrid Systems: Computation and Control, HSCC ’20, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3365365.3382202.

[21] N. Chan and S. Mitra. Verifying safety of an autonomous spacecraft rendezvous mission. In
ARCH17. 4th International Workshop on Applied Verification of Continuous and Hybrid Systems,
collocated with Cyber-Physical Systems Week (CPSWeek) on April 17, 2017 in Pittsburgh, PA,
USA, pages 20–32, 2017. URL: http://www.easychair.org/publications/paper/342723.

[22] P. Collins, D. Bresolin, L. Geretti, and T. Villa. Computing the evolution of hybrid systems using
rigorous function calculus. In Proc. of the 4th IFAC Conference on Analysis and Design of Hybrid
Systems (ADHS12), pages 284–290, Eindhoven, The Netherlands, June 2012.

86

https://doi.org/10.21105/joss.01043
https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/JuliaDiff/TaylorSeries.jl
https://doi.org/10.5281/zenodo.2601941
https://github.com/JuliaIntervals/IntervalArithmetic.jl
https://github.com/JuliaIntervals/IntervalArithmetic.jl
https://doi.org/10.5281/zenodo.3336308
https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaIntervals/TaylorModels.jl
https://doi.org/10.5281/zenodo.2613102
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1016/j.ic.2022.104937
https://doi.org/10.1145/3365365.3382202
http://www.easychair.org/publications/paper/342723


ARCH-COMP23 Nonlinear Dynamics Geretti et al.

[23] Vincent Drevelle and Jeremy Nicola. Vibes: A visualizer for intervals and boxes. Mathematics in
Computer Science, 8(3):563–572, Sep 2014.

[24] Marcelo Forets and Christian Schilling. LazySets.jl: Scalable symbolic-numeric set computations.
Proceedings of the JuliaCon Conferences, 1(1):11, 2021. doi:10.21105/jcon.00097.

[25] Nathan Fulton, Stefan Mitsch, Rose Bohrer, and André Platzer. Bellerophon: Tactical theorem
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