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Abstract

This report presents the results of a friendly competition for formal verification of
continuous and hybrid systems with artificial intelligence (AI) components. Specifically,
machine learning (ML) components in cyber-physical systems (CPS), such as feedforward
neural networks used as feedback controllers in closed-loop systems, are considered, which
is a class of systems classically known as intelligent control systems, or in more modern and
specific terms, neural network control systems (NNCS). We broadly refer to this category
as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop
Applied Verification for Continuous and Hybrid Systems (ARCH) in 2023. In the fifth
edition of this AINNCS category at ARCH-COMP, three tools have been applied to solve
ten different benchmark problems, which are CORA, JuliaReach and NNV. In reusing the
benchmarks from the last iteration, we demonstrate the continuous progress in developing
these tools: Two out of three tools can verify more instances than in the 2022 iteration. A
novelty of this year’s iteration is the shared computation hardware that allows for a fairer
comparison among the participants.

1 Introduction

Neural Networks (NNs) have demonstrated an impressive ability to solve complex problems in
numerous application domains [67]. The success of these models in contexts such as adaptive
control, non-linear system identification [48], image and pattern recognition, function approx-
imation, and machine translation has stimulated the creation of technologies that are directly
impacting our everyday lives [59], and has led researchers to believe that these models possess
the power to revolutionize a diverse set of arenas [54].
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Despite these achievements, there have been reservations about utilizing them within high-
assurance systems for various reasons, such as their susceptibility to unexpected and errant
behavior caused by slight perturbations in their inputs [37]. In a study by Szegedy et al. [60],
the authors demonstrated that carefully applying a hardly perceptible modification to an input
image could cause a successfully trained neural network to produce an incorrect classification.
These inputs are known as adversarial examples, and their discovery has caused concern over
the safety, reliability, and security of neural network applications [67]. As a result, some research
has been directed toward obtaining an explicit understanding of neural network behavior.

Neural networks are often viewed as “black boxes” whose underlying operation is often
incomprehensible. Still, the last several years have witnessed numerous promising white-box
verification methods proposed for reasoning about the correctness of their behavior. However,
it has been demonstrated that neural network verification is an NP-complete problem [33].
Despite many recent efforts and significant advances in the past decade [47, 64, 65, 66, 7,
22, 23, 34, 39, 58], there are remaining challenges that prevent these approaches from being
successfully applied to very large neural networks used in many real-world applications such
as [53]. Most of this work also focuses on verifying pre-/post-conditions for neural networks in
isolation. Reasoning about their usage behavior in cyber-physical systems, such as in neural
network control systems, remains a key challenge.

The following report aims to provide a survey of the landscape of the current capabilities
of verification tools for closed-loop systems with neural network controllers, as these systems
have displayed great utility as a means for learning control laws through techniques such as
reinforcement learning and data-driven predictive control [18, 62]. Furthermore, this report
aims to provide readers with a perspective on the intellectual progression of this rapidly growing
field and stimulate the development of efficient and effective methods capable of use in real-
life applications. Since the first iteration, there have been several publications investigating
the formal verification of AINNCS, out of which several of them have participated in one or
more of the previous competitions such as Verisig [28], VenMas [1] and ReachNN [21], among
others [66, 15, 25, 2, 36, 20, 44, 18, 16, 27, 57].

Disclaimer The presented report of the ARCH-COMP friendly competition for closed-
loop systems with neural network controllers, termed in short AINNCS (Artificial Intelli-
gence / Neural Network Control Systems), aims to provide the landscape of the current
capabilities of verification tools for analyzing these systems that are classically known as
intelligent control systems. This AINNCS ARCH-COMP category is complementary to the
ongoing Verification of Neural Networks Competition (VNN-COMP) [9, 47], the latter of
which focuses on open-loop specifications of neural networks. In contrast, the AINNCS cat-
egory focuses on closed-loop behaviors of dynamical systems incorporating neural networks.
We want to stress that each tool has unique strengths and not all of the specificities can be
highlighted within a single report. To reach a consensus on what benchmarks are used, some
compromises had to be made so that some tools may benefit more from the presented choice
than others. To establish further trustworthiness of the results, the code with which the re-
sults have been obtained is publicly available at gitlab.com/goranf/ARCH-COMP, and the
submitted results are available at arch.repeatability.cps.cit.tum.de/frontend/submissions.
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Specifically, this report summarizes results obtained in the 2023 friendly competition of the
ARCH workshop1 for verifying systems of the form

ẋ(t) = f(x(t), u(x, t)),

where x(t) and u(x, t) correspond to the states and inputs of the plant at time t, respectively,
and where u(x, t) is the output of a feedforward neural network provided an input of the plant
state x at time t. The architecture of the closed-loop systems we consider is depicted in Figure
1, where the input to the neural network controller is additionally sampled.

Figure 1: Closed-loop architecture of the benchmarks to be verified.

This year is the fifth iteration of the AINNCS category at ARCH-COMP and builds on the
previous iterations and reports [42, 31, 30, 40]. Participating tools are summarized in Sec. 2.
Please, see [67] for further details on these and additional tools. The results of our selected
benchmark problems are shown in Sec. 3. This year, we run all tools on the same hardware
using docker images for further comparison. The submission server specifications are given in
Appendix A. However, one has to factor in the efficiency of the programming language of the
tools.

The goal of the friendly competition is not to rank the results but rather to present the
landscape of existing solutions in a breadth that is impossible with scientific publications in
classical venues. Such publications would typically require the presentation of novel techniques,
while this report showcases the current state-of-the-art tools. The selection of the benchmarks
has been conducted within the forum of the ARCH website (cps-vo.org/group/ARCH), which
is visible for registered users, and registration is open for anyone.

2 Participating Tools

We present a brief overview of all the participating tools in this friendly competition. The tools
are CORA, JuliaReach, and NNV. The tools participating in the Artificial Intelligence / Neural
Network Control Systems in Continuous and Hybrid Systems Plants (AINNCS) category are
introduced subsequently in alphabetical order.

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH
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CORA (Tobias Ladner, Matthias Althoff). CORA [2] is a COntinuous Reachability Ana-
lyzer for the formal verification of cyber-physical systems using reachability analysis. It is
written in MATLAB and is available at https://cora.in.tum.de. CORA integrates vari-
ous set representations and operations on them as well as reachability algorithms of various
dynamic system classes. For this competition, we used the approach described in [36, 38]
for open-loop and closed-loop neural network verification based on polynomial zonotopes [35].
Polynomial zonotopes are particularly well suited for verifying neural networks due to their
polynomial time complexity on many operations. The approach described in [36] realizes a fast
layer-based computation of an over-approximation of the output set of networks with various
activation functions, including ReLU, sigmoid, and tanh, while [38] extends this approach by
automatically refining the neuron abstractions in neural networks. Our neural network verifi-
cation approaches are naturally integrated into our reachability analysis methods for linear and
nonlinear plant dynamics. For most benchmarks, we can deploy a fully automatic verification
process using CORA: We first simulate random runs to find potential violations of the speci-
fications. If one run violates the specifications, we verify the violating run using reachability
analysis, as simulations are not formally sound. Otherwise, we try to verify the benchmark for
the given specifications. We will provide the computation times for each step.

JuliaReach (Marcelo Forets, Christian Schilling). JuliaReach [15] is an open-source software
suite for reachability computations of dynamical systems, written in the Julia language and
available at http://github.com/JuliaReach. The package ClosedLoopReachability.jl handles
the closed-loop analysis and queries sub-problems to our other library ReachabilityAnalysis.jl
for continuous-time analysis of plant models. Additional set computations are performed with
LazySets.jl [24]. The algorithm we use is described in [55]. For the plant analysis, we use the
sound algorithm TMJets based on interval arithmetic and Taylor models, which is implemented
in TaylorModels.jl [11, 14], which itself integrates TaylorSeries.jl [12, 13] and TaylorIntegra-
tion.jl [49]. The algorithm uses a jet transportation of a Taylor polynomial with interval co-
efficients. It has the following main parameters for tweaking: the absolute tolerance abstol

and two parameters to define the order at which the Taylor expansion is cut in time (orderT)
resp. in space (orderQ). For neural-network analysis, we use an abstract interpretation based
on zonotopes [58]. For falsification, JuliaReach chooses an initial point but uses set-based anal-
ysis since, although most models are deterministic, non-validated simulations may yield wrong
results.

NNV (Diego Manzanas Lopez, Taylor Johnson). The Neural Network Verification (NNV)
Tool [66, 41] is a formal verification software tool for deep learning models and cyber-
physical systems with neural network components written in MATLAB and available at
https://github.com/verivital/nnv. NNV uses a star-set state-space representation and
reachability algorithm that allows for a layer-by-layer computation of exact or overapproximate
reachable sets for feed-forward [64], convolutional [61], semantic segmentation (SSNN) [65], and
recurrent (RNN)[63] neural networks, as well as neural network control systems (NNCS) [62, 66]
and neural ordinary differential equations (Neural ODEs) [45]. The star-set based algorithm
is naturally parallelizable, which allows NNV to be designed to perform efficiently on multi-
core platforms. Additionally, if a particular safety property is violated, NNV can be used to
construct and visualize the complete set of counterexample inputs for a neural network (exact-
analysis). Using NNV in combination with HyST [8, 6] and CORA [2, 3, 4] allows for the
verification of closed-loop neural network control systems with nonlinear plant dynamics.
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3 Benchmarks

We have selected ten benchmarks for this year’s competition – the same benchmarks and spec-
ifications as last year [40]. A few of them, such as the TORA benchmark, are presented with
several different controllers to be analyzed. We now describe these benchmarks in no particular
order and have made them readily available online.2 All benchmarks are derived for continuous
time. Given the continuous dynamics ẋ = f(x), where x ∈ Rn is the state vector, the discrete-
time versions for a time increment of ∆t are obtained in this competition using forward Euler
integration:

x(k + 1) = x(k) + f(x)∆t.

3.1 Adaptive Cruise Controller (ACC)

The Adaptive Cruise Control (ACC) benchmark is a system that tracks a set velocity and
maintains a safe distance from a lead vehicle by adjusting the longitudinal acceleration of an
ego vehicle [46]. The neural network computes optimal control actions while satisfying safe
distance, velocity, and acceleration constraints using model predictive control (MPC) [51]. For
this case study, the ego car is set to travel at a set speed vset = 30 and maintains a safe distance
Dsafe from the lead car. The car’s dynamics are described by the following equations [62, p.
17]:

ẋlead(t) = vlead(t), v̇lead(t) = alead(t), ȧlead(t) = −2alead(t) + 2ac,lead − uv2lead(t),

ẋego(t) = vego(t), v̇ego(t) = aego(t), ȧego(t) = −2aego(t) + 2ac,ego − uv2ego(t),
(1)

where xi is the position, vi is the velocity, ai is the acceleration of the car, ac,i is the acceleration
control input applied to the car, and u = 0.0001 is a coefficient for air drag, where i ∈ {ego,
lead}. We evaluate a neural network controller with five layers and 20 neurons each for this
benchmark. The inputs of the controller are the set speed vset, the desired time gap Tgap, the
ego velocity vego, the distance Drel = xlead − xego, as well as the relative velocity vrel, and the
output is ac,ego.

Specifications The verification objective of this system is that given a scenario where both
cars are driving safely, the lead car suddenly slows down with ac,lead = -2. We want to check
whether there is a collision in the following 5 s. Formally, this safety specification of the system
can be expressed as Drel ≥ Dsafe, where Dsafe = Ddefault + Tgap · vego, and Tgap = 1.4 s and
Ddefault = 10. The initial conditions are: xlead(0) ∈ [90,110], vlead(0) ∈ [32,32.2], alead(0) =
aego(0) = 0, vego(0) ∈ [30, 30.2], xego ∈ [10,11]. A control period of 0.1 s is used.

3.2 Sherlock-Benchmark-9 (TORA)

This benchmark considers translational oscillations by a rotational actuator (TORA) [18, 29],
where a cart is attached to a wall with a spring and is free to move on a friction-less surface.
The cart has a weight attached to an arm inside it, which is free to rotate about an axis. This
serves as the control input to stabilize the cart at x = 0. The model is a four-dimensional
system, given by the following equations [29, eq. (4)]:

ẋ1 = x2, ẋ2 = −x1 + 0.1 sin(x3), ẋ3 = x4, ẋ4 = u. (2)

2https://github.com/verivital/ARCH-COMP2023
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This benchmark has three neural network controllers: the first has three ReLU hidden layers
and a linear output layer. This controller was trained using a data-driven model predictive
controller proposed in [19]. Note that the output of the neural network f(x) needs to be
normalized to obtain u, namely u = f(x) − 10. The sampling time for this controller is 1 s,
and we verify it against specification 1 below. The other two controllers have three hidden
layers of 20 neurons each and one output layer. In contrast to the first controller, we use
sigmoid activation functions for the hidden layers and a tanh output layer. The sampling time
of these controllers is 0.5 s, the output of the neural network f(x) needs to be post-processed
as u = 11 · f(x), and we verify them against specification 2 below.

Specification 1. This is a safety specification. For an initial set of x1 ∈ [0.6, 0.7], x2 ∈
[−0.7,−0.6], x3 ∈ [−0.4,−0.3], and x4 ∈ [0.5, 0.6], the system states have to stay within the
box x ∈ [−2, 2]4 for a time window of 20 s.

Specification 2. For an initial set of x1 ∈ [-0.77, -0.75], x2 ∈ [-0.45, -0.43], x3 ∈ [0.51,
0.54], and x4 ∈ [−0.3,−0.28], it is required that the system reaches the set x1 ∈ [−0.1, 0.2],
x2 ∈ [−0.9,−0.6] within a time window of 5 s.

3.3 Sherlock-Benchmark-10 (Unicycle Car Model)

This benchmark considers a unicycle model of a car [18] with the x and y coordinates on a
two-dimensional plane, the velocity magnitude (speed), and steering angle as state variables.
The dynamic equations are (see [5, Sec. III.B]; a different input is used here):

ẋ1 = x4 cos(x3), ẋ2 = x4 sin(x3), ẋ3 = u2, ẋ4 = u1 + w, (3)

where w is a bounded error in the range 10−4[−1, 1]. A neural network controller was trained for
this system using a model predictive controller as a “demonstrator” or “teacher”. The trained
network has one hidden layer with 500 neurons. Note that the output of the neural network
f(x) needs to be normalized in order to obtain (u1, u2), namely ui = f(x)i− 20. The sampling
time for this controller is 0.2 s.

Specification This is a reachability specification. For an initial set of x1 ∈ [9.5, 9.55], x2 ∈
[−4.5,−4.45], x3 ∈ [2.1, 2.11], and x4 ∈ [1.5, 1.51], the system has to reach the set x1 ∈
[−0.6, 0.6], x2 ∈ [−0.2, 0.2], x3 ∈ [−0.06, 0.06], x4 ∈ [−0.3, 0.3] within a time window of 10 s.

3.4 VCAS Benchmark

This benchmark is a closed-loop variant of the aircraft collision avoidance system ACAS X. The
scenario involves two aircraft, the ownship and the intruder, where the ownship is equipped with
a collision avoidance system referred to as VerticalCAS [32]. VerticalCAS issues vertical climb
rate advisories every second to the ownship pilot to avoid a near mid-air collision (NMAC).
Near mid-air collisions are regions where the ownship and the intruder are separated by less
than 100ft vertically and 500ft horizontally. The ownship (black) is assumed to have a constant
horizontal speed, and the intruder (red) is assumed to follow a constant horizontal trajectory
towards ownship, see Figure 2. The current geometry of the system is described by

• h, intruder altitude relative to ownship,

• ḣ0, ownship vertical climb rate, and
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Figure 2: VerticalCAS encounter geometry

• τ , the time until the ownship (black) and intruder (red) are no longer horizontally sepa-
rated.

We can, therefore, assume that the intruder is static and the horizontal separation τ de-
creases by one each second. There are nine advisories and each of them instructs the pilot to
accelerate until the vertical climb rate of the ownship complies with the advisory:

1. COC: Clear Of Conflict;

2. DNC: Do Not Climb;

3. DND: Do Not Descend;

4. DES1500: Descend at least 1500 ft/s;

5. CL1500: Climb at least 1500 ft/s;

6. SDES1500: Strengthen Descent to at least 1500 ft/s;

7. SCL1500: Strengthen Climb to at least 1500 ft/s;

8. SDES2500: Strengthen Descent to at least 2500 ft/s;

9. SCL2500: Strengthen Climb to at least 2500 ft/s.

In addition to the parameters describing the geometry of the encounter, the current state of
the system stores the advisory adv ∈ {1, . . . , 9} (numbers correspond to the above list) issued to
the ownship at the previous time step. VerticalCAS is implemented as nine ReLU networks Ni,
one for each (previous) advisory, with three inputs (h, ḣ0, τ), five fully-connected hidden layers
of 20 units each, and nine outputs representing the score of each possible advisory. Therefore,
given a current state (h, ḣ0, τ, adv), the new advisory adv′ is obtained by computing the argmax
of the output of Nadv on (h, ḣ0, τ).

Given the new advisory, the pilot can choose acceleration ḧ0 as follows. If the new advisory
is COC, then it can be any acceleration from the set {− g

8 , 0,
g
8}. For all remaining advisories, if

the previous advisory coincides with the new one and the current climb rate complies with the
new advisory (e.g., ḣ0 is non-positive for DNC and ḣ0 ≥ 1500 for CL1500), the acceleration ḧ0
is 0; otherwise, the pilot can choose any acceleration ḧ0 from the given sets:

• DNC: {− g
3 ,−

7g
24 ,−

g
4};

• DND: { g4 ,
7g
24 ,

g
3};

• DES1500: {− g
3 ,−

7g
24 ,−

g
4};

• CL1500: { g4 ,
7g
24 ,

g
3};
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• SDES1500: {− g
3};

• SCL1500: { g3};

• SDES2500: {− g
3};

• SCL2500: { g3},

where g represents the gravitational constant 32.2 ft/s
2
.

It was proposed to tweak the benchmark for the tools that cannot efficiently account for
all possible acceleration choices. Those tools can consider two strategies for picking a single
acceleration at each time step:

• a worst-case scenario selection, where we choose the acceleration to take the ownship
closer to the intruder.

• always select the acceleration in the middle.

Given the current system state (h, ḣ0, τ, adv), the new advisory adv′ and the acceleration
ḧ0, the new state of the system can be computed by the following equations [32, eq. (15)]:

h(k + 1) = h(k)− ḣ0(k)∆τ − 0.5ḧ0(k)∆τ
2

ḣ0(k + 1) = ḣ0(k) + ḧ0(k)∆τ
τ(k + 1) = τ(k) + ∆τ

adv(k + 1) = adv′

where ∆τ = 1.

Specification The ownship has to be outside of the NMAC zone after k ∈ {1, . . . , 10} time
steps, i.e., h(k) > 100 or h(k) < −100, for all possible choices of acceleration by the pilot. The
set of initial states considered is: h(0) ∈ [−133,−129], ḣ0(0) ∈ {−19.5,−22.5,−25.5,−28.5},
τ(0) = 25 and adv(0) = COC.

3.5 Single-Pendulum Benchmark

We consider a classical inverted pendulum. A ball of mass m is attached to a massless beam of
length L. The beam is actuated with a torque T and we assume viscous friction with a friction
coefficient of c. The governing equation of motion can be obtained as [43, eq. (1)]:

θ̈ =
g

L
sin θ +

1

mL2

(
T − c θ̇

)
, (4)

where θ is the angle of the link concerning the upward vertical axis and θ̇ is the angular velocity.
After defining the state variables x1 = θ and x2 = θ̇, the dynamics in state-space form is

ẋ1 =x2, (5a)

ẋ2 =
g

L
sinx1 +

1

mL2
(T − c x2) . (5b)

Controllers are trained using behavior cloning, a supervised learning approach for training
controllers. The code, as well as training procedures, are provided. The model parameters are
chosen as

m = 0.5, L = 0.5, c = 0, g = 1, (6)

and the time step for the controller and the discrete-time model is ∆t = 0.05. The initial set is

x ∈ [1.0, 1.2]× [0.0, 0.2].
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Specification ∀t ∈ [0.5, 1] : θ ∈ [0, 1] (analogously for k ∈ [10, 20] in discrete time).

3.6 Double-Pendulum Benchmark

The double pendulum is an inverted two-link pendulum with equal point masses m at the end
of connected mass-less links of length L. The links are actuated with torques T1 and T2, and
we assume viscous friction exists with a coefficient of c. The governing equations of motion are
described by the following equations [43, eq. (3a-b)]:

2θ̈1 + θ̈2 cos(θ2 − θ1)− θ̇22 sin(θ2 − θ1)− 2
g

L
sin θ1 +

c

mL2
θ̇1 =

1

mL2
T1, (7a)

θ̈1 cos(θ2 − θ1) + θ̈2 + θ̇21 sin(θ2 − θ1)−
g

L
sin θ2 +

c

mL2
θ̇2 =

1

mL2
T2, (7b)

where θ1 and θ2 are the angles of the links concerning the upward vertical axis (see Figure 3)
and g is the gravitational acceleration. After defining the state vector as x = [θ1, θ2, θ̇1, θ̇2]

T ,
the dynamics in state-space form is

ẋ1 =x3, (8a)

ẋ2 =x4, (8b)

ẋ3 =
1

2
(

cos2(x1−x2)
2 − 1

) cos (x1 − x2)

(
x3

2 sin (x1 − x2)− cos (x1 − x2)

(
g sin (x1)

L
(8c)

−x4
2 sin (x1 − x2)

2
+
T1 − c x3
2L2m

)
+
g sin (x2)

L
+
T2 − c x4
L2m

)
(8d)

− x4
2 sin (x1 − x2)

2
+
g sin (x1)

L
+
T1 − c x3
2L2m

, (8e)

ẋ4 =
−1

cos2(x1−x2)
2 − 1

(
x3

2 sin (x1 − x2)− cos (x1 − x2)

(
g sin (x1)

L
− x4

2 sin (x1 − x2)

2
(8f)

+
T1 − c x3
2L2m

)
+
g sin (x2)

L
+
T2 − c x4
L2m

)
. (8g)

The controllers for the double pendulum benchmark are obtained using the same methods
as the controllers for the single pendulum benchmark; also here, the code as well as training
procedures are provided. The model parameters are chosen as in (6) The initial set is

x ∈ [1.0, 1.3]4.

Specification 1 ∀t ∈ [0, 1] : x ∈ [−1.0, 1.7]4 (analogously for k ∈ [0, 20] in discrete time) for
∆t = 0.05.

Specification 2 ∀t ∈ [0, 0.4] : x ∈ [−0.5, 1.5]4 (analogously for k ∈ [0, 20] in discrete time)
for ∆t = 0.02.

We verify controller double pendulum less robust against specification 1 and controller double
pendulum more robust against specification 2.
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1

2 g

x

y

Figure 3: Inverted double pendulum. The goal is to keep the pendulum upright (dashed
schematics)

3.7 Airplane Benchmark

The airplane example consists of a dynamical system that is a simple model of a flying airplane
as shown in Figure 4. The state is

x = [sx, sy, sz, vx, vy, vz, ϕ, θ, ψ, r, p, q]
T , (9)

where (sx, sy, sz) is the position of the center of gravity, (vx, vy, vz) are the components of
velocity in (x, y, z) directions, (p, q, r) are body rotation rates, and (ϕ, θ, ψ) are the Euler angles.
The equations of motion are reduced to [43, eq. (7)]:

v̇x =− g sin θ +
Fx
m

− qvz + rvy, (10a)

v̇y =g cos θ sinϕ+
Fy
m

− rvx + pvz, (10b)

v̇z =g cos θ cosϕ+
Fz
m

− pvy + qvx, (10c)

Ixṗ+ Ixz ṙ =Mx − (Iz − Iy)qr − Ixzpq, (10d)

Iy q̇ =My − Ixz
(
r2 − p2

)
− (Ix − Iz)pr, (10e)

Ixz ṗ+ Iz ṙ =Mz − (Iy − Ix)qp− Ixzrq. (10f)

The mass of the airplane is denoted with m and Ix, Iy, Iz and Ixz are the moment of inertia
with respect to the indicated axis; see Figure 4. The control parameters include three force
components Fx, Fy and Fz and three moment componentsMx,My,Mz. Note that for simplicity,
we assume that the aerodynamic forces are absorbed in the force vector F . In addition to these
six equations, we have six additional kinematic equations [43, eq. (8,9)]:ṡxṡy

ṡz

 =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

vxvy
vz

 (11)
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Figure 4: The airplane example.

and ϕθ
ψ

 =

1 tan θ sinϕ tan θ cosϕ
0 cosϕ − sinϕ
0 sec θ sinϕ sec θ cosϕ

pq
r

 . (12)

As in the pendulum benchmarks, controllers are trained for the airplane problem using
behavior cloning. The system involves the model parameters

m = 1, Ix = Iy = Iz = 1, Ixz = 0, g = 1,

and the time step for the controller and the discrete-time model is ∆t = 0.1. The initial set is

x = y = z = r = p = q = 0, [vx, vy, vz, ϕ, θ, ψ] ∈ [0.0, 1.0]6.

Specification ∀t ∈ [0, 2] : sy ∈ [−0.5, 0.5], [ϕ, θ, ψ] ∈ [−1.0, 1.0]3. Analogously for k ∈ [0, 20]
in discrete time.

We verify the airplane controller against the specification above.
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3.8 Benchmark: Attitude Control

We consider the attitude control of a rigid body with six states and three inputs [50, 56]. The
system dynamics is given by [50, Sec. V]:

ω̇1 = 0.25(u0 + ω2ω3), ω̇2 = 0.5(u1 − 3ω1ω3), ω̇3 = u2 + 2ω1ω2,

ψ̇1 = 0.5
(
ω2(ψ

2
1+ψ

2
2+ψ

2
3−ψ3)+ω3(ψ

2
1+ψ

2
2+ψ2+ψ

2
3)+ω1(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

ψ̇2 = 0.5
(
ω1(ψ

2
1+ψ

2
2+ψ

2
3+ψ3)+ω3(ψ

2
1−ψ1+ψ

2
2+ψ

2
3)+ω2(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

ψ̇3 = 0.5
(
ω1(ψ

2
1+ψ

2
2−ψ2+ψ

2
3)+ω2(ψ

2
1+ψ1+ψ

2
2+ψ

2
3)+ω3(ψ

2
1+ψ

2
2+ψ

2
3+1)

)
,

wherein the state x = (ωT , ψT )T consists of the angular velocity vector in a body-fixed frame
ω ∈ R3 and the Rodrigues parameter vector ψ ∈ R3.

The control torque u ∈ R3 is updated every 0.1 s by a neural network with three hidden
layers, each of which has 64 neurons. The activations of the hidden layers are sigmoid and
identity, respectively. We train the neural-network controller using supervised learning methods
to learn from a known nonlinear controller [50]. The initial state set is:

ω1 ∈ [−0.45,−0.44], ω2 ∈ [−0.55,−0.54], ω3 ∈ [0.65, 0.66],

ψ1 ∈ [−0.75,−0.74], ψ2 ∈ [0.85, 0.86], ψ3 ∈ [−0.65,−0.64].

Specification The system should not reach the following unsafe set in 3 s (30 time steps):

ω1 ∈ [−0.2, 0], ω2 ∈ [−0.5,−0.4], ω3 ∈ [0, 0.2],

ψ1 ∈ [−0.7,−0.6], ψ2 ∈ [0.7, 0.8], ψ3 ∈ [−0.4,−0.2].

We want to show that the above specification does not hold.

3.9 Benchmark: QUAD

This benchmark studies a neural-network controlled quadrotor (QUAD) with twelve state vari-
ables [10]. We have the inertial (north) position x1, the inertial (east) position x2, the altitude
x3, the longitudinal velocity x4, the lateral velocity x5, the vertical velocity x6, the roll angle
x7, the pitch angle x8, the yaw angle x9, the roll rate x10, the pitch rate x11, and the yaw rate
x12. The control torque u ∈ R3 is updated every 0.1 s by a neural network with 3 hidden layers,
each of which has 64 neurons. The activations of the hidden layers and the output layer are
sigmoid and identity, respectively. The dynamics are given by the following equations [10, eq.
(12-16)]:
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ẋ1 =cos(x8) cos(x9)x4 + (sin(x7) sin(x8) cos(x9)− cos(x7) sin(x9))x5

+ (cos(x7) sin(x8) cos(x9) + sin(x7) sin(x9))x6,

ẋ2 =cos(x8) sin(x9)x4 + (sin(x7) sin(x8) sin(x9) + cos(x7) cos(x9))x5

+ (cos(x7) sin(x8) sin(x9)− sin(x7) cos(x9))x6,

ẋ3 =sin(x8)x4 − sin(x7) cos(x8)x5 − cos(x7) cos(x8)x6,

ẋ4 =x12x5 − x11x6 − g sin(x8, )

ẋ5 =x10x6 − x12x4 + g cos(x8) sin(x7),

ẋ6 =x11x4 − x10x5 + g cos(x8) cos(x7)− g − u1/m,

ẋ7 =x10 + sin(x7) tan(x8)x11 + cos(x7) tan(x8)x12,

ẋ8 =cos(x7)x11 − sin(x7)x12,

ẋ9 =
sin(x7)

cos(x8)
x11 −

cos(x7)

cos(x8)
x12,

ẋ10 =
Jy − Jz
Jx

x11x12 +
1

Jx
u2,

ẋ11 =
Jz − Jx
Jy

x10x12 +
1

Jy
u3,

ẋ12 =
Jx − Jy
Jz

x10x11 +
1

Jz
τψ,

where

g = 9.81, m = 1.4, Jx = 0.054,

Jy = 0.054, Jz = 0.104, τψ = 0.

The initial set is:

x1 ∈ [−0.4, 0.4], x2 ∈ [−0.4, 0.4], x3 ∈ [−0.4, 0.4], x4 ∈ [−0.4, 0.4],

x5 ∈ [−0.4, 0.4], x6 ∈ [−0.4, 0.4], x7 = 0, x8 = 0, x9 = 0, x10 = 0, x11 = 0, x12 = 0.

Specification The control goal is to stabilize the attitude x3 to a goal region [0.94, 1.06] and
remain within these bounds with a time horizon of 5 s (50 time steps).

3.10 2D Spacecraft Docking

In the 2D spacecraft docking environment, the state of an active deputy spacecraft is expressed
relative to the passive chief spacecraft in Hill’s reference frame [26]. The dynamics are given
by a first-order approximation of the relative motion dynamics between the deputy and chief
spacecraft, which is given by Clohessy-Wiltshire [17] equations [52, eq. (12)],

ṡx
ṡy
s̈x
s̈y

 =


0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0



sx
sy
ṡx
ṡy

+


0 0
0 0
1
m 0
0 1

m

u, (13)

where m = 12 (kg), n = 0.001027 (rad/s), and u ∈ R2.
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The neural network controller was trained on the Docking 2D environment with reinforce-
ment learning using the training procedure described in [52]. However, the training procedure
differed in providing only the full state (position and velocity) as input and with hard clipping
of output actions replaced with soft tanh clipping. The neural network architecture was a shal-
low multilayer perceptron with 2 hidden layers of 256 neurons and tanh activation functions,
and a linear output layer. The pre-processing and post-processing of the controller have been
incorporated into the model as linear layers. The controller was trained with a sampling time
of 1 s.

Specification The spacecraft should satisfy the following safety constraints for 40 s:

(ṡ2x + ṡ2y)
1
2 ≤ 0.2 + 2n(s2x + s2y)

1
2 , (14)

given the initial set is

sx ∈ [70, 106], sy ∈ [70, 106], ṡx ∈ [−0.28, 0.28], ṡy ∈ [−0.28, 0.28].

4 Verification Results

For each of the participating tools, we obtained verification results for some or all of the bench-
marks. This year’s competition included the submission of the tools for repeatability prior to
the writing of the report to ensure a fairer competition. Reachable sets are shown for those
methods that are able to construct them. The published results (no plots) are available at
https://arch.repeatability.cps.cit.tum.de/frontend/submissions.

4.1 CORA

We present the results utilizing CORA on each of the benchmarks. CORA is able to show ver-
ification/violation of the specifications in all benchmarks except one using the entire input set.
For details about the reachability parameters used, such as the step size of our algorithm for
continuous-time benchmarks and the parameters for the propagation through the neural net-
work, we refer to the submission code available at https://gitlab.com/goranf/ARCH-COMP/
-/tree/master/2023/AINNCS/cora. We show the results of all benchmarks in Tab. 1. In
addition, we give details for each benchmark and provide the accompanying plots below.

4.1.1 ACC

CORA is able to verify all specifications automatically. The computed reachable set along with
some simulations are shown in Figure 5.

4.1.2 Sherlock-Benchmark-9 (TORA)

CORA is able to verify all specifications automatically. The computed reachable set along with
some simulations are shown in Figure 6 for the ReLU controller (specification 1) and in Figure 7
for the sigmoid and tanh controllers (specification 2).

4.1.3 Sherlock-Benchmark-10 (Unicycle)

CORA is able to verify all specifications automatically. The computed reachable set along with
some simulations are shown in Figure 8.
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Table 1: CORA. Results of all benchmarks including the time to compute the simulations
(ST), the time to compute and verify the reachable set (VT), and total time (TT). All time
values are in seconds.

Benchmark Instance ST VT TT Result

ACC - 1.63 4.05 5.70 VERIFIED

Sherlock-Benchmark-9 (TORA) ReLU 3.05 21.94 25.00 VERIFIED

Sherlock-Benchmark-9 (TORA) ReLU-Tanh 1.43 13.76 15.21 VERIFIED

Sherlock-Benchmark-9 (TORA) Sigmoid 1.29 10.84 12.23 VERIFIED

Sherlock-Benchmark-10 (Unicycle) - 5.73 6.97 12.71 VERIFIED

Sherlock-Benchmark-10 (Unicycle) - 5.73 6.97 12.71 VERIFIED

Single pendulum - 0.50 2.10 2.61 VIOLATED

Double pendulum Normal controller 0.62 5.59 6.23 VIOLATED

Double pendulum Robust controller 1.13 1.98 3.11 VIOLATED

Airplane - 1.13 1.98 3.11 VIOLATED

Attitude Control - 0.78 10.06 10.84 VERIFIED

Quadrotor - 5.11 352.84 357.96 VERIFIED

Spacecraft docking - 11.86 60.98 73.86 UNKOWN

VCAS (middle acc.) ḣ0(0) = −19.5 0.18 0.19 0.38 VERIFIED

VCAS (middle acc.) ḣ0(0) = −22.5 0.08 0.08 0.16 VERIFIED

VCAS (middle acc.) ḣ0(0) = −25.5 0.07 - 0.07 VIOLATED

VCAS (middle acc.) ḣ0(0) = −28.5 0.05 - 0.05 VIOLATED

VCAS (worst acc.) ḣ0(0) = −19.5 0.09 0.10 0.20 VERIFIED

VCAS (worst acc.) ḣ0(0) = −22.5 0.04 - 0.04 VIOLATED

VCAS (worst acc.) ḣ0(0) = −25.5 0.03 - 0.04 VIOLATED

VCAS (worst acc.) ḣ0(0) = −28.5 0.03 - 0.04 VIOLATED
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Figure 5: CORA. Computed reachable set of the ACC benchmark.
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Figure 6: CORA. Computed reachable set of the Sherlock-Benchmark-9 (TORA) benchmark
using specification 1.
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Figure 7: CORA. Computed reachable set of the Sherlock-Benchmark-9 (TORA) benchmark
using specification 2.

4.1.4 VCAS

The VCAS benchmark has discrete time steps and multiple controllers, which is currently not
supported by CORA. Thus, a custom algorithm was built for this benchmark. To deal with
the discrete input set ḣ0(0) ∈ {−19.5,−22.5,−25.5,−28.5}, we run the algorithm with each
element of the input set individually. As proposed in the benchmark specifications, we show
the results when always the middle acceleration of the controllers is chosen and the results when
always the worst acceleration is chosen.
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Figure 8: CORA. Computed reachable set of the Sherlock-Benchmark-10 (Unicycle) bench-
mark.
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Figure 9: CORA. Computed reachable set of the VCAS benchmark with middle acceleration.

VCAS (middle acceleration) Here we always use the middle of the possible accelerations.
We are able to verify the benchmark for ḣ0(0) ∈ {−19.5,−22.5} and can show violations for
ḣ0(0) ∈ {−25.5,−28.5}. The computed reachable set along with some simulations are shown
in Figure 9.

VCAS (worst acceleration) Here we always use the worst possible acceleration. We
are able to verify the benchmark for ḣ0(0) ∈ {−19.5} and can show violations for ḣ0(0) ∈
{−22.5,−25.5,−28.5}. The computed reachable set along with some simulations are shown in
Figure 10.
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Figure 10: CORA. Computed reachable set of the VCAS benchmark with worst acceleration.
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Figure 11: CORA. Computed reachable set of the single pendulum benchmark.

4.1.5 Single Pendulum

CORA is able to show specification violations of the single-pendulum benchmark. Figure 11
shows the verified simulation run which is violating the specification.

4.1.6 Double Pendulum

CORA is able to show violations for both controllers of the double-pendulum benchmark.
Figure 12 shows the verified simulation runs which are violating the specification. Note that
the reachable set computation is very tight for the more robust controller and thus barely
visible.
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Figure 12: CORA. Computed reachable set of the double pendulum benchmark.
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Figure 13: CORA. Computed reachable set of the airplane benchmark.

4.1.7 Airplane

CORA is able to show specification violations of the airplane benchmark. Figure 13 shows
the verified simulation run which is violating the specification. Note that the reachable set
computation is very tight and thus barely visible.

4.1.8 Attitude Control

CORA is able to verify all specifications automatically. The computed reachable set along with
some simulations are shown in Figure 14.
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Figure 14: CORA. Computed reachable set of the attitude control benchmark.
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Figure 15: CORA. Computed reachable set of the quadrator benchmark.

4.1.9 Quadrotor

CORA is able to verify all specifications automatically. While it is not possible to verify the
benchmark using linear abstractions of all neurons, we can verify the benchmark by applying the
refinement approach described in [38]. The computed reachable set along with some simulations
are shown in Figure 15.

4.1.10 2D Spacecraft Docking

The spacecraft docking benchmark appeared difficult to verify for our approach. While the
simulations seem to be stable, the reachable set explodes over time and thus we are unable to
verify the benchmark. The computed reachable set along with some simulations are shown in
Figure 16.
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Figure 16: CORA. Computed reachable set of the spacecraft docking benchmark.

4.2 JuliaReach

This subsection presents the results of JuliaReach. JuliaReach was able to analyze eight bench-
mark problems (four verified, four falsified). For each problem, JuliaReach uses slightly different
settings as described below.

4.2.1 ACC

Figure 17: JuliaReach. Analysis results for the ACC benchmark and the ReLU controller
(left) resp. the tanh controller (right). The plot additionally shows simulations.

Using the parameters abstol=1e-6, orderT=6, orderQ=1, JuliaReach verifies the prop-
erty Drel ≥ Dsafe for the whole time horizon in 0.5 s. The reach sets of Drel and Dsafe together
with some simulations are shown in Figure 17.
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Figure 18: JuliaReach. Analysis results for the TORA benchmark for the ReLU controller
(top), the sigmoid controller (bottom left), resp. the ReLU/tanh controller (bottom right). The
plots additionally show simulations.

4.2.2 Sherlock-Benchmark-9 (TORA)

We analyze three different controllers for the TORA benchmark problem. For the ReLU con-
troller, the approximation error is hard to tame for the JuliaReach approach. To maintain
enough precision to prove correctness, the initial states are split into 4 × 4 × 3 × 5 boxes.
While each box spawns an independent analysis that could be parallelized, the run time of
the sequential execution is 25 minutes. We use the parameters abstol=1e-10, orderT=8,

orderQ=3. The reach sets of all 240 runs together with some simulations, projected to x1/x2
resp. x3/x4, are shown in Figure 18. The sigmoid and ReLU/tanh controllers reach the target
set within the given time constraints, as shown in the x1/x2 projections in Figure 18. The
latter analyses take 5 s respectively 1 s.

4.2.3 Sherlock-Benchmark-10 (Unicycle)

The disturbance w is modeled here as a constant with an uncertain initial value. Simulations
show that the target set is reached only at the last moment, so the analysis requires high
precision to prove containment of the last reach set. Using the parameters abstol=1e-15,

orderT=10, orderQ=1 and splitting the initial states into 3 × 1 × 8 × 1 boxes, JuliaReach
verifies the property in 61 s. The reach sets of all 24 runs together with some simulations,
projected to x1/x2 resp. x3/x4, are shown in Figure 19. JuliaReach can evaluate the Taylor
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Figure 19: JuliaReach. Analysis results for the Unicycle benchmark. The first two plots show
the overall reach sets and simulations. The other two plots show a close-up of the target set.
The orange subset of the last reach set is obtained at time point t = 10.

polynomial at the time point t = 10 (rather than the last time interval), which results in a
more precise result (as shown in the plots), although additional precision is not required for
this problem, as the reach set for the last time interval is already fully contained in the target
set.

4.2.4 VCAS

The VCAS benchmark problem differs from the other problems in that it uses multiple con-
trollers and discrete time. There is currently no native support for this setting in JuliaReach,
so a custom simulation algorithm that always chooses the central acceleration was used. Ju-
liaReach produces ten simulations in 1 s, which indicate satisfaction for the initial values
ḣ(0) ∈ {−19.5,−22.5} but show a violation of the specification for the other initial values.
The simulation results are shown in Figure 20.

4.2.5 Single Pendulum

This system violates the specification; hence it suffices to start the analysis from a subset of
the initial states and interrupt when a violation is detected. Here, starting from the highest
coordinate in each dimension, a violation occurs within eleven control periods. Using the
parameters abstol=1e-7, orderT=4, orderQ=1, JuliaReach falsifies the property in 0.5 s.
Figure 21 shows the reach sets together with a simulation projected to time and θ.
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Figure 20: JuliaReach. Simulations of the VCAS benchmark.

Figure 21: JuliaReach. Analysis results for the Single-Pendulum benchmark until time t =
0.55. The plot additionally shows a simulation.

4.2.6 Double Pendulum

Similarly to the single-pendulum problem, this system violates the specification for both con-
trollers; hence it suffices to start the analysis from a subset of the initial states and interrupt
when a violation is detected. Considering the less robust controller, when starting from the
highest value in each dimension, a violation occurs within five control periods. Similarly, con-
sidering the more robust controller and starting from the lowest value in each dimension, a
violation occurs within seven control periods. Using the parameters abstol=1e-9, orderT=8,

orderQ=1 and an older version of the Taylor-model algorithm, JuliaReach falsifies the property
in 5 s (less robust controller) resp. 1 s (more robust controller). Figure 22 shows the reach sets
together with a simulation projected to θ̇1/θ̇2.
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Figure 22: JuliaReach. Analysis results for the double-pendulum benchmark, including a
simulation. The first plot shows the results for the less robust controller until time t = 0.25.
The second plot shows the results for the more robust controller until time t = 0.14.

Figure 23: JuliaReach. Analysis results for the airplane benchmark until time t = 0.4,
including a simulation.

4.2.7 Airplane

This system violates the specification; hence it suffices to start the analysis from a subset of
the initial states and interrupt when a violation is detected. When starting from the highest
coordinate in each dimension, a violation occurs immediately in dimension θ and within four
control periods in dimension y. To obtain some nontrivial results, JuliaReach ignores the viola-
tion in dimension θ. Using the parameters abstol=1e-10, orderT=7, orderQ=1, JuliaReach
falsifies the property in 5 s. The reach sets together with a simulation, projected to y/ϕ, are
shown in Figure 23.

4.2.8 Attitude Control

Using the parameters abstol=1e-6, orderT=6, orderQ=1, JuliaReach verifies the property in
1 s. The reach sets together with some simulations are shown in Figure 24.
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Figure 24: JuliaReach. Analysis results for the attitude control benchmark, including simu-
lations.

Figure 25: JuliaReach. Analysis results for the quadrotor benchmark, including simulations.

4.2.9 QUAD

Although simulations indicate that this controller is safe, the precision of JuliaReach is not high
enough to prove it. The property can be proven for a smaller initial set [−0.004, 0.004]6×{0}6.
Using the parameters abstol=1e-8, orderT=5, orderQ=1, JuliaReach verifies the property in
11 s. The reach sets together with some simulations are shown in Figure 25.

4.2.10 2D Spacecraft Docking

Although simulations indicate that this controller is safe, the precision of JuliaReach is not high
enough to prove it. The property can be proven for a smaller initial set [87, 89]2× [−0.01, 0.01]2.
Using the parameters abstol=1e-10, orderT=5, orderQ=1, JuliaReach verifies the property
in 0.5 s. The reach sets together with some simulations are shown in Figure 26. Since the
property is four-dimensional, it cannot be illustrated in the plot.
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Figure 26: JuliaReach. Analysis results for the Spacecraft benchmark, including simulations.
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Figure 27: NNV. Computed reachable set of the ACC benchmark.

4.3 NNV

We present the results utilizing NNV on each of the benchmarks. For details about the reach-
ability parameters used, we refer to the submission code available at https://gitlab.com/

goranf/ARCH-COMP/tree/master/2023/AINNCS/nnv. We have been able to encode all the
benchmarks into NNV and attempted to verify all of them, however, due to the conservative-
ness of the methods and the complexity of the different benchmarks, NNV was unable to verify
the unicycle, quadrotor, attitude, and docking spacecraft benchmarks.

4.3.1 ACC

NNV is able to verify the safety property Drel ≥ Dsafe in 24.98 s. The reach sets of Drel and
Dsafe are shown in Figure 27.
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4.3.2 Sherlock-Benchmark-9 (TORA)

NNV is able to verify all three controllers for the TORA benchmark. For the ReLU controller,
NNV verifies the specification in 21.97 s, while it takes 2148 s and 4074 s to verify the ReLU-tanh
and sigmoid controllers respectively. The differences in computation time across controllers are
due to the partitioning of the initial state sets. The reach sets are shown in Figure 28.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x2

-0.1 -0.05 0 0.05 0.1 0.15 0.2

x1

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

x2

-0.1 -0.05 0 0.05 0.1 0.15 0.2

x1

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

x2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x4

Figure 28: NNV. Analysis results for the Tora benchmark showing the TORA sets in blue
and the goal region in green. The left figures correspond to the sigmoid controller, the middle
two to the ReLU-tanh controller, and the two on the right to the ReLU controller. For the
sigmoid and ReLU-tanh controllers only the reach sets at every control period are shown in the
top row. The corresponding zoomed-in pictures of the goal region are depicted in the bottom
row.

4.3.3 VCAS

NNV is able to verify the NMAC safety property for the whole time horizon for each of the
cases with an average computation time of 3.1 s. There are 5 cases where we prove that the
system is unsafe and 3 where the system is safe, which corresponds to [middle, 19.5], [middle,
22.5], and [worst, 19.5]. These results are depicted in Figures 29 and 30.
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Figure 29: NNV. Analysis results for the VCAS benchmark showing the aircraft sets in blue
and the unsafe region in red, when selecting the middle acceleration value at each control period
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Figure 30: NNV. Analysis results for the VCAS benchmark showing the aircraft sets in blue
and the unsafe region in red, when selecting the worst possible acceleration value at each control
period.

4.3.4 Single Pendulum

For the single pendulum, it is sufficient to start with a smaller initial state to prove that the
safety property is violated, with a computation time of 2.85 s. The reach sets are depicted in
Figure 31.
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Figure 31: NNV. Analysis results for the single pendulum benchmark showing the sets in blue
and the unsafe region in red.

4.3.5 Double Pendulum

Similar to the single pendulum, we can demonstrate that the property is violated starting from
a smaller initial set, for both the more robust and less robust controllers. The results are
depicted in Figure 32, and the computation times are 45 s and 43.25 s for the more robust and
less robust controllers respectively.

4.3.6 Airplane

NNV is able to show that the property is violated by computing the reach sets from a smaller
initial region, in 41.7 s. The results are depicted in Figure 33.
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Figure 32: NNV. Analysis results for the Double Pendulum benchmark showing the reach sets
in blue and the safe region in green, when using the more robust controller (left) and less
robust controller (right).
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Figure 33: NNV. Analysis results for the airplane benchmark showing the reach sets in blue
and the goal region in green.

4.4 Summary

Finally, we present a table with the timed results for each of the benchmarks and highlight
the fastest tool for each of them in Table 2. We present the average computation time across
all VCAS instances. However, JuliaReach only presents the time it took to falsify 2 out of 8
instances (0.95 s), which is the data presented here.

Table 2: Summary of verification results, showing the computation time (s) for verified instances
and “-” for those unknown. The fastest computation times are highlighted in bold.

ACC TORA TORA TORA Unicycle VCAS Pend (S) Pend (D) Pend (D) Airplane Attitude Quad Docking
ReLU ReLU-tanh sigmoid more less

CORA 5.70 25.01 15.21 12.23 12.73 0.12 2.63 3.12 6.24 10.85 8.19 358.0 -
JuliaReach 0.47 1491 1.47 5.15 60.86 0.95 0.53 1.07 5.27 4.75 0.98 - -

NNV 24.98 21.97 2149 4074 - 3.18 2.85 45.07 43.25 41.75 - - -

118



ARCH-COMP23 AINNCS Manzanas Lopez et al.

5 Category Status and Challenges

Year-over-year comparison. It has been 5 years of this competition, and we have observed
an immense improvement in the area in this last half-decade. In 2019, when the competition
began, there were only 5 benchmarks, out of which the 3 participants were only able to verify an
average of less than 2 benchmarks per tool – including the 2 instances where the controller was
modified (ReLU vs tanh) to be supported by one of the tools. Over the next three years (2020-
2022), there were a total of 8 different tools that participated in the competition, increasing the
complexity of the benchmarks along with the quality improvement of the participating tools.
Ending with this year’s competition, we can also observe certain improvements over last year:
Overall, the tools successfully verified 78.3% of all instances, compared to 75% from last year
(2022) and 60% from the 2021 competition.

Automatic Verification. Some advances have been made to determine the verification re-
sults automatically. The current state of the art requires the authors to tune the hyperparam-
eters of the verification manually as well as hard-code counterexamples, which can be time-
consuming and requires expert knowledge. As an attempt towards a push-button approach,
CORA is able to find counterexamples through simulations and verify the falsifying trajec-
tory automatically. If no counterexample is found, CORA automatically tries to verify the
benchmark.

Closed-loop reachability integration. Since the first NNV publication [66], there have
been several additions and enhancements to the tool, including the development of new star-
based reachability methods [65] and support for several layers and deep learning architectures
such as neuralODEs and RNNs [41]. In terms of AINNCS verification, these changes include
a reduction in the overapproximation of the plant reachable sets over the control steps, as
well as allowing for faster but more conservative reachability methods for the controller (relax-
reachability [65]). These changes helped NNV to verify two more benchmark instances (TORA)
than last year’s competition. The integration of polynomial zonotopes into reachability analysis
of neural-network controlled systems [36] as well as an adaptive refinement scheme [38] allowed
CORA to verify the seemingly difficult QUAD benchmark.

Activation Function Types (controllers): For this year’s set of benchmarks, all neural
network controllers contain one or more of the following activation functions: ReLU, linear,
sigmoid, and tanh. The tools have support for the types: linear, piecewise linear (ReLU), and
nonlinear activation functions. In the future, we will consider adding other variations of the
existing activation functions, such as LeakyReLU or PReLU.

Plant Models: This and last year’s competition have considered linear and nonlinear plants,
both in discrete and continuous time. In future iterations, we plan to add hybrid automata
plants as we look to report a more complete analysis of the participating verification tools.
Hybrid automata plants will be especially interesting because combined continuous and discrete
dynamics are complex, which is very challenging for current AINNCS verification tools. We
will also consider adding neural ODEs as in [45], which will also increase the complexity of the
benchmarks and may require a more general encoding of NNCS by most participating tools to
verify them.
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Neural Network Architectures and Parameterization: The neural network architec-
tures presented in this work are fairly simple. Similar to last year, they have no more than a
thousand neurons and no more than 5 hidden layers in their architecture, unlike some of the
networks that can be analyzed without the plant. Also, the maximum number of inputs and
outputs of the controllers are 12 and 6, respectively, both in the airplane benchmark. Consid-
ering the VCAS benchmark, these networks have 9 outputs, although these are translated into
a single input to the plant model. However, for some benchmarks, there are still state-space
explosion and scalability issues to address in both the neural network controllers and plant
analysis. These issues could come from the repeated interaction between the network and the
states.

Model Formats: Following previous iterations, we have found it more useful and convenient
to simply share the plant models in a plain format, such as MATLAB functions, where the
participants could easily extract the ODEs. As for the neural network models, we provide
them in the ONNX format3, .mat format4, and the original format used by the proposer of
the benchmark. A few years ago, we began providing the neural network controllers in the
ONNX format, as it was very convenient to have a standard exchange format that most of the
participating tools supported. However, we have found that there are still discrepancies among
the different versions and frameworks these ONNX models were created from (e.g., different
input/output transformations are not always supported by every framework as experienced on
the Docking spacecraft benchmark). Thus, having a standard format easily imported by all
participants without local modifications, such as a unified ONNX version, remains a challenge.
Initiatives more focused on neural network verification, such as VNN-LIB5 and VNN-COMP6,
may help toward this goal.

6 Conclusion and Outlook

This report presents the results of the fifth ARCH friendly competition for closed-loop systems
with neural network controllers. For this edition, three tools have participated and attempted to
solve 10 benchmarks: CORA, JuliaReach, and NNV. The problems elucidated in this paper are
challenging and diverse; the presented results probably provide the most complete assessment
of current tools for the safety verification in AINNCS. The report provides a good overview
of the intellectual progression of this rapidly growing field, and it is our hope to stimulate the
development of efficient and effective methods capable of use in real-world applications. In
the past five years, the complexity of the benchmarks has consistently increased along with
the capabilities of the participant tools, leading to the most challenging competition (equal to
2022 competition) and the best verification results thus far, which is a good indicator for this
growing and maturing field. This has been achieved thanks to the continuous development
and improvements in existing formal verification frameworks, including CORA, JuliaReach,
and NNV. We would also like to encourage other tool developers to consider participating next
year, as well as new benchmark proposals are highly welcome. Authors agree that although
participation consumes time, we have gained unique insights that have allowed us to improve
in each iteration and will allow us to improve in the future. The reports of other categories can
be found in the proceedings and on the ARCH website: cps-vo.org/group/ARCH.

3Open Neural Network Exchange: https://github.com/onnx/onnx
4Direct input format used by NNV without transformation.
5http://www.vnnlib.org/
6https://github.com/verivital/vnn-comp/
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A Specification of Used Machines

This year, we run all tools on the same hardware using tool-specific docker images. The speci-
fication of the server used for the evaluation is given below:

• Processor: AMD EPYC 7742 64-Core

• Memory: 995 GB

• OS: Ubuntu 22.04

• Docker: 20.10.21
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