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Abstract

Multispectral optoacoustic tomography (MSOT) enables non-invasive detection of optical contrast in
living tissue with high spatial resolution and several centimeters of penetration depth, and can thus
provide novel clinical insights for various multifarious diseases. However, degradations in image
quality during in vivo imaging limit the clinical applicability of MSOT and impede the deployment of
the imaging modality beyond proof-of-concept studies. Optoacoustic image contrast is considerably
reduced by electrical noise generated during signal acquisition due to thermal effects and electro-
magnetic interference. In addition, the state-of-the-art image reconstruction method for optoacoustic
tomography (iterative model-based reconstruction) is not available for in vivo imaging applications
because it is too time-consuming to support image feedback in real-time. However, real-time imaging
is essential for the clinical use of MSOT to enable precise visio-tactile coordination during imaging,
provide in situ diagnoses, and detect dynamic pathophysiological changes associated with disease
progression.

In this work, we investigate how the image quality and clinical applicability of MSOT can be improved
using discriminative deep learning. We show that discriminative deep neural network models facil-
itate advanced data processing for MSOT by leveraging their ability to capture complex data trans-
forms in a data-driven manner and efficiently apply these transforms to new data. First, we introduce
a deep learning framework to remove electrical noise from optoacoustic images, enabling the de-
tection of optoacoustic contrast with high spatial and temporal resolution several centimeters deep
in tissue. Second, we develop a deep learning approach to accelerate state-of-the-art model-based
optoacoustic image reconstruction, making it available for real-time use.

Finally, we highlight ongoing and planned research aimed at integrating the deep learning ap-
proaches from this work into clinical trials, and outline directions for further research on deep learning
methods to improve the imaging capability and clinical applicability of MSOT.
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Zusammenfassung

Die multispektrale optoakustische Tomographie (MSOT) ermöglicht in einzigartiger Weise die nicht-
invasive Detektion von optischem Kontrast in lebendem Gewebe mit hoher räumlicher Auflösung und
mehreren Zentimetern Eindringtiefe. MSOT kann so neuartige klinische Erkenntnisse für vielfältige
Krankheitsbilder liefern. Verschlechterungen der Bildqualität während der In-vivo-Bildgebung be-
grenzen jedoch die klinische Anwendbarkeit von MSOT und behindern den Einsatz der Bildge-
bungsmodalität über Proof-of-Concept-Studien hinaus. Optoakustischer Bildkontrast wird erheblich
durch elektrisches Rauschen verringert, das bei der Signalerfassung durch thermische Effekte und
elektromagnetische Interferenzen entsteht. Darüber hinaus steht die modernste Bildrekonstruktion-
smethode in der optoakustische Tomographie (iterative modellbasierte Rekonstruktion) nicht für die
In-vivo-Bildgebung zur Verfügung, da sie für die Echtzeitanwendung zu zeitaufwändig ist. Echtzeit-
Bildgebung ist jedoch für den klinischen Einsatz von MSOT unerlässlich, um eine präzise visuell-
taktile Koordination während der Bildgebung zu ermöglichen, In-situ-Diagnosen bereitzustellen und
dynamische pathophysiologische Veränderungen erkennen zu können.

In dieser Arbeit untersuchen wir, wie die Bildqualität und klinische Anwendbarkeit von MSOT mithilfe
von diskriminativem Deep Learning verbessert werden können. Wir zeigen, dass diskriminierende
tiefe neuronale Netzwerkmodelle fortschrittliche Methoden zur Datenverarbeitung für MSOT bereit-
stellen, indem sie komplexe Transformationen datengetrieben erfassen und diese Transformationen
effizient auf neue Daten anwenden. Zunächst stellen wir ein Deep-Learning-Framework vor, um
elektrisches Rauschen aus optoakustischen Bildern zu entfernen und so die Erkennung von op-
toakustischem Kontrast mit hoher räumlicher und zeitlicher Auflösung mehrere Zentimeter tief im
Gewebe zu ermöglichen. Zweitens entwickeln wir einen Deep-Learning-Ansatz, um die hochmod-
erne modellbasierte optoakustische Bildrekonstruktion zu beschleunigen und für den Echtzeitein-
satz verfügbar zu machen.

Abschließend erläutern wir laufende und geplante Forschungsarbeiten, die darauf abzielen, die
Deep-Learning-Ansätze aus dieser Arbeit in klinische Studien zu integrieren, und skizzieren Rich-
tungen für weitereführende Forschung nach Deep-Learning-Methoden zur Verbesserung der Bildge-
bungsfähigkeit und der klinischen Anwendbarkeit von MSOT.
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1 Discriminative deep learning for multispectral
optoacoustic tomography – an overview

1.1 Introduction

1.1.1 Clinical imaging with multispectral optoacoustic tomography

Multispectral optoacoustic tomography (MSOT) is an emerging clinical imaging modality due to its
unique capability to non-invasively detect optical contrast with high spatial resolution and centimeter-
scale penetration depth in living tissue [60]. Optoacoustic tomography uses as contrast mecha-
nism the optoacoustic effect, which describes the generation of acoustic pressure waves (ultra-
sonic waves) by tissue chromophores after transient light absorption. Multispectral imaging with
optoacoustic tomography (i.e., repeated scanning of a tissue location with different optical excita-
tion wavelengths) enables to access the multispectral contrast of endogenous tissue chromophores
such as oxygenated and deoxygenated hemoglobin, lipids, water, and collagen. MSOT affords high-
resolution imaging of deep tissue because acoustic pressure waves scatter significantly less than
light in tissue [89]. The resolution that can be achieved with optoacoustic tomography in deep tissue
is therefore significantly higher than with a purely optical imaging approach such as for example
diffuse optical tomography [35], whose imaging depth is severely limited by optical tissue scattering.

MSOT imaging is well suited for use in clinical applications because it employs non-ionizing radia-
tion, is portable and inexpensive, and can be easily combined with ultrasonography, which is already
established in the clinical imaging routine. Several proof-of-concept studies have demonstrated that
MSOT can quantify functional tissue parameters related to oxygenation, inflammation, vasculariza-
tion, and tissue fibrosis, and provide unmatched clinical information for multifarious diseases such
as breast cancer [17, 47], oral cancer [84], inflammatory bowel disease [43], Duchenne muscular
dystrophy [67], peripheral neuropathy [40], and thyroid disorders [69].

In practice, however, degraded image quality during in vivo imaging limits the clinical applicability of
MSOT and impedes its use beyond proof-of-concept studies. Optoacoustic image contrast is con-
siderably decreased by signal corruptions due to electrical noise [80]. Electrical noise arises from
thermal effects (thermal noise) and electromagnetic interferences (parasitic noise) and severely lim-
its the imaging sensitivity with optoacoustic tomography. Distortions by electrical noise are particu-
larly detrimental in deep tissue, where the signal-to-noise ratio of optoacoustic signals is additionally
challenged by light fluence attenuation. Moreover, multispectral imaging combines scans acquired
at different wavelengths, which exacerbates the effects of image distortion. As a result of the limited
sensitivity of MSOT, reliable quantification in clinical studies is currently only possible at reduced
spatial and temporal resolution through averaging over larger tissue regions and multiple scans.

Optoacoustic image quality is furthermore limited, since in many applications only real-time capable
image processing and reconstruction algorithms can be used. Real-time image feedback is essential
in optoacoustic imaging, especially in handheld mode, to facilitate visio-tactile coordination, identify
and localize relevant tissue structures based on anatomical landmarks in their vicinity, and determine
the optimal scanning position for the target region. Real-time optoacoustic imaging is also required
to enable in situ guidance and diagnosis during intra-operative and endoscopic imaging, and to
detect and monitor dynamic physiological processes in the imaged tissue. However, state-of-the-art
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image processing algorithms for optoacoustic tomography like variational reconstruction methods
are too computationally demanding to enable real-time processing.

In summary, MSOT imaging is currently only available with sub-optimal image quality and after
considerable computation time. These shortcomings make the imaging modality inadequate for
extensive use in clinical applications. Therefore, in order to improve the imaging capabilities and the
clinical applicability of MSOT, novel signal and image processing techniques have to be developed.

1.1.2 Thesis objectives

In recent research, discriminative deep learning models have achieved state-of-the-art performance
for various general image enhancement and reconstruction tasks [4]. Discriminative deep learning
models aim to find appropriate data transformations for regression or classification tasks in a data-
driven manner. In doing so, they use the ability of deep neural networks to capture complex data
transformations during training and efficiently apply these transformations to new data.

The modeling capabilities and computational efficiency of discriminative deep learning models have
already been used in other medical imaging modalities such as magnetic resonance imaging, X-
ray computed tomography, and ultrasound imaging, improving image quality, usability, and safety.
In magnetic resonance imaging, deep-learning-based image reconstruction of under-sampled data
was shown to outperform conventional compressed sensing approaches and facilitate accurate dy-
namic imaging [74, 97, 31]. In X-ray computed tomography imaging, discriminative deep learning
was applied to reconstruct high quality images from low-dose or sparse view measurements and
thus reduce the overall amount of ionizing radiation that a patient is exposed to [39, 9]. In ultrasound
imaging, deep neural network models could improve the image quality and contrast of ultrasound
beamforming [75, 41, 56, 57] and accelerate ultrasound localization microscopy for super-resolution
microvascular imaging [19, 83, 82].

In this work, we investigate whether discriminative deep learning can improve the image quality
and clinical applicability of MSOT. We show that the modeling capabilities and the computational
efficiency of discriminative deep learning models offer suitable data processing methodologies to
improve the sensitivity and versatility of MSOT during clinical use. A key challenge in developing
such enhancement methods for MSOT is to ensure that they can be applied to any in vivo data with
the same high precision. We identify the generation of training data as a key aspect for the use
of deep learning for MSOT and present strategies to account for the complexity and highly variable
composition of biological tissue when compiling training data.

Specifically, we define the following two objectives for this thesis:

1. Development of a deep learning methodology to remove electrical noise from optoacoustic
images and facilitate accurate and reliable (multispectral) optoacoustic imaging of several cen-
timeters deep tissue at high spatial and temporal resolution.

2. Development of a deep learning methodology to speed up variational optoacoustic image
reconstruction and enable (multispectral) optoacoustic imaging in real-time with state-of-the-
art image quality.

1.1.3 Thesis outline

This thesis is structured into four chapters. In chapter 1, we summarize the motivation for the con-
ducted research and explain the most important methodological concepts used in the remainder of
the thesis. In section 1.2, we provide an overview about the forward imaging process of MSOT and
the most commonly applied inversion techniques. In section 1.3, we introduce the general method-
ology of discriminative deep learning. In section 1.4, we give an overview about how discriminative
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deep learning has been applied in prior works to solve inverse problems in imaging. In section 1.5,
we finally discuss application strategies of discriminative deep learning for multispectral optoacous-
tic tomography imaging. For in-depth explanations about individual aspects of the covered topics,
we refer the reader to the references provided in the respective paragraphs.

In chapters 2 and 3, we address the two main objectives of this work. In chapter 2, we introduce
a deep learning approach to remove electrical noise from recorded optoacoustic signals and reveal
high morphological and spectral optoacoustic contrast in several centimeter deep tissue. In chapter
3, we presents a deep-learning-based image reconstruction framework to obtain state-of-the-art
optoacoustic images fast enough to enable real-time imaging.

Finally, in chapter 4 we summarize the results of this thesis and discuss possible directions for further
research.

1.1.4 Publication record

This work is a cumulative dissertation based on the following two publications:

1. Christoph Dehner, Ivan Olefir, Kaushik Basak Chowdhury, Dominik Jüstel, Vasilis Ntziachris-
tos, Deep-learning-based electrical noise removal enables high spectral optoacoustic contrast
in deep tissue, IEEE Transactions on Medical Imaging, 41(11):3182–3193, 2022.

2. Christoph Dehner, Guillaume Zahnd, Vasilis Ntziachristos, Dominik Jüstel, A deep neural
network for real-time optoacoustic image reconstruction with adjustable speed of sound, Na-
ture Machine Intelligence, 2023.

In addition, the research conducted for this dissertation project resulted in a patent application and
contributed to four other thematically-related publications:

3. Dominik Jüstel, Christoph Dehner, Stefan Morscher, Guillaume Zahnd, Antonia Longo, Meth-
ods and system for optoacoustic and/or ultrasonic imaging, reconstructing optoacoustic and/or
ultrasonic images and training an artificial neural network provided therefor, European Patent
Application no. 22177153.8.

4. Kaushik Basak Chowdhury, Maximilian Bader, Christoph Dehner, Dominik Jüstel, Vasilis
Ntziachristos, Individual transducer impulse response characterization method to improve
image quality of array-based handheld optoacoustic tomography, Optics Letters, 46(1):1–4,
2021.

5. Jan Kukačka, Stephan Metz, Christoph Dehner, Alexander Muckenhuber, Korbinian Paul-
Yuan, Angelos Karlas, Eva Maria Fallenberg, Ernst Rummeny, Dominik Jüstel, Vasilis Ntzi-
achristos, Image processing improvements afford second-generation handheld optoacoustic
imaging of breast cancer patients, Photoacoustics, 26:100343, 2022.

6. Dominik Jüstel, Hedwig Irl, Florian Hinterwimmer, Christoph Dehner, Walter Simson, Nassir
Navab, Gerhard Schneider, Vasilis Ntziachristos, Spotlight on nerves: Portable multispectral
optoacoustic imaging of peripheral nerve vascularization and morphology, Advanced Science,
10(19):2301322, 2023.

7. Markus Seeger, Christoph Dehner, Dominik Jüstel, Vasilis Ntziachristos, Label-free concur-
rent 5-modal microscopy (Co5M) resolves unknown spatio-temporal processes in wound heal-
ing, Communications Biolology, 4(1):1040, 2021.
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1.2 Methodology of multispectral optoacoustic tomography

MSOT can non-invasively detect optical contrast at acoustic resolution by measuring acoustic pres-
sure waves that are emitted by tissue chromophores after transient illumination. Figure 1.1 illustrates
the overall imaging process of MSOT. Acoustic pressure sinograms are recorded for different excita-
tion wavelengths (one sinogram per excitation wavelength). During acoustic inversion, the underly-
ing initial pressure distributions of the recorded sinograms are reconstructed. Finally, during optical
inversion, the initial pressure images obtained with different excitation wavelengths are combined to
infer the concentrations of different chromophores in the scanned tissue.

In the following, we summarize the key physical and mathematical concepts for MSOT, as well as
the most common inversion methods currently in use. The purpose of these explanations is to pro-
vide the necessary methodological background for an investigation of meaningful signal and image
processing improvements for MSOT. In section 1.2.1, we explain the optoacoustic forward imaging
process. In sections 1.2.2 and 1.2.3, we formally define the acoustic and optical inverse problems
related to MSOT, respectively, and outline the most commonly applied inversion approaches.

Figure 1.1 High-level overview of the imaging and reconstruction pipeline for multispectral optoacoustic to-
mography (MSOT). During multispectral optoacoustic imaging, acoustic pressure sinograms are recorded for
different excitation wavelengths (one sinogram per excitation wavelength). During acoustic inversion, the un-
derlying initial pressure distributions of the recorded sinograms are reconstructed. During optical inversion,
the initial pressure images obtained with different excitation wavelengths are combined to infer the concentra-
tions of different chromophores in the scanned tissue.

1.2.1 Modeling of the imaging physics

The underlying principle of optoacoustic imaging is the generation of pressure waves by means of
optical excitation due to a physical process called the optoacoustic effect. Figure 1.2 schematically
visualizes the optoacoustic imaging principle. The object of interest is illuminated with a short laser
pulse of typically several nanoseconds duration. The deposed optical energy is then (in part) ab-
sorbed by chromophores and converted into heat, which induces a local increase in pressure due
to thermoelastic expansion. Assuming thermal and stress confinement (i.e., heat conduction and
expansion of the absorbing volume are negligible during optical excitation), the increase in pressure
p0 at a given location r in the imaged medium may be written as

p0(r) = ΓHa(r) = Γµa(r)Φ(r), (1.1)

where Γ is the Grüneisen coefficient describing the conversion efficiency of heat to pressure, Ha

is the absorbed energy density, µa is the optical absorption coefficient, and Φ is the local light
fluence. On closer inspection, the optoacoustic efficiency Γ is not constant but varies for different
tissue types; however, these variations are typically neglected or considered part of the absorption
coefficient distribution [92, 13].
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Figure 1.2 Schematic visualization of the optoacoustic imaging principle. Light from transient illumination is
absorbed by tissue chromophores and converted into heat. The local pressure increases due to thermoelastic
expansion and an acoustic pressure wave propagates through the tissue; this wave can be recorded with
acoustic transducers.

As a result of an increase in local pressure due to the optoacoustic effect, acoustic pressure waves
propagate through the imaged object and can be recorded with acoustic transducers (acoustic pres-
sure detectors). Thereby, the pressure p at location r and time t is governed by the acoustic wave
equation, which reads as follows under the assumption of an acoustically homogeneous medium:

∂2p(r, t)
∂t2

− c2∇2p(r, t) = Γ∂H(r, t)
∂t

, (1.2)

where c is the speed of sound, Γ the Grüneisen coefficient, and H(r, t) is the deposited energy per
unit volume and per unit time. If illumination is modeled as an infinitely short pulse, the source term
on the right side of equation 1.2 can be additionally reformulated to H(r, t) = Ha(r)δ(t) using the
Dirac delta distribution δ(t). This simplification is valid for most optoacoustic imaging applications
because the illumination pulse length is typically below the sampling rate of the acoustic transducers,
allowing to derive an analytical solution the for pressure p(r, t) from equation 1.2 using the Green’s
function approach [45, 72]:

p(r, t) = 1
4πc

∂

∂t

∫
∥r−r′∥2=ct

p0(r′)
∥r − r′∥2

dr′. (1.3)

The integral in equation 1.3 can be interpreted as a superposition of elementary pressure waves on
a sphere with radius ∥r − r′∥2 = ct.

For individual and radially symmetric absorbers, the resulting acoustic pressure wave can be com-
puted analytically, yielding the characteristic N-shaped wave profile [15]. Specifically, let us consider
an absorber at the origin with the radial initial pressure profile p∆

0 (R) and diameter ∆ (i.e., p∆
0 (R) = 0

for |R| > ∆). Then, according equation 11 from [15], the generated pressure p∆
rd

(t) at location rd

for t > 0 and ∥rd∥2 ≫ ∆ is given as

p∆
rd

(t) = ∥rd∥2 − tc

2∆ p∆
0 (∥rd∥2 − tc). (1.4)

The ability to analytically derive the generated acoustic pressure wave for a radially symmetric ab-
sorber enables to numerically simulate the acoustic part of the optoacoustic forwards imaging pro-
cess in an efficient manner as follows: First, the initial pressure p0(r) is discretized with radially
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symmetric basis functions; and second, the pressure wave p(r, t) is calculated as a superposition of
the pressure waves from the basis functions according to the equation 1.4, while also taking into ac-
count their travel times with respect to each other. This simulation approach is used in model-based
inversion methods for the acoustic part of the optoacoustic imaging process, which is explained in
detail in the following section (section 1.2.2).

1.2.2 Acoustic inverse problem

The acoustic inverse problem related to optoacoustic tomography comprises reconstruction of the
spatial initial pressure distribution p0(r) ≡ p(r, t = 0), given acoustic pressure measurements
p(rd, t) at the detection locations rd and times t > 0. Reconstruction of the initial pressure is a lin-
ear inverse problem and is in practice ill-posed because of limited angle acquisition, finite bandwidth
of acoustic transducers, and measurement noise. In the following, we review the two most com-
monly applied inversion approaches for optoacoustic tomography: Backprojection and model-based
reconstruction. Acoustic wave propagation in tissue is generally a 3D phenomenon, however, the
problem setting can be simplified to 2D if pressure measurements are restricted to a specific plane
by using focused transducers, or if the imaged medium is homogeneous in the third dimension [72].
Figure 1.3 compares backprojection and model-based reconstructions for a scan of a human breast
to illustrate the advantages and disadvantages of the two methods.

Figure 1.3 Comparison of backprojection and model-based reconstruction. Top: Optoacoustic sinogram from
a scan of a human breast at 800 nm. Bottom: Initial pressure images from backprojection (left) and model-
based reconstruction (right).
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Backprojection

Backprojection formulae provide closed-form solutions for the reconstruction of the initial pressure
distribution (i.e. the inversion of equation 1.3) and can be derived for spherical, planar, and cylindrical
detection geometries under the assumption of ideal imaging conditions such as point transducers,
infinite-bandwidth signal acquisition, and full enclosure of the object of interest in case of a spherical
detection geometry [91, 72]. The universal backprojection algorithm (equation 20 in [91]) is arguably
one of the best known and most commonly applied backprojection formula. However, its numerical
implementation is particularly sensitive to noise in the input signals because the algorithm involves
calculating time derivatives of these signals (before the delay operation).

An alternative backprojection algorithm can be derived using the explicit inversion formulae for the
spherical mean Radon transformation by Kunyansky [48] together with the solution of the wave
equation based on the Poisson–Kirchhoff formulas (equations 19.6 and 19.7 in [46]). The resulting
formula allows for a more robust numerical implementation because it involves a time integral of the
input signals (the integral reverses derivative operation from Equation 19.6 in [46]). This integra-
tion acts as a filter, smoothing out high-frequency distortions in the input signals before calculating
derivatives (see equation 8 in [48] for the 2D case). However, a drawback of this backprojection
formula in comparison to the universal backprojection formula is that the obtained images may be
slightly more blurred.

Backprojection algorithms are commonly applied because they support reconstruction in real-time
(at least 24 frames per second are necessary for full-video rendering). However, the method can
reconstruct the initial pressure only sub-optimally because the presumed ideal imaging conditions
cannot be realized in practice and because the algorithm is unable to mitigate the ill-posedness
of the inverse problem. Figure 1.3 (bottom left side) visualizes the image quality achieved with
backprojection using an example scan of a human breast. As a result of the limitations listed above,
backprojection images can suffer from reduced contrast and spatial resolution, as well as negative
pixel values that obstruct a physically-meaningful interpretation as initial pressure.

Model-based reconstruction

Model-based reconstruction (also called "variational reconstruction") relies on discretizing the for-
ward imaging process based on equations 1.3 and 1.4. As wave propagation is linear, the discretized
forward imaging operator can be written in matrix form as

s = Mp0, (1.5)

where s is a column vector containing the acoustic pressure measurements for a set of locations
and time points, M the forward model matrix, and p0 a column vector containing the initial pressure
values from the imaging grid.

For the inversion of equation 1.5, the following constrained least-square minimization problem is
solved:

p0 = arg min
p≥0

(
∥Mp − s∥2

2 + αR(p)
)
, (1.6)

where R(·) is the regularization functional, α ≥ 0 denotes the parameter to control the importance
of the regularization, and the inequality sign p ≥ 0 refers to entrywise non-negativity. The mini-
mization problem from equation 1.6 can be solved, for example, using bound-constrained sparse
reconstruction by separable approximation [88, 8].

The main advantages of variational reconstruction are the ability to constrain the reconstructed
values to be non-negative and thus enable a physically-meaningful interpretation as initial pressure,
to mitigate the ill-posedness of the inverse problem via regularization, and to integrate into the
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inversion any linear effect from the imaging process as for example the total impulse response of
the scanner or acoustic heterogeneities of the imaged object [71, 16, 11, 12]. Typical choices for the
regularization are Tikhonov, total variation, or Shearlet-based regularization, of which the latter is
particularly beneficial to decrease reconstruction artifacts that arise due to limited-angle acquisition
[24, 49].

Figure 1.3 (bottom right side) shows the image quality obtained with model-based reconstruction
using an example scan of a human breast. Model-based reconstruction obtains considerably better
images in terms of spatial resolution, contrast, and interpretability than backprojection reconstruc-
tion. However, a critical disadvantage of model-based reconstruction is that the approach is in
practice too time-consuming for real-time imaging (i.e., the reconstruction of one image can take up
to one minute).

1.2.3 Optical inverse problem

The optical inverse problem related to multispectral optoacoustic tomography comprises reconstruc-
tion of chromophore concentrations ck(r) from initial pressure images obtained with different exci-
tation wavelengths. Biological tissue contains only a small number of endogenous chromophores
with known and distinct absorption spectra. Figure 1.4 plots the absorption spectra of important
endogenous chromophores in biological tissue, namely oxygenated and deoxygenated hemoglobin,
lipid, water, collagen, and melanin.
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Figure 1.4 Absorption spectra of endogenous chromophores in biological tissue [65]. Hb and HbO2 denote
deoxygenated and oxygenated hemoglobin, respectively.

Different chromophores can be unmixed using multispectral imaging because their concentrations
determine the wavelength-dependent optical absorption in the imaged medium:

µ(λ)
a (r) =

K∑
k=1

ck(r)sk(λ), (1.7)

where λ denotes the excitation wavelength, K is the number of chromophores in the imaged object,
and sk(λ) is the known absorption spectra of the respective chromophores. The complete rela-
tionship between the chromophore concentrations and the initial pressure distribution for a specific
wavelength p(λ)

0 (r) is obtained by substituting equation 1.7 into equation 1.1:

p
(λ)
0 (r) = ΓΦ(λ)(r)

K∑
k=1

ck(r)sk(λ). (1.8)
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Retrieval of chromophore concentrations based on equation 1.8 is a non-linear and ill-posed inverse
problem because the light fluence Φ(λ)(r) depends in a non-linear and wavelength-dependent man-
ner on the optical properties (and thus also the chromophore concentrations) of the entire illumi-
nated volume. Wavelength-dependent light fluence attenuation causes distortions of the perceived
absorption spectra of chromophores in deeper tissue by light absorption of chromophores in super-
ficial tissue – an effect called spectral coloring – and severely limits the ability to detect and quantify
different chromophores with MSOT [13, 79]. Correcting these spectral coloring distortions is still
an open research question, as accurate information about optical tissue properties is not available
during in vivo imaging. Previous research studies demonstrated the possibility to mitigate spectral
coloring effects for a pre-clinical MSOT system using a simulation-derived eigenspectral model for
light fluence in tissue, called "eMSOT" [81, 61, 62]. However, the feasibility of this methodology for
high-resolution clinical imaging remains questionable and has yet to be demonstrated, as the pro-
posed methodology relies on an overly-simplified tissue model, utilizes a pre-clinical imaging setup
with full-angle illumination and imaging depths of only about one centimeter, considers only oxy-
genated and deoxygenated hemoglobin as tissue chromophores, and estimates the light fluence on
a coarse grid only.

Because the optical inverse problem given in equation 1.8 cannot be precisely solved, approximate
unmixing techniques for MSOT are commonly applied to disentangle different tissue chromophores
and estimate their concentrations. In the following, we describe two of the most widely used approx-
imate unmixing methods: Linear unmixing and blind spectral unmixing. We thereby denote with N
the number of spatial locations for which spectra are simultaneously unmixed, with L the number
of measurements with different wavelengths for each location, and with K the number of unmixing
components.

Linear unmixing

Linear unmixing assumes that the light fluence is constant for all imaging locations and wavelengths.
With this simplifying assumption, the initial pressure measurements with different excitation wave-
lengths are linearly related to the chromophore concentrations:

d = Sc, (1.9)

where d is a column vector of size L with the initial pressure measurements for the considered set
of excitation wavelengths, S is a matrix of size L × K with as columns the reference absorption
spectra of K considered unmixing chromophores, and c is a column vector of size K with the
concentrations of the considered chromophores. To recover the concentrations of K chromophores,
measurements with L ≥ K different wavelengths are required. Equation 1.9 can be inverted using,
for example, linear matrix inversion or least squares regression. In practice, least-squares regression
is usually a preferred inversion approach because it can ensure a unique unmixing solution with a
physically-meaningful interpretation as chromophore concentrations by introducing a regularization
and constraining the found coefficients to be non-negative:

c = arg min
c̃≥0

(
∥d − Sc̃∥2

2 + αR(c̃)
)
, (1.10)

where R(·) denotes a regularization functional, α ≥ 0 is a parameter to control the importance of
the regularization, and the inequality sign c̃ ≥ 0 refers to entry-wise non-negativity.

Blind spectral unmixing

Another unmixing method for MSOT is blind spectral unmixing via non-negative matrix factorization
[53]. Blind spectral unmixing finds both the spectra and unmixing coefficients in a data-driven way
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and thus can extract variants of the reference spectra that consider effects from spectral coloring.
As additional advantage, blind spectral unmixing via non-ngeative matrix factorization enables to
incorporate prior information into the unmixing process via regularization. For example, L1-based
regularization of the unmixing coefficients may be used to promote sparse decompositions and
account for the fact that spectral contrast in biological tissue is typically dominated by a small number
of chromophores.

(S,C) = arg min
(S̃,C̃)≥0

(
∥D − S̃C̃∥2

F + α1R1(S̃) + α2R2(C̃)
)
, (1.11)

where C is a matrix of size K ×N with as columns the reconstructed chromophore concentrations
of all considered scanning locations, S is a matrix of size L×K with as columns the reconstructed
absorption spectra, D is a matrix of size L×N with as columns the initial pressure measurements
of all data points at the wavelengths λ1, . . . , λL. R1(·) and R2(·) are regularization functionals,
α1 ≥ 0 and α2 ≥ 0 parameters to control the importance of the regularization, the inequality sign
(S̃, C̃) ≥ 0 refers to entry-wise non-negativity, and ∥ · ∥F denotes the Frobenius norm.
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1.3 Methodology of discriminative deep learning

Discriminative deep learning has emerged as a powerful signal and image processing technique
in recent research because it enables to capture complex data transformations in a data-driven
way and efficiently apply these transformations to new data. In the current and following sections,
we provide an overview about discriminative deep learning and its use in imaging, as a basis for
developing and investigating advanced signal and image processing techniques for MSOT. First, we
explain in the further course of this section the general mathematical background of discriminative
deep learning. Subsequently, we review in section 1.4 the methodologies of existing discriminative-
deep-learning-based approaches for solving inverse problems related to image enhancement and
reconstruction.

1.3.1 Discriminative modeling

Discriminative modeling aims to approximate a mapping f : Y → X with a parameterized function
gθ,

gθ(y) ≈ x = f(y), (1.12)

using a dataset of N independent, identically distributed observations {yi ∈ Y | 1 ≤ i ≤ N} and
corresponding outputs {xi ∈ X | 1 ≤ i ≤ N}. To tune the learnable parameters θ of the function
gθ, its average prediction error on the given dataset is minimized:

θ = arg min
θ̃

1
N

N∑
i=1

e(gθ̃(yi),xi), (1.13)

where e : X × X → R≥0 denotes a suitable error function that may be chosen specifically for a
given problem. Equation 1.13 can also be viewed as a maximum likelihood estimation of θ, given
a suitable probabilistic interpretation of the target values x. For example, using the mean squared
error function, equation 1.13 yields the the maximum likelihood estimate of θ under the assumption
that the conditional probability for the target values is given by a Gaussian distribution, p(x|y, θ) =
N

(
x | gθ(y), β−1I

)
, where I denotes an identity matrix and β ∈ R the shared noise precision [5].

1.3.2 Deep neural networks

Deep neural networks are among the most used and successful parametric models in recent times
[4]. A deep neural network implements the mapping between its input and output domains via a
sequence of parameterized linear transformations and non-linear activation functions, which is in its
simplest form given as

gθ(y) = ψ ◦ h(L) ◦ · · · ◦ h(1)(y), (1.14)

h(l)(y) = z(l) ◦ σ (y), (1.15)

where h(l) refers to one layer of the network, comprising one parameterized linear transformation z(l)

followed by one non-linear and element-wise applied activation function σ, L denotes the number
of layers of the network, and ψ refers to an optional and application-specific outermost activation
function. The notion of a deep neural network (as opposed to a shallow neural network) refers to
the network being composed of multiple layers. Typical choices for the non-linear activation σ are
the Sigmoid function, the hyperbolic tangent function, or a rectified linear unit function.

Another important design choice for a deep neural network is the structure of its linear transfor-
mations z(l). A so-called fully-connected deep neural network is obtained if weighted sums are
employed as linear transformations, i.e.

z(l)(y) = W(l)y + b(l), (1.16)
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where both the input y and the output z(l)(y) are vector-shaped, and the weight matrix W(l) and
the bias vector b(l) are the trainable parameters.

For imaging data, convolutional neural networks are typically used because their design enables to
model translationally-invariant data transformations and decouple the required number of trainable
parameters from the size of the input and output images. A convolutional neural network is obtained
if discrete convolutions are employed as the linear transformations, i.e.

z(l)
id

(y) =
c∑

ic=1
y ∗ w(l)

ic,id
+ b

(l)
id

for id ∈ {1, 2, . . . , d}, (1.17)

where the input and the output of the linear transformation z(l) are multichannel images (i.e., y ∈
Rn×n×c, z(l)(y) ∈ Rm×m×d, n,m, c, d ∈ N), the variable z(l)

id
(y) refers to one channel of the output

image, the set of trainable parameters is comprised by the bias terms {b(l)
id

∈ R}id
and the filters

{w(l)
ic,id

∈ Rnw×nw}ic,id
(nw ∈ N is the kernel width), and ∗ denotes a discrete convolution. The

above description of discrete convolutions as linear transformations is given for square images and
filters but can be straightforwardly extended to non-square image. Also, the above explanations
focus on the basic structure of a convolutional neural network. Deep convolutional neural networks
used in real-world applications usually include additional components to improve their modeling and
learning capabilities, such as skip connections, batch normalization, and pooling layers [37, 70, 34].

Given a suitable training dataset, the parameters of a discriminative deep neural network model (i.e.,
the weights and biases from the linear transformations z(l) of the network) are tuned by minimizing
the average distance between network outputs and ground truth targets. A formal description of the
minimization problem underlying the training process is given in equation 1.13. Typical choices for
the metric used to calculate the distances between network outputs and ground truth targets are the
mean squared error and the mean absolute error. To solve the minimization problem from equation
1.13 and obtain a suitable parameter configuration for a deep neural network model, gradient-based
methods such as stochastic gradient descent are applied, for which the gradients for the update are
computed via backpropagation.

Stochastic gradient descent together with gradient backpropagation are the established methodol-
ogy to train deep neural network model, yielding suitable parameter configurations in many appli-
cations. However, no mathematical guarantees can be derived that the parameter configurations
found by stochastic gradient descent are optimal. Since the mappings implemented by deep neural
networks are non-linear, the minimization problem from equation 1.13 is non-convex and gradient-
based minimization methods can get stuck in a local minimum of the objective function [5, 52, 32].
Therefore, deep neural network models rely on extensive empirical validation.
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1.4 Discriminative deep learning for inverse problems in imaging

1.4.1 Inverse problems in imaging

Discriminative deep learning has been successfully applied for various general image enhancement
tasks like Gaussian denoising, deblurring, inpainting, superresolution, decompression, and dehaz-
ing, as well as for image reconstruction in magnetic resonance and X-ray computed tomography
imaging [7, 94, 96, 95, 90, 58, 68, 74, 1, 31, 97, 9, 39]. All of these problems represent ill-posed in-
verse problems, in which an unknown and sought-after image x is observed via noisy measurements
y. The associated forward imaging processes can be generally expressed as

y = M(x) = A(x) + ϵ, (1.18)

where the image x and measurements y are given as vectors, M(·) denotes the complete forward
imaging process, A(·) represents an arbitrary forward measurement operator, and ϵ is an arbitrarily-
distributed noise vector (in practice, measurement noise is often modeled as white Gaussian noise).
In table 1.1, we list the forward measurement operator for some common inverse problems in imag-
ing [64]. For linear imaging processes, the forward measurement operator corresponds to a matrix
vector product A(x) = Ax. Equation 1.18 relies on an additive noise model, but can easily be
adapted for other types of noise, such as multiplicative noise.

Table 1.1 Examples of inverse problems in imaging.

Application Forward operator Description

(Gaussian) de-
noising

A = I I is the identity matrix.

Deblurring A(x) = h ∗ x h is a known blur kernel, ∗ de-
notes a discrete convolution.

Impainting A = S S is a diagonal matrix with Si,i = 1
for the pixels that are sampled and
Si,i = 0 for the pixels that are not
sampled.

Superresolution A = SB S is an undersampling matrix
(identity matrix with missing rows)
and B is a blurring operator (con-
volution with a blur kernel).

Decompression A(x) = E(x) E(·) is a lossy image compression
algorithm such as JPEG encod-
ing.

(Undersampled)
MRI reconstruc-
tion

A = SF S is an undersampling matrix
(identity matrix with missing rows)
and F is the discrete Fourier
transformation (assuming Carte-
sian sampling).

X-ray computed
tomography

A = R R is the discrete Radon transfor-
mation.

Variational methods offer a general framework to solve inverse problems in imaging. Given a model
of the image degradation process and suitable image priors (such as sparse representation [22, 18,
36] or low rank models [27, 63]), the desired image is obtained by solving the minimization problem

x = arg min
x̃

(
∥A(x̃) − y∥2

2 + αR(x̃)
)
, (1.19)
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where R(·) is the regularization functional and α ≥ 0 denotes the parameter to control the im-
portance of the regularization [96]. Variational inversion methods can achieve appreciable image
quality, but have the following three disadvantages: First, variational inversion is iterative and thus
time-consuming. Second, the analytical prior models used by variational inversion methods are typi-
cally unable to capture the full complexity of the output image domain, resulting in sub-optimal image
quality. Third, variational methods involve hyper-parameters such as the regularization strength that
need to be manually tuned and whose optimal values may vary for different input data.

1.4.2 Deep-learning-based inversion via direct inference

Discriminative deep learning methods have been proposed to tackle the aforementioned limitations
of variational inversion methods. Discriminative deep neural network models enable to accurately
capture inverse data transformations in a data-driven way and efficiently apply these transforma-
tionss to new data using modern graphics processing units. A key requirement for data-driven
inversion techniques is the availability of a large training dataset of corrupted input measurements
and corresponding noise-free ground-truth images. Strategies available for obtaining such a suit-
able training dataset depend on the specific characteristics and practical constraints of an inverse
problem. A particularly common approach is to obtain noise-free ground truth images using an al-
ternative (more complex) data processing or recording method that cannot be used permanently in
practice (e.g., fully-sampled instead of under-sampled MRI data acquisition, or photographs taken
with a high-end camera), and simulate thereof the corresponding corrupted measurements using
the forward imaging models given in equation 1.18 and table 1.1.

In the following, we provide an overview about different discriminative deep-learning-based ap-
proaches for image reconstruction and enhancement and review their advantages and disadvan-
tages. Existing deep-learning-based inversion methods for image enhancement and reconstruction
approaches can be roughly divided into two categories: Direct inference methods and loop unrolling
methods [96]. We focus on direct inference approaches in the current section and discuss loop
unrolling methods in the following section.

Figure 1.5 schematically visualizes the methodology of direct inversion with a deep neural network.
Direct inference approaches aim to invert a forward imaging process (as given in general form in
equation 1.18) with a deep neural network and obtain the sought image via one forward inference
pass through the trained network [39, 97, 64]:

x = M−1(y) ≈ gθ(y), (1.20)

where gθ(·) denotes a deep neural network with trainable parameters θ.

Direct inference

xy
Optional: x̃=A*(y) gθ

Single deep
neural network

Figure 1.5 Schematic methodology of deep-learning-based inversion via direct inference. The output image
is obtained via one forward pass through a deep neural network.

If the input and output data of an imaging process have different sizes or come from different do-
mains (as for example in the case of super-resolution or tomographic image reconstruction; also
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see table 1.1 for more details), the inverse data transformation from equation 1.20 includes a do-
main transformation. To efficiently implement such a transformation of the input measurements y to
the output image domain of x, deep neural networks in direct inversion approaches commonly apply
an (approximate) adjoint operator of the corresponding forward process, denoted in the following
with A∗(·):

x = M−1(y) ≈ gθ(A∗(y)). (1.21)

Applying an (approximate) adjoint operator to the input data enables the deep neural network to
operate in the image domain and potentially better exploit spatial invariance properties. Specifically,
equation 1.21 can be rewritten to x ≈ gθ(A∗(A(x)) by inserting the definition of the noise-free
forward operator (y = A(x); also see equation 1.18), highlighting that the task of the deep neural
network is to invert the normal operator in the given setting, i.e. gθ ≈ (A∗ ◦ A)−1 [1].

An alternative methodology for efficiently learning and expressing inverse data transformations be-
tween two different data domains is given by the AUTOMAP framework [97]. The paradigm of the
AUTOMAP framework is to obtain the mapping between the measurement-domain input and the
image-domain output data in a purely data-driven manner using fully-connected layers. Thus, the
method does not require knowledge about or access to the targeted imaging operator. However,
the application of fully-connected layers in the current version of the AUTOMAP framework prevents
direct use in imaging applications that involve larger images.

With the ability to adjust to complex data characteristics during training, discriminative deep learning
models for direct inversion can facilitate more accurate inversion results than traditional methods
that rely on rigid analytical models. Moreover, deep-learning-based inversion can obviate the need
of manually-tuned hyper-parameters, that may change at test time for different images, such as the
regularization strength. Furthermore, direct inversion enables to compute inverse images in real-
time and is therefore in most circumstances considerably faster than iterative variation approaches.
However, a disadvantage of direct inversion with a deep neural network in comparison to variational
inversion techniques is the lack of convergence guarantees. Discriminative deep neural networks
are designed as black-box models that do not provide a way to derive optimality guarantees for their
outputs, but instead rely on extensive empirical validations.

1.4.3 Deep-learning-based inversion via loop unrolling

Deep-learning-based inversion via loop unrolling incorporates discriminative deep learning into a
variational formulation of the inverse problem, aiming to combine the advantages of both methods.
The methodology is applicable to linear inverse problems and can be derived in three steps:

First, a deep neural network is integrated into the variational inversion formula from equation 1.19
as the regularization term:

x = arg min
x̃

(
∥A(x̃) − y∥2

2 + α ∥x̃ − gθ(x̃)∥2
2

)
, (1.22)

where gθ(·) is a deep neural network that obtains the denoised version of a given input image.

Second, using variable splitting, an iterative solution scheme for equation 1.22 is derived:

zn = gθ(xn), (1.23)

xn+1 = arg min
x̃

(
∥A(x̃) − y∥2

2 + α ∥xn − zn∥2
2

)
, (1.24)

where zn is an intermediate variable that stores the the output of the deep-neural-network-based
denoiser gθ (see equation 1.23). The sub-problem in equation 1.24 is called the data consistency
step and can be solved using the normal equations:

xn+1 = (A∗A + αI)−1 (A∗(y) + αzn) , (1.25)
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where A∗ denotes the adjoint operator of A. A solution to equation 1.25 can be computed analyti-
cally for simple operators and in general using gradient descent or conjugate gradient minimization.

Third, the iterative scheme given in equations 1.23 and 1.24 is unrolled into an all-encompassing
processing pipeline for a fixed number of iterations. Figure 1.6 schematically visualizes the unrolling
process. The obtained processing pipeline consists of alternating noise estimation and data con-
sistency steps that correspond to deep neural network forward passes and numerical optimizations,
respectively. The deep neural networks used for noise estimation can be either trained separately
and in advance for different noise levels [96, 95, 7] or can be optimized together via end-to-end train-
ing of the complete processing pipeline [74, 1, 31]. During end-to-end training, the regularization
parameter in equation 1.24 can be also tuned in the same way as the parameters of the deep neural
network.

Loop unfolding can obtain high quality images that are comparable to the results from direct infer-
ence with a deep neural network. The method supports computing inverse images in real-time for
easy-to-calculate forward operators such as in the case of MRI reconstruction [74], but is unsuited
for real-time inversion of computationally-expensive forward operators because it necessitates to re-
peatedly evaluate the respective forward and adjoint operators in the data consistency steps of the
algorithm. With a means of ensuring data consistency similar to variational methods, loop unrolling
in principle allows to derive rigorous convergence guarantees. For real-world imaging applications,
however, such guarantees are only of secondary importance, as it is not practical to iterate the
unrolled network until convergence [1].

Loop unrolling

A*(y)

gθ DC
zn-1xn-1 xn

nth iteration

A*(y)

gθ DC
zN-1xN-1 xN

Nth iteration

xgθ DC
z0

A*(y)

x1

1st iteration

x0=A*(y)
y

gθ DNN-based denoisers

DC Data consistency steps: (A*A+αI)-1

Figure 1.6 Schematic methodology of deep-learning-based inversion using loop unrolling. The processing
pipeline consists of alternating noise estimation and data consistency steps that correspond to deep neural
network forward passes and numerical optimizations, respectively.
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1.5 Application strategies of discriminative deep learning for MSOT
imaging

In the following, we interlink the contents from the previous sections and discuss application strate-
gies of discriminative deep learning for MSOT imaging. Thereby, we distinguish between two gen-
eral directions of deep-learning-based improvements for MSOT: On the one hand, deep learning
methods that improve the clinical applicability of MSOT by accelerating manual or computationally
intensive parts of the existing imaging pipeline; and on the other hand, deep learning methods that
rely on data-driven modeling to improve the image quality of MSOT beyond current state-of-the-art
methods. We explain the two improvement strategies in detail in sections 1.5.1 and 1.5.2, respec-
tively. Then, in section 1.5.3, we address the challenge of obtaining suitable training data to apply
deep learning to MSOT.

1.5.1 Acceleration of manual and time-consuming tasks of the MSOT imaging
pipeline

Discriminative deep learning can be used to accelerate time-consuming and manual parts of the
MSOT imaging pipeline that impede a more widespread deployment of MSOT in clinical imaging.
Several proof-of-concept studies have demonstrated the capability of MSOT to provide valuable
clinical insights for a variety of diseases [17, 47, 69, 43, 67, 40, 69]. However, the data processing
and analysis pipelines used in these studies are in most cases unsuitable for direct integration into
clinical imaging routines, as they include manual tasks such as tuning the speed of sound used
during image reconstruction, selecting the highest quality and most insightful scans, and identifying
the regions of interest in reconstructed images. These tasks are tedious, time consuming, and re-
quire domain-specific expertise that is not covered by standard training of clinical staff. Furthermore,
clinical application of MSOT imaging is complicated by state-of-the-art iterative model-based image
reconstruction being too computationally expensive for real-time imaging. Instead, clinical studies
must resort to low-quality images from backprojection reconstruction to find the best scan location
and position during imaging and make on-site diagnoses.

Discriminative deep neural network models are well suited to automate and accelerate the recon-
struction, processing, and analysis of optoacoustic images during clinical applications. Crucially,
deep neural networks allow efficient evaluation of the data transformation learned during model
training using modern graphics processing units. In addition, the process to be automated and
accelerated provides an inherent method for obtaining reference data for model training.

In chapter 3, we introduce a deep learning approach to speed up MSOT imaging. The approach
involves training a deep neural network to express model-based optoacoustic image reconstruc-
tion and thus output high quality optoacoustic images in real-time. Deep-learning-based automa-
tion and acceleration is also applicable to other parts of the MSOT imaging process. Therefore,
the explanations above and from chapter 3 can serve as starting points for the development of
further deep learning approaches to improve the versatility and clinical applicability of MSOT. In ta-
ble 1.2, we compile an overview of possible discriminative deep learning applications to speed up
computationally-slow and manual tasks of the optoacoustic imaging pipeline.

1.5.2 Deep-learning-based image quality improvements for MSOT

Discriminative deep learning can be also used to improve the image quality of MSOT beyond state-
of-the-art analytical methods. Crucially, discriminative deep learning methods can access the topol-
ogy and statistics of the ground truth training data to distinguish between real signals and noise,
and to extrapolate from incompletely recordings. In contrast, analytical image reconstruction and
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Table 1.2 Discriminative deep learning applications to accelerate computationally-slow and manual tasks of
the optoacoustic imaging pipeline.

Task description Benefits for clinical use Related refer-
ences

Accelerate iterative model-
based reconstruction of op-
toacoustic initial pressure
images.

Real-time MSOT imaging
in clinical applications with
state-of-the-art image qual-
ity.

See chapter 3.

Automate tuning of the
speed of sound value used
to reconstruct optoacoustic
initial pressure images.

Obtain in-focus optoacous-
tic images ad hoc, re-
duce the required domain-
specific expertise for clinical
application.

[59, 38]

Automate evaluating the im-
age quality of MSOT.

Monitor image quality in
real-time, select optimal
images ad hoc from a
sequence of scans, reduce
the required domain-
specific expertise in clinical
applications.

[2]

Automate the identifying,
segmenting, and annotating
anatomical structures and
regions of interest in MSOT
images.

Streamline and scale up the
calculation of functional tis-
sue parameters from MSOT
images.

[10, 50]

enhancement methods can only integrate prior knowledge in a rigid and generic way through regu-
larization. A key challenge in applying deep learning to improve MSOT image quality is to generate
appropriate training data. In general, only reference data from simulations are available for model
training, as there is no easy way to determine the true chromophore concentration or initial pressure
distributions for in vivo tissues. However, simulations often necessitate simplifying assumptions and
can lead to the trained model generalizing imprecisely to in vivo data. In section 1.5.3, we discuss
in more detail possible approaches to generate adequate training data for MSOT as well as general
risks of data-driven modeling.

In prior works, several deep learning methods have been suggested to improve the image quality
of MSOT [32, 26]. Table 1.3 provides an overview of previous deep-learning-based approaches
aimed at the acoustic inverse problem of MSOT. Deep neural network models have been applied to
enhance the bandwidth of recorded signals [30], recover full-view acquisition images from sparse-
view measurements [14], reduce noise and sparse-view artifacts as part of deep-learning-based
acoustic inversion [42, 51, 85, 21, 78, 28, 29], and remove reflection artifacts [3]. These studies
provide valuable insights into the methodology and possible application strategies of deep-learning-
based image enhancements for MSOT. However, existing methods are still in the proof-of-concept
stage and are therefore unsuitable for direct use in clinical applications. Table 1.3 also summarizes
individual shortcomings in all of the approaches listed.

In chapter 2, we introduce a deep-learning-based image enhancement method that falls into the
category discussed in this section. The proposed methodology involves denoising recorded op-
toacoustic sinograms using a deep neural network trained on experimentally acquired ground truth
noise and simulated ground truth signals. The presented denosing methodology affords significant
improvements in morphological and multispectral optoacoustic image contrast.



19

Table 1.3 Deep-learning-based image quality improvement approaches related to the acoustic inverse prob-
lem of MSOT.

Task description Limitations for clinical
use

Related refer-
ences

Enhance the bandwidth of
recorded signals.

Oversimplistic experimental
setup, no comprehensive
validation based on in vivo
data, only a full-view ac-
quisition scheme is consid-
ered.

[30]

Recover from sparse-view
measurements the initial
pressure images corre-
sponding to a full-view
acquisition scheme.

Pre-clinical imaging setup,
full-view ground-truth data
acquisition is unavailable in
the clinical context because
human body parts like the
arm, foot, torso, neck, or
throat are too large to be il-
luminated and enclosed by
transducers in a meaningful
way.

[14]

Reconstruct initial pressure
images and jointly correct
for noise, finite transducer
bandwidth, and sparse-view
artifacts.

No comprehensive vali-
dation based on in vivo
data, only rudimentary
image quality when applied
to isolated in vivo scans,
sub-optimal and in part
pre-clinical imaging setups.

[42, 51, 85, 21,
78, 28, 29, 33],
also see
discussion of
these
references in
chapter 3.

Remove acoustic reflection
artifacts in initial pressure
images.

Overly-simplistic problem
setting as only point ab-
sorbers are considered, no
comprehensive validation
based on in vivo data.

[3]

Deep learning has also been applied to tackle the non-linear optical inverse problem related to
MSOT, for which a comprehensive solution generally does not yet exist. Table 1.4 summarizes the
scope and limitations of discriminative deep learning methods aimed at the optical inverse problem of
MSOT. Deep neural networks have been proposed to estimate light fluence distributions, absorption
coefficients, and chromophore concentrations from initial pressure images [6, 25, 62, 54]. These
approaches perform reasonably well when using simulated data, but their practical applicability to
clinical data is limited (see individual limitations in Table 1.4). Therefore, it is the subject of future
work to improve these existing approaches and develop novel deep learning methodologies for the
optical inversion of MSOT, with more focus on ensuring that developed solutions are applicable to in
vivo data from clinical scanners.
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Table 1.4 Deep-learning-based image quality improvement approaches related to the optical inverse problem
of MSOT.

Task description Limitations for clinical
use

Related refer-
ences

Infer the absorption coeffi-
cient distribution from a sin-
gle initial pressure image.

Strongly ill-posed inverse
problem since only the ini-
tial pressure image corre-
sponding to one wavelength
is considered, No compre-
hensive validation based on
experimental data (in partic-
ular, no quantitative evalua-
tion).

[54]

Infer the the oxygen satura-
tion distribution from a set of
initial pressure images ob-
tained with different wave-
lengths.

No validation based on ex-
perimental data, simplified
(pre-clinical) imaging setup
with full-angle illumination
and imaging depths of only
about one centimeter.

[6]

Infer per pixel the oxy-
gen saturation from a set
of initial pressure measure-
ments acquired with differ-
ent wavelengths.

Strongly ill-posed inverse
problem since the spatial
context of a considered
pixel is disregarded, no
comprehensive validation
based on experimental
data.

[25]

Infer eigenfluence parame-
ters for ad hoc spectral in-
version within the eMSOT
eigenspectra model.

Simplistic model of light
fluence in tissue, only two
chromophores are con-
sidered (oxygenated and
deoxygenated hemoglobin),
only evaluated for a pre-
clinical MSOT imaging
system with full-angle illu-
mination and an imaging
depth of about one cen-
timeter.

[62]

1.5.3 Selection of training data

The availability of training data is a key prerequisite for applying deep learning to improve the image
quality and clinical applicability of MSOT. In the following, we discuss possible approaches for se-
lecting suitable training data for MSOT, as well as risks associated with the selection of the training
data.

Selection of ground-truth targets

First, we focus on the sub-problem of obtaining ground-truth targets alongside the corresponding
input data. Ground truth targets act as the reference during deep neural network training, and
their quality directly affects the performance of the trained model. Precise ground truth targets are
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by design available for deep learning techniques from section 1.5.1 that aim to speed up manual
or computationally slow parts of the MSOT images pipeline. However, there is no simple method
to obtain accurate ground truth values for the initial pressure, light fluence, or chromophore con-
centrations from in vivo tissue, as would be required for deep-learning-based image enhancement
approaches from section 1.5.2. Therefore, such deep learning approaches to improve MSOT image
quality must be based on synthesized training data.

The synthesis of the training data consists of two steps:

1. Distributions for the concentrations of chromophores or for the initial pressureare are defined.
These distributions serve as ground truth references when training deep learning models.

2. Signals corresponding to the defined chromophore concentration or initial pressure distribu-
tions are simulated using a physics-based forward model of the imaging process. These
simulated signals are used as input data when training deep learning models.

The distributions used in the first step of the simulation process can be generated using simple
shapes such as circles and rectangles, handcrafted models of tissue-like structures, or reference
images generated from other imaging modalities [26]. The optical forward imaging process of MSOT
can be simulated using Monte Carlo methods [86, 20] or diffusion approximation [13]. The acoustic
part of the optoacoustic forward process can be simulated using k-space pseudo-spectral methods
or the forward models described in section 1.2.2.

Risk of out-of-distribution samples

Generality of training data is another important consideration when employing deep neural net-
work models. Deep neural network models take a data-driven approach to finding an appropri-
ate data transformation for a specific task. Their ability to leverage information from the training
data manifold during model optimization represents a key methodological advantage over analytical
models. However, this data-driven mode of operation also carries the risk of reduced performance
for out-of-distribution samples. Out-of-distribution samples refer to test data with features that are
not contained in the training dataset. They are an intrinsic problem when using synthesized data,
since forward simulations of the MSOT imaging process require in practice simplifying assumptions
and are therefore likely to induce a domain-shift between the synthesized training and in vivo test
data. In current research, such differences between synthesized training and experimental test
data pose a key challenge for the applicability of deep learning methods for MSOT to in vivo data
[42, 51, 85, 21, 78, 28, 29, 33, 6, 25, 54]. A possible approach to reduce the domain gap between
synthesized training and in vivo test data is given by deep generative models such as generative
adversarial networks. As presented in a recent study [73], deep generative models can be used to
synthesize (more) realistic optoacoustic images, thus enabling the training of deep learning models
with better applicability to in vivo data.

Furthermore, the widely varying characteristics of MSOT data pose another risk of out-of-distribution
sampling. The appearance of MSOT images can change notably depending on the imaging setup,
the targeted anatomy, and individual characteristics of the scanned person such as for example the
skin color, body type or disease state. Therefore, composing a suitably general training dataset to
account for all these variations represents a challenge regardless of whether the data is obtained
experimentally or using simulations.

Practical considerations

Finally, another consideration for selecting MSOT training data is how resource-intensive and con-
venient it is to obtain a sufficient amount of training data. In order to obtain in a practical manner
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specifically-trained deep learning models for new scanners or different imaging settings, the chosen
methodology for obtaining training data must be reasonably flexible and applicable with manageable
effort. From a practical point of view, model training using synthesized data is preferable, as it af-
fords fully-automated training data generation. In contrast, model training using experimental data
requires significantly more effort, since a cohort of participants must be recruited and scanned for
each new scanner or other imaging setting. The two research papers included hereafter in chapters
2 and 3 have been designed with these considerations in mind and propose efficiently methodolo-
gies to generate a large training datasets based on utilizing a diverse collection of publicly available
real-world image as initial pressure distributions.
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2 Deep-learning-based electrical noise removal
enables high spectral optoacoustic contrast
in deep tissue

This chapter contains the research paper "Deep-learning-based electrical noise removal enables
high spectral optoacoustic contrast in deep tissue" by Christoph Dehner, Ivan Olefir, Kaushik Basak
Chowdhury, Dominik Jüstel, and Vasilis Ntziachristos. The paper has been published in the peer-
reviewed journal IEEE Transactions on Medical Imaging, volume 41, issue 11, 2022 (see appendix A).

2.1 Summary

Electrical noise can severely reduce image contrast in optoacoustic tomography. Electrical noise
can also limit the spatial and temporal resolution during optoacoustic tomography because it neces-
sitates averaging over large tissue regions and multiple scans for reliable quantification. Corruptions
by electrical noise are particularly detrimental for the imaging of deep tissue, where optoacous-
tic sensitivity is additionally decreased due to light fluence attenuation, and during multispectral
imaging, for which scans at different wavelength are combined and thus also the therein contained
distortions due to electrical noise accumulate.

Electrical noise in optoacoustic tomography arises from thermal effects (thermal noise) and elec-
tromagnetic interferences (parasitic noise caused by the electronics of the imaging system or the
environment) and appears as an additive component in the recorded sinograms. Whereas thermal
noise can be modeled as white Gaussian noise, parasitic noise entails complex spatio-temporal cor-
relations and thus cannot be efficiently captured by an analytical model. Previously employed signal
processing techniques have proven insufficient to remove the effects of electrical noise because
they rely on simplified models that fail to capture complex characteristics of signal and noise. More-
over, they often involve time-consuming processing steps that are unsuited for real-time imaging
applications.

In this work, we develop a discriminative deep learning approach to separate electrical noise from
optoacoustic signals prior to image reconstruction. We reformulate the removal of electrical noise
from optoacoustic sinograms as a probabilistic decomposition problem and derive, based on this
formulation, a deep neural network model to simultaneously denoise an entire optoacoustic sino-
gram. Denoising the entire sinogram is a crucial design decision of the presented method, as it
allows the deep neural network to capture spatio-temporal correlations within the true optoacoustic
signals and within the parasitic noise, thus separating the two more efficiently. We train the deep
neural network model using pure electrical noise sinograms acquired experimentally by scanning
water at wavelengths with negligible absorption, and noise-free optoacoustic sinograms synthesized
from general-feature images using an accurate forward physical model of the target scanner. The
proposed deep learning approach obtains a denoised optoacoustic sinogram via one forward pass
through a deep neural network and is thus suitable for real-time operation.

We validate the ability of the trained model to accurately remove electrical noise using synthetic sig-
nals as well as scans of phantom and the human breast. We demonstrate significant enhancements
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of morphological and spectral optoacoustic images, reaching 19% higher blood vessel contrast and
localized spectral contrast at depths of about two centimeters for images acquired in vivo. In conclu-
sion, the presented denoising framework considerably improves the imaging capabilities of MSOT
and can enable detailed studies of endogenous biomarkers in deep tissue, such as breast vascula-
ture or hemoglobin contrast inside a cancerous tumor.

2.2 Contribution

Dominik Jüstel came up with the initial idea of training a deep learning model on experimentally
acquired electrical noise to improve the image quality of MSOT. Christoph Dehner developed the ex-
act methodology and the computational framework of the presented deep-learning-based denoising
approach, implemented the acoustic forward model of the employed MSOT scanner to synthesize
noise-free optoacousic training sinograms, carried out the training of all deep learning models, ap-
plied the trained models to all considered test data, reconstructed the optoacoustic initial pressure
images of the physical phantom and the clinical breast scans, and conducted all evaluations of the
denoising approach based on optoacoustic sinograms and single-wavelength initial pressure im-
ages. Kaushik Basak Chowdhury experimentally acquired the electrical noise samples used during
deep neural network training and provided a characterization of the total impulse response of the
used MSOT system. Ivan Olefir conducted the evaluation of the denoising approach based on multi-
spectral breast images using blind spectral unmixing via non-negative matrix factorization. Christoph
Dehner wrote the manuscript with inputs from all authors. Dominik Jüstel and Vasilis Ntziachristos
supervised the project.
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3 A deep neural network for real-time
optoacoustic image reconstruction with
adjustable speed of sound

This chapter contains the research paper "A deep neural network for real-time optoacoustic image
reconstruction with adjustable speed of sound" by Christoph Dehner, Guillaume Zahnd, Vasilis Ntzi-
achristos, and Dominik Jüstel. The paper has been published in the peer-reviewed journal Nature
Machine Intelligence, 2023 (see appendix B).

3.1 Summary

Real-time imaging is imperative for clinical imaging with multispectral optoacoustic tomography
(MSOT). In handheld mode, image feedback in real-time is required to avoid hindering visio-tactile
coordination, identify and localize relevant tissue structures using anatomical landmarks in their
surroundings, and find the optimal transducer pose for the target region. Real-time optoacoustic
imaging is also necessary to visualize dynamic pathophysiological changes associated with disease
progression and enable in situ diagnoses.

The backprojection algorithm can reconstruct optoacoustic images in real-time but only with re-
duced quality. Backprojection images suffer from reduced spatial resolution and contrast as well
as negative pixel values that invalidate a physical interpretation of the image as initial pressure dis-
tribution because the backprojection formula is based on over-simplified modeling assumptions of
the imaging process and cannot compensate for the ill-posedness of the underlying inverse prob-
lem. Model-based reconstruction, on the other hand, delivers state-of-the-art optoacoustic images
by incorporating an accurate physical model of the forward imaging process, introducing regulariza-
tion to mitigate the ill-posedness of the inverse problem, and constraining the reconstructed initial
pressure image to be non-negative. However, the advanced image quality provided by model-based
reconstruction remains inaccessible during real-time imaging because the algorithm is iterative and
computationally demanding.

Deep learning may afford faster reconstructions for real-time optoacoustic imaging. However, only
synthesized data are available for model training, which is why existing approaches offer reduced
reconstruction accuracy for in vivo data. In this work, we demonstrate that learning a well-posed re-
construction operator enables accurate generalization from synthesized training data to experimen-
tal test data. We present a deep-learning framework, termed DeepMB, to learn the model-based re-
construction operator and infer optoacoustic images with state-of-the-art quality in 31 ms per image.
DeepMB takes as inputs an optoacoustic sinogram and a speed of sound value and infers thereof
the corresponding optoacoustic image via one forward pass through a deep neural network. Deep
neural network training is conducted with optoacoustic signals that are synthesized from real-world
images, while using as ground-truth the optoacoustic images generated via model-based recon-
struction of the corresponding signals. DeepMB is suitable for straightforward adoption into clinical
routing because it supports to dynamic adjustments of the reconstruction speed of sound during
imaging and is compatible with the data rates and image sizes of modern multispectral optoacoustic
tomography scanners.
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We evaluate DeepMB both qualitatively and quantitatively on a diverse dataset of in vivo images
and demonstrate that the framework reconstructs optoacoustic images with similar quality to state-
of-the-art iterative model-based reconstruction and at speeds enabling live imaging. In addition, we
perform ablation studies to assess how the choice of training data and the encoding strategy for the
input speed of sound affect the performance of the trained DeepMB model.

3.2 Contribution

Christoph Dehner and Dominik Jüstel came up with the initial idea of expressing the model-based
optoacoustic reconstruction operator with a deep neural network to obtain state-of-the-art optoa-
coustic images in real-time. Christoph Dehner and Guillaume Zahnd contributed equally to this work:
They developed the exact methodology and the computational framework for the deep-learning-
based reconstruction approach, acquired all training and evaluation data, carried out all model train-
ings, performed all evaluation experiments, and wrote the manuscript with inputs from the two other
authors. Dominik Jüstel and Vasilis Ntziachristos supervised the project.
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4 Conclusion and outlook

Clinical translation is the ultimate goal for MSOT, but is hampered by degraded image quality due to
measurement noise and inaccurate real-time image reconstruction methods. The presented work
showcases and discusses how discriminative deep learning can mitigate these limitations and en-
able a more widespread use of MSOT in clinical imaging applications. Discriminative deep learning
provides powerful means of deriving new solutions or accelerating existing solutions to inverse imag-
ing problems because they can learn complex data transformations in a data-driven manner and
efficiently evaluate these transformations using modern graphics processing units. Deep-learning-
based removal of electrical noise from optoacoustic sinograms reveals rich morphological and spec-
tral optoacoustic contrast at high resolution several centimeters deep in tissue. Deep-learning-based
optoacoustic image reconstruction obtains initial pressure images with similar quality as state-of-
the-art model-based reconstruction in 31 milliseconds per image, thus enabling real-time imaging in
clinical applications with the highest image quality available.

In order to benefit from the deep learning methods developed in this work, they need to be integrated
into clinical studies. The deep learning methodology to remove electrical noise from chapter 2 has
already been taken up in a first study investigating the ability of multispectral optoacoustic tomogra-
phy to examine the vascular environment and the morphology of peripheral nerves [40]. Thereby,
improving image quality by removing electrical noise has turned out to be essential to visualize for
the first time intraneural vessels in healthy nerves in vivo and to detect spectral optoacoustic contrast
in the connective tissue of peripheral nerves, which can be related to the endogeneus contrast of
hemoglobin and collagen. The deep-learning-based reconstruction method from chapter 3 (named
"DeepMB") needs to be integrated into a clinical scanner to take advantage of the improved real-time
imaging capabilities in clinical trials. This integration has already planned together with a MSOT de-
vice manufacturer (iThera Medical GmbH) and is currently being implemented in the further course
of the research project "DeepOPUS" (funded by the Bavarian Ministry of Economic Affairs, Energy
and Technology), in which context the initial development of DeepMB has already taken place.

The findings from this thesis may also serve as a basis for the development of solution approaches
for the optical inverse problem of MSOT. While practical solutions suitable for clinical use exist for the
acoustic inverse problem of MSOT - also through the two deep learning approaches presented in
this work - the optical inverse problem of MSOT is currently still largely unsolved. However, the avail-
ability of a high-quality optoacoustic initial pressure images makes it possible to intensify research
on optical inversion techniques for MSOT and to further develop existing methodologies, such as
model-based inversion methods [55, 76, 93, 87] or approaches that combine spectral unmixing and
statistical analysis techniques [40].

Another promising line of research to further improve imaging capabilities with MSOT are uncer-
tainty estimation approaches. Model-based reconstruction, the deep-learning-based electrical noise
removal presented in chapter 2, and DeepMB all obtain their respective outputs as point estimates
(specifically, as maximum likelihood or maximum a posteriori estimates), and thus do not provide any
means for modeling and quantifying uncertainty. However, uncertainty is an inevitable part of the op-
toacoustic imaging process because of noise, limited-angle acquisition, finite transducer bandwidth,
and light fluence attenuation. Therefore, methodologies to (approximately) model full conditional
posterior distributions during the optoacosutic inversion process are expected to further improve the
reliability and accuracy of MSOT, especially for quantitative imaging. Previous studies have applied
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simple methods to estimate uncertainty during optoacoustic inversion process, such as restricting
the probabilistic model to Gaussian priors [77] or approximating the posterior distributions using a
truncated Taylor series around the maximum a posteriori estimate [66]. It is the subject of future
research to propose, develop, and evaluate more sophisticated Bayesian methods to model a full
conditional posterior distribution, such as for example variational inference approaches [44, 23].

Finally, the ongoing clinical integration of MSOT will bring additional uses of deep learning in the
context of automated image analysis and interpretation. Currently, deep-learning-based segmenta-
tion, annotation, quality control, and disease prediction techniques for MSOT are not yet applicable
on a larger scale due to small cohorts and too pronounced differences in the scanning setups and
image qualities of MSOT systems. However, the ongoing technical development and standardiza-
tion as well as a more widespread use of MSOT will inevitably pave the way for an increased need
for such downstream analysis tasks. Overall, we are convinced that advanced deep-learning-based
data processing methods will enable to utilize the unique imaging capabilities of MSOT in clinical
applications.
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fir, Jan Kukačka, Kaushik B. Chowdhury, Lukas Platz, Manuel Gehmeyr, Maximilian Bader, Philipp
Haim, Sarah Franceschin, Sarkis Ter Martirosyan and Suhanyaa Nitkunanantharajah for helpful dis-
cussions about different topics related to my work and for their emotional support throughout this
project.

Thanks to Andreas Hillmair, Bettina Lehman, Corinna Lieleg, Doris Bengel, Ines Baumgartner, Lidia
Seidl, Manfred Türke, Ute Chambers, and Susanne Stern for their help in administrative matters and
to Robert Wilson for his support and guidance related to scientific writing.

Finally, I thank my family and my friends for all the little and big things they did to support me.



30

Bibliography

[1] H. K. Aggarwal, M. P. Mani, and M. Jacob. Modl: Model-based deep learning architecture for
inverse problems. IEEE Transactions on Medical Imaging, 38(2):394–405, 2019.

[2] N. Akhlaghi, T. J. Pfefer, K. A. Wear, B. S. Garra, and W. C. Vogt. Multidomain computational
modeling of photoacoustic imaging: verification, validation, and image quality prediction. Jour-
nal of Biomedical Optics, 24(12):121910, 2019.

[3] D. Allman, A. Reiter, and M. A. L. Bell. Photoacoustic source detection and reflection artifact
removal enabled by deep learning. IEEE Transactions on Medical Imaging, 37(6):1464–1477,
2018.

[4] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M. A.
Fadhel, M. Al-Amidie, and L. Farhan. Review of deep learning: concepts, cnn architectures,
challenges, applications, future directions. Journal of Big Data, 8(1):53, 2021.

[5] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag, 2006.

[6] C. Cai, K. Deng, C. Ma, and J. Luo. End-to-end deep neural network for optical inversion in
quantitative photoacoustic imaging. Optics Letters, 43(12):2752–2755, 2018.

[7] J. R. Chang, C.-L. Li, B. Póczos, B. Vijaya Kumar, and A. C. Sankaranarayanan. One network
to solve them all — solving linear inverse problems using deep projection models. In IEEE
International Conference on Computer Vision (ICCV), pages 5889–5898, 2017.

[8] R. Chartrand and B. Wohlberg. Total-variation regularization with bound constraints. In IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 766–769, 2010.

[9] H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang. Low-dose ct
with a residual encoder-decoder convolutional neural network. IEEE Transactions on Medical
Imaging, 36(12):2524–2535, 2017.

[10] N.-K. Chlis, A. Karlas, N.-A. Fasoula, M. Kallmayer, H.-H. Eckstein, F. J. Theis, V. Ntziachristos,
and C. Marr. A sparse deep learning approach for automatic segmentation of human vascula-
ture in multispectral optoacoustic tomography. Photoacoustics, 20:100203, 2020.

[11] K. B. Chowdhury, J. Prakash, A. Karlas, D. Justel, and V. Ntziachristos. A synthetic total im-
pulse response characterization method for correction of hand-held optoacoustic images. IEEE
Transactions Medical Imaging, 39(10):3218–3230, 2020.

[12] K. B. Chowdhury, M. Bader, C. Dehner, D. Justel, and V. Ntziachristos. Individual transducer
impulse response characterization method to improve image quality of array-based handheld
optoacoustic tomography. Optics Letters, 46(1):1–4, 2021.

[13] B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard. Quantitative spectroscopic photoacoustic
imaging: a review. Journal of Biomedical Optics, 17(6):061202, 2012.

[14] N. Davoudi, X. L. Deán-Ben, and D. Razansky. Deep learning optoacoustic tomography with
sparse data. Nature Machine Intelligence, 1(10):453–460, 2019.



31

[15] G. J. Diebold, T. Sun, and M. I. Khan. Photoacoustic monopole radiation in one, two, and three
dimensions. Physical Review Letters, 67:3384–3387, 1991.

[16] L. Ding, X. L. Dean-Ben, and D. Razansky. Real-time model-based inversion in cross-sectional
optoacoustic tomography. IEEE Transactions on Medical Imaging, 35(8):1883–1891, 2016.

[17] G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny,
and V. Ntziachristos. Multispectral optoacoustic tomography (msot) of human breast cancer.
Clinical Cancer Research, 23(22):6912–6922, 2017.

[18] W. Dong, L. Zhang, G. Shi, and X. Li. Nonlocally centralized sparse representation for image
restoration. IEEE Transactions on Image Processing, 22(4):1620–1630, 2013.

[19] C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, and M. Tanter. Ultrafast ultra-
sound localization microscopy for deep super-resolution vascular imaging. Nature, 527(7579):
499–502, 2015.

[20] Q. Fang and D. A. Boas. Monte carlo simulation of photon migration in 3d turbid media accel-
erated by graphics processing units. Optics Express, 17(22):20178–20190, 2009.

[21] J. Feng, J. Deng, Z. Li, Z. Sun, H. Dou, and K. Jia. End-to-end res-unet based reconstruction
algorithm for photoacoustic imaging. Biomedical Optics Express, 11(9):5321–5340, 2020.

[22] M. Figueiredo and R. Nowak. An em algorithm for wavelet-based image restoration. IEEE
Transactions on Image Processing, 12(8):906–916, 2003.

[23] P. Frank, R. Leike, and T. A. Enßlin. Geometric variational inference. Entropy, 23(7), 2021.

[24] J. Frikel and E. T. Quinto. Artifacts in incomplete data tomography with applications to photoa-
coustic tomography and sonar. SIAM Journal on Applied Mathematics, 75(2):703–725, 2015.

[25] J. Gröhl, T. Kirchner, T. J. Adler, L. Hacker, N. Holzwarth, A. Hernández-Aguilera, M. A. Herrera,
E. Santos, S. E. Bohndiek, and L. Maier-Hein. Learned spectral decoloring enables photoa-
coustic oximetry. Scientific Reports, 11(1):6565, 2021.

[26] J. Gröhl, M. Schellenberg, K. Dreher, and L. Maier-Hein. Deep learning for biomedical photoa-
coustic imaging: A review. Photoacoustics, 22:100241, 2021.

[27] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang. Weighted nuclear norm minimization
and its applications to low level vision. International Journal of Computer Vision, 121(2):183–
208, 2017.

[28] S. Guan, A. A. Khan, S. Sikdar, and P. V. Chitnis. Limited-view and sparse photoacoustic
tomography for neuroimaging with deep learning. Scientific Reports, 10(1):8510, 2020.

[29] M. Guo, H. Lan, C. Yang, J. Liu, and F. Gao. As-net: Fast photoacoustic reconstruction with
multi-feature fusion from sparse data. IEEE Transactions on Computational Imaging, 8:215–
223, 2022.

[30] S. Gutta, V. S. Kadimesetty, S. K. Kalva, M. Pramanik, S. Ganapathy, and P. K. Yalavarthy. Deep
neural network-based bandwidth enhancement of photoacoustic data. Journal of Biomedical
Optics, 22(11):116001, 2017.

[31] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll. Learn-
ing a variational network for reconstruction of accelerated mri data. Magnetic Resonance in
Medicine, 79(6):3055–3071, 2018.



32

[32] A. Hauptmann and B. Cox. Deep learning in photoacoustic tomography: current approaches
and future directions. Journal of Biomedical Optics, 25(11):112903, 2020.

[33] A. Hauptmann, F. Lucka, M. Betcke, N. Huynh, J. Adler, B. Cox, P. Beard, S. Ourselin, and
S. Arridge. Model-based learning for accelerated, limited-view 3-d photoacoustic tomography.
IEEE Transactions on Medical Imaging, 37(6):1382–1393, 2018.

[34] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[35] Y. Hoshi and Y. Yamada. Overview of diffuse optical tomography and its clinical applications.
Journal of Biomedical Optics, 21(9):091312, 2016.

[36] Y. Hu and M. Jacob. Higher degree total variation (hdtv) regularization for image recovery. IEEE
Transactions on Image Processing, 21(5):2559–2571, 2012.

[37] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reduc-
ing internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning, volume 37, pages 448–456, 2015.

[38] S. Jeon, W. Choi, B. Park, and C. Kim. A deep learning-based model that reduces speed of
sound aberrations for improved in vivo photoacoustic imaging. IEEE Transactions on Image
Processing, 30:8773–8784, 2021.

[39] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. Deep convolutional neural network for
inverse problems in imaging. IEEE Transactions on Image Processing, 26(9):4509–4522, 2017.

[40] D. Jüstel, H. Irl, F. Hinterwimmer, C. Dehner, W. Simson, N. Navab, G. Schneider, and V. Ntzi-
achristos. Spotlight on nerves: Portable multispectral optoacoustic imaging of peripheral nerve
vascularization and morphology. Advanced Science, 10(19):2301322, 2023.

[41] S. Khan, J. Huh, and J. C. Ye. Adaptive and compressive beamforming using deep learning for
medical ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
67(8):1558–1572, 2020.

[42] M. Kim, G. S. Jeng, I. Pelivanov, and M. O’Donnell. Deep-learning image reconstruction for
real-time photoacoustic system. IEEE Transactions on Medical Imaging, 39(11):3379–3390,
2020.

[43] F. Knieling, C. Neufert, A. Hartmann, J. Claussen, A. Urich, C. Egger, M. Vetter, S. Fischer,
L. Pfeifer, A. Hagel, C. Kielisch, R. S. Gortz, D. Wildner, M. Engel, J. Rother, W. Uter, J. Siebler,
R. Atreya, W. Rascher, D. Strobel, M. F. Neurath, and M. J. Waldner. Multispectral optoacoustic
tomography for assessment of crohn’s disease activity. New England Journal of Medicine, 376
(13):1292–1294, 2017.

[44] J. Knollmüller and T. A. Enßlin. Metric gaussian variational inference. arXiv:1901.11033, 2019.

[45] R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn. Photoacoustic ultrasound
(paus)—reconstruction tomography. Medical Physics, 22(10):1605–1609, 1995.

[46] P. Kuchment and L. Kunyansky. Mathematics of Photoacoustic and Thermoacoustic Tomogra-
phy, pages 817–865. Springer New York, 2011.
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Deep-Learning-Based Electrical Noise Removal
Enables High Spectral Optoacoustic

Contrast in Deep Tissue
Christoph Dehner , Ivan Olefir , Kaushik Basak Chowdhury , Dominik Jüstel ,

and Vasilis Ntziachristos

Abstract— Image contrast in multispectral optoacoustic
tomography (MSOT) can be severely reduced by electrical
noise and interference in the acquired optoacoustic signals.
Previously employed signal processing techniques have
proven insufficient to remove the effects of electrical noise
because they typically rely on simplified models and fail
to capture complex characteristics of signal and noise.
Moreover, they often involve time-consuming processing
steps that are unsuited for real-time imaging applications.
In this work, we develop and demonstrate a discrimina-
tive deep learning approach to separate electrical noise
from optoacoustic signals prior to image reconstruction.
The proposed deep learning algorithm is based on two
key features. First, it learns spatiotemporal correlations in
both noise and signal by using the entire optoacoustic
sinogram as input. Second, it employs training on a large
dataset of experimentally acquired pure noise and synthetic
optoacoustic signals. We validated the ability of the trained
model to accurately remove electrical noise on synthetic
data and on optoacoustic images of a phantom and the
human breast. We demonstrate significantenhancementsof
morphological and spectral optoacoustic images reaching
19% higher blood vessel contrast and localized spectral
contrast at depths of more than 2 cm for images acquired
in vivo. We discuss how the proposed denoising framework
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is applicable to clinical multispectral optoacoustic tomog-
raphy and suitable for real-time operation.

Index Terms— Breast cancer, denoising, dynamic
MSOT, photoacoustic tomography, signal decomposition,
sinogram.

I. INTRODUCTION

ELECTRICAL noise is a key source of signal corruption
in optoacoustic imaging and arises due to thermal effects

(thermal noise) and from electromagnetic interference (para-
sitic noise); the latter possibly generated by the optoacoustic
system itself or the environment [1]. While thermal noise
can be modeled as white Gaussian noise [2], parasitic noise
entails complex spatiotemporal correlations, and thus cannot
be efficiently captured by an analytical model [1]. Both
thermal and parasitic noise cause artifacts in reconstructed
optoacoustic images that severely decrease morphological and
spectral contrast. Whereas shielding hardware can suppress
some parasitic noise, this solution is device-specific and often
incomplete [1]. Therefore, additional computational denoising
techniques, which are applicable across platforms, are needed
to remove both parasitic and thermal noise.

Noise in optoacoustic images hinders the detection and
identification of fine structures in tissue, particularly as the
signal-to-noise ratio (SNR) in the data decreases with increas-
ing depth [3]. Besides the reduction of image contrast, noise
also challenges the quantification and spectral un-mixing of
optoacoustic images acquired at multiple wavelengths [4], [5].
In particular, corrupted spectral information decreases the
spatial resolution of multispectral optoacoustic tomography
(MSOT) because it necessitates averaging the spectra obtained
from large tissue regions for reliable quantification [6]–[8].
Efficient noise reduction algorithms are therefore critical for
improving the performance of spectral optoacoustics.

Frequency filtering using band-pass filters cannot adequately
separate thermal and parasitic noise from optoacoustic signals
because the frequency content of optoacoustic signals and
noise overlap significantly. For this reason, data averaging and
regularization methods have been more commonly considered
to minimize the effects of electrical noise from optoacoustic
tomographic images [3], [7]–[12]. While data averaging effec-
tively reduces zero-mean electrical noise, combining multiple

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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acquisitions reduces imaging rates and increases vulnerability
to motion artifacts, particularly in clinical applications or
when using a handheld system. Regularization of model-based
reconstructions may decrease the effects of electrical noise,
but this reduction is either limited to the noise character-
istics captured by the regularization functional or realized
at the cost of data fidelity, thereby corrupting the mean-
ingfulness of the reconstructed image. Furthermore, iterative
model-based reconstruction is computationally intensive, and
therefore unsuitable for applications that require real-time
feedback [4], [13], [14]. Another approach to reduce noise is
based on sparse (typically Wavelet-based) representations for
optoacoustic signals [1], [15], [16]. Noise is assumed to distort
the sparsity properties of optoacoustic signals, which enables
its removal, e.g., via thresholding techniques. However, the
denoising performance of such methods is limited by their
reliance on oversimplified models of noise and optoacoustic
signals.

Recently, discriminative deep neural network models
have achieved state-of-the-art performance on general image
denoising tasks, like Gaussian denoising, deblocking, super-
resolution, inpainting, and dehazing [17]–[20]. These deep
neural network models capture the required data transforma-
tions for denoising in a data-driven way by utilizing large
ground truth training datasets. In this way, discriminative
deep neural networks are capable of more accurate, robust,
and fast denoising than traditional methods that rely on rigid
analytical models because they can adjust to complex data
characteristics during training and are evaluated in real-time
on modern GPUs. Similar deep-learning-based approaches
have also been applied to remove reconstruction [21], [22]
and reflection artifacts [23], [24] from optoacoustic images,
and to enhance contrast of images acquired with low energy
illumination elements such as LED-based systems [25]–[27].

In this work, we examine whether discriminative deep
learning can separate thermal and parasitic noise from optoa-
coustic signals. We show that the modeling capabilities and the
computational efficiency of a deep neural network facilitates
denoising in optoacoustic tomography that is both precise
enough to remove noise with complex characteristics and
fast enough for real-time imaging applications. We design
a deep neural network model to simultaneously denoise the
entire sinogram of an optoacoustic scan, i.e. the complete
dataset acquired from all transducers. Entire sinogram denois-
ing enables the network to capture spatiotemporal correlations
within both parasitic noise and true optoacoustic responses,
and thus more efficiently separate the two. Exploiting the inde-
pendence of electrical noise and optoacoustic signals, we train
the network on a large ground truth dataset of experimentally
acquired pure noise and synthetic optoacoustic sinograms.
We validate that the model removes thermal and parasitic noise
from both synthetic sinograms and optoacoustic images of a
phantom. We lastly apply the trained model to clinical MSOT
images of breast tissue and show significant enhancements in
morphological and spectral contrast. The improved contrast
allows for tissue components to be more accurately localized
and quantified and yields more meaningful correlations with
the spectra of known absorbers in tissue, thereby increasing

access to endogenous biomarkers in deep tissue, such as breast
vasculature or hemoglobin contrast inside a cancerous tumor.

II. METHODS

In the following, we formalize our methodology for
removing electrical noise from optoacoustic sinograms. First,
we reformulate the denoising problem as a decomposition task.
Based on this formulation, we derive a discriminative deep
learning framework for denoising optoacoustic sinograms.
At the end of the chapter, we explain the experiments that
we use to validate this approach.

A. Denoising via Decomposition

In this section, we formalize the rationale for reformulat-
ing denoising of optoacoustic sinograms as a decomposition
task and conclude that 1) electrical noise in optoacoustic
tomography is an additive component that is independent from
the optoacoustic signals, and 2) for denoising, an acquired
optoacoustic sinogram s can be decomposed into a component
sOA containing the true optoacoustic sinogram and an electrical
noise component snoise: s = sOA + snoise.

An optoacoustic scan at a fixed excitation wavelength con-
sists of measured optoacoustic pressure signals sd [t], indexed
by time samples t ∈ [1, 2, . . . , Nsamples] and transducer
locations d ∈ [1, 2, . . . , Ntransducers]. The collection of sig-
nals recorded at all the transducers compose the sinogram
s [d, t] := sd [t] of the scan. We model the measured optoa-
coustic sinograms probabilistically as samples s of a random
field S, i.e. a collection of random variables that model all
recorded signals of a sinogram sd [t], t ∈ [1, 2, . . . , Nsamples],
d ∈ [1, 2, . . . ,Ntransducers]. In the remainder of this paper,
we will denote random fields with capital letters, and specific
samples of random fields with lower case letters. The main
assumption that leads to the formulation of denoising as a
decomposition problem is that S is the sum of two independent
random fields SOA and Snoise, which describe the signal content
due to optoacoustic responses and electrical noise, respec-
tively. This assumption is justified by the fact that electrical
noise in optoacoustic tomography typically originates from
common system thermal noise and electromagnetic interfer-
ence that is not influenced by the optoacoustic signal [1]. The
probability distributions underlying SOA and Snoise are denoted
by POA and Pnoise:

S = SOA + Snoise

with SOA ∼ POA and Snoise ∼ Pnoise independent. (1)

Optoacoustic scans at different wavelengths are modeled
as independent realizations of S because the noise is caused
by the electronics of the imaging system that are not affected
by the wavelength switching of the laser. In summary, isolating
the noise-free optoacoustic sinogram sOA given s is equivalent
to decomposing s = sOA + snoise into its two components sOA
and snoise.

B. Deep-Learning-Based Denoising Framework

Next, we step-by-step derive a deep-learning-based denois-
ing framework that can decompose optoacoustic sinograms
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into their signal and noise components. In short, we train a
deep neural network to infer the electrical noise component
from a noisy input sinogram using experimentally acquired
pure noise sinograms and synthetic optoacoustic sinograms.

To solve the decomposition problem introduced in sub-
section A, we need access to the distributions POA and
Pnoise. However, both random fields SOA and Snoise are non-
homogeneous and anisotropic with intricate spatial and tem-
poral correlations due to the physics underlying the signals
and the fact that electrical noise in optoacoustic systems
often contains complex parasitic noise (Fig. 2c) [1]. As a
result, accurate explicit models for the complex distributions
of optoacoustic signals and electrical noise POA and Pnoise are
difficult to obtain. We therefore present a data-driven approach
that allows us to rely on the empirical distributions of POA and
Pnoise via sampling of SOA and Snoise. We first explain sample
acquisition and then elaborate on our methodology for solving
the decomposition task.

Because of the independence of SOA and Snoise and the
wavelength independence of Snoise, electrical noise can be
directly measured in the absence of any absorbers that would
emit optoacoustic responses. We thus obtained samples of
the electrical noise distribution Snoise of the test system
by immersing the scanner in a water tank and measuring
from 700 to 790 nm, where light absorption in water is
negligible (i.e., the optical absorption coefficients of water
at 700 – 790 nm are between 0.006 cm−1 and 0.026 cm−1,
whereas for example the absorption coefficients of oxygenated
hemoglobin and fat at 800 nm and 930 nm are 4.4 cm−1

and 13 cm−1, respectively [28]–[30]). Note that in theory the
effects of water absorption on the acquired noise samples may
be further decreased by interrupting the optical path between
the laser and the imaging probe during the noise acquisi-
tions, or by acquiring noise samples only at the wavelength
with the lowest water absorption coefficient from the range
700 – 790 nm. However, in practice such adjustments were
not essential, as the obtained electrical noise samples did not
correlate with the respectively used wavelength from the range
700 – 790 nm (which confirms that water absorption is indeed
negligible in the whole range), and as the presented denoising
framework facilitated accurate denoising with the current noise
acquisition setup.

Acquiring samples of SOA in an experimental setup is a
laborious and time-consuming process that requires averaging
multiple scans of the same location to remove electrical noise.
Additionally, patient or operator movement impedes accu-
rate averaging. Therefore, instead of experimentally acquiring
noise-free optoacoustic sinograms, we generated samples of
POA via simulation by applying an accurate acoustic forward
model of the scanner [31], [32] to publicly available images
from the PASCAL VOC2012 dataset [33], a diverse collection
of over 17 000 images covering a large range of features. Uti-
lizing these images as underlying initial pressure distributions
in the simulations enables us to account for a broad range of
potential features in optoacoustic sinograms and should yield
a good approximation of the empirical distribution of POA.
In addition, the general scope of the training data ensures
that the denoising model is universally and with uniform

Fig. 1. Discriminative deep learning framework for denoising optoa-
coustic sinograms. a) Training setup of the method. The network was
trained iteratively using simulated samples from the optoacoustic sino-
gram distribution of the test system and experimentally acquired samples
of the electrical noise distribution of the system. b) Evaluation setup of
the method. The trained neural network can infer the electrical noise
from a noisy input sinogram. Subtracting the inferred noise from the input
sinogram yields the denoised sinogram. c) U-net architecture of the deep
neural network.

performance applicable to arbitrary scans acquired by the
considered system.

Using the samples from SOA and Snoise, we utilized a
U-net-like deep neural network [34] to solve the decompo-
sition task at hand. Fig. 1 depicts the deep-learning-based
approach. Fig. 1a shows the training setup. We iteratively
trained the network on randomly selected pairs of samples sOA
and snoise from SOA and Snoise to infer the noise component
(snoise) from a noisy input sinogram s = sOA + snoise.
In this way, the network is optimized to adopt the complex
characteristics of POA and Pnoise. Fig. 1b depicts the evaluation
setup. Once trained, we can use the neural network to infer
electrical noise from noisy input scans.

C. Experiments

As a test system for the denoising algorithm, we used a
custom prototype of an MSOT Acuity Echo handheld scanner
(iThera Medical GmbH, Munich, Germany). The system is
equipped with a tunable laser that illuminates tissue with
laser pulses of ∼8 ns duration with an energy of 16 mJ
and a repetition rate of 25 Hz. The ultrasound detector of
the system consists of 256 piezoelectric transducers with a
central frequency of 4 MHz, which are equidistantly placed
on a circular arc with a radius of 6 cm and an angular
coverage of 145◦. Ultrasound signals are recorded with a
sampling frequency of 40 MHz. Inside the imaging probe,
heavy water with a speed of sound of approximately 1397 m/s
is used as coupling medium. Fig. 2 provides an overview
of the imaging system and its output. Fig. 2a shows the
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Fig. 2. Overview of the handheld MSOT system and its output used to
evaluate the proposed denoising method. a) Illustration of the scanning
procedure using the handheld imaging probe of the test system. b) Data
layout of a measured multispectral stack of sinograms. The depicted
sinogram shows the recorded signals during a representative scan of
a human breast lesion at 960 nm. c) Magnification of the marked signals
in b, which were recorded prior to responses from tissue and thus are
predominately comprised of electrical noise. d) Histogram and fitted
Gaussian distribution (R2 = 99.5%) for parts of the electrical noise with
visually low amounts of parasitic noise (signals marked in c with the
dashed rectangle) illustrating the characterization of the thermal noise of
the system.

scanning procedure using the handheld imaging probe of the
system. Fig. 2b illustrates the data layout of a multispec-
tral stack acquired by the imaging system. A multispectral
stack consists of 28 sinograms recorded at wavelengths from
700 – 970 nm in steps of 10 nm. Fig. 2c shows electrical noise
from a representative optoacoustic in vivo scan. We observed
that electrical noise in the system consists of two additive
components: normally distributed thermal noise with a mean
of zero and a standard deviation in the range of 0.2 – 0.3
and complex parasitic noise that is presumably caused by
the switching-mode power supply of the system (examples
marked with red arrows in Fig. 2c). Fig. 2d illustrates the
characterization of thermal noise of the system based on
parts of experimentally acquired electrical noise samples with
visually low amounts of electrical noise and confirms that the
thermal noise can be modeled as white Gaussian noise. The
presented characterization of the thermal noise of the system
nevertheless remains an approximation as the parasitic and
thermal components of electrical noise cannot be completely
separated.

We first evaluated the ability of the proposed deep learning
framework to remove the combination of Gaussian thermal and
complex parasitic electrical noise observed in the test system.
We trained and evaluated a deep neural network on experimen-
tally acquired samples of the electrical noise distribution Snoise
of the system and simulated samples of the optoacoustic signal
distribution SOA (denoted as Dataset-EN). Next, we applied
the trained denoising network to measurements of a physical
phantom (denoted as Dataset-Ph). The arrangement of the
phantom is shown in the inlay in Fig. 4a. Two plastic tubes
with inner diameters of 3.0 mm and 0.86 mm and outer

diameters of 3.2 mm and 1.52 mm were filled with ink and
imaged cross-sectionally to simulate absorbers of different
sizes and at different depths. These tubes were immersed into
two layers of agar of slightly different densities mixed with
Intralipid (6 ml 20% emulsion / 100 ml water) to mimic
light scattering and small variations of the speed of sound
distribution in biological tissue. Additionally, a copper plate
was integrated into the arrangement as a reference that can be
seen in both optoacoustic and ultrasound images.

To evaluate the denoising performance of the framework
on in vivo scans, we subsequently applied the trained deep
neural network to 81 multispectral optoacoustic scans of
human breast cancer lesions (denoted as Dataset-BC). These
scans were acquired in a study that was approved by the
local ethics committee of the Technical University of Munich
(27/18 S). All participants gave written informed consent upon
recruitment.

Lastly, we evaluated the ability of the trained network
to adapt to changes of the hardware configuration and of
environmental conditions such as humidity and temperature
of the used system, which might alter the amounts of ther-
mal or parasitic electrical noise. For that, we applied the
trained model to optoacoustic signals that were corrupted by
a combination of measured electrical noise sinograms scaled
with a factorEN ∈ {0, 0.5, 1, . . . , 3}, and white Gaussian noise
with standard deviation σGN ∈ {0, 0.2, 0.4, . . . , 2} (denoted as
Dataset-EN+GN). A summary of the four datasets is given in
Table I.

D. Data Pre-Processing and Network Training

We band-pass filtered all recorded signals from
500 kHz – 10 MHz to remove signals outside the bandwidth
of the transducers and reduce low frequency responses that
would otherwise dominate the contrast in reconstructed
optoacoustic images. Additionally, all signals were slightly
cropped in the time domain to remove filtering artifacts at the
signal boundaries and to make the number of signal samples
divisible by 16, as required by the chosen neural network
architecture, leading to 1808 time samples for each of the
256 detectors per scan.

A detailed illustration of the proposed neural network is
given in Fig. 1c. We adopted the U-Net neural network
architecture [34] with a depth of 5 layers and a width of
64 channels, and designed the network to infer only the elec-
trical noise snoise from a noisy input sinogram s to minimize
the necessary expressiveness of the network [18]. The network
was trained for 300 epochs using the L1 norm of the difference
of inferred and ground truth noise as loss functional, and the
ADAM optimizer [35] with batch size = 1 and momentum
parameters β1 = 0.5 and β2 = 0.999. The learning rate
was set to 0.0001 and was linearly decreased to zero in the
last 50 epochs. To accelerate the learning process, we scaled
all input data of the neural network by a constant factor of
0.004 to achieve a signal range of [−1; 1]. After having passed
the neural network, all signals were rescaled to the original
range. After training, the final model was selected based on the
minimal loss on a validation split of the dataset. One training
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TABLE I
STRUCTURE AND SIZE OF THE FOUR DATASETS USED IN THIS PAPER

process took approximately three days on an NVIDIA GeForce
RTX2070 GPU.

E. Signal-to-Noise Ratio

For Dataset-EN and Dataset-GN, we used the signal-
to-noise ratio (SNR), i.e. the ratio of signal power and
noise power, to quantify the noise levels in the signals
before and after denoising. We calculated the power P(s)
of a whole sinogram s[d, t], d ∈ [1, 2, . . . , Ntransducers] , t ∈
[1, 2, . . . , Nsamples] as

P(s) := 1

Ntransducers Nsamples

∑Ntransdicers

d=1

∑Nsamples

t=1
s[d, t]2.

(2)

Based on equation 2, the SNR of a sinogram s with ground
truth noise snoise and inferred noise s′

noise is defined as

SNR := 10 log10

(
P (s − snoise)

P
(
snoise − s′

noise

)
)

d B. (3)

Setting s′
noise= 0 yields the SNR before denoising; setting

s′
noise to the output of the trained network yields the SNR

after denoising.
Since computing the SNR requires direct access to the

ground truth noise snoise of a scan, the metric cannot be directly
transferred to the in vivo scans of Dataset-BC. We therefore
defined an alternative metric, SNRmean, that enabled us to
approximate the ground truth electrical noise for the in vivo
scans from Dataset-BC by considering the per-pixel mean
sinogram amplitudes across Nscans different scans of the
dataset, s(1), s(2), . . . , s(Nscans), 〈|s|〉 := 1

Nscans

∑Nscans
n=1 |s(n)|.

SNRmean := 10 log10

(
P〈|s|〉−〈|snoise|〉

P〈|snoise|〉−〈| s ′
noise|〉

)
d B. (4)

We approximated the ground truth electrical noise 〈|snoise|〉
from the first 100 averaged time samples of all scans in

Dataset-BC 〈|s[·, t ′]|〉, t ′ ∈ [1, 2, . . . , 100]:

〈|snoise[d, t]|〉 ≈ 1

100

100∑

t ′=1

〈|s[d, t ′]|〉

for t ∈ [1, 2, . . . , Nsamples]. (5)

Note that equation 5 yields a meaningful approximation of
〈|snoise[d, t]|〉 for two reasons: First, the 100 signals recorded
at the beginning of a scan do not contain optoacoustic
responses but mostly electrical noise because they originate
from the coupling medium inside the imaging probe. Sec-
ond, we observed from the electrical noise sinograms in
Dataset-EN that for the used test system, 〈|snoise[d, t]|〉 is
constant over time. Thus, an estimation of electrical noise
based on a subset of time samples of the sinogram (i.e. the
first 100 time samples in equation 4) is applicable to all time
steps t ∈ [1, 2, . . . , Nsamples]. Furthermore, sinograms from
Dataset-BC were cropped to the first 1732 recorded signal
samples before evaluating the SNRmean, as subsequent signals
originate from outside the designated field of view of the scans
and contain strong reflections and filtering artifacts.

SNRmean can approximate the SNR of in vivo images,
for which the true amount of electrical noise is unknown.
However, the metric may overestimate the SNR after denoising
because the per-pixel mean amplitudes of the predicted noise
〈|s′

noise|〉 is subtracted in the denominator of equation 4,
disregarding the possibility that the predicted and the ground
truth noise have different signs: 〈|snoise|〉−〈|s′

noise|〉 = 〈|snoise−
s′

noise|〉 only if ∀1 . . . n . . . Nscans: sgn
(
s(n)′

noise

) = sgn
(
s(n)

n
)
. An

empirical comparison of SNRmean and SNR on Dataset-EN
(for which ground truth noise samples are also available)
showed that SNRmean correctly estimated the average true
SNR before denoising (SNRmean = 9.6 dB, avg. SNR =
9.3 dB) and overestimated the SNR after denoising by
approximately 6 dB (SNRmean = 26.5 dB, avg. SNR =
20.3 dB). The offset of the SNRmean after denoising is
however smaller than the reported SNRmean improvements of
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20 – 22 dB of the presented denoising method for Dataset-BC
(see section III).

F. Evaluation on Reconstructed Images

To evaluate the effects of the denoising method visually
and quantitatively on optoacoustic images, we reconstructed
the initial pressure p0 of all breast scans in Dataset-BC, both
with and without denoising the recorded sinograms with the
trained neural network, using a model-based reconstruction
algorithm [31], [32]. We added two regularization terms to
address the two main causes of the ill-posedness of the inverse
problem: simple Tikhonov regularization to mitigate limited
view noise and Laplacian-based regularization to mitigate
sub-resolution noise.

p0 := arg min
p≥0

‖Mp − s‖2
2 + λ1‖p‖2

2 + λ2‖�p‖2
2. (6)

The reconstructed optoacoustic images are of the size 400 ×
400 pixels and correspond to FOVs of 3.99 cm × 3.99 cm.
We denote the obtained datasets of reconstructed MSOT
breast images as Doriginal and Ddenoised. Additional recon-
structions were also obtained using backprojection reconstruc-
tion [36], [37].

We quantified the effects of the denoising method in the
reconstructed images by calculating the contrast resolution
and the contrast-to-noise ratio of blood vessels. For that, we
manually segmented blood vessels in the images, as well
as background ROIs from the surroundings of all segmented
vessels. The segmentations were based on scans at 870 nm,
where blood contrast is at a maximum. The background areas
were chosen so as not to overlap with regions below and above
strong absorbers, which are affected by limited view artifacts.
We chose vessels of different sizes and at different depths to
obtain general estimates for the blood contrast in the dataset.
Fig. 3f shows the segmented regions for a representative scan.
Based on these segmentations, the contrast resolution of a scan
with mean intensities Ivessels and Ibackground in its respective
vessel and background ROIs is defined as

CR := Ivessels − Ibackground

Ivessels + Ibackground
, (7)

and the contrast-to-noise ratio of a scan with standard devia-
tion σbackground in its background ROIs is defined as

CNR := 10 log10

(
Ivessels − Ibackground

σbackground

)
d B. (8)

Negative values in backprojection images were set to zero
before calculating the contrast resolution.

To evaluate the effects of denoising on the spectral con-
trast of MSOT, we applied blind spectral unmixing via non-
negative matrix factorization (NMF) [38] to the multispectral
optoacoustic images from Doriginal and Ddenoised and compared
the variety and biological interpretability of obtained spectral
decompositions. For each of the two datasets (consisting
each of 400 × 400 × 81 = 12 960 000 acquired spectra),
we obtained a spectral decomposition into 10 non-negative
spectral components H (size 10 × 28) and corresponding

non-negative unmixing coefficients W (size 12 960 000 ×
10).

(W, H ) := arg min
(W,H)≥0

1

2
‖S − W H‖2

F + λ1

(
‖W‖1 + ‖H‖1

)

+ 1

2
λF

(
‖W‖2

F + ‖H‖2
F

)
, (9)

where S (size 12 960 000 x 28) denotes all spectra of

the dataset, ‖M‖F :=
(∑

i, j m2
i, j

) 1
2

denotes the Frobenius

norm, ‖M‖1 :=∑i, j |mi, j | denotes the entrywise L1-norm of
a matrix M = (

mi, j
)

i, j , and M≥ 0 refers to an entrywise

inequality. The entrywise L1-regularization was chosen to
promote a maximally sparse decomposition of the spectra,
guided by the fact that the spectral contrast of biological tissue
is dominated by a small number of abundant chromophores.
The number of spectral components chosen was purposefully
greater than the number of different chromophores in tissue to
also extract variants of the chromophores’ absorption spectra
that are perceived because of spectral coloring (i.e., distortions
of the perceived absorption spectra of chromophores in deeper
tissue by light absorption of chromophores in superficial tissue
layers). The specific number of components and regularization
parameters λ1= 50.1 and λF= 50.1 were selected via para-
meter space exploration and meaningfulness of the resulting
spectral components. Furthermore, the residual norm

rNMF := ‖S − W H‖2
F/‖S‖2

F (10)

was evaluated for each of the two NMF runs to quantify the
accuracy of the obtained unmixing solution.

III. RESULTS

The proposed deep learning framework for denoising optoa-
coustic sinograms significantly improves the SNR of both
simulated and in vivo data in real-time. The average inference
time of the employed deep neural network was 9 milliseconds.
Based on the resulting increased quality of the optoacoustic
signal data, the denoising method enables improved optoa-
coustic image contrast and spectral unmixing performance.
In the following, we report the detailed findings in the signal,
image, and spectral domains.

A. Denoising Performance in the Signal Domain

Optoacoustic signals and electrical noise are both complex
broadband signals whose characteristics overlap significantly.
The presented data-driven approach can disentangle these
overlaps by accessing and separating the data manifolds of
signal and noise in sinograms. We observed significant reduc-
tions in noise levels, both visually and quantitatively, upon
application of the denoising method to sinograms that were
corrupted by a combination of Gaussian thermal and com-
plex parasitic electrical noise (Dataset-EN, Dataset-BC, and
Dataset-EN+GN with factorEN > 0), as well as to sinograms
that were corrupted only by Gaussian noise (Dataset-EN+GN
with factorEN = 0). Fig. 3 summarizes these results. We begin
by visually inspecting the effects of the denoising method for
a representative scan of a breast lesion in Fig. 3a-f. Fig. 3a
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Fig. 3. Evaluation of the proposed denoising approach in the signal domain. a) Noisy sinogram from a representative scan of a human breast
lesion. b) Electrical noise component inferred by the neural network. c) Denoised sinogram obtained by subtracting b from a. d-f) Magnifications of
the marked areas in a-c. g-j) Quantitative evaluation of the denoising performance. g) Comparison of the SNR distributions in simulated optoacoustic
sinograms that are distorted by electrical noise before and after denoising. The mean gain is 10.9 dB. h-i) Evaluation of in vivo scans of human
breast lesions. h) Mean SNR (SNRmean) of individual time samples. The average increase is 20.8 dB. i) Individual SNRmean of all detectors. The
average increase is 22.4 dB. j) Average SNR gains (“SNR after denoising – SNR before denoising”) of the trained model for optoacoustic signals
that were corrupted by a combination of measured electrical noise sinograms scaled with factorEN ∈ {0,0.5,1, . . . ,3}, and white Gaussian noise
with standard deviations σGN ∈ {0, 0.2, 0.4, . . . , 2}. One of the detectors (no. 61) was defective and excluded from the plots in g-j.

shows the noisy sinogram before denoising. Because of the
radial nature of wave propagation and the circular shape
of the used imaging probe, optoacoustic responses appear
as bow-shaped structures in the sinogram. Also note that
optoacoustic signals from a spherical target at the center of
the circular transducer array appear as bow-shaped structures
because of refraction at the interface between the coupling
medium inside the imaging probe (heavy water with a speed
of sound of 1397 m/s) and the imaged tissue (speed of sound
typically in the range 1450 – 1550 m/s). The sinogram is
distorted by additive electrical noise that is composed of
zero-mean Gaussian noise and complex noise artefacts with
strong spatiotemporal correlations (also shown in Fig. 2c).
Fig. 3b depicts the electrical noise component inferred by
the trained neural network, which demonstrates the network’s
ability to extract electrical noise. Finally, Fig. 3c shows the
denoised sinogram, which was obtained by subtracting the
inferred noise from the recorded sinogram. Fig. 3d-f depict
enlargements of identical temporal sections of the images in
Fig. 3a-c, highlighting the fine features of the optoacoustic
signals that are exposed upon removal of electrical noise
(yellow arrows).

Fig. 3g-j provide an in-depth quantitative analysis of the
network’s denoising performance. These results confirmed the
ability of the network to consistently remove electrical noise
with high accuracy from both synthetic and in vivo optoa-
coustic sinograms. Fig. 3g compares the distributions of SNRs
within the test split of Dataset-EN before and after denoising.
Application of the denoising method to the sinograms in
Dataset-EN resulted in an average improvement in SNR of
10.9 dB, with improvements for individual sinograms ranging
from 4.6 dB to 20.0 dB. After the neural network was trained
and tested on Dataset-EN, we applied it to denoise scans of

breast lesions (Dataset-BC) to demonstrate its applicability to
in vivo data. Fig. 3h shows a plot of the mean SNRmean
of these individual time samples from Dataset-BC before
and after application of the network, which indicates a time-
independent increase in SNRmean of approximately 20.8 dB
after denoising. The uniformity of the increase in SNRmean
demonstrates that the trained neural network can extract
electrical noise both from strong optoacoustic responses in
superficial tissue (time samples 400 – 700), as well as from
signals deeper in tissue, which have lower amplitudes due to
light fluence attenuation (time samples 1100 – 1400).

Furthermore, we demonstrated the ability of the method
to compensate for the variations in parasitic electrical noise
within the transducer array of the test system (see Fig. 2c
for details) to confirm the applicability of the trained network
to in vivo scans. For that, we calculated the SNRmean for
Dataset-BC individually for all transducer elements, rather
than for the whole sinograms, before and after denoising.
As shown in Fig. 3i, applying the trained network to the
breast scans from Dataset-BC improves the SNRmean at all
transducers by an average of 22.4 dB in a near uniform
manner. Note that the transducers at the boundaries of the
detector probe have lower SNRs than the central transducers
due to the probe layout partially shielding the outermost
transducers from arriving acoustic waves. The lower SNRmean
values at transducers 30-43, 79-87, 167-175, 213-227 result
from acoustic noise waves propagating along the transducer
array, which corrupts the ground truth noise estimation used
to calculate the SNRmean (see Equation 5). These noise waves
depend on the imaged tissue, and therefore cannot be removed
by the neural network.

Thus far, we have demonstrated the ability of the denoising
method to accurately isolate the electrical noise of the test
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system. Next, we investigated whether the trained model can
also adopt electrical noise with altered levels of parasitic and
thermal noise components, e.g. caused by changes in hardware
configurations or environmental conditions such as humidity
and temperature. We applied the trained model to optoacoustic
signals that were corrupted with augmented electrical noise
sinograms containing, in comparison to the measured electrical
noise used during training, up to three times the amount
of parasitic noise and approximately up to four times the
amount of thermal noise (see Dataset-EN+GN in Table I).
Fig. 3j summarizes the average denoising performance of
the trained network, which afforded improvements in SNR
for all tested combinations of parasitic and thermal noise
components. These results demonstrate that the trained neural
network can also generalize to previously unseen amounts of
electrical noise and thus facilitate robust denoising in real-
world imaging applications, where the amounts of electrical
noise may change over time.

B. Denoising Enables High Contrast in Optoacoustic
Images

Thus far, we have demonstrated the ability of the denoising
network to isolate and remove electrical noise in optoacoustic
sinograms. In this section, we analyze the effects of denoising
on reconstructed optoacoustic images. First, we ensure that the
denoising network successfully removes noise artifacts without
distorting any true optoacoustic image structures using optoa-
coustic images of a phantom. Subsequently, we evaluate the
improved image contrast due to denoising in a clinical dataset
of scans of human breast lesions, to show the potential for
improved diagnostic capability of optoacoustic tomography.

We utilized a model-based inversion algorithm to recon-
struct optoacoustic images (i.e. initial spatial pressure dis-
tributions) from all scans in the datasets Dataset-Ph and
Dataset-BC, both with and without denoising the recorded
sinograms with the trained neural network. Fig. 4a-e illustrate
the qualitative improvements to selected images upon appli-
cation of the neural network. Fig. 4a shows an optoacoustic
image of a phantom at 700 nm, reconstructed from a noisy
sinogram. Zero-mean Gaussian noise in the recorded sinogram
reduces the overall contrast in the image, whereas parasitic
noise leads to ring artifacts that obscure potentially relevant
image features. The arrangement of the phantom is shown
in the inlay of Fig. 4a. Fig. 4b depicts the same optoacoustic
image reconstructed from a denoised sinogram, demonstrating
that the neural network can significantly reduce both the
background noise and the ring artifacts. Fig. 4c plots the
difference between Figs. 4a and b, which yields artifacts
and background noise but no real structures, emphasizing the
ability of the network to accurately identify and isolate noise
in optoacoustic images. Fig. 4d and e show the optoacoustic
images of a malignant breast tumor at 870 nm. The denoised
image in Fig. 4e appears significantly richer in contrast than
the original image in Fig. 4d and contains structures that are
not visible prior to the denoising. To highlight the clinical
relevance of the improved contrast, note that in Fig. 4e, the
optoacoustic contrast inside the tumor core regions (outlined in

blue) is separated from the noise that dominates these regions
in Fig. 4d. Furthermore, we reconstructed the scans from
Dataset-BC with the backprojection algorithm and confirmed
that the presented denoising method also achieves visible
reductions in the background noise and the ring artifacts for
these images.

Next, we evaluated the contrast resolution (CR) of blood
vessels in optoacoustic images reconstructed via model-based
inversion from Dataset-BC to quantify the enhancement capa-
bilities of the trained neural network in the image domain.
Blood vessels and background ROIs were first manually seg-
mented, as depicted in Fig. 4f, and used to calculate the blood
contrast resolution. The distributions of contrast resolution
in Dataset-BC before and after denoising are compared in
Fig. 4g, which shows an average improvement of 0.083 with
a range of 0.003 to 0.55 for individual images. As shown in
Fig. 4h, the average improvement in blood contrast resolu-
tion is consistent across all wavelengths, demonstrating the
network’s ability to remove noise, independent of the varying
strength of individual absorbers across the accessible spec-
trum. The denoising capabilities of the presented denoising
method were also confirmed when evaluating the contrast-to-
noise ratio of blood vessels in the images from model-based
inversion, and the contrast resolution and contrast-to-noise
ratio of blood vessels in images from backprojection recon-
struction, with average improvements of 1.7 dB, 0.043, and
2.6 dB, respectively.

C. Deep-Learning-Based Denoising Enables High
Spectral Contrast

A further central finding of this work is the ability of
the presented denoising approach to significantly improve
spectral contrast in MSOT, i.e. the differentiation of chro-
mophores based on their absorption spectra. We found that
upon application of the denoising method to the MSOT
scans from Dataset-BC, the dominant absorbers in breast
tissue – hemoglobin, lipids, and water – are more accurately
identified and localized. To analyze the spectral contrast,
we applied blind spectral unmixing via non-negative matrix
factorization (NMF) to the original and denoised breast images
and decomposed each of the two datasets into 10 spectra
and corresponding unmixing coefficients. Note that unlike
linear unmixing based on the reference absorption spectra
of chromophores in tissue, NMF finds both the spectra and
unmixing coefficients in a data driven way and thus extracts
variants of the reference spectra that consider effects from
spectral coloring.

Fig. 5 compares the spectral contrast of the original and
denoised MSOT breast images from Dataset-BC. In Fig. 5a-c,
we show the NMF spectra obtained from the original (Fig. 5a)
and from the denoised (Fig. 5b) data next to the reference
absorption spectra of the most prominent chromophores in
tissue (oxygenated and deoxygenated hemoglobin, water, and
lipids, see Fig. 5c). The spectra derived from the original data
show a significant number of sharp peaks (spectra no. 3, 5,
7, 8, 9, 10) attributable to ring artifacts from parasitic noise,
rather than specific absorbers in tissue. In contrast, the spectra
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Fig. 4. Demonstration of improved image quality in denoised scans of a phantom and of human breast lesions. a) Optoacoustic image of a
phantom before denoising. The overlayed image shows the arrangements of the phantom: tubes filled with ink (yellow), copper sheet (blue), and
agar layers with slightly different speed of sound distributions (grey). b) Corresponding optoacoustic image after denoising. c) Difference between
a and b. d-e) Optoacoustic image of a malignant breast tumor (d) before and (e) after denoising. The location of the hypoechoic tumor core, obtained
from ultrasound images, is outlined in blue. f) Examples for the vessel and background ROIs that are used to compute the contrast resolution.
g-h) Quantification of the contrast resolution (CR) of blood vessels in scans of breast lesions before and after denoising. The average increase is
0.083. The minimal gain is 0.003. The depicted optoacoustic images of the phantom and the breast lesion are obtained at 700 nm and 870 nm,
respectively. All scale bars correspond to 5 mm.

obtained from the denoised images are broader, smoother, and
are more easily related to the reference absorption spectra of
hemoglobin (spectra no. 1, 2, 6, 7, 8, 10), fat (spectra no.
4, 9), and water (spectra no. 3, 5). The increased number of
meaningful spectra found by NMF demonstrates superior spec-
tral contrast of the denoised images compared to the original
images. The improved unmixing accuracy upon application of
the denoising method was also confirmed quantitatively by
evaluating the residual norms of the NMF runs (see equation
10). The 10 NMF components obtained from the original
MSOT breast scans could only represent 83.2% of the data
(rNMF = 16.8%), whereas the 10 NMF components obtained
from the denoised MSOT breast scans could represent 91.8%
of the data (rNMF = 8.2%).

In Fig. 5d-g, we visualize the obtained spectral decompo-
sitions before and after denoising of a representative multi-
spectral stack to visually confirm the ability of the network to
enable better spectral contrast. We color-encode and blend the
unmixing coefficients of three NMF spectra at a time, which
correlate with the reference absorption spectra of hemoglobin
(Fig. 5d,e), lipids, and water (Fig. 5f,g), covering approx-
imately the same spectral regions for the original and the
denoised data. To improve the dynamic range of the rendered
images, we display the square roots of all coefficients in the
visualizations. Whereas the visualizations derived from the
original data are dominated by overlapping coefficients of

different spectra (appearing as white in the color-encoding)
and by ring noise artifacts (example marked with white arrows
in Fig. 5f), the visualizations derived from denoised data show
a reduction of noise artifacts and express significantly richer
spectral contrast. In addition, while the tumor core (outlined
in white) in Fig. 5d,f contains a lot of noise, this noise
is removed by the denoising method in Fig. 5e,g, revealing
hemoglobin contrast inside the tumor (white arrows in Fig. 5e).
In summary, improved spectral contrast is observable in two
ways upon application of the denoising method to the scans
from Dataset-BC: First, blind spectral unmixing retrieves a
more versatile set of spectral components and second, the
denoising method enables a more meaningful decomposition
of the acquired images into the found spectra.

IV. CONCLUSION

Optoacoustic signals are relatively weak and thus suscep-
tible to corruption by electrical noise during the imaging
process, which impedes morphological and spectral contrast.
In this work, we presented a discriminative deep-learning-
based denoising method for optoacoustic sinograms, which
employs a deep neural network trained on samples of experi-
mentally acquired electrical noise and simulated ground truth
optoacoustic signals. We demonstrated that the trained deep
neural network could accurately remove electrical noise from
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Fig. 5. Effects of denoising on the spectral content of optoacoustic images. a-b) NMF spectra that were obtained from the original (a) and the
denoised (b) MSOT images of human breast lesions from Dataset-BC. c) Reference absorption spectra of the most prominent chromophores in
breast tissue. d-g) Visualizations of the NMF decomposition of a representative MSOT image showing a malignant breast tumor at approximately
2 cm depth before (d, f) and after (e, g) denoising. The images color-encode the contributions of three spectra that respectively correlate with the
absorption spectra of hemoglobin (d, e), fat, and water (f, g). The position of the tumor, obtained from ultrasound images, is demarcated by the white
outlines.

in vivo scans of a MSOT system. The proposed signal
processing technique offers a fast and accurate approach to
improve the SNR of recorded optoacoustic sinograms, increase
morphological image contrast, and enable rich spectral contrast
at high resolution in handheld MSOT imaging.

The presented deep-learning-based denoising framework is
effective because it can access the topology and the statis-
tics of pure electrical noise and optoacoustic signal datasets.
This structural information contained in large datasets has
recently been made accessible by advances in computational
power and methodology and is the driving force behind
the increasing success of deep learning methods in medical
imaging [39], [40]. We generated such a large and high-
quality dataset by complementing the experimentally acquired
pure noise data with simulated optoacoustic sinograms. The

simulated data was obtained by applying a mathematical
model of the imaging system to a general-feature image
database, thereby incorporating prior knowledge about the
imaging system without sacrificing general applicability of
the method to any data acquired by the system. This is an
example of the integration of a physical model into data-
driven methods, which remains a major challenge in machine
learning [27], [41], [42]. The proposed method allows a trade-
off between model accuracy and generality. For example, one
could potentially enhance denoising performance by selecting
an optoacoustic signal dataset that more specifically reflects
typical tissue responses. However, the method achieves accu-
rate denoising and good generalization beyond the training
data without any such specialization. To further evaluate the
utility of the presented denoising approach, future research
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may also focus on strategies to improve the interpretability of
the employed deep neural network model [43].

Furthermore, the trained deep neural network model pro-
vides a means of fast denoising. Clinical optoacoustic imaging
systems typically provide real-time feedback to the device
operator on a built-in monitor. Due to the restricted process-
ing times, these online images are usually much lower in
quality than those produced offline, which can lead to longer
imaging sessions and incorrect selection of regions of inter-
est. We demonstrated that the method can denoise a full
optoacoustic sinogram of the MSOT system in approximately
9 milliseconds, which is fast enough for real-time feedback
during device operation. Improving instantaneous image qual-
ity enhances the dynamic imaging capabilities of MSOT [44]
while decreasing examination times.

In addition to better image quality, the denoising method
also enhances the fidelity of the obtained spectral informa-
tion. MSOT enables molecular contrast by extending the
high-resolution optical contrast of optoacoustic imaging to the
spectral dimension [45]. However, previous clinical MSOT
studies extracted spectral information mostly by averaging
over larger areas in MSOT images [6]–[8], thereby sacrificing
the superior resolution of optoacoustic imaging. In this work,
we demonstrated that denoising overcomes the necessity to
average over large tissue regions and enables spectral contrast
down to the system resolution, which is ∼200 μm in the
test system. High-resolution spectral contrast was highlighted
by localizing hemoglobin contrast inside a 2 cm deep breast
tumor. Spectral contrast is of the utmost interest for clinical
applications of MSOT, since it, for example, enables detailed
studies of local blood oxygenation and tissue metabolism.

Finally, the presented denoising framework is also applica-
ble to other (optoacoustic) imaging systems. For example,
optoacoustic mesoscopy [46] and microscopy systems [47]
are beset with similar electrical noise, making the approach
of acquiring pure noise measurements and simulating signals
with a numerical model applicable to these systems without
any major changes. Other noise sources, like speckle noise in
ultrasound imaging [48] or optical coherence tomography [49]
and shot noise in coherent diffraction imaging [50] can be
modeled as independent multiplicative noise and can thus
be approached by adapting the proposed method accordingly.
More generally, the presented methodology can in any context
disentangle two random fields that are mixed in a known
way and whose distributions can be accessed by sampling.
In particular, the denoising approach can also be applied
to remove signal-dependent noise if samples are obtained
from the conditional probability distribution of the noise
P(Snoise|SOA = sOA). Then, the denoising network could
be trained with signal and noise samples that are generated
through the following two-step process: 1: Get sample sOA
from SOA∼POA. 2: Get sample snoise from (Snoise|SOA =
sOA) ∼P(Snoise|SOA = sOA).

In summary, the deep learning framework that we propose
in this work is an efficient and flexible method for denoising
optoacoustic tomography data. By significantly improving the
data quality of the considered MSOT system, we move one
step closer to the full potential of handheld MSOT imaging,

which is dynamic high-resolution molecular contrast deep in
tissue.

SOURCE CODE

The source code for the presented denoising framework is
available at
https://github.com/juestellab/msot-sinogram-denoising.
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optoacoustic image reconstruction with 
adjustable speed of sound

Christoph Dehner    1,2,6, Guillaume Zahnd    1,3,6, Vasilis Ntziachristos    1,2,4,7  & 
Dominik Jüstel    1,2,5,7 

Multispectral optoacoustic tomography is a high-resolution functional 
imaging modality that can non-invasively access a broad range of 
pathophysiological phenomena. Real-time imaging would enable translation 
of multispectral optoacoustic tomography into clinical imaging, visualize 
dynamic pathophysiological changes associated with disease progression 
and enable in situ diagnoses. Model-based reconstruction affords 
state-of-the-art optoacoustic images but cannot be used for real-time 
imaging. On the other hand, deep learning enables fast reconstruction of 
optoacoustic images, but the lack of experimental ground-truth training 
data leads to reduced image quality for in vivo scans. In this work we achieve 
accurate optoacoustic image reconstruction in 31 ms per image for arbitrary 
(experimental) input data by expressing model-based reconstruction with 
a deep neural network. The proposed deep learning framework, DeepMB, 
generalizes to experimental test data through training on optoacoustic 
signals synthesized from real-world images and ground truth optoacoustic 
images generated by model-based reconstruction. Based on qualitative 
and quantitative evaluation on a diverse dataset of in vivo images, we show 
that DeepMB reconstructs images approximately 1,000-times faster than 
the iterative model-based reference method while affording near-identical 
image qualities. Accurate and real-time image reconstructions with DeepMB 
can enable full access to the high-resolution and multispectral contrast of 
handheld optoacoustic tomography, thus adoption into clinical routines.

Multispectral optoacoustic tomography (MSOT) is an emerging func-
tional imaging modality that uniquely enables non-invasive detection 
of optical contrast at high spatial resolution and centimetre-scale 
penetration depth in living tissue1–7. Accessing the multispectral 
contrast of endogenous chromophores, MSOT can quantify a broad 

range of pathophysiological surrogate biomarkers such as tissue 
fibrosis, inflammation, vascularization and oxygenation, and pro-
vide unmatched clinical information for multifarious diseases such 
as breast cancer2,6, Duchenne muscular dystrophy8 or inflammatory 
bowel disease3.
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system in the model, necessity of a higher number of iterations until con-
vergence15,16). The full imaging potential of MSOT is therefore only avail-
able offline after considerable computational time and currently remains 
inaccessible for clinical applications that require live image feedback.

Deep neural networks have recently been successfully applied to 
various inverse problems in imaging, utilizing their ability to capture 
suitable inverse transforms in a data-driven way and efficiently apply 
these transforms to new data18–24. Real-time image reconstruction with 
deep learning has been achieved using deep loop unfolding and direct 
inference. Deep loop unfolding involves interpreting the iterations of 
a variational reconstruction algorithm as the layers of a convolutional 
neural network, and training the resulting network end-to-end in a 
supervised fashion25–29. This methodology has been shown to facili-
tate accurate and efficient image reconstruction for various medical 
imaging modalities such as magnetic resonance imaging, computed 
tomography or intensity diffraction tomography. However, deep loop 
unfolding is unsuited for real-time optoacoustic image reconstruction 
as it requires repeated evaluations of the involved optoacoustic for-
ward model (at least one forward and one adjoint model evaluation per 
data consistency block; see, for example, equation 11 in ref. 25), which 
is too computationally expensive to enable real-time processing (for 
example, with the imaging set-up from this paper, a single evaluation 
of the forward or adjoint model already takes more than 50 ms on a 
NVIDIA GeForce RTX3090 GPU). Conversely, deep-learning-based 
image reconstruction via direct inference can support real-time optoa-
coustic imaging because the approach does not require that the optoa-
coustic forward model is evaluated during image reconstruction. 
Over the past few years, several direct inference methods have been 
introduced to either directly infer high-quality images from recorded 
signals30–36 or accelerate the minimization operation from iterative 
model-based reconstruction37.

A key challenge in applying deep learning for optoacoustic image 
reconstruction is the generation of appropriate training data, that 
is, input sinograms and corresponding optoacoustic initial pressure 

Real-time application is imperative to fully translate and integrate 
MSOT into clinical imaging9–11. Handheld MSOT imaging requires—
similar to ultrasound imaging—live image feedback at sufficiently high 
frame rates (at least 24 fps for full-video rendering) to avoid hindering 
visio-tactile coordination, identify and localize relevant tissue structures 
using anatomical landmarks in their surroundings, and find the optimal 
transducer pose for the target region. Furthermore, real-time optoacous-
tic imaging is necessary to visualize dynamic pathophysiological changes 
associated with disease progression and enable in situ guidance and 
diagnosis during intra-operative and endoscopy imaging12,13. In practice, 
real-time reconstruction of optoacoustic images (that is, recovery of the 
initial pressure distribution in the imaged tissue) is generally conducted 
via the backprojection algorithm14; however, the backprojection for-
mula is based on over-simplified modelling assumptions of the imaging 
process and cannot compensate for the ill-posedness of the underlying 
inverse problem arising from limited-angle acquisition, measurement 
noise and finite transducer bandwidth. Consequently, backprojection 
images systematically suffer from low spatial resolution and contrast, 
as well as negative pixel values that invalidate a physical interpretation 
of the image as an initial pressure distribution. By contrast, iterative 
model-based reconstruction15,16 can provide accurate, state-of-the-art 
quality optoacoustic images by incorporating a physical model of 
the imaging device into the reconstruction process, constraining the 
reconstructed image to be non-negative, and introducing regularization 
to mitigate the ill-posedness of the inversion problem. Nevertheless, 
model-based reconstruction is computationally demanding due to 
the iterative and thus sequential nature of the algorithm, which is pro-
hibitive for real-time imaging. Real-time model-based reconstruction 
has been demonstrated for a pre-clinical MSOT system by computing 
the reconstruction with a graphics processing unit (GPU)17, but a similar 
acceleration is infeasible for state-of-the-art model-based reconstruc-
tion of data from modern clinical systems as these reconstructions are 
much more computationally demanding (larger images, more complex 
regularization functionals, inclusion of the total impulse response of the 
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Fig. 1 | DeepMB pipeline. a, Real-world images—obtained from a publicly 
available dataset—are used to generate synthetic sinograms by applying an 
accurate physical forward model of the scanner. SOS, speed of sound. b, In vivo 
sinograms are acquired from six participants at diverse anatomical locations. 
c, Optoacoustic images are reconstructed via iterative model-based (MB) 
reconstruction to generate reference images for the synthetic (A) and in vivo (B) 
datasets. d, A deep neural network is trained using the synthetic data as training 
and validation sets (C), and the in vivo data as test set (D). In the network, input 

sinograms are first mapped into the image domain using a delay operation. 
Then, the SOS is one-hot encoded and concatenated as additional channels 
(represented by the ⧺ symbol). Finally, the output image is regressed from the 
channel stack using a U-Net convolutional neural network. The loss is calculated 
between the network output and the corresponding reference image (see 
'Network training’ section in the Methods for further details about the network 
training).



Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00724-3

reference images. In general, network training must rely on synthe-
tized data because ground truth information on the initial pressure 
distribution in biological tissue is not available experimentally. Data 
synthesis involves hand-crafting reference distributions of the initial 
pressure and simulating the corresponding input sinograms using a 
physical forward model of the imaging process; however, such synthe-
sized sinograms and reference images only partially represent the true 
properties of experimental data, and hence their use as input-target 
pairs for network training can lead to reductions in reconstruction 
accuracy for in vivo data.

In this work we show that learning a well-posed reconstruction 
operator facilitates accurate generalization from synthesized train-
ing data to experimental test data. We achieve real-time optoacous-
tic image reconstruction for arbitrary (experimental) input data by 
expressing model-based reconstruction using a deep neural network. 
The proposed deep learning framework, DeepMB, learns an accurate 
and universally applicable model-based optoacoustic reconstruction 
operator through training on optoacoustic signals synthesized from 
real-world images while using the optoacoustic images generated by 
model-based reconstruction of the corresponding signals as ground 
truth. DeepMB affords image quality nearly indistinguishable from 
state-of-the-art iterative model-based reconstructions at speeds ena-
bling live imaging (32 fps, or 31 ms per image, versus 30–60 s per image 
for iterative model-based reconstruction). Furthermore, DeepMB 
is directly compatible with state-of-the-art clinical MSOT scanners 
because it supports high throughput data acquisition (sampling 
rate = 40 MHz; number of transducers = 256) and large image sizes 
(416 × 416 pixels). DeepMB also supports dynamic adjustments of 
the speed of sound (SOS) parameter during imaging, which enables 
the reconstruction of in-focus images for arbitrary tissue types. We 
demonstrate the performance of DeepMB both quantitatively and 
qualitatively on a diverse dataset of in vivo images (4,814 images, six 
participants, 25–29 scanned locations per participant).

Results
To validate the capability of DeepMB to reconstruct images in real-time 
and with adjustable SOS, the framework was applied to a modern hand-
held optoacoustic scanner (MSOT Acuity Echo, iThera Medical GmbH) 
with SOS values ranging from 1,475 m s–1 to 1,525 m s–1 in 5 m s–1 steps.

DeepMB pipeline
Figure 1 illustrates the overall training and evaluation pipeline. DeepMB 
was trained similarly to the AUTOMAP framework19, using input sino-
grams synthesized from general-feature images to facilitate the learn-
ing of an unbiased and universally applicable reconstruction operator. 
These sinograms were generated by employing a diverse collection of 
publicly available real-world images38 as initial pressure distributions 
and simulating thereof the signals recorded by the scanner using an 
accurate physical forward model of the imaging process15 (Fig. 1a and 
‘Synthesis of sinograms for training and validation’ section in the Meth-
ods). The SOS values for the forward simulations were drawn uniformly 
at random from the considered range for each image. Ground-truth 
images for the synthesized sinograms were computed via model-based 
reconstruction (Fig. 1c). Figure 1d shows the deep neural network archi-
tecture of DeepMB, which inputs a sinogram (either synthetized or 
in vivo) and a SOS value, and outputs the final reconstructed image. 

The underlying design is based on the U-Net architecture39 augmented 
with two extensions that promote the network to learn and express 
the effects of the different input SOS values onto the reconstructed 
images: (1) all signals were mapped from the input sinogram to the 
image domain with a linear delay operator based on the given input 
SOS value (no trainable weights), and (2) the input SOS value (one-hot 
encoded and concatenated as additional channels) was passed to the 
trainable convolutional layers of the network. A detailed description 
of the network training is given in the 'Network training’ section in the 
Methods. After training, the applicability of DeepMB to clinical data was 
tested with a diverse dataset of in vivo sinograms acquired by scanning 
six participants at up to eight anatomical locations each (Fig. 1b). The 
corresponding ground-truth images of the acquired in vivo test sino-
grams were obtained analogously to the training data via model-based 
reconstruction. The inference time of DeepMB was 31 ms per sample 
on a modern GPU (NVIDIA GeForce RTX 3090).

Qualitative evaluation
DeepMB successfully reconstructed high-quality optoacoustic images. 
To qualitatively evaluate DeepMB, all DeepMB images from the in vivo 
dataset (Fig. 1b) were thoroughly compared with their corresponding 
model-based reference images (Fig. 1c). Figure 2 shows four recon-
structed images that correspond to scans of the carotid artery, biceps, 
breast and abdomen. DeepMB reconstructions (Fig. 2a–d) are systemati-
cally nearly indistinguishable from model-based references (Fig. 2e–h),  
with no noticeable failures, outliers or artefacts for any of the partici-
pants, anatomies, probe orientations, SOS values or laser wavelengths. 
The similarity between DeepMB and model-based images is also con-
firmed by their negligible pixel-wise absolute differences (Fig. 2i–l). 
The magnified region D in Fig. 2j depicts one of the largest observed dis-
crepancies between DeepMB and model-based reconstructions, which 
manifests as minor blurring, showing that the DeepMB image is only mar-
ginally affected by these errors. In comparison, backprojection images 
(Fig. 2m–p) exhibit notable differences from reference model-based 
images and suffer from reduced spatial resolution and physically non-
sensical negative initial pressure values. Finally, to facilitate relating 
the reconstructed optoacoustic images to the scanned anatomies,  
Fig. 2q–t depicts sketches of the rough anatomical context for all scans 
and Fig. 2u–x depicts the interleaved-acquired ultrasound images over-
layed with the temporally corresponding DeepMB reconstructions. 
Extended Data Figs. 1 and 2 complement the qualitative comparison from 
Fig. 2: Extended Data Fig. 1 shows that the image quality of DeepMB is also 
superior to the backprojetion algorithm with negative values set to zero 
after the reconstruction, as well as to the delay-multiply-and-sum with 
coherence factor algorithm40,41. Extended Data Fig. 2 shows that DeepMB 
images are nearly indistinguishable from model-based references in the 
case of both very high and very low data residual norms.

Extended Data Videos 1 and 2 further illustrate the real-time optoa-
coustic imaging capabilities of DeepMB. Extended Data Video 1 shows 
a carotid artery continuously imaged in the transversal view at 800 nm, 
which demonstrates that DeepMB can be used to visualize motion at 
25 Hz with state-of-the-art image quality. Extended Data Video 2 shows 
the optoacoustic image of a biceps in the transversal view at 800 nm 
while the SOS is gradually adjusted via a series of DeepMB reconstruc-
tions, which illustrates the importance of impromptu SOS tuning for 
optimal image quality.

Fig. 2 | Examples from the in vivo test dataset for different anatomical 
locations. a,e,i,m,q,u, Carotid artery. b,f,j,n,r,v, Biceps. c,g,k,o,s,w, Breast. 
d,h,l,p,t,x, Abdomen. The first four rows show DeepMB reconstructions, 
MB reconstructions, the pixel-wise absolute difference between DeepMB 
and MB reconstructions, and backprojection (BP) reconstructions. Data 
residual norm (R) values are shown above all reconstructed images. The last 
two rows display sketches of the rough anatomical context of the scans and 
the interleaved-acquired ultrasound (US) images overlayed with DeepMB 

reconstructions, respectively. All optoacoustic images and difference maps show 
the reconstructed initial pressure in arbitrary units and were slightly cropped 
to a field of view of 4.16 × 2.80 cm2 to disregard the area occupied by the probe 
couplant above the skin line. Each enlarged region is 0.41 × 0.41 cm2 and displays 
various anatomical details. All displayed scans were acquired at 800 nm. Mb, 
probe membrane; Sk, skin; Mu, muscle; Fa, fascia; Ca, common carotid artery; 
Ju, jugular vein; Th, thyroid; Tr, trachea; Ve, blood vessel; Ne, nerve; Ft, fat; Gl, 
glandular tissues; Co, colon.
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Quantitative evaluation
The ability of DeepMB to reconstruct images with equivalent fidelity 
to those afforded by model-based reconstruction was then confirmed 
by quantitative comparison. To quantify the image fidelity of DeepMB 

reconstructions, data residual norms were calculated for all in vivo test 
images (see the 'Data residual norm’ section in the Methods for the 
precise definition). The data residual norm measures the fidelity of a 
reconstructed image by computing the mismatch between the image 
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and the corresponding recorded acoustic signals with regard to the 
accurate physical forward model of the used scanner. The metric is 
demonstrably minimal for model-based reconstruction42. Data residual 
norms were also calculated for all other reconstruction methods for 
comparison purposes.

First, data residual norms were calculated with in-focus images 
(that is, reconstructed with optimal SOS values) to evaluate the fidelity 
of DeepMB images with the best possible quality (Fig. 3a). Data resid-
ual norms of DeepMB images (green; mean ± s.d. = 0.156 ± 0.088) are 
almost as low as the data residual norms of model-based images (blue; 
mean ± s.d. = 0.139 ± 0.095). The close agreement between data residual 
norms of DeepMB and model-based images confirms that both recon-
struction approaches afford equivalent image qualities. By contrast, 
the data residual norms of backprojection images are markedly higher 
(grey, mean ± s.d. = 0.369 ± 0.098), which reaffirms the shortcomings of 
backprojection to accurately model the imaging process and explains 
the lower image quality observed in Fig. 2m-p. Table 1 summarizes 
the data residual norms of all reconstruction approaches evaluated 
in this paper. Extended Data Table 1 complements the quantitative 
comparison from Table 1 and confirms that the data residual norms of 
DeepMB images are almost as low as data residual norms of model-based 
images even when aggregated separately based on anatomical regions, 
participants, Fitzpatrick scale, body type, wavelength and SOS values.

Second, data residual norms were calculated for out-of-focus 
images (that is, reconstructed with sub-optimal SOS values) to evalu-
ate the fidelity of DeepMB images during imaging applications with 
a priori-unknown SOS (Fig. 3b and Table 1). Data residual norms of 
DeepMB images remain close to those of model-based images for all 
considered levels of mismatch between the optimal and the employed 
SOS, thus confirming that DeepMB and model-based images are simi-
larly trustworthy regardless of the selected SOS. Note that the two 
right-most distributions of data residual norms in Fig. 3b get narrower 
and include less extreme data residual norm values because they con-
tain fewer data points.

In addition to the quantitative evaluation with data residual norms, 
the deviation of DeepMB and backprojection images from reference 
model-based reconstructions were also quantified by computing 
the mean absolute error, relative mean absolute error, mean squared 
error, relative mean squared error and structural similarity index. The 
obtained metrics for the in vivo test scans are reported in Table 1 and 
confirm that DeepMB images are very similar to model-based images, 
whereas backprojection images notably differ from the model-based 
references.

Multispectral evaluation
The previously described experiments validate—using in vivo scans 
in the 700–980 nm range—that the single-wavelength image qual-
ity of DeepMB is nearly identical to model-based reconstruction and 
clearly superior to backprojection reconstruction. Further experiments 
were then conducted to show that the multispectral image contrast of 
DeepMB is comparable with model-based reconstruction, and superior 
to backprojection reconstruction.

To evaluate the multispectral image quality of DeepMB, 
model-based and backprojection reconstruction, all of the in-vivo 
scans from the test dataset were grouped into multispectral stacks of 
29 images (one scan across the 700–980 nm range in steps of 10 nm, 
respectively) and linearly unmixed into oxyhaemoglobin, deoxy-
haemoglobin, fat and water components43. Figure 4 visualizes the 
unmixed components from DeepMB, model-based and backproejc-
tion images for a representative breast scan, showing: the unmixed 
components for fat and water (Fig. 4a–c); the unmixed components 
for oxyhaemoglobin and deoxyhaemoglobin (Fig. 4d–f); the reference 
absorption spectra of the four chromophores used during unmixing 
(Fig. 4g); and a schematic sketch of the anatomical context for the 
depicted scan (Fig. 4h). The unmixed DeepMB images (Fig. 4a,d) are 
systematically nearly indistinguishable from the model-based refer-
ences (Fig. 4b,e). Conversely, the unmixed backprojection images 
(Fig. 4c,f) exhibit considerably lower multispectral contrast (see, for 
example, magnifications A–C in Fig. 4c) and miss important image 
structures (see, for example, the fine vascularity in magnification B 
of Fig. 4f). Extended Data Figs. 3–5 visualize the unmixing results of 
three further in vivo scans and also display unmixed images from the 
delay-multiply-and-sum with coherence factor algorithm. Finally, the 
ability of DeepMB to obtain clearly superior multispectral images as 
backprojection and delay-multiply-and-sum with coherence factor was 
confirmed quantitatively by computing the structural similarity index, 
mean squared error, and mean absolute error for all unmixed images 
against the reference unmixed model-based images (see Table 2).

Comparison with alternative training strategies for DeepMB
The evaluation experiments described so far thoroughly validate the 
ability of DeepMB to reconstruct high-quality images with adjustable 
SOS values from the range 1,475–1,525 m s–1. Furthermore, alternative 
training strategies were assessed to better understand the effects of 
different specific aspects of the DeepMB methodology on the obtained 
image quality. Quantitative results from all conducted experiments are 
also reported in Tables 1 and 2.
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Advantages of one-hot-encoded SOS values. Passing the 
one-hot-encoded input SOS value to the trainable layers of the net-
work (as shown in Fig. 1d) slightly improves the image fidelity (that is, 
the data residual norms) of DeepMB reconstructions. To evaluate the 
benefits of this strategy, two other models with alternative SOS encod-
ing schemes were trained and assessed: the first without providing the 
SOS to the U-Net (referred to as DeepMBno-sos), and the second with 
the SOS encoded as a scalar value into one additional input channel 
for the U-Net (referred to as DeepMBscalar-sos). In both models the SOS 
was used to apply the delay operator before the trainable U-Net layers, 
analogously to the standard DeepMB model (see Fig. 1d). Not provid-
ing the SOS as input to the U-Net was found to be a marginally inferior 
alternative to the standard one-hot-based SOS encoding with respect 
to image fidelity: DeepMBno-sos inferred high-quality and artefact-free 
images with visually the same quality as the standard DeepMB model, 
but with, on average, slightly higher data residual norms (0.164 versus 
0.156). Further quantitative comparison of DeepMB and DeepMBno-sos 
reconstructions with image-based metrics did not identify a clearly 
superior approach, which corroborates that their overall visual appear-
ance is very similar. Providing the SOS as scalar value to the U-Net was 
found to be a disadvantageous encoding scheme that impedes the abil-
ity of the neural network to learn an accurate reconstruction operator, 
as the overall brightness of images reconstructed with DeepMBscalar-sos 
was found to be associated with the input SOS values. More specifically, 
inferring DeepMBscalar-sos onto the same sinogram with different input 

SOS values obtained images of lower average intensities for higher 
input SOS values. These intensity differences were visually impercepti-
ble with default colour maps but resulted in notably higher average data 
residual norms for the obtained images in comparison to DeepMBno-sos 
or the standard DeepMB model (0.169 versus 0.164 or 0.156).

Advantages of model-based reference images. Using model-based 
reference images as ground-truth references during training is essen-
tial to learn a generalizable model-based reconstruction operator. 
To compare the training strategy of DeepMB to the training meth-
odology reported in previous deep-learning-based reconstruction 
methods for which the learning reference was true initial pressure 
images30–35, another alternative model, referred to as DeepMBinitial-images, 
was trained using as ground-truth references the true synthetic initial 
pressure images (left side of Fig. 1a) instead of model-based recon-
structions (right side of Fig. 1c). The reconstruction operator learnt by 
DeepMBinitial-images was inferior in comparison to the standard DeepMB 
model: in vivo images reconstructed with DeepMBinitial-images suffer 
from low resolution and contrast (see Extended Data Fig. 6) and have 
notably worse data residual norms (mean ± s.d. = 0.267 ± 0.094) than 
the standard DeepMB model.

Advantages of synthesized training data. Synthesized training data 
enables DeepMB to learn an accurate and general reconstruction opera-
tor. To contextualize the image quality of DeepMB with synthesized 

Table 1 | Quantitative evaluation of the image quality for all reconstruction methods assessed in this paper in comparison 
with the reference model-based reconstruction

Our method Reference 
method

Traditional methods Alternative DeepMB training strategies

DeepMB MB BP DMAS-CF DeepMBno-sos DeepMBscalar-sos* DeepMBinitial-images** DeepMBin-vivo***

In-focus  
images

R (↓) 0.156  
(0.092, 0.189)

0.139  
(0.068, 0.180)

0.369  
(0.294, 0.428)

0.982  
(0.972, 0.996)

0.164  
(0.106, 0.193)

0.169  
(0.113, 0.197)

0.267  
(0.196, 0.324)

0.155  
(0.088, 0.193)

MAE (↓) 0.74  
(0.43, 0.75)

n/a 3.98  
(2.60, 4.50)

4.58  
(2.80, 5.14)

0.72  
(0.41, 0.74)

0.80  
(0.47, 0.81)

18.23  
(13.49, 21.07)

0.59  
(0.30, 0.57)

MAErel  
(%) (↓)

15.21  
(12.90, 17.21)

n/a 86.42  
(82.43, 90.50)

96.60  
(95.58, 98.31)

14.81  
(12.35, 16.88)

16.54  
(14.11, 18.53)

429.55  
(357.69, 494.13)

11.42  
(9.57, 12.78)

MSE (↓) 9.45  
(0.56, 2.41)

n/a 84.98  
(24.97, 85.20)

254.85  
(60.57, 236.06)

8.51  
(0.56, 3.15)

10.16  
(0.58, 3.41)

703.59  
(325.74, 837.51)

5.35  
(0.43, 1.70)

MSErel  
(%) (↓)

1.34  
(0.65, 1.49)

n/a 37.01  
(29.18, 43.85)

94.85  
(93.48, 97.46)

1.47  
(0.65, 1.84)

1.71  
(0.82, 2.00)

455.05  
(265.24, 574.32)

0.93  
(0.50, 1.03)

SSIM 
(↑)

0.98  
(0.98, 0.99)

n/a 0.73  
(0.68, 0.79)

0.65  
(0.61, 0.69)

0.98  
(0.98, 0.99)

0.98  
(0.97, 0.99)

0.37  
(0.31, 0.42)

0.99  
(0.99, 0.99)

Out-of- 
focus 
images

R (↓) 0.166  
(0.087, 0.222)

0.149  
(0.059, 0.212)

0.365  
(0.281, 0.439)

0.982  
(0.971, 0.997)

0.176  
(0.105, 0.228)

0.181  
(0.111, 0.230)

0.275  
(0.196, 0.342)

0.164  
(0.081, 0.226)

MAE (↓) 0.78  
(0.42, 0.76)

n/a 4.10  
(2.58, 4.49)

4.72  
(2.74, 5.14)

0.77  
(0.40, 0.76)

0.83  
(0.46, 0.82)

18.43  
(13.56, 20.87)

0.61  
(0.30, 0.59)

MAErel  
(%) (↓)

15.12  
(12.37, 17.21)

n/a 86.34  
(81.90, 90.79)

96.53  
(95.45, 98.01)

14.85  
(12.29, 17.29)

16.49  
(14.08, 18.55)

425.41  
(356.87, 486.35)

11.42  
(9.67, 12.81)

MSE (↓) 13.85  
(0.51, 2.56)

n/a 92.27  
(24.21 85.79)

295.52  
(52.93 240.66)

11.87  
(0.52, 3.64)

13.79  
(0.63, 3.64)

711.53  
(320.39, 783.03)

6.99  
(0.39, 1.82)

MSErel  
(%) (↓)

1.41  
(0.65, 1.54)

n/a 36.78  
(28.22, 45.58)

94.54  
(93.25, 97.13)

1.55  
(0.64, 2.04)

1.80  
(0.84, 2.10)

445.76  
(259.31, 570.82)

0.89  
(0.52, 1.01)

SSIM 
(↑)

0.98  
(0.97, 0.98)

n/a 0.71  
(0.65, 0.79)

0.62  
(0.58, 0.67)

0.98  
(0.98, 0.99)

0.98  
(0.97, 0.98)

0.36  
(0.31, 0.41)

0.99  
(0.99, 0.99)

The table shows the mean values and in brackets the 25th and 75th percentiles for in focus (4,814 in vivo sinograms from the test dataset reconstructed with each one’s optimal SOS 
values) and out-of-focus (638 in vivo sinograms from the test dataset reconstructed each with all 11 available SOS values) images. The arrow symbols (↑) and (↓) indicate for each metric 
whether a higher or lower value is better. R, data residual norm; MAE, mean absolute error; MAErel, relative man absolute error; MSE, mean squared error; MSErel, relative mean squared error; 
SSIM, structural similarity index; DMAS-CF, delay-multiply-and-sum with coherence factor; DeepMBno-sos, training conducted without providing the SOS as additional input to the U-Net; 
DeepMBscalar-sos, training conducted with encoding the SOS value into one additional input channel for the U-Net; DeepMBinitial-images, training conducted on the true synthetic initial pressure 
images instead of the corresponding MB reconstructions; DeepMBin-vivo, training conducted on in vivo data instead of synthetic data. *All DeepMBscalar-sos images systematically have their overall 
brightness associated with the input SOS. **All DeepMBinitial-images images suffer from strong reconstruction artefacts that manifest as intensity saturation (see Extended Data Fig. 6). ***Some 
DeepMBin-vivo images suffer from visible reconstruction artefacts that manifest as coffee-stain-like structures (see Extended Data Fig. 7).
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training data, alternative DeepMB models were trained on in vivo data 
instead of real-world images. These models, referred to as DeepMBin-vivo, 
inferred images with—on average—slightly better data residual norms 
than the standard DeepMB model (0.155 versus 0.156); however, approxi-
mately 20% of all DeepMBin-vivo images contained visible artefacts, either 
at the left or right image borders, or in regions showing strong absorp-
tion at the skin surface. Extended Data Fig. 7 shows representative exam-
ples of such artefacts. No artefacts were observed with the standard 
DeepMB model (trained using synthesized data), even when reducing 
the size of the synthetic training set from 8,000 to 3,500 to match the 
reduced amount of available in vivo training data.

Discussion
We introduce a deep-learning-based reconstruction framework called 
DeepMB to learn the iterative model-based reconstruction operator 
and infer images with nearly identical quality as model-based recon-
struction in 31 ms per image. We trained DeepMB on synthesized 
sinograms from real-world images instead of in vivo images, as these 
synthesized sinograms afford a large training dataset with a versatile set 
of image features, allowing DeepMB to accurately reconstruct images 
with diverse features. Such general-feature training datasets reduce 
the risk of encountering out-of-distribution samples (test data with 
features that are not contained in the training dataset) when applying 
the trained model to in vivo scans. By contrast, training a model on 
in vivo scans systematically introduces the risk of overfitting to specific 
characteristics of the training samples and could potentially lead to 
decreased image quality for never-seen-before scans that may involve 
different anatomical views or disease states. We indeed observed 
that the alternative models trained on in vivo data (DeepMBin-vivo) 

failed to adequately generalize to some in vivo test scans and intro-
duced artefacts within the reconstructed images (see Extended Data  
Fig. 7). Furthermore, using synthesized data instead of in vivo data 
alleviates the training of new DeepMB models as it obviates the need 
for recruiting and scanning a cohort of participants. Instead, training 
data can be automatically generated and used to straightforwardly 
obtain specifically trained DeepMB models for new scanners or dif-
ferent reconstruction parameters. On the other hand, our quantitative 
evaluation with data residual norms and image-based metrics showed 
that the use of more domain-specific training data (in our case in vivo 
scans) facilitated in aggregate slightly better images than the standard 
DeepMB model (for example, average data residual norms of 0.155 for 
DeepMBin-vivo versus 0.156 for DeepMB). Domain-specific training data 
can improve the reconstruction performance because it facilitates 
learning of a domain-specific data transform that exploits inherent 
characteristics and local spatial correlation of the considered data 
manifold19. Overall, the trade-off between domain-specific training 
data to improve accuracy and general training data to reduce the risk 
of out-of-distribution samples remains a fundamental challenge for 
real-world application of deep learning44,45. Subsequent research may 
therefore focus on strategies for balancing generality, accuracy and 
practicality during model training, for example, by employing hybrid 
training sets combining synthesized data from real-world images with 
in vivo optoacoustic images and synthesized data from other biomedi-
cal scenes or by applying domain-adaptation techniques37,46,47.

Accurate generalization from synthesized training to in vivo test 
data is possible with DeepMB because the underlying inverse problem to 
solve (that is, regularized model-based reconstruction42) is well-posed; 
for each input sinogram there is a unique and stable solution (that is, 
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Fig. 4 | Unmixing of a representative multispectral breast scan for DeepMB, 
MB and BP. a–f, The unmixed components for fat and water (a–c), and for 
oxyhaemoglobin and deoxyhaemoglobin (d–f) for DeepMB (a,d), MB (b,e) and 
BP (c,f). g,h, The reference absorption spectra of the four chromophores used 
during unmixing (g) and a schematic sketch of the anatomical context for the 

depicted scan (h) are depicted underneath. All optoacoustic images show the 
unmixed components in arbitrary units and were slightly cropped to a field of 
view of 4.16 × 2.80 cm2 to disregard the area occupied by the probe couplant 
above the skin line. Mb, probe membrane; Sk, skin; Fa, fascia; Mu, muscle; Ve, 
blood vessel; Ft, fat; Gl, glandular tissues.
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the reconstructed image). The network can thus learn a data transform 
that is agnostic to specific characteristics of the ground-truth images 
during training and generalizes to images with any content (be it synthe-
sized or in vivo)19. By contrast, the alternative model DeepMBinitial-images 
trained on true synthetic initial pressure images (left side in Fig. 1a) falls 
short to accurately generalize to experimental test data and ultimately 
results in decreased reconstruction image quality for in vivo data as 
the underlying inverse problem is ill-posed. More specifically, true 
synthetic initial pressure images contain information not available in 
the input sinograms due to limited angle acquisition, measurement 
noise, and finite transducer bandwidth. To restore the missing informa-
tion, DeepMBinitial-images must incorporate information from the training 
data manifold, which hinders the correct processing of test data not 
contained in the training data manifold.

DeepMB supports dynamic adjustments of the SOS parameter 
during imaging to reconstruct high-resolution and in-focus images for 
arbitrary tissue types. Information about the SOS in the imaged region 
is required during optoacoustic image reconstruction to compute the 
travel time of acoustic signals between the source chromophores and 
the transducers of the imaging system, and to account for the spatial 
impulse response of the imaging system15,16. In practice, the optimal SOS 
for a reconstruction is a priori unknown and needs to be manually tuned 
during imaging. Following previous efforts to automatically correct for 
SOS-related aberrations, especially in heterogeneous media48, future 
research may also aim at automatically inferring the optimal SOS from 
the optoacoustic input sinogram—either in a distinct antecedent step 
or directly within the deep-learning-based reconstruction.

The presented methodology to accelerate iterative model-based 
reconstruction is also applicable to other optoacoustic reconstruction 
approaches. For instance, frequency-band model-based reconstruc-
tion49 or Bayesian optoacoustic reconstruction50,51 can disentangle 
structures of different physical scales and quantifying reconstruction 
uncertainty, respectively, but their long reconstruction times currently 
hinder their use in real-time applications. The underlying methodol-
ogy of DeepMB could also be exploited to accelerate parametrized 
(iterative) inversion approaches for other imaging modalities, such 
as ultrasound52, X-ray computed tomography18,53, magnetic resonance 
imaging27–29,54, computed tomography26, or, more generally, for any 
parametric partial differential equation25. We are currently working 
on embedding DeepMB into the hardware of a next-generation MSOT 
scanner, to use DeepMB for real-time imaging in clinical applications.

Methods
Handheld MSOT imaging system
We evaluated DeepMB with a modern MSOT scanner (MSOT Acu-
ity Echo, iThera Medical GmbH). The system was equipped with a 

multiwavelength laser that illuminates tissues with short laser 
pulses (<10 ns) at a repetition rate of 25 Hz. The scanner featured a 
custom-made ultrasound detector (IMASONIC SAS) with the follow-
ing characteristics: number of piezoelectric elements = 256; concavity 
radius = 4 cm; angular coverage = 125°; central frequency = 4 MHz. The 
parasitic noise generated by light-transducer interference was reduced 
via optical shielding of the matching layer, yielding an extended 153% 
frequency bandwidth. The raw channel data for each optoacoustic 
scan were recorded with a sampling frequency of 40 MHz in 50.75 µs, 
yielding a sinogram of 2,030 × 256 samples. Co-registered B-mode 
ultrasound images were acquired interleaved at approximately 6 Hz 
for live guidance and navigation. During imaging, optoacoustic back-
projection images as well as B-mode ultrasound images were displayed 
in real-time on the scanner monitor for guidance.

Acquisition of in vivo test sinograms
We scanned six healthy volunteers to collect in vivo data for DeepMB 
evaluation. Three females and three males particpated, aged from 20 to 
36 years (mean age = 28.3 ± 5.7). Self-assessed skin colour, according to 
the Fitzpatrick scale, was type II (2 participants), type III (3 participants) 
and type IV (1 participant). Self-assessed body type was ectomorph (2 
participants), mesomorph (3 participants) and endomorph (1 partici-
pant). We have complied with all relevant ethical regulations following 
the guidelines provided by Helmholtz Center Munich. All participants 
gave written informed consent upon recruitment.

For each participant, we scanned between 25 and 29 different 
combinations of anatomical locations and probe orientations: biceps, 
thyroid, carotid, calf (each left/right and transversal/longitudinal), 
elbow, neck, colon (each left/right) and breast (each left/right and 
top/bottom, female participants only). We conducted between one 
and four acquisitions for each combination of anatomical location and 
probe orientation. During each acquisition, we recorded sinograms 
for approximately 10 s at wavelengths cyclically iterating from 700 
to 980 nm in steps of 10 nm. We then selected, per acquisition, the 29 
consecutively acquired sinograms for which we observed minimal 
motion in the interleaved ultrasound images, amounting to a total of 
4,814 in vivo test sinograms.

Finally, we band-pass filtered all selected in vivo sinograms 
between 100 kHz and 12 MHz to remove frequency components beyond 
the transducer bandwidth and cropped the first 110 time samples to 
remove device-specific noise present at the beginning of the sinograms.

Determination of the SOS values
We manually tuned the SOS values of all in vivo test scans to evaluate 
DeepMB reconstructions under both in-focus and out-of-focus con-
ditions. We used a SOS step size of 5 m s–1 to enable SOS adjustments 

Table 2 | Quantitative comparison of the unmixing components from DeepMB, BP and all alternative DeepMB models with 
the unmixing components from reference model-based reconstruction

Our method Traditional methods Alternative DeepMB training strategies

DeepMB BP DMAS-CF DeepMBno-sos DeepMBscalar-sos DeepMBinitial-images DeepMBin-vivo

MAE (↓) 1.26  
(0.80, 1.50)

5.34  
(3.91, 6.04)

7.78  
(5.82, 8.78)

1.26  
(0.77, 1.54)

1.39 (0.90, 1.61) 29.22  
(24.58, 32.07)

1.06  
(0.62, 1.20)

MAErel (%) (↓) 15.34  
(13.20, 16.83)

67.46  
(65.47, 69.80)

98.90  
(98.39, 99.71)

15.26  
(13.10, 16.70)

17.01 (15.07, 18.47) 390.97  
(342.72, 431.73)

12.51  
(10.50, 13.57)

MSE (↓) 52.18  
(3.52, 38.8)

337.88  
(96.38, 423.92)

1,527.62  
(476.96, 1,666.41)

51.38  
(4.05, 46.39)

62.23 (4.67, 49.09) 3,344.46  
(1,704.83, 4146.30)

31.07  
(3.10, 19.14)

MSErel (%) (↓) 1.55  
(0.72, 1.91)

21.11  
(18.21, 23.85)

97.40  
(95.93, 98.39)

1.78  
(0.86, 2.21)

2.16 (1.02, 2.82) 295.44  
(199.81, 363.65)

1.06  
(0.60, 1.06)

SSIM (↑) 0.99  
(0.99, 1.00)

0.90  
(0.87, 0.93)

0.83  
(0.80, 0.87)

0.99  
(0.99, 1.00)

0.99 (0.99, 1.00) 0.59  
(0.50, 0.70)

1.00  
(1.00, 1.00)

The table shows the mean values and in brackets the 25th and 75th percentiles for the 166 multispectral stacks from the in vivo test dataset.
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slightly below the system spatial resolution (approximatively 200 µm). 
We found that the optimal range of SOS values was 1,475–1,525 m s–1 for 
the in vivo dataset, and we therefore used the same range to define the 
supported input SOS values of the DeepMB network.

For each scan, we manually selected the SOS value that resulted 
in the most well-focused reconstructed image. To speed up tuning, 
we selected the optimal SOS values on the basis of approximate and 
high-frequency-dominated reconstructions that we computed by 
applying the transpose model of the system to the recorded sinograms. 
Furthermore, we tuned the SOS for scans at 800 nm only, and adopted 
the values for all scans at other wavelengths acquired at the time, 
exploiting their spatial co-registration due to the absence of motion 
(see the above sections for details).

Synthesis of sinograms for training and validation
For network training and validation, optoacoustic sinograms were 
synthesized with an accurate physical forward model of imaging pro-
cess that incorporates the total impulse response of the system15, 
parametrized by a SOS value drawn uniformly at random from the range 
1,475–1,525 m s–1 in 5 m s–1 steps. Real-world images serving as initial 
pressure distributions for the forward simulations were randomly 
selected from the publicly available PASCAL Visual Object Classes Chal-
lenge 2012 (VOC2012) dataset38, converted to monochannel grayscale 
and resized to 416 × 416 pixels. After the application of the forward 
model, each synthesized sinogram was scaled by a factor drawn uni-
formly at random from the 0–450 range to better match the variance 
observed in in vivo sinograms.

Image reconstruction
We reconstructed all sinograms (synthetic as well as in vivo) via 
iterative-model-based reconstruction to generate the ground-truth 
optoacoustic images. We used Shearlet L1 regularization to tackle the 
ill-posedness of the inverse problem. Shearlet L1 regularization is a 
convex relaxation of Shearlet sparsity, which can reduce limited-view 
artefacts in reconstructed images, as Shearlets provide a maximally 
sparse approximation of a larger class of images (known as cartoon-like 
functions) with a mathematically proven optimal encoding rate55. The 
optimal pressure field is characterized as

p0 ∶= argmin
p≥0

||MSOSp − s||22 +λ||SH (p) ||1,

where p0 is the reconstructed image, MSOS is the forward model of the 
imaging process for the selected reconstruction SOS, s is the input 
sinogram, λ is the regularization parameter tuned via an L-curve, SH 
is the Shearlet transform and ǁ∙ǁn is the n-norm. The minimization 
problem was solved via bound-constrained sparse reconstruction by 
separable approximation56–58. All images were reconstructed with a size 
of 416 × 416 pixels and a field of view of 4.16 × 4.16 cm2. For comparison 
purposes, we also reconstructed all images using the backprojection 
formula59,60 and the delay-multiply-and-sum with coherence factor 
algorithm40,41.

Network training
The DeepMB network was implemented in Python and PyTorch. It 
was trained—either on synthetic or in vivo data—for 300 epochs using 
stochastic gradient descent with batch size of 4, learning rate of 0.01, 
momentum of 0.99 and a per-epoch learning rate decay factor of 0.99. 
The network loss was calculated as the mean square error between the 
output image and the reference image. The final model was selected 
based on the minimal loss on the validation dataset, and compiled into 
an ONNX model for speed-up.

To facilitate training, all input sinograms were scaled by K = 450–1 
to ensure that their values never exceed the range [–1, 1]. The same 
scaling factor was also applied to all target images. Furthermore, the 
square root was applied to all target reference images used during 

training and validation to reduce the network output values and limit 
the influence of high intensity pixels during loss calculation. When 
applying the trained network on in vivo test data, inferred images were 
first squared then scaled by K−1 to revert the preprocessing operation.

When training on synthetic data to build the standard DeepMB 
model, we used 8,000 sinograms as train split and 2,000 sinograms as 
validation split. The alternative scenario involving training on in vivo 
data to build the DeepMBin-vivo models was performed as described 
hereafter: six different permutations were conducted, with a 4/1/1 par-
ticipants division between the train, validation and test splits, respec-
tively, each participant being part of the validation and test splits once.

The DeepMB network is based upon the U-Net architecture39 with 
a depth of five layers and a width of 64 features. To gradually reduce 
the total number of data channels from 267 (that is, 256 transducer 
elements, and one-hot encoding of 11 possible SOS values) down to 64, 
three 2D convolutional layers with 208, 160 and 112 features, respec-
tively, were added prior to the U-Net. All kernel and padding size were 
(3, 3) and (1, 1), respectively. Biases were accounted for, and the final 
activation was the absolute value function.

Data residual norm
To quantify the image fidelity of reconstructions from DeepMB, 
model-based, or backprojection, we evaluated the data residual norm 
R, defined as

R ∶=
||MSOS p0 − s||22

||s||22
,

where p0 is the reconstructed image, MSOS is the forward model from 
model-based reconstruction, s is the input sinogram and ǁ∙ǁ2 is the 
two-norm. Time sample values from the input sinogram that are outside 
the reach of the applied forward model are set to zero before comput-
ing the data residual norm to avoid distortions by signals originating 
from outside the field of view. We employed data residual norms as the 
primary evaluation metric for our experiments because it respects the 
underlying physics of the imaging process and is demonstrably mini-
mal for model-based reconstruction. To constrain the solutions space 
for all reconstruction methods in a similar way and enable a meaningful 
comparison between backprojection on one hand, versus non-negative 
model-based and DeepMB on the other hand, negative pixel values were set 
to zero prior to residual calculation for backprojection images. All images 
were individually scaled using the linear degree of freedom of optoacous-
tic image reconstruction so that their data residual norms are minimal.

For the evaluation of in-focus images, data residual norms were cal-
culated for the reconstructions with the optimal SOS values of all 4,814 
samples from the in vivo test set. For the evaluation of out-of-focus 
images, data residuals were calculated for the reconstructions with 
all 11 SOS values of a subset of 638 randomly selected in vivo samples.

Unmixing
To evaluate the multispectral image quality of DeepMB, model-based 
and backprojection, all reconstructed in-vivo scans from the test data-
set were grouped into multispectral stacks of 29 images (respectively 
one scan from the range 700–980 nm in steps of 10 nm) and unmixed 
into oxyhaemoglobin, deoxyhaemoglobin, fat and water components:

Ŵ ∶= argmin
W≥0

||S −WH||2F,

where S (size 173,056 × 29) denotes all pixels of a multispectral stack, 
H (size 4 × 29) denotes the reference absorption spectra of water, fat, 
oxyhaemoglobin and deoxyhaemoglobin in the wavelength range 
700–980 nm, and Ŵ  (size 173,056 × 4) denotes the unmixed compo-

nents for the four considered chromophores; ||M||F ∶= (∑i, jm
2
i, j)

0.5
 

denotes the Frobenius norm and M ≥ 0 refers to entry wise inequality. 
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All negative pixel values in the backprojection images were set to zero 
before unmixing.

Image-based evaluation metrics
We also quantified the deviation of standard DeepMB, all alternative 
DeepMB, backprojection and delay-multiply-and-sum with coherence 
factor images from reference model-based reconstructions by comput-
ing the MAE, MAErel, MSE, MSErel and SSIM, defined as

MAE ∶= ||irec − imb||1,

MAErel ∶=
||irec − imb||1

||imb||1
,

MSE ∶= ||irec − imb||
2
2,

MSErel ∶=
||irec − imb||

2
2

||imb||
2
2

,

SSIM ∶=
(2μrecμmb + c1)(2σrec,mb + c2)

(μ2
rec + μ2

mb + c1)(σ2rec + σ2mb + c2)
,

where irec (size 173,056 × 1) is the vectorization of a reconstructed image 
from either standard DeepMB, any alternative DeepMB, backprojection 
or delay-multiply-and-sum with coherence factor and imb (size 
173,056 × 1) is the vectorization of the corresponding reference image 
from model-based reconstruction. The SSIM is calculated as the aver-
age over sliding windows of size 21 × 21 pixels, where μrec and μmb are 
the averages of irec and imb; σ2rec and σ2mb are the variances of irec and imb; 
σrec,mb is the covariance of irec and imb; and c1 = (0.01max (imb))

2  and 
c2 = (0.03max (imb))

2 are two empirical variables to stabilize the division 
with weak denominators. All backprojection images were also preproc-
essed to enable a meaningful comparison with the model-based refer-
ence images: negative pixels were set to zero and all images were 
individually scaled using the linear degree of freedom in reconstructed 
optoacoustic images so that the respectively calculated metric is 
minimal.

Image-based metrics were computed analogously to the data 
residual norms using all 4,814 in vivo test samples (each reconstructed 
with the optimal SOS value) for the in-focus case and a subset of 638 
in vivo test samples (each reconstructed with all 11 available SOS values) 
for the out-of-focus case.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
In vivo data from two of the six scanned volunteers, the trained DeepMB 
model used in this work, and a download link for Pascal VOC 2012 
dataset38 used to synthesize training data for DeepMB are provided 
along with the source code on Github (https://github.com/juestellab/
deepmb)61. In vivo data from the other four scanned volunteers cannot 
be shared due to privacy and consent restrictions.

Code availability
The source code for DeepMB is publicly available on GitHub (https://
github.com/juestellab/deepmb)61.
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Extended Data Fig. 1 | Visual comparison of backprojection images with 
negative pixel values set to zero after the reconstruction (BP, i-l) and delay-
multiply-and-sum with coherence factor (DMAS-CF, m-p) images, against 
the corresponding deep model-based (DeepMB, a-d) and model-based (MB, 
e-h) images. Visual comparison of backprojection (BP) images with negative 
pixel values set to zero after the reconstruction (third row) and delay-multiply-
and-sum with coherence factor (DMAS-CF, fourth row) images, against the 
corresponding deep model-based (DeepMB) and model-based (MB) images  
(first two rows). The presented samples are the same as those depicted in Fig. 2.  

DeepMB and MB images are nearly identical; BP images notably differ from 
reference model-based reconstructions suffering from lower resolution (see 
for example structures shown in zoom A of tile i and zoom D of tile j), missing 
structures in image regions that contained negative pixel values (see for example 
zoom F of tile j, or the entire region below the skin line (Sk) in tile k and l), and 
reduced contrast (see for example structures shown in zoom I of tile k and zoom J 
of tile l). All images show the reconstructed initial pressure in arbitrary units and 
were slightly cropped to a field of view of 4.16 × 2.80 cm2 to disregard the area 
occupied by the probe couplant above the skin line.
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Extended Data Fig. 2 | Examples of deep model-based and model-based 
images with low and high data residual norms. Examples from the in vivo test 
dataset with low and high data residual norms (namely, below the 5th percentile 
(a-h) and above the 95th percentile (i-p) of all 4814 test samples, respectively), for 
deep model-based (DeepMB) and model-based (MB). The data residual norm (R) 
is indicated between round brackets above each image. Panels (a, e) and (l, p)  

correspond to the samples for which DeepMB afforded the overall lowest and 
highest data residual norms, respectively. All images show the reconstructed 
initial pressure in arbitrary units and were slightly cropped to a field of view of 
4.16 × 2.80 cm2 to disregard the area occupied by the probe couplant above the 
skin line (Sk).
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Extended Data Fig. 3 | Unmixing of a multispectral biceps scan for deep 
model-based, model-based, backprojection, and delay-multiply-and-
sum with coherence factor reconstructions. Unmixing of a representative 
multispectral biceps scan for deep model-based (DeepMB; a, e), model-based 
(MB; b, f), backprojection (BP; c, g), and delay-multiply-and-sum with coherence 
factor (DMAS-CF; d, h). The unmixed components for fat and water and for 
oxyheamoglobin and deoxyhaemoglobin are shown in the first two rows, 

respectively. The third row depicts the reference absorption spectra of the 
four chromophores used during unmixing (i) and a schematic sketch of the 
anatomical context for the depicted scan ( j). All optoacoustic images show the 
unmixed components in arbitrary units and were slightly cropped to a field of 
view of 4.16 × 2.80 cm2 to disregard the area occupied by the probe couplant 
above the skin line. Mb: probe membrane, Sk: skin, Fa: fascia, Mu: muscle, Ve: 
blood vessel, Ne: nerve.
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Extended Data Fig. 4 | Unmixing of a multispectral abdomen scan for deep 
model-based, model-based, backprojection, and delay-multiply-and-
sum with coherence factor reconstructions. Unmixing of a representative 
multispectral abdomen scan for deep model-based (DeepMB; a, e), model-
based (MB; b, f), backprojection (BP; c, g) and delay-multiply-and-sum with 
coherence factor (DMAS-CF; d, h). The unmixed components for fat and water 
and for oxyhaemoglobin and deoxyhaemoglobin are shown in the first two 

rows, respectively. The third row depicts the reference absorption spectra of 
the four chromophores used during unmixing (i) and a schematic sketch of the 
anatomical context for the depicted scan ( j). All optoacoustic images show the 
unmixed components in arbitrary units and were slightly cropped to a field of 
view of 4.16 × 2.80 cm2 to disregard the area occupied by the probe couplant 
above the skin line. Mb: probe membrane, Sk: skin, Fa: fascia, Mu: muscle, Ft: fat, 
Co: colon.
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Extended Data Fig. 5 | Unmixing of a multispectral carotid scan for deep 
model-based, model-based, backprojection, and delay-multiply-and-
sum with coherence factor reconstructions. Unmixing of a representative 
multispectral carotid scan for deep model-based (DeepMB; a, e), model-based 
(MB; b, f), backprojection (BP; c, g) and delay-multiply-and-sum with coherence 
factor (DMAS-CF; d, h). The unmixed components for fat and water and for 
oxyhaemoglobin and deoxyhaemoglobin are shown in the first two rows, 

respectively. The third row depicts the reference absorption spectra of the 
four chromophores used during unmixing (i) and a schematic sketch of the 
anatomical context for the depicted scan ( j). All optoacoustic images show the 
unmixed components in arbitrary units and were slightly cropped to a field of 
view of 4.16 × 2.80 cm2 to disregard the area occupied by the probe couplant 
above the skin line. Mb: probe membrane, Sk: skin, Fa: fascia, Mu: muscle, Ca: 
common carotid artery, Ju: jugular vein, Th: thyroid, Tr: trachea.
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Extended Data Fig. 6 | Example images from the alternative model 
DeepMBinitial-images trained using true initial pressure reference images. 
Representative examples showing the inaptitude of the alternative model 
DeepMBinitial-images (that is, trained on true initial pressure images) to reconstruct 
in vivo images. The three rows depict different anatomies (elbow: a–e, abdomen: 
f–j, calf: k–o). The three leftmost columns correspond to images reconstructed 

via model-based (MB), alternative DeepMBinitial-images, and standard DeepMB. 
The two rightmost columns show the absolute differences between the 
reference model-based image and the image inferred from DeepMBinitial-images and 
DeepMB, respectively. The field of view is 4.16 × 4.16 cm2, the enlarged region is 
0.61 × 0.61 cm2.
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Extended Data Fig. 7 | Example images from the alternative model  
DeepMBin-vivo trained using in vivo data. Representative examples of 
reconstruction artefacts (red arrows) from alternative models DeepMBin-vivo 
(that is, trained on in vivo data instead of synthesized data). The three rows 
depict different anatomies (biceps: a–e, breast: f–j, thyroid: k–o). The three 
leftmost columns correspond to images reconstructed via model-based (MB), 

alternative DeepMB trained on in vivo data (DeepMBin-vivo), and standard DeepMB 
(DeepMB). The two rightmost columns show the absolute differences between 
the reference model-based image and the image inferred from DeepMBin-vivo and 
DeepMB, respectively. The field of view is 4.16 × 4.16 cm2, the enlarged region is 
0.61 × 0.61 cm2.
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Extended Data Table 1 | Quantitative evaluation of deep model-based and model-based reconstructions for different 
aggregations of the in vivo test dataset

Quantitative evaluation of the image fidelity of deep model-based (DeepMB) and model-based (MB) reconstructions for different aggregations of the in-focus in vivo test dataset. For each 
considered category, the table provides the mean data residual norms, the 25th and 75th percentiles of the data residual norms (in square brackets), and the number of included images (in 
parentheses).
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