
EPiC Series in Computing

Volume 96, 2023, Pages 89–125

Proceedings of 10th International Workshop on Applied
Verification of Continuous and Hybrid Systems (ARCH23)

ARCH-COMP23 Category Report:

Artificial Intelligence and Neural Network Control Systems

(AINNCS) for Continuous and Hybrid Systems Plants

Diego Manzanas Lopez1, Matthias Althoff2, Marcelo Forets3, Taylor T.
Johnson1, Tobias Ladner2, Christian Schilling4

1 Vanderbilt University
Nashville, TN

{diego.manzanas.lopez, taylor.johnson}@vanderbilt.edu
2 Technische Universität München (TUM), Munich, Germany

{althoff, tobias.ladner}@tum.de
3 Universidad de la República, Montevideo, Uruguay

mforets@gmail.com
4 Aalborg University, Aalborg, Denmark

christianms@cs.aau.dk

Abstract

This report presents the results of a friendly competition for formal verification of
continuous and hybrid systems with artificial intelligence (AI) components. Specifically,
machine learning (ML) components in cyber-physical systems (CPS), such as feedforward
neural networks used as feedback controllers in closed-loop systems, are considered, which
is a class of systems classically known as intelligent control systems, or in more modern and
specific terms, neural network control systems (NNCS). We broadly refer to this category
as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop
Applied Verification for Continuous and Hybrid Systems (ARCH) in 2023. In the fifth
edition of this AINNCS category at ARCH-COMP, three tools have been applied to solve
ten different benchmark problems, which are CORA, JuliaReach and NNV. In reusing the
benchmarks from the last iteration, we demonstrate the continuous progress in developing
these tools: Two out of three tools can verify more instances than in the 2022 iteration. A
novelty of this year’s iteration is the shared computation hardware that allows for a fairer
comparison among the participants.

1 Introduction

Neural Networks (NNs) have demonstrated an impressive ability to solve complex problems in
numerous application domains [67]. The success of these models in contexts such as adaptive
control, non-linear system identification [48], image and pattern recognition, function approx-
imation, and machine translation has stimulated the creation of technologies that are directly
impacting our everyday lives [59], and has led researchers to believe that these models possess
the power to revolutionize a diverse set of arenas [54].

G. Frehse and M. Althoff (eds.), ARCH23 (EPiC Series in Computing, vol. 96), pp. 89–125

ARCH-COMP23 AINNCS Manzanas Lopez et al.

Despite these achievements, there have been reservations about utilizing them within high-
assurance systems for various reasons, such as their susceptibility to unexpected and errant
behavior caused by slight perturbations in their inputs [37]. In a study by Szegedy et al. [60],
the authors demonstrated that carefully applying a hardly perceptible modification to an input
image could cause a successfully trained neural network to produce an incorrect classification.
These inputs are known as adversarial examples, and their discovery has caused concern over
the safety, reliability, and security of neural network applications [67]. As a result, some research
has been directed toward obtaining an explicit understanding of neural network behavior.

Neural networks are often viewed as “black boxes” whose underlying operation is often
incomprehensible. Still, the last several years have witnessed numerous promising white-box
verification methods proposed for reasoning about the correctness of their behavior. However,
it has been demonstrated that neural network verification is an NP-complete problem [33].
Despite many recent efforts and significant advances in the past decade [47, 64, 65, 66, 7,
22, 23, 34, 39, 58], there are remaining challenges that prevent these approaches from being
successfully applied to very large neural networks used in many real-world applications such
as [53]. Most of this work also focuses on verifying pre-/post-conditions for neural networks in
isolation. Reasoning about their usage behavior in cyber-physical systems, such as in neural
network control systems, remains a key challenge.

The following report aims to provide a survey of the landscape of the current capabilities
of verification tools for closed-loop systems with neural network controllers, as these systems
have displayed great utility as a means for learning control laws through techniques such as
reinforcement learning and data-driven predictive control [18, 62]. Furthermore, this report
aims to provide readers with a perspective on the intellectual progression of this rapidly growing
field and stimulate the development of efficient and effective methods capable of use in real-
life applications. Since the first iteration, there have been several publications investigating
the formal verification of AINNCS, out of which several of them have participated in one or
more of the previous competitions such as Verisig [28], VenMas [1] and ReachNN [21], among
others [66, 15, 25, 2, 36, 20, 44, 18, 16, 27, 57].

Disclaimer The presented report of the ARCH-COMP friendly competition for closed-
loop systems with neural network controllers, termed in short AINNCS (Artificial Intelli-
gence / Neural Network Control Systems), aims to provide the landscape of the current
capabilities of verification tools for analyzing these systems that are classically known as
intelligent control systems. This AINNCS ARCH-COMP category is complementary to the
ongoing Verification of Neural Networks Competition (VNN-COMP) [9, 47], the latter of
which focuses on open-loop specifications of neural networks. In contrast, the AINNCS cat-
egory focuses on closed-loop behaviors of dynamical systems incorporating neural networks.
We want to stress that each tool has unique strengths and not all of the specificities can be
highlighted within a single report. To reach a consensus on what benchmarks are used, some
compromises had to be made so that some tools may benefit more from the presented choice
than others. To establish further trustworthiness of the results, the code with which the re-
sults have been obtained is publicly available at gitlab.com/goranf/ARCH-COMP, and the
submitted results are available at arch.repeatability.cps.cit.tum.de/frontend/submissions.

90

https://gitlab.com/goranf/ARCH-COMP
https://arch.repeatability.cps.cit.tum.de/frontend/submissions

ARCH-COMP23 AINNCS Manzanas Lopez et al.

Specifically, this report summarizes results obtained in the 2023 friendly competition of the
ARCH workshop1 for verifying systems of the form

ẋ(t) = f(x(t), u(x, t)),

where x(t) and u(x, t) correspond to the states and inputs of the plant at time t, respectively,
and where u(x, t) is the output of a feedforward neural network provided an input of the plant
state x at time t. The architecture of the closed-loop systems we consider is depicted in Figure
1, where the input to the neural network controller is additionally sampled.

Figure 1: Closed-loop architecture of the benchmarks to be verified.

This year is the fifth iteration of the AINNCS category at ARCH-COMP and builds on the
previous iterations and reports [42, 31, 30, 40]. Participating tools are summarized in Sec. 2.
Please, see [67] for further details on these and additional tools. The results of our selected
benchmark problems are shown in Sec. 3. This year, we run all tools on the same hardware
using docker images for further comparison. The submission server specifications are given in
Appendix A. However, one has to factor in the efficiency of the programming language of the
tools.

The goal of the friendly competition is not to rank the results but rather to present the
landscape of existing solutions in a breadth that is impossible with scientific publications in
classical venues. Such publications would typically require the presentation of novel techniques,
while this report showcases the current state-of-the-art tools. The selection of the benchmarks
has been conducted within the forum of the ARCH website (cps-vo.org/group/ARCH), which
is visible for registered users, and registration is open for anyone.

2 Participating Tools

We present a brief overview of all the participating tools in this friendly competition. The tools
are CORA, JuliaReach, and NNV. The tools participating in the Artificial Intelligence / Neural
Network Control Systems in Continuous and Hybrid Systems Plants (AINNCS) category are
introduced subsequently in alphabetical order.

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH

91

http://cps-vo.org/group/ARCH
http://cps-vo.org/group/ARCH

ARCH-COMP23 AINNCS Manzanas Lopez et al.

CORA (Tobias Ladner, Matthias Althoff). CORA [2] is a COntinuous Reachability Ana-
lyzer for the formal verification of cyber-physical systems using reachability analysis. It is
written in MATLAB and is available at https://cora.in.tum.de. CORA integrates vari-
ous set representations and operations on them as well as reachability algorithms of various
dynamic system classes. For this competition, we used the approach described in [36, 38]
for open-loop and closed-loop neural network verification based on polynomial zonotopes [35].
Polynomial zonotopes are particularly well suited for verifying neural networks due to their
polynomial time complexity on many operations. The approach described in [36] realizes a fast
layer-based computation of an over-approximation of the output set of networks with various
activation functions, including ReLU, sigmoid, and tanh, while [38] extends this approach by
automatically refining the neuron abstractions in neural networks. Our neural network verifi-
cation approaches are naturally integrated into our reachability analysis methods for linear and
nonlinear plant dynamics. For most benchmarks, we can deploy a fully automatic verification
process using CORA: We first simulate random runs to find potential violations of the speci-
fications. If one run violates the specifications, we verify the violating run using reachability
analysis, as simulations are not formally sound. Otherwise, we try to verify the benchmark for
the given specifications. We will provide the computation times for each step.

JuliaReach (Marcelo Forets, Christian Schilling). JuliaReach [15] is an open-source software
suite for reachability computations of dynamical systems, written in the Julia language and
available at http://github.com/JuliaReach. The package ClosedLoopReachability.jl handles
the closed-loop analysis and queries sub-problems to our other library ReachabilityAnalysis.jl
for continuous-time analysis of plant models. Additional set computations are performed with
LazySets.jl [24]. The algorithm we use is described in [55]. For the plant analysis, we use the
sound algorithm TMJets based on interval arithmetic and Taylor models, which is implemented
in TaylorModels.jl [11, 14], which itself integrates TaylorSeries.jl [12, 13] and TaylorIntegra-
tion.jl [49]. The algorithm uses a jet transportation of a Taylor polynomial with interval co-
efficients. It has the following main parameters for tweaking: the absolute tolerance abstol

and two parameters to define the order at which the Taylor expansion is cut in time (orderT)
resp. in space (orderQ). For neural-network analysis, we use an abstract interpretation based
on zonotopes [58]. For falsification, JuliaReach chooses an initial point but uses set-based anal-
ysis since, although most models are deterministic, non-validated simulations may yield wrong
results.

NNV (Diego Manzanas Lopez, Taylor Johnson). The Neural Network Verification (NNV)
Tool [66, 41] is a formal verification software tool for deep learning models and cyber-
physical systems with neural network components written in MATLAB and available at
https://github.com/verivital/nnv. NNV uses a star-set state-space representation and
reachability algorithm that allows for a layer-by-layer computation of exact or overapproximate
reachable sets for feed-forward [64], convolutional [61], semantic segmentation (SSNN) [65], and
recurrent (RNN)[63] neural networks, as well as neural network control systems (NNCS) [62, 66]
and neural ordinary differential equations (Neural ODEs) [45]. The star-set based algorithm
is naturally parallelizable, which allows NNV to be designed to perform efficiently on multi-
core platforms. Additionally, if a particular safety property is violated, NNV can be used to
construct and visualize the complete set of counterexample inputs for a neural network (exact-
analysis). Using NNV in combination with HyST [8, 6] and CORA [2, 3, 4] allows for the
verification of closed-loop neural network control systems with nonlinear plant dynamics.

92

https://cora.in.tum.de
http://github.com/JuliaReach
https://github.com/JuliaReach/ClosedLoopReachability.jl
https://github.com/JuliaReach/ReachabilityAnalysis.jl
https://github.com/JuliaReach/LazySets.jl
https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/PerezHz/TaylorIntegration.jl
https://github.com/PerezHz/TaylorIntegration.jl
https://github.com/verivital/nnv

ARCH-COMP23 AINNCS Manzanas Lopez et al.

3 Benchmarks

We have selected ten benchmarks for this year’s competition – the same benchmarks and spec-
ifications as last year [40]. A few of them, such as the TORA benchmark, are presented with
several different controllers to be analyzed. We now describe these benchmarks in no particular
order and have made them readily available online.2 All benchmarks are derived for continuous
time. Given the continuous dynamics ẋ = f(x), where x ∈ Rn is the state vector, the discrete-
time versions for a time increment of ∆t are obtained in this competition using forward Euler
integration:

x(k + 1) = x(k) + f(x)∆t.

3.1 Adaptive Cruise Controller (ACC)

The Adaptive Cruise Control (ACC) benchmark is a system that tracks a set velocity and
maintains a safe distance from a lead vehicle by adjusting the longitudinal acceleration of an
ego vehicle [46]. The neural network computes optimal control actions while satisfying safe
distance, velocity, and acceleration constraints using model predictive control (MPC) [51]. For
this case study, the ego car is set to travel at a set speed vset = 30 and maintains a safe distance
Dsafe from the lead car. The car’s dynamics are described by the following equations [62, p.
17]:

ẋlead(t) = vlead(t), v̇lead(t) = alead(t), ȧlead(t) = −2alead(t) + 2ac,lead − uv2lead(t),

ẋego(t) = vego(t), v̇ego(t) = aego(t), ȧego(t) = −2aego(t) + 2ac,ego − uv2ego(t),
(1)

where xi is the position, vi is the velocity, ai is the acceleration of the car, ac,i is the acceleration
control input applied to the car, and u = 0.0001 is a coefficient for air drag, where i ∈ {ego,
lead}. We evaluate a neural network controller with five layers and 20 neurons each for this
benchmark. The inputs of the controller are the set speed vset, the desired time gap Tgap, the
ego velocity vego, the distance Drel = xlead − xego, as well as the relative velocity vrel, and the
output is ac,ego.

Specifications The verification objective of this system is that given a scenario where both
cars are driving safely, the lead car suddenly slows down with ac,lead = -2. We want to check
whether there is a collision in the following 5 s. Formally, this safety specification of the system
can be expressed as Drel ≥ Dsafe, where Dsafe = Ddefault + Tgap · vego, and Tgap = 1.4 s and
Ddefault = 10. The initial conditions are: xlead(0) ∈ [90,110], vlead(0) ∈ [32,32.2], alead(0) =
aego(0) = 0, vego(0) ∈ [30, 30.2], xego ∈ [10,11]. A control period of 0.1 s is used.

3.2 Sherlock-Benchmark-9 (TORA)

This benchmark considers translational oscillations by a rotational actuator (TORA) [18, 29],
where a cart is attached to a wall with a spring and is free to move on a friction-less surface.
The cart has a weight attached to an arm inside it, which is free to rotate about an axis. This
serves as the control input to stabilize the cart at x = 0. The model is a four-dimensional
system, given by the following equations [29, eq. (4)]:

ẋ1 = x2, ẋ2 = −x1 + 0.1 sin(x3), ẋ3 = x4, ẋ4 = u. (2)

2https://github.com/verivital/ARCH-COMP2023

93

https://github.com/verivital/ARCH-COMP2023

ARCH-COMP23 AINNCS Manzanas Lopez et al.

This benchmark has three neural network controllers: the first has three ReLU hidden layers
and a linear output layer. This controller was trained using a data-driven model predictive
controller proposed in [19]. Note that the output of the neural network f(x) needs to be
normalized to obtain u, namely u = f(x) − 10. The sampling time for this controller is 1 s,
and we verify it against specification 1 below. The other two controllers have three hidden
layers of 20 neurons each and one output layer. In contrast to the first controller, we use
sigmoid activation functions for the hidden layers and a tanh output layer. The sampling time
of these controllers is 0.5 s, the output of the neural network f(x) needs to be post-processed
as u = 11 · f(x), and we verify them against specification 2 below.

Specification 1. This is a safety specification. For an initial set of x1 ∈ [0.6, 0.7], x2 ∈
[−0.7,−0.6], x3 ∈ [−0.4,−0.3], and x4 ∈ [0.5, 0.6], the system states have to stay within the
box x ∈ [−2, 2]4 for a time window of 20 s.

Specification 2. For an initial set of x1 ∈ [-0.77, -0.75], x2 ∈ [-0.45, -0.43], x3 ∈ [0.51,
0.54], and x4 ∈ [−0.3,−0.28], it is required that the system reaches the set x1 ∈ [−0.1, 0.2],
x2 ∈ [−0.9,−0.6] within a time window of 5 s.

3.3 Sherlock-Benchmark-10 (Unicycle Car Model)

This benchmark considers a unicycle model of a car [18] with the x and y coordinates on a
two-dimensional plane, the velocity magnitude (speed), and steering angle as state variables.
The dynamic equations are (see [5, Sec. III.B]; a different input is used here):

ẋ1 = x4 cos(x3), ẋ2 = x4 sin(x3), ẋ3 = u2, ẋ4 = u1 + w, (3)

where w is a bounded error in the range 10−4[−1, 1]. A neural network controller was trained for
this system using a model predictive controller as a “demonstrator” or “teacher”. The trained
network has one hidden layer with 500 neurons. Note that the output of the neural network
f(x) needs to be normalized in order to obtain (u1, u2), namely ui = f(x)i− 20. The sampling
time for this controller is 0.2 s.

Specification This is a reachability specification. For an initial set of x1 ∈ [9.5, 9.55], x2 ∈
[−4.5,−4.45], x3 ∈ [2.1, 2.11], and x4 ∈ [1.5, 1.51], the system has to reach the set x1 ∈
[−0.6, 0.6], x2 ∈ [−0.2, 0.2], x3 ∈ [−0.06, 0.06], x4 ∈ [−0.3, 0.3] within a time window of 10 s.

3.4 VCAS Benchmark

This benchmark is a closed-loop variant of the aircraft collision avoidance system ACAS X. The
scenario involves two aircraft, the ownship and the intruder, where the ownship is equipped with
a collision avoidance system referred to as VerticalCAS [32]. VerticalCAS issues vertical climb
rate advisories every second to the ownship pilot to avoid a near mid-air collision (NMAC).
Near mid-air collisions are regions where the ownship and the intruder are separated by less
than 100ft vertically and 500ft horizontally. The ownship (black) is assumed to have a constant
horizontal speed, and the intruder (red) is assumed to follow a constant horizontal trajectory
towards ownship, see Figure 2. The current geometry of the system is described by

• h, intruder altitude relative to ownship,

• ḣ0, ownship vertical climb rate, and

94

ARCH-COMP23 AINNCS Manzanas Lopez et al.

NMAC zone

�

�

h

τ

|ḣ0|

Figure 2: VerticalCAS encounter geometry

• τ , the time until the ownship (black) and intruder (red) are no longer horizontally sepa-
rated.

We can, therefore, assume that the intruder is static and the horizontal separation τ de-
creases by one each second. There are nine advisories and each of them instructs the pilot to
accelerate until the vertical climb rate of the ownship complies with the advisory:

1. COC: Clear Of Conflict;

2. DNC: Do Not Climb;

3. DND: Do Not Descend;

4. DES1500: Descend at least 1500 ft/s;

5. CL1500: Climb at least 1500 ft/s;

6. SDES1500: Strengthen Descent to at least 1500 ft/s;

7. SCL1500: Strengthen Climb to at least 1500 ft/s;

8. SDES2500: Strengthen Descent to at least 2500 ft/s;

9. SCL2500: Strengthen Climb to at least 2500 ft/s.

In addition to the parameters describing the geometry of the encounter, the current state of
the system stores the advisory adv ∈ {1, . . . , 9} (numbers correspond to the above list) issued to
the ownship at the previous time step. VerticalCAS is implemented as nine ReLU networks Ni,
one for each (previous) advisory, with three inputs (h, ḣ0, τ), five fully-connected hidden layers
of 20 units each, and nine outputs representing the score of each possible advisory. Therefore,
given a current state (h, ḣ0, τ, adv), the new advisory adv′ is obtained by computing the argmax
of the output of Nadv on (h, ḣ0, τ).

Given the new advisory, the pilot can choose acceleration ḧ0 as follows. If the new advisory
is COC, then it can be any acceleration from the set {− g

8 , 0,
g
8}. For all remaining advisories, if

the previous advisory coincides with the new one and the current climb rate complies with the
new advisory (e.g., ḣ0 is non-positive for DNC and ḣ0 ≥ 1500 for CL1500), the acceleration ḧ0
is 0; otherwise, the pilot can choose any acceleration ḧ0 from the given sets:

• DNC: {− g
3 ,−

7g
24 ,−

g
4};

• DND: { g4 ,
7g
24 ,

g
3};

• DES1500: {− g
3 ,−

7g
24 ,−

g
4};

• CL1500: { g4 ,
7g
24 ,

g
3};

95

ARCH-COMP23 AINNCS Manzanas Lopez et al.

• SDES1500: {− g
3};

• SCL1500: { g3};

• SDES2500: {− g
3};

• SCL2500: { g3},

where g represents the gravitational constant 32.2 ft/s
2
.

It was proposed to tweak the benchmark for the tools that cannot efficiently account for
all possible acceleration choices. Those tools can consider two strategies for picking a single
acceleration at each time step:

• a worst-case scenario selection, where we choose the acceleration to take the ownship
closer to the intruder.

• always select the acceleration in the middle.

Given the current system state (h, ḣ0, τ, adv), the new advisory adv′ and the acceleration
ḧ0, the new state of the system can be computed by the following equations [32, eq. (15)]:

h(k + 1) = h(k)− ḣ0(k)∆τ − 0.5ḧ0(k)∆τ
2

ḣ0(k + 1) = ḣ0(k) + ḧ0(k)∆τ
τ(k + 1) = τ(k) + ∆τ

adv(k + 1) = adv′

where ∆τ = 1.

Specification The ownship has to be outside of the NMAC zone after k ∈ {1, . . . , 10} time
steps, i.e., h(k) > 100 or h(k) < −100, for all possible choices of acceleration by the pilot. The
set of initial states considered is: h(0) ∈ [−133,−129], ḣ0(0) ∈ {−19.5,−22.5,−25.5,−28.5},
τ(0) = 25 and adv(0) = COC.

3.5 Single-Pendulum Benchmark

We consider a classical inverted pendulum. A ball of mass m is attached to a massless beam of
length L. The beam is actuated with a torque T and we assume viscous friction with a friction
coefficient of c. The governing equation of motion can be obtained as [43, eq. (1)]:

θ̈ =
g

L
sin θ +

1

mL2

(
T − c θ̇

)
, (4)

where θ is the angle of the link concerning the upward vertical axis and θ̇ is the angular velocity.
After defining the state variables x1 = θ and x2 = θ̇, the dynamics in state-space form is

ẋ1 =x2, (5a)

ẋ2 =
g

L
sinx1 +

1

mL2
(T − c x2) . (5b)

Controllers are trained using behavior cloning, a supervised learning approach for training
controllers. The code, as well as training procedures, are provided. The model parameters are
chosen as

m = 0.5, L = 0.5, c = 0, g = 1, (6)

and the time step for the controller and the discrete-time model is ∆t = 0.05. The initial set is

x ∈ [1.0, 1.2]× [0.0, 0.2].

96

ARCH-COMP23 AINNCS Manzanas Lopez et al.

Specification ∀t ∈ [0.5, 1] : θ ∈ [0, 1] (analogously for k ∈ [10, 20] in discrete time).

3.6 Double-Pendulum Benchmark

The double pendulum is an inverted two-link pendulum with equal point masses m at the end
of connected mass-less links of length L. The links are actuated with torques T1 and T2, and
we assume viscous friction exists with a coefficient of c. The governing equations of motion are
described by the following equations [43, eq. (3a-b)]:

2θ̈1 + θ̈2 cos(θ2 − θ1)− θ̇22 sin(θ2 − θ1)− 2
g

L
sin θ1 +

c

mL2
θ̇1 =

1

mL2
T1, (7a)

θ̈1 cos(θ2 − θ1) + θ̈2 + θ̇21 sin(θ2 − θ1)−
g

L
sin θ2 +

c

mL2
θ̇2 =

1

mL2
T2, (7b)

where θ1 and θ2 are the angles of the links concerning the upward vertical axis (see Figure 3)
and g is the gravitational acceleration. After defining the state vector as x = [θ1, θ2, θ̇1, θ̇2]

T ,
the dynamics in state-space form is

ẋ1 =x3, (8a)

ẋ2 =x4, (8b)

ẋ3 =
1

2
(

cos2(x1−x2)
2 − 1

) cos (x1 − x2)

(
x3

2 sin (x1 − x2)− cos (x1 − x2)

(
g sin (x1)

L
(8c)

−x4
2 sin (x1 − x2)

2
+
T1 − c x3
2L2m

)
+
g sin (x2)

L
+
T2 − c x4
L2m

)
(8d)

− x4
2 sin (x1 − x2)

2
+
g sin (x1)

L
+
T1 − c x3
2L2m

, (8e)

ẋ4 =
−1

cos2(x1−x2)
2 − 1

(
x3

2 sin (x1 − x2)− cos (x1 − x2)

(
g sin (x1)

L
− x4

2 sin (x1 − x2)

2
(8f)

+
T1 − c x3
2L2m

)
+
g sin (x2)

L
+
T2 − c x4
L2m

)
. (8g)

The controllers for the double pendulum benchmark are obtained using the same methods
as the controllers for the single pendulum benchmark; also here, the code as well as training
procedures are provided. The model parameters are chosen as in (6) The initial set is

x ∈ [1.0, 1.3]4.

Specification 1 ∀t ∈ [0, 1] : x ∈ [−1.0, 1.7]4 (analogously for k ∈ [0, 20] in discrete time) for
∆t = 0.05.

Specification 2 ∀t ∈ [0, 0.4] : x ∈ [−0.5, 1.5]4 (analogously for k ∈ [0, 20] in discrete time)
for ∆t = 0.02.

We verify controller double pendulum less robust against specification 1 and controller double
pendulum more robust against specification 2.

97

ARCH-COMP23 AINNCS Manzanas Lopez et al.

1

2 g

x

y

Figure 3: Inverted double pendulum. The goal is to keep the pendulum upright (dashed
schematics)

3.7 Airplane Benchmark

The airplane example consists of a dynamical system that is a simple model of a flying airplane
as shown in Figure 4. The state is

x = [sx, sy, sz, vx, vy, vz, ϕ, θ, ψ, r, p, q]
T , (9)

where (sx, sy, sz) is the position of the center of gravity, (vx, vy, vz) are the components of
velocity in (x, y, z) directions, (p, q, r) are body rotation rates, and (ϕ, θ, ψ) are the Euler angles.
The equations of motion are reduced to [43, eq. (7)]:

v̇x =− g sin θ +
Fx
m

− qvz + rvy, (10a)

v̇y =g cos θ sinϕ+
Fy
m

− rvx + pvz, (10b)

v̇z =g cos θ cosϕ+
Fz
m

− pvy + qvx, (10c)

Ixṗ+ Ixz ṙ =Mx − (Iz − Iy)qr − Ixzpq, (10d)

Iy q̇ =My − Ixz
(
r2 − p2

)
− (Ix − Iz)pr, (10e)

Ixz ṗ+ Iz ṙ =Mz − (Iy − Ix)qp− Ixzrq. (10f)

The mass of the airplane is denoted with m and Ix, Iy, Iz and Ixz are the moment of inertia
with respect to the indicated axis; see Figure 4. The control parameters include three force
components Fx, Fy and Fz and three moment componentsMx,My,Mz. Note that for simplicity,
we assume that the aerodynamic forces are absorbed in the force vector F . In addition to these
six equations, we have six additional kinematic equations [43, eq. (8,9)]:ṡxṡy

ṡz

 =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

vxvy
vz

 (11)

98

ARCH-COMP23 AINNCS Manzanas Lopez et al.

x

z

top view

front view

x

y

y
z

Figure 4: The airplane example.

and ϕθ
ψ

 =

1 tan θ sinϕ tan θ cosϕ
0 cosϕ − sinϕ
0 sec θ sinϕ sec θ cosϕ

pq
r

 . (12)

As in the pendulum benchmarks, controllers are trained for the airplane problem using
behavior cloning. The system involves the model parameters

m = 1, Ix = Iy = Iz = 1, Ixz = 0, g = 1,

and the time step for the controller and the discrete-time model is ∆t = 0.1. The initial set is

x = y = z = r = p = q = 0, [vx, vy, vz, ϕ, θ, ψ] ∈ [0.0, 1.0]6.

Specification ∀t ∈ [0, 2] : sy ∈ [−0.5, 0.5], [ϕ, θ, ψ] ∈ [−1.0, 1.0]3. Analogously for k ∈ [0, 20]
in discrete time.

We verify the airplane controller against the specification above.

99

ARCH-COMP23 AINNCS Manzanas Lopez et al.

3.8 Benchmark: Attitude Control

We consider the attitude control of a rigid body with six states and three inputs [50, 56]. The
system dynamics is given by [50, Sec. V]:

ω̇1 = 0.25(u0 + ω2ω3), ω̇2 = 0.5(u1 − 3ω1ω3), ω̇3 = u2 + 2ω1ω2,

ψ̇1 = 0.5
(
ω2(ψ

2
1+ψ

2
2+ψ

2
3−ψ3)+ω3(ψ

2
1+ψ

2
2+ψ2+ψ

2
3)+ω1(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

ψ̇2 = 0.5
(
ω1(ψ

2
1+ψ

2
2+ψ

2
3+ψ3)+ω3(ψ

2
1−ψ1+ψ

2
2+ψ

2
3)+ω2(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

ψ̇3 = 0.5
(
ω1(ψ

2
1+ψ

2
2−ψ2+ψ

2
3)+ω2(ψ

2
1+ψ1+ψ

2
2+ψ

2
3)+ω3(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

wherein the state x = (ωT , ψT)T consists of the angular velocity vector in a body-fixed frame
ω ∈ R3 and the Rodrigues parameter vector ψ ∈ R3.

The control torque u ∈ R3 is updated every 0.1 s by a neural network with three hidden
layers, each of which has 64 neurons. The activations of the hidden layers are sigmoid and
identity, respectively. We train the neural-network controller using supervised learning methods
to learn from a known nonlinear controller [50]. The initial state set is:

ω1 ∈ [−0.45,−0.44], ω2 ∈ [−0.55,−0.54], ω3 ∈ [0.65, 0.66],

ψ1 ∈ [−0.75,−0.74], ψ2 ∈ [0.85, 0.86], ψ3 ∈ [−0.65,−0.64].

Specification The system should not reach the following unsafe set in 3 s (30 time steps):

ω1 ∈ [−0.2, 0], ω2 ∈ [−0.5,−0.4], ω3 ∈ [0, 0.2],

ψ1 ∈ [−0.7,−0.6], ψ2 ∈ [0.7, 0.8], ψ3 ∈ [−0.4,−0.2].

We want to show that the above specification does not hold.

3.9 Benchmark: QUAD

This benchmark studies a neural-network controlled quadrotor (QUAD) with twelve state vari-
ables [10]. We have the inertial (north) position x1, the inertial (east) position x2, the altitude
x3, the longitudinal velocity x4, the lateral velocity x5, the vertical velocity x6, the roll angle
x7, the pitch angle x8, the yaw angle x9, the roll rate x10, the pitch rate x11, and the yaw rate
x12. The control torque u ∈ R3 is updated every 0.1 s by a neural network with 3 hidden layers,
each of which has 64 neurons. The activations of the hidden layers and the output layer are
sigmoid and identity, respectively. The dynamics are given by the following equations [10, eq.
(12-16)]:

100

ARCH-COMP23 AINNCS Manzanas Lopez et al.

ẋ1 =cos(x8) cos(x9)x4 + (sin(x7) sin(x8) cos(x9)− cos(x7) sin(x9))x5

+ (cos(x7) sin(x8) cos(x9) + sin(x7) sin(x9))x6,

ẋ2 =cos(x8) sin(x9)x4 + (sin(x7) sin(x8) sin(x9) + cos(x7) cos(x9))x5

+ (cos(x7) sin(x8) sin(x9)− sin(x7) cos(x9))x6,

ẋ3 =sin(x8)x4 − sin(x7) cos(x8)x5 − cos(x7) cos(x8)x6,

ẋ4 =x12x5 − x11x6 − g sin(x8,)

ẋ5 =x10x6 − x12x4 + g cos(x8) sin(x7),

ẋ6 =x11x4 − x10x5 + g cos(x8) cos(x7)− g − u1/m,

ẋ7 =x10 + sin(x7) tan(x8)x11 + cos(x7) tan(x8)x12,

ẋ8 =cos(x7)x11 − sin(x7)x12,

ẋ9 =
sin(x7)

cos(x8)
x11 −

cos(x7)

cos(x8)
x12,

ẋ10 =
Jy − Jz
Jx

x11x12 +
1

Jx
u2,

ẋ11 =
Jz − Jx
Jy

x10x12 +
1

Jy
u3,

ẋ12 =
Jx − Jy
Jz

x10x11 +
1

Jz
τψ,

where

g = 9.81, m = 1.4, Jx = 0.054,

Jy = 0.054, Jz = 0.104, τψ = 0.

The initial set is:

x1 ∈ [−0.4, 0.4], x2 ∈ [−0.4, 0.4], x3 ∈ [−0.4, 0.4], x4 ∈ [−0.4, 0.4],

x5 ∈ [−0.4, 0.4], x6 ∈ [−0.4, 0.4], x7 = 0, x8 = 0, x9 = 0, x10 = 0, x11 = 0, x12 = 0.

Specification The control goal is to stabilize the attitude x3 to a goal region [0.94, 1.06] and
remain within these bounds with a time horizon of 5 s (50 time steps).

3.10 2D Spacecraft Docking

In the 2D spacecraft docking environment, the state of an active deputy spacecraft is expressed
relative to the passive chief spacecraft in Hill’s reference frame [26]. The dynamics are given
by a first-order approximation of the relative motion dynamics between the deputy and chief
spacecraft, which is given by Clohessy-Wiltshire [17] equations [52, eq. (12)],

ṡx
ṡy
s̈x
s̈y

 =

0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0

sx
sy
ṡx
ṡy

+

0 0
0 0
1
m 0
0 1

m

u, (13)

where m = 12 (kg), n = 0.001027 (rad/s), and u ∈ R2.

101

ARCH-COMP23 AINNCS Manzanas Lopez et al.

The neural network controller was trained on the Docking 2D environment with reinforce-
ment learning using the training procedure described in [52]. However, the training procedure
differed in providing only the full state (position and velocity) as input and with hard clipping
of output actions replaced with soft tanh clipping. The neural network architecture was a shal-
low multilayer perceptron with 2 hidden layers of 256 neurons and tanh activation functions,
and a linear output layer. The pre-processing and post-processing of the controller have been
incorporated into the model as linear layers. The controller was trained with a sampling time
of 1 s.

Specification The spacecraft should satisfy the following safety constraints for 40 s:

(ṡ2x + ṡ2y)
1
2 ≤ 0.2 + 2n(s2x + s2y)

1
2 , (14)

given the initial set is

sx ∈ [70, 106], sy ∈ [70, 106], ṡx ∈ [−0.28, 0.28], ṡy ∈ [−0.28, 0.28].

4 Verification Results

For each of the participating tools, we obtained verification results for some or all of the bench-
marks. This year’s competition included the submission of the tools for repeatability prior to
the writing of the report to ensure a fairer competition. Reachable sets are shown for those
methods that are able to construct them. The published results (no plots) are available at
https://arch.repeatability.cps.cit.tum.de/frontend/submissions.

4.1 CORA

We present the results utilizing CORA on each of the benchmarks. CORA is able to show ver-
ification/violation of the specifications in all benchmarks except one using the entire input set.
For details about the reachability parameters used, such as the step size of our algorithm for
continuous-time benchmarks and the parameters for the propagation through the neural net-
work, we refer to the submission code available at https://gitlab.com/goranf/ARCH-COMP/
-/tree/master/2023/AINNCS/cora. We show the results of all benchmarks in Tab. 1. In
addition, we give details for each benchmark and provide the accompanying plots below.

4.1.1 ACC

CORA is able to verify all specifications automatically. The computed reachable set along with
some simulations are shown in Figure 5.

4.1.2 Sherlock-Benchmark-9 (TORA)

CORA is able to verify all specifications automatically. The computed reachable set along with
some simulations are shown in Figure 6 for the ReLU controller (specification 1) and in Figure 7
for the sigmoid and tanh controllers (specification 2).

4.1.3 Sherlock-Benchmark-10 (Unicycle)

CORA is able to verify all specifications automatically. The computed reachable set along with
some simulations are shown in Figure 8.

102

https://arch.repeatability.cps.cit.tum.de/frontend/submissions
https://gitlab.com/goranf/ARCH-COMP/-/tree/master/2023/AINNCS/cora
https://gitlab.com/goranf/ARCH-COMP/-/tree/master/2023/AINNCS/cora

ARCH-COMP23 AINNCS Manzanas Lopez et al.

Table 1: CORA. Results of all benchmarks including the time to compute the simulations
(ST), the time to compute and verify the reachable set (VT), and total time (TT). All time
values are in seconds.

Benchmark Instance ST VT TT Result

ACC - 1.63 4.05 5.70 VERIFIED

Sherlock-Benchmark-9 (TORA) ReLU 3.05 21.94 25.00 VERIFIED

Sherlock-Benchmark-9 (TORA) ReLU-Tanh 1.43 13.76 15.21 VERIFIED

Sherlock-Benchmark-9 (TORA) Sigmoid 1.29 10.84 12.23 VERIFIED

Sherlock-Benchmark-10 (Unicycle) - 5.73 6.97 12.71 VERIFIED

Sherlock-Benchmark-10 (Unicycle) - 5.73 6.97 12.71 VERIFIED

Single pendulum - 0.50 2.10 2.61 VIOLATED

Double pendulum Normal controller 0.62 5.59 6.23 VIOLATED

Double pendulum Robust controller 1.13 1.98 3.11 VIOLATED

Airplane - 1.13 1.98 3.11 VIOLATED

Attitude Control - 0.78 10.06 10.84 VERIFIED

Quadrotor - 5.11 352.84 357.96 VERIFIED

Spacecraft docking - 11.86 60.98 73.86 UNKOWN

VCAS (middle acc.) ḣ0(0) = −19.5 0.18 0.19 0.38 VERIFIED

VCAS (middle acc.) ḣ0(0) = −22.5 0.08 0.08 0.16 VERIFIED

VCAS (middle acc.) ḣ0(0) = −25.5 0.07 - 0.07 VIOLATED

VCAS (middle acc.) ḣ0(0) = −28.5 0.05 - 0.05 VIOLATED

VCAS (worst acc.) ḣ0(0) = −19.5 0.09 0.10 0.20 VERIFIED

VCAS (worst acc.) ḣ0(0) = −22.5 0.04 - 0.04 VIOLATED

VCAS (worst acc.) ḣ0(0) = −25.5 0.03 - 0.04 VIOLATED

VCAS (worst acc.) ḣ0(0) = −28.5 0.03 - 0.04 VIOLATED

0 1 2 3 4 5
40

60

80

100

time

d
is
ta
n
ce

Distance

Safe distance

Simulations

Figure 5: CORA. Computed reachable set of the ACC benchmark.

103

ARCH-COMP23 AINNCS Manzanas Lopez et al.

−2 −1 0 1 2

−2

−1

0

1

2

x3 (angle)

x
4
(ẋ

3
)

Safe set

Reachable set

Initial set

Simulations

(a) ReLU controller

−2 −1 0 1 2

−2

−1

0

1

2

x1 (distance)

x
2
(ẋ

1
)

Safe set

Reachable set

Initial set

Simulations

(b) ReLU controller

Figure 6: CORA. Computed reachable set of the Sherlock-Benchmark-9 (TORA) benchmark
using specification 1.

−1 0 1

−1

0

1

x1 (distance)

x
2
(ẋ

1
)

Goal set

Reachable set

Initial set

Simulations

(a) Tanh controller

−1 0 1

−1

0

1

x1 (distance)

x
2
(ẋ

1
)

Goal set

Reachable set

Initial set

Simulations

(b) Sigmoid controller

Figure 7: CORA. Computed reachable set of the Sherlock-Benchmark-9 (TORA) benchmark
using specification 2.

4.1.4 VCAS

The VCAS benchmark has discrete time steps and multiple controllers, which is currently not
supported by CORA. Thus, a custom algorithm was built for this benchmark. To deal with
the discrete input set ḣ0(0) ∈ {−19.5,−22.5,−25.5,−28.5}, we run the algorithm with each
element of the input set individually. As proposed in the benchmark specifications, we show
the results when always the middle acceleration of the controllers is chosen and the results when
always the worst acceleration is chosen.

104

ARCH-COMP23 AINNCS Manzanas Lopez et al.

−2 0 2 4 6 8 10

−4

−2

0

x

y

Goal set

Reachable set

Initial set

Simulations

Figure 8: CORA. Computed reachable set of the Sherlock-Benchmark-10 (Unicycle) bench-
mark.

−24 −22 −20 −18 −16
−400

−300

−200

−100

0

100

Time -τ

h

ḣ0(0) = −22.5

NMAC

Reachable Set

Simulations

(a) ReLU controller

−24 −22 −20 −18 −16

−300

−200

−100

0

100

Time -τ

h
ḣ0(0) = −28.5

NMAC

Reachable Set

(b) ReLU controller

Figure 9: CORA. Computed reachable set of the VCAS benchmark with middle acceleration.

VCAS (middle acceleration) Here we always use the middle of the possible accelerations.
We are able to verify the benchmark for ḣ0(0) ∈ {−19.5,−22.5} and can show violations for
ḣ0(0) ∈ {−25.5,−28.5}. The computed reachable set along with some simulations are shown
in Figure 9.

VCAS (worst acceleration) Here we always use the worst possible acceleration. We
are able to verify the benchmark for ḣ0(0) ∈ {−19.5} and can show violations for ḣ0(0) ∈
{−22.5,−25.5,−28.5}. The computed reachable set along with some simulations are shown in
Figure 10.

105

ARCH-COMP23 AINNCS Manzanas Lopez et al.

−24 −22 −20 −18 −16

−300

−200

−100

0

100

Time -τ

h
ḣ0(0) = −19.5

NMAC

Reachable Set

Simulations

(a) ReLU controller

−24 −22 −20 −18 −16
−300

−200

−100

0

100

Time -τ

h

ḣ0(0) = −28.5

NMAC

Reachable Set

(b) ReLU controller

Figure 10: CORA. Computed reachable set of the VCAS benchmark with worst acceleration.

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

time

θ

Safe set

Unsafe set

Reachable set

Simulations

Figure 11: CORA. Computed reachable set of the single pendulum benchmark.

4.1.5 Single Pendulum

CORA is able to show specification violations of the single-pendulum benchmark. Figure 11
shows the verified simulation run which is violating the specification.

4.1.6 Double Pendulum

CORA is able to show violations for both controllers of the double-pendulum benchmark.
Figure 12 shows the verified simulation runs which are violating the specification. Note that
the reachable set computation is very tight for the more robust controller and thus barely
visible.

106

ARCH-COMP23 AINNCS Manzanas Lopez et al.

−1 0 1 2

−1

0

1

2

θ̇1

θ̇ 2

Safe set

Reachable set

Initial set

Simulations

(a) Less robust controller

−2 −1 0 1

−1

0

1

θ̇1

θ̇ 2

Safe set

Reachable set

Initial set

Simulations

(b) More robust controller

Figure 12: CORA. Computed reachable set of the double pendulum benchmark.

−0.5 0 0.5
−1

−0.5

0

0.5

1

y

ϕ

Safe set

Reachable set

Initial set

Simulations

Figure 13: CORA. Computed reachable set of the airplane benchmark.

4.1.7 Airplane

CORA is able to show specification violations of the airplane benchmark. Figure 13 shows
the verified simulation run which is violating the specification. Note that the reachable set
computation is very tight and thus barely visible.

4.1.8 Attitude Control

CORA is able to verify all specifications automatically. The computed reachable set along with
some simulations are shown in Figure 14.

107

ARCH-COMP23 AINNCS Manzanas Lopez et al.

0 1 2 3

−0.4

−0.2

0

0.2

time

ω
1

Unsafe set

Reachable set

Initial set

Simulations

0 1 2 3
−0.6

−0.5

−0.4

−0.3

time

ω
2

Unsafe set

Reachable set

Initial set

Simulations

Figure 14: CORA. Computed reachable set of the attitude control benchmark.

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

time

a
lt
it
u
d
e

Goal set

Reachable set

Initial set

Simulations

Figure 15: CORA. Computed reachable set of the quadrator benchmark.

4.1.9 Quadrotor

CORA is able to verify all specifications automatically. While it is not possible to verify the
benchmark using linear abstractions of all neurons, we can verify the benchmark by applying the
refinement approach described in [38]. The computed reachable set along with some simulations
are shown in Figure 15.

4.1.10 2D Spacecraft Docking

The spacecraft docking benchmark appeared difficult to verify for our approach. While the
simulations seem to be stable, the reachable set explodes over time and thus we are unable to
verify the benchmark. The computed reachable set along with some simulations are shown in
Figure 16.

108

ARCH-COMP23 AINNCS Manzanas Lopez et al.

0 10 20 30 40
−50

0

50

100

150

200

Time

x

Reachable set

Initial set

Simulations

Figure 16: CORA. Computed reachable set of the spacecraft docking benchmark.

4.2 JuliaReach

This subsection presents the results of JuliaReach. JuliaReach was able to analyze eight bench-
mark problems (four verified, four falsified). For each problem, JuliaReach uses slightly different
settings as described below.

4.2.1 ACC

Figure 17: JuliaReach. Analysis results for the ACC benchmark and the ReLU controller
(left) resp. the tanh controller (right). The plot additionally shows simulations.

Using the parameters abstol=1e-6, orderT=6, orderQ=1, JuliaReach verifies the prop-
erty Drel ≥ Dsafe for the whole time horizon in 0.5 s. The reach sets of Drel and Dsafe together
with some simulations are shown in Figure 17.

109

ARCH-COMP23 AINNCS Manzanas Lopez et al.

Figure 18: JuliaReach. Analysis results for the TORA benchmark for the ReLU controller
(top), the sigmoid controller (bottom left), resp. the ReLU/tanh controller (bottom right). The
plots additionally show simulations.

4.2.2 Sherlock-Benchmark-9 (TORA)

We analyze three different controllers for the TORA benchmark problem. For the ReLU con-
troller, the approximation error is hard to tame for the JuliaReach approach. To maintain
enough precision to prove correctness, the initial states are split into 4 × 4 × 3 × 5 boxes.
While each box spawns an independent analysis that could be parallelized, the run time of
the sequential execution is 25 minutes. We use the parameters abstol=1e-10, orderT=8,

orderQ=3. The reach sets of all 240 runs together with some simulations, projected to x1/x2
resp. x3/x4, are shown in Figure 18. The sigmoid and ReLU/tanh controllers reach the target
set within the given time constraints, as shown in the x1/x2 projections in Figure 18. The
latter analyses take 5 s respectively 1 s.

4.2.3 Sherlock-Benchmark-10 (Unicycle)

The disturbance w is modeled here as a constant with an uncertain initial value. Simulations
show that the target set is reached only at the last moment, so the analysis requires high
precision to prove containment of the last reach set. Using the parameters abstol=1e-15,

orderT=10, orderQ=1 and splitting the initial states into 3 × 1 × 8 × 1 boxes, JuliaReach
verifies the property in 61 s. The reach sets of all 24 runs together with some simulations,
projected to x1/x2 resp. x3/x4, are shown in Figure 19. JuliaReach can evaluate the Taylor

110

ARCH-COMP23 AINNCS Manzanas Lopez et al.

Figure 19: JuliaReach. Analysis results for the Unicycle benchmark. The first two plots show
the overall reach sets and simulations. The other two plots show a close-up of the target set.
The orange subset of the last reach set is obtained at time point t = 10.

polynomial at the time point t = 10 (rather than the last time interval), which results in a
more precise result (as shown in the plots), although additional precision is not required for
this problem, as the reach set for the last time interval is already fully contained in the target
set.

4.2.4 VCAS

The VCAS benchmark problem differs from the other problems in that it uses multiple con-
trollers and discrete time. There is currently no native support for this setting in JuliaReach,
so a custom simulation algorithm that always chooses the central acceleration was used. Ju-
liaReach produces ten simulations in 1 s, which indicate satisfaction for the initial values
ḣ(0) ∈ {−19.5,−22.5} but show a violation of the specification for the other initial values.
The simulation results are shown in Figure 20.

4.2.5 Single Pendulum

This system violates the specification; hence it suffices to start the analysis from a subset of
the initial states and interrupt when a violation is detected. Here, starting from the highest
coordinate in each dimension, a violation occurs within eleven control periods. Using the
parameters abstol=1e-7, orderT=4, orderQ=1, JuliaReach falsifies the property in 0.5 s.
Figure 21 shows the reach sets together with a simulation projected to time and θ.

111

ARCH-COMP23 AINNCS Manzanas Lopez et al.

Figure 20: JuliaReach. Simulations of the VCAS benchmark.

Figure 21: JuliaReach. Analysis results for the Single-Pendulum benchmark until time t =
0.55. The plot additionally shows a simulation.

4.2.6 Double Pendulum

Similarly to the single-pendulum problem, this system violates the specification for both con-
trollers; hence it suffices to start the analysis from a subset of the initial states and interrupt
when a violation is detected. Considering the less robust controller, when starting from the
highest value in each dimension, a violation occurs within five control periods. Similarly, con-
sidering the more robust controller and starting from the lowest value in each dimension, a
violation occurs within seven control periods. Using the parameters abstol=1e-9, orderT=8,

orderQ=1 and an older version of the Taylor-model algorithm, JuliaReach falsifies the property
in 5 s (less robust controller) resp. 1 s (more robust controller). Figure 22 shows the reach sets
together with a simulation projected to θ̇1/θ̇2.

112

ARCH-COMP23 AINNCS Manzanas Lopez et al.

Figure 22: JuliaReach. Analysis results for the double-pendulum benchmark, including a
simulation. The first plot shows the results for the less robust controller until time t = 0.25.
The second plot shows the results for the more robust controller until time t = 0.14.

Figure 23: JuliaReach. Analysis results for the airplane benchmark until time t = 0.4,
including a simulation.

4.2.7 Airplane

This system violates the specification; hence it suffices to start the analysis from a subset of
the initial states and interrupt when a violation is detected. When starting from the highest
coordinate in each dimension, a violation occurs immediately in dimension θ and within four
control periods in dimension y. To obtain some nontrivial results, JuliaReach ignores the viola-
tion in dimension θ. Using the parameters abstol=1e-10, orderT=7, orderQ=1, JuliaReach
falsifies the property in 5 s. The reach sets together with a simulation, projected to y/ϕ, are
shown in Figure 23.

4.2.8 Attitude Control

Using the parameters abstol=1e-6, orderT=6, orderQ=1, JuliaReach verifies the property in
1 s. The reach sets together with some simulations are shown in Figure 24.

113

ARCH-COMP23 AINNCS Manzanas Lopez et al.

Figure 24: JuliaReach. Analysis results for the attitude control benchmark, including simu-
lations.

Figure 25: JuliaReach. Analysis results for the quadrotor benchmark, including simulations.

4.2.9 QUAD

Although simulations indicate that this controller is safe, the precision of JuliaReach is not high
enough to prove it. The property can be proven for a smaller initial set [−0.004, 0.004]6×{0}6.
Using the parameters abstol=1e-8, orderT=5, orderQ=1, JuliaReach verifies the property in
11 s. The reach sets together with some simulations are shown in Figure 25.

4.2.10 2D Spacecraft Docking

Although simulations indicate that this controller is safe, the precision of JuliaReach is not high
enough to prove it. The property can be proven for a smaller initial set [87, 89]2× [−0.01, 0.01]2.
Using the parameters abstol=1e-10, orderT=5, orderQ=1, JuliaReach verifies the property
in 0.5 s. The reach sets together with some simulations are shown in Figure 26. Since the
property is four-dimensional, it cannot be illustrated in the plot.

114

ARCH-COMP23 AINNCS Manzanas Lopez et al.

Figure 26: JuliaReach. Analysis results for the Spacecraft benchmark, including simulations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

40

50

60

70

80

90

100

110

D
is

ta
nc

e
(m

)

Figure 27: NNV. Computed reachable set of the ACC benchmark.

4.3 NNV

We present the results utilizing NNV on each of the benchmarks. For details about the reach-
ability parameters used, we refer to the submission code available at https://gitlab.com/

goranf/ARCH-COMP/tree/master/2023/AINNCS/nnv. We have been able to encode all the
benchmarks into NNV and attempted to verify all of them, however, due to the conservative-
ness of the methods and the complexity of the different benchmarks, NNV was unable to verify
the unicycle, quadrotor, attitude, and docking spacecraft benchmarks.

4.3.1 ACC

NNV is able to verify the safety property Drel ≥ Dsafe in 24.98 s. The reach sets of Drel and
Dsafe are shown in Figure 27.

115

https://gitlab.com/goranf/ARCH-COMP/tree/master/2023/AINNCS/nnv
https://gitlab.com/goranf/ARCH-COMP/tree/master/2023/AINNCS/nnv

ARCH-COMP23 AINNCS Manzanas Lopez et al.

4.3.2 Sherlock-Benchmark-9 (TORA)

NNV is able to verify all three controllers for the TORA benchmark. For the ReLU controller,
NNV verifies the specification in 21.97 s, while it takes 2148 s and 4074 s to verify the ReLU-tanh
and sigmoid controllers respectively. The differences in computation time across controllers are
due to the partitioning of the initial state sets. The reach sets are shown in Figure 28.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x2

-0.1 -0.05 0 0.05 0.1 0.15 0.2

x1

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

x2

-0.1 -0.05 0 0.05 0.1 0.15 0.2

x1

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

x2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x4

Figure 28: NNV. Analysis results for the Tora benchmark showing the TORA sets in blue
and the goal region in green. The left figures correspond to the sigmoid controller, the middle
two to the ReLU-tanh controller, and the two on the right to the ReLU controller. For the
sigmoid and ReLU-tanh controllers only the reach sets at every control period are shown in the
top row. The corresponding zoomed-in pictures of the goal region are depicted in the bottom
row.

4.3.3 VCAS

NNV is able to verify the NMAC safety property for the whole time horizon for each of the
cases with an average computation time of 3.1 s. There are 5 cases where we prove that the
system is unsafe and 3 where the system is safe, which corresponds to [middle, 19.5], [middle,
22.5], and [worst, 19.5]. These results are depicted in Figures 29 and 30.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-300

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-350

-300

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-300

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

Figure 29: NNV. Analysis results for the VCAS benchmark showing the aircraft sets in blue
and the unsafe region in red, when selecting the middle acceleration value at each control period

116

ARCH-COMP23 AINNCS Manzanas Lopez et al.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-300

-250

-200

-150

-100

-50

0

50

100
D

is
ta

nc
e

(f
t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-250

-200

-150

-100

-50

0

50

100

D
is

ta
nc

e
(f

t)

Figure 30: NNV. Analysis results for the VCAS benchmark showing the aircraft sets in blue
and the unsafe region in red, when selecting the worst possible acceleration value at each control
period.

4.3.4 Single Pendulum

For the single pendulum, it is sufficient to start with a smaller initial state to prove that the
safety property is violated, with a computation time of 2.85 s. The reach sets are depicted in
Figure 31.

0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

0.95

1

1.05

1.1

1.15

1.2

1.25

3

Figure 31: NNV. Analysis results for the single pendulum benchmark showing the sets in blue
and the unsafe region in red.

4.3.5 Double Pendulum

Similar to the single pendulum, we can demonstrate that the property is violated starting from
a smaller initial set, for both the more robust and less robust controllers. The results are
depicted in Figure 32, and the computation times are 45 s and 43.25 s for the more robust and
less robust controllers respectively.

4.3.6 Airplane

NNV is able to show that the property is violated by computing the reach sets from a smaller
initial region, in 41.7 s. The results are depicted in Figure 33.

117

ARCH-COMP23 AINNCS Manzanas Lopez et al.

-0.5 0 0.5 1 1.5

x3

-1

-0.5

0

0.5

1

1.5

x4

-1 -0.5 0 0.5 1 1.5 2

x3

-1.5

-1

-0.5

0

0.5

1

1.5

2

x4

Figure 32: NNV. Analysis results for the Double Pendulum benchmark showing the reach sets
in blue and the safe region in green, when using the more robust controller (left) and less
robust controller (right).

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x
2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 5

Figure 33: NNV. Analysis results for the airplane benchmark showing the reach sets in blue
and the goal region in green.

4.4 Summary

Finally, we present a table with the timed results for each of the benchmarks and highlight
the fastest tool for each of them in Table 2. We present the average computation time across
all VCAS instances. However, JuliaReach only presents the time it took to falsify 2 out of 8
instances (0.95 s), which is the data presented here.

Table 2: Summary of verification results, showing the computation time (s) for verified instances
and “-” for those unknown. The fastest computation times are highlighted in bold.

ACC TORA TORA TORA Unicycle VCAS Pend (S) Pend (D) Pend (D) Airplane Attitude Quad Docking
ReLU ReLU-tanh sigmoid more less

CORA 5.70 25.01 15.21 12.23 12.73 0.12 2.63 3.12 6.24 10.85 8.19 358.0 -
JuliaReach 0.47 1491 1.47 5.15 60.86 0.95 0.53 1.07 5.27 4.75 0.98 - -

NNV 24.98 21.97 2149 4074 - 3.18 2.85 45.07 43.25 41.75 - - -

118

ARCH-COMP23 AINNCS Manzanas Lopez et al.

5 Category Status and Challenges

Year-over-year comparison. It has been 5 years of this competition, and we have observed
an immense improvement in the area in this last half-decade. In 2019, when the competition
began, there were only 5 benchmarks, out of which the 3 participants were only able to verify an
average of less than 2 benchmarks per tool – including the 2 instances where the controller was
modified (ReLU vs tanh) to be supported by one of the tools. Over the next three years (2020-
2022), there were a total of 8 different tools that participated in the competition, increasing the
complexity of the benchmarks along with the quality improvement of the participating tools.
Ending with this year’s competition, we can also observe certain improvements over last year:
Overall, the tools successfully verified 78.3% of all instances, compared to 75% from last year
(2022) and 60% from the 2021 competition.

Automatic Verification. Some advances have been made to determine the verification re-
sults automatically. The current state of the art requires the authors to tune the hyperparam-
eters of the verification manually as well as hard-code counterexamples, which can be time-
consuming and requires expert knowledge. As an attempt towards a push-button approach,
CORA is able to find counterexamples through simulations and verify the falsifying trajec-
tory automatically. If no counterexample is found, CORA automatically tries to verify the
benchmark.

Closed-loop reachability integration. Since the first NNV publication [66], there have
been several additions and enhancements to the tool, including the development of new star-
based reachability methods [65] and support for several layers and deep learning architectures
such as neuralODEs and RNNs [41]. In terms of AINNCS verification, these changes include
a reduction in the overapproximation of the plant reachable sets over the control steps, as
well as allowing for faster but more conservative reachability methods for the controller (relax-
reachability [65]). These changes helped NNV to verify two more benchmark instances (TORA)
than last year’s competition. The integration of polynomial zonotopes into reachability analysis
of neural-network controlled systems [36] as well as an adaptive refinement scheme [38] allowed
CORA to verify the seemingly difficult QUAD benchmark.

Activation Function Types (controllers): For this year’s set of benchmarks, all neural
network controllers contain one or more of the following activation functions: ReLU, linear,
sigmoid, and tanh. The tools have support for the types: linear, piecewise linear (ReLU), and
nonlinear activation functions. In the future, we will consider adding other variations of the
existing activation functions, such as LeakyReLU or PReLU.

Plant Models: This and last year’s competition have considered linear and nonlinear plants,
both in discrete and continuous time. In future iterations, we plan to add hybrid automata
plants as we look to report a more complete analysis of the participating verification tools.
Hybrid automata plants will be especially interesting because combined continuous and discrete
dynamics are complex, which is very challenging for current AINNCS verification tools. We
will also consider adding neural ODEs as in [45], which will also increase the complexity of the
benchmarks and may require a more general encoding of NNCS by most participating tools to
verify them.

119

ARCH-COMP23 AINNCS Manzanas Lopez et al.

Neural Network Architectures and Parameterization: The neural network architec-
tures presented in this work are fairly simple. Similar to last year, they have no more than a
thousand neurons and no more than 5 hidden layers in their architecture, unlike some of the
networks that can be analyzed without the plant. Also, the maximum number of inputs and
outputs of the controllers are 12 and 6, respectively, both in the airplane benchmark. Consid-
ering the VCAS benchmark, these networks have 9 outputs, although these are translated into
a single input to the plant model. However, for some benchmarks, there are still state-space
explosion and scalability issues to address in both the neural network controllers and plant
analysis. These issues could come from the repeated interaction between the network and the
states.

Model Formats: Following previous iterations, we have found it more useful and convenient
to simply share the plant models in a plain format, such as MATLAB functions, where the
participants could easily extract the ODEs. As for the neural network models, we provide
them in the ONNX format3, .mat format4, and the original format used by the proposer of
the benchmark. A few years ago, we began providing the neural network controllers in the
ONNX format, as it was very convenient to have a standard exchange format that most of the
participating tools supported. However, we have found that there are still discrepancies among
the different versions and frameworks these ONNX models were created from (e.g., different
input/output transformations are not always supported by every framework as experienced on
the Docking spacecraft benchmark). Thus, having a standard format easily imported by all
participants without local modifications, such as a unified ONNX version, remains a challenge.
Initiatives more focused on neural network verification, such as VNN-LIB5 and VNN-COMP6,
may help toward this goal.

6 Conclusion and Outlook

This report presents the results of the fifth ARCH friendly competition for closed-loop systems
with neural network controllers. For this edition, three tools have participated and attempted to
solve 10 benchmarks: CORA, JuliaReach, and NNV. The problems elucidated in this paper are
challenging and diverse; the presented results probably provide the most complete assessment
of current tools for the safety verification in AINNCS. The report provides a good overview
of the intellectual progression of this rapidly growing field, and it is our hope to stimulate the
development of efficient and effective methods capable of use in real-world applications. In
the past five years, the complexity of the benchmarks has consistently increased along with
the capabilities of the participant tools, leading to the most challenging competition (equal to
2022 competition) and the best verification results thus far, which is a good indicator for this
growing and maturing field. This has been achieved thanks to the continuous development
and improvements in existing formal verification frameworks, including CORA, JuliaReach,
and NNV. We would also like to encourage other tool developers to consider participating next
year, as well as new benchmark proposals are highly welcome. Authors agree that although
participation consumes time, we have gained unique insights that have allowed us to improve
in each iteration and will allow us to improve in the future. The reports of other categories can
be found in the proceedings and on the ARCH website: cps-vo.org/group/ARCH.

3Open Neural Network Exchange: https://github.com/onnx/onnx
4Direct input format used by NNV without transformation.
5http://www.vnnlib.org/
6https://github.com/verivital/vnn-comp/

120

http://cps-vo.org/group/ARCH
https://github.com/onnx/onnx
http://www.vnnlib.org/
https://github.com/verivital/vnn-comp/

ARCH-COMP23 AINNCS Manzanas Lopez et al.

7 Acknowledgments

The material presented in this paper is based upon work supported by the National Science
Foundation (NSF) through grant numbers 1910017, 2028001, 2220418, 2220426 and 2220401,
the Defense Advanced Research Projects Agency (DARPA) under contract numbers FA8750-23-
C-0518 and FA8750-18-C-0089, and the Air Force Office of Scientific Research (AFOSR) under
contract number FA9550-22-1-0019 and FA9550-23-1-0135. Christian Schilling acknowledges
the support from DIREC - Digital Research Centre Denmark and the Villum Investigator
Grant S4OS. Tobias Ladner gratefully acknowledges financial support from the project FAI
funded by the German Research Foundation (DFG) under project number 286525601. Any
opinions, findings, and conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of AFOSR, DARPA, DIREC, DFG, or NSF.

A Specification of Used Machines

This year, we run all tools on the same hardware using tool-specific docker images. The speci-
fication of the server used for the evaluation is given below:

• Processor: AMD EPYC 7742 64-Core

• Memory: 995 GB

• OS: Ubuntu 22.04

• Docker: 20.10.21

References

[1] Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros, and Alessio Lomuscio. Formal verifi-
cation of neural agents in non-deterministic environments. In Proceedings of the 19th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS, pages 25–33, 2020.

[2] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, pages 120–151, 2015.

[3] M. Althoff and D. Grebenyuk. Implementation of interval arithmetic in CORA 2016. In Proc.
of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems,
pages 91–105, 2016.

[4] M. Althoff, D. Grebenyuk, and N. Kochdumper. Implementation of Taylor models in CORA
2018. In Proc. of the 5th International Workshop on Applied Verification for Continuous and
Hybrid Systems, 2018.

[5] M. Althoff, M. Koschi, and S. Manzinger. CommonRoad: Composable benchmarks for motion
planning on roads. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 719–726, 2017.

[6] S. Bak, S. Bogomolov, T. A. Henzinger, T. T. Johnson, and P. Prakash. Scalable static hybridiza-
tion methods for analysis of nonlinear systems. In Proc. of the 19th ACM International Conference
on Hybrid Systems: Computation and Control, pages 155–164, 2016.

[7] Stanley Bak. nnenum: Verification of relu neural networks with optimized abstraction refinement.
In NASA Formal Methods Symposium, pages 19–36. Springer, 2021.

[8] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. Hyst: A source transformation and
translation tool for hybrid automaton models. In Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control, HSCC ’15, pages 128–133, New York, NY, USA,
2015. ACM.

121

ARCH-COMP23 AINNCS Manzanas Lopez et al.

[9] Stanley Bak, Changliu Liu, and Taylor Johnson. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. 2021.

[10] Randal W. Beard. Quadrotor dynamics and control. Technical report, 2008.

[11] Luis Benet, Marcelo Forets, David P. Sanders, and Christian Schilling. TaylorModels.jl: Taylor
models in Julia and its application to validated solutions of ODEs. In SWIM, 2019.

[12] Luis Benet and David P. Sanders. TaylorSeries.jl: Taylor expansions in one and several variables
in Julia. Journal of Open Source Software, 4(36):1043, 2019.

[13] Luis Benet and David P. Sanders. JuliaDiff/TaylorSeries.jl. https://github.com/JuliaDiff/

TaylorSeries.jl, 2021.

[14] Luis Benet and David P. Sanders. JuliaIntervals/TaylorModels.jl. https://github.com/

JuliaIntervals/TaylorModels.jl, 2021.

[15] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling.
JuliaReach: a toolbox for set-based reachability. In HSCC, pages 39–44. ACM, 2019.

[16] Arthur Clavière, Eric Asselin, Christophe Garion, and Claire Pagetti. Safety verification of neu-
ral network controlled systems. In 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), pages 47–54, 2021.

[17] W. H. CLOHESSY and R. S. WILTSHIRE. Terminal guidance system for satellite rendezvous.
Journal of the Aerospace Sciences, 27(9):653–658, 1960.

[18] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. Reachability analysis for neural
feedback systems using regressive polynomial rule inference. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, HSCC 2019, Montreal,
QC, Canada, April 16-18, 2019., pages 157–168, 2019.

[19] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Learning and ver-
ification of feedback control systems using feedforward neural networks. IFAC-PapersOnLine,
51(16):151 – 156, 2018. 6th IFAC Conference on Analysis and Design of Hybrid Systems ADHS
2018.

[20] Michael Everett, Golnaz Habibi, and Jonathan P. How. Efficient reachability analysis of closed-
loop systems with neural network controllers. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 4384–4390, 2021.

[21] Jiameng Fan, Chao Huang, Wenchao Li, Xin Chen, and Qi Zhu. ReachNN*: A tool for reacha-
bility analysis ofneural-network controlled systems. In to appear on International Symposium on
Automated Technology for Verification and Analysis (ATVA), 2020.

[22] James Ferlez, Haitham Khedr, and Yasser Shoukry. Fast BATLLNN: fast box analysis of two-
level lattice neural networks. In Ezio Bartocci and Sylvie Putot, editors, HSCC ’22: 25th ACM
International Conference on Hybrid Systems: Computation and Control, Milan, Italy, May 4 - 6,
2022, pages 23:1–23:11. ACM, 2022.

[23] Marc Fischer, Christian Sprecher, Dimitar Iliev Dimitrov, Gagandeep Singh, and Martin Vechev.
Shared certificates for neural network verification. In Sharon Shoham and Yakir Vizel, editors,
Computer Aided Verification, pages 127–148, Cham, 2022. Springer International Publishing.

[24] Marcelo Forets and Christian Schilling. LazySets.jl: Scalable symbolic-numeric set computations.
Proceedings of the JuliaCon Conferences, 1(1):11, 2021.

[25] Eric Goubault and Sylvie Putot. Rino: Robust inner and outer approximated reachability of neu-
ral networks controlled systems. In Sharon Shoham and Yakir Vizel, editors, Computer Aided
Verification, pages 511–523, Cham, 2022. Springer International Publishing.

[26] G. W. Hill. Researches in the lunar theory. American Journal of Mathematics, 1(1):5–26, 1878.

[27] Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. POLAR: A polynomial arith-
metic framework for verifying neural-network controlled systems. In To appear on International
Symposium on Automated Technology for Verification and Analysis (ATVA), 2022.

122

https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/JuliaDiff/TaylorSeries.jl
https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaIntervals/TaylorModels.jl

ARCH-COMP23 AINNCS Manzanas Lopez et al.

[28] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. Verisig: verifying
safety properties of hybrid systems with neural network controllers. CoRR, abs/1811.01828, 2018.

[29] M. Jankovic, D. Fontaine, and P. V. Kokotovic. Tora example: cascade- and passivity-based
control designs. IEEE Transactions on Control Systems Technology, 4(3):292–297, May 1996.

[30] Taylor T. Johnson, Diego Manzanas Lopez, Luis Benet, Marcelo Forets, Sebasti\’an Guadalupe,
Christian Schilling, Radoslav Ivanov, Taylor J. Carpenter, James Weimer, and Insup Lee. Arch-
comp21 category report: Artificial intelligence and neural network control systems (ainncs) for
continuous and hybrid systems plants. In Goran Frehse and Matthias Althoff, editors, 8th Interna-
tional Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH21), volume 80
of EPiC Series in Computing, pages 90–119. EasyChair, 2021.

[31] Taylor T Johnson, Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran, Elena Botoeva,
Francesco Leofante, Amir Maleki, Chelsea Sidrane, Jiameng Fan, and Chao Huang. Arch-comp20
category report: Artificial intelligence and neural network control systems (ainncs) for continuous
and hybrid systems plants. In Goran Frehse and Matthias Althoff, editors, ARCH20. 7th Interna-
tional Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20), volume 74
of EPiC Series in Computing, pages 107–139. EasyChair, 2020.

[32] K. D. Julian and M. J. Kochenderfer. A reachability method for verifying dynamical systems with
deep neural network controllers. CoRR, abs/1903.00520, 2019.

[33] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Rupak Majumdar and Viktor Kunčak,
editors, Computer Aided Verification, pages 97–117, Cham, 2017. Springer International Publish-
ing.

[34] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer, and
Clark Barrett. The marabou framework for verification and analysis of deep neural networks. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification, pages 443–452, Cham, 2019.
Springer International Publishing.

[35] Niklas Kochdumper and Matthias Althoff. Sparse polynomial zonotopes: A novel set representa-
tion for reachability analysis. IEEE Transactions on Automatic Control, 66(9):4043–4058, 2020.

[36] Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. Open-and closed-loop
neural network verification using polynomial zonotopes. In NASA Formal Methods Symposium,
pages 16–36. Springer, 2023.

[37] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
CoRR, abs/1607.02533, 2016.

[38] Tobias Ladner and Matthias Althoff. Automatic abstraction refinement in neural network verifi-
cation using sensitivity analysis. HSCC’23: Proceedings of the 26th International Conference on
Hybrid Systems: Computation and Control, 2023.

[39] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, and Mykel J.
Kochenderfer. Algorithms for verifying deep neural networks. Foundations and Trends in Opti-
mization, 4(3-4):244–404, 2021.

[40] Diego Manzanas Lopez, Matthias Althoff, Luis Benet, Xin Chen, Jiameng Fan, Marcelo Forets,
Chao Huang, Taylor T Johnson, Tobias Ladner, Wenchao Li, Christian Schilling, and Qi Zhu.
Arch-comp22 category report: Artificial intelligence and neural network control systems (ainncs)
for continuous and hybrid systems plants. In Goran Frehse, Matthias Althoff, Erwin Schoitsch,
and Jeremie Guiochet, editors, Proceedings of 9th International Workshop on Applied Verification
of Continuous and Hybrid Systems (ARCH22), volume 90 of EPiC Series in Computing, pages
142–184. EasyChair, 2022.

[41] Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T. Johnson. NNV 2.0: The
neural network verification tool. In 35th International Conference on Computer-Aided Verification
(CAV), July 2023.

123

ARCH-COMP23 AINNCS Manzanas Lopez et al.

[42] Diego Manzanas Lopez, Patrick Musau, Hoang-Dung Tran, Souradeep Dutta, Taylor J. Carpen-
ter, Radoslav Ivanov, and Taylor T. Johnson. Arch-comp19 category report: Artificial intelligence
and neural network control systems (ainncs) for continuous and hybrid systems plants. In Goran
Frehse and Matthias Althoff, editors, ARCH19. 6th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems, volume 61 of EPiC Series in Computing, pages 103–119.
EasyChair, 2019.

[43] Amir Maleki and Chelsea Sindrane. Benchmark examples for ainncs-2020, 2020.

[44] Diego Manzanas Lopez, Taylor T. Johnson, Stanley Bak, Hoang-Dung Tran, and Kerianne L.
Hobbs. Evaluation of neural network verification methods for air-to-air collision avoidance. Journal
of Air Transportation, 31(1):1–17, 2023.

[45] Diego Manzanas Lopez, Patrick Musau, Nathaniel Hamilton, and Taylor Johnson. Reachability
analysis of a general class of neural ordinary differential equation. In Proceedings of the 20th
International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS 2022),
Co-Located with CONCUR, FMICS, and QEST as part of CONFEST 2022., Warsaw, Poland,
September 2022.

[46] MathWorks. Adaptive Cruise Control System block. https://www.mathworks.com/help/mpc/

ref/adaptivecruisecontrolsystem.html, 2018.

[47] Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The
third international verification of neural networks competition (vnn-comp 2022): Summary and
results, 2022.

[48] K. S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using neural
networks. IEEE Transactions on Neural Networks, 1(1):4–27, March 1990.

[49] Jorge A. Pérez-Hernández and Luis Benet. PerezHz/TaylorIntegration.jl. https://github.com/

PerezHz/TaylorIntegration.jl, 2021.

[50] S. Prajna, P.A. Parrilo, and A. Rantzer. Nonlinear control synthesis by convex optimization.
volume 49, pages 310–314, 2004.

[51] S. Joe Qin and Thomas A. Badgwell. An overview of nonlinear model predictive control appli-
cations. In Frank Allgöwer and Alex Zheng, editors, Nonlinear Model Predictive Control, pages
369–392, Basel, 2000. Birkhäuser Basel.

[52] Umberto J. Ravaioli, James Cunningham, John McCarroll, Vardaan Gangal, Kyle Dunlap, and
Kerianne L. Hobbs. Safe reinforcement learning benchmark environments for aerospace control
systems. In 2022 IEEE Aerospace Conference (AERO), pages 1–20, 2022.

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
Frangi, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,
pages 234–241, Cham, 2015. Springer International Publishing.

[54] Stuart Russell, Daniel Dewey, and Max Tegmark. Research Priorities for Robust and Beneficial
Artificial Intelligence. AI Magazine, 36(4):105, 2015.

[55] Christian Schilling, Marcelo Forets, and Sebastián Guadalupe. Verification of neural-network
control systems by integrating Taylor models and zonotopes. In AAAI, pages 8169–8177. AAAI
Press, 2022.

[56] Malcolm D. Shuster. Survey of attitude representations. Journal of the Astronautical Sciences,
41(4):439–517, October 1993.

[57] Chelsea Sidrane and Mykel J. Kochenderfer. OVERT: Verification of nonlinear dynamical systems
with neural network controllers via overapproximation. Safe Machine Learning workshop at ICLR,
2019.

[58] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev. Fast
and effective robustness certification. In NeurIPS, pages 10825–10836, 2018.

124

https://www.mathworks.com/help/mpc/ref/adaptivecruisecontrolsystem.html
https://www.mathworks.com/help/mpc/ref/adaptivecruisecontrolsystem.html
https://github.com/PerezHz/TaylorIntegration.jl
https://github.com/PerezHz/TaylorIntegration.jl

ARCH-COMP23 AINNCS Manzanas Lopez et al.

[59] Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Ju-
lia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Kevin Leyton-Brown, David C. Parkes,
William Press, AnnaLee Saxenian, Julie Shah, Milind Tambe, and Astro Teller. ”artificial intelli-
gence and life in 2030.” one hundred year study on artificial intelligence: Report of the 2015-2016
study panel, 2016.

[60] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013.

[61] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. Verification of deep
convolutional neural networks using imagestars. In 32nd International Conference on Computer-
Aided Verification (CAV). Springer, July 2020.

[62] Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T. Johnson, and
Xenofon Koutsoukos. Safety verification of cyber-physical systems with reinforcement learning
control. ACM Trans. Embed. Comput. Syst., 18(5s), October 2019.

[63] Hoang Dung Tran, SungWoo Choi, Tomoya Yamaguchi, Bardh Hoxha, and Danil Prokhorov.
Verification of recurrent neural networks using star reachability. In The 26th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC), May 2023.

[64] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen,
Weiming Xiang, and Taylor T. Johnson. Star-based reachability analysis of deep neural networks.
In Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira, editors, Formal Methods – The
Next 30 Years, pages 670–686. Springer International Publishing, 2019.

[65] Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Xiaodong Yang, Nathaniel P. Hamilton,
Diego Manzanas Lopez, Stanley Bak, and Taylor T. Johnson. Robustness verification of seman-
tic segmentation neural networks using relaxed reachability. In 33rd International Conference on
Computer-Aided Verification (CAV). Springer, July 2021.

[66] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T. Johnson. NNV: The neural network verification
tool for deep neural networks and learning-enabled cyber-physical systems. In 32nd International
Conference on Computer-Aided Verification (CAV), July 2020.

[67] Weiming Xiang, Patrick Musau, Ayana A. Wild, Diego Manzanas Lopez, Nathaniel Hamilton,
Xiaodong Yang, Joel A. Rosenfeld, and Taylor T. Johnson. Verification for machine learning,
autonomy, and neural networks survey. CoRR, abs/1810.01989, 2018.

125

	1 Introduction
	2 Participating Tools
	3 Benchmarks
	3.1 Adaptive Cruise Controller (ACC)
	3.2 Sherlock-Benchmark-9 (TORA)
	3.3 Sherlock-Benchmark-10 (Unicycle Car Model)
	3.4 VCAS Benchmark
	3.5 Single-Pendulum Benchmark
	3.6 Double-Pendulum Benchmark
	3.7 Airplane Benchmark
	3.8 Benchmark: Attitude Control
	3.9 Benchmark: QUAD
	3.10 2D Spacecraft Docking

	4 Verification Results
	4.1 CORA
	4.1.1 ACC
	4.1.2 Sherlock-Benchmark-9 (TORA)
	4.1.3 Sherlock-Benchmark-10 (Unicycle)
	4.1.4 VCAS
	4.1.5 Single Pendulum
	4.1.6 Double Pendulum
	4.1.7 Airplane
	4.1.8 Attitude Control
	4.1.9 Quadrotor
	4.1.10 2D Spacecraft Docking

	4.2 JuliaReach
	4.2.1 ACC
	4.2.2 Sherlock-Benchmark-9 (TORA)
	4.2.3 Sherlock-Benchmark-10 (Unicycle)
	4.2.4 VCAS
	4.2.5 Single Pendulum
	4.2.6 Double Pendulum
	4.2.7 Airplane
	4.2.8 Attitude Control
	4.2.9 QUAD
	4.2.10 2D Spacecraft Docking

	4.3 NNV
	4.3.1 ACC
	4.3.2 Sherlock-Benchmark-9 (TORA)
	4.3.3 VCAS
	4.3.4 Single Pendulum
	4.3.5 Double Pendulum
	4.3.6 Airplane

	4.4 Summary

	5 Category Status and Challenges
	6 Conclusion and Outlook
	7 Acknowledgments
	A Specification of Used Machines
	References

