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Abstract—In this paper, we introduce work towards a
knowledge-augmented concept for Programming by Demonstra-
tion (PbD) for industrial assembly processes. The hand-object
actions in various assembly tasks are abstracted with the semantic
model of grasp types based on the Web Ontology Language
(OWL) containing task context from the grasp taxonomy stored
in a Knowledge Base (KB). A Long Short-Term Memory (LSTM)
network is used for recognizing the grasp types from the
hand skeleton in human demonstrations. The semantic process
description enables the generation of human assembly processes
with a sequence of hand-object actions and their conversion to
a robot-suitable process variant, which can be executed based
on the skill description of a workcell. We showcase the concept
with different assembly steps for a ball bearing as an example
of matching between human grasp types and robotic skills.

I. INTRODUCTION

Small and medium-sized enterprises (SMEs) focus on pro-
ducing individualized or small-batch products that require
frequent adaptation to the changing demands of customers
and markets. However, the current industrial robots are pri-
marily designed for large-scale production and require expert
knowledge in robot programming. They are not well-suited for
productions in SMEs, where the robots need to be frequently
re-programmed by the product change. Thus, the development
of more user-friendly robot programming methods that are
easier to learn and more intuitive is necessary to facilitate the
adoption of robot-based automation in SMEs.

In this work, we extend our intuitive robot programming
paradigm [1] to facilitate robot programming in SMEs with
a Programming by Demonstration (PbD) framework for me-
chanical assembly processes, which uses the semantic model
of hand-object actions for a more intuitive robot programming
on the task level based on an user’s demonstration of the task.

PbD enables robots to learn new skills from human demon-
stration with passive observation, which has been investigated
in manufacturing for different tasks such as pick-and-place,
peg-in-hole, and assembly operations [2]. The operator can
perform the demonstration in high degree of freedom (DOF)
with their body requiring almost no extra training. Yet the
challenges in PbD with passive observation lie in correctly
recognizing human actions, converting them to robot motions,
and reproducing the actions on the robot in a correct se-
quence [3]. Interactive task learning (ITL) [4], [5] focuses on
the learning of the task concept on a symbolic level instead
of only the task itself, which facilitates the learning of new
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(a) Tip Pinch (b) Precision Sphere

(c) Cylindrical Grasp Inside (d) Cylindrical Grasp Outside

Fig. 1: In the assembly steps of the same BallBearing on a Me-
chanicalPipe or a MechanicalTree, the performed grasp types
(a) (b) contain the task context for matching the corresponding
skill of the gripper(c) (d).

assembly processes in highly flexible sequences including a
huge variety of products in SMEs.

With the development of human action recognition in ma-
chine vision [6], the vision-based methods brought advantages
to the passive observation method with a more versatile use.
Yet the challenge lies in the lack of a general dataset that
covers all the hand-object actions in different manufacturing
processes. However, research efforts tried to unify grasp types
of human hands in manufacturing processes with grasp tax-
onomies since 1986 [7]. Despite of the differences in human
actions for the specific tasks in manufacturing, the grasp types
of the human actions can be generally described with the palm-
thumb position and the type of contact with the object [8].
With the grasp type described in a taxonomy as a general
classification of the labels in human action recognition, the
hand-object action dataset is simplified in the structure and
thus also the collection and annotation process. Additionally,



the grasp types can be semantically modeled containing the
context of tasks and the type of contact, with which the task-
level information of the hand-object actions are inferred and
consequently ease the mapping of a robotic process for its
execution.

In this paper, we present our work towards a PbD concept
for our knowledge-based robot system that semantically inte-
grates the grasp types with their task-level information as the
basis for understanding hand-object interactions in assembly
processes. With several PickAndPlace tasks from an assembly
process involving a BallBearing, as shown in Fig. 1, we show-
case the steps from the composition of human-object actions
with grasp type recognition and the generation of the platform-
independent human assembly process, to the transformation
into a robotic process based on skill descriptions.

II. RELATED WORK

A. Programming by demonstration with grasp taxonomies

Grasp taxonomies [7], [8] are widely investigated in PbD to
understand human grasp types and reproduce the grasps with
robotic grippers. [9] presented and evaluated three methods
for grasp recognition, where the hand posture during the grasp
sequence or the hand trajectory with the hand rotation is firstly
separately considered and then combined. In the following
work [10], a method for the generation of the approach
vector for robotic grasps based on object information and
human demonstration was introduced. In [11], [12], human
demonstrations were performed in a Virtual Reality (VR)
environment for the convenient calculation of contact points
and normals of human grasps. Upon this information, the
human grasps are then categorized based on a grasp taxonomy,
and the robot pregrasp planning is generated from the human
grasp trajectory.

Most research in PbD involving grasp taxonomies focuses
on the generation of parameters or trajectories of robotic
grasps, where the task-level information of the grasp types in
the human demonstration is still missing. In this work, we con-
sider the grasp taxonomy as the backbone for understanding
human actions. With the information of human grasps related
to the performed tasks, the hand-object actions are exploited
for the reproduction of robotic grasps on a task level.

B. Vision-based hand action recognition

With the progress of machine learning and computer vi-
sion in recent years, different methods for image-based hand
action recognition have been developed. In [6], [13], recent
approaches and datasets in Human Action Recognition are
summarized and reviewed. Among the machine learning meth-
ods, recurrent neural network (RNN) with Long Short-Term
Memory (LSTM) is the focus on skeleton-based methods either
for body action or hand gesture recognition [14], [15], [16].

The vision-based methods for hand action recognition need
to be trained on datasets that cover a large variety of ac-
tions. [17] annotated video sequences of complete assem-
bly processes with fine-grained and coarse actions, such as
PickUp, PutDown, and Screw. But this dataset only covers the

actions in the assembly process of 101 toy trucks and cannot be
directly reused for industrial assembly processes of different
products. Another type of dataset is the collection of short clips
consisting of single actions. [18] introduced a 3D hand pose
dataset in RGB-D data and hand pose with 21 joint positions
covering 45 daily hand action types. Although the dataset
only contains daily action types and can thus not be directly
used in industrial assembly processes, this study offered a
taxonomy for hand-object actions and their relationship with
grasp types. We follow the dataset structure from this work
for the recognition of grasp types from sequences of hand
skeletons and combine an LSTM due to its good performance
in skeleton-based hand action recognition.

III. CONCEPT

The difficulty in understanding the assembly process for
industrial products lies in the high flexibility in task orders
performed by humans and the fast-changing products from
SMEs with different assembly procedures. As mentioned in
Section II, despite the good performance of vision-based meth-
ods, the process of collecting and annotating datasets for hand-
object actions recognition is elaborate and not suitable for
manufacturing SMEs. Additionally, the vision-based method
offers only the classification of the grasp type, where the rich
task-level information for the understanding of hand-object
actions are often neglected.

Extending our knowledge-based digital engineering con-
cept [19], hand-object actions based on a grasp taxonomy III-A
are semantically modeled with the OWL 2 Web Ontology
Language and stored in a Knowledge Base (KB), where
all relevant knowledge about an assembly process – from
objects, tasks, and workcells with capability descriptions – are

Fig. 2: Examplary semantic model of a hand-object action with
task context from the grasp type; A sequence of PrimitiveAc-
tions forms a CompositeAction of PickAndPlace for matching
of human actions and robotic skills at different levels.
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Fig. 3: An overview of the proposed PbD paradigm with the Knowledge Base (KB) on the right for storing the ontology-based
semantic models, the peripheral software components in yellow interacting with the KB via SPARQL queries. The preparation
phase on the left contains a database with CAD models and datasets for training the network as a prerequisite.

interconnected as shown in Fig. 3. The peripheral software
components use SPARQL 1.1 (SPARQL Protocol and RDF
Query Language) requests to query and manipulate the models
in the KB, in order to support the hand-object action recogni-
tion and the specification of human assembly processes.

Other information is stored in a database. This includes the
original CAD models of objects, synthetic image datasets for
object recognition (Section III-B2), and sequences of hand
skeleton data for grasp type recognition (Section III-B1).
Several software components are developed, as described in
Section III-B, facilitating the conversion between different data
types from the KB and the database.

A. Hand-object action

The hierarchical structure of the grasp taxonomy is naturally
easy to be semantically modeled with ontologies, which allows
a semantic connection of the human grasp types to the task-
related information for understanding the hand-object actions
in various industrial assembly processes, such as the type of
surfaces that it can act on, and the required grasp range for a
given object’s diameter as shown in Fig. 2.

Furthermore, the semantic model of grasp types contains
additional information for generating parameters of a robotic
process from [19], such as the matching of human grasp types
and robotic grasp skills. An example in the assembly process
is that the two grasp types of TipPinch and PresicionSphere
on the same ball bearing can offer different contexts for the
assembly tasks as shown in Fig. 1 due to the constraints
on either the outer or the inner ring of the ball bearing.

Although the dexterous human hand can also perform the
PrecisionSphere grasp on the outer ring for the assembly of the
ball bearing and the mechanical tree, the user was instructed
to only grasp the part of the object with no constraint for the
precise definition of the contact.

The hand-object actions are also defined in different layers
for reusability and flexibility. As the tasks of a robotic process
were defined on different layers [20], a set of Primitive Actions
(Grasp, Move, Release) in an order can also form a Compos-
iteAction of PickAndPlace, which also enables a homogeneous
description at a different level for human actions, robotic skills,
and assembly tasks.

B. Perception

While the development of novel perception algorithms is
not the focus of this work, we still face the challenges of
recognizing the hand-object actions for specific tasks and the
fast-changing products in SMEs, where the resources for the
collection and manual annotation of datasets for specific work-
pieces and human actions are typically missing. In this work
we develop two automated pipelines for grasp type recognition
and object recognition based on RGB-D image from an Intel
D435 depth camera. With the basic information of grasp
types or object types from the compact yet robust networks,
other information, that is necessary for the generation and the
reproduction of the human assembly processes, can be inferred
from the semantic description of objects [21] and hand-object
actions (Section III-A) in our KB.
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1) Hand-object action recognition: The standard LSTM
model from TensorFlow1 is used to classify the grasp types
from the grasp taxonomy [8] with a time series of hand
skeletons. A hand skeleton of 21 joints with their positions
of [x, y, z] is generated from the RGB image with Mediapipe
Hands [22] as shown in Fig. 1. Despite of the compact
structure from the standard LSTM model from Tensorflow
without further modifications, a 96.7% recognition rate on
the test set is achieved with an average Frames per Second
(FPS) of 15 tested on a computer with an Intel i7-9850H
CPU and an Nvidia Quadro T2000 GPU. In order to improve
the recognition rate, we define the exact grasp types and give
instructions to the user to imitate the hand shape for the grasp
type. Such as if the hand is idle with no action performed, the
fingers should be fully opened to avoid being misclassified
as some grasp type. In addition to the recognition of static
grasp types, the LSTM can be extended for the recognition of
continuous actions such as screw tightening due to its authentic
property for processing time series.

Apart from the grasp type, other information based on the
grasp are also recorded and further semantically stored in the
KB, such as the timestamp of the start/end of the action and the
normalized hand pose in the world coordinate system, which is
necessary for inferring the interaction object (Section III-B2).

With a sequence of recognized grasp types, the primitive
actions of Grasp, MoveHand, and Release can be extracted
upon change of grasp types, such as a Grasp can be extracted
when the grasp type changes from Idle to TipPinch.

2) Object recognition: The original CAD models of the
workpieces are utilized for the generation of a photo-realistic
synthetic dataset using Ominiverse Issac2 and the object recog-
nition with YOLO v3 [23] for rapid iteration with new parts.
So far, we have tested the pipelines with our 3 object types
of Mechanical Pipe, Mechanical Tree, and Ball Bearing as
depicted in Fig. 1. We achieved a recognition rate of 98% on
the synthetic test set with in total 10,000 images. The bounding
box from YOLO in the image coordinate system is used to
define the interacting object with the hand.

In certain assembly scenarios, the 6-dimensional pose in-
stead of only the type of product is necessary for defining
the constraints of the objects, such as the assembly step of
a BallBearing on a MechanicalPipe, with multiple possibil-
ities given by the Semantic Mates [24] for the cylindrical
constraints. Objectron [25] can be integrated for detecting the
object poses, which can also be trained with the synthetically
generated dataset from Omniverse Issac.

C. Process description

A human assembly process consists of a sequence of
semantic hand-object actions on a task level in Section III-A
and the interacted objects from Section III-B2. By connecting
semantic information regarding the grasp type with geometric
information from an OntoBREP model [21], the geometric

1https://www.tensorflow.org/api docs/python/tf/keras/layers/LSTM
2https://developer.nvidia.com/isaac-sim

constraints of the objects in each assembly task can then
be determined with the help of Semantic Mates [24]. Such
information is used for matching the tasks and the provided
skills of the software and hardware components in the work-
cell. Not only the gripper type, e.g., a parallel gripper or a
vacuum gripper, can be determined by matching the grasp
ranges of various grasp types and the geometric information
of the objects’ graspable surfaces, but the specific skill for the
execution of the task can also be determined in certain cases.
An example of matching the grasp skills from the inside and
outside of the ball bearing is given as in Fig. 1, where the
human explicitly defines the graspable surfaces. In this case,
the approach vector of the robotic grasp can be performed
vertically from the top, but can be calculated with the hand
pose and the object pose in more complicated assembly steps.

D. Graphical user interface

Our graphical user interface (GUI) is implemented based
on the Angular3 framework and communicates with the KB
via a REST API. The fundamental function of the GUI in
the overall PbD paradigm is to enable the user to modify
the assembly process with the necessary information for the
correct generation and execution of the robotic process, that
is either required due to multiple results from the matching of
Semantic Mates [24] or partially covered and not recognized
objects (Section III-B). Furthermore, an OntoBrep Viewer is
developed and integrated into the GUI for the intuitive interac-
tion with the objects on a semantic level, such as choosing the
outer ring on the ball bearing. With the missing information
manually filled, the task sequence of the assembly process can
also be adjusted with Add, Delete, or Edit Parameter, so that
a robotic process composed of a sequence of tasks can be
executed in a desired order by the semantic manufacturing
execution system (sMES) [19] with skills offered by the
components in a workcell wrapped with the OPC UA (Open
Platform Communications Unified Architecture) middleware
providing an unified interface [26].

IV. CONCLUSION

In this work we propose a PbD concept with an LSTM
network for grasp type recognition in industrial assembly
processes. The semantic model of hand-object actions with the
task-level information related to the grasp type is defined in
the framework with other necessary software components for
interacting with the semantic knowledge of objects, processes,
and workcells. A showcase of PickAndPlace tasks involving
a BallBearing is presented with the framework, which can be
extended with other actions for different assembly tasks, such
as screw tightening. The human process is generated focusing
on the task level reproduction with the matching of the robotic
skills, where the parametrization of the approach vector and
force estimation of each robotic task still need to be calculated
from hand and object poses in future works. Experiments with
users are to be conducted for the evaluation of the system.

3https://angular.io/
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